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PREFACE 

The book is intended for students and researchers who want to learn to apply non-
parametric and semiparametric methods and to use visualization tools related to these 
estimation methods. In particular, the book is intended for students and researchers 
in quantitative finance who want to apply statistical methods and for students and 
researchers of statistics who want to learn to apply statistical methods in quantitative 
finance. The book continues the themes of Klemela (2009), which studied density 
estimation. The current book focuses on regression function estimation. 

The book was written at the University of Ouiu, Department of Mathematical 
Sciences. I wish to acknowledge the support provided by the University of Ouiu and 
the Department of Mathematical Sciences. 

The web page of the book is http://cc.oulu.fi/~jklemela/regstruct/. 

Jussi KLEMELA 

Ouiu, Finland 

October 2013 
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INTRODUCTION 

We study regression analysis and classification, as well as estimation of conditional 
variances, quantiles, densities, and distribution functions. The focus of the book is 
on nonparametric methods. Nonparametric methods are flexible and able to adapt to 
various kinds of data, but they can suffer from the curse of dimensionality and from 
the lack of interpretability. Semiparametric methods are often able to cope with quite 
high-dimensional data and they are often easier to interpret, but they are less flexible 
and their use may lead to modeling errors. In addition to terms "nonparametric esti-
mator" and "semiparametric estimator", we can use the term "structured estimator" to 
denote such estimators that arise, for example, in additive models. These estimators 
obey a structural restriction, whereas the term "semiparametric estimator" is used for 
estimators that have a parametric and a nonparametric component. 

Nonparametric, semiparametric, and structured methods are well established and 
widely applied. There are, nevertheless, areas where a further work is useful. We 
have included three such areas in this book: 

1. Estimation of several functionals of a conditional distribution; not only esti-
mation of the conditional expectation but also estimation of the conditional 
variance and conditional quantiles. 

2. Quantitative finance as an area of application for nonparametric and semipara-
metric methods. 

x i x 
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3. Visualization tools in statistical learning. 

1.1 ESTIMATION OF FUNCTIONALS OF CONDITIONAL 
DISTRIBUTIONS 

One of the main topics of the book are the kernel methods. Kernel methods are 
easy to implement and computationally feasible, and their definition is intuitive. For 
example, a kernel regression estimator is a local average of the values of the response 
variable. Local averaging is a general regression method. In addition to the kernel 
estimator, examples of local averaging include the nearest-neighbor estimator, the 
regressogram, and the orthogonal series estimator. 

We cover linear regression and generalized linear models. These models can be 
seen as starting points to many semiparametric and structured regression models. 
For example, the single index model, the additive model, and the varying coefficient 
linear regression model can be seen as generalizations of the linear regression model 
or the generalized linear model. 

Empirical risk minimization is a general approach to statistical estimation. The 
methods of empirical risk minimization can be used in regression function estimation, 
in classification, in quantile regression, and in the estimation of other functionals of 
the conditional distribution. The method of local empirical risk minimization is a 
method which can be seen as a generalization of the kernel regression. 

A regular regressogram is a special case of local averaging, but the empirical 
choice of the partition leads to a rich class of estimators. The choice of the parti-
tion is made using empirical risk minimization. In the one- and two-dimensional 
cases a regressogram is usually less efficient than the kernel estimator, but in high-
dimensional cases a regressogram can be useful. For example, a method to select 
the partition of a regressogram can be seen as a method of variable selection, if the 
chosen partition is such that it can be defined using only a subset of the variables. 
The estimators that are defined as a solution of an optimization problem, like the min-
imizers of an empirical risk, need typically be calculated with numerical methods. 
Stagewise algorithms can also be taken as a definition of an estimator, even without 
giving an explicit minimization problem which they solve. 

A regression function is defined as the conditional expectation of the distribution 
of a response variable. The conditional expectation is useful in making predictions 
as well as in finding causal relationships. We cover also the estimation of the condi-
tional variance and conditional quantiles. These are needed to give a more complete 
view of the conditional distribution. Also, the estimation of the conditional variance 
and conditional quantiles is needed in risk management, which is an important area 
of quantitative finance. The conditional variance can be estimated by estimating 
the conditional expectation of the squared random variable, whereas a conditional 
quantile is a special case of the conditional median. In the time series setting the stan-
dard approaches for estimating the conditional variance are the ARCH and GARCH 
modeling, but we discuss nonparametric alternatives. The GARCH estimator is close 
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to a moving average, whereas the ARCH estimator is related to linear state space 
modeling. 

In classification we are not interested in the estimation of functionals of a distribu-
tion, but the aim is to construct classification rules. However, most of the regression 
function estimation methods have a counterpart in classification. 

1.2 QUANTITATIVE FINANCE 

Risk management, portfolio selection, and option pricing can be identified as three 
important areas of quantitative finance. Parametric statistical methods have been 
dominating the statistical research in quantitative finance. In risk management, 
probability distributions have been modeled with the Pareto distribution or with 
distributions derived from the extreme value theory. In portfolio selection the multi-
variate normal model has been used together with the Markowitz theory of portfolio 
selection. In option pricing the Black-Scholes model of stock prices has been widely 
applied. The Black-Scholes model has also been extended to more general parametric 
models for the process of stock prices. 

In risk management the p-quantile of a loss distribution has a direct interpretation 
as such threshold that the probability of the loss exceeding the threshold is less than 
p. Thus estimation of conditional quantiles is directly relevant for risk management. 
Unconditional quantile estimators do not take into account all available information, 
and thus in risk management it is useful to estimate conditional quantiles. The 
estimation of the conditional variance can be applied in the estimation of a conditional 
quantile, because in location-scale families the variance determines the quantiles. The 
estimation of conditional variance can be extended to the estimation of the conditional 
covariance or the conditional correlation. 

We apply nonparametric regression function estimation in portfolio selection. The 
portfolio is selected either with the maximization of a conditional expected utility 
or with the maximization of a Markowitz criterion. When the collection of allowed 
portfolio weights is a finite set, then also classification can be used in portfolio 
selection. The squared returns are much easier to predict than the returns themselves, 
and thus in quantitative finance the focus has been in the prediction of volatility. 
However, it can be shown that despite the weak predictability of the returns, portfolio 
selection can profit from statistical prediction. 

Option pricing can be formulated as a problem of stochastic control. We do not 
study the statistics of option pricing in detail, but give a basic framework for solving 
some option pricing problems nonparametrically. 

1.3 VISUALIZATION 

Statistical visualization is often considered as a visualization of the raw data. The 
visualization of the raw data can be a part of the exploratory data analysis, a first 
step to model building, and a tool to generate hypotheses about the data-generating 
mechanism. However, we put emphasis on a different approach to visualization. 
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In this approach, visualization tools are associated with statistical estimators or 
inference procedures. For example, we estimate first a regression function and 
then try to visualize and describe the properties of this regression function estimate. 
The distinction between the visualization of the raw data and the visualization of 
the estimator is not clear when nonparametric function estimation is used. In fact, 
nonparametric function estimation can be seen as a part of exploratory data analysis. 

The SiZer is an example of a tool that combines visualization and inference, see 
Chaudhuri & Marron (1999). This methodology combines formal testing for the 
existence of modes with the SiZer maps to find out whether a mode of a density 
estimate of a regression function estimate is really there. 

Semiparametric function estimates are often easier to visualize than nonparametric 
function estimates. For example, in a single index model the regression function 
estimate is a composition of a linear function and a univariate function. Thus in a 
single index model we need only to visualize the coefficients of the linear function 
and a one-dimensional function. The ease of visualization gives motivation to study 
semiparametric methods. 

CART, as presented in Breiman, Friedman, Olshen & Stone (1984), is an example 
of an estimation method whose popularity is not only due to its statistical properties 
but also because it is defined in terms of a binary tree that gives directly a visualization 
of the estimator. Even when it is possible to find estimators with better statistical 
properties than CART, the possibility to visualization gives motivation to use CART. 

Visualization of nonparametric function estimates, such as kernel estimates, is 
challenging. For the visualization of completely nonparametric estimates, we can 
use level set tree-based methods, as presented in Klemela (2009). Level set tree-
based methods have found interest also in topological data analysis and in scientific 
visualization, and these methods have their origin in the concept of a Reeb graph, 
defined originally in Reeb (1946). 

In density estimation we are often interested in the mode structure of the density, 
defined as the number of local extremes, the largeness of the local extremes, and the 
location of the local extremes. The local extremes of a density function are related to 
the areas of concentration of the probability mass. In regression function estimation 
we are also interested in the mode structure. The local maxima of a regression 
function are related to the regions of the space of the explanatory variables where 
the response variable takes the largest values. The antimode structure is equally 
important to describe. The antimode structure means the number of local minima, 
the size of the local minima, and the location of the local minima. The local minima of 
a regression function are related to the areas of the space of the explanatory variables 
where the response variable takes the smallest values. 

The mode structure of a regression function does not give complete information 
about the properties of the regression function. In regression analysis we are inter-
ested in the effects of the explanatory variables on the response variable and in the 
interaction between the explanatory variables. The effect of an explanatory variable 
can be formalized with the concept of a partial effect. The partial effect of an ex-
planatory variable is the partial derivative of the regression function with respect to 
this variable. Nearly constant partial effects indicate that the regression function is 
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close to a linear function, since the partial derivatives of a linear function are con-
stants. The local maxima of a partial effect correspond to the areas in the space of 
the explanatory variables where the increase of the expected value of the response 
variable, resulting from an increase of the value of the explanatory variable, is the 
largest. We can use level set trees of partial effects to visualize the mode structure 
and the antimode structure of the partial effects, and thus to visualize the effects and 
the interactions of the explanatory variables. 

1.4 LITERATURE 

We mention some of the books that have been used in the preparation of this book. 
Hardle (1990) covers nonparametric regression with an emphasis on kernel regres-
sion, discussing smoothing parameter selection, giving confidence bands, and provid-
ing various econometric examples. Hastie, Tibshirani & Friedman (2001) describe 
high-dimensional linear and nonlinear classification and regression methods, giv-
ing many examples from biometry and machine learning. Gyorfi, Kohler, Krzyzak 
& Walk (2002) cover asymptotic theory of kernel regression, nearest-neighbor re-
gression, empirical risk minimization, and orthogonal series methods, and they also 
include a treatment of time series prediction. Ruppert, Wand & Carroll (2003) view 
nonparametric regression as an extension of parametric regression and treat them 
together. Hardle, Miiller, Sperlich & Werwatz (2004) explain single index models, 
generalized partial linear models, additive models, and several nonparametric regres-
sion function estimators, giving econometric examples. Wooldridge (2005) provides 
an asymptotic theory of linear regression, including instrumental variables and panel 
data. Fan & Yao (2005) study nonlinear time series and use nonparametric function 
estimation in time series prediction and explanation. Wasserman (2005) provides 
information on nonparametric regression and density estimation with confidence 
intervals and bootstrap confidence intervals. Horowitz (2009) covers semiparamet-
ric models and discusses the identifiability and asymptotic distributions. Spokoiny 
(2010) introduces local parametric methods into nonparametric estimation. 

Bouchaud & Potters (2003) have developed nonparametric techniques for financial 
analysis. Franke, Hardle & Hafner (2004) discuss statistical analysis of financial 
markets, with emphasis being on the parametric methods. Ruppert (2004) is a 
textbook suitable for statistics students interested in quantitative finance, and this book 
discusses statistical tools related to classical financial models. Malevergne & Sornette 
(2005) have analyzed financial data with nonparametric methods. Li & Racine (2007) 
consider various non- and semiparametric regression models presenting asymptotic 
distribution theory and the theory of smoothing parameter selection, directing towards 
econometric applications. 
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CHAPTER 1 

OVERVIEW OF REGRESSION AND 
CLASSIFICATION 

1.1 REGRESSION 

In regression analysis we are interested in prediction or in inferring causal rela-
tionships. We try to predict the value of a response variable given the values of 
explanatory variables or try to deduce the causal influence of the explanatory vari-
ables to the response variable. The inference of a causal relationship is important 
when we want to to change the values of an explanatory variable in order to get an op-
timal value for the response variable. For example, we want to know the influence of 
education to the employment status of a worker in order to choose the best education. 
On the other hand, prediction is applied also in the cases when we are not able to, or 
do not wish to, change the values of the response variable. For example, in volatility 
prediction it is reasonable to use any variables that have a predictive relevance even 
if these variables do not have any causal relationship to volatility. 

Both in prediction and in estimation of causal influence, it is useful to estimate the 
conditional expectation 

E{Y\X = x) 

of the response variable Y £ R given the explanatory variables X £ R d . The choice 
of the explanatory variables and the method of estimation can depend on the purpose 
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4 OVERVIEW OF REGRESSION AND CLASSIFICATION 

of the research. In prediction an explanatory variable can be any variable that has 
predictive relevance whereas in the estimation of a causal influence the explanatory 
variables are determined by the scientific theory about the causal relationship. For the 
purpose of causal inference, it is reasonable to choose an estimation method that can 
help to find the partial effect of a given explanatory variable to the response variable. 
The partial effect is defined in Section 1.1.3. 

In linear regression the regression function estimate is a linear function: 

f ( x ) =a + fiixi + • • • + pdxd. (1.1) 

A different type of linearity occurs, if the estimator can be written as 

n 

f (x ) = ^ l i ( x ) Y i , (1.2) 
2=1 

for some sequence of weights h(x)1..., ln(x). In fact, for the linear regression 
estimate, representations (1.1) and (1.2) hold; see (2.11). In the case of local averaging 
estimators, like regressogram, kernel estimator, and nearest-neighbor estimator, we 
use the notation f(x) = Y17=i Pi(x) the c a s e °f local averaging estimators 
the weights pi(x) satisfy the properties that pi(x) is close to zero when Xi is distant 
from x and that Pi(x) is large when Xi is near x. Local averaging is discussed in 
Section 3. There exists regression function estimates that cannot be written as in 
(1.2), like the orthogonal series estimators with hard thresholding; see (2.72). 

In addition to the estimation of the conditional expectation of the response variable 
given the explanatory variables, we can consider also the estimation of the conditional 
median of the response variable given the explanatory variables, or the estimation 
of other conditional quantiles of the response variable given the explanatory vari-
ables, which is called quantile regression. Furthermore, we will consider estimation 
of the conditional variance, as well as estimation of the conditional density and 
the conditional distribution function of the response variable given the explanatory 
variables. 

In regression analysis the response variable can take any real value or any value 
in a given interval, but we consider also classification. In classification the response 
variable can take only a finite number of distinct values and the interest lies in the 
prediction of the values of the response variable. 

1.1.1 Random Design and Fixed Design 

Random Design Regression In random design regression the data are a se-
quence of n pairs 

{xi,yi),...,(xn,yn), (1.3) 

where X{ G H d and yi G R for i = 1 , . . . , n. Data are modeled as a realization of a 
sequence of n random vectors 

(1.4) 
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However, sometimes we do not distinguish notationally a random variable and its 
realization, and the notation of (1.4) is used also in the place of notation (1.3) to 
denote a realization of the random vectors and not the random vectors themselves. 

In regression analysis we typically want to estimate the conditional expectation 

f(x) = E(Y\X = x), 

and now we assume that the sequence (X\, Yi),..., (Xn, Yn) consists of identically 
distributed random variables, and {X,Y) has the same distribution as (X^Y*), 
i = 1 , . . . , n. Besides conditional expectation we could estimate conditional mode, 
conditional variance, conditional quantile, and so on. Estimation of the conditional 
centers of distribution are discussed in Section 1.1.2 and estimation of conditional 
risk measures such as variance and quantiles are discussed in Section 1.1.4 and in 
Section 1.1.6. 

Fixed Design Regression In fixed design regression the data are a sequence 

2/1 > • • • ,2/n, 

where yi G R, i — 1 , . . . , n. We assume that every observation yi is associated with 
a fixed design point Xi G R d . 

Now the design points are not chosen by a random mechanism, but they are 
chosen by the conducter of the experiment. Typical examples could be time series 
data, where Xi is the time when the observation yi is recorded, and spatial data, where 
Xi is the location where the observation yi is made. Time series data are discussed in 
Section 1.1.9. 

We model the data as a sequence of random variables 

Y\,..., Yn. 

In the fixed design regression we typically do not assume that the data are identically 
distributed. For example, we may assume that 

Yi = f(xi) + 6i, i — 1,..., n, 

where Xi — i/n, f : [0,1] R is the function we want to estimate, and Eei — 0. 
Now the data Y\,..., Yn are not identically distributed, since the observations Yi 
have different expectations. 

1.1.2 Mean Regression 

The regression function is typically defined as a conditional expectation. Besides 
expectation and conditional expectation also median and conditional median can be 
used to characterize the center of a distribution and thus to predict and explain with 
the help of explanatory variables. We mention also the mode (maximum of the 
density function) as a third characterization of the center of a distribution, although 
the mode is typically not used in regression analysis. 
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Expectation and Conditional Expectation When the data 

..., (Xn, Yn) 

are a sequence of identically distributed random variables, we can use the data to 
estimate the regression function, defined as the conditional expectation of Y given 
X: 

f ( x ) = E(Y \X = x), x G (1.5) 

where (X, Y) has the same distribution as (Xi, Yi), i = 1 , . . . , n, and X G R d , 
Y G R . The random variable Y is called the response variable, and the elements of 
random vector X are called the explanatory variables. 

The mean of random variable Y G R with a continuous distribution can be defined 
by 

/

OO 

yfv(y)dy, (1.6) -oo 

where f y : R —» R is the density function of Y. The regression function has been 
defined in (1.5) as the conditional mean of Y, and the conditional expectation can be 
defined in terms of the conditional density as 

/

oo 

yfy\x=Ay)dy, -oo 

where the conditional density can be defined as 

, , x fx,v(x,y) 
fy\x=x(y) = , / x , J / ^ R , (1.7) 

fx{x) 

when f x ( x ) > 0 and fY \ x=x(y) = 0 otherwise, where fx,Y ' R d + 1 —> R is the 
joint density of (X, Y) and f x • R d —> R is the density of X: 

fx(x)= / fx,v(x,y)dy, x G Hd. 
J R 

Figure 1.1 illustrates mean regression. Our data consist of the daily S&P 500 
returns Rt = (St — St-i)/St-i, where St is the price of the index. There are 
about 16,000 observations. The S&P 500 index data are described more precisely in 
Section 1.6.1. We define the explanatory and the response variables as 

Xt lQge 

k 

2=1 

2 
t-i ' Yt = loge | Rt 

Panel (a) shows the scatter plot of (Xt, Y*), and panel (b) shows the estimated density 
of (Xt,Yt) together with the estimated regression functions. The red line shows the 
linear regression function estimate, and the blue line shows a kernel regression 
estimate with smoothing parameter h = 0.4. The density is estimated using kernel 
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(a) (b) 

Figure 1.1 Mean regression, (a) A scatter plot of regression data, (b) A contour plot of 

the estimated joint density of the explanatory variable and the response variable. The linear 

regression function estimate is shown with red and the kernel regression estimate is shown 

with blue. 

density estimation with smoothing parameter h = 0.6. Linear regression is discussed 
in Section 2.1, and kernel methods are discussed in Section 3.2. In the scatter plot we 
have used histogram smoothing with 1002 bins, as explained in Section 6.1.1. This 
example indicates that the daily returns are dependent random variables, although it 
can be shown that they are nearly uncorrelated. 

Median and Conditional Median The median can be defined in the case 
of continuous distribution function of a random variable Y G R as the number 
median(Y) G R satisfying 

P(Y < median(Y)) = 0.5. 

In general, covering also the case of discrete distributions, we can define the median 
uniquely as the generalized inverse of the distribution function: 

median(Y) = inf{y : P(Y <y)> 0.5}. (1.8) 

The conditional median is defined using the conditional distribution of Y given X: 

median (Y \X = x) = in f{y : P(Y <y \X = x)> 0.5}, x G R d . (1.9) 

The sample median of observations Y\,..., Yn G R can be defined as the median 
of the empirical distribution. The empirical distribution is the discrete distribution 
with the probability mass function P({Y;}) = 1/n for % — 1 , . . . , n. Then, 

median (Yi , . . . , Yn) = Y [ n / 2 ] + 1 , (1.10) 

where Y^ < • • • < Y(n) is the ordered sample and [x] is the largest integer smaller 
or equal to x. 
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Mode and Conditional Mode The mode is defined as an argument maximizing 
the density function of a random variable: 

mode(Y) = argmax^jxfy(y) , (1.11) 

where f y : R R is the density function of Y. The density f y can have several 
local maxima, and the use of the mode seems to be interesting only in cases where 
the density function is unimodal (has one local maximum). The conditional mode is 
defined as an argument maximizing the conditional density: 

mode(y \X = x)= argmaxyGR/y|X=a:(?/). 

1.1.3 Partial Effects and Derivative Estimation 

Let us consider mean regression, where we are estimating the conditional expectation 
E(Y | X — x), where X = (Xi,..., Xd) is the vector of explanatory variables and 
we denote x = (x\,..., Xd). The partial effect of the variable X\ is defined as the 
partial derivative 

d 
p(x i;x2,...,xd) = —— E(Y\X = x). 

ox i 

The partial effect describes how the conditional expectation of Y changes when 
the value of X\ is changed, when the values of the other variables are fixed. In 
general, the partial effect is a function of x\ that is different for each x2,..., xd. 
However, for the linear model E(Y | X = x) = a + /3fx we have 

p(x i;x2, ...,xd) = 

so that the partial effect is a constant which is the same for all x2, • • •, xd. Linear 
models are studied in Section 2.1. For the additive model E(Y \ X = x) = / i (x\) + 

h fd(xd) we have 
p(x i;x2, ...,xd) = f'(x i), 

so that the partial effect is a function of x\ which is the same for all x2, •.., xd. 
Thus additive models provide easily interpretable partial effects. Additive models 
are studied in Section 4.2. For the single index model E(Y | X = x) = g(P'x) we 
have 

p(x i;x2l ...,xd)= g'(/3'x)l3i, 

so that the partial effect is a function of x\ which is different for each x2,..., xd. 
Single index models are studied in Section 4.1. 

The partial elasticity of X\ is defined as 

d 
e{xi\x2,-..,xd) = — \ogE(Y\X = x) 

O logXi 

9 E(Y | X = x) Xl 

dxx v 1 ; E(Y\X = Xy 



REGRESSION 9 

whenxi > Oand E(Y \ X = x) > 0. The partial elasticity describes the approximate 
percentage change of conditional expectation of Y when the value of X\ is changed 
by one percent, when the values of the other variables are fixed.1 The partial 
semielasticity of X\ is defined as 

when E(Y | X = x) > 0. The partial semielasticity describes the approximate 
percentage change of conditional expectation of Y when the value of X\ is changed 
by 1 unit, when the values of the other variables are fixed. 

We can use the visualization of partial effects as a tool to visualize regression 
functions. In Section 7.4 we show how level set trees can be used to visualize the 
mode structure of functions. The mode structure of a function means the number, the 
largeness, and the location of the local maxima of a function. Analogously, level set 
trees can be used to visualize the antimode structure of a function, where the antimode 
structure means the number, the largeness, and the location of the local minima of 
a function. Local maxima and minima are important characteristics of a regression 
function. However, we need to know more about a regression function than just 
the mode structure or antimode structure. Partial effects are a useful tool to convey 
additional important information about a regression function. If the partial effect is 
flat for each variable, then we know that the regression function is close to a linear 
function. When we visualize the mode structure of the partial effect of variable Xi, 
then we get information about whether a variable X\ is causing the expected value 
of the response variable to increase in several locations (the number of local maxima 
of the partial effect), how much an increase of the value of the variable X\ increases 
the expected value of the response variable Y (the largeness of the local maxima of 
the partial effect), and where the influence of the response variable X\ is the largest 
(the location of the local maxima of the partial effect). Analogous conclusions can 
be made by visualizing the antimode structure of the partial effect. 

We present two methods for the estimation of partial effects. The first method is to 
use the partial derivatives of a kernel regression function estimator, and this method 
is presented in Section 3.2.9. The second method is to use a local linear estimator, 
and this method is presented in Section 5.2.1. 

1.1.4 Variance Regression 

The mean regression gives information about the center of the conditional distribution, 
and with the variance regression we get information about the dispersion and on the 

s(xi\x2,...,xd) = ~— \ogE(Y\X = x) 
d 

E(Y \X = x)' 

1 

1 This interpretation follows from the approximation 

log f(x + h)~ log/Or) « [ / ( * + h)~ /(*)]//(*), 

which follows from the approximation log(rr) « x — 1, when x « 1. 
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heaviness of the tails of the conditional distribution. Variance is a classical measure 
of dispersion and risk which is used for example in the Markowitz theory of portfolio 
selection. Partial moments are risk measures that generalize the variance. 

Variance and Conditional Variance The variance of random variable Y is 
defined by 

Var(Y) = E(Y - EY)2 = EY2 - (EY)2. (1.12) 

The standard deviation of Y is the square root of the variance of Y. The conditional 
variance of random variable Y is equal to 

Var(Y \ X = x) = E { [ Y - E ( Y \ X = x)}2 \ X = x} (1.13) 

= E(Y2 \X = x)- [E(Y | X = x)]2. (1.14) 

The conditional standard deviation of Y is the square root of the conditional variance. 
The sample variance is defined by 

i=1 i=l 

where Y\,..., Yn is a sample of random variables having identical distribution with 
Y. 

Conditional Variance Estimation Conditional variance Var(Y \X = x) can 
be constant not depending on x. Let us write 

y = / P 0 + €, 

where f(x) = E(Y | X = x) and e = Y - / ( X ) , so that E{e \X = x) = 0. 
If Var(y | X = x) = E(e2) is a constant not depending on x, we say that the 
noise is homoskedastic. Otherwise the noise is heteroskedastic. If the noise is 
heteroskedastic, it is of interest to estimate the conditional variance 

Var(y \X = x) = E(e2 \X = x). 

Estimation of the conditional variance can be reduced to the estimation of the 
conditional expectation by using (1.13). First we estimate the conditional expectation 
f(x) = E(Y | X = x) by f(x). Second we calculate the residuals 

ii = Y i - f(Xi), 

and estimate the conditional variance from the data (Xi, e 2 ) , . . . , (Xn , e2). 
Estimation of the conditional variance can be reduced to the estimation of the 

conditional expectation by using (1.14). First we estimate the conditional expec-
tation E(Y2 | X = x) using the regression data (Xi, Y2),..., (Xn , Y2). Sec-
ond we estimate the conditional expectation f(x) = E(Y | X = x) using data 
(Xi, Y i ) , . . . , (Xn , Yn). 
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Theory of variance estimation is often given in the fixed design case, but the 
results can be extended to the random design regression by conditioning on the 
design variables. Let us write a heteroskedastic fixed design regression model 

Yi = f(xi) + cr{xi) ei, i = 1 , . . . , n, (1.15) 

where x{ e Kd, f : R d R is the mean function, a : Hd R is the standard 
deviation function, and Ci are identically distributed with Eci = 0. Now we want to 
estimate both the function / and the function a. Wasserman (2005, Section 5.6) has 
proposed making the following transformation. Let Zi — log(F^ — f(xi))2. Then 
we have 

ZI = log(cr2 (xi)) + log E2. 

Let / be an estimate of / and define Zi = log(F^ — f(xi))2. Let g(x) be an 
estimate of log cr2(x), obtained using regression data (xi, Z I ) , . . . , (xn , ZN), and 
define a2(x) = exp{^(x)}. 

A difference-based method for conditional variance estimation has been proposed. 
Let x\ < • • • < xn be univariate fixed design points. Now a2(x) is estimated with 
2 ~ l g ( x ) , where g is a regression function estimate obtained with the regression data 

i (Yi Yi_ i )2), i = 2 , . . . , n. This approach has been used in Wang, Brown, Cai 
& Levine (2008). 

Variance Estimation with Homoskedastic Noise Let us consider the fixed 
design regression model 

Yi = f(Xi) + €i, Z = 1, . . . ,71, 

where Xi E R d , / : H d —> R is the mean function, and Eei = 0. In the case of 
homoskedastic noise we should estimate 

a2 =f E(e2). 

Spokoiny (2002) showed that for twice differentiable regression functions / , the 
optimal rate for the estimation of a2 is n - 1 / 2 for d < 8 and otherwise the optimal 
rate is n~ 4 / d . We can first estimate the mean function / by / and then use 

2=1 

These types of estimators were studied by Miiller & Stadtmiiller (1987), Hall & 
Carroll (1989), Hall & Marron (1990), and Neumann (1994). Local polynomial 
estimators were studied by Ruppert, Wand, Hoist & Hossjer (1997), and Fan & Yao 
(1998). A difference-based estimator was studied by von Neumann (1941). He used 
the estimator 
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where it is assumed that x i , . . . G R , and x\ < • • • < xn. The estimator 
was studied and modified in various ways in Rice (1984), Gasser, Sroka & Jennen-
Steinmetz (1986), Hall, Kay & Titterington (1990), Hall, Kay & Titterington (1991), 
Thompson, Kay & Titterington (1991), and Munk, Bissantz, Wagner & Freitag 
(2005). 

Conditional Variance in a Time Series Setting In a time series setting, when 
we observe Yt,t = 1 ,2 , . . . , the conditional heteroskedasticity assumption is that 

Yt = <jteu f = 0 , ± 1 , ± 2 , . . . , (1.16) 

where et is an i.i.d. sequence, Eet = 0, Ee2 — 1, and crt is the volatility process. 
The volatility process is a predictable random process, that is, a t is measurable 
with respect to the sigma-field generated by the variables Yt-i,Yt-2, — When 
we assume that et is independent from Y^-i, Yt_2, • • then under the conditional 
heteroskedasticity model, 

Var(Y, | J i_x) = Var(a,e, | = *t
2Var(et I Tt-1) = ^2Var(e t) = a2, (1.17) 

where Tt -1 is the sigma-algebra generated by variables Y t - i ,Y t -2 , — In a con-
ditional heteroskedasticity model the main interest is in predicting the value of the 
random variable of , which is thus related to estimating the conditional variance. 
The statistical problem is to predict a 2 using a finite number of past observations 
Y i , . . . , Yt-\. Special cases of conditional heteroskedasticity models are the ARCH 
model discussed in Section 2.5.2 and the GARCH model discussed in Section 3.9.2. 

Partial Moments The variance of random variable Y G R is defined as Var( Y) = 
E(Y — EY)2. The variance can be generalized to other centered moments 

E\Y-EY\k, 

for k = 1,2, The centered moments take a contribution both from the left and 
the right tails of the distribution. When we are interested only in the left tail or in the 
right tail (losses or gains ), then we can use the lower partial moments or the upper 
partial moments. The upper partial moment is defined as 

UPM r , f e(y) = E [ ( Y - r) f e / [ T ,o o )(F)] 

and the lower partial moment is defined as 

LPMT,fc(F) = E [ ( t - y ) f c / ( _ 0 0 , r ] (F) ] , 

where k = 0,1, 2 , . . . , and r G R. In risk management r could be the target rate. 
When Y has density f y , we can write 

rOO PT 

U P M r , k ( Y ) = / (y-T)kfY(y)dy, LPM r , f c(y) = / (r - y)kfY(y) dy. 
J T J — OO 
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For example, when k = 0, then 

UPM r,0(Y) = P(Y > r) , LPMr,0(Y) = P(Y < r), 

so that the upper partial moment is equal to the probability that Y is greater or equal 
to r and the lower partial moment is equal to the probability that Y is smaller or 
equal to r . For k = 2 and r = EY the partial moments are called upper or lower 
semivariance of Y. The lower semivariance is defined as 

E[(Y-EY)2I{_^ey](Y)]. (1.18) 

The square root of the lower semivariance can be used to replace the standard deviation 
in the definition of the Sharpe ratio or in the Markowitz criterion. We can define 
conditional versions of partial moments by changing the expectations to conditional 
expectations. 

1.1.5 Covariance and Correlation Regression 

The covariance of random variables Y and Z is defined by 

Cov(Y, Z) = E[(Y - EY)(Z - EZ)} = E(YZ) - EYEZ. 

The sample covariance is defined by 

1 n 1 n 

Z) = - Y(YZ -?){Zi-Z) = - Y YiZi - YZ, 
i= 1 i= 1 

where Y\,..., Yn and Z\,..., Zn are samples of random variables having identi-
cal distributions with Y and Z,Y = n~l J X i and % = n~l I X l zi- The 

conditional covariance is obtained by changing the expectations to conditional ex-
pectations. 

We have two methods of estimation of conditional covariance, analogously to two 
methods of conditional variance estimation based on formulas (1.13) or (1.14). The 
first method uses Cov(Y, Z) = E[(Y - EY){Z - EZ)} and the second method uses 
Cov(F, Z) = E(YZ) - EYEZ. 

The correlation is defined by 

Cor(y, Z) = C o ^ z ) 

sd(y) sd (Z) ' 

where sd(Y) and sd (Z ) are the standard deviations of Y and Z. The conditional 
correlation is defined by 

Cor(V, 2\X = x) = .. ( U 9 ) 
sd(F | X = x) sd(Z | X = x) 

where 

sd(Y \X = x) = v
/Var(F \X = x), sd(Z\X = x) = vVar(Z \X = x). 
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We can write 

Cor(F, Z \X = x)= Cov(y, Z\X = x), (1.20) 

where 
~ _ Y ~ _ Z 

Y = sd(F \X = x)' Z = sd (Z \X = x)' 

Thus we have two approaches to the estimation of conditional correlation. 

1. We can use (1.19). First we estimate the conditional covariance and the 
conditional standard deviations. Second we use (1.19) to define the estimator 
of the conditional correlation. 

2. We can use (1.20). First we estimate the conditional standard deviations 
by sdy(x) and sdz(x), and calculate the standardized observations Yi — 
Yi/sdy(Xi) and Zi = Zi/sdz(Xi). Second we estimate the conditional 
correlation using Yi, Zi), i — 1 , . . . , ti. 

A time series (Yt)tez is weakly stationary if EYt = EYt+h and EYtYt+h depends 
only on h, for all t,h G Z. For a weakly stationary time series (Yt)tez, the 
autocovariance function is defined by 

7(ft) = cov(yt,yt+/l), 

and the autocorrelation is defined by 

p(h) = 7(*0/7(0), 

where h = 0, ±1, — 
A vector time series (Xt)tez, Xt G is weakly stationary if EXt = EXt+h 

and EXtX't+h depends only on h9 for alH, h G Z. For a weakly stationary vector 
time series (Xt)tez, the autocovariance function is defined by 

T(h) = Cov(Xt, Xt+h) = E[(Xt - n)(Xt+h ~ m/], (1.21) 

for h = 0, ± 1 , . . w h e r e \i — EXt — EXt+h> Matrix T(h) is a d x d matrix which 
is not symmetric. It holds that 

T(h) = r (-h)'. (1.22) 

1.1.6 Quantile Regression 

A quantile generalizes the median. In quantile regression a conditional quantile is 
estimated. Quantiles can be used to measure the value at risk (VaR). The expected 
shortfall is a related measure of dispersion and risk. 
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Quantile and Conditional Quantile The pth quantile is defined as 

QP(Y) = inf{y : P(Y < y) > p}, x G (1.23) 

where 0 < p < 1. For p = 1 / 2 , QP(Y) is equal to median med(F), defined in (1.8). 
In the case of a continuous distribution function we have 

P(Y<Qp(Y))=p 

and thus it holds that 
Qp(Y)--=Fy\p), 

where Fy(y) — P(Y < y) is the distribution function of Y and F y 1 is the inverse 
of Fy. The pth conditional quantile is defined replacing the distribution of Y with 
the conditional distribution of Y given X\ 

QP(Y \X = x)= inf {y : P(Y < y \ X = x) > p}, x G (1.24) 

where 0 < p < 1. Conditional quantile estimation has been considered in Koenker 
(2005) and Koenker & Bassett (1978). 

Estimation of a Quantile and a Conditional Quantile Estimation of quan-
tiles is closely related to the estimation of the distribution function. It is usually 
possible to derive a method for the estimation of a quantile or a conditional quantile 
if we have a method for the estimation of a distribution function or a conditional 
distribution function. 

Empirical Quantile Let us define the empirical distribution function, based on the 
dta Y\,... , y n , as 

1 n 

— y e n . 
2=1 

Now we can define an estimate of the quantile by 

Qp = inf{x : F(x) > p}, 

where 0 < p < 1. Now it holds that 

0 < p < 1/n, 
1/n <p< 2/n, 

(1.25) 

(1.26) 

Qp — 

Yt ( i ) ' 

(1.27) 

Y(n_ 1)5 1 — 2/n < p < 1 — 1 / n , 

Y(n), 1 — 1/n < p < 1, 

where the ordered sample is denoted by Y^) < Y(2) < • • < ) , , , . A third 
description of the empirical estimator of the quantile is given by the following steps: 

1. Order the sample from the smallest observation to the largest observation: 

Y(i)<---<Y(ny 

2. Let m = \pri], where \y \ is the the smallest integer > y. 

3. Set Qp = y(m). 
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Standard Deviation-Based Quantile Estimators We can also use an estimate 
of the standard deviation to derive an estimate for a quantile. Namely, consider the 
location-scale model 

Y = /i + CF 6, 

where p G R, cr > 0, and 6 is a random variable with a continuous distribution. Now 

where Fe is the distribution function of e. If e has a continuous distribution, then Fe 

is monotone increasing and the inverse function F~l exists. The pth quantile QP(Y) 
of Y satisfies P (Y < QP(Y)) = p, and we can solve this equation to get 

Qp(Y)=n + <rFc-
1(p). 

Thus, for a known Fe, we get from the estimates p of p and a of cr the estimate 

Qp{Y)=ii + dF-1[P). (1.28) 

Standard Deviation-Based Conditional Quantile Estimators To get an estimate 
for a conditional quantile in the heteroskedastic fixed design model (1.15), we can 
use 

QP(Y \X = x)= f(x) + &(x) F - 1 (p). (1.29) 

Similarly, in the conditional heteroskedasticity model (1.16) we can use 

Qp(Yt\Ft_l)=&tF-\p). (1.30) 

We apply in Section 2.5.1 and in Section 3.11.3 three quantile estimators which are 
based on the standard deviation estimates. 

1. First estimator uses the standard normal distribution, which gives the quantile 
estimator 

where $ is the distribution function of the standard normal distribution. 

2. Second estimator uses the ^-distribution, which gives the quantile estimator 

Qp(Yt | Tt-1) = at t~\p), (1.32) 

where tv is the distribution function of the ^-distribution with v degrees of 
freedom. If X - tv, then Var(X) = vj{y - 2), so that t~l(p) 
is the p-quantile of the standardized ^-distribution, which has unit variance. 

3. Third estimator uses the empirical quantiles of the residuals. Now 

= (1.33) 

where Qres(p) is the empirical quantile of the residuals Yt/at. Empirical 
quantiles were defined in (1.26). This estimator was suggested in Fan & Gu 
(2003). 
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Expected Shortfall The expected shortfall is a measure of risk which aggregates 
all quantiles in the right tail (or in the left tail). The expected shortfall for the right 
tail is defined as 

p J p 
ES P {Y ) = - / Qu(Y)du, 0 < p < I. 

JP 

When Y has a continuous distribution function, then 

E S P ( Y ) = E(Y\Y> QP(Y)) = E (Y/ [ Q p ( y ) > o o ) (Y) ) ; (1.34) 

see McNeil, Frey & Embrechts (2005, lemma 2.16). We have defined the loss in 
(1.86) as the negative of the change in the value of the portfolio, and thus the risk 
management wants to control the right tails of the loss distribution However, we can 
define the expected shortfall for the left tail as 

ESP(Y) = - [P Qu(Y)du, 0 < p < l . (1.35) 
P Jo 

When Y has a continuous distribution function, then 

ESP(Y) = E(Y\Y < QP(Y)) = ± ^ / ( ^ ^ ( Y ) ) . 

This expression shows that in the case of a continuous distribution function, pESp(F) 
is equal to the expectation which is taken only over the left tail, when the left tail is 
defined as the region which is to the left of a quantile of the distribution.2 

The expected shortfall can be estimated from the data Y\,..., Yn in the case where 
the expected shortfall is given in (1.34) by using 

ESP = - ]T Y(i m z—' v 
rri *—' v 7 

i=m 

where Y^) < • • • < F(n) and m = |"(1 — p)n]. When the expected shortfall is given 
by (1.35), then we define 

^ rn 

ESp = — } Y(i), 
2=1 

where m = \pn\. 
Let us consider the location-scale model 

Y = p + ere, 

where p G R, o > 0, and e is a random variable with a continuous distribution. Now 

ES p(Y) = /x + o-ES p(e). 

2Sometimes the expected shortfall for the left tail is defined as QP(Y) — EIYI^^^q (y)j ( y ) ] and the 

absolute shortfall is defined as —E[Y 
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Thus the estimate for the expected shortfall can be obtained as 

ESp(y) = £ + <7ESp(e), 

where p is an estimate of p and a is an estimate of a. 
If e ~ N(0,1) and the expected shortfall is defined for the right tail as in (1.34), 

then 

ES.W . 

where 0 is the density function of the standard normal distribution and is the 
distribution function of the standard normal distribution. If e ~ tu, where tv is the 
t-distribution with v degrees of freedom, and the expected shortfall is defined for the 
right tail as in (1.34), then 

F<; , , gAK'iP)) ^ + (C1(p))2 

= T^p — ' 

where gy is the density function of the ^-distribution with v degrees of freedom and 
tv is the distribution function of the ^-distribution with v degrees of freedom. 

Expected shortfall is sometimes preferred to the quantiles on the grounds that the 
expected shortfall satisfies the axiom of subadditivity. Risk measure g is said to be 
subadditive if g{X + Y) < g(X) + g(Y), where X and Y are random variables 
interpreted as portfolio losses. Quantiles do not satisfy subadditivity like the expected 
shortfall. The other axioms of a coherent risk measure are the monotonicity: if 
Y >X, then g(Y) > g(X); the positive homogeneity: for A > 0, g(XY) = Ag(Y); 
and the translation invariance: for a G R, g(Y + a) — g(Y) + a. For more about 
coherent risk measures, see McNeil et al. (2005, Section 6.1). 

1.1.7 Approximation of the Response Variable 

We have defined the regression function in (1.5) as the conditional expectation of 
the response variable. The conditional expectation can be viewed as an approxi-
mation of response variable Y G R with the help of explanatory random variables 
X i , . . . , Xd G R. The approximation is a random variable f(Xi,..., Xd) G R, 
where / : H d —> R is a fixed function. This viewpoint leads to generalizations. 
The best approximation of the response variable can be defined using various loss 
functions p : R —» R. The best approximation is f ( X i , . . . , Xd), where / is defined 
as 

/ = argmin g e gEp(Y - g(X)), X = (Xu ... ,Xd), (1.36) 

where Q is a suitable class of functions g : Hd —>> R. Since / is defined in terms 
of the unknown distribution of (X, F), we have to estimate / using statistical data 
available from the distribution of (X, F) . 

Examples of Loss Functions We give examples of different choices of p and 
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1. When p(t) = t2 and Q is the class of all measurable functions H d R, then 
/ , defined by (1.36), is equal to the conditional expectation: 

f ( x ) = E(Y \X = x) = argmin gegE(Y - g ( X ) f . 

Indeed, 

E(g(X) - Y)2 = E(g(X) - E(Y | X)) 2 + E(E(Y \ X) - Y")2, (1.37) 

because E[(g{X) - E(Y \ X)){E{Y \ X) - Y)] = 0, and thus E(g{X) - Y)2 

is minimized with respect to g : Hd R by choosing g{x) = E{Y | X = x)? 
Note also that the expectation EY is the best constant approximation of Y. 
That is, if we choose Q as the class of constant functions 

g = {g : Kd R | 0 ( x ) = p for all x G R , / i E R} , 

then 

EY - argmin gegE(Y - g(X)f = argmi n^RE(Y - p f . (1.38) 

Indeed, 
E(Y - p)2 = E(Y - EY)2 -f (EY - p)2, 

and this is minimized with respect to p G R by choosing p — EY. 

2. When p(t) = \t\ and Q is the class of all measurable functions H d —» R, then 
/ defined by (1.36) is the conditional median: 

med(F \X = x)= avgmmgegE\Y - g(X) (1.39) 

where the conditional median is defined in (1.9). Equation (1.39) is proved in 
the next item. 

3. When p is defined as 

PP{t)=t\p-I(-oo,0)(t))} = {t
t%~1)' d-40) 

for 0 < p < 1 and Q is the class of all measurable functions, then the best 
approximation is the conditional quantile. Figure 1.2 shows the loss function 
in (1.40) with p = 0.5 (black line) and with p — 0.1 (red line). We show that 
if the distribution function Fy is strictly monotonic, then 

QP(Y) = a rgmin e e n E P p (Y - 6). (1.41) 

3Note that the conditional expectation defined as f ( x ) = E(Y | X = x) is a real-valued function of x, 
but E{X | Y) is a real-valued random variable which can be defined as E(X \ Y) = f ( X ) . 
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Figure 1.2 Loss functions for quantile estimation. Loss function in (1.40) with p = 0.5 
(black line) and with p = 0.1 (red line). 

To show (1.41), note that 

/ 0 /'Co 

(y-0)dFY(y)+p (y-0)dFY(y) 
-oo J e 

and thus 

j^Epp(Y-0) = (l-p) J' dFY(y)-pf™ dFY(y) = FY(0)-p. 

Setting dEpp(Y - 0)/d0 = 0, we get (1.41), when Fy is strictly monotonic. 
We can prove similarly the case of conditional quantiles: 

QP(Y \X = x)= a rgmin g e gEp p (Y - g(X)), 

where Q is the class of measurable functions H d —> R. When p — 1/2, then 

Pp(t) = I \t\, 

and we have proved the result (1.39). 

Estimation Using Loss Function If a regression function can be characterized 
as a minimizer of a loss function, then we can use empirical risk minimization with 
this loss function to define an estimator for the regression function. Empirical risk 
minimization is discussed in Chapter 5. 
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For example, conditional expectation f(x) = E(Y\X = x) can be estimated 
minimizing the sum of squared errors: 

n 

/ = a r g m i n / e ^ (Y* - / ( X , ) ) 2 , 
2=1 

where T is a class of functions / : R d —> R. For example, T could be the class of 
linear functions. 

Estimation of quantiles and conditional quantiles can also be done using empirical 
risk minimization. The estimator of the pih quantile is 

n 

QP(Y) = argmin0GR ^ pp(Yi - 0) 
2 = 1 

and the estimator of the pih conditional quantile f(x) = QP(Y | X = x) is 

n 

f = argmin /Gj r ^ pp(Yi -
2=1 

where T is a class of functions / : H d R. A further idea which we will discuss in 
Section 5.2 is to define an estimator for the conditional quantile using local empirical 
risk: 

n 

f(x) = argmmeen^2pi(x) pp{Yi - 0), 

where pi(x) > 0 and Pi(x) = 1- These weights should have the property that 
Pi(x) is large when Xi is close to x and pi(x) is small when Xi is far away from x. 

1.1.8 Conditional Distribution and Density 

Instead of estimating only conditional expectation, conditional variance, or con-
ditional quantile, we can try to estimate the complete conditional distribution by 
estimating the conditional distribution function or the conditional density function. 

Conditional Distribution Function The distribution function of random vari-
able Y G R is defined as4 

FY(y) = P(Y <y), y € R . 

The conditional distribution function is defined as 

FY\x=x{y) = P(Y<y\X = x), ye R, x G R d , 

4This definition can be extended to the multivariate case Y = ( Y i , . . . , Y^) by 

Fy{y) = P(Yi < yu .. ., Yd < yd), y = (yu.. . ,yd) G 
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where Y G R is a scalar random variable and X G Hd is a random vector. We have 

Fy | x=Ay) = E [ / ( -ocdQO | X = x] (1.42) 

and thus the estimation of the conditional distribution function can be considered 
as a regression problem, where the conditional expectation of the random variable 
I(-oo,y](Y) is estimated. The random variable / (_0 0^](F) takes only values 0 
or 1. The unconditional distribution function can be estimated with the empirical 
distribution function, which is defined for the data Y\,..., Yn as 

My) = - E h-oo,y] (Yi) = n~l#{i : < 2/, i = 1 , . . . , n}, (1.43) 
n z=i 

where means the cardinality of set A. The conditional distribution function 
estimation is considered in Section 3.7, where local averaging estimators are defined. 

Conditional Density Conditional density function is defined as 

when fx(x) > 0, 
fv\x=x(y) = , n . 1 n otherwise, 

for y G R, where fx,y : R d + 1 R is the joint density of (X, Y) and f x : R d R 
is the density of X. We mention three ways to estimate the conditional density. 

First, we can replace the density of ( X , Y) and the density of X with their 
estimators fx,y and f x and define 

f , x f x , y { x , y ) 
JY\x=x{y) = —p——;—, 

f x ( x ) 

for fx(x) > 0. This approach is close to the approach used in Section 3.6, where 
local averaging estimators of the conditional density are defined. 

Second, empirical risk minimization can be used in the estimation of the condi-
tional density, as explained in Section 5.1.3. 

Third, sometimes it is reasonable to assume that the conditional density has the 
form 

fv\X=x(y) = fg(x)(y), (1.44) 

where fe, 0 G A C Kk, is a family of density functions and g : Hd —» A, where 
k > 1. Then the estimation of the conditional density reduces to the estimation of 
the "regression function" g. The mean regression is a special case of this approach 
when the distribution of errors is known: Assume that 

Y = f{}0 + e, 

where e is independent of X, Ee = 0, and the density of e is denoted by fe. Then 

fy\x=x(y) = fe(y - f(x)), 
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which is a special case of (1.44), when we take fe(y) = fe(y — 0) and g(x) = f(x). 
The case of heteroskedastic variance is an other example: Now we assume that 

Y = f ( X ) + a(X)e, 

where e is independent of X, Ee = 0, and the density of e is denoted by fe. Then 

fY\x=x(y) = ^ r 1 M ( y - f ( x ) ) / a ( x ) ) , 

which is a special case of (1.44), when we take 0 = (9\, 62), fe(y) = — 
0 i ) / 0 2 ) , and g(x) = (f(x),a(x)). This approach is used in parametric family 
regression, explained in Section 1.3.1. 

1.1.9 Time Series Data 

Regression data are a sequence (X\,Y{),..., (Xn,Yn) of identically distributed 
copies of (X, Y), where X E Hd is the explanatory variable and Y E R is the 
response variable, as we wrote in (1.4). However, we can use regression methods 
with time series data 

Z\,..., Zt G R, 

where the observation Zt is made at time t, t = 1 , . . . , T. In order to apply regression 
methods we identify the response variable and the explanatory variables. We consider 
two ways for the choice of the explanatory variables. In the first case the state space 
of the time series is used as the space of the explanatory variables, and in the second 
case the time space is used as the space of the explanatory variables. 

State—Space Prediction In the state-space prediction an autoregression param-
eter k > 1 is chosen and we denote 

Yi = Zi+1, Xi = (Zi,..., Zi-k+1), (1-45) 

i = /C, . . . ,T — 1. When the time series Z I , . . . , Zt is stationary, then the sequence 
(.Xi, Yi), i = /C, . . . ,T — 1, consists of identically distributed random variables and 
we can denote by ( X , Y) a random vector which is identically distributed as (Xi, Yi). 

We define the regression function, as previously, by 

f(x) = E(Y \X = x), xe R*\ (1.46) 

We can estimate this regression function using data (Xi, Yi), i = k,...,T — 1. 
Estimator of the regression function / : Rfc —̂  R can be used to predict or explain 
the next outcome of the time series using k previous observations. For example, 
let f r be an estimator of the regression function at time T, constructed using data 
(Xi,Yi), i = k,.. .,T — 1. The prediction of the next outcome is fr(Xr), where 
Xt = ( Z T , . . . , Z;R-FC+I). 

Let 
Z\,..., Zt £ Rd 
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be a c/-dimensional vector time series. Definition (1.45) generalizes to the setting of 
vector time series. Define 

- g(Zl+i), = (Zi,..., Z2-k+1), (1.47) 

i = k,... ,T — 1, where g : Hd —» R is a function with real values. We define the 
regression function, as previously, by 

f ( x ) = E(Yi\Xi = x), xeKdk. 

The regression function is now defined on the higher-dimensional space of dimension 
kd. 

We can predict and explain without autoregression parameter k and take into 
account all the previous observations and not just the k last observations. However, 
this approach does not fit into the standard regression approach. Let Z\,..., Zt G R 
be a scalar time series and define 

Y{ = Z i + i , X i = ( Z i , . . . , Z\), 

i — \,... ,T — 1. The sequence of observations (Y\, X i ) , . . . , (Yr- i> X T - I ) is not 
a sequence of identically distributed random vectors. For example, the regression 
function fi(x) = E(Yi | Xi = x), x G Hld, is defined in a different space for each i. 

Time—Space Prediction In time-space prediction the time parameter is taken 
as the explanatory variable, in contrast to (1.45), where the previous observations in 
the time series are taken as the explanatory variables. We denote 

= Xi=i, i = 1,... ,T. (1.48) 

The obtained regression model is a fixed design regression model, as described in 
Section 1.1.1. 

Time-space prediction can be used when the time series can be modeled as a 
nonstationary time series of signal with additive noise: 

Yi = & + (nei, i = 1,... ,T, (1.49) 

where ^ G R is the deterministic signal, <Ji > 0 are nonrandom values, and the 
noise ^ is stationary with mean zero and unit variance. For statistical estimation and 
asymptotic analysis we can use a slightly different model 

YZjT = + <t(U,t) ei,r, i = 1,... ,T, (1.50) 

where t^T — i/T, /i : [0,1] —> R, a : [0,1] (0, oo), and e^r is stationary with 
mean zero and unit variance. Now it can be thought that the observations are coming 
from a continuous time process Y(t), t G [0,1], and the sampled discrete time process 
is obtained as Y^T = Y(i/T), i = 1 , . . . , T. The asymptotics as T —>• oo is called 
in-fill asymptotics, because points t^T are filling the interval [0,1] as T —> oo. 
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1.1.10 Stochastic Control 

We consider two types of stochastic control problems. The first type of stochas-
tic control problem appears in option pricing and hedging and the second type of 
stochastic control problem appears in portfolio selection. The connection of these 
stochastic control problems to portfolio selection and to option pricing and hedging 
are explained in Section 1.5.3 and in Section 1.5.4, respectively. 

Option-Pricing-Type Stochastic Control Consider the time series 

Xt0,Xto + l, • • • £ R 

and a random variable YT € R. We are able to choose coefficient ft E R at time t, 
for t = to,..., T — 1 and a constant term ato G R at time to. We want to choose 
these coefficients in such a way that the mean squared error 

M S E ( a t 0 , . • • , PT-i) = E ( a t 0 + PT0XT0 + • • • + P R - I X T - I ~ Y T F 

is minimized. The optimal coefficients at time to are defined by 

« , , & " „ ) = argmin , min MSE (a t o , . . . , (3T-i) , (1.51) 
Pt0 + 1 , - - . ,PT-1 

where the minimization is done over coefficients /3t at time t and over coefficient ato 

at time to. 
Note that at time TO the coefficients . . . , PT-I are nuisance coefficients 

since they are chosen at later times, and at time to we use them only to calculate the 
optimal values a£o and /3%0. Then, at time to + 1 we choose parameters a t o+1 and 
/?t0+i and parameters /?t0+2, • • •, PT-I are nuisance parameters at time + 1-

Note the difference to the usual least squares problem. Namely, in the usual least 
squares problem we solve the problem 

min MSE (a t o , , . . . , p T -1) 

at time T — 1. That is, all coefficients are chosen at the same time T — 1 and at that 
time all values XTO, • •. XT-i are known. This problem appears for example in the 
linear autoregression, where we minimize the expected squared error 

E (AT0 + /3T0XT0 + • • • + P T - I X T - I ~ XT F 

at time T — 1. In the one-step case the stochastic control and the usual least squares 
problem are identical, because in the one-step problem we minimize 

E K ) + PtoXto ~ ^O+I)2 = E (CLT-1 + P T - I X T - I - YT F 

at time t0 = T - 1. 
Ifwe haven realizations (X\,..., X^_to, Yj._ t o+1), i = 1 , . . . , n, which have the 

same distribution as (Xto,..., XT-i , I t ) , then we can find data-based coefficients 
as 

('a°to ' Pto ) = a r g m i n a t n ,/3tn , m i r \ MSEn («t0 » Pt0 , • • • , &T-1), " " Ot0 + lv»OT-l 
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where 

MSEN (AT0,/3T0,...,/3T_I) 
n 

= J2 (<*to + 0toxi + ••• + (3T-iX^_to - Yi_t0+lf . 
i=1 

The connection of this type of stochastic control problem to option pricing is explained 
in Section 1.5.4. 

Portfolio-Selection-Type Stochastic Control Consider the time series 

- X t o + i ? Xt0+i,...,XT £ 

We are able to choose coefficient f3t E Hd at time t, for t = t o , . . . , T — 1. We want 
to choose these coefficients in such a way that 

W , . . . , pT-i) = Eu(]\ / J ^ t + i ) 
\t=t0 J 

is maximized, where u : R —>• R. The optimal coefficients at time to are defined by 

/3t°0 = argmax, max W . . . , /3T-i) , (1.52) U Pt0 + 1,...,PT-1 

where the maximization is done over vector (3t at time t. The connection of this type 
of stochastic control problem to portfolio selection is explained in Section 1.5.3, see 
(1.97). 

1.1.11 Instrumental Variables 

The method of instrumental variables is used to estimate causal relationships when 
it is not possible to make controlled experiments. There are three classical examples 
of the cases where a need for instrumental variables arises: when there are relevant 
explanatory variables which are not observed (omitted variables), when the explana-
tory variables are subject to measurement errors, or when the response variable has 
a causal influence on one of the explanatory variables (reverse causation). 

The method of instrumental variables can be used when we want to estimate 
structural function g : Hd —» R in the model 

Y = g{X)^U1 (1.53) 

where Y e R, X e R d , and 
E(U\X)^0. 

Now g(x) is not the conditional expectation E[Y\X = x}. Estimation of g is 
possible when we have observations (Xi,Yi, Zi), i = 1 , . . . , n, where (Xi, Yi) are 
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distributed as (X, Y) and Zi are observations from the distribution of an instrumental 
variable Z E Hd that satisfies 

E(U\Z) = 0. (1.54) 

We give two examples of model (1.53). The first example explains how an omitted 
variable can lead to (1.53). The second example explains how an error in the 
explanatory variable can lead to (1.53). 

Omitted Variable As an example of a case where model (1.53) can arise, consider 
the case where X is a variable indicating the type of the treatment a patient receives: 

X — { w ^ e n P a t i e n t receives treatment A, 
1, when patient receives treatment B, 

and Y is a variable measuring the health of the patient after receiving the treatment. 
This example is modeled after McClellan, McNeil & Newhouse (1994). We want to 
estimate the causal influence of X on Y. Let us denote with W the random variable 
measuring the health of a patient at the time the patient receives the treatment. Also 
the variable W is influencing Y. In this example W is also affecting X, because 
the decision about the treatment a patient receives is partially based on the health 
condition of the patient (if the patient is weak, he will not receive a treatment that is 
physiologically demanding). Using usual regression methods and observations of X 
and Y would give a biased estimate of the causal influence of X on Y. (If patients 
with a weak condition receive treatment A more often, then the estimate would give 
a pessimistic estimate of the effect of treatment A.) 

We have three approaches to estimate the casual influence of X on F : (1) We 
can use randomization, so that the value of X is determined by coin tossing, and the 
influence of W on X is removed. However, in this example this is not possible for 
ethical reasons. (2) We can estimate the conditional expectation E(Y \X — x, W = 
z). However, in this example we have not observed W, so the estimation of this 
conditional expectation is not possible. (3) We can use the method of instrumental 
variables. In this example the instrumental variable Z can be chosen as the difference 
between the shortest distance from a patients home to a hospital giving treatment 
A and the shortest distance from a patients home to a hospital giving treatment B. 
Variable Z has an influence on X, because patients had an influence on choice of the 
treatment they received, and they tended to choose a treatment that was given in the 
nearest hospital. Variable Z does not have any influence on the health of patients, so 
it is otherwise external variable, influencing only X. Thus we can use Z to make a 
pseudo randomization even when a proper randomization was not possible. 

We assume an additive model 

Y = a + f1(X) + f2(W) + e, 

where E(e \ X = x, W = w) = 0, E f x ( X ) = 0, and Ef2(W) = 0. We have 
observations (Yi, Xi, Zi), i = 1 , . . . ,n, but no observations of W. Using these 
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observations, we can estimate / i , but not Estimation of f i is enough to give 
information on the causal influence of X to Y. 

Denoting g(X) = a + f i ( X ) and U = f2(W) + e, we have that 

Y = g(X) + U, 

where E(U \ X) ^ 0, because Cov(X, W) ± 0, and E(U \ Z) = 0, because Z is 
external to the system, having influence only on X. Thus we are in the setting of 
model (1.53). 

Errors in Variables in a Linear Model As an example of model (1.53), consider 
the case where the linear model 

Y = a + PX* + U* 

holds. However, the explanatory variable X* is not observed directly but we observe 
only pairs (Yi,Xi), i = 1 , . . . , n, where 

Xi = X* + €i, i = 1,... 

Thus the observed values Xi are contaminated with additive errors. We assume that 

Cov (X* ,U*) = 0, Cov({/*, e) - 0 (1.55) 

and 

Cov(X*,e) = 0. (1.56) 

We can write the observed response variables as 

Y = a + PX + U* - fie 

and the new error term is denoted by 

U = U* - fie 

to get the new linear model 
Y = a + f3X + U. (1.57) 

In this new linear model E(U \ X) ^ 0. Thus we have the same situation as in (1.53), 
with g(X) =a + (3X. 

The fact E{U \ X) ^ 0, follows from Cov(X, U) + 0. We have that 

Cov(X, U) = Cov(X, U*) - (3Cov(X, e) 

= —(3 [Cov(X*, e) + Cov(e, e)] 

= ~(3Var(e) 

0, 

because 

Cov(X, U*) = Cov(X*, U*) + Cov(e, U*) = 0 

by assumption (1.55) and Cov(X*, e) = 0 by assumption (1.56). 
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Estimation of the Structural Function We give a linear instrumental variables 
estimator in (2.24). This estimator can be used to estimate parameters a and (3 in 
(1.57). The linear instrumental variable estimator is 

z2i=i(xi ~ x r 

where 
1 n n i 71 

n ' n n ' 2=1 1 i= 1 

Hall & Horowitz (2005) approach the estimation of g(pc) in the model (1.53) by 
deriving an operator equation for g. From (1.54) we obtain 

E(Y | Z) = E(g(X) | Z) + E(U \ Z) = (Kg)(Z), 

where the operator K is defined as 

( K g ) ( z ) = E(g(X) \Z = z) = J fx] Z = z { x ) g { x ) dx. 

The operator K is an integral operator mapping L2
X = {g : Hd —>> R | E(g2(X)) < 

oo} to L | = {h : Kd K\E(h2(Z)) < oo}. By estimating K and estimating 
E(Y | Z) we can find an estimator for g. 

1.2 DISCRETE RESPONSE VARIABLE 

We introduce first binary response models, where the response variable is a Bernoulli 
random variable, second we introduce discrete choice models, where the response 
variable is a categorical random variable, and third we introduce count data models, 
where the response variable is a Poisson random variable. In Section 1.3 we introduce 
more general exponential family models which contain as special cases the binary 
response models, discrete choice models, and Poisson count models. 

1.2.1 Binary Response Models 

In a binary response model the response variable Y is a Bernoulli distributed random 
variable, so that it takes only values 0 and 1. When Y ~ Bernoulli(p), where 
0 < p < 1, then the probability mass function of Y is 

f y ( y ) = p y ( l - p ) 1 ~ v , y £ { 0,1}. (1.58) 

Now we can construct a model for the conditional distribution of Y given X as 

f y I X=x(y) = p(x)y( 1 - p ( x ) ) l - y , y e {0,1}, z e R d , (1.59) 
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where p : Hd —> [0,1] is a function. Note that in the Bernoulli model EY = p and 
in the conditional Bernoulli model (1.59) the conditional expectation of Y given X 
is 

E[Y \X = x] = P(Y = l\X = x)= p{x). 

Since function p is a conditional expectation, we can use any regression method 
to estimate p. However, it can happen that a regression function estimate is such that 
it takes values outside the interval [0,1]. For example, a linear regression function 
estimate takes values outside the range [0,1] for large or small enough values of the 
explanatory variables. There are several natural estimators for function p: 

1. In a generalized linear model it is assumed that 

p(x) = G{a + fix), 

where G : Kd —» [0,1] is a known link function. Generalized linear models in 
the case of a binary response model are considered in Section 2.3.2. 

2. In the single index model it is assumed that 

p(x) = g(a + fix), 

where g : Hd [0,1] is an unknown link function. Single link estimators are 
considered in Section 4.1. 

3. We can estimate p with the help of a density function estimator, if vector X 
has a continuous distribution. If vector X has a continuous distribution, we 
can write 

1 1 j fx(x) 

where f x \ Y=I is the density of X \ Y = 1 and f x is the density of X. The 
prior probability P(Y = 1) can be estimated by 

p i = - # { i = l , . . . , n : y i = l } . 
n 

The densities fx\Y=i a n d f x can be estimated by any density estimation 
method. For example, in kernel density estimation we take 

1 n 1 n 

71 1=1 n 1=1 

where Kh(x) = K(x/h)/hd, K : R d R is the kernel function, and h > 0 
is the smoothing parameter. See (3.39) for the definition of the kernel density 
estimator. Finally, we define the estimator of function p : R d [0,1] as 

= P i f r i r - i f r ) ( L 6 0 ) 

fx(x) 
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4. We can estimate function p : Hd —>• [0,1] with a local averaging 

n 

p ( x ) = Y ^ M x ) Y l , (1 .61) 

i=1 

where the weights pi(x) satisfy Pi(x) > 0 and Yl7=iPi(x) = 1- Examples 
of the local averaging are given in Chapter 3, where regressogram weights, 
kernel weights, and nearest neighborhood weights are defined. In the case of 
kernel regression and kernel density estimation formulas (1.60) and (1.61) are 
equivalent, see (3.37). 

1.2.2 Discrete Choice Models 

In discrete choice models the response variable is a discrete random variable taking 
only a finite number of values. We can distinguish the cases where the values of the 
response variable are unordered and the cases where they are ordered. The random 
variables whose values are unordered are called nominal or categorical random vari-
ables and the random variables whose values are ordered are called ordinal random 
variables. 

Let us consider a discrete choice model with a categorical response variable. 
A categorical response variable Y has a categorical distribution, taking K distinct 
values 0 , 1 , . . . ,K — 1, say. The categorical distribution family generalizes the 
Bernoulli distribution family, where the variable takes only values 0 and 1. When 
Y ~ Categorical (po,... where 0 < pk < 1, Ylk=o P& = 1' ^en the 
probability mass function of Y is 

K-1 

fy(y) = J2 Pihk^y), y e {0,.. •, K - 1}. (1.62) 

k=0 

Now we can construct a model for the conditional distribution of Y given X as 

K-1 
fY\x=x(y)=Y,Pk(x)I{k}(y), ye { 0 , . . . , K - 1 } , x e R d , (1.63) 

k=0 

where pk : —> [0,1] are functions satisfying ^2k=o Pk(x) = 1 f ° r e a°h x £ 
Note that now the conditional probability of Y given X is 

P(Y = k\X = x)= pk{x), k = 0 , . . . , K - 1. 

There are several reasonable estimators of Pk(x). 

1. We can use the parametric form 
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for fe = 1 , . . . , K — 1 and po(x) = 1 — Pi(x)- A more restrictive form 
is 

/3'x PkW = (L64) 

where the conditional probability is the same for all classes. This form is 
obtained by defining 

Ui = fiX + €{ 

and 

Y = a.rgmaxi=0 K_1Ui. 

Assume that Ci are independent and identically distributed with the Weibull 
distribution. The distribution function of the Weibull distribution is Fei (x) = 
exp { -e _ : r } . Now pk(x) = P(Y = k \ X = x) is given by (1.64). The 
estimation can be done with the maximum likelihood or with the least squares 
method. 

2. We can estimate p with the help of any density function estimator. If vector X 
has a continuous distribution, then we can write, 

where k = 0 , . . . , K — 1, f x \ y=i is the density of X | Y = 1 and f x is the 
density of X. The prior probability P(Y = k) can be estimated by 

Pk = 1, • • •, n : Yi = fe}, 

where denotes the cardinality of set A. The densities f x \ y=k
 a n d f x can 

be estimated by any density estimation method. See (3.39) for the definition 
of the kernel density estimator. Finally we define the estimator of p as 

p(X) = • ( ] -6 5 ) 
fx(x) 

3. Define K Bernoulli random variables . . . , with the definition 
that Y W = 1 if and only if Y = fe. Then 

pk(x)=E(YW\X = x). 

We can use, for example, kernel regression to estimate pk(x) using regression 

data (XuY}k)),..., (Xn, for fe = 0 , . . . , K - 1. 
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1.2.3 Count Data 

Count data occurs when the response variable Y gives the number of occurrences of 
an event. For instance, Y could give the annual number of bank failures. The count 
data is such that Y takes values {0,1,2, . . .} . Count data can be modeled with the 
Poisson distribution. If Y ~ Poisson(zz), then 

P(Y = y = 0 , 1 , 2 , . . . , 

where v > 0 is the unknown intensity parameter. Now EY = v and Var(F) = v. In 
the Poisson regression the regression function is 

v(x) = E(Y\X = x), 

where X E Hd is the vector of explanatory variables. The Poisson regression is a 
heteroskedastic regression model. A parametric Poisson regression model is obtained 
if 

v(x) = exp{xf/3}, 

where (3 E is the unknown parameter. This choice guarantees that v(x) > 0. 
Besbeas, de Feis & Sapatinas (2004) make a comparative simulation study of wavelet 
shrinkage estimators for Poisson counts. 

1.3 PARAMETRIC FAMILY REGRESSION 

We obtain the binary response models, discrete choice models, and Poisson count 
models, introduced in Section 1.2, as special cases of parametric family regression, 
introduced in Section 1.3.1. In fact, these are a special cases of exponential fam-
ily regression, introduced in Section 1.3.2. A different type of parametric family 
regression is obtained by copula modeling, introduced in Section 1.3.3. 

1.3.1 General Parametric Family 

Let us consider a family (Pq, 0 e 6 ) of probability measures, where 6 C R p . Let 
Y E R be a response variable and let X E R d be a vector of explanatory variables 
that satisfy 

Y ~ P/(X), 

where / : H d —» 6 is an unknown function to be estimated. The function / is 
estimated using identically distributed observations (XL, Yi ) , . . . , (Xn, Yn) from the 
distribution of (X,Y). After estimating function / , we have an estimator of the 
conditional distribution Y | X — x, because 

Y\X = x~Pf(x). (1.66) 

The following examples illustrate the model. 
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1. We obtain a Gaussian mean regression model when PQ = N ( 0 , a 2 ) , where 
0 G 6 = R . Now 

Y\X = x~N(f(x),a2), 

which follows from 
y = / ( x ) + c, 

where e - 7V(0,cr2). 

2. We obtain a Gaussian volatility model, when PQ = 7V(0, 0), where = 
(0, oo). Now 

Y\X = x~ N(Q,f(x)), 

which follows from 
Y = f{X)1'2e, 

where e - N(0,1). 

3. We obtain a Gaussian heteroskedastic mean regression model, when PQ = 
N{0U 02), where 0 = (6>i, 02), and 6 = R x (0, oo). Now 

Y\X = x~N(f1(x)J2(x)), 

which follows from 
Y = h ( X ) + f2(Xy/2e, 

where e ~ AT(0,1), and we denote / = ( / i , f2). 

4. We obtain the binary choice model, when PQ = Bernoulli(#), where 0 E Q = 
[0,1]. Then P(y = 1) = f { X ) and P(y = 0) = 1 - f { X ) . 

Let us assume that the probability measures PQ are dominated by a cr-finite mea-
sure, and denote the density functions of PQ by p(y, 6). We use the term density 
function, although p(y, 0) can be also a probability mass function, if Y has a dis-
crete distribution. In Section 1.3.2 we make the assumption that (PQ,0 G O) is an 
exponential family. 

Under the assumption that (Xi, Y i ) , . . . , ( X n Y n ) are i.i.d., the log-likelihood of 
the sample is 

n 

J > g piYufiXi)). 
1=1 

The log-likelihood can be maximized over collection T of functions, and we denote 
T = ( f ^ / 3 G B). We have two general approaches. 

1. The first possibility is to define 

n 

f = a r g m a x ^ ^ logp(Y { , 
i=1 

where (/^, (3 G S) is a large collection of functions, like the collection of linear 
functions: fp(x) = f30 + foxi H h f3dxd. 
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2. A second possibility is to maximize a local log-likelihood and define 

n 

f(x) = argmaxyGjr (1.67) 
i=l 

where Pi(x) are weights, for example Pi(x) = Kh(x — Xi), where Kh{x) = 
K(x/h)/hd, K : —>• R, and h > 0. Now we can take to be a constant 
function: fp(x) = (3, where /J G R. The local likelihood approach has been 
covered in Spokoiny (2010). 

1.3.2 Exponential Family Regression 

An exponential family is a collection V = (PQ, 0 e 6 ) of probability measures. The 
probability measures in V are dominated by a cr-finite measure. In a one-parameter 
exponential family the density functions have the form 

p(y,0)=p(y)exp{yc(e)-b(6)}, 

where 9 G 6 C R, and y G ^ C R. The functions c and 6 are nondecreasing 
functions on 0 and function p : y R is nonnegative. In the exponential family 
with the canonical parameterization the density functions are 

p(y, v) = p(y) exp{yv - d(v)}. (1.68) 

The canonical parameterization is obtained by putting v = c(6) and d(v) — b{6). 
Examples of exponential families include the family of Gaussian, Bernoulli, Poisson, 
and gamma distributions. An exposition of exponential families is given by Brown 
(1986). 

We use the modeling approach in (1.66), and assume that the conditional distri-
bution of Y given X — x belongs to an exponential family and the parameter of the 
conditional distribution is v — f(x): 

Y\X = x~p(yJ(x)), (1.69) 

for a function / : H d V, where we use the natural parameterization in (1.68), and 
V is the parameter space of the natural parameter. 

If the parameterization is natural, and d is continuously differentiable, then 

EVY — d'(v), (1.70) 

where Y ~ f(y,v). Indeed, 

d 
— logp(y , v ) = y- d'(v). 

On the other hand, 
d 

Ev — \ogp(Y,v) = 0, 
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under regularity assumptions.5 Thus, (1.70) holds. Under the assumption (1.69), we 
get 

E(Y\X = x)=d'(f(x)). 

If the parameterization is natural, and d is two times continuously differentiate, 
then 

Var v{Y) = d"{v). (1.71) 

Indeed, 

Var V(Y) = E(Y-d\v))2 = E 
d 

— \ogp(Y. v) 
2 Q1 

= d"(v). 

Under the assumption (1.69), we get 

Var(y \ X = x) = d"(f(x)). 

Brown, Cai & Zhou (2010) suggest a reduction method where the exponential family 
regression can be transformed to the Gaussian regression by binning and variance 
stabilizing transform. 

1.3.3 Copula Modeling 

Let (Yi, I2) be a random vector with a continuous distribution function 

F{yuy2) = P(Y1 <yuY2<y2), 

where y\,y2 G R. We can write the distribution function uniquely as 

F(yuy2) = C(F1(y1),F2{y2)), (1.72) 

where F\(y\) — P(Y\ < y{) and F2(y2) = P(Y2 < y2) are the distribution 
functions of Y\ and Y2. The function C : [0, l]2 —> R is the copula of the distribution 
of (Yi, Y2). Function C is a distribution function whose marginals are uniform on 
[0,1]. The copula is defined by 

C(uuu2) =F(F-\U1),Fz1(U2)), 

where u i ,u 2 G [0, l]2. These facts were proved in Sklar (1959). See also Nelsen 
(1999). 

For example, a Gaussian two dimensional copula is a normal distribution with 
unit marginal standard deviations. The family of Gaussian two dimensional copulas 
CQ has the parameter 6 G ( — 1 , 1 ) , where 0 is the correlation coefficient between Y\ 
and Y2. 

5 We have that Ev £ log p(Y, v) = Ev ^ f f i j f " = f v) dy = £ / p ( y , v)dy=£l = 

0, if the order of derivation and integration can be changed. 
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The copula representation of the distribution as in (1.72) gives a useful way 
to construct models and to estimate the unknown parameters of the model. Let 
(c0,6 G ©) be a family of copula densities, where © C R p . This leads to a 
semiparametric model with densities 

f{Vi,V2;0,fi,f2)=ce(F1(y1),F2(y2)) h(yx) h f a ) , 

where 0 G © and / i , / 2 G J7, where J7 is a nonparametric collection of univariate 
density functions. The estimation of 6, fi, f2 can be done with the two stage approach. 
In the first stage we estimate nonparametrically the marginal distributions / i and / 2 . 
In the second stage we estimate the copula parameter 0. 

Assume that X G H d is a vector of explanatory variables and we want to esti-
mate the conditional distribution (YI, Y2) | X — x. We assume that the conditional 
distribution function is 

FYuY2\x=x(yi,y2) = P{Yi<yuY2<y2\X = x) 

= Ce{x) {FYl\x=x{yi)iFY2\x=x(y2))i 

where 0 : Hd R . The conditional density is 

fYuY2\X=x{y 1^2) = ce{x) (FYl\X=x(yi), FY2\X=x(y2)) fY1\X=x(yi) fY2\X=x{y2)-

In the first stage we estimate nonparametrically the conditional distribution functions 
and get the estimates FYl \x=x (yi) Fy2 \x=x (2/2)- In the second stage we estimate 
the function 0(x). This can be done analogously to (1.67), and we get the locally 
constant likelihood estimator as 

n 

0(x) = argmine€e^2pi(x) log co (^FYL\X=X{YI)^ FY2\X=X (2/2)). 
i= 1 

This method has been studied in Abegaz, Gijbels & Veraverbeke (2012). 
We have defined in (1.72) the standard copula decomposition. This decomposition 

can be inconvenient because the copula density c has the support inside [0, l]2, and 
the estimation is typically complicated with the boundary effects. Alternatively, we 
can make the copula decomposition 

F(XUX2) = C (^-1(F1(X1))^-1(F2(X2)))1 

where $ : R —> R is the distribution function of the standard Gaussian distribution. 
Now C is a distribution function whose marginals are standard Gaussian, and C is 
defined by 

C(u, v) = F ( F f 1 , F^1 ($(t;))), u,v e R. 

1.4 CLASSIFICATION 

Let the sequence (Xi, YI ) , . . . , (Xn , Yn) consist of identically distributed random 
vectors. Let (X, Y) be distributed as (X ,̂ Y^), for i = 1 , . . . , n. Let the possible 
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values of Y be {0 , . . . , if — 1}. We want to find a classification function g : Hd —» 
{0 , . . . ,K — 1}. The classification function is interpreted as such function that if 
we observe a new random variable X n +i , distributed as X, then g(Xn+i) guesses 
the class label of X n + i , that is, we decide that Xn+i comes from the distribution of 
X\Y = k, if g(Xn+1) = k. 

