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FOREWORD

Research  in  nanobiotechnology  is  gaining  prime  attention  as  it  is  directly  affecting  many
socio-economic  sectors  including  medical,  agriculture,  food,  textile,  and  other  industries.
Biological, chemical and physical sciences are the backbone of nanobiotechnology. In recent
years,  nanobiotechnology  research  has  provided  solutions  for  several  problems  including
human health because of its integrated approach involving various disciplines. Lately, it has
been integrated rapidly with new emerging branches like molecular biology, pharmaceutical
chemistry,  animal  cell  science  and  drug  development  and  discovery  for  output-oriented
research.

This eBook ‘Nanobiotechnology: Principles and Applications’ presents a broad overview of
the principles and applications of nanotechnology in the diverse areas of biotechnology. The
expert group of authors exhibit distinguished expertise and will belong to the academic world,
creating  a  broad  perspective.  This  volume  covers  the  basics  and  applications  of
nanotechnology  in  drug  delivery,  combating  pathogens,  nanobiosensors,  improving  plant
health by fertilizers, bioremediation, disease sensing, and diagnosis.

As  a  biotechnology  scientist,  I  am  happy  to  recommend  this  eBook  to  the  students  of
universities as a text and reference book both. The theory, concepts and technique’s part will
be used as textbook and the application part as a standard reference. This eBook has been
written in a way so that it is student-friendly with clean diagrams and protocols of specific
techniques. I sincerely hope that the eBook has been prepared with scientific skills and will
serve as a useful document for graduate and undergraduate students.

Rahul K. Verma
Institute of Nanoscience and Technology

S.A.S Nagar, Mohali, Punjab
India
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PREFACE

This eBook titled ‘Nanobiotechnology: Principles and Applications’ will provide insight into
the principles and practices of nanotechnology in biological fields. Nanobiotechnology, an
amalgamation of nanotechnology and biotechnology has gained attention due to its diverse
applications. It utilizes the power of nanotechnology to solve the problems of various aspects
of biotechnology like agriculture, medicine, industry and many more. In view of this, there is
an  unmet  need  to  compile  different  horizons  of  Nanobiotechnology.  Additionally,  the
biological  toxicity  to  nanomaterials  needs  attention.

We  strongly  believe  this  book  is  a  reader’s  delight  and  will  help  in  dealing  with  the
fundamental  principles,  and  applications  of  nanobiotechnology.  This  will  help  students  to
understand the importance of nano techniques in all domains of biotechnology which will set
a benchmark for further research. This eBook will cover topics like nano drug delivery, nano
fertilizers, nano bioremediation, nanotoxicology, and nano biosensors to be written by authors
who have quality publications in their proposed chapter area. We sincerely hope our efforts
will be embraced by students with appreciation and enthusiasm for learning.

Juhi Saxena
Department of Biotechnology

University Institute of Biotechnology
Chandigarh University
Mohali, Punjab, India

Abhijeet Singh
Department of Biosciences

School of Basic Sciences
Manipal University Jaipur

Jaipur, Rajasthan, India

&

Anupam Jyoti
Department of Biotechnology

University Institute of Biotechnology
Chandigarh University
Mohali, Punjab, India
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CHAPTER 1

The  Roles  of  Nanoparticles  in  Ovarian  Cancer
Treatment and Diagnosis
Bitupon Gogoi1,  Devendra Jain2,  Madan Mohan Sharma1,  Rajeev Mishra3,*

and Abhijeet Singh1,*

1  Department  of  Biosciences,  Manipal  University  Jaipur,  Dehmi  Kalan,  Near  JVK Toll  Plaza,
Jaipur-Ajmeer Expressway, Jaipur-303007, Rajasthan, India
2  Department  of  Molecular  Biology  and  Biotechnology,  Rajasthan  College  of  Agriculture,
Maharana Pratap University of Agriculture and Technology, Udaipur-313001, Rajasthan, India
3  Department  of  Life  Science,  Chhatrapati  Shahu Ji  Maharaj  University,  Kanpur-  UP 208024,
India

Abstract: Ovarian cancer, an aggressive epithelial cancer, remains a major cause of
cancer mortality worldwide among women, but it can be diagnosed at an early stage
also. Surgical removal of ovarian tumour is a good option for the initial treatment, but
this  is  suitable  only  at  the  early  stage  of  cancer.  Surgery  and  other  therapies  like
chemotherapy, hormone role therapy and immunotherapy alone are insufficient for the
treatment of today’s advanced ovarian cancer. The aim of this book chapter is to review
the use of nano-particles in the treatment of ovarian cancer, along with surgery. It is
believed that  nano therapies have lots  of  advantages like they stabilize drugs in our
body,  deliver  and  penetrate  the  drugs  to  tumour-specific  cells  and  can  profile  the
toxicity  of  chemotherapy.  This  book  chapter  also  covers  the  development  of
nanotherapies,  types  of  nanocarriers  and  their  role  in  ovarian  cancer  diagnosis  and
treatment.

Keywords:  Apoptosis,  Biomarker,  Chemotherapy,  Detoxification,  Drug  cargo,
DNA  repair,  Drug  resistance,  Graft  rejection,  Gynaecological  cancer,
Heterogeneous nature,  Hydrophilic  corona,  Intracellular  delivery,  M alignancy,
Metastatic  tumour,  Nanocarriers,  Nanomaterial,  Nanotechnology,  Nano
transmitter,  Photodynamic  therapy,  Prophylactic,  Photo  thermal  therapy,  Renal
clearance, Silent Killer, Systematic toxicity.
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Department  of  Life  Science,  Chhatrapati  Shahu  Ji  Maharaj  University,  Kanpur-  UP  208024,  India;  E-mails:
abhijeetdhaliwal@gmail.com  and  rajeev.csjmu@gmail.com
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INTRODUCTION

The most deadliest female reproductive cancer is ovarian cancer [1]. It is the sixth
most common malignancy of females worldwide and the second most common
malignancy of the female reproductive system. Ovarian cancer is responsible for
4% of all types of malignancies in women and 5% of cancer deaths [2]. Annual
incidence rates vary from less than 5 per 1,00,000 in underdeveloped countries
like  Brazil,  India,  Thailand  etc.  to  greater  than  13  per  1,00,000  in  developed
countries like the United States, Germany, Denmark, Norway etc. It is the most
common  type  of  gynaecological  cancer,  ranking  the  third  behind  uterine  and
cervical cancers, and has the greatest incidence of mortality rates. Ovarian tumour
pathology is  one of  the most  challenging areas of  gynaecology since the ovary
produces a wider range and types of tumours than any other organ however; it is a
high-grade serous subtype that is frequently misdiagnosed as a systemic disease.
Because  75 per  cent  of  Ovarian Cancer  is  found at  an  advanced stage,  such as
stage III or IV, it is also regarded as the “Silent Killer” [3]. The reason of high
death  rate  is  due  to  the  fact  that  tumour  grows  secretly,  and  there  is  lack  of
appropriate examination to detect the certain stages. It is generally believed that
the fatality rate from this type of cancer will surge very high in the following 20
years [4].

Because  of  the  heterogeneous  nature  of  ovarian  cancer,  prophylactic  and  early
detection strategies have not yet shown effective result.  Identifying risk factors
and  creating  protective  factors  were  the  main  prevention  methods  of  ovarian
cancer in the past [5]. But unfortunately these strategies did not greatly reduce the
disease's occurrence. Although, surgery is the initial and effective treatment but
most of the time, the disease re-occurs due to the aggressive nature of the tumours
[6]. And most of the time it is seen that metastatic tumour of the ovary develops a
very  strong  resistance  to  conventional  systemic  therapies  (like  Chemotherapy,
targeted  therapy  and  hormone  therapy  etc.).  The  resistance  of  cancer  cells  is
caused  by  a  variety  of  processes,  including  decreased  absorption,  increased
excretion, drug inactivation and detoxification, and the loss of DNA repair power.

Currently, although many novel ways have been created to increase drug delivery
to cancerous cells, nanotechnology has been identified as one of the best therapy
methods  for  overcoming  the  barriers  in  advanced  cancer  treatment  [7].
Nanoparticles  have  the  ability  to  cope  up  very  easily  with  molecular  imaging,
carrying drugs to the specific site, treatment, and tumour cell specific destruction.
Conventional  chemotherapies  show  very  poor  systematic  toxicity  and
toxicological  effects  towards  normal  and  tumour  cells.  However,  nano  therapy
can be used to manage the cytotoxic effects of healthy cells while also lowering
the toxicity of chemotherapeutics [8]. So, there is a hope for an effective treatment
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of ovarian cancer with the efficient use of nanocarriers as a solution along with
multiple chemotherapeutic drugs.

NANOTECHNOLOGY APPLICATION

Through the knowledge and control of matter at nanometre range, mostly 1 to 100
nm,  novel  functionalities  and  qualities  of  matter  can  be  seen.  Employed  for  a
broad  array  of  applications,  nanotechnology  creates  Nano  composites,  sensors,
and processes.

In biology, this technology is called nano biotechnology and in the medical field
as nano medicine. The primary goal of nanotechnology in medicine is to improve
the efficacy of cancer diagnosis and treatment procedures.

Nanocarriers

Nanocarriers are multifunctional nanomaterials and can be used for the treatment
and diagnosis of cancer. Their surface can absorb different types of compounds,
such as pharmaceuticals, are absorbed by physical absorption and antibodies by
chemical conjugation interactions (Fig. 1) [9]. Nanocarriers can be classified into
several types like micelle, dendrimer, carbon nanotube, liposome, etc.

Fig. (1).  Examples of some Nanocarriers.

As  compared  to  conventional  chemotherapies,  Nanocarriers  have  lots  of
advantages like delivery of poorly soluble drugs, ability to reduce systematic side
effects of chemical treatments, drug stability maintenance by extending their time
in bloodstream, and reduced drug resistance by targeting cancer cells [10].

Nanocarriers  have  the  ability  to  surround  the  poorly  soluble  drugs  within  the
hydrophobic interface and can act as carriers for them in blood.
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The mechanism behind the regulation of stability of drugs is by prolonging their
presence in the bloodstream, protecting them against destabilization, and lowering
renal clearance by the Nanocarriers [11].

Liposomes

Liposomes can be distinguished by the existence of two components: an inward
hydrophilic component and also an outward hydrophobic component, as well as
the presence of a lipid bilayer,  which allows them to show multiple properties.
Furthermore, they have the ability to change the polarity of these molecules.

Such  a  structure  helps  them  to  grab  different  types  of  hydrophobic  and
hydrophilic  medications  in  liposomes  and  equip  them  with  different
pharmaceuticals.

Their  main function is  to  deliver  molecules  that  can tremendously  increase  the
effectiveness of drugs, even though liposomes are molecules that try to conceal
easily  again  from immune response and can stimulate  the  cell  membrane.  This
increases the chances of retention of a drug concentration in its desired location
for a prolonged period of time, allowing to solubilize poorly soluble therapeutics,
and thus helping to mitigate risks of side complexity [12].

Dendrimers

Dendrimers  are  molecules  that  are  radially  symmetric.  They  have  a  very  well-
known morphology, which is a uniform and narrow size distribution structure in
the form of tree arms or branches and looks like hyper branched macromolecules
with carefully tailored architecture.

They  are  associated  with  a  high  number  of  functional  groups  and  a  molecular
structure that is compact [13].

The  end  knob  like  structure  of  the  dendrimers  can  be  functionalized  and
ultimately can change their physicochemical and biological properties and that’s
why they have gained a  vast  range of  applications in  chemistry,  particularly  in
host-guest reactions and self-assembly processes.

Micelles

This  type  of  Nano  composite  is  very  important  in  diagnosis  and  treatment  of
tumours. Generally they are spherical in shape with a diameter of 10 and 100 nm.
In an aqueous medium, self-assembled amphiphilic block co-polymers of micelles
consist of a hydrophobic core and a hydrophilic corona.
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Nowadays polymeric micelles are getting a lot of popularity due to their role in
drug delivery system. They not only increase the solubility of a particular drug but
also enhance the stability of the drug cargo [14].

Carbon Nanotube

Carbon nanotubes are considered a unique type of Nano transmitter because of
their structure and property. In comparison to other Nanocarriers, they possess a
huge  surface  area,  a  big  aspect  ratio,  nonmetric  size  stability,  and  numerous
chemical  functionalities.

These are extensively used to deliver anti-cancer drugs, as well as proteins and
DNA, among other things [15].

Carbon nanotubes can be employed as a carrier for both photodynamic therapy as
well as photo thermal therapy to destroy cancer cells directly.

DIAGNOSIS AND IMAGING

In recent years, there have been several enhancements and major developments in
diagnosis  and  imaging  due  to  nanotechnology  because  of  integration  of
technologies like biosensors and updated and improved imaging technologies as
well as amalgamation of bioinformatics together with multiplexed assays.

Nowadays by applying diagnostic biomarker in nanoparticle platforms, we can get
better  contrasting  images  in  devices  like  X-RAY,  magnetic  resonance  imaging
machine, position emission tomography machine, etc [16].

Targeted Imaging Agents

Non-invasive  techniques  cannot  image  molecules  since  they  are  too  small.
Therefore desired contrasting agents are applied in the desired type of tissue or
cellular receptors for better imaging. A site-targeted agent has the ability to give
direction to a particular biomarker so that they can differentiate the tissues.

The  targeted  desired  contrasting  agent  must  have  the  following  properties  like
prolonged  duration  of  their  life  in  blood,  highly  site  specific  binding  nature,
acceptable toxicity profile, also promise for adjunctive therapeutic delivery, etc
[17].

The  core  of  vertebrate  annexin  is  made  up  of  four  identical  motifs  containing
roughly  70  amino  acids,  forming  somewhat  a  curved  circle  around  a  central
hydrophilic  pore.  The  use  of  technetium-labelled  annexin  to  membrane
phosphatidyl  serine  epitopes  revealed  during  apoptosis  can  be  used  to  detect
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cellular apoptosis. Liposomes are often used to identify sclerotic constituents as
well as to visualise graft rejection; minute bubbles are used in magnetic resonance
imaging and sonography.

Nano-Liposomal Imaging Agents

Liposome has the ability to encapsulate the biomolecules that are hydrophilic in
nature, and can increase solubility through lipid bilayers of the cells.

Cholesterol can improve permanence by altering the permeability of the bilayer
membrane,  inhibiting  phospholipid  acyl  chains  from  precipitation  and  causing
steric barrier to their movement. Because of the high eliminating agents and poor
systemic  retention,  as  well  as  the  rapid  removal  process  from  the  body,  it  is
important  to  add  a  molecule  that  boosts  the  imaging  efficiency.  And  these
problems can be solved by taking advantage of the EPR (Enhanced permeability
and retention) phenomenon seen in tumours by encapsulating the imaging agent in
a liposome [18].

FLUORESCENT IMAGES AND GUIDED SURGERY

There  is  indeed  a  need  to  have  novel  materials  to  improve  the  responsiveness,
effectiveness,  and  durability  of  such  imaging  systems  utilised  during  surgical
treatment.  That’s  why,  there  were  also  numerous  fluorescent  nanoparticles
created, analysed, and adapted for image-assisted surgical treatment. Two great
examples are –

CF800 liposomes are commonly applied to encase the iohexol contrasting dye.

Magnetic iron oxide nanoparticles: These are targeting ligand nanoparticles that
can be combined with optical magnetic resonance imaging.

NANOPARTICLE THERAPEUTICS (ANTI-CANCER)

Nanoparticles have a direct and target specific anticancer effect as compared to
conventional  treatments.  They  are  more  target  specific  and  active  intracellular
delivery,  but  up  to  a  certain  extent,  these  two  factors  also  depend  upon  the
nanoparticles'  structure  and  surface  texture  (Fig.  2)  [19].

Therapeutic lines like small-molecule drugs, proteins, peptides, nucleic acids and
the chemicals that generate nanoparticle are the main components of nanoparticle
therapy.
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Fig. (2). Some of the most frequently applied nanoparticles in clinical testing (a) Nanoparticles containing
medicinal  ingredients.  (b)  Nanoparticles  made  of  a  polymer  or  a  medicine.  (c)  Liposome-containing
nanoparticle.

Size of the Nanoparticle

Anticancer  nanoparticles  are  typically  10  to  100  nanometres  in  size.  The
glomerular sieving rates of the capillaries of the kidneys are used to calculate this
dimension of the nanoparticles. For renal excretion, a threshold size of minimum
10  nm  is  utmost.  On  the  other  hand,  vessels  in  tumour  are  subject  to  leak
macromolecules, as a result, nanoparticles are unable to circulate in the blood for
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long  periods  of  durations  and  have  a  high  possibility  of  reaching  the  blood
through malignant tissue blood vessels. Here the size of nanoparticles is higher
than six to twelve nanometres; which is also the diameter of the sieve in healthy
tissues  blood  vessels  and  is  blocked  from  entering  and  thus  not  being  able  to
affect the normal tissues.

Cancer cells being specifically targeted by nanoparticles can be filtered through
the kidney.

Nanoparticle Surface

Compared to the size of the nanoparticles, they have a very large surface area, and
this design appropriately allows them to have easy contact with the molecule and
its surroundings.

The  nanoparticle's  surface  area  as  well  as  mixing  components  is  exclusively
responsible  for  deciding  the  nanoparticle's  ultimate  fate  inside  the  body  by
regulating  the  degree  of  the  nanoparticle's  contact  with  its  environment.

Surface properties of the nanoparticles also play a significant role. Nanoparticle’s
surface  having  surface  charges  that  are  mildly  negative  or  mildly  positive,  has
much less self-self and self-non-self-interactions [20].

CONCLUSION

Nano therapies are far more effective than any other traditional chemotherapy in
the detection and treatment of ovarian cancer. They are quite effective because of
their potentiality to target a specific tissue and also to examine the living body of
animals for adequate durations of time.
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Abstract: Environmental clean-up for the removal of recalcitrant pollutants is a global
concern, especially in the terms of industrial waste. Research over the years has led to
the development of various conventional physicochemical and biological methods for
the decontamination of numerous pollutants. These methods however are reported to be
extremely expensive and with limited success. Nano-remediation has been reported as
an  effective  alternative  in  this  regard.  The  chapter  outlines  the  use  of  various
nanoparticles  as  an  innovative  and  cutting-edge  technology  for  the  clean-up  of
environmental  pollutants.  It  describes  the  use  of  fabricated  nanoparticles  to  remove
pollutants.  The  chapter  offers  an  overview  of  current  research  developments  in  the
emerging field of nano-remediation with special emphasis on textile dyes, elucidating
the mechanisms involved.

Keywords: Adsorption, Environment, Nano-remediation, Textile dyes.

INTRODUCTION

Human activities have been constantly affecting the quality of air, water and soil.
Constant inclusion of heavy metals, pesticides, particulate matter, oil spills, toxic
gases,  fertilizers,  dyes  and  other  organic  compounds  into  the  environment  has
become  a  major  threat  to the environment [1, 2] leading  to  the development of
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nanomaterial based remedial technologies for mitigation of toxic effects of these
environmental pollutants through various clean-up mechanism [3 - 5].

Owing  to  the  unique  properties  of  the  nano-sized  materials,  nanotechnologies
have  achieved  immense  attention  during  the  last  decades.  Environmental
remediation technologies have utilised the property of higher surface-to-volume
ratio for nanomaterials in order to bring efficiency to the remediation processes
[4, 6]. Apart from this, nanoremediation has also leveraged the surface chemistry
of nanomaterials for trapping target-specific pollutant molecules [7]. Apart from
surface chemistry,  other  tuneable physical  parameters  of  nanomaterials  such as
size, porosity, morphology along with their unique chemical composition aid the
process  of  remediation  confirming  additional  advantages  [8,  9].  The  afore-
mentioned advantages have therefore popularised the use of nanomaterials for the
mitigation of environmental pollutants, especially from aqueous sources.

Furthermore,  it  is  important  to  note  that  matrices  utilised  for  the  purpose  of
environmental remediation are not pollutants by themselves. In this connection,
different biodegradable materials having desired properties along with nano-sized
materials  are  considered  more  advantageous  then  using  single  nano  platforms
[10]. Such approaches of using nano-composites have been utilised for scaling up
the  nano-remediation  technology  by  making  it  more  acceptable  amongst  the
consumers  due  to  its  greener  and  safer  nature.  Moreover,  it  also  enhances  the
stability and specificity of the clean-up process by eliminating, off-targeting and
promoting  target-specific  removal  of  contaminants  from  the  wastewater  [11].
Therefore, studies have focused on utilising the core principle of nanotechnology
by  combining  physicochemical  surface  modifications  for  nano-composites  or
functional  nano-materials  for  specific  removal  of  a  variety  of  pollutants  from
aqueous medium.

NANO REMEDIATION: DEFINITIONS AND AGENTS

Nano-remediation has been defined by various authors in different contexts. For
instance, Ganie [9] defines Nanoremediationas “an innovative approach for safe
and sustainable remediation of persistent organic compounds such as pesticides,
chlorinated  solvents,  brominated  or  halogenated  chemicals,  perfluoroalkyl  and
polyfluoroalkyl  substances  (PFAS),  and heavy metals”.  Similarly,  Grieger  [12]
defines it  as  “nano-remediation is  the term used to describe various techniques
and  methods  to  clean  up  contaminated  sites  using  engineered  nano-materials”.
Nanoremediation  has  also  been  defined  as  “Tiny  Objects  Solving  Huge
Environmental  Problems”  in  simpler  terms  [13].  From  the  perspective  of
functionality, Zhang [14] simplies nanotechnology as “the use of small size, high
specific  surface  area,  reactivity  and  versatility  of  engineered  nanomaterials  to
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potentiate  them  for  the  removal  of  recalcitrant  contaminants  and  achieve
selectivity  of  target  contaminants  in  complex  environmental  media”.  Nano
remediation  has  also  been  defined  as  “the  practice  of  using  various  types  of
nanoparticles  such  as  TiO2  based  NPs,  dendrimers,  Fe  based  NPs,  Silica  and
carbon  nanomaterials,  Graphene  based  NPs,  nanotubes,  polymers,  micelles,
nanomembranes, etc. to diminish environmental hazards” [15]. Thus, leveraging
the  characteristics  of  nanoparticles  such  as  high  surface  area  to  mass  ratio,
sensitivity, catalytic behaviour and electronic properties for removal/degradation
of pollutants is termed nano-remediation.

Numerous  nano-sized  materials  have  been  developed  using  different  modes  of
synthesis for the purpose of environmental remediation. However, there seems no
such  classification  of  nanomaterial  types  utilised  for  nano-remediation.  The
chapter, therefore, classifies agents of nanoremediation into three major categories
namely, polymer-based nanomaterials, inorganic nanomaterials and carbon-based
nanomaterials on the basis of literature review.

Carbon-based Nanomaterial

Carbon-based  nanomaterials  are  known  for  their  unique  physicochemical  and
electronic  properties.  The  mutable  hybridization  property  of  carbonaceous
materials helps to yield different structural configurations of these nanomaterials
such as single-walled nanotubes (SWCNTs), multi-walled nanotubes (MWCNTs),
etc.  Earlier  investigations  have  shown  the  utility  of  graphene  and  carbon
nanotubes for environmental remediation applications. It has also been reported
that surface treatment of these carbon materials helps in improving the efficacy of
these materials  as  they are  otherwise  ineffective  for  remediation purposes.  The
literature demarcates the dominance of single-walled carbon nanotubes (SWCNT)
and  multi-walled  carbon  nanotubes  (MWCNT)  owing  to  their  absorption
properties for the removal of a variety of pollutants from air as well as large-scale
aqueous medium [16 - 19]. In order to enhance the adsorption properties further,
researchers  have  been  working  on  opening  the  close  ends  of  pristine  carbon
nanotubes  (CNTs)  [16,  20].  It  has  been  stated  that  the  open-ended  CNTs  can
typically  absorb  pollutants  in  four  different  available  sites  based  on  their
adsorption energy. Apart from this, other modifications that have been proposed
for  improving  absorption  efficacy  is  by  oxidation  of  CNT.  For  instance,  post
oxidation nitric acid treated CNTs proved to improve their heavy metal adsorption
capabilities [21]. Furthermore, physical properties such as temperature, molecular
weight, pH, and electric dipole moment also have a huge impact on the adsorption
phenomenon  by  CNTs  [20].  Thus,  tuning  physical  parameters  has  also  been
employed  as  a  strategy  to  activate  carbonaceous  nano-materials.
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Apart from this,  photocatalytic approaches have also been utilised to remediate
contaminants using carbon-based nanoparticles [22]. In this context, graphene has
been popularly utilised for fabrication of photolytic nano-composites [23 - 26].
These graphene composites have been amalgamated with TiO2 for enhancing the
photolytic activity of the composites by increasing the conductivity [23]. Table 1
demonstrates the use of carbon-based nano-material for the mitigation of various
environmental pollutants.

Table 1. Remediation potential of graphene nanomaterials.

Graphene Nanomaterial Remediation Potential References

Graphene oxide nanoparticle
Effective adsorption of H2S, SOx, NH3, heavy

metals, pharmaceuticals, volatile organic
compounds and pesticides

[27, 28 - 31]

CdS-graphene/ZnO-graphene nanocomposites Photo catalytic degradation of heavy metal
like hexavalent chromium [24]

Pristine graphene nanocomposites Fluoride Adsorption [32]

Multiwall carbon nanotube (MWCTs) Adsorption of zinc [33]

TiO2-graphene nanocomposite Photocatalytic degradation of benzene [23, 26]

Carbon nanotubes/Al2O3 nanocomposite Adsorption of Fluoride [34]

Inorganic Nanomaterials

Inorganic nanomaterials used for environmental remediation can conveniently be
classified  into  metal  and  metal  oxide  based  nanomaterials  and  silica-based
nanomaterials.

Metal and Metal Oxide Based Nanomaterial

Majority of studies indicate the use of metal and metal oxide based nanomaterials
for  the  removal  of  various  contaminants.  These  nanomaterials  are  extensively
utilised  for  their  adsorption  capacity  owing  to  their  fast  kinetics  [35].  These
materials  are  widely  used  for  environmental  applications  because  of  their
flexibility  in  both  ex-situ  and  in-situ  applications.  Studies  have  focused  on
exploring  efficient  methods  of  synthesis  for  attaining  shape-controlled,
monodispersed,  stable  metal-based  nano particles  using  physical,  chemical  and
biological approaches [36, 37]. In this context, silver nanoparticles are extremely
popular because of their water disinfectant properties owing to their antimicrobial
nature  [38,  39].  Moreover,  silver  nanoparticles  conjugated  with  other  scaffold
materials  have  also  been  utilised  for  improving  remediation  efficacy  [40].
Furthermore, titanium oxide nanoparticles are another popular remediation agent
due to their non-toxic, energy converting, semi-conducting, cost-effective, photo-
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catalytic properties [41, 42]. They are widely utilised for both air purification and
water treatment. Apart from this, iron oxide nanoparticles have been extensively
studied for the removal of various contaminants such as heavy metals, dyes, and
chlorinated organic solvents [43 - 54]. Some major applications of metal-based
nanoparticles in the environmental remediation of contaminants have been stated
in Table 2 below.

Table 2. Remediation potential of metal and metal oxide based nanomaterials.

Metal and Metal Oxide Based
Nanomaterial Remediation Potential References

Ag-doped TiO nanoparticles Adsorption of 2,4,6-Trichlorophenol [55]

Cu/Fe/Ag-doped TiO2 nanoparticles Photocatalytic reduction of nitrate [56]

Titanate nanotubes Catalytic reduction of nitric oxide [57]

Iron/Iron-oxide nanoparticles Adsorption of dyes, heavy metals, other organic
pollutants [58 - 64]

Nanosilver-decorated titanium dioxide
nanofibers Photo-degradation of Methylene blue dye [65]

TiO2 Nanoparticles Adsorption of aromatic dyes, phenanthrene,
hydrocarbons [66 - 70]

Bimetallic Nanoparticles Removal of brominated and chlorinated
contaminants from soil and water [71 - 80]

Silica Nanomaterial

The  versatility  and  porosity  of  silica  material  have  made  it  a  highly  explored
option  for  adsorption  applications.  Silicanano-materials  have  been  extensively
reported for remediation of contaminants in the gaseous phase owing to their large
pore  volume,  high  surface  area,  adjustable  surface  modifications  and  pore  size
[11]. In this context, hydroxyl groups have been extensively explored for surface
modification  in  the  silica  nano-materials  to  enhance  gas  absorption  [4].  Apart
from this, silica materials with amine groups on their surface have been reported
to attribute to higher adsorption of  pollutants  [81 -  92].  For example,  modified
silicon  nano-materials  are  popularly  used  for  capturing  carbon  dioxide  from
impure air. Table 3 below demonstrates the application of silica nano-materials in
the process of environmental remediation.
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Table 3. Remediation potential of silica nano-materials.

Silica Nanomaterial Remediation Potential References

Amino-functionalized mesoporous silica
nanoparticle Adsorption of heavy metals. [93 - 98]

Amine-modified xerogelsnanoparticles Adsorption of gaseous pollutants like
hydrogen sulphide and carbon dioxide. [83]

Amino-functionalized mesoporous silica
nanoparticles

Removal of heavy metals from
wastewater through adsorption. [93 - 98]

Carboxylic acid-functionalized mesoporous silica
nanoparticle

Adsorptive removal of heavy metals and
dyes. [11, 99, 100]

Thiol-functionalized mesoporous silica
nanoparticle

Adsorptive removal of heavy metals from
wastewater. [101 - 104]

Polymer-based Nano-materials

Aggregation of nano-materials has been reported as one of the major concerns for
their application in environmental remediation. Aggregation consecutively leads
to  low  stability  and  non-specificity  which  ultimately  causes  a  lack  of
functionality. To address this issue, polymer-based nano-materials constituting a
matrix or support holding the nano-materials have been utilised. The polymeric
hosts which are often used for this purpose are emulsifiers, surface functionalised
ligands, surfactants or stabilising agents [31, 105]. These hosts material not only
enhance  the  stability  but  also  enhance  durability,  mechanical  strength  and
recyclability of the nano-material.  Table 4  below shows various polymer-based
nano-materials and their applications for environmental remediation purposes.

It is quite evident that nanoparticles are emerging as a potent tool for removal of a
wide  range  of  pollutants,  textile  dye  being  one  of  them.  The  following  section
thus focuses on the current developments in nano-remediation of textile dyes with
special  emphasis  on  the  various  studies  on  varying  ranges  of  NPs  and  their
remedial  mechanisms.

Table 4. Remediation potential of polymer -based nano-materials.

Polymer-based Nanomaterial Remediation Capacity References

Amine-modified PDLLA-PEG
nanoparticles

Target-specific adsorption of gaseous volatile
organic contaminants (VOCs). [4, 106]

Amphiphilic polyurethane nanoparticles Adsorption of Polynuclear aromatic hydrocarbons
from contaminated soil. [107]

Polyamine-modified Cellulose
nanoparticles Target specific capture of gaseous VOCs [10]
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Polymer-based Nanomaterial Remediation Capacity References

PAMAM dendrimer nanoparticles Enhanced ultra-filtration of heavy metal ion of
Cu(II) from wastewater. [108]

Polymer nano-composites Removal of metal ions like Cr6+,Cd2+, Zn2+, Pb2+,
Cu2and adsorption of dyes. [109 - 112]

NANO-REMEDIATION  OF  TEXTILE  DYES:  CURRENT
DEVELOPMENTS

The  simultaneous  demand  for  clothing  along  with  the  growing  population  has
imposed a huge pressure on the textile industries to produce more and more. This
has led to the extensive application of textile dyes which in turn creates a huge
demand for large-scale dye production. These dyes are mostly disposed of without
treatment into the water bodies creating a serious threat to the environment. It is a
well-known fact that, textile industry is a water extensive industry and the dyes
used in the textile fibres do not get completely utilised and therefore most of the
dyes are washed away during the washing process. This calls for efficient onsite
treatment  of  textile  effluents  to  remove  dyes  before  their  discharge  into  the
environment.  Many  techniques  have  been  explored  for  the  treatment  of  textile
wastewater such as membrane filtration, chemical treatments, etc. These methods
however  require  a  very  high  operation  and  maintenance  cost  leading  to  their
failure at large scale. In this context, nano-materials are giving promising results
both  in  terms  of  efficacy  and  cost-effectiveness.  The  unique  properties  of
nanoparticles  such  as  high  aspect  ratio,  ordered  structure,  high  surface  area,
thermal  and  electrical  conductivity,  high  mechanical  strength,  and  ultra-
lightweight  feature  have  led  to  the  superiority  of  nano-remediation  above  the
conventional physicochemical or biological treatment methods.

Agents and their Efficiency

Researchers have been actively exploring numerous nano-sized particles for their
efficacy  in  the  removal  of  a  varying  range  of  dyes.  Some  of  these  studies  are
enlisted in Table 5 below.

Table 5. Efficacy of fabricated nanoparticles and associated mechanisms.

S.No. Nanoparticles Name of Dye Removal
Efficacy Mechanism References

1 Carbon Nanotube (CNT) Reactive Blue 4 309.2 mg/g Adsorption [113]

2 Carbon Nanotube (CNT) Direct Blue 53 116.4 mg/g Adsorption [114]

3 Fe3O4 nanoprticles Procion red 30.5 mg/g Adsorption [115]

(Table 4) cont.....
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S.No. Nanoparticles Name of Dye Removal
Efficacy Mechanism References

4 Silver nanoparticles Methylene blue 95% Photocatalytic degradation [116]

5 γ-FeOOH nanoparticles Reactive orange
29 36.30% Adsorption [117]

6 TiO2 nanoparticles Malachite Green 65% Photocatalytic degradation [118]

7 Zinc oxide nanoparticles Methyl orange
dye 84% Sonophotocatalytic

degradation [119]

8 Carbon Nanotube (CNT) Methylene Blue 6.96 mg/g Adsorption [120]

9 MgO nanoparticles Acid Red 73 100% Photocatalytic degradation [121]

10 Carbon Nanotube (CNT) Blue 116 34.4 mg/g Adsorption [122]

11 Carbon Nanotube (CNT) Yellow 81 35.1 mg/g Adsorption [122]

12 Graphene and Carbon
nanotubes Basic Red 46 60 mg/L Adsorption [123]

13 Amorphous iron
nanoparticles Congo Red 1735 mg

g−1 Adsorption [124]

14 Multi-Walled Carbon
Nanotubes (MWCNT)

Alizarin yellow
R

884.80
mg/g Adsorption [125]

15 Titanium dioxide
nanoparticles Malachite Green 0.6 g/L Photocatalyticdegradation [126]

16 Chitosan-Fe3O4

nanoparticle Evans Blue 99% Adsorption [127]

17
Activated Carbon with

loaded Ca-Fe3O4

nanoparticles
Methylene Blue 138 mg/g Adsorption [128]

18
Polyethyleneimine

functionalized magnetic
carbon nanotubes

Alizarin Red S 196.08
mg/g Adsorption [129]

19

Silver nanoparticles

tartrazine 28% Reduction

[130]carmoisine 45% Reduction

brilliant blue
FCF 38% Reduction

20 Zero-valent iron
nanoparticles reactive black 5 99.60% Reduction [131]

21 Magnetic cobalt oxide
nanoparticles Malachite Green 238.10

mg/g Adsoption [132]

22 Multi-Walled Carbon
Nanotubes (MWCNT) Ismate Violet 2R 76.92 mg/g Adsorption [133]

(Table 5) cont.....
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S.No. Nanoparticles Name of Dye Removal
Efficacy Mechanism References

23 Graphene oxide
nanoparticle

Methylene blue 276.5 mg/g Adsorption
[134]

Methyl orange 423.15
mg/g Adsorption

24 Silver nano-composites Organic dye 93.23% Photocatalytic degradation [135]

25 Cu-Ni Bimetallic
Nanoparticles Methylene Blue 0.086 mM Reduction [136]

26 CuO nanoparticle Methylene Blue 100% Reduction [137]

27 CeO2 nanoparticles rose bengal dye 96% Photocatalytic degradation [138]

28 Magnetic Fe3O4

nanoparticles Acid Green 25 0.5 mg/mL adsorption & oxidative
degradation [139]

29
Graphene

Oxide/Titanium Dioxide
Nanoparticles

FD&C Red 40 55.23 mg/l Adsorption [140]

30 Zero-Valent Copper
Nanoparticles

Mixture of
Rhodamine B,
Bromocresol

Green, Methyl
Orange, and
Eriochrome

Black T

90% Adsorption [141]

Mechanism

The core of nanotechnology application is based on downsizing the particles into
nano-scale in order to enhance the surface-to-volume ratio which in turn improves
magnetic, catalytic, optical electrical as well as chemical properties. The particle
size is the major attribute for functionality of the nanoparticles [142]. Even in case
of remediation, studies have shown that reduction of particle size to nano-scale
influences  characteristics  like  surface  free  energy,  latent  symmetry,  stress  and
many other physiochemical parameters [143]. In this context, metal nanoparticles
show  unique  absorptive  capabilities  due  to  their  physic-chemical  properties
attributed by their edge surface size and highly dense corners. The small particle
size leads to an increment in the number of surfaces which in turn causes interface
atoms  to  create  stress  or  strain.  This  leads  to  thermodynamic  changes,  which
ultimately influence the structural attribute of nanoparticles. The diverse group of
metallic  oxide  nanoparticles  have  also  been  popularly  explored  for  nano-
remediation  purposes  because  of  their  highly  tuneable  surfaces  that  ultimately
lead to higher absorption capacity. Apart from this, metal oxide nanoparticles are
cost-effective  as  well  as  more  efficient  than  core  metallic  nanoparticles  in  the
adsorption of [151] pollutants. Many studies have reported the use of iron-oxide

(Table 5) cont.....
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nanomaterials for the absorption of dyes from aqueous phase [144 - 149]. Thus,
metal and metal oxide nanoparticles act as effective nanosorbents for the removal
of dyes. Similarly, carbon-based nanomaterials also are known to have adsorption
sites  on  their  surfaces.  Major  interactions  of  dyes  with  carbon-based
nanomaterials  are  reported  to  be  electrostatic  interactions  [150],  van  derwall
forces  [151],  π  -π  staking  interactions  [152],  hydrophobic  interactions,  etc.

Reduction  has  also  been  explored  as  a  mechanism  in  the  nano-remediation
processes. Magnetic nanoparticles are preferred due to their low cost, magnetic
susceptibility, low toxicity, high coerciveness and low curie temperature [153 -
155]. In this context, many methods for the fabrication of magnetic nano particles
have  been  explored  such  as  water  in  oil  micro  emulsion,  co-precipitation,
hydrothermal  methods,  etc  [143].  It  is  worth  noting  that,  different  methods
produce  particles  with  different  size  distribution,  shapes,  dispersibility,  and
magnetic  properties  [24,  156].  These  nanoparticles  act  as  reducing  agents  to
reduce recalcitrant dye structures. Gold nanoparticles are also effective reducing
agents. However, the catalytic activity of gold nanoparticles depends largely on
the  charge,  shape,  particle  size  and  distribution  [157].  Many  researchers  have
shown  enhancement  in  the  absorptive  capacity  of  gold  nanoparticles  by  using
adjuvant like activated carbon as it acts as a redox mediator [158].

Furthermore, photo catalysis has also been explored to accelerate dye degradation
on exposure to light. Metallic oxide nanoparticles such as zinc oxide and titanium
oxide nanoparticles show such activities in the presence of light above its band
gap which leads to the production of electron-hole pairs. They further react with
an  aqueous  solution  of  dye  to  produce  oxidising  and  reducing  radicals  such  as
superoxides.  These  radicals  in  turn  accelerate  some  secondary  reactions  which
ultimately  disrupt  the  dyes.  As  these  semiconductors  are  nano-structured,  they
have a high surface area which leads to high photocatalytic activity [159]. Many
researchers  have  reported  the  photocatalytic  activity  of  carbon  nanotubes  as  a
potential new edge technology for the degradation of recalcitrant azo dyes [160,
161].  Apart  from  this,  zinc  oxide  and  iron  oxide  nanoparticles  have  also  been
reported to be an effective photodegradation agent for textile dyes [162 - 166].
Other  than  this,  copper-based  nanoparticles  have  also  been  reported  to  drive
thermodynamically favourable electron transfer reactions in the presence of light.
Copper sulfide nanocomposites and zero-valent copper nanoparticles are effective
photodegradation agents for a range of azo dyes [167 - 169]. Similarly, cadmium
sulphide nanoparticle also acts as a photocatalytic agent for the treatment of dye-
rich industrial wastewater when subjected to light above its bandgap [170 - 172].
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SCALE  UP  OF  NANOREMEDIATION:  CHALLENGES  &  FUTURE
PROSPECTS

Despite  numerous  advantages  of  the  nanoremediation  process,  there  have  been
ample  gaps  from  synthesis  to  application  of  nanoparticles  for  environmental
clean-up at a larger scale [35]. The chapter consolidates various gaps in the scale-
up process and categorizes it into three major challenges.

Lack of Synchronisation between Stability, Activity and Selectivity

Most of the studies that have reported a higher absorptive or catalytic potential of
nanoparticles  have also simultaneously reported stability  and selectivity  issues.
This  is  in  line  with  the  fact  that,  highly  reactive  nanoparticles  have  extremely
vulnerable surface configuration and microstructure. This makes the nanoparticles
become unstable when applied in harsh environmental conditions. The stability is
thus  an  instrumental  driver  for  the  feasibility  of  nanoparticles  for  their  use  in
practical situations [173, 174]. Many studies have thereby focused on integrating
rational  designs  for  optimization  of  nanoparticle  synthesis  in  order  to  obtain
extremely  stabilised  nanoparticles  with  a  synchronisation  between  stability,
activity and selectivity [149, 175 - 177]. This also calls for further integration of
chemical engineering efforts in order to bring stringent control.

Toxicity of Nanoparticles

The toxicity of nanoparticles remains another challenge in the scaling up of nano-
remediation  technique.  Nano-materials  are  often  reported  to  interact  with
biological surfaces through bio interfaces leading to the production of various by-
products  which  are  more  toxic  in  nature.  The  fate  of  nanoparticles  in  the
environment is often described through various interactions such as dissolution,
sulphidation, biosorption, sedimentation/deposition, and persistence [178 - 181].
Most  of  these  interactions  pose  an  inherent  threat  to  nature  by  causing passive
toxicity due to aggregation and agglomeration caused by electrostatic and steric
stabilization [182]. For instance, sulfidation increases the toxicity of nanoparticles
against microorganisms [176]. Similarly, biosorption also leads to the adsorption
of nanoparticles and their aggregation on soil colloid which ultimately leads to its
entry into plants [183]. Furthermore, absorption, sedimentation and aggregation of
nanoparticles  in  the  environment  ultimately  lead  to  the  persistence  of
nanoparticles in the environment. This, therefore, calls for toxicity checks before
using nanoparticles/composites for large-scale nano-remediation purposes.

