

Praise for Web Accessibility Cookbook

Web accessibility can be daunting, but this book is not! Full
of clear examples and explanations, it’s very helpful for
quick answers on what pattern is best to use, with good
explanations for those who want to know more.

—Sara Joy Wallén, Web Developer, Pirate Ship
Software GmbH

This is a much-needed and important book: the way Manuel
explains the foundations of web accessibility is concise and
straightforward and you are left with both practical
solutions to the most common challenges as well as a solid
understanding of what it takes to make any website
accessible.

—Matthias Ott, Independent Web Developer

If the question is “What do I need to know about
accessibility on the web?” the answer is Manuel’s Web
Accessibility Cookbook. This book gets straight into the
code. I particularly like the problem/solution/discussion
structure. The problems are laid out succinctly, and I
appreciate being told why I should care before we get into
the details of solving things with code. You can tell me that
links should be underlined, but I’ll actually listen when you
tell me that a fellow human being with low vision can have
trouble distinguishing links from regular text and
underlining solves it. I always want to know the problem
first and the literal structure of this book enforces that.

—Chris Coyier, CodePen, ShopTalk

I wish I’d had this book when I got started in accessibility.
To build accessible websites, you need to understand how
people use the web and get the implementation details right.
This book combines the two with focused, hands-on advice.
It is the perfect companion to formal accessibility standards.

—Hidde de Vries, Freelance Accessibility
Specialist

Web Accessibility Cookbook helps demystify web
accessibility through practical recipes for developers of all
levels. Bridging coding and human-centered design, it
fosters inclusiveness in every project—a must-read for those
committed to digital accessibility and to building a more
equitable world.

—Carie Fisher, Senior Accessibility Program
Manager, GitHub

Web Accessibility Cookbook is like a helpful and
knowledgeable colleague, providing just the right amount of
information and explanation for all your accessibility
questions. It’s a deeply pragmatic book, and whether you are
a new developer or a seasoned expert, Manuel has created a
reference you’ll want to keep close to hand as you develop
for the web.

—Rachel Andrew, Content lead, Chrome
Developer Relations, Google

Web Accessibility Cookbook

Creating Inclusive Experiences

Manuel Matuzović

Web Accessibility Cookbook

by Manuel Matuzović

Copyright © 2024 Manuel Matuzović. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or
sales promotional use. Online editions are also available for
most titles (http://oreilly.com). For more information, contact
our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn

Development Editor: Sarah Grey

Production Editor: Aleeya Rahman

Copyeditor: Dwight Ramsey

Proofreader: Stephanie English

Indexer: BIM Creatives, LLC

http://oreilly.com/

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

June 2024: First Edition

Revision History for the First Edition

2024-06-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098145606
for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media,
Inc. Web Accessibility Cookbook, the cover image, and related
trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do
not represent the publisher’s views. While the publisher and
the author have used good faith efforts to ensure that the
information and instructions contained in this work are
accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of

http://oreilly.com/catalog/errata.csp?isbn=9781098145606

or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

978-1-098-14560-6

[LSI]

Dedication

For Vera, Sne, Claudi, Hanni, Olivi, and Phili

Foreword

Are you looking for a book that explains why you should care
about web accessibility?

This is not that book.

Manuel Matuzović has too much respect for your intelligence to
waste time trying to convince you of something you already
know. You already know that web accessibility is important.

What you really need is a guidebook, a handy companion to
show you the way through a tangled landscape.

This is that book.

If you want, you can read it cover to cover. That’s what I did,
and I enjoyed every moment of the journey.

But you might not have time for that. That’s okay. The way that
this book is subdivided means you can deep into any chapter
and it will make perfect sense by itself. It really is like a
cookbook. Every chapter is like a standalone recipe.

Whether you read this book linearly or dip in and out of it is up
to you. Either way, Manuel is going to massage your brain until

something new takes shape in there. An understanding. Not just
an understanding of web accessibility, but of the very building
blocks of the web itself.

See, that’s the sneaky trick that Manuel has managed with this
book. It’s supposed to be an accessibility cookbook but it’s also
one of the best HTML tutorials you’ll ever find. Come for the
accessibility recipe; stay for the deep understanding of markup.

Best of all, Manuel manages to do all this without wasting a
word. Again, he has too much respect for you to waste your
time. The only unnecessary words in your Accessibility
Cookbook are the ones you’re reading now. So I’m going to
follow Manuel’s example, respect your time, and let you explore
this magnificent book for yourself.

Enjoy the journey!

Jeremy Keith

Co-founder of Clearleft and author of HTML5 For Web Designers

Brighton, England

February 2024

jeremy@adactio.com

mailto:jeremy@adactio.com

Preface

A few years ago, I gave a talk about web accessibility at a
meetup. Afterward, one of the attendees asked me why I
specialize in accessibility: is it because I or someone close to me
has a disability? When I answered “No,” they looked at me in
surprise. They didn’t understand how someone not personally
affected could be interested in making accessible websites. I
explained that it’s because I care about people and about
quality.

As developers, we deal with practical challenges every day.
Often, we’re so focused on the technical part of development
that we forget the real purpose of our jobs. It’s not solving
technical issues; it’s building products for human beings. What
we do is very technical at its core, but the consequences of our
decisions are very human: they strongly affect people’s lives,
their access to information, and their participation in society.

Just like people have different preferences, needs, abilities,
disabilities, and habits, their approaches to accessing and
consuming web content are also different. From the moment I
understood that, making websites accessible wasn’t merely an
option for me: it became mandatory. Caring about accessibility

means accounting for diversity and, thus, providing access to as
many people as possible. That sounds obvious (because it is!),
but sometimes, it’s necessary to state the obvious to embrace it.

What makes accessibility technically interesting, besides its
human nature, is its complexity, range, and interrelationship
with other disciplines on the web. To make accessible websites,
you need a core knowledge of user interface (UI) design, user
experience (UX), usability, performance, content strategy,
search-engine optimization (SEO), and security. A website with
poor performance is inaccessible, bad UX usually means bad UX
for everyone, poorly written HTML is bad for SEO and
accessibility, and so on.

Accessibility doesn’t just touch on the different disciplines of
web development and design–it inherently connects them.
Therefore, doing it well requires knowledge and interest in a
broad range of disciplines. That’s challenging, and many web
developers see accessibility as a daunting burden. However,
clearing that hurdle can be exciting and gratifying, no matter
what stage you’ve reached in your career.

This book bridges the gap between the technical nature of web
development and its impact on human beings. More than 70
recipes describe how to build the most common patterns on the

web accessibly. Each chapter outlines problems, provides
solutions written in code, and explains how different pathways
might affect users. You will learn how to write accessible
frontend code and, most importantly, why you should. In the
end, web accessibility will be less obscure to you and you’ll be
equipped to build and test your own accessible solutions.

My goal with the Web Accessibility Cookbook is to make you as
excited about accessibility as I am and to give you the right
tools to make the web a more inclusive place for everyone.

Who This Book Is For

This book is for anyone who writes frontend code: frontend
developers, UX engineers, full stack and backend developers. It
doesn’t matter if you’re new to web development or have been
writing HTML, CSS, and JavaScript for over a decade.

You want to learn how to structure pages and components with
HTML and how semantic elements affect user experience. You
know CSS and want to learn how to style your websites in a way
that serves your users. You are interested in ARIA and how to
use it efficiently to improve the experience of interactive
components written in JavaScript.

The Web Accessibility Cookbook provides everything you need
to know to create accessible sites, pages, and components. It
starts at a high level, explaining how to structure documents,
then zooms in to discuss general topics like using links, buttons,
tables, and forms in depth. There is a strong focus on HTML
because it’s the foundation of any accessible website, but the
book also contains many components powered by JavaScript,
like toggles, accordions, modals, filters, and navigations.

This book is for you if you want to not just copy and paste
solutions, but really understand how they work and how they

benefit your users.

What’s in This Book/Organization

The Web Accessibility Cookbook focuses on the technical side of
web accessibility. You’ll learn how to build common patterns
written accessibly in HTML, CSS, and JavaScript. You’ll also start
to understand how good and bad practices affect people,
especially those with disabilities. The book doesn’t discuss the
medical, social, or socioeconomic aspects of accessibility. It
covers a variety of disabilities, like visual, motor, and learning
disabilities, but not all of them, which would go beyond the
constraints of this book. If you want to learn more about
accessibility and the intersection between accessibility and
technology, you may want to have a look at the following titles:

Accessibility for Everyone by Laura Kalbag
Disability Visibility edited by Alice Wong
Against Technoableism by Ashley Shew
More recommendations on a11yproject.com

Each chapter in this book stands on its own. You can read it
from start to finish or jump directly into a specific topic. I’ve
picked the problems and solutions based on my personal

https://oreil.ly/p9QfB
https://oreil.ly/_X2ib
https://oreil.ly/H1QuU
https://oreil.ly/vK8aR

experience auditing websites. Each recipe is oriented toward
practicality and contains common frontend patterns and
solutions for typical issues. You’ll find references to other
recipes and further resources as well.

Here is a brief overview of the content.

Chapter 1 focuses on those parts of your websites that recur
and are similar or identical on every page. You will learn how
to set up the <head> and create a base structure in the
<body> .

In Chapter 2, you leave the base structure of your website and
move into the page itself. The foundation of a well-designed
page is grouping elements, landmarks, and headings. You learn
how to use <section> , <nav> , or <article> efficiently and
how to combine them with headings to create a sound
document outline.

Hyperlinks are the basis of the World Wide Web. That is why
Chapter 3, which is all about linking content, is one of the
book’s most extensive chapters. It analyzes the characteristics
of the <a> element and helps you apply it efficiently. You’ll
learn how to link different types of content, images, and groups
of elements. One recipe focuses on client-side routing and what

to consider when linking pages in a single application. Another
addresses how to visually style links.

Chapter 4 is similar to the previous chapter, except that it puts
the <button> element in the spotlight. You’ll learn different
techniques for labeling buttons and how to use them with the
most common ARIA attributes.

In Chapter 5, we move from HTML to CSS and discuss color,
contrast, animation, units, and sizes. You’ll learn how to write
CSS in a way that respects users’ preferences.

Keyboard accessibility is an important topic in this book.
Chapter 6 outlines everything you need to know about focus
styling, focus management, and DOM order.

Almost every website has a main navigation. Chapter 7 dissects
a typical site navigation and explains every part in detail,
explaining why certain semantic elements can be useful for
screen reader users. You’ll learn how to create responsive
navigation with submenus and understand the difference
between navigations and menus.

There are different ways of hiding content in CSS and HTML.
Chapter 8 discusses their pros and cons. You’ll learn how to
create disclosure widgets and accordions. The chapter also

compares the native <details> element with custom
solutions.

Chapter 9 focuses on a complex topic: forms. It starts with
general best practices for creating forms and gets more specific
with every recipe. You’ll learn the most important aspects of
form design: labeling, description of form elements, error
management, and grouping.

In Chapter 10, you’ll learn how to build a filter form from start
to finish. You’ll also be introduced to dynamic feedback for
screen reader users, pagination, and sorting.

Tables are misused so much that many developers are afraid of
working with them. Chapter 11 demystifies the <table>
element and presents best practices and guidance for using it. It
also explains how to sort tables and combine them with
interactive elements.

Custom elements are an exciting standard and, paired with
other APIs, a powerful tool for creating web components.
Chapter 12 explains everything you must consider regarding
accessibility when working with them.

Trust is good; control is better. Chapter 13 introduces you to
automatic testing and debugging tools that help you identify,

debug, and fix accessibility issues.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed
literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied
values or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Using Code Examples and Supported
Software

Code samples for every recipe are available at accessibility-
cookbook.com and on GitHub.

The following operating systems, browsers, and screen readers
were used when developing and testing the code samples for
this book:

macOS 13.4.1
Android 13
Windows 11

https://www.accessibility-cookbook.com/
https://oreil.ly/matuzo

Chrome 121
Safari 16.5.2
Firefox 122
VoiceOver on macOS and iOS
TalkBack on Android
NVDA 2023.3.2
JAWS 2023.2307.37

If you have a technical question or a problem using the code
examples, please send email to support@oreilly.com.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several
chunks of code from this book does not require permission.
Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book
and quoting example code does not require permission.
Incorporating a significant amount of example code from this
book into your product’s documentation does require
permission.

mailto:support@oreilly.com

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and
ISBN. For example: “Web Accessibility Cookbook by Manuel
Matuzović (O’Reilly). Copyright 2024 Manuel Matuzović, 978-1-
098-14560-6.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and business
training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-depth
learning paths, interactive coding environments, and a vast
collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

mailto:permissions@oreilly.com
https://oreilly.com/
https://oreilly.com/

How to Contact Us

Please address comments and questions concerning this book to
the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-827-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata,
examples, and any additional information. You can access this
page at https://oreil.ly/web-accessibility-cookbook.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/web-accessibility-cookbook
https://oreilly.com/
https://linkedin.com/company/oreilly-media

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments

I wouldn’t have thought of writing a book on my own.
Somehow, Amanda Quinn found me and convinced me to
embark on this adventure. I’m grateful for that, because writing
this book was an experience I wouldn’t have wanted to miss.
With Amanda came Sarah Grey into my life as an author. She is
an editor, as one would wish. She managed to deal with my
chaotic scheduling and keep me on track without putting me
under pressure. Her feedback was always clear and
constructive, which shaped this book and helped me improve
as a writer.

How do you know if the thousands of words you’ve written
made any sense? If you have great technical reviewers, they
will tell you—mine were extraordinary. Adrian Roselli, James
Scholes, Joschi Kuphal, Lea Rosema, Matthias Ott, Sara Joy
Wallén, and Sonja Weckenmann challenged my recipes and
asked the right questions to help me improve them.

My knowledge about accessibility didn’t come from just
anywhere. I learned everything I know from smart, skilled, and

https://youtube.com/oreillymedia

talented people like Adrian Roselli, Alice Boxhall, Bruce
Lawson, Carie Fisher, Dennis Lembrée, Eric W. Bailey, Eric
Eggert, Heydon Pickering, Hidde de Vries, Joschi Kuphal, Karl
Groves, Kitty Giraudel, Leonié Watson, Marco Zehe, Marcy
Sutton, Scott Vinkle, Steve Faulkner, Rian Rietveld, Rob Dodson,
Scott O’Hara, Val Head, and many more.

My mentor, Aaron Gustafson, taught me a lot, guided me in the
right direction, and helped me build the confidence to blog and
speak. Vitaly Friedman and the Smashing Magazine team, Marc
Thiele from beyond tellerrand, and all the other conference
organizers gave me access to a larger audience and allowed me
to grow.

This book wouldn’t exist without the Austrian accessibility
scene. People like Jo Spelbrink, Maria Putzhuber, Wolfram
Huber, and Wolfgang Leitner inspired and supported me in my
early days and helped me evolve. They taught me about web
accessibility, introduced me to the scene, and gave me a stage at
the A-Tag conference. Michael Rederer put a lot of trust in me,
guided me, and helped me become more professional. Werner
Rosenberger enabled me to improve my accessibility testing
skills.

My friends all over the world, with whom I’ve spent endless
hours writing and talking about web accessibility on social
media, via email, and at conferences, are the reason I enjoy
sharing content and keep doing it. My friend and former office
colleague Bernhard Steinbrecher unknowingly helped me build
the confidence to write.

Finally, I want to thank the people who always trusted me and,
by doing that, made the most significant contribution to this
book: my mother Vera, my sister Sne, my fiancée Claudi and our
wonderful little girls, Johanna, Olivia, and Philippa. You are
everything to me and the reason this book exists.

Chapter 1. Structuring Documents

This book focuses on writing accessible components, but
accessibility begins at the very first line of your HTML
document. Your components live on a page, and your page is
part of a document. Several elements, especially in the <head>
of your document, affect accessibility.

1.1 Define the Natural Language

Problem

If a page doesn’t contain an explicit definition of the natural
language it’s written in, software may not be able to translate
content correctly. The term natural language refers to the
language you use for the content on the page, not the
programming language. This lack of information can result in
faulty translations, wrong formatting, and content being hard
to understand for screen reader users.

Solution

You can define the natural language of a page by using the
lang attribute on the <html> element. See Example 1-1.

Example 1-1. English defined as the natural language of the
page

<!DOCTYPE html>

<html lang="en">

</html>

You can also define a specific dialect of the base language. See
Example 1-2.

Example 1-2. British English defined as the natural language
of the page

<!DOCTYPE html>

<html lang="en-GB">

</html>

The lang attribute is global, meaning you can use it on any
element, although it may not affect some of them. It can be
helpful if a page is written in one language but contains text
passages or even single words in other languages. See
Example 1-3.

Example 1-3. Transliterated Japanese in Latin script used on
a page written in English

<!DOCTYPE html>

<!DOCTYPE html>

<html lang="en">

 <head></head>

 <body>

 <p>

 The Wind-Up Bird Chronicle (<span lang="ja

) is a novel published in 1994 by Ja

 </p>

 </body>

</html>

Use the lang pseudoclass to adjust the typography and layout
for specific languages. See Example 1-4.

Example 1-4. Selecting all elements in the Serbian language

:lang(sr) {

 font-family: 'Cyrillic font', sans-serif;

}

Discussion

Assistive technology and other software may not be able to
determine the natural language of a page automatically. Certain
features in HTML and Cascading Style Sheets (CSS) rely on that
information to help localize software content and provide an

excellent overall user experience. You must set the language of
each page programmatically and explicitly by using the lang
attribute on the <html> element, as shown in Example 1-1. For
passages of text written in a different language than the
primary language of the page, you can also use the attribute, as
shown in Example 1-3. That allows screen readers to improve
pronunciation by switching voice profiles accordingly for
certain words or sentences. Try to do this sparingly because
switching voice profiles can be annoying because it interrupts
the reading flow. For well-established foreign words, it might
not be necessary. Examples in German are English words like
“Download,” “Workshop,” or “Link.”

Usage

The value of the lang attribute must be a valid BCP 47
language tag, composed from one or more subtags. A subtag is a
sequence of alphanumeric characters distinguished and
separated from other subtags by a hyphen.

The language subtag is a 2- or 3-character code that defines the
primary language: for example, en for English, de for
German, or fr for French, as shown in Example 1-5.

Example 1-5. Spanish defined as the natural language of the
page

https://oreil.ly/Rrknq

<html lang="es"></html>

The optional script subtag is a 4-character code that defines the
writing system used for the language, as shown in Example 1-6.

Example 1-6. A name in Cyrillic script next to the same
name in Latin script marked as such

Никола Јокић (Nikola Jokić</

The optional region subtag is usually a 2-character country code
written in all caps and defines a dialect of the base language, as
shown in Example 1-7.

Example 1-7. Austrian German defined as the natural
language of the page

<!DOCTYPE html>

<html lang="de-AT">

</html>

You should use the 2-character primary language code and add
region subtags only when it is necessary to differentiate content
in different dialects that may not be mutually understandable.
At least for screen reader users, not adding region subtags

https://oreil.ly/T6KCv

shouldn’t make a difference because they’re typically ignored
by the software.

You can find a list of all tags and subtags in the BCP 47 language
subtag lookup.

Benefits

The lang attribute is powerful and affects many aspects of
web accessibility and user experience in general. These include:

Assistive technology

Speech synthesizers that support multiple languages adapt their
pronunciation and syntax to the language of the page, speaking
the text in the appropriate accent with proper pronunciation.
For a page with German content where the language of the page
is set to English (lang="en"), the screen reader software may
pick an English synthetic voice profile and read the German
text with English pronunciation. If you set no language, screen
readers may fall back to the users’ default system setting, which
might not be appropriate. The result can be hard to understand,
confusing, or even completely wrong. All screen readers
support numerous languages. Some software switches language
automatically, while for others users have to install and
configure language voices or packs manually.

https://oreil.ly/FVBa6
https://oreil.ly/zOEkA

The attribute definition also allows Braille translation software
to optimize the output and prevent it from erroneously creating
Grade 2 Braille contractions.

Translation

Translation tools like Google Translate use the information
from the lang attribute to translate content on the page. While
this kind of software is usually good at automatically detecting
the language of the page, a mismatch between the actual
language and the defined language can yield unexpected and
unwanted translations.

Quotes

Quotation marks may change depending on the natural
language of the page. For example, English uses different
quotation marks than German or French, and the correct lang
helps browsers pick the proper glyphs, as illustrated in
Examples 1-8, 1-9, and 1-10.

Example 1-8. Automatic quotation marks using the <q>
element in English

<p lang="en">

 <q>A quote in English.</q>

https://oreil.ly/PsMY9
https://oreil.ly/81h1v

</p>

<!-- Results in: “A quote in English.” -->

Example 1-9. Automatic quotation marks using the <q>
element in German

<p lang="de">

 <q>Ein Zitat auf Deutsch.</q>

</p>

<!-- Results in: „Ein Zitat auf Deutsch.“ -->

Example 1-10. Automatic quotation marks using the <q>
element in French

<p lang="fr">

 <q>Une citation en français.</q>

</p>

<!-- Results in: « Une citation en français. » -

Hyphenation

lang may affect hyphenation in CSS. See Example 1-11.

https://oreil.ly/I7gO6

Example 1-11. A paragraph with a maximum width of 28
characters and hyphenation turned on

p {

 max-width: 28ch;

 hyphens: auto;

}

In Examples 1-12, 1-13, and 1-14, you can see how the same
paragraph written in German, given a different lang attribute
value, renders differently in Google Chrome. Words either don’t
break at all or break at different positions. Only the first and the
second examples are correct. It’s worth noting that browsers
behave differently.

Example 1-12. Correctly hyphenated German text in a
paragraph defined as German

<p lang="de">

 Weit hinten, hinter den Wortbergen, fern der Lä

 leben die Blindtexte. Abgeschieden wohnen sie i

 des Semantik, eines großen Sprachozeans. Ein kl

 fließt durch ihren Ort und versorgt sie mit den

</p>

<!-- Results in:

 Weit hinten, hinter den Wortbergen,

, g ,

 fern der Länder Vokalien und Konso-

 nantien leben die Blindtexte. Abge-

 schieden wohnen sie in Buchstab-

 hausen an der Küste des Semantik,

 eines großen Sprachozeans.

-->

Example 1-13. No hyphenation of German text in a
paragraph defined as English

<p lang="en">

 Weit hinten,…

</p>

<!-- Results in:

 Weit hinten, hinter den Wortbergen,

 fern der Länder Vokalien und

 Konsonantien leben die Blindtexte.

 Abgeschieden wohnen sie in

 Buchstabhausen an der Küste des

 Semantik, eines großen

 Sprachozeans.

-->

Example 1-14. Wrong hyphenation of German text in a
paragraph defined as French

<p lang="fr">

 Weit hinten,…

</p>

<!-- Results in:

 Weit hinten, hinter den Wortbergen,

 fern der Länder Vokalien und Konso-

 nantien leben die Blindtexte. Abges-

 chieden wohnen sie in Buchstabhau-

 sen an der Küste des Semantik, eines

 großen Sprachozeans.

-->

Font selection

Browsers may select language-appropriate fonts for displaying
details in ideographic characters that vary from language to
language, such as Chinese, Japanese, and Korean (known as the
“CJK languages.”)

Search Engine Optimization (SEO)

Properly defining the natural language can improve the quality
of search results by helping search engines with localization.

Form controls

https://oreil.ly/MzUxW

In some browsers, the lang attribute also affects the
formatting in form controls. For example, Firefox shows the
correct decimal characters in number input fields depending on
the language.

1.2 Describe the Document

Problem

Screen reader users navigating a website can’t always tell
which page they’re on. They may not understand what a page is
about or notice that content has changed if the page’s title isn’t
set correctly.

Solution

You can name pages using the <title> element in HTML. The
title must be unique and must describe the topic or purpose of
each page concisely. See Example 1-15.

Example 1-15. A succinct and descriptive page title

<!DOCTYPE html>

ht l l " "

<html lang="en">

 <head>

 <title>Products - Johanna’s Toy Store</title>

 </head>

</html>

For social media previews, you can optionally use an open
graph meta tag to include more or different information, as
shown in Example 1-16.

Example 1-16. A catchier page title for social media
previews

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Products - Johanna’s Toy Store</title>

 <meta property="og:title"

 content="Find dolls, toy cars, and more

 </head>

</html>

Adding context depending on the state of the page can be
helpful (see Examples 1-17, 1-18, 1-19, and 1-20).

https://ogp.me/

Example 1-17. The title includes the current step and the
total number of steps in a checkout process

<title>Checkout (step 3 of 4) - Johanna’s Toy Sto

Example 1-18. Number of validation errors in the title of a
sign up page

<title>2 errors - Sign Up - Johanna’s Toy Store</

Example 1-19. Number of results in a search page’s title

<title>21 results for term “crocodile” - Johanna

Example 1-20. The title indicating the current search results
page

<title>Page 2 - Product Search Results - Johanna

Discussion

Sometimes it takes work to get oriented on a website, such as
when users land on a page coming from an external resource

like a search engine or if page changes happen unexpectedly or
unannounced. That’s especially true for single-page
applications (SPAs), where page navigation works differently
from most sites.

The page’s title is one of the essential elements in an HTML
document, and users benefit from a well-formed and
descriptive page title.

Screen reader users can use shortcuts to announce the page
title. For example, if they click a link in an SPA and content
changes, but there’s no announcement that changes have
happened, they can use a shortcut to get oriented and check if
they’ve landed on a different page. You can try it yourself by
using one of the shortcuts in Table 1-1.

Table 1-1. Different ways to announce the page title with screen readers.

Screen
reader

Command Announcement

JAWS Ins + T Page title

NVDA Ins + T Page title

VoiceOver
macOS

VO + Shift
+ I

Page summary, including
page title

VoiceOver
macOS

VO + F Page title

NOTE

By default, VO stands for the combination of pressing Control and Option at the
same time in VoiceOver on macOS. Alternatively, you can map VO to Caps Lock in
the VoiceOver Utility settings.

There are other reasons for writing good page titles: they serve
as labels for bookmarked pages/favorites, and search engines
use the title in their results pages. Social media sites, chat and
mail applications, and similar software use the title in link
previews when no other title is specified. Please note that the
open graph meta tag shown in Example 1-16 is no alternative to

https://oreil.ly/Tjgiv

the <title> element. Whether a site or application interprets
the open graph title is up to the site. Ideally, the native title’s
content should be good enough to serve all purposes.

There are several best practices you should follow when writing
page titles:

The title must be unique

The <title> serves as the label in tabs or browser windows.
Unique titles help to distinguish one page from the other if
multiple tabs of the same site are open. A common issue is that
the title is the same on all pages (see Example 1-21). The result
is shown in Figure 1-1.

Example 1-21. Bad practice: Three different pages with the
same title

<!-- products.html -->

<title>Johanna’s Toy Store</title>

<!-- team.html -->

<title>Johanna’s Toy Store</title>

<!-- contact.html -->

<title>Johanna’s Toy Store</title>

Figure 1-1. It’s impossible to tell these pages apart by looking at the tabs

Use unique titles to communicate the purpose of the page and
improve orientation (see Example 1-22 and the result in
Figure 1-2).

Example 1-22. Three different pages, each with a unique
title

<!-- products.html -->

<title>Products - Johanna’s Toy Store</title>

<!-- team.html -->

<title>Our Team - Johanna’s Toy Store</title>

<!-- contact.html -->

<title>Get in Touch - Johanna’s Toy Store</title>

Figure 1-2. By looking at the tabs, you can tell what each page is about

That applies to websites with multiple pages but also to SPAs.
You might have to take extra steps in an SPA, but if the user
navigates to a different route, the page title must change as

well. Hidde De Vries explains how to do that in “Accessible page
titles in a Single Page App”.

The title should be concise

The title should be concise and should accurately describe the
purpose of the page. It’s the first information a screen reader
user gets when they’re accessing a page. They don’t need a
detailed summary of the page’s content, but a succinct
description.

Another reason to constrain the length of the title is that it
usually gets cut off in search result pages at a certain character
length (approximately 50 to 60 characters).

The title should be descriptive

When you title a page, do it with the user in mind. While SEO is
important, the user experience is much more important. The
title should describe the page’s purpose and must not include
marketing or SEO terms solely to improve page rankings.

The relevant information comes first

The title should start with the page’s name, followed by the
name of the site, company, or organization, as shown in

https://oreil.ly/BD70g

Example 1-15. Putting the relevant information first reduces
repetition for screen reader users who visit multiple pages on a
site, because they get the unique page-specific details first. This
way of arranging content makes scanning and identifying pages
easier when numerous tabs are open, as shown in Figure 1-3.

Figure 1-3. The name of the page is the first information in the browser’s tab

Don’t put the organization’s name first (as in Example 1-23)
because the relevant information might get cut off, as you can
see in Figure 1-4.

Example 1-23. Bad practice: Name of the site followed by the
name of the page

<title>Johanna’s Toy Store - Products</title>

Figure 1-4. With the name of the site as the first information in the browser’s tab, in
some cases the name of the page is cut off

Context-dependent information

Sometimes it’s helpful to add context or additional information.
For example, if you split a page into multiple steps, the title
should include the current step. Example 1-17 shows the title of
the third of four steps in a checkout process. If there are
validation errors in a form, you can indicate the number of
errors (see Example 1-18). For search result pages, you can add
the number of results or the current page, as shown in
Examples 1-19 and 1-20.

1.3 Set the Viewport Width

Problem

Sometimes users want to zoom into a page because they can’t
read the text or want a closer look at something. They can’t do
that if the viewport settings prohibit zooming. That is especially
problematic for people with low vision.

Solution

Configure the viewport meta tag in a way that allows for the
most flexibility. Avoid restrictive settings.

The meta tag in Example 1-24 works for most websites and
web apps. It’s all you need to configure viewport settings to
build a flexible, adaptive, responsive website.

Example 1-24. The page uses the available width of the
device as the width for the viewport

<meta name="viewport" content="width=device-width

There are specific properties or values you should avoid.

Setting the value of the width property to anything other than
device-width can cause problems. If the defined width of the
viewport is larger than the available width on the screen,
content may overflow, resulting in horizontal scroll bars.
Example 1-25 applies an explicit viewport width.

Example 1-25. Bad practice: Width of the viewport set to an
absolute value

<meta name="viewport" content="width=500, initial

maximum-scale allows you to limit the maximum zoom level,
which is 10 by default in most browsers. If you set it to 1 ,
you’re disabling zoom in some browsers (see Example 1-26).

Example 1-26. Bad practice: Zoom disabled by setting the
maximum scale to 1

<meta name="viewport" content="width=device-width

The setting user-scalable defines whether zooming is
allowed. Setting it to no or 0 disables zoom, as shown in
Example 1-27.

Example 1-27. Bad practice: Zoom disabled by setting user-
scalable to “no”

<meta name="viewport"

 content="width=device-width, user-scalable=

Discussion

Users must be able to customize their browsing experience
based on their preferences and needs. Browsers offer different
settings and features to support that. The ability to set larger
font sizes or zoom in on the page is essential, but many
websites disallow zooming on handheld devices.

Before responsive web design became a thing, websites were
designed for large viewports, often using fixed width values like
960px or 1024px for the body or main content of the page.
With the rise of smartphones and other handheld devices, this
became a problem because pixel widths of the screens on these
devices were usually much smaller than 960px . The initial
containing block, the rectangle in which the root element
(<html>) lives, has the dimensions of the viewport. If the page
is larger than the viewport, this can result in unintended layout
wrapping, clipped content, and unpleasant scrollable bounds.
That’s why mobile browsers generally use a fixed width
(typically 980px to 1024px) for the initial containing block.
The resulting layout is then scaled down to fit the available
screen space. That mitigates the issues, but it also means that
the CSS pixel size on these pages will be much smaller, forcing
users to zoom in.

On responsive websites, that’s not an issue, since they’ve been
built to work well on assorted viewports. However, you have to
change the fixed width of the containing block on mobile
devices to a width relative to the viewport’s dimensions to work
well with responsive designs. You can do that by using the
viewport meta tag, as illustrated in Example 1-24.

https://oreil.ly/is5JO
https://oreil.ly/D5o8l

width=device-width sets the viewport’s width to the device’s
available width.

initial-scale=1 ensures that the default zoom level is at
100%. This might not always be the default in all browsers.
That’s why I recommend setting it explicitly.

The fact that a page is responsive and optimized for small
viewports doesn’t mean users won’t want to zoom. Adrian
Roselli lists several reasons the ability to zoom is essential in his
article “Don’t Disable Zoom”:

The text may be too small for the user to read.
The user may want to see more detail in an image.
Selecting words to copy/paste may be easier for users when
the text is larger.
The user wants to crop animated elements out of the view to
reduce distraction.
The developer did a poor job of responsive design, and the
user needs to zoom just to use the page.
There is a browser bug that causes the default zoom level to
be odd.
It can be confounding for users when the browser interprets
a pinch/spread gesture as something else.

https://oreil.ly/jBgOn

Websites disabling zoom is a prevalent issue. According to the
Accessibility chapter of the 2022 Web Almanac, 23% of desktop
home pages and 28% of mobile home pages attempt to disable
zoom. The report’s author uses the term attempt, because some
browsers, like Safari on iOS or Samsung Internet on Android,
ignore the maximum-scale=1 and user-scalable=no
properties. Chrome and Firefox don’t, but users can force zoom
in their browser settings. In Firefox, find the browser settings,
select “Accessibility,” and activate “Zoom on all websites.” In
Chrome, find the browser settings, select “Accessibility,” and
check “Force enable zoom.”

Justified reasons to disable zoom

On the average website, there’s no good reason to turn off
zoom. The same applies for app-like websites that resemble
native apps. There are rare exceptions where the gestures for
zooming would interfere with the website’s functionality. An
example would be a site that contains only an interactive map.
If that’s the case, it might be okay to disable the native zoom
feature, but you must provide an alternative custom solution.

1.4 Optimize Rendering Order

https://oreil.ly/7X03l
https://oreil.ly/FSCDM

Problem

The head of a document can contain various elements that
serve different purposes: meta tags, scripts, links to other
resources, and more. They can be in any order, but certain
elements should come before others to ensure good loading
performance. Inefficient asset loading prevents users from
obtaining information quickly, if at all.

Solution

Web performance expert Harry Roberts suggests a specific
order of elements within the <head> to ensure the best
possible loading strategy, as shown in Example 1-28.

Example 1-28. The ideal order of elements in the <head>

<head>

 <!-- Character encoding -->

 <meta charset="UTF-8">

 <!-- Viewport meta tag -->

 <meta name="viewport" content="width=device-wid

 <!-- CSP headers -->

 <meta http-equiv="Content-Security-Policy" cont

https://oreil.ly/CLv7F

p q y y

 <!-- Page title -->

 <title>Johanna’s Toy Store</title>

 <!-- preconnect -->

 <link rel="preconnect" href="#" />

 <!-- Asynchronous JavaScript -->

 <script src="" async></script>

 <!-- CSS that includes @import -->

 <style>

 @import "file.css";

 </style>

 <!-- Synchronous JavaScript -->

 <script src=""></script>

 <!-- Synchronous CSS -->

 <link rel="stylesheet" href="#">

 <!-- preload -->

 <link rel="preload" href="#" />

 <!-- Deferred JavaScript -->

 <script src="" defer></script>

 <script src="" type="module"></script>

 <!-- prefetch / prerender -->

 <link rel="prefetch" href="#" />

 <link rel="prerender" href="#" />

 <!-- Everything else (meta tags, icons, open g

 <meta name="description" content="">

</head>

Discussion

There are different fields within web design and development,
like accessibility, usability, user experience, performance, and
security. They all focus on different things, but they’re not
mutually exclusive. Accessibility, for example, overlaps with all
of them. Improving the accessibility of form fields may result in
a better user experience for everyone. If a website loads slowly,
it affects users’ experience and accessibility. A website that
loads for too long or not at all on a slow connection is not
accessible. Designing and building accessible websites means
creating inclusive experiences without barriers that prevent
people from interacting with the web. These barriers include
physical, temporary, and situational disabilities and
socioeconomic restrictions on hardware, bandwidth, and speed.

https://oreil.ly/Pnx3f

Getting the order of elements in the <head> right affects
performance in general, but it also affects the rendering of
specific elements that may contain critical information for
users of assistive technology. HTML is parsed line by line, which
means that a browser doesn’t know that line 4 exists when line
3 hasn’t finished parsing. If something blocks rendering early in
a document, subsequent lines have to wait until the browser
has finished parsing preceding lines. That makes the correct
order of elements in the <head> crucial to web performance
and accessibility.

Performance experts suggest several rules and optimizations,
including:

If something doesn’t have to be in the <head> , remove it or
put it in the <body> . That includes low-priority scripts,
redirects, or any unnecessary payload.
Self-host as much as possible and don’t rely on third-party
content delivery networks (CDNs). Harry Roberts explains
why in his article “Self-Host Your Static Assets”.
Validate your HTML code, because invalid elements in the
<head> can cause performance problems.
Metadata about the page, like character encoding and
information about the viewport, go first.
Nothing render-blocking must come before the <title> .

https://oreil.ly/JuWNH
https://oreil.ly/5MMGn

Synchronous JavaScript comes before CSS, because CSS
blocks the execution of subsequent JavaScript.
Avoid @import in CSS.
SEO and social meta tags go last.

Harry Roberts has created a CSS file called ct.css, also available
as a bookmarklet, that you can use to run tests against your
<head> elements (see Figure 1-5).

Figure 1-5. ct.css displaying messages on a page after running tests

1.5 Structure the Document

https://oreil.ly/-VZOh

Problem

If a page doesn’t contain enough semantic regions, users might
not be able to understand how it’s structured. That lack of
semantic markup prevents them from using shortcuts to
navigate more efficiently.

Solution

Use landmarks: regions that represent the organization and
structure of a web page. They usually identify areas the user
may want to access quickly.

Chapter 2, “Structuring Pages” focuses on page regions, but
there are also common landmarks you will use across your site,
like <header> , <main> , and <footer> . Every element in the
page should be within one of these landmarks, as shown in
Example 1-29.

Example 1-29. An exemplary structure of a web page

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-wid

p

 <title>Products - Johanna’s Toy Store</title>

</head>

<body>

 <header>

 Johanna’s Toy Store

 <nav aria-label="Main">

 Home

 <a href="/products" aria-current="page

 Team

 Contact

 </nav>

 <form role="search">

 <label for="search">Search</label>

 <input type="text" id="search">

 </form>

 </header>

 <main id="content">

 <h1>All products</h1>

 </main>

 <footer>

 © 2024

 </footer>

</body>

</html>

The header of the site (banner landmark).

The main navigation (navigation landmark).

The site search (search landmark).

The main content (main landmark).

The footer of the site (contentinfo landmark).

Discussion

Using semantic elements within components and regions of a
page is the foundation of any accessible website, but users can
benefit from larger semantic groups, too. The page must
communicate how it’s structured and group common sitewide
and page-specific elements. Landmarks in HTML help with that.

You can define landmarks with the appropriate HTML elements
or use the role attribute when no element exists. The
elements in Example 1-30 are semantically the same.

Example 1-30. Two banner landmarks

<!-- <header> with an implicit banner role -->

<header></header>

<!-- <div> with an explicit banner role -->

<div role="banner"></div>

TIP

Most semantic elements in HTML convey two bits of information: their accessible
role and an accessible name. The role defines what kind of element it is: a button,
link, image, etc. The accessible name is text by which software can identify a

component, coming from the element’s text content, another associated element like
<label> , or an attribute like aria-label , aria-labelledby , alt , or title .

Follow the first rule of Accessible Rich Internet Application
(ARIA) use and prefer elements with implicit roles over using
the role attribute if browser support allows it. Older browsers
and screen readers that don’t support elements with implicit
landmark roles once needed the additional explicit role, as
shown in Example 1-31, but specifying both isn’t necessary
anymore.

Example 1-31. <header> with an additional explicit banner
role

<header role="banner"></header>

There are different types of regions that serve other purposes in
different contexts. Table 1-2 lists HTML elements, their
corresponding ARIA roles, and the context in which they’re
exposed as landmarks.

https://oreil.ly/xS52I

Table 1-2. HTML landmarks and their ARIA roles

Element ARIA role Conditions

header banner Only in context of the body
element; not when it’s a
descendant of <article> ,
<aside> , <main> , <nav> ,
or <section> (or any other
element with their
corresponding explicit roles).

nav navigation

main main

section region When it has an accessible
name.

form form When it has an accessible
name.

search search Or form with role="searc
h" .

aside complementary

Element ARIA role Conditions

footer contentinfo Only in context of the body
element; not when it’s a
descendant of <article> ,
<aside> , <main> , <nav> ,
or <section> (or any other
element with their
corresponding explicit roles).

Benefits

There are many reasons to use landmarks. The remainder of
this section will explain several of those reasons in detail.

Orientation

Landmarks help screen reader users with orientation on the
page. The software may announce landmarks when users enter
or leave the enclosed content. They contain every item on the
page to help users discover them.

Navigation

Screen reader users can jump from landmark to landmark
using keyboard shortcuts or gestures, which provide a
convenient way to skip to specific areas without interacting
with the rest of the page (see Table 1-3).

In VoiceOver on iOS, you can select the “landmark” option in
the rotor, which provides you with direct access to certain
elements on the page, and use the swipe up and down gestures
to navigate between landmarks. In TalkBack on Android, you
can set the reading controls to “landmarks” and swipe up and
down to navigate. In NVDA on Windows, you can press D or
Shift + D , and in JAWS on Windows, R and Shift + R to
do the same (see Table 1-3).

Table 1-3. Landmark navigation shortcuts

Screen reader Command

NVDA D

JAWS R

Narrator D

VoiceOver on iOS Rotor

TalkBack on Android Reading controls

https://oreil.ly/djJx6

It’s mostly screen reader users who benefit from having
landmarks, but also browser extensions like “Landmark
Navigation via Keyboard or Pop-up” add keyboard shortcuts to
the browser, providing access to landmarks for non-screen
reader users. See Figure 1-6.

Overview

Screen reader users can list all landmarks on a page and access
them directly (see Table 1-4).

Table 1-4. Shortcuts for listing all kinds of elements, such
as landmarks

Screen reader Command

NVDA Ins + F7

JAWS Ins + Ctrl + R

VoiceOver on macOS Rotor

https://oreil.ly/CzgAp

Figure 1-6. The main landmark on handbuch.wien.gv.at, highlighted by the
“Landmark Navigation” browser extension

Site-Specific Landmarks

The three most relevant main landmarks are <header> ,
<main> , and <footer> .

banner landmark

The <header> , with its implicit banner role, contains mostly
site-oriented rather than page-specific content. That’s typically a
logo, skip links, the main navigation, secondary navigations, a
search widget, and other content that is relevant and visible on
every page.

Not every <header> is a landmark. If it’s nested inside
<article> , <aside> , <main> , <nav> , or <section> , it’s
semantically similar to a <div> and not exposed as a
landmark anymore. Having multiple header elements on a
page is fine, but you should add only a single banner
landmark.

Typically, you’ll find banner landmarks at the beginning of the
<body> in the document. Visually, it’s usually at the top of the
page. That is a common pattern but not a strict rule; it may also
look like a sidebar. The position doesn’t affect its semantic
purpose. Just because it’s located on the side doesn’t mean its
role has to change.

main landmark

The <main> element’s implicit main role represents the page’s
core content. There should be only one visible main element on
a page, and its ancestors should be limited to html and body
to guarantee a hierarchically correct structure. If necessary, it’s
possible to wrap it in <div> elements.

If you’re working with an SPA with multiple <main> elements
on a page, hide all the inactive ones, as shown in Example 1-32.
Having more than one visible and reachable main landmark on
a page might confuse users and result in them missing content
because they usually expect only one per page.

Example 1-32. Multiple main elements, but only one is
visible

<main hidden>

 <h1>Home</h1>

</main>

<main>

 <h1>Products</h1>

</main>

<main hidden>

 <h1>Team</h1>

</main>

<main hidden>

 <h1>Contact</h1>

</main>

contentinfo landmark

The <footer> element’s implicit contentinfo role also
contains site-oriented content. That’s typically copyright data,
secondary navigations, and other links.

Similar to the <header> , the <footer> is only a landmark in
the <body> context. If it’s nested inside <article> ,
<aside> , <main> , <nav> , or <section> , it’s not a
landmark anymore. Having multiple footer elements on a
page is fine, but you should add only a single contentinfo
landmark.

See Also

“H57: Using the language attribute on the HTML element”
“Setting the page title in Angular”
“React Helmet: Component for changing content in the head”

https://oreil.ly/9FoEo
https://oreil.ly/ClSno
https://oreil.ly/LuWJu

Chapter 2. Structuring Pages

In Chapter 1, you learned that landmarks can be useful for
accessing major areas of the site, like the header, main content,
or footer. Page-specific landmarks like the navigation (Recipe
2.1) or search (Recipe 2.2) can help users be even more efficient.
Especially on complex pages with a lot of structured content
and different elements, providing a shortcut to certain crucial
parts of the UI can be of great help.

2.1 Create Navigation Landmarks

Problem

No matter how users access a website, they must be able to
identify navigations. Otherwise, they may not be able to find the
content they’re looking for, orient, and navigate.

Solution

Identify navigations and enable quick access for significant
groups of links, such as the main navigation (see Example 2-1),
breadcrumbs (see Example 2-2), or local navigations (see
Example 2-3).

Example 2-1. The main navigation of a site

<header>

 <nav aria-label="Main">

 Home

 <a href="/products" aria-current="page

 Team

 Contact

 </nav>

</header>

Unique accessible name for the landmark. More on that in
Recipe 2.3.

aria-current="page" highlights the active page.

Example 2-2. A breadcrumb navigation on deeply nested
pages

<nav aria-label="Breadcrumb">

 Products

 Kitchen & ap

 <a href="/products/kitchen/worktops" aria-c

https://calibre-pdf-anchor.a/#a277

p p

</nav>

Example 2-3. A local navigation within a page

<nav aria-label="Contents">

 Company

 Licensing

 See Also

 References

 External links</

</nav>

Please note that the use of aria-label attributes on
navigations is not mandatory, especially if the purpose of the
navigation is clear from context. In Recipe 2.3, I explain when
providing an accessible name for navigation can be helpful.

Discussion

The navigation of a page must be visually and semantically
distinguishable from the remaining content on the page. In

terms of styling, this usually means placing it in a prominent
spot on the site or page and highlighting it using different
styling than similar elements on the rest of the page. In terms of
semantics, you use the <nav> element to define a navigation
landmark and mark major navigation links. A screen reader
announces something like “navigation” when the user interacts
with it. However, not every group of links is automatically a
navigation. For example, if your site’s footer contains only a few
links, you don’t have to wrap them in a <nav> element. The
contentinfo landmark itself is sufficient for that use case.
That doesn’t mean you should never use the <nav> element
inside a footer. When there are different groups of links within
the footer, wrapping each group in a <nav> and labeling it can
be helpful. It’s a judgment call, depending on the complexity
and extent of the content.

The fact that <nav> elements are landmarks is especially
useful for screen reader users because they can access them
directly using keyboard shortcuts. Recipe 1.5 introduces you to
landmarks.

You can use the <nav> element for your site’s main navigation
and page-specific navigational elements like breadcrumb
navigations (see Example 2-2), pagination, or content
navigation (see Example 2-3). Figure 2-1 shows a breadcrumb

navigation on ikea.com and Figure 2-2 a local navigation on
wikipedia.org.

Figure 2-1. Breadcrumb navigation on ikea.com showing that the user is on the
“Kitchen worktops” page within the “Kitchen & appliances” category within the

Products page

Figure 2-2. Local navigation on the Wikipedia page about O’Reilly Media shows a
local navigation allowing users to access sections within the page directly

You don’t have to structure the links in a navigation using a list
element, but it’s advisable. Recipe 7.3 discusses the benefits. You
can use an ordered or unordered list. If you’re unsure,
defaulting to the (unordered list) is safe.

2.2 Create Form Landmarks

Problem

Some forms, such as search forms and filters, are central
elements of a website. Especially for screen reader users, site
search is often a useful alternative to conventional navigation.
Users who can’t easily find important forms may have difficulty
obtaining information.

Solution

Promoting important forms on a page to landmarks can help
with discovery. Direct access via shortcuts can be helpful for
search forms (see Examples 2-4 and 2-5) and login forms
(Example 2-6).

Example 2-4. Form with a search role

<form role="search">

 <label for="site-search">Search</label>

 <input type="text" id="site-search">

</form>

Example 2-5. Form within a search element

<search role="search">

 <form>

 <label for="site-search">Search</label>

 <input type="text" id="site-search">

 </form>

</search>

Example 2-6. A login form landmark

<form role="form" aria-labelledby="heading_login

 <h2 id="heading_login">Login</h2>

 <div>

 <label for="username">Username</label>

 <input type="text" id="username" autocomplete

 </div>

 <div>

 <label for="password">Password</label>

 <input type="password" id="password" autocomp

 </div>

</form>

Discussion

Site search, page search, filters, and login forms are often
essential parts of a page, as shown in Figure 2-3.

You can turn a form into a search or form landmark (see
Examples 2-4 and 2-6) by using the role attribute and labeling

the form. You can also use the <search> element, which has
an implicit search role (Example 2-5).

Looking at Table 2-1, you’ll notice that support for search and
form landmarks is mixed. All tested screen readers support the
search role well but only VoiceOver with Safari 17.3+
supports the search element. That’s because the element was
introduced in early 2023. Depending on your audience, you
might have to combine the element with the role to get the best
result. Most desktop screen readers support the form role
when you label it. VoiceOver (on macOS and iOS), and TalkBack
don’t announce form landmarks. Since the role attribute
doesn’t harm anything when it’s not supported, it’s safe to use it
and provide a benefit for users whose software does support it.

Figure 2-3. Search is the primary form of navigation on the Austrian furniture
retailer lutz.at; they use a search role on the form to promote it to a landmark

I’ve performed these tests in early 2024, using the following
shortcuts, commands, and gestures:

D key + Elements list in NVDA
Rotor in VoiceOver (VO) iOS
Rotor + single key quick nav in VO macOS
Swiping + landmark navigation in TalkBack
R key + landmarks list (Insert + Ctrl + R) in JAWS
D key + Landmarks List in Narrator

Table 2-1. Screen reader test: How are form and search roles exposed?

Setting NVDA VoiceOver JAWS Narr

form with
no role and
no label

no no no no

form with
no role,
labeled by
heading

form no form form

form with
form role
and no label

form no no form

form with
form role,
labeled by
heading

form no form form

form with
no role,
labeled by
legend

form no group form

Setting NVDA VoiceOver JAWS Narr

form with
form role,
labeled by
legend

form no group form

form with
search role
and no label

search search search sear

form with
search role,
labeled by
heading

search search search sear

search
element
with no
label

no search no no

search
element
with search
role and no
label

search search search sear

Setting NVDA VoiceOver JAWS Narr

search
element
with search
role, labeled
by heading

search search search sear

 Bold text indicates not announced as a “form” landmark, but it’s accessible via lan

2.3 Label Landmarks

Problem

Landmarks are useful only if it’s clear what they represent.
When multiple landmarks of the same type exist, it can be hard
for users to differentiate them, making landmark navigation
difficult or even pointless.

Solution

The most reliable way to differentiate landmarks of the same
type is by labeling them using the aria-labelledby

a

https://calibre-pdf-anchor.a/#a311

(Example 2-7) or aria-label (Example 2-8) attributes.

Example 2-7. Labeled navigation landmark via aria-
labelledby

<nav aria-labelledby="pagination_heading">

 <h2 id="pagination_heading">Pages</h2>

 …

</nav>

Example 2-8. Labeled navigation landmarks via aria-label

<nav aria-label="Main">

 …

</nav>

<nav aria-label="Page">

 …

</nav>

Discussion

When you have multiple navigations on a page—like a site-wide
navigation, a local navigation for the page, and a pagination—
you also have three <nav> elements, as shown in Example 2-9.

Example 2-9. Bad practice: Three unlabeled navigation
landmarks

<nav>

 Home

 ...

</nav>

<nav>

 Category 1

 ...

</nav>

<nav>

 1

 ...

</nav>

Having multiple <nav> elements on a page is valid, but now
there are three navigation landmarks that all look the same.
It’s hard to tell them apart, unless you know the structure of the
page really well (see Figure 2-4).

Figure 2-4. The rotor in VoiceOver listing three unlabeled navigation landmarks

To make them distinguishable, you can label them by either
using aria-labelledby or aria-label . Figure 2-5 shows
three labeled navigation landmarks.

Figure 2-5. VoiceOver listing labeled and unlabeled landmarks

Picking a label

Before you pick the label for a landmark, check whether there
is a useful label somewhere on the page already. If that’s the
case, use the aria-labelledby attribute to create a reference
from the landmark to another element that labels it. Headings
are often suitable for labeling landmarks, as Example 2-7
shows.

A good label describes the purpose of the landmark in fewer
than three words. For navigations, avoid terms like “menu” or
“navigation” because the element’s role already conveys that.
For example, a screen reader announces a label like “Main
navigation” as “Main navigation navigation.” Also avoid visual

names like “Burger,” “Mobile,” or “Top bar”; instead, use
contextual labels like “Main” or “Content.”

Don’t label <header> , <main> , and <footer> landmarks
because they’re supposed to be unique anyway and don’t need
a label.

Generally, I recommend using aria-labelledby over aria-
label , if possible, because it works with existing content
instead of introducing new text, and it works better with auto-
translation tools like Google Translate. If no heading or other
suitable content is present, use the aria-label attribute, as
shown in Example 2-8.

2.4 Structure the Main Content

Problem

On complex pages with a lot of content and interactive
elements, it can be difficult and time-consuming for users to
orient, navigate, and figure out how the page is structured.
That’s especially true for users who cannot quickly scan a page
for an overview, like keyboard and screen reader users and
people who rely on zooming.

Solution

Use landmarks and other elements like headings and lists to
provide structure for easier orientation and navigation.

The summary at the beginning of a blog post can be a region to
give screen reader users direct access, as shown in Example 2-
10.

Example 2-10. A quick summary landmark in a blog post

<h1>

 <article> vs. <section>: How To Cho

</h1>

<div role="region" aria-labelledby="summary">

 <h2 id="summary">

 Quick summary

 </h2>

 <p>

 In this article, Olushuyi explores a mental m

 the <code><article></code> and <code>&l

 writing documents. You will explore how group

 and how you can make it all count for users.

 </p>

</div>

The role and label turn this div into a landmark.

Focusable containers need a role and accessible name.
Example 2-11 combines the tabindex , role , and aria-
label attributes.

Example 2-11. A focusable, labeled region

<div role="region" aria-label="Code Demo" tabinde

 <article>

 …

 </article>

</div>

<style>

[role="region"][tabindex="0"] {

 overflow: auto;

}

</style>

tabindex makes the region focusable.

Makes focusable regions scrollable if necessary.

You can use the section element to group larger thematic
regions of a page, as shown in Example 2-12.

https://calibre-pdf-anchor.a/#a346

Example 2-12. Thematic regions on a home page

<h1>The Agency</h1>

<section>

 <h2>Latest News</h2>

</section>

<section>

 <h2>About Us</h2>

</section>

<section>

 <h2>Selected projects</h2>

</section>

Unlabeled sections with no semantic meaning but useful
for structuring and styling.

Labeling the section element turns it into a landmark
(Example 2-13).

Example 2-13. A labeled section for the search region on a
page

<section aria-label="Product Search">

 <!-- Search form/filters -->

 <!-- Search results -->

</section>

aria-label turns the section into landmark.

The aside element marks content related to the page’s main
content, as shown in Example 2-14.