In the case of classification Y can take only a finite number of values (as many 
values as there are classes), since the values of the response variable Y indicate the 
class label. In the case of regression analysis the response variable Y can in many 
cases take as values any real number. However, in Section 1.2.1 we have considered 
binary response models, where the response variable takes only two values and 
in Section 1.2.2 we have considered discrete choice models, where the response 
variable takes a finite number of values. In binary response models and in discrete 
choice models we are, however, interested in estimating the conditional expectation 
f(x) = E(Y | X = x), f : R d —> R, whereas in the case of classification, we want 
to estimate the classification function g : Hd {0 , . . . ,K — 1}, which predicts the 
class label of a future observation. As an example, consider the case where K = 2, 
so that there are two classes, and thus Y is a Bernoulli distributed random variable. 
Now the regression function is 

f(x) = E(Y \X = x) = P(Y = l\X = x). (1.73) 

Thus / ( X n + i ) G [0,1], but we would like to find a classification function g such that 
g{Xn+1) e {0, l}. 

We have explained the classification in the case where the number of observations 
in each class is a random number. There also exist cases where the observation 
number in each class can be chosen by the designer of the experiment. Then we have 
fixed numbers n o , . . . , UK-i and observations Xki, • • •, Xknk £ R d are coming 
from the kth distribution, k — 0 , . . . , K — 1. We will consider only the case where 
the class frequencies are random. 

1.4.1 Bayes Risk 

In the random design regression we can motivate the estimation of conditional expec-
tation f(x) = E(Y | X = x) by noting that the conditional expectation minimizes 
the mean squared error: / = argmin^£'(F - g(X))2; see Section 1.1.7. Similarly, 
in the case of classification, we can find a population quantity which minimizes a 
natural criterion. This criterion is the probability of misclassification, or Bayes risk, 

R(g) = P(g(X)?Y). (1.74) 

Let 
g* - argmin^R(g), 

where the minimization is done over all classification functions g : H d -» {0 , . . . , K— 
1}. The classification function g* which minimizes the probability of misclassifica-
tion is called the Bayes rule. It can be proved that 

g*(x) = argma *k=0,...,K-ip(Y = k\X = x). (1.75) 
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The proof of (1.75) for the case K — 2 can be found in Gyorfi et al. (2002, Lemma 
1.1, p. 6). It holds that 

g*{x) = argmaxk=0 K _1P(Y = fe) fX\Y=k(x), (1-76) 

where fx\Y=k : R is the density function of X \ Y = fe. 

1.4.2 Methods of Classification 

We shall mention four principles to construct classification functions: classification 
using regression function estimates, classification using density estimates, classifica-
tion using empirical risk minimization, and classification using nearest neighbors. 

Classification by Regression Function Estimation A classification func-
tion can be constructed from a regression function estimate. In the two class case 
we can take the data (X\, Y i ) , . . . , (Xn, Yn) as if it would originate from the binary 
response model, and in the multiclass case we can take the data as if it would originate 
from the discrete choice model with a categorical response variable. In Section 1.2.1 
we introduced binary response models, and in Section 1.2.2 we introduced discrete 
choice models. 

In a discrete choice model we estimate the class posterior probabilities 

pk(x) = P(Y = k\X = x), k = 0 , . . . , K - 1. 

A natural classification function is 

g*(x) = a r g m a x ^ (1.77) 

In fact, we note in (1.75) that the classification function g* is in a sense the optimal 
classification function. Let us denote the estimators of the class posterior probabilities 
by pk(x), and let us define an estimator of the classification function by 

g(x) = argmaxk=0 J<_1pk(x). (1.78) 

We can find the estimators pk (x) in the following way. We define K response 
variables, that are the indicators of the class labels: 

Y™ = I w M ) , z = 1 , . . . , n, fc = 0 , . . . , t f - l . (1.79) 

Let pk(x) be a regression function estimator of the posterior probability 

pk(x) = E{Y{k) \X = x)= P(Y = k\X = x). (1.80) 

Estimator pk (x) is constructed using regression data ( X u Y l k ) ) , . . . , ( X n M k ) ) J o r 
fe = 0 , . . . , i f - 1. 

In the two class case, when Y G {0,1}, we do not have to use (1.79), because Y 
is already a class indicator. In the two class case we can write the empirical decision 



4 0 OVERVIEW OF REGRESSION AND CLASSIFICATION 

rule in a simplified form. Let / : H d R , be any regression function estimator 
constructed using regression data (Xi,Yi),..., (Xn, Yn), and define 

g(x) = ( i ' ^ (1.81) ; \ 0, otherwise, 

which estimates the natural classification function 

*(*) = \ n ^ u i Y = = = °\X = x)' ( L 8 2 ) } 0, otherwise. 

Classification by Density Estimation A classification function can be con-
structed from density estimates of the class densities. We assume now that X is a 
random vector with a continuous distribution. Let us consider the classification rule 
g*(x) = argmaxA.=0 K_xpk(x), defined in (1.77). We can write 

JX{X) 

where fe = 0 , . . . , K — 1, and x G R d . Thus, 

argmaxfc=0? K _ xPk (x) = argma xk=0,...,K-ip(Y = k)fX\Y=k(x). 

An estimator for the classification function, based on data (X\, Y\),... ,(Xn, Yn), is 
obtained as 

g(x) = argmaxk=Q j<_1pkfx\Y=k{x)i (1.83) 

where fx\Y=k is a density estimator of the class density function fx\Y=k a n d Pk is 
an estimator of the class prior probability P(Y = k). We can define 

Pk = - = 1, • • •, n : Yi = fe}. 
n 

Classification by Empirical Risk Minimization A classification function can 
be constructed using empirical risk minimization. In (1.78), classification is reduced 
to regression function estimation (in binary response models or in discrete choice 
models). In (1.83), classification is reduced to density estimation. However, ac-
cording to Vapnik's principle, we should not try to estimate more than is needed, 
and thus we should also consider the direct construction of a classification function, 
without reducing the problem to regression function estimation or to density function 
estimation. 

We define a classifier by 

g = argmin^GC?7 n(g), (1.84) 

where Q is a class of functions g : Hd { 0 , . . . , K — 1} and 7 n ( g ) is the empirical 
error of classifier g. We get different classifiers depending on the choice of the 
empirical error 7 n ( g ) and depending on the choice of class Q. 
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We can define the empirical error of a classifier g by 

7n{g) = #{i = 1 , . . . , n : g(Xi) ± Y J . (1.85) 

Quantity 7 n ( g ) is equal to the number of misclassifications in the learning sample. 
We can also decompose the number of misclassifications according to the class labels. 
Let 

7 {n\g) = #{* = ! , . . . , N : k}, 

where k = 0,..., K — 1. Then we can define the empirical error of the classifier as 

a weighted sum of the single class misclassification errors: 

K - 1 

7n(g) = Wkl{n\g)-
k=0 

For wk = 1 we get the overall classification error (1.85). 
In the two class case it has also been suggested to use class labels Y G { — 1,1} and 

not the labels {0,1}, consider classifiers h : Hd R , and define the classification 
function g(x) = sign(/i(x)). The empirical risk is defined as 

n 

7»(</) = 
i=l 

where 0 : R (0, 00) is a convex nonincreasing function with <j)(u) > / (_ o o 0](^) 
for u G R . We can take the hinge loss 4>(u) — max{0,1 — u}, the exponential loss 
4>{u) = exp{-u},or thelogi t loss0 (w) = log2( l + e_M). Support vector machines, 
mentioned in Section 5.3, use the hinge loss and a penalized empirical risk. 

An example for the choice of class Q is given in (2.84). In this example the class 
Q is chosen so that the classification functions are linear. 

Classification by Nearest Neighbors The nearest-neighbor rule defines the 
class estimate to be that class label that occurs most often among the k nearest 
neighbors. That is, for an integer k G {1 ,2 , . . . } , define the k nearest neighbors, 
based on observations (Xi, Y i ) , . . . , (Xn, Yn), as the set 

y(x) = {Yi:\\Xi-x\\<rk(x)}, 

where 

rk(x) = m in { r > 0 : #{X2 G Br(x)} = k}, 

where Br(x) = {z G Hd : \\z — x\\ < r}. Now we can define the classifier6 

g(x) = argmax^=0 K _ x G y(x) : Yz = y}. 

Hastie et al. (2001, Section 13) use the term "prototype methods" to denote classifiers 
which classify the new observation to the class whose observed values are most similar 
to the new observation. 

6We denote now the class labels by y = 0 , . . . , K — 1, because the symbol k is used to denote the number 
of nearest neighbors. 



4 2 OVERVIEW OF REGRESSION AND CLASSIFICATION 

1.5 APPLICATIONS IN QUANTITATIVE FINANCE 

Portfolio selection, risk management, and option pricing belong to the main branches 
of quantitative finance. Estimation of conditional variances and conditional quantiles 
can be applied in risk management. Estimation of conditional expectations can be 
applied in portfolio selection. Option pricing is related to optimal control. 

Other applications are described in later sections. Section 2.1.7 explains how linear 
regression can be applied to estimate the beta of an asset, the beta of a portfolio, the 
alpha of a portfolio, and the alpha of a hedge fund. Section 2.2.2 explains how varying 
coefficient regression can be applied in hedge fund replication and in performance 
measurement. Data sets are described in Section 1.6. 

1.5.1 Risk Management 

The process of portfolio selection tries to address the problem of balancing the risk 
and return, but it is useful to have an independent risk management to make an 
evaluation of the risk of the portfolios at a daily basis. 

The economic capital can roughly be defined to mean the amount of money which 
is needed to secure survival of a company in a worst case scenario. The definition 
of the economic capital can be made precise with the concept of a value at risk. The 
economic capital can be used in portfolio selection to calculate return distributions. 
The regulatory capital is the capital required by the regulators that financial institutions 
should maintain. The regulatory capital is often defined in terms of value at risk. 

Variance trading can be used in speculation, but variance swaps can also be used 
in risk management to adjust the overall exposure of a portfolio to the volatility. 

Value-at-Risk Quantiles can be used to measure the risk of a portfolio. The 
distribution of the change in the value of the portfolio is called the profit-and-loss 
distribution: If we denote by Vt the value of the portfolio at time t and by Vu the 
value of the portfolio at a later time, then the distribution of Vu — Vt is called the 
profit-and-loss distribution for the time period from t to u. We define the loss as the 
negative of the change in the value of the portfolio 

The upper quantiles of the loss distribution are called the value at risk or VaR: 

where p is equal to 0.99 or 0.999, for example. A larger value of VaRp indicates that 
the portfolio is more risky, because VaRp is such threshold that the probability that 
the loss is larger than VaRp is smaller or equal to 1 — p. We can write 

Lu = -(Vu-Vt). (1.86) 

VaRp = QP(LU) (1.87) 

Lu — -VtRu, 

where Ru is the return of the portfolio, 
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Thus, if we have the quantile QP(RU) of the return distribution, the VaRp is obtained 
by the formula 

VaR p = -VtQp{Ru). 

Quantile as risk measure takes into account the number of exceedances of the 
VaR threshold, but it does not take into account the largeness of the exceedances. 
Expected shortfall takes also the largeness of the exceedances into account. 

Economic Capital in Portfolio Selection Let us consider a bank which wants 
to choose among a collection of investment proposals. The investment with the best 
return distribution will be chosen. The problem is to calculate the return distribution 
since many investments do not require any initial capital, and we cannot calculate the 
return by dividing by the initial investment. 

First we have to construct a profit-loss distribution for each investment proposal. 
These profit-loss distributions may be very difficult to estimate, because one has to 
take into account each possible future state of affairs and its probability. In order 
to estimate the probabilities of the states, one has to take into account all current 
investments of the bank and consider the interaction of the new investment with the 
current investments. For example, when we write a call option, the maximum loss 
is in general infinite; but if we already own the underlying stock, then the loss is 
bounded. 

We want to set aside enough capital to cover adverse events with a given probability 
of occurrence. The frequency of default for AA-rated companies over a one-year 
period has been roughly one in three thousand. Thus one could choose the 0.0003th 
quantile of the profit-loss distribution (1 /3000 « 0.0003 = 0.03%), which could be 
for example a loss of 1 million Euros, and set aside enough capital to cover this loss. 
This capital is called the economical capital. The return on investment is calculated 
by dividing by the economical capital. That is, we get the return distribution from 
the profit-loss distribution by dividing with the economical capital. See Rebonato 
(2007, Chapter 9). 

Finally, we choose the best return distribution by the maximization of the expected 
utility or by the maximization of the variance penalized expected return. 

Variance as a Risk Measure The Sharpe ratio of a portfolio is defined as 

E(R - r) 

sd (R - r)' 
(1.88) 

where R is the return of the portfolio for a given time period, r is the return of a 
risk-free rate for the same time period, and sd(R — r) is the standard deviation. The 
Sharpe ratio belongs to the class of performance measures having the form 

expected return 

risk 

The basic idea is that in measuring the quality of a portfolio we have to take the 
risk into account and not only the return. In the definition of the Sharpe ratio the 
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expected return and the standard deviation is defined using the excess return, which 
is the return of the portfolio minus the return of a risk-free return. 

In portfolio selection the risk aversion can be taken into account by using the 
Markowitz criterion 

E(R-r) - ^ s d { R - r ) , (1.89) 

where A > 0 is the risk aversion parameter. The Markowitz criterion has the general 
structure of a risk-penalized expected return: 

expected return — ^ • risk. 

The Sharpe ratio and the Markowitz criterion use the standard deviation of the 
excess returns as the risk measure. The standard deviation does not take into account 
the possibility of a nonsymmetric distribution. It penalizes from a positive skewness 
of the return distribution. Thus, we can consider replacing the standard deviation by 
the square root of the partial variance in the definition of the Sharpe ratio and the 
Markowitz criterion. The partial variance is defined in (1.18). 

1.5.2 Variance Trading 

Variance estimation can be applied in quantile estimation, because standard deviation 
estimates can be used to construct quantile estimates; see (1.28)—(1.30). Variance 
estimation can be applied in portfolio performance measurement and in portfolio 
selection, see (1.88) and (1.89). A third application for variance estimation comes 
from the volatility trading. 

Volatility can be traded with variance and volatility swaps. A variance swap is a 
forward contract that pays 

V t - K 

at the expiration date T, where K is the delivery price, and VT is the realized variance, 
defined by 

T 

vT= J2 [log(^A-i)]2, 
t=to + l 

where to is the starting day of the contract, and St are the prices of a financial asset. 
The volatility swap pays at the expiration 

y/Vr-L, 

where L is the delivery price. 
Variance and volatility swaps are traded over the counter (OTC), but the Chicago 

Board Options Exchange (CBOE) offers variance futures for the variance of the S&P 
500 index, calculated with the daily returns of the index. 

Variance swaps open an opportunity to covariance trading if we have an access to 
a variance swap of an index and to variance swaps of its constituents. Let us consider 
an index whose returns are 

Rt = pR^ + qR?\ 
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where R^ are the log returns of the index constituents and p and q are the weights 
of of the constituents. Let us define the realized covariance as 

t=to +1 

Thus, 

where VT is the realized variance of the index and V ^ = £f = t o ( i? t
( i ) ) are the 

realized variances of the index constituents. 

1.5.3 Portfolio Selection 

Basic Concepts of Portfolio Selection Let 

be a vector time series of N asset prices. Asset prices satisfy 0 < SI < oo, 
i = 1 , . . . , N. A portfolio vector bt = . . . , b^) G R ^ determines how the 
wealth is allocated among the assets at time t. A portfolio vector bt satisfies 

N 

$ > i = i- (i.90) 
2 = 1 

When 0 < bl
t < 1 for alH = 1 , . . . , N, then the portfolio is called a long only 

portfolio and the value b\ is equal to the proportion of wealth is invested in asset S\ at 
time t. Negative values of b\ are interpreted as short selling.7 One of the assets can 
be a bank account, and selling a bank account short is interpreted as borrowing. For 
example, when N = 2, bj = - 1 , and bf = 2, this means that at time t we sell short 
asset 1 with an amount which equals all our wealth and simultaneously buy asset 2 
with all our wealth and with the proceedings obtained from selling short the asset 1. 

We define a new vector time series of gross returns (price relatives) by 

It is reasonable to assume that the time series R \ , . . . , RT is approximately stationary. 
In statistical portfolio selection we have available, besides the historical returns 
Rt of the assets, also other information Zt. The variables in vector Zt can be 
macroeconomic variables, like the term premium, default premium, and dividend 
yield.8 The problem of portfolio selection can now be described as a problem of 
choosing a portfolio vector at time T using data (Rt, Zt),t = 1 , . . . , T. 

7Selling short an asset means that we borrow the asset and then sell it, that is, we sell an asset that we do 
not own. Naked short selling means that an asset is sold before it is borrowed, or before making sure that 
it can be borrowed. 
8The term premium is the difference between the long-term and short-term interest rates. For example, 
the term premium can be the difference between the annualized yields of a portfolio of 10-year U.S. 
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Single-Period Portfolio Selection Let WT > 0 be the wealth available at time 
T. When the portfolio vector is br, then the gross return of the portfolio for the time 
period from T to T + 1 is 

^ - S X ^ - M ™ . <192) 
2 = 1 1 

In the single-period portfolio selection the optimal portfolio vector can be defined as 

oT = avgmaxbTeBN ETu(b'TRT+1), (1.93) 

where u : (0, oo) > R is a utility function and 

5A r = | ( 6 1 , . . . ) 6 A r ) : 5 ^ 6 i = l | . (1.94) 

Note that 0 < b'TRT+1 < oo. The notation ET means that the expectation is taken 
at time T, using information available at time T. If the available information is 
contained in the historical returns Rt and in the historical values of the variables ZT, 
then the expectation ET can be taken as the conditional expectation, conditional on 
the previous returns and previous values of variables ZT: 

ETu (b'TRT+I) = E[u (b'TRT+I) | RI, ZI,..., RT, ZT] . 

In the maximization problem (1.93) we apply utility function u to the one-period 
gross return, given in (1.92). 

A utility function u : (0, oo) —» R is an increasing function (the derivative 
is positive) that is concave (the second derivative is negative). The power utility 
functions are defined by 

u ^ t ) = (1.95) 

for t > 0. The power utility functions are called constant relative risk aversion utility 
functions (CRRA). A utility function is used instead of the pure return, because 
through it we take also risk into account and do not optimize the pure return.9 

government bonds and a 90-day Treasury bill. The default premium is the difference between the interest 
rate of a lower grade bond and a higher grade bond. For example, the default premium can be the difference 
between the annualized yields of Moody's Baa and Aaa rated bonds. The dividend yield is the dividend 
payment of a company divided by its market capitalization, when the market capitalization is the value of 
the stock multiplied by the number of stocks. 
9It does not matter whether we take the utility from the wealth or from the gross return. Indeed, for 7 > 0, 

u (WTb'TUT+i) = W^T1 • u{b'TUT+1) 

and for 7 = 0, 

u (WTb'TUT+1) = u{WT) + u{b'TUT+i). 
Thus the optimal portfolio vector is the same regardless of the initial wealth WT-
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Parameter 7 > 1 is the risk aversion parameter, and larger 7 means larger risk 
aversion. A gross return equal to zero would mean that we have made a bankruptcy, 
and thus the utility of zero gross return should be equal to minus infinity. Thus the 
utility function makes a severe penalization of returns near zero. Also, the utility of 
a positive return does not grow linearly but is a concave function of the return. 

Multiperiod Portfolio Selection When we start with wealth WT at time T and use 
portfolio weights br, • . . , brx -1, then the wealth at time T\ is 

Ti- l 
w T n 

t=T 

The gross return of the portfolio for the time period from T to T\ is 

X i — 1 

n KRt+i. (i-96) 
t=T 

In the multiperiod portfolio selection, assuming that our investment horizon extends 
from T to a future time T\, and we are able to change the portfolio weights at all 
times T , . . . , T\ — 1, the optimal portfolio weights at time T are defined by 

B°T — argmax6r max ETU 
br+i ,...,67^ -1 

In the maximization problem (1.97) we apply utility function u to the multiperiod 
gross return, given in (1.96). The single period case is obtained as a special case when 
T\ = T + 1. The optimization problem (1.97) is of the same type as the optimization 
problem of the stochastic control in (1.52). 

Portfolio Selection and Regression Function Estimation We describe 
how regression function estimation can be used in portfolio selection. We con-
sider the single period portfolio selection and want to choose a portfolio vector 
bT = . . . , b^) G R ^ at time T so that the expected utility of the wealth is 
maximized at time T + 1, as in the optimization problem (1.93). We can define, for a 
fixed portfolio vector b e RN, with ^ T ^ b* = 1, the response and the explanatory 
variables 

Yh,t = u(b'Rt+l), Xt g 

t = 1 , . . . , T - 1. We assume that , Xt), t = 1 , . . . , T - 1, are identically 
distributed, and denote by (Yb,X) a random vector which has the same distribution 
as Xt). The data can be used to estimate the regression function 

fb(x)=E(Yb \X = x), x G 

where b is a fixed portfolio vector. This regression function gives a prediction for the 
utility of the gross return of the portfolio. The prediction can be inaccurate; but the 

Mi —1 

n 
V t=T 

b'tR, t+1 (1.97) 
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collection of all predictions, for all values of the portfolio vector 6, gives a way to 
choose the optimal portfolio vector. Namely, at time T we use the data 

to estimate the regression function. Let us denote this estimate by 

fb,T : ^ R. 

We choose the optimal portfolio vector br at time T by 

bT = argmax6 G B /fc,T(Xr), (1.98) 

where B C BN, where B^ is the sphere in R ^ , defined in (1.94). Thus we choose 
the portfolio vector for which the prediction of the utility of the return of the portfolio 
is the highest. Since T is the current time, we use br to allocate the current wealth, 
and the portfolio vectors bt,t = 1 , . . . , T — 1, can be used to analyze the statistical 
properties of the portfolio selection method. 

We can also describe the procedure by defining function b : Hd B by 

b(x) = argma xbeBfb(x). 

This function is estimated at time T by 

bT{x) = 3LrgmaxbeBfb,T{x). 

At time T we choose the portfolio vector 
We can use the idea of (1.47) to transform the time series (1.91) to regression data 

and we can define the explanatory variables 

Xt = (Rt,...,Rt-k+1)£RNk, (1.99) 

t = fc,..., T — 1. The explanatory variable Xt is defined as a vector of length 
k of past gross returns. This choice can be justified if the past returns contain all 
relevant information available to predict the future returns. Clearly it is possible 
that the quality of predictions can be improved if we make some transformation of 
the past returns. Possible transformations are discussed in Section 1.7. If the time 
series . . . , Rt is stationary, then (Y^t,Xt), t = T — 1, are identically 
distributed. 

An application of regression function estimation in portfolio selection has been 
made by Brandt (1999), Ai't-Sahalia & Brandt (2001), and Gyorfi, Lugosi & Udina 
(2006). See also Gyorfi & Schafer (2003), Gyorfi, Urban & Vajda (2007), Gyorfi, 
Udina & Walk (2008), and Gyorfi, Ottucsac & Walk (2012). 

Portfolio Selection and Classification We assume to have data (RuXt), 
t — 1 , . . . ,T , where Rt £ R ^ is the gross return vector defined in (1.91) and 
Xt G Hd is the the vector of explanatory variables observed at time t. 
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Let B = {60, . . . , bx-1} C R ^ be a finite class of portfolio vectors. Define the 
class labels Yt by 

Yt = k<=>bk = argmax6e Bb' Rt+\, (1.100) 

where k = 0 , . . . , K — 1. Now bk £ B is the portfolio vector chosen at time t that 
gave the best return at time t + 1, among all the portfolio vectors in B. 

We have now defined classification data (Xt, Yt), t = 1 , . . . , T — 1, which is 
used at time T to estimate the classification function. The estimated classification 
function g chooses one of the portfolio vectors in B. Thus we define the portfolio 
vector which is chosen at time T by 

bT = g{XT). 

With the classification approach we are not able to introduce a risk aversion 
parameter, as in the case of regression approach, where a utility transformed return 
was predicted. The portfolios obtained by classification correspond to using the risk 
aversion parameter 7 = 1 . 

Andriyashin, Hardle & Timofeev (2008) use a classification based approach to 
portfolio selection. They make for each stock in DAX 30 a decision to either buy, 
sell, or stay neutral, and the final portfolio is an equally weighted portfolio of the 
individual decisions for each stock. 

Mean-Variance Preferences Portfolio choice with mean-variance preferences 
was proposed by Markowitz (1952) and Markowitz (1959). This method provides 
an alternative to the use of the maximization of the expected utility. The optimal 
portfolio vector in the mean-variance sense maximizes the penalized expected return 

E{b'RT+i)- ^ V a r ^ T + i ) , (1.101) 

where 7 > 0 is the coefficient of risk aversion and 

/S?) 

is the vector of the gross returns of the N portfolio components, see (1.91) and (1.92). 
The minimization is done over a space of portfolio vectors B C BN, where BN is 
the sphere in H N , defined in (1.94). We have 

E(b'RT+1) = b'ERT+1, Var (b'RT+I) = b'VzT{RT+I)b, 

where Var(ii/r+i) is the N x N covariance matrix of RT+1. We have to estimate 
the vector of expected returns ERT+1 and the covariance matrix Var(i?T+i). 

We shall consider in Section 3.12.3 an example of portfolio selection with two 
risky assets. Let us derive the optimal portfolio vector for that case. Let us denote the 
portfolio vector b = (bl, b2) = (1 — w, w), where we R . That is, we put proportion 
1 — w to the first asset and the proportion w to the second asset. Now 

b'RT+1 = (1 - w)Rl
T+1 + wR\ 
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Let the expected returns of the stocks be E R ^ + 1 = /ii, ER^+i = [i2 and the 
variances of the returns V a r = , Var(i?§,+1) = <73. Denote the covariance 
of the returns by Cov(i?^+1, Rt+\) — &12- We have 

E(b'RT+i)-7jVar(b'RT+i) 

= ill + - Mi) - ^ [(! ^) 2 c r i + w 2 ( J l + 2(1 -

= Pi - ^ CTi + W [/i2 - Ml - 7(0-12 01 )] + a 2 - ^12)' 

Setting the derivative with respect to w to zero and solving for w gives 

I M2 ~ Mi ~ 7(°i2 ~ o p 
7 of + c>2 - 2(712 

w = - 2 2 — — , (1.102) 

when 7 > 0. For 7 = 0, as much as possible is invested to the asset for which the 
expected return /i; is larger. 

1.5.4 Option Pricing and Hedging 

We consider an European option written at time to (today), whose expiration is at 
a future time T. The option has value HT at the expiration time and this value 
is a function of the stock price ST• For example, in the case of a call option 
HT = max{0, ST — K}, where K is the strike price. We need to determine a fair 
price Hto for the option at the current time to. 

The price can be determined as the initial wealth needed to finance a hedging of 
the option. Hedging is done through a self financing trading using the stock St and 
the bond Bt. We take the interest rate equal to zero so that we can take Bt = 1 for 
all t. We consider the discrete time model, where trading is done at the time points 

+ Let Wt be the wealth at time t used to buy stocks and bonds. 
Let be the number of stocks bought at time t — 1, and kept until time t, where a 
rebalancing is made. Let at be the number of bonds bought at time t — 1 and kept 
until time t. Since the portfolio is self financing, the quantities and at have to 
satisfy 

Wt-1 = at +€tSt-1-

The wealth at time t is then 

which is again distributed among the stock and the bond by choosing at+1 and . 
Thus, 

Wt = at+ZtSt 

= (at + ZtSt-i) + Zt(St ~ St-i) 

= W t - x + Z t i S t - S t - i ) . (1.103) 
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We get inductively10 

T - 1 

t = to 

We can use two slightly different heuristics to define the fair price. 

1. We consider the fair price to be the initial wealth Wto that minimizes the 
minimal difference between the final wealth and the payout of the option. That 
is, we want to minimize 

E(Wt - Ht)
2 

over all initial wealths Wo and over all hedging strategies. 

2. The writer of the option receives the premium Hto at time to, hedges his 
position at time points t = to,..., T — 1 with initial wealth Wto = 0, and pays 
HT at the expiration to the holder of the option. Thus the wealth of the option 
writer at the expiration time T is equal to 

T - 1 

WT = Ht0 + - St) ~ Ht. 
t=to 

We want to find Hto and £ t 0 + i , . . . , £ t so that WT is as close to zero as possible 
and the corresponding value for Hto can be considered as a fair value of the 
option. That is, we want to minimize 

where the mean squared error measures closeness to zero. 

Both heuristics lead to the following definition of the fair price and the optimal 
hedging coefficient. Denote 

Y = HT, {Xi, ..., Xd) — (St0+i — Sto,..., St — ST-i), 

where d = T — to. We define the fair price and the optimal hedging coefficient at 
time to as 

O+I) — B I G R , EP(A-\~BIXI + • • '-\-BDXD Y"), (1.104) — &2,...,OdGK 

where p(t) = t2 or p is some other loss function as in (1.36). We have obtained a 
problem of stochastic control as described in (1.51). 

10When interest rate for one period is r > 0, so that Bt+i = (1 + r)Bt, we get the expression 

/  T - 1 

WT = (1 + rf-t" I WtQ + JZ ^+i(Zt+i - Zt) 
\ t=t0 

where Zt = (1 + r f ^ S t . 
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(a) S&P 500 prices (b) S&P 500 returns 

Figure 1.3 S&P 500 index, (a) The prices of S&P 500. (b) The net returns of S&P 500. 

1.6 DATA EXAMPLES 

We use two data sets as the main examples to illustrate the methods of regression 
and classification. The first data set is a time series of S&P 500 returns, described in 
Section 1.6.1. The second data set is a vector time series of S&P 500 and Nasdaq-100 
returns, described in Section 1.6.2. 

We use also other data sets as examples. In Section 2.1.7 a vector time series of 
DAX 30 and Daimler returns is used to illustrate an application of linear regression to 
the calculation of the beta of an asset. In Section 2.2.2 a time series of a hedge fund 
index returns is used to illustrate an application of varying coefficient regression in 
hedge fund replication. In Section 6.2 density estimation is illustrated with monthly 
S&P 500 data and U.S. Treasury 10-year bond data. In Section 6.3.2 a time series of 
DAX 30 returns is used to illustrate multidimensional scaling. 

1.6.1 Time Series of S&P 500 Returns 

The S&P 500 index data consist of the daily closing prices of the S&P 500 index during 
the period from 1950-01-03 until 2013-04-25, which makes 15 930 observations. The 
data are provided by Yahoo, where the index symbol is "GSPC. 

Figure 1.3 shows the prices and the net returns of the S&P 500 index. The net 
return is defined as 

_ Pt - Pt-1 
yt ~ — p > rt-I 

where Pt is the price of the index at the end of day t. 
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Figure 1.4 S&P 500 and Nasdaq-100 indexes, (a) The normalized values of the S&P 500 
and Nasdaq-100 indexes, (b) The scatter plot of the net returns. 

1.6.2 Vector Time Series of S&P 500 and Nasdaq-100 Returns 

The S&P 500 and Nasdaq-100 index data consist of the daily closing prices of the 
S&P 500 index and the Nasdaq-100 index starting at 1985-10-01 and ending at 2013-
03-19, which makes 6925 days of observations. The data are provided by Yahoo, 
where the index symbols are "GSPC and "NDX. 

Figure 1.4 shows the S&P 500 and Nasdaq-100 indexes over the observation 
period. Panel (a) shows the time series of normalized index values. The index values 
are normalized so that they both have the value one at 1985-10-01. Panel (b) shows 
the scatter plot of the net returns of the indexes. 

1.7 DATA TRANSFORMATIONS 

In regression function estimation it is often useful to transform the variables before 
estimating the regression function. A transformation of the explanatory variables is 
important when the regression function is estimated with a method of local averaging, 
defined in Chapter 3. If the local neighborhood of a local averaging estimator is 
spherically symmetric, as is the case when we use kernel estimation with a spherically 
symmetric kernel function and with a single smoothing parameter for each variable, 
then the scales of the explanatory variables should be compatible. For example, if 
one variable takes values in [0,1] and an other variable takes values in [0,100], then 
the variable with the shorter range would effectively be canceled out when using 
spherically symmetric neighborhoods. 

First, we define data sphering, which is a transformation of the explanatory vari-
ables that makes the variances of the explanatory variables equal and the covariance 
matrix of the explanatory variables diagonal. Second, we define a copula transforma-
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tion that makes the marginal distributions of the explanatory variables approximately 
standard Gaussian, or uniform on [0,1], but keeps the copula of the explanatory 
variables unchanged. Third, we define transformations of the response variable. 

1.7.1 Data Sphering 

We can make the scales of variables compatible by normalizing observations so that 
the sample variances of the variables are equal to one. Let Xi = ( X n , . . . , Xid), 
i — 1 , . . . , n, be the original observations. The transformed observations are 

(Xn Xld\ . 
= , . . . , , i = l , . . . , n , 

V si sd J 

where the sample variances are 

sl = - J 2 ( X l k - X k ) \ k = 
n z—' 

2 = 1 

with the arithmetic mean Xk = n~1 ^7=1 ^ik• We c a n a^ so m a ^ e ^ ranges of 
the variables equal by defining the transformed observations as Zi = ( Z n , . . . , Zid), 
i = 1 , . . . , n, where 

Xik — m i n ^ i n Xik 
Zzk = : = 

maxi=iv . . ) n Xik ~ nnn^=i5...)n A ^ 

Data sphering is a more extensive transformation than just standardizing the sample 
variances equal to one; we make such linear transformation of data that the covariance 
matrix becomes the identity matrix. The sphering is almost the same as the principal 
component transformation. In the principal component transformation the covariance 
matrix is diagonalized but it is not made the identity matrix. 

1. Sphering of a random vector X e R d means that we make a linear transform 
of X so that the new random variable has expectation zero and the identity 
covariance matrix. Let 

E = E [(X - EX)(X - EX)'] 

be the covariance matrix and make the spectral representation of E: 

E = AAA', 

where A is orthogonal and A is diagonal. Then 

z = A~1/2A'(X - EX) 

is the sphered random vector, having the property11 

Cov(Z) = Id . 

11 The orthogonality of A means that A'A = AA' = Id. Thus = A and Cov(Z) = 
A~1/2A,Co\(X)AA~1/2 = A~1/2Af^AA~1/2 - Id. 
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2. Data sphering means that the data are transformed so that the arithmetic mean 
of the observations is zero and the empirical covariance matrix is the unit 
matrix. Let £ n be the empirical covariance matrix, 

zn = - T ( x l - x ) ( x l - x y , 
n ' i=i 

where X = n~l 1 is the d x 1 column vector of arithmetic means. We 
find the spectral representation of £ n , 

—" AnAnAn, 

where An is orthogonal and An is diagonal. Define the transformed observa-
tions 

Zi = A-1'2A'n(Xi-X), i = l , . . . , n . 

The sphered data matrix is the n x d matrix Z n defined by 

Z'n = A-l'2A'n (x; -X„lix„), 
where Xn = ( X i , . . . , Xn)' is the original n x d data matrix, and l i x n is the 
1 x n row vector of ones. 

1.7.2 Copula Transformation 

Copula modeling was explained in Section 1.3.3. Copula modeling leads also to use-
ful data transformations. A copula transformation changes the marginal distributions 
but keeps the copula (the joint distribution) the same. 

1. The copula transformation of random vector X = ( X i , . . . ,Xd), when X 
has a continuous distribution, gives random variable Z = (Z\,..., Zd) whose 
marginals have the uniform distribution on [0,1], or some other suitable distri-
bution. Let Fxk (t) = P(Xk <t),k = 1 , . . . , d, be the distribution functions 
of the components of X. Now 

Z=(FXl(X1),...,FXd(Xd)) 

is a random vector whose marginal distributions are uniform on [0, l].12 The 
distribution function of this random vector is called the copula of the distri-
bution of X = ( X i , . . . Xd). Often the copula with uniform marginals is 
inconvenient due to boundary effects. We may get statistically more tractable 
distribution by defining 

Z = (^-l(Fxl(X
1)),...^-1(FXd(Xd))), 

12Random variable Fxk{Xk) has the uniform distribution on [0,1], because P(Fxk(Xk) < t) = 
P{Xk < F~l

k(t)) = FXk{Fxl(t)) = t. 
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where $ is the distribution function of the standard Gaussian distribution. The 
components of Z have the standard Gaussian distribution.13 

2. The copula transformation of data X\,..., Xn means that the data are trans-
formed so that the marginal distributions are approximately uniform, or have 
approximately some other suitable distribution. Let the rank of observation 
Xik, i = 1, • • •, n, k = 1 , . . . , d, be 

rank(X^) = # {Xjk : Xjk < Xik,j = 1 , . . . ,n}. 

We normalize the ranks to get observations with approximately uniform distri-
bution on [0,1]: 

/ rank(X a) rank(X i d)\ 

n + 1 n + 1 J ' 

for i — 1 , . . . , n. Often the standard Gaussian distribution is more convenient 
and we define 

* = «•»»' 

for i = 1 , . . . , n. 

Figure 1.5 shows scatter plots of S&P 500 and Nasdaq-100 copula transformed 
net returns. The data is described in Section 1.6.2. Panel (a) shows the case where 
the marginals are transformed to be approximately standard Gaussian. Panel (b) 
shows the case where the marginals are transformed to be approximately uniformly 
distributed in [0,1]. We have used in scatter plots histogram smoothing with 702 

bins, as explained in Section 6.1.1. Uniform marginals make the data concentrate on 
the lower left and on the upper right corners, which can make the estimation difficult 
due to the boundary effects. The Gaussian marginals make the distribution of the 
data have tails which decrease smoothly to zero. 

1.7.3 Transformations of the Response Variable 

The transformation of the response variable can be used to obtain a more normal 
distribution or to remove heteroskedasticity by stabilizing variance. See Efron (1982). 

The power transformations are called the Box-Cox transformations and defined 
for A G R by 

Z (A) = { ^ 
\ logF,, A = 0, 

where we assume that Yi > 0. Box-Cox transformations were defined in Box & Cox 
(1962). Tukey (1957) considered the power transformation F-A for A ̂  0. 

l3Random variable l(U), where U has the uniform distribution on [0,1], has the standard Gaussian 
distribution because P^'1^J) < t) = P(U < &(t)) = 
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§ ^ 
0 F 

1 1 1— 
- 2 0 2 

S&P 500 
(a) Gaussian marginals 

Figure 1.5 Copula transform. Scatter plots of S&P 500 and Nasdaq-100 returns are shown, 
(a) Gaussian marginals, (b) Uniform marginals. 

The natural exponential family was defined in (1.68). In the natural exponential 
family 

EV(Y) = p(v) = d'{v), Var V(Y) = V{v) = d"{v). 

A subclass of natural exponential families consists of the families with a quadratic 
variation function. Now we have 

Varv(y) = V(v) = ao + a\p(v) + a2p(v)2, 

where p(v) = d'(v). The examples are normal, gamma, NEF-GHS (the natural 
exponential family generated by the generalized hyperbolic secant distribution), bi-
nomial, negative binomial, and Poisson. Denote Varv(y) = V(p(v)). Define a 
function G : R R to be such that 

G'(/z) = V-l'2{n). 

By the central limit theorem, we obtain 

n1'2 ( Y - M ( V ) ) - ^ N ( 0 , V ( M ( V ) ) ) , 

as n —> oo, where Y = n~l an(^ Yi,... ,Yn are assumed i.i.d. By the delta 
method, we have 

nl'2(G(y)-G(n(v))) -±>N(0,1), 

as n —» oo. Thus we call the transformation G a variance stabilizing transform. 

H 1 1 1 1 T"̂  
0.0 0.2 0.4 0.6 0.8 1.0 

S&P 500 
(a) Uniform marginals 
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1.8 CENTRAL LIMIT THEOREMS 

A central limit theorem is needed to test the difference between two prediction meth-
ods; see Section 1.9.1. A central limit theorem is also needed to derive asymptotic 
distributions for estimators; see Section 2.1.4. 

1.8.1 Independent Observations 

Let Y\, I2, • • • be a sequence of real-valued i.i.d. random variables with Var(l^) = cr2, 
where 0 < a 1 < 00. According to the central limit theorem, we have 

n-W&Yi-E^^NiO,*2), 
2 = 1 

as n —» 00. Let X\, X2,... be an i.i.d. sequence of random vectors with Cov(X^) = 
E, where the diagonal elements of E are finite and positive. According to the central 
limit theorem, we have 

n 

n - 1 / 2 ^ ( X , - EX,) N (0, E), 
2 = 1 

as n —» 00. 

1.8.2 Dependent Observations 

We need a central limit theorem for dependent observations. Let (Yt)tez be a strictly 
stationary time series. We define the weak dependence in terms of a condition on 
the a-mixing coefficients. Let T{ denote the sigma algebra generated by random 
variables Yi,..., Yj. The a-mixing coefficient is defined as 

a n = sup \P(A n f l ) - P{A)P(B)\, 

where n = 1 ,2 , . . . . Now we can state the central limit theorem. Let < 00 

and a )~ 2 ^ 6 < 0 0 f° r s o m e constant S > 2. Then, 

n 

n - ^ ^ Y i - E Y i ) ^ N ( 0 , a 2 ) , (1.106) 
2 = 1 

where 
00 00 

j=- OO j — 1 

7GO — Cov(X£, Xt+j), and we assume that a2 > 0. 
Ibragimov & Linnik (1971, Theorem 18.4.1) gave necessary and sufficient condi-

tions for a central limit theorem under a-mixing conditions A proof for our statement 
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of the central limit theorem in (1.106) can be found in Peligrad (1986); see also Fan 
& Yao (2005, Theorem 2.21) and Billingsley (2005, Theorem 27.4) 

Let us state the central limit theorem for the vector time series (Xt)tez, where 
Xt G Hd. If the time series (a'Xt)tez satisfies the conditions for the univariate 
central limit theorem for all a G then14 

n 

n - 1 / 2 - EXi) - A N{0, E), (1.107) 
2=1 

where 
oo oo 

S= E r(i) = r(0) + E(r(i) + r(i)'), 
j=- OO j=l 

and the autocovariance matrix T(j) was defined in (1.21) as 

r ( j ) = c o v ( x t , x t + i ) . 

Note that we used the property (1.22) T(j) = T(-j)'. 
Let us explain the expression for the asymptotic variance a 2 in the univariate 

central limit theorem (1.106). Let us assume that EYi = 0. The variance of the 
normalized sum is ( n \ n 

2=1 / 2=1 i^ j 

Thus, for an i.i.d. time series we have that 

= Var(Yi) = 7(0). 

For a weakly stationary time series we have 

(n \ n n—1 n 

n~1/2Ey0 = n - 1 ^ V a r ( r j ) + 2 n - 1 E £ C o v ^ - ) 2=1 / 2=1 2=1 j=2+l n-1 

= 7 ( 0 ) + 2n" 1 (n - i ) 7 ( i ) 
2 = 1 

n - 1 

i=-{n-1) 

Thus, in order that Var(n l ! 2 ~~̂  c> f° r a finite positive constant c, we 
need that 7(72) —>• 0 sufficiently fast, as n —>> 00. A sufficient condition is that 

MJOI < 

14Cramer-Wold theorem states that Yn A Y if and only if a'Yn A a'Y for all a £ as n —> 00, 
where and Y are random vectors. 
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1.8.3 Estimation of the Asymptotic Variance 

In the applications we have to estimate the asymptotic variance and the asymptotic 
covariance matrix. For i.i.d. data we can use the sample variance and the sample 
covariance matrix. For dependent data the estimation is more complicated. Let us 
discuss the estimation of the variance a2 in (1.106) using the observations Y\,..., Yn, 
and the estimation of the covariance matrix E in (1.107) using the observations 
Xi,..., Xn. 

Let us start with the estimation of a 2 in (1.106). An application of the sample 
covariances would lead to the estimator 

n - 1 

a 2 = 7 ( 0 ) + 2 ^ 7 0 " ) , 

3 = 1 

where 

i=i 

for j = 0 , . . . , n — 1. Note that for large j only few observations are used in the 
estimator 7 ( j ) . For example, when j = n — 1 the estimator uses only one observation: 
7(n — l) =YiYn/n, which is a very imprecise estimator. We can use weighting to 
remove the imprecise estimators and define 

n - 1 

a 2 = 7 ( 0 ) + 2 ^ ^ j ) 7 ( j ) , (1.108) 
3=1 

where 

where 1 < h < n — l i s a chosen smoothing parameter. We can generalize the 
estimator to other weights and define 

w{j)=K(j/h), (1.109) 

where K : R —> R is a kernel function satisfying K(x) = K(—x), K(0) = 1, 
\K(x)\ < 1 for all x, and K(x) = 0 fo r |x | > 1. 

To estimate E in (1.107) we use 

n - 1 

E = f (0) + w(j) ( t ( j ) + f o r ) , (1.110) 
3 = 1 

where 
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for j = 0 , . . . ,n — 1. We will apply weights in an estimator of an asymptotic 
covariance matrix in (2.44). 

The weighting we have used is related to the smoothing in the estimation of the 
spectral density. The unnormalized spectral density function of a weakly stationary 
time series, having autocorrelation coefficients 7 ( k ) with hU)\ < 0 0 ' l s 

defined by 
j LXJ 

9(u) = YI { 
2tt J = -oo 

where u G [—7r, 7r]; see Brockwell & Davis (1991, Section 4.3). The lag window 
spectral density estimator, based on data Y\,..., Yn, is defined by 

2tt 
\j\<h 

where 7 ( j ) are the sample autocorrelation coefficients, h = 1 ,2 , . . . , n — 1, and K 
is similar as in (1.109); see Brockwell & Davis (1991, Section 10.4). Now we have 

\3\<h 

where a 2 is defined in (1.108) with the weights defined in (1.109). 

1.9 MEASURING THE PERFORMANCE OF ESTIMATORS 

We discuss measuring the performance of regression function estimators, conditional 
variance, covariance, and quantile estimators, estimators of the expected shortfall, 
and classifiers. 

1.9.1 Performance of Regression Function Estimators 

We denote by/ (x) an estimator of the conditional expectation f(x) = E(Y \ X = x). 
We define theoretical performance measures, which are used to compare estimators 
of / under given theoretical assumptions. After that we define empirical performance 
measures, which try to estimate the performance of estimate / using the available 
data. 

Theoretical Performance Measures Theoretical performance measures can 
be divided into global risk functionals, like the mean integrated squared error, and 
into pointwise risk functionals, like the mean squared error. 

Global Error We can use the mean integrated squared error (MISE) or the mean 
averaged squared error to measure the goodness of regression function estimators / 
globally, when we want to recover the complete curve and not its value at a single 
point x G 
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The prediction error of regression function / can be measured by 

E ( f ( X ) - Y ) 2 . 

This measure of prediction is natural since f(x) = E(Y \ X = x) and the conditional 
expectation minimizes the mean squared error, as shown in (1.37). When we have 
an estimator / of / , then we can measure the prediction error of the estimator by 

£ ( / ( x ) - y ) 2 . 

Now the expectation is with respect to the distribution of 

because / is a random function depending on the sample (Xi, Yi), . . 
We have that 

E • • • , (Yn, Xn) ( h x ) - Y ) ' 

= j (/>) - fix))2 f x (X) dx + E ( f ( X ) - Y)2 (1.111) 

where f x is the density function of X . The minimization of expression (1.111) with 
respect to estimator / is equivalent to the minimization of the expression 

j ^ [ f ( x ) - f ( x ) ) 2 f x ( x ) d x . 

This calculation can be used to justify the mean integrated error, defined in (1.112). 

The Mean Integrated Squared Error The mean integrated squared error is defined 
as 

MISE(/, / ) = £ ( / ( X ) - / ( X ) ) 2 

( . f ( X ) - f ( X ) ) : = EE 

= E 

(Y1,X1),...,(Yn,Xn) 

J ( f ( z ) - /(*))2 fx(x)dx, (1.112) 

where X is independent of (V,. V| ) (Yn, Xn) and f x is the density function of 
X . Using the short hand notation we write the mean integrated error as 

MISE ( f , f ) = E f ~ f 2,X 
(1.113) 

where | | / | | | x = fRd f(x)2 dPx{x), and Px is the probability distribution of ran-
dom vector X. We can generalize (1.113) to 

E j {f{x)-f{x))2w{x)dPx{x), 
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where w : Hd —> R is a weight function The weight function could be w = 1, to 
get (1.113). We can choose w(x) = 1 /fx(%), to get the error with respect to 
the Lebesgue measure. The weight function w(x) could also be used to trim away 
boundary effects. 

The Mean Averaged Squared Error The mean averaged squared error is defined as 

MASE ( / , / ) = £ 
2—1 

X\,..., Xn (1.114) 

Using the short hand notation we write the mean averaged squared error as 

2 

2,X(»> ' 

where 
r . . 1 n 

MASE ( f J ) = Ex(r f - f 

0 = / = J n
 i=1 

PX(n) is the empirical probability distribution of the sample (X\,..., Xn)9 and EX(n> 
is the conditional expectation under the condition (Xi,..., Xn). We can generalize 
the mean averaged squared error by defining \\f\\^ x i n ) = n~l Y17=i f(Xi)2w(Xi), 
where w : Hd R is a weight function. 

Pointwise Error Pointwise performance measures quantify how well the value of 
/ is recovered at a single point x e Hd. We can use mean squared error (MSE) either 
unconditionally or conditionally. 

• The unconditional mean squared error at point x G Hd is defined as 

MSE(/(x), f(x)) = E (J{x) - f(x))2, 

where / is the true regression function. 

• The conditional mean squared error at point x e R ' ' is defined as 

MSE (f(x),f(x))= E X\,..., Xn 

where / is the true regression function. 

The Use of Theoretical Performance Measures Theoretical performance mea-
sures can be used to compare estimators in a given model. A model is a collection 
of probability distributions for the distribution of (X, Y) and on the distribution of 
the sample (Xi, Y\),..., (Xn, Yn). We can describe a model also as a collection of 
regression functions T together with the additional assumptions on the distribution 
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of (X, Y) and on the distribution of the sample (X\, Y i ) , . . . , (Xn , Yn). To compare 
estimators, we use the supremum risk 

sup MISE( / , / ) . 
fer 

We use the supremum risk, because it is necessary to require that an estimator 
performs uniformly well over a model, because for a single regression function / it 
is trivial to define the best estimator; this is the regression function / itself: f = f . 

Empirical Performance Measures Empirical performance measures can be 
used to estimate the performance of an estimator and to compare estimators. Em-
pirical performance measures are calculated using the available regression data 
(Xi, Yi ) , . . . , (Xn , Yn). 

Empirical Performance Measures for Cross-Sectional Data The mean inte-
grated squared error 

MISE( / , / ) = £ ( / ( X ) - / ( X ) ) 2 , 

defined in (1.113), cannot be approximated by n~l — This ap-
proximation fails, because we are using the same data to construct the estimator and 
to estimate the prediction error. Using the same learning data and the test data leads to 
overly optimistic evaluation of the performance. However, we can avoid the problem 
using sample splitting or cross-validation. 

1. Sample Splitting Let /* be the regression function estimator constructed 
from the data (Xi, Yi ) , . . . , (Xn*, Yn*), where 1 < n* < n, and typically 
n* = [n/2]. Then we use 

1 n 2 
MISEn(/) = V (f*(Xi) — Yi\ (1.115) 

n — n* V / i=n* +1 

to estimate the mean integrated squared error. 

2. Cross Validation Let /_ i be a regression function estimator constructed from 
the other data points but not (X^, Yi). Then we use 

1 _ n . 2 

MISEn(/) = ( / - i (X i ) - Y2) (1.116) 
i= 1 

to estimate the mean integrated squared error. 

Cross validation is discussed in Section 3.2.7 in the case of kernel estimation. 
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Empirical Performance Measures in the Time Series Setting In the time 
series setting we have observations (Xi, Y\),..., (XT-, YT) that are observed at 
consecutive time instants. We can construct regression function estimator ft using 
data (X\,Y\),..., (XuYt) that is observed until time t, and define the mean of 
squared prediction errors by 

i T _ 1 2 
MSPET(/) - Yzrx E (ft{Xt)-Yt+i) , (1.117) 

t=i 

which is analogous to the estimate of the mean integrated squared defined in (1.116). 
We will use later in Section 3.12.1 the mean of absolute prediction errors 

1 T _ 1 i MAPEr(/) = E \MXt) ~ Yt+1 
t=I 

(1.118) 

Diebold & Mariano (1995) proposed a test for testing the equality of forecast 
accuracy. Let us have two predictors ft(Xt+1) and gt(Xt+1) and the corresponding 
losses 

Ft = ( f t ( x t + l ) - y t + 1 ) , Gt = (gt(xt+i) - Yt+x)2. 

The losses do not have to be squared prediction errors, but we can also use absolute 
prediction errors, for example. We get the time series of loss differentials 

dt = Ft- Gt-

The null hypothesis and the alternative hypothesis are 

H0 : Edt =0, Hx : Edt ^ 0. 

We apply the central limit theorem as stated in (1.106). Under the null hypothesis 
and under the assumptions of the central limit theorem, we have 

(T — to + l ) - 1 / 2 ^^ dt AT(0, cr2), 
t=t0 

as T oo, where 

oo 

^2= 7(fc), -y(k) = Edodk. 

We can use the estimate 

T - 1 

a2 = w(k)j(k), 
k=-(T-1) 



6 6 OVERVIEW OF REGRESSION AND CLASSIFICATION 

where w(k) is defined in (1.109). Let us choose the test statistics 

T 

D = a-1(T-t0 + l)-1/2Ydt-
t = to 

When we observe \D\ = dQbs, then the p-value is calculated by P(\D\ > dQbs) ~ 

2(1 — &(d0bs)), where is the distribution function of the standard normal distribu-
tion. 

1.9.2 Performance of Conditional Variance Estimators 

Theoretical Performance Measures Theoretical performance measures can 
be generalized from the case of regression function estimation to the case of condi-
tional variance estimators. For example, when f(x) = Var(Y | X = x) and f(x) is 
an estimator of f(x), then we can measure the performance of / by 

E f (/(*) - /(*)) 2 w(x) dPx (x), (1.119) 

where w : Hd R is a weight function. 

Empirical Performance Measures We define the empirical performance mea-
sures first for cross-sectional data and then for time series data. 

Cross-Sectional Data Empirical performance measures of conditional variance 
estimators can be found naturally in the case where 

E(Y \X = x) =0, 

so that 
f(x) = Var(Y \X = x) = E(Y2 \X = x). 

For example, we can use sample splitting. Let /* be an estimator of / , constructed 
from the data (X\, Y\),..., (Xn*, Yn*), where 1 < n* < n. Then we can use 

i - £ IfPQ-Y? 
n — n 

i=n*+1 

(1.120) 

to measure the performance of the estimator. 

Time Series Data We use slightly different notation in the case of state space 
smoothing and in the case of time space smoothing. 

State-Space Smoothing When we have identically distributed time series observa-
tions (Xi, Y i ) , . . . , (XT , YT), then we can construct an estimator ft of the condi-
tional variance using data (Xi, Y i ) , . . . , (X*, Yt) and calculate the mean of absolute 
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prediction errors 

T - 1 

MAPEt(/) = - 1 - £ I ft(Xt+1) - Yt
2
+1 

t=t 0 

(1.121) 

where to is the initial estimation period, 1 < to < T — 1. We start to evaluate the 
performance of the estimator after to observations are available, because any estimator 
can behave erratically when only few observations are available. Mean absolute 
prediction error is sometimes called the mean absolute deviation error (MADE). 

Time-Space Smoothing In autoregressive time-space smoothing methods, like in the 
GARCH models studied in Section 3.9.2, the explanatory variables are the previous 
observations, and the estimate of of E(Yf | Ft-i) is calculated using observations 
Y i , . . . , Yt-1. Now we have 

MAPET (a2) = 1 E I*t ~ Y?\- (1.122) 
0 t = to 

Spokoiny (2000) proposes to take the square roots and use the mean square root 
prediction error criterion as the performance measure: 

1 
MSqPET (a 2) = £ \a2 - Y211/2. (1.123) 

1 - + 1 t=t0 

The mean square root prediction error is such that outliers do not have a strong 
influence on the results. Fan & Gu (2003) propose to measure the performance with 
the mean absolute deviation error: 

1 T 

MADEr (a
2) = V 

' T — t 0 + 1 f—f t = t 0 
l*t-\Yt\ (1.124) 

where the factor yf^Jn comes from the fact that for a standard normal random 
variable Z ~ N(0,1), we have E\Z\ = y f l / K . 

We can generalize the performance measures (1.122)-( 1.124) and define a class 
of performance measures by 

MDE (p><?) T = r _ ! + 1 E W W - m 1 ' ^ (1-125) 
0 t = to 

where Z ~ iV(0,1). For p > —1, we have 

W = 2 P / 2 r ( ( r l V 2 ) - ( U 2 6 ) 

The combinations (p = 2, q = 1), (p = 2, q = 2), (p = 1, q = l),and (p = 1, q = 2) 
are of special interest. In Section 3.11.1 we illustrate the differences between the 
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various combinations of p and q\ see Figures 3.22 and 3.23. We use with 
p — 1 and q — 2 in Section 3.11.1 to compare GARCH(1,1) and the exponentially 
weighted moving average. 

Another useful performance measure is the mean of absolute ratio errors 

MARE, (p) '-2 

( ^ - f d r n E 
t — t 0 

Yt]P _ 

E\Z\r&' P (1.127) 

where p > 0 and Z - N(0,1). We use MARE^} with p = 2 in Section 3.11.1 to 
compare GARCH(1,1) and the exponentially weighted moving average. 

Prediction of Realized Volatility Above we have measured the performance of one 
step ahead predictions. We can also measure the performance of h-step ahead 
predictions, for h = 1,2, However, sometimes we are interested in estimating 
the realized volatility. Define the h-step realized volatility by 

Vt,h = Y2
+1 + --- + Yt

2
+h. 

Let f t^h(X t+1) be a prediction of Vt,h- We can use the mean square root prediction 
error as in (1.123). We modify (1.121) to obtain 

1 ^ I - 1/2 
MSqE T f f c(/ , / ) = T _ h _ E | / t , * ( * t + i ) " Vt+h • 

t = to 

We can consider ft^(Xt+1) as an estimate of E 1 + • • • + I Ft). 

1.9.3 Performance of Conditional Covariance Estimators 

Let us discuss measuring the performance of estimators of conditional covariance 
f(x)= Cov(Y, Z | X = x). Empirical performance measures of conditional covari-
ance estimators can be found naturally in the case where 

E(Y \X = x)=0, E(Z \X = x) = 0, 

so that 
f(x) = Co v(y, Z\X = x) = E(Y Z \X = x). 

For example, we can use sample splitting, similarly as in (1.120), where a perfor-
mance measure for the case of measuring the performance of a conditional vari-
ance estimator was given. Let /* be an estimator of / , constructed from the data 
(Xi, Yi, Z i ) , . . . , (Xn*, Yn*, Zn*), where 1 < n* < n. Then we can use 

— I H X i ) - Y i Z i 
n — n* I 

i=n* +1 

to measure the performance of the estimator. 
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In autoregressive time-space smoothing methods, like in the MGARCH models 
and exponential moving average methods studied in Section 3.10.2, the explanatory 
variables are the previous observations, and the estimate of E(YtZt l ^ t - i ) is 
calculated using observations (Yi, Z\),..., (Yt-i, Zt~ 1), and now we define the 
mean deviation error by 

1 T 

MDE*?> (7) = T , _L1 £ l^t " YtZt\
1/q, (1.128) 

1 ~ + 1 t = t o 

where q > 0. 

1.9.4 Performance of Quantile Function Estimators 

Theoretical performance measures for the estimators of the conditional quantile 

f(x) = Qp(Y I X = x) 

can be defined similarly as in the case of conditional variance estimators. For 
example, using (1.119). 

Empirical performance measures can be found in the case of continuous distribu-
tion of Y by using the fact 

P = P(Y <Qp(Y\X = x)\ X = x) 

= E X = x _^(-oo ,Qp(y | x=x)\ 00 

where x G Hd. Let (Xi, Yi ) , . . . , (Xn, Yn) be regression data and let 

Ux)=QP,-i(Y\X = x) 

be a conditional quantile estimate constructed using the other data but not the ith 
observation. Let the cross validation quantity be 

p = -
n 

1 n 

Finally, the performance is measured by the difference 

p-p. 

Let us consider the time series setting, where we have observations Y i , . . . , YT. 
Then we can construct a conditional quantile estimator 

«t = Q p ( y t | K t - i , . . . ) 

using data Y\,...,) ) i. and calculate 

1 T 

P = T — r E h - o o A ] ^ (1-129) 
1 ~ t o t=to + l 
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where 1 < to < T — 1. We start to evaluate the performance of the estimator after to 
observations are available, because any estimator can behave erratically when only a 
couple of observations are available. 

Even when we would know the true quantiles, there is random fluctuation in the 
numbers p. The random variables 

Zt = /(_00?Qp](Ft + l), t = to,-.. ,T - 1, 

are Bernoulli random variables with P(Zt = 1) = p, where qp is the true quantile. If 
random variables Yt are independent, then random variables Zt are independent, and 

T - 1 

t=to 

is a binomial random variable with the distribution Bin(n,p), where n = T — to-
The probability mass function of M is 

p(M = i) = Q/ti-pr, 
for i = 0 , . . . , n. We can now calculate the numbers Co and c\ such that 

P(co < p - P < Ci) > 1 - ce, (1.130) 

where 0 < a < 1 and p = M/n. We have 

co=p- n~1za/2, ci=p- n~1z1_(x/2, (1.131) 

where za/2
 a n d ^i-a/2 a r e s u c h that P{za/2 < M < Zi_a/2) > 1 — a . 

If p > p, this means that the quantile estimates were in average larger than the 
true quantiles. When we are estimating the left tail, so that p is close to zero, then the 
relation p > p means that the true distribution has a heavier left tail than the quantile 
estimates would indicate. When we are estimating the right tail, so that p is close to 
one, then this relation reverses, and the relation p > p means that the true distribution 
has a lighter left tail than the quantile estimates would indicate. 

We will show the performance of quantile estimators by plotting the difference 

R(P ,P) = { P - P > (1.132) 
\ P-P, when p > 0.5. v 

Thus, the difference R{p,p) being negative means that the true distribution has a 
heavier tail than the quantile estimates would indicate. The difference R(p, p) being 
positive means that the true distribution has a lighter tail than the quantile estimates 
would indicate. 

Figure 1.6 illustrates the performance measurement of quantile estimators. We 
estimate the quantiles of the S&P 500 returns Yt using the S&P 500 index data 
described in Section 1.6.1. Let be the empirical quantile, defined in (1.26), 
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Figure 1.6 Quantile estimator performance. Function p R(p,p), defined in (1.132), is 

plotted with the black curves, when the quantile estimator is the empirical quantile. Panel (a) 

shows the range p G [0.001, 0.075], and panel (b) shows the range p G [0.925, 0.999]. The 

green lines show level a = 0.05 fluctuation bands. 

and calculated using the data Y i , . . . , Yt. We plot the function p \R(p,p) in 
black. Panel (a) shows the range p G [0.001,0.075], and panel (b) shows the range 
p G [0.925,0.999]. A green line is drawn at level 0, and it is accompanied by the 
level a — 0.05 fluctuation bands, defined in (1.130)—(1.131). Figure 1.6 indicates 
that the true distribution has heavier tails than the empirical quantile estimates would 
indicate. 

1.9.5 Performance of Estimators of Expected Shortfall 

To derive a performance measure for estimators of expected shortfall, we can use the 
fact that for a continuous distribution of Y, we obtain 

E[(Y - ESp(F)) / ( . oo^ jOO] = 0. 

Indeed, for a continuous distribution of Y, we have 

ESp(Y)=l-E[YI{_00,qp](Y)] 

E[l{^qp](Y)} =p. 

If we are in the time series setting and have identically distributed observations 
(X\, Y\),..., (XT , YT), then we can construct an estimator of the expected shortfall 

ES P:t 
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using data (X\, Y i ) , . . . , (Xt, Yt) and calculate the performance measure 

1 T - i 2 

t — to 

where qt — Qp,t is a quantile estimator and 1 < to < T — 1. 

1.9.6 Performance of Classifiers 

Theoretical Performance Measures Let g : Kd {0 , . . . , K - 1} be a 
classification function. The probability of the classification error is 

R(g) = P(g(X) ± Y), 

and this can be used to measure the goodness of g. The goodness of an empirical 
classification rule g, calculated from data (Xi, Yi ) , . . . , (Xn , Yn), is measured by 

R(g) = P(g(X)^Y), 

where P is the probability measure of (X, Y), (Xi, Yi ) , . . . , (Xn , Yn). We can write 
the probability of the misclassification more transparently. We have that 

K-1 R 

R(g)= £ p ( Y = A;) fx\Y=k, 
k=0 % 

where fx\Y=k —> R is the density function of X \ Y = k, and 

Gk = {x G Rd : g(x) = fe}, fe = 0 , . . . , K - 1, 

is the subset of the sample space, where the classification function g chooses class fe. 
When we analyze the asymptotic performance of the classification functions, we 

should note that R(g) does not converge to zero, but at best we can hope that it 
converges to the minimal classification error R(g*), which is the classification error 
of the Bayes rule g*, defined in (1.75). Thus we should study the rate of convergence 
to zero of R(g) — R(g*). Let us consider the two-class case K = 2 with the equal 
class priors P(Y = 0) = P(Y = 1) = 1/2. Then, 

R(9*) = \ [ mm{fX\Y=o(x)Jx\Y=i(x)}dx z J nd 

and 

R{g) - R(g*) = \ d / x | y = ( ) j x | y = 1 {{x : g{x) = 1}, {x : g*(x) = 1}), 

where 
dgu92{GuG2) = / \gi -921, 

J G1AG2 
with 

G i A G 2 = ( G 5 n G 2 ) U ( G i n G 5 ) 

the symmetric difference of G\ and G2- The rate of convergence has been studied in 
Mammen & Tsybakov (1999). 
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Empirical Performance Measures The frequency of misclassification can be 
used as an empirical performance measure of a classification method. We can use 
sample splitting as in the case of regression function estimation, see (1.115). Let 
us have classification data (Xi, Y i ) , . . . , (Xn , Yn) and let us construct classifier g* 
using the first part (X\, Y i ) , . . . , (Xni, Yni) of data, where 1 < n\ < n, and typically 
m — [n/2]. We can use 

i=n i + l 

as an estimator of P{g(X) ^ Y), where g is constructed from the whole sample. 
We can also use cross validation, as in the case of regression function es-

timation in (1.116). In the time series setting, when we have regression data 
(Xi, Yi ) , . . . , (XT , YT), it is natural to measure the performance of classification 
method by 

1 T _ 1 

1)> d-133) 

where is a classifier constructed using the data (Xi, Yi ) , . . . , (Xt, Yt), and to is 
chosen so large that the first classifier g ô in the sequence is already a reasonable 
classifier. We can divide the classification error into K components 

1 T _ 1 

^ r E ^ f c o H ^ w t ^ i ) ' (1-134) 

where k = 0 , . . . , K - 1, which estimate P(g(X) ^Y\Y = k). 

1.10 CONFIDENCE SETS 

We give first several definitions of a confidence interval for regression function 
estimation. Then we define confidence bands. 

1.10.1 Pointwise Confidence Intervals 

A pointwise confidence interval [L, U] for the estimation of regression function 
/ : H d R at point x G with the confidence level 1 — a, is such that for all 
P G P , for all x in a suitable subset of R d , we have 

P(L<f(x)<U) = l - a , 

where V is a collection of distributions of (X, Y). Typically we can give asymptotic 
confidence intervals of type 

P ( L n < f ( x ) < U n ) ^ l - a , 
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when n oo, where [Ln, Un], is a sequence of intervals. Asymptotic pointwise 
confidence intervals can typically be derived from the asymptotic distribution of the 
estimator. If we have that 

na ( / ( x ) - / ^ ) ) ^ ^ ^ 2 ) , 

where symbol denotes the convergence in distribution, then we can choose 

Ln = f ( x ) - n~a(fi + z1_a/2a) 

and 
Un = f (x) + n~a(/i + z1_a/2a), 

where we denote = <I>_1(a:), and is the distribution function of the standard 
normal distribution. That is, zp is the p-quantile of the iV(0,1) distribution: For 
Z ~ N(0,1), we have P{za/2 < Z < z i _ a / 2 ) = 1 - a . 

More generally, we can use the term "level 1 — a confidence interval" if the 
inequality 

P{L < f{x) <U)> 1-a 

holds for all P G V. We can use the term "asymptotic level 1 — a confidence interval" 
if 

l iminf P (Ln < f ( x ) <Un)> I - a 
n—>oo 

for all P G V. Note that in the asymptotic case is is important to distinguish a 
uniform asymptotic level 1 — a confidence interval, which satisfies 

l i m i n f in f P (Ln < f ( x ) < Un) > I - a. 
n—»oo Pev 

As pointed out by Wasserman (2005, p. 6), it is better to have uniform confidence 
intervals. 

We give an example of a confidence interval in Section 3.2.10, for the case of 
kernel regression. As mentioned in Ruppert et al. (2003, Section 6.2) we can derive 
an approximate confidence interval for linear estimators under some assumptions. 
We noted in (1.2) that many estimators can be written as linear estimators 

n 

f ( x ) = J2h(x)Yl = l(x)' y, 
i=i 

where l(x) = (h(x),... Jn(x))f andy = ( Y i , . . . , Yn)'. Let us assume that f ( x ) ~ 
iV(/(x),Var(/(x))) . If 

Cov(y) = a 2 I n , 

then 

Var ( / (x ) ) = l(x)'Cov(y)l(x) = a2\\l(x)f. 

Estimating a2 with a2 = n~l — f(Xi))2 leads to the confidence interval 

f(x) - <7||Z(z)||2:i_a/2, f ( x ) + , 

where a is the confidence level, 0 < a < 1, and z1_a/2 is the quantile of the standard 
normal distribution. 
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1.10.2 Confidence Bands 

A confidence band {L(x), U(x)), x G A, for the estimation of regression function 
/ : K d R, for the set A C R d , with the confidence level 1 — a, is such that 

P (L(x) < f(x) < U(x), for all x G A) = 1 - a . (1.135) 

Confidence bands are called also simultaneous confidence bands, confidence en-
velopes, or variability bands. The confidence statement of the type 

p f s u p | / ( x ) - / ( x ) | <cn) = l - a 
\xeA J 

is equivalent to (1.135) if 

L(x) = f(x) - cn, U(x) = f(x) + cn. 

We can replace the supremum norm with some other function space norm to obtain 
confidence balls. For example, the confidence ball with the confidence level 1 — a 
satisfies 

P(\\f(x)-f(x)\\2<cn)=l-a. 

A confidence band in the linear model is mentioned in Section 2.1.5. 

1.11 TESTING 

In the linear regression model 

Y = a + A X i + • • • + pdXd + e 

the typical tests are the tests of restrictions 

H 0 : P k = 0 , (1.136) 

for A' = 1 d, and 
= • = & = (). (1.137) 

Testing of these hypothesis is considered in Section 2.1.5. There are several ways to 
generalize these tests to a nonparametric setting, where 

Y - f ( X ) + e. 

The hypothesis in (1.137) can be generalized to the hypothesis 

Ho : f{x) = 0, 

when we assume that EY = 0. We can use a test statistics T = | | / | | , where / 
is a nonparametric estimate of / . The norm || • || can be the L2 norm, a weighted 
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L2 norm, or some other function space norm. Large values of the test statistics 
T lead to the rejection of the null hypothesis. For the linear regression function 
f(x) = a + PiX\ + • • • + PdXd, it holds that 

i k , { x ) ' h -

Thus we can generalize the parameter restriction hypothesis (1.136) to the nonlinear 
case by 

o 
H o : — f ( x ) = 01 (1.138) 

oxk 

for k — 1 , . . . , d. We can generalize the parameter restriction hypothesis (1.137) to 
the nonlinear case by 

We can test the null hypothesis (1.138) with the test statistics 

T = 
dxk 

where / is a nonparametric estimator of / and || • || is a function space norm. 
The distribution of the test statistics can be approximated by bootstrap. Generate 

first B bootstrap samples from the original sample (Xi, Y i ) , . . . , (X n , Yn). Based 
on a bootstrap sample (X{, Yi*),. . . , (X*, Y*), the test statistics T* is calculated. 
We obtain a sequence T * , . . . , Tg of values of the test statistics. Let q i - a be the 
empirical quantile of the sequence of the values of the test statistics. Then we reject 
the null hypothesis at level 0 < a < 1, if the observed value t of the test statistics 
satisfies t > qi-a. 

Hardle & Mammen (1993) have proposed the wild bootstrap. First the regression 
function / is estimated with / (under the null hypothesis). Then the residuals 
ii = Yi~ f(Xi) are calculated. Finally, the bootstrap residual e* is generated from a 
distribution which satisfies Ee* = 0, £(e*)2 = e?, and £(e*)3 = ef. The bootstrap 
sample is (Xx, Yx*),. . . , (X n , Yn*), where Y/ = / ( X , ) + e*. 



CHAPTER 2 

LINEAR METHODS AND EXTENSIONS 

In linear regression the conditional expectation is approximated by a linear function: 

E(Y | X = x) « a + + • • • + Pdxd, (2.1) 

where x = {x\,..., xd). Section 2.1 covers several methods to find the regression 
coefficients of the linear regression function: the least squares method, the generalized 
method of moments with instrumental variables, and the ridge regression which uses a 
penalized least squares criterion. We consider various extensions of linear regression. 
Section 2.2 discusses varying coefficient linear regression. In the varying coefficient 
linear regression model 

E(Y | X = x) « a{z) + ft (z) X l + • • • + Pd(z) xd, 

where each coefficient is a function of variable Z = z, which could be taken to be 
equal to the explanatory variable: Z = X. Section 2.3 covers generalized linear 
models, where nonlinearity is introduced with the help of a link function: 

E(Y\X = x) « G{a + plXl + • • • + Pdxd), 

where G : R —» R. We get a generalization of the linear model if we approximate 
the conditional expectation with a linear function of transformations of the original 

Multivariate Nonparametric Regression and Visualization. By Jussi Klemela 
Copyright © 2014 John Wiley & Sons, Inc. 
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variables. For example, we may approximate 

E(Y | X = x) « A + 0 Ix \ + • • • + pdx
2
d. 

This is a special case of the approximation with the help of a series estimator using 
basis functions. Section 2.4 covers the series estimators, where 

E(Y | X = x) « a + Pigi(x) + • • • + PM9M{X), 

where gk : R d —> R. Section 2.5 covers conditional variance estimation with time 
series observations and, in particular, ARCH models are covered. In the case of the 
conditional variance estimation, it is a natural idea to use a linear function on the 
squares of lagged observations: 

Var (Yt | Yt-1 = yt-1, • •., Yt-d = Vt-d) ~ a + 0i^2_i + • • • + /W-d-

Section 2.1 is about linear regression. Besides linear regression, we discuss the 
generalized method of moments estimator and the ridge regression. Asymptotic 
distributions, tests, and confidence intervals are given for the linear regression, and 
variable selection is considered. As applications of linear regression we mention (a) 
the measurement of the beta of an asset and of a portfolio and (b) the measurement 
of the alpha of a portfolio and of a hedge fund. 

Section 2.2 defines a varying coefficient regression estimator. An application to 
hedge fund index replication is given. Section 2.3 covers generalized linear models 
and binary response models. Section 2.4 considers series estimators. Section 2.5 
considers linear estimators for the conditional variance and defines the ARCH model. 

Section 2.6 contains applications of linear methods to volatility and quantile 
estimators with the S&P 500 return data. First we set some benchmarks for quantile 
estimation using sequential estimators. Then the conditional volatility and quantiles 
are estimated with least squares regression and the ARCH model, and conditional 
volatility is estimated with ridge regression. 

Section 2.7 defines linear regression-based classifiers, density-based classifiers, 
and empirical risk minimization-based classifiers. 

2.1 LINEAR REGRESSION 

In linear regression the conditional expectation f(x) = E(Y | X = x) is approxi-
mated with a linear function: 

f(x) « a + 0 ' x , x G R d , 

where a G R and 0 G Hd. The regression function is estimated with 

f(x) = a + 07X, X G R d , (2.2) 

w h e r e t he p a r a m e t e r e s t i m a t e s q g R a n d 0 G H d a r e c a l c u l a t e d u s i n g t h e r e g r e s s i o n 

data ( X i , Y i ) , . . . , ( X n , F n ) . 
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2.1.1 Least Squares Estimator 

The least squares estimator / for the conditional expectation is defined by (2.2), 
where a G R and /? G R d are defined as the minimizers of the least squares criterion 

^ ( y . - a - / ? ' ^ ) 2 . 

The solution can be written as 

a = Y - 0'X, 

(2.3) 

(2.4) 

and 

where 

(3 = Y l i x i - x x x i - x y 
2=1 

J2(Xi - X)(Yi - Y)\ (2.5) 
1=1 

1 

n i=i 

In the case d = 1 we have 

Y 
1 n 

n —' 

a = Y-l3X, (3 = 
TZ=i(Xi-X)(Yj-Y) 

(2.6) 

It is often convenient to use notation where the intercept is included in the vector 
f3. This can be done by choosing the first component of the explanatory variables as 
the constant one. Thus we observe 

( X i , Y i ) , Yi G R , (2 .7 ) 

where i = 1 , . . . , n. The estimator is now 

f ( x ) = 0'x = ft + ftx2 + . • . + ft+1^+1, (2 .8 ) 

where x = (1, x 2 , . . . , Xd+i). We use below the notation 

K = d+ 1. (2.9) 

With this notation the least squares estimator of parameter (3 can be written as 

(3 = ( X ' X ^ X ' y , (2.10) 

where X = (X\,... ,X n ) / is the n x K matrix whose rows are X-, and y = 
(Yi , . . . , Yn)

f is the n x 1 vector. The solution (2.10) can be found by writing the 
least squares criterion (2.3) with the matrix notation as 

( y - X / 3 ) ' ( y - X(3) = y ' y - 2 / 3 ' X ' y + / 3 ' X ' X / 3 . 
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Figure 2.1 Weights in linear regression, (a) The function (x, Xi) U(x). (b) The eleven 

slices x i-> U(x) for the choices Xi = —1, — 0 . 5 , . . . , 1. 

Derivating this with respect to and setting the gradient to zero, we get the equations 

x ' x / ? = x v , 

which leads to the solution (2.10). 
We can write the least squares estimator as 

n 

f ( x ) = Y , l i ( x ) Y i , (2 .11) 

i= 1 

where 
k(x) = X^(X /X)"1a;. (2.12) 

Note that f(x) = l(x)'y, where l(x) = (h(x),..., ln(x))' is the n x 1 vector of 
weights, defined by 

l(x) = X ( X / X ) - 1 x . (2.13) 

A large class of regression function estimators can be written as a linear function of 
Y i , . . . , Yn similarly to (2.11), as was noted in (1.2). For example, local averaging 
can be written as a linear function of Y i , . . . , Yn, see (3.1). 

Figure 2.1 illustrates the vector l(x) of weights in the case of one-dimensional 
explanatory variable. Panel (a) shows a perspective plot of the function (x, Xi) i— 
li(x), where X\,..., Xn is a simulated sample of size n = 200 from the uniform 
distribution on [—1,1]. Panel (b) shows the six functions x i—>> h(x) for the choices 
Xi = — 1, — 0 .5 , . . . , 1 . That is, panel (b) shows six slices of the function in panel (a). 
Panel (b) shows that the functions x U(x) are linear, and U(x) can take negative 
values. 
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2.1.2 Generalized Method of Moments Estimator 

We define the generalized method of moments (GMM) estimator in the linear regres-
sion model 

Y = /?'X + e, (2.14) 

where f3 e X = (X i , . . . , X K ) ' , Y e R, and e e R. Note that we now 
use notation (2.7)-(2.9), where the intercept is included in the model by choosing 
X\ = 1. The generalized method of moments estimator was analyzed in Hansen 
(1982) and White (1982). 