Lack of Optimised Scale up Efforts

Despite lab scale remediation studies, very fewer efforts have been made to scale
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up nano-remediation to field scale. Optimisation remains the priority in scale-up.
Most  of  the  studies  depict  the  optimisation  of  process  parameters  only  in  the
aqueous medium and not field samples. However, variation in effluent samples
due to varying sub-surface conditions like pH, temperature or the hydrogeology of
the water body highly impacts the remediation conditions. Also, the variation in
the chemical constituents in the effluent due to the inclusion of other chemicals
like fixatives and mordants also influence the efficiency of the nano-remediation
agent in real field conditions. Thus, there is an urgent requirement to scale up lab
proven nano-remediation agents to pilot scale applications for field scale success.

CONCLUSION

Nano-remediation is an emerging technology used for the removal of recalcitrant
chemicals  from  the  environment.  Many  nano-remediation  agents  have  been
fabricated using physical,  chemical and green pathways to remediate numerous
pollutants like heavy metals, dyes, hydrocarbons, and gaseous pollutants. These
agents could be broadly bifurcated into polymer-based nanomaterials, inorganic
nanomaterials and carbon-based nanomaterials. Remediation of dyes using these
agents  has  been  widely  explored.  Many  azo  and  non-azo  dyes  have  been
successfully  removed  from  aqueous  medium  using  a  varying  range  of
nanoparticles  and  nano-composites.  Moreover,  engineered  nanoparticles  with
surface  modifications,  size,  shape  and  nano-structure  variations  have  been
explored for enhancing the dye removal efficacy of the nanoparticles. Adsorption,
photocatalysis,  and  reduction  are  the  dominant  mechanisms  behind
nanoremediation  which  have  been  optimised  for  improving  remedial  abilities
further.

At the same time, there are a number of issues prevailing with large-scale usage of
nanomaterials  for  environmental  remediation.  It  is  quite  evident  from  the
literature that nano-remediation is scarcely tested at the field scale. This thereby
points towards the utility of the method for its application in contaminated sites.
Pilot  scale  studies  are  required.  In-depth  knowledge  of  the  physicochemical
properties  of  the  nanomaterials  such  as  size,  shape,  charge,  bulk  composition,
surface chemistry and toxicological studies of the nanoparticles is also essential to
understand  and  use  nano-remediation  as  a  scalable  method  for  clean-up  of
environmental  pollution  of  textile  dyes  in  effluents.
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Interaction  between  Metal  Oxide  Nanoparticles
and Terrestrial  Plants:  An Overview of  the  Mode
of Action and Future Perspectives
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Abstract: Nanotechnological interventions have extensively been used as an efficient
non-invasive approach in agriculture for disease protection, to improve yield and many
more.  The  use  of  engineered  nanomaterials  (like  metal-oxide  nanoparticles)  as
fertilizers,pesticides, carriers for genetic material/RNA/protein, sensors for detection of
contaminants and toxic compounds etc.  have been extensively studied and reported.
Interaction  between  plants  and  nanomaterials  plays  an  important  role  in  their
applications  for  various  purposes  in  agriculture  and  otherwise.  In  this  chapter,
mechanisms of uptake and mode of action of three commonly used metal oxide (TiO2,
CuO, ZnO) nanomaterials in plants have been reviewed. The chapter also summarises
the  various  studies  conducted  on  the  effect  of  these  nanomaterials  on  different
agricultural food crops in the last 2 decades. The thorough review of existing literature
on the aforementioned areas indicates that although the published data on terrestrial
phytotoxicity of metal oxide NPs is increasing continuously but surprisingly the range
of  selected  plants  is  still  narrow  (mostly  agricultural  crops  and  seed  plants),  thus
random selection of plants (outside this narrow range) should be made to gain better
insights into the various impacts of nanomaterials on plants.

Keywords: CuO, Mode of action, Phytotoxicity, TiO2, Uptake mechanisms, ZnO.

INTRODUCTION

Nanotechnology  has  been  identified  as  one  of  the  most  promising  and
revolutionary technologies, which is going to affect people’s life. Now developing
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countries  have  started  investing  more  in  nanotechnology  by  considering  the
potential of NPs to overcome the challenges associated with development in key
areas such as energy, water, agriculture, health and environment [1]. Therefore,
the production of nanomaterials (NMs) has escalated in recent years due to their
multifaceted  utilities.  The  estimated  global  production  of  engineered
nanomaterials (ENMs) in the year 2010 was 260,000 - 309,000 metric tons; out of
which approx. 63-91%, 8 - 28%, 0.4 - 7%, and 0.1 - 1.5% were estimated to end
up into landfills,  soils,  water bodies and atmosphere respectively [2]. The most
common contaminating ENPs of the environment are carbonaceous nanoparticles
(NPs),  quantum  dots,  zero-valent  metals,  metal  oxides  and  nanopolymers  [3].
Certain exceptional properties of NPs such as high specific surface area, abundant
surface  reactive  sites  and  mobility  are  greatly  affecting  the  environment  and
health  as  well  [4,  5].  Organisms  especially  algae,  fungi  and  plants  have  direct
interaction not only with NMs but also with their existing environment thus may
be  considered  as  the  first  target  life  forms  to  be  exposed  which  are  indirectly
affecting higher  species  through the  food chain  [6].  Although,  the  evolution of
plants  took  place  in  the  presence  of  natural  NPs,  but  because  of  expanded
production of ENPs and their use in diverse processes and goods; the possibility
of plant exposure has increased incalculably [7].

With these points of view, in this chapter, the interaction of NPs and plants has
been discussed. As the most encountered group of NPs is metal oxides that are
being  produced  largely  for  enormous  applications,  this  chapter  focuses  on  3
leading candidates in line viz. TiO2 CuO and ZnO for the study of interaction with
plants.

Titanium Dioxide NPs (TiO2 NPs)

Certain  properties  of  TiO2  NPs such as  high stability,  anticorrosion and photo-
catalyst activity make them an excellent candidate to be used in cosmetic and skin
care products, antibacterial and air cleaning articles; paints and pigments; and in
organic matter decomposition in wastewater. In the year 2010, 64,000 - 81,000
metric tons of ENMs were used in coatings, paints, pigments and cosmetics, with
approx.  34,000  and  10,000  tons/year  for  TiO2  and  SiO2  NPs  respectively.  The
above-mentioned  applications  contribute  around  42%  of  the  total  global  ENM
flow, 82 - 87% of total ENM emissions to soil and 89 - 97% to water [2].

Copper Oxide NPs (CuO NPs)

Due to  manifold  uses  of  CuO NPs,  they  serve  as  potent  NPs  to  enter  the  most
important  and  sustaining  environmental  compartment  i.e.  soil  [8,  9]  and,
therefore, catching the attention for numerous bio-toxicity studies [10 - 12]. These
NPs  are  owing  antimicrobial  nature  thus  predominantly  being  used  in
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antimicrobial formulations [13]. Plentiful literature is available on the protection
of wood products from fungi and insect-induced biodegradation using nano-CuO
and  nano-CuCO3-based  biocides  [14].  50%  of  the  global  wood  preservation  is
occupied  by  the  wood  preservation  market  of  North  America  with  79000  tons
consumption of Cu salts annually [14, 15]. In the year 2010, the predicted world-
wide  production  of  Cu-based  NPs  was  ~  200  tons/year,  and  it  is  increasing
continuously  [2].

Zinc Oxide NPs (ZnO NPs)

In 2010, the estimated global annual production of ZnO NPs was 30,000 metric
tons, which was used primarily in paints, medicine, cosmetics, optics, electronics,
coatings  and  pigment  products.  Emission  at  the  time  of  manufacturing  was
estimated to be around 32–680 tons/year, from which the highest amount is being
contributed  by  emissions  from  the  use  of  ZnO  ENMs  in  cosmetics.  Overall
predicted emissions are 90–578 tons/year to atmosphere, 3,100–9,283 tons/year to
soils and 170–2,985 tons/year to receiving water bodies [2].

Thus, the inevitable rapid use of metallic NPs in multiple areas have raised the
demand for assessment of their impact on different biotic and abiotic components
[16 - 18]. Scanty reports are available about the impact of NMs on food crops and
the food chain [19, 20]. As plants are in direct contact with the environment and
are first targets to face NPs, thus increasing the curiosity to know the way NPs
affect  plants,  the method of  their  uptake and the way they act  in  plant  systems
(Fig.  1).  The  focal  point  of  this  chapter  is  to  discuss  all  these  aspects  of
interactions  of  MONPs  and  plant  systems.

UPTAKE AND TRANSLOCATION OF MO NPS IN PLANT SYSTEM
TiO2 NPs

The  worldwide  production  of  titanium  dioxide  (TiO2)  NPs  is  up  to  2  million
tons/year [21], which eventually contaminate soils and plants on its release in the
environment.  In  Arabidopsis  thaliana,  the  uptake  and  translocation  of  nano-
conjugate  of  an  ultra-small  TiO2  (<5nm)  complexed  with  Alizarin  red  were
studied  by  Kurepa  et  al.  (2010)  [22].  They  demonstrated  that  the  inhibition  or
facilitation  of  entry  of  nano-conjugate  depends  on  the  pectin  hydrogel  capsule
formed by the mucilage that was released from the surrounding roots. Numerous
other studies show that depending on the plant species, toxic heavy metals in the
rhizosphere  could  either  be  accumulated  or  inactivated  by  the  polysaccharides
present in the mucilage [23]. Asli and Neumann (2009) [24] investigated that in
maize (Zea mays), TiO2 NPs were not taken up by the root cells of excised roots
with intact apices, the probable reason for this might be their large size compared
to  the  size  of  pore  diameter  (6.6  nm).  Servin  et  al.  (2012)  [25],  evaluated  the
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uptake of TiO2 in cucumber (Cucumis sativus) grown in hydroponic solution by
using  the  micro  X-ray  fluorescence  (micro-XRF)  and  micro  X-ray  absorption
spectroscopy (micro- XANES) to track the presence and chemical speciation of Ti
respectively, within the plant tissue. By micro-XRF, it was observed that Ti got
transported from roots to the leaf trichomes, thereby, suggesting trichomes as the
possible sink for Ti. Whereas the micro-XANES spectra showed the presence of
TiO2  within  the  cucumber  tissues,  hence,  testifying  that  TiO2  NPs  were  not
biotransformed.  Larue  et  al.  (2012b)  [21],  treated  hydroponically  grown wheat
and rapeseed plantlets to anatase TiO2 -NP, either through root or leaf exposure.
The  quantification  of  absorbed  Ti  was  done  using  Microparticle-induced  x-ray
emission  (μPIXE)  coupled  with  Rutherford  backscattering  spectroscopy  (RBS)
and accumulation upon leaf and root exposure was determined using Micro x-ray
fluorescence (μXRF) based on synchrotron radiation. Larue et al.  (2012a) [26],
also investigated root-to-shoot translocation of anatase and rutile TiO2-NPs along
with root accumulation in wheat, where mapping, observation and quantification
of  Ti  in  plant  tissues  were  done  using  synchrotron-radiation  micro-X-ray
fluorescence, transmission electron microscopy and micro-particle-induced X-ray
emission respectively. Their results presented threshold diameters of 140 and 36
nm; above which in case of former diameter, NPs no longer accumulated in roots
and in the latter NPs, accumulation took place in wheat root parenchyma but did
not reach the stele and consequently did not translocate to shoot. Conclusively,
the  tested  smallest  TiO2  NPs  accumulate  in  roots  in  a  limited  amount  and
distribute to all plant tissues without dissolution or crystal phase modification. In
another study, harvested fruits of cucumber cultivated in TiO2 NPs treated sandy
loam soil were evaluated using synchrotron μ-XRF, μ-XANES and ICP-OES to
study macromolecule  modification of  cucumber  fruit.  This  is  the  first  report  in
which,  μ-XRF  and  μ-XANES  showed  that  TiO2  got  translocated  without
biotransformation from root-to-fruit in cucumber indicating that, TiO2 could gain
entry into the food chain with unrecognizable consequences. Jacob et al. (2013)
[27], found that Ti originating from TiO2 NPs is available for plant uptake. Soil
grown tomato plants were investigated by Antisari et al. (2015) [28], and uptake
and  accumulation  were  studied  by  ICP-OES  and  the  results  showed  NP
component  metal  accumulation  in  roots.  Electron  microscopy  (ESEM-EDS)
detected  NPs  in  tissues  of  tomato  roots,  suggesting  the  probability  that
translocation of NPs might be associated with the absorption patterns of water and
nutrients within the root. Lack of reports on the uptake of TiO2 NPs might be due
to their high stability; treated plant samples are difficult to digest [29].

Conclusively,  upon  treatment  with  TiO2  NPs,  the  uptaken  entities,  whether  the
metal component of NP or NPs itself, can accumulate and translocate in the whole
plant  body  without  biotransformation,  as  there  are  very  few  reports  on
biotransformation  till  now.
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Fig. (1).  Shows diverse sources of release of TiO2, CuO and ZnO NPs in the environment and in turn their
impact on various parameters of plant system.

 



Future Perspectives Nanobiotechnology: Principles and Applications   41

CuO NPs

Before  2011,  plants  were  not  explored  in  terms  of  uptake,  translocation  and
impact for CuO NPs. On wheat roots, methods were standardized by Zhou et al.
(2011)  [30]  to  differentiate  the  adsorption  and  uptake  of  CuO  NPs  by  using
various metal competing ions, surfactants, complexing agents such as NaOAc and
Na4EDTA and ultrasonic procedure. Upon treatment with CuO NPs, most of these
were found adsorbed on root surface while some were mechanically adhered. It
was observed that desorption of CuO NPs was not possible using competing ions
but NaOAc and Na4EDTA were quite effective in doing so. They observed that
the  uptake  increased  with  increasing  exposure  concentrations,  whereas
absorption/adsorption ratio increased initially but then decreased. They reported
that,  at  low  concentrations  of  NPs,  the  adsorbed  NPs  at  the  plant  root  surface
made their way into the cell easily but at the higher concentrations, only part of
the absorbed NPs were transferred into cells. Toxicity, transport and redistribution
of CuO NPs (20-40nm) on maize (Zea mays L.) were examined by Wang et al.
(2012)  [31],  using TEM and EDS.  They proved that  the  transportation  of  CuO
NPs occurs from roots to shoots through xylem by locating them in xylem sap.
They further authenticated the translocation of these NPs back from shoots to the
roots through phloem by split-root experiments and high-resolution TEM. They
affirmed  the  bioaccumulation  and  biotransformation  of  CuO  NPs  while
translocation,  as  these  could  be  reduced  from  Cu  (II)  to  Cu  (I).  In  a  study
conducted by Kim et al. (2012), TEM images confirmed the presence of CuO NPs
in  the  endodermis  [32].  It  was  observed  that  NPs  form  clusters  either  with
themselves or with other cellular materials after penetrating the cell membrane.
Also, the metal oxide NPs’ deposition on the root surface hindering the uptake of
available Cu. A probable explanation of CuO phytotoxicity is the accumulation of
toxic Cu ions released from CuO NPs as suggested by Landa et al. (2016) [33].
These observations were also confirmed by Le Van et al. (2016), by studying the
effects  of  CuO  NPs  on  conventional  and  Bt-transgenic  cotton  [34].  They
concluded that CuO NPs distinctly reduced the uptake of nutrients such as B, Mo,
Mn,  Zn,  Mg  and  Fe.  Also,  at  low  concentrations  of  CuO  NPs,  growth  and
development of both transgenic and conventional cotton were hindered and there
was an upregulation of Bt toxin protein of Bt-transgenic cotton. The presence of
CuO NPs in TEM images was seen in conventional cotton to be aggregated on the
epidermis while in transgenic cotton it was seen in the cells.

Conclusively as root is the first exposed organ if CuO NPs are provided through
the soil, it can be worthwhile to target future studies on it.
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ZnO NPs

Almost all studies on ZnO NPs have been carried out till the germination stage,
which  does  not  give  an  insight  into  uptake,  translocation  and  accumulation  of
ZnO NPs due to lack of plant root and vasculature development [29]. In ryegrass,
SEM and TEM images displayed that ZnO NPs were firmly bounded onto the root
surface and some particles  were seen in the apoplast  and protoplast  of  the root
endodermis and stele. Results also indicated little or no ZnO NPs were transported
from the root to the shoot, as a translocation factor (TF < 0.02) was very low [35].
The  probable  explanation  for  this  could  be  the  agglomeration  of  NPs  at  high
concentration  which  obstructed  ZnO  NPs  uptake.  The  XAS  spectra  (x-ray
absorption spectroscopy) of ZnO NPs treated roots showed that, in tissues, Zinc
was present either in the form of Zn-nitrate or Zn-acetate i.e. in Zn+2 oxidation
state instead of ZnO NPs. A study conducted by Hernandez-Viezcas et al. (2013),
on Soybean seeds, germinated and grown in soil treated with ZnO NPs revealed
that at the harvesting stage, ZnO NPs were not present as displayed by the X-ray
absorption  spectroscopy  [36].  But  the  data  of  µ-  XANES analysis  surprisingly
showed  the  presence  of  O-bound  Zn  resembling  Zn  citrate,  which  might  be  a
component of Soyabean grain. In a recent investigation, on treating Maize plants
with ZnO NPs, it was observed that NPs were not translocated to shoots; most of
these were restricted to epidermis, a small fraction reached till the root tip cells
and cortex, and some took the route to the vascular system via sites of the primary
root–lateral  root junction. Researchers found that zinc was agglomerated in the
form of zinc phosphate out of which, the uptake of maximum amount of Zn was
in the form of Zn2+ released from ZnO NPs [37].

As  there  are  very  few  reports  available,  intending  to  explore  the  uptake,
translocation and biotransformation of ZnO NPs in plants; those which are present
are contradictory and not sufficient to make any conclusion. This situation creates
a clear vision that more elaborative studies are required, to confirm the uptake,
translocation  and  biotransformation  of  these  metal  oxide  NPs  for  controlled
application  and  treatment  of  damage  done  by  them  to  the  plants  systems.

MODE OF ACTION OF MO NPS

Now,  it  is  apparent  that  the  physical  and  chemical  characteristics  of  NPs  (i.e.
average size, element composition, surface area, dosage, porosity, surface charge,
hydrodynamic diameter, aggregation, stability and coating with cellular or other
constituents) and choice of crop have a direct relevance with toxicity in biological
systems. In addition, life cycle stage, growth media and diluting agents may also
influence toxicity in plants  [38].  It  is  worth noting that  due to the high surface
area to volume ratio of metal NPs, they have more surface area to exchange their
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valence  electrons  with  biomolecules  [39].  Due  to  which,  metal  NPs  have  the
capability to take part in cellular redox reactions, leading to the altered antioxidant
status of the treated plants [40]. The way in which plant growth is affected is still
a topic of major concern for researchers and various efforts towards examining
various crucial processes that work in plant systems are underway [41 - 43].

TiO2 NPs

Initial  investigations  with  TiO2  NPs  and  plants  were  conducted  by  Hong  et  al.
(2005) and Yang et al. (2007), concluding that upon treatment with Nano-anatase
TiO2,  an  improvement  was  observed  in  the  absorption  of  light  energy  with  its
transformation  into  chemical  and  electrical  energy,  and  induction  of  CO2
assimilation and protection of chloroplast ageing during illumination for a long
time  [41,  43].  Moreover,  it  was  also  observed  that  the  activity  of  non-cyclic
photophosphorylation was much greater than that of cyclic photophosphorylation.
It was envisaged that there is a possibility of entry of TiO2 NPs in chloroplast and
increase  in  the  oxidation–reduction  reactions  of  electron  transport  and  oxygen
evolution  [41].  Whereas,  Gao  et  al.  (2006),  concluded  that  there  is  an
enhancement in the photosynthetic carbon assimilation when treated with Nano-
anatase TiO2 [42]. Thereby, activating Rubisco (complex of Rubisco and Rubisco
activase) that might lead to carboxylation of Rubisco, and ultimately enhancing
plant growth. These results were further confirmed using a molecular approach by
Linglan et al. (2008), who suggested that anatase TiO2 NP induces marker gene
for Rubisco activase (rca) mRNA, resulting in an increased level of protein and
activities of Rubisco activase [44]. According to Lei et al. (2007), anatase TiO2
NPs promoted certain activities in chlorophyll such as photophosphorylation and
evolution  of  oxygen  under  both  UV  and  Visible  light  [45].  Anatase  TiO2  also
enhanced  the  activity  of  the  whole  electron  transport  chain  along  with  photo-
reduction  activity  of  photosystem  II.  Some  additional  supportive  observations
were  also  reported  where  TiO2  NPs  improve  rate  of  transpiration,  water
conductance [46], plant growth and grain yield [47]. The mode of action of TiO2
NPs,  such  as  enhancing  nitrogen  assimilation,  photo-reduction  activities  of
photosystem  II  and  electron  transport  chain  and  protecting  the  chloroplast
membrane structure from reactive oxygen species, make these NPs promising as
an  efficient  nutrient  source  for  crops  to  improve  biomass  production  [47].  But
Servin  et  al.  (2013),  suggested  that  NPs  have  a  promontory  effect  on  nitrogen
accumulation and thus protein formation [48]. It has been recognized that plants
under optimum conditions tend to increase the duration of their development as
much as possible, leading to improved leaf photosynthesis, light-use potential and
higher yield [49]. Raliya et al.  (2015), concluded that nano-TiO2  also promotes
microbial activities which can improve the utilization of native nutrients by plants
[50]. On the contrary, some studies reported the occurrence of genotoxicity (DNA
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damage) by TiO2 NPs in plants [51, 52], whereas, Wang et al. (2011), found the
microtubule disrupting nature of TiO2 NPs while working with A. thaliana [53].
Among both the forms of TiO2 NPs (anatase and rutile), it seems the rutile form
has  less  toxicity  than  the  anatase  form,  because  of  its  lipophilicity,  as  rutile
crystalline structure of NPs forms larger aggregates in the aqueous medium [54].

CuO NPs

The  antibacterial  activity  of  Cu  based  NPs  is  well  documented,  but  the
information underlying the mode of action of these NPs with reference to plants is
comparatively limited. For instance, Adams et al. (2017) reported that Cu ions in
the  rhizosphere  are  released  from  the  dissolution  of  the  CuO  NPs,  due  to  the
secretion of proteins [55] from root cells which chelated the released metal ions,
which caused root shortening but promoted root hair proliferation via nitric oxide
cell  signaling  and  modified  IAA  distribution.  Whereas,  in  another  study,  the
reduction  in  hydraulic  conductivity  in  roots  was  reported  due  to  CuO  NP
treatment  resulting  in  reduced  water  uptake,  hence  decreased  root  and  shoot
biomass  [31].  DNA  damage  by  CuO  NPs  in  some  agricultural  and  grassland
plants  was  reported  by  Atha  et  al.  (2012)  and  suggested  the  accumulation  of
oxidatively modified compounds which caused mutagenic DNA lesions, thereby,
inhibiting plant growth [56]. As reported by many researchers, reactive oxygen
species (ROS) stress is contemplated as the prime reason for obtained results.

ZnO NPs

Amongst  all  the  three  MO NPs focused  in  the  present  study,  ZnO NPs  are  the
most  explored  ones.  As  mentioned  earlier,  the  well-identified  reason  for
phytotoxicity is the ROS generation [57], which is perhaps generated by Zn ions
formed by the dissolution of ZnO NPs. Not only plants, but enzyme activities of
the contaminated soils may also be affected as heavy metals probably react with
sulfhydryl  groups,  forming  metal–sulfide  equivalents,  thereby  inactivating  or
inhibiting enzyme activity [58]. It was suggested by Ghodake et al.  (2011) that
probably  ZnO  NPs  penetrated  radically  into  onion  roots  in  turn  damaging  the
whole cellular metabolism and stages of cell division, blocked the growth stages
and  showed  severe  hazardous  effects  at  both  cellular  and  chromosomal  levels
[59].  The  accumulation  and  biotransformation  of  the  MO  NPs  or  the  released
metal from them are reported in various studies. Dimkpa et al. (2013) [10] stated
that  greater  root  toxicity  may  be  correlated  with  a  smaller  particle  size.  The
production  of  Phytochelatins,  which  are  considered  as  the  indicators  of  heavy
metal  toxicity  in  plants  might  occur  in  the  presence  of  ZnO  NPs  or  their
dissociated  Zn  ions  [36].
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In  spite  of  a  number  of  reports  for  phytotoxicity,  certain  reports  are  available
stating  the  positive  mode  of  action  of  ZnO NPs.  After  treating  with  ZnO NPs,
improvement  in  plant  growth might  be associated with the generation of  fewer
amounts of ROS causing less lipid peroxidation [60]. Since, Zn is a constituent of
enzyme which influences the secretion of IAA, ZnO NPs showed a very positive
response  in  seed  germination,  along  with  root  growth,  which  may  be
accomplished due to oxygen vacancies in ZnO NPs, leading to increment in the
level of IAA [61]. ZnO NPs also improved nitrogen assimilation soybean [62].

Initially,  the  modes  of  action  of  the  MO  NPs  were  not  understood,  but  now,
researchers are investigating un- or underexplored aspects very intensely, by using
various high throughput machinery and protocols as evidenced by all the above-
mentioned examples.

IMPACT OF MO NPS ON PLANT SYSTEM

Plant- NPs interaction is a nascent field that requires intensive research. Published
data so far are focused on a particular group of plants, like in Angiosperms among
terrestrial  plants,  whereas  Gymnosperms  are  completely  ignored  worldwide.
Probably  the  main  reason  of  this  ignorance  is  the  complex  life  cycle  of
Gymnosperms  and  also  the  easy  yardsticks  of  growth  and  development  in
Angiosperms. As the main concern of researchers is the accumulation of NPs in
food web so all studies revolve around a very narrow range of crops (e.g. wheat,
maize, rice, lettuce, cucumber, soybean etc.). The studies on the whole life cycle
of  plants  are  limited  and  recently  this  subject  has  caught  attention.  There  is  a
complete  lack of  studies  on ornamental  and medicinal  plants  along with  plants
which are growing under severe environmental conditions like xerophytic plants.
Fig. (2) represents the information about studies done so far with special context
to terrestrial plants against discussed MO NPs (i.e. TiO2, CuO, ZnO NPs).

Literature on the effects of major mineral elements on growth, development and
biochemical aspects is well documented but nano-sized particles of these metals
like  (metal  NPs  and  MO  NPs)  have  just  started  making  impact.  Tables  1  -  3,
provide the summarized information about experimental design, results, possible
hypothesis  or  expected  mechanism  of  peer  reviewed  research  articles.  To
emphasize  on  recent  trends,  only  2010  onward  publications  are  included.
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Table  1.  Summary  of  the  important  studies  (after  year  2010)  on  terrestrial  plant  species  exposed
against TiO2 NPs.

S.
N.

NP
specifications

Range of
conc.

Exposure
method/

application
method

Plant species Studies endpoints/
parameters Remarkable effects

Expected
mechanism/possible

hypothesis
References

1. 7-40 nm,
Anatase

5 mg/L
suspensions

in DDW

NPs
suspensions

sprayed twice
on 12th and 16th

d foliarly

Cicer
arietinum

Electrolyte leakage
index (ELI),
cDNA-AFLP

analysis,
Quantitative

reverse-transcriptase
polymerase chain
reaction (qPCR)

analysis,
Gene ontology (GO)

annotation,
Enrichment analysis

of GO terms,
Functional

annotation and
network analysis

Number of generated
transcript-derived

fragments (TDFs) -
4200,

Among them, 100
(~2.62%) expressed

differentially,
Differentially

expressed TDFs of
NPs-treated plants

cloned – 60 (During
cold stress),

10 of them formed
readable sequences.

These genes
identified for-

chromatin
architecture,

transcriptional
regulation,
metabolism

pathways, cell
connections and

signaling and
cellular defense,

2 out of 10 TDFs-
unidentified genes,
homology absent

with known genes,
Transcription level

of these TDFs ↑

Probably TiO2 NPs
play a major role
under cold stress
conditions as an
elevated level of
transcription was

observed in reported
TDFs which are

essential to build up
cold tolerance by

reducing ELI content
in tolerant plants.

[63]

2. 20-160 nm 20 mg/kg
soil NPs in soil Lycopersion

esculentum

Morphological
characters,
Quantity of

component metals
taken up by treated
plants from NPs,

Nutrient contents in
different organs

Root, stem
elongation (-),

Leaf dry matter ↓,
Ca, K, Mg, Na, P, S

in roots (-),
Ca, Mg, P, S in

stems ↑,
P, S in leaves ↑

- [28]
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S.
N.

NP
specifications

Range of
conc.

Exposure
method/

application
method

Plant species Studies endpoints/
parameters Remarkable effects

Expected
mechanism/possible

hypothesis
References

3.

1 to 200 nm,
Spherical,

Types-
Anatase (NAnT),

Pristine rutile
(NRuT),

Rutile with
hydrophilic surface

(NLRuT),
Rutile with

hydrophobic surface
(NBRuT)

0, 10, or
1000 mg/L

of full
strength
medium

48 h germinated
seeds exposed
to 0.5 mmol/L

Ca(NO3)2,
During 5 weeks
cultivation of

seedlings,
strength of

nutrient solution
increased
gradually,
After that
seedlings

transferred to
full strength

nutrient solution
containing

Pb(NO3)2 (0 or
1.0 mg/L Pb(II))

and 0, 10, or
1000 mg/L

NAnT, NRuT,
NLRuT,

NBRuT for 7 d

Oryza sativa

Seedling biomass,
Accumulation of

NPs,
Pb concentration in

rice tissues,
Iron plaque at the

root surface

Seedling biomass (-),
Only NAnT entered

seedling roots
through the

apoplastic route,
NAnT accumulates

in rice roots,
Translocation from

roots to shoots
absent,

Iron plaque
formation on root
surfaces or their

restriction effects on
Pb uptake (by roots)
not affected by the
presence of NPs on

root surfaces,
Pb conc. in roots and

shoots ↓,
TiO2-type dependent
bioaccumulation of

Pb,
At high NPs

exposure (1000
mg/L)

bioaccumulation ↓

Probably casparian
strip in root tissues

hindered the
translocation of

NAnT from roots to
shoots,

NPs high sorption
potential for Pb in
nutrient solution

might be the reason
for reduced conc.of

Pb in roots and
shoots.

[64]

4.
< 100 nm,

Mixture of anatase
and rutile

0.2, 1.0,
2.0, 4.0%

suspensions
in DW

Seed soaked
overnight in

NPs suspension

Vicia
narbonensis,

Zea mays

Seed germination,
Development and
mitosis of root tip

cells

Seed germination
delayed,

Mitotic index ↓,
Aberration index ↑

NPs increased
aberration index due
to disturbances in the

spindle apparatus.

[65]

5.
< 100 nm,

Mixture of rutile and
anatase

0.2,1.0, 2.0,
4.0%

suspensions
in DW

Seed soaked
overnight in

NPs suspension

Vicia
narbonensis

Enzymatic and
nonenzymatic

antioxidant
responses,

Oxidative stress,
Oxidative damage

Phytotoxic effects ↑,
ROS production,

DNA fragmentation

NPs generated stress
condition may
induce ROS
production,

Mechanisms of DNA
repair not effective
to eliminate early

genotoxicity effects.

[66]

(Table 1) cont.....
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S.
N.

NP
specifications

Range of
conc.

Exposure
method/

application
method

Plant species Studies endpoints/
parameters Remarkable effects

Expected
mechanism/possible

hypothesis
References

6.

Sample S-
<100 nm (tetragonal

crystals),
Sample P-

<10 nm (spherical
shape)

50 mg/L
water

Seeds washed
overnight in tap

water than
treated with NPs
suspensions for

3 d

Vicia faba

Germination,
Vigour index,

Water contents,
Root length,

Relative water
contents,

H2O2 contents
Activities of

ascorbate
peroxidase,
glutathione

peroxidase, catalase
and Guaiacol
peroxidase,

Ascorbate and
glutathione
contents,

proline contents,
Thiobarbituric acid
reactive substance

contents

Germination, root
length, water

contents,
thiobarbituric acid
reactive substance

contents and
glutathione

peroxidase activity
(-),

H2O2 and proline
contents ↓,

Activities of
ascorbate peroxidase

and catalase ↓,
Vigour index-
sample P ↑ and
sample S (-),

Relative water
contents, total

ascorbate and total
glutathione-

sample P ↓ and
sample S (-),

Guaiacol peroxidase
activity-

sample P ↓ and
sample S ↑,

Mitotic activity (MI)
and occurrence of

micronuclei in
interphase (MNC) (-),

Frequency of
anomalies and

aberrations (AI) in
dividing cells-
sample S ↑ and

sample P (-)

Depending on their
size and shape NPs
may provoke major
adverse effects in

roots and exert
specific actions at
different levels of

toxicity.

[67]

7. 15, 25 and 32 nm,
Rutile and anatase

0.01-100
mg/L

suspensions

Seed soaked in
NPs suspension

Linum
usitatissimum

Effect of size and
crystal structure

(anatase and rutile)
of TiO2NPs on their

toxicity

NPs anatase crystal
structure - toxic in
whole set of tests

Lipophilic nature in
rutile crystalline
structure of NPs

creates larger
aggregates in an

aqueous medium,
which show less

toxicity than anatase
crystalline form

[54]

(Table 1) cont.....
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S.
N.

NP
specifications

Range of
conc.

Exposure
method/

application
method

Plant species Studies endpoints/
parameters Remarkable effects

Expected
mechanism/possible

hypothesis
References

8. < 50 nm,
Anatase

10, 20, 30,
and 40

mg/ml of
MS

medium

Seeds cultivated
in MS medium
containing NPs

Petroselinum
crispum

Germination %,
Germination rate

index,
Vigor index,
Fresh weight,

Root and shoot
length,

Chl content

Germination,
germination rate

index, vigor index,
fresh weight, root

and shoot length and
chl content of
seedlings ↑,

Best conc. of nano-
anatase 30 mg/ml.

Nano-anatase can
penetrate through

seed and may
stimulate the

embryo.
Improved seed

germination might
be observed due to
reduced antioxidant
stress, superoxide

radicals, and MDA
content carried out

by increased conc. of
nitrate reductase

enzyme and
activities of

antioxidant enzymes.
Nano-anatase assists

the absorbance of
minerals that
promotes the

formation of chl and
activation of

important enzymes
for carbon fixation

process.

[68]

9.
< 100 nm,

Surface area >14.0
m2/g

~ 91 mg/kg
soil NPs in soil Triticum

aestivum

Wheat growth,
Soil enzyme

activities (under
field conditions)

Biomass ↓,
NPs mainly adhered

on roots surface

Cell membrane
could be damaged
due to extracellular
ROS generated by

NPs

[58]

10. 21 nm,
Surface area 50 m2/g

1, 2, 10,
100, 500

ppm
suspensions

in DW

Seeds
germinated in
petri dishes

containing NPs
suspensions

Triticum.
aestivum

Shoot length,
Seedling length,
Root dry matters

Root length (-),
At 2-10ppm conc. -

shoot length and
seedling length ↑
At higher conc. -
shoot length and
seedling length ↓

Appropriate conc. of
NPs could promote

seed germination and
seedling growth.

[69]

11. < 25 nm,

0, 0.1, 1,
2.5, 5%

suspensions
in growth

media

NPs in growth
media

Nicotiana
tabacum

Germination rates,
Biomass,

Root lengths,
Growth and

development of
seedlings,

Expression profiles
of microRNAs.

Germination rate ↓,
Root length and

Biomass ↓,
ADH and APX

upregulated,
At low conc. -

miRNA expression ↑

Water uptake
inhibition might be

due to the
obstruction created
by NPs clusters on

root cell wall.
Lipid peroxidation of
cell membrane and

oxidative DNA
damage generated

due to induced ROS.

[52]

12. < 25 nm,
Anatase

0, 6, 18
mM/L and

0, 12
mM/L

suspensions
in nutrient
solution

Nutrient
solutions with

NPs

Phaseolus
vulgaris,
Triticum
aestivum,

Rumex
crispus,
Elodea

canadensis

Biomass,
Ti Associated with

Roots,
Uptake of Ti in

roots,
Translocation of Ti
in shoots in rooted

plants

For rooted plants –
biomass production

(-),
Root ↑,

In R. crispus –
translocation of Ti

into shoots

Roots increased
because of Ti

sorption and uptake.
[27]
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S.
N.

NP
specifications

Range of
conc.

Exposure
method/

application
method

Plant species Studies endpoints/
parameters Remarkable effects

Expected
mechanism/possible

hypothesis
References

13. 21 nm

NPs- 0, 10,
100 and

1000 mg/L
Cd- 0, 10,
20 mg/L

1 week grown
seedlings

transferred to ½
Kimura solution

for 3 d,
Then divided in
12 test groups

and treated with
combinations of
Cd and NPs for

10 d

Oryza sativa

Biomass,
Plant height,
Root length,

Presence of NPs in
roots and shoots,

Cd and Ti contents
in root and shoot,

Isothermal
adsorption of Cd,

Plant hormone conc.
of abscisic acid,

indole-3-acetic acid,
trans-zeatin

riboside,
isopentenyl
adenosine,

gibberellic acid,
brassinolide, methyl

jasmonate,
Antioxidant enzyme

activities of
catalase, super

oxide dismutase,
peroxidase, MDA

contents,
Net photosynthetic

rate,
Chl contents

Cd / NPs treatment-
toxicity in plant

(intensity Cd>NPs),
MDA contents ↑ (at

some conc.),
On NPs treatment-
NPs exist in plant

Ti contents in root ↑,
Root length and
shoot height ↓,

Fresh biomass ↑,
On co-treatment (Cd

+ NPs)-
Cd toxicity ↓,

Ti and Cd contents
in roots ↓,

Net photosynthetic
rate and chl-
contents ↑,

MDA contents ↓,
Adsorption of Cd-

in nutrient solution >
in deionized water,

Effects on hormones
and antioxidant

enzyme activities-
treatment type and

dose dependent

Cd treatment
modifies/damages
the structure and
function of root’s

cell membrane
which facilitates
easy entry and

accumulation of NPs
in the roots.

Lattice of TiO2 NPs
and Cd might be

interacted in such a
way that the
adsorbed Cd

becomes unavailable
to plants eventually
reduces Cd toxicity

[70]

14.
32-171 nm,

Anatase,
White powder form,

10, 100,
and 1000
mg/L of

Hoagland’s
solution

48 h germinated
seeds exposed

for 12 h light/12
dark

photoperiod for
2 d,

Then seedlings
exposed to NPs

amended
Hoagland’s

solution for 14 d
and various CO2

conditions
(Super-elevated-
5000 mg/L CO2

and normal- 400
mg/L CO2)

Triticum
aestivum

Biomass,
Lateral roots, root
length and shoot

height,
Fresh weight of
roots and shoots,

Ti contents,
Phytohormone
determination-

indole acetic acid
(IAA),

gibberellins (GA),
abscisic acid

(ABA),
jasmonic acid (JA),

brassinosteroid
(BR),

zeatin riboside
(ZR),

dihydrozeatin
riboside (DHZR),
indolepropioponic

acid (IPA)

Under elevated CO2

condition-
Yellow/ light brown

seedlings,
Root biomass and

lateral roots ↑,
IPA and JA content

↓,
JA content ↑ with
increasing conc. of

NPs,
Ti accumulation and

translocation in
wheat treated with

certain conc. NPs ↑,
Under both CO2

cultivation
conditions-

ABA content ↑,
Ti accumulation in

both shoots and roots
↑ in dose-response

manner,
Under normal CO2

conditions-
green and healthy

seedlings

- [71]
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N.

NP
specifications
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conc.

Exposure
method/

application
method

Plant species Studies endpoints/
parameters Remarkable effects

Expected
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hypothesis
References

15. 15 nm,
Anatase

0, 0.1, 1,
10, 100,

1000
mg/mL

suspensions
in DW

Plant exposed to
NPs suspension
for 24 h or 72 h

Allium cepa

Macroscopic
parameters-number
and average length
of roots and total
length of the root
system for each

bulb,
Microscopic

parameters- mitotic
index, portions of

mitotic phases,
chromosome

aberrations and
micro- nuclei

Duration and conc.
dependent response

of Allium roots,
Mitotic activity of
root meristem ↑

Biological reactivity
of NPs may be

interpreted with the
help of some key
parameters like

exposure period.

[72]

16.

5-10 nm,
Anatase,

Crystalline,
Tetragona system
with dipyramidal

habit,
Few were rounded

spherical grains

0–20%
(w/w) NPs
suspension

of type I
culture

medium,
0, 100, 150,
200, 400,
600, and

1000 mg/L
of type II
culture

medium

On type I
medium-

Initial 24 h,
seeds on NPs

amended
medium kept in

dark, then
cultured for 5 d
in a 16 h light/8

h dark cycle,
On type II
medium-

3 d germinated
seeds exposed

to NPs amended
medium for 7 d
with 16 h light/8

h dark cycle

Hordeum
vulgare

Root and shoot
length,

Biomass,
Chl-a and b

contents,
Ti contents

Plant absorbed NPs,
Shoot growth ↓ (at
10 and 20% w/w in

agar media),
Shoot growth (-)

(upto 1000 mg/L in
hydroponic
treatment),

Root growth ↓,
Chl- a and b contents

(-),
Biomass (-)

TiO2 NPs exposure
generates early root
growth (indicator of
potential effects of

TiO2 NPs),
Reduced root length
limits nutrient supply
which inhibits shoot

growth,
Effective mechanical

and physiological
barriers present in
roots may limit the

transport of NPs into
aerial parts.

[73]

17. < 150 nm,
Anatase:rutile:: 80:20

100 mg/L
suspensions

in media

NPs added to
growth media

Arabidopsis
thaliana

Gene expression in
roots of the plant. Weak impact

Nitrogen metabolism
stimulated slightly
showing no visible

effects on plant
growth.

[74]

18. 14- 655 nm,
Anatase and rutile

100 mg/L
in DW

Seeds
germinated in
sand, soaked

with Hoagland
solution then

plantlets
transferred to

NP suspension

Triticum
aestivum

Accumulation,
Translocation,

Impact of
nanomaterials,

Influence of
diameter and crystal

phase of NMs

Roots can
accumulate –

NPs ˂ 140 nm,
NPs translocated to
leaves – size ˂ 36

nm,
Seed germination (-),

Vegetative
development (-),

Photosynthesis (-),
Redox balance (-)

Cell wall pores (40
nm) become

enlarged due to
Hypo-osmotic stress
and radial diffusion
of 36 nm NPs made

possible up to
Casparian band

where further radial
progression in roots

was blocked and
NPs accumulation

occurs.