Example 2-14. An aside element within a blog post listing
related articles

<article>

 <h1>Cascade Layers are useless*</h1>

 <p>*if you don‘t understand the problems they s

 <!-- rest of the blog post -->

 <aside aria-labelledby="relatedheader">

 <h2 id="relatedheader">Related Articles</h2>

 cascade layers

 cascade layers and browser support

 using !important in cascade layers

 </aside>

</article>

Structuring content using list elements, as shown in Example 2-
15, can improve understanding, overview, and navigation.

Example 2-15. A recipe using unordered and ordered lists

<h1>Iced latte</h1>

<p>A refreshing iced latte recipe.</p>

<h2>Ingredients</h2>

 2 espresso shots (60ml)

 2 teaspoons sugar or honey

 ice

 110ml milk

<h2>Steps</h2>

 Mix the hot espresso with the sugar.

 Fill a glass with ice and stir in the coffee

 Pour over the milk and stir.

Discussion

HTML provides several elements to structure content. Whether
and how you should use them depends on what you’re trying to
achieve.

Sections

The <section> element represents a generic page region used
to group content thematically. It typically starts with a heading.
Unlabeled <section> elements are semantically equal to the
<div> element, but that doesn’t mean you can always use
them interchangeably. You use the div mostly for styling
purposes or as a convenience for scripting. In contrast, the
<section> element marks thematic groups of your page, like
different sections on a home page, as illustrated in Example 2-
12. Granted, you could use divs or no wrapper to achieve the
same, but the <section> element has two major advantages:

You can use the section element selector in CSS to define
general styling rules for these elements.
You can turn section elements into landmarks by labeling
them, as shown in Example 2-13.

The sections in Example 2-12 have no accessible name provided
via aria-labelledby or aria-label because they’re not
important enough to be promoted to landmarks. As soon as the
<section> has an accessible name, its role changes from
generic to region . The region role represents a generic
landmark role that you can use to promote a generic element to
a landmark. Use this role sparingly; limit it to regions of your
page that your users feel are important enough to be able to
navigate directly to them and list them in a summary of the

https://oreil.ly/kRArJ
https://oreil.ly/1SfEj

page. Use aria-labelledby or aria-label to describe the
purpose of the region.

You should use a generic landmark only when no other
landmark, like navigation or complementary , qualifies.
Example 2-10 uses region to give users quick access to the
summary of a blog post before reading the entire post.

You can also use the region role to identify scrollable areas.
Keyboard users cannot interact with scrollable content in any
browser except Firefox. You can fix that by adding
tabindex="0" to the parent element that contains the
content. That makes it interactive, meaning it also needs an
accessible role and name. The region role can be an option, as
Example 2-11 shows. As a side note: generally, it’s bad to nest
interactive elements (for example, a <button> inside an <a>),
but it’s okay to put interactive elements in scrollable and
focusable regions.

A region (<section> or <div role="section">) typically
starts with a heading. As a general rule, the element is
appropriate only if its contents would be listed explicitly in the
document’s outline (more about that in Recipe 2.5). When you
need an element only for styling purposes or as a convenience
for scripting, use a simple <div> instead.

It’s valid to nest <section> elements, especially if you have a
page with chapters and many subchapters. If you were to keep
using h1s as the headings for all sections, as shown in
Example 2-16, something particular happens that usually
doesn’t come up in practice but is still good to know: the font
size of each heading decreases as you nest them deeper.

In Figure 2-6, you can see how the h1 in the first section looks
like an h2, the h1 in the second section like an h3, etc. That’s
because the WHATWG used to hold the idea that sectioning
content should influence the document’s outline. The WHATWG
included this concept for many years, but spec authors finally
removed it in July 2022 because it didn’t work in practice and
no browsers ever implemented it. What browsers did
implement, though, were user agent styles that influenced the
rankings of headings visually. In hindsight, that was a mistake.
It makes it look like nesting sectioning content controls the
heading level, but in reality, it affects only styling, not
semantics. There is discussion of removing the user agent
styles, but stakeholders are still determining whether this
change would break the styling of too many websites.

https://oreil.ly/s3CY3
https://oreil.ly/3IiT3
https://oreil.ly/u9rcy

Figure 2-6. The accessibility panel in Chrome showing that the ARIA level of the
heading that looks like an h4 is still 1

Example 2-16. Bad practice: Multiple sections nested, each
starting with an <h1>

<h1>Heading Level 1</h1>

<section>

 <h1>Heading Level 2</h1>

 <section>

 <h1>Heading Level 3</h1>

 <section>

 <h1>Heading Level 4</h1>

 <section>

 <h1>Heading Level 5</h1>

 <section>

 <h1>Heading Level 6</h1>

 </section>

 </section>

 </section>

 </section>

</section>

Even though user agent styles tell a different story, there is no
outline algorithm. Avoid nesting headings with the same level.
There should be only one h1, followed by h2s, and so on.

Asides

You can use the aside element to mark content tangentially
related to the nearby main content that could be considered
separate, such as pull quotes, sidebars, advertising, or related
links, as shown in Example 2-14.

If you’re testing with a screen reader, it’s good to know that the
implicit role of the aside element is complementary.

Articles

You can use the article element for any group of content that
you could in theory independently distribute or reuse
elsewhere, and it would still make sense. A classic example is a
news article or blog post that you can read on a website or in an
RSS feed reader.

However, the definition of the article element is not a literal
news article but a particular item or separate thing. An article
can be a forum post, a comment on a blog post (article nested in
article), an interactive widget, a product listed on an
ecommerce site, or any other complete or self-contained
composition in a document. The article element can be useful
for a few reasons:

You can use the article element selector in CSS to define
general styling rules for these elements.
Third-party software, for example, RSS feed readers or
reader mode in browsers, can extract content wrapped in the
article tag and display it differently.
Screen reader users can use shortcuts to access articles, but
screen reader support for the article element is diverse
because each software applies different heuristics, as you can
see in Table 2-2.

https://oreil.ly/WXC5a

Table 2-2. Screen reader test: Is the article element exposed?

Type NVDA Jaws
VoiceOver
(macOS)

N

Virtual
cursor/swipe

no yes yes n

Landmark
list

no no no n

Custom
article list

no yes yes n

Default
quick nav
key

no yes no n

NVDA doesn’t announce the article’s role when you use the
arrow keys or list it in the elements list, but you can enable it
in the document formatting settings and add a custom quick
nav shortcut for article navigation.
JAWS announces labeled and unlabeled articles when you
use the arrow keys or the O key to navigate. They’re not
included in the list of landmarks, but you can list all articles
by pressing Ctrl + Insert + O , as displayed in Figure 2-7.

https://oreil.ly/ZEGik

Figure 2-7. JAWS listing an unlabeled article and two labeled articles in the
articles list

VoiceOver on macOS announces labeled and unlabeled
articles when you use the virtual cursor. It also adds a new
list of articles to the rotor. The landmarks list in the rotor
doesn’t include articles.
Narrator doesn’t announce the article’s role or list it in the
elements list.
VoiceOver on iOS announces articles when you select
contained items or swipe. It includes articles in the
landmarks list and adds a new list of articles to the rotor.
TalkBack doesn’t announce articles when you select
contained items or swipe, but labeled and unlabeled articles
are accessible via the landmark navigation.

Lists

You can use ordered or unordered lists to group elements
visually and semantically. Besides the visual unity they form,
lists provide users with many additional features:

A screen reader can announce the total number of items
when the user finds the list.
A screen reader can announce the index of the current item
(for example, “list item, two of four”).
When you access an item in the list for the first time, a screen
reader can announce that the item belongs to a list of n total
items.
Users can use shortcuts to jump from list to list or list item to
list item.
Users can use shortcuts to list all lists on a page and access
them directly.

You can also use definition lists (dl), but please note that what
and how much screen readers announce varies across different
screen readers.

Ordered versus unordered lists

Use the tag when the order in your list of items matters
and when it doesn’t. In Example 2-15, you can see the
recipe for an iced latte. In this case, the ingredients are listed in

https://oreil.ly/GWYUN

an unordered list because it doesn’t matter whether you list ice
or milk first. The recipe is an ordered list because the correct
order of steps is relevant.

Testing lists with screen readers

You can use shortcuts in screen readers to access lists and list
items:

NVDA

Use the L key to jump from list to list and the I key to
jump from list item to list item.

JAWS

Use the L key to jump from list to list and the I key to
jump from list item to list item. To show a list of all lists,
press Insert + F3 .

VoiceOver on macOS

Use VO + Cmd + X to jump from list to list.

2.5 Create a Sound Document Outline

Problem

When a page reaches a certain size, it can be difficult to get an
overview of its contents. Users must be able to quickly tell
where they are, what information is there, and how it’s
structured. Headings in HTML can help with that, but if you
don’t use them correctly, they can disorient all user groups and
make navigation harder for screen reader users.

Solution

Use headings to create an outline for the document, as shown in
Example 2-17.

Example 2-17. Document outline of a home page of an
ecommerce site

<h1>Johanna’s Toy Store</h1>

<h2>Toys</h2>

 <h3>Toys for babies</h3>

 <h3>Toys for kids</h3>

 <h3>Outdoor toys</h3>

<h2>Books</h2>

<h2>Special occasions</h2>

<h2>Contact</h2>

<h2>Payment</h2>

Discussion

Headings play an important role in web pages’ overall quality,
usability, and especially accessibility. Kelley Gordon, of the
Nielsen Norman Group, lists headings as one of the key
ingredients for creating a clear visual hierarchy. Besides other
factors, they can guide the eye to the most important elements
on the page and help users scan it. In Figure 2-8, you can see
how combining headings and white space on the Set Studio
websites creates a clear structure and enables users to get an
overview quickly.

According to the latest screen reader survey conducted by
WebAim in 2024, navigating headings is the predominant
method for finding page information, and most respondents
find proper heading structures very or somewhat useful.

https://oreil.ly/6HrU2
https://oreil.ly/iz9jO

Figure 2-8. Sections on the home page of set.studio

Headings communicate how content is organized on the page.
Besides the visual aspects that make orientating easier, a good
document outline has many benefits for screen reader users.
They can list all the headings on the page using shortcuts, as
shown in Figure 2-9, select them and navigate to them directly.
Table 2-3 lists those shortcuts.

Figure 2-9. Document outline on the “Personal Services” page of the Blue
International Bank, listed in VoiceOver on macOS

Table 2-3. Screen reader shortcuts for listing headings on
a page

Screen reader Command

NVDA Ins + F7

JAWS Ins + Ctrl + R

VoiceOver on macOS Rotor

Narrator Narrator + F6

All screen readers enable users to navigate by heading, using
shortcuts without listing them first. For example, in NVDA, you
can press the H key to jump from heading to heading or the 2
key to jump from h2 to h2 (see Table 2-4 for more commands).

Table 2-4. Screen reader shortcuts for navigating by heading

Screen reader Command

NVDA H / 1 - 6

JAWS H / 1 - 6

VoiceOver on
macOS

Cmd + VO + H or H / 1 - 6 with Quick
Nav

Narrator H / 1 - 6

VoiceOver on iOS Rotor

TalkBack Quick Nav Menu

When a screen reader user finds a heading, the software
usually announces the content of the heading along with its
level (one to six). That’s why it’s important to keep a sound
document outline.

Nest headings by their rank, starting with h1, the most
important heading on the page. The <h1> tells users and
machines what the page is about. The <h2> s split the page into
large sections; <h3> through <h6> structure these larger
sections into subsections. Once you reach the end of a
subsection, you can start a new, larger section, as illustrated in
Example 2-17.

Skipping levels can be confusing and should be avoided where
possible, because it obscures the structure of the page.
Example 2-18 shows a disorganized document outline on the
home page of a clothing brand.

Example 2-18. Bad practice: Disorganized document outline
with skipped headings

<h2>New arrivals</h2>

<h2>Shoe 1</h2> <!-- (redacted) -->

<h2>Shoe 2</h2>

<h2>Shoe 3</h2>

<h2>Shoe 4</h2>

<h4>E-Mail</h4>

<h4>Address</h4>

<h4>Hours</h4>

<h2>Store Locator</h2>

<h2>Follow us</h2>

An exception to this rule is headings in landmarks that come
before the main content of your page, where the h1 is usually
located. In that case, it’s okay if the outline starts with an h2, as
shown in Example 2-19.

Example 2-19. Document outline with a slightly disordered
heading structure

<h2>Navigation</h2>

<h1>Johanna’s Toy Store</h1>

<h2>Toys</h2>

<h3>Toys for babies</h3>

<h3>Toys for kids</h3>

<h3>Outdoor toys</h3>

<h2>Books</h2>

<h2>Special occasions</h2>

<h2>Contact</h2>

<h2>Payment</h2>

Besides the correct structure, headings must also be short and
descriptive. They label sections or subsections and should
clearly describe what they’re about. Hoa Loranger lists five tips
for headlines that convert, which also benefit accessibility:

Make sure the headline works out of context.
Tell readers something useful.

https://oreil.ly/CayOl

Don’t succumb to cute or faddish vocabulary.
Omit nonessential words.
Front-load headings with strong keywords.

Although HTML headings aren’t a huge factor in SEOs anymore,
SEO can also benefit from a well-structured and well-labeled
document outline. The algorithms for determining the most
important content on a page by search engines are obscure.
However, Google recommends that you put accessibility first
when you design outlines for your pages.

When you work on a document outline, imagine that you’re
writing a scientific paper. A paper always needs one title
(<h1>). There are usually several main chapters (<h2>), and
sometimes there are also subchapters (<h3> through <h6>).
By looking at the table of contents of your paper, you should be
able to determine its purpose, structure, and main topics. On a
webpage it should be the same. I like this analogy, but there’s
one crucial difference between a paper and a website. The
paper has one main title, but a website’s main title (the <h1>)
changes on every page. It must be unique and always describe
the current page. Don’t use the website’s title or the home page
link in the header as the <h1> on every page.

https://oreil.ly/gKEOe

When you create a document outline, it’s much better to
imagine how the page should be structured than to look at a
design and follow only visual cues. Sometimes it makes sense to
add headings to the page that aren’t visible in the design, if it
helps improve the document outline. You can hide these
headings by using a custom visually hidden class (see Recipe
8.1). However, while this is possible and sometimes necessary, I
generally don’t recommend hiding content from only some
users. The best solution is to show headings to everyone.

You can use tools to visualize the heading structure. Matthias
Ott lists several of them in “Level Up Your Headings Game”.

2.6 Present Content in Order

Problem

Users may not be able to make sense of content if you don’t
present it in a meaningful sequence or if the visual order of
elements doesn’t match the order of elements in the document.
Screen reader users may need time to understand how the page
is structured. A disorganized page makes the experience for
keyboard and screen reader users unpredictable and confusing.

https://oreil.ly/I5d4R

Solution

Structure page content from top to bottom to make sense, even
when presented without CSS. Example 2-20 shows how you can
structure a page.

Example 2-20. A typical web page structure, ordered from
top to bottom

<header>

 Jump to ma

 Johanna’s Toy Store

 <svg>…</svg>

 <nav aria-label="Main">

 Home

 …

 </nav>

</header>

<main id="content">

 <h1>Johanna’s Toy Store</h1>

 <h2>Toys</h2>

 <h3>Toys for babies</h3>

 <h3>Toys for kids</h3>

 <h3>Outdoor toys</h3>

 <h2>Books</h2>

 <h2>Special occasions</h2>

 <h2>Contact</h2>

 <h2>Payment</h2>

</main>

<footer>

 © 2024

</footer>

A skip link (more about skip links in Recipe 6.6).

Main navigation of the site.

Discussion

When you arrange the content on a page, there are two things
you need to consider: its general structure and order and the
visual presentation of elements.

https://calibre-pdf-anchor.a/#a441

You have learned how to structure a site using high-level
landmarks in Recipe 1.5 and how to structure a page using low-
level landmarks (Recipe 2.4) and headings (Recipe 2.5). The
order of elements in the examples in these recipes is not
arbitrary. Work through the document from top to bottom and
start with the most relevant content, as shown in Example 2-20.
Usually, that’s the header, which contains essential navigational
elements like a skip link (Recipe 6.6), a link to the home page,
the main navigation (Chapter 7), and a search (Recipe 1.5).

Suppose your site contains interface elements that users must
interact with before accessing the content, like a cookie consent
banner or a region and language selection. In that case, these
elements should come first so users can deal with it first, no
matter how they access the site. Following the header comes the
main content, which puts the most important and relevant
information first, structured by headings. The <footer>
follows the <main> and contains tangentially related content.

A typical mistake is following the visual representation of
elements in the design without paying enough attention to the
logical order within the page. If you take the teaser card in
Figure 2-10 as an example and strictly follow the visual
presentation, you’d get the markup in Example 2-21.

Figure 2-10. A card with a heading, text, image, and a call-to-action-link

Example 2-21. A teaser for a blog post with the image
preceding the heading

<img src="teaser.png"

 alt="Example dropdown menus from Dribbble, G

<h3>

 When CSS Isn’t Enough: JavaScript Requirements

</h3>

<p>by Stephanie Eckles</p>

<p>

 Spoiler alert: tooltips, modals, tabs, carousel

 menus are some of the user interface components

 than CSS. To ensure accessibility of your inte

 a necessary addition to accomplish focus manage

 keyboard events, and toggle ARIA attributes.

</p>

<p>Read “When CSS Isn’t Enough”.<

That looks all right, but considering the purpose of the heading
(it introduces a new subchapter), the image is misplaced

because it comes before the heading. Starting with the heading
first makes much more sense, as shown in Example 2-22.

Example 2-22. Improved order: A teaser for a blog post with
the image following the heading

<h3>

 When CSS Isn’t Enough: JavaScript Requirements

</h3>

<img src="teaser.png"

 alt="Example dropdown menus from Dribbble, G

<p>by Stephanie Eckles</p>

<p>

 Spoiler alert: tooltips, modals, tabs, carousel

the user interface components that require more t

your interface, JavaScript is a necessary additio

respond to keyboard events, and toggle ARIA attri

</p>

<p>Read “When CSS Isn’t Enough”.<

You can then use CSS to reorder elements visually. Arguably, it
would be better to design a page that matches the order in the

document or component in the first place. That’s not always
doable, but an ideal you should follow.

Refrain from reordering content, especially interactive
elements, using CSS properties like flex-direction , order ,
grid-auto-flow or techniques like explicit placement,
absolute positioning, or negative margins. When you deal with
interactive elements, visual order should always represent
Document Object Model (DOM) order as well as possible (Recipe
6.5 deals with that topic in depth) because tab order follows
DOM order no matter how you arrange items visually.

The easiest way to get page structure and content order right is
to work HTML-first and design a document that works well
even when presented without CSS. If you can look at a final
HTML document without any styling and understand how the
page is structured and how contents relate, you have done a
great job. Now you’re ready to start writing CSS.

See Also

“Accessibility of the section element” by Scott O’Hara
“Under-Engineered Responsive Tables” by Adrian Roselli
“Keyboard-Only Scrolling Areas” by Adrian Roselli

https://oreil.ly/Rnpdh
https://oreil.ly/VTA0F
https://oreil.ly/EIpQ6

“Why You Should Choose HTML5 article Over section” by
Bruce Lawson
“article vs. section: How To Choose The Right One” by
Olushuyi Olutimilehin
“On the dl” by Ben Myers

https://oreil.ly/LzZEF
https://oreil.ly/3KYFo
https://oreil.ly/oJcN2

Chapter 3. Linking Content

Hyperlinks serve different purposes; they link to other web
pages, sections within a page, external resources, email
addresses, telephone numbers, and files. Users have certain
expectations of what happens when they find and click a link,
and you should meet these expectations with your designs and
technical implementations.

A well-designed link has a concise and descriptive text label. It
informs users up front what will happen when they click it, and
users can activate it with any input modality. When it doesn’t,
users might be unable to identify the link as such, use it, or
understand its purpose.

This chapter closely examines the anatomy of hyperlinks and
explains how to label, style, and create links in server-side and
client-side rendered environments.

3.1 Pick the Right Element

Problem

If a link to a resource doesn’t meet basic requirements, you may
exclude one or more groups of users from being able to access
it or understand its purpose. The discussion section of this
recipe provides more detail, but the essential criteria for a link
are:

It must convey its link role.
It has an accessible name.
The label is unique, concise, and straightforward.
It’s accessible to assistive technology.
It’s focusable with the keyboard.

TIP

Some elements are focusable; for example, links, buttons, or form fields. You can
access them using the keyboard by pressing Tab or Shift + Tab . By default,
browsers highlight focused elements visually.

Solution

HTML offers a simple and powerful way of linking to other
resources: the <a> element in combination with the href
attribute. Example 3-1 shows links to different kinds of targets.

Example 3-1. Different kinds of links

<!-- Link to an external site -->

<a href="https://www.oreilly.com/products/books-v

 O'Reilly books and videos

<!-- Link to an internal page -->

 Blog

<!-- Link to an email address -->

 support@johannastoys.com

<!-- Link to a telephone number -->

 (707) 827-7019

<!-- Link to an anchor within the page -->

 Skip to content

Discussion

A hyperlink must meet specific requirements to be accessible
and provide great UX.

It links to an internal or external resource

Sometimes there is confusion about whether it’s better to use a
link or a button for a task. All types of links have in common
that they take you somewhere else when you click them—to
another page, another site, a part of your page, or another
application. The button element submits a form or runs
JavaScript code.

TIP

If it takes you somewhere else, use a link. If you submit a form or run JavaScript, use
a button.

There are exceptions to this rule, but it’s true for most links and
buttons. When you find yourself using one of the inaccessible
examples in Example 3-3, you likely want to use a button
instead.

It conveys its semantic link role

When you link to another resource, your link should convey its
semantic role. The safest and most reliable option is to use the

<a> element with the href attribute because it has an
implicit link role.

A screen reader announces the role alongside the text; for
example, “O’Reilly books and videos, link.”

It has an accessible name

A meaningful link text is essential for a good user experience.
When you write the text for a link, keep it short,
understandable, and meaningful, and avoid repetition. Kate
Moran argues that a good link is sincere, substantial, succinct,
specific.

Sincere means that links should meet users’ expectations
because when they don’t, they slowly erode the user’s trust in
the site and the organization it represents. Substantial says that
links must stand out and be succinct to increase the likelihood
that users will quickly understand them as they scan and
process the page. Specific means that it should describe its
purpose. You should avoid generic link text like “learn more,”
“read more,” “click here,” “download,” or “here” because vague
or repetitive text makes it difficult for users to anticipate what
these links lead to.

Instead of writing something like:

https://oreil.ly/pBjIq

Click here to learn how to create attributes in HTML.

Use a more specific phrasing:

Learn how to create attributes in HTML.

In addition to Moran’s point, there’s another good reason to
avoid generic phrasing: There are different ways of accessing
links on a page. A blind screen reader user might use the Tab
key to jump between interactive elements on a page. When they
focus a link, the software announces its role and accessible
name, for example “click here, link.” Without any context, it’s
impossible to tell where this link will bring you. This also
applies for other ways of accessing content: some screen reader
users might use shortcuts to list all the links on a page, as
illustrated in Figure 3-1. If several links are called “Shop now,”
“Read more,” or “Read the story,” it’s impossible to know
without more context what’s behind each link.

https://web.dev/learn/html
https://web.dev/learn/html

Figure 3-1. Many generic and repetitive links on hm.com

Rian Rietveld adds another good reason in her article “Creating
the perfect link”: Sighted people often scan pages quickly until
they find something of interest. Links usually stand out in the
text and should serve as a teaser for scanning users. Generic
link text is neither appealing nor informative.

It communicates its current state

https://oreil.ly/lo7id

A link can have different states: unvisited, visited, hovered,
active, and focused. For each state, you should provide suitable
styles, as shown in Example 3-2.

Example 3-2. Styling links in different states

a:link {

 color: blue;

 text-decoration: underline;

}

a:visited {

 color: rebeccapurple;

}

a:focus-visible {

 outline: 2px solid currentColor;

 outline-offset: 2px;

}

a:hover {

 text-decoration: none;

}

a:active {

 color: red;

}

An alternative to :focus . You can read about the
difference in Recipe 6.1.

On top of that, ARIA attributes can communicate additional
state. You can find an example in Recipe 7.2.

It must be tabbable and allow activation via click,
touch, and key events

A link is an interactive element, which means that if you can
click it, you must also be able to perform the same action using
the keyboard by pressing Enter . For that, it must be tabbable
(reachable via the Tab key), which the <a> element is by
default, provided that it has an href attribute.

Some people like to use modifier keys, like Cmd , when clicking,
or right- or middle-click links to perform other actions, like
opening the link in a new tab or copying the URL. Depending on
the browser and operating system, these actions also come with
the <a> out of the box.

Creating well-designed links is challenging, but links are one of
the essential features of the web. Try to follow the best practices
in this recipe and avoid several common alternative solutions
that don’t meet the requirements, listed in Example 3-3.

Example 3-3. Bad practice: Inaccessible links

<!-- Link with a click event.

Wrong role. This should be a <button>. -->

<a href="javascript: void(0)" onclick="[JS functi

 O'Reilly books and videos

<!-- Link with a click event.

Wrong role. This should be a <button>. -->

 O'Reilly books and videos

<!-- Placeholder link with click event.

Wrong role. This should be a <button>. -->

 O'Reilly books and videos

<!-- Focusable placeholder link with click event

Wrong role. This should be a <button>. -->

 O'Reilly books and videos

<!-- span with link role and click event.

Not focusable, no key events, and no middle- and

 O'Reilly books and videos

<!-- Non-focusable link.

Not focusable. -->

<a href="https://www.oreilly.com/products/books-v

 O'Reilly books and videos

<!-- Focusable but hidden from the accessibility

Inaccessible to screen reader users. -->

<a href="https://www.oreilly.com/products/books-v

 O'Reilly books and videos

3.2 Style Links

Problem

Inaccessible custom styling of links can influence users’ ability
to navigate, get oriented, and perceive the website in several
ways, including:

Keyboard users might not know where on the page they’re
located.
People with low vision and those who use forced colors
(more on that in Recipe 5.2) might be unable to distinguish
links from regular text.
Users might not recognize a link or understand what to
expect from it if its styling doesn’t meet their expectations.
People with disabilities that affect their dexterity and motor
movements can have difficulty clicking links. So might
anyone who’s moving while using a website, for example,
walking, riding the subway, or multitasking.

Solution

You should style links in a way that serves your users.
Underline links, and don’t rely on color alone. Avoid removing
the default underline in blocks of text and provide different
styles for different states, as shown in Example 3-4.

Example 3-4. Custom styling for four different states a link
can be in

a:link {

 color: blue;

 text-decoration: underline;

}

a:visited {

 color: rebeccapurple;

}

a:hover {

 color: green;

 text-decoration: none;

}

a:active {

 color: red;

}

Use prominent styling for keyboard-focused links. In
Example 3-5, you can see a combination of the outline and
outline-offset properties used for the focus-visible or
focus states.

Example 3-5. A 2-pixel-wide outline with extra padding

a:focus-visible {

 outline: 2px solid currentColor;

 outline-offset: 2px;

}

/* or */

a:focus {

 outline: 2px solid currentColor;

 outline-offset: 2px;

}

Don’t use box-shadow alone for link or focus styling because
shadows will not be displayed in forced-colors mode . A
workaround is to use it in combination with a transparent
outline, as shown in Example 3-6.

Example 3-6. A combination of box-shadow and a
transparent outline

a:focus-visible {

 box-shadow: 0 3px 0 0 currentcolor;

 outline: 2px solid transparent;

}

Discussion

Color must not be the only means of distinguishing a visual
element, because many users have difficulty perceiving color.
That includes older adults who may not see well, color-blind
people, users of older or low-quality displays, and people with

https://oreil.ly/CqFjY
https://oreil.ly/DY0SD

partial sight who experience limited color vision. Figure 3-2
shows how wikipedia.com might look for someone who doesn’t
perceive color.

Figure 3-2. Wikipedia presented without colors; links are hard to distinguish from
regular text

A different text color from the regular text color in combination
with an underline works best for most users. Make links look
like links (as in Figure 3-3), and don’t try to reinvent the wheel.

Figure 3-3. Default link styling in most browsers

That’s especially true for links in blocks of text, but there are
exceptions to this rule. Sometimes links look like buttons (for
example, call-to-action links), and sometimes they don’t need an
underline, like links in a navigation. Accessibility expert Eric
Eggert argues that’s fine if the functionality is clear from the
context.

States

Links have different states that you can style with CSS. Use the
:link :hover , :focus , :focus- visible , :visited , and
:active pseudoclasses to give users more context and help
them get oriented. Your UI must provide users with feedback
when they hover over and focus on a link, and it can be
beneficial to know whether they’ve clicked a link before.

Focus styling

Depending on the browser, default focus styles may or may not
be clearly visible and may or may not work with the colors on

https://oreil.ly/bVKbW

your site. If that’s the case, provide custom styling that works
with your design. The gov.uk website is an excellent example of
focus styles that are clearly visible and work well with the
corporate design (see Figure 3-4).

It’s possible to create focus styles that work well for users and
look nice. However, aesthetics shouldn’t be your primary focus
—but usability should.

Target size

Target sizes, the clickable areas of interactive elements, must be
large enough for users to activate them easily on small
touchscreen devices or on larger screens. Small targets can be
hard to activate for people who have limited dexterity or other
difficulties using mice and similar pointing devices.

Figure 3-4. gov.uk uses different custom focus styles that work well with its overall
design

Guideline 2.5.8 Target Size (Minimum) of the Web Content
Accessibility Guidelines (WCAG) 2.2 suggests that touch targets
should be at least 24 x 24 CSS pixels.

https://oreil.ly/6P1Hx
https://oreil.ly/laiJA

NOTE

Thanks to advanced display technology, screen resolutions on mobile devices are
sometimes comparable to resolutions on desktop devices. In CSS, you can query the
pixels available on the screen to apply different styles, but you must consider the

screen resolution and size to provide users with a suitable layout on every device.
Manually doing that is a tedious task, so the device pixel ratio (DPR) is used to define
the relationship between “device pixels” and “CSS pixels” on a particular device. For
example, if the device pixels are twice as large as the CSS pixels, you would say the

device has a DPR of 2.0.

High contrast mode

For styling underlines, I recommend text-decoration , and,
for focus styles, outline . Developers like to use box-shadow
to create similar effects. It’s easy to work with since it doesn’t
affect the width or height of the element, unlike border , and it
allows authors to create nested borders. However, it doesn’t
work well with forced-colors mode, an accessibility feature
intended to increase the readability of text through user-
defined colors and a limited palette, that may be high or low
contrast, as illustrated in Figure 3-5. Example 3-6 shows a
workaround for that issue. In CSS, transparent is a color that
is normally transparent but can be visible in forced-colors
mode. So, if users don’t use forced colors, they see the box
shadow; if they do, they get a 2px outline.

https://oreil.ly/mapyr

Figure 3-5. Focusing the “Delivery” link in normal and forced colors mode on
balenciaga.com. Focus styles are not visible in forced colors mode.

3.3 Create Download Links

Problem

The <a> element’s versatility requires that it conveys, before
the user clicks it, its purpose, functionality, and what action a
click will perform. When you link to a file instead of a
document, users should know ahead of time the format and size

of the file and how they will access it. Unexpected changes in
context can be irritating, and downloading large files can have
financial consequences for users.

Solution

The links in Example 3-7 answer critical questions:

How will I access the file?
What information does the file contain?
Which format does it have?
How large is it?

Example 3-7. Links to files

<!-- Link to a pdf -->

 View our delicious menu (PDF, 1.2MB)

<!-- Download link to a pdf -->

 Download the sustainability report 2022 (PDF, 2

For download links, you can also provide different or additional
styling; for example, you could use an icon that symbolizes a
download, as shown in Example 3-8 and Figure 3-6.

Example 3-8. Using the download attribute as a hook in CSS

[download]::after {

 content: "";

 background: url('../icons/download.svg') no-rep

 block-size: 1em;

 display: inline-block;

 inline-size: 1em;

}

Figure 3-6. A “download” icon next to a link to a PDF

You can also use the download attribute to rename a file.
Instead of the original filename, the name provided as the value
of the download attribute will be used when it’s downloaded, as
shown in Example 3-9.

Example 3-9. A link to a file with a custom filename

<a href="/hdj588pwW-1312d-oek92x.xls" download="s

D l d l Q1 2023 (Mi ft E l 0 3MB

 Download sales Q1 2023 (Microsoft Excel, 0.3MB

Discussion

The text of a link should describe its purpose to allow users to
distinguish it from other links on a web page and determine
whether to follow it. You can help users understand what will
happen when they click a link to a file by including specific
actions in the link text. You can use phrases like “view” or
“download,” depending on the purpose, but always in
combination with the target, to avoid generic link texts.
Examples 3-10 and 3-11 show two different ways of linking to
an image.

Example 3-10. Bad practice: A link to an image and a
download link for an image with generic text

 View

 Download

https://oreil.ly/uTzH1
https://oreil.ly/YrR2b

You know what you can expect by reading the link text in
Example 3-11.

Example 3-11. A link to an image and a download link for an
image with specific text

 View a photo of the flower

 Download a photo of the flower

Users may prefer to know the type of a linked file to avoid
unnecessary downloads if their operating system or software
doesn’t support that kind of file, as illustrated in Example 3-12.

Example 3-12. A link to a potentially unsupported file type

 Download raw file (Adobe Illustrator)

Another reason is that they may want to avoid opening specific
types of files; for example, PDFs are often inaccessible, and

https://oreil.ly/FC3tq

users may want to find other ways of obtaining the same
information.

Instead of text, you can use icons to communicate the file type,
as shown in Example 3-13. Figure 3-7 illustrates how the City of
Amsterdam uses icons to highlight links to PDFs. Depending on
your audience, this may or may not work well. The biggest
drawback can be that your users don’t understand specific
icons. Adrian Roselli lists other points against using icons
instead of text in “Showing File Types in Links”. He argues that
you have to maintain a library of images for all file types you
intend to support and that styling and aligning icons can be
cumbersome. If you want to play it safe, I recommend using
text.

Example 3-13. Using an attribute selector and a
pseudoelement to display icons depending on the linked file
type

a[href$=".pdf"]::after {

 background-image: url(../icons/pdf.svg);

}

a[href$=".tiff"]::after {

 background-image: url(../icons/tiff.svg);

}

https://oreil.ly/R0qW6

Figure 3-7. The City of Amsterdam website puts an icon of a document next to links to
PDFs

For some people, it’s critical to know the file size, especially
those with slow connections or who don’t have unlimited data
plans. You can include an approximate size alongside the file
type in parentheses after the link text, as shown in Example 3-
14.

Example 3-14. A link to a large file

 High-resolution version of the image (TIFF, 6MB

How file links are treated varies by browser, user settings,
installed applications, file type, and other factors. A link to an
image usually opens in the same window or tab, while a link to

a document may prompt a download or open an external
application automatically.

You can force a download by using the download attribute
when placing the link. However, remember that the presence of
the attribute doesn’t convey any information to users, including
screen reader users, so the link text must undertake that task,
as illustrated in Example 3-7. Whether you want to use the
download attribute depends on the context. If you link to a file
the browser supports, like an HTML file, adding the attribute
would make downloading it easier for users. On the other hand,
using the attribute can limit users’ choice of how to access a file.

WARNING

The download attribute works only for same-origin URLs or the blob: and data:
schemes.

3.4 Create Email Links

Problem

Clicking an email link may initiate a change of context as the
user moves from the browser to a mail application if there’s one

https://oreil.ly/EdNH9

installed. That can be useful but isn’t always desirable because
switching between applications can be tedious for some users.

Solution

Show the email address directly and link it using the mailto:
URI scheme, as illustrated in Example 3-15.

Example 3-15. A link to an email address

 support@johannastoys.com

You can link to multiple email addresses, as shown in
Example 3-16.

Example 3-16. A link to multiple addresses

<a href="mailto: manuel@matuzo.at, office@matuzo

 manuel@matuzo.at and office@matuzo.at

You can even prefill the subject and body of the email, as shown
in Example 3-17.

https://oreil.ly/m7RLF

Example 3-17. Subject and body prefilled

<a href="mailto:support@johannastoys.com?subject=

 &body=Customer%20number%3A%20068303">

 support@johannastoys.com

Discussion

It can be convenient for users when an email address is linked
because clicking it brings them to their mail application, and
they can start writing immediately. Some users may want to
avoid that change of context and only copy an email address.
You can serve both requirements by using the email address as
the link text.

I recommend avoiding generic link text like “Click here to get in
touch” or “Contact us,” as shown in Example 3-18, because if the
user wants only to know the email address, they would have to
click the link, move to the email application or webmail
browser tab, and copy it from the address field.

Example 3-18. Bad practice: Generic link text

If you want to learn more about our products,

h f " ilt t@j h t " t t

contact

If you want to learn more about our products, contact us.

It’s more user-friendly if the email address is immediately
visible:

If you want to learn more about our products, contact us at
support@johannastoys.com.

If you want the email to have a particular subject or include
data about the user or their inquiry, you can reduce the amount
of manual typing they have to do by prefilling the email. The
mailto: URI scheme supports several parameters. You can
prefill the subject by appending a ? to the email address,
followed by subject= and the value, as shown in Example 3-
19.

Example 3-19. Subject prefilled

<a href="mailto:support@johannastoys.com?subject=

 support@johannastoys.com

mailto:support@johannastoys.com
mailto:support@johannastoys.com
https://oreil.ly/ULWB3

You can also prefill the message of the email by appending the
body field, as shown in Example 3-20.

Example 3-20. Body prefilled

<a href="mailto:support@johannastoys.com?body=Mes

 support@johannastoys.com

In Example 3-17, you can see how to prefill more than one
parameter, and Figure 3-8 shows how the result looks in Apple
Mail.

Figure 3-8. Subject and body prefilled in an email opened via click on a link

NOTE

Special characters, line breaks, and spaces must be converted to a format that all
browsers and servers understand (URL encoding).

3.5 Link Images

Problem

Incorrect or missing descriptions of linked images result in
confusing or broken links, which can prevent screen reader
users from understanding the purpose of the link.

Solution

Use the alt attribute of the image to provide the link’s label or
accessible name. Example 3-21 shows a linked logo in the
header of a page. The image’s description is “Home page”
because that’s where the link points to. A common error is to
use a description like “Company Logo.” This image is functional
and thus must describe the link’s purpose, not the image’s
content.

Example 3-21. The alternative text of the linked logo serves
as the link text

https://oreil.ly/BCVUm

<header>

</header>

Instead of an img you can also use a scalable vector graphic
(SVG) with a <title> element. For cross-browser support, you
should use aria-labelledby on the SVG and create a
reference to the title. Note that some browsers show the content
of the <title> element in a tooltip when you hover the SVG,
as shown in Example 3-22.

Example 3-22. The title of the SVG serves as the text of the
download link

 <svg aria-labelledby="save_title" role="img">

 <title id="save_title">Save</title>

 <path d="…"/>

 </svg>

You can also remove the graphic from the accessibility tree by
defining an empty alt attribute on the img or aria-

https://oreil.ly/vKF9u

hidden="true" on the SVG. If you do that, the link still needs a
text alternative, which you can provide with aria-label or
aria-labelledby on the link itself, as shown in Example 3-
23.

Example 3-23. The aria-label attribute labels the link

<a href="https://mastodon.social" aria-label="Mas

<a href="https://mastodon.social" aria-label="Mas

 <svg aria-hidden="true">

 <path d="…"/>

 </svg>

Discussion

I’m dedicating an entire recipe to this issue because it’s so
prevalent and affects users significantly. If you don’t use the
image to provide an accessible name for the link or label the
link in any other way, a screen reader announces the URL, parts
of it, something like “unlabeled image,” or the image’s filename.

Images on the web can be roughly divided into three categories:
informative, decorative, and functional.

Informative images represent information that is relevant to
the main content of the page or a section. Describe those kinds
of images briefly by explaining the meaning or the content
displayed. How long the description gets depends on the
information and context you want to convey. In Figure 3-9 and
Example 3-24, you can see an example of an informative image
and its description.

Figure 3-9. A photo of the St. Charles Church (Karlskirche) in Vienna

https://oreil.ly/mxw1P

Example 3-24. Description of an informative image

<img src="images/karlskirche.jpg" alt="The St. Ch

Vienna, a baroque building containing a dome and

Decorative images purely serve the visual design and
contribute little or nothing in terms of content, so they do not
require an alternative text. In Figure 3-10 and Example 3-25,
you can see an example of a decorative image and its
description.

Figure 3-10. An image that contributes to the visual aesthetics but doesn’t contain
relevant information

https://oreil.ly/h6i5L

Example 3-25. The blank alt attribute hides the decorative
image from screen readers

In some situations, decorative images don’t contribute to
understanding the content, but they communicate emotions. In
these cases, when you want to create a particular atmosphere, it
can be helpful to describe decorative images. As Léonie Watson
puts it in her blog post, “Text descriptions and emotion rich
images”:

Like sighted users, we’ll skip around the content of the page
until we find something that interests us. If the first few
syllables of an alt text sound promising, we’ll pause to read.
If they don’t, we’ll move on to the next element on the page.
Also like sighted users, we’re often likely to pause on
something unimportant, but which captures our
imagination.

—Léonie Watson

Functional images are images in links or buttons whose
alternative text serves as the text for the link or button. With

https://oreil.ly/-Tqhw
https://oreil.ly/UeZc8

this type of image, you don’t describe the image’s content but
the action it initiates.

According to the WebAIM Million 2024 report, which is the
result of a yearly automated accessibility evaluation of the top 1
million websites, 44.6% of tested websites contained empty
links.

There are at least two root causes for these issues. One is literal
empty links—those not containing any content, as shown in
Example 3-26.

Example 3-26. Bad practice: An empty link with no
accessible name

The other cause is wrapping images in links or buttons without
providing any text alternative, as shown in Examples 3-27 and
3-28.

Example 3-27. Bad practice: An image without an alt
attribute wrapped in a link

 <img src="/images/screenshot-04-03-23_copy.jpg

https://oreil.ly/xCFrQ

I tried the code in Example 3-27 with different screen readers
and browsers. Table 3-1 shows how they announce it.

Table 3-1. Screen reader test: Linked image with no alt

Screen
reader

Browser Screen reader narration

NVDA Firefox million, graphic, link

JAWS Firefox H T T P S colon slash slash
webaim dot org slash projects
slash million slash

JAWS Edge images slash screenshot dash
04 dash 03 dash 23 underline
copy, link, graphic

TalkBack Chrome screenshot the 3rd of April 23
underscore copy, link

VoiceOver
macOS

Safari link, million

VoiceOver
macOS

Chrome unlabeled image

VoiceOver
macOS

Firefox link, image, million

Screen
reader

Browser Screen reader narration

VoiceOver
iOS

Safari million, link

If you add an alt attribute to an image but leave it empty, a
screen reader announces the URL (or parts of it).

Table 3-2 shows how different screen readers and browsers
announce the code in Example 3-28. At best, screen reader
users can only guess what they can expect when they click an
empty link.

Example 3-28. An image with an empty alt attribute
wrapped in a link

 <img src="/images/screenshot-04-03-23_copy.jpg

Table 3-2. Screen reader test: Linked image with empty alt

Screen
reader

Browser Screen reader narration

NVDA Firefox million, link

JAWS Firefox link, H T T P S colon slash
slash webaim dot org slash
projects slash million slash

JAWS Edge million, link

TalkBack Chrome million, link

VoiceOver
macOS

Safari link, million

VoiceOver
macOS

Chrome link, million

VoiceOver
macOS

Firefox link, million

VoiceOver
iOS

Safari million, link

With informative images, you explain the content, and with
functional images, you describe what the link or button does.
Whether a specific description of an image is appropriate
depends on the context, but both informative and functional
images must have a text alternative.

3.6 Inform Users of Changing Context

Problem

When a link opens in a new tab or window unexpectedly, it can
cause several problems for users:

It can confuse and disorientate people with difficulty
perceiving visual content or with cognitive disabilities.
It’s not always clear that a link has opened in a new tab,
especially on mobile browsers, which can be disorientating.
The back button might not work because not all browsers
share the browsing history of a session across tabs. If the
user can’t use the back button, they must find their way back
to the previous page.
Less-technical users might not understand how to navigate
across windows and tabs.
On top of that, it clutters the user’s information space.

https://oreil.ly/VCofm
https://oreil.ly/MNTAt
https://oreil.ly/Of_I1
https://oreil.ly/GExiF
https://oreil.ly/1VQ2f

Solution

If opening a link in a new tab or window will improve the user
experience and you use target="_blank" on a link, you
should inform users in the link text that the link will open in a
new tab, as shown in Example 3-29.

Example 3-29. A link text that includes a warning in
parenthesis

 Max Böck’s website (opens in new tab).

If you can’t add warnings manually and have no server-side
automation logic in place, you can use CSS. It’s better than
having no warning, but there are downsides to this solution:

On sites with multiple languages, you must manage
translations of the warning text in CSS and not in HTML or a
database. That’s unintuitive and a source of error because
you usually don’t expect text content in CSS.
Auto-translation tools might not translate pseudocontent.
The information is not available if CSS fails to load or the
page is presented without CSS.

https://oreil.ly/JL_3X

Example 3-30 looks like an elegant solution, but I recommend
using text in the element directly instead of text coming from a
pseudoelement.

Example 3-30. A warning added via a pseudoelement

 Max Böck’s website.

[target="_blank"]::after {

 content: " (opens in new tab)";

}

NOTE

A regular element in HTML is one you add to a page directly in your HTML document
or via JavaScript. A pseudoelement is not part of your HTML document but gets
added to the DOM via CSS.

Discussion

Is it a good idea to force open links in new tabs or windows?
Depending on who you ask, you will get very different answers.
Some people favor opening external links in new windows

because it keeps users on your site. What usability and
accessibility experts agree on is that you should avoid it (with
few exceptions) and inform users if you don’t.

That links opening in new windows or tabs can be problematic
for usability, and accessibility is not a new insight. Jakob
Nielsen spoke against it early on in “The Top 10 Web Design
Mistakes of 1999”. Since then we’ve seen far more handheld
devices like smartphones and tablets, where space is limited,
and keeping track of open tabs and windows is even more
challenging.

Besides the issues listed in the problem section of this recipe,
one of the strongest arguments against opening links in a new
tab is that when you apply target="_blank" you’re taking
away the user’s ability to decide how to open a link. It will
always open in a new tab or window (depending on browser
settings). Rian Rietveld argues that the browser’s default
behavior is always the most predictable and, in this case,
provides users with more options (open in the same tab or a
new tab or window).

Exceptions

https://oreil.ly/F8GAe
https://oreil.ly/hoNfO
https://oreil.ly/uAhDH

The (WCAG) lists scenarios where forcing links to open in a new
tab is better for the user experience:

If a linked page contains context-sensitive information meant
to persist alongside the main content, such as instructions for
filling out a form or other reference documents, opening the
page in the same tab can disrupt a multistep workflow.
If a link opens widgets in a pop-up window, such as a
calendar-based date picker or a login, you may want users to
perform these actions outside the main page.
If a user is logged in, linking to a page outside the secured
area could terminate the user’s session.

In those cases where opening a new tab by default helps users,
provide a warning. This allows them to decide whether they
want to leave the current window, and it will help them with
orientation and navigation.

The most reliable way to add a warning is using text and a
quick heads-up, like “Opens in new tab,” as shown in Examples
3-29 and 3-30. Both solutions add content to the original label
and don’t overwrite it. A common bad practice is using aria-
label for the task, as shown in Example 3-31. aria-label
overwrites the original text and makes the link pretty much
useless because its accessible name is now “Opens in new tab.”

https://oreil.ly/EJYWh
https://oreil.ly/0ef65

Example 3-31. Bad practice: aria-label overwrites the
original label

<a href="https://www.mxb.dev" target="_blank" ari

 Max Böck’s website.

You might be tempted to use an icon instead of text, but finding
an appropriate one isn’t easy. A typical icon for that use case is
a rectangle with an arrow pointing out the top-right corner
(shown in Figure 3-11).

Figure 3-11. Icon often used to indicate external links and/or links opening in new
tabs

The problem with that icon is that people interpret it
differently. It can mean “opens in new tab,” “opens external
site,” “opens external site in new tab,” “fullscreen,” “pop-out,”
“share,” and more. Researchers at gov.uk found that the icon
doesn’t provide users any value, so they removed it.

https://oreil.ly/eccqY
https://oreil.ly/gd0y-

If you set a link to open in a tab, always base your decision on
what’s best for your users. SEO or key performance indicators
(KPIs) shouldn’t be a factor. If possible, back up your choices
with usability testing or contextual inquiries.

3.7 Fix Client-Side Rendering

Problem

Different JavaScript frameworks and plug-ins implement client-
side routing differently, but they all have in common that they
disable the browser’s default site-navigation mechanism and
inject content into the DOM. Managing routing manually can
result in unexpected or indistinguishable changes. For users
who primarily rely on keyboard accessibility, focus might not
be where they would expect it. It can even be lost altogether,
which can make it much harder to navigate. Screen reader
users might not notice that the content of a page has changed
due to the lack of feedback.

Solution

The most obvious answer to this problem is to avoid causing it
in the first place and rely on the default site navigation

behavior of the browser. But depending on the requirements or
the technology stack, that’s not always possible or desirable.

Let’s start with a simple example. You disable the browser’s
default behavior, and instead of reloading the page, you append
content from a template into the main element (see Examples 3-
32 and 3-33).

Example 3-32. A navigation, an empty main element, and
the page content of both linked pages stored in a template
tag

<header>

 <nav>

 Home

 About

 </nav>

</header>

<main>

</main>

<template id="page-home">

 <h1 id="heading">Home</h1>

</template>

<template id="page-about">

 <h1 id="heading">About Us</h1>

</template>

Example 3-33. Incomplete solution: A click event prevents
the default behavior of links and clones the content of the
template with a matching id into the main element

const main = document.querySelector("main");

const nav = document.querySelector("nav");

nav.addEventListener("click", (e) => {

 if (e.target.nodeName === "A") {

 e.preventDefault();

 const id = e.target.getAttribute("href")

 const page = document.querySelector(id);

 main.innerHTML = "";

 main.appendChild(page.content.cloneNode(t

 }

});

That works well for mouse and touch users, but screen reader
users don’t get feedback when DOM content changes, and the
focus is still on the link.

Focus management

One solution to this problem is to move focus from the link to a
labeled semantic element, which could be the main element, as
in Examples 3-34 and 3-35.

Example 3-34. A simple client-side routing solution with
focus management

<header>

 <nav>

 Home

 About

 </nav>

</header>

<main tabindex="-1" aria-labelledby="heading">

</main>

<template id="page-home">

 <h1 id="heading">Home</h1>

</template>

<template id="page-about">

 <h1 id="heading">About Us</h1>

</template>

The main element is focusable and labeled by its child
<h1> .

Example 3-35. The script focuses the main element after
appending the template content

const main = document.querySelector("main");

const nav = document.querySelector("nav");

nav.addEventListener("click", (e) => {

 if (e.target.nodeName === "A") {

 e.preventDefault();

 const id = e.target.getAttribute("href")

 const page = document.querySelector(id);

 main.innerHTML = "";

 main.appendChild(page.content.cloneNode(t

 main.focus();

 }

});

Moves focus to the main element

When a user clicks a link, the focus moves to the main content
area of the page. A welcome side effect of focusing an element

with JavaScript is that screen readers automatically announce
its role and accessible name. Depending on the screen reader
and browser, this example announces something like “Main,
Home” or “Main, About.”

Live regions

Another solution to this problem is to report page changes
using a live region. Live regions are perceivable regions that
announce changes to their content to screen readers due to an
external event when user focus may be elsewhere. They can be
useful for communicating DOM changes, user interaction
results, waiting state, process progress, errors, or page changes.
Examples include chat logs, stock tickers, form validation, or
client-side routing.

Every time you change the content of the element with
role="status" (this attribute and value turns it into a live
region), a screen reader automatically announces it. Examples
3-36 and 3-37 show a simple client-side routing solution using a
live region.

Example 3-36. A simple client-side routing solution with a
live region

<header>

https://oreil.ly/CzOEZ

 <nav>

 Home

 About

 </nav>

</header>

<main></main>

<div role="status" class="visually-hidden"></div>

<template id="page-home">

 <h2>Home</h2>

</template>

<template id="page-about">

 <h2>About Us</h2>

</template>

<style>

.visually-hidden {

 clip-path: inset(50%);

 height: 1px;

 overflow: hidden;

 position: absolute;

 white-space: nowrap;

 width: 1px;

}

</style>

Additional element to announce changes on the page (the
live region).

Moves an element visually out of the viewport keeping it
in the accessibility tree. You can learn more about hiding
content in Recipe 8.1.

Example 3-37. The script changes the content of the live
region after appending the template content

const main = document.querySelector("main");

const nav = document.querySelector("nav");

const region = document.querySelector('[role="sta

nav.addEventListener("click", (e) => {

 if (e.target.nodeName === "A") {

 e.preventDefault();

 const link = e.target;

 const id = link.getAttribute("href");

 const page = document.querySelector(id);

 main.innerHTML = "";

 main.appendChild(page.content.cloneNode(t

 region.textContent = `${link.textContent}

https://calibre-pdf-anchor.a/#a664

g ${ }

 }

});

Changes the content of the live region every time the user
clicks a link

The focus is still on the link, so consider combining both
solutions if necessary, but remember that this might cause
redundancy: a screen reader might convey the content in the
live region and feedback from focusing an element.

These are just examples. There are many different ways of
implementing and combining both solutions, and you can only
determine what works best by testing with users.

Discussion

Most elements in HTML are accessible by default, meaning that
they provide the semantic information and functionality
needed for most users out of the box. Aside from a few
exceptions, relying on the default behavior of HTML elements is
a safe bet. When you disable these defaults, you must ensure
that your custom solution provides a similar or better user
experience.

https://calibre-pdf-anchor.a/#a669
https://oreil.ly/h7ipU

Let’s take page navigation as an example. When a user clicks on
a link, the browser loads a new page, changes the document
displayed in the viewport, and puts focus on the document. If
they’re using a screen reader, it also announces the page title
(<title>), which should be unique on each page. No matter
how they access the website, they usually always know what
happened, that something happened, and where they are. None
of these things happen when you prevent the default click
behavior on a link. You must either re-create them manually or
provide a similar or better alternative.

Focus management

Is the default browser behavior of focusing on the document
when it loads a new page best for the user experience? That’s
debatable, according to research done by Marcy Sutton.
Comparing different solutions, she found that it depends on the
user’s browsing method. Still, in a custom client-side rendered
solution, you have to manage focus somehow and move it to a
focusable and semantic element. To do that, put the tabindex
attribute on it and set the value to -1 , which ensures you can
focus it via JavaScript’s focus() method but not with the Tab
key.

https://oreil.ly/XYDSA

TIP

Set tabindex="-1" to make an element focusable via JavaScript and
tabindex="0" to make it focusable and tabbable. tabindex="-1" is what you
want to use in most cases because you should make a noninteractive element

interactive only as a last resort.

The focusable element mustn’t be a generic element, like the
div because screen readers handle them differently and you
cannot name them. See Example 3-38.

Example 3-38. Bad practice: Don’t put focus on an empty
div

<div tabindex="-1"></div>

The focusable element could be the <main> element, as shown
in Example 3-34, a section , or a heading. It ideally has an
accessible name, either coming from its content or aria-
label , as shown in Example 3-39. You can also use aria-
labelledby to create a reference to an existing element. In the
case of Example 3-34, that would be the heading of each page.