Method Of Moments Multiplying (2.14) with vector X, we get 

X Y = X X ' 0 + Xe. 

If E(Xe) = 0, then 
E(XY) = E{XX')/3. (2.15) 

If E(XX') is invertible, then 

0 = [E{XX')]-lE(XY). (2.16) 

We see that the replacing the expectations with the sample means leads to the 
least squares estimator. Indeed, let us have identically distributed observations 
(Xi, Yi ) , . . . , (Xn , Yn) which have the same distribution as (X, Y). When we 
replace the expectations in (2.16) with the sample means, we get the estimator 

- l 

\ 2 = 1 / 2 = 1 

(2.17) 

This estimator is the same as the least squares estimator in (2.10), as can be seen by 
noting that 

n n 

x ' x = Y , X i K X V = Y I 
2 = 1 2 = 1 

Generalized Method of Moments The deduction leading to the estimator (2.17) 
can be seen as a special case of the generalized method of moments. The matrix 
equation (2.15) contains K linear equations. Let us write (2.15) with the general 
notation 

Eg(X,Y,0)= 0, (2.18) 

where 
g(X, Y, P) = X Y — XX'p. (2.19) 

Let us denote g(X, Y, /?) = (#i(X, Y, 0 ) , . . . , gx(X, Y, 0 ) / , where gk are real-
valued functions. Now we replace the expectation in (2.18) with the sample mean to 
get the equation 

n 

= (2.20) 
8 = 1 
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The solution of (2.20) is P, given in (2.17). The same solution can be obtained as 

p = argmin^R* P^J W ( j ^ g i X ^ p)^, (2.21) 

where W is a positive definite symmetric K x K matrix of weights. This does not 
lead to a new estimator with the choice (2.19), but we consider next the instrumental 
variables estimator, where the generalized method of moments is useful. 

Instrumental Variables Estimator Let us remove the assumption that E(Xe) = 
0, but assume that there are L = K instrumental variables Z = ( Z i , . . . , ZL)' for 
which E(Ze) = 0. Multiplying the linear model equation (2.14) with the vector Z 
we get the L linear equations 

Z Y = ZX'p + Z e , 

and taking the expectation gives 

E(ZY) = E(ZX')p. (2.22) 

Equation (2.22) contains L linear equations and there are K parameters, but we have 
assumed L — K. If E(ZX') is invertible, we get 

P = [.E(ZX')]-lE(ZY). (2.23) 

Let us have the identically distributed observations ( X i , Yi , Z i ) , . . . , ( X n , Y n , Z n ) , 

which have the same distribution as (X, Y, Z). When we replace the expectations in 
(2.23) with the sample means, we get the estimator 

- l 

= ( z E W i ) t; E = ( x ' z ) " l z ' y , 

where 

n *—' / n 1=1 / 2 = 1 

(2.24) 

x ' z = Z ,y = J^ZlYu 

i=i t=i 

when X = ( X i , . . . , Xn)' is the n x K matrix whose rows are X -, Z = (Zi,..., Zn)' 
is the n x L matrix whose rows are Z[, and y = (Y\,..., Yn)' is the n x 1 vector. 

Instrumental Variables Estimator with GMM Now we assume that there are 
more instruments than parameters: L > K. In this case, the generalized method 
of moments can be used to define an instrumental variable estimator. We do not 
assume that E(Xe) = 0, but assume that there are L > K instrumental variables 
Z = ( Z l , . . . , ZLy for which E(Ze) = 0. We will need that the rank of E(XZ') 
is K. Now equation (2.22) cannot be solved, because there are K parameters and 
L > K equations. Let us use the GMM estimator and apply formula (2.21). We 
denote 

< 7 ( X , Y , Z , 0 ) = Z Y - Z X ' / 3 , 
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and define the estimator by 

ft gmm = afg HI i n j ̂  ̂  K Qn (/3 )'Wgn((3), (2.25) 

where 
n 

gn(0) = Yig(Xi,Yi,Zi,l3), 
2 = 1 

and W is a symmetric positive definite L x L matrix. The solution j3grnrn of (2.25) 
can be written in the matrix notation as 

Pgmm = (X!ZWZ'X)-1X'ZWZ'y. (2.26) 

2SLS Estimator If we choose the weighting matrix as 

W" = (n Z'Z) = (n S
 Z'Z'J 

then we get the estimator 

fosis = ( X / Z ( Z , Z ) - 1 Z , X ) " 1 X , Z(Z / Z)- 1 Z / y . (2.27) 

The estimator is called the two-step least squares estimator, because we can construct 
it in two steps: First the X variables are explained with the Z variables, and the 
projection X is obtained; then the variable Y is explained with the projection X. The 
first step gives the fitted values 

X = Z7 = Z(Z /Z)~ 1Z /X, 

where 7 = (Z / Z) _ 1 Z / X. The second step gives 

fosls = ( X ' X ) - 1 ^ , 

which is equal to (2.27). 

The Optimal Weighting Matrix It can be shown that the optimal weighting matrix 
is 

W = A ~ \ A = E(e2 ZZ'). 

The estimator of A - 1 can be taken as A - 1 , where 

A = E - P'preXi)2ZiZ'i, 
2 = 1 

where (3pre is a preliminary consistent estimator of (3. We can take the preliminary 
estimator to be the two-step least squares estimator: f3pre = $2sis- The optimality 
means the optimality of the covariance matrix Vw in the limit distribution 
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as n oo, where Vw is a K x K covariance matrix depending on the weight matrix 
W. We want to find the weight matrix W so that Vw < Vw0 for all weight matrices 
Wo, where the inequality Vw < VwQ means that Vw() — Vw is a positive semidefinite 
matrix. For the statement of the convergence result, see (2.46), where the formula 
for Vw is given. For a proof of the optimality of W = A - 1 , see Wooldridge (2005, 
Section 8.3.3). 

Population Formulas The population formulas given in (2.16) are more instruc-
tive if we write the linear model as 

Y = a + fiX + 6, 

where a G R, G R d , X = (X\,..., Xx)', Y G R, and e G R. If EXe = 0, then 

a = EY — fi EX (2.28) 

and 
P = Cov(X)-1 E[(X - EX)(Y - EY)], (2.29) 

where 
Cov(X) = E[(X - EX)(X - EX)'}. 

and we assume additionally that Cov(X) is invertible.15 

In the one-dimensional case d = 1 we have 

a = EY-?EX, (2.30) 

In the two-dimensional case d = 2 we have a = EY — fixEX\ — P2EX2, 

Pi = 2 2 2 (a2 Cov(Xi, Y) — (712 Cov(X2, y)), 
G1G2 °12 

and 

P2 = 2 2~—r K c o v ( x 2 , r ) - a 1 2 C o v ( x 1 , y ) ) , 
a12 

where af = Var(Xx), a\ = Var(X2), and cri2 = Cov(Xi, X2). 

2.1.3 Ridge Regression 

Let us consider the linear regression model 

Y = fiX + e, 

l5We get the same solution by minimizing E(a + (3'X — Y)2. Derivating with respect to a and setting 
the derivative equal to zero we get a = EY — (3'EX. Then we find by minimizing E(/3'(X — EX) — 
{Y — EY))2. Derivating with respect to elements of and setting these derivatives to zero, we get 
E(X - EX)(X - EX)'(3 = E(X - EX)(Y - EY), which leads to (2.29). 
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where /3 E R d , X = ..., Xd)\ Y E R , and 6 E R . We assume that EY = 0, 
EX = 0, and Var(X/c) = 1, for k = 1 , . . . , d. If this does not hold, we normalize 
the observations (X\, Y i ) , . . . , (Xn, Yn). The intercept is not included in the model 
and that is why we denote in this section by d the number of variables, instead of 
using the notation K . 

In the ridge regression the least squares criterion is replaced by a penalized least 
squares criterion. The ridge estimator p r i d 9 e is defined as the minimizer of 

n d 
Y ^ { Y i - X [ p f + A X X (2 .31) 

i=1 k=1 

over (3 E R d , where A > 0 is the penalization parameter. An related way to define 
a ridge estimator is to define prid9e as a solution to a constrained minimization 
problem: Define pridge as the minimizer of ^ = 1 (Yi ~ P x i f o v e r P G ^r(O), 
where Br{0) = {0 E Kd : ^ L i Pi < r2}-

Parameter Estimator The parameter estimator f3rid9e minimizing (2.31) is 

pridge = + x i ^ X ' y , (2.32) 

where X = (X\,..., Xn)' is the n x d-matrix, y = (Y i , . . . , Yn)
f is the n x 1 

vector, and I is the d x d identity matrix. The solution (2.32) is found similarly as the 
ordinary least squares regression estimator (2.10). Indeed, we write the least squares 
criterion (2.31) with the matrix notation as 

(y - X/3)'(y - XP) + AP'p = y ' y - 2/3 ,X ,y + P'X'XP + Ap 'p . 

Derivating this with respect to /?, and setting the gradient to zero, we get the equations 

( X ' X + A/)/3 = X ' y , 

which leads to the solution (2.32). In the case d— 1 we get 

En XY j=i 1 1 

p ~A+EiLi*r 
We can write the ridge regression estimator as 

n 
f{x) = YJh{x)Yl, 

2 = 1 

where 
li(x) = Xl(XfX + XI)~1x. 

We can write also that f ( x ) = l(x)fy, where l(x) = (h(x),..., ln{x))' is the n x 1 
vector of weights, defined by l(x) = X ( X ' X + A I ) ~ l x . 
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The least squares estimator [3lse is not defined if X ' X is not an invertible matrix. 
However, X ' X + AI is invertible and the ridge regression estimator can be used. 
This was the motivation to define the ridge regression estimator in Hoerl & Kennard 
(1970), who invented the name "ridge regression." 

It is possible to choose the parameter A using cross validation, as defined in 
(1.116). In the cross validation we minimize 

MISE(A ) = ^ { f r J f g e ( X i ) - Y ^ \ 

over A > 0, where fr_\dge (x) = xfpr_!f9e, and pr_!?9e is the ridge estimator calculated 
with the other observations but the zth observation. 

Shrinkage Estimators Let us consider fixed design regression with X ' X = nl 
and Ee = 0. It can be shown that for the least squares estimator 

/3 = ( X ' X ^ X ' y 

we have 
E(3lse = /?, Var(/3Zse) = a 2 (XX)" 1 , 

where a 2 — Var(e). Then, 

E ^se _ p 
= 5 > a r 0 1 ' * ) = 

da2 

k=1 
(2.33) 

where we denote ||/?||! = J2k=l Pk-
A ridge regression estimator can have a smaller mean squared error than the 

ordinary least squared estimator. Since X ' X = n / , then 

& ridge 
n + A P 

Ise (2.34) 

We use (2.33) and (2.34) to show that the mean squared error of the ridge regression 
estimator is 

E fridge _ p 
2 =

 d °
 + 

A 
11011 ,n

 + A . 

The minimum of the above expression with respect to A is achieved by 

, da2 

A 
M\? 

which depends on the unknown (5. With this A, 

da2 
bridge (i ^ A blse 

P V1 n\m\2+da2)P 
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and 

E fridge _ p da2 

2 n + da2/\\/3\\2' 

We can compare the obtained shrinkage factor to the shrinkage factor of James & 
Stein (1961), who chose 

j3js = 1 -
(d - 2) a2 

n\\M\l 
P 

Ise 

where fi^e is the least squares estimator. We have that 

E fis - 0 
2 a 2 

n 

see Wasserman (2005). The mean squared error of the least squares estimator is 
larger than the mean squared error of the James-Stein estimator for d > 3. 

LASSO Least absolute shrinkage and selection operator (LASSO) defines the 
parameter estimator fiasso as the minimizer of 

n d 

^(Xi-x'^ + x^m, 
i=l k=1 

where A > 0. The estimator was defined in Tibshirani (1996). The motivation for the 
definition comes from the fact that with an l\ -penalty we obtain variable selection, 
in addition to shrinkage: in many cases the most of the coefficients will be set equal 
to zero. Indeed, if X ' X = n / , then 

= sign(/3[se) ( |/?M - 7 ) + , 

for some 7 > 0 and k = 1 , . . . , d, where ( x ) + = m a x j x , 0}; see Wasserman (2005, 
Theorem 7.42). 

2.1.4 Asymptotic Distributions for Linear Regression 

Let us study the regression model 

Y = fiX + c, (2.35) 

where fi X G KK and Y,e G R. We use the notation (2.7)—(2.9), so that the 
intercept is included in the model by choosing X\ = 1. The linear regression model 
is typically called a parametric model, but strictly speaking it is a semiparametric 
model, if we do not make a parametric assumption about the distribution of the 
error term e and about the distribution of the explanatory variables X. We can 
derive asymptotic distribution theory for the parameter fi without making parametric 
assumptions about the distribution of e or of X. 
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When we have identically distributed observations (XL, YI), . . . , (Xn , Yn) from 
the linear regression model (2.35), then the least squares estimator is 

P = (X / X) _ 1 X / y ? (2.36) 

where X = (Xi,..., Xny is the n x K-matrix, and y = ( Y \ , . . . , Yn)' is the n x 1 
vector. 

Homoskedasticity and Independence If (Xi, Y i ) , . . . , (Xn. Yn) are i.i.d. ob-
servations from the model (2.35), E(Xe) = 0, E(XX') is invertible, and 

E{e2XX') = cr 2E(XX'), (2.37) 

where Ee2 = cr2, then it can be shown that 

V^ ( p ~ p ) ^ N ^ c j ^ E i X X ' ) ] - 1 ) , (2.38) 

as n —>• oo. Assumption (2.37) is called a homoskedasticity assumption. The 
asymptotic distribution follows from 

(-j n \ — 1 n 

2=1 / 2=1 

By the law of large numbers we have n~l Y17=I ^(ATX'), and by the 

central limit theorem we obtain n - 1 / 2 X^ILi ^ ( e 2 ^ ' ) ) ' as n oo. 
For more details, see Wooldridge (2005, p. 54). 

We have to estimate cr2 and [E{X'X)\ ~1 in order to be able to apply the asymptotic 
distribution in (2.38). We can use the variance estimate 

1 71 

t ^ - T f r - P ' X , ) 2 . (2.40) 
n z—' 

2 = 1 

The matrix A'1 = [E{X'X)}~1 can be estimated by Awhere 

1 1 n 

A = - X ' X = - V XtX'. (2.41) 
n n 

2 = 1 

The asymptotic distribution of the least squares estimator given in (2.38) can be 
used to derive asymptotic confidence intervals and asymptotic distributions of test 
statistics. We apply the asymptotic distribution in Section 2.1.5. 

Heteroskedasticity Let us continue the study of the asymptotic distribution of 
the least squares estimator (2.36) in the linear regression model (2.35). 

Assumption (2.37) is interpreted as a homoskedasticity assumption, and we re-
move this assumption. If (Xi, Y i ) , . . . , (Xn , Yn) are i.i.d. observations from the 
model (2.35), E(Xe) = 0, and E(XX') is invertible, then 

v ^ (P-P) ^ N (0,A-lBA~l), (2.42) 
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as n oo, where A — E(XX'), and B = E(e2XXf). The asymptotic normality 
in (2.42) follows in the same way as (2.38), but now we do not use the simplifica-
tion obtained from the homoskedasticity assumption (2.37). The homoskedasticity 
assumption (2.37) implies that A~lB = cr2, so under this assumption we get the 
simplified asymptotic distribution N (0, cr2A_ 1). 

The matrix B is estimated by 

B=-f2(Yl-p'Xi)
2XiX'l. n ^ 

The matrix A is estimated similarly as in (2.41). The estimator A~lBA~l was 
suggested in White (1980). For more details, see Wooldridge (2005, p. 55). 

Heteroskedasticity and Autocorrelation We study the asymptotic distribu-
tion of the least squares estimator (2.36) in the linear regression model (2.35), but now 
we remove the assumption of independence and allow weak dependence between the 
consecutive observations. 

If (Xi, Y i ) , . . . , (Xn, Yn) are identically distributed observations from the model 
(2.35), E(Xe) = 0, E{XX') is invertible, and the conditions of the central limit 
theorem in (1.107) hold for the vector time series eiX^ then it can be shown that 

N (0,A-lCA~l), (2.43) 

as n -» oo, where A = E(XX'), and 

oo 

c = E {tttt+jXtX't+j). 
j = - oo 

The asymptotic distribution follows from (2.39) when we note that by the central 
limit theorem in (1.107), we have 

n 

2 = 1 

when 7i —y oo. Matrix C can be estimated using the method discussed in Sec-
tion 1.8.3. We apply the estimator (1.110), which gives 

n - 1 

Chac = f (0) + ^ w(j) (f ( j ) + for) > (2.44) 
3 =  1 

where 

n-j 

t=l for j = 1 , . . . , n — 1, with 
€i = Yi- fiX,. (2.45) 
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The weights are defined by w(j) = K(j/h), where K : R —» R is a kernel function 
satisfying K(x) = K{-x), K{0) = 1, \K(x)\ < 1 for all x, and K(x) = 0 
for \x\ > 1. The estimator Chac is heteroskedasticity and autocorrelation robust 
estimator of the asymptotic covariance matrix (HAC estimator), and it was proposed 
in Newey & West (1987). 

The estimator Chac in (2.44) is robust both to heteroskedasticity and to autocor-
relation. We can easily make more restrictive estimators. For example, if we assume 
homoskedasticity and zero autocorrelation for the time series of errors a , but want to 
be robust against autocorrelation in the time series of the explanatory variables Xi, 
then we can define 

n - 1 

Cac = Y I 

j = - ( n - l ) 

where a2 — n~l Y17=I ^ residuals h as in (2.45), and 

^ n-j 

2 = 1 

for j = 0 , . . . , n — 1. 

Asymptotic Distribution of the GMM Estimator Let us consider the GMM 
estimator defined in (2.26) as 

P g m m = ( X ' Z W Z ' X J ^ X ' Z W Z ' y , 

where X = (X\,..., Xn)' is the n x K matrix, Z = {Z\,..., Zn)' is the n x L 
matrix, W is a L x L matrix of weights, and y = (Yi , . . . , Yn)

f is the n x 1 vector. 
If (XL, YI, Z\),..., (XN, Yn,Zn) are i.i.d. observations, E(Ze) = 0, and the 

rank of E(ZX') is K, then it can be shown that 

V^ (Pgmm ~ fi) N (0, VW), (2.46) 

as n oo, where 

Vw = {C'WC^C'WXWCiC'WC)-1, 

C = E(ZX'), and A = E(e2ZZ')\see Wooldridge (2005, p. 191). 

2.1.5 Tests and Confidence Intervals for Linear Regression 

We apply the asymptotic distribution in (2.38) to derive tests and confidence intervals. 

Hypothesis Testing Let us consider testing the hypotheses 

H 0 : P k = 0, H u P k l ^ 0, 
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for some k = 1 , . . . , K. We can test this null hypothesis with the test statistics 

^ _ Pk Pk 

sd(pk) ' 

where 
~ „ / . \ 1/2 

sd(pk) = a ([A'^kkj . 

Furthermore, <7 is defined by (2.40) and [A~l]kk is the element in the kth row and 
in the kth column of the matrix A~ l , where A is defined in (2.41). Under the 
assumptions for (2.38), we have 

Tk-^N(0,1), (2.47) 

as n oo. For the observed value \Tk\ = t0bs, we calculate the p-value P(\Tk\ > 
tobs) ~ 2(1 — &(t0bs)), where $ is the distribution function of the standard normal 
distribution. 

Let us consider testing a more general parameter restrictions. Let Rbe a J x K 
matrix of rank J, where 1 < J < K and let q be a J x 1 vector. We want to test the 
hypothesis 

Ho : Rp = q, Hx : Rp + q. 

Let us define the test statistics 

F = (RP - q)f [a2R(X,X)~1 Rf]~X (RP - q). 

Now it holds that under the assumptions for (2.38), 

F ^ X H J ) , 

as n —> oo, where x2(J) is X-distribution with degrees of freedom J. For the 
observed value F = fobs, we calculate the p-value P(F > /0bs) ~ (1 — F(f0iJS)), 
where F is the distribution function of the x2(J) distribution. 

For example, we obtain the F-test of the null hypothesis 

: P2 = • • • = PK = 0 

when we choose R = [0^ IK-I] and q = where 0 / r - i is the (K — 1) x 1 
vector of zeros and Ik- I is the (K — 1) x (K — 1) identity matrix. 

Confidence Interval Using the asymptotic distribution in (2.47) we can derive 
an asymptotic confidence interval for Pk, for some k = 1 , . . . We have for 
0 < a < 1 that 

P ( p k - sd (P k ) Z i_ a / 2 < Pk < Pk + sd(Pk) ^ i - a / 2 ) —^ 1 - a , 

as n —> oo, under the assumptions for (2.38), where we use the notation zp = <I>-1 (p) 
for the p-quantile of the standard normal distribution. 
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Confidence Bands Scheffe's confidence band is derived under the assumption 

Yi = fi'Xi + €i, i = 1,... ,n, 

where E* ~ iV(0, cr2), and COV(Q, €j) — 0, when i / j. Let us denote 

f(x) = fix, f(x) = fix, 

where f3 is the least squares estimator. It holds for 0 < a < 1 that 

P(L(x) < f(x) < U{x) for all x) > 1 -a, 

where 

L(x) = f(x) - cay/x'iX'X)-^, U(x) = f(x) + cay/x'(X'X)-1 x, 

with c = yJdFK,n-K( 1 — a)> — a) is the 1 — a-quantile of the F-
distribution with K and n — K degrees of freedom,16 

n 

n-K 
2 = 1 

This confidence band can be found in Scheffe (1959) and Seber (1977, pp. 128-130). 
As noted by Wasserman (2005), we have 

n 

\ \ l (x ) \ \ 2 = $ > ( x ) 2 = ^ ( X ' X ) " 1 * 
2 = 1 

and 

V a r ( / » ) = a 2 | K ( x ) | | 2 , 

where U(x) was defined in (2.12), which motivates the result. 

2.1.6 Variable Selection 

We consider the case where we have a sequence X\,..., X x of explanatory variables 
and we want to choose k = 1,..., K so that the model of the form 

Y = p1X1 + .-. + pkXk + e 

gives the best predictions. The setting arises naturally in the case of autoregressive 
time series models, because in these cases there is a natural ordering of the explanatory 
variables. 

16Now P(X > F / c . n - z d 1 - a ) ) = a when X ~ FK,n_K. 
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Let (Xi, Y i ) , . . . , Yn) be regression data, where Xi = (X^i,..., X^K)', 
i = 1 , . . . , n. Cross validation was defined in (1.116). We can apply cross validation 
in variable selection by defining 

where x\k^ = ( X ^ i , . . . , Xi^Y and is the least squares estimator using the 
model with the variables X \ , . . . , and calculated with the data were the zth 
observation (Xi,Yi) is removed. To obtain a model with the best predictions, we 
choose k minimizing MISEn(fc) among k = 1 , . . . , K. 

We define next Mallows's Cp criterion and Akaike's criterion for variable selection. 
The connection of these criterions to the cross validation of the kernel estimator is 
discussed in Section 3.2.7. 

Mallows's Cp criterion is 

C(k) = SSR(k) + 2o\k, (2.48) 

where 

SSR(fc) = i t , { Y i ~ P k x i k ) ) 2 ' 
i=1 

x\k) - (Xi, Xi,kY, and 

t=i 

where (3k is the least squares estimator using the model with the variables X \ , . . . , 
The model X\,..., Xk is chosen which minimizes C(k) over k = 1 , . . . , K. The 
criterion was defined in Mallows (1973). Minimizing Mallows's Cp criterion is 
equivalent to minimizing an unbiased estimator of the mean averaged squared error, 
defined in (1.114). See, for example, Ruppert et al. (2003, Section 5.3.3) for the case 
of fixed design regression. 

Akaike's information criterion is 

AlC(fc) = log SSR (k) + 2 jfc/n, (2.49) 

which was proposed in Akaike (1973). Both the Mallows's Cp and Akaike's in-
formation criterion penalize the residual sum of squares with the number of the 
parameters in the model. These criterions are computationally more attractive than 
the cross validation, but we show in Section 3.2.7 that in the case of kernel estimators 
cross validation is not slower to calculate than Mallows's Cp or Akaike's information 
criterion. 
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2.1.7 Applications of Linear Regression 

Linear regression can be used to describe assets and portfolios. The beta of an asset 
describes the volatility of the asset with respect to a benchmark, the beta of a portfolio 
can be used to describe the risk aversion of the investor, and the alpha of a portfolio 
can be used to measure the performance of the portfolio. 

Beta Of an Asset We define the beta of an asset by 

Co V(R{
T

A\R[B)) 

P Var ( i t f ) ' 

where R{
t
a) = (Pt

(a) - ) i s the return of the asset, and R{
t
b) is the return of 

the benchmark portfolio. We can see from (2.30) that beta is the regression coefficient 
in the regression 

R{
t
a) = a + (3R{

t
b) + 

Thus, we can estimate the beta with the historical returns 

( z ? ( a h ( z?(a)\ J -n-1 ' T ) 

of the benchmark portfolio and of the asset. The beta of an asset gives information 
about the volatility of the stock in relation to the volatility of the benchmark. If 
f3 < 0, the asset tends to move in the opposite direction as the benchmark; if f3 = 0, 
the asset is uncorrected with the benchmark; if 0 < f3 < 1, the asset tends to move in 
the same direction as the benchmark but it tends to move less; and if (3 > 1, the asset 
tends to move in the same direction as the benchmark but it tends to move more. 

Figure 2.2 shows a linear regression when the daily return of the Daimler is the 
response variable and the daily return of the DAX 30 index is the explanatory variable. 
The returns are available for the time period starting at 2000-01-03 and ending at 
2013-05-02, making together 3382 daily observations. The estimated regression 
coefficient is (3 = 1.14 and the estimated intercept i sd = 0.011%. 

Beta of a Portfolio In the framework of Markowitz theory of portfolio selection 
it can be shown that the optimal portfolios in the Markowitz sense are a combination 
of the market portfolio and the risk-free investment.17 Thus, the returns of the optimal 
portfolios for the period t — 1 i—> t are 

Rt = {l-(3)R[ + (3R™, (2.50) 

where R [ is the return of the risk-free investment and R ^ is the return of the 
market portfolio, both returns being for the investment period ending at time t. The 

17The Markowitz theory of portfolio selection defines the optimal stock portfolios as portfolios maximizing 
expected return for a given upper bound on the standard deviation of the portfolio return or, equivalently, 
as portfolios minimizing the standard deviation of the portfolio return for a given lower bound on the 
expected return of the portfolio. This defines single period portfolio choice, for a given investment period. 
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DAX 30 return 

Figure 2.2 Linear regression of Daimler on DAX 30. Shown is the estimated linear regression 

function when the response variable is the return of the Daimler stock and the explanatory 

variable is the return of the DAX 30 index. 

coefficient /? > 0 is the proportion invested in the market portfolio. WhenO < j3 < 1, 
then the portfolio is investing available wealth; but if j3 > 1, then amount (/? — 1) W 
is borrowed and amount (/? + 1) W is invested in the market portfolio, where W is 
the investment wealth at the beginning of the period. 

The coefficient /? is determined by the risk aversion of the investor. For an investor 
with portfolio returns Rt we do not know the coefficient /?, but we obtain from (2.50) 
that 

Rt-Rf=/3(RM-Rf). 

We can collect past returns Rt, t = 1 , . . . , T, and use these, together with the past 
returns R[ of the risk-free return and the past returns Rf1 of the market portfolio, to 
estimate the coefficient f3 in the linear model 

Rt -R[ = f3 (R™ - i j f ) + ct, (2.51) 

where et is the error term. Now Rt — R[ is the response variable and Rf1 — R[ is 
the explanatory variable. The returns R f 1 of the market portfolio are approximated 
with the returns of a wide market index, like S&P 500 index, Wilshire 5000 index, 
or DAX 30 index. The risk-free rate R[ can be taken to be the rate of return of a 
government bond. 

Alpha of a Portfolio Linear regression can be used to characterize portfolio 
performance. In (2.51) we have a regression model without a constant term. We 
extend this model to the model 

Rt-R[ = a + (3(RM-R[)+et, 
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S&P 500 return 

Figure 2.3 Linear regression of a Markowitz portfolio on S&P 500. Shown is the estimated 

linear regression function when the response variable is the return of an actively managed 

portfolio and the explanatory variable is the return of the S&P 500 index. 

where Rt is the return of the actively managed portfolio, R^ is the return of the 
market portfolio, Rf is the risk-free rate, and et is the error term. The excess return 
of a market index is chosen as the explanatory variable, and the excess return of the 
actively managed portfolio is chosen as the response variable. The estimated constant 
a is taken as the measure of the performance, so that larger values of a indicate better 
performance of the portfolio. 

Figure 2.3 shows an estimated linear regression function when the daily return 
of an actively managed portfolio is the response variable and the S&P 500 return is 
the explanatory variable. The actively managed portfolio is the dynamic Markowitz 
portfolio whose cumulative wealth is shown in Figure 3.63. The data are the S&P 
500 and Nasdaq-100 data described in Section 1.6.2. The estimated constant term is 
a = 0.034% and the estimated regression coefficient is /3 = 1.03. 

Alpha of a Hedge Fund: Fung-Hsieh Factors In hedge fund performance 
measurement the alpha is calculated in the linear regression of the hedge fund excess 
returns on the Fung-Hsieh risk factors. Fung & Hsieh (2004) define seven risk 
factors: three trend-following risk factors, two equity-oriented risk factors, and 
two bond-oriented risk factors. The trend-following risk factors are a bond trend-
following factor, a currency trend-following factor, and a commodity trend-following 
factor. The equity-oriented risk factors are the equity market factor18 and the size 

18The equity market factor is the S&P 500 index monthly total return. 
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spread factor.19 The bond-oriented risk factors are the bond market factor20 and the 
credit spread factor.21 The alpha is now estimated in the multivariate linear regression 

7 

R?-R? = a + ^(3kX
{
t
k)+et, 

k= 1 

where we denote by Rf1 the hedge fund monthly returns, R[ is the monthly risk-free 
(k) rate, and X f \ k = 1 , . . . , 7 , are the Fung-Hsieh risk factors. 

2.2 VARYING COEFFICIENT LINEAR REGRESSION 

In the varying coefficient linear regression we approximate the regression function 
with a linear function of variables X, but we assume that the coefficients are a 
function of additional variables Z. Thus, 

E(Y | X = x,Z = z)^ a(z) + P(z)'x, 

where x G R p , z G R d , a : H d R, and : TLd R p . We observe identically 
distributed observations (Xi, Yi,Zi), i — 1 , . . . , n, where Xi G R p , Yi G R, and 
Zi G R d , and denote the estimator by 

f(x)=a(z)+p(z)'x. 

For example, it is possible to have Zi — Xi. The varying coefficient model has been 
studied in Hastie & Tibshirani (1993). 

2.2.1 The Weighted Least Squares Estimator 

The least squares estimator of functions a and /3 is defined as 

n 

(a(z)J(z)) = argminaGR?/3GRP ^Pi(z) (Yi - a - fiX{f, (2.52) 
i=1 

where weights pi(z) are such that Pi(z) is large when 2 is close to Zi, and Pi(z) is 
small when 2: is far from Zi. We can use the kernel weights 

Pi(z) = Kh(z - Zi), i = l,...,n, 

where K : Kd ->> R is the kernel function, Kh(z) = K(z/h)/hd, and ft > 0 is 
the smoothing parameter. Note that we do not have to normalize the weights to sum 

19The size spread is the Wilshire Small Cap 1750 minus the Wilshire Large Cap 750 monthly return or 
Russell 2000 index monthly total return minus the S&P 500 monthly total return. 
20The bond market factor is the monthly change in the 10-year treasury constant maturity yield (month 
end-to-month end). 
21 The credit spread is the monthly change in the Moody's Baa yield minus the 10-year treasury constant 
maturity yield (month end-to-month end). 
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to one, like in the definition of the kernel weights in (3.7). We can also use other 
weights defined in Chapter 3, like the nearest-neighbor weights. 

The least squares estimator can be written as 

(d(z), P{z)')' = ( X ' P X ) _ 1 X ' P y , (2.53) 

where X is the n x (p + l)-matrix whose ith row is (1, X-), y = (Y i , . . . , Yn)' is the 
n x 1 column vector, and P is the n x n diagonal matrix with the diagonal elements 
Pi(z), i = 1 , . . . , n. The solution (2.53) is derived similarly as the solution of the 
usual least squares regression in (2.10). We denote for shortness 7 = (ce, f3f)f, and 
write the least squares criterion in (2.52) with the matrix notation as 

(y - X 7 ) , P ( y - X 7 ) = y ' P y - 2 7
, X , P y + 7

/ X , P X 7 . 

Derivating this with respect to 7, and setting the gradient to zero, we get the equations 

X P X 7 = X P y , 

which leads to the solution (2.53). In the case p = 1 we get 

R( \ Pi(z)(Xi-X)(Yi-Y) - -
Pw = — ^ — - r - ^ n ? — — ' a ( z > = Pyz)x-> ( 2 - 5 4 ) 

22i=iPi(z)(xi ~ x r 

where 
n n 

i=1 i=1 

We can write the weighted least squares estimator as 

f(x,z) = ^Tli(x,z)Yi, 
2 = 1 

where 
li(x,z) = X'i[X.fPX] LxPi(z), 

where x = (1, x\,..., xp)'. 
Figure 2.4 illustrates the weights U(x, z) in the case of one-dimensional explana-

tory variables X = Z. We have used the standard Gaussian kernel and smoothing 
parameter h = 0.7 in the weights pi(z). Panel (a) shows a perspective plot of 
the function (x, Xi) k(x, x), where X\,..., Xn is a simulated sample of size 
n = 200 from the uniform distribution on [—1,1]. Panel (b) shows the six functions 
x li(x, x) for the choices X{ = —1, —0.5,..., 1. 

2.2.2 Applications of Varying Coefficient Regression 

Many applications of varying coefficient regression arise in the cases where we 
are restricted to make an approximation of the response variable Y using a linear 
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Figure 2.4 Weights in varying coefficient linear regression, (a) The function (x, Xi) i— 
h(x, x). (b) The six slices x ^ U(x, x) for the choices Xi = — 1, —0.5,..., 1. 

combination. In these cases the only way to introduce nonlinearity is through the 
nonlinearity of the coeffiecients. For example, a portfolio is always a linear combina-
tion of tradable assets, but nonlinearity can be introduced by making the coefficients 
a nonlinear function. 

We mention below two applications of varying coefficient regression: hedge fund 
index replication and performance measurement with the conditional alpha. 

Replication of a Hedge Fund Index We have available monthly returns Yi, 
. . . , Yt E R of a hedge fund index and we want to replicate this time series using 
the returns X\,..., XT G R p of tradable assets. This gives us a new hedge fund that 
is cheaper to create and more liquid than a typical hedge fund. However, the returns 
of the new hedge fund can be similar as the returns of the hedge fund index. The 
replication is done conditionally on the information contained in the observations 
Z i , . . . , Z t G R d . 

The replication is made using weights 6T chosen at time T, and holding the 
weights until the returns at time T + 1 are realized. The replication is 

where the portfolio vector G R p satisfies br,i = 1- We can also write 

where Zt is the information used to choose the weights. The weights bT are chosen 

Y t + I — 

Y t + I = 1, 

as 
T 

bT = argmin6e5jv ] T (Yt - b'Xtf pt-i{ZT) (2.55) 
t=to 
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where Sn = {s G R p : si = !}• We use the kernel weights 

pt-i(ZT) = Kh(ZT ~ Zt-i), 

where Kh{x) = K(x/h)/hd is the scaled kernel function, K : Hd —> R is the 
kernel function, and h > 0 is the smoothing parameter. Now the weight pt-i(ZT) 
is large at those time points t — 1 that are such that the relevant information Zt~i, 
available at that time, is close to the current relevant information ZT. 

As an example we use the index of long/short equity hedge funds from the CSFB 
database. The tradable assets which we use to replicate the CSFB long/short hedge 
fund index are the S&P 500 stock index, the spread between the Russell 2000 small 
cap stock index and the Russell 1000 large cap stock index, and the one-month risk-
free investment.22 We take the risk-free rate equal to zero (on the other hand we do 
not include transaction costs). Thus, Xt = (X}, X f ) , p = 3, and 

x _ SP500t 2 _ _SCf_ _ _LCf_ 3 _ 
A t - SP500 t_i ' A t " + SC« ! LCf_ x ' A t " 

where SP500* is the price of the S&P 500 index at time t, SCf is the price of the 
Russell 2000 small cap index at time t, and LCf is the price of the Russell 1000 
large cap index at time t. The conditioning variables Zt are chosen to be a function 
of lagged values of Xt: 

Zt = (Xt,Xt-1,.. .,Xt-k+1)? (2.56) 

where fe > 1 is the number of lags. Thus Zt G H d , where d — pk. We also used 
the copula transform, as defined in Section 1.7.2, to normalize the marginals of Zt 

to have approximately standard normal distribution. We chose to = k + 1 in (2.55) 
and used the smoothing parameter h = 1 and the autoregression parameter fe = 8. 

We use the linear replication as a benchmark. The linear replication is defined by 
the weights 

T 

blin - argmin6eSw £ (Yt - b ' X t f . (2.57) 
t= 1 

Figure 2.5 shows the wealth processes of kernel replication (blue), linear replica-
tion (green), long/short hedge fund index (red), and S&P 500 index (black), starting 
with value 1 at 31 January 1994 and ending at 29 January 2010. The wealth process 
of the replicating time series with weights bt is defined as 

Wx = 1, Wt+1 = Wt>{l + b'tXt+i). 

For the kernel strategy, as defined in (2.55), the annualized mean return is 7.0% 
and the annualized standard deviation of returns is 10.4%.23 The Sharpe ratio for 

22We thank Juha Joenvaara for providing the hedge fund data. The stock index data is obtained from 
Yahoo. 
23The annualized mean is defined as 12 times the average of the monthly returns, and the annualized 
standard deviation is defined as y/12 times the sample standard deviation of the monthly returns. 
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Figure 2.5 Hedge fund index replication. Wealth processes of kernel replication (blue), 
linear replication (green), long/short hedge fund index (red), and S&P 500 index (black), 
starting with value 1 at 31 January 1994 and ending at 29 January 2010. 

the kernel strategy is 0.67. The Sharpe ratio is defined in (1.88) as the ratio of the 
annualized mean of the returns to the annualized standard deviation of the returns. 
We do not use the excess returns. 

As a comparison, the annualized mean of the monthly S&P 500 index returns 
during our investigation period is 6.4%, the annualized standard deviation is 15.5%, 
and the Sharpe ratio is 0.41. For the CSFB long/short hedge fund index the annualized 
mean return is 10.2%, the annualized standard deviation is 10.0%, and the Sharpe 
ratio is 1.02. For the dynamic linear replication, as defined in (2.57), the annualized 
mean return is 4.2%, the annualized standard deviation is 10.2%, and the Sharpe ratio 
is 0.42. 

We conclude that the kernel strategy seems to give a better performance than the 
linear strategy, but the kernel strategy is worse than the target hedge fund index. On 
the other hand, the Sharpe ratio of the kernel strategy is better than the Sharpe ratio 
of the S&P 500 index. 

Conditional Alpha In Section 2.1.7 we applied a linear model to the evaluation 
of portfolio performance. The performance was measured by the estimate a of the 
constant term a of linear regression. We can use varying coefficient regression to 
estimate conditional alpha. It has been argued that the conditional alpha measures 
better hedge fund performance, since hedge funds do not use long only strategies but 
apply short selling and buying and writing of options. 
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We choose a collection of risk factors X\,..., Xf and make a linear regression 
of hedge fund return Yt on these risk factors. The unconditional alpha is defined as 

/ 

a = argmina min V (Yt ~ a - ft X} PPXf) . 

The conditional alpha, conditionally on the information Zt G Hd at time t, is defined 
as 

/ 

a (ZtQ) = argmin^ min £ (Yt - a - ftX,1 (3PX?)2 pt(Zto), 

where 

Pt(Zto) = Kh(Zt - Zto), 

where Kh{x) = K(x/h)/hd is the scaled kernel function, K : Hd —̂  R is the 
kernel function, and h > 0 is the smoothing parameter. 

2.3 GENERALIZED LINEAR AND RELATED MODELS 

In a generalized linear model the assumption 

E(Y\X = x) = G(a + f3'x), 

is made, where Y G R, X G R d , a G R and /3 G Hd are unknown parameters, 
and G : R —>• R is a known link function. A generalized linear model generalizes 
the linear model E(Y \ X = x) = a + f3'X. The link function G can introduce 
nonlinearity to the model. In Section 4.1 we consider single-index models, where 
the link function is unknown and is estimated using the data. 

2.3.1 Generalized Linear Models 

Let us have regression data (Xi, Yi) , . . . (Xn,Yn). We denote the estimator of 
f(x) = E(Y | X = x) in the generalized linear model 

f(x) = G(a + x'P), x G R d , (2.58) 

where a G R and j3 G R d are estimated using the regression data, and G : R -» R 
is a known function. The function G is often called called a link function, but 
sometimes its inverse G - 1 is called the link function, and it is assumed that G is a 
monotone function. 

The term "generalized linear model" was introduced by Nelder & Wedderburn 
(1972). Generalized linear models are treated extensively in McCullagh & Nelder 
(1989). 
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Generalized Linear Models and Exponential Families In (1.68) we defined 
a one-parameter canonical exponential family, where the density functions are 

p(y,O)=p(y)exp{y0-b(0)}, (2.59) 

where?/, 6 e Rand B : R R. In(1.70) we showed that if Y follows p(-, (9), then 

EY = b'(Q), 

where b' is the derivative of d. Thus, under the assumption that the response variable 
follows exponential family density p(-,0), the natural link function is G = b\ and 
we have the generalized linear model 

E(Y \X = x) = b'(a + fix). (2.60) 

In (1.71) we showed that if Y follows p(•, 9), then 

Var(F) = b"{0). 

Thus, the natural link function for variance regression is G — b", and we have the 
generalized linear model for variance regression 

V a r ( y | X = x) = 6"(a + /?'a;). 

The general exponential family regression was introduced in Section 1.3.2. A 
special case of that modeling approach is obtained if we model the conditional 
distribution of Y by 

Y\X = x~p(y,G(a + P'x)). 

Estimation As usual, the least squares criterion can be used to estimate the pa-
rameters: we minimize 

n 

^(y, - G(a + P'Xi))2 (2.61) 
i—1 

over a e R and f3 e R d . 
Alternatively, maximum likelihood estimation can be used. Let us make the 

assumption 

f y I X=x{y, v) = p(y) exp {yO{x) - b(0(x))} , ye R, (2.62) 

where x £ R d , and 6(x) = a + f3'x. If (Yi,Xi),..., (Yn, Xn) are independent, 
then the density of the observations is 

n n 

Y[fYi,Xi(yi,Xi) = YifYi I Xi —Xi (yi)fxi(xi), (2.63) 
i=1 z=l 

and, using (2.62), we see that to maximize the likelihood (the density function or the 
probability mass function of the observations), we need to maximize 

n n 

Y , {YAXi) - b(0(Xi))] = Y , + P'Xi) - K<* + P'xi)] 
2=1 2=1 

over a e R and f3 e R d . 
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2.3.2 Binary Response Models 

Binary response models were introduced in Section 1.2.1. In a binary response model 
the response variable Y takes only values 0 and 1, and we write Y ~ Bernoulli(p), 
where 0 < p < 1. For a Bernoulli distributed random variable Y, it holds that 
EY = P(Y = 1) = p. We also have 

E[Y\X = x] = P(Y = l\X = x). 

Let us denote 
p(x) = E[Y\X=x], 

where p : R d [0,1]. In binary response models we want to estimate the function 
p. We get a generalized linear model when we have 

p(x) = G(a + (3'x), (2.64) 

where G : R —>• [0,1] is a known link function and a E R and (3 E H d are unknown 
parameters. In the probit model, G is the distribution function of the standard normal 
distribution and in the logit model the distribution function is the distribution function 
of the logistic distribution. In the linear probability model we take 

p(x) = a + fix, 

so that in the linear probability model the probability could be negative or larger than 
one. 

Binary Response Model as an Exponential Model The probability mass 
function of a Bernoulli distributed random variable Y is 

fY(y)=Py(i-p)1-y, ye {0,1}. 

We can write the probability mass function as 

fY{y) + l°g(l - P ) j =exp{yO -b(6)}, 

where 

= log ) p = 
ed 

1 - p j " 1 + e" 

and 
b(0) = log(l + e0) = - l o g ( l - p ) . 

We have written the probability mass function as in (2.59). Now, 

b'(0) = r 
+ e° 

so that b' is the distribution function of the logistic distribution. Using (2.60), we get 
the model 

p(x) = b'{oL + P'x). 



GENERALIZED LINEAR AND RELATED MODELS 1 0 5 

Latent Variable Approach We can obtain probit and logit models using the 
latent variable approach. In the latent variable approach the model for Y is 

/ 1, i f a + /3'X + e > 0 , 
1 ~ \ n i pt v i ^ ^ n ^Z.OJJ i f a + (3'X + e < 0, 

where e is an error term. This is called the latent variable approach because Y* = 
a + f3'X -f 6 is the latent variable that is not observed. Then, the regression function 
is 

E(Y\X = x) = P{Y = l\X = x) 

= P(a + /3'x + 6 > 0) 

= 1 - P(e < ~(a + x'/3)) 

= 1 - F £ ( - ( q + ^ ) ) , 

where Fe is the distribution function of e. If the distribution of e is symmetric around 
0, then Fe(t) = 1 - Fe(-t) and we get 

E(Y \X = x) = Fe(a + x//3). 

Thus, the generalized linear model in (2.64) is obtained with the link function Fe 

being the distribution function of the error distribution: 

p(x) = F€{a + x'P). 

The typical examples are the case where e has the standard Gaussian distribution and 
the case where e has the logistic distribution. 

1. Probit Model In the probit model the distribution function of the error distri-
bution is the standard Gaussian distribution function defined as 

Fe(t)= j (j)(u)du, t 
J — oo 

G R, 

where 

^ ^ = u e R ' 
The inverse of the standard Gaussian distribution function is called the probit 
function. The generalized linear model with binary responses and the standard 
Gaussian distribution function as the link function is called the probit model. 

2. Logit Model In the logit model the distribution function of the error distribution 
is the logistic distribution function defined as 

= t e R. 

The variance of the logistic distribution is 7r2/3, SO the distribution function of 
the standardized logistic distribution is 1/(1 + e " * / ^ / ^ ) . The standardized 
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logistic distribution is close to the standard Gaussian distribution, but the tails 
of the logistic distribution are fatter than the tails of the Gaussian distribution. 
The inverse of the logistic distribution function is called the logit function and 
we have 

i o g i t ( p ) = i o g ( T ^ ) , p e (0,1). 

The generalized linear model with binary responses and the logistic distribution 
function as the link function is called the logit model. 

We can also write a model for Y as 

Y f 1, 
0, otherwi 

+ ei > /3'2X2 + e2, 
otherwise, 

where e\ and e2 are independent error terms. When e\ and e2 are normal random 
variables, then we get the probit model. When e\ and e2 are distributed according to 
the Gumbel distribution (Type 1 extreme value distribution), then e\ — e2 is distributed 
according to the logistic distribution and we get the logit model. The distribution 
function of the Gumbel distribution is F(y) = exp(—exp(—y)). This modeling 
approach is called the random utility approach. 

In the Tobit model 

Y = max{0, fi X + e} = j ^ i f + e < 0, ( 2 ' 6 6 ) 

where e is an unobserved zero mean error term, assumed to be normally distributed 
and independent of X. 

Estimation in the Binary Response Model Let us consider estimation in the 
binary choice models. We can use the least squares criterion, defined in (2.61), 
to estimate the parameters. Let us consider some details of maximum likelihood 
estimation. Assume that we have an i.i.d. sequence (Yi, X i ) , . . . , (Yn,Xn) from a 
binary choice model. The conditional probability mass function is 

f y | x=x(y) = P(x)y( 1 " y G {0,1}, z G 

where p : R d [0,1]. Under the generalized linear model, we have p{x) = 
G(a + fix). Using (2.63), we see that to maximize the likelihood, we need to 
maximize 

n 

I j G ( a + P'Xi)Y i( 1 - G(a + /3%)) 1 - y% 

over a G R and (3 G Hd. In probit and logit models we need to maximize 
n 

i— 1 

where Wi — 2yt — 1, so that wt — 1 when yi = 1 and wl = —1 when yi — 0. This 
holds because Fe(t) = 1 - Fe(-t), and thus 1 - G(a + fixi) = G(-a - fi'xi). 
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2.3.3 Growth Models 

Consider the model 

Y = f[X*+e, 
i=1 

where e is an additive error term with E(e | X = x) = 0. We can write the regression 
function as 

E(Y | X = a;) = exp j loge (Xi) | . 

Thus we have a generalized linear model where the link function is G(t) = el. Note 
that the model 

Y = f [ X * . e , 
2—1 

where e is an multiplicative error with i£(loge e | X — x) = 0, can be transformed to 
a model on loge Y, and then the regression function is 

d 

E(loge(Y)\X = x) = 
2 = 1 

Thus we have obtained a linear model on the transformed variables. 

2.4 SERIES ESTIMATORS 

We call a series estimator of the regression function any estimate of the type 

K 

f ( x ) = x e 
k=1 

where gk : —> R are suitable functions and Wk G R are weights that are 
determined using the regression data (Xi, Yi ) , . . . , (Xn , Yn). 

2.4.1 Least Squares Series Estimator 

Given a sequence G\,..., QK of functions H d —> R, we can find a series estimator 
by solving the weights W\,..., WK as the minimizers of the least squares functional 

, (2.67) 
2=1 \ k= 1 / 

where (Xi, Yi ) , . . . , (Xn , Yn) are regression data. The solution can be found in 
matrix notation from (2.10): The weights w = (WI,..., WK)' can be written as 

w = (G /G)"1G /y5 (2.68) 
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where G is n x K matrix with elements [G]^ = gk(Xi) and y = (Yi , . . . , Yn)' is 
a column vector of length n. 

Using (2.11), we can write the least squares series estimator as 

n 

f(x) = J2h(x)Yi, 
i=i 

where 
( / i (x ) , . . . , / n (x ) ) = G(x) /(G /G)-1G / , 

with G(x) = (gi(x),...,gK(x))'. 
Analogously to the ridge regression, we can replace the least squares criterion in 

(2.67) with the penalized least squares criterion 

n / K \ 2 K 

2 = 1 \ k—1 / k= 1 

where A > 0 is the penalization parameter. The coefficient vector of the series 
ridge regression estimate, minimizing the penalized least squares criterion, is w = 
(W\,..., WK)', defined by 

w = (G'G + A/) _ 1 G / y, 

where G and y are as in (2.68), and I is the K x K identity matrix. 
Section 2.4.2 considers using the basis functions of an orthonormal basis, but 

we can consider also nonorthogonal basis functions. For example, we can use non-
normalized Gaussian density functions 

f \\x-nk\\
2\ 

g f c ( x ) = e x p | - ^ j , 

where G Hd and o^ > 0. 

2.4.2 Orthonormal Basis Estimator 

We assume now that {gk}k=1>2,... is an orthonormal basis and that gi(x),..., gx{x) 
is a finite subset of this basis. The basis can be the Fourier basis or a wavelet basis, 
for example. We define the estimator of the regression function / : H d R in three 
steps, using regression data (X\, Y i ) , . . . , (Xn , Yn). First we define the estimator of 
the function g = f • f x , where f x - R d —>> R is the density function of X. The 
estimator of g is 

K 

g(x) = Y^ wkgk(x), x G R d , (2.69) 
k=1 

where 
1 n 

wk = ~y^Yigk(Xi). 
n. —^ 
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Second we define the estimator of the density function f x of X as 

K 

f x ( x ) = J2§kgk(x), X e (2.70) 
k=1 

where 
1 n 

Ok = - T g k ( X l ) . 
n z—' i=1 

Finally, the estimator of the regression function / is 

= x £ H d . (2.71) 
/*(*) 

Note that the linear projection of g{x) on the subspace spanned by g\(x),..., gx (%) 
is the function 

K 

d(x) = ^2wkgk(x), 
k=l 

where 

Wk= g(x)gk(x)dx = / f(x)gk(x)dPx(x) = Exf(X)gk(X). 
J Rrf 

Thus, the coefficient wk can naturally be estimated with the arithmetic mean wk. 
Also, the linear projection of fx{%) on the subspace spanned by gi(x),... 
is the function 

K 

f x ( x ) = ^20kgk{x), 
k=1 

where 

Ok = fx{x)gk(x) dx = Exgk(X). 
J n d 

Thus, the coefficient 6k can naturally be estimated with the arithmetic mean 6k. 
We have defined the regression function estimator in (2.71) for the case of random 

design regression. In the case of one-dimensional fixed design regression, there is 
no need to estimate the density of the design distribution as in (2.70). Instead, we 
assume that the fixed design points x\,..., xn G R are obtained with xi = F~l 

where zi,..., zn e [0,1] is a regular uniform grid and F is a distribution function 
of a continuous distribution. Then we replace the estimate f x of the design density 
with the density Ff. 

We can write the regression function estimator / , defined in (2.71), in a linear 
form (1.2) as 

n 

/(*) = $ > ( * ) 
2—1 
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where 
1 K 

li(x) = , , N Y\9k(Xi)gk(x). 
nfx{x) k=1 

If thresholding is applied to the regression function estimator in (2.71), then linearity 
can be lost. For example, in hard thresholding the regression estimator g in (2.69) is 
replaced by 

K 

ghard{x) = Ylhk-Awk\>\}(k)wkgk{x), (2.72) 
k=1 

where A > 0 is a threshold. 

2.4.3 Splines 

We restrict now to the case of one explanatory variable, so that d = 1. We define the 
estimator 

K 

3 = 1 where [3j minimize the least squares criterion 

n r°° {B2 \ 2 

Y i Y - f i X ^ f t f + X j ^ — f ( x ; / 3 ) j d x , (2.74) 

where 
K 

f(x;f3) = ^f3JgJ(x)1 

3 = 1 

f3 = (f3i,..., (3K)', and A > 0 is the penalization parameter. Note that the penalized 
least squares criterion in (2.74) can be written with the matrix notation as 

(y — G(3)'(y — G(3) + \f3'Q(3, (2.75) 

where y is the n x 1 vector with elements [y]; = Yi, G is the n x K matrix 
with elements [G]tj = gj(Xi), and ft is the K x K matrix with elements = 
/ 9 j{ x )dk( x ) dx. We can find the minimizer of (2.75) in the similar way as the least 
squares estimator was derived in (2.10). Indeed, 

(y - G/3)'(y - G(3) + A/3'fi/3 = y ' y - 2/3'5'y + f3'{G'G + AQ)(3. 

Derivating this with respect to /?, and setting the gradient to zero leads to the equations 

(G'G + A Sl)p = G'y 

and we get the solution 
f3 = {G'G + Afi)~1G ,y-
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The penalization estimator minimizing (2.74) can be used when the collection 
<71,..., QK is a spline basis. We define two bases. 

The first basis is the truncated power basis. Let ko < • • • < fez,-1 be given 
knot points in interval (0,1). Denote Bj(x) = for j = 0 , . . . , ra — 2, and 
Bj(x) = (x — k j - m + f o r j = m — 1 , . . . , m + L - 2. This is collection 
of m + L - 1 functions. When m = 3, we call the collection a cubic spline basis. 
The truncated power basis is a basis for the collection of m-splines. This collection 
consists of functions on the interval (0,1), that are continuous, that are m — 1 order 
polynomial on intervals (ko, fci),..., and have continuous ra — 2 order 
derivatives at the knots. 

The second basis is the B-spline basis. Korostelev & Korosteleva (2010, Chapter 
11) contains a detailed description of B-splines, when the knots are equally spaced. 
A standard B-spline of order ra is defined recursively. 

1. Let Si(u) = /[o,i](u). 

2. Let Sm(u) — J^°ooSrn-1(z)I[0A)(u-z)dz, form = 2 ,3 , . . . . 

Now Sm is the probability density function of a sum of ra independent random 
variables uniformly distributed on [0,1]. Let m > 2. The spline of order ra is 
defined by 

where k = -m + 1 , . . . , Q - 1, Q = 1/(2h), and ft > 0 is such that Q > 1 is 
integer. Korostelev & Korosteleva (2010, Lemma 11.9) state that the set of functions 

k = — ra + 1 , . . . , Q — 1, forms a basis in the linear subspace of the piecewise 
polynomials of order m — 1 that are defined in bins Bq, 

and have continuous derivatives up to order m — 2. 
Figure 2.6(a) shows B-splines of order m = 2, for A; = — 1 , . . . , 4 and Fig-

ure 2.6(b) B-splines of order m = 3, for k = — 2 , . . . , 4. 

2.5 CONDITIONAL VARIANCE AND ARCH MODELS 

Section 1.1.4 contains an introduction to variance estimation. We consider now the 
time series setting and use autoregression with p lags, so that the response variable is 
Y = Yt, and the explanatory variables are X = . . . , Y? ). We assume that 

E(Y\X = x) = 0 

and discuss methods for estimating 

Bq = [2(q-l)h,2qh), <? = 1,...,Q, 

Var(F \X = x)= E(Y2 \X = x). 
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In the linear variance autoregression the conditional variance is approximated by a 
linear function of the previous squared observations: 

E(Y2 \X = x) = E(Yt
2\Yt

2_1=y2_l,...,Yt
2_p = y2_p) 

« a + /W-1 + *'' + PpVt-p- (2-76) 

We define below the least squares estimator and the ARCH estimator. We illustrate 
the methods with the S&P 500 data. The performance comparison of the estimators 
is postponed to Section 2.6. 

Figure 2.6 B-splines. (a) B-splines 7k of order m = 2, for k = — 1, . . . , 4. (b) B-splines 
7^ of order m = 3, for k = —2,..., 4. 

2.5.1 Least Squares Estimator 

Given the observed time series Yi , . . . , YT, we can estimate the regression coefficients 
a, Pi,..., f3p in (2.76) by minimizing the sum of the squared errors: 

( V F - A - W L , PPY?-PF-

t=p+ 1 

The least squares estimator is given in (2.4) and (2.5), when the explanatory variables 
are (Y2_x,..., Y2_p) and the response variable is Y2. The regression function 
estimator is 

f(yt-1,. • • ,yt-P) = + PiVt-i + • • • + Kvt-p-> 

where o;, $1 , . . . , /3P are the least squares estimators. We denote below 

d* = f(Yt-1,...,Yt-p). 
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Figure 2.7 S&P 500 volatility: parameter estimates in the least squares regression. Shown 
are the 10 curves i p[p\ for p = 1 , . . . , 10, where i — 1 , . . . 

We apply the estimator to the S&P 500 returns data described in Section 1.6.1. 
Observations Yt are the daily net returns of the S&P 500 index. 

Figure 2.7 shows a sequence of the least squares parameter estimates. We use 
lag numbers p = 1 , . . . , 10 and fit a linear model for each lag value. For each lag 
value p we get the coefficient estimates p\p\ i = 1 , . . . ,p. The 10 curves i 
i = 1 , . . . , p, for p = 1 , . . . , 10, are shown in Figure 2.7. We see that the parameter 
estimates are about the same for each model. The highest value is about 0.2 for the 
second coefficients fi^. The estimates of the intercept are not shown. For example, 
for the one-lag model (p = 1) we have a ^ = 7.9 x 10 - 5 and for the ten-lag model 
(p = 10) we have d(

1
10) = 3.8 x 10"5. 

2.5.2 ARCH Model 

In the ARCH model the variance estimator is linear in the squares of the previous 
observations as in (2.76), but now the time series is modeled and maximum likelihood 
estimation is used to estimate the parameters. 

Definition of ARCH Model The ARCH model (autoregressive conditional het-
eroskedastic model) is a special case of a conditional heteroskedasticity model, 
defined in (1.16). It is also a special case of the GARCH model (generalized autore-
gressive conditional heteroskedastic model), defined in Section 3.9.2. 

In the ARCH(p) model it is assumed that 

Yt = ateu t = 0 ,±1 ,±2 , . . . , 
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where 
a2

t = a + ^ Y l , + • • • + P p Y l p (2.77) 

with parameters satisfying restrictions a > 0, Pi > 0. The noise et is an i.i.d. process 
withEet = OandVar(et) = 1. It is assumed that et is independent of Yt~\, Yt-2, 
The ARCH model was introduced in Engle (1982) for modeling U.K. inflation rates. 
The ARCH(p) process is strictly stationary if YM=i A < U see Fan & Yao (2005, 
Theorem 4.3) and Giraitis, Kokoszka & Leipus (2000). 

Variance in ARCH Models In the ARCH model, we have 

Var(y t 1 ^ - 1 , ^ - 2 , . . . ) = ^ , 

as shown in (1.17). Thus, 

Var(yt I y t _i , y t _ 2 , •. •) = E ( Y 2 \ y t _i , y t _ 2 , . . . ) = a + p1YT
2_, + . •. + PPY2_P 

and the ARCH model leads to an estimator of the conditional variance which is linear 
in the squared observations. 

Maximum Likelihood Estimation of ARCH Parameters Estimation of the 
parameters a, /? i , . . . , (3P can be done using the method of maximum likelihood, 
if we make distributional assumptions on et. Let us denote the density of et by 
fe : R —> R. Then the conditional density of Yt, given Yt-1,..., Yt-P, is 

When we have observed Y\ = yi,... ,Yt = yr, then the likelihood function is 

T 

t=p+1 
T 

= fYu...,Yp(yi,---,yP) /yt | Yt-i=yt-i,...,Yt-p=yt-p(yt)-

t=p+1 

Let us ignore the term / y l v . . y p (y±,..., yp) and define the conditional likelihood 

def 
L(a,/3i,...,Pp) = L(a,Pu...,l3p\Yp = yp,... ,Yi = yi) 

T 

= I I fyt \ Yt-i=yt-i,...,Yt-p=yt-P{yt)-

t=P+1 

The parameters are estimated by maximizing the conditional likelihood, and we get 

( d , FA,..., PP) = a r g m a x a / 3 i ^ l o g Z ( a , P U . . . , P P ) . 
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The logarithm of the conditional likelihood is 

T T 

log L(a, ft,...,/3P) = -)- £ loga t
2 + (2-78> 

where of is obtained from (2.77). If we assume that et has the standard normal 
distribution 

et~N( 0 ,1 ) , 

then the conditional density of Yt given Yt-1,..., Yt~p is 

< 2 7 9 > 

In the case of the Gaussian assumption (2.79), we get 

/ 2 \ 

( & J 1 , . . . J P ) = argminQi/3ij...j/3p £ ho g Cr (
2 + ^ ) . (2.80) 

£=p+l V t J 

For example, let p = 1 and a = 0. Then of — and under the Gaussian 
assumption we have to minimize 

(T-i)log/3 + i £ 
T - 1 o 

yj+i 
, 2 ' ^ yt 

and the minimizer is 
T - 1 2 

P T - I y2 
t=1 

After estimating the parameters of the ARCH model, we get an estimator for the 
conditional variance: 

Var(yt I y t _ x , . . . , Yt-P) « <rt
2 - a + fty^ + • • • + /3pyt

2__p. 

Let us analyze the S&P 500 returns data described in Section 1.6.1. Figure 2.8 
shows a sequence of ARCH(p) parameter estimates. We take lag numbers p = 
1 , . . . , 25 and fit the ARCH model for each lag value. For each lag value p we get 
the coefficient estimates (3\p\ i = 1 , . . . The 25 curves i fi\p\ i = 1 , . . . 
for p = 1 , . . . , 25, are shown in Figure 2.8. We can see that the values of the ~ Cp) 

estimates are monotonically decreasing as a function of p. The values } are also 
decreasing as a function of i, although they are not decreasing monotonically. The 
estimates of the intercepts a ^ are not shown, but these estimates are decreasing 
from d ^ = 6.6 x 10"5 for the one-lag model (p = 1) to d(

1
20) = 1.1 x 10"5 for the 

22-lag model (p = 22); after that, there are spikes—for example, ^ — 8.4 x 
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Figure 2.8 S&P 500 volatility: parameter estimates in ARCH(p) models. Shown are the 25 
curves i i — f o r p — 1 , . . . , 25, where i = 1 , . . . , p. 

2.6 APPLICATIONS IN VOLATILITY AND QUANTILE ESTIMATION 

We estimate the volatility and quantiles of the S&P 500 returns Yt using the S&P 
500 index data, described in Section 1.6.1. Before studying conditional quantile 
estimators, we set benchmarks by looking at the performance of some sequentially 
calculated quantile estimators. 

2.6.1 Benchmarks for Quantile Estimation 

Figure 1.6 shows the performance of the sequentially calculated empirical quantile 
estimator. We study now other benchmarks for quantile estimation. Quantile re-
gression was introduced in Section 1.1.6, where a quantile estimator was defined in 
(1.30), which puts 

Qp(Yt\Yt_1,Yt-2,...) = atF-1(p), 

where at is an estimator of the conditional standard deviation and F~1(p) is an 
estimator of the p-quantile of the distribution of et = Yt/at. In this section, at is 
the sequentially calculated sample standard deviation: a t is the standard deviation 
of Y\,..., Yt-i. The performance is evaluated looking at the differences p — p and 
p — p, where 

1 T 

i - YI h-ooAt](yt), 
0 t = t o + l 
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Figure 2.9 S&P 500 quantiles: Gauss and empirical residuals. The black line shows the 
performance of the quantile estimator with the Gaussian residuals and the red line shows the 
performance of the quantile estimator with the empirical residuals, (a) Functions p i->> p — p 
for p G [0.001, 0.075]. (b) Functions p p - p for p G [0.925, 0.999]. The green lines show 
level a = 0.05 fluctuation bands. 

where qt = Qp(Yt \ Yt-i, It—2? • • •)• The performance measurement is explained in 
more detail in Section 1.9.4. 

Figure 2.9 shows the performance of two quantile estimators. The first quantile 
estimator uses F~1 (p) = 1 (p), where is the distribution function of the standard 
normal distribution. The second quantile estimator takes F~l (p) to be the empirical 
quantile of Yu/cru, u = 1 , . . . , t. Panel (a) plots p p — p in the range p G 
[0.001,0.075] and panel (b) plots p ^ p-p in the range p G [0.925,0.999]. The 
black curves are for the estimator with the Gaussian residuals and the red curves 
are for the estimator with the empirical residuals. A green line is drawn at level 0, 
and it is accompanied by the level a = 0.05 fluctuation bands, defined in (1.130)-
(1.131). Figure 2.9 implies that the true distribution has heavier tails than the quantile 
estimates would indicate. The Gaussian residuals are better for central quantiles 
and the empirical residuals are better for extreme quantiles. The performance of the 
empirical quantile, shown in Figure 1.6, is similar to the performance of the empirical 
residual method for the left tail. For the right tail the empirical residual method is 
better than the empirical quantile. 

Figure 2.10 shows the performance of quantile estimators which use F " 1 ^ ) = 
\J{y — 2)/v t~l(p), where tv is the distribution function of the ^-distribution with 
v degrees of freedom, v > 2. We show the estimators for v — 4,5,6,8,10,20. 
Panel (a) plots p p — p in the range p G [0.001,0.075] and panel (b) plots 
p p — p in the range p G [0.925,0.999]. For central quantiles the large values of 
v lead to better performance but for extreme quantiles the smaller values of v lead 
to better performance. The performance of the estimator with v = 20 looks similar 
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Figure 2.10 S&P 500 quantiles: Student residuals. Shown are the performances 
of quantile estimators when the residual distribution is the standard ^-distribution with 
v = 4, 5, 6, 8,10, 20 degrees of freedom, (a) Functions p ^ p-pforp G [0.001, 0.075]. (b) 
Functions p p — p for p G [0.925, 0.999]. The green lines show level a = 0.05 fluctuation 
bands. 

to the performance of the estimator with the Gaussian residuals. When v = 5, 
the performance is similar to the performance of the estimator with the empirical 
residuals. 

The extreme tails of ^-distributions are heavier than the tails of the standard 
Gaussian distribution. To better interpret the results in Figure 2.10, let us find the 
points where the quantiles change to be larger for the standard ^-distribution. Let 
pv G (0,1) be the solution of the equation 

Figure 2.11 plots the functions v i-» pv for v G {3 ,4 , . . . ,25}. There are two 
solutions to (2.81). Panel (a) shows the solution near zero and panel (b) shows 
the solution near one. For example, when degrees of freedom is v — 12, then the 
solutions are pv = 0.0371 and pv = 0.963. This means that for a level p < 3.71%, 
the standard ^-distribution with v = 12 degrees of freedom has larger quantiles than 
the standard normal distribution. 

2.6.2 Volatility and Quantiles with the LS Regression 

We use the least squares regression to estimate volatility and quantiles with the S&P 
500 returns data, described in Section 1.6.1. Observations YT are the daily net returns 
of the S&P 500 index. Figure 2.7 shows a sequence of least squares parameter 
estimates. 

(2.81) 
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Figure 2.11 Quantiles of t-distributions compared to quantiles of normal distribution. 

Shown is the function v pv, where pv is the point where the quantile of the standard 
^-distribution with degrees of freedom v is equal to the quantile of the standard normal 
distribution. 

Figure 2.12 shows the performance of the linear least squares estimator in making 
one step ahead predictions of the squared S&P 500 returns. The performance is 
shown for the models with lags p = 1 , . . . , 15. Panel (a) shows the performance 
measured with the mean deviation error MDE^1,2\ defined in (1.124). Panel (b) 
shows the performance measured with the mean absolute ratio errors MARE^2\ 
defined in (1.127). The performance is compared to the GARCH(1,1) estimates: We 
have divided the MADE and the MARE values of the least squares estimator with 
the MADE and the MARE values of the GARCH(1,1) estimator.24 We can see that 
increasing the lag value makes the error smaller. For large lag values the MDE of 
the least squares regression is about 0.4% larger than the MDE of GARCH(1,1), and 
the MARE of the least squares regression is about 10% larger than the MARE of 
GARCH(U). 

Figure 2.13 shows the annualized volatility estimates for the lag value p = 5. We 
show the sequentially estimated values \/250 a t . 

We apply the volatility estimates to make estimates of quantiles. The quantile 
estimators are defined in (1.31)—(1.33), where estimators of the type 

Qp(Yt \Tt-1) = atF-1(p) 

are defined, and F€t is either the standard normal distribution, the standard t-
distribution with the degrees of freedom 5 and 12, or the empirical distribution 
of the residuals Yt/at. 

24GARCH estimation is introduced in Section 3.9.2. For GARCH(1,1) MDE^1'2) is 0.0602 and MARE^2) 
is 1.087. 
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Figure 2.12 S&P 500 Volatility: The performance of the least squares regression. Panel (a) 
shows the mean deviation errors (MDE^1,2^). Panel (b) shows the mean absolute ratio errors 
with the exponent 2 (MARE ( 2 )). The performance is measured for the lag values p = 
1 , . . . , 15. The errors are relative to the MDE ( 1 '2 ) and MARE ( 2 ) of the GARCH(1,1). 

1950 1960 1970 1980 1990 2000 2010 

Figure 2.13 S&P 500 volatility: The volatility estimates with the least squares regression. 
The time series \/250 a t of the annualized volatility estimates using the least squares regression 
with p = 5 lags. 
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Figure 2.14 S&P 500 quantiles: The performance of least squares quantile estimators. 
Panel (a) shows the curves p i-» p — p for p e [0.001, 0.025] and panel (b) shows the curves 
p ^ p - p for 0.975 < p < 0.999. 

Figure 2.14 shows the performance of the quantile estimators. Let p be the 
number of exceedances, defined in (1.129). Number p is the proportion of the next 
day observations that exceeded the quantile estimate. Panel (a) shows the curves 
p p — p for 0.001 < p < 0.075, and panel (b) shows the curves p i—>> p — p 
for 0.925 < p < 0.999. The black curves show the case of the standard normal 
innovations, the blue curves show the case of the standard ^-distribution with degrees 
of freedom 12, the red curves show the case of standard ^-distribution with degrees of 
freedom 5, and the dark green curves show the case of empirical residuals. A green 
line is drawn at level 0, and it is accompanied with the level a = 0.05 fluctuation 
bands, defined in (1.130)-( 1.131). 

2.6.3 Volatility with the Ridge Regression 

We analyze the S&P 500 returns data, described in Section 1.6.1. Figure 2.15 shows 
the performance of the ridge regression estimator in making one step ahead predic-
tions of the squared S&P 500 returns. The performance is shown for the models with 
lags p — 2,5,10, 20 and for the ridge parameters A = 0,100,1000. The ridge pa-
rameter A = 0 leads to the least squares regression. Panel (a) shows the performance 
measured with the mean deviation error MDE^1'2) defined in (1.124). Panel (b) 
shows the performance measured with the mean absolute ratio error MARE^2\ de-
fined in (1.127). The performance is compared with the performance of GARCH( 1,1) 
estimates: We have divided the MDE and the MARE values of the least squares esti-
mator with the MDE and the MARE values of the GARCH(1,1) estimator. GARCH 
estimation is introduced in Section 3.9.2. The black curve with the labels 1 shows the 
least squares regression, the red curve with the labels 2 shows the ridge regression 
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Figure 2.15 S&P 500 volatility: The performance of the ridge regression, (a) Mean deviation 
errors (MDE ( 1 '2 )). (b) Mean absolute ratio errors ( M A R E ^ ) . The performance is measured 
for the lag values p = 2, 5,10, 20. The black curve with the labels 1 show the least squares 
regression, the red curve with the labels 2 show the ridge regression with A = 100, and the 
green curve with the labels 3 show the ridge regression with A = 1000. The errors are relative 
to the MDE and MARE of GARCH(1,1). 

with A = 100, and the green curve with the labels 3 shows the ridge regression with 
A = 1000. We can see that for the MDE criterion the least squares regression gives 
the best results but for the MARE criterion the ridge regression with a large parameter 
A gives the best results. 

2.6.4 Volatility and Quantiles with ARCH 

We analyze the S&P 500 returns data described in Section 1.6.1. Figure 2.8 shows a 
sequence of ARCH(p) parameter estimates. 

Figure 2.16 shows the performance of the ARCH estimator in making one-step-
ahead predictions of the squared S&P 500 returns. The performance is shown for 
the models with lags p = 1 , . . . , 6. Panel (a) shows the performance measured with 
the mean absolute deviation error MDE^1,2\ defined in (1.124). Panel (b) shows 
the performance measured with the mean absolute ratio errors MARE<2) defined 
in (1.127). We have divided the MDE and the MARE values of the least squares 
estimator with the MDE and the MARE values of the GARCH(1,1) estimator. We 
can see that increasing the lag value makes the error smaller. For large lag values 
the MDE of the least squares regression is about 0.4% larger than the MDE of 
GARCH( 1,1), and the MARE of the least squares regression is about 10% larger than 
the MDE of GARCH(1,1). The first year of observations is used in to estimate the 
parameters, but the first year is not used in the performance measure. 
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Figure 2.16 S&P 500 volatility: The performance of ARCH(p). (a) Mean deviation errors 
(MDE ( 1 '2 )). (b) Mean absolute ratio errors (MARE(2^). The performance is measured for the 
lag values p — 1 , . . . , 6. The errors are relative to the MDE and MARE of GARCH(1,1). 

1950 1960 1970 1980 1990 2000 2010 

Figure 2.17 S&P 500 volatility: The volatility estimates with ARCH(5). The time series 
v /250 ot of the annualized volatility estimates using ARCH(p) with p = 5 lags. 

Figure 2.17 shows the annualized volatility estimates for the lag value p = 5. The 
estimation proceeds out-of-sample: AT is estimated using data Y i , . . . , YT-1. 

Figure 2.18 shows the performance of the quantile estimators with the curves 
p i—)> p — p and p\-> p — p, where p is the proportion of the next-day observations that 
exceeded the quantile estimate, as defined in (1.129). We apply the three estimators 
defined in (1.31)-( 1.33). Panel (a) shows the cases 0.001 < p < 0.075, and panel (b) 
shows the cases 0.925 < p < 0.999. The black curves show the case of standard 
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Figure 2.18 S&P 500 quantiles: The performance of ARCH(5) quantile estimators, (a) The 
curves p h* p - p for p G [0.001, 0.075]. (b) The curves p p - p for p G [0.925, 0.999]. 

normal innovations, the blue curves show the case of standard ^-distributed with 
degrees of freedom 12, the red curves show the case of standard ^-distributed with 
degrees of freedom 5, and the dark green curves show the case of empirical residuals. 
The level a = 0.05 fluctuation bands are shown with light green. The Gaussian 
innovations give best results overall. The results are quite similar to the results of 
least squares regression shown in Figure 2.14. 

2.7 LINEAR CLASSIFIERS 

In the two-class case we call a classifier g : Hd {0,1} linear, if the boundary of 
the classification sets is linear: 

for some a G R and G R d . In the multiclass case, when g : Hd {0 , . . . , K — 1}, 
we call a classifier linear if the sets {x G Hd : g(x) = k}, k = 0 , . . . , K — 1, are 
intersections of half spaces. 

Linear Regression-Based Classifiers The regression-based classifier g was 
defined in (1.78), where 

g{x) = argma *k=o,...,K-iPk(x), 

and pk(x) is an estimator of the probability P(Y = k \ X = x). We can write, as in 

0, i f a + ^ z ^ O , 

1, i f a + / 3 , x > 0 , 

(1.80), 
P(Y = k | X = x) = E (I{k} (Y)\X = x), 
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and use linear regression with data (Xi, I{ky(Yi)), i = 1 , . . . ,n, to estimate the 
conditional expectations. Now, 

g(x) = argmaxfc=0 K_x ak + P'kx 

where ak and (3k are the estimated linear regression coefficients. Thus we have 
obtained a linear classifier. The linear regression based classifier can suffer from the 
masking problem, as explained in Hastie et al. (2001, p. 105). 

Density-Based Classifiers The density-based classifier was defined in (1.83). 
The population version of the classifier is 

g(x) = argmaxk=0 j<-_1pkfx\Y=k(x), 

where fx\Y=k ls the class density function and pk = P(Y = k) is the class prior 
probability. 

In the quadratic discriminant analysis it is assumed that the class densities are 
multivariate normal densities: 

f x i Y=k{x) = i £ * r i / 2 0 (o* - -

for A: = 0, where <j>(t) = (27r)~d/2 exp{-£/2}, fik G R d is the mean, and 
Efc is the d x d covariance matrix. The empirical classifier is obtained by estimating 
[ik and Ufc, typically using sample means and sample covariance matrices. Now we 
have that 

g(x) = a.rgmaxk=0 jK_15k(x), (2.82) 

where 
5k(x) = 2 1 o g p k - log( |E f c | ) - ( x - Hk)'^1^ - fjLk). 

This discrimination rule leads to quadratic boundaries of classification sets. 
In the linear discriminant analysis, it is assumed that the class densities are multi-

variate normal densities with equal covariance matrices. The classification function 
is defined by (2.82), but the discriminant function is 

Sk(x) = 21ogpfc - (x- /jJk)
/Tl~

1(x - fjLk), 

where E is the common covariance matrix of the class distributions. 
In the two-class case we have 

P0JX\Y=0(X) 

where 
b = E _ 1 ( / i i fjbo), 

c = ~ (/XI + / i o / S - 1 ^ ! - fJLo) + log — , 
2 PO 
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and E is the common covariance matrix. Thus the classification set in the two class 
case has a linear boundary, since we have 

{x G Hd : pifX\Y=i(x) > Vofx\Y=o(x)} = { * G R d : b ' x + c> 0}. 