[26]

19. 14 - 25 nm

0, 10, 50,
100 mg/L

suspensions
in water

NPs treatment
in hydroponics

conditions
either through

root or leaf
exposure

Triticum
aestivum,
Brassica

napus

Plant development,
Accumulation,

Distribution in roots
according to the size

of NPs

Root elongation ↑,
Germination (-),

Evapotranspiration
(-),

Plant biomass (-),
NPs internalized in

roots and transferred
to their leaves,

NPs with smaller
diameters- more
accumulation.

Only the smallest NP
modulated plant
development and

increased root
length.

[21]

(Table 1) cont.....



52   Nanobiotechnology: Principles and Applications Patel et al.

S.
N.

NP
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application
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Plant species Studies endpoints/
parameters Remarkable effects
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References

20.

Pristine TiO2 NPs
(anatase 4 nm),

TiO2 MPs (rutile ≈
150 nm),

Aged paint (82%
rutile and 18%

anatase) leachate

Exposure
of 1 μL per

25 mm2

leaf area,
Pristine

TiO2 NPs
exposure –
0.125, 1.25

and 12.5
mmol/L
ultrapure

water
deposited
on leaves
till final
conc. of

12.5, 125
and 1250

nmol
TiO2 NPs/
gm fresh
weight
(FW),
Paint

leachate
exposure-
till final

conc. of 35
nmol TiO2/

gm FW

5-leaf staged
plantlets

exposed to NPs
foliarly (on

adaxial side of
leaves) for 7 d

Lactuca
sativa

Internalization and
in situ speciation of

Ti,
Phytotoxicity

biological markers-
Fresh foliar

biomass,
Chl- a, Chl-b,
carotenoid and

pheophytin
contents,

Thiobarbituric acid
reactive substance,

GSH conc.

Internalization in
leaves- TiO2 MPs as
well as NPs pristine
and from aged paints

(observed in all
types of tissues),

No change in
speciation,
No acute

phytotoxicity,
Variations observed
in glutathione and

phytochelatin levels
(< typical values),

Fresh foliar biomass,
chl-a, chl-b,

carotenoid and
pheophytin contents,
thiobarbituric acid
reactive substance

(TBARS) (-)

Involvement of both
stomatal and

cuticular pathways in
the transfer of TiO2

particles expected.

[75]

21. 30- 60 nm

750, 1000,
1250

mg/kg
seeds

Seed treated
with NPs

Avena sativa,
Trifolium

alexandrinum

Seed germination,
Vigor and yield in

fodder crops

Germination
percentage ↑,

Seedling vigour and
yield ↑,

Maximum seed yield
at highest dose

Increment of Hill
reaction and activity

of chloroplast
induced by NPs,

accelerating Fe–Cy
reduction and

oxygen evolution

[40]

22.

24.5 nm,
Anatase,

Specific area- 55
m2/g

0, 10, 30,60
μg/ml

suspensions
in growth
medium

NPs in growth
media

Hordeum
vulgare

Callugenesis,
Size of calli,

Bactericidal activity

Callugenesis ↑,
Size of calli in

darkness ↑,
Effective

bactericidal activity

NPs stimulate plant
cell division and

cellular expansion
but their mechanism

in darkness is
unknown.

[76]

23. 7- 40 nm

0, 2, 5, 10
ppm

suspensions
in DDW

Seeds exposed
to NPs

suspensions,
Leaves sprayed

with NPs
suspensions at
12th and 16th d

Cicer
arietinum

Plant response to
cold stress

At 5 ppm conc. -
electrolyte leakage
and MDA content ↓

Plant-NPs
interaction induces

defense mechanisms
in plant body which
supported plants to

cold stress

[77]

24.
P25 (representative

of TiO2 NPs),
29 ± 9 nm

10, 100,
1000

mg/kg of
soil

5 d germinated
seeds

transferred to
pots with

substrate spiked
with NPs

Trifolium
pretense,
(Lolium

perenne used
as reference

of non-
nitrogen

fixing plant)

In Trifolium
pretense-

Biological nitrogen
fixation by rhizobia,
Root colonization of

arbuscular
mycorrhizal fungi

(AMF),
Number of flowers

(flower heads),
Dry weight of roots,

shoots and total
biomass

Plant growth,
number of flowers,
biological nitrogen
fixation and AMF

root colonization (-)

- [78]
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25. 1-100 nm

0.01,
0.03%

suspensions
in DW

a. Spraying NPs
at various

vegetative and
reproductive

stages,
b. Spraying NPs
and bulk TiO2 at
different conc.

Zea mays

Chl contents (a and
b),

Total chl (a + b),
Chl a/b,

Carotenoids and
anthocyanins

contents

Amount of
pigments-

NPs treatment in
reproductive stages
> treatment of bulk
and DW or NPs in
vegetative stage

NPs elevated
photosynthesis by

activating
photochemical
reaction of crop

chloroplasts

[47]

26. 30–50 nm

100, 250,
500, 2500,

5000
μg/mL in

DW

Seeds
germinated in
petri dishes
having NPs
suspensions

Cucumis
sativus

Seed germination
rate,

Germination index,
Root elongation

Seed germination ↓,
Germination index ↓,

Root elongation ↓,

NPs generated stress
in the seeds [79]

27. 12–15 nm
10 mg/L

suspension
in DW

NPs suspension
foliar sprayed
on 14 d old
seedlings

Vigna
radiata

Phenological and
physiological

effects

Shoot length ↑,
Root length ↑,
Root area ↑,

Root nodule ↑,
Chl content ↑,

Total soluble leaf
protein ↑,

Activites of
dehydrogenase,

phytase, acid
phosphatase and

alkaline phosphatase
in the rhizosphere ↑

NPs stimulated plant
metabolic activities

along with
rhizospheric

enzymes activity and
microbial population

[50]

28.

27 ± 4 nm,
Surface area 51.5

m2/g,
Anatase 82%,

Rutile 18%

0, 50, 250,
500, 1000,
2000, 4000

mg/L
suspension
in modified
Hoagland
nutrient
solution

Plantlets
transferred to
Mason jars

containing NPs
suspensions

Cucumis
sativus

Root length,
Shoot length

Root length ↑,
NPs absorbed by

roots and transported
to aboveground plant

parts

NPs stimulated
nitrogen

accumulation and
protein formation
which promoted
plant root growth

eventually

[25]

29.

27 ± 4 nm,
Surface area 51.5

m2/g,
Anatase 82%,

Rutile 18%

0, 250, 500,
750 mg/kg

soil
NPs in soil Cucumis

sativus

Macro and
microelements

accumulation in
fruit,

Chl Content,
Catalase (CAT) and

Ascorbate
Peroxidase Activity

CAT activity in
leaves ↑,

P and K ↑,
Total chlorophyll
content in leaves ↑

NPs stimulated
nitrogen

accumulation and
protein formation
which promoted
plant root growth

eventually.

[48]

30. < 100 nm,
100, 200,

300 mg/kg
of soil

Seedlings
grown in NPs
containing soil
contaminated

with Cd (50-150
mg/kg)

Glycine max

Plant biomass,
Relative water

contents,
Chl contents,

Protein contents,
Proline contents,
MDA contents,

Accumulation and
distribution of Cd

(translocation
factor)

Plant growth due to
Cd stress ↓,

Highest
accumulation of Cd

in roots,
On NPs treatment-

Cd stress ↓,
Photosynthesis rate

and growth
parameters ↑,
Cd uptake ↑

NPs promoted plant
growth rate and

accumulation of Cd
in plant tissues

[80]
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31.

Type 1-
27 nm,

Aerosol,
Anatase:rutile::80:20,

Type 2-
10–20 nm,

Specific surface area
55 m2/g

Setup 1-
0, 100, 500,
1000, 2500,
5,000 mg/L
suspensions

in DW,
Setup 2-
1,000,

2,500, and
5,000 mg/L
suspensions

in DW,
Setup 3-

100, 1,000,
and 5,000

mg/L
suspensions

in
Hoagland
solution

1. Seeds were
soaked in NPs
suspensions for

48 h for
germination

studies,
2. NPs

suspensions
added to
seedling

containing pot
soil for pot

experiments,
3.NPs

suspensions for
circular

hydroponic
system

Brassica
campestris,

Lactuca
sativa,

Phaseolus
vulgaris

Germination,
Root elongation,

Uptake,
Physiological

responses

Seed germination (-),
Enzyme activities (-

),
Chl content (-),

Root elongation ↑

NPs penetrated the
seed coat and

accumulated inside
seed tissues, it

showed no toxic
effects to plants

[81]

32.

>20 nm,
Anatase,

2 fractions of NPs-
28.5 ± 0.5 nm

(dominant) and 127 ±
7 nm

100, 250,
500 and

1000 μg/ml
suspension
in ultrapure

sterile
water

Seed treated
with NPs

suspensions for
48 h,

then grown in
soil for 5 weeks

Arabidopsis
thaliana

Germination,
Root length,

Biomass,
Tocochromanol and

chl contents,
Activities of

antioxidant enzymes
(SOD and CAT),

Lipid peroxidation,
Vitamin E (Vit-E)

content,
Real time analysis
of expression of

tocopherol
biosynthetic genes

(vte1-vte5)
Element analysis

Ti contents ↑,
At highest conc. of

NPs- Elements conc.
↑ (copper- 2.5-folds,
zinc- 2.5 folds, iron-

1.5 folds and
manganese- 2 fold),

Biomass and chl
contents ↓,

Root growth ↑,
At higher NPs conc.-
antioxidant level and
lipid peroxidation ↑,

Tocochromanol
contents-

↓ for lower treatment
conc.

↑ for highest conc.,
Vitamin E contents-

↓ for lower tested
conc.

↑ for 1000 μg/ml
treatment conc.

TiO2 NPs alter gene
expression of vit-E
which could lead to
antioxidant response

in Arabidopsis
plants,

Generated local
oxidative stress and
enlarged cell wall

pores and increased
water flow and
turgor in roots
enhance root
elongation
eventually,

NPs treatments
inhibited

photosynthesis and
generated

differences in
mineral uptake

which cause reduced
biomass production.

[82]
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33.

25-70 nm,
Elongated,

High crystallinity
with tetragonal rutile,

Hydrodynamic
diameters – 261-341

nm,
Pristine sample-

surface area- 20-40
m2/g,

zeta potential-- 14.5
± 0.5 mV,

Both hydrophobic
and hydrophilic NPs-

suface area- ~50
m2/g,

zeta potential-+
~27.0 mV

125, 250,
500, and

750 mg/kg
of soil

Cultivated for
65 d in soil

amended with
unmodified,
hydrophobic
(coated with

aluminum oxide
and

dimethicone)
and hydrophilic

(coated with
aluminum oxide

and glycerol)
NPs,

Hydrophilic
particles

suspended in
Millipore water
before mixing

with soil,
Hydrophobic

particles mixed
directly with the

soil

Ocimum
basilicum

Ti and essential
elements in tissues,
Relative chl content,

Carbohydrates,
Antioxidant

response,
Biomass,

Water contents

Hydrophobic and
hydrophilic NPs-

seed germination ↓,
Unmodified and

hydrophobic NPs-
shoot biomass ↓,
At 750 mg/kg, Ti
contents in roots-

(hydrophobic
>hydrophilic

>pristine)
In shoots (-), All

three types of
particles affected
homeostasis of

essential elements,
At 500 mg/kg,
Unmodified

particles-Cu and Fe
↑,

Hydrophilic
particles-

Fe ↑,
Hydrophobic

particles-
Mn ↑ but Ca, Cu and

P ↓,
Root elongation ↓

only by hydrophobic
particles,

Total sugar ↓ by all
particles,

Reducing sugar ↓ by
unmodified particles,

Starch ↓ by
hydrophobic

particles

Although all tested
NPs affected plants

but the highest
impact on its

nutritional quality
was generated by

coated NPs by
altering more

contents of starch,
essential elements

and reducing sugars

[83]

34. 2.8 ± 1.4 nm,
Molarity 9.6 mM

2 µM
suspension

in
phosphate

buffer

Seedlings
partially

submerged to
suspension of

NPs

Arabidopsis
thaliana

Microtubular (MT)
network

26S proteasome
dependent

degradation of
tubulin monomers ↑,
Reorganization and
elimination of MTs,
Isotropic growth of

root cells

NPs treatment causes
MT disruption by
generating ROS
(indirectly) or by
interacting with

tubulin (directly)

[53]
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35.
20 nm,

293 ± 17 nm (in DI
water),

0, 100, 250
or 500

mg/L of
Hoagland
nutrient
solution

7 d seedlings
exposed to NPs

containing
medium for 14

d

Oryza sativa

Biomass,
Absorption and
transportation of

NPs in roots, stems
and leaves,

Antioxidant enzyme
activities-

catalase, peroxidase,
superoxide
dismutase,

MDA contents,
Metabolic profile

Biomass ↓,
NPs gathered on root

surface,
subsequently
absorbed and

accumulated by root
cells,

Small amount of
NPs transported
through stems,

Antioxidant defense
system ↑,

POD activity ↓,
CAT (leaves) and
SOD (roots and

leaves) earlier ↑ later
↓,

CAT (root) (-),
Accumulation of Ti

↑ (root > leaves),
105 identified
metabolites

exhibited significant
difference from

control,
Conc. of glucose--

-phosphate, glucose-
1-phosphate,

succinic and isocitric
acid ↑ (most),

Conc. of sucrose,
isomaltulose, and
glyoxylic acid ↓

(most),
Tricarboxylic acid
cycle and pentose

phosphate pathway
↑,

Starch and sucrose
metabolism, and
glyoxylate and
dicarboxylate
metabolism ↓,

Biosynthesis of most
of the identified fatty

acids, amino acids
and secondary
metabolites ↑,

Epidermal cells
absorbed NPs where
they remain stuck to
the root surface even

after washing thus
higher contents in

roots over the leaves
were observed,
NPs treatment
disturbed the

metabolism of rice
plants distinctly and

showed mixed
effects on their yield

and quality.

[84]

(↑= increased,  ↓=decreased,  (-)= not  significantly  affected,  DW= distilled  water,  DDW= double  distilled
water, DIW= deionized water, MS= Murashige and Skoog, Chl= chlorophyll, h= hours, D=days).
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Table  2.  Summary  of  the  important  studies  (after  year  2010)  on  terrestrial  plant  species  exposed
against CuO NPs.

S.N. NP
specifications

Range of
conc.

Exposure
method/

application
method

Plant species Studied endpoints/
parameters Remarkable effects

Expected
mechanism/ possible

hypothesis
References

1.

<50 nm,
Round shaped,

Smooth
surface

3, 10, 30 and
300 mg Cu/kg

soil

By mixing
in Sand

Triticum
aestivum Root morphology

Root elongation ↓,
Root hair proliferation,

Shortening of zones of the division and
elongation.

NPs released Cu ions
in rhizosphere, which

modified IAA
distribution causing
root shortening and
by allowing Nitric

oxide (NO) cell
signaling Cu ions
promoted root hair

proliferation.

[55]

2.
47 nm,

Crystalline
nature,

50, 100, 200
and 400 mg/L
of ½ strength

Murashige
and Skoog

(MS) medium
for

germination
experiments,
2.5, 5 and 10
mg/L of MS
medium for

callus
induction

For seed
germination
experiments-

Seeds
exposed to
½ strength

MS medium
containg

NPs for 15
d,

For callus
induction

experiment-
Seeds

transferred
on MS

medium for
15 d and
then stem
and leaf
explants

inoculated
on MS

medium for
30 d

Trigonella
foenum-graecum

Seed germination,
Root and shoot

length,
Fresh and dry weight,

Callus induction,
Total Flavonoid
content (TFC),
Total Phenolic
content (TPC),

Total Antioxidant
capacity (TAC),
Total Reducing
power (TRP),

DPPH free Radical
scavenging assay

Seed germination (-),
Maximum root length, shoot length, fresh
weight and dry weight at 50 mg/L then ↓,
Fresh weight and dry weight of callus ↓,

Presence of flavonoids and phenolics in the
fresh weight extracts of treated plants ↑,

Optimum conc. for growth considered- 50
mg/L (after this conc. toxicity occurs)

Protective nature and
selective permeability

of seed coat makes
seed germination
unaffected against

treatment.
Released Cu ions

from NPs generated
oxidative stress and

interfered with
normal growth of

plants, which
activated their

defense system.

[85]

3. <100 nm

10, 100, 500,
and 1000

mg/L
suspension in

ultrapure
water

Pre soaked
seeds (in
ultrapure

water)
exposed to 8
mL of NPs
suspension
in Petriplate

Raphanus
sativus,

Lolium perenne,
Lolium rigidum

Germination,
Root and shoot

elongation,
Uptake of Cu by

plants,
DNA damage studies

Plant growth (all species) ↓,
Induction DNA damage by accumulation of

oxidatively modified, mutagenic DNA lesions
(7,8-dihydro-8-oxoguanine; 2,6-diamino-
4-hydroxy-5-for-amidopyrimidine; 4,6-

diamino-5-formamidopyrimidine)

Nature of CuO NPs is
oxidative thus they
withdraw electrons

from various
biomolecules within

plant cells and
transfer those

electrons to other
biomolecules (i.e.
reducing agents),

NPs promote damage
to plant DNA due to

direct redox
interactions.

[56]

4. 50–60 nm

0.5–5.0
mg/ml

suspension in
water

Buffer of
enzyme
assay

mixture
replaced by

equal
volume of

NPs
suspension

Hordeum
vulgare

In vitro effect on
activity and stability

of Barley Oxalate
oxidase (OxO)

Adsorption of enzyme on surface of NPs,
NPs-bound enzyme activity (-) - [86]
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S.N. NP
specifications

Range of
conc.

Exposure
method/

application
method

Plant species Studied endpoints/
parameters Remarkable effects

Expected
mechanism/ possible

hypothesis
References

5. <50 nm

2.5, 10, 50,
100, and

1,000 mg/ L
Suspension in
Hoagland’s

solution

Pre-soaked
(water)

seeds treated
with NPs

suspension
in petriplates

for 6 d,
Grown

seedlings
transferred

to
Hoagland’s

solution
amended
with NPs

Oryza sativa

Germination rate,
Root length,
Shoot length,

Biomass,
Photo-synthetic rate,
Transpiration rate,

Stomatal
conductance,

Maximal quantum
yield of PSII

photochemistry,
Photosynthetic

pigment,
Oxidative and
osmotic stress

contents- MDA,
Proline and ascorbate,

Expression of
antioxidant enzymes-

APX and SOD

Germination rate, root and shoot length ↓,
Biomass (at higher conc.) ↓,

Uptake of Cu (in roots and shoots) with
increasing conc. of NPs ↑,

Accumulated in chloroplasts,
No. of thylakoids per granum and size and no.

of stomata ↓,
Size and no. of trichomes; MDA, proline and

ascorbate contents; and Expression of APX and
SOD↑,

At 1000 mg/L conc.-
Photosynthetic rate, transpiration rate, stomatal

conductance, the maximal quantum yield of
PSII photochemistry and photosynthetic

pigment contents ↓

Very small quantity
of NPs transported

from roots to shoots
hence exerted more

toxicity in roots.
Released Cu

accumulated in shoot
and root tissues and
reduced their length

effectively.
Damaged roots affect

water uptake
negatively thus

reducing number of
stomata and net
photosynthesis.

Reduced amount of
PSII–LHCII

complexes affects
ultrastructural

organization and light
harvesting thylakoids.

[87]

6. <50 nm 500 mg/Kg of
soil

NPs added
in soil

Triticum
aestivum

Root length,
Shoot length,

Plant biomass,
Bioaccumulation of

metal,
Lipid peroxidation,

Chl contents,
POD and CAT

activities

Root and shoot length and Chl contents ↓,
Number of roots, plant biomass,

bioaccumulation, lipid peroxidation and
activities of POD and CAT activities ↑,

Glutathione oxidized

Dissolved Cu released
from CuO NPs

generated
phytotoxicity and in
turn altered behavior

of plants.

[57]

7.

<50 nm,
Round shaped,

Smooth
surface

500 mg/Kg of
soil

NPs added
in soil

Triticum
aestivum Root length Root length ↓

Cu ions released from
CuO NPs reduced

root length
[3]

8.

<50 nm,
Round shaped,

Smooth
surface

100, 250, 500
mg/kg of soil

NPs added
in soil

Phaseolus
vulgaris

Root growth,
shoot growth,

Conc. of other metals,
Activities of ferric

reductase and cupric
reductase

At 250 and 500 mg/kg conc.-
Root and shoot growth ↓,
Mn, Zn and Ca in shoot ↓,

Na in shoot ↑,
Mg and K levels (-),

Ferric reductase activity ↓,
Cupric reductase activity ↑

Increased
accumulation of Cu in

shoots impaired the
growth,

NPs exposure altered
activities of root
metal reductases

contributing to altered
nutrient levels and
growth inhibition

[88]

9. 10 -100 nm

0, 5, 10and 20
mg/L

suspension in
modified

Hoagland’s
medium

Young
plants grown
for 10 d in
modified

Hoagland’s
medium,

then
transferred
to modified
Hoagland’s

medium
amended
with NPs

Lactuca sativa,
Medicago sativa

Seed germination,
Root length,
Shoot length,

CAT and APX
activity

At 20 mg/L conc.-
Shoot browning,
Root length ↓,

Iron content in roots and shoots ↓,
Phosphorus content in roots of both plants ↓,
Uptake and accumulation (with increasing

concentrations) in Lettuce ↑,
CAT activity-
In lettuce (-),
In alfalfa ↓,

APX activity ↑

Different effects on
plant growth due to
differences in Cu
accumulation and
ROS generation.

Uptake and
translocation of Cu
depend on copper

compound and plant
species (smaller size,

greater uptake)

[89]

10.

40–100 nm,
Irregular
shape,

Crystalline
monoclinic

cubic cuprous
oxides

0.1, 1.0, 10,
100 and 1000
mg/L of MS

medium

Seeds
cultured on
plain MS

medium for
4 weeks,

Then
axillary

shoot nodes
excised and
incubated in
media with

different
conc. of NPs
for 4 weeks

Stevia
rebaudiana

Shoot length,
Shoot organogenesis,

Mean number of
shoot per explants,

Fresh weight,
Analysis of steviol

glycosides,
Antioxidant assays-

total phenolic
content,

total flavonoid
content, total

antioxidant capacity,
total reducing power,

DPPH free radical
scavenging activity

Shoot length, mean no. of shoots per explant,
fresh weight and production of steviol

glycosides ↑ till 10 mg/L but after that conc. ↓,
Total phenolic contents, total flavonoid content,
total antioxidant capacity, total reducing power,

% DPPH inhibition ↑ at 10 mg/L and least
amount observed at 1000 mg/L

CuO NPs work as a
stimulator in
production of

bioactive components
and can be employed

in in vitro batch
cultures,

Cu ions or free
radicals released from

CuO NPs into MS
medium lead to

oxidative stress hence
increased antioxidant

activities and
secondary

metabolites.

[90]
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S.N. NP
specifications

Range of
conc.

Exposure
method/

application
method

Plant species Studied endpoints/
parameters Remarkable effects

Expected
mechanism/ possible

hypothesis
References

11. 360 - 400 nm

125 and 625
μM in

Hoagland’s
solution

After 4
weeks of
culture,

seedlings
exposed NPs

by adding
them in

Hoagland’s
nutrient
solution

Arabidopsis
thaliana

Fresh weight,
Total chl content,

Anthocyanin content,
SOD and CAT

activities,
MDA contents,
Gene expression

study of APX gene

Fresh weight and chlorophyll content ↓,
After 2 d-

anthocyanin content and SOD and CAT
activity ↑ then after 4 d ↓,

MDA content ↑,
During 2 d exposure-

Up-regulation of APX1, APX3 and APX4 and
no difference observed in APX2, APX5 or

APX6 transcription,
During 4 d exposure- down-regulation of

APX1-6,
After 4 d exposure-

plant become bright yellow

Initial increase and
then after 4 days

exposure, a decrease
in CAT activity might
be due to initiation of
adaptive response in
plants to manage the

overproduction of
H2O2 at early stages
of growth and then
recover to normal
conditions after

stress.

[91]

12. 50 nm

0, 10, 50,
100, 500, and
1,000 mg/L

suspension in
½ strength
Hoagland’s

media

4 week old
Soil grown
seedlings

transferred
to ½

strength
Hoagland’s

medium
amended
with NPs

Cumumis
sativus

Biomass,
Bioaccumulation,

ROS enzymes
activities-SOD, CAT

and POD

At 1000 mg/L conc.-
Biomass ↓,

Bioaccumulation (dose dependent) ↑,
SOD,CAT and POD activities ↑

With increasing conc.
of NPs, more NPs

crossed cell
membrane and

agglomerated, either
with themselves or
with other cellular

materials within cells.

[32]

13.

65 ± 2.45 nm,
Specific

surface area-
14 m2/g,
Average

hydrodynamic
radius- 139 ±

16.2 nm,
Zeta potential-
47 ± 0.1 mV

0.8 to 63.5
g/L of DW

Seeds
treated with
NPs. on 3rd

d, seedlings
added to 5

ml of
suspensions

of NPs

Triticum vulgare

Cell viability (WST
and Evans Blue test),

Cu Contents,
Contents of

individual reactive
oxygen species,
Degree of DNA

fragmentation in vitro
and in vivo

At higher conc.-
small and significant effect on viability,

Number of dead cells in seedlings with Evans
Blue ↑,

Total pool of ROS in roots ↑,
3.2 to 63.5 g/L conc. leads to DNA

fragmentation and fragments less than 3000 bp
↑ (51.4–62.8%)

CuO NPs enter poorly
into plant due to
agglomeration in

suspension medium
or aggregation on
rough surface of
seeds and roots.

NPs may accumulate
in plant in ion form

[92]

14.
<50 nm,

Surface area-
29 m2/g

2, 4 and 10
mg/L of

cultivation
medium

Seedlings
grown in

25%
Hoaglands
solution for

6 weeks,
then

cultivated in
NPs

containing
medium

Arabidopsis
thaliana

Weight of plant,
Rosettes growth,

Root transcriptome
analysis

Rosette growth ↓,
Upregulated genes- 111,
Downregulated genes- 62

More solubility of
ENPs than bulk

particles, resulting in
up-regulation of

metallochaperone-like
genes or down-

regulation of
aquaporins and metal

Transmembrane
transporters (also
characteristic for

ionic Cu2+ exposure)

[93]

15.
<50 nm,

Surface area
29 m2/g

10, 100 and
1000 mg/L

Suspension in
cultivation

media

Seeds sown
on filter
papers in

petriplates
and

cultivation
media

amended
with NPs

Sinapis alba
Germination,
Root length,

Accumulation of NPs

Germination and root elongation (dose
dependent) ↓,

Accumulation of metal ions within seedlings

Toxicity created by
ionic Cu released
from CuO NPs

[33]

16.

30 ± 10 nm,
Zeta potential

0.416 mV,
Zeta average

diameter 388.2
nm,

Spherical
shaped

0, 10, 200 and
1,000 mg/L

suspension in
DI water

Plants
grown in
nutrient

solution for
4 d before

exposure to
different
conc. of

NPs,

Gossypium
hirsutum

(Used two types
of cotton-

Transgenic
cotton-Bt29317,

Conventional
cotton- Jihe 321)

Biomass,
Plant height,
Root length,

Nutrient contents,
Hormone conc. (IAA,

ABA, t-ZR, GA),
Bt-toxin expression,

Cu uptake and
distribution

Growth, development, nutrient content, IAA
and ABA conc. of transgenic and conventional

cotton ↓,
In conventional cotton leaves-
NPs aggregated on epidermis,
In transgenic cotton leaves-

NPs reached into cells by endocytosis,
Most NPs aggregates found on root outer

epidermis, rest located in intercellular spaces of
both conventional and Bt-transgenic cottons,
Expression of exogenous gene encoding of Bt

toxin protein in leaves and roots ↑

At certain treatment
conc. increase in

biomass suggests an
optimal dose limit for

the growth of both
types of cottons,

beyond which CuO
NPs behaved toxic,
Uptake of different

nutrients in different
type of cotton

differently affected by
CuO NP exposure on

same treatments

[34]
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S.N. NP
specifications

Range of
conc.

Exposure
method/

application
method

Plant species Studied endpoints/
parameters Remarkable effects

Expected
mechanism/ possible

hypothesis
References

17.

<50 nm,
Nearly

spherical
shape,

Surface area
29 m2/g

0, 50,500,
2,000 and

4,000 mg/ L
suspension in

½ strength
Hoagland’s
solutions

5 ml test
solution
added to

filter paper
in petriplates

and seeds
sown on it

Fagopyrum
esculentum

Root growth,
Root morphological

features,
Biomass,

Localization of NPs,
Genotoxic effects

using RAPD

At 4000 mg/L conc.-
Root length ↓,

Biomass ↓,
Root tip morphology changed,

Number of hairs ↓,
Genotoxic effects observed,

Total number of bands↑

High conc. of NPs
caused damaging

effects on genomic
DNA altering gene
expression levels,
Changed root tip

morphology observed
due to alterations in
structure of cellular

cytoskeleton

[94]

18. -

0, 100,200,
400 and 600

mg/L
suspension in

DW

Seeds
soaked in

NPs
suspension
for 6h, then
transferred

to test
solution

containing
filter paper

in petriplates

Cucumis sativus

Seed germination,
Root elongation,

Discovering
biomarker for

phytotoxicity analysis
(through SELDI-TOF

MS analysis)

Germination↓,
Root elongation ↓,

9 different proteins in CuO NPs treated seeds
(in comparison to bulk and control),
For figuring out CuO NPs generated

phytotoxicity a 5977-m/z protein was the most
apparent

Negative effect on
seed development due

to clogging of root
opening and
inhibition of

hydraulic and nutrient
uptake in roots

[95]

19.
<50 nm,

Surface area
29 m2/g

0, 0.5, 1, 2, 5,
10, 20, 50 and

100 mg/L
suspension in

½ strength
MS medium

Seeds sown
on NP

amended ½
strength MS

medium

Arabidopsis
thaliana

Germination,
Root elongation,
Plant biomass,
Chl content,

Anthocyanin content,
Lipid peroxidation,

Proline content,
Lignin deposition,
Antioxidant assay,
Study of oxidative
stress related genes

Germination (-),
Root elongation, plant biomass, Chl contents ↓,

Retarded primary root growth,
Lateral root formation ↑,

Loss of root gravitropism,
Anthocyanin content, lipid peroxidation,
proline content, lignin Deposition, SOD

activity, H2O2 formation ↑,
Induction of genes related to oxidative stress

responses, sulfur assimilation, glutathione and
proline biosynthesis

Due to the seed coat
protection seed

germination was
unaffected,

Hormonal imbalance
changed root system

architecture,
Death of cells of
lateral root apex,

induction of P5CS
genes and increased

accumulation of
proline observed due

to excess ROS
generation by NPs

stress,
NPs might be

translocated through
the vascular tissues
and their dissolved
Cu ions could have

resulted in
lignifications of
vascular tissues.

[96]

20.
<50 nm,

Surface area
29 m2/g

0, 50, 100,
200, 400 and

500 mg/L
suspension in

½ strength
MS medium

Petriplate
germinated

seeds
transferred

to ½
strength MS

medium
amended
with NPs

Glycine max

Shoot and root
development,

Total chl content,
H2O2 generation,

POD activity,
Lignification of root

cells,
mRNA expression of

genes - Lignin
biosynthesis viz.
phenyl alanine

ammonialyase (PAL),
Cinnamate 4-

hydroxylase (C4H),
Cinnamyl alcohol

dehydrogenase
(CAD),

Peroxidase 2 (POD2),
Peroxidase 4 (POD4),
Peroxidase 7 (POD7)

Germination, shoot growth and weight, total
chl content ↓,

H2O2 level, POD activity, lignin contents of
roots, ROS generation ↑,

Upregulated genes –
PAL,C4H and CAD (at 100, 200 and 400

mg/L),
POD2 and POD4 (at 100, 200, 400, and 500

mg/L),
POD7 (at 200, 400, and 500 mg/L)

Excess Cu in soybean
roots leading to

inhibited mineral
nutrient uptake,

deteriorating effects
on plant growth and

development and total
chl content,

Higher expression of
genes PAL, C4H and

CAD due to less
toxicity at lower

conc.,
Upregulated anionic
POD genes produce

POD enzymes, which
might be involved in

the final stages of
lignification process

in plants and
degradation of auxins

leading to retarded
root growth.

[97]

21.

43 ±9 nm,
Spherical,

Hydrodynamic
diameter-

240±23 nm,
Specific

surface area-
131 m2/g

50, 100, 500,
and 1000

mg/kg of soil
(dry mass/air-

dried soil
mass)

2 weeks
grown

uniform
seedlings

transplanted
in NPs

amended
soil

Oryza sativa

Root and Shoot
Length,

Fresh and dry weight,
Water content,

Number of filled and
unfilled grains,

Cu contents

Root length, shoot length and plant biomass ↓,
Water content ↓ (in shoots at seedling stage and

in roots at tillering stage),
At higher conc.-

grain yield and fresh weight ↓,
At 500 mg/kg conc.-

weights and numbers of filled grains < unfilled
grains,

Cu content ↑

NPs found to be
translocated from soil
to plant (especially to
chaff) and promoted
the Cu accumulation
in aleurone layer of
rice, but could not

reach polished rice.

[98]
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S.N. NP
specifications

Range of
conc.

Exposure
method/

application
method

Plant species Studied endpoints/
parameters Remarkable effects

Expected
mechanism/ possible

hypothesis
References

22.

43 nm,
Ellipsoidal or

spherical,
Surface area

131 m2 /g

10 and 100
mg/L

suspension in
Milli-Q water

2 days
Milli-Q
water

soaked
germinated
seeds sown
onto filter

papers
moistened
with 5mL

NPs
containing

test
solutions

Oryza Sativa

Root elongation,
ROS detection,

Lipid peroxidation,
Mitochondrial

membrane potential,
Cell viability,

Membrane integrity

Root elongation ↓,
MDA content, lipid peroxidation ↑,
Aberrations in root morphology and

ultrastructure,
Losses of cell viability and membrane integrity,

Depolarization of mitochondrial membrane,
Programmed cell death

Significantly higher
production of ROS in

the roots.
[99]

23. <50 nm

0.5, 1.0 and
1.5 mM

suspension in
DDW

NPs
suspensions

added to
cotton pads

Oryza sativa

Seedling growth,
Modulation of

Ascorbate-glutathione
cycle,

Membrane damage,
Produced In vivo

ROS,
Foliar H2O2 and

proline accumulation

Seed germination percentage and leaf
carotenoids ↓,

Loss of root cells viability,
Foliar MDA level, proline contents, GR

activity and GSH/GSSG ratio ↑,
At 1.0 and 1.5 mM conc.-

APX activity ↑

Severe oxidative burst
under NPs treatment

stress,
Oxidative damage to

lipid membranes

[100]

24. <50 nm

0.5, 1 and
1.5mM

suspension in
½ MS

medium

Water
soaked seeds
were placed

on cotton
pads with

NPs
suspensions

Hordeum
vulgare

In vivo ROS
detection,

Root cell viability,
Chl fluorescence, Chl

and epidermal
flavonols contents,
H2O2 measurement,

MDA conc.,
Antioxidant enzymes

assays-APX,
SOD,GR, DHAR,

MDAR,
Foliar ascorbate and
glutathione contents

Shoot and root growth (dose dependent),
activities of DHAR and MDAR and

GSH/GSSG ratio ↓,
Maximal quantum yield of PS II photosynthetic

apparatus (Fv/Fm) (-),
Flavonol level, APX activity and H2O2 amount

↑,
In 1.0 and 1.5 mM CuO NPs treated leaves-GR

activity ↑

NPs induced
oxidative burst,

ROS/antioxidant
imbalance and high
membrane damages,

Elevated APX
activity and flavonol
level not enough to
decompose excess

H2O2 produced under
NP-stress, causing

dark brown spots on
leaves

[101]

25. 50 nm

10, 100 and
1000 mg/L

suspension in
DI water

Suspension
of NPs

provided via
irrigation

Spinacia
oleracea

Root and shoot
length,

Root and shoot
weight, Chl and

carotenoids contents

At 1000 mg/L conc.-
Root length, shoot length, total weight and Chl

and carotenoids contents ↓,
At 10 mg/L conc.- nontoxic

Inhibition of growth
at higher conc.

attributed to
aggregation

properties of NPs,
blocking pores
present on root

surface.

[102]

26. 20-30 nm

10 and 20
mg/L

Suspension in
Millipore

water

Seedling
grown in

organic soil
(initially)

and
Hoagland
nutrient

solution (1
week), lastly

in NPs
suspensions

(15 d)

Lactuca sativa

Physiological
parameters,

Nutritional quality,
Chl content,

Activities of catalase
and ascorbate

peroxidase

Water content, root length, dry biomass and
APX activity ↓,
CAT activity ↑,

Accumulation of cu in roots,
In NPs-treated plants-

Cu, Al and S ↑,
Mn, P, Ca, and Mg↓

Plant exposure to Cu
materials (bulk and
oxide NPs) altered
their capacity to

absorb and transport
some nutrients.

[103]
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S.N. NP
specifications

Range of
conc.

Exposure
method/

application
method

Plant species Studied endpoints/
parameters Remarkable effects

Expected
mechanism/ possible

hypothesis
References

27. 20−40 nm

2,5, 10, 20,
30, 40, 50,
100 mg/ L

suspension in
nutrient
solution

Seedlings
grown by
soaked (in

NPs
suspension)

seeds in
Petri- plates
(having 5 ml

NPs
suspension),

then
transferred
to nutrient
solution

without NPs,
After

emergence
of third leaf
shifted to

NPs
amended
nutrient
solution

Zea mays

Seed germination,
Root elongation,

Root morphology,
Xylem and phloem

based transport

At 100 mg/L conc.-
Seed germination (-)

Seedling growth, root elongation, root and
shoot biomass ↓,

NPs transported from roots to shoots via xylem,
NPs could translocate from shoots to roots back

via phloem

Phytotoxic effects on
root elongation

observed because
after penetration of

seed coats, emerging
radicles rapidly

absorb nutrients and
water, thus

maximizing NPs
exposure.

NPs treatment
reduced water uptake

and hydraulic
conductivity in roots,

hence decreasing
plant biomass

[31]

28. 30-50 nm

13, 398and
228 mg/L

suspension in
DI water

Soaked seed
(in NPs

suspension
for 2 h)

grown in
Petri plates
having NPs
suspension

(5ml)

Lactuca sativa,
Raphanus
sativus,

Cucumis sativus

Seed germination,
Root elongation

Seed germination ↓,
Germination of lettuce seeds more seriously
inhibited than larger sized seeds (radish and

cucumber seeds)

Phytotoxicity of MO
NPs not only due to
their dissolved metal
ions, but also due to

their interactions with
the seed/root surface.

[104]

29.
40-60 nm,

Specific area-
12.55 m2/g

10 and 250
mg per plant

(simulate
aerial

deposition
and pollution

of NPs)

Adaxial
surface of

leaves were
treated using

applicator
brush

Brassica
oleracea
Used two
varieties-

Capitata L.,
Sativa L. cv.

batavia blonde
dorée

Accumulation of
metal in tissues,

Copper speciation in
leaf,

Fresh and Dry weight
of shoots and roots,

Water content,
Net photosynthesis,

Stomatal conductance

After 15 days of exposure-
foliar Cu uptake ↑,

At 250 mg-
dry weight ↓,

Water content and photosynthetic activity ↓,
Formation of necrotic in Cu rich areas near

deformed stomata

CuO-NPs may
accumulate as CuO in

the exposed leaves
and partially

transformed as Cu(II)
– organic complexes

in plant tissues.
The presence of CuO-

NPs generates an
expression of two

genes, involved in the
regulation of root
growth and ROS
(oxidative stress)

[105]

30. 53 nm

500,1000,
1500 mg/L of
agar media,
For in vitro

studies-
0, 1, 5, 10 and

20 mg/L of
Basal MS

media

Seeds
germinated

on NPs
containing

media,
For in vitro

studies-
Seeds

germinated
on plain agar

media and
14 d old
seedlings
used for
explants

(leaves and
stem)

Brassica nigra

Seed germination,
Seedling length,

Fresh and dry weight,
Total phenolic and
flavonoid Contents,
Total Antioxidant
Capacity (TAC),
Total Reducing
Power (TRP),
Free radical

scavenging potential
of seedlings and

callus

Seed germination, plant length and fresh and
dry weight ↓,

Total Flavonoids and phenolics ↑ (till 500
mg/L) and then ↓ (at 1000 mg/L) and again ↑

(at 1500 mg/L),
TAC (-),

TRP (at 500 and 1000 mg/L) ↓ and then ↑ (at
1500 mg/L),

DPPH Free Radical Scavenging Activity ↑,
At 20 mg/L- direct root emergence from

explants callus

Smaller NPs penetrate
and destine at seed
embryo that reduce
seed germination

efficiency,
Variation in seed

germination
efficiency at the 3rd
and the 5th day of
inoculation depicts
that the penetrated

NPs did not damage
the embryo but

delayed the process of
germination.

[106]

31.

25 to 80 nm,
APS- 55 nm,

Specific
surface area-

23.9 m2/g

5, 10, 50, 100
and 200 mg/L
suspensions
in agarose
medium

NPs
dispersed in

agarose
medium

Triticum
aestivum

Optimizing the
methods to

distinguish and
quantify the

adsorption and uptake
of NPs on wheat root

Most NPs adsorbed on root surface and some
adhered mechanically,

NPs uptake ↑ (dose dependent),
Absorption/adsorption ratio ↑ then ↓

At low conc. of NPs-
adsorbed NPs at root

surface easily
transported to cells
At a higher conc. of

NPs-
NPs absorbed on root
surface and only part

of them further
transferred into cell

[30]

(↑= increased,  ↓=decreased,  (-)= not  significantly  affected,  DW= distilled  water,  DDW= double  distilled
water, DIW= deionized water, MS= Murashige and Skoog, Chl= chlorophyll, h= hours, D=days)
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Table  3.  Summary  of  the  important  studies  (after  year  2010)  on  terrestrial  plant  species  exposed
against ZnO NPs.

S.
N.

NP
specifications

Range of
conc.