Example 3-39. A focusable labeled section

<section tabindex="-1" aria-label="Products"></se

https://oreil.ly/7JmmL

Live regions

You can create and configure live regions in different ways. The
most relevant attributes are aria-live , aria-atomic , and
aria-relevant .

You can turn an element into a live region by setting the aria-
live attribute to assertive or polite . Assertive updates
have the highest priority and should be presented immediately,
interrupting ongoing announcements if necessary. Polite
updates are less aggressive and wait for the next possible
opportunity, like the end of a sentence or typing pauses.

By default, only the changed DOM nodes will be presented
because aria-atomic is false . In Example 3-40, you change
the value of a element within a live region on click.
The screen reader only announces the content of the changed
DOM node; for example, “Olivia,” not the whole sentence. It also
only does that if the text changes. There is no announcement if
the current value is “Philippa” and the new value that overrides
it is the same.

Example 3-40. Updating a nested node in a live region

<button>Change name</button>

<button>Change name</button>

<div aria-live="polite">

 My name is Claudia

</div>

<script>

const button = document.querySelector("button");

const names = [

 "Moritz",

 "Valentina",

 "Johanna",

 "Magdalena",

 "Victoria",

 "Philippa",

 "Olivia",

];

const name = document.querySelector("span");

button.addEventListener("click", (e) => {

 const random = Math.floor(Math.random() * name

 name.textContent = names[random];

});

</script>

A list of names

Populates the element with a randomly picked
name

If you add the aria-atomic attribute and set it to true , you
make the live region atomic, meaning that screen readers
present the entire region, for example, “My name is Moritz,” in
Example 3-41.

Example 3-41. Updating a nested node in an atomic live
region

<button>Change name</button>

<div aria-live="polite" aria-atomic="true">

 My name is Claudia

</div>

There are also dedicated live region roles, for example, status
and alert , and a live region element, <output> .
role="status" is a shorthand for aria-live="polite"
and aria-atomic="true" (see Example 3-42) and
role="alert" is a shorthand for aria-live="assertive"
and aria-atomic="true" .

Example 3-42. A status-live region

<button>Change name</button>

<div role="status">

 My name is Claudia

</div>

The output element (Example 3-43) has an implicit aria-
live="polite" and aria-atomic="true" .

Example 3-43. Using the output element as a live region

<button>Change name</button>

<output>

 My name is Claudia

</output>

Eric Eggert provides more details in “We’re ARIA Live”, where
he also explains aria-busy and aria-relevant .

The page title

It’s not enough to announce a page change: you also have to
change the document’s title . Screen reader users use
shortcuts to read the page title, which can be helpful for
orientation. (You can learn more about page titles in Recipe 3.3.)

https://oreil.ly/SLBf9
https://oreil.ly/XV0TW

Client-side page navigation is a complex topic. The solutions in
this recipe are not ready-made snippets you can implement on
your websites. They merely illustrate the underlying problem
and its complexity. How you solve it depends on your stack,
your framework, and, most importantly, what works best for
your users. When you use a framework or pick a router for
your application, ensure that they’re doing it accessibly or at
least provide instructions on how to do it. If you want to dig
deeper into this topic, read “What we learned from user testing
of accessible client-side routing techniques with Fable Tech
Labs” by Marcy Sutton.

3.8 Add Links to Groups of Elements

Problem

It’s sometimes desirable to increase a link’s click-and-touch area
to span multiple elements. That can improve the user
experience for mouse and touch users, but can negatively affect
the accessibility and UX for keyboard and screen reader users.
Depending on the solution, the following problems can arise:

Text in a link can be lengthy, making using an interface
tedious.

https://oreil.ly/V1qBP

Redundant links pollute the interface and make orientation
and navigation more complex for screen reader users.
Additional tab stops make it more physically demanding for
keyboard users to use an interface.
Empty or verbose links can be hard or impossible for voice
users to select.
Browser defaults like selecting the text, middle-clicking to
open a link in a new window/tab, opening the context menu,
or previewing URLs might not work.

Solution

Unfortunately, there is no perfect way to link groups of
elements; the solutions all come with trade-offs. This recipe lists
five ways of linking multiple elements, starting with the
simplest. If you don’t want to go through all of them, skip to
solution 4, which I recommend for most use cases.

To illustrate the issue, I have created a card component, a page
teaser usually consisting of a heading, image, and text, that I
link differently in each example (see Figure 3-12). The code in
Example 3-44 is the baseline. The requirements for the card are:

The whole card should be clickable.
The announcement in screen readers should be succinct.

The card should contain as few tab stops as possible.
The solution should support multiple different links.
The HTML should be valid.
The context menu and other browser defaults should work
as expected.
The text should be selectable.

Figure 3-12. A card with a heading, text, image, and a call-to-action link

In the Discussion section of this recipe, you can learn how many
of these requirements each solution meets.

Example 3-44. A basic card component

<div class="card">

 <h3>

 When CSS Isn’t Enough: JavaScript Requirement

 </h3>

 <p>by St

 <img src="teaser.png"

 alt="Example dropdown menus from Dribbble

 <div>

 <p>

 Spoiler alert: tooltips, modals, tabs, caro

 menus are some of the user interface compon

 than CSS. To ensure accessibility of your i

 is a necessary addition to accomplish focus

 to keyboard events, and toggle ARIA attribu

 </p>

 </div>

 <p>

p

 Read

 <a href="/css-javascript-requirements-accessi

 “When CSS Isn’t Enough”

 .

 </p>

</div>

<style>

 .card {

 --padding: 1rem;

 background-color: hsl(222deg 100% 98%);

 box-shadow: 0 0 7px 3px hsl(0deg 0% 0% / 10%

 display: grid;

 font-family: Seravek, 'Gill Sans Nova', Ubunt

 grid-template-columns: var(--padding) 1fr va

 line-height: 1.5;

 max-width: 23rem;

 padding-block-end: var(--padding);

 }

 .card > * {

 grid-column: 2 / -2;

 margin: 0 0 0.6em;

 }

 .card h3 {

 line-height: 1.3;

g ;

 margin-block-end: 0;

 }

 .card h3 a {

 color: initial;

 text-decoration: initial;

 }

 .card :is(img, .img) {

 grid-column: 1 / -1;

 margin-block-end: var(--padding);

 max-width: 100%;

 order: -1;

 }

 .card :last-child {

 margin-block-end: 0;

 }

</style>

This basic solution meets all of the requirements except the
core requirement of being clickable as a whole.

Let’s try to link the card.

Solution 1: Wrapping all elements in an <a> element

You could wrap all elements in the card in a single <a>
element. That is a common pattern, but it has significant
negative consequences for screen reader users. That’s why I’ve
not included the code in the Solutions section. You can read
more about it and look at the code in the Discussion section.

Solution 2: Separate links

Instead of wrapping all elements in a link, link most elements
separately, as shown in Example 3-45.

Example 3-45. Card component with separate links

<div class="card">

 <h3>

 <a

 href="/css-javascript-requirements-accessible

 When CSS Isn’t Enough: JavaScript Requireme

 </h3>

 <p>by St

 <a class="img"

 href="/css-javascript-requirements-accessible-c

 <img src="teaser.png"

 alt="Example dropdown menus from Dribbbl

p p

 <div>

 <p>

 Spoiler alert: tooltips, modals, tabs, caro

 some of the user interface components that

 accessibility of your interface, JavaScript

 accomplish focus management, respond to key

 ARIA attributes.

 </p>

 </div>

 <p>

 Read

 <a

 href="/css-javascript-requirements-accessible

 “When CSS Isn’t Enough”

 .

 </p>

</div>

Example 3-46 is a variation that reduces the number of tab
stops.

Example 3-46. Card component with separate links with
tabindex="-1" and role="presentation"

<di class "card">

<div class="card">

 <h3>

 <a tabindex="-1" role="presentation"

 href="/css-javascript-requirements-accessible

 When CSS Isn’t Enough: JavaScript Requireme

 </h3>

 <p>by St

 <a class="img" tabindex="-1" role="presentation

 href="/css-javascript-requirements-accessible-c

 <img src="teaser-image.png"

 alt="Example dropdown menus from Dribbble, Go

 <div>

 <p>

 Spoiler alert: tooltips, modals, tabs, caro

 of the user interface components that requi

 accessibility of your interface, JavaScript

 accomplish focus management, respond to key

 toggle ARIA attributes.

 </p>

 </div>

 <p>

 Read <a href="/css-javascript-requirements-ac

 “When CSS Isn’t Enough”.

g

 </p>

</div>

Using tabindex="-1" and role="presentation" on
redundant links sounds like a clever solution, but there are
caveats, addressed in the Discussion section of this recipe.

Solution 3: Empty link

To avoid verbose announcements and invalid HTML, put an
empty link on the same level as the card content and position it
above the card, as shown in Example 3-47.

Example 3-47. Card component with an empty link covering
the card

<div class="card">

 <a class="solution-3-link"

 href="/css-javascript-requirements-accessibl

 aria-labelledby="solution3-heading">

 <h3 id="solution3-heading">

 When CSS Isn’t Enough: JavaScript Requirement

 </h3>

 <p>by St

p y p

 <img src="teaser.png"

 alt="Example dropdown menus from Dribbble

 <div>

 <p>

 Spoiler alert: tooltips, modals, tabs, caro

 menus are some of the user interface compon

 than CSS. To ensure accessibility of your i

 is a necessary addition to accomplish focus

 respond to keyboard events, and toggle ARIA

 </p>

 </div>

 <p>

 Read

 <a

 href="/css-javascript-requirements-accessible

 “When CSS Isn’t Enough”

 .

 </p>

</div>

<style>

 .solution-3-link {

 grid-column: 1 / -1;

 width: 100%;

 height: 100%;

g ;

 position: absolute;

 inset: 0;

 }

</style>

Solution 4: Pseudoelement

To avoid redundancy, verbosity, and empty links, add a
pseudoelement to an existing link and position the
pseudocontent above the card content, as shown in Example 3-
48.

Example 3-48. Card component with a pseudoelement
within the link covering the card

<div class="card">

 <h3>

 When CSS Isn’t Enough: JavaScript Requirement

 </h3>

 <p class="author">

 by St

 </p>

 <img src="teaser-image.png"

 alt="Example dropdown menus from Dribbble

 <div>

 <p>

 Spoiler alert: tooltips, modals, tabs, caro

 menus are some of the user interface compon

 than CSS. To ensure accessibility of your i

 is a necessary addition to accomplish focus

 respond to keyboard events, and toggle ARIA

 </p>

 </div>

 <p>

 Read <a class="readmore"

 href="/css-javascript-requirements-ac

 “When CSS Isn’t Enough”

 .

 </p>

</div>

<style>

 .card .readmore::after {

 content: "";

 display: block;

 inset: 0;

 position: absolute;

 }

</style>

To make specific elements selectable, you can use z-index to
put them above the pseudoelement. Keep in mind that they
won’t be linked anymore when you do that, as shown in
Example 3-49.

Example 3-49. Moving selected elements up a layer

.card .author,

.card > div

 z-index: 1;

}

Solution 5: JavaScript

The markup is the same as in the base component in
Example 3-44 and you use JavaScript to make the entire card
clickable. I’ve picked two different solutions to show you how
you can achieve that.

In this Example 3-50, a solution by Heydon Pickering, you save
the current time on mousedown and mouseup. On mouseup, you
subtract the former from the latter. If the result is less than 200
ms, it’s likely that the user didn’t select the text but just clicked
it; and if it’s more, they’re probably selecting it.

https://oreil.ly/SsKNE

Example 3-50. Using a timing threshold to detect whether a
text was clicked or selected

const card = document.querySelector(".card");

let down,

 up,

 link = card.querySelector(".readmore");

card.onmousedown = () => (down = +new Date());

card.onmouseup = () => {

 up = +new Date();

 if (up - down < 200) {

 link.click();

 }

};

Vikas Parashar uses the window.getSelection() API in his
solution to detect whether text has been selected, as shown in
Example 3-51.

Example 3-51. Using the selection API to detect whether a
text was clicked or selected

const card = document.querySelector(".card");

const link = card.querySelector(".readmore");

https://oreil.ly/4zUKq

card.addEventListener("click", (e) => {

 const noTextSelected = !window.getSelection().t

 if (noTextSelected) {

 link.click();

 }

});

Discussion

As already mentioned, none of the solutions is perfect. Let’s
discuss their pros and cons.

Solution 1: Wrapping all elements in an <a> element

It’s valid to wrap multiple elements in an <a> element, as
shown in Example 3-52.

Example 3-52. Bad practice: Card component with all
elements nested in a link

<div class="card">

 <a

 href="/css-javascript-requirements-accessible-c

 <h3>

 When CSS Isn’t Enough: JavaScript Requireme

 </h3>

 <p>by Stephanie Eckles</p>

 <img src="teaser.png"

 alt="Example dropdown menus from Dribbble, Go

 <div>

 <p>

 Spoiler alert: tooltips, modals, tabs, ca

 menus are some of the user interface comp

 more than CSS. To ensure accessibility of

 is a necessary addition to accomplish foc

 respond to keyboard events, and toggle AR

 </p>

 </div>

 <p>Read “When CSS Isn’t Enough”</p>

</div>

<style>

 /* Card styles same as in baseline component */

 .card {

 display: block;

 }

 .card > a {

{

 color: initial;

 display: grid;

 grid-template-columns: inherit;

 text-decoration: none;

 }

 .card > a > * {

 grid-column: 2 / -2;

 margin: 0 0 0.6em;

 }

</style>

This solution is simple to implement, but it has serious
downsides.

Pros

The whole card is clickable.

Browser defaults like right- or middle-click work as
expected.

There are no redundant links.

Cons

If you access the link with the Tab key, a screen
reader reads the entire text contained within the link,
the heading, the alt text of the image, the teaser text,
and the call to action. Some screen readers tell users
it’s a link only when they’re done announcing. NVDA,
for example, reads:

When CSS Isn’t Enough: JavaScript Requirements
For Accessible Components by Stephanie Eckles
Example dropdown menus from Dribbble, Google
search, and GitHub Spoiler alert: tooltips, modals,
tabs, carousels, and dropdown menus are some of
the user interface components that require more
than CSS. To ensure accessibility of your interface,
JavaScript is a necessary addition to accomplish
focus management, respond to keyboard events,
and toggle ARIA attributes Read “When CSS Isn’t
Enough,” link.

Using the virtual cursor, a screen reader might
announce pieces of text as separate links. Again, in
NVDA:

link, Spoiler alert: tooltips, modals, tabs, carousels,
and dropdown menus are some of the user
interface. link, components that require more than
CSS. To ensure accessibility of your interface,
JavaScript is a link, necessary addition to
accomplish focus management, respond to
keyboard events, and toggle ARIA attributes

You have to remove the nested links because it’s not
valid to nest interactive elements, and it breaks the
layout.

The text isn’t selectable.

It’s not clear how to access the link via voice.

Especially on mobile, users might be unable to access
the nested elements separately.

The verbosity you get when you access the link using the Tab
key can be mitigated by labeling the link with aria-label or

aria-labelledby , as shown in Example 3-53, but all the
other issues persist.

Example 3-53. Card component with all elements wrapped
in an <a> element with explicit accessible name

<a href="/css-javascript-requirements-accessible

 aria-labelledby="solution2-heading">

 <h3 id="solution2-heading">

 When CSS Isn’t Enough: JavaScript Requirement

 Components

 </h3>

 …

Solution 2: Separate links

The two significant downsides of this solution are that it creates
many redundant links with the same target and it increases the
number of tab stops.

You could put tabindex=-1 on the additional links to reduce
the number of tab stops, as illustrated in Example 3-46, but this
breaks the third rule of ARIA. All interactive element controls
must be usable with the keyboard. You could break the second
rule of ARIA and change the role of the link to none or

https://oreil.ly/3ye1y
https://oreil.ly/6lOXf

presentation . In theory, you would get a nonfocusable,
generic text element that behaves like a link for mouse, touch,
and voice users. In practice, that doesn’t work, because
accessibility APIs ignore role=presentation and
role=none on hyperlinks. That results in a confusing
mishmash where links are not discoverable via Tab , but they
are with the virtual cursor.

Pros

There is no verbose announcement when using the
Tab key with a screen reader.

Parts of the card are clickable.

Browser defaults like right- or middle-click work as
expected.

The card supports multiple links.

It’s accessible via voice.

The text is selectable.

Cons

Only parts of the card are clickable.

The solution adds additional tab stops.

The card contains many redundant links with the same
target.

Solution 3: Empty link

This solution is similar to Solution 1 except that it doesn’t wrap
all the other elements. The link is empty, and you position it
above them using CSS. That solves the verbosity issue, but text
is still not selectable, and the solution doesn’t support multiple
links.

Pros

There is no verbose announcement when using the
Tab key with a screen reader.

The whole card is clickable.

There’s only one tab stop.

Browser defaults like right- or middle-click work as
expected.

There are no redundant links.

It’s accessible via voice.

Other elements within the card are
accessible/discoverable.

Cons

The solution doesn’t support multiple different links.

The text isn’t selectable.

The non-clickable Read “When CSS Isn’t Enough” text
can be confusing.

Empty elements are a bad practice.

Solution 4: Pseudoelement

This solution is my favorite for most use cases because it
doesn’t require additional markup, and it ticks off most items
on the list of requirements. The only problem is that the
pseudoelement overlays all the other elements, which means
that text isn’t selectable. You can move parts above the
pseudolayer by applying a higher z-index , making them
selectable, but they’re not clickable anymore (see Figure 3-13).

Figure 3-13. On the left, the pseudoelement (shown in this screenshot with a
translucent background color) overlays all elements; on the right, two paragraphs lie

above the pseudoelement

Pros

There is no verbose announcement when using the
Tab key with a screen reader.

The whole card can be clickable.

There are only two tab stops.

Browser defaults like right- or middle-click work as
expected.

The solution supports multiple different links.

It’s accessible via voice.

Other elements within the card are
accessible/discoverable.

You don’t need an additional HTML element.

Cons

Text isn’t selectable except when you move elements
up a layer using z-index , but then you might have
large nonclickable areas.

If parts of the card promoted to a higher layer contain
interactive elements like links, it’s possible that people
mistap and click the card instead of the link.

Solution 5: JavaScript

The biggest downside of this solution is that browser default
behavior, like right- or middle-click or URL previews on hover,
don’t work anymore.

Pros

There is no verbose announcement when using the
Tab key with a screen reader.

The whole card can be clickable.

There are only two tab stops.

The solution supports multiple different links.

The HTML would be valid even if there were
additional links.

It’s accessible via voice.

Other elements within the card are
accessible/discoverable.

You don’t need an additional HTML element.

Text is selectable.

Cons

The context menu and other browser defaults only
work on links directly.

It’s a magic JavaScript solution. Using clever JavaScript
hacks to work around default browser behavior is
prone to error.

Depending on your requirements, you probably want to try
solution 4 or 5.

See Also

“Better Link Labels: 4 Ss for Encouraging Clicks” by Kate
Moran

https://oreil.ly/jT1pH

“Creating the perfect link” by Rian Rietveld
“Block Links, Cards, Clickable Regions, Rows, Etc.” by Adrian
Roselli
“Block Links Are a Pain (and Maybe Just a Bad Idea)” by Chris
Coyier
“Teaser with multiple links” by Michael Scharnagl
“Block Links: The Search for a Perfect Solution” by Vikas
Parashar
“Cards” by Heydon Pickering
“Building a Good Download… Button?” by Eric Bailey
“Showing File Types in Links” by Adrian Roselli
Accessibility in Angular: Routing
SvelteKit: Route announcements
NextJS: Route announcements

https://oreil.ly/OkFCD
https://oreil.ly/Y5O1P
https://oreil.ly/FwGo1
https://oreil.ly/wHaHY
https://oreil.ly/5Zlfu
https://oreil.ly/buYts
https://oreil.ly/h5cdm
https://oreil.ly/Sp7Ko
https://oreil.ly/yPQcQ
https://oreil.ly/viOJr
https://oreil.ly/tPp7W

Chapter 4. Performing Actions

This whole chapter focuses on a single HTML element, the
<button> . There are two reasons I give buttons so much
space.

First, the button is a common element; you’ll find it on most
pages: in a contact or newsletter sign-up form, to toggle a
mobile navigation, or to close a pop-up dialog.

Second, although web developers need buttons so often, they’re
bad at implementing them correctly. That’s not just based on
years of my experience auditing sites others have built; there’s
also data to confirm it.

That’s why this chapter focuses on the most essential
requirements of the button element and how to fulfill them.

4.1 Pick the Right Element

Problem

If a button doesn’t meet basic requirements, you may exclude
one or more groups of users from being able to access it or
understand its purpose.

https://oreil.ly/CceiT

The discussion section of this recipe provides more detail, but
the essential accessibility criteria for a button are:

It must convey its semantic button role programmatically.
It has a concise and straightforward accessible name (visible
text or a text alternative).
It communicates its state (pressed, expanded, etc.) if
necessary.
It’s recognizable as a button.
Its colors must have enough contrast.
It must be focusable and allow activation via click, touch, and
key events.

Solution

Use the native button element and HTML and ARIA attributes to
adjust its features according to the requirements, as shown in
Examples 4-1, 4-2 and 4-3.

Example 4-1. A native submit button used in a form to
submit data

<form>

 <label for="email">Email address</label>

 <input type="email" id="email" name="email">

 <button>Sign up</button>

</form>

Example 4-2. A button that executes JavaScript

<button type="button" onclick="print()">

 Print

</button>

Example 4-3. A button communicating its pressed state

<button type="button" aria-pressed="true">

 Mute

</button>

Discussion

The button element has two main use cases: submitting a form
and running JavaScript when a user interacts with it.

A button becomes a submit button when you set its type to
submit or in the context of a form, as shown in Example 4-1. You
usually use a submit button to send form data to a server.

If you set the type to button, the button does nothing. You do
that if you want to run JavaScript when the user activates the
button. For example, when you click the button in Example 4-2,
it opens your browser’s print dialog. Other common uses are
toggling the visibility of other elements (see Chapter 8), opening
modal dialogs (see Recipe 11.3), and running other JavaScript
functions.

According to the WCAG, a button must meet at least six specific
requirements to be accessible and provide great UX. Let’s look
at each one in turn:

It must convey its semantic button role programmatically.

Your buttons must convey their semantic roles. The safest
and most reliable option is to use the <button> element,
because it has an implicit button role.

A screen reader will announce the button’s role alongside
its name; for example, “Print, button.”

It has an accessible name (visible text or a text alternative).

Regardless of whether a button contains text, it must have
an accessible name. There are no exceptions to this rule. If
you don’t label buttons, screen reader and voice users
won’t know what to do with them.

https://oreil.ly/fKZjH
https://oreil.ly/q0sfQ
https://oreil.ly/4zgi_

There are different ways of labeling buttons. Recipe 4.2
describes some of them, but the best thing you can do in
most cases is include text that is visible to everyone.

It communicates its state (pressed, expanded, etc.) if necessary.

A button may have different states or control another
element’s state: If so, it must convey its state or
relationship using ARIA attributes. The button in
Example 4-3 conveys that some media is muted. You can
find more examples in Recipe 4.5.

It’s recognizable as a button.

According to Jakob’s law, users spend most of their time
on other sites, which means that users prefer your site to
work the same way as all the other sites they already
know. For buttons, this means they should meet the user’s
visual expectations of a button. If a button looks like a
button, it makes it easier for users, especially those with
cognitive disabilities, to understand its purpose. That also
applies to its accessible name. If identical functions have
different accessible names on different pages, the site will
be more challenging to use.

Its colors must have enough contrast.

https://oreil.ly/-3pkW
https://oreil.ly/xmeJn

Just like most of the text or images of text on a web page,
buttons must also meet minimum contrast requirements.
The text color in a button must have a contrast ratio of at
least 4.5:1 for normal text or 3:1 for large-scale or bold
text.

Other colors used in the button, like the background color
or colors of focus indicators, should also meet
requirements for minimum contrast ratio against
adjacent colors. In other words, the button’s background
color or the outline of a focus indicator or border should
also have a contrast ratio of at least 3:1 against the
background, which typically is a parent component or the
page itself. Low contrast controls are more difficult to
perceive and may be completely missed by people with
low vision.

It must be tabbable and allow activation via click, touch, and
key events

A button is an interactive element, which means that if
you can click it, you must also be able to perform the
same action using the keyboard by pressing Enter or
Space . For that, it must be tabbable (reachable via the
Tab key), which is true by default for the <button>
element.

https://oreil.ly/DxA50
https://oreil.ly/zmsws
https://oreil.ly/0hqu1
https://oreil.ly/zP5Vw
https://oreil.ly/6ezru

Most websites contain buttons. Try to follow the best practices
in this chapter and avoid several common alternative solutions
that don’t meet the requirements, listed in Example 4-4. It’s
possible to re-create the native button’s default functionality
using a different element, like the <div> , but usually it’s not
worth the effort because the <button> comes with most of the
features described in this recipe.

Example 4-4. Bad practices: Common inaccessible button
alternatives you should avoid

<!-- Div with a click event -->

<div onclick="[JS function]">

 O'Reilly books and videos

</div>

<!-- Non-focusable button -->

<div role="button" onclick="[JS function]">

 O'Reilly books and videos

</div>

<!-- Link with a click event -->

<a href="javascript: void(0)" onclick="[JS functi

 Menu

<!-- Link with a click event -->

 Menu

4.2 Label Buttons Clearly

Problem

Buttons can take various shapes and forms. The content
wrapped in the button may be text, an icon, or both. When you
don’t name a button, regardless of whether the design
anticipates it, screen reader users may be unable to tell its
purpose.

Solution

First, if the button contains text, that text serves as its label, as
shown in Example 4-5.

Example 4-5. Button with the accessible name coming from
its content

<button type="button">

 Download

</button>

Second, if the button contains an image, the image’s alt
attribute should provide the label, as in Example 4-6.

Example 4-6. Button with the accessible name coming from
the alt attribute of the image

<button type="button">

 <img src="/images/download.svg" alt="Download"

</button>

Instead of an img , you can also use a an SVG with a <title>
element. For cross-browser support, use aria-labelledby on
the SVG and create a reference to the title, as shown in
Example 4-7.

Example 4-7. Button with the accessible name coming from
the SVG

<button type="button">

 <svg viewBox="0 0 39 44" aria-labelledby="title

 <title id="title">Download</title>

 <path d="M19.5 36.5 1.6 26.1v-3.6l16.3 9.4V1

 <path d="M1 41.5h37" style="stroke:#000;strok

 </svg>

https://oreil.ly/hXvJD

g

</button>

You can also remove the graphic from the accessibility tree by
defining an empty alt attribute on the img or aria-
hidden="true" on the SVG. If you do that, the button still
needs a text alternative, which you can provide with visually
hidden text (see Example 4-8), aria-labelledby , or aria-
label (see Example 4-9).

Example 4-8. The visually hidden text labels the button

<button type="button">

 Download

 <img src="/images/download.svg" alt="" width="2

</button>

<!-- or -->

<button type="button">

 Download

 <svg viewBox="0 0 39 44" aria-hidden="true" wid

 <path d="M19.5 36.5 1.6 26.1v-3.6l16.3 9.4V1

 <path d="M1 41.5h37" style="stroke:#000;strok

 </svg>

</button>

<style>

 .visually-hidden {

 clip-path: inset(50%);

 height: 1px;

 overflow: hidden;

 position: absolute;

 white-space: nowrap;

 width: 1px;

 }

</style>

Example 4-9. The aria-label attribute labels the button

<button type="button" aria-label="Save">

 <svg aria-hidden="true" viewBox="0 0 39 44" wid

 <path d="M19.5 36.5 1.6 26.1v-3.6l16.3 9.4V1

 <path d="M1 41.5h37" style="stroke:#000;strok

 </svg>

</button>

Removing nested graphics from the accessibility tree is also
helpful when you combine an icon with text because the text
eliminates the need for an extra label for the icon, as shown in
Example 4-10.

Example 4-10. Combination of text and icon

<button type="button">

 Save

 <img src="/images/download.svg" alt="" width="2

</button>

<button type="button">

 Save

 <svg aria-hidden="true" viewBox="0 0 39 44" wid

 <path d="M19.5 36.5 1.6 26.1v-3.6l16.3 9.4V1

 <path d="M1 41.5h37" style="stroke:#000;strok

 </svg>

</button>

Discussion

According to the WebAIM Million 2024 report, which is the
result of a yearly automated accessibility evaluation of the top 1
million websites, 28.2% of tested websites contained empty
buttons, which makes it one of the top five issues the study
found. An empty button is either a button with no children or a
button that contains unlabeled graphics and with no other
source that labels it.

There are different methods for labeling buttons. Which one
you choose depends on the requirements. When you have

https://oreil.ly/aEi9p

multiple options, I recommend following the priority order
Adrian Roselli describes in “My Priority of Methods for Labeling
a Control”:

1. Native HTML techniques
2. aria-labelledby pointing at existing visible text
3. Visibly hidden content
4. aria-label

If the button contains only text or a combination of text and
icons, put the label as text between the element’s start and end
tag, as shown in Example 4-5. If there’s an icon that doesn’t
provide additional information, remove it from the accessibility
tree to avoid redundancy (see Example 4-10).

If there’s no visible text but only an image or icon, then its
alternative text can serve as the name for the button (see
Examples 4-6 and 4-7). These kinds of images are called
functional images. Their alternative text should describe not
what they show, but their purpose. Alternatively, you can use
visually hidden text (Example 4-8), aria-labelledby , or the
aria-label attribute (Example 4-9).

Missing accessible names are probably the most common issue,
but wrong ones can be problematic, too. Sometimes they’re in

https://oreil.ly/pDN6_
https://oreil.ly/7x2on

the wrong natural language, like English on a French site.
Sometimes they contain unresolved variables or placeholder
text. These issues usually arise with icon-only buttons. You can
easily miss visually hidden text or labels provided via attributes
like aria-label since they’re visible only in the code, not the
rendered UI. You should favor buttons with visible text because
they are universally understandable and less error-prone.

The label should be informative and concise. Don’t label a
button “Click here to open or close the navigation.”
“Navigation” is sufficient.

4.3 Remove Default Button Styles

Problem

Even when a button doesn’t look like a button, it must still meet
most of the requirements described in Recipe 4.1. If it doesn’t, it
might not be accessible to keyboard and screen reader users. If
you pick a generic element with fewer default styles instead of
the <button> element, users might not be able to access the
fake button or understand its purpose.

Solution

If you want to use a button but don’t want to make it look like a
button, you should still use the <button> element but remove
the default button styles. CSS offers three efficient strategies for
removing default button styles, as shown in Examples 4-11, 4-
12, and 4-13.

Example 4-11. Removing or resetting properties manually

button {

 background: none;

 border: 0.1em solid transparent;

 font: inherit;

 padding: 0;

}

Shows an outline in forced-colors mode, which can be
helpful.

Example 4-12. Resetting all button properties to their initial
value

button {

 all: initial;

}

button:focus-visible {

 outline: 0.1em solid;

 outline-offset: 0.1em;

}

Example 4-13. Resetting all button properties to their initial
value except for inheritable properties

button {

 all: unset;

}

button:focus-visible {

 outline: 0.1em solid;

 outline-offset: 0.1em;

}

Discussion

Button elements in operating systems and web pages have a
particular default shape and styling: a rectangle with a border,
a background color, and some padding between the text and the
border. When you style a page, you usually stick to these default
characteristics. You change the default values and maybe add
properties, as shown in Example 4-14. You might also have
versions of that button that vary in size, color, and shape.

Example 4-14. Custom styles for buttons

button {

 --_l: 0.47;

 background: oklch(var(--_l) 0.05 195.6);

 color: #fff;

 font-size: 1.2rem;

 font-family: inherit;

 padding: 0.4em 0.9em;

 border-radius: 3px;

 border: 0;

 min-inline-size: 7rem;

}

button:is(:hover, :focus-visible) {

 --_l: 0.27;

}

The background color gets darker on hover and focus-
visible .

Some buttons don’t look like buttons because they consist of
only an icon. How you implement such a button is crucial. One
of the most common accessibility issues on most websites I
audit is fake buttons: many developers assume that if a control
doesn’t look like a button, it doesn’t have to be a <button>
element. Their reasoning is: if there are no button styles in the

first place, you don’t have to remove them. That often results in
code like that in Example 4-15, which looks harmless but makes
a considerable difference to accessibility.

Example 4-15. Bad practice: A fake div button

<div class="button" aria-label="Navigation">

 <svg width="24" height="24" aria-hidden="true">

 <path d="M3 18h18v-2H3v2zm0-5h18v-2H3v2zm0-7v

 </svg>

</div>

<script>

const button = document.querySelector(".button")

button.addEventListener("click", (e) => {

 console.log("do something");

});

</script>

There are several issues with this “button:”

It’s not focusable via keyboard.
Even if it was focusable, activation via Enter or Space
wouldn’t work.
Screen readers don’t announce it as a button.
Some screen readers don’t announce it at all.

You shouldn’t use aria-label on generic elements because
it’s invalid to name them.

This “button” not being focusable affects keyboard and screen
reader users, but the latter can use the virtual cursor to access
the fake button. If a click event listener is attached to the div ,
some screen readers will hint that you can click it. Nevertheless,
if you look at Table 4-1, you can see that using a div or any
other noninteractive element isn’t reliable. If you have need to
remove default button styles, sticking to the <button> element
and resetting styles using CSS is the safest choice.

Table 4-1. Screen reader test: accessibility of a div button

Screen reader Browser Screen reader narration

NVDA Firefox Navigation

JAWS Chrome N/A

Narrator Edge N/A

TalkBack Chrome Navigation

VoiceOver macOS Safari Navigation, empty group

VoiceOver iOS Safari N/A

It wouldn’t be viable to use a generic element instead of a
button or put event listeners on noninteractive elements. You
need an interactive element if the user can interact with a
component.

The four lines of CSS you see in Example 4-11 are all you need
to remove buttons’ default user-agent styles—assuming you
haven’t added more rules, like we did in Example 4-14. In that
case, you would have to reset those styles as well. That’s the
problem with this manual approach: you must keep track of
changes to your custom default styles and adjust the reset styles
accordingly, or else reset every possible property in advance.

The approach illustrated in Examples 4-12 and 4-13 is much
more efficient. You can use the all property in CSS to reset all
properties of an element, except unicode-bidi , direction ,
and CSS Custom Properties. Depending on your needs, you can
set its value to initial or unset (see Figure 4-1).

Figure 4-1. A button with default styling, a button with all properties set to initial ,
and a button with all properties set to unset

The initial keyword sets all property values to their initial
value. Each property has an initial value, defined in the
property’s definition table. For example, if you look at the color
property in the specification, the defined initial value in the
definition table is CanvasText . Note that the initial value is
not the default property value defined in the user agent.

The unset keyword resets a property to its inherited value, if
the property naturally inherits from its parent and to its initial
value if not. That can be useful if you want to keep specific
properties like font-family or color .

https://oreil.ly/PiNSC

Either way, you may have to bring back focus and hover
styles, because all resets those, too. The gist is that even when
a button doesn’t look like a button, it must behave like one.

4.4 Add States and Properties

Problem

When screen reader users use buttons to control other
elements on the page or settings for the site, those buttons must
provide as much information as possible. That may include the
type of button, the type of associated element, or the state of a
button or controlled element. If that information is missing, it’s
much more complicated—or sometimes even impossible—to
tell if the user has activated the button successfully and what
happens when they do.

Solution

A button that toggles the visibility of another element needs to
communicate whether the element is expanded, as shown in
Example 4-16.

Example 4-16. The aria-expanded attribute on the button
communicating whether the navigation is visible

<nav>

 <button aria-expanded="false" aria-controls="ma

 Navigation

 </button>

 <ul id="main_nav">…

</nav>

<style>

 [aria-expanded="false"] + ul {

 display: none;

 }

</style>

<script>

const button = document.querySelector("button");

button.addEventListener("click", (e) => {

 const isExpanded = button.getAttribute("aria-ex

 button.setAttribute("aria-expanded", !isExpande

});

</script>

aria-expanded must be on the button and not the
expandable element.

The list is hidden, depending on the value of the attribute.

https://calibre-pdf-anchor.a/#a851

Click event on the button toggles the value of the aria-
expanded attribute.

A button that turns a setting on or off must communicate
whether it’s active, as shown in Example 4-17.

Example 4-17. A button communicating its pressed state

<button type="button" aria-pressed="true">

 Add to favourites

</button>

<script>

const button = document.querySelector("button");

button.addEventListener("click", (e) => {

 const isPressed = button.getAttribute("aria-pre

 button.setAttribute("aria-pressed", !isPressed

});

</script>

The button indicates that something was added as a
favorite.

A button that toggles a setting must communicate whether it’s
active. Figure 4-2 and Example 4-18 show a switch button

communicating its state using the aria-checked attribute.

Figure 4-2. A toggle switch

Example 4-18. A switch button

<button role="switch" aria-checked="false">Functi

<script>

const button = document.querySelector("button");

button.addEventListener("click", (e) => {

 const isChecked = button.getAttribute("aria-che

 button.setAttribute("aria-checked", !isChecked

});

</script>

<style>

 button {

 --toggle-offset: 0.125em;

 --toggle-height: 1.6em;

 --toggle-background: oklab(0.82 0 0);

 all: unset;

 align-items: center;

 display: flex;

 gap: 0.5em;

 position: relative;

 }

 button::before {

 background: var(--toggle-background);

 border-radius: 4em;

 content: "";

 display: inline-block;

 height: var(--toggle-height);

 transition: background 0.3s, box-shadow 0.3s

 width: 3em;

 }

 button::after {

 --_size: calc(var(--toggle-height) - (var(--t

 background: #FFF;

 border-radius: 50%;

 content: "";

 height: var(--_size);

 left: var(--toggle-offset);

 position: absolute;

 transition: translate 0.3s;

 top: var(--toggle-offset);

p (gg);

 width: var(--_size);

 }

 button:focus-visible::before {

 outline: 2px solid;

 outline-offset: 2px;

 }

 button:is(:focus-visible, :hover)::before {

 box-shadow: 0px 0px 3px 1px rgb(0 0 0 / 0.3)

 }

 [aria-checked="true"] {

 --toggle-background: oklab(0.7 -0.18 0.17);

 }

 button[aria-checked="true"]::after {

 translate: 100% 0;

 }

</style>

Resets the default button styles.

Pseudoelement for the background of the switch.

Pseudoelement for the movable indicator of the switch.

Adds custom focus styles.

Shows a box shadow on :hover and :focus-visible .

Turns the background color of the switch to green when
active.

Moves the indicator to the end of the switch when active.

A button can communicate its state and what kind of element it
controls, as shown in Example 4-19.

Example 4-19. A button controlling a menu

<button

 type="button"

 aria-haspopup="menu"

 aria-expanded="false"

 id="button_settings"

>

 Settings

</button>

<ul role="menu" aria-labelledby="button_settings

 <li role="none">

 <button role="menuitem">Print</button>

 <li role="none">

 <button role="menuitem">Save</button>

<style>

 [aria-expanded="true"] + ul {

 display: block;

 }

</style>

<script>

const button = document.querySelector("button");

button.addEventListener("click", (e) => {

 const isExpanded = button.getAttribute("aria-ex

 button.setAttribute("aria-expanded", !isExpande

});

</script>

Indicates that the button controls a menu.

Indicates that the controlled menu is collapsed.

The menu is hidden by default.

The list is hidden, depending on the value of the attribute.

https://calibre-pdf-anchor.a/#a881

Click event on the button toggles the value of the aria-
expanded attribute.

Discussion

Many attributes in the ARIA specification provide elements
with states or properties. When you build custom JavaScript
widgets, you’ll use some of them often. The arial-label
property, for example, gives an element an accessible name,
while the aria-hidden state removes an element from the
accessibility tree.

This recipe focuses on four attributes commonly used with
buttons.

The expanded state

You use the aria-expanded attribute on a button element to
indicate whether a grouping element it controls is expanded or
collapsed.

NOTE

The controlled element can be pretty much any element, but it’s usually a grouping
element like <div> , <p> , or .

https://oreil.ly/z51QK

In Example 4-16, you can see that the button has the attribute
and communicates that the associated element is expanded.
Users should understand from the button text which element
the button controls. That’s why you should avoid generic text
like “show/hide.” The attribute can be useful for fly-in
navigations (see Recipe 7.5), for submenus in nested
navigations (see Recipe 7.7), and for disclosure widgets (see
Recipe 8.3).

The button’s job is to communicate whether the controlled
element is expanded. You must follow three essential rules
when you apply it:

You set the attribute on the element that does the controlling
(the button), not the controlled element (the group).
The sheer presence of the attribute is not enough; you must
set it to “true” or “false.”
The attribute must be present and set before the user
interacts with the button. If you set the value to “false,” it
means that the controlled element is collapsed. If you don’t
set the attribute, the button doesn’t control anything.

As you can see in Example 4-16, the button has another ARIA
attribute: aria-controls .

The controls property

The aria-controls attribute identifies the element the
button controls. The value is a list of one or more id
references. With the attribute present, a screen reader can
identify a relationship between a button and another element.
JAWS doesn’t automatically announce this relationship, but you
can use the JAWSKEY + ALT + M shortcut to jump directly to
the controlled element.

For disclosure widgets, this attribute isn’t well supported (JAWS
is the only screen reader that uses it), and it’s unclear how
much importance screen reader vendors plan to attach to it.
However, it does no harm. For NVDA, this has been an open
issue since 2018; an open discussion in the ARIA GitHub
repository dates to 2019. Whether you use it is up to you. Until
there’s an official recommendation for or against it, I’m using it
in the following chapters.

Pressed state

The aria-pressed attribute indicates the current “pressed”
state of toggle buttons.

A toggle button is similar to a checkbox but not quite the same.
Aside from the styling, the most significant difference is that a

https://oreil.ly/jwCyD
https://oreil.ly/EsUjr
https://oreil.ly/qIkN6
https://oreil.ly/ngVUs

checkbox conveys only a state (checked/unchecked/mixed),
whereas a button performs an action. When users click a toggle
button, they expect something to happen. Pressing the button in
Example 4-17 toggles the value of the aria-pressed attribute
and changes the state of the Add to favorites button. Client-side
changes like that require you to work in an environment that
relies on JavaScript because the pressed state must change on
click. If that’s not the case and you want to enhance the control
progressively, use a checkbox instead. Adrian Roselli describes
the differences between checkboxes and toggle buttons in depth
in “Under-Engineered Toggles” and “Under-Engineered Toggles
Too”.

Checked state

The aria-checked attribute indicates the current “checked”
state of checkboxes, radio buttons, and other widgets.

You’re not supposed to use aria-checked on a button with
the role button , but you can use it on a switch (see Example 4-
18). A switch is a type of checkbox that represents on/off values
instead of checked/unchecked/mixed values. It provides
approximately the same functionality as a checkbox or toggle
button, but you can distinguish between them for screen
readers in a fashion consistent with its on-screen appearance.

https://oreil.ly/TMx63
https://oreil.ly/wk1Rs
https://oreil.ly/bQVgH

Switches are a problematic pattern in terms of user experience.
I talk a bit about why in Recipe 9.1. If you decide to use
switches, test them thoroughly with users, including those who
use screen readers.

haspopup property

The aria-haspopup attribute indicates that a button controls
another interactive pop-up element. Most screen readers also
announce the type of pop-up element. The attribute supports
seven values: true, false, menu, dialog, grid, listbox, and tree,
indicating that the referenced element has the respective role.
true is the same as menu.

Depending on the screen reader software you’re using, if you
focus the button in Example 4-19, it will announce something
like “Settings, button, menu” (JAWS) or “Settings, pop-up button,
menu pop-up” (VoiceOver). The value you use must keep its
promise: if the value is menu, the role of the controlled element
should also be menu and function accordingly. JAWS, for
example, will also announce appropriate instructions when an
attribute with a specific value is present. For true and menu, it
announces, “Press Space to activate the menu. Then navigate
with arrow keys.” For listbox, tree, and grid: “To activate, press
Enter.”

https://oreil.ly/hP6JJ
https://oreil.ly/Fp1Ul

The values true and menu are well supported in all screen
readers. However, TalkBack and Narrator don’t support grid,
dialog, listbox, or tree.

4.5 Don’t Disable Buttons

Problem

Disabling buttons can cause more problems for users than
benefits.

Missing feedback

When you click a disabled button, nothing happens. The button
doesn’t explain what’s wrong or help you fix the problem. It
provides no helpful feedback. If the user thinks their answers
are correct, not providing feedback can make the UI feel
broken.

Missing focus

Disabled buttons are not focusable, so screen reader users who
use the Tab key to navigate might not know that there even is
a button. If the button’s styling isn’t obvious, it may confuse
keyboard users trying to focus the button.

Low contrast

WCAG’s minimum contrast rule doesn’t apply to disabled
controls, but they’re often hard to read, especially for people
with low vision.

Deception

It’s not always apparent that buttons are disabled. Some users
will try to click them; if nothing happens, they can feel irritated,
confused, or disappointed. That may occur because the design
isn’t distinct or because disabled buttons usually contain call-to-
action words like “submit,” “send,” or “order,” which lure users
into clicking them.

Solution

Don’t disable buttons. Users should always be able to interact
with them and get feedback.

Discussion

The point of disabling buttons is to avoid premature clicks and
to make it difficult for users to make mistakes when filling out
forms. Developers use this technique to indicate that something

https://oreil.ly/qXrDK

important is wrong or missing, and must be fixed before the
user can continue to the next step. That sounds good, but a
disabled button is not the best solution. It’s a flawed pattern. A
button can be disabled for many reasons, but using it forces the
user to figure out what went wrong.

Instead of disabling buttons, there are several measures you
can take to avoid errors up front:

Use clear labels for your input fields.
Add hints and descriptions when the label alone isn’t clear
enough.
Split complex forms into multiple steps or pages to reduce
cognitive load.
Always enable buttons and validate input on submit.
Give clear error messages.

When the user presses the button, provide them with a list of
errors that point to the respective field, or move focus to the
erroneous field if there’s only one (see Recipe 9.4 for details).

See Also

“Buttons and the Baader–Meinhof phenomenon” by Manuel
Matuzović

https://oreil.ly/cyMyt

“hasPopup hasPoop” by Steve Faulkner
“aria-hasPopUp less is more” by Steve Faulkner
“aria-haspopup and screen readers” by Manuel Matuzović
“The problem with disabled buttons and what to do instead”
by Adam Silver
“Usability Pitfalls of Disabled Buttons, and How To Avoid
Them” by Vitaly Friedman
“Making Disabled Buttons More Inclusive” by Sandrina
Pereira
“Disabled buttons suck” by Hampus Sethfors
“Perceived affordances and the functionality mismatch” by
Léonie Watson
“Toggles suck!” by Joel Holmberg

https://oreil.ly/uS3Cv
https://oreil.ly/VGcDf
https://oreil.ly/zJap8
https://oreil.ly/r3nIy
https://oreil.ly/69ARM
https://oreil.ly/r835V
https://oreil.ly/1rZCw
https://oreil.ly/axlK5
https://oreil.ly/Lg42u

Chapter 5. Styling Content

Respecting users and user preferences is one of the most critical
aspects of designing and building inclusive UIs. Operating
systems and browsers provide users with different options for
tweaking UIs and behavior according to their needs. For
example, they can change the default font size or reduce motion
in UIs. You can query those settings and adapt your CSS
accordingly to provide them with an appropriate experience on
your website.

Another aspect of inclusivity in CSS is understanding how it
influences semantics and operability. CSS is a stylesheet
language primarily intended for changing the presentation of
HTML elements. Still, some of its properties also affect the
semantic meaning of HTML and how it functions.

5.1 Work with Color

Problem

Color is an integral part of web design and user experience. You
can use it for styling and decorating or for conveying emphasis,
state, and importance. However, not everyone perceives color

the same way. If you rely on color alone to communicate, or use
colors with low contrast, you may exclude people, especially
those with low vision.

Solution

First, use tools to test color contrast. Ensure that text has a high
contrast ratio against its background and the background colors
of components against adjacent colors (see Figure 5-1).

Figure 5-1. The WebAIM color contrast checker showing a ratio of 4.74:1 for the given
color combination

Second, don’t use color alone to indicate an action, prompt a
response, visualize a change of state, or distinguish a visual
element (see Example 5-1).

Example 5-1. An error message, an x icon, the color red, and
the aria-invalid attribute, all conveying that something

has gone wrong

<label for="email">Your email address</label>

<input type="email" id="email" required aria-inva

 aria-describedby="error">

<div id="error" class="error" style="color: #D52A

 <svg viewBox="0 0 640 640" width="16" fill="cu

 <path d="M640 128 512 0 320 192 128 0 0 128l1

 512l128 128 192-192 192 192 128-128-192-192

 </svg>

 Please enter a valid e-mail address

</div>

Discussion

Many of the solutions in this book target optimizing your
frontend components for usage with a screen reader. While
most screen reader users are blind, not all are; and not
everyone with a vision impairment uses or needs a screen
reader. According to the World Health Organization (WHO), 39
million people worldwide are blind and 246 million have low
vision.

https://oreil.ly/IdGhL
https://oreil.ly/7-uc5

Definitions of low vision usually include only impairments that
aren’t correctable with regular glasses, contact lenses,
medicine, or surgery. That includes problems with visual acuity,
light sensitivity, contrast sensitivity, a smaller or obscured field
of vision, or color deficiencies. Eye diseases and health
conditions such as cataracts, glaucoma, and diabetes are often
the cause of low vision. Sometimes, it’s congenital or caused by
an injury. In addition, other factors, like old or limited
hardware or bright sunshine, can affect vision and perception.

Low vision is manifold, but contrast sensitivity and color vision
deficiency are two types of low vision that impact web use, so
the next few sections cover those use cases.

Color contrast

You can make text more readable for people with moderately
low vision by providing a minimum luminance contrast ratio
between it and its background. To calculate this ratio, the W3C
created a formula. Contrast ratios can range from 1 to 21
(commonly written 1:1 [lowest] to 21:1 [highest]. You get 1:1
when you use the same color for the background and text. You
get 21:1 when you use black text on a white background and
vice versa.

https://oreil.ly/xfLSL
https://oreil.ly/u2HZh

The WCAG’s minimum requirements for color contrast are:

Regular text must have a ratio of 4.5:1.
Regular text at 24px and larger must have a ratio of 3:1.
Bold text at 19px and larger must have a ratio of 3:1.
Logos, brand names, and purely decorative elements don’t
underlie any contrast requirements.

There are many tools available for testing color contrast.
Figure 5-1 shows the Contrast Checker by WebAIM. There are
also tools built into browsers. DevTools in Google Chrome
shows the contrast ratio in a tooltip when you click the little
square next to the value of a color declaration in the styles
pane, as shown in Figure 5-2.

Please note that those are only the minimum requirements;
even if you meet them, they don’t guarantee high contrast. The
color-contrast ratio formula receives a lot of criticism because it
doesn’t reflect modern technological requirements and
scientific research. It was created in the mid-2000s when the
hardware and software landscape was fundamentally different.

https://oreil.ly/4Wt5s
https://oreil.ly/4zHOy
https://oreil.ly/z5hoO
https://oreil.ly/EyV5B
https://oreil.ly/JejRa

Figure 5-2. DevTools shows a ratio of 5.7:1 for the selected color combination

The biggest points of criticism of the formula are:

It doesn’t take human perception into account.
It doesn’t consider the font’s characteristics, like size and
weight.
It treats front and background colors the same. Inverting the
color doesn’t change the calculation, but it should, because
the surrounding color affects perception.

The draft of WCAG 3.0 mentions a different algorithm, APCA
(Accessible Perceptual Contrast Algorithm), which may become
the new way of testing contrast ratios. It’s based on modern
research and premises. However, WCAG 3.0 is not ready yet,

https://oreil.ly/nwFj2
https://oreil.ly/sAtPj
https://oreil.ly/U_6XT

and according to accessibility expert Eric Eggert, there are also
some open questions regarding APCA. It’s probably not coming
any time soon, but if you want to test it today, activate it in
Chrome/Edge DevTools.

For WCAG compliance, you still have to follow the current
formula. Beware that it has flaws, so don’t rely on the ratio
alone; use your own judgment and test with users.

Color vision

Approximately 1 in 12 men (8%) and 1 in 200 women (0.5%)
have color vision deficiencies. They don’t see certain colors well
or, in rare cases, don’t see any color at all. Since many people
perceive color differently, it’s critical not to use color alone to
convey information.

Recipe 3.2 discusses link styling and explains why underlines
for links in running text are crucial. In Figure 5-3, you can see
that it’s hard to distinguish links from regular text on
wikipedia.org because they rely on color alone. If the links had
additional underlines, people who can’t perceive or distinguish
their color could still recognize them.

https://oreil.ly/u2Lqp
https://oreil.ly/GaAw7
https://oreil.ly/47XeD
https://oreil.ly/Tke3W

Figure 5-3. On a Wikipedia page presented without colors, links are hard to
distinguish from regular text

In Figure 5-4, you can see how caniuse.com combines color with
different background patterns to indicate support for features
in different browser versions.

Figure 5-4. A browser-support chart on caniuse.com. Green (solid background color)
indicates support; red (striped background) indicates lack of support

Combining color, text, and icons can also work well, as shown in
Example 5-1 and Figure 5-5.

Figure 5-5. The x icon supports the error message and the color in indicating an error

Color on the web is a complex topic. It’s impossible to make it
right for everyone, but you should at least fulfill these two basic
requirements: use colors with good contrast and don’t use color
alone to communicate information.

5.2 Respect User Preferences

Problem

Users can configure accessibility-related settings in their
operating systems and browsers. When you don’t respond to
those settings in your code, you’re disrespecting their choices.
The effects on users range from limiting access to your content
making it more challenging to simply making it impossible for
them to use the website.

Solution

Use media queries to retrieve browser and operating system
settings. There are several preferences you can detect.

Dark mode (Example 5-2)
Increased contrast (Example 5-3)
Forced colors (high-contrast themes) (Example 5-4)

Inverted colors (Example 5-5)
JavaScript support (Example 5-6)
Reduced transparency (Example 5-7)
Reduced motion (Recipe 5.5)

Example 5-2. Swapping the background and text color when
dark mode is active

html {

 --dark: oklch(37.34% 0.081 236.96);

 --light: oklch(98.89% 0.005 17.25);

 --background: var(--light);

 --text: var(--dark);

}

@media(prefers-color-scheme: dark) {

 html {

 --background: var(--dark);

 --text: var(--light);

 }

}

body {

 background-color: var(--background);

 color: var(--text);

}

svg {

 fill: currentColor;

}

By default, the background color is light and the text dark.

If users prefer a dark color scheme, colors swap.

The currentColor is always relative to its own or its
parent’s text color. It’s automatically either light or dark.