In the multiclass case the decision sets are intersections of half spaces, since all the 
pairwise decision boundaries are linear. 

Empirical Risk Minimization-Based Linear Classifiers A classifier based 
on empirical risk minimization is defined in (1.84) as 

g = argmin gegjn(g)^ (2.83) 

where Q is a class of functions g : Hd {0 , . . . , if — 1} and 7n(g) is the empirical 
error of classifier g. We get a linear classifier if the class Q of functions is chosen 
suitably. For example, define 

a = {<7( - ,6>) :0eR^ d + 1 >} , (2.84) 

where 

g(x,0) = a.rgmaxk=1j<_15k(x, #), 

6k(x,0) = ak - (x - iikyt>~l(x - fjbk), 

and E is the sample covariance matrix, calculated using the complete learning sample. 
This leads to an optimization problem with the number of parameters K(d+ 1). We 
can reduce the number of parameters by defining 

6k(x,0) = ak — (x — fLk)
,Tl~

1(x — (ik), 

6 = ( A I , . . . ,CXK), 

where £ik is the sample mean calculated from the class k learning sample. Now there 
are only K parameters over which the optimization is done in (2.83). The reduction 
was suggested in Hastie et al. (2001, p. 110). 



CHAPTER 3 

KERNEL METHODS AND EXTENSIONS 

We use the term "local averaging" to refer to a method of regression function 
estimation where the estimator can be written as 

n 

f (x ) = Y,P i (x )Yu x e R d , (3.1) 
i=1 

where Pi(x) > 0, Y17=i Pi(x) = anc* the weights satisfy the properties that Pi(x) 
is close to zero when Xi is distant from x and Pi(x) is large when Xi is near x. 
The estimator f(x) of regression function is a weighted average of i = 1 , . . . , n, 
where more weight is given to the observations which are such that Xi is close to x. 
Regressogram, kernel estimator, and nearest-neighbor estimator are special cases of 
local averaging. Local polynomial estimators can also be considered to be in the class 
of local averaging estimators, but we discuss local linear estimators in Section 5.2, 
where also local likelihood estimators are discussed. We can motivate local averaging 
with the following two observations. 

First, a local average can be obtained as a modification of interpolation. Let us first 
consider the problem where we want to estimate the value of a function / : H d —> R 
at point x G R d , when we have available only the values f(xi),..., f(xn), for some 
collection of points xi,...,xn G Hd. Several interpolation methods, including 

Multivariate Nonparametric Regression and Visualization. By Jussi Klemela 
Copyright © 2014 John Wiley & Sons, Inc. 

1 2 7 



1 2 8 LINEAR METHODS AND EXTENSIONS 

piecewise constant and polynomial interpolation of the values f(xi),..., f(xn), can 
be used to obtain an approximation of the value f(x) at any point x G R d . For 
example, we can estimate 

f(x) « f{xi(x)), 

where i(x) is the index of observation closest to x: 

\\x-xi(z)\\ = m i n { | | x - Xi\\ :i = l,...,n}. 

In the setting of regression function estimation, we do not observe the exact values 
of the function, but only values with are corrupted with noise: 

Yi = f ( x i ) + e i ? 

where e*, i — 1 , . . . , n, are random errors. We could choose as the estimate the value 
Yi corresponding to the Xi that is closest to x: 

f(x) « Yi{x), 

where i(x) is as before, but this estimator would contain too much random variation 
since the value of the estimator depends on one error term e ^ ) . It is a better idea to 
take a local average over several observations as in (3.1), so that the random variation 
is diminished by averaging over several error terms. 

Second, the estimator (3.1) can be obtained as an extension of the least squares 
method. Namely, (3.1) is the solution of the locally weighted least squares minimiza-
tion problem: 

n 

f(x) = a rgmin 0 6 R ^p i ( a ; ) (y r i - 0)2. (3.2) 
i=1 

Note that the taking Pi(x) = 1/n leads to the arithmetic average 

1 71 

n i=1 

Local empirical risk is studied in Section 5.2.1, where the estimator defined in (3.2) 
is called local constant estimator and extended to local linear or quadratic estimators. 

Section 3.1 defines a regressogram. Section 3.2 covers kernel estimators. Sec-
tions 3.3-3.10 discuss the nearest-neighbor estimator, classification with local aver-
aging, median smoothing, conditional density and distribution function estimation, 
conditional quantile, variance, and covariance estimation. 

Applications to risk management are given in Section 3.11, where the conditional 
variance, covariance, and quantile estimation with the S&P 500 return data is con-
sidered. Note that we already studied in Section 3.9.2 the GARCH(1,1) fitting with 
the S&P 500 return data and in Section 3.9.3 the moving average estimator for the 
S&P 500 return data. Applications to portfolio selection are given in Section 3.12, 
where regression function estimation with utility maximization, classification, and 
regression function estimation with the Makowitz criterion are studied. 
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3.1 REGRESSOGRAM 

Regressograms are one of the simplest nonparametric estimators of a regression 
function. A regressogram is a piecewise constant regression function estimator. The 
X-observation space is covered by disjoint bins, and the value of a regressogram 
in a bin is the average of the Y-values for the X-values inside that bin. The bins 
are typically rectangles but they can also be hexagons, for example. The name 
"regressogram" was coined by Tukey (1961). The name is related to "histogram," 
which denotes a piecewise constant estimator of a density function, analogous to a 
regressogram. 

A regressogram, based on data (Xi, Y i ) , . . . , (Xn, Yn), is determined by a col-
lection A\,..., Ajy c Rd of sets such that they are disjoint and their union covers 
the observed explanatory variables: 

1. Ai n Aj = 0, when i ± j , 

2. X n } c U j L i A j . 

The regressogram is defined as 

fn(x) = YAJ, if X E Aj, 

where YAJ is the average of those response variables whose corresponding explana-
tory variable is in Aj. We can write, using the notation IA(X) — 1 if x G A and 
IA(x) = Oiix i A, 

Y A = — T Y I I A ( X I ) , (3 .3 ) 

t l 

where HA is the number of explanatory variables inside A: 

n 

riA = y^lA(Xj). 
2=1 

The definition of a regressogram can be written as 

N 

fn(x,P) = Y ^ I A ^ X ) = Y Y A I A ( X ) , X G KD, (3 .4 ) 

j=i Aer 

where we have also made the dependence of the regressogram on the partition 
V = {A\, ...,AN} explicit. Changing the order of summation in (3 .4) , we get 

N / 1 n \ n 

= E E ^ ^ ^ = E^^) 
j = i \nAi »=i / i=i 

where 
N 1 1 

Pi(x) = V\ I a, (Xi)IAj Or) = IAx (Xi), (3.5) 
fr[ nAj

 J nAx 
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and Ax e {Ai,..., AN} is such that x G Ax. (By symmetry we can as well write 
Pi(x) = Iax (x)/nAx- •) Thus regressogram can be written as a local average as in 
(3.1) that have the form 

n 

FN{x) = YPI(X)Yi> 
i=1 

where pi(x) = Pi(x,Xi,... ,Xn) > 0 and YJi=iPi(x) = T h e weights pi{x) 
satisfy the property that the weight pi (x) is large when Xi is close to x and the weight 
Pi(x) is small when Xi is far away from x. 

A regressogram is completely determined by defining a partition of the space of 
explanatory variables. We discuss only partitions made of rectangles. We distinguish 
between regular and irregular partitions. In the one-dimensional case a regular 
partition is a collection of intervals of length h and an irregular partition is a collection 
of intervals of differing lengths. In the multivariate case we can distinguish between 
isotropic and anisotropic regular partitions. An isotropic regular partition is a partition 
where all rectangles have the same side lengths h and thus the partition is a collection 
of cubes of volume hd (cubic partition). An anisotropic regular partition is a partition 
where the side lengths of the rectangles are the same in one direction but differ 
across dimensions, having side lengths hi,..., hd and volumes hi • • • hd. In the 
multivariate case an irregular partition consists of rectangles, where each rectangle 
can have a different volume and shape. 

Regular partitions depend on the data through the smoothing parameter h, or 
in the anisotropic case through smoothing parameters h i , . . . , hd. The smoothing 
parameters can be chosen by cross-validation or a plug-in method, for example. 
Irregular partitions depend more heavily on the data, because the shapes and volumes 
of the sets of the partition are chosen using data. The methods for irregular partition 
selection are discussed in Section 5.5. 

3.2 KERNEL ESTIMATOR 

We define the kernel regression estimate, compare it to the regressogram, define 
Gasser-Miiller and Priestley-Chao estimators, define moving averages, consider 
kernel estimation with locally stationary data, mention the curse of dimensionality, 
discuss the smoothing parameter selection, discuss the possible definitions of the 
effective sample size used by a kernel estimator, define the kernel estimator of partial 
derivatives, and give pointwise confidence intervals for the kernel estimator. 

3.2.1 Definition of the Kernel Regression Estimator 

The kernel estimator of the regression function is defined as 

n 

f ( x ) = 
i=1 

(3.6) 
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(a) (b) 

Figure 3.1 Kernel estimates of a linearfunction, (a) The data and the true regression function 
(red), (b) Kernel estimators of the regression function with a sequence h = 0 . 02 , . . . , 5 of 
smoothing parameters. 

where 

Pi(x) = ^ r f ^ J , i = 1 , . . . , n, (3.7) 
l^i=1Kh(x - Xi) 

K : Rd R is the kernel function, Kh(x) = K(x/h)/hd, and h > 0 is the 
smoothing parameter. The kernel estimator is called also a Nadaraya-Watson esti-
mator, since it was defined by Nadaraya (1964) and Watson (1964). 

Figure 3.1 illustrates the effect of the smoothing parameter in estimating a one-
dimensional linear regression function f(x) = 2x. The data (Xi, Y i ) , . . . , (Xni Yn) 
are i.i.d. with n = 200, and Yt = f(Xi) + ei9 where e* ~ JV(0,1), Xi ~ N{0,1), 
and Xi and e* are independent. Panel (a) shows the true regression function with the 
red line and shows the data with black bullets. Panel (b) shows the kernel estimators 
of / with smoothing parameters h = 0.02,0.02004,.. . , 2.7, 5.25 The kernel is the 
standard Gaussian density function. When h —> oo, the estimate is converging to 
the constant function whose value is always the arithmetic mean Y: f(x) = Y. For 
small h the estimate is a nonsmooth function. 

Figure 3.2 illustrates the effect of the smoothing parameter in estimating a 
quadratic one-dimensional function. The true regression function is f(x) = x2, 
Yi - f(Xi) + €i, i = 1 , . . . , n = 200, where e* ~ N(0,1), and Xi ~ AT(0,1), 
where Xi and e* are independent. Panel (a) shows the true regression function and 
the data. Panel (b) shows the kernel estimators of / for the same sequence of smooth-

25We have defined the sequence of N smoothing parameters on the interval [hi, /12] by first defining 
grid points gi = hi + i5 with equal step sizes 8 = (/12 — hi)/{N — 1), i = 0 , . . . , N — 1. Then 
hi = alQ9i + b, where a = (h2 - hi)/( 10h2 - 10^1) and b = hi - a l 0 h i . 



Figure 3.2 Kernel estimates of a quadratic function, (a) The data and the true regression 
function, (b) Kernel estimators of the regression function with a sequence h = 0.02, . . . , 5 of 
smoothing parameters. 

ing parameters as in Figure 3.1, when the kernel is the standard Gaussian density 
function. 

Figure 3.3 illustrates the weights pt(x) in the case of one-dimensional explanatory 
variable X. We have used the standard Gaussian kernel and smoothing parame-
ter h = 0.2. Panel (a) shows a perspective plot of the function (x,Xi) Pi(x), 
where X\,..., Xn is a simulated sample of size n = 200 from the uniform dis-
tribution on [—1,1]. Panel (b) shows the six functions x Pi(x) for the choices 
Xi = — 1, — 0 .5 , . . . , 1 . We can compare the kernel weights to the linear weights in 
Figure 2.1. We can see that the kernel weights are local: The weight pi (x) is positive 
only for x in a neighborhood of Xi. In contrast, the linear weights k(x) are nonzero 
for almost all x. 

3.2.2 Comparison to the Regressogram 

When if = /[_i,i]d, we obtain 

Kh(x - Xi) = h~d IRh{x)(Xi), 

where 

Rh{x) = [x — h, x + h] — [xi — h, x\ -f h] x • • • x [xd — h, Xd + h}. 

Thus, 

Pi(x) = IRh{x)(Xi), 
nRh{x) 

(3.8) 
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x 

(a) (b) 

Figure 3.3 Weights in kernel regression, (a) The function ( x , X i ) i-» pi(x). (b) The six 
slices x i — p i ( x ) for the choices Xi — — 1, —0.5,. . . , 1. 

where 

n 

i=1 

is the number of observations Xi in Rh(x). The weights in (3.8) look similar to the 
weights of regressogram in (3.5),. However, there is an important difference. 

The kernel estimator with the uniform kernel can be written as 

f ( x ) = Y

Rh{x)

, (3.9) 

where 

YR = — V Yi IR(Xi), nR = #{Xi € R}. 
n R t i 

In contrast, regressogram is defined by 

F(X) — YRX, (3.10) 

where Rx is the bin containing x. Thus the difference between the kernel estimator 
with the uniform kernel and a regressogram is that in the regressogram the average is 
taken over the rectangle Rx which is the rectangle R in the partition such that x G R, 
whereas in the kernel estimator the average is taken over the rectangle Rh (x) which is 
defined as the rectangle whose center is x. Thus kernel estimator is a moving average, 
and regressogram takes averages over a fixed partition. In the case of a regressogram, 
it can happen that x is close to the boundary of Rx, and it is better to use a moving 
average over those values of the response variable where the corresponding points 
of the explanatory variables are in a symmetric neighborhood of x, as is done when 
using a kernel estimator. 
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3.2.3 Gasser-Muller and Priestley-Chao Estimators 

Gasser-Miiller and Priestley-Chao weights are an alternative in the one-dimensional 
case to the Nadaraya-Watson weights in (3.7). Now we assume that Xi E R. These 
estimators are traditionally used in the case of fixed design regression. 

In the Gasser-Miiller estimator we use the definition (3.6) but define the weights 
as 

where we assume that the observations are sorted so that X\ < • • • < Xn and denote 
Si = (Xi + Xi+1)/2 for i = 1 , . . . , n — 1. If it is known that X\,..., Xn E [a, b], 
then so = a and sn = b, but we can also take s\ = — oo, sn = oo. This estimator 
was defined in Gasser & Miiller (1979). See also Gasser & Miiller (1984). 

In the Priestley-Chao estimator, we take the definition (3.6) but define the weights 
as 

where we assume that the observations are sorted so that X\ < • • • < Xn and Xo — a 
when it is assumed that X\,..., Xn E [a, b]. This estimator was defined in Priestley 
& Chao (1972). 

3.2.4 Moving Averages 

Moving averages can be used in time-space smoothing or in time-space prediction. 
Time-space smoothing and prediction are done using regression techniques with the 
time parameter as the explanatory variable, as explained in (1.48). The underlying 
model is typically a signal with noise model of the type Yt = fit + &ttt> 

Two-sided moving averages are used in time-space smoothing, and one-sided 
moving averages are used in time-space prediction. One-sided moving averages can 
also be used to derive an explanatory variable to be used in state-space smoothing; 
see, for example, Franke et al. (2004, Section 18.4). 

Two-Sided Moving Average Let us consider time series observations Yi , . . . , YT . 
We choose the explanatory variable Xt = t. When the kernel is K{x) = i"[-i,i] (x), 
then the kernel estimator is the moving average 

1Si 
Pi(x) = / Kh{x-u)du, 

pi(x) = (Xi-Xi-1)Kh(x-Xi), (3.11) 

h 

i= — h 

where h = 0 ,1 ,2 , . . . . We get a wider class of moving averages by choosing a 
general kernel function K : R R and smoothing parameter h > 0. The moving 
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average26 is 
T 

m = ^Pi(t)Yi, ( 3 .12 ) 
2=1 

where 
K{{t-i)/h) 

pAt) = —7p . ( 3 .13 ) 

The smoothing parameter h > 0 controls the length of the smoothing neighborhood. 

One-Sided Moving Average In the time series setting, we need to use one-sided 
moving averages to make predictions. This can be obtained by choosing the kernel 
7[0,i](x). Now, 

m = £ 
* + - i=t — h 

where h = 0,1, 2, — To get a more flexible class of moving averages, we use a 
general kernel function K : [0, oo) R and smoothing parameter h > 0. We can 
take K(x) = e x p ( — f o r example.27 The one-sided moving average28 is 

t 

f(t) = J2Pi(t)Yi, (3 -14) 
i=1 

where 
= w - i ) , h ) 

Exponential Moving Average The exponential moving average is a one-sided 
moving average obtained by taking K(x) = exp(-x) Z[o,oo) (#) and 

1 
h 

log 7 ' 

where 0 < 7 < 1. Now the estimator (3.14) is equal to 

1 - 7 
f i t ) = 52pi(t)Yi = (3.16) 

2=1 ' 2=1 

26The 2k + 1-period moving average with the period number k = 0 , 1 , . . . is defined as f{t) = 

EHt-k PiW w h e r e =
 K((t - Y%Lt-k - T h e SteP n u m b e r k i s t a k e n 

to be large enough so that the moving average is taken over a large enough number of observations but we 
do not use k as a smoothing parameter. For example, if we have observed time series Y\,..., YT, and 
we want to calculate f(t), we can take k = min{£ — 1, T — t}. 
27Note that Gijbels, Pope & Wand (1999) use half-kernels, which are kernel functions that are zero in 
their positive arguments, like K(x) = exp(x ) / (_ o o 0] 
28The fc-period moving average with the period number k = 0 , 1 , . . . is defined by f ( t ) = 

E U t - k Pitt) yi> w h e r e P< W = K ( ( t ~ {)lh)l E ) = t - k K((t ~ j)/h)- F o r example, if we have 
observed time series Z\,..., Zt, and we want to calculate f ( t ) , it is natural to take k = t — 1. 
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Indeed, now 7 = exp(—1/h) and 

Using the summation formula of geometric series,29 we obtain 

s,t 

£ 
1 1 ryt ryt-i = i 1_ 

1 - 7 ' 

We get a slightly different exponential moving average by making the recursive 
definition 

ma(*) = (1 - 7 )Y t + 7ma(t - 1), (3.17) 

where 0 < 7 < 1. This leads to 
t 

i=1 

when the moving average is calculated from YT,..., Y\, and we choose the initial 
value ma(l) = (1 — 7)Yi. 

Smoothing parameter selection for exponential smoothing has been considered in 
Gijbels et al. (1999). 

3.2.5 Locally Stationary Data 

Let us consider time series (Xt, Yt), t — 0, ±1, ±2 , . . . . Strong stationarity means 
that sequence (Xt, YJ), . . . , (Xt+h, Yt+h) is identically distributed as the sequence 
(Xu, Yu),..., (Xu+h, Yu+h)* f ° r e a c h t,u,h £ Z. A locally stationary time series 
is such that the distribution of (Xt, I t ) , . . . , (Xt+h, Yt-\-h) is close to the distribution 
of (Xu, Yu),..., (Xu+h, Yu+h), if t and u are close to each other. 

Locally Stationary AR(1) Model Let Y i , . . . , YT be an observed sequence from 
the model 

Y t = P t Y t - i + c t , t = l , . . . , T , ( 3 . 1 8 ) 

where Y0 = 0, pt = P(t/T), f3 : [0,1] ^ R, and e i , . . . , eT are i.i.d. A^(0,1). This 
differs from the usual autoregressive model so that the coefficient f3t is changing 
through time. We choose (3(x) = x1!2. This type of nonstationary time series has 
been considered, for example, in Dahlhaus (1997). 

Figure 3.4 illustrates estimation with the data from model (3.18). Panel (a) shows 
the simulated time series with T = 1000 observations. Panel (b) shows the sequence 
Pt of the true coefficients with the black curve. The sequential estimates 

Y!i=2YiYi-i R q = 
V 2 

2 Ii-1 

9For 0 < r < 1, we have ^ = 0 r j = i 1 ~ r ' t ) / ( 1 ~ r)• 
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(a) (b) 

Figure 3.4 Locally stationary data, (a) A realization of a locally stationary AR(1) time 
series with the model (3.18). (b) The true coefficients are shown with the black curve, the 
sequentially estimated coefficients are shown with the blue curve, and the moving average 
estimates are shown with the red curve. 

are shown with the blue curve. The sequential estimates are the least squares esti-
mators defined in (2.10), but now with the data (Y*_i, Yi), i = 2 , . . . , t. The moving 
average estimates 

oma _ 2 Pitt) YjYj-\ 

are shown with the red curve, where the weights Pi(t) are defined in (3.15) with the 
kernel function K(x) = e x p ( — x ) I [ 0 ^ ( x ) . 

Figure 3.5 shows the sequence of true regression curves and the moving average 
estimates of the regression curves. Panel (a) shows the true regression curves ft (x) = 
/3tx, x e [-9,9]. The curves are shown for the times t G {100,150,200,.. . , 950}. 
Panel (b) shows the estimated regression curves ft{x) = fi™ax, when the moving 
average method is used to estimate the sequence of coefficients. 

Combined Time-Space and State-Space Smoothing Let 

Yt = ft(Xt) + eu * = 1 , . . . , T , (3.19) 

where ft : Hd R are functions that are changing smoothly with time. We have now 
data (Xi, Y i ) , . . . , (XT, YT). It makes sense to combine time space smoothing and 
state space smoothing. We will give more weight to the closest in time observations. 
The estimator is 

t 

i=1 
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where the weights have the form 

Wl{X't} ~ EU K((x - X3)/h) L((t - j)/g)' * " • • • • 

where K : R d —> R, L : R —> R are kernel functions and h > 0, g > 0 are 
smoothing parameters. Reasonable choices for kernel function L : R —» R can be 
L(t) = J [ 0 , i ] ( t ) , = (1 - or = e x p ( - t f c ) / [ 0 | O o ) W , w h e r e 

fc = 1, 2, — 
Let us illustrate the locally stationary nonlinear regression model (3.19). Note that 

the locally stationary AR(1) model (3.18) is obtained as a special case by choosing 
Xt = Yt-I and ft(x) = P{t/T) x. We choose now 

ft(x) = 0.5 <t>(x- + 0.5 </>(x - , 

where = - 2 t / T , ^ — 2t/T, and (j) is the density function of the standard 
normal distribution. The design variables Xt are i.i.d. iV(0,1) and the errors et are 
i.i.d. iV(0,0.12). 

Figure 3.6(a) shows data simulated from the model (3.19) with the sample size 
T — 1000. Panel (b) shows the sequence of true regression functions ft for the times 
t e {100,150, 200 , . . . , 950}. The highest unimodal curve is at time t = 100 and 
the lower two modal curve is at time t = 950. 

Figure 3.7 shows the estimated regression functions in the locally stationary non-
linear regression model (3.19). Panel (a) shows the sequential estimates 

/ r w -
i=1 

Figure 3.5 Locally stationary estimation. (a) thesequence of true regression functions in 
the locally stationary AR(1) model (3.18) (b the sequence of estimated regression functions)
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Figure 3.6 Locally stationary data from a nonlinear model, (a) A realization from a locally 
stationary nonlinear regression model (3.19). (b) The sequence of true regression functions f t . 

200 400 600 800 1000 

Figure 3.7 Locally stationary estimation in a nonlinear model, (a) The sequence of 
sequential state-space smoothing estimates / t

s e q . (b) The sequence of state-space smoothing 
and time-space smoothing combining estimates f t . 

where Pi(x) are the kernel weights (3.7) with the standard Gaussian kernel and the 
smoothing parameter h is 0.5. Panel (b) shows the state-space smoothing and time-
space smoothing combining estimates ft defined in (3.20), when K is the standard 
Gaussian kernel, L is the exponential kernel, h = 0.5, and g = 50. 
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3.2.6 Curse of Dimensionality 

Let us consider the case where the kernel function is chosen as K (x) = /[_ i/2,i/2]d(x)-
Then the support of the scaled kernel function Kh is [—h/2, h/2]d, and this support 
has volume hd. When the explanatory variable has uniform distribution on [0, l]d, 
then the number of observations in the support of Kh is typically n-h d . For example, 
when n = 1000, h = 0.1, and d — 3, then there is typically one observation in the 
support of Kh • In general, local neighborhoods are almost empty in high-dimensional 
spaces, and thus kernel estimators are not efficient in high-dimensional spaces. 

Bellman (1961) coined the phrase "curse of dimensionality" while discussing the 
computational complexity in optimization over many dimensions. Simonoff (1996) 
gives a detailed discussion of the concept of the curse of dimensionality. 

3.2.7 Smoothing Parameter Selection 

The kernel estimator f — fh depends on the smoothing parameter h > 0. We can 
use data-based methods for choosing the smoothing parameter. 

Cross-Validation Cross-validation was defined in (1.116). In cross-validation 
the smoothing parameter h > 0 is chosen which minimizes the empirical mean 
integrated squared error 

i n 

MISEn(h) = - Y l ( Y i - fh,-i(Xi 
n V n 

2=1 

where fh,-i is the leave-one-out kernel estimator. The leave-one-out kernel estimator 
is otherwise similar to the kernel estimator, but it is calculated with the data where 
the ith observation is removed. The leave-one-out kernel estimator is defined as 

n 

fh-i(x) = Y^ Pj,~i(X)YJi 

where 

Pj-i(x) = v^n , v j = l , . . . , n , j ^ i . 

Note that the smoothing parameter cannot be chosen as a minimizer of the sum of 

the squared residuals n~1 XlILi — A P Q ) > because this quantity can be made 

arbitrarily small by letting h i 0. The mean integrated squared error was defined in 

(1.113) as 

MISE(h) = E J^ (A(x) - f{x)) 2 fx{x) dx. 

The quantity MISEn(h) is an unbiased estimator of MISE(ft). 
We can write the empirical mean integrated squared error as 

1 n 2 
MISEn(/i) = - ^ ( Y i - f h i X i ) ) (1 -Pi(Xi))-2. (3.21) 

i—1 
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Indeed, 
2 

MISE 
n 

2 / Yj - fh,-i{Xj) 

V Y i - U X i ) ( 

W = I E (Y' " 
and 

- _ ^ E j P j ( ^ ) - E j PjiXiW 

Yz - ft. <(A',) - E , v , f t . 

* ft(.V,) - ft(A',)>) ' ' 

because E ^ f t ( ^ i ) = 1 

Generalized Cross-Validation Let us write the cross-validation criterion (3.21) 
as 

1 n 2 
MISEn(h) = - (Yi ~ h(Xi)) Pen (p i (X i ) ) , 

2=1 

where Pen(iz) = (1 — The generalized cross-validation criterion is obtained 
by replacing pi(Xi) with the average n~l Y17=I Pi(Xi)- The generalized cross-
validation criterion is 

GCV(h) = SSR(h) x Pen 

where Pen(w) = (1 — u ) - 2 , 

n 2 

V ( Y - f h ( X i ) S 

n 

1 n 

SSR{h) = - Y j ( Y i - fh{X, 
n V 

2=1 

and n 

£> = 2 p i ( X i ) . (3.22) 
2=1 

Ruppert et al. (2003, Section 5.3.2) give an example which suggests that cross-
validation and generalized cross-validation are typically close to each other. 

We can interpret D = J^ILi Pi(Xi) as analogous to the number K of the param-
eters in the linear model, as was noted in Ruppert et al. (2003, Section 2.5.2). We 
observed in (2.11) that when f u n is the linear regression estimator, then 

flin(x) = Y j i i x ) * , 
2=1 

where k(x) = X-{XfX)~1x and X = (Xi,..., Xn)' is the n x K matrix of the 
observed values of the explanatory variables. It holds that 

n 
YJk{Xl) = K. (3.23) 
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Indeed, we can show (3.23) as follows. We have that li(Xi) = X^X'X)-1 X{. 
Then, 

n 

= t r (X(X / X)" 1 X / ) - t r (X / X(X / X) _ 1 ) = t r ( I K ) = K. 
2=1 

We can consider other penalizing functions Pen : (0, oo) —>• R than Pen(u) — 
(1 — u)~2. Note that for small u, we have 

(1 - u)~2 w 1 + 2u « exp(2u). 

The choice Pen(u) = 1 + 2u is related to Mallows's Cp criterion, defined in (2.48). 
When we choose Pen(u) = 1 + 2u, then 

GCV(ft) = SSR(ft) (1 + 2 n ~ l D ) = SSR(h) + 2<J2L>, (3.24) 

where we denote a 2 — n_1SSR(/i). The generalized cross-validation criterion in 
(3.24) and the Mallows's Cp criterion in (2.48) are similar expressions. The estimators 
<r2 and d-p both estimate the error variance, although the estimators are different. By 
comparing (3.22) and (3.23), we can claim that D and K both express the number of 
parameters in the model. 

The choice Pen(u) = exp(2u) is related to Akaike's information criterion, defined 
in (2.49). When we choose Pen(?x) = exp(2u), then 

log GCV(ft) = log SSR(ft) + 2n~lD. 

3.2.8 Effective Sample Size 

In the case of a regressogram, as defined in (3.4), and in the case of a nearest 
neighborhood estimator, as defined in (3.29), it is easy to determine how many 
observations are used in the local average. In these cases the weights Pi(x) are either 
zero or a positive constant, the same for all observations i = 1 , . . . , n. Thus we know 
how many observations have an influence on the local average. In the case of a kernel 
estimator, it is not straightforward to characterize how many observations have an 
influence on the local average. For the kernel estimator with a nonnegative kernel, 
the only constraints that the weights satisfy are 0 < Pi(x) < 1 and X^ILi Pi(x) ~ 1-
When the kernel function has an infinite support, as in the case of the Gaussian kernel, 
the weights are positive for all observations. However, a Gaussian kernel has tails 
that are so light that the effective number of observations used in the estimator is 
much smaller than the total number of observations. 

We mention three heuristic methods to measure the effective sample size. Variance 
and entropy base measures in (3.25) and (3.26) can be used for any local averaging 
estimator, but the equivalent kernel based measure in (3.27) can be used only for the 
kernel regression estimator. 
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Variance and Entropy If Yx are i.i.d. with Var(y?;) = cr2, then 

Var ( = a 2 f > 2 ( x ) . 
\i=1 / 2 = 1 

Thus it is natural to measure the effective number of observations using the Euclidean 
norm of the vector (pi(x),... ,pn(x)): 

-l 

nvar(x) = (j^PiMj ' (3'25) 

We have 1 < n(x) < n. When pi{x) = 1 only for one i G { l , . . . , n } , then 
nvar{x) = 1 and the weights are maximally concentrated (the effective number of 
observations is the smallest possible). When Pi(x) = n~l for all i = 1 , . . . ,n, 
then nvar(x) = n and the weights are maximally diffused (the effective number of 
observations is the largest possible). 

We can also use the entropy and define 

rient(x) = e x p | - ^ p i ( a ; ) l o g e p i ( a ; ) | , (3.26) 

where Y17=i Pi(x)^°&ePi(x) entropy. When pi(x) = 1 only for one i G 
{1, . . . then the entropy is 0 and nent(x) = 1. When pi{x) = n~l for all 
i = 1 , . . . , n, then the entropy is loge n and nent(x) = n. 

Equivalent Kernel Theory We present the equivalent kernel theory for the one-
dimensional kernel estimators. Fan & Yao (2005, Section 5.4), suggest that the 
kernel K2 using the bandwidth /i2 performs nearly the same as the kernel K\ using 
the bandwidth 

where 
- 2 / 5 

, 2 / 5 a{K)=(^J u2K{u)du^j \ \ K \ \ t 

This follows because the asymptotically optimal bandwidth, minimizing the mean 
integrated squared error, is 

hopt = a(K)\\f"\\-2/5n-1/5, 

when the unknown regression function / is twice differentiable. 
The kernel estimator with kernel 

Kl(x) = J[-l/2,l/2](z) 
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and bandwidth h\ uses as many observations as occur in the interval [x — h\/2, x + 
hi/2}. The mapping Nx : (0, oo) -> {1, . . . , n}, defined by 

71 

2=1 

gives the number of observations in the interval [x — h\/2,x + h\/2]. Thus kernel 
estimator with kernel K2 and bandwidth uses 

( 32 /5 \ 

n k e r ( x ) = Nx ( h2J (3.27
) 

observations, because a (Ki ) = 32/5 = 1.551.30 

Effective Sample Size for Time Series Data Let us study the three ways to 
define the effective sample size in the case of time-space smoothing. Let us assume 
to have time series Z\,..., ZT and calculate the effective sample size when we make 
one-sided exponential moving average at time T. The three methods of calculating 
the effective sample size are defined in (3.25), (3.26), and (3.27). The exponential 
moving average is defined in (3.16). 

The smoothing parameter h > 0 is replaced by the coefficient 0 < 7 < 1, which 
are related as h = — l/log(7). The variance-based effective sample size (3.25) 
gives 

m - i ± I 

The entropy-based effective sample size nent(T), defined in (3.26), does not have 
such closed form expression but we can calculate it numerically. 

Let us consider time series data and the one-sided moving average defined in 
(3.14). Let us consider the kernel 

Ki(x) = / [ 0,1] ( a ) . 

We have, as before, that a(K 1) = 32 /5 = 1.551846. For the time series data 
Z\,..., ZT we have that 

T 

NT(hi) = J2IlT-hi,T](t) ~ hi, 

t=1 

for each t = 1,... ,T. Thus, for the series data the effective sample size is 

3 2 / 5 
Kker = (Tr x h2-

a(K2) 

30For K = /[-1/2.1/2] f-oo K2 = 1, and f ^ u>K{u) du = 1/3. 
31 We have that 7 2 ( t - i ) = i 1 ~ 7 2 T ) / ( ! - 72)-
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For example, let us choose K2(x) = e x p ( — N o w a(K2) = 2 3/5 = 
0.659754.32 

The following table gives the effective sample sizes nvar nent, and riker for several 
values of 7 and h = — 1/ log(7). Note that nvar and nent depend on the sample size 
T, whereas riker does not depend on T. For a small sample size it can happen that 
riker > T. We have used T = 1000 in the table. Fan & Gu (2003, Table 1) shows a 
similar table for 7 and riker-

7 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 
ft 9.5 10.6 12.0 13.8 16.2 19.5 24.5 32.8 49.5 99.5 

rivar 19 21 24 28 32 39 49 66 99 199 

Tlent 26 29 33 37 44 53 67 89 135 270 

f^ker 22 25 28 32 38 46 58 77 116 234 

3.2.9 Kernel Estimator of Partial Derivatives 

Let f(x) = E(Y | X = x), f : Kd —» R, be the conditional expectation and let us 
denote its partial derivatives by 

Dkf(x) = /(*), x e R d , k e { 1 , . . . , d}. 
OXk 

We can estimate the partial derivatives by taking partial derivatives of a kernel 
estimator. Thus we define the estimator of a partial derivative of a regression function 
by 

n \ n 

(3.28) 
i= 1 I i>— 1 

where = d p ^ x ) / ^ . We definedpi(x) = i ^ O - X*)/ K h ( x - Xi), 
and thus 

\ ( d n d \ 
q i { x ) = E U K h { x - X l ) [ o ^ K h { x - - p * { x ) g d ^ - k

K h i x - ) • 

where 

For example, let Â  be the standard Gaussian density function: 

K(x) = (2n)-d/2exp{-1
1\\x\\2}. 

Then, 

DkK(x) = -xkK(x). 
32 For = expf-aOJ^oojOr), f Z o K 2 = and diz = 2. 

- wk ( 
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In the one-dimensional case we can use also Gasser-Miiller or Priestley-Chao 
estimators, defined in Section 3.2.3. Priestley-Chao weights are Pi(x) = (Xi — 
X{-i)Kh(x — Xi), and thus for this choice we have 

qt{x) = {X% - X ^ ) 

where K' is the derivative of K. 

3.2.10 Confidence Intervals in Kernel Regression 

We have defined pointwise confidence intervals in Section 1.10.1. The following 
result is from Hardle (1990, Theorem 4.2.1). We restrict ourselves to the one-
dimensional case d = 1, where there is only one explanatory variable. Let f(x) = 
E(Y | X = x) be the regression function, CF2(X) — Var(F | X = x) be the variance 
function, and f x the density function of distribution of X. We assume that / and 
f x are two times continuously differentiable, E(\Y\2+e \ X = x) < oo for some 
e > 0, a2 is continuous at x, and fx(%) > 0. Smoothing parameter is chosen as 
h = cn~l/b for c > 0 and kernel function is chosen such that f | 2 + e < oo for 
some e > 0. Then, 

n2/5(f(x) -/(*)) A N(b(x),v2(x)), 

as ti —y oo, where 

with H2{K) = J t2K(t) dt and 
„!(I) = f !MiM. 

cfx(x) 

To calculate a confidence interval we can take h = / logn. Then, 

a2(x)\\K\\r 
(nh)1/2 ( f ( x ) — f(x)J NyO 

fxix) 

as n oo. We get the confidence interval 

f(x) - a(x)J(x) +a(x) , 

where 

\\K\\2a2(x) 
a i X ) 
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f x is a kernel density estimator of f x , &2(x) is a kernel estimator of the variance 
function, and Zi_a/2 is such that P{—Zi_/a/2 < Z < Zi_a/2) = 1 — a, where 
Z ~ 7V(0,1). 

A second possibility, suggested in Wasserman (2005, Section 5.7), is to make a 
confidence interval for Ef(x) by using 

as n —y oo, when h = en-1/5. 
A third possibility is to make a bootstrap confidence interval, which can be con-

structed in the following way. Generate B bootstrap samples from the original sample 
(Xi, Yi ) , . . . , (XniYn). Based on a bootstrap sample (X*, Yi*),..., (X*, Yn*) a re-
gression function estimate /* is constructed. We obtain a sequence f± ( x ) , . . . , fg (x) 
of estimates. Let qa/2(x) and qi-a/2{x) be the empirical quantiles of the sequence 
of estimates. Then the confidence interval is 

[Qa/2(x),qi-a/2(x)]-

In Section 1.10.2 we have defined the concept of a confidence band, which is 
different from a confidence interval. Hardle (1990, Section 4.3) gives confidence 
bands for kernel regression and Sun & Loader (1994) give confidence bands for 
linear regression and smoothing. See also Wasserman (2005, Section 5.7) 

3.3 NEAREST-NEIGHBOR ESTIMATOR 

The kernel regression estimator with the uniform kernel is defined in (3.9). This 
estimator at point x G H d is an average over those Y-values, where the corresponding 
X-values are in the rectangle whose center is x and whose side length is 2h, where 
h > 0 is the smoothing parameter. The nearest-neighbor regression estimator changes 
this estimator in two ways. First, the rectangle is changed to a ball centered at x. 
Second, the radius of the ball is not a constant value, the same at every point x G R d , 
but the radius is changing in such a way that the ball contains always exactly k 
X-observations, where k = 1, 2 , . . . is an integer that plays the role of the smoothing 
parameter. The changing radius brings the advantage that also in the tail areas of the 
X-distribution, where the observations are sparse, it is guaranteed that the average 
is over k Y-values, whereas in the case of the kernel estimator the average could be 
over only few Y-values, or the average could be even over an empty set of Y-values, 
in which case the kernel estimator would not be defined. 

We define the nearest-neighbor estimator for the regression function as 

n 

= x G (3.29) 
i=1 

where 

Pi(x) = \lBrkx{x){Xi) (3.30) 
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and 
Tk,x = min{r > 0 : #{X{ G Br(x)} = fe}, (3.31) 

where Br(x) is the ball centered at x with radius r: Br(x) — {y G Hd : \\x—y\\ < r}. 
The radius rk,x is the minimum radius such that the ball with this radius, centered at 
x, contains exactly fe observations. Thus, 

n 

= * { X i e =k• 
2=1 

Equivalently, a nearest-neighbor estimator can be defined as 

f(x)=YB ( x ) , (3.32) 

where 

Yr = — J^YilniXi) 

and 

nR = #{Xt G R}. 

3.4 CLASSIFICATION WITH LOCAL AVERAGING 

We have introduced classification in Section 1.4. In classification the possible values 
of Y are {0 , . . . , K — 1}, and X G is an associated predictive variable. We want 
to find a classification function g : Hd —>• {0 , . . . , K — 1}, which predicts the class 
label Y with the predictive variable X. The classification function is constructed 
from the observations (X\, Y\),..., (Xn, Yn), which are identically distributed with 
the distribution of (X, Y). 

3.4.1 Kernel Classification 

We define kernel density classifier and kernel regression classifier and note that they 
are equivalent. 

Classification Based on Kernel Density Estimation The classification func-
tion can be constructed using density estimators. A rule for the construction of a 
classification function with the help of density estimators was given in (1.83), which 
puts 

g(x) = argmaxk=0 K_1 Pkfx\Y=k(x), (3-33) 

where fx\Y=k ls a density estimator for the class fe density and pk is an estimator of 
the prior probability of class fe. We can choose 

Pk = ~ #{i = 1, • • •, n : Yi = fe}. (3.34) 
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We use now a kernel density estimator as the estimator fx\Y=k °f the class k density. 
We define the kernel density estimator in (3.39); and applying this formula to the 
estimation of the class densities, we get 

fx\Y=k(x) = —J2Kh(x-Xl)I{k}(Yt), (3.35) 
nk . .. i=i 

where nk = #{i = 1, •.., n : Yi = k}. 

Classification Based on Kernel Regression Function Estimation The 
classification function can be constructed using regression function estimators. A 
rule for the construction of a classification function with the help of regression 
function estimators was given in (1.78), which puts 

g(x) = argmaxfc=0 K_x pk{x), (3.36) 

where pk(x) are estimators of P(Y = k\X — x), for k = 0 , . . . , K — 1. We 
estimate pk(x) by defining indicator variables, as in (1.79): 

Let pk{x) be a kernel regression function estimator, defined in (3.6), constructed 

using regression data (X\, Y ^ ) , . . . , (Xn, Y ^ ) , for k = 0 , . . . , K — 1. 
We are led to the same rule as using kernel density function estimation, defined in 

(3.33)-(3.35). Indeed, we can write the kernel regression function estimator as 

Pk(x) = ^Khix-XJY™ 
f x \x) n i=1 

1 rik p ( x Pkfx\Y=k{x) 
fx I Y=k(x) = y— , (3.37) 

f x ( x ) n fx(x) 

where fx \ Y=k(x)'s defined in (3.35) and fx is the density estimator 

fx{x) = - Y i K h { x - X i ) . n * * U
 • i 2=1 

3.4.2 Nearest-Neighbor Classification 

We define the nearest-neighbor density classifier and the nearest-neighbor regression 
classifier. These are not equivalent, as in the case of kernel estimators, but we note 
that the nearest-neighbor regression classifier is equivalent to a prototype classifier. 

Classification Based on Nearest-Neighbor Density Estimation First we 
have to define the nearest-neighbor density estimator. The nearest-neighbor density 
estimator, based on identically distributed data X\,..., Xn G R, is 

f M = J X [ X ) volum e ( f l r f c » ) ' 
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where k = 1, 2 , . . . is the smoothing parameter and rk,x is the smallest radius r so 
that the ball Br(x) contains exactly k observations: = min{r > 0 : G 
Br(x)} = A:}.33 The volume of ball Br(x) C R d with radius r is 

*d/2
 d v o l u m e ^ ) ) = r ( d / 2 + 1 ) r . 

Second we use the density rule (1.83) to define a classification function. Let 
(Xi , Y i ) , . . . , (Xn , Yn) be classification data and let 

g{x) = a.rgmaxy=0 J<_1Pyfx\Y=y(x), 

where fx\Y=y is a nearest-neighbor density estimator for the class y density and 

py = #{i = l,...,n:Yi= y}/n 

is the prior probability of class y.34 The nearest-neighbor density estimator of the 
class density is 

f / x k / n 

/x i y=y^-volume{BrkxJx)y 

where 

Tk,x,y = m i n { r > 0 : # { X ; G Br(x) : Y^ = y } = A;}. 

Finally we get the nearest-neighbor regression-based classification rule: 

g(x) = argmaxy=0 ^ ^ ^ y y , 

where the multiplier fc/n has been left out because it is the same for each class y. 

Classification Based on Nearest-Neighbor Regression Function Estima-
tion We apply the regression rule (1.78), which defines the empirical classification 
function as 

g(x) = argmax?/=0 ? py(x), 

where py(x) are estimators of P(Y — y | X = x), for y = 0 , . . . , K — 1. We apply 
the nearest-neighbor regression estimator, defined in (3.29), when the class label 
indicators I{yy(Yi), i — 1 , . . . , n, are the response variables, for y — 0 , . . . , K — 1. 
We obtain the estimators 

n 

P y ( x ) = I { y } ( Y i ) i X £ (3-38) 
2=1 

33Here Br(x) is the ball centered at x with radius r: Br(x) = {y G R d : ||a; — y|| < r}. 
34We use the class label variable y G { 0 , . . . , K — 1} instead of the previously used k, because k is 
traditionally used to denote the smoothing parameter of the fc-nearest-neighbor estimators. 
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where the weights were defined in (3.30) as 

where rk,x is the smallest radius r such that the ball Br(x) contains exactly k 
observations from the observed vectors ..., Xn. The classification based on 
the nearest-neighbor regression is not equivalent to the classification based on the 
nearest-neighbor density estimation. However, we show next that the classification 
based on the nearest-neighbor regression is an prototype classifier classifying the 
new observation to the class whose observed values are most similar to the new 
observation. The name "prototype methods" was used in Hastie et al. (2001, Section 
13). 

Classification Based on the Nearest-Neighbor Rule The nearest-neighbor 
classification rule is 

g(x) = y the most class labels Yi are y in the /c-neighborhood of x, 

where y = 0 , . . . , K — 1. The /c-neighborhood of x is defined as the ball Brkx (x), 
where rk,x is the smallest radius r such that the ball Br(x) contains exactly k 
observations from the observed vectors X\,..., X n , and k = 1,2, Let 

ny(x) = #{i = 1 ,...,n:Yi = y,Xi e Brkx(x)} 

be the number of Y-observations in the neighborhood Brk x(x) with the label y. 
Then, 

g(x) = argnmxy=0 K ^riyix). 

We have defined the same classification rule that was obtained with the help of 
nearest-neighbor regression functions, because 

ny(x) = kpy(x)1 

where py(x) is defined in (3.38). 

3.5 MEDIAN SMOOTHING 

We have defined the regressogram, the kernel regression estimator with the uniform 
kernel, and the nearest-neighbor estimator in (3.10), (3.9), and (3.32) as averages of 
Y-values over those X-values that are in in a bin, in a local neighborhood, or in a 
nearest neighborhood. These estimators of conditional expectation can be changed to 
estimators of conditional median when we change the sample average to the sample 
median. 

1. The median regressogram is 

f(x) = median({X^ e Rx}), 
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where Rx is the bin containing x. 

2. A kernel estimator of a conditional median is 

f(x) = median({X^ G Rh(x)}), 

where 

Rh{x) = [x — ft, x + ft] = [x\ — ft, x\ + ft] x • • • x [xd — ft, Xd + ft] 

is the rectangle centered at x, with side length 2ft. 

3. The nearest-neighbor estimator of the conditional median is 

f(x) = median({X^ G Brkx(x)}), 

where Br(x) is the ball centered at x with radius r and 

rkiX = min{r > 0 : #{X 2 G Br(x)} = k} 

is the minimum radius such that the ball with this radius, centered at x, contains 
exactly k observations. 

Above we have used the definition of the sample median, given in (1.10). We 
can define the median regression estimator for the general kernel weights Pi(x), 
i = 1 , . . . , n, by using the definition (1.8) of the population median. Let us define 
the random variable Yn(x), with the discrete distribution 

P(Yn(x) = y^ pi(x), i = 1,... ,n, 

where y\ . . . ,yn are the observed values of Y i , . . . , Yn. Then we can define the 
median regression estimator as 

f(x) = median(Yn(x)). 

3.6 CONDITIONAL DENSITY ESTIMATION 

We define kernel, histogram, and nearest-neighbor estimators of the conditional 
density. The conditional density can be defined either by conditioning on the state 
variables, or it can be defined in the time series setting by conditioning on the 
information at time t. This leads either to the state-space smoothing or to the 
time-space smoothing. We will also combine the state-space smoothing and the 
time-space smoothing to obtain an estimator for locally stationary data. 

3.6.1 Kernel Estimator of Conditional Density 

We start by defining the unconditional kernel density estimator. After that, we define 
the conditional kernel density estimators. Finally we note that the conditional density 
estimator in the state-space sense and the kernel regression estimator can be derived 
from the unconditional density estimator. 
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Unconditional Kernel Density Estimator The kernel density estimator f x (x) 
of the density function f x : R d ^ R of random vector X G R d , based on identically 
distributed data X\,..., Xn G R d , is defined by 

1 n 

fx(x) = - Y K h ( x - X i ) , x G R d , (3.39) 
n 

where K : R d —> R is the kernel function, Kh(x) = K(x/h)/hd, and h > 0 is the 
smoothing parameter. 

We can explain the definition of the kernel density estimator in the following 
informal way. A density function f x ' R d R of a probability distribution is a 
function which satisfies 

P(A)= [ fx(x)dx, 
J A 

for all measurable A C R d . We can approximate the density at point x by choosing 
a small set centered at x. For example, let 

Ux,h = {ze Kd : \\z - x\\ <h} 

be the ball centered at x G R d with radius h > 0. Since 

fx*fx(x)\(UXth), L 'Ux,h 

where A is the Lebesgue measure, we get the approximation for small h, 

fx(x) » (3.40) 

By the law of large numbers, probabilities can be approximated by frequencies, and 
we have 

2=1 

for large n. We can write 

Iux,h(Xi) = Iu0,i ^—) 

and we have that 
\(Ux,h) = hd\(U0,i). 

Thus, (3.40) can be written as 

f x ^ i E ^ (^V^)= z E -nhd ^ U0A\ h J n 
2=1 V 7 2=1 

where K(x) = IJJ{)A (#)• We get the class of kernel density estimators by letting the 
kernel function K be any integrable function K : Hd R. 
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Conditional Kernel Density Estimator Unconditional kernel density estima-
tor was defined in (3.39). In the univariate case a kernel estimator of the density of 
F G R , based on data Y\,..., Yn, is 

f y (y) = ~ y e R , (3.41) 
2=1 

where L : R —> R is the kernel function, Lg(y) = L(y/g)/g, and g > 0 is the 
smoothing parameter. 

A kernel estimator of the conditional density of Y given X, based on data 
(Xi, Yi ) , . . . , (Xn , Yn), associated with the kernel regression function estimator, 
is defined as 

n 

fy\x=x{y) = Lg(y - Yi), y G R, x G Kd, (3.42) 
2=1 

where the weights pi(x) are the kernel weights defined in (3.7). We can also allow 
the regressogram weights defined in (3.5) or the nearest-neighbor weights defined in 
(3.30). 

Time—Space Smoothing Let Y i , . . . , YT be an observed time series. Moving 
averages were defined in Section 3.2.4. We can use a two-sided moving average to 
define the estimator of the density function of Yt as 

T 

h (y) = Pi(t) Lg(y -Yi), y G R, t = 1 , . . . , T, (3.43) 
2=1 

where the weights pi(t) are defined in (3.13). In prediction we use a one-sided 
moving average and define the estimator of the density function of Yt as 

t 

Mv) = $>i(t)£fl(y - ye R, (3.44) 
2=1 

where the weights Pi(t) are defined in (3.15). A particular case of the one-sided 
moving average is the exponential moving average. The exponential moving average 
estimator of the density function is defined analogously to (3.16) as 

1 2=1 

where 0 < 7 < 1, 7 = exp( —1 /h). 

Time— and State—Space Smoothing We can combine time-space smoothing 
and state-space smoothing. Time-space smoothing can be either two-sided smooth-
ing or one-sided smoothing. The one-sided smoothing is more typical, because it 



CONDITIONAL QUANTILE ESTIMATION 1 5 5 

can be used in prediction. Combining the state-space smoothing and the one-sided 
moving average gives an estimator of the conditional density of Yt: 

fvt\x=x{y) = YI y G R, x G KD, 

where 

2=1 

r i x ) ; f ( t V (3.45) 

with 
Pi(x) = K((x - Xz)/h), 7Ti(t) = M((t - i)/a), 

where K : Hd —> R, M : [0, oo) R are the kernel functions, and h > 0, 
a > 0 are the smoothing parameters. We can use also the regressogram weights 
or the nearest-neighbor weights to replace the kernel weights. The regressogram 
weights are Pi(x) = lAx{Xi)/riAx, where Ax is the bin which contains x and 
TIAX is the number of X-observations in Ax. The nearest-neighbor weights are 
Pi(x) = Isrk ( x ) { X i ) / k , where is the smallest radius such that the ball with 
this radius, centered at x, contains exactly k X-observations. 

Conditional Density Estimator Derived from Density Estimator We show 
that the kernel estimator of conditional density in the state-space sense, defined in 
(3.42), can be derived from the kernel density estimator. From definition (3.39) we 
obtain the kernel density estimator fx,y (x, y) of the density of (X, Y), based on data 
(Xi, Yi), i = 1 , . . . , n. Let us modify the definition to allow a different smoothing 
parameter for the x coordinates than for the y coordinate. This density estimator is 

1 n 

fx,y(x, y) = — ^h,g(x - Xi,y - Yi), xeRd, ye R, (3.46) 
7 1 2 = 1 

where M : R d + 1 ^ R is the kernel function, Mh,g(x,y) = M(x/h, y/g)/(hdg), 
and h > 0, g > 0 are the smoothing parameters. The kernel density estimator fx(x) 
of the density of X is equal to 

1 n 

fx(x) = - Y f K h ( x - X i ) , x G Hd, 
2=1 

where K : Hd R and K^(x) = K(x/h)/hd. An estimator of the conditional 
density can be defined as 

fy\x=x(y) = f x ? { * [ y \ x e R d , y e R. (3.47) 
fx{x) 

Let us assume that 
M(x,y) = K(x)-L(y), 



1 5 6 LINEAR METHODS AND EXTENSIONS 

where L : R R. Then, 

f x Ax, v) = - Y , Kh(x - Xi) Lh(y - Yi) (3.48) n z—' 71 - 1 

and (3.47) is equal to (3.42) with Pi(x) = Kh(x - X % ) j ~ xi)-

Regression Estimator Derived from Density Estimator We show that the 
kernel estimator of the regression function, as defined in (3.6), is under some con-
ditions equal to the conditional mean of a kernel density estimator. We define the 
regression function estimator f(x) as the mean of the estimator of the conditional 
distribution: 

f{x)= / yfY\x=x(y)dy, xeRd, 
J R 

where fy\x=x{y) defined in (3.47). The estimator fx,y{x, y) of the joint density 
is defined in (3.48). We have 

I y fx,y(x,y) dy = -S^K^x - Xi) [ yLg(y-Yi)dy 
J R n i=1 J R 

i n r 
= - Y K h { x - X i ) / (t + Yi)L(t)dt 

= -Y,YiKh(x-Xi), 71 ' * 71 - 1 

when JntL(t) dt = 0 and f L = 1. Thus, f(x) has the same definition f(x) = 
in (3.6). 

3.6.2 Histogram Estimator of Conditional Density 

We define first the histogram estimator of the unconditional density and after that we 
define the histogram estimator of the conditional density. 

Unconditional Histogram Density Estimator A histogram estimator of the 
density of X G R d , based on identically distributed observations X\,..., Xn, is 
defined as 

where V is a partition on H d and 

nR = #{i : Xi e R, i = 1,..., n) 

is the number of observations in R. Partition V is a collection . . . , AN of sets 
that are disjoint and they cover the space of the observed X-values. 
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Conditional Histogram Density Estimator Unconditional histogram density 
estimator was defined in (3.49). In the univariate case a histogram estimator of the 
density of Y, based on data Y\,..., Yn, is defined as 

M y ) = E yR'n
(m !/eR, ^ p volume(i?) 

where V is a partition of R and 

nR = #{i :Yi G R, i = 1 , . . . , n} 

is the number of observations in R. 
A histogram estimator of the conditional density of Y given X, based on data 

Y i , . . . , Yn, associated with a kernel regression function estimator, is defined as 

A - i ' - M - i : '»<»>• 
where 

= n • E 
i-.Y%eR 

and are defined in (3.7). 
Let Y i , . . . , YT be an observed time series. We can define a histogram estimator 

of the conditional density using time-space smoothing, analogously to the kernel 
estimator using time-space smoothing in (3.43) and (3.44). For example, in the case 
of one-sided moving average we replace TIR(X) by 

t 
nR{t) = n -

2=1 

where the weights Pi(t) are defined in (3.15). We can combine time-space smoothing 
and state-space smoothing using the weights defined in (3.45). 

3.6.3 Nearest-Neighbor Estimator of Conditional Density 

We define first the nearest-neighbor estimator of the unconditional density and after 
that we define the nearest-neighbor estimator of the conditional density. 

Unconditional Nearest-Neighbor Density Estimator We define the density 
estimator using identically distributed observations X\,... ,Xn G R d . Let 1 < k < 
n be an integer. Let us define, as in (3.31), 

rk(x) = min{r > 0 : G Br(x)} = fc}, 

where Br(x) is the ball centered at x with radius r: Br(x) = {y G R d : \\x—y\\ < r}. 
The radius (x) is the minimum radius such that the ball with this radius, centered at 
x, contains exactly k observations. The nearest-neighbor density estimator is defined 
as 

/ * (* ) = - i — T r T ~ — r ~ v \ ' x e R d - ( 3 - 5 0 ) 
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Conditional Nearest-Neighbor Density Estimator The conditional nearest-
neighbor density estimator does not seem to be popular, because in the univariate 
case a kernel density estimator with a local smoothing parameter selection method is 
typically preferred to the nearest-neighbor density estimator. 

In the univariate case the nearest-neighbor estimator of the density of Y, based on 
data Y\,..., Yn, is defined as 

? / \ k/n ^ 

where rk{y) = min{r > 0 : #{Y* G [y - r,y + r}} = k}. 
The conditional nearest-neighbor density estimator, based on regression data 

(Xi, Yi ) , . . . , (Xn , Yn), is defined as 

fvix=x(y) = yeR,xeRd, 

where 
k ( x ) = n • Y Pi(x), 

i:Yie[y-rk(x),y+rk(x)] 

and Pi(x) are the kernel weights defined in (3.7), the regressogram weights defined 
in (3.5), or the nearest-neighbor weights defined in (3.30). 

Let Y i , . . . , YT be an observed time series. We can define a nearest-neighbor 
estimator of the conditional density using time-space smoothing. For example, in 
the case of one-sided moving average we replace k(x) by 

2—1 

where the weights pi(t) are defined in (3.15). 

3.7 CONDITIONAL DISTRIBUTION FUNCTION ESTIMATION 

The unconditional distribution function Fy(y) = P(Y < y) can be estimated by the 
empirical distribution function 

1 n 

Mv) = " h-ooM ) = n~1#{i:Yl<y,i = 1 , . . . , n}. (3.51) 
2 = 1 

In the empirical distribution function the probabilities of the half lines (—oo ,y] are 
estimated with the empirical frequencies. 

The conditional distribution function of Y G R given X G H d is defined as 

Fy\x=x{y) = P(Y<y \X = x), ye R, x e Hd. 

First we define a local averaging estimator of the conditional distribution function, 
which uses state-space smoothing. Second we define a time-space smoothing esti-
mator of the conditional distribution function. 
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3.7.1 Local Averaging Estimator 

The estimation of the conditional distribution function can be considered as a regres-
sion problem, where the conditional expectation of the random variable J(_00 2/] (F) 
is estimated, as was noted in (1.42). Thus we can define a local averaging estimator 
of the conditional distribution function as 

n 

Fy\x=x(y) = h - ( 3 . 5 2 ) 
i=1 

where pi (x) are the kernel weights defined in (3.7), the regressogram weights defined 
in (3.5), or the nearest-neighbor weights defined in (3.30). 

The local averaging estimator in (3.52) is approximately the same as 

/

y „ 

fy\x=x(u) du, y G R, x G R d , -oo 

where fy\x=x(u) is defined similarly as in (3.42): 

n 

fy\x=x(u) = Y^Pi(x)Lg(u ~ yi)-> ueK. 

Indeed, 

lim / Lg(u - Yi)du = /(_oo^](^) 
9 J — oo 

for each ye R, if kernel function L : R —> R is such that l im^oo L(x) = 0 and 
limx^_oo L(x) = 0. 

3.7.2 Time-Space Smoothing 

The local averaging estimator of the conditional distribution function, as defined in 
(3.52), can be used in the case of state-space prediction of time series data. The state-
space prediction was introduced in (1.45). Local averaging can also be used when 
the observations Y \ , . . . , YT are a time series of observations that are not identically 
distributed but only locally identically distributed. Then we can use time-space 
smoothing. 

Moving averages were defined in Section 3.2.4. We can use a two-sided moving 
average to define the estimator of the distribution function of Yt as 

T 

Fyt{y) = Pi(t) I(-oo,y](Yi), t = l,...,n, 
i= 1 

where the weights pi(t) are defined in (3.13). To use the estimate of the conditional 
distribution function in prediction, we use a one-sided moving average and define the 
estimator of the distribution function of Yt as 

t 

Fy t(y) = t = l , . . . , n , (3.53) 
i=1 
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where the weights Pi(t) are defined in (3.15). A particular case of the one-sided 
moving average is the exponential moving average. The exponential moving average 
estimator of the distribution function is defined analogously to (3.16) as 

Fy,{y) = T ^ i i z - y " ' '<-«,„](*). 
1 2=1 

where 0 < 7 < 1, 7 = exp( —1 /h). 

3.8 CONDITIONAL QUANTILE ESTIMATION 

Quantile regression was introduced in Section 1.1.6. Let Y i , . . . , Yn £ R be identi-
cally distributed observations. An estimator of a quantile of Y can be defined with 
the help of the empirical distribution function Fy(y), defined in (3.51). We get 
the quantile estimator by taking the generalized inverse of the empirical distribution 
function, as in (1.26): 

Qp(Y)=mi{y:FY(y)>p}, 

where 0 < p < 1. 
Let (Xi, Yi ) , . . . , (Xni Yn) be identically distributed regression data. An esti-

mator of a conditional quantile of Y can be defined with the help of the estimator 
of the conditional distribution function FY\x=x(y)i defined in (3.52). We get the 
conditional quantile estimator by taking the generalized inverse of the estimator of 
the conditional distribution function: 

Qp(Y \X = x)= inf{y : FY\X=x{y) > p}. (3.54) 

The estimator (3.54) can be called a local averaging estimator of the conditional 
quantile. It holds that 

QP(Y \X = x) = 

Y(i), 0 <p<pi(x), 
2), Pl{x) <p< pi{x)+p2(x), 

Y(n~i), E r = i 2 P i ( x ) < p < Er = i l P i ( x ) - > 

(3.55) 

Y( (n), 117=1 Pi(X) <P<h 

where the ordered sample is denoted by Y ^ < Y(2) < • • ^ ^(n) a n ( i Pi(x) are 
the kernel weights defined in (3.7), the regressogram weights defined in (3.5), or the 
nearest-neighbor weights defined in (3.30). 

Figure 3.8 shows conditional quantile estimates when kernel weights are used. 
Panel (a) shows estimates for the levels p = 0 ,1 ,0 ,2 , . . . ,0 .9 , when the smoothing 
parameter is h = 0.7. Panel (b) shows estimates for the level p = 0.1 when the 
smoothing parameters are h = 0.3,0.5,0.7,0.9. The standard normal kernel is used 
in both panels. The data are the same as in Figure 1.1: The data consist of the daily 
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Figure 3.8 Kernel estimates of conditional quantiles. (a) Conditional quantile estimates for 
the levels p — 0,1, 0 , 2 , . . . , 0.9, when the smoothing parameter is h — 0.7. (b) Estimates for 
the level p = 0.1 when the smoothing parameters are h = 0.3,0.5, 0.7, 0.9. A contour plot 
of a kernel estimate of the density of ( X t , Yt) is also shown. 

S&P 500 returns Rt — (St — St-i)/St-i, where St is the price of the index. The 
explanatory and the response variables as 

Xt = log. 
\ 

1 k 

T Rt-i > Yt = loge \Rt 
1=1 

The S&P 500 index data are described more precisely in Section 1.6.1. We show also 
a contour plot of a kernel estimate of the density of (Xt, Yt). 

Let Yi , . . . ,Yt be stationary time series data. We can define one-sided moving 
average estimator of the conditional quantile by inverting the one sided moving 
average estimator Fyt of the distribution function, defined in (3.53). This gives 

Qp(Yt\Yt_1,...)= { 

Y w , 0 < p < p i ( t ) , 
2), P l ( f ) < P < P l ( * ) + P 2 ( * ) , 

Y(t-1), ElZ2iPi(t) <P< Elzlpi(t), 
Y{t), Y,lz{pi(t) <p<h 

where the ordered sample is denoted by Y^ < Y@) < - • • < Y^ and Pi(t) are the 
one-sided weights, defined in (3.15). 
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3.9 CONDITIONAL VARIANCE ESTIMATION 

In Section 3.9.1 we define the state-space smoothing of the conditional variance 
using local averaging. Section 3.9.2 considers GARCH estimation of conditional 
variance for time series data. Section 3.9.3 considers the moving average estimator 
of conditional variance for time series data and compares the GARCH(1,1) estimator 
to the exponential moving average estimator. We study the methods by fitting the 
S&P 500 return data, but the application to the estimation of S&P 500 return volatility 
is postponed to Section 3.11.1. 

3.9.1 State-Space Smoothing and Variance Estimation 

Let (X\, Y i ) , . . . , (Xn, Yn) be identically distributed regression data from the distri-
bution of (X, Y), and let us consider the estimation of the conditional variance 

f(x) = Var(F \X = x), x E Hd. 

We can write 

Var(Y | X = x) = E[(Y- freg(X))2 \X = x 

where freg{x) = E(Y \ X = x) is the regression function. Thus we can estimate 
the conditional variance by 

n 2 

/Or) = £ P i ( x ) (y4 - / ^ ( X ^ ) , 
i=1 

where freg(x) is an estimator of the regression function, and Pi(x) are the kernel 
weights defined in (3.7), the regressogram weights defined in (3.5), or the nearest-
neighbor weights defined in (3.30). We can also write 

Var(F \X = x) = E [{Y2 \X = x]- fre9(x)2. 

Thus we can estimate the conditional variance by 

f(x)=YM*)K2-fre9(x)2 V - JregK^2 

i=1 

We can use the same local averaging to estimate / and freg, and in this case we have 

fix) = £>(*) ( - £ > ( * ) 
i=l \ 3 = 1 

= $ > ( * ) > ? - f e p i M r , ) . 
i=l \i=1 J 

We apply state-space smoothing to volatility estimation in Section 3.11.1, see (3.86). 
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3.9.2 GARCH and Variance Estimation 

We define the GARCH model, study the volatility formula of the GARCH model, 
describe the maximum likelihood estimator, find the multistep prediction formula 
of GARCH(1,1), compare GARCH(1,1) to ARCH(oo) model, and finally fit the 
GARCH(1,1) model to S&P 500 returns. 

GARCH Model The GARCH model is a special case of a conditional het-
eroskedasticity model, defined in (1.16). The expression "GARCH model" is a 
shorthand for "generalized autoregressive conditional heteroskedasticity model." The 
GARCH model generalizes the ARCH model discussed in Section 2.5.2. 

In the GARCH(p, q) model it is assumed that 

Yt=ateu t = 0 , ± 1 , ± 2 , . . . 

and q p 

= + E a*Yt-i + Z Prf-P 
i= 1 j = l 

where q > 1, p > 0, ai > 0, f3j > 0, et are i.i.d. with Eet = 0, Var(e^) = 1, and 
et is independent from {Yt-i, Yt-i, • • •}• The GARCH model was introduced in 
Bollerslev (1986). The GARCH(p, q) process is strictly stationary if 

q p 

i= 1 j = l 

see Fan & Yao (2005, Theorem 4.4) and Bougerol & Picard (1992). 
The version (3.17) of the exponential moving average uses the recursive formula 

= ( 1 - 7 ) ^ - 1 + 7 ^ - 1 . (3-57) 

We obtain model (3.57) from GARCH(1,1) by choosing a 0 = 0, a\ — 1 — 7, and 
f3 = 7. Thus, this version of the exponential moving average is a special case of the 
GARCH(1,1). Model (3.57) is called IGARCH( 1,1) model, because now a i + / 3 = 1, 
and this is not a stationary process. 

If a \ + P < 1 in the GARCH(1,1) model, which implies stationarity by (3.56), 
then 

Indeed, using (3.59) below we have that 

00 
EY? = E a l E e ^ E a ^ ^ + E Y f a ^ P " - 1 

k=l 

1 - / 3 f 1 - / 3 ' 

and solving for !Y'f gives the result. 
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Let us assume the condition a i -I- j3 < 1, and denote the unconditional variance 
by a 2 = Var(Yt) = a 0 / ( 1 - a i - P). Now we can write the GARCH(1,1) model as 

a2 = \a2 + a1Y
2_1+(3a2_1, 

where 
A = 1 - a i +/3. 

Accordingly, GARCH(1,1) can be interpreted as a model, where the first term in-
corporates the deviation from the long-term unconditional variance; see Hull (2010, 
Section 9.7, p. 188). 

Volatility in GARCH Models In the GARCH model we have 

Var (Yt | Ft-i) — (3.58) 

where T t - 1 is the sigma-algebra generated by Y t - i ,Y t -2 , This was shown 
in (1.17) for the general conditional heteroskedasticity model. Furthermore, in a 
stationary GARCH( 1,1) model we have 

oo 

P k= 1 

Equation (3.59) follows by noting that in the GARCH(1,1) model we have 

and 

o2_x = a 0 + <^\Y2_2 + (3<J2_2 • 

Continuing this way, for each k > 1 we get 

k— 1 k 

a* = ao E ̂  + E + 

2 = 0 j=1 

We assume that /? -f a\ < 1, which ensures stationarity, and so 0 < (3 < 1, which 
implies that 

ok 2 _J> n 

P °t-k —> Vi 

and 

k oo 

3 = 1 J = 1 as /c —> oo. Finally, 
oo 

^ ^ 1 - p i=0 ^ 
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We have proved (3.59) when the covergence is defined as the convergence in proba-
bility. 

More generally, for the GARCH(p, q) model we have 

1 " " o + ^ d k Y l k , (3.60) 
1 2^=1 P j fc=1 

where are obtained from the equation 
oo ^ </ ; 

7 = 1 

for |z| < 1; see Fan & Yao (2005, Theorem 4.4). We get the expression 

2 o> = 
3 2 = 1 

q oo p p 

2=1 /C=l j l=l jfc=l 

Maximum Likelihood Estimation of the GARCH Parameters Let us have 
the observations Y i , . . . , YT. Estimation in the GARCH(p, q) model can be done 
using the method of maximum likelihood. Let us denote the density of et by fe : 
R —» R. In Section 2.5.2 we derived the likelihood function for the ARCH(p) model 
using the fact that 

However, in the GARCH(p, q) model we have the expression (3.60) for of , and any 
finite history of Yt does not fix the value of of . Unlike in the ARCH(p) model, of is 
a sum of infinitely many terms, and we need to truncate the infinite sum in order to 
be able to calculate the conditional likelihood. Let us denote 

t-1 

^ = 1 _ — w + dkYt-k, 1 2^=1 Pj k=1 

where dk are the coefficients in (3.60), so that of is a function of Y x
2 , . . . , The 

logarithm of the likelihood is obtained similarly as in the ARCH(p) model in (2.78). 
The conditional likelihood, given the observations Y\,... Yr, is 

1 T T ( N 

l o g e L r ( a 0 , . . . , a 9 , / 3 i , . . . , / 3 p ) = - - ^ loge cf + 
£=r+1 t=r+1 V^y 

We modify this and replace o t with o t , and define the maximum likelihood estimator 
as the maximizer of 

loge L r ( a 0 , . . . , a g , ft,...,/3P) 
T T 

= ~\ E ^ + E ^ ( j ) ' (3'61> 
t=r+1 £=r + l ^ 
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where r > max{p , q). In the case of the Gaussian assumption et ~ N(0,1) we get 

(do, ...,aq,j31,... ,/3p) 

- a r g m i n ^ . . . ^ ^ . . . ^ j j ^ (loge <r2 + f f ) j . (3.62) 

Multistep Prediction with GARCH(1,1) Let us consider the prediction of the 
ft-step ahead squared observation Y^2^. In the GARCH(1,1) model with /3 < 1 
the optimal forecast is 

E (YT\H I FT) = °2 + (ai + Z ^ " 1 (a2
+ 1 - a 2 ) , ft > 1, (3.63) 

where a 2 = EY 2 = ao/{l — — /3) is the unconditional variance. Now the 
optimality is taken in the sense of the mean squared error. Note that in the case ft = 1 
(3.63) was written in (3.58). 

Let us show (3.63) for ft > 2. Let us denote E(-\Jr
t)=Et. Now, 

°2t+h ~ = {Ytlh-1 " + P 1 " • 

We have that ^ Y ^ ^ = E t E t + h _ 2 Y ^ h _ x = ^ a 2 ^ ! when ft > 2, and 

-Et^f+i = °t+i- Thus' 

Ettf+H-*2) = ( a i + / 3 ) £ 7 t ( a t
2

+ f c _ i - ^ 2 ) 

= ( a i + ^ - ^ t ^ - a 2 ) 

We have shown (3.63). 
Let us next consider the prediction of the ft-step realized volatility 

Vt,h=fY?+1 + --- + Y&h, 

where ft > 1. Let us denote35 

alh^
fE(Yt\1 + -.. + Yt\h\Tt). 

Using (3.63), we have the expression 

alh = ho* + (at
2

+1 - a 2 ) ^ h + r 1 

k=l 

in the GARCH(1,1) model, where we can write + Z ^ " 1 = ( l ~ + 
p)h)/{ i - a i - / 3 ) . 

3 5 Note that in the GARCH(1,1) model the Yt are conditionally uncorrected and thus it holds also that 

<?lh = E[(Yt+1+--- + Yt+hf\Tt}. 
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Comparison of GARCH(1,1) to Other Models We have defined ARCH(p) in 
(2.77) so that 

= + <*\Yt-i ^ apYt-p-

When we compare this to the volatility expression (3.59), we see that the GARCH( 1,1) 
has only three parameters to be estimated in the expression for the conditional 
variance, whereas the ARCH(p) model has p + 1 parameters. Squared financial 
returns have a long-range dependence so that to fit the ARCH model the number of 
lags p has to be chosen large, but a large number of parameters makes the model 
more difficult to fit. 

GARCH(1,1) can be considered a special case of the ARCH(oo) model, since 
(3.59) can be written as 

CXD 

a\ = a + 
k=l 

where /3 k = a\(3k~l and a = ao/(I — f3). We can obtain a more general ARCH(oo) 
model by defining 

oo 

+ (3.64) 
k=I 

where a G R, 6 e R p , and m : R R is called a news impact curve. More 
generally, following Linton (2009), the news impact curve can be defined as the 
relationship between of and yt-1 = y holding past values of_x constant at some 
level cr2. In the GARCH(1,1) model the news impact curve is 

m(y, cr2) = a 0 + otiy2 + /3cr2. 

The ARCH(oo) model in (3.64) has been studied in Linton & Mammen (2005), where 
it was noted that the estimated news impact curve is asymmetric for S&P 500 return 
data. 

S&P 500 Returns with GARCH(1,1) We study fitting the GARCH( 1,1) model 
to the S&P 500 returns data described in Section 1.6.1. Section 3.11.1 studies more 
specifically the estimation of the conditional variance of = E (Yt

2 | Yt-\, Yt-2-> • • •) • 
GARCH( 1,1) fitting has been studied for example in Spokoiny (2000) and in Fan & 
Yao (2005, Section 4.2.8). 

The observed historical net returns are denoted by Y\,..., Yt, where Yt = (Pt — 
Pt-i)/Pt-u and Pt is the value of the index. The GARCH(1,1) model is 

Yt = ateu (J2
t = a 0 + Y?_x + Pa2

t_x. (3.65) 

The maximum likelihood estimators for the parameters, when et ~ N(0,1), are36 

= 7.3 x 10"7, d i = 0.077, $ = 0.92. (3.66) 

36We have used the R-package "tseries" for the maximum likelihood estimation. When we use the 
log-returns, then d 0 = 7.6 x 1CT7, d i = 0.079, and /3 = 0.91. 
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(a) (b) 

Figure 3.9 Sequential estimates of [3 in GARCH( 1,1). We show the fluctuation of the 
sequential estimates ft. Panel (a) shows the estimates after one year (250 days) of observations, 
and panel (b) shows the estimates starting at 1970-01-02. 

Figure 3.9 shows the fluctuation of the sequential estimates f3t. At a day t we 
have used only the data available at that time to fit the GARCH(1,1) model. Panel (a) 
shows the estimates after one year (250 days) of observations, and panel (b) shows 
the estimates starting at 1970-01-02. Panel (a) shows that at the beginning of the 
estimation period the estimates are fluctuating considerably but the fluctuation of the 
estimates is steadily decreasing. Panel (b) shows that there is a sudden drop in the 
estimate values at 1987-10-20, when the index value dropped about 20% in one day. 
We conjecture that the four one-day downside spikes observed after 1987-10-20 are 
due to the numerical instability of the maximum likelihood estimation. 

Figure 3.10 shows the fluctuation of the ratio 

i.out 

where cr°ut are the sequential out-of-sample estimates of a t and crl
t
n are the in-sample 

estimates of a t . We have calculated o°u t by using parameter estimates f}u do,*, and 
that are calculated with data available at time t. We have calculated a\n using 

the parameter estimates /3, do, and d i obtained by using the complete sample. In 
both cases the recursive formula for calculating a t in (3.65) has been started after 
250 days, and the initial value for the recursion was the sample variance of the 250 
first returns. 

Let us denote the residuals by 

. Yt Q —, 
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Figure 3.10 Stability of volatility estimates in GARCH(1,1). We show the fluctuation of 
the ratios o°ut I&T, where o°ut is the out-of-sample estimate of at and ol

t
n is the in-sample 

estimate of a t . 

where a t = <J°ui is the the out-of-sample estimate of a t calculated recursively with 
the formula <5f = at,o + + $to\_x. We diagnose two things. First, we study 
the distribution of the residuals. Second, we study whether the squared residuals are 
uncorrected. 

Figure 3.11 shows a left tail plot and a right tail plot of the GARCH( 1,1) residuals. 
Left and right tail plots are defined in Section 6.1.2. Panel (a) shows a left tail plot of 
the GARCH(1,1) residuals, and panel (b) shows a right tail plot of the GARCH(1,1) 
residuals. The black circles show the residuals, the red circles show simulated data 
from the standard normal distribution, and the blue circles show simulated data from 
the standard Student distribution with 12 degrees of freedom.37 

Figure 3.12 shows QQ plots of the residuals. QQ plots are explained in Sec-
tion 6.1.2. Panel (a) shows a QQ plot of the residuals when the comparison is to the 
normal distribution with the variance equal to the sample variance of the residuals, 
which is 1.01. Panel (b) shows a QQ plot of the residuals when the comparison is 
to the Student distribution with 12 degrees of freedom and the variance equal to the 
sample variance of the residuals. 