Exposure method/
application

method
Plant species Studied endpoints/

parameters Remarkable effects
Expected

mechanisms/
possible hypothesis

Referances

1. < 100 nm 25, 50 mg
Zn/g seeds

Coating of seeds
with NPs,

Stable suspensions
of NPs in ethyl

alcohol (having 2%
crude pine oleoresin

as binding agent)

Zea mays,
Glycine max,

Cajanas
cajan,

Abelmoschus
esculentus

Chl estimation,
Indole-3-acetic acid

(IAA) auxin contents

Germination
percentage, chl

content, IAA contents
and plant growth ↑

Total requirement of
Zn of the crop can be
fulfilled by coating
seeds with NPs as
plants take up Zn
from ZnO NPs

through seed coating,
here NPs inhibited
bacterial and fungal

infections also of
seeds

[107]

2.
< 50 nm,

Surface area >
10.8 m2/g

50,
100, 200,
500, and

1000 μ g/ml
suspension
in DDW

2-3 cm long roots
exposed to

suspension/solutions
of ZnO-NPs, ZnO-

Bulk
and Zn2+ ions for 12

h

Allium cepa

Root length,
Analysis of mitosis,

Cell viability and
chromosomal

aberrations in root
cells,

Lipid peroxidation,
Antioxidant

enzymes/ROS,
Mitochondrial

membrane potential

NPs present on outer
and inner surfaces of

cell and nuclear
membrane and

intracellular cell
junctions,

plasmodesmata,
ROS production and

genotoxicity or
frequency of
chromosomal

aberrations (%) ↑,
Mitotic Index (%) ↓,

(Chromosomal
aberrations observed-

irregular prophase
with vacuolated
nucleus, during

metaphase
disorientation and

stickiness, multipolar
anaphase and drifted

chromosomes,
chromosome bridges

with lag)
Disintegrated root

cells and ruptured root
surface with spikes of

root tissues

NPs penetrated into
tissues and induced
oxidative imbalance
by producing ROS,
leading to genotoxic
and mito-depressive

effects.

[108]

3. ˂ 30 nm

1.5 and 10
ppm

aqueous
suspensions

NPs suspensions
sprayed foliarly

Cicer
arietinum

Root/ shoot length,
Biomass

accumulation,
Relative water

contents,
MDA assay,

SOD and POD
activity

At 1.5 ppm conc.-
Shoot dry weight ↑,

At 10 ppm conc.-Root
growth ↓,

Biomass accumulation
↑,

MDA content ↓, SOD
and POD activity ↓

Low level of ROS
resulted in reduced
lipid peroxidation.

[60]

4.

˂ 100 nm,
Rhomboid
initially (in
water) to

elongated rods
(in aqueous

phase of sand
matrix)

500 mg
NPs/ kg

sand

NPs mixed with
sand matrix

Triticum
aestivum

Root/ shoot length,
No of roots originated

from shoot,
MDA, POD, CAT,

IAA and chl contents,
Glutathione oxidation,

Accumulation and
speciation of Zn in

plant body

Shoot length (-),
Root growth and chl

contents ↓,
Zn as Zn-phosphate
detected in shoots,
Lipid peroxidation,

oxidized glutathione,
POD and CAT

activities (in roots) ↑,
IAA oxidase activity
and MDA content ↑

Released Zn from
NPs increased

production of ROS in
cells eventually

inducing oxidative
stress

57]
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S.
N.

NP
specifications

Range of
conc.

Exposure method/
application

method
Plant species Studied endpoints/

parameters Remarkable effects
Expected

mechanisms/
possible hypothesis

Referances

5. < 100 nm 500 mg/ kg
sand

NPs mixed with
sand matrix

Triticum
aestivum

Fate of ZnO NPs in
plant environment,
Root phytotoxicity,

Root length ↓,
Root surfaces of plants

whiter than control,
Accumulations of

Zn−phosphate species
in shoots,

Dissolution and
aggregation of NPs
altered by various

factors from plant and
soil

Smaller particle size
of NPs generates
more toxicity into

exposed roots.

[10]

6.

˂ 100 nm,
Slab like,

Surface area
15–25 m2/g

5g NPs/110
kg soil

Seeds sown in
spiked soil (after

aging for 2 months;
reflect field

conditions), as 100
seeds per lysimeter

Triticum
aestivum

Contents of Zn,
Biomass,

Soil enzyme activity

Biomass ↓,
Dissolution of NPs in
soil enhances uptake
of Zn by plant having

toxic effects,
Soil protease,

peroxidase and
catalase activities ↓,
Urease activity (-)

Heavy metals interact
with sulfydryl

groups, producing
metal–sulfide

equivalents and
hence inhibit enzyme

activities.

[58]

7. 20 nm 2 g/L

Foliar spray of NPs
suspension on

osmotically shocked
plants

Triticum
aestivum

(var. Tajan
and Kavir)

Plant height,
leaf area,

Chl contents,
Shoot/root dry weight,

Plant height, leaf area,
shoot dry weight and

chl contents ↑,
Root dry weight (-)

Positive effects of Zn
on metabolism,

photosynthesis and
other biological

activities promote
vegetative growth of

plants.

[109]

8. ˂100 nm

3, 20 and
225 mg

Zn/kg soils,
Calcareous

soil (pH
8.3),

Acidic soil
(pH 5.4)

Plants grown in soil
having NPs for 90 d

Phaseolus
vulgaris,
Solanum

lycopersicon

Zn accumulation,
Photosynthetic

pigments,
Protein contents,

APX activity,
GPOD activity,
CAT activity,

ROS level,
MDA contents

Accumulated Zn-
Acidic soil ˃

calcareous soil,
ROS production ↑,

Lethal effects-
Acidic soil ˃

calcareous soil,
Calcareous soil-
photosynthetic

pigments ↑,
Acidic soil-

photosynthetic
pigments for Bean ↓
and for Tomato (-),

Protein level ↑
(calcareous ˃ acidic

soil)

Influence of NPs on
biomarkers of

oxidative stress
greatly depends on
exposure time, soil

pH and plant species,
Activity of free ions
from ZnO NPs can

induce toxicity,
Increase in available
ionic Zn (by definite

addition) makes
calcareous soil

improved for plant
growth by reducing
its Zn- deficiency

[110]

9.

50 -100nm,
Rod shaped,
spherical, or
hexagonal,

Mostly
clustered,
Surface

particulate and
crystalline

5, 10, and
20 g/ml

suspension
in DI water

Hydroponic culture,
Root exposure Allium cepa

Root elongation,
Root morphology,
Cell morphology,

Adsorption potential

Root elongation ↓,
At 20 g/ml conc.-
Almost no growth,

Dehydrated root
system,

Damage normal
morphology of root

NPs enter into onion
roots radially and

become accumulated
in modules of

chromosome and cell
severely.

[59]

(Table 3) cont.....
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S.
N.

NP
specifications

Range of
conc.

Exposure method/
application

method
Plant species Studied endpoints/

parameters Remarkable effects
Expected

mechanisms/
possible hypothesis

Referances

10. 10 nm

0, 500,
1000, 2000,

and 4000
mg/L

Suspensions
prepared in
Hoagland
modified
nutrient
solution

Hydroponic culture
in NPs containing

Hoagland modified
nutrient solution

Prosopis
juliflora

Zn conc. in root, stem
and leaves,

Transformation of
NPs,

Distribution of Zn in
tissues,

Activity of APOX and
CAT

Zn in vascular system
↑,

Conc. of Zn in tissues-
Root > Stem > leaf,

At 2000 mg/L conc.-
APOX (in stems and
leaves) and CAT (in

roots, stems, and
leaves) ↑,

NPs not observed in
tissues,

Zn present as Zn(II),
similar to Zn(NO3)2,

Wilting, stunting,
chlorosis or necrosis

not observed

This plant is tolerant
against ZnO NPs and
their released Zn ions

at some extent.

[111]

11. 10 nm 500 mg/kg
of soil

NPs mixed with soil
matrix Glycine max Accumulation,

Speciation of NPs

NPs not present and
accumulated in tissues

and grains, but Zn
present in grain

Plant translocate the
form of O-bound Zn

which resembles with
Zn-citrate,

Conc. of Zn in nodule
epidermis and outer

pod ↑,
Most of Zn found in

the phloem

Phytochelatins are
the identified

indicators of toxicity
generated by heavy
metasl in plants thus
their biosynthesis can

also be induced by
NPs and released

metal ions

[36]

12.

34 nm,
Hexagonal

wurtzite
structure

0, 0.1, 1.0,
10, 100 or
1000 mg
NPs/L of

MS medium
containing
3% (w/v)
sucrose

without any
plant growth

regulators

Shoot nodes (cut out
from 4 weeks old

plant) incubated in
MS medium having

NPs for 4 weeks

Stevia
rebaudiana

Growth parameters,
Shoot formation %,

Shoot length,
Fresh weight of

produced shoots (in
vitro),

Number of leaves,
Antioxidant activities,
Production of Steviol

glycosides
(rebaudioside A and

stevioside)

At 1 mg/L conc. of
NPs-

shoot formation %
(89.6) highest,

steviol glycosides ↑ (~
2 × control),

ROS production,
DPPH scavenging

activity, total reducing
power, total

antioxidant capacity,
total phenolic and

flavonoid contents ↑,
Above 1 mg /L conc.

of NPs-
Physiological

parameters, formation
of secondary
metabolites,

antioxidant activities
↓,

At 1000 mg/L conc. of
NPs- Phytotoxicity

maximum

Addition of NPs into
MS medium released
free radicals or ions

of related metal
resulting in oxidative

stress.

[90]

13.

50 nm,
Nearly

spherical shape,
Aggregated

highly

2000 mg/kg
of soil

NPs mixed with pot
soils

Cucumis
sativus

Root and shoot length,
Biomass,

Bioaccumulation,
Soil dehydrogenase,
Acid phosphatase,

β-glucosidase

Root length, shoot
length and biomass (-),

Zn conc. in plants
tissues and soil ↑,

Activity of each tested
enzymes ↓

Immobilisation and
aggregation of NPs

occur in the soil.
[112]

(Table 3) cont.....
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S.
N.

NP
specifications

Range of
conc.

Exposure method/
application

method
Plant species Studied endpoints/

parameters Remarkable effects
Expected

mechanisms/
possible hypothesis

Referances

14. ˂100 nm

25, 50, 75,
and 100
g/ml in
milli-Q
water

Hydroponic culture,
Root exposed for 4

h
Allium cepa

Cytogenetic and
genotoxic effects,

Mitotic index (MI),
Lipid peroxidation (in

cells of root),
Chromosomal

aberration index,
Micronuclei index

(MN index)

Internalization of ZnO
NPs like particles,

With increasing conc.
of NPs- No. of

pycnotic cells, indices
of chromosomal

aberrations and MN ↑,
MI ↓

Internal
physicochemical

environment of cell
could induce

agglomeration of
internalized NPs,
These NPs can

stimulate cytotoxic
and

genotoxic/clastogenic
effects in exposed

cells

[113]

15.
< 100 nm,

Surface area
15–25 m2/g

100 mg/L in
liquid MS

media

Seedlings grown in
MS medium for 3

weeks, then moved
onto rafts in

Magenta
Boxes having 50
mL of liquid MS
media with NPs,

7d exposure period

Arabidopsis
thaliana

Gene expression in
plant roots,

Biomass

Plant biomass ↓,
660 up- and 826

down-regulated genes,
Up-regulated genes-

ontology groups
related with stress
responsive stimuli,
Other up-regulated

genes- genes related
with functional
categories (e.g.
transport, signal

transduction,
developmental

processes),
Down-regulated

genes- genes related
with cell organization
and biogenesis process

like translation,
microtubule and

nucleosome assembly

Exposure of ZnO
NPs significantly
influenced genes

related to response
against

environmental
stimuli and stress.

[74]

16. 21.3 nm

Seed
priming at
20, 40 and
60 mg/L

NPs conc.
for 12 hrs

(marked as
ZNPs1,

ZNPs2 and
ZNPs3

respectively)

Seeds (with or
without NPs

priming at various
conc.) sown in
plastic pots and

exposed to 150 mM
NaCl for 20 d

Lupinus
termis

Root/shoot length,
Fresh and dry weights
of full-length plants,

Photosynthetic
pigment contents,
Soluble sugar and

protein,
Proline contents,
Total free amino

acids,
MDA contents,

Antioxidant enzyme
activities,

Total phenols,
Ascorbic acid

contents,
Na and Zn contents

Root length, shoot
length, fresh weight
and dry weight ↑-
ZNPs3 ˃ ZNPs2 ˃

ZNPs1,
Photosynthetic

pigments, total free
amino acids, soluble

sugar and protein, total
phenols, proline

contents, antioxidant
enzyme activities,

ascorbic acid contents
and Zn contents ↑,

Na and MDA contents
↓

NPs- priming of
seeds induces

osmotic adjustments
eventually improving
salt tolerance of cells,

These results were
obtained because Zn
plays important roles

in various cell-
mechanisms.

[114]

17.

30±5 nm,
Surface area of
29 ± 1 m2/g,
Crystalline

phase Zincite,
Nearly

spherical shape,
(+)ive surface

charges at
neutral pH,
Aggregated

0, 2, 5, 10,
15, 20, 40,
60, 80 and
100 mg/L

suspensions
in 1%

modified
Hoagland
solution

Hydroponic culture,
Initially seedlings

grown on 50%
Haogland solution
without NPs for 7d
then transferred on
NPs suspensions

Zea mays,
Uptake,

Speciation,
Accumulation of NPs

Zn metal accumulated
in treated plants as Zn

phosphate,
NPs present in the

epidermis, cortex, root
tip cells, vascular

system which probably
entered from primary

root–lateral root
junctions, but not

translocated to shoot

NPs dissolution in
exposure medium
enhanced by root

metabolic activities,
Biotransformation of

ZnO NPs to Zn
phosphate occurs in

plant body.

[37]
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S.
N.

NP
specifications

Range of
conc.

Exposure method/
application

method
Plant species Studied endpoints/

parameters Remarkable effects
Expected

mechanisms/
possible hypothesis

Referances

18.

20 nm,
Monodispersed
with a narrow

size
distribution,

Near spherical
morphology,
hexagonal,
Crystalline

nature

0, 10, 20,
50, 100,

500, 1000,
and 2000
ppm for
Vigna

radiata,
0, 1, 2, 5,
10, 20, 50,
100, 500,
1000, and
2000 ppm
for Cicer
arietinum

Suspensions
prepared in
DI water

Dual agar culture
media (20mL, 2.5%
agar + 10mL, 1%

agar) + NPs
suspensions,

Exposure time - 60
h

Vigna
radiata,
Cicer

arietinum

Root growth,
Shoot growth

Adsorption of NPs on
root surface,

Maximum effects at 20
ppm conc.-for Vigna
radiate and at 1 ppm

conc.-for Cicer
arietinum,

At higher conc. -
growth ↓

Uptake of NPs
occurs by roots

where it becomes
accumulated.

[115]

19. ˂ 50 nm,
Aggregation

5, 10, 25,
50, 75, 100,

125, 250,
and 500 mg

/L
Suspensions
in deionized
water (DI)

Seeds soaked in
suspensions for 2 h
then transferred to

Petri plates
containing filter

paper moisten with
test media

Brassica
napus

Germination,
Root and shoot

lengths,
Dry weight of shoot

(DWS) and root
(DWR)

Germination
percentage (-),

Root and shoot length
↓,

Root elongation
affected more than
shoot elongation,

At some initialconc.-
DWS ↑, DWR (-) but
at higher conc.-DWR

↓

Germination
remained unaffected

because seed coat
prohibited the entry

of chemical
substances,

After radicles’
emergence from
seeds, phytotoxic

effects were observed
because of

interaction of NPs
with roots which

induces dissolution
of Zn from NPs

[116]

20.

20-45 nm,
Uncoated,

Rod shaped/
cuboidal/
spherical/

rectangular
shaped

0, 20, 50,
100 and 200
mg/L in MS

medium
(half

strength)

Seeds sown on NPs
containing MS
medium (half-

strength)

Arabidopsis
thaliana

Shoot and root Zn
accumulation,

Macro and
micronutrients (P, K,

S, Cu, Zn and Fe)
contents,

Regulation of
transcription of genes

related with auxin
regulation and

elemental
homeostasis,

Morphological studies

Zn mainly present in
root tips as well as

junctions of root-shoot
and primary-lateral

roots, but root to shoot
translocation absent,
At 20 mg/L conc.-

lateral root formation ↑
(9%),

At other conc.- fresh
weight and length of

primary root ↓,
At > 200 mg/L conc.-
highest reduction of P,
K, S and Cu contents,
At all higher conc.-

leaf size reduced and
chlorosis observed

NPs and their
released metal ions

follow different
mechanism of

toxicity like NPs may
block nutrient uptake

by roots and its
growth as well

whereas
overindulgence of Zn

can compete with
other metal ions, in
turn distinct patterns
of root architecture

can be formed due to
deficiencies of P, K

and S

[117]

21. 10 nm
50, 100 and
500 mg/kg

of soil

NPs mixed with soil
~24 h before

planting
Glycine max

Conc. of Zn in plant
and soil,

Bioaccumulation
factors in pods,

Micro and macro
nutrient accumulation

Altered nutritional
value of soybean,

Zn accumulation in all
analyzed organs ↑,

At ≥ 100 mg/kg conc.-
more Cu, Zn and Mn
contents than control

in pods,
Significant

correlations among P,
S and Zn in pods with

Zn in roots

Nitrogen assimilation
could be improved in

soybean plants by
NPs as it dissolved
Zn mostly in ionic

form in soil solution

[62]
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S.
N.

NP
specifications

Range of
conc.

Exposure method/
application

method
Plant species Studied endpoints/

parameters Remarkable effects
Expected

mechanisms/
possible hypothesis

Referances

22.

10 nm,
Procured as an

aqueous
suspension

0.01–1000
μg/mL

suspensions
in

moderately
hard water

(MHW)

Seedling grown in
Petri plates having

filter paper (moisten
with 3 ml nanopure
water and 5 ml test

solution)

Zea mays,
Brassica
oleracea

Germination rate,
Root growth,

Moisture content,
Biouptake of metal,

Primary root
morphology and

anatomical studies

In cabbage-
germination ↓ (dose

dependent),
Water stress nil,
In maize- Seed
germination (-),
Primary cells of

elongation zone of
roots modified in

shape/size,
‘Tunneling-like effect’
in root apical meristem

Plant growth and
development affected

functionally due to
metal biouptake

[118]

23.

25 nm,
Crystalline,

Slightly
aggregated

400, 1000
and 2000

ppm (conc.
referred to
in terms of

zinc
content)

Seeds soaked in
NPs suspension for

3 h and then
devided into 2 sets:
Set1- in Petriplate

for germination and
seedling vigor index
Set2- in pot for rest

studies
Foliar application of

NPs

Arachis
hypogaea

Germination,
Root growth,

Seedling vigor,
Chl content,
Plant growth,

Flowering,
Pod yield,

At 1000 ppm conc.-
Germination, stem/

root growth, seedling
vigor index, chl-

contents, pod yield per
plant ↑,

Establishment in soil
and flowering- early,
At 2000 ppm conc.-
Inhibitory effects,

For foliar application-
dose of NPs = dose of

Bulk/ 15
(recommended)

Micronutriuent, Zn
delivered into seeds

through NPs,
Stomatal pathways
are fundamentally

different from
cuticular pathways,

giving different
results when NPs

applied by different
ways

[119]

24.

1.2 and 6.8 nm,
Monodispersed,
Spherical and

hexagonal,
NPs samples
having 98%
atom of Zn

element

10 ppm
Foliar sprayed on

leaf of 14d pot
cultured seedlings

Cyamopsis
tetragonoloba

Root/ shoot lengths,
Plant biomass,

Root area,
Chl-contents,

Total soluble leaf
proteins,

Native phosphorous
mobilizing enzymes,

Gum production

Root/ shoot lengths,
biomass, root area,
Chl- content, total

soluble leaf protein,
seed gum contents,

microbial population
in rhizosphere and

activities of
rhizosphere enzymes

(acid and alkaline
phosphatases and

Phytase) ↑

Leaf openings like
stomata provide entry
to the adsorbed NPs
on leaves depending
upon size and surface

properties of NPs,
Through cortex and
central cylinder NPs
enter into xylem may
become accumulated

in vacuole

[120]

25.
4 nm

Spherical,
Well dispersed

10, 20, 30,
40, 50 mg/L
in DI water

Germinated garlic
bulbs in DI water
till 2.0 cm long

redicals,
Then directly placed
on NPs suspensions

for 24 h,
Again transferred to

DI water

Allium
sativum

Root apical meristem
mitosis,

Root growth,
Mitotic aberrations

Root length (dose
dependant) ↓,

At 50 mg/L conc.-
Root growth blocked,

Estimated IC50 - 15
mg/L,

Mitosis index ↓,
Total percentage of

abnormal cells (conc.
and time dependant)

and mitotic aberrations
(chromosome bridges,

stickiness, laggings
and breakages) ↑

NPs induced
genotoxic effects in

Garlic plants,
It attributed to two

different actions- (i)
Release of (toxic)

ions, (ii) Stress
generation by NPs

[121]

26.
5 to 20 nm,

Nearly
spherical

100, 200µM
in nutrient
solution

8d grown seedlings
transferred to 1/2-

strength Hoagland’s
nutrient solution for

7d,
Further shifted in
NPs containing

nutrient solution for
7d

Triticum
aestivum

H2O2 contents,
Lipid peroxidation,

Photosynthetic
pigments,

Chl- fluorescence,
Activities of enzymes

of Ascorbate-
Glutathione cycle
(AsA-GSH) and

contents of associated
metabolites,

Zn contents in phloem
and xylem saps,

Effect of NO on NP-
phytotoxicity

Growth of seedlings,
efficiency of

photosynthesis,
activities of AsA–GSH

enzymes and
Associated metabolites

(ascorbate and
glutathione) ↓,

H2O2 level and lipid
peroxidation ↑,

NO reduces ZnONPs
toxicity

Higher accumulation
of Zn in phloem and
xylem saps induces

toxicity which can be
reduced by NO
treatment as it
regulates Zn-

accumulation and
functioning of

AsA–GSH cycle

[122]
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N.

NP
specifications

Range of
conc.

Exposure method/
application

method
Plant species Studied endpoints/

parameters Remarkable effects
Expected

mechanisms/
possible hypothesis

Referances

27.
30 nm,

Specific surface
area 70m2/g

0.16, 0.8, 4,
20, and

100mg/L of
cultivation

media

Seeds cultivated in
hydroponic

conditions (25%
Hoagland solution)

for 4 weeks,
Then exposed to

NPs at various conc,
for 2 weeks

Arabidopsis
thaliana

Contents of auxins,
cytokinins, abscisic

acid, salicylic acid and
jasmonic acid in roots,

apical meristem and
leaves

Cytokinins and auxins
(growth promoting
hormones) in shoot
apical meristems ↓,

Salicylic acid in leaves
and roots↑,

At 20 and 100mg/L
ZnO NPs-

cis-zeatin (cytokinin
associated with stress
response) in roots ↑,
At higher conc. of

NPs-
abscisic acid (stress
hormone) in apices

and leaves↑,
jasmonic acid (stress

hormone) and its
active metabolite

jasmonate isoleucine ↓

NPs generate severe
stress in plants where

higher stress
resistance in roots

induced due to local
accumulation of cis-

zeatin

[123]

28.

Biosynthesized
crystalline

natures,
Spherical and
rod shaped,

2-54 nm

25, 50, 75,
100, and
200 mg/L
Hoagland
medium

Several days,
soilrite grown

seedlings
transferred to

hydroponic culture
medium (Hoagland)

for 1 week,
Then different doses

of NPs added to
medium,

Both treatments
(NPs and control)

amended with
phosphorus (100

mM)

Gossypium
hirsutum

Seedlings growth and
biomass,

MDA contents,
Total soluble protein

contents,
Photosynthetic

pigment contents,
Antioxidant enzyme

activities-
SOD,
POX,
CAT,

Isoenzymes
expression pattern

Growth and total
biomass, level of chl-
a, b, carotenoids, total

soluble protein
contents, SOD and

POX ↑,
MDA contents in
leaves and CAT ↓,

NPs treatments
changed expression

patterns of
isoenzymes.

Interaction of
bioengineered NPs
with meristematic

cells triggers
biochemical

pathways which
promoted growth
whereas higher

activities of SOD and
POX enzymes help

plant to fight against
ROS production.

[124]

29.

Phycomolecules
coated,

Hexagonal,
square and

spherical shape,
2-64 nm,

Crystalline
nature

25 mg/L
ZnSO4;
25 mg/L
ZnONPs;

50 mg/L Cd;
50 mg/L

Cd+25 mg/L
ZnONPs;
100 mg/L

Pb;
100 mg/L

Pb+25 mg/L
ZnONPs

in
Hoagland’s

medium

Seedlings
transferred to

Hoagland’s medium
in hydroponic
system for 5 d,

Then treated with
optimum conc.of Cd

and Pb ions (50
mg/L and 100

mg/L) and NPs in 7
types of

combinations for 15
d

Leucaena
leucocephala

Growth and plant
biomass,

Cd and Pb contents,
Lipid peroxidation,

Photosynthetic
pigment contents,

Antioxidant enzyme
activity: SOD, CAT,

POX,
Detection of
isoenzymes,

Total soluble protein
contents,

Isolation of genomic
DNA and RAPD-PCR

Root/ shoot length,
biomass, growth
tolerance index,
photosynthetic

pigment contents, Cd
and Pb accumulation,
total soluble protein

contents, activities of
SOD, CAT and POX

↑,
MDA content in leaves

↓,
Many bands of DNA
disappeared and some
new bands (amplicons)

appeared in RAPD
pattern

NPs induced
genotoxicity

explaining the
absence of many
normal bands of
DNA in RAPD
pattern whereas

probably new bands
were appeared due to

mutation,
NPs having coating
of phycomolecules

might activate
genetic changes and
many biochemical

pathways in the
desired way to

diminish oxidative
stress and cellular

damages produced by
heavy metals like Cd

and Pb.

[125]
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S.
N.

NP
specifications

Range of
conc.

Exposure method/
application

method
Plant species Studied endpoints/

parameters Remarkable effects
Expected

mechanisms/
possible hypothesis

Referances

30.

Product
reported

particle size ˂
100 nm,

˂ 35 nm (DLS),
Estimated

Particle size
67±2 nm

For solution
culture: 25

mg Zn /L in
nutrient
solution,
For soil

culture: 500
mg Zn/kg

soil

Solution or soil
culture of plants

with NPs amended
growth matrix

Vigna
unguiculata

Uptake of Zn and its
transformation in

tissues

Plants grown in soil (-),
Toxicity in solution
culture- Soluble Zn

(ZnCl2) > ZnO-NPs,
NPs accumulated on

root surfaces
considerably, but not

translocated from roots
to shoots,

On both soluble Zn
and NPs treatments-
Speciation of Zn in

shoot tissues was the
same.

After amendment in
to soil, NPs rapidly
show dissolution.

[126]

31.

˂ 100 nm,
In water-
rhomboid
shaped,

In aqueous
phase of sand-
elongated rods

125, 250
and 500 mg

Zn/kg of
soils

2 types of soils
(acidic and

calcareous alkaline)
mixed with NPs

Triticum
aestivum

Plant growth,
Variation in

phytotoxicity with soil
properties,

Solubility of Zn,
Shoot uptake

Zn uptake and
accumulation ↑,

In acid soil - Root
elongation ↓,

Phytotoxicity ↑,
In calcareous alkaline

soil - Lateral root
production ↑,

Phytotoxicity ↓,
Soluble Zn in soil-

Acidic soil > alkaline
soil,

Soluble Zn in shoot-
Acidic soil > alkaline

soil

Soil properties
influenced the
phytotoxicity

induced by ZnO NPs
and soluble Zn in
treated seedlings

[127]

32. <100 nm,

500, 1000,
and 1500

mg/L
suspensions
in DW used
to prepare
plain agar
medium,

For in vitro
studies- 1, 5,

10 and 20
mg NPs /L

of MS
medium

Seeds inoculated on
NPs amended plain
agar medium for 14
d (germination and

growth studies),
Then stem pieces
(explants) excised
from seedlings and

cultured on MS
medium having NPs

Brassica
nigra

Germination,
Growth,

Antioxidative
potential,

Total antioxidant and
reducing power,

Total flavonoid and
phenolic contents

Germination, root
growth, shoot fresh

weight ↓,
Shoot growth,

antioxidative activities
and contents of
phenolics and
flavonoids ↑,

At lower conc. (1–20
mg/L)- thin roots

(white) with thick root
hairs

After entering into
seeds NPs might be
aggregated or show
dissolution of Zn

ions causing
germination
inhibition,

At cellular level ROS
and Ca+2 signaling

might be induced by
NPs eventually

affecting organism
physiologically,
ZnO NPs have

capability to induce
roots from explants if
culture conditions are

appropriate

[128]

33.

380 nm (in DI
water) to

1116 nm (in
100 mM NaCl),
Ζeta potential-
+21 mV (in DI

water) and
negative (in

NaCl)

100, 200,
400, and
800 mg

NPs/kg of
soil

Z n/ZnO NPs in
sandy loam soil,
Plants grown for

30d

Zea mays

Deposition of NPs and
its release,

Distribution of Zn in
soil,

Uptake mechanism,
Distribution of NPs in
tissues of root and leaf

Low mobility of NPs
in soil column of

different ionic
strengths,

Released Zn
penetrated together

with Fe and Al,
Translocation and

bioaccumulation Zn
observed high,

NPs aggregates were
present in root

epidermis, cortex and
xylem vessels

The used experiment
soil exhibits low
environmental

dispersion of ZnO
NPs, but its colloids

might help in the
penetration of

adsorbed NPs as
Zn/ZnO NPs

aggregates observed
allied with minerals

of soil,
Aggregates passed

epidermis by
apoplastic and
endodermis by

symplastic pathway.

[129]
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S.
N.

NP
specifications

Range of
conc.

Exposure method/
application

method
Plant species Studied endpoints/

parameters Remarkable effects
Expected

mechanisms/
possible hypothesis

Referances

34. 10±1nm
0, 400, and
800 mg/kg

of soil

Organic rich soil
amended with NPs,
Plants were grown

for 53d

Cucumis
sativus

Chlorophyll contents,
Gas exchange,

Bioaccumulations

Plant growth, gas
exchange, Chl content

(-),
At high conc.-

Bioaccumulation of Zn
in the fruit,

Conc. of Zn in tissues-
root > leaf > stem >

fruit.

NPs are not
generating stress [130]

35. 10 nm
400 and 800

mg/kg of
soil

Soil treated with
NPs

Cucumis
sativus

Total soluble and
reducing sugars,
starch, proteins,

mineral nutrients,
Total phenolics and

flavonoids and
antioxidants in the

fruit

Starch and protein
content ↑,
Conc. of

micronutrients Cu and
Mo ↓

Probably NPs
induced stress in the

plants in turn the
contents of starch

and protein become
increased.

[131]

36. 24 ± 3 nm
0, 400, and
800 mg/kg

of soil

Soil amended with
NPs Zea mays

Bioaccumulation of
Zn in tissues,

Nutrient conc. and
distribution in ears,

Gas exchange in
leaves,

Relative chl contents,
Shoot length,

Dry weight of roots
and leaves,

No of leaves and ears,
Area of leaf,

Fresh and dry weight
of ear

At 800 mg/kg conc.-
Relative chl contents,
net photosynthetic rate

and stomatal
conductance ↓,

Yield ↓,
Quality of corn altered

The expression of
transcripts of plant
growth regulators

might be down
regulated by NPs,

Treatment of NPs has
an influence on

elemental
translocation in

reproductive
structures as well as

in silks ripening
which directly affect

yield.

[132]

(↑= increased,  ↓=decreased,  (-)= not  significantly  affected,  DW= distilled  water,  DDW= double  distilled
water, DIW= deionized water, MS= Murashige and Skoog, Chl= chlorophyll, h= hours, D=days).

Table 4. The (Fig. 2) was made on the basis of this table. Table shows the complied data of explored
plant species along with their taxonomic categorization and references. A research article may contain
more than one plant or type of selected MONPs but we considered one plant or type of NPs as one case
and given a separate row in the table. For the purpose, the total selected research articles were 108 (32,
42 and 48 articles for CuO, TiO2 and ZnO NPs respectively including their common articles also) on
random basis, having total 150 plant cases. All 150 cases belong to only 14 families and 50 terrestrial
plant species, as explored repeatedly.

S.N. Tested
MO NPs Plant Angiosperm

or Gymnosperm

Monocot
or

Dicot
Family References

     1. CuO Spinacia oleracea Angiosperm Dicot Amaranthaceae [102]

     2. CuO Lactuca sativa Angiosperm Dicot Asteraceae [89]

     3. CuO Lactuca sativa Angiosperm Dicot Asteraceae [103]

     4. CuO Lactuca sativa Angiosperm Dicot Asteraceae [104]

     5. CuO Stevia rebaudiana - Dicot Asteraceae [90]

     6. CuO Arabidopsis thaliana Angiosperm Dicot Brassicaceae [91]

     7. CuO Arabidopsis thaliana Angiosperm Dicot Brassicaceae [93]

     8. CuO Arabidopsis thaliana Angiosperm Dicot Brassicaceae [96]

     9. CuO Brassica nigra Angiosperm Dicot Brassicaceae [106]

(Table 3) cont.....
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S.N. Tested
MO NPs Plant Angiosperm

or Gymnosperm

Monocot
or

Dicot
Family References

     10. CuO Brassica oleracea Angiosperm Dicot Brassicaceae [105]

     11. CuO Raphanus sativus Angiosperm Dicot Brassicaceae [56]

     12. CuO Raphanus sativus Angiosperm Dicot Brassicaceae [104]

     13. CuO Sinapis alba Angiosperm Dicot Brassicaceae [33]

     14. CuO Cucumis sativus Angiosperm Dicot Cucurbitaceae [104]

     15. CuO Cucumis sativus Angiosperm Dicot Cucurbitaceae [95]

     16. CuO Cumumis sativus Angiosperm Dicot Cucurbitaceae [32]

     17. CuO Glycine max Angiosperm Dicot Fabaceae 97]

     18. CuO Medicago sativa Angiosperm Dicot Fabaceae [89]

     19. CuO Phaseolus vulgaris Angiosperm Dicot Fabaceae [88]

     20. CuO Trifolium alexandrinum Angiosperm Dicot Fabaceae [40]

     21. CuO Trigonella foenum-
graecum Angiosperm Dicot Fabaceae [85]

     22. CuO Gossypium hirsutum Angiosperm Dicot Malvaceae [34]

     23. CuO Fagopyrum esculentum Angiosperm Dicot Polygonaceae [94]

     24. CuO Avena sativa Angiosperm Monocot Poaceae [40]

     25. CuO Hordeum vulgare Angiosperm Monocot Poaceae [86]

     26. CuO Hordeum vulgare Angiosperm Monocot Poaceae 101]

     27. CuO Lolium perenne Angiosperm Monocot Poaceae [56]

     28. CuO Lolium rigidum Angiosperm Monocot Poaceae [56]

     29. CuO Oryza sativa Angiosperm Monocot Poaceae [87]

     30. CuO Oryza sativa Angiosperm Monocot Poaceae 99]

     31. CuO Oryza sativa Angiosperm Monocot Poaceae [98]

     32. CuO Oryza sativa Angiosperm Monocot Poaceae [100]

     33. CuO Triticum aestivum Angiosperm Monocot Poaceae [55]

     34. CuO Triticum aestivum Angiosperm Monocot Poaceae [57]

     35. CuO Triticum aestivum Angiosperm Monocot Poaceae [10]

     36. CuO Triticum aestivum Angiosperm Monocot Poaceae [30]

     37. CuO Triticum vulgare Angiosperm Monocot Poaceae [92]

     38. CuO Zea mays Angiosperm Monocot Poaceae [31]

     39. TiO2 Petroselinum crispum Angiosperm Dicot Apiaceae [68]

     40. TiO2 Lactuca sativa Angiosperm Dicot Asteraceae [75]

     41. TiO2 Lactuca sativa Angiosperm Dicot Asteraceae [81]

(Table 4) cont.....
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S.N. Tested
MO NPs Plant Angiosperm

or Gymnosperm

Monocot
or

Dicot
Family References

     42. TiO2 Lactuca sativa Angiosperm Dicot Asteraceae [104]

     43. TiO2 Arabidopsis thaliana Angiosperm Dicot Brassicaceae [22]

     44. TiO2 Arabidopsis thaliana Angiosperm Dicot Brassicaceae [74]

     45. TiO2 Arabidopsis thaliana Angiosperm Dicot Brassicaceae [82]

     46. TiO2 Arabidopsis thaliana Angiosperm Dicot Brassicaceae [53]

     47. TiO2 Arabidopsis thaliana Angiosperm Dicot Brassicaceae [134]

     48. TiO2 Brassica campestris Angiosperm Dicot Brassicaceae [81]

     49. TiO2 Brassica napus Angiosperm Dicot Brassicaceae [21]

     50. TiO2 Raphanus sativus Angiosperm Dicot Brassicaceae [104]

     51. TiO2 Sinapis alba Angiosperm Dicot Brassicaceae [33]

     52. TiO2 Cucumis sativus Angiosperm Dicot Cucurbitaceae [79]

     53. TiO2 Cucumis sativus Angiosperm Dicot Cucurbitaceae [25]

     54. TiO2 Cucumis sativus Angiosperm Dicot Cucurbitaceae [48]

     55. TiO2 Cucumis sativus Angiosperm Dicot Cucurbitaceae [104]

     56. TiO2 Cicer arietinum Angiosperm Dicot Fabaceae [63]

     57. TiO2 Cicer arietinum Angiosperm Dicot Fabaceae [77]

     58. TiO2 Glycine max Angiosperm Dicot Fabaceae [80]

     59. TiO2 Phaseolus vulgaris Angiosperm Dicot Fabaceae [27]

     60. TiO2 Phaseolus vulgaris Angiosperm Dicot Fabaceae [81]

     61. TiO2 Trifolium alexandrinum Angiosperm Dicot Fabaceae [40]

     62. TiO2 Trifolium pretense Angiosperm Dicot Fabaceae [78]

     63. TiO2 Vicia faba Angiosperm Dicot Fabaceae [67]

     64. TiO2 Vicia narbonensis Angiosperm Dicot Fabaceae [65]

     65. TiO2 Vicia narbonensis Angiosperm Dicot Fabaceae [66]

     66. TiO2 Vigna radiata Angiosperm Dicot Fabaceae [50]

     67. TiO2 Ocimum basilicum Angiosperm Dicot Lamiaceae [83]

     68. TiO2 Linum usitatissimum Angiosperm Dicot Linaceae [54]

     69. TiO2 Rumex crispus Angiosperm Dicot Polygonaceae [27]

     70. TiO2 Salix eriocephala Angiosperm Dicot Salicaceae [135]

     71. TiO2 Lycopersion esculentum Angiosperm Dicot Solanaceae [28]

     72. TiO2 Nicotiana tabacum Angiosperm Dicot Solanaceae [52]

     73. TiO2 Nicotiana tabacum Angiosperm Dicot Solanaceae [51]

     74. TiO2 Allium cepa Angiosperm Monocot Amaryllidaceae [51]

(Table 4) cont.....
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S.N. Tested
MO NPs Plant Angiosperm

or Gymnosperm

Monocot
or

Dicot
Family References

     75. TiO2 Allium cepa Angiosperm Monocot Amaryllidaceae [72]

     76. TiO2 Avena sativa Angiosperm Monocot Poaceae [40]

     77. TiO2 Hordeum vulgare Angiosperm Monocot Poaceae [73]

     78. TiO2 Hordeum vulgare Angiosperm Monocot Poaceae [76]

     79. TiO2 Oryza sativa Angiosperm Monocot Poaceae [64]

     80. TiO2 Oryza sativa Angiosperm Monocot Poaceae [70]

     81. TiO2 Oryza sativa Angiosperm Monocot Poaceae [84]

     82. TiO2 Triticum aestivum Angiosperm Monocot Poaceae [58]

     83. TiO2 Triticum aestivum Angiosperm Monocot Poaceae [27]

     84. TiO2 Triticum aestivum Angiosperm Monocot Poaceae [71]

     85. TiO2 Triticum aestivum Angiosperm Monocot Poaceae [26]

     86. TiO2 Triticum aestivum Angiosperm Monocot Poaceae [21]

     87. TiO2 Triticum. aestivum Angiosperm Monocot Poaceae [69]

     88. TiO2 Zea mays Angiosperm Monocot Poaceae [65]

     89. TiO2 Zea mays Angiosperm Monocot Poaceae [47]

     90. ZnO Spinacia oleracea Angiosperm Dicot Amaranthaceae 102]

     91. ZnO Stevia rebaudiana Angiosperm Dicot Asteraceae [133]

     92. ZnO Arabidopsis thaliana Angiosperm Dicot Brassicaceae [74]

     93. ZnO Arabidopsis thaliana Angiosperm Dicot Brassicaceae [117]

     94. ZnO Arabidopsis thaliana Angiosperm Dicot Brassicaceae [123]

     95. ZnO Brassica napus Angiosperm Dicot Brassicaceae [116]

     96. ZnO Brassica nigra Angiosperm Dicot Brassicaceae [128]

     97. ZnO Brassica oleraceae Angiosperm Dicot Brassicaceae [118]

     98. ZnO Sinapis alba Angiosperm Dicot Brassicaceae [33]

     99. ZnO Cucumis sativus Angiosperm Dicot Cucurbitaceae [112]

     100. ZnO Cucumis sativus Angiosperm Dicot Cucurbitaceae [32]

     101. ZnO Cucumis sativus Angiosperm Dicot Cucurbitaceae [130]

     102. ZnO Cucumis sativus Angiosperm Dicot Cucurbitaceae [131]

     103. ZnO Cucurbita pepo Angiosperm Dicot Cucurbitaceae [137]

     104. ZnO Arachis hypogaea Angiosperm Dicot Fabaceae [119]

     105. ZnO Cajanus cajan Angiosperm Dicot Fabaceae [107]

     106. ZnO Cicer arietinum Angiosperm Dicot Fabaceae [60]

     107. ZnO Cicer arietinum Angiosperm Dicot Fabaceae 115]
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S.N. Tested
MO NPs Plant Angiosperm

or Gymnosperm

Monocot
or

Dicot
Family References

     108. ZnO Cicer arietinum Angiosperm Dicot Fabaceae [61]

     109. ZnO Cyamopsis tetragonoloba Angiosperm Dicot Fabaceae [120]

     110. ZnO Glycine max Angiosperm Dicot Fabaceae [107]

     111. ZnO Glycine max Angiosperm Dicot Fabaceae [36]

     112. ZnO Glycine max Angiosperm Dicot Fabaceae [134]

     113. ZnO Glycine max Angiosperm Dicot Fabaceae [62]

     114. ZnO Leucaena leucocephala Angiosperm Dicot Fabaceae [125]

     115. ZnO Lupinus termis Angiosperm Dicot Fabaceae [114]

     116. ZnO Phaseolus vulgaris Angiosperm Dicot Fabaceae [88]

     117. ZnO Phaseolus vulgaris Angiosperm Dicot Fabaceae [110]

     118. ZnO Prosopis juliflora Angiosperm Dicot Fabaceae [111]

     119. ZnO Trifolium alexandrinum Angiosperm Dicot Fabaceae [40]

     120. ZnO Vigna radiata Angiosperm Dicot Fabaceae [115]

     121. ZnO Vigna unguiculata Angiosperm Dicot Fabaceae [126]

     122. ZnO Abelmoschus esculentus Angiosperm Dicot Malvaceae [107]

     123. ZnO Gossypium hirsutum Angiosperm Dicot Malvaceae [124]

     124. ZnO Fagopyrum esculentum Angiosperm Dicot Polygonaceae [94]

     125. ZnO Solanum lycopersicon Angiosperm Dicot Solanaceae 110]

     126. ZnO Allium cepa Angiosperm Monocot Amaryllidaceae [108]

     127. ZnO Allium cepa Angiosperm Monocot Amaryllidaceae [59]

     128. ZnO Allium cepa Angiosperm Monocot Amaryllidaceae [113]

     129. ZnO Allium sativum Angiosperm Monocot Amaryllidaceae [121]

     130. ZnO Avena sativa Angiosperm Monocot Poaceae [40]

     131. ZnO Hordeum vulgare Angiosperm Monocot Poaceae 86]

     132. ZnO Lolium perenne Angiosperm Monocot Poaceae [35]

     133. ZnO Triticum aestivum Angiosperm Monocot Poaceae [57]

     134. ZnO Triticum aestivum Angiosperm Monocot Poaceae [10]

     135. ZnO Triticum aestivum Angiosperm Monocot Poaceae [58]

     136. ZnO Triticum aestivum Angiosperm Monocot Poaceae [109]

     137. ZnO Triticum aestivum Angiosperm Monocot Poaceae [122]

     138. ZnO Triticum aestivum Angiosperm Monocot Poaceae [127]

     139. ZnO Zea mays Angiosperm Monocot Poaceae [107]

     140. ZnO Zea mays Angiosperm Monocot Poaceae [37]
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S.N. Tested
MO NPs Plant Angiosperm

or Gymnosperm

Monocot
or

Dicot
Family References

     141. ZnO Zea mays Angiosperm Monocot Poaceae [118]

     142. ZnO Zea mays Angiosperm Monocot Poaceae [129]

     143. ZnO Zea mays Angiosperm Monocot Poaceae [132]

Fig. (2).  Categorization of explored terrestrial plants for phytotoxicity studies under exposure of MO NPs
(i.e.  TiO2,  CuO,  ZnO  NPs).  Here,  series  1;  2;  3;  4  and  5  represent  to  the  type  of  MO  NP;  category  as
angiosperm or gymnosperm; clade as monocot or dicot; taxonomic family and plant species respectively,
with color codes. The same color is used for the same category in each series. In series 5, different shades of
the same color indicate related species as having same taxonomic family (series 4). In series 3, dark shade
was used for dicot and lighter one for monocot. In series 1, the length of bands is sign of the number of plant
cases for each MO NP. To check their references one can go with the Table 4.