Example 5-3. Detecting whether users prefer increased
contrast, and increasing contrast accordingly

html {

 --blue: oklch(0.56 0.13 237.77);

 --text: var(--blue);

}

@media (prefers-contrast: more) {

 html {

 --text: oklch(from var(--blue) calc(l - 16) c

 }

}

body {

 color: var(--text);

}

Example 5-4. Detecting forced-colors mode

@media (forced-colors: active) {

 /* custom styles */

}

Example 5-5. Detecting whether colors are inverted

@media (inverted-colors: inverted) {

 :is(img, video) {

 filter: invert(100%);

 }

}

Example 5-6. Only hiding content in CSS, when JavaScript is
enabled

@media (scripting: enabled) {

 .disclosure-content {

 display: none;

 }

}

Example 5-7. Removing transparency when users prefer
reduced transparency

dialog {

 --transparency: 0.6;

 background-color: rgb(4 227 215 / var(--transpa

 backdrop-filter: blur(5px);

}

@media(prefers-reduced-transparency: reduce) {

 dialog {

 --transparency: 1;

 }

}

Discussion

The progressive enhancement principle in web design
describes a strategy that focuses on content. It’s at the very core
of the user experience. It should be accessible regardless of the
user’s hardware or software, security restrictions, or other
system or browser settings. Things like styling or nonessential
interactivity are optional layers stacked on top of the content.
When one of those layers isn’t accessible to some users, the site
doesn’t break entirely; it falls back to the previous layer. This
paradigm enables you to build highly accessible and flexible
web experiences.

https://oreil.ly/8T0tT

In “Understanding Progressive Enhancement”, Aaron Gustafson
explains that content is the reason we create websites to begin
with. It’s what’s most important to users. That’s why you should
make access to the core of your websites as frictionless as
possible. That means shipping text and HTML with as few
dependencies as possible. On top of your HTML you have
multiple layers of CSS, and on top of that, multiple layers of
JavaScript. Users get more or fewer layers depending on their
operating system, browser, and settings for each. That works
well because HTML and CSS are designed to be error-tolerant.

When you hit the wall with that tolerance, feature detection in
CSS and JavaScript is another excellent way to control your
layers (see Examples 5-8 and 5-9 for examples).

Example 5-8. Feature detection in CSS: The rule applies only
if the browser supports the subgrid feature

@supports (grid-template-columns: subgrid) {

 .grid {

 display: grid;

 grid-template-columns: subgrid;

 }

}

https://oreil.ly/oKsU9

Example 5-9. Feature detection in JavaScript: The function
call runs only when the browser supports geolocation

if ("geolocation" in navigator) {

 navigator.geolocation.getCurrentPosition(functi

 // show the location on a map

 });

}

Feature detection lets you query which features the user’s
browser supports and adapt the interface to the technical
requirements of your user’s software and hardware. To build
interfaces that also respect personal needs and preferences, you
can use media features in CSS and JavaScript.

Color schemes, also known as dark mode

In Recipe 5.1, you learned that there are several types of low
vision. Many people with low vision have photophobia, an
extreme sensitivity to light. Bright light from a screen makes it
difficult or impossible to read and can even cause pain for
some. To counteract this, users dim their screen, use a screen
overlay, or switch the theme of their operating system to one
that uses dark colors. The prefers-color-scheme media
feature enables you to react to those settings and serve your

website in darker colors, as shown in Example 5-2. In Figure 5-
6, you can see how developer Max Böck respects user
preferences on his website.

Figure 5-6. Comparison of mxb.dev in light and dark mode

In Recipe 13.5, you can learn how to emulate color-scheme
settings in DevTools.

More contrast

Users who prefer more contrast can enable high-contrast colors
in their operating systems. As shown in Example 5-3, you can

query that setting using the prefers-contrast media feature
and increase the contrast of your colors.

Forced colors

Windows users can switch to light or dark themes for the entire
operating system (forced-colors mode), as shown in Figure 5-7.
They can even manually pick colors for backgrounds, text,
links, buttons, and selected or inactive text. You can use the
forced-colors feature query to detect whether forced-colors
mode is active, as shown in Example 5-4. You don’t have access
to the colors the user has picked, which means that it can be a
very dark or a very light theme or something in between. The
colors the user will see are unpredictable for you. That’s why
you shouldn’t use this media feature to tweak colors. Instead,
use it for things like assigning the appropriate color keyword to
a control built without using native HTML controls. Sarah
Higley shares useful optimization tips in her blog post “Quick
Tips for High Contrast Mode”, and Adrian Roselli goes into
detail in “WHCM and System Colors”.

https://oreil.ly/c2gNP
https://oreil.ly/f6n_O

Figure 5-7. Windows in a high-contrast theme

Test your websites in forced-colors mode (currently only
possible on Windows for the entire operating system, or
browser settings or developer tools [see Recipe 13.5]), and
tweak the styling of any element that becomes unrecognizable.
Ideally, you should have little to do, because most parts of the
UI usually work well by default.

Please keep in mind that optimizing for forced-colors mode is
about visibility, not beauty. Don’t try to fix something that
doesn’t need fixing just because it doesn’t look pretty.

Inverted colors

Inverting operating system colors is another option for people
with photosensitive conditions. Inverted colors mode is a good
option for websites that don’t provide a dark mode because,
when activated, it reverses the color of every pixel on the
screen. You can query that setting in Safari on macOS and iOS
using the inverted-colors media feature.

In Figure 5-8, you can see how inverted colors mode doesn’t just
affect background and text colors, but images as well. As with
forced colors, you probably don’t want to make color
adjustments in this query, only improve the display of specific
elements like images, as shown in Example 5-5.

Figure 5-8. Comparison of starbike.at in regular and inverted-colors mode

https://oreil.ly/2abtp
https://oreil.ly/0-NG0

JavaScript

Some people disable JavaScript for performance or security
reasons. You can detect whether scripting languages are
supported, as shown in Example 5-6, and adapt your interfaces
accordingly.

Transparency

Design trends like Glassmorphism use translucent backgrounds
to create a specific visual effect, resulting in underlying
background colors or elements that shimmer through the
background of the overlying element. That may be visually
appealing, but it can distract some people and impair legibility.

Operating systems like macOS and Windows offer options to
reduce transparency in the operating system. In CSS, you can
query that setting using the prefers-reduced-
transparency media feature, as shown in Example 5-7 and
Figure 5-9.

https://oreil.ly/XbwtI

Figure 5-9. The settings panel in macOS without (left) and with (right) reduced
transparency active

5.3 Work with Units and Sizes

Problem

Users can adjust the base and minimum font sizes in their
browsers according to their needs. When you use absolute units
for font sizing and general sizing and spacing in CSS, you risk
overriding their preference, potentially forcing a smaller font
size and interface than they feel comfortable reading and
interacting with.

Solution

Use relative units for most of your sizing. Examples 5-10
through 5-14 illustrate using relative units in CSS.

Example 5-10. A component using rem , a unit relative to the
font size of the root element

.a-component {

 font-size: 1.125rem;

 line-height: 1.5;

 max-width: 28.125rem;

}

Example 5-11. The maximum width of the paragraph is
relative to the width of the glyph 0; in this font and with this
font size, approximately 65 characters fit into one line

p {

 max-width: 65ch;

}

Example 5-12. The column takes up 50% of its parent’s
width. The dialog fits the dynamic height of the viewport.

.grid {

 max-width: 60rem;

}

.column {

 width: 50%;

}

dialog {

 height: 100dvh;

}

Example 5-13. The padding is relative to the font size of the
button and increases and decreases with the font size

button {

 --btn-font-size: 1.2rem;

 border: 1px solid;

 border-radius: 4px;

 background: #123456;

 color: #ffffff;

 font-family: inherit;

 font-size: var(--btn-font-size);

 padding: 0.4em 0.8em;

}

.btn--small {

 --btn-font-size: 1rem;

}

.btn--large {

 --btn-font-size: 1.6rem;

}

Fixed value for the border and border-radius. Use a
relative unit if you want the border to grow with the font
size.

The padding is relative to the button’s font size.

Example 5-14. The media query is relative to the base font
size in the browser

@media (min-width: 60em) {

 .wrapper {

 display: flex;

 }

}

Discussion

One of the most important aspects of creating UIs that respect
user preference is allowing users to adjust font sizes according
to their needs—and building layouts that respond to those
settings.

The base font size in most browsers for regular text is medium ,
which usually equals 16px . You can change that value by
selecting the <html> element and defining another pixel
value, as shown in Example 5-15.

Example 5-15. Bad practice: Overriding the default font size

html {

 font-size: 14px;

}

Now, the base font size in the browser is still 16px , but you’ve
decided to ignore it and use another value instead. That’s
problematic, because the browser’s base font size is not a static
value. In some browsers, users can change it in the settings.
They usually do that to increase it when the text is too small to
read. That’s why using an absolute unit like px (pixels) for text-
related properties and properties that base their dimensions on
font size is a bad practice.

In Figure 5-10, you can see how the custom font-size setting
“Very large” affects the font size in the settings itself, but the
demo text remains at 14px .

Figure 5-10. Font settings in Google Chrome on the left; a simple paragraph on the
right

If you want to consider font-size preferences, use relative units
for most of your sizing.

Relative units

CSS provides several relative units: em , ex , rem , ch ,
viewport units, numbers, and percentages.

If you need a different font size in some components, don’t use
fixed pixel values, as shown in Example 5-16, but make your
declarations relative to the base font size defined by the user.
You can do that by using the rem unit. 1rem is relative to the
font size of the root element; as already mentioned, 16px in
most browsers. By default, 1rem equals 16px . If the user
changes their base font size to 24px , 1rem will equal 24px .

Example 5-16. Bad practice: Setting font size, line height,
and max-width using pixel values

.a-component {

 font-size: 18px;

 line-height: 27px;

 max-width: 450px;

}

If you want to convert px to rem , you take the target size and
divide it by the conversion factor, which is the base font size of
16px . For the 18px in Example 5-16, that means dividing 18
by 16, which equals 1.125, as shown in Example 5-17 and
Figure 5-11.

NOTE

The equation for converting pixels to rem is:

px target size / px base font size = rem size

Example 5-17. Setting the font size in rem, and line height
and max-width using pixel values

.a-component {

 font-size: 1.125rem;

 line-height: 27px;

 max-width: 450px;

}

Figure 5-11. Text is larger because it’s relative to the base font size; line-height
still uses an absolute value

That’s much better because now the font size responds to
browser settings. The fixed px value of the line height worked
well with the 18px, but it doesn’t scale. You could use rem here,
but line-height also supports number values (see
Example 5-18.)

Example 5-18. Setting the font size in rem, line height using
a multiplier, and max-width using pixel values

.a-component {

 font-size: 1.125rem;

 line-height: 1.5;

 max-width: 450px;

}

The text feels a bit wedged because the maximum width of the
paragraph didn’t respond to the font size. However, you should
also use rem for values of properties that should correspond
visually with the root text size. To do that, you take our
equation and divide 450 by 16, which equals 28.125 rem, as
shown in Example 5-10.

The result is a UI that scales nicely with the user-preferred base
font size, as Figure 5-12 shows.

Figure 5-12. The readability of the paragraph is much better because of its improved
line-height and width

Instead of using rem for paragraph widths, you can also use
the ch unit, as shown in Example 5-11. One ch equals the
width of the glyph 0 in the respective font, which allows you to
define the maximum number of characters that have the same
width as “0” that should fit in a line instead of using a length
value. The ideal number of characters per line depends on
several factors like the typeface, font size, and language, but a
good rule of thumb is that it should be at most 60 to 80
characters.

The rem unit serves as the foundation of most of your sizing,
but I don’t recommend basing everything off the root font size.
If you want to make an element’s width relative to its parent’s
width, you can use percent, or if you want to make an element’s
height relative to the viewport, you can use viewport units, as
shown in Example 5-12.

Another practical unit is em , which is relative to an element’s
font size. In Figure 5-13, you can see how the padding scales
nicely with the font size of the button, thanks to the use of em
in Example 5-13.

https://oreil.ly/7tMD-

Figure 5-13. The padding in each button increases with the font size

Absolute units

em and rem don’t replace the px unit; it still has its
justification. In “Why You Should Use px Units for margin,
padding, & Other Spacing Techniques”, Ashlee M. Boyer
explains that using px values for margin, paddings, or other
properties related to spacing can be better for the user
experience because when spacing grows, it can eat up vital real
estate.

There is no yes or no to the question: should I use pixel values?
You have to test it with your layout, but for properties like
margin , padding , border , box-shadow , text-shadow , or
border-radius it can be better to use px .

For the rest, it’s worth preferring the rem unit over pixels
because it respects users’ preferences—on desktop, at least. The

https://oreil.ly/2AM9S

situation is very different on mobile. According to my research,
none of the tested mobile browsers treated rem differently
than pixels. They all apply their own logic for scaling and
zooming. Ultimately, it doesn’t matter how browsers zoom text;
what counts is that users can use that feature and that you
build interfaces that respect user preferences. Part of that is
working with relative units like rem .

Media Queries

I recommend using em or rem over px in your media queries,
as shown in Example 5-14. Before I explain why, let me offer a
quick overview of users’ zooming options.

In desktop browsers, they can change the base font size in
their browser settings or press Cmd / Ctrl + / - to zoom the
page.
In mobile browsers, they can change the text size or zoom
the entire page, depending on the operating system and
browser.
Users can pinch-zoom using a screen or trackpad in all
browsers and operating systems that support it.

Example 5-19 shows three media queries. Each queries the
minimum width of the viewport at 960px . The first query uses

https://oreil.ly/susvh

pixel, the second uses em , and the third uses rem . 60em and
60rem each equal 960px by default (60 * 16 = 960).

Example 5-19. Comparison of the same media query but
with different units

@media(min-width: 960px) {

 .wrapper-px {

 display: flex;

 }

}

@media(min-width: 60em) {

 .wrapper-em {

 display: flex;

 }

}

@media(min-width: 60rem) {

 .wrapper-rem {

 display: flex;

 }

}

At a viewport width of 1280px and 100% zoom, all media
queries apply and show a horizontal instead of a vertical
layout, as shown in Figure 5-14.

Figure 5-14. All media queries behave the same

Page zoom

Cmd / Ctrl + / - resizes the viewport in desktop
browsers. If the viewport’s width is 1280px by default and
you zoom the page up to 150%, its new width is 853px
(1280 / 1.5), causing the page’s content to reflow. em and
rem in media queries are relative to the base font size in
the browser. Since pressing Cmd/Ctrl +/- doesn’t change
the font size but the viewport’s width, all three media
queries behave equally. In that case, the media queries
aren’t effective at a 150% zoom level, because the
viewport’s width is less than 960px, as shown in Figure 5-
15. That’s usually the expected and desired behavior.

https://oreil.ly/aa-QJ

Figure 5-15. All media queries behave the same at a zoom level of 150%

Text size

The em value in a media query is relative to the initial
value of the font-size property medium . The medium
keyword represents the scaling factor 1, which refers to
the base font size in the browser. That means changing
your browser’s base font size to 22px affects the em- and
rem-based media queries, as illustrated in Figure 5-16.
After changing the setting, they fire at a viewport width of
at least 1320px (60 * 22 = 1320), while the px-based media
query still fires at 960px. The fact that the media queries
fire later is good because the user gets a layout optimized
for smaller screens. Indeed, the screen size didn’t change,

https://oreil.ly/HD1Uk
https://oreil.ly/6SsOD

but elements have less space due to the increased font
size.

Figure 5-16. With a base font size of 22px, the rem- and em-based layouts
show a single-column layout at a layout viewport width of 1280px

Pinch-zoom

When you pinch-zoom, you change the size of the visual
viewport. Zooming in increases the size of the CSS
reference pixel but scales the layout viewport
proportionally (see Figure 5-17). It seems like you’re
increasing the page’s size, but you’re actually just
decreasing the size of the visual area. That means pinch-
zooming doesn’t change the layout viewport’s size and
thus doesn’t cause content to reflow. To help you better
understand how that works, take a look at this interactive
demo.

https://oreil.ly/wGwhr
https://oreil.ly/bk9ky

Figure 5-17. At a 150% page zoom, the entire UI scales

There used to be a time when using em or rem over px in
media queries had a much more significant impact on the user
experience. However, it’s still worth preferring em over px ,
because users who have changed the base font size in their
browsers benefit from it.

The Ideal Font Sizes and Line Height

The ideal font size depends on different factors, like the
typeface and device. A good starting point is not setting a
default font size, so it adapts to the default 16px in most
browsers or whatever the user chose. You can increase or
decrease the font size from there, although generally, I’d
recommend against going lower than 16px for running text. UI
designer and typographer Oliver Schöndorfer also recommends
increasing the font size with the screen size, because the larger

https://oreil.ly/_9gge

the screen, the larger the distance between the eyes and the
device. If you consider using fluid type, e.g., font sizes that scale
with the viewport width, use a tool like Fluid Style to get the
correct values and test your solution at different zoom levels.

Another factor is the line height. Larger line heights are usually
more visually appealing and help people with cognitive
disabilities track lines. A line height of 1.5 to 2 allows them to
start a new line more easily after finishing the previous one.
This rule of thumb mainly applies to running text. Line heights
should decrease as the font size increases.

5.4 Preserve Semantic Information
and Operability

Problem

Some CSS properties don’t just affect an element’s visual styling
but also its semantic information. That can make it hard for
users to identify an element using a screen reader or
completely prevent access to the element or its data.

Solution

https://oreil.ly/Y8f-P
https://oreil.ly/jBHSW

1. Be careful when using display: contents; . Especially
avoid using it on interactive elements.

2. Be careful when overriding the display properties of table
elements.

3. Apply content-visibility only to generic elements, as
shown in Example 5-20.

Example 5-20. The content-visibility property set on
a wrapping div

<div style="content-visibility: hidden">

 <section>

 <h2>…</h2>

 …

 </section>

</div>

4. Don’t use display: none or visibility: hidden on
elements that name other elements.

5. Don’t use display: none or visibility: hidden to
visually hide elements that you still want in the accessibility
tree.

Discussion

The following list is not comprehensive and is subject to
change, because browsers constantly ship bug fixes.
Nevertheless, most of the bugs or features I mention here have
existed for many years and aren’t likely to go away soon. If
you’re unsure whether a bug still exists, please do your own
testing.

The code samples in this recipe are all bad practices that you
should avoid. I’ve tested them using the operating systems,
browsers, and screen readers listed in the preface of this book.

Buttons and links

Buttons or links with display: contents don’t accept
keyboard focus (see Example 5-21).

Example 5-21. Antipattern: The display: contents
property and value set on a button

<button style="display: contents"></button>

This has already been reported. You can track it here: WebKit
Bug 255149, Chromium Issue 1366037, and Mozilla Bug
1791648.

https://oreil.ly/iClyH
https://oreil.ly/t3pp6
https://oreil.ly/7dJoF

Links with zero dimensions (0 width, 0 height, no padding, and
no border) don’t accept keyboard focus in Safari (see
Example 5-22).

Example 5-22. Antipattern: A link with 0 dimensions

<a href="#" style="display: block; height: 0; wid

Tables

Applying display: contents to tables, table rows, table
heads, or table cells removes all semantic information for the
elements in versions of Safari up to and including 16. That issue
has been addressed starting with Safari 17.

Applying display: flex|grid|block to tables, table rows,
table heads, or table cells removes all semantic information for
the elements in versions of Safari up to and including 16. That
issue has been addressed starting with Safari 17.

Using display: none on the <caption> element may
remove the accessible names of tables in some browsers and
screen readers.

Form elements

https://oreil.ly/jwlU3
https://oreil.ly/C7t2b
https://oreil.ly/7VHFs

If you want to hide native form elements visually and replace
them with custom solutions, don’t use display: none or
visibility: hidden , because these properties remove the
form element from the accessibility tree, as shown in
Example 5-23. Use the class visually-hidden instead (see
Recipe 8.1).

Example 5-23. Antipattern: display: none removes the
element from the accessibility tree

<div>

 <input type="checkbox" style="display: none" id

 <label for="toc">I accept the terms of service<

</div>

<style>

[type="checkbox"] + label {

 /* custom checkbox styling */

}

</style>

The same applies if you want to hide the label of a form
element visually, as Example 5-24 shows.

Example 5-24. Antipattern: display: none removes the
label from the accessibility tree and with it the accessibile

name of the input field

<div>

 <label for="search" style="display: none">Searc

 <input type="text" id="search">

</div>

Using appearance: none on checkboxes removes the
semantic meaning of the element using NVDA with Firefox.

Using display: none on the <legend> element may remove
its parent fieldset from the accessibility tree.

Lists

Using list-style: none removes the semantic information
of lists in VoiceOver on Safari. Instead of “list, 2 items” (see
Example 5-25), the software may not announce the list as a list.
This is by design. The WebKit team decided to remove list
semantics when a list doesn’t look like a list. Their reasoning is
that if a sighted user doesn’t need to know it’s a list, a screen
reader user doesn’t need or want to know, either.

Example 5-25. An unordered list without list styling

https://oreil.ly/QKLAi

<ul style="list-style: none">

 Hello

 World

I understand their decision, but whether a user agent should
intervene like that is debatable. However, there’s a workaround
if you need to maintain the semantic information. I have
discovered that you can remove list styles without affecting
semantics by setting the list-style-type property’s value to
an empty string instead of removing it, as shown in Example 5-
26.

Example 5-26. Removing list styles without affecting
semantics

<ul style="list-style-type: ''">

 Hello

 World

All interactive elements

If you put pointer-events: none on an interactive element,
the user can’t activate it by using the mouse or pressing Enter.

https://oreil.ly/yWBJH

They can still focus it using the keyboard. This means screen
reader users will find it but won’t know it’s inactive, because it
doesn’t convey this state semantically.

All elements

Using visibility: hidden and display: none will
remove an element from the accessibility tree. You can learn
more about hiding content in CSS in Recipe 8.1.

Applying the content-visibility property on semantic
elements may yield undesired results. If you put content-
visibility: hidden on a heading, it’s not rendered on
screen, but it still might be in the accessibility tree. If you put it
on a named region, you won’t be able to access its contents, but
you may still find an unlabelled, empty group.

The essential takeaway from this recipe is that you have to be
careful with specific CSS properties. Ensure that your
components still work as expected by testing, even if you make
only stylistic changes.

5.5 Add Motion and Animation

Problem

https://oreil.ly/sL9OK

Animations on the web can physically harm users. At their
mildest, they can be annoying and distracting, but they can also
cause nausea, dizziness, and headaches in some users. For
people with vestibular disorders, it may even cause pain and
make them feel so bad that they have to stop using the
computer and take time to recover.

Solution

Avoid large-scale animations, or ship them only to users who
have no preference for reduced motion.

You can react to user preferences in CSS, HTML, and JavaScript,
as shown in Examples 5-27, 5-28, and 5-29.

Example 5-27. CSS: Picking the type of animation based on
user preference

div {

 overflow: hidden;

}

.banner {

 --animation: fade;

 translate: var(--position) 0;

 animation: var(--animation) 3s cubic-bezier(0.1

() (

 opacity: var(--opacity);

}

@media(prefers-reduced-motion: no-preference) {

 .banner {

 --animation: move;

 }

}

@property --position {

 syntax: "<length>";

 inherits: false;

 initial-value: 0;

}

@property --opacity {

 syntax: "<number>";

 inherits: false;

 initial-value: 1;

}

@keyframes move {

 from { --position: 100vw; }

 to { --position: 0; }

}

@keyframes fade {

 from { --opacity: 0; }

{ p y ; }

 to { --opacity: 1; }

}

The default animation is “fade.”

If the user has no preference for reduced motion, change
the animation to “move.”

You must register the custom properties to make them
animatable.

Example 5-28. HTML: Show an animated gif or a jpg,
depending on user preference

<picture>

 <source srcset="/assets/images/boy.jpg"

 media="(prefers-reduced-motion: reduce)" />

 <img src="/assets/images/boy.gif"

 alt="A boy looking at a computer and showing th

</picture>

Example 5-29. JavaScript: Picking scroll behavior based on
user preference

const button = document.querySelector("button");

const motionQuery = matchMedia("(prefers-reduced

https://oreil.ly/LmTwc

let behavior;

const handleReducedMotion = () => {

 if (motionQuery.matches) {

 behavior = "smooth";

 } else {

 behavior = "instant";

 }

};

motionQuery.addListener(handleReducedMotion);

handleReducedMotion();

button.addEventListener("click", (e) => {

 document.querySelector(".numbers > :last-child

 behavior: behavior,

 });

});

Query the prefers-reduced-motion media feature.

Use smooth or instant scrolling depending on user
preference.

Listen to changes to the OS setting.

Run the function once when the page loads.

https://calibre-pdf-anchor.a/#a1164

Discussion

Animation on the web is a powerful and essential tool for
designers and developers. You can use it to create engaging and
fun experiences and help users better understand interfaces
and follow user flows by improving microinteractions.
According to Val Head, a web animation expert, the most
outstanding characteristics of animations are:

They make an element’s path visible on the screen, reducing
cognitive load. Users don’t have to keep track of its
movement in their heads because it’s loaded off to the
animation on screen.
They can help improve decision making.
They help users build mental maps of spatial information.
They can help prevent change blindness.
They help establish connections and relationships between
objects.

Val Head summarizes more useful applications of animation in
“UI Animation and UX: A Not-So-Secret Friendship”, as does
Page Laubheimer in “The Role of Animation and Motion in UX”.

When animation goes bad

https://oreil.ly/MDE3x
https://oreil.ly/rbZ9b
https://oreil.ly/sXePU
https://oreil.ly/ju7i1
https://oreil.ly/Pl0rS
https://oreil.ly/Qpxoh
https://oreil.ly/nzL6o
https://oreil.ly/sVopI

There’s no doubt that animation on the web can improve
usability, user experience, and accessibility, but it can also have
physical consequences for people with motion sensitivities. The
root causes for motion sensitivity can be manifold, and so can
its manifestation. Animation may cause nausea, dizziness, and
headaches in some users. For people with vestibular disorders,
it may even cause pain and make them feel so bad that they
have to stop using the computer and take time to recover.

That doesn’t apply to all motion on the screen. Fading
transitions or slight movements aren’t usually troublesome.
More common triggers of motion sensitivity include:

Animation that moves an object across a large amount of
space
Mismatched directions and speed, as you often see in
parallax scrolling
Animations that cover a large perceived spatial distance, like
scaling and zooming
Fixed background images (background-attachment:
fixed)

https://oreil.ly/aGF9o
https://oreil.ly/f6dBN

Really, there are no words to describe just how bad a simple
parallax effect, scrolljacking, or even background-
attachment: fixed would make me feel. I would rather jump
on one of those 20-G centrifuges astronauts use than look at
a website with parallax scrolling.

—Facundo Corradini

Facundo Corradini, a developer who suddenly and
unexpectedly suffered from a bad case of vertigo caused by
labyrinthitis, describes how parallax scrolling triggered his
symptoms in “Accessibility for Vestibular Disorders: How My
Temporary Disability Changed My Perspective”. He also
explains that regular animations didn’t trigger severe reactions
but that anything moving on the screen would instantly break
his focus. It took him a lot of conscious, focused effort to read if
there was any movement on the page.

Reduced motion

When Apple released iOS7 for the iPhone, it came with many
changes to the design and UI, some of which negatively affected
users. The new OS made frequent use of zoom and slide
animations and parallax scrolling. This reportedly made many
people sick. Since then, iOS and most other operating systems

https://oreil.ly/SnTii
https://oreil.ly/I3rOn

have added options to reduce motion in their system settings.
These include:

In Windows 11: Settings > Accessibility > Visual Effects >
Animation Effects
In macOS: System Preferences > Accessibility > Display >
Reduce motion
In iOS: Settings > Accessibility > Motion
In Android 13: Settings > Accessibility > Color and Motion >
Remove animations

The great news for users of your websites is that you can react
to those preferences in HTML, CSS, and JavaScript and apply or
reduce motion accordingly.

In Example 5-27, you can see that the element has a fade-in
animation by default. Only if the user hasn’t expressed a
preference for reduced motion does it replace the fading with a
moving animation. You can also use the media feature to
replace animated images with static images, as illustrated in
Example 5-28. In this example, you’re actively querying the
presence of the setting, not its absence, but you can also do it
the other way around. Just like with any other media feature,
you can also query prefers-reduced-motion in JavaScript,
as shown in Example 5-29.

https://oreil.ly/_MZqD

Examples of websites that have prominent animations but
respect user preference are the web framework enhance, the
Airpods Pro product page, and the website for the game Animal
Crossing.

The media feature is named prefers-reduced-motion and
not prefers-no-motion for a reason. The whole point is not to
eliminate motion entirely, but to reduce nonessential
movement to a minimum and ensure that critical elements still
display.

Respecting user preferences also means giving users control.
Avoid auto playing animations or videos, or at least allow users
to pause and stop them, as shown in Figure 5-18.

https://enhance.dev/
https://oreil.ly/SFl2l
https://oreil.ly/iSyJX
https://oreil.ly/qWevX
https://oreil.ly/ui_C0

Figure 5-18. An option to reduce motion on animalcrossing.nintendo.com

Animations and transitions are a powerful tool for designers
and developers to improve the UX. When you add them to your
websites, ensure that you do it purposefully, respect users’
preferences, and give them control.

See Also

“Diverse Abilities and Barriers (visual)” by WAI
“Learn Accessibility: Color and contrast” by web.dev
“Writing even more CSS with Accessibility in Mind, Part 2:
Respecting user preferences” by Manuel Matuzović

https://oreil.ly/OvHax
https://oreil.ly/VZJOm
https://oreil.ly/JUGxC
https://oreil.ly/Vywcc

“Designing Safer Web Animation For Motion Sensitivity” by
Val Head
“Designing With Reduced Motion For Motion Sensitivities” by
Val Head
“Responsive Design for Motion” by James Craig
“The ideal line length & line height in web design” by Oliver
Schöndorfer
“Display: Contents Is Not a CSS Reset” by Adrian Roselli
“It’s Mid-2022 and Browsers (Mostly Safari) Still Break
Accessibility via Display Properties” by Adrian Roselli
“CSUN 2020: CSS Display Properties versus HTML Semantics”
by Adrian Roselli

https://oreil.ly/gtZAZ
https://oreil.ly/-fn7Q
https://oreil.ly/pgUM6
https://oreil.ly/YDpj6
https://oreil.ly/qcXla
https://oreil.ly/n87Vk
https://oreil.ly/6ElXp

Chapter 6. Managing Focus

Web pages are keyboard accessible by default because native
interactive elements come with the styling and functionality
you need to use them out of the box. They are focusable, and
they indicate their focus state visually. When you add CSS or
especially JavaScript, you must ensure that you maintain that
base accessibility or even improve it, and that your custom
solutions are accessible as well.

6.1 Provide Focus Styles

Problem

When people access a website using a keyboard, switch device,
screen reader, or similar assistive technology, they can use the
Tab key (or a control on another physical device that maps to
the key) to jump from one interactive element to another.

If you, as the developer, don’t highlight the currently active item
visually using CSS, users can’t orient and navigate.

Solution

Use pseudoclasses to style interactive elements in their focus or
focus-visible state, as shown in Examples 6-1, 6-2, 6-3, and 6-4.

Example 6-1. Styling all elements in their focus-visible state

:focus-visible {

 outline: 0.25em solid;

 outline-offset: 0.25em;

}

Example 6-2. Styling all elements in their focus state

:focus {

 outline: 0.25em solid;

 outline-offset: 0.25em;

}

Example 6-3. Showing a shadow on video and audio
elements if a contained item is currently focused

:is(video, audio):focus-within {

 box-shadow: 0 0 10px 3px rgb(0 0 0 / 0.2);

}

Example 6-4. Providing custom focus styles for nonkeyboard
users

button:focus-visible {

 outline: 0.25em dashed black;

}

button:focus:not(:focus-visible) {

 outline: none;

 box-shadow: 1px 1px 5px rgba(1, 1, 0, .7);

}

Styles for keyboard users

Styles for users of pointing devices

Discussion

Styling the currently focused element is one of the most
important things you can do for keyboard accessibility. If you
remove the default focus styles that all browsers come with,
you’re making many people’s lives harder. Removing focus
indicators for keyboard users is like hiding the cursor for
mouse users. Unfortunately, you’ll find the code in Example 6-5
on many websites. That’s because, in the past, adding focus
styles had undesired side effects for mouse users, such as
showing an outline that stakeholders often considered
aesthetically unpleasing or disturbing (it’s rarely users who

complain). Fortunately, that’s a problem of the past. Now, you
have fine-grained control over who sees focus styles and when,
and browsers use different heuristics to determine when to
show them.

Example 6-5. Bad practice: No default outline on interactive
elements

:focus {

 outline: none !important;

}

The :focus pseudoclass

The :focus pseudoclass applies when the user focuses an
element using the keyboard, a mouse, or any other input form.
Using the code in Example 6-2, the custom 0.25em outline
shows when the user finds the button with a keyboard and
when they click or tap it. Formerly :focus was in the user
agent stylesheet of all browsers until they switched to :focus-
visible as the default.

The :focus-visible pseudoclass

Starting with Chrome 90, Firefox 87, and Safari 15.4, the
:focus pseudoclass still matches focusable elements, but user

https://oreil.ly/r5GiS

agents only sometimes visibly indicate focus. Instead, they
default to :focus-visible , which uses a variety of heuristics
to indicate focus only when it’s most useful to users. That’s a
crucial change, because now you can style focus indicators
without worrying too much about when they show. If you want
to change the default styles, you can use the :focus-visible
pseudoclass, as shown in Example 6-1. In Figure 6-1, you can
see a comparison of default and custom focus styles Google
Chrome.

Figure 6-1. Default focus styles in Chrome on the left, custom focus styles on the right

There are minor differences between browser engines, but
focus styles should show under only certain circumstances,
such as:

If the user interacts with the page using a keyboard or some
other nonpointing device.
If the element supports keyboard input, such as an input
element or a text area.

https://oreil.ly/Lum5u

If you move focus using JavaScript and the previously
focused element indicated focus, the newly focused element
will show it, too.
If the user has expressed a preference in their browser
settings (for example, in Chrome, under Preferences,
Accessibility, “Show a quick highlight on the focused object”).

Although there are no default styles for the :focus
pseudoclass, you can still use it if you want to show the
indicator regardless of the input method. You can even combine
the pseudoclasses, as shown in Example 6-4. The first rule
matches when the user interacts with the button using a
nonpointing device, and the second only matches when using a
pointing device.

The :focus-within pseudoclass

The :focus-within pseudoclass applies to any element that
matches the :focus pseudoclass. Most importantly, it applies
to an element whose descendants match the conditions for
matching :focus . That means that you can use it to select an
element that has children that are currently focused, as
illustrated in Example 6-3.

Default focus styles

https://oreil.ly/oWALh

Browsers come with default styles for focusable elements.
These are often called focus-ring because they all use the
outline property, which adds an outline around the element’s
rectangle. Default styles are better than nothing, but they’re
usually not noticeable enough, lack color contrast, and their
styling is inconsistent across browsers, as illustrated in
Figure 6-2. That’s why I recommend you provide your own
rules.

Figure 6-2. Default outline styles on atleticodemadrid.com: Chrome, Safari, Firefox,
and Edge

The rule in Example 6-1 uses a thicker outline-width and an
additional outline-offset to add space between the content
and the outline. It also ensures that it meets the WCAG
requirements for color contrast, which states that the visual

https://oreil.ly/jnPfs

focus indicator must have sufficient contrast against adjacent
colors.

In addition, outline properties work well for focus styling
because they’re well supported. They’re clearly visible, and they
don’t interfere with the page layout because unlike border ,
they don’t adjust the box size. You’re not limited to these
properties, though. You can also use properties like
background-color or box-shadow , as illustrated in
Figure 6-3.

Figure 6-3. Custom focus style on gov.uk

However, it’s important to know that these properties might not
be visible in forced-color mode, as illustrated in Figure 6-4.

Figure 6-4. The underline below the “Medias” link is not visible in high contrast mode
on Windows

A great workaround is to combine other properties with a
transparent outline, as shown in Example 6-6. Forced-color
modes might not render background colors and box shadows,
but they may interpret and display transparent outlines.

Example 6-6. An invisible outline for all focused elements

:focus-visible {

 --black: #0b0c0c;

 --yellow: #fd0;

 color: var(--black);

 background-color: var(--yellow);

 box-shadow: 0 -0.125em var(--yellow), 0 0.25em

 outline: 0.25em solid transparent;

}

Not visible in forced-colors mode

Visible in forced-colors mode

Figure 6-5 shows how the gov.uk example (Figure 6-3) looks in
forced-colors mode.

Figure 6-5. No background color and shadow in forced-colors mode, but the
transparent outline is visible

When you design the focus styles of your site’s interactive
elements, focus on the user experience. They don’t have to look

https://calibre-pdf-anchor.a/#a1240

nice, but they have to do their job well.

6.2 Make Elements Focusable

Problem

People who rely on keyboard accessibility navigate using the
Tab key, or a physical device that maps to the key, to jump
from one interactive element to another. When they use a
website, they must be able to perform the same actions mouse
users can. If you don’t take specific measures to ensure that,
they might not be able to reach certain parts of the interface.

Solution

You can make nonfocusable elements focusable if necessary, as
shown in Example 6-7.

Example 6-7. Making a tab panel focusable

<div class="tabs">

 <h3 id="tablist-1">Election results</h3>

 <div role="tablist" aria-labelledby="tablist-1

 <button id="tab-1" type="button" role="tab" a

 aria-controls="tabpanel-1">

p

 Graph

 </button>

 <button id="tab-2" type="button" role="tab" a

 aria-controls="tabpanel-2" tabindex=

 Table

 </button>

 </div>

 <div id="tabpanel-1" role="tabpanel" tabindex=

 <!-- graph -->

 </div>

 <div id="tabpanel-2" role="tabpanel" tabindex=

 class="is-hidden">

 <!-- table -->

 </div>

</div>

Discussion

You can avoid many keyboard-accessibility issues before they
arise by using semantic HTML. Several elements are intended
for interactive content and are accessible by keyboard by
default (see Table 6-1).

https://oreil.ly/r3QCh

Table 6-1. Interactive elements

Element Condition

<a> If the href attribute is present

<audio> If the controls attribute is present

<button>

<details>

<embed>

<iframe>

 If the usemap attribute is present

<input> If the type attribute is not set to hidden

<select>

<textarea>

<video> If the controls attribute is present

The two solutions in Example 6-8 are semantically the same and
can look identical with the right CSS. The big difference is that
only the native button is accessible via the keyboard. Even if the

custom button was focusable, you wouldn’t be able to perform
any action on it because it has no key events (see Chapter 4).

Example 6-8. A native and a custom button

<button>

 Open

</button>

<div role="button">

 Open

</div>

<style>

 button,

 [role="button"] {

 background: #123456;

 color: #FFFFFF;

 border: none;

 display: inline-block;

 padding: 0.5em 1rem;

 font-family: inherit;

 font-size: 1.1rem;

 line-height: 1;

 }

 :focus-visible {

 outline: 4px solid #123456;

 outline-offset: 4px;

 }

</style>

Focusable and keyboard-accessible by default

Not focusable and not keyboard-accessible

Using native HTML is the best approach. You usually get great
baseline accessibility out of the box, but sometimes you need to
make elements focusable that aren’t by default. For example:

When you have to move focus (see Recipe 6.3), but the target
element is not focusable or has no focusable descendants
When you want to make scrollable areas keyboard-accessible
When you build a custom interactive element and have very
good reason not to use a semantic element

The tabindex attribute

The code in Example 6-7 shows a custom JavaScript solution for
a tabs component. Try out the demo on the ARIA Authoring
Practices Guide (APG) website by the W3C, where this code is
from. You’ll learn that you can interact with the buttons in the
tab list by using the arrow left and right keys. To access the
content for a tab, you can use the Tab key, and the

https://oreil.ly/JUPSW

corresponding tab panel receives focus. The tab panel is a div
element with a custom tabpanel role. It’s focusable only
because the page uses the tabindex attribute with a value 0.
That attribute and value make an element focusable and adds it
to the natural tab order.

You’ll also notice that the buttons have a tabindex attribute
with -1 , which can be useful for two things: when you want to
make a generic element focusable using JavaScript’s focus()
method without making it keyboard-accessible (see Recipe 6.3
for an example), or when you want to remove an element from
the tab order but still be able to focus it via JavaScript. Buttons
are focusable by default, but in this example, pressing Tab must
skip the buttons and focus the active tabpanel instead. Setting
tabindex=-1 makes that possible while allowing you to put
focus on the buttons when the user presses the arrow keys.

Using tabindex with the values 0 or -1 is a common practice
and unproblematic if you use it on a semantic and labeled
element. Problems arise when you use a positive number larger
than 0, as shown in Example 6-9. A keyboard user navigates a
website by jumping from one interactive element to another in
sequential order. The Tab key always follows the order of
elements in the document, unless you use tabindex with a
positive value.

Example 6-9. Bad practice: Buttons with a custom tabbing
order

<button tabindex="2">Button 1</button>

<button tabindex="1">Button 2</button>

<button tabindex="3">Button 3</button>

The buttons in Example 6-9 receive focus in the following order:
Button 2, Button 1, Button 3. The custom order defined by the
tabindex attributes overrules DOM order.

If only some elements have the attribute, focus will find these
elements first and traverse them based on their value, then
traverse the elements without the attribute in sequential order.
In Example 6-10, that would give you Button 2, Button 4,
Button 1, Button 3, Button 5. Maintaining a meaningful order
becomes complicated once you add tabindex attributes with
values larger than zero.

Example 6-10. Bad practice: Only two buttons have a custom
positive tabindex attribute

<button>Button 1</button>

<button tabindex="1">Button 2</button>

<button>Button 3</button>

<button tabindex="2">Button 4</button>

<button>Button 5</button>

The tabindex attribute is powerful, versatile, and useful for
improving keyboard accessibility, but it’s also dangerous. Using
positive values will get out of hand quickly. Follow these rules:

Use tabindex=-1 to make nonfocusable elements focusable
via JavaScript only or to make focusable elements
nonfocusable.
Use tabindex=0 to make nonfocusable elements keyboard-
focusable.
Avoid using positive values.

Focusable elements

Knowing which elements are focusable can be useful, but
listing them all is more challenging than it sounds. In addition
to the list of interactive elements at the beginning of this recipe,
we have elements with a positive tabindex. Then there’s also
the contenteditable attribute, which makes elements
editable. All that is true only if the elements are not hidden,
disabled, or inert, and if they don’t have a tabindex with a
negative value.

6.3 Move Focus

Problem

When you move the users’ attention to another place or layer
within the page (for example, by showing a modal dialog or
some other overlay), you must ensure they can also
immediately interact with that content without additional
effort. Consequently, you must move focus programmatically to
that part of the UI. If you don’t, users might still be on an
interactive element on the page in the background. Pressing
Tab would then result in focusing elements that are obscured
and irrelevant. That can be confusing and prevents people from
accessing important information and functionality.

Solution

You have to move focus to where it’s currently needed. That
requires you to shift focus, remember where it was before, and
return to that spot once the action is completed. That process is
called focus management. Examples 6-11 and 6-12 illustrate how
to create a custom modal window and move focus from the
button to the modal and back again, as needed.

Example 6-11. A button and a custom modal dialog

<button class="open" aria-haspopup="dialog">Login

<div role="dialog" aria-modal="true" hidden aria

 <div>

 <button class="close">Close</button>

 <h1 id="heading" tabindex="-1">Login</h1>

 </div>

</div>

<style>

 [role="dialog"] {

 align-items: center;

 background: rgb(0 0 0 / 0.2);

 inset: 0;

 justify-content: center;

 margin: auto;

 position: fixed;

 }

 [role="dialog"]:not([hidden]) {

 display: flex;

 }

 [role="dialog"] > div {

 background: rgb(255 255 255);

 box-sizing: border-box;

 max-width: 40rem;

 padding: 2rem;

 width: 90vw;

 }

 :focus-visible {

 outline: 4px solid #123456;

 outline-offset: 0.25em;

 }

 [role="dialog"]:focus-visible {

 outline-offset: -0.5em;

 }

</style>

Base styling for the dialog

Changes the display of the dialog when it’s visible

Base styling for the dialog’s content

Shows focus style for all elements

Moves the outline on the dialog inside so that it’s visible

Example 6-12. Simple focus management example

const dialogOpen = document.querySelector(".open

const dialogClose = document.querySelector(".clos

const dialog = document.querySelector('[role="dia

const heading = dialog.querySelectorAll('[tabinde

let trigger;

dialogOpen.addEventListener("click", open);

dialogClose.addEventListener("click", close);

function open() {

 trigger = document.activeElement;

 dialogToggle();

}

function close() {

 dialogToggle();

}

function dialogToggle() {

 const isOpen = !dialog.hasAttribute("hidden");

 if (!isOpen) {

 dialog.removeAttribute("hidden");

 heading.focus();

 } else {

 dialog.setAttribute("hidden", "hidden");

 trigger.focus();

 }

}

Remember the element that triggered the action.

Show the dialog.

Hide the dialog.

Move focus from the button to the dialog’s heading.

Move focus from the heading back to the button.

If you use the native modal dialog in HTML, you don’t have to
manage focus, as shown in Example 6-13.

Example 6-13. A button and a native modal dialog

<button class="open" aria-haspopup="dialog">Login

<dialog aria-labelledby="heading">

 <form method="dialog">

 <button>Close</button>

 </form>

 <h1 id="heading">Login</h1>

</dialog>

<script>

const dialogOpen = document.querySelector(".open

const dialog = document.querySelector("dialog");

dialogOpen.addEventListener("click", open);

function open() {

 dialog.showModal();

}

</script>

Closes the dialog without needing JavaScript.

The native showModal() method opens the modal
dialog.

Discussion

Example 6-12 illustrates the basic concept of focus
management: you remember the last focused element by
storing a reference to it in a variable using
document.activeElement . Before you move focus, you have
to decide where you want to put it. You have several options:

The first focusable element, if there is one. That works, but
users might land somewhere in the middle or end of the
content, depending on its position in the DOM.
The close button, if there is one. That’s a safe option if you
can’t guarantee that there are other interactive elements. A
downside is that it can be irritating when the first thing a
screen reader user hears is “close button.”
If there’s a heading, you can make it focusable using
tabindex=-1 . A heading is usually at the beginning of the
content, and by focusing on it, a screen reader automatically
announces its text content.
Like the heading, you can make the labeled dialog focusable
using tabindex=-1 .

Your choice will depend on your possibilities and constraints
and what works best for your users. I prefer focusing the
heading.

Once the user is done interacting with the content in the dialog,
you move focus back to the button that opened it.

Example 6-11 uses a custom dialog solution, but in HTML
there’s also a native dialog element (see Example 6-13). That
element is handy because it builds in many of the things you
used to have to do manually:

It has an implicit dialog role.
It provides methods for opening and closing.
It makes the rest of the page inert.
It manages focus.

The specification defines the rules for focus management as
follows:

If there is a focusable descendant, focus it.
If not, focus the dialog element itself.
If an element, including the dialog, is present with an
autofocus attribute, take that instead.

Focus management is essential for making complex UIs
accessible, but, as inclusive-design advocate Eric Bailey puts it,
“99% of the time, you want to leave focus order alone.” You
almost always want focus to follow the natural order and let
users decide when and where to go next. You should
programmatically manage focus only when users can’t reach
parts of the interface without a lot of effort. That also applies to
the autofocus attribute in HTML, which you can also use to
move focus. You most certainly want to avoid moving focus in
most navigations, disclosure widgets, and forms (except when
you focus erroneous form controls).

https://oreil.ly/zgDo6
https://oreil.ly/ATDDd
https://oreil.ly/dA_w3

Sometimes it’s not the user who triggers the action. The first
time you visit many European websites, a dialog opens
automatically to show a cookie consent banner. When you don’t
manage focus in cases like that, users may interact with the
page in the background without being able to close the overlay.

6.4 Keep Focus Contained

Problem

If you move focus, and with it the center of attention, you want
to ensure that the rest of the page is inactive so that the user
can interact only with the currently relevant content. If you
don’t do that, they can accidentally move out of that area, get
lost, and have a hard time finding their way back, as shown in
Examples 6-14, 6-15, and 6-16.

Solution

Contain or trap focus within the currently relevant area of the
page and make the rest unreachable.

Example 6-14. Focus trapped within a custom modal dialog

<main>

 <button class="open">Login</button>

</main>

<div role="dialog" aria-modal="true" hidden aria

 <div>

 <button class="close">Close</button>

 <h1 id="heading" tabindex="-1">Login</h1>

 A link

 </div>

</div>

<script>

 const dialogOpen = document.querySelector(".ope

 const dialogClose = document.querySelector(".cl

 const dialog = document.querySelector('[role="d

 const heading = dialog.querySelectorAll('[tabin

 const focusableElements = dialog.querySelectorA

 let trigger;

 dialogOpen.addEventListener("click", open);

 dialogClose.addEventListener("click", close);

 dialog.addEventListener("keydown", (e) => {

 if (e.code !== "Tab") return;

 const first = focusableElements[0];

[];

 const last = focusableElements[focusableEleme

 const active = document.activeElement;

 if (e.shiftKey) {

 if (first === active) {

 e.preventDefault();

 last.focus();

 }

 } else if (last === active) {

 e.preventDefault();

 first.focus();

 }

 });

 function open() {

 trigger = document.activeElement;

 dialogToggle();

 }

 function close() {

 dialogToggle();

 }

 function dialogToggle() {

 const isOpen = !dialog.hasAttribute("hidden"

 if (!isOpen) {

 dialog.removeAttribute("hidden");

g ();

 heading.focus();

 } else {

 dialog.setAttribute("hidden", "hidden");

 trigger.focus();

 }

 }

</script>

Find all focusable elements within the dialog.

Do nothing unless the user presses the Tab key.

This is the first focusable element within the dialog.

This is the last focusable element within the dialog.

This is the currently focused element.

When the users presses the Shift key…

…and the currently focused element is the first element…

…prevent the default behavior and move focus to the last
focusable element.

If the user doesn’t press Shift and the last item is the
currently focused element, focus moves to the first

https://calibre-pdf-anchor.a/#a1315
https://calibre-pdf-anchor.a/#a1318

element.

Example 6-15. Focus contained within a custom dialog
element

<div class="page-wrapper">

 <header>

 Home

 </header>

 <main>

 <button class="open" aria-haspopup="dialog">L

 </main>

</div>

<div role="dialog" aria-modal="true" hidden aria

 <div>

 <button class="close">Close</button>

 <h1 id="heading" tabindex="-1">Login</h1>

 A link

 </div>

</div>

<script>

const pageWrapper = document.querySelector('.page

const dialogOpen = document.querySelector(".open

g p q y (p

const dialogClose = document.querySelector(".clos

const dialog = document.querySelector('[role="dia

const heading = dialog.querySelectorAll('[tabinde

let trigger;

dialogOpen.addEventListener("click", open);

dialogClose.addEventListener("click", close);

function open() {

 trigger = document.activeElement;

 pageWrapper.setAttribute('inert', 'inert')

 dialogToggle();

}

function close() {

 pageWrapper.removeAttribute('inert')

 dialogToggle();

}

function dialogToggle() {

 const isOpen = !dialog.hasAttribute("hidden");

 if (!isOpen) {

 dialog.removeAttribute("hidden");

 heading.focus();

 } else {

 dialog.setAttribute("hidden", "hidden");

 trigger.focus();

gg ();

 }

}

</script>

All main page content is contained in a single element.

The main content wrapper becomes inert when the dialog
opens.

The inert status is removed when the dialog closes.

Example 6-16. Focus contained natively within a dialog
element

<button class="open">Login</button>

<dialog tabindex="-1" aria-labelledby="heading">

 <form method="dialog">

 <button>Close</button>

 </form>

 <h1 id="heading">Login</h1>

</dialog>

<script>

const button = document.querySelector("button");

const dialog = button.nextElementSibling;

g g;

button.addEventListener("click", (e) => {

 dialog.showModal();

});

</script>

The showModal() method contains content
automatically.

Discussion

There is a difference between trapping focus and containing
focus. Example 6-14 shows a classic focus trap: When the user
reaches the last focusable element and presses Tab , focus
jumps to the first element. When they find the first element and
press Shift + Tab , focus jumps to the last focusable item.
There is no way of escaping the dialog other than closing it
unless you use a screen reader. We’ve been using that technique
for a long time for modal windows. It’s an effective way of
ensuring the user can’t accidentally escape the element, but
there are two potential issues with that.

First, users might not expect that behavior because, typically,
when they reach the end or beginning of the page, focus moves
to the browser UI.

Second, in Recipe 6.2 you learned about the elements that can
receive focus. If you combine that list with all the attributes that
can add or remove this ability, the list becomes long and hard to
maintain, potentially missing some elements. The solution in
Example 6-14 works only because it’s based on the assumption
that the dialog contains only buttons and links.

Many people still went for focus traps because until recently
there was no other way of containing focus. In early 2023, all
major browsers added support for the inert attribute. The
custom dialog in Example 6-15 doesn’t trap focus but contains
it, by making the rest of the page inactive. Everything but the
dialog is wrapped in a div with the .page-wrapper class.
When the dialog is open, the script adds the inert attribute to
that div , making all its descendants inactive. Visually they’re
still there, but you can’t focus them, and they’re temporarily not
exposed in the accessibility tree. Doing that limits interaction to
the currently relevant content without trapping the user, who
can still escape the page. This solution is much closer to the
native behavior and is safer and easier to implement. The
native dialog element (see Example 6-16) comes with that
behavior by default.

The inert attribute and dialog element make it much easier to
ensure that users don’t get lost elsewhere on the page, but focus

traps still may have advantages. The best way to determine
whether you need one is to test with users and decide based on
their feedback.

6.5 Preserve Order

Problem

A mismatch between the order of elements in the document
and the visual order can result in confusion and
unpredictability. That makes it hard for keyboard and screen
reader users to navigate, get oriented, and understand the UI.

Solution

When you create layouts in CSS, let elements flow naturally on
the x- and y-axes and refrain from using attributes and
properties that affect visual or tabbing order, as shown in
Examples 6-17 and 6-18.

Example 6-17. Content naturally aligned on the x-axis

ul {

 display: flex;

 gap: 1rem;

}

Example 6-18. A two-column layout following the natural
flow of the content

main {

 display: grid;

 grid-template-columns: 2fr 1fr;

 gap: 1rem;

}

Discussion

When you visit a page and press Tab , focus jumps to the first
focusable element in the DOM. When you press it again, it
jumps to the second element, etc. That’s a predictable and
expected behavior. When you change the layout of a page using
CSS, you must ensure that the experience remains that way. The
order must be sequential, even when you turn a vertical into a
horizontal list or arrange items in a grid. For most natural
languages, like English, French, or German, that means that
focus moves from top to bottom, from left to right. In other
languages, like Hebrew, it moves from top to bottom, from right
to left.

The most important thing you must know is that changing
visual order doesn’t affect tab order. The first link that receives
focus in Example 6-19 is both the first element in the document
and on the page.

Example 6-19. A list of three links

 One

 Two

 Three

That’s also true when you let elements naturally flow on the x-
axis using Flexbox (see Example 6-20). In Figure 6-6, you see
how the link in the first list item is the first element to receive
focus.

Example 6-20. Aligning the list horizontally

ul {

 display: flex;

 gap: 1rem;

 list-style-type: none;

}

Figure 6-6. The first focusable element in the document and on the page receives
focus

If you break the natural flow and rearrange items manually, as
shown in Example 6-21, you get a different visual order, but tab
order stays the same. Figure 6-7 shows that the link in the first
list item is still the first element to receive focus.

Example 6-21. Bad practice: Changing the natural order
using the order property

ul {

 display: flex;

 gap: 1rem;

 list-style-type: none;

}

li:first-child { order: 2 }

li:nth-child(2) { order: 3 }

li:last-child { order: 1 }

Figure 6-7. The first focusable element in the document, visually the second element
on the page, receives focus

If the visual order and the DOM order don’t match, it can
irritate and confuse users until the experience is so bad that the
site is unusable. For instance:

Visual order concerns keyboard users because they may have
trouble predicting where focus will go next.
It may irritate users of screen magnifiers if the enlarged
portion of the screen skips around a lot.
If a blind user works with a sighted user who reads the page
in visual order, it may confuse them when they encounter
information in different orders.