The tail plots and the QQ plots show that the tails of the residuals are heavier 
than the tails of the normal distribution. The Student distribution with 12 degrees 
of freedom gives a better fit, although the extreme left tail of the residuals is not 

3 7 If Y follows a Student distribution (t-distribution) with degrees of freedom v > 2, then — 2)/v Y 

follows standard Student distribution with degrees of freedom v. 
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(a) (b) 

Figure 3.11 Tail plots of the GARCH(IJ) residuals. Panel (a) shows a left tail plot of the 
GARCH( 1,1) residuals, and panel (b) shows a right tail plot of the GARCH( 1,1) residuals. The 
black circles show the residuals, the red circles show simulated data from the standard normal 
distribution, and the blue circles show simulated data from the standard Student distribution 
with 12 degrees of freedom. 

empirical quantiles empirical quantiles 

(a) (b) 

Figure 3.12 QQ plots of the GARCH(IJ) residuals. Panel (a) shows a QQ plot of the 
residuals when the comparison is to a normal distribution, and panel (b)shows a QQ plot of the 
residuals when the comparison is to a Student distribution with 12 degrees of freedom. The 
compared distributions are normalized to have variance equal to the sample variance of the 
residuals. 
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Figure 3.13 Autocorrelations of the squared returns and the GARCH(1,1) residuals. 
Panel (a) shows the sample autocorrelations of the squared S&P 500 returns for the lags 
k = 1 , . . . , 100, and panel (b) shows the sample autocorrelations of the squared residuals 
for the same lags. The red lines show level a = 0.05 rejection lines for the null hypothesis 
pk = 0. 

well fitted with the Student distribution. The left tail of the residuals is heavier than 
the right tail of the residuals. In maximum likelihood estimation the normality was 
assumed. The normality is not plausible, so we consider the parameter estimation 
procedure as a quasi-maximum likelihood method. 

Figure 3.13 shows the sample autocorrelations for the squared returns and for the 
squared residuals. The sample autocorrelation with lag K, based on data Y\,..., YT, 
is defined as 

p k = C ^ ( Y u Y t + k ) = ^ , (3.67) 
7o 

where the sample autocovariance with lag k is 

T—k 

/rk = f T , < y t - Y ) ( Y t + k - Y ) , 
t=1 

and Y = T~L J2J=I YT- Panel (a) shows the sample autocorrelations of the squared 
returns Cor (Y2, Y?+k) and panel (b) shows the sample autocorrelations of the squared 
residuals Cor(e2, e2

+/c), for A; = 1 , . . . , 100. We can see from Figure 3.13 that 
the squared returns have a considerable and persistent autocorrelation, whereas the 
squared residuals have a much smaller autocorrelation. This observation supports 
the assumption of the independence of innovations in the GARCH model. 

The red lines in Figure 3.13 are at the heights 
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where za is the a-quantile for the standard normal distribution. We have chosen 
a = 0.05, so that £i_ a /2 ~ 1-96. These lines can be interpreted as the rejection lines 
for the null hypothesis pk = 0, because by the central limit theorem, if Y\, >2, • • • are 
i.i.d. with mean zero, then 

V f p k ^ N ( 0,1), 

as T —>• 00. 

The Box-Ljung test can be used to test whether the autocorrelations are zero for a 
stationary time series Y\, I2, — The null hypothesis is that = 0 for k = 1 , . . . , ft, 
where ft > 1, pk — 7fc/7o, and 7^ = Cov(Yi, Y^+i)- Let us have observed time 
series data Y i , . . . , YT. The test statistics is 

h 

Q(h) = T(T + 
k=1 

where pk is defined in (3.67). The test rejects the null hypothesis of zero autocorre-
lations if 

QW > Xh,l-a, 

where x \ i - a
 l s the 1 - a-quantile of the \2-distribution with degrees of freedom h. 

We can calculate the observed p- values 

Ph = l-Fh(Q(h)), 

for h = 1,2, . . . , where Fh is the distribution function of the \2-distribution with 
degrees of freedom h. Small observed p- values indicate that the observations are not 
compatible with the null hypothesis. 

Figure 3.14 shows the results of the Box-Ljung test. Panel (a) shows as circles the 
values of the test statistics Q(h) for ft = 1 , . . . , 100; the red line shows the critical 
values Xhi-a t e s t statistics for the level a = 0.05, and the blue line shows 
the critical values for the level a = 0.1. Panel (b) shows the observed p values pu, 
for ft = 1 , . . . , 100. The red horizontal line shows the level a = 0.05, and the blue 
horizontal line shows the level p — 0.1. We can see that the null hypothesis of zero 
autocorrelation is rejected for small ft. 

3.9.3 Moving Averages and Variance Estimation 

We denote the conditional variance by 

where it is assumed that EYt = 0. The exponential moving average (EWMA) 
was defined in (3.16). The exponential moving average estimator of the conditional 
variance, based on observations Yb,. . . , Yt-i, is 

1 k=0 
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Figure 3.14 Box-Ljung test. We test the null hypothesis of zero autocorrelation for the 
GARCH(1,1) residuals. Panel (a) shows the values of the Box-Ljung test statistics Q(h) for 
h = 1 , . . . , 100. The red line shows the critical values Xh,i-a f° r the level a = 0.05, and the 
blue line for the level a = 0.1. Panel (b) shows the observed p-values ph for h = 1 , . . . , 100. 
The red line is at level a = 0.05 and the blue line is at level a = 0.1. 

where 7 = exp(—1 /h), and h > 0 is the smoothing parameter. 
We use S&P 500 data, described in Section 1.6.1, to compare the exponentially 

weighted moving average estimates to the GARCH(1,1) estimates. We apply later in 
Section 3.11.1 exponentially weighted moving averages to volatility estimation. 

The weights of the exponentially weighted moving average are 

«>k = 7 — V 5 , <3"69> 1 — 7C 

as can be seen from (3.68). The GARCH(1,1) weights are 

wk = & k = 1 , 2 , . . . . (3.70) 

The formula in (3.70) follows because the GARCH( 1,1) estimator for the conditional 
variance is 

^ = 7 7 3 + ^ E W - M . (3.71) 
1 P k=0 

where the parameter estimators a ^ a i , and j3 are calculated using the data Yo,..., Yt-1, 
with the maximum likelihood method as in (3.62). 

Let us compare the exponential moving average weights defined in (3.69) with 
the GARCH(1,1) weights wk defined in (3.70). We have estimated the GARCH(1,1) 
parameters for the S&P 500 returns data in (3.66). With those estimates we get 

= 8.72 x 1 0 " 6 . 
1 - / 3 
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Figure 3.15 GARCH vs. EWMA: Weights. The weights wk of the GARCH( 1,1) estimator of 
volatility and the weights w l of the exponentially moving average for smoothing parameters 
ft = 5, ft = 11.55, and h = 20 are shown. Panel (a) shows the first 25 weights, and panel (b) 
shows the logarithms of the first 25 weights. The black curves show the GARCH(1,1) weights. 
The green, red, and blue curves show the EWMA weights for ft = 5, h = 11.55, and ft = 20. 

If the first term in (3.71) is considered negligible, we obtain for a large sample size 

we
k wk, 

if 
7 « p ^ ft « - 1 / log0) = 11.55. (3.72) 

Figure 3.15 shows the first 25 weights wk of the GARCH(1,1) estimator of the 
volatility and the weights we

k of the exponentially weighted moving average for the 
smoothing parameter values ft = 5, ft = 11.55, and ft = 20. Panel (a) shows the 
first 25 weights and panel (b) shows the logarithms of the first 25 weights. The black 
curves show the GARCH( 1,1) weights, the red curves show the EWMA weights with 
ft = 11.55, the green curves show the EWMA weights with ft = 5, and the blue 
curves show the EWMA weights with ft = 20. The GARCH(1,1) weights seem 
close to the EWMA weights for the value ft = 11.55, since we can hardly distinguish 
between the black curve and the red curve. The weights with ft = 5 (blue curves) are 
decreasing fast, and the weights with ft = 20 (green curves) are decreasing slowly. 

Figure 3.16 shows the ratios ^ w r n a / a f a r c h , where crlwrna is the moving averages 
estimate, and a f a r c h is the GARCH(1,1) estimate, which is calculated in-sample, 
using the parameter estimates obtained from the whole sample. The smoothing 
parameters ft = 5, ft = 11.55, and ft = 20 are considered. Panel (a) shows the case 
ft = 5 with green, panel (b) shows the the case ft = 11.55 with red, and panel (c) 
shows the the case ft = 20 with blue. The ratio tends to be below one: Exponentially 
weighted moving average tends to give smaller volatility estimates. We have removed 
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Figure 3.16 GARCH vs. EWMA: Ratios of volatility estimates. We show the ratios 
frewma j^garch o f t h e e x p o n e n t i a Hy moving average estimator of volatility to the GARCH( 1,1) 
estimator of volatility for three smoothing parameters. Panel (a) shows the case h — 5 with 
green, panel (b) shows the the case h = 11.55 with red, and panel (c) shows the the case 
h = 20 with blue. 

the first two years, and the time series starts at 1952-01. During the years 1950-1951 
the fluctuation was larger and the ratios were at most equal to two. 

Figure 3.17 shows the sample means and standard deviations of ^ w r n a / a f a r c h . 
The smoothing parameter h of <5f™ma takes values 1,5,11.55,20,40,80. Panel (a) 
shows the means, and panel (b) shows the standard deviations. We see that the mean 
is below one, and it is increasing as a function of h. We see also that the standard 
deviation is smallest when h = 11.55. 

Figure 3.18 shows the left and right tail plots which compare the distributions 
of a f a r c h and a™171". Tail plots are defined in Section 6.1.2. Panel (a) shows the 
left tail and panel (b) shows the right tail. The left tail consists of the observations 
smaller than the median, and the right tail consists of the observations larger than the 
median. The black circles show the GARCH(1,1) estimates, the red circles show the 
EWMA estimates with h — 11.55, and the blue circles show the EWMA estimates 
with h = 25. We see that the left tail of the GARCH estimates is lighter than the left 
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Figure 3.17 GARCH vs. EWMA: Means and variances of ratios of volatility estimates. 
We show the means and standard deviations of the ratios of the GARCH(1,1) estimator of 
volatility to the exponentially moving average estimator of volatility for smoothing parameters 
h = 1 ,5,11 .55, 20,40,80. Panel (a) shows the means, and panel (b) shows the standard 
deviations. 

tail of the EWMA estimates. The right tail of the GARCH estimates and the EWMA 
estimates with h = 11.55 are close to each other, but the right tail of the EWMA 
estimates with h = 25 is lighter. 

Figure 3.19 shows the values of the Kolmogorov-Smirnov test statistics for com-
paring the distributions of a f a r c h and a^w r n a . The Kolmogorov-Smirnov test statis-
tics is equal to the supremum distance between the empirical distribution functions 
of two samples and it is defined by 

KS = sup F(t) - G(t) 
te R 

where F and G are the empirical distribution functions of the two samples, as defined 
in (1.43).38 The test statistics is used to test the null hypothesis of the equality of two 
distributions. We show the values of the test statistics for the smoothing parameters 
h = 1,5,11.55,20,40,80 of the EWMA estimates. The test statistics indicates that 
the distributions are closest when h = 40. 

3.10 CONDITIONAL COVARIANCE ESTIMATION 

We define in Section 3.10.1 an estimator of the conditional covariance using state-
space smoothing and local averaging. Section 3.10.2 considers GARCH estimation of 

38We have calculated the test statistics using the R-function "ks.test" in package "stats." 
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(a) (b) 

Figure 3.18 GARCH vs. EWMA: Tail plots of volatility estimates. We show the tail 
plots which compare the distribution of GARCH(1,1) estimates <jgtarch and EWMA estimates 
^ewrna P a n e l ^ s h o w s t h e je f t t a i] pio t ? a n d p a n e l (ty shows the right tail plot. The black 
circles show the GARCH(1,1) estimates, the red circles show the EWMA estimates with 
h = 11.55, and the blue circles show the EWMA estimates with h = 25, 

0 20 40 60 80 

h 

Figure 3.19 GARCH vs. EWMA: Kolmogorov-Smirnov test statistics. We show the 
Kolmogorov-Smirnov test statistics for comparing the distributions of d-fa r c h and (j*wrna as 
a function of smoothing parameter h of the EWMA estimates. 
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conditional covariance for time series data. Section 3.10.3 defines a moving average 
estimator of conditional covariance for time series data. 

3.10.1 State-Space Smoothing and Covariance Estimation 

Let (Xi, Yi, Z i ) , . . . , (Xn, Yn.Zn) be identically distributed data from the distri-
bution of (X, Y, Z), where Y, Z e R, and X E Hd is the vector of explanatory 
variables. Let us consider the estimation of the conditional covariance 

f{x) = Cov(Y, Z\X = x), xeRd. 

Covariance and correlation regression was introduced in Section 1.1.5. 
We can write 

Cov(Y, Z\X =x) = E[(Y - freg,y(X)) (Z - freg,z(X)) \ X = x], 

wherz fREG,Y{X) = E(Y | X = x) and freg,z{x) = E(Z \ X = x) are the regression 
functions. Thus we can estimate the conditional covariance by 

n 

}{X) = (Yi ~ fre9,Y(Xi)) (Z{ ~ 
2 = 1 

where freg,Y and f r e g , z are estimators of the regression functions, and P i ( x ) are 
the kernel weights defined in (3.7), the regressogram weights defined in (3.5), or the 
nearest-neighbor weights defined in (3.30). We can also write 

Cov(Y, Z\X =x)=E [YZ \X = x \ - f r e g , Y ( x ) f r e g , Z ( x ) . 

Thus we can estimate the conditional covariance by 

n 

f ( X ) = ^~2,Pi(x)YiZi - freg,Y{x)freg,z(x). 
i=1 

We can use the same local averaging to estimate / , f r e g , Y , and f r e g , z • In this case 

/ ( x ) = [ x i Y i - ^ 2 p j ( x ) X j ^ 2 p k ( x ) Y k 
i= 1 y 3 = 1 k= 1 

n n n 

2 = 1 2 = 1 j=1 

3.10.2 GARCH and Covariance Estimation 

In the multivariate GARCH model the stochastic process Yt is a vector process with 
d components. It is assumed that Yt is strictly stationary and 

Yt = E j / 2 e t , t = 0 , ± 1 , ± 2 , . . . , (3.73) 
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1 / 2 where E / is a square root of a positive definite covariance matrix Et, Et is mea-
surable with respect to the sigma-algebra generated by Yt-i,Yt-2, • • a n d et is a 
d-dimensional i.i.d. process with Eet = 0 and Var(et) = Id> where Id is the d x d 
identity matrix (strict white noise). 

The square root of Et can be defined by writing the eigenvalue decomposition 
Et = QtAtQt' where At is the diagonal matrix of the eigenvalues of Et and Qt is 
the orthogonal matrix whose columns are the eigenvectors of Et. Then we define 
E ^ 2 = Qth

lJ2Q't, where A ^ 2 is the diagonal matrix obtained from At by taking 
componentwise square roots. We can define E ^ 2 also as a Cholesky factor of Et. 

Multivariate GARCH processes are reviewed in McNeil et al. (2005, Section 4.6), 
Bauwens, Laurent & Rombouts (2006), and Silvennoinen & Terasvirta (2009). 

Below we write the models only for the case d = 2, so that Yt = (It,i, It,2)- The 
multivariate GARCH models are denoted with MGARCH(p, q). We restrict ourselves 
to the first order models with p = q = 1. The multivariate GARCH models are based 
on (3.73) but differ in the definition of the recursive formula for Et. 

MGARCH Models First we define the VEC model and two restrictions of it: the 
diagonal VEC model and the BEKK model. Then we define the constant correlation 
model and the dynamic conditional correlation model. 

Let us denote = Var(>t,i)> of,2 = Var(lt,2)» and crt,12 = Cov(Yi,i, It,2)-
The VEC model and the diagonal VEC model were introduced in Bollerslev, Engle 
& Wooldridge (1988). The VEC model assumes that 

°t,i = ao + a i* t - i , i + a2*t-i,2 + 03^-1,1^-1,2 

+ &l<7t-l,l + &20"t_l,2 + hcrt-1,12, 

°t, 2 = c0 + Cl^t-1,1 + C2Yt-l,2 + C 3 ^ - l , l ^ - l , 2 

+dlCT2_M + d<2at-l,2 + ^3^-1,12, 

< ,̂12 = eo + eiYt-1,1 + e2^t-l,2 + 63^-1,1^-1,2 

+ /l<72_M + /2^t2-l,2 + fs&t —1,12' 

This model has 21 parameters ao , . . . , /3. Since the model has a large number of 
parameters, it is useful to consider models with less parameters. The diagonal VEC 
model has only 9 parameters and assumes that 

at2! = a0 + ai^t-1,1 + K 2 - i,i ' (3-7 4) 

°t,2 = C0 + Cl^t-1,2 + d(Jl-l,2i ^3-75) 

< ,̂12 = e0 + eiFt-1,1^-1,2 + M-1,12. (3.76) 

Thus, in the diagonal VEC model the components of Yt follow univariate GARCH 
models. The BEKK (Baba-Engle-Kraft-Kroner) model was introduced in Engle & 
Kroner (1995). The model has 11 parameters and it can be written more easily with 
the matrix notation as 

^ t — Co + G'Yt-xY^G + H'Y^t-iH, 
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where Go is a symmetric 2 x 2 matrix and G and H are 2 x 2 matrices. The BEKK 
model is obtained from the VEC model by restricting the parameters. We can express 
the parameters a\,..., fa of the VEC model in terms of the parameters of the BEKK 
model as follows: 

ai — a2 = G12, = 2G11G12, = i^n , = -^12 5 = 
C1 — ^22 5 c2 = = 2G22G21, d\ — H%2,d2 = = 2i/22#21, 

ei = G11G21, e2 = G22G12, e3 = G11G22 + G12G21, 

/1 = fa = H22H12, fa — H11H22 + H12H21, 

where we denote the elements of G by Gij and the elements of H by Hij. 
The recursive formula for Et can be written by using the correlation matrix Pt. 

Let At be the diagonal matrix of the standard deviations of Et. The correlation 
matrix Pt, corresponding to E t , is such that E* = AtPtAt. 

The constant correlation MGARCH model, introduced in Bollerslev (1990), is 
such that the components of Yt follow univariate GARCH models, and the correlation 
matrix is constant. That is, E* = AtPAt and At = diag(<Tt}i, <7^2), where P is the 
constant correlation matrix. The constant correlation GARCH model assumes the 
univariate GARCH models for the components, as in (3.74) and (3.75), and 

Pt = p. 

The dynamic conditional correlation MGARCH model, introduced in Engle (2002), 
is such that the components of Yt follow univariate GARCH models and 

pt = e0 + eiYt-i,iYt-i}2 + f pt-1, (3.77) 

where Yt = A ~ l Y u e0, eu f > 0, ex + / < 1. 

Covariance in MGARCH Models The recursive equation (3.76) in the station-
ary diagonal VEC model implies that 

00 

<tM2 = j ^ j fk~lyt-kAYt-k,2. 
* k=1 

This follows similarly as in the case of GARCH( 1,1) model; see (3.59). The recursive 
equation (3.77) in the stationary dynamic conditional correlation GARCH model 
implies similarly that 

00 

Pt = + E f^Yt-k+Yt-^ 
J k=1 

where ^ = ( ^ ,1 / ^ ,1 , ^ ,2 / ^ ,2 ) -
Given the observations Y\ = (Yi,i, Yi,2), . . . , YT — (Yt,i, YT,2)» estimate 

the parameters, similarly to GARCH(p,q) estimation in (3.61), by maximizing the 
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conditional modified likelihood, 

T T 

l o g c Z r ( a 0 , a i , . . . , e i , / ) = - - ^ log e |E t | + log fe (t;1/2Yt), 
t=r-\-l t=r+1 

where r > 1, fe is the density of the standard normal bivariate distribution iV(0, J2), 
and Et is the truncated covariance, with elements of i ' 2' &t,i2> where 

t 

k=1 

and of o f 2 are defined similarly. 
Given the data Y0, • • •, Yt-i, the MGARCH(1,1) estimator for the conditional 

variance is 
t - i 

<7t, 12 = + e 1 ^ / f c y i _ f c _ 1 , 1 y t _ f e _ 1 , 2 , (3.78) 
1 .f 1 n A;=0 

where the parameter estimators e0>
 a n d / are are calculated with the maximum 

likelihood method, analogously to the calculation in (3.62). 

3.10.3 Moving Averages and Covariance Estimation 

Let Yt = (Yt,i, Yi,2) be a vector time series with mean zero components. We denote 
the conditional covariance by 

2 = E{Yt,iYt,2 I Yt-i, l t -2 , • • •)• 

The exponential moving average was defined in (3.16). The exponential moving 
average estimator of the conditional covariance, based on observations Yo,. . . , Yt-1 
is 

1 — 7 k 
71 = r > 7 Y t-k-i , iY t-k-i ,2, 

1 — Y ' k=0 

where 7 = exp( —1/h), and /i > 0 is the smoothing parameter. The moving average 
gives an estimator of conditional covariance which is alternative to the MGARCH 
estimator in (3.78). 

t - i 

3.11 APPLICATIONS IN RISK MANAGEMENT 

We apply kernel estimation in variance, covariance, and quantile estimation. Quantile 
estimation has a direct application in risk management because quantile estimates 
give value at risk estimates and estimates of economic capital; see Section 1.5.1. We 
use variance estimates to construct quantile estimates. Covariance estimates can be 
applied to estimate the variance of the returns of a portfolio, because the variance of 
portfolio returns involves the covariance of the returns of the portfolio components, 
in addition to the variance of the individual portfolio components. 
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3.11.1 Volatility Estimation 

The term volatility means the standard deviation of the returns, but sometimes the 
variance of the returns is called the volatility of the returns. We study the estimation 
of the conditional variance and the conditional standard deviation using the S&P 
500 returns data, described in Section 1.6.1. We denote the net returns by Yt = 
(.Pt — Pt-i )/Pt-1» where Pt is the price of the index, and the observed historical net 
returns are denoted by Y \ , . . . , YT. We want to estimate 

We assume that the conditional expectation of Yt is zero, so that of is the conditional 
variance. Figure 1.3 shows the prices and the net returns of the S&P 500 index. The 
fitting of the GARCH( 1,1) model for the S&P 500 returns was studied in Section 3.9.2, 
and a comparison with GARCH(1,1) and exponential moving averages was made in 
Section 3.9.3. 

First we compare visually exponential moving average estimates and GARCH( 1,1) 
estimates by looking at the time series of the estimates. Second we study the properties 
of various performance measures, with the help of GARCH(1,1) estimates. Third we 
use two performance measures to compare exponential moving average estimates to 
GARCH(1,1) estimates. Fourth we discuss smoothing parameter selection for expo-
nentially weighted moving averages. Fifth we compare state-space kernel smoothing 
estimates to the GARCH( 1,1) estimates and construct kernel estimators of the news 
impact curve. 

EWMA and GARCH(1,1) Estimates of Volatility The exponential moving 
average was defined in (3.16), and the exponential moving average for conditional 
variance estimation was defined in (3.68). The formula for the exponential moving 
average estimator of conditional variance is 

where 7 = exp(—1 /h), and h > 0 is the smoothing parameter. 
The GARCH model was defined in Section 3.9.2; and the GARCH(1,1) model, 

in particular, was defined in (3.65). We estimate the conditional variance so that the 
GARCH(1,1) model is fitted only after there are one year of observations. The first 
estimate of the variance is the sample variance 

<jt=E (Xt 1 y t - i )Vt-2) . . •). 

t-1 
(3.79) 

(3.80) 

where to = 251. After that we use the recursion 

of = OLt 0 + &tiYt
2_1 + .2 

t-1-> (3.81) 
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for t — to + 2 , . . . , T + 1, where the parameter estimates are calculated sequentially, 
so that at time t only observations Y\,..., Yt are used in estimation. The prediction 
with the sequential estimation of parameters is called out-of-sample prediction. 

Figure 3.20 shows a time series of the S&P 500 returns together with a time 
series of the sequentially calculated annualized standard deviations, along with three 
time series of exponential moving average estimates of the annualized conditional 
standard deviations of the S&P 500 returns. By the annualized standard deviation 
we mean \/250 times the standard deviation. Panel (a) shows the S&P 500 returns 
(black line), and panel (b) shows the sequentially calculated annualized sample 
standard deviation (red line). Panel (c) shows the exponential moving average with 
the smoothing parameter ft = 1000 (blue line), in panel (d) the smoothing parameter 
is ft = 25 (brown line), and in panel (e) the smoothing parameter is ft = 0.45 (purple 
line). The estimates are calculated with data starting at 1950-01-03, but we show the 
estimates starting at 1951-01-02. The annualized standard deviation of the complete 
time series of the net returns is 15.4%. 

The exponential moving average can be conveniently used to make volatility 
estimates at different time scales, which is illustrated in Figure 3.20. We choose a 
large smoothing parameter to show large-scale phenomena and a small smoothing 
parameter to show small-scale phenomena. In Figure 3.20, panel (b) and panel (c) 
show the long-term rising trend of the volatility. Panel (d) and panel (e) display the 
short time scale volatility behavior, showing the short period volatility bursts. 

Figure 3.21 shows the estimated values \/250 x a t when we use the GARCH(1,1) 
formula of (3.81). We noted in (3.72) that the exponential moving averages with 
smoothing parameter ft = 11.55 are close to the GARCH(1,1) estimates of the con-
ditional variance. We can now compare the time series of the exponentially weighted 
moving average estimates in Figure 3.20 to the time series of the GARCH(1,1) 
estimates in Figure 3.21. The comparison indicates that the degree of smoothing 
of GARCH(1,1) is between the degree of smoothing with smoothing parameters 
ft = 0.45 and ft = 25 of the exponentially moving average. 

We apply later the conditional standard deviation estimates in conditional quantile 
estimation and in portfolio selection. It is not obvious that the same degree of 
smoothing is optimal for both of these problems, and thus exponential moving average 
can be useful, because in the moving average estimator the degree of smoothing can 
be conveniently adjusted to suite the problem at hand. 

Performance Measures In Section 1.9.2 we have presented several performance 
measures that can be used to compare volatility estimates. We want first to get 
information about the properties of the different performance measures. We have 
defined in (1.125) a class of performance measures 

where p, q > 0 are parameters, MDE is an acronym for the mean of deviation errors, 
and Z - iV(0,1). See (1.126) for the closed-form expression of E\Z\P. 

(3.82) 
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Figure 3.20 EWMA volatility estimates of S&P 500 returns, (a) The time series of the 
annualized S&P 500 returns (black line), (b) The sequential annualized sample standard 
deviation (red line), (c) The annualized exponential moving average estimate of the conditional 
standard deviation with the smoothing parameter h = 1000 (blue line), (d) The moving average 
estimate with h = 25 (brown line), (e) The moving average estimate with h = 0.45 (purple 
line). 
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1950 1960 1970 1980 1990 2000 2010 

Figure 3.21 GARCH( 1,1) volatility estimates of S&P 500 returns. Annualized conditional 
volatility estimates \/250 <r£, when the GARCH(1,1) model is used. 

Figure 3.22 illustrates the effect of parameters p and q to the performance measure 
defined in (3.82). We show the time series \E\Z\pa^ - \Yt\

p\1/q, where at are the 
sequential GARCH(1,1) estimates of the conditional volatility. Panel (a) shows the 
case p = 2, q = 1, panel (b) shows the case p = 2, q = 2, panel (c) shows the case 
p = l,q = 1, and panel (d) shows the case p = l,q = 2. We can see that the 
prediction errors tend to be large when the volatility is large. Panel (a) shows that 
large errors dominate the performance measure when p — 2 and q — 1. Panel (b) 
and panel (c) show that the cases p = 2, q = 2 and p = 1, q = 1 are quite similar. 
Panel (d) shows that using p — 1 and q = 2 diminishes the influence of outliers in 
the performance measure. 

We show next that when we measure the performance with the mean of deviation 
errors, then for some parameter values p and q the performance is better with the 
identically zero estimate a t = 0 than with the GARCH(1,1) estimates or EWMA 
estimates. We study this phenomenon in Figure 3.23. 

Figure 3.23 shows a contour plot of the function 

G(p,q) = 
MDE<™>(GARCH(1,1)) _ E L o \E\Z\"^ - \Yt\"\1/(1 

MDE(p'9)(NULL) E L o l ^ l 
P/Q 

(3.83) 

where a t are the sequential out-of-sample GARCH(1,1) estimates, and we show the 
range 0.1 < p, q < 3. The region with the dark gray color shows the area where 
the function G is larger than one. In the region where G is larger than one, the 
zero estimator b t = 0 has a smaller deviation error than the GARCH(1,1) estimator 
and is judged to be better than the GARCH(1,1) estimator. The region where G is 
larger than one is approximately equal to the region where p and q are larger than 1. 
Figure 3.23 suggests that we should prefer p and q values from the light gray region, 
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Figure 3.22 Prediction errors of GARCH(IJ). Shown are time series of prediction errors 
\E\Z\pop

t - \Yt |p| 1 / 9 , when bt are GARCH(1,1) estimates of the volatility. (a)p = 2, q = 1; 
(b)p = 2,g = 2; ( c ) p = l,q = l ; ( d ) p = 1,9 = 2. 
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Figure 3.23 Comparison of performance measures. A contour plot of the function G, 
defined in (3.83), for the range 0.1 < p, q < 3. The dark gray region is the area of (p, q)-
values where the null estimate a t = 0 is judged to be better than the GARCH(1,1) estimate, 
by the performance measure 

where G is smaller than one. For example, values p = 1 and q — 2 would do, but 
not p = q = 2. 

The performance measure 

was mentioned in (1.127), where p > 0, and Z ~ iV(0,1). We shall use both 
M A R E ^ with p = 2 and MDE^ '^ with p = 1 and q = 2 to compare the exponen-
tially weighted moving average and GARCH(1,1). 

Comparing the Performance of EWMA and GARCH( 1,1) Figure 3.24 com-
pares the performance of exponentially weighted smoothing average with the perfor-
mance of GARCH(1,1). We use the performance measure with p — 1 and 
q — 2, defined in (3.82), and the performance measure MARE(p) with p = 2, defined 
in (3.84). 

Figure 3.24(a) shows the ratios 

(3.84) 

MDE(p '9)(EWMA(/i)) 

MDE ( p '9 )(GARCH(l, l)) 
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where p = 1 and q = 2, the values of the smoothing parameter ft are in the range 
{1 ,2 , . . . , 30,40}.39 Here MDE(P'G) (EWMA(ft)) is the mean deviation error of 
the exponentially weighted moving average, with the smoothing parameter ft, and 
M D E ( m ) (GARCH(1,1)) is the mean deviation error of the GARCH(1,1) estimate.40 

We see that there is little difference between the exponentially weighted smoothing 
average and the GARCH(1,1) estimates. The red horizontal line is drawn at level 
one; the values below the red line indicate a better performance for the exponentially 
weighted moving average. We see additionally that the exponentially weighted 
moving average is robust with respect to the choice of the smoothing parameter, 
since the error is below the error of GARCH(1,1) at least in the range ft = 3 — 20. 
The minimum error is reached when ft = 8. 

Figure 3.24(b) shows the ratios 

MARE(p)(EWMA(ft)) 

MARE(p) (GARCH (1,1)) ' 

where p — 2, the values of the smoothing parameter ft are in the range { 4 , . . . , 80},41 

and MARE(p) is defined in (3.84) 42 The GARCH(1,1) estimator is slightly better 
with the MARE criterion; the error curve is over the red line drawn at level one, for 
all values of ft. The error of the moving average estimator increases slowly, when ft 
increases. The minimum error is obtained when ft = 40. 

Smoothing Parameter Selection for Moving Averages We can use Fig-
ure 3.24 to choose the smoothing parameter. We conclude that MDE^1'2) criterion 
would recommend about ft = 8 and MARE^2) criterion would recommend ft in 
the range 20-40. JPMorgan (1996) contains the recommendation 7 = 0.94 for the 
choice of the smoothing parameter, for daily data, which corresponds to ft = 16.16, 
by the correspondence ft = — 1/ log(7). For the monthly data the recommendation 
of JPMorgan (1996) is A = 0.97. 

The previous comparison discusses the global choice of the smoothing parameter: 
We search for a smoothing parameter that would be optimal during the whole period 
(although the performance measurement was made sequentially, out-of-sample). It 
could also be that the optimal smoothing parameter changes in time. The smoothing 
parameter can be selected locally in time by 

ht = arqmin^> 0MDE^'9 )(ft), 

where 

MDE<™>(/0 = T_L E \E\Z\P<(H) - I 
U = t 0 

39h G { 1 , 2 , 3, 4, 8 ,12 , 16, 20, 30, 40}. 
40The value of (GARCH(1,1)) is equal to 0.06025615 for p = 1 and q = 2. 
41 /i <E {4, 8 , 1 2 , 1 6 , 20, 30, 40, 60, 80}. 
42The value of MARE^) (GARCH(1,1)) is equal to 1.08744 for p = 2. 
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Figure 3.24 Comparison of EWMA and GARCH(1,1). (a) The ratio of the MDE(1 '2) of 
the exponentially weighted moving average to the MDE(1 '2) of the GARCH(1,1) estimate are 
shown for the smoothing parameter values h = 1 , . . . 30,40. (b) The ratio of the the M A R E ^ 
of the exponentially weighted moving average to the MARE(2) of the GARCH(1,1) estimate 
are shown for h = 4, 8 . . . , 80. The red horizontal lines are drawn at level 1 in both panels. 

and <ju(h) is the volatility estimate with smoothing parameter h, calculated using 
data Y i , . . . , YU-\- Spokoiny (2000) discusses an other type of locally adaptive 
smoothing parameter selection with local constant volatility estimates. 

The negative logarithmic likelihood for the GARCH model was given in (3.62). 
Fan & Gu (2003) propose to use the negative logarithmic pseudolikelihood 

T 

PLT = ^ ( l o g a f
2 + y t

2 / ^ 2 ) 
t = to 

in choosing the smoothing parameter (the decay factor in the exponential weighted av-
erage). The smoothing parameter minimizing negative logarithmic pseudolikelihood 
is chosen. 

State-Space Smoothing in Volatility Estimation 

Previous Volatility as an Explanatory Variable In Section 3.9.1 we have defined 
conditional variance estimators which use local averaging. Let us define 

(t-1 t - k i - l \ 

J2 rl E *?)> <3-85) 
i—t — k i i=t — k\ —/c2 / 
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Figure 3.25 A Kernel estimate in volatility prediction. A perspective plot of a kernel 
regression estimate. 

where Rt is the net S&P 500 return and fci, k2 > 1. We use now regression data 
(.Xt, Yt) to define a conditional variance estimator 

where Pi(x) are the kernel weights. We choose k\ = k2 = 5 and make the copula 
transform of the data Xt to the standard Gaussian margins of the data Xt. In 
Section 2.5 we have defined the explanatory variable as Xt — (Rf-i, • •., Rt-p) a n d 
used least squares regression and ARCH modeling. The definition of the explanatory 
variables as in (3.85) reduces the number of explanatory variables, but still retains 
information from a long history. 

Figure 3.25 shows a perspective plot of a kernel estimate. The smoothing param-
eter is h = 1 and the standard normal kernel is used. 

Figure 3.26 shows state-space kernel smoothed annualized volatility estimates. 
Panel (a) shows the estimates with smoothing parameter h — 2, panel (b) shows 
estimates with h = 0.5 in red, and panel (c) shows estimates with h = 0.1 in 
blue. We see from panel (b) that the smoothing parameter h — 0.5 leads to a time 
series of estimates which resembles the time series of GARCH(1,1) estimates in 
Figure 3.21, and this time series is also similar to the time series of exponentially 
weighted moving average estimates with h = 10 (not shown). However, increasing 
the smoothing parameter to h = 2 leads to a time series of different type than the 
time series of exponentially weighted estimates with smoothing parameter h — 25, 
shown in Figure 3.20(d) with the brown line. 

(3.86) 
2 = 1 
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Figure 3.26 S&P 500 volatility: State-space kernel estimates. Annualized volatility 

estimates obtained with the state space kernel estimator when smoothing parameter is (a) 

ft = 2 (black), (b) ft = 0.5 (red), and (c) ft = 0.1 (blue). 
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Figure 3.27 S&P 500 volatility. The performance of state-space smoothing. Panel (a) 
shows the mean absolute deviation errors (MDE ( 1 '2 )) for different smoothing parameters h. 
Panel (b) shows the mean absolute ratio errors (MARE(2)). The errors are relative to the 
MDE ( 1 '2 ) and MARE ( 2 ) of the GARCH(1,1). The red horizontal lines are drawn at level 1 in 
both panels. 

Figure 3.27 shows the performance of the state space smoothing estimator of 
the conditional variance for the smoothing parameters h = 0.1,0.3,0.5,0.8,1,2. 
Panel (a) shows the performance measured with the mean deviation error with p = 1 
and q = 2, defined in (3.82). Panel (b) shows the performance measured with the 
mean absolute ratio errors with exponent 2, defined in (3.84). The performance 
is compared to the GARCH(1,1) estimates: We have divided the MDE and the 
MARE values of the least squares estimator with the MDE and the MARE values 
of the GARCH(1,1) estimator. We see that for the MDE measure the performance 
is better for smoothing parameters around h = 0.5 than the performance of the 
GARCH(1,1), but for the MARE measure the performance is worse than the per-
formance of GARCH(1,1). Comparing the performance to the performance of the 
exponentially weighted moving average estimators shown in Figure 3.24, we see that 
the state-space kernel smoothing performs slightly worse. 

Previous Returns as the Explanatory Variable Let us choose 

Yt = Rt, Xt = Rt~ i, 

and consider the estimation of the conditional variance with the kernel estimator, 
using the S&P 500 data described in Section 1.6.1. The function 

a 2 (X) = Var(Yt \Xt = x) 
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Figure 3.28 S&P 500 volatility: News impact curves, (a) A kernel estimate of the conditional 
variance, (b) A kernel estimate of the conditional variance when the values of the explanatory 
variable are transformed. 

can be called the news impact curve, because the explanatory variable is the previous 
day return. We use the estimator 

T 

a2(X) = - fre9(x)2, 

t = 1 

where pt(x) are the kernel weights, defined in (3.7), and freg is a kernel regression 
estimator of E(Yt \ Xt = x).43 An ARCH(oo) model for the estimation of the news 
impact curve is mentioned in (3.64). A local linear estimator of the news impact 
curve is shown in Figure 5.7. 

Figure 3.28 shows two estimates of the news impact curve. Panel (a) shows a 
kernel estimator with the smoothing parameter h = 0.025 and the standard normal 
kernel. Panel (b) shows a kernel estimator where the data are first transformed to 
follow approximately the standard normal distribution (as in the copula transform in 
Section 1.7.2), then the kernel estimator with smoothing parameter h = 1 and the 
standard normal kernel is applied, and finally the x-values are transformed back to 
follow the original distribution. 

3.11.2 Covariance and Correlation Estimation 

We estimate the conditional covariance between the returns of the S&P 500 index 
and the returns of the Nasdaq-100 index. The S&P 500 and Nasdaq-100 index data 
are described in Section 1.6.2, where Figure 1.4(b) shows the scatter plot of the index 

4 3The term freg(x)2 does not have any visible impact on the estimator. 
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returns. We can see from that figure that the index returns are highly correlated. 
Covariance and correlation regression was introduced in Section 1.1.5. 

EWMA Estimates of Covariance and Correlation Let us denote the observed 
returns of the indices by (YQ? ZQ), • • •, (XT, ZT). The exponential moving average 
estimator of the conditional covariance is 

1 i=0 

where 7 = exp(—1 /h), and h > 0 is the smoothing parameter. We have assumed 
that the net returns have the expected value zero. 

Figure 3.29 shows the time series of estimates % of the conditional covariance 
between the returns of S&P 500 and Nasdaq-100. The black curve in panel (a) 
shows the sequentially calculated covariances. The red curve in panel (b) shows a 
moving average estimator with the smoothing parameter h = 1000. The blue curve 
in panel (c) has h = 10, and the brown curve in panel (d) has h — 1. We show the 
annualized covariance, so that the correlation estimates are multiplied by 250. We 
can see that the covariance estimates express a considerable time variation. However, 
the time variation may be due to the variation in the marginal variances. Thus we 
turn into the conditional correlation estimates. 

There are two ways to estimate the conditional correlation, as was noted in Sec-
tion 1.1.5. The first way is to first estimate the conditional covariance and then 
normalize the estimate with estimates of conditional standard deviation. This leads 
to the estimate 

Pt= (3.88) 

where 7* is the covariance estimate defined in (3.87) and at,i and crt,2 are estimates 
of the conditional standard deviation, like exponentially weighted moving averages 
or GARCH(1,1) estimates, studied in Section 3.11.1. The second way is to first 
normalize the returns with the estimated standard deviations and then calculate the 
condtional covariance estimate from the normalized time series. This leads to the 
estimate 

1-7 r, <7i,l<7i,2 t=u 

where <7̂ 1 and <7̂ 2 are estimates of the conditional standard deviation. 
Figure 3.30 shows conditional correlation estimates pt, defined in (3.88). Panel (a) 

shows the conditional correlation estimates when the covariances and the standard 
deviations are calculated sequentially (black curve). Panel (b) shows the conditional 
correlation estimates when the covariances and the standard deviations are calculated 
using exponentially weighted moving averages with the smoothing parameter h — 
500 (red curve). Panel (c) shows the case with the smoothing parameter h = 50 (blue 
curve), and panel (d) shows the case with the smoothing parameter h = 10 (brown 
curve). 
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Figure 3.29 S&P 500 and Nasdaq-100: Covariance estimates. Panel (a) shows the 
sequentially calculated covariance estimates between the returns of S&P 500 and Nasdaq-100 
(black curve). Panel (b) shows a moving average estimator with smoothing parameter 
h = 1000 (red curve). Panel (c) shows the case h = 10 (blue curve). Panel (d) shows 
the case h = 1 (brown curve). 
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Figure 3.30 S&P 500 and Nasdaq-100: Correlation estimates. Panel (a) shows the time 
series of sequentially calculated correlation estimates between the returns of S&P 500 and 
Nasdaq-100 (black curve). Panel (b) shows a moving average estimator with h — 500 (red 
curve). Panel (c) shows the case h — 50 (blue curve). Panel (d) shows the case h = 10 (brown 
curve). 
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Figure 3.31 S&P 500 and Nasdaq-100: Prediction errors. Time series of prediction errors 

17* — YtZt | 1 / 9 of the covariance estimates are shown, (a) q = 0.5; (b) q = 1; (c) q = 2. 

Performance Measures The performance of conditional covariance estimators 
can be measured with the mean of deviation errors defined in (1.128). The 
definition of this performance measure is 

MDE(9) (7) 
1 

T -10 + t 5 > YtZt\
1/q. 

t = to 

where q > 0. We have to choose a reasonable value for the parameter q. 

Figure 3.31 shows the time series of prediction errors \dt,i2 ~ YtZt\
1/q for three 

values of q. Panel (a) shows the case q = 0.5 (black curve), panel (b) shows the case 
q = 1 (red curve), and panel (c) shows the case q — 2 (blue curve). We can see that 
the time series are inhomogeneous for the values q — 0.5 and q = 1, but the choice 
q — 2 leads to a more homogeneous time series. 

Figure 3.32 shows the ratios 

MDE{q) (7) 

MDE{q) (0) 
(3.89) 
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q 

Figure 3.32 S&P 500 and Nasdaq-100: Comparison of performance measures. The 
ratio defined in (3.89) is shown as a function of q, for 21 smoothing parameters h E 
{ 2 , 3 , . . . , 30,40}. 

as a function of q E [0.1,3]. The expression MDE^} (0) means the mean of the 
deviation errors of the identically zero estimator. We show 21 curves, corresponding 
to a selection of smoothing parameters h E {2, 3 , . . . , 30,40}. We can see that for 
larger values of q the performance of a moving average is worse than the performance 
of the zero estimate. In particular, using q = 2 leads to a performance measure which 
prefers the identically zero estimator. 

Smoothing Parameter Selection Figure 3.33 shows the normalized mean de-
viation errors M D E ^ as a function of the smoothing parameter h, for the values 
q = 0.5 (black a), q = 1 (red b), and q = 2 (blue c). The mean deviation errors are 
normalized by dividing by the minimal value of the deviation errors. The minimal 
values occured at h = 13 for q = 0.5, at h = 15 for q — 1, and at h = 5 for q = 2. 
The h-axis is logarithmic. 

3.11.3 Quantile Estimation 

Quantile regression was introduced in Section 1.1.6. We study quantile estimation 
with the S&P 500 returns data described in Section 1.6.1. We estimate the conditional 
quantiles 

QpiXt | Yt—i, Yf—2i.. .)> 

with level 0 < p < 1, using the observed historical returns. 
We study the performance of the GARCH(1,1) volatility estimates in quantile 

estimation and compare their performance with the moving average estimators. The 
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Figure 3.33 S&P 500 and Nasdaq-100: Smoothing parameter selection. The normalized 
mean deviation errors are shown as a function of the smoothing parameter h. The three curves 
correspond to the choices q — 0.5 (black curve with labels "a"), q = 1 (red curve with labels 
"b"), and q = 2 (blue curve with labels "c"). 

sequential GARCH( 1,1) volatility estimates crf a r c h were defined in (3.80) and (3.81). 
Exponentially weighted moving average o™ma f o r ^ estimation of conditional 
variance was defined in (3.68). We use also the name "EWMA(h) estimator" to refer 
to the exponentially weighted moving average estimator with smoothing parameter 
h. 

The fitting of the GARCH(1,1) model for the S&P 500 data was studied in 
Section 3.9.2. The exponentially weighted moving average estimator was compared 
with GARCH(1,1) in Section 3.9.3. The volatility estimation for the S&P 500 data 
was studied in Section 3.11.1. 

Collection of Quantile Estimators We study conditional quantile estimators 
which are based on conditional standard deviation estimators. This method was 
defined in (1.30), and it puts 

Qp(Yt | Yt-u Vt-2, • • •) = &t F-\p), (3.90) 

where o t is an estimator of the conditional standard deviation and F~t
x{jp) is an 

estimator of the p-quantile of the distribution of et — Yt/at- Below, the estimator crt 

of conditional standard deviation is either a GARCH(1,1) estimator or a EWMA(h) 
estimator. We study three definitions for F~l(p). First, we choose 

(3.91) 
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where is the distribution function of the standard normal distribution. Second, we 
choose 

F ~ \ p ) = ] l ^ t - 1 ( p ) , (3.92) 

where tv is the distribution function of the ^-distribution with v degrees of freedom, 
v > 2. If X ~ U, then Var(X) = v/(y - 2), so that y/(v-2)/v t~l(p) is the 
p-quantile of such ^-distribution, which is standardized to have unit variance. Third, 
we choose 

F~\p) = Qre\p), (3.93) 

where Qres(p) is the empirical quantile of the residuals Yt/at. Empirical quantiles 
were defined in (1.26). 

The distribution of the GARCH(1,1) residuals Yt/at was studied in Section 3.9.2, 
where Figure 3.11 and Figure 3.12 show the tail plots and QQ-plots of the residuals. 
The maximum likelihood estimator of the GARCH( 1,1) model is defined with the 
assumption of standard normal innovations, but we noted that the residuals are better 
fitted with the ^-distribution and thus it makes sense to try to use quantiles from the 
^-distribution. We take the degrees of freedom equal to 12. The method of using 
empirical quantiles of the residuals was suggested in Fan & Gu (2003). 

The Performance Measure The performance measurement is explained in Sec-
tion 1.9.4. We measure the performance of a quantile estimator by looking at the 
differences p — p for p close to zero and p — p for p close to one, where p is defined 
in (1.129) as 

1 T 

0 t=t0 + l 

where qt = Qp(Yt \ Yt-U Yt-2, • • •) and 1 < t0 < T - 1. We take t0 = 250 so that 
the performance measurement starts after one year of observations has accumulated. 

GARCH(1,1)-Based Quantile Estimators GARCH( 1,1 )-based quantile esti-
mators are defined by (3.90), where a t is estimated with the GARCH(1,1) method, 
and the residual quantile is determined with one of the three methods in (3.91 )-(3.93). 

Figure 3.34 shows the time series of estimated conditional quantiles with the level 
p = 0.05 when the GARCH( 1,1) method is used to estimate the conditional variance, 
and the method (3.91) of choosing the standard normal distribution as the distribution 
of the residuals is used. 

Figure 3.35 compares GARCH( 1,1) quantile estimators when the residual quantile 
is determined with the three methods in (3.91)—(3.93). Panel (a) plots the function 
p i—p — p in the range p G [0.001,0.075] and panel (b) plots the function p i—>> p — p 
in the range p e [0.925,0.999]. Four cases are shown: the residual distribution 
is the standard normal distribution, the standardized ^-distribution with degrees of 
freedom 5 and 12, and the empirical distribution. The black curves show the case 
of the standard normal distribution, the blue curves show the case of the standard 
^-distribution with degrees of freedom 12, the red curves show the case of standard 
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Figure 3.34 GARCH( 1,1) quantiles. Shown is the time series of estimated quantiles with the 
level p = 0.05 for the S&P 500 returns data. The quantiles are estimated with the GARCH( 1,1) 
method with the residual distribution being standard normal. 

^-distribution with degrees of freedom 5, and the purple curves show the case of the 
empirical distribution. The green lines show the level a = 0.05 fluctuation bands, 
defined in (1.130)-(1.131). 

Figure 3.35(a) shows that the Gaussian residuals perform well for level p = 0.05, 
but for level p = 0.01 using a ^-distribution or the empirical distribution gives better 
estimates. The GARCH(l,l)-based quantile estimates are estimating the left tail of 
the S&P 500 return distribution too light, except when the residuals are from the 
^-distribution with degrees of freedom 5, in which case the tail is estimated too heavy 
for levels p < 0.01. Figure 3.35(b) shows that for the right tail the quantile estimates 
are more accurate than for the left tail. The standard ^-distribution with degrees of 
freedom 12 gives a good overall performance. 

EWMA-Based Quantile Estimators Exponentially weighted moving average-
based quantile estimators are defined by (3.90), where a t is calculated with the 
EWMA method, and the residual quantile is determined with one of the three methods 
in (3.91M3.93). 

Figure 3.36 shows the performance of exponentially weighted moving average for 
four smoothing parameters: h = 5 (black), h — 10 (red), h = 30 (blue), and h = 100 
(purple). Panel (a) plots the function p ^ p — p in the range p £ [0.001,0.075], and 
panel (b) plots the function p ^ p — p in the range p € [0.925,0.999]. The green 
horizontal line is drawn at level zero, and it is accompanied with the level a = 0.05 
fluctuation bands. The smoothing parameters h = 10 and h = 30 give the best 
results for large p. However, for small p the smoothing parameter h — 100 gives the 
best results. 

Figure 3.37 shows the performance of the exponentially weighted moving average 
estimator with the smoothing parameter h — 30 for four residual distributions. 
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(a) (b) 

Figure 3.35 Performance ofGARCH( 1,1) quantile estimators, (a) Functions p h->- p — p for 
p e [0.001, 0.075]. (b) Functions p p - p for p e [0.925, 0.999]. The black curves show 
the performance of the estimator with the standard normal residuals, the blue curves with the 
^-distribution with degrees of freedom 12, the red curves with the degrees of freedom 5, and 
the purple curves show the case of the empirical distribution. 

Figure 3.36 EWMA(h) quantile estimator. Smoothing parameter selection. Panel (a) shows 
the curves p p — p for p G [0.001, 0.075], and panel (b) shows the curves p H-*- p — p for 
the cases p £ [0.925, 0.999]. The smoothing parameters h — 5,10,30,100 are shown with 
the colors black, red, blue, and purple. 
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Figure 3.37 EWMA(h) quantile estimator: Selection of residual distribution, (a) The curves 
p i—>• p — p for p G [0.001, 0.075]. (b) The curves p i-> p - p for p G [0.925, 0.999]. The 
residual distributions standard normal, standard ^-distribution with degrees of freedom 12, 
degrees of freedom 5, and the empirical distribution are shown with the colors black, red, blue, 
and green. 

Panel (a) shows the curves p p — p for p G [0.001,0.075], and panel (b) shows 
the curves p p — p for the cases p G [0.925,0.999]. The black curve shows the 
standard normal residual distribution, the blue curve shows the standard ^-distribution 
with degrees of freedom 12, the red curve shows degrees of freedom 5, and the purple 
curve shows the case of using empirical distribution. For the left tail the empirical 
residuals give the best result, except whenp > 0.05, when the Gaussian residual give 
the best result. For the right tail the emprical residuals and the standard ^-distribution 
with degrees of freedon 12 give the best results. 

State-Space Kernel Smoothing-Based Quantile Estimators We have de-
fined in (3.86) a state-space smoothing estimator a f a t e for the conditional standard 
deviation. This estimator is now applied to quantile estimation. 

Figure 3.38 shows the performance of the quantile estimators 

Qp{Yt\Yt-U...) = ds
t
tate3>-\p). 

We show the performance for the six smoothing parameters h = 0.1, 0.3, 0.5, 
0.8, 1, 2. Panel (a) shows the curves p p — p when 0.001 < p < 0.075, and 
panel (b) shows the curves p p — p for 0.925 < p < 0.999. We can see that for 
the left tail the results are worse than the results of GARCH(1,1) or the results of 
exponentially weighted moving average. For the right tail the results are comparable 
when p < 0.97. 

Figure 3.39 shows the performance of the quantile estimators 

Qp(Yt\Yt-U...)=altateQres{p), 
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Figure 3.38 State-space kernel quantile estimator: Gaussian residuals, (a) The curves 
p p - p for p e [0.001, 0.075]. (b) The curves p K* p - p for p e [0.925, 0.999]. The 
smoothing parameters are h = 0.1,0.3, 0.5,0.8,1, 2. The /i-axis is logarithmic. 

Figure 3.39 State-space kernel quantile estimator: Empirical residuals, (a) The curves 
p p - p for p e [0.001, 0.075]. (b) The curves p p - p for p e [0.925, 0.999]. The 
smoothing parameters are h = 0.1,0.3, 0.5,0.8,1,2. The h-axis is logarithmic. 

where Qres (p) is the empirical quantile of the residuals Yt/at. Otherwise the setting 
is the same as in Figure 3.38 For the left tail the use of empirical quantiles of the 
residuals leads to much better performance. The performance is best for smoothing 
parameters h— 1 and h = 2. In these case the results are even better than the results 
of GARCH(1,1) and the exponentially weighted moving average. For the right tail 
the Gaussian distribution of the residuals gives a better performance. 
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3.12 APPLICATIONS IN PORTFOLIO SELECTION 

Section 1.5.3 introduced the basic concepts of portfolio selection and showed how 
regression function estimation and classification can be used in portfolio selection. 
We discuss now three applications of kernel estimation in portfolio selection. Sec-
tion 3.12.1 discusses the use of kernel regression estimators, Section 3.12.2 discusses 
the use of classification with kernel density estimation, and Section 3.12.3 discusses 
the use of kernel regression estimators combined with moving average estimators of 
volatility and correlation. 

3.12.1 Portfolio Selection Using Regression Functions 

We consider an application of regression function estimation to portfolio selection. 
We apply the rule (1.98) for the choice of the portfolio vector with the help of 
a regression function estimate. In this portfolio selection method the regression 
function estimation is used to predict the utility transformed returns of the portfolio 
components. 

We choose as portfolio components the S&P 500 index and the Nasdaq-100 index. 
The S&P 500 and Nasdaq-100 data are described in Section 1.6.2. 

We consider two variations of the approach of using regression function estimation: 
The explanatory variables are the previous returns of the portfolio components, or 
the explanatory variables are obtained by a transformation of the previous returns of 
the portfolio components. 

We choose the space of portfolio vectors to be B = {(1,0), (0,1)} in the rule 
(1.98). Thus, either everything is invested into the S&P 500 index or everything is 
invested into the Nasdaq-100 index. The investment is made to the S&P 500 index if 
the estimate of the utility transformed return of S&P 500 is larger than the estimate 
of the utility transformed return of Nasdaq-100, otherwise the investment is made to 
the Nasdaq-100 index. 

Autoregression We use the previous day returns as the explanatory variables. 
Let us denote with S ^ the daily closing prices of the S&P 500 index and with S ^ 
the daily closing prices of the Nasdaq-100 index. Let the gross returns be denoted by 

q(1) Q( 2) 
o( 1) _ St p(2) _ St llf 7TT- , It 

* c(l) ' 4 c(2) ; 

°t-1 °t-1 

and let the utility tranformed returns be denoted by 

r/1> = « 7 ( ^ ) > i f > = « , ( * « ) , (3.94) 

where the utility function u 7 : (0, oo) R is a power utility function, defined in 
(1.95), with 7 > 1. We need to estimate the regression functions 

fsp5oo(*i,x2) = E (yt(1) | R^ = Xi , R?\ = x2) , (3.95) 
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and 
fndxioo(xi,*2) - E (V/2 ) | = xuR^, = x 2 ) . (3.96) 

We use the kernel regression estimator, defined in (3.6). The Gaussian kernel was 
used and the data were standardized to have the marginal sample standard deviations 
equal to one.44 

Figure 3.40 shows the annualized Sharpe ratios of the kernel portfolio as a function 
of the smoothing parameter h for different risk aversion parameters 7. We calculate 
the annualized Sharpe ratio with the formula 

Sharpe (/i) = V250 , (3.97) 
7 sd (Ry(h)) 

where R7(h) is the sample mean of the portfolio net returns and sd (R 7 (h ) ) is the 
sample standard deviation of the portfolio net returns 45 Figure 3.40 shows the three 
curves h i-» Sharpe7(/i), for 7 = 1, 25, 50, when h £ [0.01,10]. The black curve 
with label "a" shows the case 7 = 1, the green curve with label "b" shows the case 
7 = 25, and the purple curve with label "c" shows the case 7 = 50. The x-axis 
is logarithmic. The portfolio returns were calculated sequentially, out-of-sample, so 
that at time t we used only the observations available at time t. The Sharpe ratio of 
S&P 500 is shown with a red line, and the Sharpe ratio of Nasdaq-100 is shown with 
a blue line. 

We can see from Figure 3.40 that the Sharpe ratios of the kernel portfolios are larger 
than the Sharpe ratios of S&P 500 and Nasdaq-100, for a wide range of h values. For 
risk aversion 7 = 1 the best Sharpe ratio is 0.75 with smoothing parameter h = 0.09. 
For risk aversion 7 = 25 the best Sharpe ratio is 0.80 with smoothing parameter 
h — 0.08. For risk aversion 7 = 50 the best Sharpe ratio is 0.76 with smoothing 
parameter h = 0.06. The parameters h = 0.08 and 7 = 25 gave the best overall 
annualized Sharpe ratio of 0.80. The S&P 500 index and Nasdaq-100 index have 
Sharpe ratios 0.50 and 0.56. 

Figure 3.41 shows the annualized mean returns and the standard deviations of the 
kernel portfolio as a function of the smoothing parameter h, for several risk aversion 
paremeters 7. Panel (a) shows the three curves h 250 R7(h), for risk aversion 
paremeters 7 = 1, 25, 50, where h G [0.01,10]. Panel (b) shows the four curves 

The x-axis is logarithmic. The mean return and the sample 
standard deviation of the S&P 500 are shown with a red line, and those of Nasdaq-100 
are shown with a blue line. 

We can see from Figure 3.41 that the mean return and the standard deviation 
of Nasdaq-100 are higher than the mean return and the standard deviation of S&P 
500, although the Sharpe ratios of S&P 500 and Nasdaq-100 are close to each 
other. Figure 3.41(a) shows that the kernel portfolio returns are close to the returns 
of Nasdaq-100 and Figure 3.41(b) shows that the standard deviations of the kernel 

44The original standard deviations are 0.012 and 0.018. 
4 5 We have not used the excess returns in the calculation of Sharpe ratios, as is usually done. An excess 
return is the return of a portfolio minus the return of a risk-free investment. 
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Figure 3.40 Sharpe ratios. Annualized Sharpe ratios of the kernel portfolios are shown as 
a function of smoothing parameter h G [0.1,10], for risk aversion parameters 7 = 1, 25, 50 
(black "a," green "b," and purple "c"). The red line shows the Sharpe ratio of S&P 500, 
whereas the blue line shows that of Nasdaq-100. The x-axis is logarithmic. 

Figure 3.41 Mean returns and standard deviations. (a) Annualized means of the kernel 
portfolios are shown as a function of smoothing parameter h £ [0.1,10], for risk aversion 
paremeters 7 = 1, 25, 50 (black "a", green "b", and purple "c"). (b) Annualized standard 
deviations of the kernel portfolios are shown. The red lines show the S&P 500 means, and 
standard deviations, whereas the blue lines show those of Nasdaq-100. The horizontal axis is 
logarithmic. 
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Figure 3.42 Cumulative wealth. The time series of the cumulative wealth of the kernel 
portfolio (black), Nasdaq-100 (blue), and S&P 500 (red) are shown. The kernel strategy used 
the smoothing parameter h = 0.08 and the risk aversion parameter 7 = 25. 

portfolio are between the standard deviations of Nasdaq-100 and S&P 500, for a wide 
interval of h-values. Thus, the kernel portfolio is able to obtain the same return as 
the Nasdaq-100, but with a lower volatility. The best overall annualized Sharpe ratio 
0.80 was obtained with the annualized mean return of 17.6% and with the annualized 
standard deviation of 22.1%, using the parameters h = 0.08 and 7 = 25. The 
annualized mean of S&P 500 returns is 9.4%, and the annualized standard deviation 
of S&P 500 returns is 18.7%. For Nasdaq-100 the mean is 15.4% and the standard 
deviation is 27.8%. 

Figure 3.42 shows the cumulative wealth obtained by the kernel strategy (black) 
as compared to the cumulative wealths of the S&P 500 index (red) and Nasdaq-100 
index (blue). The wealth is set to one at the beginning of the period. For the kernel 
strategy we took smoothing parameter h = 0.08 and risk aversion parameter 7 = 25. 

Figure 3.43 shows perspective plots of the kernel regression function estimates. 
Panel (a) shows a kernel estimate of the regression function fsp50o, and panel (b) 
shows a kernel estimate of the regression function fndxioo• We have used the 
smoothing parameter values h — 0.08 and the risk aversion parameter 7 = 25 for 
both estimates. The regression functions are drawn on the rectangle [—17.2,9.7] x 
[—8.5,10.6], which is the range of the observations. The perspective plots of the 
regression estimates do not reveal any interesting differences between the two es-
timates. The observations from the explanatory variables are concentrated on the 
diagonal and the modes of the regression functions estimates occuring in the corner 
do not have satistical or practical significance. Thus we are led to show a comparison 
of the regression functions estimates. The kernel regression estimates change in time 
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(a) S&P 500 prediction (b) Nasdaq-100 prediction 

Figure 3.43 Prediction of S&P 500 and Nasdaq-100. (a) A kernel estimate of the regression 
function /sp5oo- (b) A kernel estimate of the regression function fndxioo• The regression 
functions are defined in (3.95). The smoothing parameter is h — 0.08 and the risk aversion 
parameter is 7 = 25. 

when new observations are added, but we show the estimates calculated using the 
complete data. 

Figure 3.44 compares the values of the regression function estimates for fsp500 
and fndxioo shown in Figure 3.43. We color with red those points x where 
fsP500(x) > fndxioo(x), that is, those points where the prediction of the S&P 
500 utility transformed return is larger than the prediction of the Nasdaq-100 utility 
transformed return. The other points, where fsp5oo(%) < fndxioo(x), are colored 
blue. Panel (a) uses a regular grid, and panel (b) uses the observed values of the 
explanatory variables. Panel (b) shows that there are hardly any observations at the 
nondiagonal corners of the rectangle. Recall that we choose the portfolio vector with 
the rule (1.98), when the space of portfolio vectors is B = {(0,1), (1,0)}. This 
means that everything is invested into the S&P 500 index if the estimate for the utility 
transformed return of S&P 500 is larger than the estimate of the utility transformed 
return of Nasdaq-100; otherwise everything is invested in Nasdaq-100 index. Thus 
the red points show the values of the predictors which imply investing everything 
in the S&P 500 index, and the blue points show the values of the predictors which 
imply investing everything in the Nasdaq-100 index. The decision rule shown is the 
final rule obtained with the complete data, but the out-of-the sample rules used in 
calculating the Sharpe ratios change during the observation period. 

We study next whether the smoothing parameters maximizing the Sharpe ratio 
are close to the smoothing parameters minimizing the prediction errors. The mini-
mization of the prediction errors with the cross-validation criterion was discussed in 
Section 1.9.1; see (1.11 T)—(1.118). We evaluated the smoothing parameters of the 



Figure 3.44 A decision rule of the kernel strategy. (a) Comparison of the regression 
function estimates on a regular grid, (b) Comparison of the regression function estimates on 
the empirical grid of observed x-values. The red points are such that the S&P 500 index is 
chosen, and the blue points are such that the Nasdaq-100 index is chosen. The comparison is 
based on the regression function estimates of Figure 3.43. 

kernel estimators in Figure 3.40 by calculating the Sharpe ratios for kernel strategies 
using different smoothing parameters. 

Figure 3.45 shows the means of the absolute prediction errors as a function of 
the smoothing parameter ft, for risk aversions 7 = 1,25,50. The mean absolute 
prediction error is defined in (1.118) as 

MAPE(ft) = \Yt+i ~ ftAXt) 
1 ~ to t=t0

 1 

T - l 

(3.98) 

Panel (a) concerns the prediction of the utility transformed returns of S&P 500, and 
panel (b) concerns the prediction of the utility transformed returns of Nasdaq-100. 
Thus Yt =Yt^ in panel (a) and Yt = Y^ in panel (b), where the utility transformed 
returns are defined in (3.94). The regression function estimate is ftih — fsp500,t,h 
in panel (a) and ft,h = fndxioo,t,h i n panel (b), where the regression functions are 
defined in (3.95)-(3.96) and ft is the smoothing parameter of the kernel estimator. 
We show the functions ft MAPE(ft)/ min^ MAPE(ft) for ft e [0.01,10]. The risk 
aversions are 7 = 1 (black curve with label "a"), 7 = 25 (green curve with label 
"b"), and 7 = 50 (purple curve with label "c"). 

For the prediction of the S&P 500 utility transformed returns the MAPE-optimal 
smoothing parameters are ft = 4, ft = 4, and ft = 2 for the risk aversions 7 = 1, 
7 = 25, and 7 = 50. For the prediction of the Nasdaq-100 the MAPE-optimal 
smoothing parameters are ft = 10, ft = 2, and ft = 2 for the same risk aversions. 
We conclude that the smoothing parameters recommended by the cross validation 
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Figure 3.45 Cross validation. Shown are (a) the mean absolute prediction errors as a 
function of the smoothing parameter h, for the prediction of the utility transformed S&P 500 
returns and (b) the mean absolute prediction errors for the prediction of the utility transformed 
Nasdaq-100 returns. The risk aversion parameters 7 = 1 (black "a"), 7 = 25 (green "b"), and 
7 = 50 (purple "c") are used. 

are different from the smoothing parameters recommended by the Sharpe ratios in 
Figure 3.40. The optimal smoothing parameters in terms of the Sharpe ratio were 
h = 0.09, h = 0.08, and h = 0.06. 

Autoregression with Transformed Explanatory Variables We illustrate 
how a suitable transformation of explanatory variables can help to interpret and 
improve the results. We use the copula transform, as defined in (1.105). 

Figure 3.46 shows the annualized Sharpe ratios of the kernel portfolio as a function 
of the smoothing parameter h for different risk aversion parameters 7. We calculate 
the Sharpe ratio with the formula (3.97) and denote by Sharpe7(fo) the Sharpe ratio 
of the portfolio returns, by Ry(h) the sample mean of the portfolio net returns, and 
by sd(i?7(ft)) the sample standard deviation of the portfolio net returns, when the 
smoothing parameter is h and the risk aversion parameter is 7. Figure 3.46 shows 
the three curves h >/250Sharpe7(h), for 7 = 1,25,50, when h <G [0.01,10]. 
The curve with label "a" shows the case 7 = 1, the curve with label "b" shows the 
case 7 = 25, and the curve with label "c" shows the case 7 = 50. The x-axis is 
logarithmic. The portfolio returns are calculated sequentially. The Sharpe ratio of 
S&P 500 is shown with a red line, and the Sharpe ratio of Nasdaq-100 is shown with 
a blue line. 

We can see from Figure 3.46 that the Sharpe ratios behave in a quite similar way as 
in the kernel portfolio without the copula transform, shown in Figure 3.40. Now the 
parameters h — 0.5 and 7 = 25 give the best annualized Sharpe ratio of 0.84, with 
the annualized mean return of 17.6% and with the annualized standard deviation of 
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Figure 3.46 Sharpe ratios with copula transform. Annualized Sharpe ratios of the kernel 
portfolios are shown as a function of smoothing parameter ft G [0.1,10], for risk aversion 
parameters 7 = 1, 25, 50 (black "a," green "b," and purple "c"). The red line shows the Sharpe 
ratio of S&P 500, whereas the blue line shows the Sharpe ratio of Nasdaq-100. The x-axis is 
logarithmic. 

21.0%. The Sharpe ratio is now slightly better than the Sharpe ratio of 0.80, obtained 
without the copula transform. For 7 = 1 the best Sharpe ratio is 0.75 obtained with 
ft = 0.09 and for 7 = 50 the best Sharpe ratio is 0.83 obtained with ft = 0.4. 

Figure 3.47 shows the mean returns and the standard deviations of the kernel 
portfolio as a function of the smoothing parameter ft, for different risk aversion 
parameters 7. Panel (a) shows the three curves ft 1—250 (ft), for risk aversion 
parameters 7 = 1, 25, 50, where ft G [0.01,10], and panel (b) shows the three curves 
ft \/250sd(ity(ft)). The x-axis is logarithmic. The mean return and the sample 
standard deviation of the S&P 500 are shown with a red line, and those of Nasdaq-100 
are shown with a blue line. Figure 3.47 looks quite the same as Figure 3.41, where 
the performance of the kernel portfolio without the copula transform was shown. The 
mean return of the best strategy is the same as without the copula transform, but the 
standard deviation was decreased to 21.0% from the previous 22.1%. 

Figure 3.48 shows the cumulative wealth reached when using the kernel regression 
portfolio selection with the copula transform (black curve). The wealth is compared 
to the wealth reached by S&P 500 (red) and by Nasdaq-100 (blue). Smoothing 
parameter ft = 0.5 and the risk aversion 7 = 25 were used. 

Figure 3.49 shows kernel regression function estimates obtained using the copula 
transform. Panel (a) shows an estimate of the regression function fsp5oo > and panel (b) 
shows an estimate of the regression function fndxioo• We have used the smoothing 
parameter value ft = 0.5 and risk aversion 7 = 25 for both estimates. The regression 
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Figure 3.47 Mean returns and standard deviations with copula transform, (a) Annualized 
means of the kernel portfolios as a function of smoothing parameter h £ [0.1,10], for risk 
aversion parameters 7 = 1,25,50 (black "a," green "b," and purple "c"). (b) Annualized 
standard deviations of the kernel portfolios. The red lines show the S&P 500 Sharpe means 
and standard deviations, whereas the blue lines show those of Nasdaq-100. The x-axis is 
logarithmic. 

Figure 3.48 Cumulative wealth with copula transform. The time series of the cumulative 
wealth is shown for the kernel portfolio (black), Nasdaq-100 (blue), and S&P 500 (red). The 
kernel strategy used the smoothing parameter h = 0.5 and the risk aversion parameter 7 = 25. 
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(a) S&P 500 prediction (b) Nasdaq-100 prediction 

Figure 3.49 Prediction of S&P 500 and Nasdaq-100 with copula transform, (a) A kernel 
estimate of the regression function fsp5oo • (b) A kernel estimate of the regression function 
fndxioo• The regression functions are defined in (3.95). The smoothing parameter is h — 0.5 
and the risk aversion parameter is 7 = 25. 

functions have the global maximum at the lower right corner, where the previous day 
return of Nasdaq-100 was low and the previous day return of S&P 500 was high. 
However, the area where the regression function takes the highest values is such 
that there are hardly any observations of the explanatory variables. The regression 
function estimates change in time, when new observations are added, but we show 
the final estimates. 

Figure 3.50 compares the values of the regression function estimates for fsp500 
and fndxioo^ shown in Figure 3.43. We color with red those points x where 
fsp5Qo(x) > fndxioo(^)> that is, those points where the prediction of the S&P 
500 utility transfomed return is larger than the prediction of the Nasdaq-100 utility 
transformed return. The other points, where fsp500 0*0 < fndx 100 0*0 > are colored 
blue. Panel (a) shows a regular grid, and panel (b) shows only the observed values 
of the explanatory variables, transformed with the copula transform. 

Figure 3.51 shows the means of the absolute prediction errors as a function of 
smoothing parameter h, for risk aversion parameters 7 = 1, 25,50, when the copula 
transform was used. The mean absolute prediction error MAPE(h) is defined in 
(3.98). The setting is the same as in Figure 3.45: panel (a) concerns the prediction 
of the utility transformed returns of S&P 500, and panel (b) concerns the prediction 
of the utility transformed returns of Nasdaq-100. We show the functions h (->• 
MAPE (ft)/ min^ MAPE(ft) for ft e [0.01,10]. The risk aversions are 7 = 1 (black 
curve with label "a"), 7 = 25 (green curve with label "b"), and 7 = 50 (purple curve 
with label "c"). 

For the prediction of S&P 500 the MAPE-optimal smoothing parameters are 
ft = 10, ft — 2, and ft = 0.01 for the risk aversions 7 = 1, 7 = 25, and 7 = 50. For 
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(a) regular grid 

- 2 0 2 

(b) set of observations 

Figure 3.50 A Decision rule of the kernel strategy wiht copula transform, (a) Comparison of 
the regression function estimates on a regular grid, (b) Comparison of the regression function 
estimates on the empirical grid of observed x-values. The red points are such that the S&P 
500 index is chosen, and the blue points are such that the Nasdaq-100 index is chosen. The 
comparison is based on the regression function estimates of Figure 3.49. 

the prediction of Nasdaq-100 the MAPE-optimal smoothing parameters are h = 10, 
h — 2, and 2 for the same risk aversions. The Sharpe ratio optimal smoothing 
parameters were h = 0.09, h = 0.5, and h = 0.4. 

3.12.2 Portfolio Selection Using Classification 

Section 1.5.3 contains a description how classification can be used in portfolio selec-
tion. In particular, (1.100) shows how to define the class labels when classification 
techniques will be used in portfolio selection. We apply now classification in portfolio 
selection, when the portfolio components are the S&P 500 index and the Nasdaq-100 
index. The S&P 500 and Nasdaq-100 data are described in Section 1.6.2. 

The collection of classification data (Xt, Yt),t = 1 , . . . , n, is obtained by choosing 
Yt = 0 when the return at time t -b 1 is higher for the S&P 500 index than for the 
Nasdaq-100 index. Otherwise we take Yt — 1. The explanatory variables Xt are the 
previous returns of S&P 500 and Nasdaq-100: 

Xt = Ku (2))' R ( i ) 
5W 

1 
1 ,2 , 

where S ^ is the price of the S&P 500 index and S ^ is the price of the Nasdaq-100 
index. Note that with the classification approach we are not able to introduce a risk 
aversion parameter, as in the case of the regression approach, where a utility trans-
formed return was predicted. The portfolios obtained by classification correspond to 
using the risk aversion parameter 7 = 1. 
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0.01 0.05 0.50 5.00 0.01 0.05 0.50 5.00 

(a) S&P 500 (b) Nasdaq-100 

Figure 3.51 Cross validation with copula transform. Shown are (a) the mean absolute 
prediction errors as a function of the smoothing parameter h, for the prediction of the utility 
transformed S&P 500 returns, (b) The mean absolute prediction errors for the prediction of 
the utility transformed Nasdaq-100 returns. The risk aversion parameters 7 = 1 (black "a"), 
7 = 25 (green "b"), and 7 = 50 (purple "c") are used. The horizontal axis is logarithmic. 

We choose the space of portfolio weights to be B = {(1,0), (0,1)} so that either 
everything is invested into the S&P 500 index or everything is invested into the 
Nasdaq-100 index. We make the copula transformation to the explanatory variables. 
The transformation was defined in (1.105). We use the observations Zt = [Z\, Z f ) , 
obtained from Xt = ( X ^ X f ) by the copula transform. 

Figure 3.52 shows a scatter plot of vectors Zt. The class labels are indicated with 
colors, so that the red points show the observations made at a day, when the next day 
return of S&P 500 was higher than the return of Nasdaq-100, and the blue points show 
the observations made at a day, when the next day return of S&P 500 was smaller 
than the return of Nasdaq-100. We can see that the classes are not well separated, but 
the red and blue points are completely mixed. There are 3319 red points and 3604 
blue points. 

Section 1.4 contains an introduction to classification and Section 3.4.1 contains 
definitions of classifiers based on kernel density estimation and kernel regression 
estimation, which lead to the same classification functions. The density rule in (3.33) 
specializes in the two-class case to the classification rule 

Mx\ = J if fx\Y=i(x) > no fx|y=o(z), ( 3 9 9 ) 

\ 0, otherwise, 

where fx\Y=o a n d fx\Y=i a r e kernel estimators of the class density functions, and 
no and n\ are the class 0 and class 1 frequencies. We have defined the class kernel 
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Figure 3.52 Classification data. A scatter plot of the copula transformed returns of S&P 
500 and Nasdaq-100. The red points indicate the days when the next day closing return of S&P 
500 was higher and the blue points indicate the days when the next day return of Nasdaq-100 
was higher. 

density estimators in (3.35). The regression rule in (3.36) puts in the two-class case 

where po and p\ are the kernel regression estimates of P(Y = 0\X = x) and 
P(Y = 1\X = x). The kernel regression function estimate was defined in (3.6). 
As noted in in Section 3.4.1, classification rules (3.99) and (3.100) are identical. 

Figure 3.53 shows contour plots of kernel density estimates of the class densities. 
Panel (a) shows a density estimate of the S&P 500 class, and panel (b) shows a 
density estimate of the Nasdaq-100 class. The smoothing parameter h = 0.2 and the 
Gaussian kernel were used. The differences between the estimates seem to be very 
small. 

Figure 3.54 shows a kernel regression function estimate of the regression function 
f ( x ) = P(Y = 11 X = x). Thus, f ( x ) is the conditional probability that the next 
day return is higher for Nasdaq-100. Panel (a) shows a perspective plot, and panel (b) 
shows a contour plot. The smoothing parameter h — 0.2 and the Gaussian kernel 
were used. 

Figure 3.55 shows the estimated final classification sets. Panel (a) shows the 
classification sets calculated with a regular grid, and panel (b) shows how the empirical 
classification rule classifies the observed values of the predictive variables. The red 
points are such that the classifier chose S&P 500, and the blue points are such that the 
classifier chose Nasdaq-100. The classifier is changing in time as new observations 

(3.100) 
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- 3 - 2 - 1 0 1 2 
S&P 500 

(a) S&P 500 class density 

- 3 - 2 - 1 0 1 2 
S&P 500 

(b) Nasdaq-100 class density 

Figure 3.53 Class density function estimates. Contour plots of kernel density estimates of 
class densities, (a) A density estimate of the S&P 500 class, (b) A density estimate of the 
Nasdaq-100 class. 