FUTURE PROSPECTS

Undoubtedly, nanotechnology is rapidly encroaching all the areas with promising
features of NMs but their underexplored impact on agriculture and plant system
cannot  be  ignored.  Here  some  problems  and  possibility  of  this  field  are  being
discussed.

(Table 4) cont.....

 



Future Perspectives Nanobiotechnology: Principles and Applications   77

1. However, numerous studies have been conducted on the phytotoxic effects of
NPs, yet research intended towards the recognition of the beneficial effects of NPs
on plants and agriculture remains inadequate.

2.  Intrusion  of  nanotechnology in  the  field  of  tissue  culture  can  generate  some
revolutionary results, but this field is almost untouched till now.

3. Moreover, nanotechnology may alter the secondary metabolite production and
stress  tolerance  capacity  in  plants,  thereby,  increasing  benefits.  Though,  some
reports  are  available  on  these  perspectives,  but  these  are  not  enough  and
conclusive.

4.  There  are  plenty  of  conventional  and  transgenic  varieties  of  plants  with  so
many qualities, demanding rigorous research and collaboration of nanotechnology
for their betterment.

5.  As  metal  oxide  NMs  are  identified  for  their  metal  ion  toxicity,  it  is
recommended to compare closely related species with known differences in metal
tolerance on these NPs treatments. This approach may influence the field of nano-
fertilizers significantly.

6.  Published  data  on  terrestrial  phytotoxicity  by  MO  NPs  is  increasing
continuously but surprisingly the range of selected plants is still narrow (mostly
agricultural crops and seed plants). The same situation is expected for other NMs
too but it should be discouraged as the earth is full of diverse terrestrial plants and
all have the possibility of unintentional exposure by NMs, thus random selection
of plants (outside this narrow range) should be appreciated.

7. It is often being argued about the standard NPs- phytotoxicity assessment tests,
having universal consideration and acceptance.

8.  Until  now,  the  most  commonly  analyzed  parameters  were  germination,  root
elongation, shoot length, plant biomass etc. but as opposed by some researchers,
these  parameters  are  not  precise  enough  or  appropriate  for  evaluation  of  NP
toxicity  in  terrestrial  plant  species.

9. The studies on the interaction of NMs with plant growth matrixes (e.g. various
types of soils, growth medium etc.) and their effect on life cycle of plants are very
scarce, hence, demand attention.

10. Numerous appreciable efforts on uptake, biotransformation or accumulation of
NPs in plant body cannot be overlooked, but the need of the hour is to understand
the mechanism of NMs in affecting food chains and ultimately human health.
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11. From the gathered information, it is apparent that most of the investigations
are based on simple morphological  and biochemical  studies.  Therefore,  intense
and  in-depth  work  needs  to  be  done  in  order  to  explore  the  physiological,
molecular  and  biochemical  mechanisms  of  plants  in  relation  to  NPs.

12. Due to dynamic climatic conditions and varied soil types, plants experience a
number  of  abiotic  stresses  which  lead  to  huge  crop  losses.  Limited  reports  are
available on the mitigation of abiotic stresses using NPs. Intense efforts should be
done in this direction to minimize crop loss and sustain the population.

13. Most of the studies are restricted to controlled conditions, but to get a more
realistic picture of the effects of MO NPs on different life cycle stages and in turn
on  yield  and  crop  quality,  field  trials  need  to  be  done.  These  studies  will  also
prove quite beneficial in studying the long-term multigenerational impact of MO
NPs treated plants.

These  types  of  approaches  will  turn  the  situation  and  it  endow  with  better
understanding, as well as provide good command over the behavior of NPs into
living plant systems and the environment.
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Abstract:   Chemical  fertilizers  are  crucial  in  the  production  of  cost-effective
agricultural crops. However, long-term usage of chemical fertilizers will deteriorate the
soil quality and it is hazardous to human health. Scientists and researchers across the
globe  are  seeking  the  help  of  nanotechnology  as  a  possible  solution  to  combat  the
hazardous  effect  of  chemical  fertilizers.  Nanotechnology is  a  branch of  science  and
engineering  concerned  with  the  matter  at  the  nanoscale  or  one  billionth  of  a  meter.
Nanofertilizers  are  modified  fertilizers  that  are  synthesized  using  techniques  of
nanotechnology  involving  various  physicochemical  and  biological  methods.  These
methods aid in enhancing their attributes and composition, which leads to a positive
effect on crop productivity. Nanofertilizers are far more beneficial when compared to
chemical fertilizers as the former are cost-effective, less toxic and show controlled and
regulated release of nutrients to plants. This chapter is primarily concerned with the
various  methods  employed  in  nanofertilizer  synthesis,  the  economic  importance  of
nanofertilizers and their advantage over conventional chemical fertilizers.

Keywords: Chemical fertilizers, Cost-effective, Nanofertilizers, Nanotechnology.

INTRODUCTION

Soil is a storehouse of nutrients that serve as the medium in which plants grow.
Nutrients  are  lost  from  the  soil  in  several  ways  such  as crop harvest, weeds,
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leaching,  volatilization,  and  erosion  thereby  affecting  the  fertility  status  of  the
soil,  thus  affecting  productivity.  Therefore,  these  losses  when  combined
altogether,  a significant amount of nutrients are lost  from the soil  such that the
crop requirement exceeds the soil supplying power thus nutrients are applied from
external sources [1].

The bush-fallow strategy, which allows arable land to switch back to fallow after
3-4  years  of  intensive  cropping,  was  once  the  conventional  technique  of
sustaining soil fertility and production when the human population was low. With
the increasing growth of the human population and other socioeconomic demands,
an  attempt  was  made  to  substitute  the  fallow  system  with  the  use  of  manures,
mainly  where  significant  numbers  of  animals  were  present.  This  highlights  the
agricultural benefits of organic manures such as farmyard manure, compost, green
manure,  poultry  droppings,  cow  dung,  and  household  refuse,  among  others.
Nowadays, agriculture became more demanding with the usage of crops giving
high  yields.  But  such  crops  require  more  nutrition  to  grow  than  the  natural
nutrients present in the soil. It became evident that manures could not fulfill the
nutrient requirements of these crops for increased productivity, and could not be
procured  in  adequate  quantities  to  meet  farmers'  needs.  Even  when  manure  is
readily accessible, transportation and labor costs (inevitably) restrict its frequent
use. In this case, mineral fertilizers were considered a viable alternative [2].

Fertilizers, also referred to as inorganic fertilizers are the mineral source of plant
nutrients that are industrially manufactured and their nutritional content is higher
than that of farmyard manures and are almost released instantly, thus meeting the
nutrient demand of the crop. Fertilizers supply macronutrients such as Nitrogen
(N), Phosphorus (P) and Potassium (K) which are necessary for plant growth and
development.  Fertilizers  also  supply  micronutrients  such as  Zinc  (Zn),  Sulphur
(S), and Iron (Fe) for plant uptake and utilization in various metabolic processes.
Fertilizers can be straight fertilizers (such as Urea, SSP and MoP) containing only
one type of primary macronutrients or complex containing two or more primary
macronutrients that are chemically bound together [3].

Commercial  chemical  fertilizers  are  expensive  and  include  substances  that  are
harmful to the skin or respiratory system. Because of their huge particle size and
low  solubility,  they  are  less  bioavailable  to  plants.  Furthermore,  they  cause
toxicity and disrupt the soil's ecological equilibrium. Implementing nanoparticles
in  sustainable  agricultural  practice  might  be  defined  as  using  modern  and
advanced  agro-nanofertilizers  over  conventional  fertilizers  in  a  sequence  of
environmentally  and  farmer-friendly  inputs  [4].
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CONVENTIONAL FERTILIZERS

Today's agriculture is growing increasingly intensive, requiring higher dosages of
chemicals  such  as  fertilizers,  herbicides,  and  pesticides  to  achieve  maximum
productivity  per  unit  area  to  fulfill  the  demands  of  an  ever-increasing  human
population. These chemicals have with no doubt increased crop productivity but
simultaneously usage of these chemicals is more than optimum, severely affecting
natural resources and ecosystem services.

Challenges of Fertilizers In Present-Day Agriculture Practices

Fertilizers play a significant role in obtaining higher crop yields as they contribute
up to 40-60% of agricultural productivity [5]. However, applying higher doses of
fertilizer than optimum does not guarantee an increase in crop productivity rather
it  results  in  several  problems  such  as  soil  health  degradation,  environmental
pollution, multi-nutrient deficiency (especially micro-nutrients), element toxicity,
rise in the cost  of  production,  among others [6].  The use of  inorganic fertilizer
helps  in  increasing the  yield  of  the  crop but  it  increases  the  cost  of  production
(cost of fertilizer plus cost of transportation) and applying higher doses leads to
environmental pollution. In addition, the application of higher rates of chemical
fertilizer leads to significant land problems as a result of over-exploitation of land
and land pollution [7]. Furthermore, applying higher doses of fertilizer more than
crop  requirement  leads  to  losses  of  nutrients  through  various  sources  such  as
leaching (especially for nitrate), volatilization, immobilization, etc. The nutrients
lost  will  not  be  utilized  by  the  plant  as  such  will  increase  the  cost  of  crop
production.  Nutrients  lost  through  leaching  cause  groundwater  pollution  while
those lost through volatilization such as NO2 (especially in rice field) is among the
greenhouse gases that cause climate change. Pandey and Awasthi [8] concluded
that  using  too  many  chemical  fertilizers  reduces  soil  health  quality  attributes
(physical,  chemical,  and  biological  qualities)  as  well  as  crop  productivity.

Solutions to the Use of Fertilizer

Despite all these challenges regarding the use of a fertilizer, it plays a significant
role  in  obtaining  higher  productivity  (contributes  40-60%  of  crop  yield)  as  its
nutrient  concentration  is  high  and  is  released  immediately  to  the  soil  for  plant
uptake.  Therefore,  the  use  of  fertilizer  cannot  be eliminated and this  paved the
way  for  several  nutrient  management  practices  to  be  employed  in  present-day
agriculture to minimize many problems linked with the usage of  fertilizer.  The
concept of integrated nutrition management is one of these nutrient management
strategies. To improve crop and soil productivity as well as the sustainability of
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production  systems,  integrated  nutrient  management  entails  a  balanced  use  of
mineral  fertilizers  in  combination  with  organic  and  biological  sources  of  plant
nutrients.  The  combined  use  of  organic  manures  and  chemical  fertilizers  is
effective  in  halting  productivity  declines  by  increasing  fertilizer  use  efficiency
(FUE) and correcting marginal deficiencies of secondary and micronutrients, as
well as their beneficial impacts on the soil's physical and biological properties [3].

In  addition,  fertilizer  nutrient  use  efficiency  is  another  way  of  reducing  the
hazardous effect caused by the usage of fertilizer. Fertilizer nutrient use efficiency
involves the efficient utilization of nutrients by applying the required amount of
fertilizer  to  a  crop  at  the  right  time  at  the  right  place  using  the  right  method.
Adopting and using the techniques for increasing fertilizer use efficiency assist in
limiting  nutrient  loss  due  to  leaching,  immobilization  and  volatilization,  thus
reducing  environmental  hazards  and  cost  of  production.

Moreover, the present-day agriculture being highly chemically intensive is also
concerned with producing a higher yield of crops with little or no emphasis on the
quality of crop production. However, in addition to quantity, there is also a need
to produce a crop with a high nutritive value that is rich in protein, minerals, as
well as other vital elements for human and animal intake. Therefore, to produce a
higher yield of the crop with high quality while reducing the negative impacts of
chemical fertilizers, the usage of nano-fertilizers is required. Nano-fertilizers are
fertilizers developed using nano-technology. Nano-fertilizers are effective tools in
agriculture  for  combating  the  negative  impacts  caused  by  the  use  of  chemical
fertilizers because of their small particle size, more penetration capacity, higher
surface area and use efficiency. Nano-fertilizer particles are less than 100nm in
size, allowing them to penetrate the plant more easily. The smaller particle size
increases  the  surface  area  of  the  particles  which  boosts  the  rate  of  uptake  and
chemical  reaction  such  as  photosynthesis  in  the  plant.  Nano-fertilizers  are
characterized by the high use efficiency because they release nutrients slowly to
the plant and are thus made available to the plant throughout the growth period
hence no residue that may cause environmental hazards is left. Nano-fertilizer is
thus  served  as  an  effective  technology  that  has  a  great  role  to  play  in  crop
production  as  it  is  ecologically  friendly  and  also  ensures  the  sustainability  of
production systems and economic stability [6].

NANO FERTILIZERS (NF)

The word “Nano” is a Greek word that means “Dwarf” measured in one-billionth.
The term “Nanotechnology” is defined as the understanding and control of matter
typically  in  the  size  of  1-100  nm,  unique  properties  of  large  surface  area  and
extremely  small  size  for  nanomaterials  such as  biological,  optical  and physical
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make the novel application possible [9]. The advances in science and technology
such as Biology, Physics, Chemistry, Permaceuticals and engineering resulted in
the emergence of the field of nanotechnology. They occurred naturally, but can
also be engineered.  Nanotechnology is  now being explored in  many fields  like
agriculture  for  new  opportunities  owing  to  its  extremely  small  size  [10].
Currently, the area of nanotechnology is currently receiving greater emphasis in
the agricultural sector for the great potential of nanoparticles with characteristics
such  as;  adherence  effects,  higher  reactivity,  surface  effects  and  enhanced
bioavailability  [11].

The  use  of  synthetic  chemical  fertilizers  solely  as  a  nutrient  source  remains  a
major  constraint  in  agricultural  production,  it  resulted  in  many  environmental
problems and poor nutrient use efficiency, which is a worse scenario that becomes
a hindrance to agricultural sustainability [12]. Additionally, the profit margins for
the  framers  reduce  significantly  due  to  the  cost  rises  caused  by  the  overuse  of
chemical  fertilizers.  The  reasons  for  inadequate  nutrient  use  efficiency  are
manifold;  among  which  is  usually  the  consequences  of  the  high  rate  of
conventional  fertilizers  release  beyond the  required nutrient  requirement  of  the
plants  and/or  inaccessible  of  nutrients/fertilizers  to  crops  despite  their
transformation in the soil [13]. As a result, there has been a surge of interest in the
direction of new innovative fertilizer sources that will enhance the efficiency of
fertilizers used by crops [14]. Because of the regular consumption of fertilizers in
the agricultural sector, the production of nanofertilizers is regarded as the most
essential  role  of  nanotechnology  in  the  agricultural  field,  particularly  in
developing  nations  [15].

Effects of Nanofertilizers on Fertilizers

Food production in many countries has been achieved with the use of chemical
fertilizers. In developing countries, the consumption of these fertilizers increases
with  the  introduction  of  fertilizer-responsive  crops  and  high-yielding  varieties.
Notwithstanding,  the  yield  of  many  crops  as  a  result  of  decreased  soil  organic
matter  and  imbalanced  fertilization  has  begun  to  decline  [16].  Moreover,  the
major cause of groundwater pollution and eutrophication in aquatic ecosystems is
considered to be the consequences of excessive applications of N and P types of
fertilizers.  The fact that the fertilizer use efficiency is 20% to 50% and 10% to
25%  for  nitrogen  and  phosphorus  respectively,  implies  that  efficiency  in  food
production will have to be increased much more than previously [17].

To  boost  fertilizer  use  efficiency,  a  variety  of  solutions  have  been  proposed,
including split or targeted fertilizer application, precision fertilization, fertigation,
and  the  use  of  nanofertilizers  [18].  In  the  sustainable  agriculture  context,  the
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development  of  new  fertilizers  through  the  application  of  nanotechnology  is
viewed as one of the potentially likely options to attain sustainability, especially
under  the  current  scenario  of  climate  change  in  addition  to  increased  food
production  for  the  ever-increasing  population  food  demands  [19,  20].
Interestingly, nanofertilizers in a recommended dose can in a controlled manner
feed the plants gradually without under or over application [21]. The side effects
like environmental hazards, rate of leaching, and volatilization from the excessive
use  of  chemical  fertilizers  can  significantly  be  reduced  while  at  the  same  time
improving  the  fertilizer  use  efficiency  [22].  In  addition,  enhancing  the  plants’
ability  for  nutrient  absorption  [23].  Furthermore,  the  field  of  nanotechnology
attracted  more  attention  due  to  the  increased  efficacy  and  bioavailability  of
nanofertilizers applied to the soils and reduced risk of environmental pollution as
a result of nutrient loss [24].

Advantages of Nanofertilizers

Mineral chemical fertilizers have been used and served the purpose of increasing
crop  yields  in  agriculture  since  the  beginning  of  the  dramatic  increase  in  the
human population. However, the overuse of these chemical fertilizers instead of
increasing  crop  yield  may  contrarily  reduce  soil  fertility  and  its  productivity
thereby causing crop loss  in  the  near  future.  Nanofertilizers  comprise  the  most
important field of agriculture owing to their high capability to improve fertility,
increase  yield,  mitigate  pollution  and  make  a  favorable  environment  for  soil
microbes.  The role of these smart  fertilizers in plant  and soil  systems has been
well-documented  and  can  act  efficiently  for  the  enhancement  of  agricultural
productivity  [25].

Nanotechnology is crucial in the development and deployment of novel fertilizers
because of its distinctive attributes, like high surface-to-volume ratio, controlled-
release kinetics to defined locations, and sorption potential [20]. Nanofertilizers
are nutrients that have been encapsulated or coated with nanomaterials to allow
for  the  controlled  and  gradual  release  of  one  or  more  nutrients  to  meet  plants'
critical nutrient requirements [26]. These “smart fertilizers” are currently viewed
as  a  potential  option  [27]  and  in  some  situations,  are  considered  to  be  the
preferred  kind  of  fertilizer  over  conventional  fertilizers  [28,  29].  The  nutrient
delivery  system of  nanofertilizers  has  significant  advantages  over  conventional
chemical fertilizers [30]. They employ controlled and timely release strategies to
regulate the nutrient availability in crops. Nanomaterials are coated with nutrients
that have been connected to such slow nutrient delivery [22]. Delivery of nutrients
is steady, gradual, and long-term which is beneficial for the producers to improve
crop  development.  Nutrients,  for  example,  can  be  supplied  slowly  over  40–50
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days  rather  than  the  4–10  days  required  by  conventional  fertilizers  [31].  In
traditional nutrient management methods, 50 percent of the fertilizer applied to
the  field  is  lost  to  run-off  or  becomes  inaccessible  to  the  crops  due  to  high
availability,  obstructing  root  absorption  and  occasionally  generating  harmful
effects.  In  addition,  nanofertilizers  cut  down  on  transportation  and  application
expenses  [32].  Another  benefit  of  utilizing  in  minimal  amounts  is  that  the  soil
does  not  become  laden  with  salts,  which  can  occur  when  using  conventional
fertilizers  in  either  short-  or  long-term  applications  [33].  Another  benefit  of
employing nanofertilizers is that they may be tailored to the nutrient requirements
of the crops they are meant for [34]. In this case, biosensors could be coupled to a
new novel  fertilizer  that  regulates  nutrient  supply based on soil  nutrient  status,
crop development period, or environmental variables33. Plants are susceptible to
the availability of micronutrients throughout crop growth, and this has detrimental
repercussions  on  nutritionally  deficient  fruits  and  vegetables  [35,  36].  It  is
difficult  to  restrict  the  micronutrient  distribution  to  a  particular  plant  in  a
traditional  nutrient  management  system,  but  nanofertilizers  give  the  ability  to
distribute suitable levels of nutrients [37]. Since most horticultural growing areas
across the world are deficient in key micronutrients, such as zinc and iron [36],
nanofertilizers can be used as efficient and appropriate enrichment products for
crops and perishable foods. Nanofertilizers promote nutrient absorption by having
a large specific surface area, a small size, and high reactivity [30]. Nanofertilizers,
on the other hand, help the plant to withstand diverse biotic and abiotic challenges
by supplying balanced nourishment.

Limitations of Nanofertilizers

The widespread use of nanofertilizers in agriculture could have several significant
drawbacks, such as new environmental and health-related issues that could restrict
the  technology's  utility  in  horticulture  crop  productivity.  Phytotoxicity  from
nanoparticles is also a concern in this area, as plants react differently to different
nanomaterials  at  different  doses  [12].  These  materials'  reactivity  and
unpredictability are also a source of concern. This raises issues about the safety of
farmers who may be exposed to xenobiotics as a result of their application [38].
This includes not just individuals who are involved in nanofertilizers’ synthesis,
but as well as those who have been involved in the application of nanofertilizers
in  the  field.  Given  the  expected  benefits,  it  is  necessary  to  investigate  the
practicality  and  applicability  of  these  novel  smart  fertilizers.  Indeed,
transportation,  toxicity,  and  bioavailability  limitations,  as  well  as  unforeseen
environmental consequences from contact with biological systems, restrict their
applications  in  agriculture  and  horticulture  [20].  Identifying  and  assessing  the
risks of nanomaterials, as well as nanomaterial or fertilizer life cycle evaluation
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and toxicological research priorities, are crucial. This is especially true in light of
nanoparticles’  accumulation  in  plants  and  associated  health  risks.  Food  safety,
along  with  human  and  food  security,  has  been  raised  as  a  result  of  the  use  of
nanofertilizers  produced  from  nanomaterials  [39,  40].  Nanoparticles’  uptake,
translocation,  transformation,  and  accumulation  in  plants  are  influenced  by
species, dose, and application method, as well as NP composition, size, shape, and
surface features [41]. It is critical to investigate the extent to which NP is harmful
to  specific  crops.  It  is  required  for  the  examination  and  evaluation  of
nanofertilizer uptake and translocation. It also illustrates the various changes that
occur  in  nanoparticles  when  they  interact  with  soil  compounds  and
phytochemicals. The accumulation of NPs in various plant locations can also be
determined [42].

Comparative  Analysis  of  Nanofertilizers  over  Conventional  Chemical
Fertilizers

Recent research has focused on a wide range of nanotechnological applications in
the agricultural research area, with techniques being developed at the level of both
academia  and  industry  [43].  By  inventing  new  techniques  for  plant  disease
treatment  and  pathogen  identification,  nanotechnology  has  the  potential  to
improve every aspect of the current agriculture and food economy [44, 45], and
improve  the  ability  of  plants  to  absorb  nutrients  [23,  46].  Furthermore,
nanotechnology  has  begun  to  garner  more  interest  in  the  agricultural  field,
particularly in the development of new nanofertilizers to increase the efficiency
and bioavailability of these novel fertilizers while lowering the amount of material
lost to the environment [24].

Many studies have shown that using nanofertilizers enhanced agromorphological
parameters,  photosynthesis,  and crop yield.  The result  from the two years field
experiment conducted in Egypt by Ahmed Shebl [47], revealed that; the spray of
manganese oxide nanoparticles on the leaves of Cucurbita pepo L.  delivers the
best vegetative outcomes in terms of photosynthetic pigment, fruits, and yield. On
the contrary, zinc oxide nanoparticles give the highest value of protein, energy,
lipids, and organic matter content on the squash fruits. The application of ZnO-
NPs  on  wheat  plants  and  common  beans  improved  both  the  vegetative  and
reproductive  growth  stages  of  the  crops  [24,  48],  by  the  application  as  a  foliar
fertilizer.  Furthermore,  Khodakovskaya  et  al.  [49]  discovered  that  carbon
nanoparticles improve tomato plant characteristics and yield. In a study conducted
by Du et al.  [50], ZnO-NPs were found to be more effective than ZnSO4  in the
germination and growth of wheat. The field experiment conducted by Nouraein
[51]  reported  that  the  use  of  nanofertilizers  (nanoboron,  nanozinc  and
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nanocomplete) was observed to give the best result in protein percent, chlorophyll
content and straw yield of maize crop compared to NPK mineral fertilizers and
NP biofertilizers and control treatment respectively.

BIOSYNTHESIS OF NANO-FERTILIZERS: GENERAL APPROACH

The term “Nano fertilizers” can be defined as the nutrients which can be delivered
to crops either by encapsulating them in nano-materials or by delivering them as
particles  or  emulsions  of  nanoscale  dimensions.  This  statement  clarifies  the
definition  of  nano  fertilizers,  describing  them  as  nanomaterials  that  are  either
nutrients (micro- or macro-nutrients) or operate as carriers/additives for nutrients
(e.g., by compositing with minerals) [34].

Nutrient encapsulation with nanoparticles can be accomplished in three different
ways:

1.  Plant  nutrients  are  encapsulated  in  nanoparticles  of  variable  origin  and
chemical  composition.

2. Using a thin layer of nanoparticles, such as polymer film, to coat the nutritional
particles.

3. Providing nutrients in the form of emulsions and particles with dimensions in
the nanoparticle range.

The  major  processes  of  metal  nanoparticle  biogenic  synthesis  for  nanoparticle
formation  include  nucleation,  nanoparticle  growth,  stabilization,  and  capping
agents, which result in capped and persistent metal nanoparticles. The synthesis of
nanoparticles  (required  for  encapsulation)  is  carried  out  through  a  nucleation
reaction between the metallic salts and the capping /reducing agent at a specific
temperature.  The  actual  entities  involved  could  be  electrons  from  the
reducing/capping agent's functional group as well as electrons from metallic ions.
These  reactions  are  further  assisted  by  a  stabilizing  agent  which  improves  the
procedure  of  nanoparticles’  synthesis  along  with  by-products.  Engineered
nanoparticles are made up of a variety of metals (Ag, Au, Zn, Pd, Pt), metal oxide
nanoparticles,  and  even  non-metal  nanoparticles  [52].  Various  compounds
including  organic  compounds  such  as  sodium  citrate,  glycol  ethylene,  N,  N-
dimethylformamide,  etc.  with  reducing  properties  are  some  of  the  common
reducing agents utilized during the process. Various chemicals like polyethylene
glycol (PEG), carboxymethyl cellulose (CMC), thiols, cellulose, etc. are used as
stabilizers in nanoparticle formulation.

.
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Approaches for the Synthesis of Nano Based Fertilizers

Nanotechnology is regarded as the future industrial revolution in the 21stcentury.
The word nanomaterial refers to materials having a size between (1–100 nm) with
distinctive  structural,  physical,  and  chemical  properties  [53].  Because  the
synthesis  of  nanoparticles  by  various  chemical  and  physical  methods  has  a
harmful  influence  on  the  environment  and  living  organisms,  it  is  necessary  to
produce them utilizing bio-inspired agents. Currently, the green synthesis of NPs
is  a  method  that  is  regarded  as  environmental-friendly  because  no  hazardous
chemical is used in green approaches. By inventing new methods for plant disease
cures,  pathogen  detection,  and  increasing  plant  physiological  activities,
nanotechnology can advance the overall existing agricultural and food sector [54].
Furthermore, nanotechnology has begun to bring further advances to the field of
agriculture.  New nano fertilizers  are  being developed to  increase  their  efficacy
and  bioavailability  while  also  reducing  the  loss  of  these  components  to  the
environment [24]. The advantages and disadvantages of top-down and bottom-up
approaches in nanofabrication are described in Table 1.

Synthesis and fabrication of nanomaterials can be done using two approaches as
shown in Fig. (1);

Fig. (1).  Different approaches for synthesizing nanoparticles.
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Table  1.  Advantages  and  Disadvantages  of  approaches  for  the  synthesis  and  fabrication  of
nanomaterials.

- 
Approaches

Top-down Bottom-up

Advantages

Chemical purification is not needed. The parameters of the deposition can be controlled.

It is useful for large-scale production.
Cheaper technique.

Controlling ultra-fine nanoparticles, nanoshells, and
nanotubes is possible.

Disadvantages
Controlling the deposition parameters

is difficult. Nanoparticles must be chemically purified.

Expensive technique Large-scale production is difficult.

1. Top-down approach

It is the process of slicing or cutting bulk material into nano-sized particles in a
series of steps. In the top-down approach, the starting material is in a solid state.
The method used in this approach involves mechanical methods such as cutting,
etching, grinding, etc., and lithographic techniques such as photolithography and
electron beam lithography.

2. Bottom-up approach

It refers to the atom-by-atom and molecule-by-molecule buildup of material from
the  bottom.  Atom-by-atom  deposition  causes  atoms/molecules  and  clusters  to
self-assemble,  eventually forming self-assembled monolayers  on the substrate's
surface. A gaseous or liquid form of matter is used as the starting ingredient. This
method employs several strategies;

• Physical techniques

I.  The  process  of  vapor  phase  species  condensing  is  known  as  physical  vapor
deposition (PVD).

II. Evaporation (Thermal and e beam)

III. Sputtering

IV. Plasma arcing

V. Laser ablation

• Chemical techniques
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I.  The  deposition  of  the  vapor  phase  of  reaction  species  is  known  as  chemical
vapor deposition (CVD).

II.  Electrolytic  deposition,  sol-gel  technique,  microemulsion  approach,  and
pyrolysis  are  all  used  to  create  self-assembled  monolayers.

Methods of Biosynthesis of Nano-fertilizers

A variety of methods including physical, chemical, aerosol-based and biological
have been developed which utilize either the bottom-up or top-down approach for
the synthesis of nanoparticles. The advantages and disadvantages of methods of
biosynthesis of nano-fertilizers are described in Table 2. The methods are further
discussed below:

Table 2. Advantage and Disadvantages of methods of biosynthesis of nano-fertilizers.

Methods Size of
Nanoparticles Advantages Disadvantages

Aerosol 100nm

Particle size and shape may be
controlled to a high degree •

Controlled nanocomposite synthesis.
• Within a few percent, there is mono

dispersion.
• Surface passivation

Large aggregates are formed.

Physical 15-100nm Rapid and scale-up synthesis. Broad PSD and wide range of
shapes.

Chemical 100nm • Controlling the morphology of metal
nanoparticles with precision.

Surface coating with harmful
chemicals • Comparatively lesser

biocompatibility

Biological 100nm

Environmentally benign • Natural
macro and micro biomolecules are

used to coat the surface. •
Biocompatible

Particle synthesis occurs at a slow
rate • Natural resources are

required. • Broad PSD and wide
range of shapes.

Physical Methods

The  top-down  method,  which  involves  crushing  the  bulk  material  into  fine
particles, is often used in the physical method of nanoparticle production. External
forces  like  crushing,  impact,  disruption,  deterioration,  cutting,  cryo-grinding,
grinding,  processing,  and  homogenization  are  used  to  accomplish  this.  For  the
physical  synthesis  of  metallic  nanoparticles,  a  variety  of  techniques  such  as
milling,  attrition,  sputtering,  pyrolysis,  and  laser  ablation  can  be  used.
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Micro-particle fracturing is a characteristic of the milling process, which can be
processed using ball milling, high-energy ball milling (HEBM), grinding, cryo-
grinding,  refining,  and  homogenization,  including  medium-pressure
homogenization  (UHPH)  and  high  process  homogenization  (HPH).  A  size-
reducing process grinds macroscale or microscale particles in the same way that it
grinds macroscale or microscale particles in the attrition process (e.g., an ordinary
or a planetary ball mill). The oxidized nanoparticles are then separated from the
rest  of  the  particles  by  air  classification.  The  properties  of  the  resultant
nanoparticles  are  influenced  by  the  milling  material  and  time,  as  well  as  the
atmospheric  medium.

Sputtering  is  the  process  of  ejecting  atoms  off  the  surface  of  a  substance  (the
target) by bombarding it with strong particles. Sputtering is a momentum transfer
phenomenon  that  occurs  when  bombardment  ions  push  atoms  away  from  a
cathode/target.  Sputtered  atoms  travel  until  they  come  into  contact  with  a
substrate, where they deposit to create the required layer. Pyrolysis is the process
of forcing an organic precursor (either a liquid or a gas) through an opening under
high  pressure  and  burning  it.  To  recover  oxidized  nanoparticles,  the  ash  is  air
categorized. Laser ablation is the process of removing material from a solid (or
often liquid) surface by irradiating it with a laser beam.

However, the production rate of these previously mentioned “physical” processes
for attaining metallic nanoparticle synthesis is relatively poor, and the cost is also
quite  high.  Even  though  these  physical  processes  are  adaptable  strategies  for
producing  larger  nanoparticles  in  terms  of  size,  diameter,  and  volume,  they
nevertheless produce surface flaws, mixed-phase crystals, and contamination, and
are  more  expensive  and  time-consuming.  The  flaw  regarding  efficient  and
expensive maintenance was caused by biological entities traveling across space
and nanoparticle production processes [55].

Chemical and biological processes are among the numerous options for making
nanoparticles.

Chemical Methods

Wet-chemical  processes  are  the  most  extensively  utilized  methods  for  the
production of metallic nanoparticles. These chemical preparations use a bottom-
up approach to generate nanoparticles in a liquid media containing a variety of
reactants,  including  reducing  agents  and  stabilizing  agents.  Various  chemical
preparation  methods,  such  as  co-precipitation,  Hydrothermal  synthesis,  sol-gel
process,  and  chemical  vapor  deposition  (CVD)  microemulsion  process  are
available  to  produce  nanoparticles.
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In  co-precipitation  reactions,  the  processes  of  nucleation,  growth,  coarsening,
and/or  agglomeration  all  occur  simultaneously.  The  metal  nanoparticles  are
formed  in  an  aqueous  solution  through  reduction  from  non-aqueous  solutions,
electrochemical  reduction,  and  decomposition  of  metallo-organic  precursors.
However,  co-precipitation  reactions  are  sometimes  assisted  with  sonication  or
microwaves.

In  hydrothermal  synthesis,  nanoparticles  are  produced  by  reacting  chemical
components  in  a  sealed  closed  heated  solution  above  ambient  temperature  and
pressure.  Mineral  solubility  in  hot  water  at  high  pressure  is  required  for
nanoparticles’ creation using this method. At the opposing ends of the growing
chamber, a temperature gradient is maintained. The nutrients are dissolved at the
hotter end, while the seeds are supported as they grow at the cooler end.

In  another  process  termed  CVD,  a  solid  is  deposited  on  a  hot  surface  by  a
chemical reaction from the vapor or gas phase. To proceed with the CVC reaction,
activation  energy  is  required  to  break  the  chemical  link  between  the  reactant
molecules. Several methods can be used to provide this energy: thermal, plasma,
laser, and photo-laser.

The  sol-gel  method  can  be  used  for  producing  small  nanoparticles  using  solid
materials. The sol (or solution) progressively transforms into a gel-like diphasic
structure throughout this chemical process. It comprises a liquid phase as well as a
solid  phase,  with  morphologies  ranging  from  single  particles  to  vast  polymer
networks.  The  microemulsion  method  is  yet  another  technique  used  for  the
preparation of inorganic nanoparticles. Reactants are mixed in this technique, and
exchange happens when water droplets collide in the microemulsion, resulting in
a  precipitation  reaction  in  the  nano-droplets.  This  is  accompanied  by  primary
particle nucleation and coagulation, forming final nanoparticles that are stabilized
by surfactants and surrounded by water.

Ultrasonic irradiation can be used to induce ultrasonic cavitation in liquids. The
production  of  nanoparticles  with  controllable  morphologies  is  enabled  by
cavitation, which generates a unique condition for chemical interactions to occur
under extreme circumstances.

Chemical  processes  are  low-cost  for  large  quantities,  but  they  have  downsides
such as contamination from precursor chemicals, the use of hazardous solvents,
and the formation of  toxic  by-products.  As a  result,  there  is  a  growing need to
create  high-yield,  low-cost,  non-toxic,  and  environment-friendly  metallic
nanoparticle  production  processes.  As  a  result,  the  biological  approach  to
nanoparticle  manufacturing  becomes  critical  [19].
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Aerosol Route For Nanoparticle Synthesis

A gaseous suspension of solid/liquid particles is known as an aerosol. The Vapour
phase  method  is  considered  the  building  block  of  nanotechnology  for  the
synthesis of NPs [56]. Metal nanoparticles are prepared using a variety of inert
gases  through  the  evaporation  method.  Various  processes  such  as  atomization,
chemical  vapor  deposition,  flame,  furnace,  and  electrospray  are  used  to  create
nanoparticles utilizing aerosol. Nucleation and condensation of the initial gases
and  vapor  molecules  are  the  fundamental  stages  in  all  gas/vapor  phase
nanoparticle formation. Cluster formation and coagulation occur next, resulting in
the production of primary particles, which can then be sintered, agglomerated, and
aggregated to form aggregates [19].

The  most  common  method  for  synthesizing  metal  nanoparticles  is  inert  gas
condensation (IGC). In an ultrahigh vacuum chamber containing helium (He) or
argon (Ar) gas at a very high pressure, IGC vaporizes metals. Metal atoms lose
kinetic energy when they evaporate and condense into small particles when they
collide  with  the  gas.  Brownian  coagulation  and  coalescence  are  then  used  to
transform  these  particles  into  nanocrystals.

Biological Methods

Biological approaches involve the synthesis of nanoparticles from living things or
substances. Plants and plant products, bacteria, fungi, viruses, algae, and yeast are
just a few of the biological resources accessible in nature that could be used to
make nanoparticles. Intracellular and extracellular inorganic minerals have been
found in both unicellular and multicellular species. Metal nanoparticles may be
made in the presence of metal salts from a variety of plant extracts that contain
resins, latex, flavonoids, phenols, alcohols, and proteins. Because plants, fungus,
bacteria,  yeasts,  and  algae,  are  used  as  reducing  and  stabilizing  agents,  the
biological  approach  is  also  known  as  “green  synthesis.”  It  is  a  more  energy-
efficient,  safer,  and  waste-free  procedure  than  the  other  techniques  [57].

GREEN SYNTHESIS OF NANO-BASED FERTILIZERS

The use of environmentally friendly resources such as bacteria, fungus, and plants
in  the  synthesis  of  NPs  is  known  as  green  synthesis.  It  conserves  energy  and
conducts  the  reaction  at  a  very  low  temperature  or  pressure  within  the
physiological  regime.  It  is  characterized  as;
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• A sustainable route

• Low toxic

• Environmentally benign

• Cost-effective, and

• More efficient modules.

There are three biological routes of nanomaterials synthesis, they are;

• Micro-organisms aided biogenesis

• Bio-template aided biogenesis

• Plant extract aided biogenesis

Micro-Organisms Assisted Biogenesis

Micro-organisms such as Prokaryotic, Bacteria, Fungi, Yeast, and Actinomycetes
are used to synthesize nanomaterials, they are also called “Bioreactors”. Through
enzymes produced by biological activity, these bacteria convert the metal ion into
element metal. Therefore, the synthesis can be classified as;

I. Inter-cellular

II. Extra-cellular

Inter-cellular

Inter-cellular  method  occurs  inside  the  cell  (downstream  processing)  which
involves  enzymatic  reactions  at  a  very  low  temperature  and  pressure  by
transforming  the  metal  into  the  microbial  cell  from  nanomaterials.

Extra-cellular

The extracellular procedure occurs at the bacteria' surface, and it entails trapping
the  metal  ion  on  the  surface  of  cells  and  decreasing  it  in  the  presence  of  the
enzyme.

Bio-Template Assisted Biogenesis

The following biomolecules are used as a template to design nanomaterials;

a) Nucleic acid
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b) Membrane

c) Viruses

d) Diatoms (single-cell algae)

Among  them,  the  nucleic  acid  is  known  as  an  excellent  biomolecule  template,
especially for transition metal nanomaterial synthesis.

Plant Extract Assisted Biogenesis

This  process  is  one  of  the  most  efficient,  quick,  clean,  non-toxic,  and
environmentally friendly methods available [47]. It has mostly been used to make
noble  metal  nanomaterials,  metal  oxides,  and  biometallicalloids.  Because  plant
phytochemicals exhibit better decreases and stability, plant extracts are commonly
employed [58].

Green synthesis of Iron (Fe) Nanoparticles

Green synthesis, which uses plant extract or biomass, is said to be more stable and
has a faster rate of synthesis than traditional procedures because it is non-toxic,
eco-friendly, cost-effective, simple, and easy to carry out [59].

The  biosynthesis  of  Fe2O3NPs  is  mostly  done  with  plant  extracts,  different
proportions  of  plant  extract  and  different  iron  precursor  solutions  are  needed.
When added together, the resulting mixture is sonicated at a certain temperature
not higher than 40oC and at a certain period of time no longer than 30 minutes.
The appearance of black color in the solution signifies the presence of Fe2O3NPs
[60].