In Figure 6-8, I use the Polypane browser to visualize tab order
on psg.fr. The numbered circles represent the current tab stop,
and the lines show my path. The screenshot is hard to interpret
because lines cross a lot. That indicates a mismatch between
DOM and visual order.

https://psg.fr/

Figure 6-8. Lines and numbered circles represent the tabbing order

Having learned about the tabindex attribute in Recipe 6.2,
you may think that you can compensate for the issue caused by
the code in Example 6-21 by adapting the tabindex of each
element accordingly, as shown in Example 6-22. If you use the
Tab key, DOM order and visual order now match again, but the
virtual cursor in a screen reader ignores the attribute, still
following the original DOM order. On top of that, now you have
to manage and maintain a meaningful tabbing order for the
whole page, which is cumbersome and error-prone.

Example 6-22. Bad practice: Changing the natural DOM
order using the tabindex property

 One

 Two

 Three

Don’t use tab indexes with a value larger than 0, and don’t
reorder interactive elements using CSS properties like flex-
direction , order , grid-auto-flow , or techniques like
explicit placement in Grid, absolute positioning, or negative
margins. When you deal with interactive elements, visual order
should always represent DOM order as well as possible, because
tab order follows DOM order no matter how you arrange items
visually.

6.6 Allow Users to Skip Elements

Problem

For people relying on keyboard accessibility, encountering parts
of a web page with many interactive elements means they have
to perform a physical action repeatedly, like pressing the Tab
key on their keyboard, pressing a button on a switch device, or

operating a similar assistive technology with their hands, arms,
mouth, or head. This can quickly become physically demanding.

Solution

Add links to areas in a page with many interactive elements, so
users can skip those and continue navigating elsewhere, as
shown in Example 6-23.

Example 6-23. A link in the header of the page that allows
users to skip to the main content

<header>

 Skip to co

 <nav>

 …

 </nav>

</header>

<main id="content">

</main>

Visually hidden but accessible via keyboard and screen
reader.

https://calibre-pdf-anchor.a/#a1371

Example 6-24 shows how to hide the skip link from mouse and
touch users and make it visible only when it receives keyboard
focus.

Example 6-24. The skip link is visually hidden and visible
only when it receives focus

.skip-link {

 background-color: #fff;

 position: absolute;

 padding: 0.2em;

 display: block;

}

.skip-link:not(:focus):not(:active) {

 clip-path: inset(50%);

 height: 1px;

 overflow: hidden;

 white-space: nowrap;

 width: 1px;

}

Hide the link only when it’s not focused or active.

Discussion

Figure 6-9 is a screenshot of mit.edu. In the header at the top,
there are 10 interactive elements, there are 7 more in the
sidebar on the left. Depending on which page keyboard users
accesses, they’ll have to press the Tab key (or a button on a
switch device) 10 to 17 times on every page they visit. That’s
annoying and can physically hurt and even aggravate repetitive
strain injuries.

Figure 6-9. Skip link visible on mit.edu, a website with more than 15 focusable
elements before the main content

Luckily, there’s a skip link on the MIT website. A skip link is an
anchor link that points to another part of the page, enabling
you to jump to it by clicking the link. It’s usually the first
focusable element in the DOM, visually hidden and visible only

https://mit.edu/

when it receives focus. Examples 6-23 and 6-24 illustrate a
typical implementation.

Skip links can be incredibly useful when there are a lot of
interactive elements before the page’s main content. Using the
example in Figure 6-9 again, with the skip link (visible in the
top center of the page because it’s currently focused) users have
to press Tab only once instead of 17 times to get to the main
content of the page. That being said, using a skip link may be
counterproductive if there are only one or two focusable
elements before the main content.

On most sites that implement skip links, you’ll find a single
“skip to content” link in the header, but some provide additional
links for accessing the navigation, search, or footer. Whether
you need that depends on the size of your site and the
information density of your header and footer. The Financial
Times implements four skip links that go to navigation, content,
footer, and an accessibility statement (see Figure 6-10).

https://ft.com/

Figure 6-10. “Accessibility help,” one of four skip links on ft.com in the top left corner
of the page

When you have sections with many interactive elements,
adding skip links within the page can be helpful, too. Typical
examples are social-media widgets, maps, and sidebars. In
Figure 6-11, you can see many links in the sidebar of Manuel
Baisch’s website. The skip link is always visible and allows you
to access the page content directly.

Embedded maps often contain many interactive elements.
Adding skip links before maps, as shown in Figure 6-12, can
improve the user experience.

Figure 6-11. A visible skip link in the sidebar on manuelbaisch.com

Figure 6-12. The skip link on wien.gv.at/stadtplanung is visible only when you focus it

According to the WebAIM Million 2024 report, 13.3% of tested
websites had a skip link. However, one of every six of those
links was broken because they were either incorrectly hidden
or the target didn’t exist. Using display: none doesn’t
qualify for hiding skip links. You have to use an accessible
method, as illustrated in Example 6-24. I also recommend you
show the skip link on focus, because focusing on a visually
hidden link can confuse keyboard users. You can learn more
about accessible hiding in Recipe 8.1.

The purpose of skip links is to make keyboard navigation more
efficient. Base your decision about which skip links you need on
how they can benefit users.

See Also

“Giving users and developers more control over focus” by
Chromium Blog
Chrome Platform Status: “Use :focus-visible in the default UA
style sheet”
Safari TP 138 Release Notes
Safari 15.4 Release Notes
Bugzilla: “Remove focus-visible feature flag”
“Dialog Focus in Screen Readers” by Adrian Roselli

https://oreil.ly/N7yJx
https://oreil.ly/tPzNy
https://oreil.ly/ZQ2Bu
https://oreil.ly/ALUcn
https://oreil.ly/Oj2f3
https://oreil.ly/eFFpJ
https://oreil.ly/-C6-r

“Using JavaScript to trap focus in an element” by Hidde de
Vries
“Skip Navigation Links” by WebAIM

https://oreil.ly/XqlvN
https://oreil.ly/9iCW7

Chapter 7. Navigating Sites

This chapter looks at creating the main navigation for a
website. It begins with the simplest possible solution, but with
every recipe, you progressively improve the experience and
functionality. You learn about each element’s and attribute’s
responsibilities and different approaches to dealing with large,
nested hierarchies. Toward the end of this chapter, you will
discover why using too many or the wrong ARIA attributes can
do more harm than good.

7.1 Create a Main Navigation

Problem

There are many different ways to build the main navigation of
a website. Some solutions are over-engineered, while others
don’t serve users enough functionality and information. HTML
and ARIA offer many tools to improve the user experience, but
writing semantically poor or too-rich markup can complicate
the usage.

Solution

When a website reaches a specific size, we organize pages in
larger sections and link them in a central, easily accessible
place. These sections can take different shapes; we usually refer
to them as navigations or menus.

A website’s main navigation can be as simple as a group of
hyperlinks, as shown in Example 7-1.

Example 7-1. The simplest possible implementation of a
main navigation

Home

Products

Team

Contact

For small or medium-size websites, this simple pattern can be
sufficient because it works well for most users, whether they’re
accessing the site with a mouse, keyboard, or screen reader. The
experience should be good enough, but it can be improved
using HTML and CSS.

How much functionality you want to add to this basic solution
depends on the size and complexity of the navigation (see
discussion). Let’s look at some possibilities in HTML, CSS, and
JavaScript.

HTML

HTML offers users additional ways of accessing the content
within a navigation and helps them understand its purpose and
structure better, as shown in Example 7-2.

Example 7-2. A semantically richer variation of the basic
navigation pattern

<nav aria-label="Main">

 Home

 P

 Team

 Contact

</nav>

We’ll discuss the benefits of the additions in Example 7-2 and in
Recipes 7.2, 7.3, and 7.4.

CSS

The anchor element <a> does a great job in terms of the
semantic information and functionality it provides (see
Chapter 3), but its default styling is too simple. CSS can improve

the readability, increase target sizes, and enhance keyboard
navigation.

By increasing the font size and adding a padding to each link,
you can expand the interactive area of the element, which
makes clicking and tapping links easier and less error-prone
(see Example 7-3).

Example 7-3. Larger font size and padding

a {

 display: inline-block;

 font-size: 1.4rem;

 padding: 0.3rem;

}

You can use the :focus-visible pseudoclass to overwrite the
default focus styles of links and highlight the currently focused
element clearly, as shown in Example 7-4 and Figure 7-1.

Example 7-4. Custom focus styles for links

a:focus-visible {

 outline: 0.25em solid currentColor;

 outline-offset: 0.125em;

}

You can learn about the difference between :focus and
:focus-visible in Recipe 6.1.

Figure 7-1. A focused link with custom focus styles

JavaScript

JavaScript can help present and structure large navigations,
often with nested levels. Enhancing components with JavaScript
usually goes hand in hand with using the ARIA specification.
ARIA attributes can do a great job helping you create accessible
custom JavaScript code, but these attributes are powerful. It’s
important to use them with caution. You can read more about
the dangers of using ARIA in Recipe 7.8.

Discussion

In programming, a design principle called the the Rule of Least
Power suggests choosing the least powerful language suitable
for a given purpose. For frontend development, this usually
means starting with HTML and adding layers of functionality as

https://oreil.ly/W_PSd
https://oreil.ly/y1kEd

needed. This approach makes sense especially for navigation
patterns since they take on different shapes, serve various
purposes, and can quickly become complex. To guarantee the
best possible solution for your users, you have to understand
the problems you’re solving for them. Copying and pasting
ready-made solutions can lead to many issues and confusion for
users and developers.

You have to adapt technical implementations to the context in
which the navigation is used: for example, small versus large
viewport widths. The information hierarchy is another factor. It
makes a difference whether you’re dealing with 4 or 40 links.
You also have to consider different input modalities. Users
might access the navigation using a mouse, touch, keyboard,
voice, or other means.

Styling

The styling of navigations must ensure that links and buttons
are easily accessible, no matter how you access them. That
includes the target size of links (more about that topic in Recipe
3.2) and focus styles (Recipe 6.1). Keyboard, switch device, and
screen reader users rely on proper focus styling and focus
management. Especially in complex navigations with multiple
levels, missing or bad focus management can be an issue.

https://oreil.ly/2j_Mm

Chapter 6, offers general tips and solutions. The gist of it is that
users must be able to access all items in a navigation, easily and
quickly.

The recipes in this chapter focus mostly on the technical
implementation of main navigations, but there are other things
you have to consider when designing and implementing them.

The number of items

Too many options in a navigation can overwhelm users, while
too few options can be too vague. The research conducted by
cognitive psychologist George A. Miller in his 1956 paper “The
Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information” is often used to suggest
that there should be no more than nine items in a main
navigation. According to Miller’s research most people can only
keep between five and nine items in their short-term memory.

However, usability specialists from the UX research and
consulting firm Nielsen Norman Group (NN/g) assert that this
rule doesn’t apply to main site navigations because users don’t
have to remember links in a navigation. They argue that it’s
more important to design a navigation according to the breadth
of your content, to use meaningful and descriptive labels, and

https://oreil.ly/cboBR
https://oreil.ly/hZJ4D

to prioritize links correctly. Their findings are also in line with
my personal experience. The navigation on gov.uk (Figure 7-2)
contains significantly more than nine items, but it still works
great due to the clear labeling and design.

Figure 7-2. More than twenty links in the main navigation of the gov.uk website

Placement

Artistic freedom, creativity, and experimentation are generally
welcome in web design. Creating an accessible website doesn’t
mean you have to make boring designs, but certain parts of a
page should follow expected conventions and layouts. The main

navigation is one of them, and it should be placed in predictable
areas of the page. This usually means putting it on the top edge
of the screen or, for left-to-right languages, on the left edge.

7.2 Highlight the Active Page

Problem

Especially on complex websites with deeply nested structures, it
takes time for users to get oriented and obtain an overview of
their location within a set of pages. A blind screen reader user
might be unable to tell the difference between the active page
within the main navigation’s list of links and other pages.

Solution

To help users with orientation, you should spotlight the
currently active page. Highlighting is not a purely visual task.
The active page must communicate its state both visually and
semantically.

The aria-current attribute represents the current element
within a set of related elements. The page value limits the

element to the current page within a set of pages, as shown in
Example 7-5.

Example 7-5. The “products” link tagged as the active page
within a set of links using the aria-current attribute

Home

Products<

Team

Contact

A more popular solution is to use the class attribute, which
conveys which link within the set of related links is currently
active, but only visually. A blind screen reader user couldn’t tell
the difference between the active page and other pages.

Using class over the aria-current attribute has no obvious
advantages because the attribute can be used to style the active
pages just as well. As you can see in Example 7-6, I’m using an
attribute instead of a class selector to style the active page:

Example 7-6. Highlighting the active page visually using CSS

html {

t t l h l(0 0% 0%)

 --text-color: hsl(0 0% 0%);

 --highlight-color: hsl(209 56% 45%);

}

a {

 border-block-end: 3px solid var(--border-color

 color: var(--text-color);

 text-decoration: none;

}

[aria-current="page"] {

 --border-color: var(--highlight-color);

 --text-color: var(--highlight-color);

}

Transparent border color by default

Blue border color for the current page

Discussion

The aria-current attribute is a great alternative to the more
commonly used class attribute because it highlights the
active link semantically. The attribute can also serve as a
selector in CSS that has the same specificity as a class selector.

https://calibre-pdf-anchor.a/#a1447
https://oreil.ly/gRO3i

A link with purely visual highlighting would be announced to
screen reader users like all the other links on the page. The
ARIA attribute adds the additional information that the selected
link is “the current page.”

Testing aria-current="page” with screen readers

Using different screen readers, you’ll get the following
information focusing an active link with the keyboard (see
Table 7-1).

Table 7-1. What screen readers announce on a link with aria-cu
rrent set to page

Screen reader Announcement

JAWS Products, link, current page

NVDA Products, link, current page

VoiceOver iOS Products, current page, link

VoiceOver macOS Current page, link, products

TalkBack Current page, products, link

If you can’t or don’t want to use an attribute selector, you don’t
have to. There’s no reason you can’t use both the attribute and

the class together, as shown in Example 7-7.

Example 7-7. A combination using a class for styling and the
aria-current attribute for semantic highlighting

<a href="/products" class="active" aria-current=

Styling

I don’t recommend relying purely on semantic highlighting
with no styling. Visual highlighting helps users with orientation
on the page. This is especially true with deeply nested site
structures.

A different text color and decoration visually highlight the
“Products” link in Figure 7-3.

Figure 7-3. Products link highlighted visually

You have full artistic freedom with styling links in a main
navigation, as long as users understand what you’re trying to

achieve, but there are properties in CSS that are more suitable
than others.

Color

Relying on color alone to highlight the active link is a poor
practice because UIs must work even when color is not
available. The page could be presented on a screen that doesn’t
support colors at all or displays them poorly. Color contrast
could be bad because users might have reduced the brightness
of their screen or are accessing the site on a mobile device
outdoors, with bright sunlight deteriorating visibility. The user
might have a type of low vision that affects their perception of
color. There are many reasons to support color highlighting
with different styling.

Relying on color alone can be problematic, as Figure 7-4
illustrates.

https://oreil.ly/Q7n1D

Figure 7-4. Highlighting the current page with color alone: the first example shows
blue text color for the “Products” link; the second example emulates achromatopsia

showing the current page in a lighter gray color

Box-shadow

box-shadow is often used instead of border to create similar
effects as seen in Figure 7-5 because it’s easier to work with
since it doesn’t affect the width or height of the element and it
allows authors to create nested borders. A disadvantage is that
it doesn’t work well with forced-color mode.

https://oreil.ly/WPhpv
https://oreil.ly/5V3mg

Figure 7-5. box-shadow used instead of border to highlight a link: the first example
shows Windows with its default theme and the second example a dark high

contrasting theme

7.3 Announce the Number of Items

Problem

Complex navigations can be hard to use and understand. When
a sighted user looks at a navigation or interacts with it by
clicking or hovering over some links or buttons, they can
usually tell how complex and large it is. A blind screen reader
user can’t obtain this information as quickly.

Solution

Lists in HTML provide additional semantic information that
tells users how many items exist in a list and which item in a set

of items the user is currently accessing (see Example 7-8).

Example 7-8. Each link is wrapped in a list item as part of an
unordered list

<ul role="list">

 Home

 Produ

 Team

 Contact

The additional HTML also comes with different styling you
must adapt to make the list look like it did before. In Example 7-
9, you can see that you have to remove the list’s default margin,
padding, and list styling and you must turn the list into a flex
container to align the items horizontally.

Example 7-9. Turning a vertical list of items into a
horizontal list with no bullets

ul {

 display: flex;

 gap: 1rem;

 list-style: none;

 margin: 0;

 padding: 0;

}

Discussion

When a website reaches a certain size, it usually also offers
different ways of accessing content. It might have a home page
with teasers and call-to-action links, overview pages, a search
widget and a search page, and one or more navigations. How
users find the information they’re looking for depends on
preference and the available options.

The main navigation can be an excellent tool for accessing
important pages quickly, but if it’s too complex, it can be hard
for some users to navigate and get oriented. Complexity is
affected by the technical implementation, the structure, and by
the number of links.

Just by looking or quickly interacting with a navigation, sighted
users can usually tell with little effort how many links it
contains and how it’s structured. A blind screen reader user
can’t get this information as quickly. They may have to work
their way through the entire list of links, which might not be an
issue if the size of the list is manageable, but if it contains, for
example, 30 links, this task can be cumbersome. If a screen
reader user knows up front that the navigation contains a lot of
options, they might decide to use a different, more efficient way
of navigation.

Wrapping links in a list and list items seems like an
unnecessary addition to the code that only increases the size
and complexity. The proposed solution in this recipe even
makes sure that the navigation looks like it did before the
additional markup. That appears to be redundant, but there are
many advantages to using lists. You can learn about them in
Recipe 2.4.

Ordered versus unordered lists

You might wonder why I recommend using an unordered list
 and not an ordered list . The order of items in a
navigation is usually not random. Teams put a lot of thought
into which items to add to the list of most important pages.

They place them specifically, with the most relevant items at the
beginning or end of the list. This means that the order matters,
so it makes sense to use an ordered list. The thing is, that from a
semantic perspective, the order is important only to the people
who add and arrange the items. What matters to the user is that
links have meaningful labels and that they can access them
quickly.

There is a difference between the significance for you
conceptually and for the user semantically. If you change the
order of items in the navigation, it doesn’t affect meaning, but
that’s not always the case. For example, if you’re listing the
steps needed to cook a dish in a recipe, the order is important to
you and the user. It makes a difference whether they peel and
cut an onion first and then put it in the pan, or the other way
around (see Example 7-10).

Example 7-10. A list with items in an explicit order

<h1>Onion tart recipe</h1>

 Peel the onions.

 Slice them into small pieces.

 Put them in a frying pan with some oil.</li

 …

That being said, it doesn’t make a big difference whether you
use an or in a navigation.

The explicit list role

You might have noticed that the solution in this chapter uses an
ARIA role on the list element (see Example 7-11).

NOTE

The role attribute allows you to change the role of a semantic element or add one
to a generic element, for example, <div role="region"></div> .

Example 7-11. An explicit list role on a that already
has an implicit list role

<ul role="list">

 …

If you validate this code, the validation service reports a
warning like “The list role is unnecessary for element ul ,” as
shown in Figure 7-6. It’s redundant to define the role of the
 explicitly, since it already has this role implicitly.

https://validator.w3.org/

Figure 7-6. Warning from the W3C Markup Validation Service

You can safely ignore this warning because the attribute is
there for a reason. If you set list-style: none or use any
other property that removes the visual list indicators, you may
lose all the advantages of using lists in some screen readers.
Instead of “list, 4 items,” the software may not announce the list
as a list (the links are unaffected by that). In VoiceOver on
Safari, this is by design. The WebKit team decided to remove list
semantics when a list doesn’t look like a list. Their reasoning is
that if a sighted user doesn’t need to know it’s a list, a screen
reader user doesn’t need or want to know either. The explicit
list role brings back the semantic information.

An alternative to combining list-style: none with
role="list" is setting list-style-type: "" , which yields
the same result visually but doesn’t remove the semantic
information of the list in Safari with VoiceOver (see Example 7-
12). That works only if you don’t use any other property that
also removes the default list styling. For example, setting
display: flex on list items removes the list’s bullets and the

https://oreil.ly/AQ0LJ

semantic information. The most robust way of maintaining the
semantics in VoiceOver is using the explicit list role.

Example 7-12. Using list-style-type: "" instead of
list-style: none to maintain semantic information of
lists in VoiceOver on Safari

ul {

 display: flex;

 gap: 1rem;

 list-style-type: "";

 margin: 0;

 padding: 0;

}

Depending on the complexity of your navigation, this lack of
announcement may or may not be an issue. On one hand, the
navigation is still usable, and it affects only VoiceOver in Safari.
VoiceOver with Chrome or Firefox still announces the number
of items, as do other screen readers, like NVDA. On the other
hand, the semantic information could be really useful in some
situations.

To make that decision, test the navigation with actual screen
reader users and get their feedback. If you decide you need
VoiceOver in Safari to behave like all the other screen readers,

using the explicit role on the reverts the behavior to the
state before we’ve removed the list styling. Visually, the list still
looks the same.

7.4 Provide Quick Access

Problem

The main navigation is usually located in the page’s header.
Besides the navigation, there might be a search widget,
additional secondary navigations, a language selection, ads,
drop-downs, buttons, and more. For users of assistive
technology, it can be frustrating to always have to tab through
all of these items until they finally reach the main navigation.

Solution

There are two solutions to this problem, which don’t have to be
used exclusively.

Landmarks

You can turn an ordinary list into a navigational list by
wrapping the in a <nav> element. This adds useful
semantic information to the navigation, and it allows screen

reader users to jump directly into the main navigation using
shortcuts, as shown in Example 7-13. The aria-label
attribute labels the navigation.

Example 7-13. A labeled navigation landmark

<nav aria-label="Main">

 Home

 Pro

 Team

 Contact

</nav>

Skip links

If you put a skip link at the beginning of the page, as early as
possible in the DOM, users can skip any interactive elements
that come before the navigation and interact with the
navigation directly. Examples 7-14 and 7-15 illustrate how to
implement a skip link in HTML and CSS.

Example 7-14. Implementing a skip link in CSS

html {

 --text-color: hsl(0deg 0% 0%);

 --text-color-light: hsl(0deg 0% 100%);

 --highlight-color: hsl(209deg 56% 45%);

}

.skip-link:is(:link, :visited) {

 background-color: var(--highlight-color);

 color: var(--text-color-light);

 padding: 0.5rem;

 position: absolute;

 text-decoration: none;

}

.skip-link:not(:focus-visible):not(:active) {

 clip-path: inset(50%);

 height: 1px;

 overflow: hidden;

 width: 1px;

 white-space: nowrap;

p p;

}

Basic styling for the skip link.

Hide the link visually if it’s not focused.

The .skip-link class makes sure that the link is visible only
when it’s needed. Use the href attribute to enable jumping
directly to an anchor you put on the <nav> using the id
attribute.

Example 7-15. A skip link in a <header>

<header>

 Jump to n

 My website

 Some link

 Another link

 <button>A button</button>

 <button>Another button</button>

 <nav id="main-nav" aria-label="Main">

 <ul id="main-nav-list">

 Home

 P

 Team

 Contact

 </nav>

</header>

Skip link at the very beginning of the page

Some random exemplary interactive elements that come
before the main navigation

Labeled navigation landmark with an ID

Discussion

Landmarks

Wrapping links within a navigation in a list element improves
the user experience, but it’s still just an ordinary list. To give it a

https://calibre-pdf-anchor.a/#a1514

special meaning, wrap it in a <nav> element.

Using the <nav> element has several advantages. Notably, a
screen reader announces something like “navigation” when the
user interacts with it. It also adds a landmark to the page: a
special region like <header> , <footer> , or <main> , that
screen reader users can access using shortcuts. In VoiceOver on
macOS you can use a shortcut to list all landmarks, as shown in
Figure 7-7.

Figure 7-7. Rotor in VoiceOver listing all the landmarks on a page

If you have multiple navigations of the same type, you should
label them using aria-labelledby or aria-label to make
them distinguishable, as shown in Figure 7-8. You can learn

more about landmarks in Recipe 1.5 and labeling them in
Recipe 2.3.

Figure 7-8. VoiceOver listing labeled and unlabeled landmarks

Another interesting detail about wrapping the list of links in a
<nav> element is that it automatically brings back the native
semantics of the list, even if it doesn’t look like a list, as Scott
O’Hara notes in “Fixing Lists”. Therefore, you don’t need to add
an explicit list role to the element, like you did in
Example 7-11.

Skip links

In most cases, websites that offer skip links (see Recipe 6.6)
provide users with at least one skip link to the main content of
the page. Depending on the complexity of the <header> or

https://oreil.ly/LxVIk

wherever the navigation is located, it might be useful to offer
an additional skip link that allows users to skip to the
navigation.

Figure 7-9 shows that users must cycle through 15 tab stops
before reaching the main navigation on nytimes.com if they
don’t use the skip link at the beginning of the page.

Figure 7-9. The encircled numbers mark each tab stop before the main navigation
(number 1 is the visually hidden skip link)

A skip link is hidden by default and becomes visible only if the
user focuses the link. The skip link in Figure 7-10 is present but
not visible.

Figure 7-10. Header with a couple of interactive elements followed by the main
navigation

The skip link pops up on focus and overlays the rest of the page
without interfering with the layout, as shown in Figure 7-11.

Figure 7-11. A “Jump to navigation” skip link

Whether it makes sense to add a “Jump to navigation“ skip link
or not depends on the number of interactive elements that
come before the navigation. If there’s only a single link before
the navigation, a skip link would increase the number of tabs
required to get to the navigation. If there are more than just one
or two interactive elements, a skip link will probably be useful.
You can learn more about skip links in Recipe 6.6.

7.5 Hide the Navigation on Narrow
Viewports

Problem

When your navigation reaches a certain size in terms of the
number of items, there’s likely not enough space on the screen
to display all of them without affecting UX negatively.

Solution

Hiding the list of links and allowing users to open and close can
be a solution.

To hide the navigation on narrow viewports, you have to do
three things: adapt the styling for narrow viewports, hide the
list in a sidebar, and allow users to toggle its visibility.

CSS

You must ensure the layout works well on narrow screens and
the list is hidden by default.

nav {

 position: var(--nav-position, fixed);

 inset-block-start: 1rem;

 inset-inline-end: 1rem;

}

nav ul {

 background: hsl(0 0% 100%);

 box-shadow: var(--nav-list-shadow, -5px 0 11px

 display: flex;

 flex-direction: var(--nav-list-layout, column)

 flex-wrap: wrap;

 gap: 1rem;

 height: var(--nav-list-height, 100dvh);

 list-style: none;

 margin: 0;

 padding: var(--nav-list-padding, 2rem);

 position: var(--nav-list-position, fixed);

 inset-block-start: 0;

 inset-inline-end: 0;

 width: var(--nav-list-width, min(22rem, 100vw)

 visibility: var(--nav-list-visibility, hidden)

}

[aria-expanded="true"] + ul {

 --nav-list-visibility: visible;

}

@media (min-width: 48em) {

 nav {

 --nav-position: static;

 --nav-button-display: none;

 }

 nav ul {

 --nav-list-layout: row;

 --nav-list-position: static;

 --nav-list-padding: 0;

 --nav-list-height: auto;

 --nav-list-width: 100%;

 --nav-list-shadow: none;

 --nav-list-visibility: visible;

 }

}

nav ul:first-child {

 --nav-list-layout: row;

 --nav-list-position: static;

 --nav-list-padding: 0;

 --nav-list-height: auto;

 --nav-list-width: 100%;

 --nav-list-shadow: none;

 --nav-list-visibility: visible;

}

nav button {

 all: unset;

 display: var(--nav-button-display, flex);

 position: relative;

 z-index: 1;

}

nav button:focus-visible {

 outline: 4px solid currentColor;

 outline-offset: 2px;

}

Fixed position for the nav by default.

Logical property. Equivalent to top: 0.

Logical property. Equivalent to right: 0.

The list looks like a sidebar on narrow viewports.

The list is hidden by default.

Show the list when the navigation’s burger button’s
aria-expanded attribute is set to true.

Position the navigation static.

Hide the burger button.

https://calibre-pdf-anchor.a/#a1551

Adapt the list’s styling so that it doesn’t look like a list
anymore.

Repeat the settings from the previous steps to provide a
different styling when JavaScript is disabled. The selector
assumes that the button doesn’t exist without JS, making
the list the first child within the navigation.

Reset button styles.

Bring back unset focus styles for the button.

HTML

You can store the markup for the toggle button in a template
element.

<nav aria-label="Main" id="main-nav">

 <ul id="main-nav-list">

 Home

 Pro

 Team

 Contact

 <template id="burger-template">

 <button type="button" aria-expanded="false" a

 aria-controls="main-nav-list">

 <svg viewBox="-5 0 10 8" width="40" aria-hi

 <line y2="6.5" stroke="#000" stroke-width

 </svg>

 </button>

 </template>

</nav>

JavaScript

Clone the button and add event listeners to the navigation.

const nav = document.querySelector("nav");

const list = nav.querySelector("ul");

const burgerTemplate = document.querySelector("#b

const burgerClone = burgerTemplate.content.cloneN

const button = burgerClone.querySelector("button

button.addEventListener("click", (e) => {

 const isOpen = button.getAttribute("aria-expand

 button.setAttribute("aria-expanded", !isOpen);

});

nav.addEventListener("keyup", (e) => {

 if (e.code === "Escape") {

 button.setAttribute("aria-expanded", false);

 button.focus();

 }

});

nav.insertBefore(burgerClone, list);

Toggle aria-expanded attribute. aria-
expanded="true" signals that the menu is currently
open.

Hide list on keydown Escape.

Add the button to the page.

Discussion

That was a lot of code, so let’s break it down.

Styling

First, remove the <nav> from the natural flow of the page and
place it at the top end corner of the viewport, as shown in
Example 7-16.

Example 7-16. Removing the nav from the natural flow of
the page on narrow viewports

@media (min-width: 48em) {

 nav {

 --nav-position: static;

 }

}

nav {

 inset-block-start: 1rem;

 inset-inline-end: 1rem;

 position: var(--nav-position, fixed);

 z-index: 1;

}

NOTE

In CSS, inset-block-start and inset-inline-end are the logical equivalent of
the physical properties top and right .

https://oreil.ly/kJXgZ

Next, change the layout of the list on narrow viewports by
adding a new custom property (—-nav-list-layout) . The
layout is column by default and switches to row on larger
screens, as shown in Example 7-17 and Figure 7-12.

Example 7-17. Display the list in a vertical or horizontal
layout depending on the viewport width

ul {

 display: flex;

 flex-direction: var(--nav-list-layout, column)

 flex-wrap: wrap;

 gap: 1rem;

 list-style: none;

 margin: 0;

 padding: 0;

}

@media (min-width: 48em) {

 ul {

 --nav-list-layout: row;

 }

}

Figure 7-12. Work in progress: the list removed from the document flow and placed
above the rest of the content

You’ve removed the list from the document flow and you’ve
changed its layout, but it obviously needs more styling to look
like a proper sidebar. Move it up to the top end corner, make it
fill the whole screen vertically, add a max-width and some
padding , and apply a background-color and a box-
shadow , as shown in Example 7-18.

Example 7-18. Styling the list to look like a sidebar on
narrow viewports

ul {

 background: hsl(0 0% 100%);

 box-shadow: var(--nav-list-shadow, -5px 0 11px

 display: flex;

 flex-direction: var(--nav-list-layout, column)

 flex-wrap: wrap;

 gap: 1rem;

 height: var(--nav-list-height, 100dvh);

 list-style: none;

 margin: 0;

 padding: var(--nav-list-padding, 2rem);

 position: var(--nav-list-position, fixed);

 inset-block-start: 0;

 inset-inline-end: 0;

 width: var(--nav-list-width, min(22rem, 100vw)

}

@media (min-width: 48em) {

 ul {

 --nav-list-layout: row;

 --nav-list-position: static;

 --nav-list-padding: 0;

 --nav-list-height: auto;

 --nav-list-width: 100%;

 --nav-list-shadow: none;

 }

}

The list should look something like Figure 7-13 on narrow
viewports, more like a sidebar than a simple list.

Figure 7-13. Styled list on narrow viewports

Hiding the list

Next, you have to hide the list, and just the list, as shown in
Example 7-19. That’s important, because hiding the entire
navigation would also mean hiding an important landmark.
There are several ways in CSS to hide content, but not all of
them are accessible.

It’s important that you use a property declaration like
visibility: hidden or display: none instead of
opacity: 0 or translateX(100%) . These properties make
sure that the links are not focusable when the navigation is

hidden. Using opacity or translate will remove content
visually, so the links would be invisible yet still accessible using
the keyboard, which would be confusing and frustrating. Using
visibility or display hides the list visually and makes it
unreachable to all users.

You can learn more about hiding content in Chapter 8.

Example 7-19. Hiding the list on narrow viewports

ul {

 visibility: var(--nav-list-visibility, hidden)

}

@media (min-width: 48em) {

 ul {

 --nav-list-visibility: visible;

 }

}

Toggling the visibility of the list

You want to give users the ability to show and hide the list
whenever they want. The first thing you need is a button. There
are different ways of adding it to the DOM; using a template in

HTML and cloning it in JavaScript is one of them, as shown in
Example 7-20.

Example 7-20. Using the template element to prepare
markup in HTML for later usage in JavaScript

<nav id="main-nav">

 <ul id="main-nav-list">…

 <template id="burger-template">

 <button

 type="button"

 aria-expanded="false"

 aria-label="Menu"

 aria-controls="main-nav-list"

 >

 <svg viewBox="-5 0 10 8" width="40" aria

 <line y2="6.5" stroke="#000" stroke-width

 </svg>

 </button>

 </template>

</nav>

There are a lot of important features in this short code snippet.

The entire markup for the button is in a template so I
don’t have to create it in JavaScript. It’s easier to work

with and read.

The aria-expanded attribute tells assistive technology if
the element the button controls is expanded.

aria-label gives the button an “accessible name,” a
text alternative for the menu icon.

aria-controls creates a reference to the list.

Hide the <svg> from assistive technology using aria-
hidden because it already has a text label provided by
aria-label .

The button needs some basic styling and you want to make sure
that you show it only on narrow screens, as shown in
Example 7-21.

Example 7-21. Resetting the default button styling and
showing it on only narrow viewports

@media (min-width: 48em) {

 nav {

 --nav-button-display: none;

 }

}

https://calibre-pdf-anchor.a/#a1622

button {

 all: unset;

 display: var(--nav-button-display, flex);

 position: relative;

 z-index: 1;

}

button:focus-visible {

 outline: 0.25em solid currentColor;

 outline-offset: 0.125em;

}

Next, select and clone the template and query the button, as
shown in Example 7-22.

Example 7-22. Query the template and clone it

const nav = document.querySelector('nav')

const list = nav.querySelector('ul');

const burgerTemplate = document.querySelector('#b

const burgerClone = burgerTemplate.cloneNode(true

const button = burgerClone.querySelector('button

When the user clicks the button or presses Enter or Space ,
toggle the value of the aria-expanded attribute, indicating
whether the list is expanded or not, as shown in Example 7-23.

Example 7-23. Click event on the button that toggles the
value of the aria-expanded attribute

button.addEventListener('click', e => {

 const isOpen = button.getAttribute('aria-expand

 button.setAttribute('aria-expanded', !isOpen);

});

Optionally, you can also allow users to close the navigation by
pressing Escape . It’s convenient for users to have the ability to
close the navigation whenever they want, as shown in
Example 7-24.

Example 7-24. Keyup event on the navigation that closes it
when the user presses the Escape key

nav.addEventListener('keyup', e => {

 if (e.code === 'Escape') {

 button.setAttribute('aria-expanded', false);

 button.focus();

 }

});

Next, attach the button to the navigation, as shown in
Example 7-25. It’s critical to use insertBefore instead of

appendChild because the button should be the first element
in the navigation. If a keyboard or screen reader user presses
Tab after clicking the button, they expect to focus the first item
in the list. If the button comes after the list, that would not be
the case.

Example 7-25. Attaching the button at the beginning of the
navigation, before the list

nav.insertBefore(burgerClone, list);

As you can see, the JavaScript code doesn’t affect the visibility
of the list directly. You’re only toggling the aria-expanded
attribute on the button. Since the is a direct sibling of the
<button> , you can use this information to toggle the visibility
in CSS, as shown in Example 7-26.

Example 7-26. Using an attribute selector in CSS to toggle
the visiblity of the list

ul {

 visibility: var(--nav-list-visibility, hidden)

}

[aria-expanded="true"] + ul {

 --nav-list-visibility: visible;

}

Figure 7-14 shows the navigation with the menu button.

Figure 7-14. List with a burger button on narrow viewports

To burger or not to burger

When you’re hiding the navigation “behind a burger,” you’re
adding complexity. Users might not recognize the icon, might
miss the button, or might not understand the pattern at all.
Only hide content or adapt a conventional pattern as a last

resort. Prefer displaying navigations directly, even on narrow
viewports.

Discoverability is cut almost in half by hiding a website’s
main navigation. Also, task time is longer and perceived
task difficulty increases.

—Kara Pernice and Raluca Budiu of NN/g

The burger icon itself can cause issues, too. Users might not
understand its purpose. Combining the icon with a visual label
like “Menu” can make the solution more accessible for people
less familiar with the icon.

Narrow viewports versus narrow screens

You might have noticed that this chapter refers to narrow
viewports and not narrow screens or smartphones. That might
seem like a tiny detail, but it’s essential for how we approach
design, development, and testing.

Most modern websites are responsive, which means that the
layout adapts to the width of the viewport. The width of the
viewport often equals the width of the screen, for example, on a
smartphone or a desktop browser in full-screen mode, but there
are exceptions.

https://oreil.ly/BPi6V

Some browsers have sidebars

In Safari, for example, bookmarks are located in a sidebar.
Another example is the Arc browser, which has no UI on
the top edge of the screen. Most of the interaction happens
in a sidebar on the left.

Some browsers support screen splitting

The Arc browser allows splitting the screen in two or
more separate viewports, as shown in Figure 7-15.

Users don’t always surf full-screen

They might organize their windows in a way that allows
them to use two or more applications at the same time.

Zoom affects layout

People with low vision, who need to enlarge text and read
it in a single column, might zoom the page up to 500%.
This causes the content to reflow, which means that media
queries optimized for narrow viewports are applied to
large viewports.

This is important because many people have the misconception
that “narrow screen” means “mobile screen” and that “mobile”
means “touch only.” Someone might use a keyboard or switch

device on a page that is zoomed up to 400%. Our layout must be
accessible with all input modalities, no matter the width of the
viewport.

Figure 7-15. The Arc browser with the sidebar open and two websites in split-screen

Progressive enhancement

Web accessibility is not just about users’ cognitive or physical
abilities; their technology is also a factor. This includes network
speeds, capabilities of the device used, and constraints within
the browser, operating system, or network.

A controversial topic in web development is whether websites
must be operable with JavaScript turned off. I won’t go into
detail here, but for a website to be truly accessible, it must
adapt to its environment and function even under difficult
conditions. That’s why the solution in this recipe builds upon a
pattern that doesn’t rely on client-side scripting and that adds
functionality and UI elements only needed when JavaScript is
available.

If you’re working with JavaScript frameworks in an
environment that relies on client-side scripting, for example,
you can adapt this recipe to render UI elements and attributes
directly in the component without adding them dynamically.

7.6 Add a Slide-in Animation

Problem

Animations on the web are sometimes annoying, but they may
also cause nausea, dizziness, and headaches in some users. The
vestibular system is the mechanism in the inner ear that
provides an internal sensor to communicate our body’s physical
position and orientation in the world. It processes the sensory
information involved with controlling balance and eye

https://oreil.ly/I5gWY
https://oreil.ly/c6MPA
https://oreil.ly/QvHSE

movements. For people with vestibular disorders, animation
can cause pain and make them feel so bad that they have to
stop using the computer, needing time to recover.

Solution

When you add animation to a web page, you must respect user
preferences. Create a subtle fade-in animation first for users
who prefer reduced motion, then add a more dynamic
animation for users with no preference.

The baseline is a simple fade-in and -out animation, as shown in
Example 7-27.

Example 7-27. The list fades in and out when the user clicks
the button

ul {

 opacity: 0;

 transition: opacity 0.3s ease-in-out, visibilit

 visibility: var(--nav-list-visibility, hidden)

}

[aria-expanded="true"] + ul {

 --nav-list-visibility: visible;

 opacity: 1;

}

https://oreil.ly/qjoPT

}

Use the prefers-reduced-motion media feature to detect
whether users are okay with more motion on the screen, so it
will replace the fading with a sliding animation, as shown in
Example 7-28.

Example 7-28. On top of the fade-in and -out animation, the
list moves into the screen for users with no preference for
reduced motion

ul {

 opacity: 0;

 transition: opacity 0.3s ease-in-out, visibilit

 visibility: var(--nav-list-visibility, hidden)

}

@media (prefers-reduced-motion: no-preference) {

 ul {

 opacity: 1;

 transform: var(--nav-list-transform, translat

 transition: transform 0.6s cubic-bezier(.68,

 visibility 0.3s linear;

 }

}

[aria-expanded="true"] + ul {

 --nav-list-visibility: visible;

y ;

 --nav-list-transform: translateX(0);

 opacity: 1;

}

@media (min-width: 48em) {

 ul {

 --nav-list-visibility: visible;

 --nav-list-transform: translateX(0);

 }

}

Animate the opacity of the list.

The list is hidden by default.

Change the type of animation if the user has no
preference for reduced motion.

Move the list out of the viewport.

If the list is expanded, show the list.

If the list is expanded, move the list.

On large viewports, always show the list in the viewport.

https://calibre-pdf-anchor.a/#a1678
https://calibre-pdf-anchor.a/#a1679
https://calibre-pdf-anchor.a/#a1680
https://calibre-pdf-anchor.a/#a1681

In this solution, you’ve decided to start with a simple animation
and replace it if the user has no preference for reduced motion.
It’s possible to write the same pattern the other way around, as
shown in Example 7-29. You can apply the transition first and
remove it if users prefer reduced motion. I recommend the first
solution because animation runs only in browsers that support
the media feature and that do not express a preference for
reduced motion.

Example 7-29. Alternative solution that removes animation
if the user expresses a preference

 ul {

 transition: transform 0.6s cubic-bezier(.68,

 visibility 0.3s linear;

 }

 @media (prefers-reduced-motion: reduce) {

 ul {

 transition: opacity 0.3s ease-in-out, visib

 }

 }

If you have to make adjustments in JavaScript, you can use the
matchMedia() method to determine whether the media query
matches, as shown in Example 7-30.

Example 7-30. Querying the media feature in JavaScript

const mediaQuery = window.matchMedia("(prefers-re

if (mediaQuery.matches) {

 console.log("add animation");

}

mediaQuery.addEventListener("change", () => {

 if (mediaQuery.matches) {

 console.log("add animation");

 } else {

 console.log("reduce animation");

 }

});

Query prefers-reduced-motion in JavaScript.

Check if the query matches.

Listen for changes.

Discussion

One advantage of using visibility: hidden is that it hides
content visually and in terms of interactivity. Another

https://calibre-pdf-anchor.a/#a1697

advantage is that you can animate the hidden element in CSS. It
has only two states, hidden and visible , but you can
combine it with another property like transform or opacity
to create a slide- or fade-in effect. That wouldn’t work with
display: none because the display property is not
animatable.

No motion versus less motion

As the name of the feature suggests, prefers-reduced-
motion enables you to reduce motion. Some solutions online
suggest turning off all animations and transitions completely
(see Example 7-31), but reducing doesn’t mean removing.

Example 7-31. Setting the animation and transition property
to “none” on all elements

@media (prefers-reduced-motion: reduce) {

 *,

 *::before,

 *::after {

 animation: none !important;

 transition: none !important;

 }

}

https://oreil.ly/GBMmQ

Not all animations are the same. Motion on the screen isn’t
automatically bad, because it may help users, especially people
with cognitive disabilities, understand the relationship between
seemingly disparate objects, and it can improve decision
making. It can also reduce cognitive load by making the path of
a moving element visible, which has the benefit that users don’t
have to keep track of the movement themselves.

According to Val Head, an expert in animation on the web, the
physical size of a screen matters less than the size of the motion
relative to the space available on the screen. Animations that
move items on the page across a large amount of space are
more likely to be problematic. Subtle animations that don’t
involve a lot of movement, like transitions of opacity or color,
aren’t usually an issue. For users who prefer less motion, avoid
scrolljacking, parallax effects, elements that move at different
speed and position, large zooms, spinning effects, and
pronounced animations.

Testing reduced motion

There are at least two ways of testing reduced motion.

In browsers based on Chromium, such as Google Chrome,
Microsoft Edge, or Opera, you can emulate reduced motion in

https://oreil.ly/7-Ca9

the “Rendering” drawer in DevTools (see Figure 7-16).

Figure 7-16. Emulating reduced motion in Chrome’s DevTools

Instead of emulating reduced motion, you can also apply it to
the entire operating system.

macOS 13

System Settings → Accessibility → Display →
Reduce Motion

iOS 16.1

Settings → Accessibility → Motion → Reduce motion

Windows 11

Settings → Accessibility → Visual Effects →
Animation Effects

Android 10

Settings → Accessibility Features → Accessibility
→ Advanced Visual Effects

Android 13

Settings → Accessibility → Color and Motion →
Remove animations

7.7 Add Submenus

Problem

Showing all items in large, nested menus at all times can be
overwhelming for users, take up too much space, and add noise
to a design.

Solution

Putting items in submenus and hiding them by default helps
with that. If you’re dealing with pages that contain subordinate
pages and you want to display them in the navigation, you can
do that by nesting lists, as shown in Examples 7-32 and 7-33.

Solution 1: Link and button

Example 7-32. A list item with a nested list

<nav aria-label="Main">

 <ul class="nav-list">

 Home

 Products

 <ul class="nav-sublist">

 Electro

 Sports and O

 Toys

</nav>

To give users the ability to access these nested lists on demand,
you can hide them in CSS and add a button that toggles the
visibility.

Example 7-33. Adding a button between the link and the
nested list that toggles the visibility of the list

 Products

 <button

 type="button"

 aria-expanded="false"

 aria-labelledby="mainnav-2"

 aria-controls="mainnav-2-sub" class="mainnav

 >

 ⏷

 </button>

 <ul class="nav-sublist" id="mainnav-2-sub">

 Electronics

p

 Sports and Outdo

 Toys

The aria-expanded attribute tells assistive technology if
the element the button controls is expanded.

aria-labelledby creates a reference to the parent link
and uses its accessible name as the label.

aria-controls creates a reference to the sublist.

⏷ is the HTML entity for a downward pointing
triangle.

The nested list is hidden if the aria-expanded attribute of the
preceding button is set to false , as shown in Example 7-34.

Example 7-34. Hiding the list in CSS

https://calibre-pdf-anchor.a/#a1741

[aria-expanded="false"] + .nav-sublist {

 display: none;

}

You can see how the list is hidden by default in Figure 7-17.

Figure 7-17. The navigation showing a button next to the “Products” link

Clicking the button toggles the aria-expanded attribute, as
shown in Example 7-35 and Figure 7-18.

Example 7-35. Click event that toggles the value of the
aria-expanded attribute

const nav = document.querySelector("nav");

nav.addEventListener("click", (e) => {

 if (e.target.classList.contains("mainnav-toggle

 const isOpen = e.target.getAttribute("aria-ex

 e.target.setAttribute("aria-expanded", !isOpe

 }

});

});

Figure 7-18. The navigation with the nested list of links expanded below the
“Products” link

Solution 2: Button only

You might not want to have two interactive elements with
different purposes next to each other in the main navigation.
Users might not expect that clicking the text navigates to a new
page and that clicking only the button toggles the navigation.
On top of that, this solution adds an extra tab stop to each item.
An alternative solution is to put a button only in the first level
of the navigation and move the link into the submenu, as
shown in Example 7-36 and Figure 7-19.

Example 7-36. Instead of a link and button, this solution
uses a button only and moves the link into the list

<nav aria-label="Main">

 <ul class="nav-list">

 Home

 <button aria-expanded="false" aria-controls

 class="mainnav-toggle-sub">

 Products

 </button>

 <ul class="nav-sublist" id="mainnav-2-sub">

 All Products

 Electro

 Sports and O

 Toys

</nav>

Figure 7-19. The navigation with the nested list of links expanded below the
“Products” button

Discussion

Automatic activation

Both proposed solutions require the user to click a button to
open the related list. Generally, you want to give users control
and you want build components that are predictable, but you

also want to make the user’s experience as pleasant as possible.
It might be convenient for mouse users to show the submenus
automatically on hover. For keyboard and screen reader users,
on the other hand, it can be frustrating if submenus open
automatically. Just because they’re focusing a parent item
doesn’t mean that they also want to interact with the submenu.
It’s important to find a good balance between different ways of
interaction. A solution that works well for some users might not
be ideal for others.

Links versus buttons

I’m distinguishing between links and buttons and their
responsibilities. Links navigate to a new page and buttons
perform actions in JavaScript. This is important because it
matches the user’s expectations.

Especially with nested navigations, you often see solutions that
mix up both elements. This often makes it difficult or even
impossible for the user to interact with these elements at all.
Avoid any solution that turns links into buttons or misuses links
as buttons, as shown in Example 7-37.

Example 7-37. Bad practice: A broken hyperlink
semantically turned into a button

Products

You can read more about how to implement links in Chapter 3
and buttons in Chapter 4.

Animation

To animate opening and closing of submenus, follow the rules
described in Recipe 7.6:

Hide sublists properly from all users by combining
properties like opacity or transform with visibility:
hidden .
Design subtle animations or provide an alternative for users
who prefer reduced motion.

Testing with screen readers

If you test the first solution with screen readers and you try to
access the link and button, you get the results shown in Table 7-
2.

Table 7-2. Menu link and button announced in different screen readers

Screen
reader

Announcement

JAWS Products, link. (for the link) / Products, button,
collapsed. (for the button)

NVDA Products, link. / Products, button, collapsed.

VoiceOver
iOS

Products, link. / Products, button, collapsed.

VoiceOver
macOS

Link, Products, 2 of 4. / Products, collapsed,
button.

TalkBack Products, link, 2 of 4. / Collapsed, Products,
button.

7.8 Avoid Confusion with Menus

Problem

Many tutorials suggest that to make a navigation accessible, you
need ARIA. As illustrated in Recipes 7.4, 7.5, and 7.7, ARIA
attributes can be useful, but sometimes they do more harm
than good. Using the wrong ARIA attributes can confuse users,

distort their expectations, or make the whole navigation
unusable for some.

Solution

Keep it simple and use ARIA only where it’s needed.
Navigations are a collection of links. If you have a lot of links,
you might hide some of them and show them conditionally. To
make these actions accessible, use attributes like aria-
expanded , aria-labelledby , or aria-controls .

In Example 7-38, you use ARIA in only two places.

Example 7-38. Main navigation with four list items; one of
them has a nested list that can be toggled by pressing a
button

<nav aria-label="Main">

 <ul class="nav-list">

 Home

 Products

 <button aria-expanded="false"

p

 aria-labelledby="mainnav-2"

 aria-controls="mainnav-2-sub"

 class="mainnav-toggle-sub">

 ⏷

 </button>

 <ul class="nav-sublist" id="mainnav-2-sub">

 Electro

 Sports and O

 Toys

 Team

 Contact

</nav>

aria-label gives the navigation landmark a unique
label.

Attributes necessary to make the custom toggle button
accessible.

Many sites use menu roles to turn navigations into menus. This
is an anti-pattern.

Discussion

Navigations often get confused with menus. They’re not the
same and they serve different needs. According to the ARIA 1.1
specifications, navigations are collections of links for navigating
related documents, and menus are collections of actions to
perform in a document. More specifically, the menu bar is the
presentation of a menu, usually always visible, laid out
horizontally, and similar to menu bars found in operating
systems like Windows or Mac. Authors should ensure that menu
bar interaction is similar to the interaction in a desktop UI.

The specification is very clear: you should use navigation for
navigating the document or related documents, and menu only
for a list of actions or functions similar to menus in desktop
applications. Most of the time, it’s easy to make this distinction,

https://oreil.ly/GzoS8
https://oreil.ly/RiFll
https://oreil.ly/ejnxG

but sometimes different interactive elements in navigations
have different tasks. You might have a navigation that also
includes a button that performs an action, like opening a modal
window, or a menu where one action is navigating to another
page, like a help page. When that’s the case, it’s important not to
mash up ARIA roles. Instead, identify the component’s main
purpose and pick the markup and roles accordingly.

The <nav> element has an implicit ARIA role of navigation
that suffices to communicate that the element is a navigation,
but often sites also use menu , menubar , and menuitem , as
shown in Example 7-39. People sometimes use these terms
interchangeably, thinking that combining them could improve
the experience for screen reader users, but misusing these roles
can have serious implications.

Example 7-39. Bad practice: Example of a navigation that
uses menu roles

<nav aria-label="Main">

 <ul class="nav-list" role="menubar">

 <li role="presentation">

 Home

 …

</nav>

Screen readers that support these roles will announce the menu
as such. Savvy users expect certain keyboard shortcuts to work
with menus and menu bars. Based on the APG, this includes
using:

Enter and Space to select menu items
Arrow keys in all directions to navigate between items
The Home and End keys to move focus to the first or last
item, respectively
a-z to move focus to the next menu item with a label that
starts with the typed character
Esc to close the menu

Even if you implement these keyboard commands correctly,
users might not know that they can use them. These shortcuts
are not exposed, and users might not expect that certain
commands now perform different actions.

Entering a menu might instruct the screen reader to switch
modes. In JAWS, for example, you have browse mode and forms
mode. Browse mode allows you to use shortcuts like Tab to
jump from one interactive element to another, or to jump from
heading to heading by pressing H . In forms mode, these

https://oreil.ly/bxGTI

shortcuts don’t work anymore, but pressing these keys
performs their default action. This can be confusing if it’s not
expected.

There’s a lot to consider when you create menus and menu
bars. Starting with whether it’s appropriate to use them in the
first place. When you’re building a typical website, a SPA, or a
web app, the <nav> element with a list and links is all you
need. The underlying stack doesn’t matter. Unless you’re
building something very close to a desktop application, avoid
menu roles in navigations.

https://oreil.ly/v45Nl

Chapter 8. Toggling Content Visibility

Limited space and the client’s desire to fit as much information
as possible onto a page pushes designers to their limits because
there’s only so much you can show at a time. They often reach
for conditional content hiding to solve that problem and use
design patterns like tabs, accordions, fly-out navigations, or
disclosure widgets. While it’s usually just better to show
content, sometimes these solutions are unavoidable. When
implementing them in HTML, CSS, and JavaScript, you must use
the proper hiding technique and communicate the state
accordingly.

8.1 Hide Content

Problem

CSS offers many different solutions for hiding content. If you
don’t pick the proper technique for the correct use case, it can
affect users negatively depending on how they access your site.

It can be frustrating and confusing for keyboard and screen
reader users if they have to navigate content they don’t want
to, have to, or should be able to access.

Tabbing through dozens of “invisible” interactive elements
can be cumbersome.
Screen readers might be unable to retrieve semantic
information from an incorrectly hidden element.

Solution

You have to pick the correct hiding technique for the right use
case.

Visually hidden

Suppose you want to hide content visually but keep it accessible
to screen reader and keyboard users. In that case, you must use
a combination of CSS properties (see Example 8-1) because it’s
impossible to do it natively in CSS.