Figure 3.54 Nasdaq-100 class probability estimate. A kernel estimate of the conditional 
class probability P(Y = 11 X = x). (a) A perspective plot, (b) A contour plot. 
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(a) regular grid (b) grid of observations 

Figure 3.55 Classification rule. The red points are classified to S&P 500, and the blue 
points are classified to Nasdaq-100. (a) A regular grid, (b) A grid of observations. 

are included, and we show the final classification rule estimated with the complete 
data. 

Figure 3.56 shows the annualized Sharpe ratios of the kernel classification port-
folio as a function of the smoothing parameter h, and it makes a comparison to the 
annualized Sharpe ratios of the kernel regression portfolios. In regression portfolios, 
risk aversion 7 = 1 (logarithmic utility function) was used, and the copula transform 
was made. The black curve with symbol "a" corresponds to the classification portfo-
lios, and the brown curve with symbol "b" corresponds to the regression portfolios. 
Figure 3.56 shows the curve h Sharpe(h), when h £ [0.01,10] and the Sharpe 
ratio is calculated with the formula (3.97). The x-axis is logarithmic. The portfolio 
returns are calculated sequentially, out-of-sample. The Sharpe ratio of the S&P 500 
is shown with a red line, and the Sharpe ratio of Nasdaq-100 is shown with a blue 
line. The smoothing parameter h = 0.2 gives the best annualized Sharpe ratio of 
0.75 for the classification portfolio, with the annualized mean return of 17.5% and 
with the annualized standard deviation of 23.3%. 

We can see from Figure 3.56 that the Sharpe ratios are robust with respect to the 
choice of the smoothing parameter. We see also that the Sharpe ratios of kernel 
classification portfolios and kernel regression portfolios behave much the same way 
and have the same maximums, but the kernel classification seems to be more robust 
with respect to the choice of the smoothing parameter. Note that Figure 3.46 already 
showed the Sharpe ratios of the kernel regression portfolios, and the figure shows 
also Sharpe ratios of kernel regression portfolio with several risk aversion parameters. 
The Sharpe ratios of kernel regression portfolios without the copula transform are 
shown in Figure 3.40. 

Figure 3.57 shows the mean returns and the standard deviations of the kernel 
classification portfolio as a function of the smoothing parameter h, and it makes a 
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Figure 3.56 Sharpe Ratios of kernel classification. Annualized Sharpe ratios of the kernel 
classification portfolios (black "a") and kernel regression portfolios (brown "b") are shown as 
a function of smoothing parameter h £ [0.01,10]. The red line shows the Sharpe ratio of S&P 
500, and the blue line shows the Sharpe ratio of Nasdaq-100. The x-axis is logarithmic. 

comparison to the mean returns and standard deviations of the regression portfolios. 
Panel (a) shows the curves h i-^ 250 R(h), where h G [0.01,10], and R(h) is the 
average net return. Panel (b) shows the curves h A/250 sd (R (h ) ) , where sd (R (h ) ) 
is the sample standard deviation of the portfolio returns. The x-axis is logarithmic. 
The mean return and the sample standard deviation of the S&P 500 are shown with a 
red line, and those of Nasdaq-100 are shown with a blue line. Note that Figure 3.47 
already showed the mean returns and standard deviations of regression portfolios, and 
Figure 3.41 showed the case of regression portfolios without the copula transform. 
We can see that the mean returns behave similarily for the classification and regression 
portfolios, but the standard deviations are smaller for the classification portfolios, at 
least for the large smoothing parameters. 

Figure 3.58 shows the cumulative wealth of the kernel classification portfolio 
(black) as compared to the cumulative wealth obtained by the S&P 500 index (red) 
and the Nasdaq-100 index (blue). Now the Sharpe ratio is 0.73 with the annualized 
mean of 16.8% and with the annualized standard deviation of 23.1%. 

Figure 3.59 shows the classification errors as a function of smoothing parameter 
h. We have discussed the evaluation of classifiers in Section 1.9.6; see (1.133) and 
(1.134) for the time series formulas. We use these formulas to see whether the 
performance measurement with the Sharpe ratios, as in Figure 3.56, gives different 
results than performance measurement with classification error. Panel (a) shows the 



APPLICATIONS IN PORTFOLIO SELECTION 2 2 1 

''<> a % a 

a a a aH 

: a 

Y 

b 
^ Nasdaq-1(ji3 b 

b"bh 
CM 
O 

.<3 ^ 
> CM 

Nasdaq-100 , > b b D 

-b -bb1 bfctî 0 
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Figure 3.57 Mean returns and standard deviations of kernel classification, (a) Annualized 
means of the classification and regression portfolios as a function of smoothing parameter h £ 
[0.01,10]. (b) Annualized standard deviations of the classification and regression portolios. 
The black curves with "a" correspond to classification portfolios, and the brown curves with 
"b" correspond to regression portfolios. The red lines show the S&P 500 means and standard 
deviations, whereas the blue lines show those of Nasdaq-100. 

Figure 3.58 Wealth of classification portfolio. The red curve shows the cumulative wealth 
of the portfolio chosen with kernel classification. The black curve shows the wealth when 
invested in the S&P 500 index, and the blue curve shows the wealth when invested in the 
Nasdaq-100 index. 
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Figure 3.59 Kernel classification errors, (a) The classification error of kernel classification 
as a function of smoothing parameter h G [0.01,10]. (b) Type one and type two classification 
errors of kernel classification. The green curve with label "0" shows the classification error 
when the true class is S&P 500. The purple curve with label "1" shows the classification error 
when the true class is Nasdaq-100. The x-axis is logarithmic. 

function h P e r r o r ( / i ) , where 

1 T ~ l 

Perror = ^ _ J Z (*t+i)}c 

t=to 

where gis a classifier constructed using the data (Xi, Y i ) , . . . , (Xt, Yt), and = 10. 
That is, we estimate the error probability P ( g ( X ) ^ Y) for different choices of h. 

Panel (b) shows the functions h Perlor(h) and h Perlor(h), where 

1 T _ 1 

P^rorW = - ^ /«?(X t+1)}c(fe)/{fc}(yi+l), 
t=to 

which estimates P(g(X) ^ Y | Y = k) for k = 0,1. Now Perlor(h) estimates 
the probability that the observation was classified to Nasdaq-100 class although the 
next-day return was better for S&P 500, and Pell or (h) estimates the probability that 
the observation was classified to S&P 500 class although the next-day return was 
better for Nasdaq-100. 

We can see from Figure 3.59(a) that the error probabilities are only slightly under 
0.5. Furthermore, the optimal smoothing parameter in terms of classification error 
is h = 0.9, which is much larger than the smoothing parameter h = 0.2, which is 
optimal in terms of the Sharpe ratio. Figure 3.59(b) shows that the error components 
do not behave monotonically as a function of h. 
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3.12.3 Portfolio Selection Using Markowitz Criterion 

We continue to study portfolio selection when the portfolio components are the 
S&P 500 index and the Nasdaq-100 index. The S&P 500 and Nasdaq-100 data are 
described in Section 1.6.2. 

We have introduced mean-variance preferences in (1.101), and derived the optimal 
portfolio vector in (1.102), for the case of two risky assets. The formula for the optimal 
portfolo vector in the conditional setting is 

= 1 fj,2(x) - fn(x) - 7(^12(3?) ~ 
7 V2

1(X)+cj1(X)-2CJ12(X) 

where 7 > 0 is the risk aversion parameter. The portfolio weight w(x) can take 
negative values and be larger than one, but we restrict the weight to the interval [0,1] 
and use the weight min{max{^(x), 0}, 1}. The conditional expectations are defined 
by 

lii(x) = fsP500{xi,x2) = E^R^ R ^ = X!,r¥\ = x2) , 

and 
= fndx 100(^1,^2) = E^R[2) R^ = Xi ,Rl2\ = £2) , 

where R ^ is the gross return of S&P 500, and is the gross return of Nasdaq-100. 
The conditional variances are defined by 

a2
k(x) = V a r ( i ^ } | R{

t% = x t - i M % = • • •) , * = 1, 2, 

and the conditional covariance is defined by 

(712 ( X ) = C o v j f l ^ , ^ | G R ^ ^ l ) = (Xt-uVt-l), ••)• 

We estimate the conditional means /ii (#), fi2(x) using the state-space smoothing 
with the kernel estimator, defined in (3.6). The conditional variances crf(x), cr2(x), 
and the conditional covariance cri2(x) are estimated by the time-space smoothing 
using the kernel weighted moving averages, defined in (3.79) and (3.87). Since we 
are estimating five functions, we have to choose five smoothing parameters. We 
reduce the problem to the choice of two smoothing parameters: We choose the 
smoothing parameter hM for the estimation of the two means, and we choose the 
smoothing parameter ha for the estimation of the two variances and the covariance. 
In the state-space smoothing the kernel is the standard Gaussian kernel, and in the 
time-space smoothing the exponential moving average is used. 

Figure 3.60 shows the annualized Sharpe ratios of the Markowitz portfolio as a 
function of the smoothing parameters hM and hcr. Risk aversion parameter 7 = 10 
was used, and the copula transform was made. Panel (a) shows the functions hM i-^ 
S h a r p e ( h a ) , for two choices of ha: ha = 25and/io- = 00, when E [0.01,10]. 
The curve with label "1" corresponds to the case ha = 25, and the curve with label 
"2" corresponds to the case ha = 00. Smoothing parameter ha = 00 means that the 
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Figure 3.60 Sharpe ratios for Markowitz portfolios. Annualized Sharpe ratios of the 
Markowitz portfolios, (a) Functions h* Sharpe(/iM, ha); the black curve with "1" shows 
the case ha = 25 and the green curve with "2" shows the case ha = oo. (b) Functions 
ha ^ Sharpe(/iM, ha)\ the curves with labels "a"-"e" show the cases = 0 . 0 1 , . . . , 10. 
The red line shows the Sharpe ratio of S&P 500, and the blue line shows the Sharpe ratio of 
Nasdaq-100. The x-axis is logarithmic. 

variances are estimated with sequential sample variances and the covariance with the 
sequential sample covariance. Panel (b) shows the functions ha Sharpe(/i/x, ha), 
for five choices of h^: hM = 0.01,0.07,0.4,0.9,10, when h a G [1,1000].46 The five 
choices of hM are shown with the five curves labeled with "a"-"e" in the increasing 
order of h T h e Sharpe ratio is calculated with the formula (3.97). The x-axis 
are logarithmic. The portfolio returns are calculated sequentially, out-of-sample. 
The Sharpe ratio of the S&P 500 is shown with a red line, and the Sharpe ratio of 
Nasdaq-100 is shown with a blue line. 

We see from Figure 3.60(a) that it is possible to improve significantly the Sharpe 
ratio by using a moving average estimates of variances and the covariance. Namely, 
the curve labeled with "1" shows higher Sharpe ratios, and corresponds to the case 
ha = 25, than the curve labeled with "2," which corresponds to the use of sequentially 
calculated variances and covariance. Furthermore, the smoothing parameters hM = 
0.4 and ha = 25 give the annualized Sharpe ratio of 0.89, with the annualized mean 
return of 18.3% and with the annualized standard deviation of 20.6%. We see from 
Figure 3.60(b) that the Sharpe ratio is robust with respect to the choice of smoothing 
parameter hG, which controls the smoothing of moving averages. 

Figure 3.61 shows the annualized mean returns and standard deviations of the 
Markowitz portfolio as a function of the smoothing parameter h^. The same parame-
ters as in Figure 3.60 were used. Panel (a) shows the functions i-^ R(hha), for 

46More precisely, ha G { 1 , 1 0 , 25, 50 ,100 , 200, 500 ,1000} . 
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Figure 3.61 Mean returns and standard deviations for Markowitz portfolios, (a) Functions 

hix 2 5 0 # ( / I M , ha) are shown, where R is the mean return, (b) Functions hM H-» 

are shown, where s d ( R ) is the sample standard deviation of returns. 

The smoothing parameter is ha = 25 (black "1") and ha = oo (green "2") . The red lines 

shows the mean and standard deviation of S & P 500, and the blue lines the mean and standard 

deviation of Nasdaq-100. The x-axis is logarithmic. 

two choices of ha: ha = 25 and ha = oo, when hM G [0.01,10]. Panel (b) shows 
the functions hM sd(i?(/i/Lt, ha)). The black curves with "1" show the case with 
hcr = 25, and the green curves with "2" show the case with ha = oo. The mean 
return and the standard deviation of the S&P 500 are shown with red lines, and those 
of Nasdaq-100 are shown with blue lines. 

Figure 3.62 shows the annualized mean returns and standard deviations of the 
Markowitz portfolio as a function of the smoothing parameter ha. The same param-
eters as in Figure 3.60 were used. Panel (a) shows the functions ha y-^ ha), 
for five choices of h^: hM = 0.01,0.07,0.4,0.9,10, when h a G [1,1000]. Panel (b) 
shows the functions ha s d ( R ( h ^ ha)). The curves with labels "a"-"e" show the 
cases hM = 0 .01 , . . . , 10. The mean return and the standard deviation of the S&P 
500 are shown with red lines, and those of Nasdaq-100 are shown with blue lines. 

Figure 3.63 shows the cumulative wealths obtained with Markowitz strategies. The 
wealth is one at the starting date 1985-10-01. The black curve shows the cumulative 
wealth of the conditional Markowitz strategy when hM = 0.4 and h a — 25. The 
purple curve shows the case of hM = 0.4 and ha = oo, meaning that variances 
and the covariance were estimated sequntially and not with moving averages. The 
red curve shows the cumulative wealth for the S&P 500 index, and the blue curve 
shows the cumulative wealth for the Nasdaq-100 index. The Markowitz portfolio 
with = 0.4 and ha = 25 has the Sharpe ratio 0.90 with the annualized mean 
return of 18.3% and the annualized standard deviation of 20.6%. The Markowitz 
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Figure 3.62 Mean returns and standard deviations for Markowitz portfolios, (a) Functions 

ha 2 5 0 R ( h ^ , h a ) are shown, where R is the mean return, (b) Functions ha 

\ / 2 5 0 ha)) are shown, where s d ( R ) is the sample standard deviation of returns. 

The curves with labels "a" -"e" show the cases hM = 0 . 0 1 , . . . , 10. The red lines shows the 

mean and standard deviation of S&P 500, and the blue lines the mean and standard deviation 

of Nasdaq-100. The x-axis is logarithmic. 

Figure 3.63 Wealth of Markowitz portfolios. The cumulative wealth of the Markowitz 

portfolio with h^ = 0.4 and ha — 25 (black) and hM = 0.4 and ha = oo (brown). The blue 

curve shows the cumulative wealth of the Nasdaq-100 index, and the red curve shows that of 

the S&P 500 index. 
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portfolio with hM = 0.4 and ha = oo has the Sharpe ratio 0.78 with the annualized 
mean return of 17.4% and the annualized standard deviation of 22.3%. 





CHAPTER 4 

SEMIPARAMETRIC AND STRUCTURAL 
MODELS 

Parametric models impose restrictive assumptions on the data-generative mechanism. 
These assumption can be relaxed by increasing the number of parameters, but the 
estimation of a large number of parameters is difficult. Completely nonparametric 
models can suffer from the "curse of dimensionality" if the number of explanatory 
variables is large. However, it is possible to create models that are between parametric 
models and completely nonparametric models. Semiparametric models contain a 
parametric part and a nonparametric part, and structural models make qualitative 
restriction on the underlying data-generative mechanism. We do not present any 
precise definition of the concepts semiparametric model and structural model. Note 
that the ordinary linear model can also be considered as a semiparametric model if 
there are no parametric assumptions on the distribution of the error term. 

The single-index model is considered in Section 4.1. In the single-index model the 
regression function f(x) = E(Y | X — x) is a composition of a linear function and 
a univariate link function. The linear function makes the parametric part, and the link 
function makes the nonparametric part. We define the minimization estimator, quasi-
maximum likelihood estimator, an iterative algorithm estimator, and the derivative, 
average derivative, and weighted average derivative estimators. 

Multivariate Nonparametric Regression and Visualization. By Jussi Klemela 
Copyright © 2014 John Wiley & Sons, Inc. 

229 



2 3 0 SEMIPARAMETRIC AND STRUCTURAL MODELS 

The additive model is considered in Section 4.2. In the additive model the regres-
sion function is a sum of univariate component functions. The additive model can be 
called a structural model, because it does not contain a finite-dimensional parameter, 
but it makes a qualitative restriction on the form of the regression function. We define 
the backfitting, smooth backfitting, and marginal integration estimators. 

Section 4.3 contains descriptions of the partially linear model and several exten-
sions and combinations of the single-index, additive, and partially linear models. 

We can view semiparametric estimation as a visualization method: Even when the 
true regression function does not satisfy the model assumptions, fitting a semipara-
metric model gives some information about the underlying regression function. In 
the case of the marginal integration estimation in the additive model, we have a clear 
interpretation of the estimators of the additive components: These are the marginal 
effects, or partial dependence functions, up to an additive constant. 

Even when the single-index model and the additive models are in some sense 
simpler than the completely nonparametric model, the estimators can be computa-
tionally more demanding than for example a kernel estimator. The estimators in 
semiparametric models require typically iterative optimization, which can lead to 
computational complexity. 

4.1 SINGLE-INDEX MODEL 

4.1.1 Definition of the Single-Index Model 

In the single-index model it is assumed that the regression function f(x) = E(Y | X = 
x) satisfies 

f(x)=g(x'0), x £ R d , (4.1) 

where g : R —> R is the unknown link function and 6 £ Hd is the unknown index 
vector. Note that, unlike in the generalized linear model (2.58), the link function g is 
now unknown and needs to be estimated. The index x'Q aggregates the influence of 
the observed values x — (x\,..., Xd) of the explanatory variables into one number. 
Examples of economic indexes include a stock index, inflation index, cost-of-living 
index, and price index. 

The vector 9 is not uniquely defined: The use of the vector cO and the link 
function gc(u) — g(u/c), with some c > 0, leads to the same regression function 
/ . To guarantee uniqueness, we shall assume that ||0|| = 1. (We could also assume 
that the first component of 0 is equal to one, for example.) Also, the sign of the 
coefficient vector 0 is not unique, because the use of the vector —6 and the link 
function (u) = g(—u) leads to the same regression function. Single-index models 
and their identification is discussed extensively in Horowitz (2009, Chapter 2). 

4.1.2 Estimators in the Single-Index Model 

For a given 6 G H d , the link function g can be estimated by applying univariate 
nonparametric regression function estimation. When we observe regression data 
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(Xi, Y i ) , . . . , (Xn , Yn), where Xi e H d and Yi G R, then the link function can be 
estimated with the univariate regression data (X[0 , Y i ) , . . . , (X'n0, Yn). Thus, we 
can estimate the regression function in the single-index model by first estimating the 
parameter vector 0 and then estimating the link function g. We consider both the 
minimization estimation approach and the average derivative approach. 

M-Estimation Approach In the minimization-estimation (M-estimation) ap-
proach, one finds for each fixed 0 a nonparametric estimator go of regression function 
ge{t) — E(Y \ X'0 — t) and then the estimator of 0 can be defined as a minimizer 
of the sum of squared errors: 

n 

0 = argmin, ^ (Y, - ge{X[0))\ (4.2) 
i= 1 

The minimization can be done without restriction ||#|| = 1; and after finding a 
solution, we can normalize the direction vector to have length one. We can also use 
some other contrast function than the squared error contrast and define 

n 

0 = argmin 
2 = 1 

where ^ is a contrast function. The least squares contrast function is z) = 
\y — zj2. Other examples of contrast functions are given in Section 5.1.1. 

The estimator ge can be taken to be a kernel estimator. Then, 

n 

ge(t) = ^2pi(t)Yi, 
i=1 

where 

K : R —)> R is the kernel function, Kh (x) = K(x/h)/h, and h > 0 is the smoothing 
parameter. Ichimura (1993) studied the properties of a semiparametric least squares 
estimator, and Delecroix & Hristache (1999) studied a more general M-estimator. 

Quasi-Maximum Likelihood Under the single-index model the conditional density 
of Y given 0' X — t is given by 

fy\e'x=t(y) = f e ( y - t ) , 

where fe is the density of e = Y — X'0. Thus we can choose the contrast function as 

il)(y,z) = - f e ( y - z ) , 

or 
ip(y,z) = - log f€(y-z), 



232 SEMIPARAMETRIC AND STRUCTURAL MODELS 

which leads to the semiparametric maximum likelihood estimator. In general, fe and 
thus the conditional density are unknown, but we can estimate the conditional density 
by the conditional kernel estimator given in (3.42), defining 

n 

fy\o'x=t(y) = y^R, 
i= 1 

where L : R —>• R is the kernel function, Lg(y) — L(y/g)/g,g > 0 is the smoothing 
parameter, and the weights Pi(x) are defined similarly as in (4.3). Then the contrast 
function can be defined by 

il>(y,z) = - l o g / y \e>x=z(y)' (4.4) 

Weisberg & Welsh (1994) studied the quasi-maximum likelihood version of the 
minimization estimation. Klein & Spady (1993) studied semiparametric maximum 
likelihood estimator in a binary response model. Ai (1997) uses quasi-maximum 
likelihood approach and replaces the unknown probability density function fe with a 
nonparametric estimator. Delecroix, Hardle & Hristache (2003) used semiparametric 
maximum likelihood with the estimated contrast function (4.4). 

Iterative Method As before, we assume that for each index 6 we have an estimator 
go of g. We can solve the minimization problem of the semiparametric least squares 
estimator iteratively. That is, we find 6 iteratively, when 6 is defined by (4.2). Given 
a current value 6$ of 0, we can make an expansion 

90o(O'Xi) * g o M X i ) + g ' e M x ^ e ~ *<>)%, (4-5) 

which gives 

£ (Yi - gooie'Xi))2 « YI fr ~ 9eo(0'oXi) - g'eMxiW ~
 eo)%)S 

)2 

i= 1 2=1 

The iteration proceeds as follows. 

1. Choose an initial value 0Q. 

2. For ra = 0 , . . . , M — 1: 

= argmin, ^ Wf (Z{ - 0 % ) 2 , (4.6) 
i= 1 

Wi = g'9je'mXi) 

i= 1 

where 

and 
Yi - ge^ffmXi) 

= Q'rn Xi -f 
9'eJd'mXi) ' 
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with gem being an estimator of the regression function, and g'd being an 
estimator of the derivative of the regression function, both calculated using 
data (0'mXi,Yi)9i = l,...,n. 

The minimizer in (4.6) is the weighted least squares regression estimator 

0 m + 1 = ( X / W X ) _ 1 X / W z , (4.7) 

where X = ( X i , . . . , Xn)' is the n x d design matrix whose zth row is X-, z = 
(Z\,..., Zn)

f is the n x 1 column vector, and W is the n x n diagonal matrix with 
the diagonal elements W-2, i = 1 , . . . , n. The solution (4.7) is derived similarly as 
the solution of varying coefficients linear regression in (2.53). This iteration method 
was proposed in Hastie et al. (2001, p. 349). 

The Derivative Method and the Average Derivative Method Under the 
single-index model (4.1) the gradient of the regression function is 

Df(x) = 6g'(x'0), 

where we denote the gradient by Df(x) = ((d(dxi)f(x),..., (d/dx<i)f{x))f and 
g' is the derivative of g. Thus the gradient has the same or the opposite direction 
as the vector 9. If we have an estimator Df(x) of the gradient at any point x, then 
we can estimate 9 by normalizing Df(x) to have unit length, or we can obtain the 
normalization 9\ — 1 by dividing each component by the first component. We use 
the normalization of 9 to have unit length and define 

0 = $/ Ml $ = Df(x), (4.8) 

for a point x G Hd. This estimator is called the derivative estimator. 
We have that 

EDf(X) = 0E\g'(X'0)], 

so that EDf(X) is vector with the same or the opposite direction as the vector 9. 
The vector EDf(X) is called the average derivative. This leads to an estimator, 
where we first construct an estimator Df(Xi) at the observations Xi and then define 

e = p/\\$\\, /3 = - f " S ? ( x < ) . (4.9) 
n ' i=1 

This estimator is called the average derivative estimator. 
The average derivative estimator can be extended to a weighted average derivative 

estimator. Let W : Hd —>> R be a weight function and define the weighted average 
estimator as 

9 = M l /3 = -Ew(Xi)S?(X<). 
n z—' 

2 = 1 

The estimator can justified because 

E[W{X)Df(X)} = 9E[W(X)g'(X'9)}. 
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Powell, Stock & Stoker (1989) define a density weighted average derivative estimator 

e = p/m\, $ = - - i 2 Y i D f x ( x i ) , 
n z—' 

i= 1 

where f x is a density estimator of density fx- In this estimator the weight is 
W(x) = fx(x) and the estimator can be justified by first noting that 

E[fx(X)Df(X)] = [ Df(x)f%(x)dx. 

If f x is zero on the boundary of the support of f x , then integration by parts gives 

E[fx(X)Df(X)} = - 2 [ f(x)Dfx(x)fx(x)dx = - 2 E [ Y D f x ( X ) ] . 
J Rd 

Samarov (1991), Samarov (1993), and Hardle & Tsybakov (1993) consider the 
average derivative method and show that 0 can be estimated with rate n - 1 / 2 if the 
design density is very smooth. Hristache, Juditsky & Spokoiny (2001) consider the 
estimation of the index vector in a single-index model, using an iterative method, 
which avoids the pilot estimation of D f . Their estimator is based on the observation 
that g(x'0) does not vary when x varies in a direction that is perpendicular to 0. Thus, 
only the directional derivative of E(Y \ X = x) in the direction of 0 is needed to 
estimate. We have assumed that X has a continuous distribution. Horowitz (2009, 
Section 2.6.3, p. 37) discusses the case of X with a discrete distribution. 

4.2 ADDITIVE MODEL 

4.2.1 Definition of the Additive Model 

In an additive model it is assumed that the regression function f(x) = E(Y\X = x) 
has the form 

d 

f{x) = c + Y,gj{xj), (4.10) 
3 = 1 

where c G R is an intercept and gj : R —>• R, j = 1 , . . . , d, are univariate functions. 
The intercept and the functions gj are estimated with identically distributed regression 
data (Xi, Y i ) , . . . , (Xn, Yn). For identifiability we assume that 

Eg j (Xj ) = 0, j = l , . . . , d , (4.11) 

where Xj is the component of X = (Xi,..., X^). Then we can estimate the constant 
cby 

1 n 

n 
i= 1 
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Without the assumption (4.11) we cannot estimate the components gj, because the 
model with the regression function 

d 
f(x) = (c-a) + O/x+aKxO + E ® ^ ) 

J — 2 

leads to observations identically distributed as the observations from the model (4.10) 
It can be shown that the difficulty of estimation in the additive model is equal to 

the difficulty of estimation in a univariate regression model, when the difficulty of 
estimation is measured with the minimax rates of convergence; see Stone (1985). An 
overview of additive models and their history can be found in Hastie & Tibshirani 
(1990) and in Hardle et al. (2004, Section 8). 

4.2.2 Estimators in the Additive Model 

We define the backfitting, smooth backfitting, and marginal integration estimators. 
Section 5.4.2 describes an algorithm for stagewise fitting of additive models. 

Backfitting In the additive model we have 

9i(X1)=E Y -c-J2gi(Xi) 
1=2 

X1 (4.12) 

The backfitting algorithm is an iterative algorithm which is based on the idea that 
if we have estimates • • • ? 9d for <72, • • •, 9d, a n d an estimate c for c, then we can 
apply a univariate nonparametric estimator to estimate gi. Let 

Yi = Yi-c- g2(Xi2) 9d(Xid), i = 1,..., n. 

Now we can use the data (Xn, Y]), i = 1 , . . . , n, to estimate g\. We describe below 
the backfitting algorithm for calculating the estimates gj(xj), j = 1 , . . . , d. 

1. Initialize the n x d matrix G to have zero elements. 

2. We iterate the following steps M times. 

Go through all coordinates j = 1 , . . . , d. 

(a) Let 

Yi = Yi E 
1=1,1*7 

1 , . . . , 7 1 . 

(b) Let gj be a one-dimensional regression function estimate, based on data 
(Xij,Yi), i = 1 , . . . ,71. 

Evaluate gj at the points Xij, to obtain gj(Xij), i = 1 , . . . , n. 

Put = M X y ) . 
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3. Let gj(x), j = 1 , . . . , d, be a regression function estimate based on data 

(Xi,Yi), i = 1 , . . . , n, where Yi = Y{ - Y - £?=1>z#i[G]u. 

Steps 1 and 2 calculate the evaluation matrix G — and 
step 3 is used to calculate gj(x), j = 1 . . . , d, at any point x G R. Properties of 
backfitting were studied in Buja, Hastie & Tibshirani (1989). 

Smooth Backfitting The Nadaraya-Watson smooth backfitting estimate can be 

defined as a minimizer of 

)2 

K((Xn - xi)/h,..., (Xid - xd)/h) dx, 

where the minimization is done over c G R and over functions gj : R —> R satisfying 
the constraints 

J 9 j ( x j ) f x j (xj) dxj = 0 , j = 1 , . . . , d, 

where fx, is a kernel density estimate of the marginal density fx, • Furthermore, 
* 

K : R d —> R is the kernel function, and /i > 0 is the smoothing parameter. We get 
c — Y — n~l Yi and the minimizer gj is found as 

/ j = l , . . . , d , (4.13) 
J 

where ^ is a univariate Nadaraya-Watson kernel regression function estimate and 
fxl\xj=Xj(xi) is an estimator of the conditional density. The estimator of the 
conditional density is defined by fxj,xt ( x j , x i ) / f x j (xj), where fx6,xx is a kernel 
density estimate of the density fxj ,xt of (Xj, Xi) and fxj is a kernel density estimate 
of the density fXj of X j . Note that (4.12) implies that 

d 

gj(XJ) = E[Y\Xj]- J2 E[9i{Xi)\Xj]-c, (4.14) 

and (4.13) can be seen as a sample version of (4.14). An iterative algorithm is needed 
to find the estimates satisfying (4.13). At step k + 1 the estimate is 

9jk+1\xj) =9j(xj) / 9ik\xi)fxl\xj=Xj{xk)(hi-Y, j = 
W 

fork = 0,1, The smooth backfitting estimator was introduced in Mammen, 
Linton & Nielsen (1999). The practical implementation of smooth backfitting is 
studied in Nielsen & Sperlich (2005). 

m 
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Marginal Integration Estimator The marginal integration estimator of the 
first component gi is defined in two steps. First we define a preliminary mul-
tivariate regression function estimator / : R d — R of the regression function 
f(x) = E(Y | X = x), using the regression data (Xi, Yi ) , . . . , (Xn, Yn). The pre-
liminary regression function estimator can be a kernel regression function estimator, 
for example. Second we define the estimator of g\ as 

1 n 

gi{xi) = ~ y Z f ( x i,Xii2, • • .,Xiid) ~ c, (4.15) 
2 = 1 

where 
n 

n 
i=1 

Note that the marginal integration can be used also in the cases where the additive 
model does not hold, and in these cases it is almost an estimator of the partial 
dependence function, defined in (7.1). The estimator of the partial dependence 
function, as in (7.2), does not involve the term c. 

The marginal integration estimator can be motivated by the fact that from the 
identifiability condition (4.11) it follows that 

Ef(xi, X2,..., Xd) = E (c + (m) + g2{X2) + • • • + gd(Xd)) = c + g1(x1). 

Thus, the estimator in (4.15) is obtained by replacing the expectation by the sample 
mean and subtracting an estimator of intercept c. We can choose also 

^ n ^ n 
d = f(xiiU Xj i 2 , . . . , xjid), 

2 = 1 3=1 

because n _ 1 i f(Xi,Xj,2,..., Xj^) estimates gi(Xi) + c, a n d E g i ( X i ) = 0. 
The marginal integration estimator was introduced in Tj0stheim & Auestadt (1994) 
and Linton & Nielsen (1995). 

4.3 OTHER SEMIPARAMETRIC MODELS 

We present first the partially linear model in Section 4.3.1 and then we list in Sec-
tion 4.3.2 some models related to the single-index model, additive model, and partially 
linear model 

4.3.1 Partially Linear Model 

Let (Xi , Zi,Yi), i — 1 , . . . , n, be identically distributed regression data with the 
distribution of (X, Z, Y). The response variable is Y e R and (X, Z) E R p x Rq 

is the vector of the response variables. In a partially linear model the regression 
function f(x, z) = E(Y | X = x, Z = z) is modeled as 

f{x, z) = x'f3 + g(z), (*, z) G R p x R 9 , 
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where /3 £ R p is an unknown vector and g : Hq R is an unknown function. Note 
that the linear part does not contain an intercept, because it could not be identified 
separately from the unknown function g. 

An Estimator of the Parametric Component An estimator of f3 is defined 
in two steps. First we estimate the regression functions fi{z) = E(Xi | Z = 
z),...Jp(z) = E(XP | Z = z) and f0(z) = E{Y\Z = z). Define Xi = 
(fi(Zi),..., fp(Zi))', i = 1 , . . . , n, where / i , . . . fp are the regression function 
estimators. Similarly, let Yi = fo(Zi), i = 1 , . . . , n, where /o is a regression func-
tion estimator. We can use kernel regression function estimators, defined in (3.6). 
Then we define 

where 

.i= 1 
Y , X i Y u (4.16) 
i=1 

Xi — Xi — Xi, Yi — Yi — Yi. 

The estimator can be motivated by the facts that if we take conditional expectations 
of 

Y = X ,/3 + ^(Z) + 6, (4.17) 

then we get 
E(Y\Z) = E(X\Z)'(3 + g(Z). 

Subtracting, we get 

y - E(Y I Z) = (X - E(X I Z))'!3 + e. 

This linear regression model can be solved to get an estimator of /?, but the unknown 
conditional expectations E(Y | Z) and E(X | Z) has to be estimated. 

An Estimator of the Nonparametric Component From (4.17) we get 

g{Z) = E(Y-X'l3\Z). 

Inserting the estimator /3 from (4.16), we can define an estimator for g as a kernel 
estimator 

i=1 

where Pi(z) are the kernel weights, defined in (3.7). 

4.3.2 Related Models 

We list in the following some models that are extensions or combinations of the 
single-index model, additive model, or the partially linear model. 
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Models Related to the Single-Index Model We can generalize the single-
index model to a nonlinear single-index model In the nonlinear single-index model 
the linear index x'6 is replaced with a nonlinear index ve(x), which depends on 
parameter 0, and it is assumed that 

f(x)=g(ve(x)), x G R d , 

where g : R —• R. 
In the multiple-index model it is assumed that 

f(x) = x'0Po + G(x[f3i,... ,x'm/?m), X G R d , 

where G : R M —» R is an unknown function, M > 1 is a known integer, Xk, k — 
0 , . . . , M are subvectors of x = {x\,..., Xd), and /3k, k = 0 , . . . , M, are unknown 
vectors of the same lengths as Xk- Ichimura & Lee (1991) and Hristache, Juditsky, 
Polzehl & Spokoiny (2001) have studied multiple-index models. Li & Duan (1989), 
Duan & Li (1991), and Li (1991) consider sliced inverse regression estimation of 0, 
assuming that the distribution of the explanatory variables is elliptically symmetric. 

Models Related to the Additive Model In a generalized additive model (GAM) 
it is assumed that the regression function has the form 

f(x) = G^c + J2gi(xi)y 

where G is a known link function, c G R is an unknown intercept, and gi : R R, 
i = 1 , . . . , d, are unknown univariate functions. In an additive partially linear model 
the regression function is 

q 
f(x, z) = + £ gi(zi), (x, z) G R p x R«, 

i= 1 

where f3 G R p is an unknown vector and gi : R R, i = 1 , . . . , q, are an unknown 
univariate functions. In a generalized additive partial linear model the regression 
function is 

f(x, z) — G |x ' /3 + £ g i ^ , (a, z) G Rp x R^, 

where G : R R is a known link function. 

Models Related to the Partial Linear Model A generalized partial linear 
model (GPLM) assumes that the regression function has the form 

f(x, z) = G(x'/3 + g{z)), (x, z) G R p x R 9 , 
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where G : R R is a known link function. Carroll, Fan, Gijbels & Wand (1997) 
discuss the generalized partially linear single-index model, were the regression is 
modeled as 

f(x,z) = x'P + g(z'a), 

where f3 £ R p and a £ R 9 are unknown parameters and g : R —> R is the unknown 
function. Zhang, Lee & Song (2002) study the semivarying coefficient model where 

f(x, z) = x (3(u) + z'a, 

where u £ R is some component of x or z. Wong, Ip & Zhang (2008) study the 
model where 

f(x,z) = x'P(u)+g(z'a). 

Varying coefficient model assumes that 

f(x,u) = x'(3(u). 

Now we observe (Xi, Ui,Yi), where Ui £ R. This model was introduced in Hastie 
& Tibshirani (1993). We study varying coefficient linear model in Section 2.2. 



CHAPTER 5 

EMPIRICAL RISK MINIMIZATION 

Linear least squares regression analysis is an example of empirical risk minimization. 
The coefficients of the least squares estimate of the regression function are chosen as 
the minimizers of the sum of squared errors. The least squares estimate is 

n 

f = argmin /Gj r ^ (Yi - f(Xt))
2 , 

i=1 

where T is the class of linear functions: 

T = {/(:r) = a + fix : a G R, /? G R d } . (5.1) 

The linear least squares regression can be generalized by choosing T to be some 
other collection of functions / : H d R. In choosing class }- we have to take into 
account the balancing between the bias and the variance: Choosing a large class T 
will lead to an estimator with a large variance, and choosing a small class T will lead 
to an estimator with a large bias. In addition, the choice of class T has an influence 
on the computational complexity of the empirical minimization. 

Section 5.1 starts with discussing other criterions than the least squares criterion. 
Changing the loss function leads to estimators with different properties than the 
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estimator obtained with the squared loss function. For example, the absolute deviation 
loss function leads to an estimator that is less sensitive to outliers. On the other hand, 
when we want to estimate functionals of the distribution other than the conditional 
mean, then we have to change the loss function to some other than the squared loss 
function. For example, if the distribution is such that the conditional mean and 
the conditional median are not the same, then we have to use the squared loss for 
mean estimation and use the absolute deviation loss for median estimation. The 
absolute deviation loss can be generalized to a loss suitable for the estimation of 
other quantiles than the median. To estimate the conditional density, we need again 
to define a suitable loss function. 

Section 5.2 introduces local polynomial and local likelihood estimators. Local 
polynomial and local likelihood estimators can be seen as local averaging methods, 
covered in Section 3. However, since they are defined as solutions to a minimization 
problem involving an empirical risk, we discuss them together with other empirical 
risk minimizers. The local constant estimator is equal to the kernel regression 
estimator, if the weights of the local empirical risk are chosen to be the the kernel 
weights. The local linear estimator and the higher-order local polynomial estimators 
can be better than the kernel regression estimator in boundary regions and near jump 
points. Local likelihood estimators can be used in binary choice models, in Poisson 
count models, and in other cases where the response variable follows a parametric 
distribution. 

Section 5.3 defines support vector machines, support vector machines can be de-
fined as minimizers of a penalized empirical risk. The introduction of the penalization 
can be useful in high-dimensional cases, when there are many explanatory variables. 
Support vector machines were initially defined for classification, but analogous meth-
ods can be defined for regression. 

Section 5.4 discusses stagewise methods for the minimization of an empirical risk. 
We can define an estimator either by defining it as a solution to a minimization problem 
or by defining an algorithm for its calculation. We define estimators in Section 5.4 
by defining algorithms for their calculation. First we define forward stagewise 
modeling algorithms, which can also be called boosting algorithms. Second we 
define an algorithm for stagewise fitting of additive models, which is an alternative 
to backfitting and other methods presented in Section 4.2. Third we describe a 
projection pursuit regression algorithm. 

Section 5.5 describes adaptive regressograms. Adaptive regressograms are such 
regressograms whose partition is chosen by minimizing an empirical risk. We define 
greedy regressograms, classification and regression trees, and dyadic regressograms. 
A method to select the partition of a regressogram can be seen as a method for 
variable selection. The partition should be made more granular in the direction of 
the more important variables, and the regressogram should be a constant function in 
the direction of the variables that are less important. 
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5.1 EMPIRICAL RISK 

We define empirical risks suitable for the estimation of conditional expectations, 
conditional quantiles, and conditional density functions. 

5.1.1 Conditional Expectation 

Let (X\, Y i ) , . . . , (Xn, Yn) be the identically distributed regression data, where Xi G 
Hd and Yi G R. We want to estimate the regression function 

f(x) = E[Y\X = x], x G R d , 

where (X, Y) is distributed as (Xi, Yi),i = 1 , . . . , n. 
Let J7 be a class of functions H d —• R and let e > 0. We define the empirical risk 

minimizer / : H d —» R to be such that 

7 n ( f ) < inf 7n(#) + e, 
geT 

where 7n(#) is the sum of squared errors: 

n 

ln(g) = - s t * , ) ) 2 , g : R d -> R. (5.2) 
2=1 

The linear least squares estimator is obtained by choosing 6 = 0, along with T as in 
(5.1). We can write 

Tl TL Tl TL 
- giXt)? = J2Y? -2j2Yig(Xi) + J > ( X 0 2 -

i—1 i= 1 i= 1 2 = 1 

The term Y-2 does not depend on the function g, and thus it is enough to 
minimize the simplified empirical risk 

7n{g) = - -Y^YgiXi) + - Y^g(Xi)2. n z—' n z—' 
2=1 2=1 

More generally, we can define 

71 

2=1 

where the contrast function 7 can be chosen in the following ways, for example. 

1. The contrast function can be a power function: 

7 ( y , z ) = I y -

for p > 1. 
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2. The contrast function can be an e-sensitive loss function 

7(y,z) = (\y-z)\ - e) l[e,oo)(\y - A) 

{0, when \y — z\ < e, 

\y-z\- e, when \y - z\ > e, 
for e > 0. 

3. The contrast function can be a robust loss function 

z \ = l ~ w h e n \y ~ z \ - c ' 
} 1 c|y - z \ - C2/2, when \y - z\ > c, 

where c > 0. This loss function was defined in Huber (1964). 

Figure 5.1 shows the squared error contrast function x ^ x 2 with black, the abso-
lute error contrast function x \x\ with blue, the ^-sensitive contrast function x 
(|x| — e)/[e,oo)(M) with red, and the robust loss function x (\x\2/2)I[0^(\x\) + 
(c\x\ — C2/2)7(c oo)(|X|) with green. We have chosen e = 0.2 and c = 0.8. The 
^-sensitive contrast function is close to the squared error contrast function for small 
errors, but it behaves similarly to the absolute error contrast function for large errors. 
Thus the ^-sensitive contrast function penalizes less from small errors and more from 
large errors, and it is an intermediate contrast function between the squared error and 
the absolute error contrast functions. Penalizing less from large errors makes the 
estimates more robust against large deviations, in the sense that the estimator is not 
driven solely by outliers. 

We noted in Section 1.1.7 that for the estimation of the conditional median 
med(F | X = x) it is natural to use the absolute deviation contrast function 7 ( y , z) = 

\y-A-

5.1.2 Conditional Quantile 

Quantiles are defined in (1.23). In (1.41) we have noted that a quantile can be 
characterized as 

QP{Y) = a r g m i n e e n E p p ( Y - 0), 

where 

Pp(t) =t[p- / ( . o o , 0 ) m , te R , (5.3) 

for 0 < p < 1. 

Let (X\, Y\),..., (Xn, Yn) be regression data and define the contrast function 

7 (y,z) = pP(y-z) 

and 7 n ( g ) = J^ILi 7 ( Y i i d ( X i ) ) . We can define an estimator of the conditional 
quantile f ( x ) = Q

P
(Y | X — x) as 

n 

f = a r g m i n ^ 7 n ( # ) = a rgmin g € gY^Pp( Y i ~ d(Xi))i 
i=1 
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Figure 5.1 Contrast functions. Shown are the squared error contrast function with black, 

the absolute error contrast function with blue, the ^-sensitive contrast function with red, and 

the robust loss function with green. 

where Q is the class of all measurable functions. 
Figure 5.2 shows linear conditional quantile estimates for the levels p = 0.1, 0.2, 

. . . ,0.9. The data are the same as in Figure 1.1: the data consist of the daily S&P 500 
returns Rt = (St — St-1)/St-1, where St is the price of the index. The explanatory 
and the response variables as 

The S&P 500 index data are described more precisely in Section 1.6.1. We show also 
a contour plot of a kernel estimate of the density of ( X t , Yt). 

5.1.3 Conditional Density 

Conditional density function was introduced in Section 1.1.8. Let fy\x=x(y) be the 
conditional density of Y given X = x, where ye R and x £ Hd. The conditional 
density will be estimated using the identically distributed regression observations 
(XL, YI), ..., (Xn,Yn). The estimator is 

fY\X = argmin^ { j y ^ x , , 
i=i 
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Figure 5.2 Linear conditional quantile estimates. Red lines show the quantile estimates for 

levels p = 0 , 1 , . . . , 0.9. A contour plot of a kernel estimate of the density of ( X t , Yt) is also 

shown. 

where fy\x : R- x R-d ~~̂  {Vix) ^ fy\x=x(y)^ Q is a c l a s s °f measurable 
functions R x R d —>• R , and the empirical risk is 

1 n r /* 

N = / 
2 — 1 

The empirical risk can be justified in two ways. 
First, the minimization of the empirical risk is approximately equal to the mini-

mization of the squared L2 error 

fy\x ~ fy\x j Jn , = [ (fy\x=x(y) ~ fY\x=x(y)) fx(x)dxdy. 
dy,dPx(x) J \ / 

The L2 error is minimized with respect to fy\x> when 

J fy\X=x(y) f x ( x ) d x d y - 2 J fy\x=x(y)fY\x=x{y)fx{x)dxdy 

= E J frlx=x(y)dy-2fylx=x(Y) 

is minimized with respect to fy\x, where the expectation is with respect to random 
variables (X, Y). The expectation can be estimated with an average, which leads to 

7n(fy\x)' 
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Second, let us take the expectation with respect to (X, Y), which is independent 
of the sample (Xi, Y i ) , . . . , (Xn , Yn) that is used to calculate the estimate: 

ln(fy\x) - 7 n ( / y | x ) 

= E 

= J ( f r \ x = x ( y ) - f y \ x = x ( y ) ) f x ( x ) d x d y 

- 2 J (fY\x=x(y) - fy\x=x(yj) fy\x=x(y)fx{x) d x d y 

= J ( f y \ x = x ( y ) ~ 2 f y \ x = x { y ) f y \ x = x ( y ) + f y \ x = x ( y ) ) f x { x ) d x d y 

[fy\x=x(y) ~ fy\x=x(y)) f x { x ) d x d y 

and this is minimized by choosing fy\x — f y \x-

5.2 LOCAL EMPIRICAL RISK 

We discuss two types of local empirical risk: the risk that leads to local polynomial 
estimators and the local likelihood risk. 

5.2.1 Local Polynomial Estimators 

Local constant estimators are equal to local averaging estimators, as defined in Sec-
tion 3. A local averaging estimator can be a kernel estimator, nearest-neighbor 
estimator, or regressogram, depending on the choice of the weights. Local linear 
estimators are a new class of estimators. Local linear estimators can be better in 
estimating approximately linear regression functions than kernel estimators. Fur-
thermore, they can perform better on the jump points of the regression function. 
Local linear estimators can be generalized to local polynomial estimators. Local 
polynomial estimators can be used both in state-space smoothing and in time-space 
smoothing. 

Local Constant Estimator Let us consider estimation of E(Y \ X = x) and let 
(Xi, Yi ) , . . . , (Xn , Yn) be regression data. The weighted least squares criterion is 

n 

ln(0,x) = ^wi(x)(Yi-e)2, 6e R, x e Rd , 
2 = 1 

where the weights Wi(x) depend on X i , . . . , X n . The minimizer of the weighted 
least squares criterion is 

n 

argmin0GR7 n{0,x) = ^2pi{x)Yi, 
2 = 1 
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where 
/ \ Wi(X) 

Pi(x) = 
E I L i ^ W 

Indeed, derivating the weighted empirical risk with respect to 6 and setting this 
derivative to zero gives the equation Y17=i w i(x)(Yi ~ — which leads to the 
solution. 

If the weights are such that Wi(x) is large when \\Xi — x\\ is small, and Wi(x) is 
small when \\Xi — x\\ is large, then we can call 7n(0, x) a local empirical risk and 
the estimator 

n 

H x ) = Y,Pi{x)Yi, (5.4) 
i= 1 

is a local constant estimator. 
The estimator f ( x ) is a kernel estimator defined in (3.6), if the weights wi(x) are 

chosen as the kernel weights 

Wi(x)=Kh(x-Xi), (5.5) 

where K : Hd —> R is a kernel function, Kh{x) = K(x/h)/hd, and h > 0 is the 
smoothing parameter. 

The local constant estimator can be defined also for the conditional quantile. We 
can define 

n 

QP(Y \X = x) = a rgmin 0 e R ^iy i (a ; )pp(y r i - 0), 
i=i 

where pp is defined in (5.3) and the weights Wi(x) can be taken as in (5.5). 

Local Linear Estimator Let f ( x ) = E(Y \X = x) and {Xu Yx),..., (Xn, Yn) 
be a sample from the distribution of ( X , Y). The local linear estimators for f(x) and 
Df(x) are constructed by finding minimizers a and j3 of 

n 

[Yi-a-P'^-x)]2, 
2—1 

over o; g R and (3 G R d , where the weights can be defined as in (5.5). The estimator 
of the conditional expectation is 

f ( x ) = d, x G R d , (5.6) 

and the estimator of its gradient is 

Df(x) = x G R D . 

The heuristics of the procedure comes from the Taylor approximation 

Yi « f(Xi) « /(x) + Df(x)'(Xi - x), 
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where Df(x) = (df(x)/dxi,..., df(x)/dxd)' is the gradient of f(x). 
We can find an explicit expression for a(x) and $(x). The derivation is similar to 

the case of linear regression; see (2.10). Let us denote by X the n x (d + l)-matrix 
whose ith row is (1, (Xi — #)'), where Xi — x is a column vector of length d: 

X = 

1 (Xi-x)' 

1 (Xn-xy 

Let y = (Yi , . . . , Yn)' be the column vector of length n. Let W(x) be the n x n 
diagonal matrix with diagonal elements Wi(x). Then, 

( a j y = [X'W(x)X]-1X!W(x)y. 

We can write 

f ( x ) =a = e[ [X'W(x)X]-1 X'W(x)y, 

where e\ = (1 ,0 , . . . , 0)' is a (d + 1) x 1 vector. Now we can write 

n 

(5.7) 

i=1 

where 

qi(x) = ei [X'W(x)X\ 
- l 1 

Xi- x 
Wi(x), 

where — x is a d x 1 vector. 
It is to be noted that we can define the local linear estimator as a minimizer of 

n 

J ^ P i W i Y i - a - P ' X i f , ae R, /3 G Rd , x G Rd . 
i=l 

Now the local linear estimator is a linear function whose the coefficients depend on 
x: 

f(x) = a(x) + j3(x)'x, x G Rd , 

where a(x) and /3(x) minimize the empirical risk. 

One-Dimensional Local Linear Estimator In the one-dimensional case, when 
d— 1, we get, modifying (2.6), 

where 

U=iPi(x)(Xi-X)* ' 

n n 

i= 1 i=1 
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We can write 

Thus 

p H U v i t o i X i - x y 

a = 
i=1 

where 

We can also write 

= Wi(x)[s2{x) - (Xi -x)S!(x)] (5 10) 

Y!i=\ m(x)[s2(x) - (Xi - x)si(x)]' 

where 

n n 

Si(x) (X) ( X i ~X), S2 (x) = ^ Wi ( X ) ( X i ~x)2' 

2 = 1 2 = 1 

Note that (5.10) shows that ^ (x ) = l.47 From (5.8) we get that 

n 

2 = 1 

where 

Note that EILI^W = 

Illustrations of Local Linear Estimators Figure 5.3 illustrates the estimation 
of a one-dimensional linear regression function, and it shows the effect of the smooth-
ing parameter. Panel (a) shows the true regression function and the data. The true re-
gression function is the linear function f(x) = 2x. The data (Xi, Y i ) , . . . , (Xn , Yn) 
is simulated with n = 200, Y* = /(X*) + ei9 where e* ~ N(0,1) and X{ ~ N(0,1), 
where Xi and e; are uncorrelated. Panel (b) shows local linear estimates of / with 
smoothing parameters h = 0 .08, . . . , 5, when the kernel is the standard Gaussian 
density function. Panel (b) shows that when h —> oo, the estimate of the regression 
function converges to the true linear function, unlike a kernel estimate shown in 
Figure 3.1, which approaches a constant function. 

Figure 5.4 illustrates the estimation of a one-dimensional quadratic regression 
function. Panel (a) shows the true regression function and the data. The true 
regression function is the quadratic function f(x) = x2. The simulated regression 

47Note also that Qi(x)(Xi - x) = 0. 
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(a) (b) 

Figure 5.3 Local linear estimates of a linear function, (a) The data and the true regression 

function, (b) Local linear estimates of the regression function with smoothing parameters 

h = 0 . 0 8 , . . . , 5. 

(a) (b) 

Figure 5.4 Local linear estimates of a quadratic function, (a) The data and the true 

regression function, (b) Local linear estimates of the regression function with smoothing 

parameters h = 0 . 0 8 , . . . , 5. 

has sample size n = 200, Y{ = f(Xi) + ei9 where e* ~ N(0,1) and Xi ~ N(0,1), 
where Xi and e* are uncorrelated. Panel (b) shows local linear estimates of / with 
smoothing parameters h = 0 .08 , . . . , 5, when the kernel is the standard Gaussian 
density function. The kernel estimates in Figure 3.2 are not considerably different. 

Figure 5.5 shows estimates of the derivative of a regression function. In panel (a), 
f(x) = 2x, so that f ( x ) = 2. In panel (b), f(x) = x2 , so that f'(x) = 2x. In 
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(a) (b) 

Figure 5.5 Local linear estimates of derivative, (a) Estimates of f ' ( x ) = 2. (b) Estimates 

of f ' ( x ) = 2x. The smoothing parameters are h = 0 . 0 8 , . . . , 5. 

both cases the sample size is n = 200, Yi = f(Xi) + e*, where a ~ N(0,1) and 
Xi ~ AT(0,1), where Xi and e* are uncorrelated. The smoothing parameters are 
h = 0 .08, . . . , 5 and the kernel is the standard Gaussian density function. In both 
cases the derivative estimate converges to a constant when h increases. 

Figure 5.6 illustrates the weights qi(x) in the case of one-dimensional explanatory 
variable X. We have used the standard Gaussian kernel and smoothing parameter 
h = 0.2. Panel (a) shows a perspective plot of the function (x, Xi) Pi(x), where 
X\,..., Xn is a simulated sample of size n = 200 from the uniform distribution 
on [—1,1]. Panel (b) shows the six functions x h-> Pi(x) for the choices Xi — 
— 1, — 0 .5 , . . . ,1 . We can compare the local linear weights to the kernel weights in 
Figure 3.3. We can see that the weights differ in the boundaries x = — 1 and x = 1. 
For Xi — - 1 and Xi — 1 the local linear weights are larger at the boundaries. For 
Xi = —0.5 and Xi = 0.6 the local linear weights are negative at the boundaries. 

Volatility Estimation with the Local Linear Estimator Let Rt be the S&P 
500 return and let us choose 

Yt = Rt, Xt = Rt-i 

and consider the estimation of the conditional variance with the local linear estimator, 
using the S&P 500 data described in Section 1.6.1. The function 

a2(x) = E(Yt
2\Xt = x) 

is now called the news impact curve. 
Figure 5.7 shows a local linear estimator of the conditional volatility with the 

smoothing parameter h = 0.04 and the standard normal kernel. 
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Figure 5.7 S&P 500 volatility: News impact curve. A local linear estimate of the conditional 
variance. 

Figure 5.6 Weights in local linear regression. (a) The funciion (s, Xi) qi (x). (b) The
six slices x pi (x) for the choices Xi = -1, -0.5,..., 1.
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Kernel estimators for the news impact curve were shown in Figure 3.28. An 
ARCH(oo) model for the estimation of the news impact curve is mentioned in (3.64). 
A local polynomial volatility estimator was studied in Hardle & Tsybakov (1997), 
who developed a theory for the conditional heteroskedastic autoregressive nonlinear 
model (CHARN) 

Yt = f(Yt-1) + a(Yt-1)et. 

See also Hardle et al. (2004, Section 4.4.2) for an example of a local linear estimate 
of the volatility of the DM/USD exchange rate. In the estimation of the conditional 
expectation E(Y2 | X — x) of Y2 we can use the empirical risk 

X>(*) [Y? -iPia + PiXi-x))}2, 
i= 1 

where ip : R R. Then the estimator of the conditional expectation is f(x) = 
ijj(a(x))9 where (a(x), $(x)) minimizes the empirical risk. For example, ip(x) = 
exp(x) has been used in Ziegelmann (2002) to estimate volatility functions. The use 
of the exponential function guarantees the positiveness of the estimator. 

Local Polynomial Estimator We can define a local polynomial estimator of 
order g > 1. Minimize 

Q \ 2 

•a - E E - • • • - ^ ft*) 
i=i \j\=i j 

where the summation o v e r indexes j = (ji,..., jd) G {0,1, . . .}d with 

\j\ = ji H \-jd = l and we denote x = (xi,..., xd), Xi = (.Xn,..., Xid). 
In the one dimensional case d = 1, we can define the local polynomial estimator 

by extending the definition (5.7). Let us denote by X the n x (q + 1) matrix 

X = 

1 Xi-x • • • (Xi - x)q 

i ... ( x n - x y 

As before, let y = (Yi , . . . , Yn)' be the column vector of length n and let W(x) be 
the n x n diagonal matrix with diagonal elements wi(x). Then, 

f(x) = ei [X.'W(x)X\~1X'W(x)y, (5.11) 

where e\ — (1 ,0 , . . . , 0)' is a (q + 1) x 1 vector. 

Local Polynomial Moving Average Let as have a time series Y i , . . . , Yt. We 
want to predict the next value Yt+1. This can be done with moving averages, discussed 
in Section 3.2.4. The one-sided moving average was defined in (3.14) as 

t 

}{t) = YJPi(t)Yi, 
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where 

Pi(t) = 
m t - i ) / h ) 

eLi w - m Y 

The kernel function K is zero on the negative real axis. We can take K(x) = 
exp( —x)I[o,oc) (x) ox K(x) — /[0,1] for example. 

Local polynomial moving average of order q > 1 is similar to (5.11). Now we 
choose Xi = z, x = t + 1, and denote by X the t x (p + 1) matrix 

X = 

1 Xx - t - 1 

1 X t - t - l 

( X i - t - 1)0 

( X t - t - 1)« 

Let y = (Yi , . . . , Yt)' be the column vector of length t and let W(t) be the t x t 
diagonal matrix diag(iui(£),..., wt(t)), where Wi(t) = K((t — i)/h). Then, 

f(t)=ei [ X W ( t ) X ] _ 1 X W ( t ) y , 

where e\ — (1, 0 , . . . , 0 / is a (q + 1) x 1 vector. Smoothing parameter selection for 
local polynomial moving averages is discussed in Gijbels et al. (1999). 

5.2.2 Local Likelihood Estimators 

The local log-likelihood was defined in (1.67). Let us consider the locally constant 
likelihood estimator. We assume that the density function of Y is given by 

f(y,6), ye R , 9 € R k , 

where 6 is a /c-dimensional vector of parameters. Let 

n 

6(x) = argmin6/eRfc ^ 2 p i ( x ) l o g f ( Y u 0 ) , 
i=1 

where the weights Pi(x) depend on Xi. Again, the typical example are the kernel 
weights. 

As an example, let us consider the model 

Yt = cr£e£, 

where of = E(Yt
2 \ Tt), Tt is the sigma-algebra generated by Yt-i, Yt~2-> • • a n d 

et is independent of Yt, Yt-\, Let us observe y i , . . . , YT- The likelihood was 
written in (2.80) under the Gaussian assumption et ~ AT(0,1). The likelihood, given 
the observations y i , . . . , Yp, is 

£ (loge(a t
2) + ^ ) . (5.12) 

t=p+1 V Ut J 
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Let us find the local constant estimator. Define the local likelihood 

h{°2)= £ Pt{T)(\ogM2) + X ] , 
t=p+1 ^ ' 

where pt(T) are the weights. The maximizer of the local likelihood is 

I > ( T ) y t
2 . 

t=1 

We can choosey as the kernel weights pt (T) = K((T-t)/h)/ K((T-i)/h), 
where K : [0, oo) oo. This leads us to the moving average estimator of the 
variance. The moving average was defined in (3.14). The special case of the 
exponential moving average is obtained by choosing K(x) — exp(—x)I[Qi00)(x) 
and is defined for variance estimation in (3.79). 

Fan & Gu (2003) present a local likelihood method for the estimation of the 
conditional variance of stock returns. Let St be the asset price at time t and let 

Yt = log • S t 

ST-1 

be the logarithmic return. Let us consider the model 

Yt = QtSt-\tt, 

where the time varying variance is o\ = S f f \ and et ~ iV(0,1). We get the 
likelihood, similarly as in (5.12), as 

t=p+ I 

Instead of giving 6t and (3t a parametric form as in ARCH or in GARCH, we can use 
the local likelihood 

Define 

(0T,#r) = argma x e pl T (0 ,P) . 

For a given /? the maximizer is 

T 

t=1 
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Thus we need to solve numerically 

PT = argmax^T^T^) , /?) . 

Finally we get the estimator of the conditional variance 

af = e2
tsf_\. 

Yu & Jones (2004) proposed the following approach in the fixed design regression 
model Yi — f{xi) + a(xi)ei. If e* ~ N(Q, 1), then the log-likelihood is 

2 

2 = 1 

One can use the linear local likelihood and minimize 

E, , f (Yi - a0 - a^Xi - x))2 \ 
i = j \ exp{—Do — vi(xi — a;)} + + ^ " * > J 

over ao ,a i , fo ,^ i G R, where Pi(x) — Kh{x — Xi), Kh(x) = K(x/h)/h, K : 
R ->• R, and h > 0. 

5.3 SUPPORT VECTOR MACHINES 

Let (Xi, Yi ) , . . . , (Xn , Yn) be regression data for the estimation of the conditional 
expectation f(x) = E(Y \ X = x). Let /C : Hd x Hd R be a positive definite 
kernel.48 We make the eigenvalue decomposition 

oo 

K(x,z) = ^6igi(x)gi(z), 
i= 1 

where Si > 0 are the eigenvalues and gi : H d R are the eigenfunctions. The 
support vector machine estimator is f(x) = f(x,w), where w minimizes 

n oo 2 

i i 2 = 1 2 = 1 

over w = (u>i, it^, •. .)> where A > 0 is a regularization parameter and 

00 

f(x,w) = ^2wigi(x). 
2 = 1 

4 8A positive definite kernel satisfies that for all a i , . . . a & G R and G 

SiLi EjLi a<iajK,(xi,Xj) > 0. 
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The solution can be written as 

n 

f(x) = TjlC(x,Xi). 
i= 1 

The set {Xi : i = 1 , . . . , n, ^ ^ 0} of those observations for which the weight ju 
is nonzero is called the set of support vectors. An equivalent procedure is obtained 
by defining 

n 

f(x, 7T) = TiJC(x,Xi), 
i=1 

where 7r = (m,..., 7rn). Now we minimize 

n n 

^ 7 ( r i , / ( X i , 7 r ) ) + A £ TTiTTj-AC^.X,-) 
2=1 i,j = l 

over 7r. The estimator is again / ( x ) = J^ILi where 7r = (7Ti,..., 7rn) 
is the minimizer. The useful kernels include the linear kernel JC(x,z) = x'z, the 
polynomial kernels /C(x, z) = (x'z + a)p, the sigmoid /C(x, z) = tanh(x/2; + a), 
and the radial kernel JC(x,z) = e x p { — — z\\2}, where a G R, p > 1 is an 
integer, and b > 0. Vapnik (1995) and Vapnik, Golowich & Smola (1997) define 
support vector machines for regression function estimation. Wahba (1990) contains 
information about reproducing Hilbert spaces. A review of support vector machines 
is given in Hastie et al. (2001, Chapters 5.8 and 12.3.7). 

Classification was introduced in Section 1.4. Let us consider the two-class clas-
sification problem with classification data (X\, Y i ) , . . . , (Xn, Yn), where Xi G R d 

and Yi G { — 1,1}. We want to find a classifier g : Hd —> { — 1,1}. A binary classifier 
is obtained from a real-valued classifier h : Hd —» R by using g = sign(h). Let us 
consider functions oo 

h(x,w) = YWM*)> 
2 = 1 

where w = (w\,w2 . . . ) and hi, h2,... are eigenfunctions H d R of a positive 
definite kernel. Define the real-valued classifier as h(x, w), where w is the minimizer 
of the penalized empirical risk 

n oo 2 

2=1 2=1 ^ 

where Si are the eigenvalues of the positive definite kernel and A > 0 is a regulariza-
tion parameter. The empirical risk is defined as 

<y(Yi,h(Xi)) = <f>(Yih(Xi)), 

where 0 is the hinge loss (j>{u) = max{0,1 — u}. More generally, 0 : R (0, oo) 
is a convex nonincreasing function with cf)(u) > 7(_oo?0](^) for u G R. In addition 
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to the hinge loss, we can take the exponential loss 4>(u) = exp{—u} or the logit 
loss <j>(u) = log2(l + e~u). The minimizers of the empirical risk over h G % are 
called by Koltchinskii (2008) the large margin classifiers. The product Yh(X) is the 
margin on ( X , Y). If h(X)Y > 0, then (X, Y) is correctly classified by h; otherwise 
(X, Y) is misclassified. 

5.4 STAGEWISE METHODS 

In Section 5.4.1 we present general forward stagewise modeling algorithms. These 
algorithms are modified to get an algorithm for stagewise fitting of additive models, 
presented in Section 5.4.2, and to get an algorithm for projection pursuit regression, 
presented in Section 5.4.3. 

5.4.1 Forward Stagewise Modeling 

Forward stagewise additive modeling constructs an estimator that is a sum of basis 
functions. The estimator can be written as 

M 

/ ( X ) = ^mtf (Mm), 
7 7 1 = 1 

where the basis functions g(- ,0) : Hd R are multivariate functions parameterized 
with the parameter 0, and the weights Wm and the parameters 0m are calculated 
using regression data (Xi, Y i ) , . . . , (Xn , Yn). Forward stagewise additive modeling 
is called sometimes boosting. Tukey (1977) used the name twicing for a forward 
stagewise additive modeling with M — 2 and with the squared error contrast function. 

We write below three algorithms. The first algorithm is a general stagewise 
empirical risk minimization algorithm. The second algorithm specializes to the 
squared error contrast function. The specialization to the squared error loss helps 
us to obtain the third algorithm, where empirical risk minimization is replaced by a 
closed form estimator, like kernel regression estimator. 

Algorithm for Stagewise Additive Modeling The estimator is constructed by adding 
new terms to the expansion so that an error criterion is minimized at each step. 
The error criterion is defined in terms of a contrast function 7 : R x R —> R, see 
Section 5.1.1 for examples of contrast functions. Contrast functions can also be 
called loss functions. The following algorithm is the algorithm 10.2 from Hastie 
et al. (2001). 

1. Initialize fo = 0. 

2. For m = 1 to M\ 

(a) Let (wm, em) = a rgmin^ 1 7 (Yu fm-i(Xi) -j- wg(Xu 6)). 

(b) Let fm(x) = f m - i ( x ) + Wmg(xJm). 
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3. Let the final estimate be f(x) = /M(^). 

An example of basis function g(x,6) is a piecewise constant function that has a 
tree representation; and in this example, parameter 6 determines the split points, the 
split variables, and the values of the function. The simplest example is the case 
of a regressogram with a two set partition, when the partition is made parallel to a 
coordinate axes. Such a regressogram is called a stump. Regressograms with a tree 
representation are discussed in Section 5.5.1. 

Algorithm for Stagewise Additive Modeling with the Squared Error Contrast Func-
tion The squared error contrast function is 7 ( y , f ( x ) ) = (y - f(x))2. For this 
contrast function we can write the algorithm for forward stagewise additive estima-
tion in the following way. 

1. Initialize /o = 0. 

2. For m = 1 to M: 

(a) Calculate the residuals ri = Yi — i — 1 , . . . , n. 

(b) Let (wm, 6m) = argmin^ 0 Y!i=i ( ~ w d { x i i e ) f • 

(c) Let fm(x) = fm-i(x) +wrng(x,9rn). 

3. Let the final estimate be f(x) = /M(^). 

Algorithm for Stagewise Additive Modeling with Nonparametric Base Learners We 
can generalize the previous algorithm so that at each step an arbitrary regression 
estimator is fitted to such regression data where the residual error is the response 
variable. This generalization allows to use kernel regression estimators in stagewise 
fitting. Instead of using empirical risk minimization to choose new additive com-
ponents we can use a kernel estimator. We assume to have a method for regression 
function estimation which produces an estimator g, based on regression data (Xi, r*), 
i = 1,... ,n, where r, g R and Xi e Rd. 

1. Initialize fo = 0. 

2. For rn = 1 to M: 

(a) Calculate the residuals n = Yi — i — 1 , . . . , n. 

(b) Find estimate <)m using the data (Xi, ri),i = 1 , . . . ,n. 

(C) Let fm = fm — l + 9m • 

3. The final estimator is / = fM = 9m. 

The above algorithm can be modified to obtain stagewise fitting of additive models. 
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5.4.2 Stagewise Fitting of Additive Models 

We have defined additive models in Section 4.2, where a backfitting algorithm was 
described. Algorithms in Section 5.4.1 lead to an estimate / which has the additive 
structure when the base learners are a function of one variable. We say that a 
regression function estimate / : R d R has the additive structure if it can be 
written as 

d 

f (x ) = J 2 f k ( x k ) , (5.13) 
k=l 

for some univariate functions fk ' R R. An example of a base learner depending 
only on one variable is a stump: a regressogram with a two-set partition, when the 
partition is made by a split parallel to a coordinate axis. The difference from the 
additive estimate obtained by backfitting in Section 4.2 is that the additive components 
are obtained by adding new terms to the previous component, instead of replacing 
the previous component. We write a further algorithm to construct an estimator with 
the additive structure. 

Algorithm for Stagewise Additive Modeling with Univariate Base Learners The next 
algorithm was proposed by Biihlmann & Yu (2003), who used univariate smoothing 
splines as base learners. We can use also a one-dimensional kernel estimators as base 
learners. 

1. Initialize /o = 0. 

2. For m = 1 to M: 

(a) Compute the residuals ri = Y i ~ f m - i ( X i ) , i = 1 , . . . , n. 

(b) Calculate one-dimensional kernel estimators gin , k = us-
ing regression data i = 1 where we write Xi = 
(Xn,..., Xid). 

(c) Define dm = a r g m i n ^ d YJi=i (ri -tfm^ifc)) . 

(d) Define = 

( e ) L e t fTn = frn—l + 

3. The final estimator is / = fM = I 9m-

It is useful to implement the algorithm in such a way that when we run the M 
steps of the algorithm we save the sequence d\,..., dM of the variable indexes, and 
save the sequence . . . , of the residual vectors of length n. We get as a 
byproduct the evaluations of the estimator at the observations Xi,..., Xn. 

Now we can get the evaluation at an arbitrary point x £ Hd. First we obtain 
the points xj and the sequences Z = (Xx j ,..., Xn ^ ), for m = 1 , . . . , M. 
Then we evaluate the kernel estimator at the point x^, when the kernel estimators is 

constructed using regression , n. Finally we sum those 
evaluations over m = 1 , . . . , M. 
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5.4.3 Projection Pursuit Regression 

The projection pursuit regression finds an estimate of the form 

M 

f(x) = Y , hmtf'mX), x e (5.14) 
777 = 1 

where : R —» R are univariate functions and G R d are projection vectors with 
||0m|| = 1. Functions x hrn(9

f
mx) are called ridge functions. The algorithms of 

stagewise additive modeling of Section 5.4.1 can be applied and modified to construct 
projection pursuit estimators. In these algorithms, new terms h7n(9

f
mx) are added in 

a forward stagewise manner. General projection pursuit dates back to Friedman & 
Tukey (1974), and projection pursuit regression was studied in Friedman & Stuetzle 
(1981). 

The estimator of the type (5.14) can be considered as a generalization of single-
index modeling, discussed in Section 4.1. In a single-index model the estimator is 
f(x) = g(6'x), but now we have a sum of such of functions. The estimator of the 
type (5.14) can also be considered as a generalization of an estimator of the additive 
structure as in (5.13). Indeed, we can write an estimator with the additive structure 
as 

d 
f(x) = J2fk(e'kx), xeRd, 

k=1 
where G R d is the vector whose kth component is one, and the other components 
are zero. Vectors e^ project to the coordinate axes. The estimator of the projection 
pursuit type (5.14) is obtained when the vectors e^ are replaced by arbitrary projection 
vectors and it is allowed to include more (or less) than d terms to the sum. 

Algorithm for Projection Pursuit Regression The algorithm is similar to the stage-
wise additive modeling algorithms of Section 5.4.1. 

1. Initialize /o = 0. 

2. For m = 1 to M: 

(a) Compute the residuals n — Yi — fm-i(Xi), i — 1 , . . . , n. 

(b) Estimate 6m using single-index estimation and regression data (Xi, r^), 
i = 1 , . . . , n. 

(c) Let = 0f
mXi and calculate one dimensional regression function hm 

using regression data (Z^, r j , i = 1 , . . . , n. 

(d) Define gm(x) = hm(0'mx). 

(e) Let fm = / m _ i + <?m. 

3. The final estimator is 
M M 

f(x) = fM(x) =^2gm(x)=Y^ hm(0f
mx). 

7 7 1 = 1 7 7 7 = 1 
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(a) (b) 

Figure 5.8 Projection pursuit estimates. Shown are projection pursuit estimates for step 

numbers (a) M = 1 and (b) M = 2. 

The algorithm uses single-index estimation at each stage to estimate the projec-
tion vectors 0m . Several methods to estimate were presented in Section 4.1.2: 
minimization estimators, derivative, and average derivative estimators. The algo-
rithm uses univariate regression at each stage, and we can choose kernel regression 
estimator, for example. 

It is useful to implement the algorithm in such a way that during the execution 
of the M steps of the algorithm we save the sequence 6\,..., 6 M of the projection 
vectors, and save the sequence r^,..., of the residual vectors of length n. We 
get as a byproduct the evaluations of the estimator at the observations X\,..., Xn. 

Now we can get the evaluation at an arbitrary point x G Hd. First we calculate the 
points 0'mx and calculate the vectors Z = X# m of length n, for m = 1 , . . . , M, 
where X is the n x d matrix of the observed values of the explanatory variables. 
Then we evaluate the kernel estimators at the points 6'mx, when the kernel estimators 
are constructed using regression data (Z-m\ i = 1 , . . . , n. Finally we sum 
the evaluations over m = 1 , . . . , M. 

Figure 5.8 shows projection pursuit estimates for step numbers M — 1 and M = 2. 
The regression function is the standard two-dimensional normal density function. The 
vector of explanatory variables X — (X\, X2) has the standard normal distribution, 
and Y = f (X) + e, where e ~ 7V(0,0.12). We have n = 1000 observations. We 
use the projection pursuit regression, where the derivative method as in (4.8) is used 
to find the direction vectors. In the derivative method it is useful to choose the 
point where the derivative is estimated randomly from the observed values of the 
explanatory variables. For M = 1 the estimate has the single-index structure, but for 
M = 2 the estimate is already close to a spherically symmetric function. 
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5.5 ADAPTIVE REGRESSOGRAMS 

A regressogram is a piecewise constant regression function estimate, defined as in 
Section 3.1. A regressogram is constructed by first finding a partition in the space of 
the explanatory variables, and then the value of the estimate is taken to be the mean of 
the y-values in each set of the partition. Adaptive regressograms are regressograms 
where the partition of the space of explanatory variables is chosen empirically. We 
consider mainly partitions that are found by a recursive partition scheme. 

Let (Xi, Y i ) , . . . , (Xn, Yn) be identically distributed regression data. A regres-
sogram is 

where V is a partition of Hd and is the average of the response variables whose 
corresponding explanatory variable is in R: 

We consider in Section 5.5.1 greedy regressograms, which are such that the parti-
tion of the space of explanatory variables is found by a myopic stepwise algorithm, 
where the space is splitted recursively to finer sets. We cover two estimation prob-
lems: the local estimation problem, where we find the estimate of the regression 
function at one point, and the global estimation problem, where we find the estimate 
at all points simultaneously. The recursive splitting method is the same both in local 
and global problems, but the stopping rule for the splitting is typically different. Thus 
the collection of all local estimates leads typically to an estimate different from the 
global estimate. 

Section 5.5.2 describes the CART method. The CART method starts with a 
construction of a greedy regressogram but the final choice of the partition is made 
from a sequence of pruned subtrees. Section 5.5.3 describes the dyadic CART 
method. In this method the choice of the partition is made from a deterministically 
defined sequence of partitions. Section 5.5.4 describes bootstrap aggregation. 

5.5.1 Greedy Regressograms 

A greedy partition is a partition of the space of the explanatory variables which 
is found by a stepwise algorithm, which recursively splits the space to finer sets. 
This algorithm is called greedy, or stepwise, because we do not try to find a global 
minimum for the optimization problem but find the optimizer one step at a time. 
Morgan & Sonquist (1963) presented this type of algorithm, although they did not 
restrict themselves to binary splits but allowed a large number of splits to be made 
simultaneously. 

First we define the split points over which we search the best splits. The splits are 
made parallel to the coordinate axes, and thus we have to define a grid of possible 

(5.15) 
Rev 

(5.16) 
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split points for each direction. Let us denote the sets of possible split points by 

(5.17) 

where Qk C R is a finite grid of split points in direction k. A natural possibility for 
choosing Qk is to take it to be the collection of the midpoints of the coordinates of 
the observations: Qk = \Z\,..., k = 1 , . . . , d, where is the midpoint of 

H ) andXf i + 1 ): 
rvk ^ ( \rk I \rk \ 

- 2 \ (*) 0+1)) ' 

where . . . , X^ is the order statistic of the kth coordinate of the observations 
Xi,..., Xn. This choice of possible split points guarantees that all the cells, even at 
the finest resolution level, contain observations. 

When rectangle R C Hd is splitted through the point s G R in direction k = 
1 , . . . , d, then we obtain sets 

R k l = ^ ^ x d ) e R : x k < s } (5.18) 

and 
Rkl = • ••,xd)eR:xk>s}. (5.19) 

The split point s satisfies 

seSRtk=
f gknprojk(R), (5.20) 

where proj/e(i?) = RK, when R = RI x • • • x RD. 

Pointwise Estimator Now we consider the case of estimating the regression 
function only at one point x G R d . We want to find a rectangle Rx c R d such that 
x G Rx and use estimate 

m = rRx, 

where YRX is defined in (5.16). The neighborhood RX is chosen as one of the 
rectangles in the sequence of rectangles found by the following procedure. 

• Start with the whole space and make splits as long as the obtained rectangle 
contains a sufficient number of observations. 

• Split at each step the rectangle so that the empirical risk of the corresponding 
regressogram is minimized. The empirical risk is the sum of squared residuals 
of the regressogram. 