Bibi  et  al.  [59]  employed  pomegranate  fruit  extract  to  produce  iron  oxide
nanoparticles and tested their photocatalytic activity for textile dye degradation in
an experiment. It was observed that pomegranate seed extract may be utilized to
synthesize Fe2O3 NPs in an environmentally friendly and cost-effective manner.
Further,  these  synthesized  NPs  act  as  a  photocatalyst  to  degrade  dyes  in
wastewater.

In  another  experiment,  Vitta  et  al.  [60]  also  used  an  extract  (aqueous)  of
Eucalyptus  robusta  Sm  for  the  synthesis  of  Fe2O3NPs  and  to  evaluate  its
antioxidant  and  antimicrobial  activity  on  different  pathogenic  micro-organisms
viz.  Bacillus  subtilis,  Escherichia  coli,  Pseudomonas  aeruginosa,  and
Staphylococcus aureus. On the various bacteria tested, the nanoparticles produced
under various synthesis conditions demonstrated antibiotic action.
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Green Synthesis of Silver (Ag) Nanoparticles

To make  silver  nitrate  (AgNO3),  different  concentrations  of  AgNO3  and  varied
amounts of plant extract are required. The setup is incubated in a dark chamber to
reduce photo-activation of the AgNO3at room temperature. The appearance of a
brown color  solution from a colorless  solution confirms the  reduction of  silver
ions to the silver nanoparticle [47].

For the first time, a plant extract of Salvia spinosa cultivated in vitro was used to
biosynthesize silver nanoparticles (Ag NPs). The study was carried out to identify
the functional groups that existed in the plant extract responsible for the reduction
of Ag ions to Ag NPs by using Fourier-transform infrared spectroscopy (FTIR)
analysis.  Both  Gram-positive  and  Gram-negative  bacteria  were  shown  to  be
inhibited by the biosynthesized Ag NPs [61]. Also, bark extract of Saracaasoca
indicated the presence of hydroxylamine and carboxyl groups responsible for the
reduction of Ag ions to Ag NPs [62].

Green Synthesis of Zinc (Zn) Nanoparticles

As per the method of Elumalai and Velmurugan [63] for green synthesis of Zn
NPs, the plant extract is heated on a magnetic stirrer, and a certain amount of Zinc
precursor is added when the temperature reaches about 60oC and is left for a while
till white precipitate appeared. The mixture is then left in an oven at 60oC for a
period of time or till  a  creamy paste is  formed. In the end, the paste is  washed
with a solution of distilled water: Ethanol (3:1) and heated in a furnace at 400 °C
for 2 h until the resultant white powder is obtained. Chemical vapor deposition,
microwave-assisted  procedures,  precipitation,  Sol-gel,  hydrothermal,  spray
pyrolysis, and ultrasonic techniques have all been established for the synthesis of
Zinc NPs [64 - 70]. Jain et al. [71] reported the low-cost bacterium-based “eco-
friendly”  efficient  synthesis  of  ZnO  nanoparticles  by  using  the  zinc-tolerant
bacteria  Serratia  nematodiphila.

Laurus nobilis L. leaves’ aqueous extract is the potential for the synthesis of Zn
NPs  in  a  simple,  fast  and  eco-friendly  way  [72].  Alamdari  et  al.  [73]  used
Sambucus ebulus leaf extract to prepare and characterize Zn NPs, which showed
strong antibacterial  activity against  a  variety of  species as well  as  the tolerable
photocatalytic breakdown of methylene blue dye pollutants.
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CONCLUSION

Nutrient  shortage  in  soils  has  resulted  in  considerable  agricultural  productivity
losses  and  significant  economic  losses  in  agriculture.  Conventional  fertilizers
boost crop output, but their widespread use is unsustainable in the long run since
they are inaccessible to plants. Furthermore, most of the macronutrients are less
bioavailable with a low utilization rate as they change to an insoluble form in the
soil.  The  delivery  of  macro-and  micronutrients  to  plants  is  a  crucial  part  of
nanotechnology's application in agriculture. Nanostructured materials are used as
carriers  or  vectors  for  the  controlled  release  of  fertilizers.  Thus,  these  smart
fertilizers  can  increase  nutrient  use  efficiency  while  minimizing  environmental
pollution costs. In response to environmental changes and biological demands, a
nanofertilizer precisely releases its active chemicals. For nano-fertilizer delivery
to  plants,  both  in  vitro  and  in  vivo  approaches  can  be  used.  The  uptake  and
transport of nanoparticles in plants are yet unknown, which has led to a slew of
ethical and safety concerns about using nanofertilizers to boost crop plant output.
Quantitative  assessments  are  needed  to  better  understand  possible  health
consequences,  environmental  clearance,  and  safe  and  secure  removal  of
nanomaterials,  which  will  lead  to  better  nanofertilizer  design.
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CHAPTER 5

Nanobiotics for the Treatment of MDR Infections
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Abstract:  Nanoparticles are those agents that are made-up of single or a combination
of  single  or  multiple  materials  which  are  very  small  in  size  ranging  from  1  to  100
nanometers.  Several  studies  reveal  that  nanoparticles  have  features  that  interact
effectively with microorganisms and can help in treating multidrug-resistant organisms.
These have intrinsic antimicrobial activity and are of various types broadly divided into
organic and inorganic nanoparticles. Nanoparticles can engage with bacteria and travel
across the bacterial cells and host cell membranes, and help treat ESKAPE pathogens
which are among the most notorious multidrug resistant superbugs. These pathogens
have  MDR  features  and  have  multiple  types  of  MDR  mechanisms  including  drug
inactivation/alteration, modification of drug binding sites/targets, reduced intracellular
drug accumulation and biofilm formation. For targeting different types of MDR, there
are  multiple  types  of  nanoparticles  such  as  metal  nanoparticles,  nanostructures,
leukocyte  membrane-coated  nanoparticles,  red  blood  cell  membrane-coated
nanoparticles,  cancer  cell  membrane-coated  nanoparticles,  and  platelet  membrane-
coated  nanoparticles  among  others.  Antimicrobial  nanobiotics  identified  and
synthesized to date harbor a vast diversity of intrinsic and modified physicochemical
properties and have applications in diagnostics. No technology is without its challenges
and the same is true for nanobiotics. The major challenges in this field of nanobiotic-
based therapeutics are their allergic responses, assembly and pharmacokinetics. This
chapter  will  elaborate  on  the  mechanisms  of  action  of  various  types  of  nanobiotics
present as cost-effective solutions useful in a variety of applications in the treatment of
MDR pathogens with a special focus on ESKAPE pathogens.

INTRODUCTION

The first antibiotic Penicillin was discovered and commercially produced in 1928.
From the 1920s to the present, we have taken for granted that every infection can
be  cured  completely  by  antibiotics.  Because  of  the  generous  unchecked  use  of
antibiotics  in  human therapy;  it  has  resulted in  the birth  of  pathogenic  bacteria
resistant to multiple drugs [1]. MDR is a serious threat to public health. Efforts for
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controlling MDR in “ESKAPE” pathogen (Enterococcus faecium, Staphylococcus
aureus,  Klebsiella  pneumoniae,  Acinetobacter  baumannii,  Pseudomonas
aeruginosa and Enterobacter spp.) have been hampered by their ability to escape
drugs.  They  can  cause  life-threatening  nosocomial  infections.  These  pathogens
also known as “Superbugs” [2] carry MDR genes on the bacterial chromosome,
plasmid, or transposons. Drug resistance mechanisms fall into several categories,
some bacteria  produce enzymes that  can irreversibly  modify  and inactivate  the
drug;  these  are  β-lactamases,  aminoglycoside-modifying  enzymes,  or
chloramphenicol acetyltransferases. Some bacteria perform modifications of drug
binding sites/targets  to  avoid  recognition.  The balance  of  antibiotic  uptake  and
elimination determines the susceptibility of bacteria to a particular drug. Bacterial
cells often reduce intracellular drug accumulation to develop antibiotic resistance.
Biofilm formation [3] contributes to 65% to 80% of microbial infections and is
advantageous  in  the  survival  of  bacteria.  Biofilm can  be  produced  in  recurrent
tonsillitis,  cystic  fibrosis  lung  infection,  urinary  tract  infections  and  chronic
wounds. Clinical illnesses attributed to bacterial adhesion to implants and medical
device-related infections are among the most challenging issues to be addressed in
MDR infections [4]. Owing to the multidrug resistance nature of pathogens and
the  failure  of  the  treatments,  we  must  find  a  better  option  for  treating  these
microorganisms. Nanobiotics, a revolutionary concept can be seen as a future of
drugs for MDR [4].

Nanobiotics  are  small  materials  1-  100  nanometers  in  size.  Nanobiotics  also
known as Nano particles are categorized into numerous classes; these classes are
based on their size, forms and qualities [5]. These categories include numerous
subcategories  which  are  elaborated  further  in  the  chapter.  A brief  glimpse  into
nanobiotics reveals that inorganic nanoparticles are introduced as nanobiotics and
used for drug carriage [6]. Nanoparticles that are covered by metal oxide shell are
known as metallic nanoparticles. After chemical modification, metal nanoparticles
can  be  used  in  diagnostic  imaging,  and  targeted  drug  delivery  [7].  Organic
nanoparticles focus on the utilization of nanoparticle-based materials having an
organic structure [8]. Leukocyte membrane-coated nanoparticles, red blood cell
membrane-coated  nanoparticles  [9],  and  cancer  cell  membrane-coated
nanoparticles [10] are additional nanoparticles’ categories that have been recently
designed.  In  this  chapter,  we  will  be  discussing  about  the  roles  and  use  of
nanoparticles  in  MDR  treatment  and  diagnostics.

Nanobiotics

Nanobiotics, also known as nanoparticles, are small materials that range in size
from 1 to 100 nanometers. They are categorized into numerous classes based on
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their qualities, forms, and sizes. Nanoparticles may consist of a single material or
a combination of different materials.  They are used in research and technology
because  of  their  small  size  and  unique  features.  Nanoparticles  show  various
physical as well as chemical properties that include the optical, mechanical, and
magnetic  properties  [5].  Optical  properties  like  absorption,  transmission,
reflection, and light emission of nanoparticles are dynamic. The optical property
of  nanoparticles  is  of  great  importance  in  several  ways.  It  was  discovered  that
their  optical  qualities  are  influenced  by  their  internal  electronic  structure,
providing a thorough understanding of the structure. They can use their electrical
properties to develop quantum effects which may lead to variations in size, shape,
and color they produce. The optical properties of nanoparticles can be recognized
by  using  various  spectroscopic  techniques  [11].  Nanoparticles'  magnetic
characteristics have a wide range of applications, including drug administration,
therapeutic treatment, MRI imaging, and in-vitro diagnostics. According to one
study, nanoparticles perform best when their size is less than the critical value,
which is  10–20 nm. Nanoparticles'  magnetic characteristics can dominate more
effectively at this low scale, making them cost-effective and useful in a variety of
applications.  Nanoparticles  have  a  magnetic  property  due  to  their  unequal
electrical  distribution  [12].  The  unique  mechanical  properties  of  nanoparticles
have numerous applications in the field of surface engineering, nanofabrication,
and nanomanufacturing. Different mechanical parameters such as elastic modulus,
hardness,  stress  and  strain,  adhesion,  and  friction  can  be  examined  to  better
understand the mechanical nature of nanoparticles. Surface coating, coagulation,
and lubrication, in addition to these characteristics, play a role in the mechanical
properties of nanoparticles. Controlling the mechanical properties of nanoparticles
and their  interaction with  any type of  surface,  on the  other  hand,  is  critical  for
highlighting surface quality [13].

The Amalgamation of Nanoparticles with Antimicrobials

Antimicrobial  resistance  to  hazardous  bacteria  is  on  the  rise  across  the  world,
posing a serious threat to human health. This has led the researchers to look for
new therapeutic options. One of the approaches that have been explored currently
includes drug-associated nano systems. Several studies have revealed the intrinsic
antimicrobial  activity  of  various  types  of  organic  and  inorganic  nanoparticles.
These nanoparticles have many unique properties, including small size and a high
surface-area-to-volume ratio  in  comparison to  bulk material,  both  of  which are
important for antimicrobial activity. Nanoparticles' special features allow them to
engage with bacteria and rapidly traverse the bacterial and host cell membranes,
obstructing the main microbial metabolic pathways and allowing the eradication
of intracellular infections where antibiotics typically fail  [5].  Nanoparticles can
functionalize the surface, especially when it comes to linking chemical functional
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groups  for  targeted  medication  delivery  and  antibiotic  action  enhancement.
Nanoparticles,  often  known  as  “nano  antibiotics,”  have  antibacterial  properties
and can also operate as drug delivery vehicles for conventional antibiotics. As a
result,  nanoparticles  have  acquired  favor  in  the  scientific  community  as  new
generation  antibiotics,  allowing  researchers  to  investigate  many  aspects  of
antibacterial  action  [14].

Multidrug Resistant ESKAPE Pathogens

‘ESKAPE’ pathogens consist of Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and
Enterobacter species that show potent virulence and multidrug resistance. These
bacteria include both Gram-positive and Gram-negative species that can avoid or
escape the bactericidal action of commonly used antibiotics and therapies because
of  their  antimicrobial  resistance  property.  In  immunocompromised  patients,
ESKAPE  pathogens  are  a  common  source  of  nosocomial  infections.
Antimicrobials are unable to combat these diseases due to a variety of resistance
mechanisms,  including  changes  in  cell  permeability,  drug  disintegration,
modification  of  drug  attachment  sites/targets,  and/or  mutation  [15].  They  also
form biofilms  that  prevent  antibiotics  as  well  as  the  host’s  immune-responsive
cells  to  inhibit  the pathogen.  The continuous use of  antibiotics  gave rise  to the
development of extensively drug-resistant (XDR) and multidrug-resistant (MDR)
bacteria,  which  renders  even  the  most  effective  drugs,  ineffective.  Bacterial
biofilms provide various survival advantages against antimicrobials. It has been
found  that  biofilms  contribute  about  80%  and  65%  to  chronic  and  microbial
infections  [3,  4].  Implants  are  used  to  replace  and  support  body  structures.
Microorganisms clinging to the surface of the implant cause biofilm formation.
Dental  caries,  chronic  rhinosinusitis,  recurrent  tonsillitis,  cystic  fibrosis  lung
infection,  urinary  tract  infections,  chronic  wounds,  periodontitis,  and  device-
related  infections  were  among  the  clinical  illnesses  connected  to  bacterial
adhesion to implants.  ESKAPE pathogens are involved in the contamination of
urinary catheters, central venous catheters, biofilm formation on mechanical heart
valves among others. Because biofilms are resistant to antibiotics and the host’s
immune system, surface modification of implants is critical for enhancing their
biocompatibility and anti-infection properties [16].

Nano Biotics-the Perfect Solution For MDR- broad-Spectrum Activity

The  ability  of  microorganisms  to  withstand  antibiotics  has  become  one  of  the
most pressing challenges in public health. Antimicrobial resistance has evolved
through a variety of mechanisms, including enzyme inactivation, decreased cell
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permeability,  target  protection,  changed target  site,  and enhanced efflux by the
overexpression of efflux pumps [17]. Infections produced by multidrug-resistant
organisms  (MDROs)  and  the  lack  of  novel  antimicrobials  are  major  causes  of
morbidity and mortality worldwide due to this acquired antimicrobial resistance
feature  of  bacteria.  These  clinical  issues  underline  the  urgent  need  for  new
antibacterial methods that are both effective and safe. Several strategies are being
investigated  to  overcome  this  challenge,  including  the  use  of  nanostructured
materials.  Nanoparticles  represent  a  viable  technique  for  controlling  MDRO
infections due to their unique features and uses. Nanoparticles (NPs) may easily
penetrate  pathogenic  bacteria's  cell  membrane  and  disrupt  major  molecular
pathways, allowing them to bypass bacteria's common resistance mechanism [18],
[19].  Nanoparticles  have  antimicrobial  efficacy  through  a  variety  of  methods,
including direct contact with the bacterial cell wall, biofilm inhibition, innate and
adaptive host immunological responses, the formation of reactive oxygen species
(ROS),  and  activation  of  intracellular  effects.  As  a  result,  nanoparticles  are  an
excellent way to tackle MDROs [17]. In bacteria, quorum sensing systems are one
of the most significant pathogenic regulating mechanisms, specifically in biofilm
formation.  Biofilm  generation,  which  permits  bacteria  to  suppress  antibiotic
action, is one of the main causes of bacterial resistance to antibiotics. Biofilms are
bacteria's  most  active  component,  consisting  of  cells  connected  on  the  surface
within an extracellular polymeric substance (EPS) matrix. EPS acts as a barrier to
antibiotic  penetration  and  aids  phagocytes  in  bypassing  the  innate  immune
system,  creating  antibiotic  resistance,  and  posing  a  severe  health  danger  to
humans.  Many  studies  have  shown that  nanoparticles  can  disrupt  bacterial  cell
membranes  and  interfere  with  biofilm  formation  by  interacting  with  EPS  and
quorum sensing, lowering the chances of bacterial survival [20]. The main target
of most of the recent nanoparticles-based techniques to inhibit bacterial biofilm
formation is to interfere with quorum sensing molecules. Quorum sensing system
allows bacteria to communicate with one another via production and detection of
signal molecules like auto-inducers which helps them to synchronize their gene
expression, obtaining the advantage to react to environmental changes. In one of
the  investigations,  it  was  shown  that  nanoparticles  functionalized  with  -
cyclodextrin  (-CD)  or  N-acylated  homoserine  lactonase  proteins  (AiiA)  can
disrupt  signaling molecules,  preventing these molecules from attaching to their
receptor and so turning off quorum sensing. In this way, nanoparticles provide a
potential  alternative  strategy  to  disrupt  bacterial  biofilms  and  hence  quorum
sensing with the possibility to use antibiotic-free and antibiotic-coated techniques
[17].
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TYPES OF NANOPARTICLES

Inorganic Nanoparticles

As  a  result  of  recent  breakthroughs  in  nanotechnology,  various  inorganic
nanoparticles have been introduced, and several of these inorganic nanoparticles
have been used as drug carriers. Preclinical research on inorganic nanoparticles as
diagnostic and therapeutic systems in oncology for several applications, including
tumor  imaging  and  medication  administration,  has  gotten  a  lot  of  attention.  In
comparison to organic materials, inorganic nanoparticles are biocompatible, non-
toxic, hydrophilic, and highly stable [6].

Metal Nanoparticles

Metallic nanoparticles (MNPs) have an inorganic metal or metal oxide core that is
surrounded by an organic or  inorganic substance or  metal  oxide shell.  Metallic
nanoparticles  are  commonly  employed  in  the  fabrication  of  metal-based
biopolymer  composites  due  to  features  such  as  optical  polarizability,
biocompatibility,  electrical  conductivity,  antibacterial  activity,  and  chemical
properties. MNPs can be modified with a variety of chemical functional groups to
allow them to bind with ligands, antibodies, and medicines, allowing them to be
used  in  biotechnology,  diagnostic  imaging,  and  targeted  drug  delivery  [7].
Nanoparticles,  such  as  gold,  silver,  and  magnetic  nanoparticles,  have  gained
popularity  in  recent  years.  Despite  the  enormous  advances  of  MNPs,  they  are
highly  toxic  to  living cells.  Although there  are  some studies  on MNPs toxicity
suggesting  that  they  might  affect  the  biological  systems  at  the  cellular  level,
complete knowledge of MNPs toxicity is needed for large-scale production [21].

Gold Nanoparticles

Gold NPs are promising agents for cancer therapies and are important in imaging,
drug carriers,  and thermotherapy.  Gold nanoparticles  have unique physical  and
chemical  features  that  improve  medication  efficacy,  drug  loading,  and
biocompatibility, allowing them to easily reach the target location with blood flow
[22].  The  various  types  of  GNPs  are  gold  nanoshells,  gold  nanorods,  gold
nanocages, and gold nanospheres. Gold nanoshells have recently been employed
as  imaging  and  therapeutic  agents  for  cancer.  The  unusual  core-shell
nanostructure  formed  of  a  spherical  dielectric  core  material  such  as  silica  or
polystyrene,  or  sodium  sulfide  coated  by  a  gold  coating  is  the  cause  for  their
identification.  Many  in  vitro  experiments  employing  gold  nanoshells  targeting
cancer  cells  have  demonstrated  that  when  exposed  to  near-infrared  radiation,
cancer  cells  are  effectively  destroyed  [23].
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Iron Oxides Nanoparticles

Iron oxide nanoparticles (NPs) are one of the most common types of inorganic
materials.  Iron  oxide  NPs  are  divided  into  two  types  based  on  their  size:
superparamagnetic  and  ferromagnetic.  Superparamagnetic  iron  oxide  NPs
(SPIONs)  are  one  of  the  most  investigated  inorganic  materials  for  drug
administration,  hyperthermia  therapy,  and  imaging.  Superparamagnetic  iron
oxides have a significant magnetic response to external magnetic fields. They are
non-toxic, biocompatible, and can be effectively removed from the human body
using iron  metabolism routes.  Heike  et  al.  proved that  iron  oxide  NPs have  an
intrinsic  therapeutic  effect  on  tumors  [24].  Iron  oxide  NPs  treated  tumor  cells
have  a  slower  growth  rate  than  that  of  control.  Iron  oxide  NPs  also  exhibit  an
intrinsic enzyme activity. Due to their potential as MRI contrast agents combined
with the ability for selective targeting, iron oxide nanoparticles play an essential
role  in  MRI-based  imaging  and  diagnostics.  Other  major  applications  of  iron
oxide nanoparticles are protein separation and purification, bio-sensing, and drug
delivery [25].

Silver Nanoparticles

As a bactericide, silver nanoparticles (AgNPs) have been employed in a variety of
products.  Many  human  cancer  cells,  including  breast  cancer  cells,  have  been
tested  with  nano-sized  silver  particles  and  their  anticancer  properties.  Silver
nanoparticles  can  be  produced  by  a  variety  of  processes,  including  physical,
chemical,  and  biological  ones,  and  they  can  be  utilized  as  biosensor  materials.
They have optical properties and can be used in the medical sector due to their
antibacterial, antifungal, and anti-inflammatory effects [26, 27].

Nanostructures

Nanostructures  are  extremely  essential  in  the  field  of  nanoscience  and
nanotechnology. A nanostructure is a structure with at least one dimension of 100
nm or less. Nanostructures offer a variety of physical and chemical properties that
can be exploited to create essential functional polymers, resins, and elastomers.
Different types of nanostructures that are available are nanoparticles, nanotubes,
nanorods,  nanopores,  nanowires,  nanoribbons and nano scaffolds.  The fact  that
these  structures  are  size-dependent  is  their  greatest  advantage.  Metallic
nanoparticles, for example, produce tunable radiation and absorption wavelengths
based  on  their  aspect  ratio  and  coating.  These  distinct  properties  are  the
characteristics  of  localized  surface  plasmon  resonance  (LPSR).  Some
nanostructured  surfaces  are  appropriate  for  increased  cell  adhesion  and
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proliferation  [28].  Carbon  nanotubes  possess  extremely  high  current  carrying
capacity. Nanowires play a very important role in various sensing techniques like
electrochemical,  electrical,  optical,  and  mass-based  strategies.  By  taking
advantage  of  nanoparticles'  biodistribution,  nanostructure-mediated  medication
delivery improves therapeutic impact and decreases side effects. Many scientists
have  created  hybrid  nanostructures  that  combine  one  or  more  nanoparticles.
Hybrid  nanostructures  address  fundamental  issues  in  oncology,  such  as  drug
resistance and tumor heterogeneity, by combining many treatment modalities in a
single nanocarrier and releasing it at the disease site in a regulated manner [29].

Organic Nanoparticles

Various  studies  are  focusing  on  the  utilization  of  nanoparticle-based  materials
having organic structure for bone, cartilage, skin, and dental tissue regeneration.
Polymeric  nanoparticles,  carbon  nanotubes,  liposomes,  and  biomimetic
nanoparticles  are  all  examples  of  organic  nanoparticles  [8].

Polymeric Nanoparticles (NPs)

Polymeric  nanoparticles  (NPs)  are  colloidal  particles  that  range  in  size  from
10nm– 1μm. Polymeric nanoparticles (NPs) have several applications due to their
properties arising from their small size. Polymeric NPs are known to clear heavy
metals  that  are  toxic  to  living  cells.  Nanoparticles  affect  their  toxicity  due  to
quantum  size  effects  associated  with  genotoxicity,  cytotoxicity,  and  oxidative
stress. Polymer-NP composite materials have unique features like good electrical
conductivity, high mechanical strength, optical and thermal properties. For oral
drug delivery of quercetin. Kumar et al. produced a biodegradable polymeric NP.
poly-ɛ-caprolactone (PCL) was the polymer used which is nontoxic, approved by
FDA, biocompatible, permeable, and biodegradable. The authors concluded that
the particles can be used in the pharmaceutical industry as they allow controlled
release  of  the  drug  [30].  Nanosphere  and  nano  capsules  are  the  two  forms  of
structures  that  can  be  formed  by  polymeric  nanoparticles  depending  on  the
method of preparation. Polymeric nanoparticles can be produced from synthetic
polymers.  There  are  two types  of  synthetic  polymers  available  -  biodegradable
and  nonbiodegradable.  For  the  treatment  of  cancer  and  advanced  diagnosis,
biodegradable  polymeric  nanoparticles  show  therapeutic  potential  for  accurate
drug  delivery.  Poly  (d,l-lactic-co-glycolic  acid)  (PLGA)  is  a  biodegradable
polymer  and  has  been  used  for  the  transdermal  delivery  of  Spantide  II,  and
ketoprofen. Polyacrylates are nonbiodegradable polymers. Polyacrylates are also
used for dermal and transdermal drug delivery but to a lesser degree compared to
biodegradable polymers. For the systematic transfer of chemotherapeutic drugs to
tumor cells with the least damage to the healthy tissues, targeted PNPs are usually
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used.  PNPs can be viewed as  ideal  candidates  for  targeted antibiotics  delivery,
vaccine delivery, and cancer therapy [31]

Carbon Nanotubes

Carbon nanotubes are carbon allotropes. Carbon nanotubes (CNTs) are carbon-
based  tubes  with  diameters  measured  in  nanometers.  Their  unique  physical,
chemical, and electronic properties offer great opportunities for nanometer-scale
electronic  applications.  Carbon  nanotubes  can  either  be  metallic  or
semiconducting  based  on  their  structure  [32].  Macroscopic  CNT-enabled
materials are the most studied carbon nanotube composites. Single-walled carbon
nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), and multi-
walled  carbon  nanotubes  are  the  three  types  of  carbon  nanotubes  (MWCNTs).
One or two graphene cylinders are found in SWCNTs and DWCNTs respectively,
whereas  MWCNTs  contain  many  concentric  graphene  sheets.  Because  of  their
huge surface area, flexibility, remarkable strength, current capacity, low weight,
and  semiconducting  properties,  CNTs  have  been  widely  used  in  a  variety  of
applications. Carbon nanotubes have sparked attention as a novel adsorbent due to
their  hollow  and  multilayer  architectures,  as  well  as  their  high  chemical  and
thermal  resilience  [33].

Liposomes

Liposomes are phospholipid vesicles that are made up of one or more concentric
lipid bilayers that surround discrete aqueous gaps that resemble the biological cell
membrane. Because of their unique capacity to entrap lipophilic and hydrophilic
molecules,  these  vesicles  can  encapsulate  and  transport  a  wide  spectrum  of
medications.  Hydrophilic  molecules  are  integrated  into  the  bilayer,  while
hydrophobic  ones  are  confined  in  the  aqueous  center.  Phospholipids  such  as
phosphatidylcholines,  phosphatidylethanolamines,  phosphatidyl  serines,  and
phosphatidylglycerol,  as  well  as  cholesterol,  are  typical  liposome  substituents.
The most frequent nanocarriers for delivering targeted drugs are liposomes. They
are  known  for  developing  more  effective  remedies  for  several  biological
problems.  Due  to  its  flexibility  and  versatility,  a  liposome  is  one  of  the  most
popular nanomedicines in cancer therapy and bioimaging, as well as a remarkable
delivery  mechanism.  As  a  drug  delivery  method,  liposomes  have  various
advantages,  including  the  ability  to  self-assemble,  the  ability  to  carry  big
pharmaceuticals,  biocompatibility,  and  a  wide  range  of  physicochemical  and
biophysical  properties.  A  lipid  bilayer  made  up  of  cationic,  anionic,  or  neutral
lipids, as well as cholesterol, surrounds an aqueous center in traditional liposomes
[34].  By  altering  pharmacokinetics  and  biodistribution  to  promote  therapeutic
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delivery  to  damaged tissue,  traditional  liposomal  formulations  reduce chemical
toxicity in vivo. Ligand-targeted liposomes are used to deliver drugs to specific
organs in vivo by selectively expressing certain ligands (receptors or cell adhesion
molecules)  at  the  ailment  site.  Commonly  used  ligands  are  antibodies,
peptides/proteins,  and carbohydrates.  Polyethylene  glycol  (PEG),  a  hydrophilic
polymer  believed  to  be  the  best  choice  for  manufacturing  sterically  stabilized
liposomes, was discovered to improve liposomes’ stability, and circulation time in
the blood [35, 36].

Biomimetic Nanoparticles

Nanoparticles  have one inherent  property that  they can be easily  recognized as
foreign  substances  by  an  immune  system.  Therefore,  they  have  poor  drug
targeting effects. Biomimetic nanoparticles (NPs) are a new type of NP that has
recently  been  identified  as  a  unique  drug  delivery  system  that  increases
medication  biocompatibility  and  specificity  at  the  desired  target  region  [37].
Nanoparticles (NPs) disguised in cell membranes are one of the most advanced
biomimetic  platforms for  mimicking some of  the  functions  and composition of
cell membranes. This membrane-coating technology has lowered the constraints
of  nano-systems,  such  as  quick  elimination  in  circulation,  allowing  them  to
navigate more effectively throughout the body. Because of the various functional
molecules present on the surface, cell membrane-based nanoparticles (CMBNPs)
can  interact  with  the  complicated  biological  environment  of  tumor  cells.
According  to  the  purpose  and  target  disease,  cell  membrane  coating  can  be
produced from different cell lines such as platelets, RBCs, leukocytes, cancer, and
stem cells, thus involving a wide variety of plasma membranes [9].

Leukocyte membrane-coated nanoparticles

WBCs, also called as leukocytes, are immune system cells that defend the body
from pathogens  and  infectious  diseases.  WBCs can  easily  migrate  to  and  from
blood arteries to extravascular tissues due to amoeboid mobility. The progression
of  tumor  cells  is  aided  by  a  significant  number  of  inflammatory  cells,  such  as
neutrophils, dendritic cells, macrophages, eosinophils, and mast cells, as well as
lymphocytes [38]. Leukocytes are attracted by several chemokines and cytokines
produced  by  tumor  cells.  Macrophages  are  considered  one  of  the  largest
populations of cancer-related leukocytes. Nanoparticles coated with macrophage
membranes  have  a  prolonged  blood  circulation  time,  the  ability  to  overcome
vascular  barriers  and  the  ability  to  recognize  tumor  cells  by  molecular
recognition. These NPs were also able to bind specifically to inflamed regions,
allowing drug transport across the vasculature [39].
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Red Blood Cell Membrane-coated Nanoparticles

RBCs, also referred to as erythrocytes, are common cells in human blood, with a
total number of around 20-30 trillion. CD47 (transmembrane protein) is expressed
on the cell membrane of red blood cells and is identified as a self-component that
leads to long-term RBC circulation in vivo. CD47 binds to the inhibitory receptor
signal  regulatory  protein  alpha  and  releases  the  “do  not  eat  me”  signal,  which
prevents  immune  cells  from  phagocytosing  RBCs.  The  CD47  signal  indicated
circulation  time  of  RBCs.  When  injected  into  mice,  different  types  of
nanoparticles coated with RBC-membrane were found to have a longer circulation
period  and  a  regulated  release  of  the  encapsulated  medicines,  such  as  DOX
(doxorubicin),  with  a  higher  LC50  [39].

Cancer Cell Membrane-coated Nanoparticles (CCNPs)

Cancer cells differ from blood cells in their limitless replicative potential, immune
evasion, and homogenous targeting ability. Cancer cells can be easily separated
via in vitro cell culture due to their proliferative potential. Homotypic cancer cell
aggregation is critical for the formation of secondary lesions in various organs and
tissues [37].  Because cancer  cells  have innate  immune escape and homologous
adhesion  capabilities,  many  cancer-CMC  nanoparticles  are  being  designed  for
tumor  targeting  detection  and  therapy.  A  cancer  cell  membrane-cloaked-up
conversion  nanoprobe,  was  designed  and  it  demonstrated  low  immunogenicity
and homogeneous targeting effects [40].

Platelet Membrane-coated Nanoparticles

Platelet membranes have received a lot of attention because of their availability
and distinct physiological significance. Because they have CD47 and P-selectin
on their surfaces, they can address vascular damage and interact with circulating
cancer  cells,  making  them  a  unique  platform  for  cancer  targeting.  Moreover,
platelet-biomimetic  NPs  show  higher  blood  circulation  time.  The  presence  of
specific  ligands  like  CD47  and  CD55/59  on  their  surface  platelet  membranes
provides potential advantages for nanoparticle coating like immune evasion and
avoidance  of  complementing  activation  respectively.  Hu  et  al.  created  platelet
membrane-coated nanovesicles (PMNVs) with DOX and TRAIL ligands that can
induce apoptosis in target cells in a recent study. Their ability to trigger apoptosis
in  MDA-MB-231  cells  by  delivering  TRAIL  to  their  membranes  has  been
demonstrated.  DOX-loaded  platelet  membrane-coated  NPs  containing  RGD
peptides were also demonstrated to evade immune-mediated purging and target
cancer vasculature [38].
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CHALLENGES IN NANOBIOTICS

Allergic Responses

Despite  the  potential  advantages  of  employing  nanoparticles  in  industry  and
health, there is growing concern regarding their biosafety. The interaction of man-
made  nanoparticles  with  the  immune  system  has  become  vital  and  significant.
These interactions between nanoparticles and the immune system can result in a
variety  of  immunological  reactions,  which  can  alter  the  immune  system  and
potentially cause immunotoxicity. For example, nanoparticles increase the level of
reactive oxygen species in cells during a pro-inflammatory state, which can cause
damage to protein, lipid, and membrane of human cells. Constant activation of the
immune system can lead to the production of allergic and autoimmune diseases.
Therefore, complete knowledge of the immunomodulatory effect of nanoparticles
is very important for developing nanoparticles for biological purposes [18, 41].
Engineered  nanomaterials  have  large  biodistribution  and  tissue  accumulation
which can be serious from an allergic point of view. Boraschi et al.  discovered
that  human primary  monocyte-based  in  vitro  tests  may be  used  to  evaluate  the
impact of manufactured nanoparticles on human innate immune responses. In one
of the studies,  it  was shown that regardless of nanomaterial  type i.e.,  single,  or
multi-walled,  intranasal,  or  subcutaneous  administration  of  carbon  nanotubes
(CNTs)  increase  the  allergen  potential  of  egg  albumin.  Another  study
demonstrated  that  the  blood  concentration  of  IgE  was  remarkably  enhanced
following  iron  oxide  nanoparticles’  single  dose  intratracheal  administration.
Furthermore,  the  mechanisms  behind  nanoparticle  immunotoxicity  are  still  not
well understood and need more research to be determined effectively [42].

Assembly of NPs

Drug  development  areas  have  made  extensive  use  of  nanotechnology.
Nanoparticle-based  pharmaceuticals  can  efficiently  deliver  hydrophobic
medications and biologics to target areas by crossing biological barriers. Despite
these major advantages, only a small percentage of nanoparticle-based drugs have
been licensed for clinical use, owing to a few roadblocks and barriers encountered
throughout  the  research  process.  According  to  reports,  the  complexity  of
nanoparticles  as  a  3-Dconstruct  necessitates  careful  design  and  engineering,
detailed orthogonal analysis methods, and a repeatable production and scale-up
process  to  achieve  a  consistent  product  with  the  required  physicochemical
properties,  biological  patterns,  and  pharmacological  characteristics.  Small
variations  in  numerous  parameters  might  alter  the  safety  and  efficacy  of
nanoparticle-based therapies, thus they must be thoroughly studied in preclinical
and clinical research, particularly in terms of biodistribution and immunological
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toxicities.  The  ability  to  construct  simultaneous  control  structures  on  different
length  scales  and  their  modification  in  time  or  on-demand  is  one  of  the  most
significant difficulties in nanoparticle self-assembly [43, 44].

Pharmacokinetics of NPs

Nanomedicines  have  physicochemical  features,  shape,  particle  size,  and  size
distribution, and slight variations in the composition induced by manufacturing
process  deviations  might  influence  the  pharmacokinetics,  biodistribution,  and
safety  profiles  of  nanoparticle-based  medicine.  The  achievement  of  a  proper
pharmacological  and  pharmacokinetic  profile  appropriate  for  the  specified
indication  is  critical  for  effective  nanomedicine.  The  application  of  small-
molecule  pharmacokinetic  criteria  to  the  pharmacokinetics  of  nanomedicines
poses several obstacles. Because only a small portion of the medication supplied
reaches  its  intended  location,  the  conventional  criterion  for  assessing
pharmacokinetic  in  the  blood  as  the  primary  measure  of  nanoparticle  in  vivo
behavior may be incorrect. With many nanomedicines available, it is doubtful that
standard  pharmacological  approaches  would  be  relevant  to  characterize  their
behavior.  It  was  reported  that  there  is  no  successful  approach  to  engineer  and
design  a  nanoparticle-based  medicine  to  attain  an  intended  pharmacokinetic
profile.  The  most  popular  method  is  to  use  nanomedicines  with  prolonged
circulation times to take advantage of the EPR effect  or  target  them. However,
this technique may not always be appropriate for the intended reason, and it may
compromise  therapeutic  efficacy  and  increase  systemic  exposure  needlessly  in
some circumstances. Furthermore, rather than assessing plasma pharmacokinetic
physicochemical  properties,  it  may  be  more  relevant  to  look  at  drug
concentrations  or  accumulation  at  the  intended  sickness  site  to  investigate  the
repeatability and activity of nanomedicines [43, 45].

Application of Nanobiotics in Treatment of MDR Infections

Antimicrobial  nanobiotics  identified  and  synthesized  to  date  (i.e  metal,  metal
oxide  and  organic  and  polymeric  NPs)  harbor  a  vast  diversity  of  intrinsic  and
modified physicochemical properties. These properties are instrumental in their
broad-spectrum effects which operate by numerous modes of action. This section
explains how the various nanobiotics are used to treat bacterial MDR infections
with a focus on their mechanism of action (MOA) and bioavailability.

Metallic and Inorganic Nanobiotics

Due to their ease of synthesis and tunable properties, metallic nanobiotics have
been widely exploited for treating MDR bacteria in chronic wounds,  infectious
diseases, sepsis, and inflammatory syndromes. The intrinsic antibacterial effects
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of metallic NPs are exerted through a range of broad-spectrum mechanisms. The
small size enables high-level interaction with microbial membranes and protein
transport  activity.  Metallic  NPs  engage  in  electrostatic  interactions  with  sulfur
proteins present abundantly in the bacterial cell envelope. This causes irreversible
damage to cell  wall structure resulting in disruption of cell  membrane integrity
and creating a leaky bacterial cell that exudes its cellular contents into the host
environment;  these  can  easily  be  detected  and  cleared  by  immune  cells.  Thus,
metallic  NPs offer  an  excellent  alternative  to  traditional  antibiotics  for  treating
MDR bacteria. The Gram-negative ESKAPE pathogens have negatively charged
lipopolysaccharides  (LPS) on their  surface which enables  strong adhesion with
metallic NPs which contain positive charges on their surface. This makes them
even more susceptible to nanobiotic therapy. The free radicals are toxic to all the
ESKAPE  pathogens  by  directly  damaging  their  DNA,  proteins,  and  lipid
biomolecules. In addition to the above, inorganic NPs modulate cell signaling and
destabilize protein synthesis machinery.

Inorganic and metallic NPs have a large surface area to volume ratio and possess
high  cell  permeability  capabilities.  Along  with  their  intrinsic  broad-spectrum
bactericidal effects, these present themselves as viable candidates for carrying a
variety  of  antibiotics.  Gold  nanoparticles  combined  with  antibiotics  generate
nanobiotics with improved bactericidal action against a variety of Gram-positive
and Gram-negative bacteria, according to efficacy tests. When compared to single
antibiotics,  these  combined  nanobiotics  have  a  longer  shelf  life.  Integrating
inorganic  NPs  such  as  silica  and  graphene  with  metallic  NPs  enhances  the
bactericidal  effects  along  with  increased  stability  of  drug  release.  One  such
example  is  the  nano-assembly  of  ferric  oxide  (Fe3O4)  core  with  a  shell  of
mesoporous silica (mSiO2) coated with graphene oxide and loaded with antibiotic
cargo,  which  displays  stable  release  of  the  drug.  The  high-affinity  binding  of
metallic NP-antibiotic complex to the outer envelope of the bacterial cell enables
an  increase  in  local  concentration  and  bioavailability  of  the  drug  and  thus,
antibacterial effects are seen at a much lower dose of the antibiotic. Integrating
these particles into a polyethyleneimine surface resulted in an extension to control
infections in biomedical applications. Several studies have shown that gentamicin
and  vancomycin  can  be  successfully  conjugated  to  gold  NPs  and  these  Au
nanobiotics  demonstrated  increased  antimicrobial  activity  against  vancomycin-
resistant  enterococci  (VRE)  and  S.  aureus  (VRSA).  Importantly,  the
gold–conjugated antibiotics are quite stable even under harsh storage conditions
as compared to the free antibiotic. Another group has shown increased absorption
and activity of ciprofloxacin in the presence of ZnO nanoparticles. Interestingly,
metallic/inorganic NPs can mimic the catalysis of natural enzymes, and these are
termed  as  nanozymes.  These  nanozymes  respond  to  changes  in  pH,  GSH
(glutathione) levels, and free radical contents of the human host, and accordingly
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generate therapeutic agents through catalytic mimicry of enzymes. This effect has
mainly  been  observed  in  antitumor  nanobiotic  therapy  where  inorganic  nano-
assemblies  mimic  peroxidases  to  generate  toxic  ROS  to  cause  targeted  tumor
apoptosis. This has yet to be explored in detail for ESKAPE pathogens.

Liposomal Nanobiotics

Hydrophobic chemicals are loaded in the lipid bilayer with nano-sized liposomes,
while hydrophilic substances are placed in the aqueous core. Antibiotics are better
loaded into small unilamellar vesicles (SUVs) with a diameter of about 100 nm.
These  SUVs offer  a  flexible  drug-carrier  system that  can  be  designed  with  the
desired set of pharmacokinetic properties. Entrapment in liposomes also reduces
the side effects of commercial antimicrobials.