Example 8-1. A custom “visually hidden” class

.visually-hidden:not(:focus) {

 clip-path: inset(50%);

 height: 1px;

 overflow: hidden;

 position: absolute;

 white-space: nowrap;

 width: 1px;

}

Visually and semantically hidden

If you want to show content under only certain conditions (such
as when the user clicks a button), you must hide it from
everyone, as shown in Examples 8-2, 8-3, and 8-4.

Example 8-2. Invisible, not machine-readable, and doesn’t
take up any space in the document

.more-content {

 display: none;

}

Example 8-3. Same functionality as display: none , but in
HTML

<div class="more-content" hidden></div>

Example 8-4. Invisible, not machine-readable, but takes up
space in the document

.more-content {

 visibility: hidden;

}

Visible but semantically hidden

When you have decorative content, usually images and icons,
you want to display them but also make them machine-
unreadable, as shown in Examples 8-5 and 8-6.

Example 8-5. An empty alt attribute removes an element
from the accessibility tree

Example 8-6. Hiding an element from the accessibility tree
in HTML by setting the aria-hidden attribute to true

<button>

 <svg aria-hidden="true">

 <use href="sprite.svg#send">

 </svg>

 Send

</button>

Discussion

The whole purpose of hiding content is to expose users to only
certain contents or parts of the UI if or when they’re relevant to

https://oreil.ly/KoLde

them. The term hiding has several different meanings in this
context.

You can hide content visually when you want to exclude
elements from the visual representation of the page but keep it
accessible to keyboard or screen reader users. Good examples
of that are skip links that become visible (see Recipe 6.6) or live
regions (see Recipe 3.7) that have no special meaning for
keyboard users. There’s no standard property in CSS or
attribute in HTML for that; you have to use a combination of
properties, as shown in Example 8-1. You can learn what each
of these properties does in James Edwards’s “The anatomy of
visually-hidden”.

This solution is not suitable for hiding content from everyone.

You can hide content from everyone under certain conditions.
That can be useful if the content is not primarily important (see
Recipe 8.2) or if you don’t have enough space and need to hide
parts of the UI conditionally (see Recipe 7.5). The solutions in
Examples 8-2, 8-3, and 8-4 work well in this case.

Purely decorative or redundant content can be hidden
semantically. This usually applies to decorative images or

https://oreil.ly/WdyL2
https://oreil.ly/MW2J6

illustrations (see Example 8-5) and icons used to support text, as
shown in Example 8-6.

Consider hiding information for only some users as a last resort
because a lot can go wrong. You may use an improper hiding
technique and make content inaccessible to more people than
intended. You might use the right approach, but your users
could still miss the information because they don’t notice it.
Also, our decisions are sometimes based on wrong assumptions.
For example, not all screen reader users are blind. Before you
hide something, try writing and structuring your content
differently or tweaking the design.

Hiding in CSS and HTML

Besides the solutions in this recipe, other ways of hiding
content in HTML and CSS exist. Depending on what you’re
trying to achieve, not all of them are useful. For example, the
solution in Example 8-7 hides content visually. However, it still
takes up space on the page, and content within the element
might be accessible via keyboard and screen readers.

Example 8-7. Hiding an element only visually

div {

 opacity: 0;

https://oreil.ly/MW2J6
https://oreil.ly/MOR-c

}

Kitty Giraudel provides an overview of different hiding
solutions and how they affect the user experience in their blog
post “Hiding content responsibly”. See Table 8-1.

Table 8-1. An overview of different hiding solutions and their outcome (Source:
Kitty Giraudel)

Method Visible Available

.sr-only class No Yes

aria-hidden="true” Yes No

display: none No No

visibility: hidden No, but space remains No

opacity: 0 No, but space remains Depends

transform: scale(0) No, but space remains Yes

Incorrect hiding

Whichever hiding strategy you use, there are specific rules you
must follow.

https://oreil.ly/QNkuR
https://oreil.ly/tfKu6

Only hide content when you can’t fix the problem by
adapting the content or design.
Don’t put aria-hidden="true" or
role="presentation" on focusable interactive elements
(see “Fourth Rule of ARIA Use”). Screen reader users might be
unable to access a button removed from the accessibility tree
using the virtual cursor (see Example 8-8). However, it is still
available to screen reader users using the keyboard.
When you hide content visually using opacity , height , or
transform , combine them with a property that also hides
the element semantically, such as visibility: hidden;
Don’t hide elements semantically that are referenced
elsewhere in the document (see Example 8-9).

Example 8-8. Bad practice: An interactive element removed
from the accessibility tree only

<button aria-hidden="true">

 Share

</button>

Example 8-9. Bad practice: A referenced element removed
from the accessibility tree

<input type="checkbox" style="display: none" id=

<label for="toc">I accept the terms of service</l

https://oreil.ly/2spYJ

Incorrectly hidden content is a common accessibility issue that
you can avoid by first figuring out what you’re trying to achieve
and how it affects your users and then deciding how to get the
desired result.

8.2 Create a Native Disclosure Widget

Problem

When you have a lot of content on a page, especially content
that’s relevant to only some users or only in specific situations,
your pages can become cluttered. That can negatively influence
orientation and navigation for all users.

Solution

You can hide irrelevant content by default and allow users to
toggle its visibility as needed, as shown in Example 8-10.

Example 8-10. Native disclosure widget in HTML, content
hidden by default

<details>

 <summary>Show details</summary>

 <p>Detailed content goes here…</p>

</details>

You can also show the content by default and allow users to
close it, as shown in Example 8-11.

Example 8-11. Native disclosure widget in HTML, content
visible by default

<details open>

 <summary>Show details</summary>

 <p>Detailed content goes here…</p>

</details>

You can change the styling of the marker, as shown in
Example 8-12. Be aware that some screen reader/browser
combinations announce the marker.

Example 8-12. Styling the toggle button in CSS

summary::marker {

 content: "+ ";

https://oreil.ly/w1aQN

}

details[open] summary::marker {

 content: "− ";

}

You can use the toggle event in JavaScript to keep track of the
element’s state, if you need to, as shown in Example 8-13.

Example 8-13. Listening to the toggle event in JavaScript

const details = document.querySelector("details"

details.addEventListener("toggle", (e) => {

 console.log(details.open);

});

Discussion

HTML offers a native disclosure widget from which users can
obtain additional information or controls (see Figure 8-1).
<details> represents that widget. The nested <summary>
element provides the legend for the widget as well as the
accessible name for the trigger.

https://oreil.ly/zo63p

Figure 8-1. Screenshot of the details element: closed and open

Pros

A native disclosure widget has many advantages:

It works without JavaScript.
Most browsers support it.
The “find in page” feature in Chromium-based browsers
allows searching the hidden content.
You can open it by default using the open attribute (see
Example 8-11).
You can style it using CSS (see Example 8-12).
You can keep track of its state using the toggle event and
the open property (see Example 8-13).

Cons

The details element is well supported, but you should be
aware of its inconsistencies across different browsers and
screen readers before you use it. Accessing the element with a
screen reader, you will get significantly different results

https://caniuse.com/details

depending on the browser and software you’re using. In
addition to Scott O’Hara’s research in “The details and summary
elements, again”, I did more testing and summarized it on my
website in “details/summary inconsistencies”.

A summary of my tests:

Announcements go from little information (“Show Details” in
VoiceOver with Safari 16 on iOS) to too much information
(“Right pointing triangle, Show details, collapsed, summary,
group” in Firefox on macOS).
Removing or changing the triangle doesn’t seem to affect any
screen reader/browser pairing, except Firefox, with all tested
screen readers.
VoiceOver on macOS with Chrome/Edge and Safari and
TalkBack on Android with Chrome provide the most
consistent experience across browsers.
VoiceOver on iOS with Safari 16 is also very consistent but in
a bad way. It doesn’t announce any role or state.
Details only expands in Chromium-based browsers when you
search with Cmd/Ctrl + F (find-in-page).
To remove the triangle in Safari, you must set ::-webkit-
details-marker to display: none . ::marker or list-
style: none; don’t work.

https://oreil.ly/UzVT_
https://oreil.ly/QNaxz

When not to use it

In Chromium-based browsers the “find in page” feature can
find content within collapsed details elements. It will open the
element and highlight the matching string. That’s not the case in
Firefox and Safari, as illustrated in Figure 8-2.

Figure 8-2. Searching for the term “cook”: Chrome on the left and Firefox on the right

This feature is an important detail you should consider when
deciding whether the details element is the right solution for
a given problem. Adrian Roselli states in “Details / Summary
Are Not [insert control here]” that this browser behavior can be
especially problematic for command-centric components like
navigations, menus, or dialogs because you probably don’t

https://oreil.ly/f4PL1

want these elements to open randomly when the user performs
a search.

Depending on your needs, a custom disclosure widget might be
an option, especially when you’re aiming for consistent
behavior across browsers, you want to prevent the “find in
page” behavior, or you need more features than the default
widget offers. You can learn how to build one accessibly in
Recipe 8.3.

Using the details element has a lot of benefits, but there are
also many inconsistencies between platforms, which may or
may not be an issue. Depending on the experience you want to
provide users and how acceptable the discrepancies are, you
can rely on either the native element or a custom solution.

8.3 Create a Custom Disclosure
Widget

Problem

As described in Recipe 8.2, the quality and quantity of
information a screen reader user gets when interacting with a
native disclosure widget depends on the software they’re using.

The details element is not an option if you want control over
the information screen reader users get or if you need to ensure
a consistent user experience across platforms.

Solution

Instead of relying on the native element, you can build a
custom disclosure widget, as shown in Examples 8-14, 8-15, 8-
16, and 8-17.

Example 8-14. A basic disclosure needs a button and a
container for the content

<div class="disclosure">

 <button

 aria-expanded="false"

 aria-controls="content"

 >

 Show details

 </button>

 <div class="disclosure-content" id="content">

 <p>Detailed content goes here…</p>

 </div>

</div>

The aria-expanded attribute tells assistive technology if
the element the button controls is expanded.

aria-controls creates a reference to the element it
controls.

You can use the information about the widget’s state provided
by the aria-expanded attribute as a condition for styling.

Example 8-15. Hiding the content via CSS based on the state
of the widget

[aria-expanded="false"] + .disclosure-content {

 display: none;

}

You can use CSS to make the transition smoother.

Example 8-16. Alternative: Animating the height via CSS
based on the state of the widget

.disclosure {

 --_height: 0fr;

 display: grid;

 justify-content: start;

j y ;

 grid-template-rows: 1.4rem var(--_height);

}

@media (prefers-reduced-motion: no-preference) {

 .disclosure {

 transition: visibility 0.3s, grid-template-ro

 }

}

.disclosure > [aria-expanded] {

 width: fit-content;

}

.disclosure > [aria-expanded="false"] + .disclosu

 visibility: hidden;

}

.disclosure:has([aria-expanded="true"]) {

 --_height: 1fr;

}

.disclosure .disclosure-content {

 overflow: hidden;

}

It’s impossible to animate a zero height to an auto height
in CSS, but it’s possible to animate grid rows and columns.

You’re using Grid here solely to animate the widget.

Define two rows: one for the button and one for the
content. The height of the content row is 0 by default.

Only animate when the user has no preference for
reduced motion.

If the content is expanded, change the height to one
fraction (1fr).

To open and close the custom widget, you have to toggle the
value of the aria-expanded attribute on click, as shown in
Example 8-17.

Example 8-17. Toggle the state of the widget on click

const button = document.querySelector("button");

button.addEventListener("click", (e) => {

 button.setAttribute(

 "aria-expanded",

 button.getAttribute("aria-expanded") === "fal

);

});

https://calibre-pdf-anchor.a/#a1888

Discussion

The solution to this problem is short and straightforward, but
its tiny details are essential.

The button should come before the content in the DOM because
you want to ensure it’s always the first focusable element in
your widget.

It depends on how you’re using the custom disclosure element,
but most of the time, you want to avoid moving focus and leave
it to the user to decide what they want to do next.

You have to hide the content correctly for everyone (see Recipe
8.1). You can use display: none or, if you want to animate
the toggling action, visibility: hidden .

The target size of the button must be large enough (see “Target
size” in Recipe 3.2), and you can use an icon to illustrate its state
visually, as shown in Examples 8-18 and 8-19).

Example 8-18. Button with a semantically hidden icon

<button aria-expanded="false" aria-controls="cont

 Show details

 <svg aria-hidden="true">

 <use href="sprite.svg#chevron-down">

 </svg>

</button>

Example 8-19. The icon rotates 180deg when the widget is
expanded

svg {

 transition: transform 0.3s;

}

[aria-expanded="true"] > svg {

 transform: rotate(180deg);

}

This pattern is simple but versatile. You can use it to toggle text,
the site navigation on narrow viewports (see Recipe 7.5), to
show and hide submenus in large navigations (see Recipe 7.7),
or toggle other interactive content like tooltips or modals.

You can find another interesting implementation of a custom
disclosure widget in a web component called details-utils
by Zach Leatherman. He takes the native details element as
a baseline and enhances it progressively by wrapping it in a
custom element, as shown in Example 8-20.

https://oreil.ly/puO_O

Example 8-20. The native details element wrapped in a
custom element with custom attributes

<details-utils force-open="(min-width: 48em)" fo

 <details open>…</details>

</details-utils>

8.4 Create Groups of Disclosure
Widgets

Problem

If you have a lot of structured content on a single page, the
amount of information can increase the cognitive load on users.
That can overwhelm them, making it hard to focus and scan
content.

Solution

You can hide structured groups of content in disclosure widgets
and let the user decide which information they want to see, as
shown in Examples 8-21, 8-22, 8-23, and 8-24.

Example 8-21. Headings and related content grouped in a
section

<section aria-labelledby="faq_heading" class="faq

 <h2 id="faq_heading">

 Frequently asked questions

 </h2>

 <h3>

 First question

 </h3>

 <div class="faq-content">

 <p>

 First answer…

 </p>

 </div>

 <h3>

 Second question

 </h3>

 <div class="faq-content">

 <p>

 Second answer…

 </p>

 </div>

</section>

Section labeled by its heading

Group of question and answer

Additional groups

Example 8-22. Alternative: Each content wrapper can be a
landmark

 <h3 id="faq_q1">

 First question

 </h3>

 <div class="faq-content" aria-labelledby="faq_q

 <p>

 First answer…

 </p>

 </div>

Example 8-23. Turning a simple group of headings and
content into an accordion (a group of disclosure widgets) in
JavaScript

const faq = document.querySelector(".faq");

const headings = faq.querySelectorAll("h3");

https://calibre-pdf-anchor.a/#a1908

for (let i = 0; i < headings.length; i++) {

 const button = document.createElement("button"

 const heading = headings[i];

 const content = heading.nextElementSibling;

 const id = `faq_${i}`;

 button.setAttribute("aria-expanded", false);

 button.setAttribute("aria-controls", id);

 button.textContent = heading.textContent;

 heading.innerHTML = "";

 heading.append(button);

 content.setAttribute("id", id);

}

faq.addEventListener("click", (e) => {

 const button = e.target.closest("[aria-expanded

 const isOpen = button.getAttribute("aria-expand

 if (button) {

 button.setAttribute("aria-expanded", isOpen)

 }

});

Iterate over all headings in the group.

Create a button for each heading.

https://calibre-pdf-anchor.a/#a1917

Define a unique ID.

Set ARIA attributes (see Recipe 8.3 for details).

Replace the content of the headings with the button.

Connect the button to the content.

Add a click event on the whole component.

Toggle the aria-expanded attribute.

Just like in Recipe 8.3, the [aria-expanded] attribute selector
controls whether the respective content is visible.

Example 8-24. Resetting button styles and hiding content

.faq [aria-expanded] {

 all: unset;

}

.faq [aria-expanded]:focus-visible {

 outline: 0.25em solid;

}

h3:has([aria-expanded="false"]) + .faq-content {

 display: none;

}

https://calibre-pdf-anchor.a/#a1923

}

Remove default button styles.

Show an outline around the button for keyboard users.

Hide content that follows a heading that contains a
nonexpanded button.

Discussion

An accordion can be an excellent tool for removing
nonessential information in an interface, enabling the user to
focus on one thing at a time, as illustrated in Figure 8-3.

https://calibre-pdf-anchor.a/#a1935

Figure 8-3. Structured and clean FAQ page on bike-components.de

Accordions form related entities visually, and they should do
that semantically and functionally, too. That is also the most
significant difference between simple disclosure widgets and
accordions. Each segment doesn’t stand for itself, but it’s
connected to its siblings within a structured group of segments.

You express this semantic connection using HTML and
JavaScript in different ways: the section element and its

heading group them topically, and the consistent structure
(heading followed by content) groups them semantically (see
Example 8-21). You can allow users to expand all segments or
show only one at a time, closing the expanded element
automatically, which groups them functionally.

Progressive enhancement

An accordion is a perfect example of a component you can
progressively enhance. You start with a labeled section with
several headings followed by related content that works
without JavaScript, as shown in Example 8-21. You add
interactive functionality by wrapping the content within each
heading in a button. You don’t replace the heading element with
the button because the headings are an additional way to
navigate the accordion using a screen reader. The button is
connected to the content element via aria-controls , and it
communicates whether the respective section is open using the
aria-expanded attribute, which you toggle on click (see
Example 8-23).

Navigation

You’ve learned about the advantages of using a button for click
events in Chapter 4, and the accordion illustrates them well. All

you have to do is attach a click event to your component, and
you get keyboard accessibility for free. As a keyboard user, you
can navigate the accordion using the Tab and Shift + Tab
key. Optionally, you can add keyboard support by listening for
the arrow up and down keys, as described in the ARIA
Authoring Practices Guide.

Screen reader users also benefit from these shortcuts. In
addition to keyboard commands, they can navigate to the
component by using the “navigation via landmark” feature in
their screen reader (more about that in Recipe 1.5). Each
content wrapper can be a landmark, too, enabling users to
jump to the open accordion elements (see Example 8-22 and
Figure 8-4). Be cautious with that because navigation via
landmark can become tedious if there are too many landmarks.

https://oreil.ly/picU4

Figure 8-4. Landmark navigation in VoiceOver showing the FAQ region and the
expanded question and answer

The implementation in this accordion is pretty basic, but
regarding accessibility, it checks the most important boxes. You
can learn more about user experience considerations related to
accordions in Vitaly Friedman’s “Designing the Perfect
Accordion”.

See Also

“Inclusively Hidden” by Scott O’Hara

https://oreil.ly/EVKiZ
https://oreil.ly/W7V0c

Chapter 9. Constructing Forms

Forms are an integral part of the web. Besides links, they’re the
most important tool for providing interactivity to a website.
They allow a user to sign up for newsletters, log into their bank
account, book a hotel room, or post an idea on social media.

Form design is complex, and with complexity comes the
potential for mistakes and bad decisions. I could write an entire
book about the do’s and don’ts of form design. This chapter only
scratches the surface focusing on the most common and
significant problems users face.

9.1 Create Forms

Problem

If forms are not designed well, users may have a hard time
performing critical tasks like filling out an application or
contact form or ordering from an online store. Bad choices in
form design affect all users, especially less savvy users and
those with cognitive disabilities, motor disabilities, and low
vision.

Solution

When you create a form, follow certain basic principles.

Use native form elements, if possible.
Use the proper form element for the intended purpose.
Keep forms as short and straightforward as possible.
Label and describe all fields.
Inform users about changes to the form.

Figure 9-1 and Example 9-1 illustrate using different elements
and attributes to create a simple but feature-rich form in HTML.

Figure 9-1. A simple sign-up form using labeled form fields and fieldsets

Example 9-1. A simple sign-up form using labeled form
fields and fieldsets

<form>

 <div>

 <label for="username">Username</label>

 <input type="text" id="username" autocomplete

 </div>

 <div>

 <label for="email">E-Mail</label>

 <input type="email" id="email" autocomplete=

 </div>

 <fieldset>

 <legend>T-Shirt size</legend>

 <div>

 <input type="radio" id="s" name="shirt">

 <label for="s">Small</label>

 </div>

 <div>

 <input type="radio" id="m" name="shirt">

 <label for="m">Medium</label>

 </div>

 <div>

 <input type="radio" id="l" name="shirt">

 <label for="l">Large</label>

 </div>

 </fieldset>

 <button>

 Sign up

 </button>

</form>

Discussion

It’s usually wrong to make assumptions about your users, but
one assumption I’m willing to make is that users are generally
not excited about filling out forms. It doesn’t matter whether it’s
offline or online: filling out forms isn’t fun. So, when you create
a form, make the experience as pleasant as possible by avoiding
complexity and providing clarity.

To achieve that, follow basic usability and accessibility
principles. The following sections outline some of the most
important.

Use well-established patterns

There’s nothing wrong with trying to find creative solutions for
problems in web design, but originality isn’t always the answer.
One of the Inclusive Design Principles (defined by Heydon
Pickering, Léonie Watson, Henny Swan, and Ian Pouncey) is “be
consistent:” use familiar conventions and applying them
consistently. Instead of developing new form-design patterns,
stick to what already exists. Provide users with familiar
patterns instead of forcing them to learn new ones. As Frank
Chimero writes:

Many sites will share design solutions, because we’re using
the same materials. The consistencies establish best
practices; they are proof of design patterns that play off of
the needs of a common medium, and not evidence of a visual
monoculture.

Unfamiliar patterns increase the cognitive load on users. This is
especially problematic with forms because users are already
performing tasks that take a lot of mental effort. Pick a simple
solution and a pattern users likely already know from other
websites.

For example, instead of using a toggle switch, use a checkbox. In
his article, Joel Holmberg explains in detail why toggle switches
are problematic. One reason is that their state isn’t always

https://oreil.ly/2jHrJ
https://oreil.ly/hxyYe
https://oreil.ly/PZVV1

straightforward. What does the toggle in Figure 9-2
communicate? Do the green color and the label ON indicate a
status or an action?

Figure 9-2. A switch toggle that communicates either a state or an action

Instead of making text input fields look special, use the
rectangular shape users are familiar with. In his book Form
Design Patterns, Adam Silver explains that a text box should
look like a text box because an empty box signifies “fill me in.”
Removing borders or using only a bottom border removes the
signifiers (design aspects that suggest how to use the object)
that communicate the perceived affordance. The input fields in
Figure 9-3 are barely recognizable.

https://oreil.ly/DvdYh

Figure 9-3. A template for a newsletter sign-up form: instead of a rectangular shape,
they use a light gray bottom border with light gray placeholder text

Keep it short

The gov.uk design manual for structuring forms advises you to
create a question protocol, a list of all the information you need
from your users, before you design a form. It forces you to
question why you’re asking users for each item of information
and gives you a way of challenging unnecessary questions.
They suggest you add a question to your form only if you know:

That you need the information to deliver the service
Why you need the information
What you’ll do with the information
Which users need to give you the information
How you’ll check that the information is accurate
How to keep the information up-to-date and secure

A great way of filtering out unnecessary questions is to add
questions only if they have a purpose and you can’t derive the
answers some other way or ask them later. That may require
more time from you initially, but it reduces effort for your
users, which results in increased completion rates. Kathryn
Whitenton emphasizes the business case for keeping forms
short in “Website Forms Usability: Top 10 Recommendations”,
stating that every time you cut a field or question from a form,
you increase the form’s conversion rate.

https://oreil.ly/cYAOZ
https://oreil.ly/VTQyq

Use the right field for a given purpose

Once you’ve narrowed down the questions you need to ask,
decide how you want to ask them. Use a textarea for long
answers and the input field for short ones. Set the type of the
input field to text , email , tel , or url , depending on the
question. On desktop, it may not make a difference, but on
mobile the type of the input field affects the keyboard layout,
making typing easier. In Figure 9-4, you can see the difference
between keyboard layouts for text, email, telephone, and URL
input on an Android device.

Use radio buttons for single-choice questions, as shown in
Example 9-1. You can also use the <select> element, but one
of its disadvantages is that it hides choices by default. On the
other hand, it can be helpful if you know that users can benefit
from accessing options by typing. For multiple-choice, use
checkboxes.

Figure 9-4. Keyboard layouts for different input types (top: text, email; bottom: tel,
url)

Use native form elements

There are some exceptions, but generally, most native HTML
elements are accessible by default. That’s also true for most
form elements. They come with a lot of features and shortcuts
out of the box. Trying to re-create those without missing
important details is hard. You can make a div look like a

https://oreil.ly/b1fBK

button with a few lines of CSS, but to make it behave like a
native button, it needs:

A button role
To be focusable
Focus styles
A keydown event listening for the Enter key
A keyup event listening for the Space key

And that’s just a simple button. The list of features for a
select element is much longer. If possible, try to avoid custom
solutions and use native HTML elements.

Inform users and give them control

Provide users with the information they need to fill out your
form, and don’t force them to figure out what will happen if
they perform certain actions. For instance:

If they need specific information to complete the form that
they may not have at hand, tell them to prepare it
beforehand.
In a multistep form, tell them what will happen when they
proceed to the next step. Allow them to jump back and forth
between steps and make changes, and don’t disable buttons
(see Recipe 4.5) or other form elements.

Describe fields, especially if they cause a change of context.
Inform users what will change and how.
Allow users to correct mistakes.
Summarize the entered data before you submit it.

There’s much more advice to give, but again, web forms are an
extensive topic. The following recipes focus on practical
implementations and include some of the suggestions in this
recipe.

9.2 Identify Form Elements

Problem

Form elements need visual labels, or at least accessible names.
If you don’t provide this essential feature, screen reader users
can’t identify the purpose of a field or will have a hard time
doing it, depending on the type and size of the form.

If you provide a label, it’s crucial to make it clearly visible and
place it close to its corresponding field. If you don’t,
understanding its purpose can be troublesome, especially for
people with cognitive disabilities or low vision.

Solution

Provide a (visible) label for form controls. In most cases, it’s best
to provide an accessible name for form fields and also show the
label, as shown in Examples 9-2 and 9-3.

Example 9-2. Labeling an input field using the for and id
attributes

<label for="username">Username</label>

<input type="text" id="username" autocomplete="us

Example 9-3. Labeling an input field by nesting it inside a
label element

<label>

 Username

 <input type="text" autocomplete="username">

</label>

If your elements don’t have a visible label, you can create a
reference to an existing element, as shown in Examples 9-4 and
9-5.

Example 9-4. A search field with no visual label, labled by a
button

<header>

 <form>

 <input type="text" aria-labelledby="btn_searc

 <button id="btn_search">Search</button>

 </form>

</header>

Example 9-5. Labeling multiple elements

<table>

 <caption>Players</caption>

 <thead>

 <tr>

 <th id="username">Username</th>

 <th id="name">Name</th>

 <th id="level">Level</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td><input type="text" aria-labelledby="use

 <td><input type="text" aria-labelledby="nam

 <td><input type="text" aria-labelledby="lev

 </tr>

 <tr>

 <td><input type="text" aria-labelledby="use

 <td><input type="text" aria-labelledby="nam

 <td><input type="text" aria-labelledby="lev

 </tr>

 </tbody>

</table>

Discussion

According to the WebAIM Million 2024 report, 48.6% of tested
websites contained form elements with missing labels. That
number is alarmingly high, considering how severe the impact
is on users. It’s awful because the test doesn’t just include
elements with no visual label, but elements with no accessible
name at all. For screen reader users, it’s impossible to identify a
form element simply by accessing it because all they get is
something like “edit, blank.”

Inaccessible Gallery tries to visualize that and the other most
common errors in the WebAIM Million report. In Figure 9-5,
you can see how the experience “looks” for a screen reader user
when there’s no accessible name or label. It’s impossible to
guess which information you must enter to complete the form.

https://oreil.ly/msfj8
https://oreil.ly/gEsy6

Figure 9-5. A visualization of inaccessible input fields (source: Inaccessible Gallery)

Labeling

The best thing you can do for all users is to label all form
elements. Your label should give a clear and concise description
of the purpose of the field and establish a clear visual and
programmatic connection. In Example 9-2, you can see that the
label comes directly before the field in the DOM, and the label is
concise and descriptive. The two elements are connected
through the for and id attributes. Instead of using explicit
labeling, you can also use implicit labeling, as shown in
Example 9-3. The biggest downside of that technique is that
some voice-control software doesn’t compute the accessible
name correctly. I recommend using explicit labeling, if possible.

https://oreil.ly/PscNZ

Labels should always be visible because you don’t want your
users to have to guess what they should enter. There are
occasional exceptions, though. If the purpose of a form field is
clear from context, you can omit it. The position, styling, and
label or styling of the form control sometimes provides enough
information for users to understand the purpose. Example 9-4
shows a search input field inside a header. It has no visual label,
but the button provides an accessible name you can reuse with
aria-labelledby . Usually, that’s sufficient because users
understand the purpose of the single input field placed in a
search region.

Another exception is form controls inside a table, as shown in
Figure 9-6. The input fields in the table shown in Example 9-5
are visually labeled by their corresponding table header. To
establish a semantic connection, you also use the aria-
labelledby attribute on each input field with a reference to
the column header.

Figure 9-6. A table with input fields in each cell

Label position

According to eye-tracking tests conducted by Matteo Penzo,
placing labels above form controls, as illustrated in Figure 9-7,
works best in most cases because it’s the best way of
maintaining a close and distinct visual relationship. Left-
aligned labels placed to the left (in left-to-right languages)
impose a heavy cognitive workload on users, according to
Penzo. The WAI emphasizes those recommendations by stating
that placing labels above fields reduces horizontal scrolling for
people with low vision who zoom into interfaces.

Figure 9-7. A label placed above the input field

That doesn’t apply to radio buttons and checkboxes, where
horizontal placement is better.

Placeholders and float patterns

https://oreil.ly/Gjr_0
https://oreil.ly/--hzu

Designers and developers like to use the placeholder
attribute instead of labels (see Figure 9-8) because its value is
placed inside each field, which saves space. However, if you
don’t use a label , aria-label , or other ways of labeling an
element, browsers fall back to the placeholder attribute.

Figure 9-8. Bad practice: the placeholder text serves as the label of the input field

From a semantic perspective, this is a safe approach, but
according to Adam Silver in Form Design Patterns, there are
good reasons to avoid that pattern:

The placeholder text disappears when users type, which
increases cognitive load because users have to remember
what they’re supposed to put in the field or even how to fill it.
The browser’s autofill feature may prepopulate fields,
meaning users can confirm only that the entered data is
correct by removing the text and entering it again.
Placeholder text is light gray by default, which usually
doesn’t provide enough contrast against the background for
users with low vision.
Long placeholder text may get cut off.

Users often mistake placeholder text for a value. Tests by
Nielsen/Norman confirm that “people with cognitive
disabilities tend to have issues understanding placeholder
text because they think it is pre-populated text and will try to
submit the form without entering their specific information.”

A work-around for some of the issues is the float label pattern
(see Figure 9-9), initially designed by Matt Smith, where the
placeholder stays in the field when users start typing but gets
smaller and moves to the top left corner. It’s arguably better
than using placeholders alone, but there are still issues: they
need space to move into, and small text is hard to read.

Figure 9-9. Float label pattern: the label moves into the top left corner as soon as the
user starts typing

The float label pattern sounds like a good solution, but it
mitigates only some issues and takes a lot of effort, when you
could just put labels above the fields without any of the
problems previously listed.

The placeholder attribute is also unsuitable for help text and
other critical field descriptions. You can learn more about

https://oreil.ly/zW90G
https://oreil.ly/uS3zd
https://oreil.ly/mS3j6

providing help text and instructions in Recipe 9.3.

9.3 Describe Form Fields

Problem

Recipe 9.1 and Recipe 9.2 established three rules:

Only ask a question if you need to.
Pick the right element for a task.
Identify each element properly by labeling it.

Still, that might not be enough for people to fully understand
the purpose of a field or how to fill it out. Users interpret labels
differently; they may not know the format you expect or the
consequences of the choices they make. That makes filling out
forms tedious and sensitive to errors.

Solution

Describe forms and fields by providing additional information,
as shown in Examples 9-6, 9-7, and 9-8.

Example 9-6. Overall instructions

 All fields marked “required” must be comple

 Dates should all be typed in the format dd

 You need a copy of your passport.

<form>

 <label for="bday">Birthday (dd.mm.yyyy)</label>

 <input type="text" id="bday" autocomplete="bday

 …

</form>

Example 9-7. Inline instructions in the label

<label for="bday">Birthday (dd.mm.yyyy)</label>

<input type="text" id="bday" autocomplete="bday">

Example 9-8. Inline instructions following the input field

<label for="password">Password</label>

<input type="text" id="password" autocomplete="ne

aria-describedby="password-hint">

<p id="password-hint">At least 8 characters, uppe

Discussion

Some forms are straightforward and don’t need additional
description. A simple login form that asks users for their email
and password can provide all necessary information if they’re
clearly labeled.

Suppose you ask for a username or customer ID instead. Users
may not remember their username or where to find their ID.
Instructions can help them fill out the form. The gov.uk service
manual “Designing good questions” suggests using help text or
instructions to explain things like:

Legal jargon
Where to find obscure information
In what format the information should be given
What you’ll do with personal information
The consequences of making one choice over another

There are several places where you can put instructions.

You can provide overall instructions before or at the beginning
of the form, as shown in Example 9-6. That’s a good place to tell
users how the form works and mention any specific
prerequisites, such as if they need to upload copies of legal
documents.

https://oreil.ly/FUKB1

You can use the label element for short inline descriptions of
form fields, as shown in Example 9-7. The advantage is that it’s
tied to the form element and will be announced no matter how
the user accesses it. That works only for short descriptions,
though, because you don’t want to clutter labels.

You can put longer inline instructions after the form field and
use aria-describedby to connect them with the element
they’re describing, as shown in Example 9-8. In his book Form
Design Patterns, Adam Silver suggests putting form hints
between the label and input field to emphasize the label’s
relation to the field and keep autocomplete suggestions from
hiding it (see Figure 9-10).

Figure 9-10. Instructions placed close to the label and input element

All these options are great because the descriptions are visible
at any time, and you usually have enough space to display
them. Websites often use the placeholder attribute to

provide descriptions and instructions, but it’s unsuitable for
providing important help text and hints because of the many
reasons described in Recipe 9.2.

There’s another attribute in HTML that’s much more useful and
allows you to provide more details about the type of
information you’re collecting. The autocomplete attribute
specifies form fields in greater detail and simplifies filling out
forms. It can hint to the user agent how and whether to prefill
input fields based on earlier input. Example 9-7 shows how to
specify that the text input field is a birthday field. If you’ve
entered your birthday before and the browser saved that
information, it will prefill the field for you. Sometimes it does
that automatically by factoring in the field’s label or other
attributes. Sometimes it doesn’t—and that’s where the
autocomplete attribute can be helpful.

According to the WAI, the attribute can be a powerful tool for
people with language and memory-related disabilities or
disabilities that affect executive function and decision-making
because they don’t need to remember the information. People
with a motor disability also benefit from reducing the need for
manual input when filling out forms.

https://oreil.ly/pNMXz

The attribute has many options, like current-password ,
country , postal-code , or username , and it supports
multiple values like shipping street-address . You can find
a full list in the specification.

9.4 Highlight Erroneous Fields

Problem

When a user doesn’t fill in all required fields or doesn’t do it
correctly, you must give them feedback. To enable them to fix
the errors, they need to know what went wrong and where.
Otherwise, they may not be able to complete the form.

Solution

Different places and techniques can help communicate errors.
You should place error messages close to the affected fields, as
shown in Examples 9-9 and 9-10.

Example 9-9. Inline error message

<style>

{

https://oreil.ly/2-Jsn

 .error {

 color: #D52A2A;

 }

</style>

<label for="email">Your e-mail address</label>

<input type="email" id="email" required value="ol

 aria-invalid="true" aria-describedby="erro

<div id="error" class="error">

 <svg viewBox="0 0 640 640" width="16" fill="cu

 <path d="M640 128 512 0 320 192 128 0 0 128l1

 512l128 128 192-192 192 192 128-128-192-192

 </svg>

 Please enter a valid e-mail address

</div>

aria-invalid="true" marks the field as invalid and
aria-describedby connects it to the corresponding
error message using the message’s ID as the value.

Example 9-10. Inline instructions and error message on an
input field

<label for="password">Password</label>

<div id="password-hint">At least 8 characters, up

https://calibre-pdf-anchor.a/#a2061

<input type="text" id="password"

 autocomplete="new-password"

 aria-invalid="true"

 aria-describedby="password-hint password-e

<div id="password-error" class="error">

 <svg viewBox="0 0 640 640" width="16" fill="cu

 <path d="M640 128 512 0 320 192 128 0 0 128l1

 512l128 128 192-192 192 192 128-128-192-192

 </svg>

 Passwords must contain at least one number.

</div>

aria-describedby referencing the hint and the error
message.

If there are many errors, you can summarize them at the
beginning of the form, as shown in Example 9-11.

Example 9-11. Error summary

<div role="region" aria-labelledby="error_heading

 <h2 id="error_heading">2 issues found</h2>

 Please enter a valid e-m

 Passwords must contai

https://calibre-pdf-anchor.a/#a2064

</div>

<form>

 <label for="email">Your e-mail address</label>

 <input type="email"

 id="email"

 autocomplete="email"

 required

 aria-invalid="true"

 aria-describedby="email-error"

 value="philippa@">

 <div id="email-error" class="error">

 <svg viewBox="0 0 640 640" width="16" fill="c

 <path d="M640 128 512 0 320 192 128 0 0 128

 512l128 128 192-192 192 192 128-128-192-192

 </svg>

 Please enter a valid e-mail address.

 </div>

 <label for="password">Password</label>

 <input type="password"

 id="password"

 autocomplete="new-password"

 required

 aria-invalid="true"

 aria-describedby="password-error">

 <div id="password-error" class="error">

 <svg viewBox="0 0 640 640" width="16" fill="c

g

 <path d="M640 128 512 0 320 192 128 0 0 128

 512l128 128 192-192 192 192 128-128-192-192

 </svg>

 Passwords must contain at least one number.

 </div>

</form>

It can be helpful if the page’s title also reflects the current
status, as shown in Example 9-12.

Example 9-12. Number of errors in the title element

<title>2 errors - Sign Up - Johanna’s Toy Store</

Discussion

Users will eventually make mistakes, no matter how good your
labels and descriptions are. Disabled users may be more likely
to make them. For instance, a user with a motor disability may
accidentally hit keys, or someone with a reading disability may
mix up numbers and letters. They also may have a more
challenging time detecting mistakes and recovering from them.

When that happens, you must provide users with the best
possible assistance to fix those issues.

There are several general rules you should follow:

Don’t rely on color alone to communicate.
Inform users that something went wrong.
Write clear and meaningful error messages.
Provide instructions on how to fix errors.
Allow users to access erroneous fields.
Don’t rely on native form validation.
Allow users to (re)submit the form.

In her article “A Guide To Accessible Form Validation”, Sandrina
Pereira explains that using color alone is insufficient to
communicate issues because people perceive color differently.
Blind users need a semantic cue that something is wrong with
the entered data in a field. In Figure 9-11, you see a
combination of color and icon to indicate an error. In addition,
you must also identify those fields semantically by using the
aria-invalid attribute, as shown in Example 9-9.

https://oreil.ly/MenIg

Figure 9-11. The x icon supports the error message and the color in indicating an
error

Error reporting

If there’s only one issue or if the form is short, you can put focus
on the first erroneous field. If you use the pattern in Example 9-
9, a screen reader announces that the field contains invalid
data, followed by the error message, connected via aria-
describedby . The aria-describedby attribute accepts a
single ID or a list of space-separated IDs. You can connect a hint
and an error message to a field simultaneously, as shown in
Example 9-10.

If there are multiple issues, look at how you’re submitting the
data. If you’re using server-side rendering, listing all issues in a
region at the beginning of the form and focusing it can be a
good solution. The region in Example 9-11 displays the number
of errors and announces it when it receives focus. It also lists
linked error messages, allowing users to get an overview of all

errors and access them directly by linking them to their
corresponding field. Screen reader users can access the region
at any time, since role="region" turns it into a landmark
(you can learn more about region landmarks in Recipe 2.4). You
can also update the page title to reflect the current state of the
form, as shown in Example 9-12.

If you’re using client-side scripting, you can do the same or use
a live region to inform users about the errors when they submit
the form. See Recipe 3.7 to learn more about live regions. When
you work with live regions, it’s good to know that there is a
bug/feature in Chromium-based browsers on Windows that
automatically announces content added to elements referenced
via aria-describedby .

If you’re considering using the default validation in HTML, keep
in mind that there are several downsides to using native
validation, as Gerardo Rodriguez notes in his article
“Progressively Enhanced Form Validation”. Here are some
examples:

You cannot customize the styling of error messages.
Some form controls cannot be validated.
There are challenges in styling erroneous fields in some
browsers.

https://oreil.ly/sO8Ou
https://oreil.ly/rAm0D

The error messages may not always be clear or provide a
helpful suggestion.
The error-message bubble text doesn’t always resize when
you zoom the page.
Error messages are not correctly associated with the
corresponding field.

You can use the native API for validation, as described in
Rodriguez’s article, but it’s better to provide your own styling
and markup.

Error messages

In Form Design Patterns, Adam Silver highlights the importance
of well-crafted error messages and explains how to create
messages that provide clarity in as few words as possible:

Be concise, but don’t omit words at the cost of clarity.
Be consistent by using the same tone and punctuation
throughout.
Avoid pleasantries like “Please” because they imply choice.
Don’t use generic messages; be specific. Instead of saying,
“There’s an error,” explain what went wrong.
Use plain natural language. Avoid jargon like invalid,
forbidden, and mandatory.

Use the active voice: “Enter your name” instead of “A name
must be entered.”
Let users know what’s gone wrong and how to fix it, but don’t
blame them: “Enter your email” instead of “You didn’t enter
an email.”

In his talk “Is Design Metrically Opposed?” Jared Spool says that
it takes one line of code to take a phone number and strip out
all the dashes, parentheses, and spaces, but it takes 10 lines of
code to write an error message informing users about their
mistake. Silver advises following Postel’s Law and forgiving
trivial mistakes by writing code that corrects them. That,
combined with well-designed labels, descriptions, and error
messages, makes filling out forms much more accessible.

NOTE

Postel’s Law, named after Jon Postel, states that you should be conservative in what
you send but be liberal in what you accept.

9.5 Group Fields in a Form

Problem

https://oreil.ly/TUwZI
https://oreil.ly/3eOGp

If your form contains many similar questions or groups of fields
of the same type that belong to different questions, users may
have trouble telling them apart and understanding how they’re
related. Screen reader users may not understand the purpose
or affiliation of a field. Sighted users may not, either, if the form
is poorly designed.

Solution

Group related fields together using the fieldset and legend
elements, as shown in Examples 9-13 and 9-14.

Example 9-13. A fieldset groups radio buttons

<fieldset>

 <legend>Do you have pets?</legend>

 <input type="radio" id="pets_yes" name="pets">

 <label for="pets_yes">Yes</label>

 <input type="radio" id="pets_no" name="pets">

 <label for="pets_no">No</label>

</fieldset>

Example 9-14. A fieldset groups similar questions asked
in the same form

<fieldset>

 <legend>Billing details</legend>

 <label for="billing_name" autocomplete="name">N

 <input type="text" id="billing_name" name="bill

 <label for="billing_address">Address</label>

 <input type="text" id="billing_address" name="b

 autocomplete="billing street-address">

</fieldset>

<fieldset>

 <legend>Shipping details</legend>

 <label for="shipping_name" autocomplete="name">

 <input type="text" id="shipping_name" name="shi

 <label for="shipping_address">Address</label>

 <input type="text" id="shipping_address" name=

 autocomplete="shipping street-address">

</fieldset>

Discussion

Let’s say you have a form, like the one in Example 9-15, that
asks users multiple yes-or-no questions.

Example 9-15. Bad practice: Ungrouped radio buttons

Do you have pets?

<input type="radio" id="pets_yes" name="pets">

<label for="pets_yes">Yes</label>

<input type="radio" id="pets_no" name="pets">

<label for="pets_no">No</label>

If a screen reader user uses the virtual cursor, the software first
announces, “Do you have pets?” followed by the options “Yes,
radio button, checked, 1 of 2” and “No, radio button, checked, 2 of
2.” (The announcement differs across different screen readers.)
It should be clear that the two options belong to the question.
However, the virtual cursor is not the most convenient way to
navigate a form. Using the Tab key is much more efficient, but
if you do, you’ll only hear the answer, “Yes, radio button,
checked, 1 of 2,” not the question. That’s because the radio
buttons are semantically unrelated to the strong element that
contains the question.

To connect the radio buttons with the question, you need to
group them. You can use the fieldset and legend elements,
as shown in Example 9-13. That establishes a connection
between the radio buttons and the corresponding question. The

screen reader announces something like “Do you have pets?,
grouping. Yes, radio button, not checked, 1 of 2.”

The fieldset element is an excellent tool for making related
form controls more understandable. Screen reader users can
identify them more easily, and its distinguishable design (see
Figure 9-12) helps sighted users understand relationships
between fields. In long forms, it can also help users focus on
smaller and more manageable groups rather than the entire
form.

Figure 9-12. A fieldset grouping radio buttons

Using a fieldset is always a good idea for groups of radio
buttons or checkboxes. It can also make sense for other types of
form controls, especially if you’re asking the same or similar
questions multiple times in the same form, as shown in
Example 9-14. The fieldset and legend associate each
name and address with the corresponding group.

Dos and don’ts

https://oreil.ly/I938s

You don’t have to put every form element in a fieldset ; use it
only when a higher-level label is necessary. You don’t need
grouping for single checkboxes or radio buttons that make
sense from their labels alone.

Nesting fieldsets is possible, but you should avoid it because it
can cause odd screen reader behavior. The software may not
understand when one fieldset ends and the next starts.

Always provide a legend. Otherwise, using the fieldset will
make little sense. The legend element should be the first child
of the fieldset and must not be nested. In Example 9-16, you can
see a broken fieldset. The legend doesn’t provide an accessible
name for the fieldset because the legend is nested in a
div .

Example 9-16. A broken fieldset: The legend doesn’t provide
an accessible name for the fieldset

<fieldset>

 <div>

 <legend>Do you have pets?</legend>

 </div>

 <input type="radio" id="pets_yes" name="pets">

 <label for="pets_yes">Yes</label>

 <input type="radio" id="pets_no" name="pets">

 <label for="pets_no">No</label>

</fieldset>

Depending on the screen reader and how users are accessing
the group, the software will announce the legend when users
enter it, when they access the first option, or with every option.
To avoid redundancy, keep the legend short but descriptive.

9.6 Split Forms into Steps

Problem

If a form contains many questions, it can become
overwhelming and stressful for people with cognitive
disabilities to understand and complete it.

Solution

Split long forms into multiple smaller forms that constitute a
series of logical steps. In each step, communicate the current
step within the process, as shown in Examples 9-17, 9-18, and 9-
19.

Example 9-17. A progress indicator highlighting the current
step

 Shipping address

 <li aria-current="step">

 Payment

 Review order

 Finish

Example 9-18. The title of the page indicating the current
step

<title>Step 2 of 4: Payment - Checkout - Johanna

Example 9-19. The main heading of the page indicating the
current step

<h1>Shipping Payment (Step 2 of 4)</h1>

Discussion

Long forms can be intimidating and complex. The WAI suggests
dividing long forms into multiple smaller forms to make it
easier for users to complete them and make the experience less
daunting. The team at gov.uk even suggests asking only one
question or providing users with only one piece of information
per page. That doesn’t always work, but the “one thing per
page” approach is a good starting point. It reduces cognitive
load, helping people understand what you’re asking for. They
can focus on one task at a time without being distracted by
unrelated questions. Another benefit is that fixing form errors
becomes more manageable, reducing the chances of users
giving up.

Some people need more time to fill out forms. Multiple steps
make it easier to save users’ answers, allowing them to

https://oreil.ly/fx0rR
https://oreil.ly/Z3PUS

complete the forms later. Adam Silver lists more benefits of this
approach in “Better Form Design: One Thing Per Page (Case
Study)”.

When splitting a form, organize its elements in logical groups.
In the checkout page of an online shop, that could be shipping
address, payment, review, and confirmation. As shown in
Figure 9-13, a step-by-step indicator can help users orient
themselves. In Example 9-17, you can see that the ordered list
communicates the number of steps. Completed steps are linked,
and the aria-current attribute highlights the current step.
Users should always know how much they’ve completed and
how much will follow.

Figure 9-13. A progress indicator showing the previous, current, and remaining steps

The first step of the process should inform how many steps the
form has and about any needed preparations or information.
Figure 9-14 shows the gov.uk form to check if a vehicle is taxed.
The intro page of the form informs you how long it takes them

https://oreil.ly/DO8G-

to process the application and that you’ll need your car’s
registration number and a reference number to fill it out. That
makes the experience less exhausting and allows users to finish
the form quicker.

Figure 9-14. Intro page for a form on gov.uk

Designing a good progress indicator can be challenging,
primarily because of the limited space on mobile devices. If you
have difficulty getting it right or learn that your users don’t
notice it or find it distracting, other techniques you can use

https://oreil.ly/1TaAx

include the title element (see Example 9-18) and the h1 of
the page (see Example 9-19).

Dividing a form into multiple steps shouldn’t make it harder to
use. Allow users to go back to previous steps to review and
change the entered data. Link completed steps in the step-by-
step indicator and provide a back button at the beginning or
end of each step.

If your page includes overall instructions for filling out the
form, repeat them on every page so that users don’t have to go
back to the first step.

Some people need more time than others. Don’t set a time limit
to fill out the form. If a time limit is required, provide a feature
that allows the user to adjust it, to minimize the risk that they
will lose their work.

Give users the option to review and correct their data before
they submit a form. Confirm their submissions when they are
done.

See Also

“web.dev Lean Accessibility—Forms” by web.dev

https://oreil.ly/gZbtg
https://oreil.ly/gqsaq

“Understanding SC 1.3.5: Identify Input Purpose (Level AA)”
by WAI
“Understanding SC 3.2.1: On Focus (Level A)” by WAI
“Creating Accessible Forms” by WebAIM
“Designing good questions” by gov.uk
“There is a lot more to autocomplete than you think” by
Saptak Sengupta
“Create accessible forms” by The A11y Project
“Using the fieldset and legend elements” by Léonie Watson
“Fieldsets, Legends and Screen Readers again” by Steve
Faulkner
“Forms Tutorial: Grouping Controls” by WAI

https://oreil.ly/1ZxzJ
https://oreil.ly/iVLe1
https://oreil.ly/vGoxL
https://oreil.ly/G2peY
https://oreil.ly/hWNX5
https://oreil.ly/cR2RP
https://oreil.ly/45TYR
https://oreil.ly/i8u3t
https://oreil.ly/Fj3sY

Chapter 10. Filtering Data

Online shops, marketplaces, real estate websites, and large
blogs often have one thing in common: a lot of data the user can
access. Working with large datasets can quickly become
daunting and overwhelming. Filters allow users to narrow
down results, making finding what they’re looking for easier. At
the same time, they can also increase the complexity of your
interface. When you create a filter form, it’s crucial to keep it as
simple as possible so that users can apply their settings quickly
and efficiently. No matter how people access the web, they must
always know which filters are active and whether they’ve been
applied.

10.1 Create a Form

Problem

When you present users with a list of hundreds or thousands of
items, it can be difficult for them to find what they’re looking
for. If the list contains interactive elements, navigating through
it can become physically demanding for people who use an
assistive technology like a switch device.

Solution

Allow users to filter out irrelevant results. Example 10-1 shows
an exemplary filter in HTML.

Example 10-1. A filter form with various types of form
elements

<form role="form" aria-label="Filter" id="filter

 <label for="artist">Artist</label>

 <select id="artist" name="artist">

 <option value="">All</option>

 <option>AFI</option>

 <option>Absolute Beginner</option>

 <option>Akne Kid Joe</option>

 <option>Bad Religion</option>

 <option>Beastie Boys</option>

 <option>Bilderbuch</option>

 <option>Billy Joel</option>

 <option>Bring me the Horizon</option>

 <option>Dead Kennedys</option>

 …

 </select>

 <fieldset>

 <legend>Country</legend>

 <input type="checkbox" name="country" id="cou

 <label for="country_at">Austria</label>

 <input type="checkbox" name="country" id="cou

 <label for="country_ca">Canada</label>

 <input type="checkbox" name="country" id="cou

 <label for="country_us">USA</label>

 <input type="checkbox" name="country" id="cou

 <label for="country_de">Germany</label>

 <input type="checkbox" name="country" id="cou

 <label for="country_uk">United Kingdom</label

 </fieldset>

 <fieldset>

 <legend>Shipping</legend>

 <input type="radio" name="shipping" id="shipp

 <label for="shipping_eu">Europe</label>

 <input type="radio" name="shipping" id="shipp

 <label for="shipping_world">Worldwide</label>

 <input type="radio" name="shipping" id="shipp

 <label for="shipping_us">USA</label>

 </fieldset>

 <button>Search</button>

</form>

Discussion

A filter form helps users narrow down the results in a large
dataset, but it also adds complexity. Before you add a filter,
consider whether you need it. They’re helpful only when the
user’s search is likely to return a vast set of results.

In Example 10-1, you can see a filter form on “Bob’s Records.”
Let’s break it down.

Form elements

Bob’s form uses different types of elements, depending on the
use case:

For instance, users can search records by artist. Since there
are potentially hundreds of items in that list, showing only
one at a time using a select element makes sense.
The filter lists the artist’s country of origin with checkboxes
because there are only five options, and the user can select
either none, all, or some countries.

There are only three shipping options, and you can only
select one at a time. Radio buttons are a good choice for that.

Of course, there are also other ways of presenting the same
options. Whatever you choose, ensure you pick the most
straightforward solution for the user:

Pick form elements according to their requirements.
Use native HTML form elements because they usually have
the best baseline accessibility.
Stick to familiar patterns, and don’t obscure the styling of
form elements. For example, don’t make radio buttons look
like ordinary buttons.
Be consistent to help users build familiarity and understand
the site.

Grouping

Grouping controls using the <fieldset> element can make
forms more understandable because it makes the controls
easier to identify and associate. They inform users about the
grouping both visually and semantically, as illustrated in
Figure 10-1.

Not every form element needs to be in a group. The country
checkboxes in Example 10-1 belong together. The form groups

them using a fieldset element, and the legend gives them
a group label. The artist widget, on the other hand, stands for
itself and needs no additional grouping.

Figure 10-1. A form with two groups of controls

Form landmark

The role="form" on the <form> turns a simple form into a
landmark (for details about form landmarks, see Recipe 2.2),
and the aria-label attribute provides an accessible name.
That can be handy for screen reader users because it allows
them to access the filter using shortcuts without interacting
with the rest of the page.

Form submission

In his book Form Design Patterns, Adam Silver explains that
there are two ways of letting users filter: using one filter at a
time (interactive filters) or selecting multiple filters at once
(batch filtering).

Interactive filters

Interactive filters update when the user clicks a filter. The
user gets immediate results and feedback. One
disadvantage is that it slows down the filtering process,
because the whole page, or parts of the page, must reload
every time the user clicks.

Batch filters

Batch filters let users set several options before
submitting the form. That approach is faster, but
combining filters without immediate feedback can yield
zero results.

Example 10-1 uses batch filtering to give users more control.
Also, selecting form elements sets certain expectations: When
clicking radio buttons or checkboxes, users usually don’t expect
an immediate response.

10.2 Filter the Data

Problem

Especially in interfaces that rely heavily on client-side scripting,
you must inform users about changes to the document. If you
don’t, screen reader users might not know that filtering worked
as expected. On top of that, users must be able to access search
results easily.

Solution

Give users easy access to filtering and inform them about
changes using live regions or focus management, as shown in
Examples 10-2 and 10-3.