• At each step the minimization is done over all directions and over all split 
points in the given direction. 

We describe the splitting procedure more precisely in the next definition. The 
splitting is restricted so that we do not split rectangles which contain less observations 
than a given minimal number m of observations. 
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Let us define a sequence of greedy neighborhoods D RQ D R\ D • • • D RM , 
with the minimal observation number m > 1. The sequence is defined recursively 
by the following rules. Start with set Ro = R d . Assume that we have found sets 
Ro , . . . , where L > 0. 

1. If #{XI G RL} < M, then we choose M = L and stop splitting. 

2. If E RL} > M, then we split RL in the following way. Let 

! r l = s ) : fc = 1 , . . . , d, 5 G S R L , k } , 

where is the set of split points defined in (5.20). We construct new sets 

R ^ and where we use the notation defined in (5.18) and (5.19), and 

k,s k,s 

( m ) = argmin{k s)elRLERR(RL,k,s), (5.21) 

where 
E R R O R , M ) = J Z ( y < " ^ L ° i ) 2 + (5-22) 

and YR is defined in (5.16). Finally, the new set is chosen as RL+I = RF if 

x G R^L and as RL+I — R?~L otherwise. 
k,s k,s 

The greedy pointwise regressogram is defined for x G Hd by choosing a greedy 
neighborhood 

RX £ {^O, • • •, RM}, 

where R o , . . . , RM is a sequence of greedy neighborhoods. The greedy regressogram 
is defined as 

Global Estimator Now we consider the case of estimating the regression function 
globally at every point x G Hd. We want to find a partition V of Hd and use the 
regressogram f(x, V). A greedy partition V is one of the partitions in the sequence 
of partitions found by the following procedure. 

• Start with the partition {R d} and split the rectangles of the partition as long as 
some rectangle contains a sufficient number of observations. 

• Make splits so that the empirical risk of the corresponding regressogram is 
minimized. The minimization is done over all rectangles in the current parti-
tion, over all directions, and over all split points in the given rectangle and in 
the given direction. 
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We describe the procedure more precisely in the following. We restrict the growing 
of the partition so that we do not split rectangles which contain less observations than 
a given threshold. The partition is grown by minimizing an empirical risk of the 
estimator, which is typically defined as the sum of the squared errors of the estimator 
/ . We say that partition V is grown if it is replaced by partition 

V R , k , . = V \ { R } u { R ™ , R ™ } , (5.23) 

where rectangle R G V is splitted in direction k = 1 , . . . ,d through the point 
s G SR}FC. 

A sequence of greedy partitions V\,..., VM, with minimal observation number 
m > 1, is defined recursively by the following rules. Start with the partition 
V\ = {#}, where R = HD. Assume that we have constructed partitions V \ , V L , 
where L > 1. 

1. If all R G VL satisfy #{XI G R} < ra, then partition VL is the final partition. 

2. Otherwise, we construct next partition V^ ^ g, where 

n 2 

(R, k, s ) = a r g m i n ( i ? M e J ^ - f ( X u VR^S)) , (5.24) 
i=1 

where 

I = {{R,k,s)'.REVL, #{XIER}>M, fc = l , . . . , d , 5 G SR,K}, 

SR jk is the set of split points defined in (5.20), VR,k,s is the partition defined 

in (5.23), and f(-,P) is the regressogram defined in (3.4). 

Let 

be a greedy partition, where V\,..., VM is a sequence of greedy partitions. The 
greedy regressogram is defined by 

/ = / ( • ,£ ) , 

where / is defined in (3.4). We can use sample splitting to find a good partition V and 
thus a good regressogram. Let n* = [n/2] and use the data (Xi, Yi),i — 1 , . . . , n*, 
to construct the sequence V\,..., VM and the corresponding sequence of estimators 
fi, •••, /M • Then we calculate for each estimate the sum of squared residuals using 
the second part of the data: 

n 2 

SSRm = J2 ('yi-fm(Xi)) , TO = 1, . . . , M. 
i=n*+1 

The final estimate is where ra = argminm = 1 M S S R m . 



2 6 8 EMPIRICAL RISK MINIMIZATION 

5.5.2 CART 

The CART (classification and regression tress) procedure was introduced in Breiman 
et al. (1984). In Section 5.5.1 a sequence of partitions was constructed in a stepwise 
manner and then one partition was selected from this sequence, using sample splitting. 
CART constructs the sequence of partitions in a different way. First a fine partition 
is grown with stepwise optimization and then the sequence of partitions is found by 
a complexity penalized pruning. The new way of constructing the sequence opens 
up the possibility for using cross validation to choose the final partition, instead of 
sample splitting. Also, the complexity penalized pruning may increase the quality of 
partitions in the sequence. In contrast to dyadic CART, the large partition V* is now 
data-dependent. Otherwise the final estimate is obtained analogously as in dyadic 
CART, by minimizing a complexity penalized sum of squared residuals. The CART 
sequence is found by the following steps. 

1. Choose a large partition P*. This partition is the largest partition VM from the 
sequence of greedy partitions defined in Section 5.5.1 for the global estimator. 

2. For a > 0, let 

r 2 

Va argminpc7>* ^(Yi-fiXiiVj) +a-#V 
.i=i 

(5.25) 

where / denotes a regressogram as defined in (3.4). For a = 0 we have 
Va — V*, and for large enough a we obtain Va = Since there 
are a finite number of subsets of V*, there are a finite number of values 
0 = A\ < • • • < OLM such that 

VOL = Von, when ai < a < ai+1, (5.26) 

for i = 1 , . . . , M, and we denote = oo. Now Vai = V* and VaM = 
{R">. 

A sequence of CART partitions 

V\ •,•''•) Vm (5.27) 

is defined, with an abuse of notation, by Vi — Vai, i = 1 , . . . , M, where a\,..., OLM 
is defined by (5.26). 

We can use cross validation to find a good partition and thus a good regressogram. 
In the case of greedy partitions we had to use sample splitting, that is, twofold 
cross validation, but in the case of CART partitions the penalization parameter a can 
be used to connect different partitions and we can use if-fold cross validation for 
2 < K < n. Let us denote by i i , . . . , IK a partition of the index set {1 , . . . , n}, 
where 2 < K < n. For example, we can partition observations into K = 10 subsets 
(ten-fold cross validation). We can partition the observations at most to n subsets and 
at least to two subsets. Observations (Xi, Yi),i £ Ik, are used to construct sequence 
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fai,fc' • • • > f*Mk,k> where < ' " < aMk,k, k = 1 , . . . , K. For each estimate 
in the sequence we calculate the average of squared residuals (ASR) using (Xi, Yi), 
i e lk: 

and a grid 
G Am and 

The final estimate is fajh, where m = argminm=1 MASRam. 
We need two algorithms to find the sequence V\,..., VM • a growing algorithm 

for growing the large partition V* and a pruning algorithm for producing the sequence 
from this large partition. Both algorithms use the fact that the partitions which we 
consider can be represented as binary trees, where the rectangles of the partition are 
the nodes of the tree. The representation as a binary tree follows from the stepwise 
splitting procedure. We take the whole space to be the root of the tree. After that, 
when a node (a rectangle) is splitted, the two obtained rectangles are taken to be the 
child nodes of the splitted node. 

We choose P* as the largest partition VM from the sequence of greedy partitions 
defined in Section 5.5.1 for the global estimator. We can now use a faster algorithm 
to obtain V* than the algorithm described in Section 5.5.1, since this algorithm uses 
unnecessary time to optimize the order in which the partition is grown, and we are 
interested only in the final partition and not in the intermediate partitions. Thus we 
can use an algorithm based on the following recursion. Let the minimal observation 
number be ra > 1. 

1. Start with the partition V = The rectangle is taken to be the root 
node of the initial binary tree. 

2. Assume that we have constructed partition V. This partition is interpreted as a 
binary tree. 

(a) If all child nodes R G V satisfy #{XI G R} < ra, then we finish the 
splitting. 

(b) Otherwise, choose a child node R G Pwith G R} > ra. Construct 
new partition VR ^ where 

n 2 

(k, s) = argmin ( M ) e / R (V; - / ( X ^ P / i . m ) ) , 
i=i 

where IR = {(k,S) : k = 1 , . . . , d, s G SR^}, SR^ is the set of 
split points defined in (5.20), VR^,S is the partition defined in (5.23), and 

ASRj,k = —J2(Yi- faj,k (Xi)) , j = 1,..., Mfc) fc = 1 
ieh 

Finally we use the complete data to find a sequence / Q i , . . . , / Q m 

a \ , . . . , QM- We make a partition of (0, oo) — U r ^ 1 A r n , where a m 

estimate 

( I . K ) : AL. G A™ \ 
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/(•, V) is the regressogram defined in (3.4). Partition VR ^ s is interpreted 

as a binary tree, where rectangle R^ is the left child node of node R 

and rectangle R ^ is the right child node of node R, where we use the 

notation of (5.23). 

After growing the large partition V* we need an algorithm to find the CART 
sequence of (5.27). To solve for a given a the complexity penalized minimization 
problem (5.25), we can use a dynamic programming algorithm which starts at the 
leaves of the binary tree T* corresponding to V*. If t is a node of T*, denote the 
sum of squared residuals associated with this node by 

ssr(t) = £ ( Y i - Y a , ) 2 , 
i-.XiERt 

where Rt is the rectangle associated with node t. Denote with Q(t) the sum of ssr(t') 
over the leafs t' of the subtree Tt whose root is t. Starting at the leaf nodes, we 
compare at each node t whether 

Q(t) + a • #Tt < ssr(t) + a, (5.28) 

where # T t is the number of leaves in the subtree Tt. If this holds, then the subtree 
whose root is t should be kept, because the complexity penalized error is smaller than 
obtained by making t a leaf node. Otherwise, the tree is pruned at node £, and t is 
made a leaf node. The value Q(t) can be calculated during the pruning process. 

To extend this idea to find the complete CART sequence and the corresponding 
values a i , . . . , OLM, note that we have for every nonterminal node t of T* that 
Q(t) < ssr(t). As long as (5.28) holds, branch Tt has a smaller error-complexity 
than the single node {t}; but at some critical value of a, the two error-complexities 
become equal. At this point the subbranch {t} is smaller than Tt, has the same 
error-complexity, and is therefore preferable. To find this a, solve (5.28) to get 

ssr(t) - Q(t) 
a < I U 1 - 1 • 

The algorithm is based on finding the "weakest links," which are the nodes minimizing 

» < . ) - ( ' i s 7 V e a f
7 ! n r " <5.29, 

I oo, £ is a leaf in T^, 

k = 1 , . . . Let t\ = argmintGT ^o = T*. Then t\ is the root node 
and a i = go(t\) = 0. Let T\ be the subtree of T* obtained by making t\ a leaf 
node. We continue in this way: tk = argmin t € T f c_ i^-i(^) a n d ak — gk-i{tk) f° r 

k — 1 , . . . , M.49 We get a sequence where a\ — 0, and for a^ < a < a^+i the 

49If at any stage there is a multiplicity of weakest links- for example, g k - i (tk) = i Ĉ /c)—then define 
Tk = Tk-1 - Ttk - T t /_ . 
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Figure 5.9 A CART estimate in volatility prediction. A tree plot of a CART estimate when 

the response variable is the squared S&P 500 return and there are two explanatory variables. 

corresponding partition Vak is the collection of rectangles associated with the leaf 
nodes of tree 

We illustrate CART estimator with a two-dimensional volatility prediction esti-
mator. Let us define 

(t-1 t-kx-l \ 

y Rh y Ri h i=t — k\ i=t — k\ -k-2 / 

where Rt is the net S&P 500 return and k\ = k2 = 5. We make the copula transform 
to the standard Gaussian margins of the data Xt. The S&P 500 data are described in 
Section 1.6.1. 

Figure 5.9 shows a CART estimate based on the regression data (Xt, Yt)-50 The 
estimate has made splits only with respect X\. The numbers below the terminal 
nodes show the value of the estimate and the number of observations occurring 
in that terminal node. Figure 3.25 shows a perspective plot of the kernel density 
estimate, defined in (3.86), for the same regression data. 

5.5.3 Dyadic CART 

Dyadic CART was introduced in Donoho (1997), in the two-dimensional case d = 2, 
for the fixed equidistant design. Let / : [0, l]2 —» R and 

Y i = f ( i ) + < T e i , (5.30) 

50We have used function "tree" from R-package "tree." For drawing we have used function "draw.tree" 
from R-package "maptree." 
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where i = (21,22) are fixed equispaced design points, ii,i2 = 0, . . . , r a — 1, 
m is dyadic (an integral power of 2), j ( i ) is the cell average over the cell Cf. 
f(i) = fc / /volume(Q), with Ci = [h/m, (i\ + 1 )/ra) x [12/m, (12 + l ) /m) . 
Furthermore, e* are identically distributed with mean zero and unit variance, and 
a > 0. The number of observations is n = m2 . 

Dyadic CART can be defined in two steps. 

1. Let V* be the largest possible dyadic partition. A dyadic partition is a partition 
that is obtained by midpoint splits of [0, l]2. When the side length of a rectangle 
is m~1 , then this side is not allowed to be split. Thus the largest dyadic partition 
consists of the rectangles with volume m~2 . 

2. Let Va be the partition of [0, l]2 that minimizes 

among all dyadic subpartitions of 7^*, where X{ is the midpoint of cell Ci, 
/(•, V) is the regressogram with partition V, a > 0 and is the cardinality 
of partition V. Define the dyadic CART estimator by 

Donoho (1997) proposes an algorithm with 0(n) steps for the calculation of the opti-
mal partition, where n — m2 is the number of observations. The dyadic CART esti-
mator has the optimal convergence rate in anisotropic Nikolskii smoothness classes, 
as proved in Donoho (1997) when e* are independent and identically distributed Gaus-
sian random variables. A regression estimate for random design regression based on 
similar ideas than the Dyadic CART estimate but using piecewise polynomials was 
analyzed for univariate data in Kohler (1999). 

5.5.4 Bootstrap Aggregation 

Adaptive regressograms (greedy and CART regressograms) give piecewise constant 
estimates of low granularity. It is possible to increase the granularity of these 
estimates by bootstrap aggregation. In bootstrap aggregation B bootstrap samples 
are generated from the original sample (Xi, Y i ) , . . . , (Xn , Yn). For example, we 
can use one of the following methods. 

1. In n-out-of-n with replacement bootstrap we take B bootstrap samples of size 
n with replacement from the original sample (Xi, Y i ) , . . . , (Xn, Yn). Some 
observations may appear more than once in the bootstrap sample and some 
observations may be missing. 

2. In n/2-out-of-n without replacement bootstrap we take B bootstrap samples 
of size [n/2] without replacement. Every observation appears at most once in 
the bootstrap sample. 

m 

i\,i2 = l 

fnipc) — fn{x,Voi)' 
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We call the following procedure the bootstrap aggregation. 

1. Generate B bootstrap samples from the original sample. 

2. Calculate adaptive regressogram f j , j = 1 , . . . , B, based on each bootstrap 
sample. We may choose the adaptive regressograms to be greedy regresso-
grams defined in Section 5.5.1 or CART regressograms defined in Section 5.5.2. 

3. Define the regression function estimator / as the arithmetic mean of the esti-
mators f j : 

1 B 

3 =1 

The original proposal was made in in Breiman (1996), where n-out-of-n with 
replacement bootstrap was suggested. Breiman (2001) considers a class of procedures 
which includes (a) random split selection from the set of best splits and (b) a random 
perturbation of observations. Bootstrap aggregation has been interpreted as a method 
of decreasing variance of an unstable estimator, like an adaptive regressogram. 





PART II 

VISUALIZATION 





CHAPTER 6 

VISUALIZATION OF DATA 

Section 6.1 discusses scatter plots. Scatter plots are a natural way to visualize 
two-dimensional data. Scatter plots can be used in the one-dimensional, three-
dimensional, and higher-dimensional cases by transforming data to a two-dimensional 
data. 

Section 6.2 illustrates the use of kernel and histogram estimates to visualize one-
dimensional data. Kernel and histogram estimates are based on smoothing, and they 
do not visualize the raw data like one-dimensional scatter plots. In fact, smoothing 
is useful also in drawing of the two-dimensional scatter plots when the number of 
observations is large. 

Section 6.3 defines projection pursuit and multidimensional scaling. Both of these 
methods can be seen as methods of reducing the dimension of the data. Projection 
pursuit searches for an optimal linear projection. Multidimensional scaling searches 
for a such configuration of the data in two dimension that the distances of the data 
points are equal to the original distances. 

Section 6.4 introduces graphical matrices, parallel coordinate plots, Andrews' 
curves, and faces. All of these visualization methods represent observations as 
graphical objects. In the case of graphical matrices the data matrix is represented 
as a matrix of graphical objects. In the case of parallel coordinate plots the obser-

Multivariate Nonparametric Regression and Visualization. By Jussi Klemela 
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vations are represented as piecewise linear functions. Andrews' curves represent 
the observations as functions and faces represent observations as schematical human 
faces. 

6.1 SCATTER PLOTS 

We define first two-dimensional scatter plots and only after that we define one-
dimensional scatter plots. We use this order of definition because two-dimensional 
scatter plots are easier to define and interpret than one-dimensional scatter plots. 
Also, there is not an established way to define one-dimensional scatter plots, and we 
give two useful definitions: tail plots and QQ plots. 

6.1.1 Two-Dimensional Scatter Plots 

A two-dimensional scatter a plot is plot of a two-dimensional point cloud {^I , . . . ,xn} C 
R 2 in the Cartesian coordinate system. We have shown several scatter plots; see, for 
example, Figure 1.1(a) and Figure 1.4(b). 

When the sample size is large, then the scatter plot is mostly black, so the visuality 
of density of the points in different regions is obscured. In this case it is possible to 
use smoothing to visualize the density. 

Figure 6.1 shows scatter plots of the data (Xt, Yt), where 

Xt=loge\Rt-1\, Yt=\oge\Rtl 

and Rt = (St — St- I )/St-I are the daily net returns of the S&P 500 index. The data 
are introduced in Section 1.6.1. There are more than 15,000 observations. Panel (a) 
shows a scatter plot. Panel (b) shows a histogram with 80 bins. The bins are colored 
with a gray scale.51 Histogram is defined in (3.49). See Carr, Littlefield, Nicholson 
& Littlefield (1987) for a study of histogram plotting. 

6.1.2 One-Dimensional Scatter Plots 

Let x\,... ,xn G R be a sequence of real numbers which we want to visulize. 
One-dimensional scatter plots are two-dimensional scatter plots of the points 

( x i , l e v e l ( x i ) ) , i = 1 , . . . , n , ( 6 . 1 ) 

where level : { x i , . . . , x n } R is a mapping that attaches a real value to each 
data point. Thus, a one-dimensional scatter plot visualuzes data by lifting each 
observation in a suitable way. 

5'First we have took square roots f i = yjni of the bin counts ni and then we have defined gi = 
1 — ( f i — m i n i ( f i ) + 0 .5) / (maxi( / i ) — mirij(/i) + 0.5). Now gi E [0,1]. Values gi close to one 
are shown in light gray, and values gi close to zero are shown in dark gray. 
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Left and Right Tail Plots Left and right tail plots can be used to visualize the 
heaviness of the tails of the underlying distribution. Left and right tail plots of 
GARCH(1,1) and EWMA residuals were shown in Figure 3.11 and in Figure 3.18. 

We divide the data into the left tail and the right tail, and we visualize separately 
the two tails. The right tail is 

1Z = {xi : Xi > medn, i = 1 , . . . , n}, 

where medn = median(^i,. . . , x n ) is the sample median, defined in (1.10). We 
choose the level 

l e v e l ( ^ i ) = : Xj > Xi,Xj G 7Z}, Xi G 1Z. 

The level of Xi is the number of observations larger or equal to X{. Thus, the largest 
observation has level one, the second largest observation has level 2, and so on. The 
right tail plot is the two-dimensional scatter plot of the points (xi, level(x^)), xi G 1Z. 
A right tail plot visualizes the heaviness of the right tail. The left tail is 

C = {xi : Xi < medn, i = 1 , . . . , n}. 

For the left tail plot we choose the level 

level(x^) = #{xj : Xj < Xi,Xj G £}, Xi G C. 

Thus, the smallest observation has level one, the second smallest observation has 
level two, and so on. It is useful to use a logarithmic axis for the y-axis in both right 
and left tail plots. Tail plots have been applied in Mandelbrot (1963), Bouchaud & 
Potters (2003), and Sornette (2003). 

Figure 6.2 shows tail plots of S&P 500 returns and of utility transformed S&P 
500 returns. The S&P 500 index data are described in Section 1.6.1. Panel (a) 

Figure 6.1 Scatter plots. (a) A two dimensional scatter plot. (b) A gray scale histogram.
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Figure 6.2 Left and right tail plots, (a) Left tail plots of the utility transformed S&P 500 
returns, and (b) right tail plots of the utility transformed S&P 500 returns. The data are the S&P 

500 returns: net returns (black), logarithmic returns (red), and the power utility transformed 

returns with risk aversion 7 = 10 (blue). 

shows left tail plots and panel (b) shows right tail plots, The black points show the 
net returns Xt = (St — St-i)/St-i. The red points show the logarithmic returns 
Yt = \og(St/St-i). The blue points show the power utility transformed returns 
Zt — (St/St-i)1-1 /(I — 7), where 7 = 10. The use of utility functions in portfolio 
selection is introduced in (1.95). We use a logarithmic scale for the y-axis. We do 
not show two outliers that are in the left tail plots (a red and a blue point). Note that 
the left tail for blue points is heavier than the left tail for black and red points, but for 
the right tail the relation reverses. 

QQ Plots A QQ plot is a way to compare the heaviness of tails of two distributions. 
QQ plots are called also quantile plots or quantile-quantile plots. QQ plots of 
GARCH(1,1) residuals were shown in Figure 3.12. 

A QQ plot of data x\, 
of the points 

G R and data y\,..., yn G R is a 2D scatter plot 

(x{i),y{i)), i = l , . . . , n , 

where x ^ < • • • < #(n) and y ^ < • • • < y^n) are the ordered samples. A QQ plot is 
a special case of a ID scatter plot as defined in (6.1). In a QQ plot level(x(^) = y ^ . 

The empirical distribution function Fx of data x\,..., xn was defined in (1.25). 
As noted in (1.27), it holds that 

F~l(p) =inf{t eH:Fx(t) > p} 

0 < p < 1/n, 
x (2), 1/n < p < 2/n, 
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Figure 6.3 QQ plots, (a) The ^-observations are the net returns and the ^/-observations are 

the logarithmic returns, (b) The x-observations are the net returns and the y observations are 

the power utility transformed returns with risk aversion 7 = 10. The graph of line y = x is 

shown as red. 

so that the QQ plot is a plot of the points 

( i ^ p O ^ t e ) ) , i = 1 , . . . , n, 

where pi — (i — 1 /2 ) /n and Fy is the empirical distribution function of data 
..., yn. We can define more generally a QQ plot of data x i , . . . , x n G R, 

associated with a reference distribution function F : R —>> [0,1], as a 2D scatter plot 
of the points 

(x{i),F-l(<pi)) , i = l,...,n. 

The general version of a QQ plot is a special case of a ID scatter plot as defined in 
(6.1), and now level(x(i)) = F~1(pi). 

Figure 6.3 shows QQ plots of S&P 500 returns and utility transformed S&P 500 
returns. We continue with the data shown in Figure 6.2. The S&P 500 index data 
is described in Section 1.6.1. Panel (a) shows a QQ plot where x-observations are 
the net returns and the ^-observations are the logarithmic returns. Panel (b) shows 
a QQ plot where x-observations are again the net returns and the y observations 
are the power utility transformed returns with risk aversion 7 = 10. The graph of 
the line y — x {x\ — x2) is also included in the plots. We see that the points in 
both QQ plots are below the red line y = x. This means that in both cases the left 
tail of ^/-observations is heavier than the left tail of x-observations and the right tail 
of ^/-observations is lighter than the right tail of the x-observations. One outlier is 
removed from the left tail in panel (b). 
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6.1.3 Three- and Higher-Dimensional Scatter Plots 

If the dimension d of data x\,...,xn G H d is three or higher, we can project 
data to two dimensions and then apply two-dimensional scatter plots. A projection 
g : R d —>> R 2 can be defined by g(x) = Ax, where A is a 2 x d matrix satisfying 
AA! = I2. 

A projection can be constructed by first making a rotation ( x i i - > > 
( y i , . . . , 2 / r f ) of the data and then projecting (yu ..., yd) (2/1,2/2). Rotation 
matrices are orthogonal with determinant 1. All two-dimensional rotation matrices 
are given by 

cos 0 —sin 0 
sin 0 cos 0 

All three dimensional rotation matrices are given by R = Rx{0i)Ry(02)Rz{0z), 
where 

RX(0) 

1 0 0 
0 cos 0 — sin 0 
0 sin 0 cos 0 

, Ry(0) 

cos 0 0 sin 0 
0 1 0 

- sin 0 0 cos 0 

and 

Rz(0) = 
cos 0 — sin 0 0 
sin 0 cos 0 0 

0 0 1 

After projecting data to two dimensions, we can use histogram smoothing as in 
Figure 6.1. This amounts to estimating a two-dimensional marginal density. 

A second possibility is to estimate a high-dimensional regular histogram as defined 
in (3.49). Then we make a data set from the histogram by considering the center 
points of the bins to be the new data points. The new data set can be projected to two 
dimensions. Each new data point is associated with a bin count. However, we cannot 
make a histogram plot of the new data set as in Figure 6.1, where the dimension of 
the data was originally two. The two-dimensional data set obtained from a projection 
of high-dimensional bn counts is such that many data points are masked by other 
data points. Thus we have to plot the new data in such a way that the points in the 
foreground mask the points in the background, and not conversely. 

Figure 6.4 shows scatter plots of the data (Xu Yt,Zt), where 

Xt = loge \Rt-2\1 Yt = loge Zt =\oge\Rtl 

and Rt = (St — St-i)/St-i are the daily net returns of the S&P 500 index. The 
data are introduced in Section 1.6.1. There are more than 15,000 observations. We 
calculate a three-dimensional histogram with 803 = 512,000 bins. There are 11 
810 nonempty bins, and this is the number of new observations. Panel (a) shows 
the rotation Rx{0i)Ry(02)R(0?>), where 0X = 02 = TT and 03 = 0, followed by the 
projection (x, 2/, z) (x, y). Panel (b) shows the slice where only 6000 observations 
in the background are shown. Now we can see high-density regions in the center of 
the point cloud. 
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Figure 6.4 3D scatter plot, (a) A gray scale 3D histogram projected to two dimensions, (b) 

A slice where the observations in the background are shown. 

6.2 HISTOGRAM AND KERNEL DENSITY ESTIMATOR 

Histograms and kernel density estimates are a useful way to visualize one-dimensional 
data, as an alternative to one-dimensional scatter plots discussed in Section 6.1.2. 
One-dimensional scatter plots, like tail plots and QQ plots, are useful to visualize the 
tails of the distribution, but they are not good in visualizing multimodality appearing 
in the central areas of the distribution. The kernel density estimator is defined in 
(3.39). The histogram is defined in (3.49). 

Figure 6.5 shows a sequence of kernel density estimates. The data consist of 
portfolio returns. Let 

X[b) = bRh
t
ond + (1 - b)Rs

t
p500, 

where Rb
t
ond is the U.S. Treasury 10-year bond monthly return, Rs

t
p500 is the S&P 

500 monthly return, and b G [0,1] is the weight of the bond in the portfolio. The 
returns are annualized. We have monthly data during the period 1953-05-2011-12, 
which makes 704 observations.52 We use smoothing parameter h = 0.08 and the 
standard normal kernel in the kernel density estimator. The weight b of the bond is 
in the range b = 0 ,0 .2 , . . . ,1 . We see that for small b the distribution has larger 
variance (the density estimate is is more flat). For large b the density estimates are 
more peaked: the distribution has smaller variance. 

Figure 6.6 shows a histogram which is calculated from the pay-offs of a call option. 
For these data it is more natural to use a histogram instead of a kernel density estimator, 
because the data come from a distribution which is not a continuous distribution and 

52The bond data are from the Federal Reserve Bank of St. Louis and the S&P 500 data are from Yahoo. The 
yields yt are transformd to annualized returns R^ond with the formula R^ond = 120(yt~i — yt) + yt-



284 VISUALIZATION OF DATA 

Figure 6.5 Kernel density estimates. We show kernel density estimates of the distribution 

of the portfolio returns when the weight b of the bond is in the range 6 = 0 , 0 . 2 , . . . , 1 and the 

weight of the S&P 500 is 1 - b. 

not a discrete distribution. The data are the monthly S&P 500 returns during 1953-
05-2011-12, Which makes 704 observations. An option strategy which buys at the 
beginning of each month a call option with the strike equal to the current price gives 
the pay-offs 

Xt = max{S t - St-i, 0}, 

where St is the value of S&P index at time t and the option premium is not taken 
into account. The histogram is not normalized to integrate to one: The y-axis shows 
the frequencies of the bins. The number of bins changes the histogram considerably. 
Panel (a) shows a histogram with 20 bins and panel (b) shows a histogram with 150 
bins. The number #{Xt = 0} of zero expirations is 288. With a small number of bins 
the first bin on the left does not give information of the number of zero expirations. 
When there are a large number of bins the frequency of first bin is close to the number 
of zero expirations but the rest of the distribution is not shown accurately. 

6.3 DIMENSION REDUCTION 

6.3.1 Projection Pursuit 

Projection pursuit tries to find interesting low-dimensional projections of high-
dimensional data by maximizing a projection index. In the theoretical version of 
projection pursuit we find a d x d projection matrix A that maximizes Q(A'X), 
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Figure 6.6 Histogram, (a) A histogram estimate of the call pay-offs when the number of 

bins is 20. (b) Number of bins is 150. 

where X G is a random vector and Q is a projection index. A projection matrix 
is a matrix A which is symmetric and idempotent: A! = A and A2 = A. 

We can proceed in the following sequential way. Let Q(Y) be a projection index, 
defined for univariate random variables Y. Let us find a projection vector a\ G R d 

maximizing the projection index: 

ai = argmaxa :, |a | |=1Q(a /X). 

For fc = 2 ; . . . , do, let afc G R d be a projection vector, perpendicular to a \ , . . . , ak- i 
maximizing the projection index: 

ak = aigmaxfl:||a||=lffl_Lai|..!ia_Lafc_1Q(a /X). 

We obtain column vectors a i , . . . , ad and define the projection matrix A = ( a i , . . . , a^). 
Huber (1985) defines the following projection indexes for one-dimensional ran-

dom variables Y. In all cases it can be shown that Q(Y) > 0 and Q(Y) = 0 if Y is 
normal. 

1. Cumulant Let 

Q{X) = | C m ( X ) | / C 2 ( X r / 2 , m > 2, 

where cm is the rath cumulant: 

1 dm 

= jZ Q^ log E exp{itX} m > 2, (6.2) 
t=o 

where i is the imaginary unit. For ra = 3 we obtain the absolute skewness and 
for ra = 4 the absolute kurtosis. 
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2. Fisher Information Let 

Q(X) = Var(X)/(X) - 1, 

where I(X) is the Fisher information 

nx) = r 
J — oo J X 

where f x is the density of X. 

3. Shannon Entropy Let 

Q(X) = -S(x) + log( s td (X)v / 2^ i ) , 

where S(X) is the Shannon entropy 

/

oo 

f x \ o g f x , -oo 

where f x is the density of X. 

We can also take the variance as a projection index: 

V(X) = Var(F). 

In this case, A is the matrix of the eigenvectors of the covariance matrix E = 
Cov(X) = E[(X - EX)(X - EX)'} of X. This leads to principl components 
analysis where the spectral representation, or the eigendecomposition, of E is 

E = AkA', 

where A is the d x d diagonal matrix of the eigenvalues of E and A is the orthogonal 
dx d matrix of the eigenvectors, or the principal components, of E. The columns of 
A are the eigenvectors. Principal component transformation is defined by 

A'(X -EX)eRd. (6.3) 

Huber (1985) gives a review of projection pursuit. The term "projection pursuit" 
was coined by Friedman & Tukey (1974). Further studies of projection pursuit 
include Cook, Buja & Cabrera (1993) and Cook, Buja, Cabrera & Hurley (1995). 

6.3.2 Multidimensional Scaling 

Multidimensional scaling makes a nonlinear mapping of data X\,..., Xn £ Rd 

to R 2 , or to any space H k with 2 < k < d. We can define the mapping Q : 
{Xi,..., Xn} —» R 2 of multidimensional scaling in two steps: 
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1. Reduce the information in the data by calculating the pairwise distances || Xi — 

XjWJ^i. 

2. Find a set Q ( * i ) , . . . , Q(Xn) e R 2 so that | | Q ( X i ) - Q(Xj) || = \\Xi - Xj || 
for i ^ j. 

We can use also some other distance than the Euclidean distance. In practice, we 
may not be able to find a mapping that preserves the distances exactly, but we find a 
mapping Q : {X\,..., Xn} R 2 so that the stress functional 

£ (llXj - Xj\\ - \\Q(Xi) - <2(X,)||)2 

1 <i<j<n 

is minimized. Sammon's mapping uses the stress functional 

(\\Xi - Xj\\ - WQ(Xi) - Q{Xj)\\)2 

£ — \\Xi-XiW 1 <i<j<n 11 1 311 

This stress functional emphasizes small distances. Numerical minimization is used 
to solve the minimization problems. 

Multidimensional scaling can be used to visualize correlations between different 
time series. Let Xi — ( x n , . . . , X{t) be the time series of returns of company i, where 
i = 1 , . . . , n. When we normalize the time series of returns so that the vector of 
returns has sample mean zero and sample variance one, then the Euclidean distance 
is equivalent to using the correlation distance. Indeed, let 

Xi Xi 
Vi = 

S (Xi) 

where Xi — T~l Ylt=i xa a n d s 2 ( x i ) = T~l J2t=i x f t ~ Now 

TfWyi-yjW2 = p(xi,xj)], 

where p(xi ,xj ) = 7(xi ,xj ) / [s(xi)s(xj) ] with 7(x i ,x j ) = ~ 
XiXj. Thus, we apply the multidimensional scaling for the norm 

1 1 T 

\\yi-yj\\l,T = t hi -yjW2 = ^ y i y a - y j t ) 2 , 
t=1 

which is obtained by dividing the Euclidean norm by VT. Since—1 < p(xi,xj) < 1, 
we have that 0 < \\yi — yj\\2,T < 2. Zero correlation gives \\yi — yj\\2,r = >/2, 
positive correlations give 0 < ||yi — yj\\2,T < and negative correlations give 
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Figure 6.7 Multidimensional scaling: Time series correlations. The distances between the 
DAX 30 companies shown in the scatter plots are inversely proportional to the correlations 
between the return time series. Panel (a) shows the period starting at 2003-01-02 and ending at 
2013-02-08, and panel (b) shows the period starting at 2010-12-01 and ending at 2011-11-22. 

We study the daily returns of DAX 30 companies during the period starting at 
2003-01-02 and ending at 2013-02-08. We have together 2568 observations. The 
data are obtained from Yahoo.53 

Figure 6.7 shows multidimensional scaling. Panel (a) shows the complete period 
starting at 2003-01-02 and ending at 2013-02-08. Panel (b) shows the period of about 
one year starting at 2010-12-01 and ending at 2011-11-22. We can see, for example, 
that the Volkswagen (VOW) is uncorrelated during the longer period, but for the 
one-year period it is highly correlated with BMW. Fresenius medical care (FME) and 
Fresenius (FRE) are highly correlated during the both time periods. 

6.4 OBSERVATIONS AS OBJECTS 

In a graphical matrix, each observation was represented with a graphical element 
of a matrix. In a parallel coordinate plot, each observation was represented with 
a partially linear function. We can find other ways to represent observations with 
objects. These include Andrew's curves and faces. 

53 We use the following symbols for the DAX 30 companies: ADS Adidas, ALV Allianz, BAS Basf, BAY 
Bayer, BEI Beiersdorf, BMW Bayerische Motoren Werke, CBK Commerzbank, CON Continental, DAI 
Daimler, DB1 Deutsche Boerse, DBK Deutsche Bank, DPW Deutsche Post, DTE Deutsche Telekom, EON 
E.On, FME Fresenius Medical Care, FRE Fresenius, HEI HeidelbergCement, HEN Henkel, IFX Infineon 
Technologies, LHA Deutsche Lufthansa, LIN Linde, LXS Lanxess, MRK Merck, MUV Miinchener 
Riickversicherungs AG, RWE RWE, SAP Sap, SDF K+S, SIE Siemens, TKA ThyssenKrupp, and VOW 
Volkswagen. 
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6.4.1 Graphical Matrices 

A data matrix is an n x d matrix of real numbers, where n is the number of sampled 
objects and d is the number of variables; the number in the ith row and in the jth 
column gives the measurement of the ith object with respect to the jth variable. 

A graphical matrix is an n x d matrix of graphical elements; an nx d data matrix 
of real numbers is transformed by representing each real number by a graphical 
element. Graphical matrices were studied by Bertin (1967, 1981). A related method 
to visualize data is the Data Image, developed in Minnotte & West (1999). 

When the data consist only of binary values, one may represent these values 
of the data matrix with white and black rectangles. Otherwise, one may use gray 
scale, colors, or varying-sized objects to represent measured values. For example, 
real values can be represented with bars or lines, whose length is proportional to 
the value. Bertin (1981) mentions seven visual variables that can be used to code 
numerical values: form, position, size, value, texture, color, and orientation. 

In order to make a graphical matrix useful, the rows and the columns of the matrix 
have to be permutated so that it is possible to see significant patterns. In the case 
of regression data, when one of the variables is a response variable and the other 
variables are explanatory variables, there are two natural ways to search for a useful 
permutation of the rows (observations). 

1. The first possibility is to order the observations according to the value of the 
response variable. 

2. The second possibility is to (a) cluster the observations using only the explana-
tory variables and (b) order the rows so that the rows corresponding to the 
observations in the same cluster are together. This rule does not specify the 
order of the observations inside the cluster. 

Figure 6.8 shows a graphical matrix of the absolute returns of S&P 500 returns. 
S&P 500 index data are described in Section 1.6.1. We make a data matrix with four 
variables: The absolute value of the net returns is taken as the response variable, and 
the three lags of the absolute values of the returns are the explanatory variables: 

Yt = \Rt\, 1 = \Rt-l\, Xti2 = \Rt—2 15 Xt,3 = \Rt—317 

where Rt = {St — St-i)/St-i is the net return and St is the price of the S&P 
500 index. We have used fc-means clustering to find k = 5 clusters from the 
three-dimensional data (-X^i, Xt,2, Xt,3), t = 1 , . . . , T. The k-means clustering is 
explained in Klemela (2009, Section 8.2), for example. The black cluster is the low-
volatility cluster and the red cluster is the high-volatility cluster. The green cluster is 
the high-volatility cluster for lag 1, the turquoise cluster is the high-volatility cluster 
for lag 2, and the blue cluster is the high-volatility cluster for lag 3. The volatility 
of the response variable seems to be higher in the turquoise cluster than in the green 
class. 
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Figure 6.8 Graphical matrix. The leftmost column shows the response variable, which is 
the absolute value of the S&P 500 return. The next three columns show the three explanatory 
variables, which are three lags of the absolute value of the S&P 500 return. The colors show the 
five clusters found by the k-means algorithm from the data of the three explanatory variables. 

6.4.2 Parallel Coordinate Plots 

In a parallel coordinate plot, data points xi,..., xn E H d are drawn as piecewise 
linear curves. Observation x\ — (x},...,xf) £ i = 1 , . . . , n, is represented as 
the curve that linearly interpolates the points 

(l,x]),(2,x2
i),...,(d,xf). 

Thus in a parallel coordinate plot the number of the coordinate is mapped onto the 
horizontal axis and the value is mapped onto the vertical axis, and then these points are 
linearly interpolated. Parallel coordinate plots were introduced by Inselberg (1985). 
See also Inselberg & Dimsdale (1990), Wegman (1990), and Inselberg (1997). 

Figure 6.9 illustrates the definition of a parallel coordinate plot. Panel (a) shows 
a scatter plot, and panel (b) shows a corresponding parallel coordinate plot. The 
sample size is n = 30 and dimension is d — 2.54 

Figure 6.10 points out that a typical plot of a vector time series is identical with a 
parallel coordinate plot. This example illustrates the case where parallel coordinate 
plots perform well: The number of cases is small, the number of variables is large, 
and the variables have a natural ordering. We show daily prices of stock indexes 
DAX 30 (black), MDAX 50 (red), FTSE 100 (blue), and CAC 40 (green) during the 
time period 1990-11-26 to 2013-06-07. The days are the variables and the stocks are 

54The data are the daily returns of stock indexes DAX 30 and MDAX 50 during the period of 30 trading 
days between 2009-04-22 and 2009-06-05. We have made the copula preserving transform with the 
standard Gaussian marginals, as explained in Section 1.7.2. 
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(b) 

Figure 6.9 Parallel coordinate plot: Illustration, (a) A scatter plot, (b) A corresponding 
parallel coordinate plot. 

Figure 6.10 Parallel coordinate plot of stock prices. Prices of four stock indexes during a 
period from 1990-11-26 to 2013-06-07; DAX 30 (black), MDAX 50 (red), FTSE 100 (blue), 
and CAC 40 (green). 

the cases, so that n = 4 and d = 4602. The prices are normalized to have value one 
at the first day. 

Figure 6.11 illustrates the use of a parallel coordinate plot to visualize points in a 
nearest neigborhood. Nearest-neighbor regression estimate was defined in (3.29) as 
a weighted average: 

f{x) = Ytpi{x)Yi. (6.4) 
i=i 
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Figure 6.11 Parallel coordinate plot of a nearest neighborhood. A parallel coordinate plot 
of a nearest neighborhood of 15 points. The central point is colored with red. 

where Y17=i P i = land either Pi(x) = Oor Pi(x) = 1. It is of interest to visualize 
the neighborhood 

{Xi :pi(x) = 1, i = l,...,n}, 

where x £ Hd is a given point where we want to make a prediction. The data consist 
of consecutive squared returns . . . , where Rt is the net return of the the 
S&P 500 index. The data are transformed with the copula transform with the standard 
normal marginals. S&P 500 index data are explained in Setion 1.6.1. Now we have 
Tt = 15,929 observations and d = 10 dimensions. We look at the neigborhood of 
k = 15 points. The center x is shown with the red color, the 15 points in the nearest 
neigborhood are shown with the black color, and the rest of the data are shown with 
the gray color. 

Figure 6.12 illustrates the use of a parallel coordinate plot to visualize points 
in a neigborhood defined by kernel weights. The kernel regression estimator was 
defined in (3.6). Kernel regression estimator is a weighted average as in (6.4). The 
weights pi(x) satisfy Y17=i Pi(x) = 1 anc* Pi(x) ^ 0. The weights pi(x) give more 
weight to points Yi, which are such that Xi is near x. If we use a kernel function 
which is everywhere positive, like a Gaussian kernel, then all weights are positive. 
Thus we cannot apply parallel coordinate plots straightforwardly as in the case of 
a nearest-neighbor estimate, where weights are either 0 or 1. We make a parallel 
coordinate plot, where the lines corresponding to observations are shown in a gray 
scale. The lines corresponding to the observations that are closest to the x value are 
shown darkest. We use a gray scale coding where white is 1 and black is 0. Thus we 
make a gray scale from the weights Pi(x) by associating every data point Xi by the 
value 

x Pi(x) 
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Figure 6.12 Parallel coordinate plot of a kernel neighborhood. A parallel coordinate plot 
where the observations with more weight are colored darker. The central point is colored with 

The data is the same as in Figure 6.11. The smoothing parameter is h — 1.5 and the 
standard normal kernel is applied. 

6.4.3 Other Methods 

Andrew's curves Andrew's curves, introduced in Andrews (1972), represent 
observations as one-dimensional curves. The curves are Fourier series whose coef-
ficients are equal to the the observation values. The definition of the ith Andrew's 
curve is 

m = 

2~ l / 2 xn + Xi2 sin(£), whend = 2, 
2~1!2Xi\ + Xi2 sm(t) + x^ cos(£), when d = 3, 
2~1/2xn + Xi2 sin(t) + Xis cos(t) + x^ sin(2t), when d — 4, 

for i = 1 , . . . , n , where t G [—7r,7r] and we write the observations as X{ — 
(xii,..., Xid). Note that f ^ sin2(^) dt = cos2(t) dt = 7r. 

As in the case of graphical matrices and parallel coordinate plots, the ordering 
of the variables affects the visualization: The last variables will have only a small 
contribution to the visualization. Andrews (1972) suggests to use the ordering of 
the variables given by the principal component analysis; see Section 6.3.1 for the 
definition of the principal component analysis. 

Faces Faces are graphical representations of a data matrix where the size of face 
elements are assigned to variables (the columns of the data matrix). Chernoff (1973) 
introduced faces, and one often uses the term "Chernoff faces." Flury & Riedwyl 
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(1981) and Flury & Riedwyl (1988) have further developed the face technique and 
defined the following characteristics: right eye size, right pupil size, position of right 
pupil, right eye slant, horizontal position of right eye, curvature of right eyebrow, 
density of right eyebrow, horizontal position of right eyebrow, vertical position of 
right eyebrow, right upper hair line, right lower hair line, right face line, darkness 
of right hair, right hair slant, right nose line, right size of mouth, right curvature of 
mouth, and the same for the left side of the face. 

Each observation is represented by one face. We have defined together 36 charac-
teristics of a face. Thus we may visualize data up to 36 variables, but we are not able 
to visualize many observations with faces. With faces we may find clusters from data 
by looking groups of similar looking faces. Hardle & Simar (2003) discuss parallel 
coordinate plots, Andrews's curves, and Chernoff faces. 



CHAPTER 7 

VISUALIZATION OF FUNCTIONS 

Section 7.1 defines a slice of a multivariate function. A one-dimensional slice is 
obtained by choosing one free variable and fixing the values of the other variables. 
A two-dimensional slice is obtained by choosing two free variables and fixing the 
values of the other variables. 

Section 7.2 defines a partial dependence function obtained from a regression 
function. The partial dependence function can be called the marginal effect, because 
its value at a point is obtained by averaging over the distribution of the other than 
one or two explanatory variables. (Note that we use the term partial effect to refer 
to a partial derivative of the regression function.) A partial dependence function is a 
visualization method analogous to projecting the data to one or two dimensions. 

Section 7.3 discusses methods for the reconstruction of a set from a finite number 
of points. We mention three reconstruction methods: using an equispaced grid, using 
a union of balls, and using a union of polyhedrons. These reconstruction methods 
are useful when we turn into the construction of level set trees. 

Section 7.4 presents level set tree-based methods for the visualization of multi-
variate functions. A level set tree is a tree structure of level sets of a function. By 
using the volumes of the level sets, we can derive a univariate function from the tree 
structure. We call this univariate function the volume function. Using the locations of 
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the level sets, we can draw the level set tree in such a way that it expresses the location 
information. We call the plot showing the location information the barycenter plot. 

The calculation of a level set tree requires approximation of the function and its 
level sets. The use of an equispaced grid leads to an accurate level set tree; but when 
the dimension increases, the size of the grid increases exponentially. The equispaced 
grid can be replaced by a union of balls, centered at the observations. This leads to 
a faster construction of a level set tree, but the method is more inaccurate and the 
calculation of the volumes of the level sets poses additional problems. 

Level set tree-based visualizations can be applied by visualizing density estimates 
and regression function estimates. Visualization of density estimates is natural with 
level set trees, because level set trees represent the structure of the local maximums 
of the function. In the case of regression functions, we are interested in both the local 
minima and the local maxima. The local minima need to be visualized with a separate 
level set tree. In the case of a regression function visualization, we are interested 
in the partial effects of the explanatory variables, and these can be visualized with 
the help of level set trees of the estimates of the partial derivatives of the regression 
function. 

7.1 SLICES 

A slice of function / : H d —> R is obtained by fixing some variables to have a 
constant value and keeping the rest of the variables as free variables. For example, 
when d > 3, a two-dimensional slice is 

g(xi,x2) = f(xi,x2,x30,...,xdo), (x\,x2) e R 2 , 

where ( X 3 0 , . . . , Xdo) £ R d ~ 2 is a fixed point. 
A problem with slices is that there are a large number of possible slices. It is 

reasonable to look at one- or two-dimensional slices. Two-dimensional slices can be 
drawn with contour plots or perspective plots. To go through all two dimensional 
slices, we have to first choose two variables, and this can be done in d(d — l ) /2 ways. 
After choosing the two variables, we have to make a grid on H d ~ 2 and draw for each 
grid point a two-dimensional function. 

Figure 7.1 shows a regression function and its kernel estimate. We have simulated 
n = 100 observations ( X , F) , where Y = f ( X ) + ere, X is uniformly distributed 
on [—2,6]2, e ~ N(0,cr2), and a = 0.01. We have used smoothing parameter 
h = 0.5 and the standard Gaussian kernel. Figure 7.2 shows one-dimensional slices 
of the estimate whose perspective plot is shown in Figure 7.1(b). Panel (a) shows 
80 slices xi F(XI,X2Q), where the first coordinate x\ is the free variable and 
the second coordinate x2o is fixed to 80 different values. Panel (b) shows 80 slices 
X2 f(xio,x2). 
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(a) (b) 

Figure 7.1 Regression function and its estimate, (a) A perspective plot of a regression 
function, (b) A kernel estimate of the regression function. 

Figure 7.2 One dimensional slices, (a) Slices x\ •->- f(xi, X20) for 80 different values of 
X20. (b) Slices X2 «->• f ( x 10, £2). The slices are from the estimate in Figure 7.1(b). 
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7.2 PARTIAL DEPENDENCE FUNCTIONS 

A partial dependence function can be used to visualize a regression function. The 
partial dependence function is defined as marginal averages of a regression function. 
A partial dependence function is analogous to a marginal density function of a 
multivariate density function. A partial dependence function is sometimes called the 
marginal effect or the average dependence function. A partial dependence plot is a 
plot of a partial dependence function. 

Let f(x) — E(Y\X = x) be a regression function with continuous regressors 
X = ( X i , . . . , Xd)- The partial dependence function of X\ is 

gx1 Oi) = Ef(x 1,X2,...,Xd) 

= / f ( x i , x 2 , . . . ,Xd) f x 2 , . . . , x d ( x 2 i • • - i x d ) d x 2 • • • d x d , ( 7 . 1 ) 
Jnd 

where fx2,...,xd • R d _ 1 R is the joint density of the regressors X 2 , . . . , Xd. We 
can define similarly the partial dependence function of (Xi, X2) as 

9XUX2(XI,X2) = Ef(XI,X2,Xs,... , X d ) . 

Partial dependence functions can be defined similarly for any subset of { X i , . . . , Xd}. 
A partial dependence function of a regression function is analogous to a marginal 

density. If fx : R d ^ R is a density function of the distribution of random vector 
X = (Xi,..., Xd), then a marginal density is obtained by integrating out some of 
the variables. For example, a two dimensional marginal density is 

f x u X 2 ( X I , X 2 ) = J f x ( x i , . . . , x d ) d x 3 - - - d x d , 

where we assume that d> 3. 
Note that for the conditional expectation we have 

fXl (xi) = E [f(Xu ...,Xd)\X1 =xx] = E(Y | Xi = Xl). 

Thus the conditional expectation ignores the effects of X2,..., Xd, unlike the partial 
dependence function which takes into account the average effects of the variables 
X2,..., Xd. Partial dependence plots are discussed in Hastie et al. (2001, Section 
10.3.2). 

If / : R d R is a regression function estimator based on regression data 
(Xi, Y i ) . . . , (Xn, Yn), then we get an estimator of the partial dependence function 
as 

1 n 

g x ^ x i ) = ~ y 2 f ( x i , 2). (7.2) 
i=i 

For example, if / is a kernel regression estimator, defined in (3.6), the estimator of 
the two dimensional partial dependence function is 

n 

9XAX 1) = ^QIITFYI, 
i=i 
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Figure 7.3 One-dimensional partial dependency functions, (a) An estimate of x\ 
Ef(xi,X2). (b) An estimate x2 Ef(Xi,x2). 

where 

1 n 

12 3 = 1 

where Pi(x) are the kernel regression weights. The estimator in (7.2) is almost the 
marginal integration estimator, defined in (4.15) for the estimation in additive models. 
In the case of the additive model 

E(Y\X = x)=c + MXr) + • • • + fd(Xd) 

the partial dependence function gx1 of X\ is gx1 (xi) = c + fi 
Figure 7.3 shows estimates of the one-dimensional partial dependency functions 

of the two-dimensional regression function whose perspective plot is shown in Fig-
ure 7.1(a). Panel (a) shows an estimate of function x\ \-)• Ef(xi, X2), and panel (b) 
shows an estimate of function x2 h-» E f ( X i , x2). We have used the same simulated 
data that is used in the estimate of Figure 7.1(b). We have used the kernel regression 
estimator with smoothing parameter h = 0.5 and the standard Gaussian kernel. 

7.3 RECONSTRUCTION OF SETS 

We consider the problem of reconstructing set A c R d using a finite number of 
points x\,..., xn G A. We are mainly interested in the approximation of a level set 
of a function, which is discussed in Section 7.3.1, but we describe also point cloud 
data in Section 7.3.2. 
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7.3.1 Estimation of Level Sets of a Function 

Let / : H d —> R be a function. We want to approximate the level set 

A ( f , \ ) = {xeKd:f(x)>\}, 

where A £ R. We are interested in the case where / is either a regression function 
estimate or a density estimate. We describe three approximations of A(/, A). The 
first uses a partition to rectangles, the second uses a collection of balls, and the third 
uses a collection of simplexes. 

Approximation Using a Grid The first approximation is made using a grid. 
We assume that we can find a rectangle R c R d , whose sides are parallel to the 
coordinate axis and which is such that A(/, A) C R. Let R\,..., RM be a partition 
of R to small rectangles, and let pi be the center of Ri, i = 1 , . . . , M. Define the 
approximation of the level set as 

A(/, A) = ( J {Ri : f{pn) > A, z = M}. 

This method of approximation suffers from the curse of dimensionality. The number 
M of the small rectangles needed to partition R grows exponentially as a function of 
dimension d; see Section 3.2.6. 

Figure 7.4 introduces the example which we use to illustrate the methods of 
level set approximation. In this example we have a sample X\,..., Xn £ R 2 of size 
n = 200 from a distribution whose density has three modes. Panel (a) shows a scatter 
plot of the data. Panel (b) shows a perspective plot of a kernel density estimate with 
smoothing parameter h = 0.4 and standard Gaussian kernel. 

Figure 7.5 shows estimates of level sets using the example introduced in Figure 7.4. 
We want to have an approximation of the level set A(/ , A), where / is the kernel 
density estimate. We use a grid on the support of / which has 1002 points. Panel (a) 
shows a contour plot of the kernel density estimate, and panel (b) shows the level set 
with A = 0.04 of the kernel density estimate. 

Approximation Using Balls A second possibility to approximate level set 
A(/, A) is to use unions of balls. Let X — {x\,..., xn} C R d . Let p > 0 be 
a radius and define the approximation of A (/ , A) as 

A(/, A) = ( J {Bp(xi) : f(xi) > A, i = 1 , . . . , n}, (7.3) 

where Bp(x) c Hd is the ball with radius p, centered at x £ R d . 
Figure 7.6 illustrates the approximation using unions of balls with the example 

of Figure 7.4. We choose A = 0.04. Panel (a) shows the case where the radius is 
p — 0.2. Panel (b) shows the case where the radius is p — 0.4. 

The use of a union of balls can be computationally attractive because the number 
of balls is at most n, which does not grow with the dimension. However, the 
method introduces additional bias because the balls are typically extending out of 
the boundaries of the level set. Furthermore, the radius p is an additional smoothing 
parameter whose choice affects the estimates. For large dimension d, all balls tend 
to be separated until a very large radius p is chosen. 
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Figure 7.4 Estimation of level sets: Data and density estimate, (a) A data of size n = 200 
sampled from a distribution with three modes, (b) A perspective plot of a kernel density 
estimate. 

(b) 

Figure 7.5 Estimation of level sets: Grid, (a) A contour plot of a kernel density estimate, 
(b) A level set of the density estimate with level A = 0.04. 
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(a) (b) 

Figure 7.6 Estimation of Level sets: Union of circles, (a) A union of circles with radius 
p = 0.2. (b) p = 0.4. 

Approximation Using Simplexes A third possibility is to consider suitable 
unions of convex hulls of simplexes. Let X — {xi , . . . , x n } c Let us call 
set cr c X a simplex of dimension d if it is a collection of d + 1 points. Let 
cr = (x i x , . . . , Xid+1) be a simplex of dimension d. The points x ^ , . . . , Xid+1 are 
called the vertices of cr. Let us denote by UP(X) the collection of all simplexes of 
dimension d -hi whose vertices are in X and which are such that the maximum 
distance between the vertices is at most p > 0: 

uP(x) = {CJ = xid+1) : \\xij ~xik\\ <p, EX}. 

Now we can define an approximation of A (/ , A) as 

Hf,\)=\J{H(<r):aeUp{X), mean(/(<r)) > A} , (7.4) 

where %(&) is the convex hull of cr and mean(/(cr)) = ^2{f(x) : x € a}/(d+ 1). 
The use of random polyhderons in density support estimation has been analyzed in 
Aaron (2013). 

Figure 7.7 illustrates the approximation of a level set using unions of triangles 
with the example of Figure 7.4. We have A = 0.04. Panel (a) shows the case where 
the maximum length of the edge of a triangle is p = 0.5. Panel (b) shows the case 
where the maximum length is p = 1. 

Using a union of simplexes to approximate a level set is computationally not as 
attractive as using balls, because the number of simplexes used in the construction 
can be very large. On the other hand the approximation can be more accurate. 
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Figure 7.7 Estimation of level sets: Union of triangles, (a) A union of triangles with 
maximum side length p = 0.4. (b) p — 1. 

7.3.2 Point Cloud Data 

Point cloud data are a sample from a uniform distribution on a set A C Hd. More 
generally, the data may be a sample from a distribution whose support is approxi-
mately equal to A. Point cloud data can be used as a data structure to represent and 
store a solid object to a computer. 

Point cloud data are analyzed in topological data analysis. The aim is to infer 
topological properties of set A using these data. The topological properties of set A 
are, for example, the number of connected components of A (Betti number of order 
0), the number of holes in A (Betti number of order 1), and so on; see Carlsson 
(2009). 

Point cloud data may be analyzed by reconstructing a solid object A c R d from 
the sample x\,..., xn G A. The construction can be a union of the sets in a simplicial 
complex. Let us call a simplicial complex of X = {x\,..., xn} c R d a collection 
K of sets a C X, which is such that if cr e K and r C d , then r G K. 

We call sets cr G K simplexes. Let #cr be the cardinality of cr. If #cr = 1, then 
we call cr a vertex, if #cr = 2, then we call cr an edge, if #cr = 3, then we call a a 
triangle, and if #cr = 4, then we call cr a tetrahedron. If #cr = k + 1, then we say 
that the dimension of cr is k. The k -t-l points of a /c-dimensional simplex are called 
the vertices of the simplex. 

Let us denote the Vietoris-Rips complex of X at scale p > 0 by VP(X). The 
Vietoris-Rips complex is such a simplicial complex that for every cr e VP(X), the 
vertices of cr are pairwise within distance at most p: 

VP(X) = {a C X :\\u-v\\ < p for all u, v G cr}. 
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Of a special interest is a subcomplex of VP(X) which is called a /c-skeleton. A k-
skeleton Up (X) is such a simplicial complex that the vertices of a are pairwise within 
distance at most p and the simplexes have all dimension at most k. For example, 
in R 2 a two-skeleton of VP(X) leads to a collection of triangles such that the edges 
of the triangles have length at most p. We have used essentially a d-skeleton in 
(7.4) to approximate a level set. See Zomorodian (2010) and Zomorodian (2012) for 
definitions and algorithms. 

7.4 LEVEL SET TREES 

First we define level set trees, second we discuss algorithms for the calculation of 
level set trees, third we define a volume function for a useful presentation of a level 
set tree, fourth we define the barycenter plot to show the location information, and 
fifth we illustrate regression function visualization with an example of the estimation 
of a news impact curve in volatility prediction. 

7.4.1 Definition and Illustrations 

The level set A(/, A) of function / : Hd —• R at level A e R is defined as the set of 
those points where the function is greater than or equal to the value A: 

A(/,A) = { z e R d : / ( * ) > A}. 

A level set tree of a function is a tree whose nodes are the disconnected components 
of some level sets of the function. 

To construct a level set tree we choose a finite number of levels Ai < • • • < XL. We 
assume that each level set A(/, A/), I = 1 , . . . , L, is a connected set or, alternatively 
can be decomposed into a finite number of connected subsets, which are separated 
from each other. Then we can construct a level set tree with a finite number of nodes. 
The root of a level set tree is the level set with the lowest level; but if this level set has 
many disconnected components, then the level set tree has many roots. Given a node 
of a level set tree, the child nodes of this node are among the disconnected parts of the 
level set that is at one step higher level than the given node. The parent-child relation 
holds when the set associated with a child node is a subset of the set associated with 
the parent node. 

A level set tree of function / : R d —>• R, associated with set of levels C = {Ai < 
• • • < ^ l} , where A^ < supa,eRd f(x), is a tree whose nodes are associated with 
subsets of R d and levels in C in the following way: 

7. Write the lowest level set as 

A ( f , \ l ) = A1U--UAK, 

where sets Ai are pairwise separated, and each is connected. The level set tree 
has K root nodes that are associated with sets A^i — and each root 
node is associated with the same level Ai. 
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(a) (b) 

Figure 7.8 Level set tree of a ID density function, (a) A ID density function with three 
local maxima, labeled with Ml, M2, M3. (b) A level set tree of the density function. 

2. Let node m be associated with set B c Hd and level \i e £, I < I < L. 

(a) If B D A(/, A/+i) = 0, then node m is a leaf node. 

(b) Otherwise, write 

B n A(/ , Az+i) = Ci U • • • U C M , 

where sets Ci are pairwise separated, and each is connected. Then node 
m has M children, which are associated with sets C u i = 1 , . . . , M, and 
each child is associated with the same level A/+i. 

We have defined the level set tree as in Klemela (2004). The concept of a level 
set tree has its origins in Reeb graphs, defined originally in Reeb (1946). A level 
curve of function / : K d R at level A e R is T(/ , A) = {x e R d : f(x) = A}. 
A graph of level curves is called a Reeb graph, or a level curve graph. 

A level set tree is a concept well-suited to represent and visualize the modes 
of a density function, when by modes we mean the local maxima of a function. 
Figure 7.8 shows a ID density function with three modes. Panel (a) shows a graph 
of the function, and panel (b) shows a level set tree of the function. Figure 7.9 shows 
a 2D density function with three modes. Panel (a) shows a perspective plot of the 
function, and panel (b) shows a level set tree of the function. 

In addition to representing and visualizing local maxima of a function, we need 
also to represent and visualize the local minima of a function. This can be done with 
lower level set trees, which are trees whose nodes are disconnected parts of lower 
level sets. The lower level set of function / : H d —» R at level A G R is defined as 

A(/,A) = { z e R d : / ( x ) < A } . 
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Figure 7.9 Level set tree of a 2D density function, (a) A 2D density function with three 
local maxima, (b) A level set tree of the density function. 

The definition of a lower level set tree is analogous to the definition of a level set 
tree. The root node of a lower level set tree is the level set with the highest level. The 
child nodes of a node of a lower level set tree are disconnected parts of the level set 
that is at one step lower level than the parent set, and the child nodes are subsets of 
the parent set. 

Figure 7.10 shows a ID function with three local maxima and three local minima. 
Panel (a) shows a graph of the function, panel (b) shows a level set tree of the 
function, and panel (c) shows a lower level set tree of the function. Figure 7.11 
shows a 2D function with three local maxima and two local minima. Panel (a) shows 
a perspective plot of the function, panel (b) shows a level set tree of the function, and 
panel (c) shows a lower level set tree of the function. 

In the 2D case a single perspective plot may not be able to show all local maxima 
or minima due to the fact that local extremes may be hidden behind the surface filling 
the foreground. Thus, even in the 2D case level set trees and lower level set trees can 
give a useful summary of the local maxima and minima, although the main use of 
level set trees is in the higher-dimensional cases. 

Figure 7.10 and Figure 7.11 show that level set trees or lower level set trees are not 
always intuitive in visualizing the local extremes of a function. However, in many 
cases it is natural to decompose a function to the positive and to the negative part 
and use level set trees to visualize separately the negative and the positive part. We 
use this technique in Section 7.4.5 to visualize the partial derivatives of a regression 
function. The positive part and the negative part of a partial derivative of a regression 
function have a natural interpretation. The positive part of a partial derivative of 
a regression function shows the regions where the dependence of an explanatory 
variable is positive and the negative part of a partial derivative of a regression function 
shows the regions where the dependence of an explanatory variable is negative. The 
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Figure 7.10 A level set tree and a lower level set tree in ID. (a) A ID function with three 
local maxima and three local minima, labeled with Ml, M2, M3 and LI, L2, L3. (b) A level 
set tree of the function, (c) A lower level set tree of the function. 

(a) (b) (c) 

Figure 7.11 A level set tree and a lower level set tree in 2D. (a) A 2D function with three 
local maxima and two local minima, (b) A level set tree of the function, (c) A lower level set 
tree of the function. 
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positive part of a function / : H d —» R is defined as /+(#) = max{/(x), 0}, and 
the negative part is defined as /_ (x) = — m i n ( f ( x ) , 0}. It holds that / = /+ — / _ . 

7.4.2 Calculation of Level Set Trees 

We want to calculate a level set tree of function / : H d —> R, for levels Ai < • • • < 
AL- We make an assumption about the level sets A(/, A/), I = 1 , . . . , L: We assume 
that there is a collection of sets A\,..., AL C H d so that the level sets can be written 

Property (7.5) says that there exists a collection A\,..., AL of "elementary sets" so 
that all level sets are unions of these elementary sets. The lowest level set is a union 
of all the elementary sets and higher level sets are unions of subsets of the elementary 
sets. If the level sets of function / do not satisfy property (7.5), then it can be possible 
to obtain a function through an approximation whose level sets satisfy the property. 
We give two examples of such approximation methods: (1) approximation using 
a partition and (2) approximation using level sets. Both methods give a piecewise 
constant approximation. We discuss the interpolation methods more precisely after 
presenting the algorithm. 

We call the algorithm for calculating a level set tree the Leafsfirst algorithm. We 
describe the algorithm for calculating upper level set trees, and the calculation of 
lower level set trees can be done analogously. 

Algorithm Leafsfirst: 

1. The input of the algorithm is the levels A i , . . . , A^ and the sets A\,... ,AL 
that appear in (7.5). First we have to order the levels in increasing order. From 
now on, we assume that Ai < • • • < A^. 

2. We start at the highest level. Let the first leaf node be associated with level AL 
and with set AL- This node is now a "temporary root node," because the node 
has not yet a parent node. 

3. For I — L — 1 to 1: Consider level A/ and set Ai. 

Create a new node to the level set tree. The level of this node is Ai. We have 
to find the set which is associated to this node and we have to find the child 
nodes of the new node. This is done in the following way. 

We find which sets associated with the temporary root nodes (those nodes 
which do not yet have a parent) touch set A\. At this step we will apply the 
bounding box technique, which is explained below. We have two possible 
cases. 

L 

(7.5) 

(a) If set Ai touches sets B\,..., BM associated with the temporary root 
nodes, then create the connections between A\ and B\,..., BM \ the new 
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node is the parent of the nodes that are touched. The set associated with 
this new parent node is Ai U B\ U • • • U Bm . 

(b) If set Ai does not touch any sets associated with the temporary root nodes, 
then the new node is a leaf node of the tree and does not have children. 
The set associated with this node is Ai. 

The new node is a new "temporary root node." 

4. When we have gone through all the levels, the remaining "temporary root 
nodes" are the final root nodes. 

The sorting at item 1 of the algorithm takes 0(L log L) steps. In the worst case 
the item 3 of the algorithm requires the pairwise comparison of all sets A\,..., AL 
to find which sets touch, and this takes typically 0(dL2) steps, since we need 0(d) 
steps to calculate whether two rectangles touch or weather two balls touch. Thus the 
worst-case complexity of the algorithm is 

0(L\ogL + dL2) =0(dL2), (7.6) 

where L is the number of elementary sets appearing in (7.5) and d is the dimension 
of function (dimension of the space where the function is defined). 

We enhance the algorithm with the bounding box technique. In the bounding box 
technique we associate the nodes with the bounding box of the set associated with 
a node. The bounding box of set A c R d is the smallest rectangle containing A, 
such that the sides of the rectangle are parallel to the coordinate axes. At item 3 of 
the algorithm we find which sets, associated with the current root nodes, are touched 
by set Ai. If set A\ does not touch the bounding box of those sets, then it does not 
touch any sets inside the bounding box. Only if it does touch the bounding box will 
we have to travel further toward the leaf nodes to find whether Ai touches any of 
the smaller bounding boxes. With the bounding box enhancement the worst-case 
complexity of item 3 is still 0(dL2), but with this technique we achieve considerable 
improvements in typical cases. 

The Leafsfirst algorithm was introduced in Klemela (2006), and it was applied 
with a piecewise constant approximation with a regular equispaced grid. 

Approximation Using a Partition Let f0 : Rd R be an initial function 
whose level set tree we want to calculate. Assume that the level sets of / 0 do not 
satisfy condition (7.5). We can use a partition to construct such an approximation of 
fo that property (7.5) holds. 

First we choose a rectangle R cHd containing the region where we approximate 
fo. We define a partition {A\,..., AL} of R, where Ai are rectangles. This means 
that UjLxAi — R and Ai D Am = 0 for I ^ ra. Let xi be the center point of Ai, 
I = 1 , . . . , L. The initial function fo : Hd —» R is evaluated at points xi and we 
define 

L 

f ( x ) = Y,FOMIA^X). (7.7) 
i=i 
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(a) (b) 

Figure 7.12 Approximation using a partition, (a) The function is evaluated at equispaced 
points, (b) The values are interpolated to obtain a piecewise constant function. 

Now / satisfies property (7.5) when we choose Ai = fo(xi) and assume, without 
loosing generality, that fo{xi) < • • • < fo(xL). 

For example, when / 0 is a density function, we choose rectangle R to contain the 
support of /o; and when /o is a regression function, then we choose R to contain the 
support of the density f x of the explanatory variables. If the support of /o or f x is 
not bounded (the support is R d , for example), then we choose a suitable large part of 
the support (a large rectangle R containing the region where /o or f x is larger than 
some small e > 0). 

In fact, we do not have to use rectangles to make a partition of R, but a partition 
using any types of sets would lead to the property (7.5). However, rectangles are 
convenient because it is easy to check whether two rectangles touch each other, and 
performing this check is required in the algorithm for the calculation of a level set 
tree. Note also that it is not required that the partition to rectangles would be a regular 
partition, when by a regular partition we mean such a partition where all the sets in 
the partition have the same size and shape. Namely, we can use also such partitions 
that are obtained from greedy regressograms or from the CART procedure discussed 
in Section 5.5. These partitions are irregular in the sense that all the rectangles in the 
partition can have a different size and shape. 

Figure 7.12 illustrates the approximation using a partition in the one-dimensional 
case. We use formula (7.7) to construct an approximation. Panel (a) shows a one-
dimensional function and an equispaced grid of 10 points, where the function is 
evaluated. Panel (b) shows how the equispaced grid leads to a regular partition which 
is used in interpolation to give a piecewise constant function. 

We noted in (7.6) that the the number of steps of the Leafsfirst algorithm is 
O (cLL2), where L is the number of sets used in the approximation and d is the 
dimension of the range of of the function. In the case of approximation using a 
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partition, the number L can be quite high. A regular equispaced partition of rectangle 
R c Tld leads to exponentially increasing number L as a function of d. For example, 
when we partition [0, l]d so that each direction has 10 parts, this makes the total of 
L = 10d sets in the partition. This is an example of the curse of dimensionality. Thus 
we are led to consider an alternative approximation method called approximation 
using level sets. 

Approximation Using Levei Sets In Section 7.3.1 we have defined three meth-
ods to approximate level sets. The first of them uses an approximation with a grid, 
and this is a special case of the partition method described before. Next we discuss the 
two other methods: approximation with unions of balls as in (7.3) and approximation 
with unions of polyhedrons as in (7.4). 

Let fo : H d —» R be an initial function whose level set tree we want to calculate, 
and assume that the level sets of fo do not satisfy condition (7.5). We can construct 
an approximation of fo by defining directly the level sets of the approximating 
function so that property (7.5) is satisfied. We approximate a level set tree of 
a function fo : R d —> R using only the evaluations / o ( X i ) , . . . , / ( X n ) , where 
X i , . . . , X n G Kd. The basic examples are the case where fo is a regression 
function estimate calculated with data (Xi, Y\),..., (Xn , Yn) and the case where / 0 

is a density function estimate calculated with data X\,..., Xn. 

1. Let us denote Ai = fo(Xi),..., An = / 0 (X n ) . We assume that Ai < • • • < 
A l • Let / : H d —> R be a function with finitely many different level sets 

n 

A ( f , X j ) = \ j Bp(Xi), j = 1,... ,n, (7.8) 
i=j 

where Bp(Xi) is the ball with radius p centered at Xc Bp(Xi) = {x G R d : 
\\x-Xi\\<p}. 

2. A d-dimensional simplex cr is a collection of d + 1 points. Those points are 
called the vertices of cr. Denote X — { X i , . . . , X n } C Hd. Let UP(X) be the 
collection of all simplexes of dimension d whose vertices are in X and which 
are such that the maximum distance between the vertices is at most p > 0: 

Up(X) = {a = (Xii > • • • > Xid+i ) : II Xij ~Xik\I < P> G X j . 

Let us define the level of cr G UP(X) to be the minimum value of fo at the 
vertices of cr: 

A(cr) = m i n { / o ( x ) : x G cr}. 

Let UP(X) — {cti , . . . , crL}. Denote Ai = A(crj). We assume that Ai < • • • < 
A L- Define 

L 

A(/,A z) = | J W ( c 7 < ) , / = 1 , . . . , L , (7.9) 
i=i 

where %(ai) is the convex hull of cr̂ . 
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(a) (b) 

Figure 7.13 Approximation using level sets in ID. (a) The function is evaluated at irregularly 
spaced points, (b) The values are interpolated to obtain a piecewise constant function. 

Both approximations lead to functions satisfying the property (7.5), which is required 
to hold in order that algorithm Leafsfirst can be applied. Approximation of /o through 
/ can be quite complex, but the level sets of / have a simple expression, given in (7.8) 
and (7.9). The level set tree of / gives us an approximation for the corresponding 
level set tree of /o. 

Figure 7.13 illustrates the approximation using level sets in the one-dimensional 
case. Now we define the function through its level sets and use the formula (7.8). 
Panel (a) shows the same one-dimensional function as in Figure 7.12(a), but now the 
function is evaluated at irregularly spaced points. In fact, the function is a kernel 
density estimate that is constructed using as data the same points that are used to 
evaluate the function. Panel (b) shows how the evaluations at irregularly spaced 
points are used in approximation to obtain a piecewise constant function. Each point 
is a center of an interval with length 2.2, and an interval associated with a higher 
value is overriding an interval with a lower value. 

Figure 7.14 illustrates the approximation of a function through approximating its 
level sets in the two-dimensional case. Panel (a) shows an approximation of level 
sets with unions of balls. Panel (b) shows an approximation of level sets with unions 
of rectangles. The balls and rectangles are colored with a gray scale so that a darker 
color indicates a larger value of function / . 

The Leafsfirst algorithm takes in the worst-case O (dL 2 ) steps, as noted in (7.6), 
where L is the number of sets used in the approximation and d is the dimension 
of the range of of the function. In the case of approximation (7.8) using unions 
of balls, and when the underlying function /o is a density estimate or a regression 
function estimate, we have that L = n, where n is the sample size. Thus, in the case 
of approximation (7.8) the Leafsfirst algorithm leads to a computationally feasible 
procedure even in quite high-dimensional spaces. 
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Figure 7.14 Approximation using level sets in 2D. (a) Level sets are estimated with unions 
of balls, (b) Level sets are estimated with unions of triangles. 

The accuracy of the procedure (7.8) may not be as good as in the case of the 
approximation using a partition, or using the approximation with simplexes. Ap-
proximation using unions of balls leads to biased estimators of the functions, in the 
sense that the level sets are estimated to be too large. The estimation error can be 
seen in Figure 7.13(b), where the two modes are not as clearly separated as in the 
original function. 

7.4.3 Volume Function 

Definition of a Volume Function A volume function is constructed from a level 
set tree of a function. A volume function of a level set tree is a tool for the visualization 
of the level set tree and the underlying function. In addition to the tree structure, a 
volume function shows information about the volumes of the disconnected parts of 
the level sets. We explain the construction of a volume function in four steps. 

First we note that a tree can always be drawn as a collection of nested sets, so that 
a parent-child relation is represented as a set inclusion. The root node is a set that 
contains all the sets. The child nodes of a parent node are smaller sets inside the set 
representing the parent set. Figure 7.15 shows an example of a representation of a 
tree with nested sets. Panel (a) shows a usual representation of a tree, where nodes 
are shown as small circles and a parent-child relation is expressed with a line joining 
two nodes. A parent node is always drawn below a child node. Panel (b) shows the 
same tree represented with nested vectors. To make the ID representation useful, 
we have drawn the vectors so that a child node is drawn higher than its parent node. 
Otherwise it would be difficult to show clearly the set inclusion of ID sets. Panel (c) 
shows the same tree represented with nested 2D circles. 
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Figure 7.15 Tree representations, (a) A classical tree representation, (b) A representation 
of the tree with nested vectors, (c) A representation of the tree with nested circles. 

Second we note that the representation of a tree with nested sets can be interpreted 
as a function. For example, Figure 7.15(c) shows the tree as nested sets and can 
be interpreted as a contour plot of a 2D function. Also, Figure 7.15(b) shows the 
tree as nested vectors; and it can be modified so that we obtain a graph of a ID 
function by joining the endpoints of the vectors to the vector under it (and removing 
the vectors themselves). Thus we obtain a representation of a tree as a piecewise 
constant function. 

The third step to obtain a volume function is to add information about the levels 
to the picture. Each node of a level set tree is associated with a level (i.e., the level of 
the level set from which the set associated with the node is a part). Thus we use the 
level of the node to draw the vectors in Figure 7.15(b) so that the height of the vector 
is equal to the level. Also, we choose the level of the contours in Figure 7.15(c) to 
be equal to the level of the node. 

The fourth step to obtain a volume function is to add information about the 
volumes. This is done by choosing the nested sets to have the same volumes as the 
corresponding sets of the level set tree. We note that each node of a level set tree is 
associated with a set (this set is some disconnected region of a level set). We choose 
the vectors to have the length equal to the volume of the set associated with the node. 
Also, we choose the volume of a set in the contour plot representation to be equal to 
the volume of the set associated with the node. 

We use the term volume function to denote the function obtained by the above 
transformation and we use the term volume transformation to denote the transforma-
tion itself. The term volume plot is used to denote a plot of a volume function. 