Polyethylene glycol (PEG)-coated liposomal nanobiotic formulations improve the
plasma circulations time of the antibiotic and consequently enhance clearance of
infectious  extracellular  bacteria  and  their  biofilms.  The  encapsulation  in
liposomes  also  protects  the  antibiotics  from  enzymatic  hydrolysis  which  is  a
major resistance mechanism employed by ESKAPE pathogens. Previous studies
have also  shown that  liposomal  nanobiotics  are  highly  effective  and much less
toxic,  operating  at  lower  doses  for  treating  methicillin-resistant  S.  aureus
(MRSA). In a remarkable experiment, the MDR variants of Klebsiella pneumonia
regained  susceptibility  to  levofloxacin  in  vitro,  by  administration  of  liposomal
levofloxacin  nanobiotic  integrated  with  antimicrobial  peptides.  Liposomal
nanobiotics  are  proficient  in  reducing  drug  toxicity  and  are  mainly  used  to
transform  toxic  drugs  into  safe  therapeutic  options.

Carbon based Nanobiotics

Carbon nanostructures were created as a revolutionary material with potential for
several applications. One such recent application is the creation of nanobiotics.
Functional carbon dots (CDs) have shown promise as bacterial inactivation and
detection  agents  when  conjugated  with  antibiotics.  This  field  is  in  its  nascent
stages  and  a  few  initial  studies  have  shown  that  CDs  conjugated  with
ciprofloxacin provide controlled drug delivery under physiological conditions and
display high antibacterial activity against Pseudomonas aeruginosa. These carbon
nanostructures are also useful in increasing the stability and loading capacity of
other  drug  carriers  such  as  calcium  alginate  beads  covered  with  CDs.  Carbon
nanodots  hold  the  application  in  the  detection  of  bacteria  as  well;  this  will  be
explored later in this chapter.



MDR Infections Nanobiotechnology: Principles and Applications   127

Polymeric Nanobiotics

Antibiotics can be incorporated in polymer-based nanoparticles or conjugated to
them. Polymeric NPs are nano-sized colloidal particles made up of biocompatible
materials including poly (lactic acid), poly (lactic-co-glycolic acid), chitosan, and
others.  Polymeric  NPs  are  efficient  agents  for  stabilized  drug  release,  drug
solubilization,  and targeted activity.  These  also  have higher  bioavailability  and
protect the antibiotic from rapid degradation in the alimentary canal by digestive
enzymes and HCl. Polymeric NPs can be designed in the desired manner based on
the  targeted  region.  Their  high  permeability  and  stability  allow  drug
administration  through  different  routes  apart  from  the  oral  route,  such  as
nasopharyngeal and intravenous. The selection of polymer is based on the desired
drug release profile, to allow effective and safe concentration of the antimicrobial
at  the  site  of  infection.  Biofilms  are  difficult  to  clear  and are  a  major  cause  of
chronic ESKAPE infections. A formulation of synthetic PLGA- nanobiotic dual
conjugated with nitric oxide and gentamicin was able to effectively reduce 90%
viability of P. aeruginosa biofilms. Other such PGLA- nanobiotics were able to
penetrate through the thick mucus blocking airways of chronic pulmonary patients
infected with P. aeruginosa.

Another  polymeric  nanostructure  type  is  supramolecular  gelatin  nanoparticles
(SGNPs). Substantial clearance of S. aureus infection was observed with SGNP
formulation decorated with red blood cells and embedded with vancomycin. This
hybrid  nanobiotic  was  observed  to  be  only  effective  against  Gram-positive
bacteria  and  showed  no  antibacterial  against  the  Gram-negative  ones.  A  great
advantage of this hydrogel formulation is the capability of an extremely controlled
on-demand antimicrobial release strategy. Chitosan, alginates and hyaluronic acid
are natural polymeric NPs. Alginates and HA have been extensively used for drug
delivery,  whereas  chitosan-based  NPs  are  more  useful  for  mucoadhesion  and
intracellular permeability. Antimicrobial and anticancer capabilities are found in
AMPs,  which  are  lengthy  peptides  containing  2-100  amino  acids.  Another
component of nanomedicine that is being investigated to treat infectious diseases
is the use of amplifiers and nanotechnology. An alginate-based spherical hydrogel
containing  AuNPs  and  nisin  exhibiting  AMPs  on  its  surface  could  inhibit  the
growth of ESKAPE pathogens such as S. aureus and E. faecalis.

Biomimetic Nanobiotics

The amalgamation of biomimetic nanobiotics into the field of nanomedicine was
done to explore the creation and application of therapeutic options adaptive to the
complex functioning of the human body during the onslaught of infection. This
technology  has  majorly  been  applied  for  vaccines  and  antitumor  drugs  but  has
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been  showing  promise  for  antibacterial  therapy.  In  brief,  biomimetic  NPs  are
created by extracting cellular components for in vitro engineering of naked NPs to
disguise  parent  cells.  An  example  is  the  synthesis  of  leukocyte-mimicking
liposomes  (leukosomes)  created  by  integrating  extracted  leukocyte  membrane
proteins  into  a  liposomal  NP.  To  further  the  adaptive  properties  of  biomimetic
NPs, the entire cell membrane is coated on the surface of inorganic or polymeric
NPs. RBC membrane is the most common biomimetic membrane, mentioned in
the  previous  section,  coating  synthetic  NPs  with  RBC  surface  properties  for
avoiding macrophage capture, and also quenches the PAMPS such as a bacterial
toxin, β-hemolysin/cytolysin of group B Streptococcus.

The Synergy Between Antibiotics and Nanoparticles

Antibiotics are one of the major medical inventions of the 20th century that have
the  capability  to  treat  and  cure  bacterial  diseases  and  harmful  pathogens.  But
continuous  inappropriate  and  overuse  of  antibiotics  have  resulted  in  the
development of microbial drug resistance causing an adverse impact on mankind.
Due  to  increasing  bacterial  resistance,  antibiotics  are  becoming  less  powerful.
New approaches for handling bacterial infections are instantly required and hence
nanomaterials  may  be  a  useful  approach.  Nanobiotics  as  antibacterials
complementary to antibiotics can perform the functions where antibiotics usually
fail  and  can  reduce  the  toxic  effect  of  synthetic  antibiotics  and  can  reduce  the
problem  of  increasing  bacterial  multidrug  resistance.  Therefore,  for  antibiotics
delivery, the use of nanoparticles has also been widely studied [40]. Most studies
reported on nanoparticles as antibiotic carriers are confined only to some well-
known antibiotic  drugs like ciprofloxacin and penicillin.  But  recently,  attempts
have been made for  the  development  of  drug delivery  approaches  such as  new
lipophilic  β-lactam  antibiotics  to  solve  bacterial  drug  resistance  problems.  For
example, Poly (ethyl cyanoacrylate) (PECA) nanoparticles have been explored to
entrap β-lactam antibiotics for using colloidal suspensions in aqueous media. In
one  of  the  studies,  to  produce  amoxicillin-loaded  poly(cyanoacrylate)
nanoparticles,  Fontana  utilized  pluronic  (nonionic  polyoxyethylene
polyoxypropylene  block  copolymers)  of  different  molecular  weights.  These
PECA  nanoparticles  are  specifically  useful  for  delivering  β-lactams  to  the
stomach  on  a  site-specific  basis  [41].

Application of Nanobiotics in Diagnostics

Treatment  success  is  determined  by  the  accuracy  and  speed  with  which  a
diagnosis  is  made,  the  better  the  prognosis,  the  faster  and  more  accurate  the
diagnosis. Nanomaterials-based diagnostic platforms are much better equipped to
display and amplify the signal of detection- associated molecules such as antigens
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or antibodies owing to the high surface area-to-volume ratios and versatile surface
chemistry.  Metallic  NPs  have  an  added  advantage  of  the  nanoplasmonic  effect
which  essentially  means  that  light  exposure  (EM  spectrum:  visible  to  near-
infrared) rapidly transforms the interactive events between detection-associated
molecules and the NPs to generate outputs visualized optically and measured by
photometrics.

Another sophisticated nanodiagnostic platform is biosensors. Biosensors can be of
many types out of which a microfluidic chip based on biomimetic NPs is the most
popular type. The microvesicles derived from nanoscale membrane fragments of
leukocytes and neutrophils are embedded onto the chip and the diagnosis is done
through  fluorescence  readings  in  a  short  response  time  of  just  1.5  hours.
Furthermore, nanobiotics can also be used as diagnostics through optical signal
generation using an antibiotic conjugated with a fluorescence probe.  Gao et  al.
created  a  biosensor  with  a  vancomycin-fluorescent  probe  attached  to  a  FePt
magnetic  NP.  Van-FLA  can  recognize  bacterial  surface  peptide  D-Ala-D-

Ala through hydrogen bonds. This diagnostic chip can detect bacterial infection in
under two hours with a low limit of detection of 10 CFU/ml and is more sensitive
for Gram-positive bacteria like S. aureus. Gram-negative bacteria can be detected
using  a  similar  nano-biosensor  with  a  polymixin  B  antibiotic  that  binds  to  the
LPS. Another nanodiagnostic has been developed by Mou et al. that is based on a
colorimetry strategy of redox chemical reactions. This quantitative diagnostic is
made of azide and alkyne modified AuNPs that aggregate and changes color from
red to blue via a chemical reaction catalyzed by copper ions (Cu+) generated by
the  redox  enzyme system of  bacteria  that  reduce  exogenous  Cu2+  to  Cu+.  This
nanodiagnostic has been practically generated to identify and quantify E. coli in
an  experimental  blood  sample  containing  a  mixed  suspension  of  bacteria.  The
color signal in this nanodiagnostic platform is colorimetrically quantified through
a  smartphone  at  an  LOD  of  40  CFU/ml  in  a  response  time  of  under  1  hour.
Carbon  nanostructures  can  also  act  as  theranostic  (therapeutic  and  diagnostic)
agents.  One such notable  example is  if  nano carbon dots  (CDs)  are  conjugated
with vancomycin for accurate detection of Gram-positive bacteria,  including S.
aureus,  and Listeria monocytogenes.  Thus, nanoplatforms present to us unique,
rapid  and  sensitive  diagnostic  tools  which  might  be  the  future  of  accurate
detection  and  disease  mitigation.
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Abstract: Metallic nanoparticles against bacteria have increased recently due to their
unique  properties.  Many  metals  like  silver,  gold,  copper,  aluminum,  zinc  and  their
oxides  have  been  shown  to  have  antibacterial  properties.  The  activity  of  the
nanoparticles  is  affected  by  their  physico-chemical  properties.  Different  types  of
mechanisms are proposed for the antibacterial actions against various types of bacteria.
The metal-based nanoparticles are synthesized by the top-down methods and bottom-
up methods. However, the latter methods are used effectively against many types of
bacteria including antibiotic-resistant bacteria.

Keywords:  Antibacterial  activity,  Antibiotic  resistant,  Metallic  nanoparticle,
Physico-chemical  properties,  Synthesis.

INTRODUCTION

Nanoparticles  are  exceptionally  tiny  particles  that  vary  from 1-100  nanometer.
These particles possess different chemical and physical properties in contrast to
their  larger  counterparts.  Since  the  particle  size  is  extremely  small,  thus  they
follow  the  Brownian  movement  and  do  not  sediment.  Moreover,  these  are  not
seen by the naked eyes and with an ordinary microscope. Nanotechnology is one
of the several techniques, which is employed in biology, chemistry, environment,
food  industry,  agriculture,  engineering,  therapeutic  application,  sensor  and
medicines  [1,  2].  The  pharmaceutical  field  in  medicine  is  mainly  used  for  the
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improvement  of  drug  solubility,  bioavailability  and  delivery  to  various  sites  of
action and real-time monitoring of drugs [3].

Nanoparticles are classified into different categories based on their physical and
chemical properties. These may be metal nanoparticles, non-metal nanoparticles,
ceramic nanoparticles, semiconductor nanoparticles, ceramic based nanoparticles,
carbon-based  nanoparticles,  lipid-based  nanoparticles,  polymeric  nanoparticles,
organic based nanoparticles, etc. Among different types, metal-based particles are
important  in  pharmacy.  They  are  used  in  drug  and  gene  delivery  for  their
effectiveness  against  micro-organisms,  in  diagnostic  assay,  in  thermal  ablation
and anticancer properties [4, 5].

Since  ancient  times,  metals  are  used  to  cure  several  types  of  diseases  and  to
combat infections against many micro-organisms like bacteria, fungi, viruses etc.
Many  types  of  metals  are  used  among  which  silver,  copper,  gold,  aluminum
oxide, copper oxide, and titanium oxide have found their wide application against
various diseases. In this chapter, we have discussed the properties, mode of action
and the preparation of metallic nanoparticles.

PHYSICO-CHEMICAL PROPERTIES OF METAL NANOPARTICLES

Metal nanoparticles have quite distinctive features in comparison to their larger
counterparts. Such properties provide them the mechanism of toxicity to different
types  of  bacteria.  Different  types  of  physico-chemical  properties  affect  their
toxicity  which  are  detailed  as  under:

Size of Nanoparticles

The  size  as  well  as  the  surface  area  of  metal  nanoparticles  is  crucial  for  the
antimicrobial activity. The small size of nanoparticles has the larger surface area
relative to volume that makes the nanoparticles more active by facilitating their
entry in the bacterial cell membrane in comparison to larger nanoparticles [6]. The
nano  shape  of  the  nanoparticles  facilitates  better  contact  with  the  plasma
membrane  of  the  bacteria  mostly  because  of  their  larger  surface  area  showing
preferable interaction with the membrane than the larger nanoparticles [7].  The
size  of  the  nanoparticles  thus  greatly  affects  the  various  types  of  biological
mechanisms [8, 9].  It  clearly indicates that size and surface area of the particle
govern the systems [10]. Due to the smaller size, nanoparticles are able to enter
the  biological  system  [11]  due  to  which  modification  of  various  biomolecules
takes place [12] which ultimately interferes the biological functioning of the cell.
Although various mechanisms are attributed to the toxicity of nanoparticles, yet
the production of ROS (reactive oxygen species) that is because of the creation of
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free  radicals  since  the  liberated  electrons  try  to  make  a  stable  bond  is  prime
mechanism. The size of nanoparticles is essential in the generation of ROS which
imparts hazardous effects on DNA in comparison to their larger counterparts [13,
14]. Besides, the size less than 100nm causes adverse respiratory effects in human
beings in comparison to the larger nanoparticles. However, it is not necessary that
the  size  of  nanoparticles  alone  is  responsible  for  antibacterial  activity,  other
physico-chemcial  properties  of  NPs  should  also  be  considered  for  antibacterial
mechanism [15].

Shape of Nanoparticles

The   shape  of  metal  nanoparticles  is  important  for  their  antibacterial  activity.
Shapes  of  nanoparticles  interact  with  periplasmic  enzymes  of  the  bacterial  cell
thereby causing bacterial  cell  damage [16].  In nanoparticles,  the most  common
shape is spherical however, other shapes like triangular, cubical, hexagonal, oval,
helical,  prism,  tubes  and  rod-shaped  are  also  found  which  impart  toxicity  and
influence  the  wrapping  process  in  the  membrane  during  endocytosis  and
phagocytosis  [17].  It  has  been  shown  that  triangular  and  truncated  (cut-off
corners)  sized nanoparticles show better  inhibition [18] whereas nanotubes and
rod shapes have been reported to be more effective due to their exposed planes.
The  exposed  planes  having  higher  density  facets  help  in  increasing  reactivity
because of the large surface area to volume proportion thus facilitating to increase
the adsorption and binding of nanoparticles [8].

Charge of Nanoparticles

Charge  on  nanoparticles  is  a  pivotal  factor  for  the  antibacterial  property.
Positively charged nanoparticles are attracted to the anionic cell wall of bacteria
electrostatically thus alter the functioning of electron transport chain in bacteria
which  results  in  the  creation  of  ROS  [8].  Whereas,  the  negatively  charged
nanoparticles  do  not  stick  to  the  bacterial  cell  wall,  however,  the  higher
concentration  of  the  negatively  charged  bacteria  leads  to  interaction  between
bacteria and the nanoparticles due to molecular overcrowding [19]. The potential
of nanoparticles increases vascular permeability [20].

Acidic Conditions

Acidic conditions favour bindings of the nanoparticles to the bacterial cell wall
through  electrostatic  interaction  [21].  Acidic  conditions  have  been  shown  to
increase  the  dissolution  and  release  of  Zn+  [22].  In  acid  medium,  the  silver
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nanoparticles  liberate  the  silver  ions  rapidly  [23]  whereas  zero-valent  copper
nanoparticles  possess  the  highest  toxicity  under  acidic  conditions  [24].

Concentration of Nanoparticles

The  concentration  of  nanoparticles  has  a  direct  effect  on  causing  toxicity  to
bacteria. The higher concentration of nanoparticles releases more ions. Increased
concentrations of silver ions produce oxidative stress in bacteria [25, 26]

MODE OF ACTION AGAINST BACTERIA

General Structure of Bacteria

Bacteria  are  the  single-celled  structure,  which  have  no  nucleus  thus  are  called
prokaryotic organisms. The DNA of bacteria is  either present in the plastids or
floats  freely  in  nucleoids.  Also  present  in  the  bacteria  is  a  spherical  structure
which is known as a ribosome in which protein synthesis takes place by encoding
the information from rRNA (Fig. 1).

Fig. (1). General structure of bacteria

There  are  various  structural  differences  in  gram  positive  and  gram  negative
bacteria.  In  the  former,  the  outer  wall  has  a  thick  laced  layer  of  peptidoglycan
protein  and other  polymers  as  teichoic  acids  whereas  the  latter  is  composed of
multiple layers of peptidoglycan in which the outer membrane forms a barrier to
the passage of many chemicals [27](Fig. 2).
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Fig. (2). Structural differences between Gram positive and gram negative bacteria.

Nanoparticles' Antibacterial Mechanism

Since nanoparticles are incredibly minute,  they must  be in close vicinity to the
bacterial  cell  wall.  The  walls  of  bacteria  are  negatively  charged,  which  is
accomplished through a variety of mechanisms, involving electrostatic attraction,
receptor ligand, van der Waals forces, and hydrophobic contact. In general, the
nanoparticles are neutral so they cannot cross the cell membrane therefore the ions
released by the nanoparticles cross the membrane which interferes the functioning
of the cell membrane. Gathering of ions inside the cells leads to the disruption of
functioning  of  cell  organelles  and  enzymes.  Oxidative  stress,  heterogeneous
modifications,  modifications  in  membrane  permeability,  and  electrolyte
imbalance  are  all  induced  by  these  processes.  Furthermore,  gene  expression  is
influenced by enzyme inhibition and protein deactivation [28 - 30].

Various  types  of  mechanisms  are  proposed  for  the  antibacterial  mechanism  of
nanoparticles  (Fig.  3).  These  are:  Oxidative  stress;  Metal  ion  release  and  Non
oxidative mechanisms.
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Fig. (3). Antibacterial mechanism of nanoparticles.

Oxidative Stress

This arises when the concentration of ROS is increased inside the cell. ROS are
the highly reactive molecules that  are formed due to the electron receptivity of
oxygen  which  plays  an  important  role  in  microbial  metabolism.  ROS  related
oxidative  stress  causes  a  change  in  the  permeability  of  bacterial  cell  causing
impairment [31]. The macromolecules (protein, lipid, carbohydrate and DNA) are
also  affected  due  to  oxidative  stress  [32,  33].  ZnO  has  been  found  to  possess
antibacterial  property  and oxidative  stress  mechanism in  a  bacterial  species,  E.
coli [34]. Intracellular oxidative stress has been found to lose the integrity of some
bacteria when Al2O3 nanoparticles cross the bacterial cell membrane [35]. Nano
silver ions check the multiplication of bacteria or kill them. These ions activate
the  oxygen  in  the  air  thus  become  reactive  oxygen  ions  which  are  harmful  to
bacteria [28, 30]. ROS also been reported to play an active role by facilitating the
relationship between DNA and bacterial cells [36].

Metal Ion Release

Metal ions are responsible for toxicity to bacteria. These ions are released slowly
from their metal or their oxide nanoparticles. When these ions enter the bacteria
by crossing the cell membrane, the cellular activity of the cell is disrupted which
ultimately causes toxicity to bacteria [37, 38]. The toxicity to bacteria by these
ions is directly proportional to their release. Besides, other mechanisms are also
involved in causing toxicity to bacteria [38 - 43]. The release of ions depends on
the  metal  from  which  these  are  formed.  Copper  nanoparticles  release  more
nanoparticles  than  silver  nanoparticles  [44].  Silver  and  mercury  that  are  heavy
metals were found to have a detrimental effect on the physiology of bacterial cell
[19] (Slavin et al, 2017).
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Non-oxidative Mechanism

The non-oxidative energy system does not require oxygen to generate ATP. The
antibacterial  activities  of  MGO  were  studied  by  using  nanomaterial-based
techniques against a gram-negative bacterium (E. coli) and it was found that MgO
in two was not able to form the ROS [45]. On the other hand, MgO in one could
form  only  small  ROS.  The  main  mechanism  of  such  a  phenomenon  was  that
lipopolysaccharides  and  phosphatidyl  ethanolamine  were  not  oxidised  due  to
which the  gene expressing ROS did  not  increase.  This  reveals  that  the  toxicity
was not only due to oxidative stress but it was due to the direct contact of MgO,
the effect on pH and the slow release of Mg2+ ions [45 - 47].

SYNTHESIS OF NANOPARTICLES AND ANTIBACTERIAL ACTIVITY

There  are  two  methods  for  the  synthesis  of  nanoparticles  (Fig.  4);  Top  down
method and Bottom up method or wet method.

Fig. (4). Synthesis of metal based nanoparticles.

Top-down Methods

Also known as physical or mechanical methods, in which the body of a substance
is mechanically reduced into tiny particles/molecules, resulting in the material's
size being reduced to the nanoscale.  Because of  the particles’  dispersion,  these
procedures are not suited for the synthesis of nanoparticles, despite the fact that
the  size  of  any  nanoparticle  has  a  significant  impact  on  toxicity.  The  methods
include Milling; Sputtering; Pulsed wire evaporation and Nanolithography.
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Bottom-up Methods

In this method, the formation of nanoparticles takes place from nucleating atomic-
sized materials by creating nanomaterials and objects within the same nanosphere.
The  methods  are  processed  in  such  a  way  that  allows  the  increase  in  the
functioning  of  the  structure  of  processed  materials.  Bottom-up  approaches  are
categorized  in  many  ways,  the  two  approaches  are  more  common:  Chemical
method  and  Biological  methods.

Chemical Methods

In these methods, organic solvents are used. The synthesis encounters many types
of  problems  associated  with  those  which  include  the  stability  of  products,
aggregation  of  particles  on  long-term  exposures,  etc.  Moreover,  the  toxic
chemicals that are used for the synthesis limit their use for a long duration [48].
The metal nanoparticles synthesized in this way are detailed in Table 1.

Table 1. Antibacterial activity of metal nanoparticles

NP Size (nm) Bacterial Strain Antibacterial Activity References

Silver 12.4 E. coli

Damage to cell occurs as a result of the
development of pits in the bacterial cell

wall and the deposition of
nanoparticles in the bacterial

membrane, which further causes the
membrane's permeability to increase,

leading to apoptosis.

[49]

Silver 1-10 Salmonella typhimurium,
Vibrio cholera

Bacterial activity is size dependent
with direct interaction with bacteria. [41]

Silver 3-10 E. coli Enhanced cell wall permeability leads
to membrane damage and apoptosis.

[41, 49, 50,
51, 52]

Silver 1-10 Pseudomonas aeruginosa,
Vibrio cholera

Interaction with the cell membrane,
cellular membrane damage and DNA

damage
[41]

Silver 3 Bacillus subtilis Bactericide, damage of cell wall. [52]

Silver 39 E. coli Change in cell membrane and cell
death. [53]

Silver 13.5 E. coli Free radical generation effect causes
inhibition of bacteria. [40]

Silver 92 E. coli Antibacterial activity is due to smaller
size. [54]
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NP Size (nm) Bacterial Strain Antibacterial Activity References

Silver 22.5 E. coli, S. aureus Enhanced the activity of some
antibiotics. [55]

Silver 3 Staphylococcus aureus Disruption to the cell wall. [52]

Silver 20-25

A. baumanii, S. aureus, B.
subtilis, P. aeruginosa, M.

smegmatis, E. coli, M.
bovis

Cytotoxicity including DNA damage
and cell viability. [56]

Silver 10 Gram+ and Bacillus Toxicity is determined by the shape,
size, and capping agent. [57]

Silver -
B.subtilis, B. barbaricus,

Pseudomonas aeruginosa,
Klebsiella pneumonia

Cell viability is changed due to a
change in zeta potential [58]

Silver 1.5-10 P. aeriginosa
The size, form and composition of
nanoparticles influence bacterial

function.
[59]

Silver 9, 19, 43,
18, 23 E. coli Size-dependent biological effect. [39]

Silver 5-15 L. monocytogenes

Penetration of cell wall and plasma
membrane of bacteria. Plasmolysis is

triggered by the detachment of the
plasma membrane from the cell wall.

[44]

Silver 95 S. mutans The activity depends on size and
concentration. Cytotoxic effect. [60]

Silver 7.1 E. coli, P. aeruginosa Production of ROS. Mechanical
damage to membrane. [61]

Gold 8.4 A. baumannii, S. aureus,
P. aeruginosa, E. cile Inhibition of cell growth. [62]

Gold 55, 100 S. oneidensis Surface attachment [63]

Copper 10-40 E. coli Antibacterial activity depends on type
of copper nanoparticles. [64]

Copper
oxide 2 and 30 E. coli and S. aureus Nanoparticles create ROS, which have

antibacterial properties. [65]

Copper 3 S. aureus and E. coli - [66]

Copper
oxide 33 Gram negative and Gram

positive bacteria Both kinds of bacteria generate ROS. [67]

Copper 4-18
Pseudomonas aeruginosa

and Staphylococcus
aureus

Inhibitory effect [68]

Copper 63-160 S. aureus, E. coli Sustained released of antimicrobial
agent. [69]

Copper 20-50 E. coli and S. aureus Antimicrobial activity [70]

(Table 1) cont.....
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NP Size (nm) Bacterial Strain Antibacterial Activity References

Copper 10 S. aureus ROS production [71]

Copper 800 S. aureus and
Enterococcus

Depolarization and damage of cell
membrane of bacteria [72]

Copper 191 S. aureus Antimicrobial activity [73]

Copper 10 E. coli Antimicrobial activity [74]

Copper 8 S. aureus and E. coli
The inhibition zone in bacteria is

increased due to an increase in the
amount of copper nanoparticles.

[75]

Copper 30-40 E. coli, K. pneumonia, S.
aureus Excellent antimicrobial activity. [76]

Al2O3 11 E. coli
Toxicity is determined by the chemical
makeup, size, surface charge, and form

of the substance.
[77]

CeO2 7 E. coli Damage to cell membrane [78]

CeO2
6, 15, 22,

40 B. subtilis, E. coli Growth inhibition of bacteria [79]

CeO2 2-4 L. monocytogenes - [44]

ZnO 12 E. .coli Surface oxygen species of
nanoparticles and abrasiveness. [80]

ZnO -

E. coli, P. aeruginosa,
Staphylococcus aureus,

Enterococcus hirae,
Bacteroides fragilis

Loss of viability [81]

ZnO 19 E. coli Toxicity in aqueous media is caused by
free zinc ions and its complexes. [82]

Cu2O 40 E. coli Production of ROS [83]

CuO 20-95 E. coli, S. aureus, P.
aeruginosa

The emission of copper ions promotes
antibacterial action. [42]

CuO 30 E. coli Production of ROS [83]

MgO 4 B. subtilis, B. megaterium, Bactericide. Disruption and damage to
cell walls. [84]

TiO2 20
Pseudomonas aeruginosa.

Bacteroides fragilis,
Enterococcus hirae

Bactericide. Viability loss [81]

TiO2
12,17,21

25 E. coli Damage to the cell membrane [77]

TiO2 23 E. coli Massive cell leakage of K+ and
depletion of intracellular ATP level [85]

(Table 1) cont.....
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Biological Methods

These  methods  are  based  on  the  green-synthesis  processes  in  which  different
types of microorganisms and plants are used.  Various types of microorganisms
are associated for the microbe-mediated synthesis of well-structured nanoparticles
(details  below)  [86].  These  are  classified  as  Actinomycetes-based  synthesis,
algae-based  synthesis,  bacteria-based  synthesis,  fungi-based  synthesis,  yeast-
based  synthesis  and  plant  extract-based  synthesis.

The antibacterial activities of various biogenic metal nanoparticles are presented
in Table 2 and the biogenic species included in this table are bacteria, fungus and
plant species.

Table 2. Antibacterial activity of biogenic metal nanoparticles.

Biogenic Species NanopArticle Shape Name of Bacteria Antibacterial
Activity Reference

Deinococeus
radiodurans Gold

Spherical,
triangular &

irregular
E. coli, S. aureus

Cytoplasmic
membrane of

bacteria is damaged
[87]

Shewanella loihica Copper Spherical E. coli

Cell damage due to
ROS. Destruction
of cell membrane
and cytoplasmic

components.

[88]

Enterococcus faecalis Se Spherical S. aureus

Accumulation of
nanostructure as

extracellular
deposits.

[89]

Bacillus mycoides TiO2 Spherical E. coli Antimicrobial
activity [90]

Aeromonas
hydrophila ZnO Spherical Pseudomonas

aeruginosa
Inhibition of

bacteria. [91]

E. faecalis Copper Spherical Both type of
bacteria

Antibiofilm activity
of nanoparticles

upregulated
[92]

Aspergillus niger Ag Spherical Staphylococcus
aureus, E. coli

Antibacterial
activity [93]

Penicillium Ag Spherical
E. coli, S. aureus, P.

aeruginosa, B.
cereus,

Inhibition of
bacteria [94]
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Biogenic Species NanopArticle Shape Name of Bacteria Antibacterial
Activity Reference

Streptomyces sp Gold Spherical

E. coli, K.
pneuminaw, P.

mirabilis, S.
infantis, P.

aeruginosa and B.
subtilis

Antibacterial
activity [95]

Sreptomyces
viridogens Gold n.a.0F S. aureus and E. coli Antibacterial

activity [96]

Trichoderma
hamatum Gold

Spherical,
pentagonal

&
hexagonal

P. aeruginosa,
Serratia sp., B.

subtilis, S.aureus

Antibacterial
activity [97]

Aspergillus flavus TiO2 Oval
S. aureus, E. coli, P.
aeruginosa and B.

subtilis
Bacterial inhibition [98]

Aeromonas
hydrophila ZnO Spherical P. aeruginosa Bacterial inhibition [91]

Pichia kudriavzevii
(yeast) ZnO Hexagonal

E. coli, S. aureus, B.
subtilis, S.

epidermis, S.
marcescens,

Bacterial inhibition [99]

Ananas comosus leaf
extract Silver Spherical

S. aureus, S.
pneuminiae, P.

mirabilis, E. coli
Bacterial inhibition [100]

Justica adhatoda leaf
extract Silver Spherical P. aeruginosa Bacterial growth is

inhibited. [101]

Eriobotrya japonica
leaf extract Silver Spherical E. coli and S aureus Antibacterial action [102]

Melissa officinalis
leaf extract Silver Spherical S. aureus, E. coli Inhibitory activity [103]

Houttuyniacordata
(PE) Gold Spherical

A. subtillis, S.
typhimurium, P.
cereus, E. coli

Antibacterial
activity. Gram

positive bacteria
have more

inhibition effect
than Gram negative

bacteria.

[104]

(Table 2) cont.....
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Biogenic Species NanopArticle Shape Name of Bacteria Antibacterial
Activity Reference

Cresentia cujete Gold Spherical

E. coli, O.
aeruginosa, V.

cholera, Salmonella
typi, S. flexneri, B.

subtilis

Difference in
cellular membrane

thickness makes the
Gram negative
bacteria have a
more inhibition

effect than Gram
positive bacteria

[105]

Disoscorea batata
(rhizome) Ag Spherical C. albicans, S.

cerevisiae
Antimicrobial

property [106]

Citrus sinensis peel
extract Ag Spherical E. coli, S. aureus, P.

aeruginosa,
Antimicrobial

property [107]

Croton sparsiflorus
morinaga

leavesleaves
AgNO3 Spherical S. aureus, E. coli, B.

subtilis
Antimicrobial

property [108]

Gum karaya(plant
gum) CuO - E. coli, S. aureus

Antimicrobial
activity is due to the

smaller size of
nanoparticles.

[109]

Malva sylvestris leaf
extract CuO Spherical Both gram + and

gram – bacteria

Significant effect
against both types

of bacteria
[110]

          Phyllanthus
amarus leaf extract CuO Spherical

B. subtilis, E. coli,
P. aeruginosa, S.

aureus
Inhibitory effect [111]

Gloriosa superba leaf
extract Ruthenium -

Effective against
gram + and gram –

bacteria

Antimicrobial
property [112]

Gloriosa superba
leaves CuO Spherical

S. aureus, Klebsiella
aeroegenes, P.

desmolyticum, E.
coli

Antimicrobial
property [113]

Cystoseira
trinodis(Brown alga) CuO Spherical to

irregular

E. coli,
Enterococcus

faecalis, Salmonella
typhimurium,

Staphylococcus
aureus, Bacillus

subtilis,
Streptococcus

faecalis

Inhibitory activity [114]

(Table 2) cont.....
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Biogenic Species NanopArticle Shape Name of Bacteria Antibacterial
Activity Reference

Costus pictus plant
extract ZnO Hexagonal

S. aureus, B.
subtilis, E. coli, S.

paratyphi

Antimicrobial
property [115]

Camellia sinensis
leaves ZnO -

K. pneumonia, E.
coli and

P.aeruginosa

Antimicrobial
property [116]

A. halicacabum ZnO Spherical &
rod E. coli, S. aureus

Gram-negative
bacteria have more

antibacterial
properties than
Gram-positive

bacteria.

[117]

CONCLUSION

The studies  on the  antibacterial  property  of  various  metal  nanoparticles  clearly
reveal their potential and further their exploitation in this area. Various types of
bacterial species have been reported to be susceptible to metal nanoparticles, thus
these  can  be  considered  effective  agents  for  antibiotic  drug-resistant  bacteria.
However, the exact mechanism for their mode of action against different types of
bacteria needs to be investigated despite various types of proposed mechanisms.

FUTURE PERSPECTIVE

Since the widespread and uncontrolled use of antibiotics against bacteria has been
exacerbated,  the  use  of  metal-based  nanoparticles  has  increased  and  offered
tremendous  promise  as  antibacterial  agents.  However,  detailed  studies  are
required about their possible side effects before their introduction in a large scale
to the market since some studies indicate their effect on human cells. Further, the
investigation of the exact effective concentration, synthesis and formulations of
metal-based nanoparticles may open new vistas in this field.
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CHAPTER 7

Promises of Nanobiosensors in Pathogen Detection
Anurag  Jyoti1,*,  Neha  Shrivastava1,  Vikas  Shrivastava1  and  Rajesh  Singh
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Abstract: Rapid and accurate identification of pathogens has always been challenging.
There  are  a  number  of  methods  for  the  detection  of  pathogens,  but  still  they  face
critical  challenges.  In  general,  rapidity,  sensitivity,  and  accuracy  are  the  important
criteria  that  limit  the  applicability  of  classical  methods.  Nanomaterials-based
biosensors have been proven to be effective for the early and accurate quantification of
pathogens. Interactions between target pathogen and nanomaterials are very important,
as  they  provide  a  measurable  signal  in  biosensors.  Nanobiosensors  are  effective  in
detecting  pathogenic  bacteria  in  various  samples,  including  food,  water,  blood,  and
other matrices. In this chapter, we intend to discuss the existence and importance of
electrochemical-based biosensors for quantification.

Keywords:  Bacterial  Sensing,  Electrochemical,  Nanobiosensors,  Pathogenic
bacteria.

INTRODUCTION

Bacteria, fungi, and protozoans are infectious agents that cause disease. Viruses
and prions are molecular scale infectious agents, enter the body causing infection
and  lead  to  millions  of  deaths  annually  worldwide  [1,  2].  The  most  prominent
pathogens  include  bacteria  such  as  S.  aureus  and  E.  coli,  and  viruses  like
influenza virus which bring exotoxins, mycotoxins and enterotoxins. They vary in
several regards, like in contagiousness, virulence, transmittable dose and mode of
spread. For example, the world is at present facing a global pandemic linked with
the  COVID-19  virus,  for  which  infectious  dose  and  virulence  data  are  still
promising.

Food  products  are  the  actual  provision  for  a  healthy  life  and  are  the  strong
transmitting media of more than 200 known diseases [3]. Drinking water is also a
major  source  of  contamination  by  microorganisms  that  have  increased fast in
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recent  years  [4,  5].  Community  concern  has  significantly  increased  regarding
water  and  food  safety  in  the  past  decades.

Therefore,  it  is  of  primary importance to observe these microorganisms for  the
avoidance of infections, the maintenance of human health at large and to comply
with quality standards.

Different pathogen recognition techniques have been developed in recent times.
Traditional methods containing immune-diffusion, latex agglutination, immune-
precipitation,  etc.  were  multi-step  and  time-consuming,  taking  several  days  to
confirm the presumptive results [6, 7]. This has made them less appropriate for
the fast and direct study of pathogens.

Some other techniques such as Enzyme-linked immunosorbent assays (ELISA),
and Polymerase Chain Reaction (PCR) were frequently opted to detect pathogens
but  they  could  be  time-consuming,  sensitive  and  expensive  to  the  given
qualitative and quantitative information [8 - 10]. PCR technique not only requires
expensive  reagents  for  routine  analysis  but  also  bears  the  problem  of  false
positives  by  amplifying  nonviable  cells  [11].  Hence,  it  is  required  to  develop
suitable  detection  methods  that  authorize  an  accurate,  rapid,  and  sensitive
investigation  to  monitor  pathogens.

Biosensors are integrated devices, developed to quantify and measure biomarkers
particularly  for  infectious  pathogens  since  they  exhibit  the  advantages  of
selectivity, simplicity, rapidity, and high sensitivity [12, 13]. A biosensor has two
elements,  a  transducer  and  a  bioreceptor,  which  have  great  importance.  A
transducer  converts  the  chemical  recognition  information  into  an  assessable
signal,  and the bioreceptor can recognize and combine the target biomolecules.
On the basis of signals, biosensors, and transducers are divided into colorimetric,
fluorescent, electrochemical, SERS biosensors, and so on.

Electrochemical-based Biosensors

Electrochemical  biosensors  can  perform  chemical  or  biological  analysis  with
simplified  sample  preparation  and  facilitate  high  sensitivity  in  lesser  time.
Electrochemical  biosensors  are  made  up  of  three  elements,  with  signal
transduction  element,  target  recognition  element,  and  electrochemical  signal
output  elements.  Combined  with  electrocatalytic  activity,  electronic  properties
and  nanoparticles  with  a  huge  surface  area  [14],  nanoparticles-based
electrochemical  biosensors  have  achieved  significant  attention  for  pathogen
detection  [15].  Nanoparticles  offered  an  appropriate  microenvironment  for  the
immobilization  of  biomolecules  to  support  the  transfer  of  electrons  between
electrodes  and  immobilized  biomolecules  and  enlarge  the  surface  area  of
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electrodes for target identification. Therefore, electrochemical-based biosensors
have a unique advantage of fast response, high sensitivity and ease of operation in
thick media compared with conventional methods. Based on monitored electric
parameters,  electrochemical  biosensors  could  be  divided  into  voltammetric
biosensors,  amperometric  biosensors,  and  impedimetric  biosensors,  and
potentiometric  biosensors.

Voltametric Biosensors

Voltammetric biosensors supervise the current changes caused by the reduction or
oxidation  reaction  of  the  electrochemically  energetic  analytes,  which  can  be
studied  by  the  unstable  potential  in  the  electrochemical  system  [16].

Shoaie&Omidfar (2018) prepared a voltammetric biosensor for rapid detection of
E.  coli  based  on  AuNPs  and  a  polyaniline  customized  screen-printed  carbon
electrode with a LOD down to 4 CFU/ml. The low LOD biosensors have great
applications  of  AuNPs  and  polyaniline,  which  may  significantly  increase  the
surface  area  and  conductivity  for  immobilized  biomolecules  [17].

Likewise, Zhu et al. (2014) developed a unique amperometric biosensor based on
the rolling circle amplification (RCA) approach for Salmonella detection in milk
samples.  The Salmonella  DNA was  first  arrested  on the  electrode  surface  by a
DNA-AuNPs probe. After a chain of amplification processes,  the DNA-AuNPs
identified the RCA product and formed an enzymatic amperometric signal. The
range for target DNA detection by proposed biosensors was from 10aM to 10pM
and the LOD down to 6.76 aM [18].

Nze et al. (2019) also developed a technique for separating and electrochemically
identifying E. coli in ground meat also developed by. In this technique, antibody-
coated magnetic beads and hydrodynamic cavitation are used for the separation of
immunomagnetic samples, which significantly amplified the detection potential of
the biosensors [19].

In  2017,  Chen  et  al.  developed  a  voltammetric  biosensor  for  the  detection  of
Mycobacterium tuberculosis  DNA. If  nanoparticles are incorporated with DNA
amplification approach, this can improve the detection limit of biosensors.

Metal-based nanoparticles,  such as MWCNTs and GO carbon-based NPs,  have
also  been  commonly  applied  in  electrochemical  biosensors  because  of  their
excellent  electron  transfer  properties  and  high  surface  area.

Amperometric-based Biosensors

Amperometric  biosensors  are  working  on  the  principle  that  the  number  of



160   Nanobiotechnology: Principles and Applications Jyoti et al.

transferred electrons is linear with respect to the concentration of the analyte [20].
A sensitive and simple amperometric immunosensor was proposed by Zhu et al.
(2013),  for  simultaneously  identifying  three  analytes,  with  carcinoembryonic,
alpha-fetoprotein  and  Streptococcus  suis  Serotype  2  [21].

The biosensor uses a graphene sheet, AuNPs, etc. functionalized as a tracer for the
second  antibody.  On  the  surface  of  the  electrode,  the  antibodies  were  first
immobilized to prepare a sandwich structure with the tracer in the occurrence of
the target. The LODs were reduced to 4.2pg/ml with a linear range from 0.012 to
50 ng/ml for streptococcus suis Serotype 2.

Villalonga  et  al.,  (2019)  designed  a  core-shell  MNP-based  amperometric
biosensor for  fast  recognition of  Brettanomyces bruxellensis  in  wine.  Fe3O and
SiO2 nanoparticles were customized with antibodies for arresting Brettanomyces
bruxellensis. The amperometric indicator rises with the increased concentration of
B. bruxellensis  and the series of the amperometric biosensor started from 10 to
106CFU/ml with 5 CFU/ml LOD down [22].