Example 10-2. An ordered list within a region

<div role="region" aria-labelledby="results_headi

 <h2 id="results_heading">Results</h2>

 <div role="status">Showing 40 of 40 records</di

 <ol class="list">

 Joy as an Act of Resistance (2018)<

 Idles

 Licensed to Ill (1986)

 Beastie Boys

 Paul's Boutique (1989)

 Beastie Boys

 –

</div>

An ARIA region labeled by its parent heading. The
negative tabindex makes it focusable via JavaScript.

An ARIA live region.

An ordered list containing the results.

Example 10-3. A simple filter script

const form = document.getElementById("filter");

const results = document.getElementById("results

const list = results.querySelector("ol");

https://calibre-pdf-anchor.a/#a2166
https://calibre-pdf-anchor.a/#a2167

const liveRegion = document.querySelector("[role=

let records,

filtered;

function finishQuery() {

}

function showResults() {

 list.innerHTML = "";

 for (let i = 0; i < filtered.length; i++) {

 const record = filtered[i];

 const item = document.createElement("li");

 const title = document.createElement("strong

 title.textContent = `${record.title} (${reco

 item.append(title, record.artist);

 list.append(item);

 }

}

function filterForm(e) {

 e.preventDefault();

 const formData = new FormData(form);

 filtered = records.filter((record) => {

 const artist = formData.get("artist");

 const countries = formData.getAll("country")

 const shipping = formData.getAll("shipping")

 if (artist && record.artist !== artist) {

 return;

 }

 if (countries.length && !countries.includes(

 return;

 }

 if (shipping.length && !shipping.includes(rec

 return;

 }

 return true;

 });

 showResults();

 finishQuery();

}

async function getRecords() {

 /*

 The JSON files looks like this:

 [

 {

 "artist": "Absolute Beginner",

 "title": "Bambule",

 "year": 1998,

 "country": "DE",

 "format": ["LP", "CD"],

 "shipping": "eu"

 },

 {

 "artist": "AFI",

 "title": "Very proud of ya",

 "year": 1996,

 "country": "US",

 "format": ["LP", "CD"],

 "shipping": "us"

 }]

 */

 const response = await fetch("/assets/data/reco

 return await response.json();

}

getRecords().then((data) => {

 records = data;

 filtered = data;

 form.addEventListener("submit", filterForm);

});

Fetches all records up front and attaches an event listener
to the form.

Simple filter functionality that narrows down results
based on user input.

Takes the filtered results, clears the list, and creates a new
list.

This is where you announce changes to the DOM. See
Examples 10-4 and 10-5 for options.

Example 10-4. Option A: Focusing the region after the
results are shown

function finishQuery() {

 results.focus()

}

Example 10-5. Option B: Writing the number of results to a
live region

function finishQuery() {

 const total = records.length;

 const found = filtered.length;

 liveRegion.textContent = `Showing ${found} of $

}

Discussion

There are two essential aspects to client-side filtering: you want
to announce changes to screen reader users and give them
quick and easy access to the results.

Feedback

If you use server-side rendering and processing for your filter,
the feedback users get when submitting the form is a full-page
reload. Screen readers also announce the page title. That’s
usually enough for users to understand that the page has
changed.

With client-side rendering, it’s different, because when you
make changes to the DOM, there’s only visual feedback. Users
may see the content change if the results are visible in the
viewport, but you can’t rely on that—for example, when the
user is blind and therefore uses a screen reader, or uses a high
zoom level, or when the filter form is particularly long and
moves the results out of the viewport. Two common techniques
for announcing page changes are focus management and live
regions. You can learn more about both in Recipe 3.7.

Example 10-4 shows the first option: after filtering and
repopulating the list, you focus the results region by calling the
focus() method. For that to work, the region needs a

tabindex="-1" . Once you focus it, focus moves from the
submit button to the region. That affects users in two ways.
First, focus is no longer on the form; users can interact with the
results immediately. However, they have to tab back if they
want to adjust the filter again. Second, screen readers may
announce the role and label of the region (for example,
“Results, region”).

In Example 10-5, you output the number of results to the live
region instead of focusing the results region. If the content in
the live region changes, a screen reader announces it (e.g.,
“Showing 3 of 40 records”). Focus stays on the button, meaning
users must move to the list manually.

Test with users to determine which option is best for your use
case. Of course, you can also combine both solutions, but be
careful with what and how much you announce. You want to
communicate as little as possible and only as much as
necessary. Screen reader and Braille display users are more
efficient with concise and specific commands.

Before you make your decision, ask yourself two questions:

Would it be helpful to move focus, or would it interrupt the
experience?

How much information does the user need? Is the name of
the new page or region enough, or do they need more
context?

Structure

The structure of the results region (Example 10-2) is pretty
simple, but feature-rich. The labeled region enables screen
reader users to access the results directly using landmark
navigation. The heading, which also serves as the accessible
name for the region, adds to the page’s visual hierarchy and
gives screen reader users access via heading navigation. The
ordered list also comes with additional keyboard commands for
screen reader users and announces the number of displayed
items.

10.3 Paginate Results

Problem

Even with a filter, the list of search results, products, images,
and so on, can still be overwhelmingly hard to scan and
navigate. When it contains images, it can also degrade
performance.

Solution

Break the results down into multiple pages as shown in
Examples 10-6, 10-7, and 10-8.

Example 10-6. An ordered list within a labeled navigation

<nav aria-labelledby="pagination_heading" class=

 <h2 id="pagination_heading">Select page</h2>

 1<

 2

 3

 4

 5

 6

 7

</nav>

A labeled navigation landmark

Highlighting the current page

Example 10-7. Using aria-label to overwrite the
accessible names of links (for example, “Page 2” instead of
“2”)

 2<

Example 10-8. Styling the pagination

.pagination ol {

 display: flex;

 gap: 0.5em;

 list-style: none;

 margin: 0;

 padding: 0;

https://calibre-pdf-anchor.a/#a2198
https://calibre-pdf-anchor.a/#a2199

p g ;

}

.pagination a {

 align-items: center;

 aspect-ratio: 1;

 border: 1px solid;

 border-radius: 50%;

 display: flex;

 justify-content: center;

 text-decoration: none;

 width: 2em;

}

.pagination a:is([aria-current="page"], :hover,

 background-color: #3c843f;

 color: #ffffff;

}

Discussion

Pagination is similar to filters: use it only when you need it. It
adds complexity to the page and requires extra steps to get
results. On the other hand, when filtering still yields hundreds
of results, splitting them up can be helpful. According to David
Kieras, reaching an endpoint gives users a sense of control.
Unlike seemingly endless or infinite lists, with a fixed number

https://oreil.ly/OnWHz

of items per page and pagination, users know the number of
results. They can estimate how long it’ll take to find what
they’re looking for and whether they need to refine the filter.

Besides performance benefits, which also affect accessibility,
pagination makes finding and searching content easier. In
Example 10-6, you can see that links are wrapped in a
navigation landmark, providing shortcuts for screen reader
users. It’s labeled to allow for distinction from other navigations
that are likely also present on the page. aria-
current="page" highlights the currently active page
semantically and provides a hook for styling in CSS, as shown in
Example 10-8. The label of each link is just the page number,
which should be clear enough from context. If you want to be
more explicit with the accessible names of your links, you can
overwrite them using aria-label , as shown in Example 10-7
and Figure 10-2.

If you show many results per page and those contain interactive
elements, you can add a skip link at the beginning of the results
region. That makes it easier for keyboard and screen reader
users to reach the pagination. Alternatively, you can replicate
the pagination and put it before the results. When you do that,
test the entire page thoroughly with the keyboard to ensure a
decent user experience.

Figure 10-2. Results and pagination

10.4 Sort and Display Results

Problem

When you give users control over how to display data, you must
inform them about changes and the current state of each
option. If you don’t, they might not understand why the
interface looks or behaves differently.

Solution

Inform users about settings when they access options and when
they change them. Example 10-9 provides users with two
sorting options using radio buttons, and the code in
Example 10-10 sorts the results and informs users about the
changes.

Example 10-9. A list of sorting options

<fieldset id="sorting">

 <legend>Sort by</legend>

 <div>

 <input type="radio" id="sorting_artist" name=

 <label for="sorting_artist">Artist</label>

 <input type="radio" id="sorting_date" name="s

 <label for="sorting_date">Date</label>

 </div>

</fieldset>

<div id="live-region-sorting" hidden>Sorted by [t

Example 10-10. Sorting results

const sorting = form.querySelector("#sorting");

const sortingMessage = form.querySelector("#live

function sortRecords(type) {

 function compare(a, b) {

 let fieldA = a[type];

 let fieldB = b[type];

 if (typeof fieldA === "string") {

 fieldA = fieldA.toLowerCase();

 fieldB = fieldB.toLowerCase();

 }

 if (fieldA < fieldB) {

 return -1;

 }

 if (fieldA > fieldB) {

() {

 return 1;

 }

 return 0;

 }

 filtered.sort(compare);

}

sorting.addEventListener("change", (e) => {

 const type = e.target.value;

 sortRecords(type);

 showResults();

 liveRegion.textContent = sortingMessage.textCon

});

Simple sorting logic.

Informs users that the list has changed.

Example 10-11 offers display options using the button element,
and the code in Example 10-12 switches the display type and
informs users about the changes.

Example 10-11. Offering display options

<fieldset id="display">

l d Di l /l d

https://calibre-pdf-anchor.a/#a2216

 <legend>Display</legend>

 <button type="button" aria-pressed="true" aria

 <svg>…</svg>

 </button>

 <button type="button" aria-pressed="false" aria

 <svg>…</svg>

 </button>

</fieldset>

<div id="live-region-display" hidden>Showing resu

Example 10-12. Switching between list and grid view

const display = form.querySelector("#display");

const displayMessage = form.querySelector("#live

display.addEventListener('click', e => {

 const button = e.target.closest('button');

 const previous = display.querySelector('[aria-p

 if (button) {

 button.setAttribute('aria-pressed', true);

 list.classList.replace(previous.dataset.displ

 previous.removeAttribute('aria-pressed');

 const label = button.getAttribute('aria-label

 liveRegion.textContent = displayMessage.textC

 }

})

})

The selected display option

The previously selected option

Selects the current option

Informs users about the update

Discussion

As mentioned in Recipe 10.1, there are different ways of
presenting options to the user. Which type of element you use
depends on how you submit the form. With checkboxes and
radio buttons, users usually expect to make a selection and
confirm it when they press the submit button. With buttons,
they expect their choice to have an immediate effect.

Whether you pick client-side or server-side rendering, you must
ensure that users can always tell which option is selected. For
<select> elements, you can use the selected attribute,
which highlights the selected option visually and
programmatically, as shown in Example 10-9. For radio buttons
and checkboxes, use the checked attribute. For toggle buttons,

https://calibre-pdf-anchor.a/#a2222
https://calibre-pdf-anchor.a/#a2224

use aria-pressed and set it to true or false (see
Example 10-11).

If you choose to apply changes immediately, you have to inform
users. In Example 10-10, you can see how the items in the list
reorder in response to a change in the <select> element. You
can use a live region to inform screen reader users about the
changes. The same is true for changing the presentation of the
list, as shown in Example 10-12. Focus management is not a
great alternative here because you want to let users finish
filling out the form, not move them away from it because they
changed the sorting or display.

10.5 Group Filters

Problem

Complex forms can be complicated for everyone, especially
those with cognitive disabilities. A filter form quickly becomes
overwhelming when you present users with too many options.

Solution

Prioritize popular options and collapse or hide additional
settings, as shown in Examples 10-13, 10-14, and 10-15.

Example 10-13. A button wrapped in a legend

<fieldset>

 <legend>

 <button type="button" class="toggle" aria-exp

 </legend>

 <div hidden>

 <input type="checkbox" name="country" id="cou

 <label for="country_at">Austria</label>

 <input type="checkbox" name="country" id="cou

 <label for="country_ca">Canada</label>

 <input type="checkbox" name="country" id="cou

 <label for="country_us">USA</label>

 <input type="checkbox" name="country" id="cou

 <label for="country_de">Germany</label>

 <input type="checkbox" name="country" id="cou

 <label for="country_uk">United Kingdom</label

 </div>

</fieldset>

Example 10-14. Toggling the aria-expanded attribute of
the button

document.querySelector(".toggle").addEventListene

 const button = e.target.closest("[aria-expanded

 const isOpen = button.getAttribute("aria-expand

 if (button) {

 button.setAttribute("aria-expanded", isOpen)

 }

});

Example 10-15. Showing and hiding the group of options
based on the value of the aria-expanded attribute

fieldset:has([aria-expanded="true"]) > div {

 display:block;

}

Discussion

When dealing with data that has many attributes users can
filter, consider prioritizing the options. Instead of showing all
possibilities all the time, you could show only popular filters

and collapse those that users are less likely to use. In
Example 10-13, you can turn a simple fieldset into a disclosure
widget (see Chapter 8) by wrapping the text content of the
legend in a button and wrapping the form items in a div .

NOTE

The legend element must be a direct child of the fieldset element. Otherwise,
the semantic connection between legend and fieldset may not work.

On click, you toggle the aria-expanded attribute, indicating
whether the group is collapsed (see Example 10-14). The
attribute also serves as a hook for styling the group based on its
value, as shown in Example 10-15.

There are also other ways of reducing the interface. Sales site
gumtree.com doesn’t hide all options; it shows the first few and
hides the rest in a disclosure widget, as shown in Figure 10-3.

https://oreil.ly/lftZm

Figure 10-3. gumtree.com showing the first eight options per filter and hiding the rest
in a disclosure widget

On ikea.com, all filters are collapsed. How many you see
depends on the type of products you view and the viewport’s
width. If there are more options, you can access them by
clicking an “All filters” button, which opens a fly-out menu
(Figure 10-4).

https://oreil.ly/OAWsU

Figure 10-4. ikea.com shows up to eight filter options and an “All filters” button,
which toggles a fly-out menu with more options

Hiding filters or options can be a good way of decluttering your
interface, but treat it as a last resort. Before you hide
something, evaluate whether you need it in the first place.

See Also

“UX: Infinite Scrolling vs. Pagination” by Nick Babich

https://oreil.ly/UjWyw

Chapter 11. Presenting Tabular Data

Developers have misused tables so much in the past that today,
they’re almost afraid of using them in fear of harming
accessibility. The truth is that tables have their place and can
even improve accessibility. Understanding when and how to
use them and when another solution might be better is
essential.

11.1 Pick the Right Elements

Problem

Like most semantic elements, tables can be helpful to your
users, but only if you use them correctly and if they’re the right
tool for the job. If not, they can make the experience worse.
They can provide useful information for screen reader users or
make it impossible to consume the content.

Solution

Use tables only when you have data with more than one
dimension, and a table-like structure is the best way to present

it and convey its meaning (see Example 11-1 for an example).
Don’t use tables for layout.

Example 11-1. A table listing names and scores of players in
a fictional online game

<table>

 <caption>Scores Group A</caption>

 <thead>

 <tr>

 <th>Name</th>

 <th>Score</th>

 <th>Country</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>Michael</td>

 <td>27</td>

 <td>Austria</td>

 </tr>

 <tr>

 <td>Robert</td>

 <td>7</td>

 <td>Croatia</td>

 </tr>

 <!-- … -->

 </tbody>

</table>

Discussion

The <table> element is great; please use it! It can improve the
user experience significantly. When you decide which element
to use to represent data, ask yourself the following questions:

Is the data multidimensional?
Would it be helpful to make comparing data easier?
Can I provide a meaningful label for each column?

If the answer to all three questions is “Yes,” use a <table> .

You have several options if you want to list related content. You
can use and for simple lists, unordered or ordered.
You can use <dl> for lists of key-value pairs. For example, if
you need to list names, you probably want to go for an
unordered list, as shown in Example 11-2.

Example 11-2. A list of names

 Michael

 Robert

 Andreas

 <!-- … -->

You can also list additional data with each name, as shown in
Example 11-3.

Example 11-3. A list of names with scores

 Paul

 Score: 34

 Nicolas

 Score: 8

That’s fine, but users may want to compare scores, which would
be easier if they were listed closely together. Also, if you add
more data, like each player’s country of origin, scanning,
comparing, and relating data gets harder. When you have data
with more than one dimension, it makes sense to present it
across two axes, not just vertically but also horizontally. In

these cases, a table might be a better choice, as shown in
Example 11-1 and illustrated in Figure 11-1.

Figure 11-1. A table listing players’ names, scores, and countries of origin

Before we had powerful layout tools like CSS Flexbox and Grid,
developers often misused tables because the tools made it easy
to create multicolumn layouts. Today, you should strictly avoid
that. Tables don’t play well with responsive web design. They

also make it harder for screen reader users to navigate, if you
use them to structure the entire page.

Screen readers provide users with many keyboard shortcuts
and helpful information that makes it easier to navigate in a
table and understand, compare, and locate data. They vary
among different software brands, but usually you get the
following features:

When you enter a table, the screen reader announces the
number of rows and columns.
If a caption is present, it announces it.
You can navigate between cells using custom screen reader
navigation keys.
If you switch from one column to another, it announces the
column header alongside the cell’s content.
If you switch between rows and a row header is present, it
announces the row header.
You can jump from one table to another.

However, if the table has been misused, these features make the
experience unpleasant, confusing, or even impossible.

If you’re unsure whether to use a table, ask yourself the three
questions at the beginning of this section. If that still doesn’t

help, you can try this question instead: “If this wasn’t a website,
would I pick a text document or a spreadsheet to display the
data?”

11.2 Structure Tables

Problem

There are several elements and attributes you can use to create
tables. How you combine them depends on your content’s size
and complexity. Too little or too much structure can make using
and navigating tables harder.

Solution

There are several measures you can take:

Label your tables. Depending on what you’re trying to achieve,
you can pick different techniques to label tables. Example 11-4
adds a visible caption to the table.

Example 11-4. Using the <caption> element to label a table

<table>

 <caption>Scores Group A</caption>

 <!-- … -->

</table>

In Example 11-5, there’s no additional label to avoid verbosity.

Example 11-5. A table inside a <figure> , labeled by the
<figcaption>

<figure>

 <table>

 <!-- … -->

 </table>

 <figcaption>Scores Group A</figcaption>

</figure>

The table in Example 11-6 is labeled by the existing heading so
that it gets announced when screen reader users navigate using
quick navigation commands.

Example 11-6. A heading that precedes the table

<h2 id="table_heading">Scores Group A</h2>

<table aria-labelledby="table_heading">

 <!-- … -->

</table>

Use header cells to label your columns or rows, as shown in
Examples 11-7 and 11-8.

Example 11-7. Header cells labeling columns

<table>

 <caption>Scores Group A</caption>

 <thead>

 <tr>

 <th>Name</th>

 <th>Score</th>

 </tr>

 </thead>

 <tbody>

 <!-- … -->

 </tbody>

</table>

Example 11-8. Header cells labeling columns and specific
data cells labeling rows

<table>

 <caption>Total scores Group A</caption>

 <thead>

 <tr>

 <th>Name</th>

 <th>Q1</th>

 <th>Q2</th>

 <th>Q3</th>

 <th>Q4</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <th>Michael</th>

 <td>47</td>

 <td>28</td>

 <td>91</td>

 <td>65</td>

 </tr>

 <tr>

 <th scope="row">Robert</th>

 <td>97</td>

 <td>13</td>

 <td>42</td>

 <td>61</td>

 </tr>

 <!-- … -->

 </tbody>

</table>

th within the thead labels the respective column.

th within the tbody labels the respective row implicitly.

th with a row scope within the tbody labels the
respective row explicitly.

Ensure that the table is usable on smaller viewports and doesn’t
cause any overflow, as shown in Example 11-9.

Example 11-9. A table nested in a scrollable and focusable
region

<div role="region" aria-labelledby="scores_captio

 <table>

 <caption id="scores_caption">Total scores Gro

 <!-- … -->

 </table>

</div>

<style>

 [role="region"][tabindex="0"][aria-labelledby]

 overflow: auto;

 }

</style>

Discussion

The same rule that applies to most elements also applies to
tables: avoid complexity and provide only as much information

and structure as necessary.

Labeling

In Recipe 11.1, I explained what makes tables special for screen
reader users. Labeling plays a vital role in that.

In some screen readers, you can jump from table to table using
the T key without interacting with the rest of the page. When
you enter a table, the software usually announces the number
of columns and rows. Without context, you can’t tell what data
the table contains. That’s why it’s essential to label your tables.

The best way to label a table and provide an accessible name is
the <caption> element, as shown in Example 11-4. It adds a
visual label to the table, and screen readers announce it
alongside the number of rows and columns. Alternatively, you
can use a <figcaption> if the table is contained in a
<figure> , as shown in Example 11-5. If a heading precedes a
table, it can also serve as kind of a label, as shown in
Example 11-6. The advantage of the caption element is that a
screen reader reads it out if the user accesses the table directly.

Users can use shortcuts to navigate between cells. They can also
go up and down in a column, or switch from one column to
another. Screen readers usually announce the column’s name

when users do that, if you’ve provided one. Use header cells
(<th>) to label your columns (see Example 11-7). If you have a
table where the first (or any other cell) in each row labels the
row, use the <th> element, as shown in Example 11-8 and
Figure 11-2. That provides additional clarity and context,
because the screen reader knows that this header cell labels the
row and announces it when you switch rows.

Figure 11-2. Cells in the name column labeling their row

According to Steve Faulkner, it’s not necessary to use the
scope="row" attribute and value on the th , but you can (in
case a screen reader doesn’t recognize the table header
correctly).

Responsiveness

One of the pitfalls of tables is their inflexible styling. Optimizing
them for small viewport widths can be challenging. If you
decide to change the layout of a table completely, ensure that it
still functions in all relevant browsers and screen readers. In
Recipe 5.4, I explain how the display property on tables and
table rows can make them completely unusable.

An alternative to changing the table layout is to make it
scrollable. In Example 11-9, you can see how I wrap the table in
a scrollable div . Scrollable elements aren’t keyboard
accessible in all browsers, so you need to put a tabindex="0"
on the div , which makes it focusable. That requires it to have
an accessible name. That’s why you should use aria-
labelledby with a reference to the caption element inside the
table. Alternatively, you can also use aria-label . Finally,
since it’s not valid to label generic elements, add a
role="region" to the div . As a bonus, this also makes it a
landmark.

https://oreil.ly/W6BEr

Other

The examples in this recipe use the thead , tbody , and
tfoot elements. Those don’t affect accessibility, but they can
simplify scanning the code and understanding its structure and
styling. Just ensure that the thead containing the table headers
is the first element in the table (or the second, if there’s a
caption).

You may have noticed that none of the examples in this recipe
uses the rowspan and colspan attributes. Adrian Roselli
advises avoiding spanning table headers, because screen
readers do not support them well.

11.3 Add Interactive Elements

Problem

Tables sometimes contain interactive elements. Since users can
access them not only by interacting with cells and rows directly
but also by tabbing, the same rules apply to them as to any
other interactive element: they must be focusable, labeled, and
clearly identifiable. If that’s not the case, keyboard users may be
unable to access them and screen reader users unable to
identify them.

https://oreil.ly/80jBz

Solution

Add buttons with unique labels, as shown in Example 11-10.

Example 11-10. Each row containing a details button

<table>

 <caption>Scores Group A</caption>

 <thead>

 <tr>

 <th>Name</th>

 <th>Score</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <th id="name1">Michael</th>

 <td>27</td>

 <td>

 <button id="details1" aria-labelledby="de

 </td>

 </tr>

 <!-- … -->

 </tbody>

</table>

A reference to itself and the column header

https://calibre-pdf-anchor.a/#a2307

Label input fields even if they don’t have visible labels, as
shown in Example 11-11.

Example 11-11. Each row containing an input field

<table>

 <caption>Scores Group A</caption>

 <thead>

 <tr>

 <th>Name</th>

 <th id="score">Score</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td id="name1">Michael</td>

 <td><input type="text" aria-labelledby="nam

 </tr>

 <!-- … -->

 </tbody>

</table>

A reference to itself and the column header

Use a link or a button and CSS to create clickable rows, as
shown in Example 11-12.

https://calibre-pdf-anchor.a/#a2310

Example 11-12. Clickable rows

<table>

 <caption>Total scores Group A</caption>

 <thead>

 <tr>

 <th>Name</th>

 <th>Q1</th>

 <th>Q2</th>

 <th>Q3</th>

 <th>Q4</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <th scope="row">Michael</th

 <td>47</td>

 <td>28</td>

 <td>91</td>

 <td>65</td>

 </tr>

 <!-- … -->

 </tbody>

</table>

<style>

 table {

 overflow: hidden;

 }

 tr:has(a):is(:hover, :focus-within) {

 background: #eee;

 }

 td {

 position: relative;

 }

 table a::before {

 content: "";

 cursor: pointer;

 position: absolute;

 inset: 0;

 width: 100vw;

 z-index: 1;

 }

</style>

Cut off overflowing clickable areas.

Highlight tables containing a link visually on hover or
when the link is focused.

Create a new stacking context for every <td> ; necessary
for Safari because it doesn’t support position:

relative on <tr> .

Put the pseudo element on top of the containing cell.

Make the pseudo element span the entire row (and
more). The overflow:hidden declaration on the
<table> makes sure there’s no horizontal scrolling.

Discussion

Tables sometimes contain interactive elements like buttons that
allow users to show details, delete rows, or perform other
actions. Using these doesn’t necessarily imply that the
complexity of the table itself has to increase. Sara Higley
explains that you don’t necessarily have to turn your table into
a complex grid. You can stick to the native table element, but
you must ensure these elements are also accessible and
identifiable outside the table context.

Let’s say you have a table with 50 rows, with an option to show
more details for each row. There are thus 50 buttons labeled
“Details.” If you use table navigation keys with a screen reader
to navigate inside the table, it’s easy to understand to which
row each button refers from context. But, if you use the Tab
key instead and jump from button to button, you’ll hear

https://oreil.ly/XJ_Ib

“Details” 50 times without any reference to the corresponding
row. In Example 11-10, you see one way of addressing that
issue. Each button is labeled by itself and a cell that identifies
the row clearly—in this case, the player’s name. The element
must reference itself to maintain its original label because
aria-labelledby overrides the accessible name from the
button’s content. Instead of just “Details,” the screen reader
announces, “Details Michael.”

You can use the same technique if your cells contain input fields
without labels. The input elements in Example 11-11 refer to an
identifier in the same row and the column’s label. The
accessible name of each input is “[name] score.”

Another common issue comes from trying to link entire rows.
Putting a click event on each table row works for pointer and
touch users. However, keyboard and screen reader users won’t
be able to identify and activate the row because it’s not an
interactive element. You can use the block-link technique
introduced in Recipe 3.8, as shown in Example 11-12. This
solution is almost perfect, but due to a bug in Safari, it’s
impossible to solve that issue entirely without a little help.
Safari doesn’t support position: relative; on table rows.
That’s why you must position the pseudoelement relative to the
containing cell and make it span the entire screen. To avoid

https://oreil.ly/HsnjA

horizontal scrolling, the <table> needs overflow:
hidden; .

11.4 Sort Columns

Problem

When you allow users to sort columns in tables, you have to
ensure several things to enable the feature for everyone:

The sort button is an actual <button> element.
Columns communicate how they’re sorted in machine- and
human-readable ways.
Sorting provides semantic and visual feedback.

If you don’t, you’re making this valuable feature harder or even
impossible for keyboard and screen reader users.

Solution

Add buttons for sorting to your column headers, as shown in
Example 11-13.

Example 11-13. A table with buttons for sorting

<div role="status" class="visually-hidden"></div>

<div role status class visually hidden ></div>

<table>

 <caption>Scores Group A</caption>

 <thead>

 <tr>

 <th>

 <button class="sort">

 Name

 <svg width="13" viewBox="0 0 126 171" a

 <path d="M62.7 3.9 6 70l114-.5z"/>

 <path d="M63 166.5 6 100.6h114z"/>

 </svg>

 </button>

 </th>

 <th>

 <button class="sort">

 Score

 <svg width="13" viewBox="0 0 126 171" a

 <path d="M62.7 3.9 6 70l114-.5z"/>

 <path d="M63 166.5 6 100.6h114z"/>

 </svg>

 </button>

 </th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>Michael</td>

 <td>27</td>

 </tr>

 <!-- … -->

 </tbody>

</table>

<style>

.sort {

 all: unset;

 display: flex;

 gap: 0.4rem;

 align-items: center;

}

.sort path {

 fill: transparent;

 stroke: currentColor;

 stroke-width: 12;

}

[aria-sort="ascending"] path:first-child {

 fill: currentColor;

}

[aria-sort="descending"] path:last-child {

 fill: currentColor;

}

</style>

y

Button for sorting

An SVG file containing triangles pointing up and down

Removes default button styles

Fills the up-pointing triangle

Fills the down-pointing triangle

Inform users how tables are sorted by using a live region and
ARIA attributes, as shown in Example 11-14.

Example 11-14. Logic for sorting tables

const table = document.querySelector("table");

const liveRegion = document.querySelector("[role=

let toSort;

let direction = "ascending";

table.addEventListener("click", (e) => {

 const button = e.target.closest("thead button"

 if (button) {

 const cell = button.parentNode;

 const tbody = table.querySelector("tbody");

y q y (y);

 const rows = tbody.querySelectorAll("tr");

 toSort = [];

 getRows(cell, rows);

 updateButton(cell);

 sortRows(rows);

 updateLiveRegion();

 }

});

const getRows = (cell, rows) => {

 const index = [...cell.parentNode.children].ind

 for (let i = 0; i < rows.length; i++) {

 const row = rows[i];

 const cells = row.querySelectorAll("td");

 toSort.push([cells[index].innerText, row.clon

 }

};

const sortRows = (rows) => {

 toSort.sort(function (a, b) {

 const comp = a[0].localeCompare(b[0], "en", {

 return comp;

 });

 if (direction === "descending") {

(g) {

 toSort.reverse();

 }

 for (let i = 0; i < rows.length; i++) {

 const row = rows[i];

 row.parentNode.replaceChild(toSort[i][1], row

 }

};

const updateButton = (cell) => {

 const sortedColumn = table.querySelector("[aria

 if (sortedColumn && sortedColumn !== cell) {

 sortedColumn.removeAttribute("aria-sort");

 }

 direction =

 cell.getAttribute("aria-sort") === "ascending

 cell.setAttribute("aria-sort", direction);

};

const updateLiveRegion = () => {

 liveRegion.textContent = `Sorted ${direction}`

 setTimeout(() => {

 liveRegion.textContent = ``;

 }, 1000);

};

};

Gets all values of the current column and saves them in
an array

Puts the aria-sort attribute on the table header of the
sorted column and removes the attribute if it’s present in
another column

Sorts and reorders the rows

Updates the live region, then clears it after one second

Discussion

This recipe contains a simple solution for sorting and
reordering rows in a table. You can use it as is or replace it with
more sophisticated logic—that doesn’t matter. What’s important
is what happens before and after sorting.

To inform users that a column is sortable, you need a button
and a visual indicator like an icon. Don’t put the click event on
the table header directly because that would make sorting
inaccessible to keyboard users. You need an interactive element
like a button. The button doesn’t just make it accessible to
everyone—it also indicates to blind users that the column can

be sorted. A simple label like “Name” or “Score” that describes
the column is sufficient; you don’t need additional text to
indicate that the columns are sortable. For sighted users, you
can use an icon. A well-recognized symbol for sorting is arrows
or triangles that point up and/or down, as shown in Figure 11-3.

Figure 11-3. Triangles indicate that these columns can be sorted

When the user clicks the button, you must inform them in a
human- and machine-readable way that the rows have been
sorted. You can change the icon’s styling, to indicate ascending
or descending order, as shown in Figure 11-4. For screen
readers, put the aria-sort attribute on the <th> and set the
value either to ascending or descending. To avoid confusion,
remove the attribute when the user clicks another column.
Avoid verbosity by not changing the button’s label to something
like “Score (sorted descending),” because the aria-sort
attribute already provides that information.

Figure 11-4. A filled triangle indicates a column sorted in descending order

Setting the attribute doesn’t trigger any announcement in most
screen readers. It informs users about the sorted column only
when they encounter it. Using a live region is one way of telling
screen reader users that sorting was successful. With each click,
you change the value of the live region to sorted ascending or
sorted descending. Clear the content of the live region again
after about a second because there’s no announcement if the
user sorts another column in the same direction, and the
region’s content doesn’t change.

See Also

“Uniquely Labeling Fields in a Table” by Adrian Roselli
“Sortable Table Columns” by Adrian Roselli
“Inclusive Components—Data Tables” by Heydon Pickering

https://oreil.ly/ys0Fo
https://oreil.ly/R86XD
https://oreil.ly/9_X45

Chapter 12. Creating Custom
Elements

Web components are a set of web platform APIs that allow you
to build your own fully featured DOM elements.

Being able to create custom elements to build interactive
websites natively is exciting, but it also introduces new
accessibility issues. You must be aware of the limitations and
opportunities of custom elements and their related APIs. With
the right architecture and enough planning, web components
can encourage an accessibility-first development mindset and
create great experiences. They can also break accessibility
inherently, if used without caution.

12.1 Working with IDs

Problem

It’s impossible to reference an element from Light DOM in
Shadow DOM, or vice versa, using the id attribute. If you’re
not aware of this limitation and try to create these references
anyway, the broken relation can affect users:

https://dom.spec.whatwg.org/

Skip links may not work, making navigation harder.
Form elements may not have proper labels, making it harder
for screen reader users to distinguish them.
ARIA references may break, resulting in missing information
or feedback for screen reader users.

Solution

In a form, put both the label and the form field in Light DOM or
both in Shadow DOM, but don’t mix the two contexts, as shown
in Examples 12-1 and 12-2.

Example 12-1. The label and input field are in Light DOM

<label for="email">E-Mail</label>

<the-input>

 <input type="email" id="email" />

</the-input>

<script>

 class TheInput extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({ mode: "open" });

 this.shadowRoot.innerHTML = `<slot></slot>

 }

 }

 customElements.define("the-input", TheInput);

</script>

Example 12-2. The label and input field are in Shadow DOM

<the-input></the-input>

<script>

 class TheInput extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({ mode: "open" });

 this.shadowRoot.innerHTML = `

 <label for="email">E-Mail</label>

 <input type="email" id="email" />

 `;

 }

 }

 customElements.define("the-input", TheInput);

</script>

Discussion

The DOM is a tree-like representation of the HTML on your web
pages. It’s built with all the elements on the page, and its
branches reflect the hierarchy and relationships between them.
It lets you interact with the elements in your HTML document
using JavaScript.

In the context of web components, this DOM tree is called the
Light DOM. Its counterpart, the Shadow DOM, defines
additional smaller DOM trees that you can attach to custom
elements. Elements in those smaller trees are encapsulated,
which means that from the outside (the document), you don’t
have direct access to elements on the inside (called the shadow
root of the web component). That can be useful, but also
limiting.

One of the limitations is that IDs are also scoped within a
shadow root. It’s important to know that, because your web
components usually live inside a document, where they interact
with content from the Light DOM. In Example 12-3, you can see
a simple illustration of the issue. In the document (Light DOM)
is an anchor link that points to an element inside a custom
element (Shadow DOM). When you click the link, the hash in
the address bar of your browser changes, but the link doesn’t

https://oreil.ly/0iGUg

take you anywhere. It’s looking for the ID content, but the
element with that ID doesn’t exist in the document, only in the
shadow root of the component—and that isn’t accessible from
the outside.

Example 12-3. An anchor link in Light DOM trying to point
to an ID in Shadow DOM

Skip to content

<the-component></the-component>

<script>

class TheComponent extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({ mode: "open" });

 this.shadowRoot.innerHTML = `

 <div id="content"></div>

 `;

 }

}

customElements.define("the-component", TheCompone

</script>

This limitation is especially problematic when you need ID
references to add semantic information to elements. The input
in Example 12-4 is not properly labeled, because the ID the label
is trying to reference exists only in the shadow root of the
component.

Example 12-4. A broken label to form control reference

<label for="email">E-mail</label>

<the-input></the-input>

<script>

class TheInput extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({ mode: "open" });

 this.shadowRoot.innerHTML = `<input type="ema

 }

}

customElements.define("the-input", TheInput);

</script>

Implicit labeling (see Example 12-5) doesn’t solve the issue
either. The label element works only on labelable element

descendants. These include button , input (if the type
attribute is not in the hidden state), meter , output ,
progress , select , textarea , and form-associated custom
elements.

Example 12-5. A broken implicit label to form relation

<label>

 E-mail

 <the-input></the-input>

</label>

The ElementInternals API solves the labeling issue partially
because it allows custom elements to participate in form
submissions and validations. The formAssociated = true
property associates the element with a form, and
this.internals gives you access to internal information like
associated labels, as shown in Example 12-6. You could use the
API to provide an accessible name for the input field, but it
doesn’t properly connect the input with the label since clicking
the label doesn’t put focus on the input.

Example 12-6. Getting access to associated labels using the
ElementInternals API

https://oreil.ly/1l5x-

class TheInput extends HTMLElement {

 static formAssociated = true;

 constructor() {

 super();

 this.internals = this.attachInternals();

 this.attachShadow({ mode: "open" });

 this.shadowRoot.innerHTML = `<input type="ema

 }

 connectedCallback() {

 console.log(this.internals.labels[0].textCont

 }

}

customElements.define("the-input", TheInput);

Returns the text content of the first associated label
element

Encapsulation also affects ID references with ARIA attributes,
which I discuss in detail in Recipe 12.2.

https://calibre-pdf-anchor.a/#a2392

In Examples 12-1 and 12-2, you can see two solutions that work
because they establish the relation between two elements only,
either in the context of the Light DOM or in the context of the
Shadow DOM. That may change in the future—but for now,
that’s the only practical advice I can offer you.

12.2 Creating ARIA References

Problem

When working with web components, DOM encapsulation can
become an accessibility issue. As discussed in Recipe 12.1, one
of the reasons is that element IDs are scoped within a shadow
root. That affects ARIA references, which means that users may
miss important information about state, accessible names, and
descriptions if you don’t create those references correctly.

Solution

Create ARIA references in Light DOM or in Shadow DOM only,
but don’t mix contexts, as shown in Examples 12-7 and 12-8.

Example 12-7. The input and the referenced paragraph are
in Light DOM

<label for="date">Birthday</label>

<input type="date" id="date" aria-describedby="hi

<the-hint>

 <p id="hint">

 Format: DD.MM.YYYY

 </p>

</the-hint>

Example 12-8. The input and the paragraph are both in
Shadow DOM

class TheInput extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({ mode: "open" });

 this.shadowRoot.innerHTML = `

 <label for="date">Birthday</label>

 <input type="date" id="date" aria-described

 <the-hint>

 <p id="hint">

 Format: DD.MM.YYYY

 </p>

 </the-hint>

 `;

 }

}

}

customElements.define("the-input", TheInput);

Discussion

The issues with ID references described in Recipe 12.1 also
apply to ARIA references. Attributes like aria-labelledby ,
aria-describedby , aria-controls , aria-owns , and
aria-activedescendant use IDs to reference one or multiple
other elements. A reference breaks if the referenced element
doesn’t exist in the same context (Light DOM or Shadow DOM),
as shown in Example 12-9.

Example 12-9. A broken aria-describedby reference

<label for="date">Birthday</label>

<input type="date" id="date" aria-describedby="hi

<the-hint>

 #shadowRoot

 | <p id="hint">

 | Format: DD.MM.YYYY

 | </p>

 #shadowRoot

</the-hint>

IDREF attribute reflection and ARIA Mixins can solve this issue,
but there are constraints and browser support is currently
insufficient.

ARIA Mixins

Every ARIA content attribute that refers to other elements by
their IDs, such as aria-labelledby , aria-describedby ,
and aria-controls , has a corresponding property called IDL
attribute on DOM elements, which you can set or get via
JavaScript. You can see a list of example properties and their
corresponding reflected content attributes in Table 12-1.

Table 12-1. Examples of reflected ARIA content attributes

IDL Reflected ARIA

ariaActiveDescendantElement aria-activedescendant

ariaControlsElements aria-controls

ariaDescribedByElements aria-describedby

ariaLabelledByElements aria-labelledby

ariaOwnsElements aria-owns

You can find the full list in the ARIA specification.

https://oreil.ly/P-dMV
https://oreil.ly/RMesS
https://oreil.ly/2WOEA
https://oreil.ly/ARIA

Instead of setting the content attribute by referencing an ID
(input.setAttribute('aria-describedby', 'hint')),
you can set the IDL attribute by referencing an array of
elements (input.ariaDescribedByElements =
[hint.shadowRoot.querySelector('#hint')]).

The obvious advantage is that you no longer have to connect
elements via their IDs, as shown in Example 12-10.

Example 12-10. Using IDL attribute reflection to set ARIA
properties

<label for="date">Birthday</label>

<input type="date" id="date">

<the-hint>

 #shadowRoot

 | <p id="hint">

 | Format: DD.MM.YYYY

 | </p>

 #shadowRoot

</the-hint>

<script>

 const input = document.querySelector('#date')

 const hint = document.querySelector('the-hint'

 input.ariaDescribedByElements = [hint.shadowRoo

</script>

p

ARIA Mixins work as a solution only if the referenced element
is in the same shadow root as the target element, or if the
referenced element is in a parent, grandparent, or ancestor
shadow root of the target element. Currently, only Safari and
Chrome Canary support ARIA Mixins.

ARIA Mixins can solve some problems when support improves.
However, they’re not a universal solution due to the previously
mentioned constraints. Unfortunately, they’re the only real
option we have now.

Two proposals could solve this issue for good: cross-root ARIA
delegation and cross-root ARIA reflection.

Cross-root ARIA delegation

The idea behind cross-root ARIA delegation is that you can set a
new option to attachShadow() called
delegatesAriaAttributes (similar to delegatesFocus).
This option enables ARIA attributes set on a custom element to
be forwarded to elements inside of that element’s shadow root.
Example 12-11 demonstrates how cross-root ARIA delegation
could work.

https://oreil.ly/R-RGg
https://oreil.ly/OJvxR

Example 12-11. delegatesAriaAttributes delegates
aria-describedby from the host to elements inside its
shadow tree

<p id="hint">

 Format: DD.MM.YYYY

</p>

<the-input aria-describedby="hint"></the-input>

<script>

class TheInput extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({

 mode: "open",

 delegatesAriaAttributes: "aria-describedby

 });

 this.shadowRoot.innerHTML = `

 <label for="date">Birthday</label>

 <input type="date" id="date" delegatedariaa

 `

 }

}

customElements.define("the-input", TheInput);

</script>

Cross-root ARIA reflection

The idea behind cross-root ARIA reflection is that you can set
new options to attachShadow() for ARIA attributes
(reflects*), similar to delegatesFocus . This lets you make
elements inside a shadow root available as targets for
relationship attributes. Example 12-12 demonstrates how cross-
root ARIA reflection could work.

Example 12-12. reflectariadescribedby reflects aria-
describedby from elements inside a shadow tree to its host

<label for="date">Birthday</label>

<input type="date" id="date" aria-describedby="hi

<the-hint id="hint">

 #shadowRoot

 | <p reflectariadescribedby>

 | Format: DD.MM.YYYY

 | </p>

 #shadowRoot

</the-hint>

Cross-root ARIA delegation and reflection could solve the issues
described in this recipe, but they’re still only proposals and
have not been implemented in any browser yet.

If all your relationships for an element happen exclusively in
Light DOM or Shadow DOM and you don’t try to cross
boundaries, working with ARIA won’t be a problem. That’s not
always possible, though. Without a doubt, this problem needs a
solution. Alice Boxhall describes it well:

The contents of the shadow root are private to its light tree,
but not to users. If a user can perceive a relationship
between elements in the light tree and the shadow tree, but
the author can’t express that relationship in code, then the
encapsulation provided by Shadow DOM is at odds with the
semantics of the page, and so at odds with accessibility. This
is a conundrum for Shadow DOM.

Many experts, like Simon MacDonald, recommend carefully
considering your use case before reaching for the Shadow DOM
by default because eschewing Shadow DOM prevents the issues
described in this recipe and in Recipe 12.1.

12.3 Focus Elements in Shadow DOM

https://oreil.ly/gCnJF
https://oreil.ly/cCaWl

Problem

Nodes within the Shadow DOM of a component are not directly
accessible from the document. Not being able to query them
also means that developers can’t focus them programmatically,
which if you manage focus can break keyboard accessibility.

Solution

You have two options: Access the shadow root (Example 12-13)
or delegate focus (Example 12-14).

Example 12-13. Accessing a node within the shadowRoot of
a web component with an open Shadow DOM

class TheButton extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({ mode: "open" });

 const button = document.createElement("button

 button.textContent = "Click me";

 button.addEventListener("click", () => alert

 this.shadowRoot.append(button);

 }

}

}

customElements.define("the-button", TheButton);

const theButton = document.querySelector("the-but

const button = theButton.shadowRoot.querySelecto

button.focus();

Query the component.

Access the shadow root of the component and query the
element you want to focus.

Focus the element within the shadow root.

Example 12-14. Enabling focus delegation from the host to
its first child

class TheButton extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({

 mode: "open",

 delegatesFocus: true

 });

 const button = document.createElement("button

 button.textContent = "Click me";

https://calibre-pdf-anchor.a/#a2445
https://calibre-pdf-anchor.a/#a2446

;

 button.addEventListener("click", (e) => alert

 this.shadowRoot.append(button);

 }

}

customElements.define("the-button", TheButton);

const theButton = document.querySelector("the-but

theButton.focus();

Enable focus delegation.

Query the component.

Focus the component directly.

Discussion

It’s not impossible to focus an element in Shadow DOM, but if
and how you can do it depends on the mode of the shadow root
you’re attaching and which element you want to focus.

Accessing the shadow root

https://calibre-pdf-anchor.a/#a2453

You can create an open or closed Shadow DOM when you attach
a shadow tree to a node.

Open means that JavaScript from the outside has access to the
nodes inside the Shadow DOM. That’s usually the default. In
Example 12-15, you can see how the shadowRoot property
gives you access to the Shadow DOM tree of the component and
returns 1 for the length of the button node list.

Example 12-15. A component with an open shadowRoot

class TheButton extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({

 mode: "open"

 });

 const button = document.createElement("button

 button.textContent = "Hello World";

 this.shadowRoot.append(button);

 }

}

customElements.define("the-button", TheButton);

const theButton = document.querySelector('the-but

q y (

console.log(theButton.shadowRoot.querySelectorAll

// returns 1

Open shadow root.

In a closed Shadow DOM, the same query throws an error,
because a closed Shadow DOM denies access to the nodes from
the outside, as illustrated in Example 12-16.

Example 12-16. A component with a closed shadowRoot

class TheButton extends HTMLElement {

 constructor() {

 super();

 this._shadow = this.attachShadow({

 mode: "closed"

 });

 const button = document.createElement("button

 button.textContent = "Hello World";

 this._shadow.append(button);

 }

}

customElements.define("the-button", TheButton);

const theButton = document.querySelector('the-but

q y (

console.log(theButton.shadowRoot.querySelectorAll

// returns “Cannot read properties of null (readi

Closed shadow root.

The solution in Example 12-13, which uses the shadowRoot
property to access elements inside the Shadow DOM of a
component, works only with an open shadow root. If that’s the
case, then finding shadow nodes is pretty straightforward.
Instead of querying elements directly on the host component
(theButton.querySelectorAll('button')), you first
access the shadow root, then you query
theButton.shadowRoot.querySelectorAll('button') .

Delegating focus

Another solution that works both with an open and closed
Shadow DOM is focus delegation. When you attach the Shadow
DOM, you can pass the delegatesFocus option in addition to the
mode. When it’s true, you can call focus() on the host itself
without accessing the shadow root, and the first focusable
element in the host’s Shadow DOM receives focus. You can pick
this option only if you strictly want to focus the first focusable
element, as shown in Example 12-14.

If your components have an open shadow root, focus
management is not an issue. If the shadow root is closed, your
only option is to focus the component itself and delegate focus
to the first focusable element.

12.4 Debugging and Testing

Problem

When testing and debugging web components, know the
limitations and peculiarities of your testing tools and
techniques. Some tools don’t support Shadow DOM, which
means that you might miss accessibility bugs when running
automated tests with the wrong tool.

Solution

Before you pick and rely on an automated testing tool, ensure
that it supports web components and Shadow DOM by running
it on an encapsulated test component that includes intentional
bugs.

Manual testing should be the same as you’re used to, but
debugging keyboard accessibility is a bit different when dealing

with Shadow DOM. Use document.
activeEle ment.shadowRoot.activeElement to return the
actively focused element inside the shadow root of a
component, as shown in Example 12-17.

Example 12-17. Accessing the currently focused element
inside a shadow tree

console.log(document.activeElement)

// returns the component itself

console.log(document.activeElement.shadowRoot.act

// returns the element focused inside the compone

Discussion

Many automated testing tools are a collection of JavaScript
functions you run on a page. Most of those rely on querying the
DOM. If a tool doesn’t consider shadow trees, it catches only
accessibility errors in the Light DOM, which may give you a
wrong sense of safety and could affect users. That’s one more
reason not to rely on automated testing only (more on that in
Recipe 13.1).

That doesn’t mean you shouldn’t use automated testing if your
site contains web components. You just have to ensure that the
tool you’re using supports those components. A good way of
doing that is to create a simple component that contains some
accessibility bugs caused by nodes attached to the component’s
Shadow DOM, as illustrated in Example 12-18.

Example 12-18. A component with accessibility bugs for
evaluating automated testing tools

<main>

 <h1 id="h1">Testing a11y bugs in web components

 Jump to elem in shadow

 <some-bugs></some-bugs>

 <h4>Heading</h4>

</main>

<script>

class SomeBugs extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = `

 <style>:host { color: #efefef }</style>

y { } y

 <h4 id="el">Heading</h4>

 <button aria-labelledby="h1"></button>

 <input type="text" id="input">

 `

 }

}

customElements.define('some-bugs', SomeBugs);

</script>

Low contrast

Skipped heading

Missing alt

Broken ARIA reference/missing accessible name

Missing label

If you add this component to a page, your testing tools should
find at least five issues. I picked five popular tools: axe
DevTools, Google Lighthouse, ARC Toolkit, WAVE, and IBM
Equal Access Accessibility Checker (IBM EAAC), and ran them

https://oreil.ly/deque
https://oreil.ly/kVCMZ
https://oreil.ly/w9aCy
https://oreil.ly/PHRhw
https://oreil.ly/9MT8e

against the component in Example 12-18. I’ve summarized the
results in Table 12-2.

Two tools, axe DevTools and Lighthouse, both based on axe-
core, found all five issues. WAVE found no problems in Shadow
DOM, but it reported a broken skip link in Light DOM. IBM
EAAC found all issues except the skipped heading, which can be
considered a bad practice and not a violation. IBM EAAC doesn’t
report that anyway, regardless of the type of DOM. ARC Toolkit
found all issues except the low contrast, and it reported the
broken skip link.

Table 12-2. Comparison of issues reported in different testing tools

Bug axe/Lighthouse WAVE ARC I

Detected
issues

5 1 5 4

Broken
label/input

yes no yes y

Broken
ARIA

yes no yes y

Missing alt yes no yes y

Skipped
heading

yes no yes n

Low
contrast

yes no no y

Broken
anchor link

no yes yes n

I’m not aware if Shadow DOM is on WAVE’s roadmap, but in the
meantime, I’d recommend not using it with sites that contain
web components, or using another tool to double-check.

The same applies to HTML validators. The official W3C
validator, for example, doesn’t support Shadow DOM.

There are no manual testing constraints on using screen
readers, the keyboard, or other assistive technology. The only
particularity with testing focus on elements nested in shadow
roots is that document.activeElement doesn’t return the
currently focused element, as it does in Light DOM. It always
returns the host component. To get the focused element instead,
you must access it through its parent’s shadow root, as shown
in Example 12-17.

12.5 Enforce Best Practices

Problem

If you create customizable components as part of a design
system that others will use, you can ensure a certain baseline
level of accessibility. However, if others implementing your
components don’t know how to use them in an accessible
manner, some of your efforts may become worthless.

Solution

https://oreil.ly/aPN0x

Use web components to enforce best practices, compensate for
issues that developers may cause, and report errors. Here are
some examples:

Progressive enhancement

Design your web components in a way that facilitates
progressive enhancement, as shown in Example 12-19.

Example 12-19. A progressively enhanced disclosure widget

<the-disclosure>

 <p>Here's more content…</p>

</the-disclosure>

<template id="disclosure">

 <button aria-expanded="false">Details</button>

 <div class="content" hidden>

 <slot></slot>

 </div>

</template>

<script>

class TheDisclosure extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({ mode: "open" });

({ p });

 let template = document.getElementById("discl

 let templateContent = template.content;

 this.shadowRoot.appendChild(templateContent.c

 this._attachStyles();

 const button = this.shadowRoot.querySelector

 this._expanded = button.getAttribute("aria-ex

 button.addEventListener("click", this._toggle

 }

 _attachStyles() {

 const style = document.createElement("style"

 style.textContent = `

 [aria-expanded="true"] + .content {

 display: block;

 }

 `;

 this.shadowRoot.appendChild(style);

 }

 _toggle() {

 this._expanded = !this._expanded;

 this.setAttribute("aria-expanded", this._expa

 }

}

}

customElements.define("the-disclosure", TheDisclo

</script>

Clone the template for the component and attach it to the
Shadow DOM.

Add basic styling for the disclosure widget.

Retrieve the button’s expanded state (true or false).

Compensate for issues

Use named slots to enforce a specific DOM order, as shown in
Examples 12-20 and 12-21.

Example 12-20. A card component with three named slots

class TheCard extends HTMLElement {

 constructor() {

 super();

 this.shadow = this.attachShadow({ mode: "open

 this.shadow.innerHTML=`

 <slot name="heading"></slot>

 <slot name="media"></slot>

https://calibre-pdf-anchor.a/#a2524
https://calibre-pdf-anchor.a/#a2526

 <slot name="content"></slot>

 `;

 }

}

customElements.define("the-card", TheCard);

Example 12-21. An image, heading, and content passed to
the card component in that exact order

<the-card>

 <img slot="media" src="image.jpg" width="436" h

 <h2 slot="heading">Heading</h2>

 <div slot="content">

 <p>Content….</p>

 </div>

</the-card>

Error reporting

If mandatory attributes are missing, you can display an error
instead of rendering the component (see Example 12-22).

Example 12-22. This map component shows an error instead
of a map if you don’t provide a label for it

class TheMap extends HTMLElement {

 static observedAttributes = ["title"];

 constructor() {

 super();

 this.attachShadow({ mode: "open" });

 let template = `

 <iframe title="${this.title}"

 width="300" height="200"

 src="https://www.openstreetmap.org/

 `

 if (!this.title) {

 template = 'Please provide a title for this

 }

 this.shadowRoot.innerHTML = template

 }

}

customElements.define("the-map", TheMap);

Discussion

After reading this chapter’s previous recipes, you may think I’m
against the Shadow DOM, but that’s not entirely true. Contrary
to many other opinions you’ll read in discussions about web
components, I don’t believe Shadow DOM is the unique selling
point of web components. It’s just one part of it that can be
useful. How I use web components depends on the specific
problem I’m trying to solve. Sometimes I use Shadow DOM
exclusively. Sometimes, I use it for progressive enhancement.
Sometimes I don’t use it at all.

I don’t believe that web components have been designed with
accessibility in mind, but some of their core concepts encourage
an accessibility-first development mindset.