Remarks about a Volume Function We have defined a volume function so 
that its dimension can be any dimension smaller than or equal to the dimension of the 
original function. In this book we use the transformation of multivariate functions to 
univariate functions, but there is also some interest to transform multivariate functions 
to 2D functions. 
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A given multivariate function has many level set trees, because a level set tree is 
chosen using a grid of levels and we can choose this grid in many ways. Furthermore, 
a given level set tree has many volume functions. We have the following three choices 
to be made when constructing a volume function: (1) A level set tree does not specify 
the ordering for the sibling nodes, and thus a volume function can have its local 
extremes in various permutations. (2) When we use set inclusion to represent a 
parent-child relation, the location of the child set is not specified exactly, but we 
require only that a child set is inside the parent set. In a ID volume function it is 
natural to put the child sets symmetrically inside the parent set but, in a 2D volume 
function there are many natural ways to choose the location of the child sets. (3) We 
have not specified the location of the volume function. In the ID volume functions 
we choose the location of the function so that the left end point of the support is equal 
to the origin. 

Note that the definition of a level set tree does not require that the level sets would 
have a finite volume, but this assumption was made in the definition of a volume 
function. Typically this assumption is not restrictive. For example, a Gaussian 
density can well be approximated with a function with a bounded support. 

Interpretation of a Volume Function The main advantage of a volume func-
tion is that we can represent a high-dimensional function with a lower-dimensional 
function, and this lower-dimensional function has similarities with the original mul-
tivariate function. In short, the original function and its volume function have the 
same structure of local extremes. We discuss in the following in detail the properties 
that remain invariant in the volume transformation. 

First, the number of local extremes of the original function and that of its volume 
function are equal. The volume function from an upper level set tree has the same 
number of local maxima as the original function. The volume function from a lower 
level set tree has the same number of local minima as the original function. 

Second, level set trees of the original function and its volume function have the 
same tree structure, when the trees are constructed using the same grid of levels. 
The same tree structure means that the trees have the same number of nodes and 
there is a mapping between the nodes so that the parent-child relations between the 
corresponding nodes match. The levels associated with the nodes of a level set tree 
of the original function and the levels associated with the corresponding nodes of the 
level set tree of the volume function are equal. However, the sets associated with the 
nodes are different, because the sets associated with the nodes of level set tree of the 
original function are in a higher-dimensional space than the nodes of the level set tree 
of the volume function. 

Third, all the separated regions of level sets of a volume function have the same 
volumes as the corresponding separated regions of of the original multivariate func-
tion. 

Fourth, as an implication of the previous similarities, it follows that the excess 
masses of the original function and its volume function are equal. That is, 
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Figure 7.16 Volume function in ID. (a) A ID function with three local maxima, labeled with 
Ml, M2, and M3. (b) Its volume function. 

for all A G R, where vf( /) is a volume function of / and (x)+ = max{0,x}. In 
fact, a stronger property 

f { f - X ) + = ( ( v f ( / ) - A ) + 
JA Jvf(A) 

holds, where A is a set associated with a level set tree whose level is A and vf(A) is 
the set associated with the corresponding node of a level set tree of vf(/) . 

Illustrations of a Volume Function Figure 7.16 shows a ID function and its 
volume function. Panel (a) shows a graph of the function, and panel (b) shows a 
graph of a volume function. Note that the corresponding level set tree has been 
shown in Figure 7.8. It can be seen that the volume function is a piecewise constant 
function. We have used 100 level sets to make the volume function. By increasing 
the number of levels, we can obtain more smooth-looking volume functions. Note 
that the support of the original function is contained in [—2,4] but the support of the 
volume function is contained in [0,6], since we use volume functions with the left 
endpoint of the support is equal to the origin. 

Figure 7.17 shows a 2D function and its volume function. Panel (a) shows a 
perspective plot of the function, and panel (b) shows a ID volume function. Note 
that the corresponding level set tree has been shown in Figure 7.9. 

Figure 7.18 shows a 2D standard Gaussian density function and its volume func-
tion. Panel (a) shows a perspective plot of the Gaussian density function, and panel (b) 
shows a volume function. The density is is unimodal but the volume function visu-
alizes now the tail behavior of the function. 

Figure 7.19 shows a 2D linear function and its volume function. Panel (a) shows a 
perspective plot of the function, and panel (b) shows a volume function. The function 
is unimodal on the box [—3,3] x [—3,3]. 
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Figure 7.18 Volume function of a Gaussian function, (a) A perspective plot of the standard 
Gaussian density function, (b) A volume function of the standard Gaussian density function. 

Figure 7.17 Volume function in 2D (a) A 2D function with three local maxima. (b) A 
volume function of a level set tree of the function.
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Figure 7.19 Volume function of a linear function, (a) A perspective plot of the linear function 
f(x)=xi + #2. (b) A volume function of the linear function. 

Calculation of a Volume Function A volume function is obtained from a level 
set tree with an otherwise rather easy construction, but the calculation of a volume 
function requires additionally the calculation of the volumes of the all separated parts 
of the level sets, and this can be computationally demanding. 

To construct a level set tree, we have presented two approximation methods for 
functions: (1) approximation using a partition and (2) approximation using level sets. 
The calculation of the volumes of the separated regions of the level sets is different 
for these two methods of function approximation. 

When we apply the approximation using a partition as in (7.7), then the calculation 
of the volumes of the disconnected parts of the level sets is simple, because each 
disconnected part of a level set is a union of disjoint rectangles. Thus the volume of 
a disconnected part of a level set is the sum of the volumes of the rectangles which 
make up this disconnected part. 

When we apply approximation using level sets, so that the level sets of the 
approximating function are defined as in (7.8) or as in (7.9), then the calculation 
of the volumes of the disconnected parts of the level sets is complicated, and we 
will use numerical methods to calculate these volumes. We define below the volume 
approximation for the case of using unions of balls, but the case of using unions of 
polyhedrons is similar. We have to calculate the volumes of the sets of the type 

where i i , . . . , i U A C { 1 , . . . , n } is a collection of indexes. These volumes can 
be calculated approximately using Monte Carlo integration and, in particular, the 

(7.10) 
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rejection method.55 Monte Carlo integration can be computationally expensive in a 
high-dimensional space, but we can use a method where Monte Carlo integration is 
used only for a small number of disconnected parts of level sets, and for the rest of 
the disconnected parts of level sets, an interpolation method is used to approximate 
the volumes. 

The interpolation method works in the following way. We choose levels Z i , . . . , Zm 

from the collection { A i , . . . , An} of all levels of the level set tree. We find the 
disconnected parts of level sets A\,..., Am so that set Ai is the part of the level 
set with level li. We estimate the volumes of sets Ai,..., Am. Let us denote the 
corresponding estimates of the volumes with v\,..., Let A be a set which is 
associated with the node of a level set tree, so that A is as written in (7.10). Define 

volume {A) 
K A tia • volume(i?p(0))' 

Let A be the level of the level set of which A is a part. We find levels k and Z^+i such 
that LI < A < U+\. We estimate KA with 

. _ A - l i 
HA — Ki -(- [Ki 1), 

H+l ~ H 

where 

Vi Vi 
K% 7ii • volume(i?p(0))' • volume(5p(0)) ' 

and rii and are the numbers from the representations Ai = U j = i ^p(Xkj)^ 

Ai+1 = [fj=i Bp(Xh). Finally we estimate 

volume(A) & - nA - volume(.B/O(0)). (7.11) 

Figure 7.20 shows a level set tree and a volume function of a kernel density 
estimate of the three-modal function shown in Figure 7.17. We have estimated the 
density using the kernel density estimator with the smoothing parameter h = 0.4 and 
the standard Gaussian kernel. The sample has 200 observations. 

Figure 7.21 illustrates the approximation of level sets with unions of balls. We 
approximate the kernel density estimate shown in Figure 7.20. Radius p = 0.55 is 
used in the formula (7.8). Panel (a) shows a level set tree of the density estimate. 
Panel (b) shows a volume function of the density. We have used the interpolation 
method (7.11) with m — 20 levels and with M — 200 numbers of observations in 

55In the rejection method we first find the smallest ball Br(p) that contains the union of the small balls. 
Second, we generate a Monte Carlo sample of size M from the uniform distribution on the ball Br(fi). 
(This sample can be generated by generating M random vectors z\,..., ZM from the standard normal 
distribution, generating a sample u\,..., UM from the uniform distribution on [0,1], and the final sample 
is n + ry/uizi/\\zi\\, i = 1 , . . . , M.) Third, we calculate the number of observations in the 
Monte Carlo sample which are inside of some small ball. The estimate of the volume of the union of small 
balls is equal to volume(Br(/x)) • ninsi(ie/M. 
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(a) level set tree (b) volume plot 

Figure 7.20 Kernel density estimate, (a) A level set tree of a kernel density estimate, (b) A 
volume function of the kernel density estimate. 

(a) level set tree (b) volume plot 

Figure 7.21 Approximation using unions of balls, (a) A level set tree of a kernel density 
estimate when the level sets are approximated using unions of balls, (b) A volume function 
when the volumes are calculated with Monte Carlo integration and interpolation. 

the Monte Carlo sample. The level set tree shows that the approximation has two 
spurious modes. The spurious modes are not visible in the volume function. It can 
be seen that the estimated level sets are a blown-up version of the true level sets, 
by comparing the estimated level set tree and volume function to the true volume 
function in Figure 7.17(b). The level sets are separating in higher levels than the true 
level sets. The spurious modes can be made to disappear if we make the smoothing 
parameter h or the radius p larger, but then the level sets are even more blown up. 
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7.4.4 Barycenter Plot 

We use a barycenter plot to visualize the locations of the barycenters of the separated 
components of the level sets of a function. In particular, a barycenter plot visualizes 
the locations of the modes. 

The barycenter of set A C Hd is defined as 

A barycenter is a d-dimensional vector which gives the center of mass of the set. It 
is the expectation of the random vector that is uniformly distributed on the set. The 
barycenter can lie outside set A 

In a level set tree each node is associated with a set. We calculate the barycenter 
of the sets and use this information to plot the level set tree. 

A barycenter plot consists of d windows when the function is defined in the d-
dimensional Euclidean space, so that the barycenter of a set is a vector of d real 
numbers. We have a window for each coordinate. Each window shows the positions 
of one coordinate of the barycenters for different levels. The nodes of the tree are 
drawn as bullets. 

1. The horizontal position of a node in the ith window is equal to the ith coordinate 
of the barycenter of the set associated with the node, where i — 1 , . . . , d. 

2. The vertical position of a node is equal to the level of the the set associated 
with the node. 

3. The parent-child relations are expressed by the line joining a child with the 

A barycenter plot visualizes the "skeleton" of the function. A barycenter plot 
shows the ID curves that go through the barycenters of all separated components of 
the level sets. 

To identify the nodes between different windows of a barycenter plot and between 
a volume function and a barycenter plot, we label the modes. The labeling of the 
modes will uniquely determine the correspondence of all nodes in different windows. 
To ease the identification of nodes and branches across different windows, we will 
also color the nodes. We will use the leafs-first coloring, That is, we first choose 
distinct colors for the leaf nodes and then travel toward the root nodes by changing 
the color always when two branches are merging. We also color the lines joining 
a child and a parent. The color of a line will be the same as the color of the child 
node; that is, the color of the line will be the same as the color of the node that is 
at the lower end of that line. The leafs-first coloring is appropriate because we want 
to highlight the modes of the function and thus we want to choose the colors for the 
modes in such a way that the modes are easy to distinguish from one another. 

Figure 7.22 shows a barycenter plot of a 2D three-modal function shown in 
Figure 7.17. Panel (a) shows the first coordinate of the barycenter plot, and panel (b) 

(7.12) 

parent. 
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

(a) coordinate 1 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

(b) coordinate 2 

Figure 7.22 Barycenter plot of a 2D density, (a) A barycenter plot of the first coordinate, 
(b) A barycenter plot of the second coordinate. 

shows the second coordinate of the barycenter plot. A level set tree of the density 
function was shown in Figure 7.9(b), and a volume function of the density function 
was shown in Figure 7.17(b). 

Figure 7.23 shows that a barycenter plot can be accompanied with slices, as defined 
in Section 7.1. Alternatively, in the case of density estimation we can accompany 
a barycenter plot with marginal densities, and in the case of regression function 
estimation we can accompany a barycenter plot with a partial dependence function, 
as defined in Section 7.2. This was noted in Karttunen, Holmstrom & Klemela 
(2014). 

7.4.5 Level Set Trees in Regression Function Estimation 

Let Rt be the S&P 500 return and 

Yt = Ru Xt — 

We consider the estimation of the conditional variance with the kernel estimator, 
using the S&P 500 data described in Section 1.6.1. We define the news impact curve 
as 

a2(x) = E(Yt
2\Xt =x). 

We make first the copula transform to the standard Gaussian marginals, as defined in 
Section 1.7.2, and use the kernel estimator 

t=1 

where pt(x) are the kernel weights, defined in (3.7). 
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(a) coordinate 1 (b) coordinate 2 

Figure 7.23 Barycenter plot of a 2D density with slices, (a) A barycenter plot of the first 
coordinate with slices, (b) The second coordinate. 

Figure 7.24 News impact function. A kernel estimate of the news impact function for the 
S&P 500 returns. 

Figure 7.24 shows the estimate with smoothing parameter h = 0.9. Recall that a 
kernel estimate of the one-dimensional news impact curve is shown in Figure 3.28, 
and a local linear estimate is shown in Figure 5.7. An ARCH(oo) model for the 
estimation of the news impact curve is mentioned in (3.64). 

Local maxima and minima do not reveal the partial effects of the explanatory 
variables. We have discussed partial effects in Section 1.1.3. To show the partial 
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(a) (b) 

Figure 7.25 A function and its derivative, (a) The standard Gaussian density function, (b) 
The derivative of the standard Gaussian density function. 

effects of the explanatory variables, we estimate the partial derivatives of the regres-
sion function. We have given two methods for the estimation of partial derivatives: 
(1) the partial derivatives of a kernel estimator in Section 3.2.9 and (2) a local linear 
estimator in Section 5.2.1. Before looking at the partial effects, let us recall the con-
cept of derivative. Figure 7.25 illustrates the concept of derivative. Panel (a) shows 
the density function of the standard Gaussian distribution. The density function is 

<t>{x) = (2TT)-1/2 exp{—X2/2}, x e R . 

Panel (b) shows the derivative of the standard Gaussian density function. The deriva-
tive is 

4>f(x) = —x(/>(x), x G R. 

The derivative is positive when the function is increasing, it takes value zero at the 
maximum of the function, and then the derivative is negative when the function is 
decreasing. The maximum of the derivative is at the point where the increase of the 
argument gives the largest increase for the function. The minimum of the derivative 
is at the point where the increase of the argument gives the largest decrease for the 
function. 

Figure 7.26 shows kernel estimators of the partial derivatives of the news impact 
function. Panel (a) shows an estimate of the first partial derivative, and panel (b) 
shows an estimate of the second partial derivative. We have used smoothing parameter 
h — 0.9 and the standard normal kernel. 

We can visualize the partial effects with the level set tree-based methods. It is 
useful to decompose a partial derivative to the positive part and to the negative part. 
We define the positive and the negative part of a function g : R d —̂  R as 

g+(x) = max{#(x),0}, g_(x) = - min{g(x), 0}. 
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(a) (b) 

Figure 7.26 Partial derivatives of the news impact function. Kernel estimates of the partial 
derivatives of the news impact function for the S&P 500 returns. 

Both the positive and the negative part of a function are nonnegative: g+ (x) > 0 and 
g-(x)> 0. 

Figure 7.27 visualizes the positive part of the kernel estimate of the first partial 
derivative, shown in Figure 7.26 (a). Panel (a) shows a volume function, panel (b) 
shows the first coordinate of the barycenter plot, and panel (c) shows the second 
coordinate of the barycenter plot. The volume function shows that there are two main 
areas where the partial effect is large. The barycenter plot identifies the areas to be 
in the two corners. The bigger effect is in the area where the first lag is large and the 
second lag is small (blue with label "M2"). The smaller effect is in the area where 
the first lag is large and the second lag is large (red with label "Ml"). 

Figure 7.28 visualizes the negative part of the kernel estimate of the first partial 
derivative, shown in Figure 7.26 (a). Panel (a) shows a volume function, panel (b) 
shows the first coordinate of the barycenter plot, and panel (c) shows the second 
coordinate of the barycenter plot. The volume function shows that there are one main 
area where the partial effect is large negative. The barycenter plot identifies the area 
to be in the corner where the first lag is small and the second lag is small (green with 
label "M3"). 

7.5 UNIMODAL DENSITIES 

Density visualization is useful also in the case of regression function estimation. In re-
gression function estimation we estimate the regression function f(x) = E(Y \ X = 
x), but it is important to know how the explanatory variable X e Hd is distributed. 
Having regression data (X{, Yi), i — 1 , . . . , n, we can use X^i = 1 , . . . , n, to esti-
mate the density function of X. Level set trees are useful for visualizing multimodal 
densities; but to visualize unimodal densities, simpler methods can be used. 
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(a) (b) coordinate 1 (c) coordinate 2 

Figure 7.27 The Positive part of the first partial derivative. A kernel estimate of the positive 
part of the first partial derivative of the news impact function for the S&P 500 returns, (a) A 
volume function, (h) A barycenter plot of the first coordinate, (c) A barycenter plot of the 
second coordinate. 

Figure 7.28 The negative part of the first partial derivative. A kernel estimate of the negative 
part of the first partial derivative of the news impact function for the S&P 500 returns, (a) A 
volume function, (b) A barycenter plot of the first coordinate, (c) A barycenter plot of the 
second coordinate. 
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7.5.1 Probability Content of Level Sets 

We can describe the heaviness of the tails of the distribution with density function 
/ : H d —>• R by looking at the probability content of the level sets 

A(/, A) = {x G Kd : f(x) > A} , A G R. 

Let us define the function 

MP) = -P/(A(/,P||/||OO)), p e [ 0,1]. 

For a uniform distribution, the function h is identically 1. For other distributions the 
function h is decreasing. We can estimate the function h with the help of density 
estimator / : R d —• R by setting 

h(p) = ±#{xi:f(Xi)>pMn}, 

where 
M n = m a x ^ f ( X i ) : i = 1 , . . . , n j . 

To calculate this estimate, it is enough to evaluate the density estimate / at the data 
points X\,..., Xn. 

For a given point x G R d , it is of interest to know whether the point is in the 
central area of the distribution or at the tails of the distribution. This can be found 
out by calculating 

P ( z ) = i # { X i : / ( * < ) > / > ) } . 

If P{x) is close to one, then the point x is in the tail area, and if P(x) is close to zero, 
then the point x is in the central area. Note that 

p(x)=h(f(x)/Mny 

7.5.2 Set Visualization 

In addition to the visualization of the mode structure of a density, it is also important 
to characterize the tail behavior of the density. Some modifications of the level set 
tree based methods, such as shape trees and tail trees, introduced in Klemela (2006) 
and Klemela (2007), can be used to analyze the tail behavior. Shape trees visualize 
the shapes of the level sets of a function, and tail trees visualize the shapes of point 
clouds. 

Set visualization can be reduced to the visualization of functions. Let A c Hd 

and let /a : A R be a function defined on A. Now set A can be visualized by 
visualizing the function j a- For example, we can choose j a as a distance function, 
so that 

fA(x) = Hz-/i||, 
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where fi G A is a center point. Alternatively, we can choose JA as a height function, 
so that 

fA(x) = Px, 

where P : R d —> R is a projection to one dimension. 



APPENDIX A 

R TUTORIAL 

We start the tutorial with data visualization tools like QQ plots, tail plots, and smooth 
scatter plots. Then we give an introduction for calculating an estimator in the linear 
regression, kernel regression, local linear regression, additive model, single-index 
model, and forward stagewise modeling. Finally we introduce the calculation of 
linear and kernel quantile regression estimators. The functions are available in the 
R-package "regpro." This package can be used to learn and to implement regression 
methods. We introduce also programs of package "denpro," which contains tools for 
data visualization, function visualization, and density estimation. 

A.1 DATA VISUALIZATION 

A.1.1 QQ Plots 

QQ plots are defined in Section 6.1.2. First we generate data from ̂ -distribution. It is 
useful to set the seed of the random number generator using the function "set.seed." 
Then we can later reproduce the results. In the following sections of this tutorial we 
skip the application of function "set.seed" to save space. 

Multivariate Nonparametric Regression and Visualization. By Jussi Klemela 
Copyright © 2014 John Wiley & Sons, Inc. 
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s e t . s e e d ( 1 ) ; d e n d a t < - r t ( 1 0 0 0 , d f = 6 ) 

We compare the sample to the normal distribution. The QQ plot is now the plot 
of the points 

, i = l,...,n, 

where x^ < • • • < #(n) is the ordered sample, pi = (i — l / 2 ) /n , and F is the 
distribution function of the standard normal distribution. We plot also the line x = y 
with the function "segments." 

x < - d e n d a t [ o r d e r ( d e n d a t ) ] ; n < - l e n g t h ( x ) 

p < - ( s e q ( 1 : n ) - 1 / 2 ) / n 

y < - q n o r m ( p , m e a n = m e a n ( x ) , s d = s d ( x ) ) 

p l o t ( x , y ) ; s e g m e n t s ( - 6 , - 6 , 6 , 6 ) 

A. 1.2 Tail Plots 

Tail plots are defined in Section 6.1.2. We show how a left tail plot can be made. The 
right tail plot can be made analogously. The left tail consists of the observations that 
are to the left from the median. The data are ordered before plotting. The left tail 
plot is a scatter plot of the observations in the left tail and the level, defined as the 
order statistics of the observations. The logarithmic scale is used for the y-axis. 

s p l i t < - m e d i a n ( d e n d a t ) 

l e f t . t a i l < - d e n d a t [ ( d e n d a t < s p l i t ) ] 

o r d < - o r d e r ( l e f t . t a i l , d e c r e a s i n g = T R U E ) 

o r d e r e d . l e f t . t a i l < - l e f t . t a i l [ o r d ] 

l e v e l < - s e q ( l e n g t h ( l e f t . t a i l ) , 1 ) 

p l o t ( o r d e r e d . l e f t . t a i l , l e v e l , l o g = " y M ) 

A.1.3 Two-Dimensional Scatter Plots 

Function "plot" can bes used to plot two dimensional scatter plots. 

n < - 2 0 0 0 0 ; d e n d a t < - m a t r i x ( r n o r m ( 2 * n ) , n , 2 ) ; p l o t ( d e n d a t ) 

When the sample size n is large, it is useful to plot binned data, as in Figure 6.1(b). 
Bin counts can be calculated with the function "pcf.histo" in package "denpro." 
Parameter N gives the number of bins for each direction. 

N < - c ( 1 0 0 , 1 0 0 ) ; p c f < - p c f . h i s t o ( d e n d a t , N ) 

Then we transform the bin counts to interval [0,1], make a scale of gray values, and 
use the function "plot.histo" from the package "denpro." 

f < - s q r t ( p c f $ v a l u e ) 

c o l o < - l - ( f - m i n ( f ) + 0 . 5 ) / ( m a x ( f ) - m i n ( f ) + 0 . 5 ) 

c o l < - g r a y ( c o l o ) ; p l o t . h i s t o ( p c f , c o l = c o l ) 

Available are also (a) the function "hexbin" in the R package "hexbin," which uses 
hexagonal binning, and (b) the function "hist2d" in the R package "gplots." 
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A.1.4 Three-Dimensional Scatter Plots 

Let us simulate three-dimensional data. 

d e n d a t < - m a t r i x ( r n o r m ( 3 * 2 0 0 0 0 ) , 2 0 0 0 0 , 3 ) 

Then we calculate a three-dimensional histogram. 

N < - c ( 1 0 0 , 1 0 0 , 1 0 0 ) ; p c f < - p c f . h i s t o ( d e n d a t , N ) 

We use the function "histo2data" to make data points from the histogram. The 
centers of the bins are the new data points. We rotate the new data and project 
it to two dimension. Before plotting the data, we order it in such a way that the 
observations with the largest value for the third coordinate are plotted last. 

h d < - h i s t o 2 d a t a ( p c f ) 

a l p h a < - p i ; b e t a < - p i ; g a m m a < - 0 

r o t d a t < - r o t a t i o n 3 d ( h d $ d e n d a t , a l p h a , b e t a , g a m m a ) 

i 1 < - 1 ; i 2 < - 2 ; i 3 < - 3 

o r d < - o r d e r ( r o t d a t [ , i 3 ] ) ; p l o t d a t < - r o t d a t [ o r d , c ( i l , i 2 ) ] 

p l o t ( p l o t d a t , c o l = h d $ c o l [ o r d ] ) 

A.2 LINEAR REGRESSION 

In a two-dimensional linear model the response variable Y satisfies 

Y = /30 + /3iX1+/32X2 + e, 

where X\ and X2 are the explanatory variables and e is an error term. 

First we simulate data from a linear model. Let the regression function coefficients 
be fa = 0, /?i = 2, and (32 = —2. Let the explanatory variable X = (Xi, X2) be 
uniformly distributed on [0, l]2 and let the error term be e ~ iV(0, cr2). Sample size 
is n and the number of explanatory variables is d = 2. 

n < - 1 0 0 ; d < - 2 ; x < - m a t r i x ( r u n i f ( n * d ) , n , d ) 

y < - m a t r i x ( x [ , 1 ] - 2 * x [ , 2 ] + 0 . 1 * r n o r m ( n ) , n , 1 ) 

The least squares estimator of linear regression coefficients was defined in (2.10) 
as 

P = (X'X)"1X'y, 

where X is the n x ( d + 1 ) matrix whose first columns consists of ones, the other 
columns are the observations from the d explanatory variables, and y is the n x 1 
vector of the observed values of the repsonse variable. In the code below, we first 
insert the column vector of ones to the original n x d matrix x. The matrix transpose is 
calculated with function t (), the matrix multiplication is calculated using the operator 
%*%, and the matrix inversion is calculated with function"solve." 

X < - m a t r i x ( 0 , n , d + 1 ) ; X [ , l ] < - 1 ; X [ , 2 : ( d + 1 ) ] < - x 
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X t X < - t ( X ) % * % X ; i n v X t X c - s o l v e ( X t X , d i a g ( r e p ( 1 , d + 1 ) ) ) 

b e t a c - i n v X t X % * % t ( X ) % * % y 

The ridge regression estimator was defined in (2.32) as 

4 = (X,X + A/)-1X ,y, 

where I is the d x d identity matrix, and A > 0. In ridge regression the data are 
normalized to have mean expectations and unit variances. 

Y < - ( y - m e a n ( y ) ) / s d ( c ( y ) ) 

X < - ( x - c o l M e a n s ( x ) ) / s q r t ( c o l M e a n s ( x " 2 ) - c o l M e a n s ( x ) " 2 ) 

l a m b d a < - 1 0 ; X t X < - t ( X ) % * % X + l a m b d a * d i a g ( r e p ( 1 , d ) ) 

i n v X t X < - s o l v e ( X t X , d i a g ( r e p ( 1 , d ) ) ) 

b e t a < - i n v X t X % * % t ( X ) % * % Y 

The above code is included in the function "linear" of package "regpro." 

A.3 KERNEL REGRESSION 

Kernel regression estimator was defined in (3.6). The kernel estimator is 

n 

I=I 

i = 1,..., n, 

K(x/h)/hd, and h > 0 is the 

A.3.1 One-Dimensional Kernel Regression 

First we simulate data. Let the regression function be 

f{x) = <l>(x) + <l>(x-3), 

where (j) is the density function of the standard normal density. Let the distribution 
of the explanatory variable X be uniform on [—1,4]2 and let the error term have 
distribution e ~ iV(0, cr2). Sample size is n. 

n < - 5 0 0 ; x < - 5 * m a t r i x ( r u n i f ( n ) , n , 1 ) - 1 

p h i l D < - f u n c t i o n ( x ) { ( 2 * p i ) ~ ( - 1 / 2 ) * e x p ( - x " 2 / 2 ) } 

f u n c < - f u n c t i o n ( t ) { p h i l D ( t ) + p h i l D ( t - 3 ) } 

y < - m a t r i x ( f u n c ( x ) + 0 . l * r n o r m ( n ) , n , 1 ) 

where 

M , Knix-Xt)' 

K : R d —)> R is the kernel function, Kh(x) = 
smoothing parameter. 
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We calculate f(xo), where xo = 0.5. Let us choose the kernel K to be the Bartlett 
kernel function K(x) = (1 — x2)+. The code below is implemented in function 
"kernesti.regr" of package "regpro." 

a r g < - 0 . 5 ; h < - 0 . 1 

k e r < - f u n c t i o n ( x ) { ( l - x ~ 2 ) * ( x ~ 2 < = l ) } 

w < - k e r ( ( a r g - x ) / h ) ; p < - w / s u m ( w ) 

h a t f < - s u m ( p * y ) # t h e e s t i m a t e d v a l u e 

Let us plot the estimate on a grid of points, together with the true regression 
function and the data. We choose N evaluation points. 

N< - 4 0 ; t < - 5 * s e q ( 1 , N ) / ( N + l ) - 1 

h a t f < - m a t r i x ( 0 , l e n g t h ( t ) , 1 ) ; f < - h a t f 

f o r ( i i n 1 : l e n g t h ( t ) ) { 

h a t f [ i ] < - k e r n e s t i . r e g r ( t [ i ] , x , y , h = 0 . 2 ) 

f [ i ] < - f u n c ( t [ i ] ) 

} 
p l o t ( x , y ) # d a t a 

m a t p l o t ( t , h a t f , t y p e = M l M , a d d = T R U E ) # e s t i m a t e 

m a t p l o t ( t , f , t y p e = M l " , a d d = T R U E , c o l = " r e d " ) # t r u e f u n c t i o n 

We can also use functions "pcf.kernesti" and "draw.pcf," which allow a more 
automatic plotting of the function. Function "draw.pcf" is included in package 
"denpro." 

p c f < - p c f . k e r n e s t i ( x , y , h = 0 . 2 , N = N ) 

d p < - d r a w . p c f ( p c f ) 

p l o t ( x [ o r d e r ( x ) ] , y [ o r d e r ( x ) ] ) # d a t a 

m a t p l o t ( d p $ x , d p $ y , t y p e = " l " , a d d = T R U E ) # e s t i m a t e 

m a t p l o t ( d p $ x , f u n c ( d p $ x ) , t y p e = " l " , a d d = T R U E ) # t r u e f u n c . 

A.3.2 Moving Averages 

We have defined moving averages of a time series in Section 3.2.4. The two-sided 
moving average is defined in (3.12) and the one-sided moving average is defined in 
(3.14). These can be calculated with the function "kernesti.regr" in the following 
way. In the case of two-sided moving averages we use a two-sided symmetric 
kernel K : R —> R. In the case of one-sided moving averages we use a one-sided 
nonsymmetric kernel K : [0, oo) -» R. 

Let us simulate data from a GARCH(1,1) model. The GARCH(1,1) model was 
defined in Section 3.9.2 [see (3.65)], as 

Yt = <Jt£t, o2
t = ao + ai^-i + fat-i-

We take the parameter values from (3.66), where the estimates for S&P 500 returns 
were given. 
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a 0 < - 7 . 2 * 1 0 ~ ( - 7 ) ; a l < - 0 . 0 0 7 7 ; b < - 0 . 9 2 

n < - 1 0 0 0 # s a m p l e s i z e 

y < - m a t r i x ( 0 , n , 1 ) ; s i g m a < - m a t r i x ( a O , n , 1 ) 

f o r ( t i n 2 : n ) { 

s i g m a [ t ] < - s q r t ( a 0 + a l * y [ t - 1 ] ~ 2 + b * s i g m a [ t - 1 ] " 2 ) 

y [ t ] < - s i g m a [ t ] * r n o r m ( 1 ) 

} 
We estimate the conditional variance sequentially, using one-sided exponentially 

weighted moving averages. 

e w m a < - m a t r i x ( 0 , n , 1 ) 

f o r ( i i n 1 : n ) { 

y c u r < - m a t r i x ( y [ 1 : i ] " 2 , 1 , 1 ) 

x c u r < - m a t r i x ( s e q ( 1 : i ) , i , 1 ) 

e w m a [ i ] < - k e r n e s t i . r e g r ( i , x c u r , y c u r , h = 1 0 , k e r n e l = " e x p " ) 

} 
p l o t ( e w m a , t y p e = " 1 " ) 

To calculate one-sided moving averages, we can use the faster program "ma," 
contained in the package "regpro." 

e w m a c - m a t r i x ( 0 , n , 1 ) 

f o r ( i i n l : n ) e w m a [ i ] < - m a ( y [ 1 : i ] , h = 1 0 ) 

p l o t (ewma, t y p e = " 1 1 1 ) 

A.3.3 Two-Dimensional Kernel Regression 

Two-dimensional regression function estimates can be visualized with perspective 
plots and contour plots. In addition, level set tree-based methods can be used. 

First we simulate data. The regression function is 

3 

f(x) = ^2<l>(x-mi), (A.l) 
2 = 1 

where mi = (0,0), m 2 = D x (0,1), m 3 = D x (1/2, >/3/2), D = 3, and </> is the 
density function of the standard normal density. The distribution of the explanatory 
variables X = (Xi, X2) is uniform on [—3,5]2 and the error term e has distribution 
N(0,a2). 

n< - 1 0 0 0 ; d < - 2 

x < - 8 * m a t r i x ( r u n i f ( n * d ) , n , d ) - 3 

C < - ( 2 * p i r ( - d / 2 ) 

p h i < - f u n c t i o n ( x ) { r e t u r n ( C * e x p ( - s u m ( x " 2 ) / 2 ) ) } 

D < - 3 ; c l < - c ( 0 , 0 ) ; c 2 < - D * c ( 1 , 0 ) ; c 3 < - D * c ( 1 / 2 , s q r t ( 3 ) / 2 ) 

f u n c < - f u n c t i o n ( x ) { p h i ( x - c l ) + p h i ( x - c 2 ) + p h i ( x - c 3 ) } 

f o r ( i i n l : n ) y [ i ] < - f u n c ( x [ i , ] ) + 0 . 0 1 * r n o r m ( 1 ) 
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We calculate f(xo), where xo — (0.5,0.5). Let us choose the kernel K to be 
the standard normal density function. The code below is implemented in function 
"kernesti.regr" of package "regpro." 

a r g < - c ( 0 . 5 , 0 . 5 ) ; h < - 0 . 5 

k e r < - f u n c t i o n ( x ) { r e t u r n ( e x p ( - r o w S u m s ( x ~ 2 ) / 2 ) ) } 

a r g u < - m a t r i x ( a r g , d i m ( x ) [ 1 ] , d , b y r o w = T R U E ) 

w < - k e r ( ( a r g u - x ) / h ) ; p < - w / s u m ( w ) 

h a t f < - s u m ( p * y ) # t h e e s t i m a t e 

Perspective Plots and Contour Plots Let us plot the estimate on a grid of 
points. A 2D function can be plotted with a perspective plot or with a contour plot. 
We plot below also the true regression function. 

n u m < - 3 0 # n u m b e r o f g r i d p o i n t s i n o n e d i r e c t i o n 

t < - 8 * s e q ( 1 , n u m ) / ( n u m + 1 ) - 3 ; u < - t 

h a t f < - m a t r i x ( 0 , n u m , n u m ) ; f < - h a t f 

f o r ( i i n 1 : n u m ) { 

f o r ( j i n 1 : n u m ) { 

a r g < - m a t r i x (c ( t [ i ] , u [ j ] ) , 1 , 2 ) 

h a t f [ i , j ] < - k e r n e s t i . r e g r ( a r g , x , y , h = 0 . 5 ) 

f [ i , j ] < - p h i ( a r g - c l ) + p h i ( a r g - c 2 ) + p h i ( a r g - c 3 ) 

} 
} 
c o n t o u r ( t , u , h a t f ) # k e r n e l e s t i m a t e 

p e r s p ( t , u , h a t f , t i c k t y p e = " d e t a i l e d " , p h i = 3 0 , t h e t a = - 3 0 ) 

c o n t o u r ( t , u , f ) # t r u e f u n c t i o n 

p e r s p ( t , u , f , p h i = 3 0 , t h e t a = - 3 0 , t i c k t y p e = " d e t a i l e d " ) 

We can use also functions "pcf.kernesti" and "draw.pcf" that allow a more auto-
matic plotting of the function. Function "draw.pcf" is in package "denpro." 

p c f < - p c f . k e r n e s t i ( x , y , h=0 . 5 , N=c (num, num) ) 

d p < - d r a w . p c f ( p c f , m i n v a l = m i n ( y ) ) 

p e r s p ( d p $ x , d p $ y , d p $ z , p h i = 3 0 , t h e t a = - 3 0 ) 

c o n t o u r ( d p $ x , d p $ y , d p $ z , n l e v e l s = 3 0 ) 

Level Set Trees Function"pcf.kernesti" gives an output that can be used to cal-
culate level set trees, using package "denpro." Funnction "leafsfirst" calculates a 
level set tree using the Leafsfirst algorithm. Function "plotvolu" plots a volume plot. 
Parameter "cutlev" can be used to cut the lower part of the tree and to zoom into 
the higher levels. Function "plotbary" plots the barycenter plot of the level set tree. 
Parameter "coordi" is used to choose the coordinate of the barycenter plot. Function 
"plottree" plots the tree structure of the level set tree. Function "treedisc" can be 
used to prune the level set tree to make the plotting faster. 

p c f < - p c f . k e r n e s t i ( x , y , h = 0 . 5 , N = c ( 1 5 , 1 5 ) ) 
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l s t < - l e a f s f i r s t ( p c f , l o w e s t = " r e g r " ) 

p l o t v o l u ( 1 s t , l o w e s t = " r e g r " ) 

p l o t v o l u ( 1 s t , l o w e s t = " r e g r " , c u t l e v = 0 . 0 5 ) 

p l o t b a r y ( 1 s t , l o w e s t = " r e g r " ) # b a r y c e n t e r p l o t , 1 s t c o o r d , 

p l o t b a r y ( 1 s t , c o o r d i = 2 , l o w e s t = " r e g r " ) # 2 n d c o o r d . 

p l o t t r e e ( 1 s t , l o w e s t = " r e g r " ) # p l o t l e v e l s e t t r e e 

t d < - t r e e d i s c ( 1 s t , p c f , n g r i d = 3 0 , l o w e s t = " r e g r " ) 

p l o t v o l u ( t d , m o d e l a b e l = F A L S E , l o w e s t = " r e g r " ) 

A.3.4 Three- and Higher-Dimensional Kernel Regression 

Three- and higher-dimensional regression function estimates can be visualized by 
one- or two-dimensional slices, partial dependency plots, and level set tree-based 
visualizations. 

First we simulate data. The regression function is a mixture 

4 

f ( x ) = ~Ci)' 
i=1 

where a = D x (1/2,0,0), c2 = D x ( -1 /2 ,0 ,0 ) , c3 = D x (0 ,^3/2 ,0) , 
c4 = D x (0, l/(2>/3), y/ys), D = 3, and <f> is the density function of the standard 
normal density. The distribution of the explanatory variables X = (X l , Xs) is 
uniform on [—3,3]3 and the error term e has distribution 7V(0, cr2). The sample size 
is denoted n and the number of explanatory variables is denoted d. 

n < - 1 0 0 0 ; d < - 3 ; x < - 8 * m a t r i x ( r u n i f ( n * d ) , n , d ) - 3 

C < - ( 2 * p i ) " ( - d / 2 ) 

p h i < - f u n c t i o n ( x ) { r e t u r n ( C * e x p ( - s u m ( x " 2 ) / 2 ) ) } 

D < - 3 ; c l < - D * c ( 1 / 2 , 0 , 0 ) ; c 2 < - D * c ( - 1 / 2 , 0 , 0 ) 

c 3 < - D * c ( 0 , s q r t ( 3 ) / 2 , 0 ) ; c 4 < - D * c ( 0 , 1 / ( 2 * s q r t ( 3 ) ) , s q r t ( 2 / 3 ) ) 

f u n < - f u n c t i o n ( x ) { p h i ( x - c l ) + p h i ( x - c 2 ) + p h i ( x - c 3 ) + p h i ( x - c 4 ) } 

y < - m a t r i x ( 0 , n , 1 ) 

f o r ( i i n l : n ) y [ i ] < - f u n ( x [ i , ] ) + 0 . 0 1 * r n o r m ( 1 ) 

Slices A one-dimensional slice of regression function estimate / : R d —» R is 

g(xi) = f(x 1,^0,2, • • • 

where xo,2,. . . , xo,d is fixed point. We can choose to be the sample median of the 
A;th coordinate of the vector of explanatory variables: xo ,/e = median(Xi?fc,... ,Xn jk) 
for k = 2 , . . . , d. 
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One-dimensional slices can be calculated using function "pcf.kernesti.slice." The 
parameter p = 0.5 indicates that the fixed point is the median. The parameter N 
gives the number of evaluation points. 

p c f < - p c f . k e r n e s t i . s l i c e ( x , y , h = 0 . 5 , N = 5 0 , c o o r d i = l , p = 0 . 5 ) 

d p < - d r a w . p c f ( p c f ) ; p l o t ( d p $ x , d p $ y , t y p e = " 1 " ) 

We can compare the one-dimensional slice to the one dimensional slice of the linear 
regression estimate. 

c o o r d i < - l ; n o t c o o r d i c - c ( 2 , 3 ) 

l i e - l i n e a r ( x , y ) ; a < - l i $ b e t a l [ n o t c o o r d i ] 

x 0 < - c ( m e d i a n ( x [ , 2 ] ) , m e d i a n ( x [ , 3 ] ) ) 

f l i n < - l i $ b e t a O + l i $ b e t a l [ c o o r d i ] * d p $ x + s u m ( a * x 0 ) 

p l o t ( d p $ x , f l i n , t y p e = " 1 " ) 

We can now plot the slice of kernel regression estimate and the slice of linear 
regression in the same figure. 

y l i m < - c ( m i n ( f l i n , d p $ y ) , m a x ( f l i n , d p $ y ) ) 

m a t p l o t ( d p $ x , f l i n , t y p e = " 1 " , y l i m = y l i m ) 

m a t p l o t ( d p $ x , d p $ y , t y p e = n l " , a d d = T R U E ) 

Partial Dependence Functions A partial dependence function eas defined in 
Section 1.2. A one-dimensional partial dependence function is 

9x1 (ffi) = Ef(xUX2,..., Xd), 

where f(x) = E(Y\X = x) and X = (X\,..., Xd). We can use function 
"pcf.kernesti. marg" to calculate a kernel estimate of a one dimensional partial de-
pendence function. 

p c f < - p c f . k e r n e s t i . m a r g ( x , y , h = 0 . 5 , N = 3 0 , c o o r d i = l ) 

d p < - d r a w . p c f ( p c f ) ; p l o t ( d p $ x , d p $ y , t y p e = " l " ) 

Level Set Trees Function"pcf.kernesti" gives an output that can be used to calcu-
late level set trees, using package "denpro." We proceed as explained in Section A.3.3, 
where two-dimensional regression function was visualized. 

p c f < - p c f . k e r n e s t i ( x , y , h = 0 . 5 , N = c ( 1 5 , 1 5 , 1 5 ) ) 

l s t < - l e a f s f i r s t ( p c f , l o w e s t = " r e g r " ) 

t d < - t r e e d i s c ( 1 s t , p c f , n g r i d = 3 0 , l o w e s t = " r e g r M ) 

p l o t v o l u ( t d , m o d e l a b e l = F A L S E , l o w e s t = M r e g r " ) 

p l o t b a r y ( t d , c o o r d i = 3 , l o w e s t = " r e g r " ) # 3 r d c o o r d , 

p l o t t r e e ( t d , l o w e s t = " r e g r " ) # l e v e l s e t t r e e 
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A.3.5 Kernel Estimator of Derivatives 

The kernel estimator of a partial derivative was defined in Section 3.2.9; see (3.28). 
The kernel estimator of the kth partial derivative, with the Gaussian kernel, is 

n 

Dkf{x) = ^qi(x)Yi, 
i=1 

where 

\ ( d n d \ 

where 

DkK(x) = —XkK(x), and Pi(x) are the weights of the kernel estimator. 

One-Dimensional Estimator of Derivatives First we simulate data. Let the 
regression function be 

f(x) = J* (</>(t) + <l>(t-3))dt, x G [—1,4], 

where <p is the density function of the standard normal density. Let the distribution 
of the explanatory variable X be uniform on [—1,4]2 and let the error term e has 
distribution 7V(0,cr2). 

n < - 1 0 0 0 ; x < - 5 * m a t r i x ( r u n i f ( n ) , n # 1 ) - 1 

p h i l D < - f u n c t i o n ( x ) { ( 2 * p i ) ~ ( - 1 / 2 ) * e x p ( - x ~ 2 / 2 ) } 

f u n c O < - f u n c t i o n ( t ) { p h i l D ( t ) + p h i l D ( t - 3 ) } 

f u n c < - f u n c t i o n ( t ) { 

n g r i d < - 1 0 0 0 ; s t e p < - 5 / n g r i d ; g r i d < - s e q ( - 1 , 4 , s t e p ) 

i 0 < - f l o o r ( ( t + 1 ) / s t e p ) 

r e t u r n ( s t e p * s u m ( f u n c O ( g r i d [ 1 : i O ] ) ) ) 

} 
y < - m a t r i x ( 0 , n , 1 ) 

f o r ( i i n l : n ) y [ i ] < - f u n c ( x [ i ] ) + 0 . 0 0 1 * r n o r m ( 1 ) 

The code below calculates ff(xo), where xo = 0. This code is implemented in 
function "kernesti.der" of package "regpro." 

a r g < - 0 ; h < - 0 . 5 ; k e r < - p h i l D 

d k e r < - f u n c t i o n ( t ) { r e t u r n ( - t * e x p ( - 1 " 2 / 2 ) ) } 

w < - k e r ( ( a r g - x ) / h ) ; p < - w / s u m ( w ) 

u < - d k e r ( ( a r g - x ) / h ) / h ~ 2 ; q < - l / s u m ( w ) * ( u - p * s u m ( u ) ) 

h a t f < - s u m ( y * q ) # t h e e s t i m a t e d v a l u e 
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Let us plot the estimate on a grid of points. 

t < - 5 * s e q ( l , n ) / ( n + 1 ) - 1 

h a t f < - m a t r i x ( 0 , l e n g t h ( t ) , 1 ) ; f < - h a t f 

f o r ( i i n 1 : l e n g t h ( t ) ) { 

h a t f [ i ] < - k e r n e s t i . d e r ( t [ i ] , x , y , h = 0 . 5 ) 

f [ i ] < - f u n c O ( t [ i ] ) 

} 
y l i m < - c ( m i n ( f , h a t f ) , m a x ( f , h a t f ) ) 

m a t p l o t ( t , h a t f , t y p e = " 1 " , y l i m = y l i m ) # e s t i m a t e 

m a t p l o t ( t , f , t y p e = " 1 " , a d d = T R U E , c o l = " r e d " ) # t r u e f u n c . 

We can use also functions "pcf.kernesti.der" and "draw.pcf," which allow a more 
automatic plotting of the function. Function "draw.pcf" is included in package 
"denpro." 

p c f < - p c f . k e r n e s t i . d e r ( x , y , h = 0 . 5 , N = n ) 

d p < - d r a w . p c f ( p c f ) 

p l o t ( x , y ) ; m a t p l o t ( d p $ x , d p $ y , t y p e = " 1 " , a d d = T R U E ) 

Two- and Higher-Dimensional Estimator of Derivatives First we simulate 
data. Let the regression function be 

f{xux2) = fl(x1)fl{x2), 

where f i is the function defined in (A.l) and x i , x 2 G [—1,4]. The distribution of 
the explanatory variable X is uniform on [—1,4]2. The error term e has distribution 
A^(0, cr2). The sample size is n and the number of explanatory variables is d = 2. 

n < - 1 0 0 0 ; d < - 2 ; x < - 5 * m a t r i x ( r u n i f ( n * d ) , n , d ) - 1 

p h i l D < - f u n c t i o n ( x ) { ( 2 * p i ) ~ ( - 1 / 2 ) * e x p ( - x ~ 2 / 2 ) } 

f u n c 0 < - f u n c t i o n ( t ) { p h i l D ( t ) + p h i l D ( t - 3 ) } 

f u n c l < - f u n c t i o n ( t ) { 

n g r i d < - 1 0 0 0 ; s t e p < - 5 / n g r i d ; g r i d < - s e q ( - 1 , 4 , s t e p ) 

i 0 < - f l o o r ( ( t + 1 ) / s t e p ) 

r e t u r n ( s t e p * s u m ( f u n c O ( g r i d [ 1 : i O ] ) ) ) 

} 
f u n c < - f u n c t i o n ( t ) { f u n d ( t [ 1 ] ) * f u n c l ( t [2] ) } 

y < - m a t r i x ( 0 , n , 1 ) 

f o r ( i i n l : n ) y [ i ] < - f u n c ( x [ i , ] ) + 0 . 0 0 1 * r n o r m ( 1 ) 

The code below calculates the first partial derivative Di / (0) , where L>i/(0) = 
df(x)/dxi\x=o. This code below is implemented in function "kernesti.der" of 
package "regpro." Parameter d i r e c is set equal to one to estimate the first partial 
derivative. 

d i r e c < - l ; a r g < - c ( 0 / 0 ) ; h < - 0 . 5 

k e r < - f u n c t i o n ( x x ) { e x p ( - r o w S u m s ( x x ~ 2 ) / 2 ) } 
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C < - ( 2 * p i ) ~ ( - 1 ) 

d k e r < - f u n c t i o n ( x x ) { - C * x x [ , d i r e c ] * e x p ( - r o w S u m s ( x x " 2 ) / 2 ) } 

a r g u < - m a t r i x ( a r g , n , d , b y r o w = T R U E ) 

w < - k e r ( ( a r g u - x ) / h ) ; p < - w / s u m ( w ) 

u < - d k e r ( ( a r g u - x ) / h ) / h ~ ( d + 1 ) ; q < - l / s u m ( w ) * ( u - p * s u m ( u ) ) 

v a l u e < - q % * % y # t h e e s t i m a t e d v a l u e 

Let us plot a perspective plot and contour plot of the estimate of the first partial 
derivative and of the true first partial derivative. Parameter num gives the number of 
grid points in one direction. 

n u m < - 3 0 ; t < - 5 * s e q ( 1 , n u m ) / ( n u m + 1 ) - 1 ; u < - t 

h a t f < - m a t r i x ( 0 , n u m , n u m ) ; d f < - h a t f 

f o r ( i i n l : n u m ) { f o r ( j i n l : n u m ) { 

a r g < - m a t r i x (c ( t [ i ] , u [ j ] ) , l , 2 ) 

h a t f [ i , j ] < - k e r n e s t i . d e r ( a r g , x , y , h = 0 . 5 ) 

d f [ i , j ] < - f u n c O ( a r g [ 1 ] ) * f u n c l ( a r g [ 2 ] ) 

} } 
c o n t o u r ( t , u , h a t f ) # k e r n e l e s t i m a t e 

p e r s p ( t , u , h a t f , t i c k t y p e = " d e t a i l e d " , p h i = 3 , t h e t a = - 3 0) 

c o n t o u r ( t , u , d f ) # t r u e f u n c t i o n 

p e r s p ( t , u , d f , p h i = 3 0 , t h e t a = - 3 0 , t i c k t y p e = " d e t a i l e d " ) 

We can use functions "pcf.kernesti.der" and "draw.pcf" to make perspective plots 
and contour plots. Function "draw.pcf" is in package "denpro." 

p c f < - p c f . k e r n e s t i . d e r ( x , y , h = 0 . 5 , N = c ( 5 0 , 5 0 ) , d i r e c = l ) 

d p < - d r a w . p c f ( p c f ) 

p e r s p ( d p $ x , d p $ y , d p $ z , p h i = 3 , t h e t a = - 3 0 ) 

c o n t o u r ( d p $ x , d p $ y , d p $ z ) 

We can also use level set tree-based methods, as in Section A.3.3. 

p c f < - p c f . k e r n e s t i . d e r ( x , y , h = 0 . 5 , N = c ( 1 5 , 1 5 ) ) 

l s t < - l e a f s f i r s t ( p c f , l o w e s t = " r e g r " ) 

p l o t v o l u ( 1 s t , l o w e s t = " r e g r " ) # v o l u m e p l o t 

p l o t b a r y ( 1 s t , c o o r d i = l , l o w e s t = " r e g r " ) # b a r y c e n t e r p l o t 

p l o t t r e e ( 1 s t , l o w e s t = " r e g r " ) # l e v e l s e t t r e e 

A.3.6 Combined State- and Time-Space Smoothing 

Locally stationary data were discussed in Section 3.2.5. To estimate a regression 
function with locally stationary data, it can be useful to combine state-space kernel 
estimator with moving averages. The kernel estimator combining time- and state-
space smoothing, as defined in (3.20), is 

t 

2 = 1 
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where the weights have the form 

u; (x t) K((X " X i ) , k ) L{{t " i ) , 9 ) i - 1 t wz[x, t) - K{{x _ X j ) / h ) m _ j ) / g ) , i — l,... ,t, 

where K : Hd —» R, L : R —> R are kernel functions and h > 0, g > 0 are 
smoothing parameters. 

Let us simulate locally stationary data. Let the regression functions be 

ft(x) = 0 . 5 - /41 }) + 0.54>(x - / 4 2 ) ) , 

where = —2 t /T, = 2t /T, and 0 is the density function of the standard 
normal distribution. The design variables Xt are i.i.d. 7V(0,1) and the errors et are 
i.i.d. 7V(0,0.12). 

n < - 1 0 0 0 ; x < - m a t r i x ( r n o r m ( n ) , n , 1 ) ; y < - m a t r i x ( 0 , n , 1 ) 
f o r ( i i n 1 : n ) { 

m u l e - - i / n * 2 ; m u 2 < - i / n * 2 
f u n c < - f u n c t i o n ( t ) { 

r e t u r n ( 0 . 5 * d n o r m ( t - m u l ) + 0 . 5 * d n o r m ( t - m u 2 ) ) 

} 
y [ i ] < - f u n c ( x [ i ] ) + 0 . 1 * r n o r m ( 1 ) 

} 
Now we apply function "kernesti.regr." The smoothing parameter h is the state-

space smoothing parameter and the smoothing parameter g is the time-space smooth-
ing parameter. 

a r g < - 0 ; k e r n e s t i . r e g r ( a r g , x , y , h = l , g = 1 0 , g e r n e l = " e x p " ) 

A.4 LOCAL LINEAR REGRESSION 

Local linear estimator was discussed in Section 5.2.1. 

A.4.1 One-Dimensional Local Linear Regression 

We use the same simulated data as was used in Section A.3.1 to illustrate one-
dimensional kernel regression. 

Let us choose the kernel K to be the Bartlett function K(x) — (1 — x 2 ) + . We 
want to calculate f(xo), where x0 = 0.5. The weights of the one-dimensional local 
linear regression are given in (5.9). 

a r g < - 0 . 5 ; h < - 0 . 5 
k e r < - f u n c t i o n ( x ) { ( l - x ~ 2 ) * ( x " 2 < = l ) } 
w < - k e r ( ( a r g - x ) / h ) ; p<-w/sum(w) 
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b a r x < - s u m ( p * x ) ; b a r y < - s u m ( p * y ) 

q < - p * ( 1 - ( ( x - b a r x ) * ( b a r x - a r g ) ) / s u m ( p * ( x - b a r x ) ~ 2 ) ) 

h a t f < - s u m ( q * y ) 

The above code is implemented in function "loclin" of package "regpro." Let us 
plot the estimate on a grid of points. 

N< - 4 0 ; t < - 5 * s e q ( l f N ) / ( N + 1 ) - 1 

h a t f < - m a t r i x ( 0 / l e n g t h ( t ) , 1 ) ; f < - h a t f 

f o r ( i i n 1 : l e n g t h ( t ) ) { 

h a t f [ i ] < - l o c l i n ( t [ i ] , x , y , h = 0 . 5 , k e r n e l = " b a r t " ) 

f [ i ] < - p h i l D ( t [ i ] ) + p h i l D ( t [ i ] - 3 ) 

} 
p l o t ( x , y ) # d a t a 

m a t p l o t ( t , h a t f , t y p e = " l " , a d d = T R U E ) # e s t i m a t e 

m a t p l o t ( t , f , t y p e = " 1 " , a d d = T R U E ) # t r u e f u n c t i o n 

We can use also functions "pcf.loclin" and "draw.pcf" that allow a more automatic 
plotting of the function. Function "draw.pcf" is in package "denpro." 

p c f < - p c f . l o c l i n ( x , y , h = 0 . 5 , N = 4 0 , k e r n e l = " b a r t " ) 

d p < - d r a w . p c f ( p c f ) 

p l o t ( x , y ) 

m a t p l o t ( d p $ x , d p $ y , t y p e = " l " , add=TRUE) 

m a t p l o t ( d p $ x , f u n c ( d p $ x ) , t y p e = " l " , a d d = T R U E ) 

A.4.2 Two-Dimensional Local Linear Regression 

We use the same two-dimensional simulated data as was used in Section A.3.3 to 
illustrate two-dimensional kernel regression. 

The local linear regression estimator was defined in (5.6) as a solution of weighted 
linear least squares estimator. The weighted least squares estimator is 

P = (X./W(x)X.)~1X./W(x)y, 

where X is the n x (d + 1) matrix whose first column consists of ones, the other 
columns are the observations from the d explanatory variables, and y is the n x 1 
vector of the observed values of the response variable. 

First we calculate the matrix W of the kernel weights. Object x is the n x d matrix 
of the observed values of the explanatory variables. In this example we have d = 2. 

a r g < - c ( 0 , 0 ) ; a r g u < - m a t r i x ( a r g , n , d , b y r o w = T R U E ) 

k e r c - f u n c t i o n ( x ) { r e t u r n ( e x p ( - r o w S u m s ( x ~ 2 ) / 2 ) ) } 

w < - k e r ( ( x - a r g u ) / h ) ; w e i g h t s < - w / s u m ( w ) ; W < - d i a g ( w e i g h t s ) 

In the code below we first insert the column vector of ones to the original n x d 
matrix x. The matrix transpose is calculated with function t () , and the matrix 
multiplication is calculated using the operator % * %. The matrix inversion can be 
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calculated with function"solve." We obtain the vector e s t i of three elements. The 
first element is the estimate of the regression function at one point. The second 
element is the estimate of the first partial derivative, and the third element is the 
estimate of the second partial derivative. 

X < - c b i n d ( m a t r i x ( 1 , n , 1 ) , x - a r g u ) 

A < - t ( X ) % * % W % * % X ; i n v A < - s o l v e ( A , d i a g ( r e p ( l , d + l ) ) ) 

e s t i < - i n v A % * % t ( X ) % * % W % * % y ; e s t i m a t e < - e s t i [ 1 ] 

We can use also functions "pcf.loclin" and "draw.pcf," which allow a more auto-
matic plotting of the function. Function "draw.pcf" is included in package "denpro." 

p c f < - p c f . l o c i i n ( x , y , h = 0 . 5 , N = c ( 2 0 , 2 0 ) ) 

d p < - d r a w . p c f ( p c f ) 

p e r s p ( d p $ x , d p $ y , d p $ z , t i c k t y p e = " d e t a i l e d " , p h i = 3 0 , t h e t a = 3 ) 

c o n t o u r ( d p $ x , d p $ y , d p $ z , n l e v e l s = 3 0) 

A.4.3 Three- and Higher-Dimensional Local Linear Regression 

When the functions are three- and higher-dimensional, we cannot use perspective 
plots and contour plots. However, we can use level set tree-based methods. Let us 
use the same three-dimensional data which was used to illustrate three-dimensional 
kernel estimation in Section A.3.4. 

Function"pcf.loclin" gives an output that can be used to calculate level set trees, 
using package "denpro." We proceed as explained in Section A.3.3, where two-
dimensional regression function was visualized. After calculating a level set tree, we 
plot volume plots and a barycenter plot. 

p c f < - p c f . l o c i i n ( x , y , h = 0 . 5 , N = c ( 1 5 , 1 5 , 1 5 ) ) 

l s t < - l e a f s f i r s t ( p c f , l o w e s t = " r e g r " ) 

t d < - t r e e d i s c ( 1 s t # p c f # n g r i d = 3 0 , l o w e s t = " r e g r " ) 

p l o t v o l u ( t d / m o d e l a b e l = F A L S E / l o w e s t = " r e g r " ) 

p l o t v o l u ( t d , m o d e l a b e l = F A L S E , l o w e s t = " r e g r " , c u t l e v = 0 . 0 3 ) 

p l o t b a r y ( t d , c o o r d i = l , l o w e s t = " r e g r " ) 

A.4.4 Local Linear Derivative Estimation 

We can use the same two-dimensional data to illustrate local linear partial derivative 
estimation as was used to illustrate kernel estimation of partial derivatives in Sec-
tion A.3.5. We use function "pcf.loclin" with the argument type. The argument 
type is set to 1 to estimate the first partial derivative, it is set to 2 to estimate the 
second partial derivative, and similarily in the higher- than two-dimensional cases. 
Function "pcf.loclin" is included in package "regpro," and function "draw.pcf" is 
included in package "denpro." 
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p c f < - p c f . l o c l i n ( x , y , h = 0 . 5 , N = c ( 2 0 , 2 0 ) , t y p e = l ) 

d p < - d r a w . p c f ( p c f ) 

p e r s p ( d p $ x , d p $ y , d p $ z , t i c k t y p e = " d e t a i l e d " , p h i = 3 , t h e t a = 3 0) 

c o n t o u r ( d p $ x , d p $ y , d p $ z , n l e v e l s = 3 0 ) 

A.5 ADDITIVE MODELS: BACKFITTING 

The additive models were covered in Section 4.2, where the backfitting algorithm 
was presented. In the two-dimensional additive model the response variable Y can 
be written 

Y = /i(Xi) + /2(X2) + e, 

where X\ and X2 are the explanatory variables, fk : R -> R are the unknown 
components, and e is an error term. 

First we simulate data from an additive model. The distribution of the explanatory 
variable X = (Xi, X2) is uniform on [0, l]2. The regression function is f(xi, x2) = 
fi(xi) + /2(X2), where h(Xl) = x\ - EX\ and f2(x2) = log(x2) - Elog(X2). 
The response variable is Y = f(xi, x2) -f e, where e ~ N(0, cr2). 

n < - 1 0 0 ; d < - 2 ; x < - m a t r i x ( r u n i f ( n * d ) , n , d ) 

f u n l < - f u n c t i o n ( t ) { t } ; f u n 2 < - f u n c t i o n ( t ) ( l o g ( t ) } 

f < - m a t r i x ( 0 , n , d ) 

f [ , 1 ] < - f u n l ( x [ , 1 ] ) - m e a n ( f u n l ( x [ , 1 ] ) ) 

f [ , 2 ] < - f u n 2 ( x [ f 2] ) - m e a n ( f u n 2 ( x [ , 2] ) ) 

y < - f [ , 1 ] + f [ , 2 ] + 0 . l * r n o r m ( n ) 

We estimate the additive model using function "additive." We need to give as 
arguments the n x d-matrix x of the values of the explanatory variables, the n vector 
y of the values of the response variable, the smoothing parameter h > 0, and the 
number of iterations M > 1. 

h < - 0 . 1 ; M < - 5 ; e s t < - a d d i t i v e ( x , y , h = h , M = M ) 

The output e s tSeva l is an n x d matrix that contains the evaluations /^(X^fc), 
i — 1 , . . . , n, k = 1 , . . . , d, where Xik is the fcth component of the ith observation. 
Next we plot the components of the estimate. The code below plots the estimate 
of the first component and the true first component, The functions are plotted at the 
observations Xn, i = 1 , . . . , n. 

o r e - o r d e r ( x [ , 1 ] ) ; t < - x [ o r , l ] 

h a t f l < - e s t $ e v a l [ o r , 1 ] ; f l < - f [ o r , 1 ] 

p l o t ( t , y [ o r ] ) # d a t a 

m a t p l o t ( t , h a t f 1 , t y p e = " l " , a d d = T R U E ) # e s t i m a t e 

m a t p l o t ( t , f 1 , t y p e = " 1 " , a d d = T R U E ) # t r u e f u n c t i o n 

We can evaluate the estimate on a regular grid. We need to give the matrix 
es tSeva l as an argument. The matrix was calculated at a previous step. The code 
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below calculates the estimates fa and fa and the estimate f(xi,x2) = y + fi(x\) + 
fa (x2) on a grid, where y is the mean of the values of the response variable. Parameter 
num gives the number of grid points in one direction. 

n u m < - 5 0 ; t < - s e q ( 1 , n u m ) / ( n u m + 1 ) ; u < - t 

h a t f < - m a t r i x ( 0 , n u m , n u m ) 

h a t f 1 < - m a t r i x ( 0 , n u m , 1 ) ; h a t f 2 < - m a t r i x ( 0 , n u m , 1 ) 

f u n c < - f u n c t i o n ( a r g ) { 

a d d i t i v e ( x , y , a r g , h = h , M = M , e v a l = e s t $ e v a l ) $ v a l v e c 

} 
f o r ( i i n l : n u m ) { f o r ( j i n l : n u m ) { 

v a l v e c < - f u n c (c ( t [ i ] , u [ j ] ) ) 

h a t f 1 [ i ] < - v a l v e c [ 1 ] ; h a t f 2 [ j ] < - v a l v e c [ 2 ] 

h a t f [ i , j ] < - m e a n ( y ) + s u m ( v a l v e c ) 

} } 
p l o t ( t , h a t f 1 , t y p e = " 1 " ) 

p e r s p ( t , u , h a t f , t i c k t y p e = " d e t a i l e d " , p h i = 3 0 , t h e t a = - 3 0) 

Function "pcf.additive" can be used for perspective plots, contour plots, and level 
set trees. 

N < - c ( 5 0 , 5 0 ) 

p c f < - p c f . a d d i t i v e ( x , y , N = N , h = h , e v a l = e s t $ e v a l , M = M ) 

d p < - d r a w . p c f ( p c f , m i n v a l = m i n ( p c f $ v a l u e ) ) 

p e r s p ( d p $ x , d p $ y , d p $ z , p h i = 3 0 , t h e t a = - 3 0) 

c o n t o u r ( d p $ x , d p $ y , d p $ z , n l e v e l s = 3 0 ) 

l s t c - l e a f s f i r s t ( p c f ) 

p l o t v o l u ( 1 s t , l o w e s t = " r e g r " ) 

A.6 SINGLE-INDEX REGRESSION 

The single-index model was defined in Section 4.1. In the single-index model the 
response variable can be written 

where X G R d , 6 G R d is an unknown direction vector with ||0|| = 1, and 
g : R —> R is an unknown link function. 

First we simulate data from a single-index model. The distribution of the vector 
X = (Xi, X2) of the explanatory variables is the standard normal 2D distribution. 
The error term is e ~ iV(0, cr2). The index vector is 6 = (0,1) and the link function 
g is the distribution function <I> of the standard normal distribution. 

n < - 1 0 0 ; x < - m a t r i x ( r n o r m ( n * 2 ) , n , 2 ) 

t h e t a < - m a t r i x ( c ( 0 , 1 ) , 2 , 1 ) ; x l d < - x % * % t h e t a 

y < - p n o r m ( x l d ) + 0 . 1 * r n o r m ( n ) 
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A.6.1 Estimating the Index 

We cover four estimators discussed in Section 4.1.2: derivative method, average 
derivative method, numerical minimization to find the least squares solution, and a 
stagewise algorithm to find the least squares solution. 

The average derivative method was defined in (4.9). The following commands 
can be used to to estimate the direction vector 0 with the average derivative method. 

m e t h o d < - " a v e d " ; h < - l . 5 

h a t . t h e t a < - s i n g l e . i n d e x ( x , y , h = h , m e t h o d = m e t h o d ) 

The derivative method was defined in (4.8). In the derivative method we have to 
specify additionally the point at which the gradient is estimated. We choose the point 
(0,0). 

m e t h o d < - " p o i d " ; h < - 1 . 5 ; a r g d < - c ( 0 , 0 ) 

h a t . t h e t a < - s i n g l e . i n d e x ( x , y , h = h , m e t h o d = m e t h o d , a r g d = a r g d ) 

The direction vector can be estimated using numerical minimization to find the 
solution in the least squares problem (4.2). The numerical minimization can be 
performed with the following commands. 

m e t h o d c - " n u m e " ; h < - 1 . 5 

h a t . t h e t a < - s i n g l e . i n d e x ( x , y , h = h , m e t h o d = m e t h o d ) 

The least squares problem (4.2) can be solved by using an iterative method, as 
explained in Section 4.1.2. The following commands can be used to apply the iterative 
method. Argument M gives the number of iterations. 

m e t h o d < - " i t e r " ; h < - 1 . 5 ; M < - 1 0 

h a t . t h e t a < - s i n g l e . i n d e x ( x , y , h = h , m e t h o d = m e t h o d , M = M ) 

A.6.2 Estimating the Link Function 

After estimating the direction vector 0, we have to estimate the link function g : R —» 
R. We do this by the kernel estimator using the following commands, which plot 
also the true link function. 

x l d < - x % * % h a t . t h e t a # p r o j e c t d a t a t o ID 

p c f < - p c f . k e r n e s t i ( x l d , y , h = 0 . 3 , N = 2 0) 

d p < - d r a w . p c f ( p c f ) 

m a t p l o t ( d p $ x , d p $ y , t y p e = M l " , y l i m = c ( m i n ( y , 0 ) , m a x ( y , 1 ) ) ) 

m a t p l o t ( d p $ x , p n o r m ( d p $ x ) , t y p e = " l M , a d d = T R U E ) 

A.6.3 Plotting the Single-Index Regression Function 

We can estimate the regression function f(x) = g(6'x) on a grid with the function 
"pcf.single. index." 
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h < - 0 . 3 ; N < - 0 ( 4 0 , 4 0 ) ; m e t h o d < - " p o i d " 

p c f < - p c f . s i n g l e . i n d e x ( x , y , h = h , N = N , m e t h o d = m e t h o d ) 

d p < - d r a w . p c f ( p c f ) 

p e r s p ( d p $ x , d p $ y , d p $ z , t i c k t y p e = " d e t a i l e d " , p h i = 3 # t h e t a = 3 0 ) 

If the data do not come from a single-index model, it can be better to use the 
derivative method, and estimate the gradient at the point of evaluation. We give an 
example where the regression function is the standard normal density function. First 
we simulate data. 

n < - 1 0 0 0 ; x < - m a t r i x ( 6 * r u n i f ( n * 2 ) - 3 , n , 2 ) ; C < - ( 2 * p i ) ~ ( - 1 ) 

p h i < - f u n c t i o n ( x ) { r e t u r n ( C * e x p ( - r o w S u m s ( x ~ 2 ) / 2 ) ) } 

y < - p h i ( x ) + 0 . l * r n o r m ( n ) 

Then we use the derivative method and estimate the direction so that the gradient is 
estimated separately at each the point of evaluation. 

m e t h o d < - " p o i d " ; h < - 1 . 5 ; n u m < - 5 0 

t < - 6 * s e q ( 1 , n u m ) / ( n u m + 1 ) - 3 ; u < - t 

h a t f < - m a t r i x ( 0 , n u m , n u m ) 

f o r ( i i n 1 : n u m ) { f o r ( j i n l : n u m ) { 

a r g < - c ( t [ i ] , u [ j ] ) 

h a t f [ i , j ] < -

s i n g l e . i n d e x ( x , y , a r g = a r g , h = h , m e t h o d = m e t h o d , a r g d = a r g ) 

} } 
p e r s p ( t , u , h a t f , t i c k t y p e = " d e t a i l e d " , p h i = 3 0 , t h e t a = - 3 0 ) 

A.7 FORWARD STAGEWISE MODELING 

Algorithms for forward stagewise modeling were given in Section 5.4. We include the 
stagewise fitting of additive models of Section 5.4.2 and projection pursuit regression 
of Section 5.4.3 to this tutorial. 

A.7.1 Stagewise Fitting of Additive Models 

An algorithm for stagewise fitting of additive models was given in Section 5.4.2. The 
stagewise fitting is an alternative method to backfitting for finding an estimate with 
the additive structure. We use the same simulated data as in the case of backfitting 
the additive model in Section A.5. 

We estimate the additive model using function "additive.stage." The arguments 
are the n x d matrix x of the values of the explanatory variables, the n vector y of 
the values of the response variable, the smoothing parameter h > 0, and the number 
of iterations M. 

h < - 0 . 1 ; M < - 5 ; e s t < - a d d i t i v e . s t a g e ( x , y , h = h , M = M ) 
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The output "est$eval" is the n x d matrix that contains the evaluations fk(Xi^), 
i = 1 , . . . , n, k = 1 , . . . , d. We can use the same code to plot the components as in 
the case of the backfitting algorithm. 

We can evaluate the estimate on a regular grid. The evaluation proceeds differently 
than in the case of backfitting, because now we need to give as arguments the n x M 
matrix of residuals and the M vector, which indicates which variable is chosen at 
each step. These are given as "est$residu" and "es t$deetNote that in the case of 
backfitting it is enough to calculate the n x d matrix of final ^/-values, whereas to 
evaluate the stagewise estimator at an arbitrary point, we need to calculate and save 
the complete n x M matrix of residuals and the indicator vector which contains the 
estimated direction for each step. 

n u m < - 5 0 ; t < - s e q ( 1 , n u m ) / ( n u m + 1 ) ; u < - t 

h a t f < - m a t r i x ( 0 , n u m , n u m ) 

f u n i c - f u n c t i o n ( t , u ) { 

a d d i t i v e . s t a g e ( x , y , c ( t , u ) , h = h , M = M , r e s i d u = e s t $ r e s i d u , 

d e e t = e s t $ d e e t ) $ v a l u e 

} 
f o r ( i i n l : n u m ) { f o r ( j i n l : n u m ) { 

h a t f [ i , j ] < - f u n i ( t [ i ] , u [ j ] ) 

} } 
p e r s p ( t , u , h a t f , t i c k t y p e = " d e t a i l e d " , p h i = 3 0 , t h e t a = 3 ) 

A.7.2 Projection Pursuit Regression 

An algorithm for projection pursuit regression was given in Section 5.4.3. We sim-
ulate data where X = (X\, X2) is uniformly distributed on [—3,3]2, e ~ N(0, cr2), 
and the regression function is the density function of the standard 2D normal distri-
bution. 

n < - 1 0 0 0 ; x < - m a t r i x ( 6 * r u n i f ( n * 2 ) - 3 , n , 2 ) 

p h i < - f u n c t i o n ( x ) { ( 2 * p i ) ~ ( - 1 ) * e x p ( - r o w S u m s ( x ~ 2 ) / 2 ) } 

y < - p h i ( x ) + 0 . 1 * r n o r m ( n ) 

We calculate the projection pursuit regression function estimate using function 
"pp.regression." The arguments are the n x d-matrix x of the values of the explanatory 
variables, the n vector y of the values of the response variable, the smoothing 
parameter h > 0, and the number of iterations M. 

h < - 0 . 5 ; M < - 3 ; e s t < - p p . r e g r e s s i o n ( x , y , h = h , M = M ) 

The output "est$eval" is a vector of length n that contains the evaluations f ( X i ) , 
i = 1 , . . . , n. We can evaluate the estimate on a regular grid. We need to give as 
arguments the n x M matrix of residuals and the M vector of directions These 
are given as "est$residu" and "est$teet." 

n u m < - 3 0 ; t < - 6 * s e q ( 1 , n u m ) / ( n u m + 1 ) - 3 ; u < - t 
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h a t f < - m a t r i x ( 0 , n u m , n u m ) 

f u n i c - f u n c t i o n ( t , u ) { 

p p . r e g r e s s i o n ( x , y , c ( t , u ) , h = h , M = M , r e s i d u = e s t $ r e s i d u , 

t e e t = e s t $ t e e t ) $ v a l u e 

} 
f o r ( i i n l : n u m ) { f o r ( j i n l : n u m ) { 

h a t f [ i , j ] < - f u n i ( t [ i ] , u [ j ] ) 

} } 
p e r s p ( t , u , h a t f , t i c k t y p e = " d e t a i l e d " , p h i = 2 0 , t h e t a = - 3 0) 

A.8 QUANTILE REGRESSION 

Quantile regression with the kernel method was introduced in Section 3.8. Linear 
quantile regression was introduced in Section 5.1.2. Let us use the same data as was 
applied in Section A.3.1 to illustrate one-dimensional kernel regression. 

A.8.1 Linear Quantile Regression 

Function "linear.quan" implements linear quantile regression and it is included in 
package "regpro." 

l i < - l i n e a r . q u a n ( x , y , p = 0 . 1 ) 

N < - 5 0 ; t < - 5 * s e q ( l , N ) / ( N + 1 ) - 1 ; q h a t < - m a t r i x ( 0 , N , 1 ) 

f o r ( i i n 1 : N ) q h a t [ i ] < - l i $ b e t a O + l i $ b e t a l * t [ i ] 

p l o t ( x , y ) ; l i n e s ( t , q h a t ) 

Let us look at the code of function "linear.quan." First we define function "fn," 
which calculates the quantile loss, when the argument "b" is the d + 1 vector of the 
intercept and the coefficients of a linear function. 

p < - 0 . 1 ; n < - d i m ( x ) [ 1 ] ; d < - d i m ( x ) [ 2 ] 

r h o < - f u n c t i o n ( t ) { t * ( p - ( t < 0 ) ) } 

f n < - f u n c t i o n ( b ) { 

b 2 < - m a t r i x ( b [ 2 : ( d + 1 ) ] , d , l ) ; g x < - b [ 1 ] + x % * % b 2 

r o < - r h o ( y - g x ) ; r e t u r n ( s u m ( r o ) / n ) 

} 
Then we use function "optim," which performs the numerical optimization. As the 
initial value for the optimization we give the solution of the least squares regression. 

l i < - l i n e a r ( x , y ) ; p a r < - c ( l i $ b e t a 0 , l i $ b e t a l ) # i n i t i a l v a l u e 

o p < - o p t i m ( p a r = p a r , f n = f n , m e t h o d = " L - B F G S - B " ) 

b e t a O < - o p $ p a r [ 1 ] # t h e i n t e r c e p t 

b e t a l < - o p $ p a r [ 2 : ( d + 1 ) ] # t h e c o e f f i c i e n t s 

A.8.2 Kernel Quantile Regression 

Function "pcf.kern.quan" implements kernel quantile regression. 
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p c f < - p c f . k e r n . q u a n ( x , y , h = 0 . 5 , N = 5 0 , p = 0 . 1 ) 
d p < - d r a w . p c f ( p c f ) ; p l o t ( x , y ) ; l i n e s ( d p $ x , d p $ y , t y p e = " 1 " ) 

Let us look at the code of function "pcf.kern.quan." We want to calculate the 
estimate at point arg. First we calculate the weights, similarily as in kernel mean 
regression. 

a r g < - l ; h < - 0 . 5 ; p < - 0 . 1 
k e r < - f u n c t i o n ( x ) { ( l - x ~ 2 ) * ( x ~ 2 < = l ) } 
w < - k e r ( ( a r g - x ) / h ) ; p s < - w / s u m ( w ) 

Then we implement the rule given in (3.55). The estimate of p-quantile is "hatq." 

o r < - o r d e r ( y ) ; p s . o r d < - p s [o r ] ; i < - l ; zum<-0 
w h i l e ( ( i < = n ) && ( z u m < p ) ) { z u m < - z u m + p s . o r d [ i ] ; i < - i + l } 
i f ( i>n ) h a t q < - m a x ( y ) e l s e h a t q < - y [ o r [ i ] ] 
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