CONCLUSION

Nano therapies are far more effective than any other traditional chemotherapy in
the detection and treatment of ovarian cancer. They are quite effective because of
their potential to target a specific tissue and also to examine the living body of
animals for adequate durations of time.
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CHAPTER 8

Breaking  the  Barriers  of  Nanotoxicological
Assessments: The Importance of Available Models
and Future Perspectives
Abhinoy Kishore1, Indranil De1, Prashant Sharma1 and Manish Singh1,*
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Abstract: Nanoparticles (NPs) and nanotechnology have penetrated every walk of life.
The  nanotechnology-based  products  include  pharmaceuticals,  cosmetics,  electronic
goods,  food,  food  packaging,  and  household  products  of  daily  use.  The  unique
physicochemical  properties  of  nanoparticles  also  make  them  a  potent  toxicant.  The
evidence  suggests  that  nanoparticles  are  used  in  humans'  neurological  disorders,
pulmonary disorders, and other ailments. The situation is alarming as NPs may make
their way to the human fetus. The regulations for checking the use of NPs are still in
their early stages. The NP toxicity has not only affected the human race but the entire
Biosphere. The chapter discusses the different assays and models to study nanotoxicity.
The  models  used  in  deciphering  the  molecular  mechanism  are  primarily  in  vitro
models,  particularly  2D and 3D cell  cultures  of  primary,  cancerous  and normal  cell
lines. 2D cultures are monolayers, while 3D cultures can be spheroids and organoids
derived from stem cells. Cell culture models serve to be a good assessment model but
due  to  lack  of  systemic  complexity,  results  may  not  be  explicitly  extrapolated  to
humans. In order to fill the gap, in vivo models are available. In vivo models are helpful
in  assessing  the  systemic  toxicity  in  organisms.  The  in  vivo  models  are  further
categorized  as  models  to  study  human  nanotoxicity  and  the  models  to  study
nanoecotoxicity.  Out  of  the  plethora  of  models,  certain  specific  models  are  briefly
discussed here.  The ethical  regulations for  the usage of  animal models are stringent
which sometimes make it challenging to acquire animal models. Such challenges can
be overcome by developing futuristic models like a lab or animal on a chip, and other
computation  models  which  may  make  nanotoxicological  assessments  easy  and
accurate,  thereby  helping  in  making  efficient  regulatory  policies  for  NPs  usage  in
various consumer products safeguarding the mankind and the biosphere.

Keywords:  Cell  viability,  Cytotoxicity,  Ecotoxicity  model,  In  vitro  models,  In
vivo models, Nanoparticles (NPs), Nanotoxicity.
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INTRODUCTION

The advances in nanotechnology have been unprecedented in the last two decades.
The  technology  is  penetrating  every  aspect  of  human  life  in  the  form  of
nanomedicines,  disease  diagnostics,  food  preservatives,  cosmetics  (sunscreen),
detergents, personal wears, vehicles, paints, surface coatings and electronic goods.
Nanoparticles  (NP)  are  everywhere.  “Nanotechnology  product  Database,”  a
website  that  maintains  the  data  of  nanotechnology  based  products  worldwide,
shows  currently  there  are  9422  products  that  are  being  manufactured  by  2797
companies set in 64 countries across the globe [1]. The number of such products
has increased more than seven times in the last ten years as it  was just 1317 in
2011.

The database shows that the electronics, cosmetics, medicine and textile industries
are  amongst  the  top  industries  having  maximum  numbers  of  nanotechnology
enabled-products [1]. This ever increasing trend shows how fast we are dumping
our  environment  with  such  nanotech  enabled  products  containing  various  NPs
whose fate and effects on the human and the biosphere is drastically unknown.
NPs  are  more  reactive  as  compared  to  their  larger  counterparts  with  similar
particle  mass  due  to  their  smaller  size,  higher  surface  area,  and  high  tensile
strength. The characteristics that make them such an advanced technology, also
make them a threat to us and our Biosphere. The term ‘nanoparticle’ was coined
in  1970s  but  its  potential  to  be  a  toxicant  was  acknowledged  in  the  year  2004
when  the  term  ‘Nanotoxicity  was  used  for  the  first  time  [2].  The  immense
increase  in  the  uses  of  NPs in  consumer  products  has  enhanced the  chances  of
human  exposure  due  to  which  the  instances  of  toxic  outcomes  have  also
increased.  There  are  studies  which  highlight  the  neurological,  pulmonary,
vascular, and genetic toxicities in humans caused by NPs’ exposure. For example,
in a clinical study performed over 22 human subjects, chronic exposure to Fe3O4
NP  of  size  less  than  20nm  is  reported  to  be  neurotoxic.  Age-associated  bio-
mineralization of Fe3O4 in the brain is manifested as Alzheimer's disease [3]. In
another  study,  37  human  subjects  showed  symptoms  of  neurodegenerative
disorders due to an enhancement in ROS levels  upon exposure to Fe3O4  with a
size  ranging  up  to  150  nm  [4].  To  investigate  the  pulmonary  toxicity  of
nanomaterials, Khatri et al. studied the effects of acute exposure to NPs (30-40
nm) from photocopiers in 9 healthy volunteers.  These nanoparticles can trigger
immune  responses  in  the  upper  airways,  resulting  in  systemic  oxidative  stress
with  the  generation of  pro-inflammatory  cytokines  [5].  In  a  study dealing with
vascular  dysfunction,  an  incidental  exposure  of  diesel  fumes  consisting  of  NP
(<100 nm) showed increased systolic blood pressure in 16 human subjects, which
might  be  due  to  vasodilation  induced  by  oxidative  stress  [6].  Genotoxicity
associated with exposure to silver NPs is also reported in mononuclear leukocytes
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in  76  subjects  employed  in  the  silver  jewellery  industry.  The  genotoxicity  was
attributed to oxidative stress induced by silver NPs [7].

The  situation  is  alarming as  NPs  are  not  only  affecting  human health,  but  also
being  accumulated  in  our  ecosystem.  The  release  of  NPs  in  water  bodies  and
landfills  is  69000  and  189200  metric  tons  per  year  [8],  respectively.  The
biological magnification of NPs is still in its early stages of research. In the early
1960s, pesticides and chemical fertilizers came up with a lot of hope and promise
in  solving  hunger  issues  by  increasing  plant  yield.  However,  after  decades  of
prolonged  usage,  we  now  know  that  these  toxic  chemicals  enroute  to  our
biological  system  and  cause  various  diseases  ranging  from  mild  allergies  and
hormonal disorders to severe genotoxicity and cancers [9 - 11].

The human race would certainly not want to be caught off guard in the case of
NPs,  and that  is  why it  is  important  to  study the  behaviour  of  NPs in  terms of
toxicity for which we need to device a vast setup of model systems along with the
robust  test  batteries.  The  fate  of  NPs  in  the  environment  depends  upon  the
aggregation,  disaggregation,  chemical  interaction,  and  change  in  their  surface
properties.  There  is  very  little  research  available  regarding  these  aspects  of
various NPs in both biological  and ecological  systems.  Due to a lack of robust
knowledge about the prospective harms of using these NPs in various consumer
products like cosmetics and other routinely used stuffs, developing countries like
India fail to make stringent policies for regulating the usage of NPs in consumer
products.  Thus,  the  area  needs  appropriate  model  systems  for  nanotoxicity
evaluation in order to decipher the potential threats as well as to form stringent
regulations.

Here in this  chapter,  we would discuss the present  advances in nanotoxicology
research  in  terms  of  various  assays  and  various  available  models  for  the
assessment of toxicity of such NPs along with the future perspectives just for the
ease  of  the  young researchers  because very few such articles  are  available  that
illustrate all these assays and models in one write-up.

NANOTOXICITY CAUSES AND MECHANISM

Nanoparticles  enter  the  human  body  via  oral  ingestion,  inhalation,  occular
exposure,  deposition  on  the  skin,  and  intravenous  administration.  NPs  then
translocate via the bloodstream to distant organs and tissues. While translocating
NPs may interact with serum proteins, thus resulting in the structural changes of
interacting proteins, causing them to accumulate around the NP (protein corona
formation) and may change the protein's functionality. Subsequently, NP may also
trigger certain pathways that lead to immunotoxicity, loss-of-function in proteins,
new antigenic site formation, and may hinder gene expression [12, 13]. Some of
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the main mechanisms include NPs attachment to the cell membrane, dissolution to
toxic ions, and oxidative stress (Fig. 1).

Membrane  Damage:  The  cell  membrane  is  the  first  line  of  protective  barrier
against the potential toxic effect of nanoparticles. NPs may directly interact with
the cell membrane via electrostatic attraction, and this interaction can lead to NPs
uptake by endocytosis without being involved in any specific receptor-mediated
interaction [14]. It can physically damage the cellular boundary by removing the
lipid membrane. In addition, it can initiate or disrupt internal signalling pathways
[13, 15].

Fig. (1). Schematic representation of NPs toxicity inside the cell.

Dissolution  to  Toxic  Ions:  The  dissolution  of  toxic  elements  from  NPs  is  an
essential mechanism whether that dissolution occurs after binding to an organism
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or  in  the  surrounding  environment.  There  are  different  ways  through  which
released ions can cause toxicity. Several ions can bind to proteins and enzymes,
thus critically impairing their functions and inhibiting cellular metabolism [16].
Metal  ions  may  directly  interact  with  and  damage  the  phospholipid  membrane
and/or genetic material and alter the gene expression of the organism [17 - 19].

Oxidative Stress: After internalizing the membrane, nanoparticles or their ions
can generate excessive amounts of reactive oxygen species (ROS). The amount of
ROS generation depends on the shape, size, and charge on the surface of the NPs.
Because  of  the  strong  oxidation  potential  of  NPs,  the  excess  ROS  induced  by
them  can  cause  damage  to  biomolecules  and  organelle  structures,  and  lead  to
protein  oxidative  carbonylation,  lipid  peroxidation,  DNA/RNA  breakage,  and
membrane structure destruction, which further cause necrosis, apoptosis, or even
mutagenesis [20].

IN  VITRO  SCREENING  METHODS  AND  ASSAYS  FOR
NANOPARTICLE CYTOTOXICITY

As  new  nanomaterials  are  developing,  rapid  screening  of  their  biological  and
health  impacts  is  required  to  assess  their  possible  risk  to  provide  insight  into
proper  handling  and  care.  Presently  a  wide  variety  of  cytotoxicity  and  cell
viability assays are in use in the field of nanotoxicology and pharmacology. An
ideal assay for in vitro viability and/or cytotoxicity determination should be rapid,
safe,  reliable,  efficient,  and time and cost-effective.  Also,  it  should not interact
with  the  test  compound.  The  choice  of  assay  method  is  also  crucial  in  the
assessment of the interaction type. Therefore, the assay method should be chosen
with  caution,  considering  the  mechanism  of  action  of  the  test  compound.  The
tissue  or  cell  type  used  in  the  study  also  influences  the  results  of  cytotoxicity
and/or  cell  viability  assays.  Therefore,  different  methods  should  be  tried  and
compared  to  determine  cytotoxicity  and/or  cell  viability  in  in  vitro  studies  to
increase the reliability  of  the obtained results.  Most  commonly used assays for
determining cytotoxicity are cell viability assays, oxidative stress or ROS assay
and apoptosis assays.

In  Vitro  Cell  Viability  Assays:  Nanomaterials  can  affect  cell  health  and
metabolism via various mechanisms for example, destruction of cell membranes,
prevention of protein synthesis, permanent binding to receptors, oxidative stress,
and enzymatic reactions, leading to cell death. Therefore, there is a need for cost-
effective,  reliable  and  reproducible  short-term  cytotoxicity  and  cell  viability
assays to decipher the potential as well as the mechanism of toxicity [21]. In vitro
cell viability and cytotoxicity assays with cultured cells are extensively used for
toxicity testing of NPs. These assays can determine number of viable and dead
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cells at the end of the experiment. Various cytotoxicity and cell viability assays
are  used  in  the  field  of  nanotoxicology  based  on  their  detection  principle.  For
example i) Lightmicroscopy based dye uptake or exclusion assays using various
dyes/stains such as trypan blue, hematoxyline, eosin, congo red, erythrosine b etc.
ii) Colorimetric assays such as MTT assay, XTT assay, MTS assay, WST-1 assay,
WST-8 assay,  LDH assay,  SRB assay,  NRU assay and crystal  violet  assay.  iii)
Fluorometric assays like Alamar Blue assay (resazurin) and CFDA-AM assay and
iv) Luminometric assays such as ATP assay and real-time viability assays.

ROS Assays Oxidative stress, an imbalance between the production of reactive
oxygen species (ROS) and a cell’s antioxidant defences, is associated with human
diseases  as  well  as  aging.  Oxidative  stress  in  the  cell  can  be  determined  by
quantifying the glutathione, changes in ROS, and the ratio of reduced to oxidized
glutathione  as  indicators  of  cell  health.  ROS  is  most  common  marker  for  the
determination  of  oxidative  stress.  Generation  of  ROS  within  the  cytoplasm
beyond natural levels is measurable via introduction of ROS sensitive dyes such
as  the  nonionic,  nonpolar,  membrane-permeable  fluorophore  2′,7′-
dichlorofluorescein  diacetate  (DCFH-DA).  After  internalization  in  the  cell,  it
converts into the nonfluorescent polar analog dichlorofluorescein (DCFH) by the
cellular esterase enzyme. Hydroxyl radicals and cellular ROS oxidize DCFH into
highly  fluorescent  dichlorofluorescein  (DCF),  which  is  monitored  using
fluorescence microscopy or flow cytometry, or fluorescence based multiwell plate
reader [22].

Apoptosis  Assays  Usually,  the  toxicants  cause  toxic  outcomes  in  the  form  of
apoptosis, which has a vital role in aging, development, and diseases. Apoptosis is
originated by a tightly regulated signalling cascade that involves various apoptosis
related proteins (e.g. Bax, Bad, Bcl2, Caspases etc) which play their specific roles
in the execution of apoptosis under the influence of certain toxicants. Key features
of  apoptosis  include  cell  shrinkage,  membrane  blebbing,  chromosome
condensation,  nuclear  fragmentation,  DNA  laddering,  and  the  eventual
engulfment of the cell by phagosomes. An apoptosis assay depends on detecting
and  quantifying  such  cellular  events  like  caspase  activation,  mitochondrial
damage,  cell  surface  exposure  of  phosphatidylserine  (PS),  and  DNA
fragmentation and these events can be detected by Caspase-Glo, JC-1, Annexin V,
and  TUNEL  method  respectively  [22].  These  methods  are  mainly  based  on
Colorimetric  or  Fluorometric  principles  of  detection.

MODELS

Despite  increasing  exposure  to  NPs  and  their  potential  toxicity,  there  is  no
sufficient data to predict its hazardous impact on humans as well as on biosphere.
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To formulate any regulation for the potential future threat, there must be a robust
database on nanoparticle toxicity, and to achieve it, a series of suitable models are
needed.  Currently,  the toxicity assessments depend upon cellular  models i.e.  in
vitro, as well as the animal models i.e., in vivo.

Cellular  or  in  vitro  Models:  NP has  potential  to  induce  toxicity  at  molecular,
systemic,  and  ecosystem  levels.  According  to  regulatory  bodies,  NPs  undergo
toxicity  screening  before  it  reaches  for  human  usage.  The  first  phase  of  the
screening  is  performed  in  in  vitro  models.  In  vitro  models  are  comparatively
easier  in  terms  of  ethical  and  regulatory  guide  lines,  cost  and  maintenance,  as
compared to in vivo models. Based on the exposure paradigm, relevant cell types
can be selected and grown in both 2D and 3D culture setups.

2D Cell Culture This is the commonly used culture setup. Most of the cell types
are grown as a monolayer in 2D space. Cells are grown in artificial nutrient media
supplemented with growth factors (generally animal serum). Different cell types
are grown in different media, e.g., MEM, DMEM, RPMI etc.

Cancerous and Normal Cell Lines The cell line could be cancerous or normal
based on the origin. Cancerous cell line derived from cancerous tissues and has
potential to divide infinite times. Normal cell lines are primary cells transformed
into  immortal  cells  by  inducing  certain  mutations  via  radiation,  chemicals,  or
viruses. Cancerous cells have a different microenvironment, acidic pH, activated
replication  pathway,  overburdened  translational  machinery,  and  a  changed
phenotype,  in  such  an  environment,  NPs  react  differently.  In  the  acidic
environment of cancerous cells, ZnO NP releases Zn ions that kill cancerous cells
but not normal cells [23, 24]. Similarly, Ag NPs coated with polyvinylpyrrolidone
(PVP)  can  induce  the  apoptotic  pathway  in  cancerous  cells  (HepG2:  human
hepatoma cells)) but not in normal cells (L-O2 cells (normal hepatic cells) [25].
Also,  it  has  been  reported  that  SiO2,  Fe3O4,  and  TiO2  NPs  can  kill  16HBE
(immortalized human bronchial epithelial cells) but not A549 cells (human non-
small-cell lung carcinoma cells) [26].

Primary Cell Culture System:  The primary culture cells are isolated from the
desired organ or part of the organ by harvesting the animal. Such cells can also be
isolated from human biopsy tissues or placenta. Such isolated primary cells are
then  cultured  in  artificial  media  having  various  growth  factors.  The  cells  in
primary  culture  are  isometric  with  actual  organs  and  serve  as  a  good  model
system  but,  the  method  is  a  bit  lengthy,  technically  challenging,  and  prone  to
contamination.  Also,  the  whole  method  depends  upon  the  availability  of  the
desired tissue or model. Apart from this, primary cells have a limited lifespan due
to the inability to proliferate indefinitely.
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Stem Cell Culture System Stem cells are undifferentiated cells that can form any
type of cells on proper activation via suitable signals. There are embryonic stem
cells (ES), adult stem cells, and induced pluripotent stem cells (iPS). Embryonic
stem cells (ES) are derived from the innermost cell of an embryo (blastocyst), and
they can develop into any cell form indefinitely. Adult stem cells are derived from
the tissues and have the limited self-renewable ability. iPS cells are somatic cells
induced to pluripotent stem cells by activating a cascade of genes. The Stem cell
has an advantage over primary cells as it can be passaged like immortal cells.

Limitation of 2D Cell Culture: Cells in 2D culture setup lie in dishes in the form
of  monolayers,  whereas,  in  the  actual  living  body,  it  remains  in  3D  space
interacting with neighbouring cells, extracellular matrix (ECM), and a number of
physiological factors. These interactions shape the cells' functionality and help to
maintain homeostasis of the in vivo  system, which remains missing to a certain
extent  in  the  2D cell  cultures.  2D culture  also lacks  a  complex ECM, which is
sometimes very important for the transportation of the toxicants/NPs across the
cells. So, it can be understood that though the 2D cell culture model provides an
effective yet simple cause-and- effect environment, it still fails to mimic the actual
environment  of  the  in  vivo  systems.  Probably  due  to  these  differences,  there
sometimes occurs a  sharp contrast  in toxic outcomes assessed in in  vitro v/s  in
vivo  systems. For example,  the toxicity studies of quantum dots [27],  magnetic
NPs [28], carbon nanotubes [29], and fullerenes [30] performed using in vitro 2D
cell  culture  setup  showed  low  viability  of  cells,  but  when  similar  experiments
were conducted in the in vivo models, there were no adverse effects [31 - 34]. So,
to overcome this limitation of the 2D culture setup, 3D culture setups can be used
as alternative or midway options between 2D culture setup and in vivo models.

3D Cell Culture System: In this cell culture system, a permissive environment is
provided for cells to interact among themselves and the surrounding extracellular
matrix  in  three  dimensions.  3D  cell  culture  used  to  screen  for  small  molecule
drugs or genetically manipulated to understand disease pathways.  Compared to
2D cultures, 3D cell cultures more precisely predict the effectiveness or toxicity
of  drug  treatment.  The  3D  cell  culture  can  be  of  two  types:  Spheroids  and
Organoids.

Spheroids Culture: They are generated by spontaneous aggregation of cells via
non-covalent  interaction  between  surface  integrins  and  ECM.  The  NP  toxicity
varies a lot in 3D culture as compared to 2D. NP has to pass through layers of
cells  in  3D  culture,  which  is  absent  in  2D  culture.  One  of  such  experiments
showed that gold NP stabilized by cetyltrimethylammonium bromide (CTAB) can
induce significant morphological change in 2D HepG2 culture but did not cause
any effect  in 3D culture [35].  Spheroids culture lacks vasculature and different
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types of cells and organ level complexities.

Organoids  Culture:  They  are  derived  from  primary  tissue  or  stem  cells
(embryonic, induced pluripotent stem cell (iPSC) and adult stem cell (ASC)). The
organoids ensembles various types of cells, thus exhibiting organ functionalities.
Organoid  culture  involves  usage  of  various  growth  factors  and  is  a  time-
consuming  process  that  takes  2-3  months,  depending  on  the  type  of  tissue  to
generate [36, 37].

Readouts  for  the  Toxicity:  The  morphological  observation  for  alive  cells  is
complicated in 3D culture as compared to 2D. In 3D culture, the dead individual
is represented as small blobs. But the biochemical analysis of the viability of the
cells is identical for both 2D and 3D cell cultures, and the assays like LDH, MTT
etc. are used for assessing the cell viability.

Limitations of 3D Culture Models: Though 3D culture systems are a bit closer
to the physiological systems as compared to 2D culture setups,  but still  the 3D
organoids  lack  the  systemic  complexity  of  the  animal  model  and  hence,  NP
toxicity may not be predicted accurately. These limitations can be overcome in
complex organism level in vivo model systems.

Animal  or  in  vivo  Models:  As  the  scientific  community  has  started
acknowledging the threat of NPs, it becomes necessary to assess the ill effects of
such NPs on mankind, but studying such effects directly on human being is not
ethically viable; that is why we need appropriate and easy to use model systems.
We have also discussed that the in vitro cellular models are suitable for assessing
the toxicity of NPs but in a controlled environment, whereas, it is crucial to assess
the toxicity of such NPs in complex biological systems, for which it is necessary
to  use  suitable  animal  models  from  where  the  results  can  be  extrapolated  for
establishing the safety guidelines for human usage of NPs. Here in this section,
we will discuss about such commonly used in vivo models of toxicity. There are
several well-established in vivo  models ranging from simpler organisms like C.
elegans to the complex organisms like mice, rabbits and monkeys. The selection
criteria of an organism as a model are the resemblance at the systemic level with
humans, ease in maintenance and handling, ease of availability, and the extent of
limitations  put  on  by  ethical  and  regulatory  bodies.  The  simple  multicellular
models are modified according to particular human organs or related pathologies
studies.

Zebrafish:  The  Zebrafish  (Danio  rerio)  is  a  freshwater  fish  of  the  family
Cyprinidae, order Cypriniformes. Due to simple maintenance and ease in genetic
manipulation, George Streisinger (University of Oregon,1972) used Zebrafish for
the first time as a model for developmental toxicity studies since all vertebrates
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have  highly  conserved  embryos.  The  Zebrafish  embryo  (ZFE)  is  considered  a
common, well-established in vivo  aquatic model for NP toxicity [38 -  40].  The
model has several advantages like ease of culturing and maintenance. The embryo
is transparent, which is advantageous to monitor the fluorescently tagged proteins
or dye under a microscope. The adult to offspring ratio is significant, and hence
larger  litter  is  available  for  the  study.  The  PubMed  search  “Zebrafish  as
nanoparticle toxicity model” results in 272 papers in the last 11years (2010-2021).
Several Nanoparticle toxicological studies show systemic toxicity, cytotoxicity,
genotoxicity, immunotoxicity, and neurotoxicity response in Zebrafish [41, 42].
The  exposure  of  silver  NPs  has  been  reported  to  damage  the  integrity  of  gills,
developed goblet cell hyperplasia, vacuolization and partial loss of microvilli, and
inhibition of Na+/K+ ATPase pump in the intestine [41 - 44]. Cadmium and TiO2
NPs has also been found to cause DNA damage in Zebrafish via ROS generation
[45, 46].

Caenorhabditis Elegans: Caenorhabditis elegans (C. elegans) is a soil-dwelling
nematoid that is wildly used as a model for molecular genetics, developmental,
and  neurobiology.  In  1963,  Sydney  Brenner  was  the  first  researcher  to  use  C.
elegans  as  model  animals  to  study  developmental  biology.  In  1998,  C.elegans
became the first multicellular organism to have its whole genome sequenced. It is
an  instrumental  tool  to  study  the  toxicant's  effect  on  fundamental  biological
phenomena. The model has several advantages: it is economical to culture, has a
small body, and is transparent (easy to study gene expression and localization of
NP) [47]. The number of offspring per adult is very high (300:1) and the life cycle
is approximately three weeks. They are quickly adaptable to the lab condition and
which  helps  in  exposure  study.  They  are  non-infectious  to  humans.  There  are
several  nanotoxicological  studies performed on the model.  The PubMed search
“Caenorhabditis elegans as nanoparticle toxicity model” results in 80 papers in
the last  11years (2010-2021).  Few of the studies are briefly discussed here.  On
exposure  to  Graphene  Oxide  (GO),  there  is  upregulation  of  genes  related  to
antimicrobial  peptides  [48].  NP  like  Graphene  oxide  and  Cadmium  induced
abnormal  immune  response  by  causing  immune  cell  death  [48,  49].  Further
Exposure to Silica NP has been reported to impair reproduction, development, and
movement.  It  also  affected  serotonergic  neurotransmission  resulting  in
neurodegeneration  in  the  nematodes  [50].

Drosophila  Melanogaster:  Drosophila  melanogaster  (D. melanogaster)  is  also
known as the fruit fly. The first reported document of D.melanogaster use in the
laboratory was William Castle's group at Harvard in 1901. Thomas Hunt Morgan
did  his  pioneer  work  on  heredity  using  D.  melanogaster.  D.  melanogaster  has
developed  into  a  prominent  model  to  understand  how  the  cascade  of  gene
expression  orchestrates  single-cell  embryo  development  into  a  multicellular



Nanobiotechnology: Principles and Applications   173

organism. Though the model is old, its utilization for nanotoxicity is recent. The
PubMed search “Drosophila melanogaster as nanoparticle toxicity model” results
in 50 papers in the last 11years (2010-2021). D. melanogaster  is very easy and
economical to culture, and it can grow at 18-25 ºC. The model culturing requires a
cornmeal-molasses-yeast-agar  medium,  a  stereo  dissecting  microscope  with  a
light  source,  and  a  CO2  anesthetizing  station  with  a  block  and  blowgun.  The
model has a short life cycle of 10 days. Also, it has simple genetic architecture
(~15,000 genes harboured on four chromosomes), mutants are easy to make, can
easily  transport,  and  are  freely  available  [51].  The  adult  D.  melanogaster  has
organs equivalent to mammals' hearts, lungs, kidneys, gut, and reproductive tract
[52,  53].  The  models  can  be  used  to  determine  and  characterize  molecular
mechanisms and cellular pathways of NP toxicity.  In this regard,  E.  Demir has
reviewed the various studies in which D. melanogaster was used to investigate the
genotoxicity  and  cytotoxicity  of  potential  nanopesticides  with  metallic
nanoparticles such as Ag, Si, Co, Au, and TiO2 NPs [54]. The mentioned NPs can
cause somatic mutation, gene mutation, impaired fertility, and longevity. The fly
is also used as a model to study nanoparticle immunotoxicity [55].

Rat (Rattus): Rat has been an important animal model for ages. The Brown Rat,
Rattus norvegicus, was first used for fasting experiments two centuries ago. The
first  scientific  documentation  was  made  in  1856  by  J.  M.  Philipeaux  for
adrenalectomy  in  albino  rats.  Rat  is  physiologically  and  genetically  similar  to
humans and can mimic human diseases as well. The familiar strains are Brown-
Norway  (BN),  Sprague-Dawley  (SD),  and  Wistar  rat.  The  most  significant
advantage of using rats as the model is its legacy. The plethora of research on rats
make it  the  most  accepted  model  for  nanotoxicity  studies.  The  PubMed search
“Rat  as  nanoparticle  toxicity  model”  results  in  996  papers  in  the  last  11years
(2010-2021).  The  rat  model  is  used  for  research  on  various  aspects  of
nanotoxicology. The nanotoxicity studies conducted on rat models show that the
exposure of various NPs like ZnO, TiO2, and Ag NPs may cause complications in
the  gastrointestinal  tract  [56  -  58].  The  smaller  nanoparticles  can  trigger  more
intense reactions [59]. Silica NPs are reported to cause pulmonary lesions, lung
inflammation,  and  damages  to  alveoli  and  lung  tissue  in  Wistar  rats  [60].  Few
neurotoxicity studies reported that Ferric oxide and Copper oxide NPs could cause
a decrease in the nerve cell body accompanied with damages to the dopaminergic
terminal and neuronal vasculature [61, 62].

Mice  (Mus  spp):  Mice  is  a  standard  animal  model  and  is  practiced  for  a  long
time. Mice were first used for biomedical research in 1678 by William Harvey for
reproduction and blood circulation studies. There are hundreds of strains available
for  research.  The  most  common of  them are  C57BL/6  and  BALB/c  mice—the
whole-genome sequencing of the mouse (C57BL/6 strain) completed in 2002. The
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mouse has 85% gene similar to humans. Like a rat, mice also have many research
documents available covering all  human disease models and verified protocols.
Mouse  and  rat  usage  depends  upon  the  study's  requirement.  The  mouse  has  a
slight  edge  over  the  rat  in  terms  of  shorter  life  span,  smaller  size,  abundant
availability of genetically modified strains (CD-1, SCID, A/J, ICR, NOD, C3H,
and many more). The mouse model has been in use for nanotoxicology studies.
The PubMed search “mice as nanoparticle toxicity model” results in 3003 papers
in the last 11years (2010-2021). The tons of data available on the toxicity of NPs
on various human aspects. The toxicity of NP can be observed at a systemic level.
The role of ZnO and TiO2 NPs has been studied on insulin resistance and plasma
glucose  levels  in  mice  [63,  64].  The  single-walled  and  multiwalled  carbon
nanotubes,  when  administered  intravenously,  resulted  in  embryolethal  and
teratogenic  in  mice  [65].  Nickel  NPs  cause  acute  lung  inflammation  and
mechanical injury on prolonged exposure [66]. On exposure to carbon nanotubes
(CNT),  there  was  a  decrease  in  sperm  viability,  and  count,  accompanied  by
damaged testis  in mice [65].  The prime reason for  the cytotoxicity of  NPs was
oxidative stress [67].

Models for Ecotoxicity: The NPs may enter the ecosystem either directly through
nanopesticides  or  indirectly  through  NPs  containing  consumer  products.  It  is
essential to understand the routes of entry and the fate of various nanomaterials in
the  environment,  and  it  is  also  imperative  to  understand  its  harmful  effect  on
organisms, from cells to complex communities. The nanoecotoxicity studies are
challenging as it is sometimes difficult to differentiate whether the nanoparticle is
engineered  or  has  a  natural  origin  (volcanoes,  leaching  by  water  bodies).  The
behavior  of  NPs  varies  with  the  kind  of  media  it  is  interacting  and  the
bioavailability  or  bioaccumulation  at  each  trophic  level.  The  complexicity  of
ecotoxicity  caused  by  nanoparticles'  demands  appropriate  models  for  its  study.
There are many models out of which, few are discussed here briefly.

Artemia  salina:  Artemia  salina,  commonly  known  as  Brine  shrimp,  is  a
microcrustacean that grows in hypersaline environments. The organism is widely
used  in  ecotoxicology  experiments.  The  PubMed  search  “Artemia  salina  as
nanoparticle toxicity model” results in 14 papers in the last 11 years (2010-2021).
It is an entry-level trophic model for aquatic systems. Its cultivation, and the cyst
production  are  easy  in  controlled  lab  conditions.  Artemia-based  assays  and
protocols are also readily available [68]. Studies show that Ag NPs are toxic at
nanomolar  concentration  for  artemia.  The  toxicity  manifest  via  DNA  damage,
apoptosis, and aggregation of nauplii (first larval stage) at the gut region. LC50 for
the  Ag  NP  is  10  nm.  The  exposure  of  Ag  NP  can  cause  mobilization  defects,
oxidative  stress  with  increased  ROS  production  and  decreased  Superoxide
dismutase  expression  [69].
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Daphnia: Daphnia magna and Daphnia galeata are common water flea used in
ecotoxicity studies. Daphnia is a small planktonic crustacean having a size of 0.2-
0.6 mm. It is a member of order Anomopoda. It is a well-established model for
nanoparticle  toxicity  for  the  ecosystem.  The  PubMed  search  “Daphnia  as
nanoparticle toxicity search” results in 90 papers in the last 11years (2010-2021).
The short life span and ease of culture at lab conditions make it an excellent study
model.  It  forms  an  essential  connection  in  the  food  web,  which  is  highly
significant  in  higher  trophic  levels.  This  could  be  a  good  source  of  measuring
ecotoxicity as wild Daphnia from boreal lakes has been reported to shows toxicity
against Ag NPs. In lake conditions, LD50 was ranged between 34-292 μgL-1 [70].
However, in the lab conditions of 48 hrs window, the LD50 range is 27 and 247
μgL-1  [71].  Another  group  showed  that  nanoplastic  could  cause  reproductive
disorder  in  Daphnia  species  [72].

Plants: Plants represent one of the significant trophic levels in the food chain in
any ecosystem. With the increase in usage of nanomaterials in nanopesticide and
other  nanotechnology  enabled  stuffs,  bioaccumulation  and  biomagnification  of
NPs have increased many folds [73, 74]. The nanoparticles come in direct contact
with  the  plant  and  lead  to  absorption  [75,  76].  The  studies  related  to  plant
interaction with nanoparticles are few. Here, the authors will discuss a few plants
used for NP's morphological, physiological, and genotypic toxicological impact.
The  plants  used  for  studies  vary  upon  the  viability  in  the  geographic  location.
Several studies on Cucurbita pepo  (genus Cucurbita) were done as it is easy to
cultivate and maintain. The NPs like multiwalled carbon nanotubes, Ag, Cu, ZnO,
and Si were studied [77]. Except Cu NPs, no other NPs have been found to show
germination defects.  The plant biomass reduces in the presence of Ag NP. The
plant's root length is also a good readout for nanotoxicity. The rare earth oxide
NPs  of  Cerium  (Ce),  Lanthanum  (La),  Ytterbium  (Yb),  Gadolinium  (Gd)  can
cause a reduction of root length in the Lettuce plant [78]. Arabidopsis thaliana, a
weed, is used mainly as a plant model for toxicity studies. A study, assessing the
effects of Ag NPs in A. thaliana, has reported the upregulation of 286 genes and
downregulation  of  81  genes.  The  genes  upregulated  were  generally  related  to
metals  and  oxidative  stress  genes.  The  down-regulated  genes  belonged  to
pathogens and hormonal stimuli [79]. Germination of seeds has also been found
affected  by  Ag  NPs  in  A.thalliana.  The  size  and  mode  of  Ag  NP  availability
affected germination. The 75 μgml-1 Ag NP dose is toxic for seed germination in
soil  but  not  in  hydroponics  culture  [77].  A.cepa  has  also  been  studied  for  the
toxicity  of  TiO2  NPs.  The  exposure  of  6  mM  and  8  mM  TiO2  NPs  caused  a
significant reduction in root elongation [80]. There are several other plant species
which  have  been  studied  for  NP  toxicity.  Triticum  aestivum,  Solanum
lycopersicum, Nigella sativa, Salvia mirzayanii, Alyssyum homolocarpum, Sinapis
alba, and many other plant species have been used for NP toxicity studies [81].

Breaking the Barriers of Nanotoxicological
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FUTURE PERSPECTIVES

The currently used models of nanotoxicity assessments are primarily old models
which were developed even before the term nanotoxicity was coined. However,
they are good enough to serve the purpose of establishing the toxicity paradigm of
currently available NPs, yet their limitations cannot be ruled out as the toxicity
assessments of the NPs have their own challenges due to the distinct behaviours
of various NPs. The models, especially the in vivo ones, are challenging to work
upon, as they differ in setup, regulations, and ethical clearance, which is a long
and time-consuming process. The maintenance can also be an issue as it is quite
costly.  The  reproducibility  of  experiments  and  the  data  is  also  a  significant
concern because it  is challenging to have the same set of model animals which
behave identically. In vitro cellular models do have the answer for such issues as
they are mostly identical, and the culturing and maintenance are relatively cheaper
and easy to handle, but they are far from the actual complex environment of the
animal system, and cannot beat the accuracy and extrapolatability of the toxicity
data  obtained  from animal  experiments.  So  here  it  can  be  inferred  that  both  in
vitro  and  in  vivo  models  do  have  their  pros  and  cons,  and  to  overcome  their
respective  limitations,  there  is  a  need  to  look  for  new  scientifically  validated
model  systems  which  possess  the  ease  of  handling  as  well  as  the  accuracy  for
extrapolation.  The  quest  for  such  futuristic  model  systems  has  resulted  in  few
perspectives  like  lab  or  animal  on  chip  or  the  use  of  artificial  intelligence  in
computational models.

Lab on a Chip/Organ on Chip: Lab-on-chip has been introduced as a means to
mimic  laboratory  experiments  in  miniaturized  conditions.  This  concept  gained
much attention from researchers,  which soon moved up to applications such as
organs-on-chip.  The  organ-chips  are  developed  to  mimic  the  physiological
conditions and mechanical forces that cells experience in the human body. The
chips  are  lined  with  living  human  cells  and  their  tiny  microfluidic  channels
reproduce blood and/or air flow just as in the human body. Microfluidic devices
consist of chambers with inlets and outlet for seeding, culturing, sampling, and
assaying the cells. The chip’s transparency allows the analyst to see the organ’s
functionality, behaviour and response at the cellular and molecular level. Chips
are consistently being developed that cover almost all organs present in the human
body.  Microfluidic  devices  that  are  commercially  available  are  made  up  of
poly(dimethylsiloxane)  (PDMS).  PDMS is  considered  biocompatible  as  it  does
not  have deleterious effects  on cells  and tissues.  It  is  transparent,  permeable to
gases, exhibits low autofluorescence, and is cheaper [82].

Organism on a Chip: Organisms on chips are microfabricated devices capable of
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precisely  manipulating  single  simple  organism  and  their  environment.  It  is
expected  that  these  devices  will  play  a  major  role  in  the  investigation  of
nanoparticle  toxicity  involving  small-scale  model  organisms.  Particularly,  C.
elegans  is  the  first  animal  that  has  been  successfully  grown  in  microfluidic
chamber  due  to  its  small  size  (35–40  mm  in  diameter,  1  mm  in  length).  This
device  offers  several  advantages  over  conventional  approaches  as  they  can:
maintain well controllable micro-environments, create reproducible experimental
conditions, automate tedious experimental protocols and enable high-throughput
studies [83, 84].

Computational Models: Previously mentioned models for toxicity assessments
are both time-consuming and costly. Computational modelling or computational
toxicology  is  an  emerging  alternative  to  the  other  biological  models,  which
applies  advanced  mathematical  and  statistical  approaches  for  analysing  the
available  scientific  data  to  get  an  insight  about  the  mechanisms  by  which  any
toxicant  or  NM causes  the  damages,  and  eventually,  provides  the  capability  of
predicting  the  adverse  outcomes  of  the  NMs/toxicants  in  the  human  and  the
environment  [85].

In the last few decades, scientists and researchers have determined the effects of
various  chemicals  and  toxicants  including  several  NMs  as  well,  using  various
biological models. Recently the majority of such data are made accessible to the
public  through  various  data  sharing  projects  like  Toxicity  Reference  Database
(ToxRefDB) [85, 86]. This vast scientific knowledge is used by the computational
models  which  use  computer  programs  to  simulate  and  study  complex  systems
using  an  algorithmic  approach.  Simulation  is  done  by  adjusting  the  variables
alone  or  in  combination  with  observing  the  results.  The  computational  model
allows researchers to conduct thousands of simulated experiments by computer
[86]. Applications of these models to predictive toxicology will be important in
prioritizing NMs for further testing and uncovering mechanistic information that
is valuable in customizing testing programs for each NM in an informed way and
supporting the risk assessments.  Computational methods also seem likely to be
effective in other areas of the risk evaluation process, especially in estimating the
degree  of  variability  in  response  to  the  human  population,  supporting  more
sophisticated aggregate exposure assessment, and providing a pragmatic approach
to evaluating the risks posed by cumulative exposure to mixtures of compounds
[85].

CONCLUSION

The inception of nanotechnology has instigated a huge spike in the manufacturing
of nanomaterials-based consumer products. Engineered nanoparticles have unique
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properties like small size, large surface to volume ratio, high tensile strength, etc,
which are advantageous to ease our lives, but they could be disadvantageous to
humankind too. There are chances for nanomaterials to pose another threatening
experience as happened with the wide usage of pesticides which created a serious
environmental  nuisance.  It  is  important  to  study  nanomaterials’  mechanism  of
toxicity  and  predict  the  fate  of  those  materials  on  physiological  systems.  The
appropriate  toxicological  models  are  needed  for  studying  the  effects  of
nanomaterials.  In-vitro  cellular  models  are  the  primarily  used  models  for  the
assessment  of  nanotoxicity  at  the  molecular  level.  The  traditional  2D  cultures
comprise  cancerous  cell  lines,  derived  continuous  cell  lines,  stem  cells,  and
primary cell lines. The recently developed 3D cultures like spheroid and organoid
cultures help in better mimicking the actual tissue-like environment, but these in
vitro models lack the systemic complexity of humans, and hence the experimental
results cannot be extrapolated to complete accuracy. To negate this problem, in
vivo models are available, comprising invertebrate and vertebrate organisms that
can  mimic  (wholly  or  partially)  the  human  systemic  complexity.  These  are
established  biological  models,  and  nanotoxicologists  use  them  for  routine
nanotoxicity investigations. The ethical clearance for the use of animal models is
a big challenge for researchers. The usage of animals for toxicity studies needs a
vast  number  of  regulatory  clearances,  thus  posing  an  obstruction  for  efficient
nanotoxicological  studies.  A  few  futuristic  models  like  a  lab  on  a  chip
(microfluidics-based) and animal on-chip are the need of the hour to overcome
these challenges.

Apart from human toxicity, the nanoparticles can be ecotoxic at various trophic
levels. The nanoecotoxicity investigation is very complex and challenging. The
toxicity at different ecosystem levels needs to be investigated thoroughly with the
help of available model organisms like Daphnia and Artemia, and with other plant
models.  Contrary  to  these,  prudently  designed  machine  learning-based
computational or in-silico models might help understand the complex interplay of
nanoparticles and their interaction, bioaccumulation, and the resultant toxicity.

Ultimately the nanotoxicology data obtained by using these model systems will
help  to  formulate  stringent  rules  to  curb  the  indiscriminate  usage  of  the  toxic
NMs, thereby minimizing the toxic effects of such NPs on humans and the overall
Biosphere.
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