Progressive enhancement

When you work with web components, you have two contexts:
the page context (Light DOM) and the components context
(Shadow DOM). Content can exist on the page or in the shadow
tree of a component, but you can also pass content from the
page to the component using the slot element, allowing content
to exist in both contexts. The big advantage of slotting content is
that the browser renders it even when JavaScript is disabled.
Web components that use slots have progressive enhancement
at their very core.

The markup of the basic disclosure widget in Example 12-19
consists of two parts: content you pass between the
components’ start and end tags, and a template that takes the
content and mixes it with more HTML from the components’
Shadow DOM. With JavaScript disabled, users only see the
slotted content. With JavaScript enabled, which should be the
default for most users, they see a button they can click to show
and hide the content. An architecture like that makes the
component easy for the developers to use without bothering
them with the complexity that sometimes comes with
progressive enhancement.

Compensating for issues

Another advantage of working with slots is that you can create
multiple named slots and arrange them as you like. Example 12-
20 shows a card component with three slots: heading, content,
and media. In Example 12-21, you see how someone might use
that component. The order of the slotted elements seems
inspired by the card’s typical visual presentation: image first,
followed by heading and text. Starting with the heading would
be better because headings introduce users to new sections or
subsections. Semantically, it doesn’t make sense for the image to
come before the heading that introduces it.

As the component author, you don’t have to worry about the
developer who uses the component picking the wrong order.
What counts is the order in which you arranged the slots inside
the components’ shadow tree. The user gets the order you
decide is best. You can then use CSS to arrange it visually, as
shown in Example 12-23:

Example 12-23. Using CSS to display the image above the
heading and the content

the-card {

 max-width: 25rem;

 display: grid;

 border: 1px solid;

 grid-template-columns: 1rem 1fr 1rem;

}

the-card [slot="media"] {

 grid-column: 1 / -1;

 order: -1;

}

the-card :is([slot="heading"],[slot="content"]) {

 grid-column: 2 / -2;

}

Moves the image visually to the first row within the card.

Error reporting

Attributes provide developers with options to customize web
components. Some attributes may be mandatory for
accessibility. You can add validation to your components to
ensure they’re present, as shown in Example 12-22. The
component renders the interactive map only if there’s a title
attribute, providing an accessible name for the embedded
iframe.

How web components are designed can greatly help create
inclusive experiences, but be aware of the issues Shadow DOM
may cause.

See Also

“Shadow DOM and accessibility: the trouble with ARIA” by
Nolan Lawson
“Web Components Accessibility FAQ” by Manuel Matuzović
“How Shadow DOM and accessibility are in conflict” by Alice
Boxhall

https://oreil.ly/-0LyT
https://oreil.ly/kaIIa
https://oreil.ly/_z6LO

Chapter 13. Debugging Barriers

Understanding what makes an accessible website and knowing
what to look for when implementing it is essential, but it
doesn’t protect you from making mistakes anyway.

Furthermore, you often work with others on a website. The
more people are involved, the easier it is to introduce bugs.
More people from different disciplines means more potential
sources of error.

Automated testing software doesn’t replace manual testing, but
it can help catch low-hanging fruits and find sloppy mistakes.
Paired with debugging tools, they allow you to prepare your
websites for manual testing using keyboards, screen readers,
and other assistive technology.

13.1 Find Accessibility Issues
Automatically

Problem

Looking for accessibility issues by scanning the code manually
is time-consuming, challenging, and error-prone.

Solution

Use automated testing tools to find easily detectable
accessibility issues before you proceed to manual testing. The
code in Example 13-1 includes several accessibility issues for
the purpose of testing.

Example 13-1. Testing demo: Inaccessible sample code in
HTML

<h2 aria-label="Registration">Sign Up</h2>

<form aria-labelledby="h2">

 <input type="text" name="username">

 <button>

 </button>

 <p>

 Disclaimer

 </p>

</form>

You can test the code in Example 13-1 using different browser
extensions. Five popular testing tools are axe DevTools (see

https://oreil.ly/deque

Figure 13-1), Google Lighthouse (see Figure 13-2), WAVE (see
Figure 13-3), ARC Toolkit (see Figure 13-4), and IBM Equal
Access Accessibility Checker (see Figure 13-5).

Figure 13-1. axe DevTools shows the total number of issues

https://oreil.ly/kVCMZ
https://oreil.ly/PHRhw
https://oreil.ly/w9aCy
https://oreil.ly/9MT8e

Figure 13-2. Google Lighthouse gives you a score

Figure 13-3. WAVE shows the number of errors and annotates affected elements

Figure 13-4. ARC Toolkit shows the total number of issues

Figure 13-5. IBM Equal Access Accessibility Checker shows the total number of issues

You can run automated tests in Node.js, as shown in
Example 13-2.

Example 13-2. Sample test for pa11y

pa11y("http://127.0.0.1:8080", {

 runners: ["axe"],

 level: "warning",

 viewport: {

 width: 320,

 height: 480,

 deviceScaleFactor: 2,

 isMobile: true,

,

 },

 actions: ["click element #show", "screen captu

}).then((results) => {

 console.log(results.documentTitle);

 console.log(`Number of issues: ${results.issues

 console.log(results.issues);

});

Discussion

If you look at the code in Example 13-1, how many accessibility-
related issues can you spot? You may find all six bugs, but this
task is much more challenging in a larger and more complex
code base. There are also tests you can perform only with
software, like checking color contrast. That’s where automated
accessibility testing tools can come in handy. They run scripts
that test all elements on the page against certain rules. For
example, the testing tool axe has a rule called “Buttons must
have discernible text” that checks whether elements with the
button role have an accessible name.

Some tools use the same rules as axe, while others have their
own, which are usually very similar but different in certain
aspects. That’s one of many differences you’ll notice comparing
software.

https://oreil.ly/EX0mx
https://oreil.ly/t6OKZ

Automated testing software

I’ve highlighted five tools I’ve used in the past and still use to
give you an idea of how they differ.

axe DevTools

axe DevTools by Deque Systems uses the axe core engine, which
is open source. The extension is available for Chrome, Edge, and
Firefox and adds a new axe DevTools panel to your browser
developer tools. Within that panel, axe reports the total number
of issues, split into critical, serious, moderate, and minor, as
shown in Figure 13-1. Each issue includes details, suggestions
on how to fix the bug, additional learning resources, and
options to highlight and inspect affected elements.

The free version should provide you with everything you need,
but exporting to formats other than JSON, saving, and sharing
are possible only in the paid version.

Lighthouse

Lighthouse by Google is a quality assessment tool built into
Chromium-based browsers. It has audits for performance,
accessibility, progressive web apps, SEO, and more. It uses the
axe core engine, just like axe DevTools, but not all of the rules.

https://www.deque.com/
https://oreil.ly/MwW39
https://oreil.ly/jHNi4
https://oreil.ly/-GiZI
https://oreil.ly/_4JD9
https://oreil.ly/4f0DR

The UI is different, and instead of reporting the total number of
items, it gives you a score between 0 and 100. You can export
results to JSON, HTML, or PDF and share them via a URL if you
connect Lighthouse to a GitHub account.

WAVE

WAVE by WebAIM is a testing tool for Chrome, Firefox, and
Edge that uses its own engine. Unlike other tools, it’s not
integrated into the browser’s developer tools, but adds an icon
to the extensions toolbar and a “WAVE this page” option to the
context menu in your browser viewport. Instead of simply
listing errors, it also annotates affected elements using different
icons, as you can see in Figure 13-3. Besides errors, it also lists
and annotates features like ARIA attributes, and it has a
contrast checking and tweaking tool built-in.

ARC Toolkit

ARC Toolkit by TPGi is a Chrome extension that adds an ARC
Toolkit panel to your browser developer tools. It lists errors,
warnings, and best practices, as shown in Figure 13-4. In
addition to testing, you can highlight certain elements, like
links, images, or buttons, and send the page directly to an
HTML and ARIA validator.

https://webaim.org/
https://oreil.ly/en4It
https://oreil.ly/Q8qV9
https://oreil.ly/H3SWD
https://www.tpgi.com/
https://oreil.ly/PIXXh

IBM Equal Access Accessibility Checker

IBM Equal Access Accessibility Checker by IBM is a testing tool
for Chrome and Firefox that uses its own engine and adds a
new “Accessibility Assessment” panel to your browser
developer tools. It lists errors, warnings, and recommendations
you can store and download as HTML and XLSX, as shown in
Figure 13-5.

Continuous testing

You don’t necessarily have to open the browser to run
automated tests on your websites. Pa11y is particularly
interesting because it allows you to automate things like
resizing the browsers, performing actions on the site before you
run tests, and taking screenshots. In Example 13-2, you can see
an example config that uses axe for testing, resizes the
viewport, clicks an element with the ID show, takes a
screenshot, runs tests, and then returns an object with the
results.

You can run tests on the command line:

Lighthouse CLI
axe CLI
pa11y CLI

https://oreil.ly/KbpWR
https://oreil.ly/b09oI
https://pa11y.org/
https://oreil.ly/u6vZu
https://oreil.ly/eV3oc
https://oreil.ly/LY2qX

You can use some testing scripts in Node.js:

Lighthouse
axe-core
pa11y

There are also tools you integrate into your build pipeline:

Lighthouse CI
Lighthouse GitHub Action
Pa11y CI

Features

There are hundreds of tools you can pick from. Which tools you
decide to use depends on several factors:

Guidelines

Most tools support the latest version of the WCAG, but
depending on the organization or government you’re working
for, you may need to test against other rules.

Software environment

Some tools support only specific browsers and operating
systems.

https://oreil.ly/NwHiz
https://oreil.ly/LPO7J
https://oreil.ly/axe-core
https://oreil.ly/pa11y
https://oreil.ly/q2VHG
https://oreil.ly/_ag5-
https://oreil.ly/hLvJ9

Who’s testing?

Depending on who’s performing the test (developers, designers,
QA, etc.), the UI and feedback the software gives should be more
or less technical.

Sharing and comparing

Do you need to compare test results with previous tests? Do you
need an easy way to share results with stakeholders?

Error reporting

Tools handle feedback and error reporting differently. Some list
only errors; others also annotate affected elements.

Report format

Some tools allow you to export results as HTML, CSV, JSON, etc.

Issue filing

Do you need the ability to file issues in a ticketing system
directly from within the tool?

Personal preference

Some details in the UI and UX may work better than others for
you.

The WAI provides more factors you may want to consider when
picking testing tools in their guide “Selecting Web Accessibility
Evaluation Tools”.

Try the extensions listed in this recipe and see what works best
for you.

Strengths and limitations

Automated accessibility testing tools are perfect for quickly
catching low-hanging fruits, those types of errors that are
detectable programmatically. However, accessibility is about
humans and human perception, context, and nuance—things
you can’t test automatically.

Automated testing is a significant first step before you proceed
to manual testing. It’s also helpful in repeating tests at different
stages in a site’s lifecycle. Another strength is that you don’t
necessarily need accessibility or development knowledge to run
and understand tests. You must interpret the results correctly.
Explanations and additional learning resources linked in most
tools can help you.

https://oreil.ly/xOls_

Automated accessibility testing software doesn’t catch all of the
accessibility errors, which means that 0 errors reported or a
perfect score don’t mean your site is accessible. It suggests only
that you have a good baseline for testing with the keyboard,
screen readers, and other assistive technology.

13.2 Explore the Accessibility Tree

Problem

When you test a page for accessibility issues with automated or
manual testing tools, it’s not always clear what the source of a
particular bug or behavior is. Sometimes, you must dig deeper
and explore the data the browser sends to assistive technology
to find the root cause of an issue.

Solution

Analyze the accessibility tree using built-in browser tools. Use
the simple code snippet in Example 13-3 to analyze its
representation in the accessibility tree.

Example 13-3. Random sample code in HTML

<article>

https://oreil.ly/IHQWr

 <h2>About</h2>

 <button aria-expanded="true">Details</button>

 Website

</article>

You can view the representation of the code in Example 13-3 in
the page’s accessibility tree using your browser’s developer
tools.

In Chromium-based browsers like Chrome, Edge, or Polypane,
you can select a node in the Elements panel and analyze it by
navigating to the Accessibility pane, as shown in Figure 13-6.

Figure 13-6. A heading selected in the Elements panel and its representation in the
accessibility shown in the Accessibility pane

By checking the Enable full-page accessibility tree option in the
Accessibility pane, you can enable the full accessibility tree. A

new button in the Elements panel lets you switch between the
DOM and the accessibility tree, as shown in Figure 13-7.

Figure 13-7. DevTools showing the accessibility tree instead of the DOM

Firefox shows the full accessibility tree by default in its
Accessibility panel, as shown in Figure 13-8.

Figure 13-8. Firefox DevTools showing the full accessibility tree

Discussion

When you create an .html file and write HTML, you “only”
create a file composed of text and special characters. However,
when you open it in the browser, the HTML parser takes your
text file, analyzes it, and constructs a tree-like representation of
it, the DOM. The DOM is a programming interface for web
documents that represents the document as nodes and objects.
It contains all the information that makes up the page and
provides an API to manipulate it.

Derived from the DOM, there is another tree—the accessibility
tree. It’s similar to the DOM but simpler, because it contains
only semantic information in the form of accessible objects that
express the structure of the UI. There are different accessibility
APIs on each operating system that take that information and
pass it to assistive technology, like screen readers.

An object within this tree typically contains its role, name, and
state. As you can see in all figures in the Solution section,
especially in Figure 13-7, there are several details the
accessibility API gets from the accessibility tree about the <h2>
and passes on to screen readers.

The role of the <h2> is heading.

https://oreil.ly/eLUmD
https://oreil.ly/3Hx0g

Its accessible name is About.
It has a parent article with no accessible name.
It has two siblings: a focusable element with the button
role, Details as its accessible name, and the expanded state
set to true, and another focusable element with the link
role and Website as its accessible name.

Access to that information before it’s passed to assistive
technology via accessibility APIs proves helpful for debugging.

In Chromium-based browsers, you can select a node in the DOM
and analyze the DOM tree in the accessibility pane, as shown in
Figure 13-6. That’s fine, but you get a better developer
experience by switching to the full accessibility tree, as shown
in Figure 13-7. Instead of showing a part of the tree, you can
analyze the tree as a whole and switch back and forth between
it and the DOM. You also get nicer syntax highlighting. In
Firefox, you always get the full accessibility tree by default (see
Figure 13-8).

13.3 Debug Roles, Names, Properties,
and States

Problem

Debugging HTML is often a matter of manually inspecting code
using developer tools and analyzing the DOM. That works well
when the code is simple, but with an increased amount of
attributes and relations to other elements, it gets more
challenging. That’s especially true when you work with ARIA
attributes that overwrite native semantics and add properties
or states to elements. Complex markup makes it often
impossible to tell why a given solution doesn’t work as
expected.

Solution

Learn about an element’s accessibility features by highlighting
it in your browser’s developer tools, as shown in Figures 13-9
and 13-10.

Figure 13-9. A tooltip in Chrome showing the element’s role and an empty name

Figure 13-10. A tooltip in Firefox showing that element’s role is “textbox” and that it
must be labeled

Find information about roles, names, properties, and states in
developer tools accessibility panels, as shown in Figure 13-11.

Figure 13-11. The Accessibility panel in Chrome listing ARIA attributes and computed
properties

Use the code in Examples 13-4 and 13-5 for debugging in this
recipe.

Example 13-4. Demo debugging code: Complex labeling on
an input field

<h2 id="headin">Who are you?</h2>

<label for="username" style="display: none">Usern

<input type="text"

 id="username"

 aria-labelledby="heading"

y g

 aria-invalid="true">

Typo in the ID, a g is missing

Hidden label

Reference to the heading

Example 13-5. Demo debugging code: Visually identical
buttons, but only one is a real button

<style>

 .btn {

 display: inline-block;

 border: none;

 line-height: 1;

 font-size: 1rem;

 font-family: inherit;

 text-decoration: none;

 background: #123456;

 padding: 1em;

 }

 .btn, .btn:is(:link, :visited) {

 color: #fff;

 }

https://calibre-pdf-anchor.a/#a2650

 :focus-visible {

 outline: 4px solid #123456;

 outline-offset: 2px;

 }

</style>

<button class="btn">

 Button 1

</button>

 Button 2

<div class="btn">

 Button 3

</div>

<div class="btn" tabindex="0">

 Button 4

</div>

<div class="btn" role="button" tabindex="0">

 Button 5

</div>

A real button

A link that looks like a button

A div that looks like a button

A focusable div

A focusable div with a button role

Discussion

The first rule of ARIA use says that “If you can use a native
HTML element or attribute with the semantics and behavior you
require already built in, instead of re-purposing an element and
adding an ARIA role, state, or property to make it accessible, then
do so.” In other words: avoid using ARIA, unless you can’t
achieve the desired result with HTML only. One of the reasons
this rule exists is that your code gets significantly more complex
once you add ARIA roles, properties, and states. However, you
often need ARIA to make elements semantically richer or to
compensate for the lack of support for native elements or
attributes.

Tooltips

To simplify debugging, browsers offer several ways of accessing
semantic information. In Chrome, you can use the inspection

https://oreil.ly/7Fw6j

tool to show a tooltip when you hover over an element. Besides
other information, the tooltip lists the element’s role and the
accessible name, as shown in Figure 13-9. Firefox shows the
role and name or an error message if there’s no name, as you
can see in Figure 13-10. To get this information, you must select
the Accessibility panel first.

Detailed access to roles, names, properties, and
states

If you want to dig deeper, switch to the Accessibility panel in
Firefox or the Accessibility pane in Chrome. In Figure 13-11,
you can see how Chrome lists all ARIA attributes associated
with the element. The computed properties section summarizes
the element’s role, name, properties, and states. There’s a lot of
helpful information you can extract about the input:

There’s an ARIA reference, but there’s something wrong with
it.
The name’s coming from a label element, and it’s empty.
It’s a required field.
It contains invalid data.

Here’s another example: Figure 13-12 shows five identical
buttons. They look the same, but they behave differently and

communicate different information. In addition to testing with
a keyboard or screen reader, you can use the Accessibility panel
to learn whether they meet the essential accessibility criteria
for a button listed in Recipe 4.1.

Figure 13-12. The buttons look the same, but they don’t behave the same

If you debug the buttons (for the code, see Example 13-5), you
get the following results:

Button 1: Name: “Button 1,” Role: button, Focusable: true
Button 2: Name: “Button 2,” Role: link, Focusable: true
Button 3: Name: “Button 3”, Role: generic
Button 4: Name: “Button 4,” Role: generic, Focusable: true
Button 5: Name: “Button 5,” Role: button, Focusable: true

With Button 3, you can see that debugging in the Accessibility
pane is not always about the information displayed but also
about information missing. It doesn’t say, “Focusable: false,” it
omits the property entirely, which means that this button is not
focusable.

13.4 Visualize Tabbing Order

Problem

Visual and DOM order are sometimes so heavily out of sync,
that debugging using a keyboard or a similar device becomes
daunting. Also, when your job is to communicate tabbing order
bugs to others, verbalizing the underlying problem with only
text can be challenging.

Solution

Use tools to visualize tabbing order, as shown in Figure 13-13.

Figure 13-13. The Polypane browser visualizing tab stops

Discussion

The code in Example 13-6 looks harmless: it creates a grid and
explicitly places some links in it. When you tab through the
page, you’ll notice that the order in which items receive focus
isn’t predictable.

NOTE

Recipe 6.5 describes why that can be problematic, and it explains that DOM order
should match the visual order as well as possible.

Example 13-6. A grid of linked images

<style>

 .grid {

 display: grid;

 grid-template-columns: repeat(3, 12rem);

 grid-auto-rows: 100px;

 grid-gap: 1rem;

 grid-auto-flow: dense;

 }

 .link1, .link3 {

 grid-row-end: span 3;

 }

 .link4 {

{

 grid-column: span 2;

 }

 .link5, .link9 {

 grid-row: span 2;

 }

 .link7, .link8 {

 grid-column: 2 / span 2;

 }

 .grid img {

 object-fit: cover;

 width: 100%;

 height: 100%;

 }

</style>

<div class="grid">

 <img src="/image_1.jpg" alt="Train on a track

 <img src="/image_2.jpg" alt="Cold juicy beve

 <img src="/image 3.jpg" alt="Yellow floating

g g _ jpg g

 <img src="/image_4.jpg" alt="Yellow leaves on

 <img src="/image_5.jpg" alt="Stacked boxes of

 <img src="/image_6.jpg" alt="Close-up of a ho

 <img src="/image_7.jpg" alt="Sunsetvibes in B

 <img src="/image_8.jpg" alt="Slices of apple

 <img src="/image_9.jpg" alt="A gecko climbing

</div>

You can show the tab order and sometimes even automate
tabbing by using a tabbing order visualization tool. Figure 13-13
shows the focus outline option in the Polypane browser. It
annotates each interactive element with a number when you
activate it and connects them in the order of the tab sequence.

https://polypane.app/

Other browsers or extensions offer similar functionality:

“Show source order” in Chrome’s Accessibility pane.
“Show tabbing order” in Firefox’s Accessibility panel.
Tab stops option in Accessibility Insights’ Ad hoc tools.
Tab order option in ARC Toolkit’s Highlight section.
Keyboard Checker Mode in IBM’s Equal Access Accessibility
Checker.
The reading order bookmarklet by Adrian Roselli for all
browsers that support bookmarklets, including Safari.

This feature can be convenient, especially when describing the
problem to others.

13.5 Emulate Color Deficiencies,
Reduced Motion, and More

Problem

Operating systems provide users with more and more options
to tweak certain parts of their setup according to their needs.
With CSS, HTML, and JS, you can query some of those user
preferences and adapt your UIs accordingly. To do that and test

https://oreil.ly/1P_LC

your changes, you must apply these settings to your operating
system.

Changing how the whole operating system looks and behaves to
test a web UI can be annoying and disturbing because some
settings are pretty invasive regarding the user experience. Also,
not all operating systems support all settings, so testing your
adaptions can be impossible.

Solution

Emulate reduced motion and other settings in your browser
developer tools, as shown in Figures 13-14, 13-15, and 13-16.

Figure 13-14. Rendering tab in Chrome DevTools

Figure 13-15. “Override user preferences” popover in Safari’s Web Inspector

Figure 13-16. Simulators in the Polypane browser

Discussion

In Recipe 5.2, you’ve learned that respecting user preferences is
one of the most critical aspects of designing and building
inclusive UIs. Operating systems offer different options to tweak
UIs and behavior according to their needs. For example, users
can reduce the motion in UIs on Windows, macOS, iOS, and
Android. In your CSS, you can query those settings and remove
or minimize onscreen movement accordingly. To test your
changes, you can find the appropriate settings in your OS and
activate them. It’s wise to test your code using the actual native
feature in the OS and not to rely only on emulation, but having
to constantly switch between the browser and OS settings
during development can be annoying.

Luckily, some browsers offer options to emulate specific user
preferences. Chromium-based browsers provide the most
options, as you can see in Figure 13-14. When you select
“prefers-reduced-motion: reduce,” the browser acts as if the OS
setting is active as long as your developer tools are open. That
enables you to switch between different modes quickly. In
Safari, you can press the “Override user preferences” button in
the Elements panel to emulate the preference, as shown in
Figure 13-15.

Aside from reduced motion, you can also emulate other
settings:

Chrome:

Reduced motion
Forced colors
Contrast
Color scheme
Reduced transparency

On top of that, you can also emulate print stylesheets and
simulate different vision deficiencies in Chrome’s Rendering
panel.

Safari:

Reduced motion
Contrast
Color scheme
Print styles (Elements panel)

Firefox:

Firefox has no option for emulating reduced motion. Still, you
can simulate several color deficiencies in the Accessibility panel

and the print media type and color scheme options in the
Inspector panel.

In the Colors section of the browser settings, you can define a
custom forced-colors theme under Manage colors.

Polypane:

Polypane, the browser for web developers, offers the most
accessibility emulation and simulation options. In addition to
everything all the other browsers can do, you can simulate
things like bright sunshine, a dimmed screen, or dyslexia, as
shown in Figure 13-16.

Please note that all simulations and emulations can only give
you a vague idea of how people perceive your content. You
shouldn’t rely solely on them, but test with real users.

All these settings are a great time-saver and helpful for
development purposes, but they don’t replace testing. You
should also test your conditional code in different operating
systems with the actual settings.

13.6 Write Custom Debugging Rules

https://oreil.ly/d6y6i

Problem

There are situations where you can’t use any of the tools
mentioned in the previous recipes:

You can’t access developer tools in the browsers and devices
you’re testing with.
You are not allowed to install third-party tools in your
browser.
Extensions may not meet your company’s security guidelines.
Features and settings in your browser are limited due to
corporate regulations.
Specific extensions are not available for your OS or browser.

Solution

Use or create tests and simulations written in CSS or JavaScript,
as shown in Examples 13-7 through 13-12.

Example 13-7. Using axe core directly in your website

<script src="https://unpkg.com/axe-core@4.8.2/axe

<script>

const errors = []

 axe

 .run()

()

 .then(results => {

 if (results.violations.length) {

 results.violations.forEach(error => {

 errors.push({

 id: error.id,

 description: error.description,

 help: error.help,

 nodes: error.nodes

 })

 });

 console.error('Accessibility issues found'

 console.table(errors)

 }

 })

 .catch(err => {

 console.error('Something bad happened:', err

 });

</script>

You can also write tests in CSS.

Example 13-8. Highlighting images without alt attribute in
CSS

img:not([alt]) {

 border: 4px solid red;

}

Example 13-9. Testing whether a natural language is set on
the root element

html:not([lang]),

html[lang*=" "],

html[lang=""] {

 border: 10px solid red;

}

Example 13-10. A class in CSS that removes all color from
the page

.a11y-tests-grayscale {

 filter: grayscale(100%) !important;

}

Example 13-11. A class that blurs the whole page

:root {

 --a11y-blur: 2px;

}

.a11y-tests-blur {

 filter: blur(var(--a11y-blur)) !important;

}

You can also write your own tests in JavaScript.

Example 13-12. A script that checks the presence of
elements that match certain selectors

const check = [

 "a:not([href])",

 'a[href="#"]',

 "a[tabindex]",

 '[role="menuitem"]',

 '[role="button"]',

 '[role="link"]',

 "label a",

 "button a",

 "a button",

 "section > section",

];

let results = 0;

console.log(`%cStuff that probably shouldn’t be p

for (el of check) {

 if (document.querySelector(el)) {

 results++;

 console.warn(`${results}. Found “${el}”. Plea

 console.log(document.querySelector(el));

g(q y ());

 }

}

if (!results) {

 console.info("Nothing found, looks good!");

}

Discussion

Browsers have many debugging and testing features built-in,
but third-party tools bring a lot of additional functionality that
the browser may not provide. They make my professional life
much easier, but some developers are in a situation where they
can’t choose the browser they develop with or they don’t have
the privileges to install extensions.

Using axe locally

Luckily, some testing tools come in different flavors. The axe
testing tool, for example, is available as a browser extension, a
command-line interface, a GitHub action, and a standalone
JavaScript file that you can include in your website.

https://oreil.ly/O95MB
https://oreil.ly/C9eV0
https://oreil.ly/axe-core

WARNING

Don’t include axe in production websites; use it only in local development
environments because it can impact performance negatively.

In Example 13-7, you can see that after embedding the file, you
can access the axe object, which contains comprehensive
information about the rules it runs. You can list all errors, if
any, by accessing the violations field.

Testing with CSS

Another exciting way of testing accessibility without a
dependency on third parties is writing testing rules in CSS. You
could create a CSS file called accessibility-tests.css and include it
in your local development environment. In this file, you use
selectors that match elements that violate accessibility rules. In
Example 13-8, every image that doesn’t have an alt attribute,
and thus no accessible name, shows a red border. In
Example 13-9, the html element shows a red border if it has no
or an empty lang attribute. Those are just examples; there’s a
lot more you can do with CSS. The a11y.css project by Gaël
Poupard illustrates that well. It’s an extensive set of CSS testing
rules available in nine languages.

https://oreil.ly/Aghfp

Simulating with CSS

CSS is great for finding bugs, but you can also use it for basic
simulations. The rule in Example 13-10 uses the filter property
in CSS to simulate the absence of color. In Example 13-11, the
blur() function simulates blurred vision. You can adjust the
amount of blurriness by changing the --a11y-blur custom
property.

Testing with JS

Testing tools usually only report accessibility violations
according to specific guidelines. Some also have additional rules
that test UIs for best practices, but these rules are general and
don’t know anything about your project and setup. You can use
custom JavaScript to test for additional code patterns or rules
tailor-made for your projects. The code in Example 13-12 looks
for certain elements on the page that aren’t necessarily
breaking any WCAG rules but still look suspicious. For example,
a link without an href or just a simple # as the href value is
usually an indicator the button element should be used instead.

In Chrome, you can save those snippets and run them by using
shortcuts. Go to the Sources panel in DevTools and find the
Snippets pane. Click “new snippet” and name it. Add your JS

https://oreil.ly/aIQ3N

code to the snippet and run it by pressing Cmd/Ctrl + Enter (see
Figure 13-17). You can call the script anywhere in DevTools by
pressing Cmd/Ctrl + P and typing ![name] , e.g., !mytests .

Figure 13-17. The Snippets pane in Chrome DevTools

You can check all kinds of things. For example, I have a snippet
named doc info, that gives me general information about a
document (see Figure 13-18).

https://oreil.ly/docinfo

Figure 13-18. The console in Chrome DevTools after I ran the doc info script

CSS and JS can be powerful little helpers, but custom rules in
CSS or JS don’t replace algorithmic simulation or real user
testing.

See Also

“Full accessibility tree in Chrome DevTools” by Johan Bay
“Accessibility APIs: A Key To Web Accessibility” by Léonie
Watson and Chaals McCathie Nevile
Elements Tab in Safari
Accessibility overview in Polypane
“52 Accessibility Bookmarklets You Can Use For A11Y
Testing” by Raghavendra Satish Peri

https://oreil.ly/Fxl5x
https://oreil.ly/sjRZZ
https://oreil.ly/7e1iv
https://oreil.ly/0_0F8
https://oreil.ly/-fr1D

“Generating Accessibility Test Results for a Whole Website
With Pa11y CI” by Matthias Ott

https://oreil.ly/IOyEy

Index

A

<a> element, Solution 1: Wrapping all elements in an <a>
element, Solution 1: Wrapping all elements in an <a>
element-Solution 1: Wrapping all elements in an <a> element
absolute units, Absolute units
accessibility tree

exploring, Problem-Discussion
hiding elements from, Visible but semantically hidden

Accessible Perceptual Contrast Algorithm (APCA), Color
contrast
Accessible Rich Internet Applications (see ARIA)
accordions, Discussion-Navigation
affordances, Use well-established patterns
alt attribute, Solution-Discussion
animation

motion sensitivity, When animation goes bad
reducing motion, Reduced motion-Reduced motion
slide-in animations, Problem-Testing reduced motion
styling, Problem-Reduced motion
submenus, Animation

APCA (Accessible Perceptual Contrast Algorithm), Color
contrast
ARC Toolkit, Discussion, ARC Toolkit
ARIA (Accessible Rich Internet Applications), Discussion

ARIA Mixins, ARIA Mixins-ARIA Mixins
Authoring Practices Guide, The tabindex attribute,
Discussion
avoiding menu confusion with, Solution
creating references, Problem-Cross-root ARIA reflection
cross-root ARIA delegation, Cross-root ARIA delegation
cross-root ARIA reflection, Cross-root ARIA reflection
interactive element controls, Solution 2: Separate links
navigation and JavaScript, JavaScript

aria-current attribute, Solution, Testing aria-current="page”
with screen readers
aria-describedby attribute, Discussion, Error reporting
aria-expanded attribute, Solution, Solution 1: Link and
button
aria-label attribute, Picking a label, Exceptions
aria-labelledby attribute, Picking a label, Solution, Labeling
aria-pressed attribute, Discussion
<article> element, Articles-Articles
ascending order, Discussion
<aside> element, Asides

assertive updates, Live regions
atomic live regions, Live regions
autocomplete attribute, Discussion
autofocus attribute, Discussion
automated testing software, Automated testing software-
Strengths and limitations

ARC Toolkit, ARC Toolkit
continuous testing, Continuous testing
DevTools, axe DevTools
features of, Features
Lighthouse, Lighthouse
strengths and limitations of, Strengths and limitations
WAVE, WAVE

axe DevTools, Color contrast, Testing reduced motion,
Discussion, axe DevTools
axe testing tool, Using axe locally

B

Bailey, Eric W., Discussion
banner landmark, banner landmark
batch filters, Form submission
BCP 47 language tag, Usage
Bell, Andy, Progressive enhancement
blank alt attribute, Discussion

block-link technique, Discussion
Boxhall, Alice, Cross-root ARIA reflection
Boyer, Ashlee M., Absolute units
breadcrumb navigations, Discussion
browsers (see web browsers)
Budiu, Raluca, To burger or not to burger
burger icon, To burger or not to burger
buttons, Performing Actions-Discussion

adding states and properties, Problem-haspopup property
checked state, Checked state
controls property, The controls property
expanded state, The expanded state
haspopup property, haspopup property
pressed state, Pressed state

DevTools rules for, Discussion
disabling, Problem-Discussion
empty, Discussion
labelling clearly, Problem-Discussion
links versus, It links to an internal or external resource,
Discussion, Links versus buttons
nesting list of links with, Solution 2: Button only
removing default styles, Problem-Discussion
requirements for, Problem-Discussion

accessible names, Discussion

allowing multiple activation options, Discussion
color contrast, Discussion
communicating current state, Discussion
conveying semantic role, Discussion
recognizability, Discussion
tabbable, Discussion

sorting columns with, Solution-Discussion
styling while maintaining operability, Buttons and links
submenus, Solution-Links versus buttons
tabindex attribute, The tabindex attribute
toggling list visibility, Toggling the visibility of the list-
Toggling the visibility of the list

C

<caption> element, Labeling
checked attribute, Discussion
checked state, Checked state, Use the right field for a given
purpose
Chimero, Frank, Use well-established patterns
Chrome

analyzing accessibility tree in, Solution
announcing linked images, Discussion
content added to aria-describedby element, Error
reporting

details element, Cons
emulating reduced motion, Testing reduced motion
emulating settings, Discussion
“find in page” feature, When not to use it
focus styles, The :focus-visible pseudoclass
lang attribute and hyphenation, Hyphenation
testing WCAG 3.0 in, Color contrast
tooltips in, Tooltips

class attribute, Solution
client-side routing, Problem-The page title

filtering, Feedback
focus management, Focus management, Focus
management
live regions, Live regions-Live regions, Live regions-Live
regions
page titles, The page title

closed shadowRoot, Accessing the shadow root
cognitive load

animations, Discussion, No motion versus less motion
label position, Label position
“one thing per page” approach, Discussion
placeholder text, Placeholders and float patterns

color
highlighting erroneous fields, Discussion

inverted, Inverted colors
styling content with, Problem-Color vision

color contrast, Color contrast-Color contrast
color vision deficiencies, Color vision-Color vision
currently active page, Color
links, Discussion

color contrast
buttons, Discussion, Low contrast
focus styling, Default focus styles
minimum luminance contrast ratio, Color contrast-Color
contrast
respecting user preference for, More contrast

color schemes, Color schemes, also known as dark mode
color vision deficiencies

emulating, Problem-Discussion
links, Color vision-Color vision
prevalence of, Color vision

columns, sorting, Problem-Discussion
command line testing, Continuous testing
components context, Progressive enhancement
content presentation order, Problem-Discussion
content structure (see main content structure)
content-visibility property, All elements
contentinfo landmark, contentinfo landmark

contrast ratios, Color contrast
controls property, The controls property
conversion rates, Keep it short
Corradini, Facundo, When animation goes bad, Problem
CSS

animation styling, Solution
feature detection in, Discussion
hiding content, Hiding in CSS and HTML
hiding navigation on narrow viewports, CSS-CSS
hiding nested lists, Solution 1: Link and button
highlighting active pages, Solution
main navigation, CSS
pixels, Target size
relative units in, Solution, Relative units
removing default button styles, Discussion
simulations, Simulating with CSS
skip links in, Skip links
styling links, States
testing accessibility, Testing with CSS

ct.css diagnostic, Discussion
custom elements, Creating Custom Elements-Error reporting

ARIA references, Problem-Cross-root ARIA reflection
ARIA Mixins, ARIA Mixins-ARIA Mixins
cross-root ARIA delegation, Cross-root ARIA delegation

cross-root ARIA reflection, Cross-root ARIA reflection
debugging and testing, Problem-Discussion
enforcing best practices, Problem-Error reporting

compensating for issues, Compensate for issues,
Compensating for issues
error reporting, Error reporting, Error reporting
progressive enhancement, Progressive enhancement,
Progressive enhancement

focus elements in Shadow DOM, Problem-Delegating focus
accessing shadow root, Accessing the shadow root
delegating focus, Delegating focus

IDs, Problem-Discussion

D

Dark Mode, Color schemes, also known as dark mode
debugging and testing, Debugging Barriers-Testing with JS

accessibility tree, Problem-Discussion
automated testing software, Automated testing software-
Strengths and limitations
continuous testing, Continuous testing
custom elements, Problem-Discussion
emulation, Problem-Discussion
finding issues automatically, Problem-Strengths and
limitations

roles, names, properties, and states, Problem-Detailed
access to roles, names, properties, and states
visualizing tabbing order, Problem-Discussion
writing custom rules, Problem-Testing with JS

simulating with CSS, Simulating with CSS
testing with CSS, Testing with CSS
testing with JavaScript, Testing with JS-Testing with JS
using axe locally, Using axe locally

decorative images, Discussion, Visible but semantically
hidden
definition lists, Lists
delegatesAriaAttributes option, Cross-root ARIA delegation
Deque Systems, axe DevTools
descending order, Discussion
“Designing good questions” service manual, Discussion
details element, Cons
device pixel ratio (DPR), Target size
DevTools, Color contrast, Testing reduced motion, Discussion,
axe DevTools
disabled buttons, Problem-Discussion
disclosure widgets

custom, Problem-Discussion
groups of, Problem-Navigation
native, Problem-When not to use it

turning fieldset into, Discussion
display: none property declaration, Hiding the list
Document Object Model (DOM), Discussion, Discussion,
Creating Custom Elements
document outlines, creating, Problem-Discussion
document structure, Structuring Documents-contentinfo
landmark

document titles, Problem-Context-dependent information
landmarks, Problem-contentinfo landmark
natural language, Problem-Form controls
rendering order optimization, Problem-Discussion
viewport width, Problem-Justified reasons to disable zoom

document titles, Problem-Context-dependent information
conciseness of, The title should be concise
context-dependent information, Context-dependent
information
descriptive nature of, The title should be descriptive
prioritizing relevant information, The relevant
information comes first
uniqueness of, The title must be unique-The title must be
unique

DOM (Document Object Model), Discussion, Discussion,
Creating Custom Elements
download attribute, Discussion

download links, Problem-Discussion
DPR (device pixel ratio), Target size

E

Edge
analyzing accessibility tree in, Solution
announcing linked images, Discussion
details element, Cons
emulating reduced motion, Testing reduced motion
testing WCAG 3.0 in, Color contrast

Edwards, James, Discussion
Eggert, Eric, Discussion, Live regions
ElementInternals API, Discussion
email links, Problem-Discussion
empty buttons, Discussion
encapsulation, Discussion
error reporting and messages

automated testing software, Error reporting
best practices for custom elements, Error reporting, Error
reporting
erroneous form fields, Error reporting-Error messages

Escape key, Toggling the visibility of the list
expanded state, The expanded state
explicit labeling, Labeling

explicit list role, The explicit list role-The explicit list role
external link icon, Exceptions
eye-tracking tests, Label position

F

Fable Tech Labs, The page title
fade-in and -out animation, Solution-Solution
Faulkner, Steve, Labeling
feature detection, Discussion
fieldset element, Solution-Dos and don’ts, Grouping,
Discussion
<figcaption> element, Labeling
file links, Discussion
filters, Filtering Data-Discussion

batch, Form submission
creating forms, Problem-Form submission
filtering data, Problem-Structure

feedback, Feedback
structure, Structure

group, Problem-Discussion
interactive, Form submission
paginating results, Problem-Discussion
sorting and displaying results, Problem-Discussion

Firefox

analyzing accessibility tree in, Solution
announcing linked images, Discussion
details element, Cons
emulating settings, Discussion
tooltips in, Tooltips

float patterns, Placeholders and float patterns
Fluid Style tool, The Ideal Font Sizes and Line Height
focus, Managing Focus-Discussion

allowing users to skip elements, Problem-Discussion
delegating, Delegating focus
disabled buttons, Missing focus
filtering data, Solution, Feedback
focus elements in Shadow DOM, Problem-Delegating focus
keeping contained, Problem-Discussion
links and client-side routing, Focus management, Focus
management
links and styling, Focus styling
making elements focusable, Problem-Focusable elements

focusable elements, Focusable elements
tabindex attribute, The tabindex attribute

moving, Problem-Discussion
preserving order, Problem-Discussion
styling currently focused elements, Problem-Default focus
styles

:focus pseudoclass, The :focus pseudoclass
:focus-visible pseudoclass, The :focus-visible pseudoclass, CSS
:focus-within pseudoclass, The :focus-within pseudoclass
focusable regions, Solution, Problem
fonts

ideal sizes, The Ideal Font Sizes and Line Height
media queries, Media Queries-The Ideal Font Sizes and
Line Height
natural language definition, Font selection
sizing units, Problem-The Ideal Font Sizes and Line Height

absolute units, Absolute units
relative units, Relative units-Relative units

footers, navigation landmarks in, Discussion
forced-colors mode, Solution

focus styling, Default focus styles
links, High contrast mode
respecting user preference for, Forced colors

Form Design Patterns (Silver), Use well-established patterns,
Placeholders and float patterns, Discussion, Error messages
form elements and controls

grouping, Grouping
identifying, Problem-Placeholders and float patterns
native, Use native form elements
natural language definition, Form controls

styling while maintaining operability, Form elements-
Form elements

forms, Constructing Forms-Discussion
creating, Problem-Inform users and give them control

informing and giving control to users, Inform users and
give them control
keeping short, Keep it short
native form elements, Use native form elements
using right field for given purpose, Use the right field for
a given purpose
well-established patterns, Use well-established patterns

describing form fields, Problem-Discussion
filtering data, Problem-Form submission

batch filters, Form submission
form elements, Form elements
grouping controls, Grouping
interactive filters, Form submission
submission, Form submission

grouping fields, Problem-Dos and don’ts
highlighting erroneous fields, Problem-Error messages
identifying form elements, Problem-Placeholders and float
patterns

float patterns, Placeholders and float patterns
labels, Labeling-Label position

placeholders, Placeholders and float patterns
landmarks, Problem-Discussion, Form landmark
splitting into steps, Problem-Discussion

Friedman, Vitaly, Navigation
functional images, Discussion, Discussion

G

Giraudel, Kitty, Hiding in CSS and HTML
Glassmorphism, Transparency
Google Chrome (see Chrome)
Google Lighthouse, Discussion, Lighthouse
Gordon, Kelley, Discussion
grids (see tables)
Gustafson, Aaron, Discussion

H

haspopup property, haspopup property
Head, Val, Discussion, No motion versus less motion
header cells, Labeling
headings, Problem-Discussion, Discussion
hiding content, Problem-Incorrect hiding

CSS, Hiding in CSS and HTML
HTML, Hiding in CSS and HTML

navigation on narrow viewports, Problem-Progressive
enhancement
rules for, Incorrect hiding
semantically, Visually and semantically hidden
visually, Visually hidden

Higley, Sarah, Forced colors, Discussion
Holmberg, Joel, Use well-established patterns
horizontal scrolling, Solution, Label position
href attribute, It conveys its semantic link role
HTML

animation styling, Solution
disadvantages of, Use native form elements
hiding content, Hiding in CSS and HTML
hiding navigation on narrow viewports, HTML
lists in, Solution
main navigation, HTML
markup for button with, Toggling the visibility of the list
native disclosure widget in, Solution
skip links in, Skip links

hyperlinks (see links)
hyphenation, natural language definition, Hyphenation-
Hyphenation

I

IBM Equal Access Accessibility Checker, Discussion, IBM
Equal Access Accessibility Checker
IDREF attributes, Discussion
IDs, Problem-Discussion
images

buttons containing, Solution
decorative, Discussion, Visible but semantically hidden
file types, Discussion
functional, Discussion, Discussion
informative, Discussion
linked, Problem-Discussion

implicit labeling, Labeling, Discussion
Inaccessible Gallery, Discussion
inaccessible links, It must be tabbable and allow activation
via click, touch, and key events
Inclusive Design Principles, Use well-established patterns
inert attribute, Discussion
information hierarchy, Discussion
informative images, Discussion
initial containing block, Discussion
initial keyword, Discussion
interactive elements, Discussion

buttons as, Discussion
hiding, Incorrect hiding

links as, It must be tabbable and allow activation via click,
touch, and key events
scrollable content as, Sections

interactive filters, Form submission
inverted colors, Inverted colors

J

Jakob’s law, Discussion
JavaScript

adding links to groups of elements, Solution 5: JavaScript,
Solution 5: JavaScript
animation styling, Solution
disabling, JavaScript
feature detection in, Discussion
hiding navigation on narrow viewports, JavaScript
listening to toggle events, Solution
main navigation, JavaScript
tabs component, The tabindex attribute
testing accessibility, Testing with JS-Testing with JS
website operability without, Progressive enhancement

JAWS screen reader, Navigation
announcing article elements, Articles
controls property, The controls property
haspopup property with, haspopup property

switching modes in, Discussion
testing lists with, Testing lists with screen readers

K

Keith, Jeremy, Progressive enhancement
Kieras, David, Discussion

L

label landmarks, Problem-Picking a label
labels

buttons, Problem-Discussion
choosing for landmarks, Picking a label
identifying form elements, Labeling-Label position
tables, Solution-Solution

landmarks, Problem-contentinfo landmark
benefits of, Benefits-Navigation

navigation, Navigation
orientation, Orientation
overviews, Overview

forms, Problem-Discussion, Form landmark
label, Problem-Picking a label
navigation, Navigation, Problem-Discussion
providing quick access, Landmarks, Landmarks

site specific, Site-Specific Landmarks-contentinfo
landmark

banner landmark, banner landmark
contentinfo landmark, contentinfo landmark
main landmark, main landmark

lang attribute, Solution-Form controls
benefits of, Benefits-Form controls
usage of, Usage

language subtags, Usage
Laubheimer, Page, Discussion
Leatherman, Zach, Discussion
legend element, Solution-Dos and don’ts, Discussion
Light DOM

creating ARIA references, Solution-Cross-root ARIA
reflection
debugging and, Solution-Discussion
working with IDs, Solution-Discussion

Lighthouse, Discussion, Lighthouse
line height, The Ideal Font Sizes and Line Height
links, Linking Content-Solution 5: JavaScript

adding to groups of elements, Problem-Solution 5:
JavaScript

<a> element, Solution 1: Wrapping all elements in an
<a> element, Solution 1: Wrapping all elements in an

<a> element-Solution 1: Wrapping all elements in an <a>
element
empty links, Solution 3: Empty link, Solution 3: Empty
link
JavaScript, Solution 5: JavaScript, Solution 5: JavaScript
pseudoelements, Solution 4: Pseudoelement, Solution 4:
Pseudoelement-Solution 4: Pseudoelement
separate links, Solution 2: Separate links, Solution 2:
Separate links

buttons versus, It links to an internal or external resource,
Links versus buttons
client-side routing, Problem-The page title

focus management, Focus management, Focus
management
live regions, Live regions-Live regions, Live regions-Live
regions
page titles, The page title

download, Problem-Discussion
email, Problem-Discussion
empty, Solution 3: Empty link, Solution 3: Empty link
images, Problem-Discussion
inaccessible, It must be tabbable and allow activation via
click, touch, and key events
informing users of changing context, Problem-Exceptions

requirements for, Problem-It must be tabbable and allow
activation via click, touch, and key events

accessible names, It has an accessible name-It has an
accessible name
allowing multiple activation options, It must be tabbable
and allow activation via click, touch, and key events
communicating current state, It communicates its
current state
conveying semantic role, It conveys its semantic link
role
linking to external resources, It links to an internal or
external resource
tabbable, It must be tabbable and allow activation via
click, touch, and key events

skip links, Skip links-Skip links
styling, Problem-High contrast mode, Color vision

focus styling, Focus styling
forced-colors mode, High contrast mode
maintaining operability while, Buttons and links
state styling, States
target sizes, Target size

submenus, Solution-Links versus buttons
lists, Lists

announcing number of items, Ordered versus unordered
lists
hiding on narrow viewports, Hiding the list
ordered versus unordered, Ordered versus unordered lists
styling for narrow viewports, Styling-Styling
styling while maintaining operability, Lists
toggling visibility, Toggling the visibility of the list-Toggling
the visibility of the list

live regions, Live regions-Live regions, Live regions-Live
regions, Discussion

filtering data, Solution, Feedback
informing errors, Error reporting

local navigations, Solution
logical properties and values, CSS, Styling
login forms, Solution
Loranger, Hoa, Discussion
low vision

Dark Mode for, Color schemes, also known as dark mode
defined, Discussion
label position for, Label position

M

MacDonald, Simon, Cross-root ARIA reflection
macOS

details element, Cons
inverting colors, Inverted colors
reduced motion settings, Reduced motion, Testing reduced
motion
reducing transparency, Transparency

mailto: URI scheme, Solution
main content structure, Problem-Testing lists with screen
readers

<article> element, Articles-Articles
<aside> element, Asides
lists, Lists
<section> element, Sections-Sections

main landmark, main landmark
main navigation, Problem-Placement

CSS, CSS
HTML, HTML
JavaScript, JavaScript
number of items, The number of items
placement, Placement
styling, Styling

maps, adding skip links before, Discussion
matchMedia() method, Solution
maximum-scale setting, Solution
media queries

browser and operating system settings, Solution
fonts, Media Queries-The Ideal Font Sizes and Line Height
in JavaScript, Solution

menus
avoiding confusion with, Problem-Discussion
submenus, Problem-Testing with screen readers

Microsoft Edge (see Edge)
Miller, George A., The number of items
mobile browsers, Discussion, Absolute units
Moran, Kate, It has an accessible name
motion

motion sensitivity, When animation goes bad
reduced motion, Reduced motion-Reduced motion, No
motion versus less motion-Testing reduced motion,
Problem-Discussion
slide-in animations, Problem-Testing reduced motion
styling, Problem-Reduced motion

Mozilla Firefox (see Firefox)
multi-page forms, Discussion

N

natural language, Problem-Form controls
benefits of, Benefits-Form controls

font selection, Font selection

form controls, Form controls
hyphenation, Hyphenation-Hyphenation
quotation marks, Quotes
screen readers, Assistive technology
SEO, Search Engine Optimization (SEO)
translation tools, Translation

defining, Problem-Form controls
focus with, Discussion
usage of, Usage

<nav> element, Landmarks
navigation, Navigating Sites-Discussion

announcing number of items, Problem-The explicit list
role

explicit list role, The explicit list role
ordered versus unordered lists, Ordered versus
unordered lists

avoiding confusion with menus, Problem-Discussion
groups of disclosure widgets, Navigation
hiding on narrow viewports, Problem-Progressive
enhancement

burger icon, To burger or not to burger
CSS, CSS-CSS
hiding lists, Hiding the list
HTML, HTML

JavaScript, JavaScript
narrow viewports versus narrow screens, Narrow
viewports versus narrow screens
progressive enhancement, Progressive enhancement
styling, Styling-Styling
toggling list visibility, Toggling the visibility of the list-
Toggling the visibility of the list

highlighting currently active page, Problem-Box-shadow
styling, Styling
testing aria-current attribute, Testing aria-
current="page” with screen readers

main navigation, Problem-Placement
CSS, CSS
HTML, HTML
JavaScript, JavaScript
number of items, The number of items
placement, Placement
styling, Styling

providing quick access, Problem-Skip links
landmarks, Landmarks, Landmarks
skip links, Skip links-Skip links

slide-in animations, Problem-Testing reduced motion
submenus, Problem-Testing with screen readers

animation, Animation

automatic activation, Automatic activation
links versus buttons, Solution-Links versus buttons
testing with screen readers, Testing with screen readers

navigation landmarks, Navigation, Problem-Discussion
nesting elements, Sections, Solution 1: Wrapping all elements
in an <a> element
Nielsen Norman Group, The number of items, Placeholders
and float patterns
Nielsen, Jakob, Discussion
Node, testing scripts in, Continuous testing
NVDA screen reader, Navigation

announcing article elements, Articles
announcing links, Solution 1: Wrapping all elements in an
<a> element
testing lists with, Testing lists with screen readers

O

“one thing per page” approach, Discussion
open graph meta tag, Solution
open shadowRoot, Accessing the shadow root
Opera, Testing reduced motion
ordered lists

announcing number of items, Ordered versus unordered
lists

unordered lists versus, Ordered versus unordered lists
Ott, Matthias, Discussion
outlines, creating, Problem-Discussion
O’Hara, Scott, Landmarks, Cons

P

page context, Progressive enhancement
page structure, Structuring Pages-Discussion

content presentation order, Problem-Discussion
document outlines, Problem-Discussion
form landmarks, Problem-Discussion
label landmarks, Problem-Picking a label
main content structure, Problem-Testing lists with screen
readers
navigation landmarks, Problem-Discussion

page titles, The page title
Pa11y, Continuous testing
parallax scrolling, When animation goes bad
Parashar, Vikas, Solution 5: JavaScript
parsing model, Discussion
Penzo, Matteo, Label position
Pereira, Sandrina, Discussion
Pernice, Kara, To burger or not to burger
photophobia, Color schemes, also known as dark mode

Pickering, Heydon, Solution 5: JavaScript, Use well-
established patterns
pixels

base font size, Discussion
converting to rem size, Relative units
touch target guidelines, Target size
viewport width, Discussion

placeholders, Placeholders and float patterns
polite updates, Live regions
Polypane browser

analyzing accessibility tree in, Solution
emulating settings, Discussion
visualizing tabbing order, Discussion

pop-up elements, haspopup property
Postel's Law, Error messages
Postel, Jon, Error messages
Pouncey, Ian, Use well-established patterns
pressed state, Pressed state
progress indicator, Discussion
progressive enhancement principle, Discussion, Progressive
enhancement, Progressive enhancement
pseudoelements

adding links to groups of elements, Solution 4:
Pseudoelement, Solution 4: Pseudoelement-Solution 4:

Pseudoelement
regular elements versus, Solution

Q

quotation marks, Quotes

R

radio buttons, Use the right field for a given purpose, Form
elements
region role, Sections
region subtags, Usage
relative units, Solution, Relative units-Relative units
rem unit, Relative units-Relative units
rendering order optimization, Problem-Discussion
Rietveld, Rian, It has an accessible name, Discussion
Roberts, Harry, Solution
Rodriguez, Gerardo, Error reporting
role attribute, The explicit list role
Roselli, Adrian, Discussion, Discussion, Discussion, Pressed
state, Forced colors, When not to use it, Other
Rule of Least Power, Discussion

S

Safari, The explicit list role
(see also VoiceOver)
announcing linked images, Discussion
ARIA Mixins support, ARIA Mixins
details element, Cons
emulating settings, Discussion
position: relative on table rows, Discussion
sidebars in, Narrow viewports versus narrow screens
table issues in, Tables

scalable vector graphics (SVGs), Solution, Solution
Schöndorfer, Oliver, The Ideal Font Sizes and Line Height
scope attribute, Labeling
screen readers

announcing article elements, Articles
announcing linked images, Discussion
announcing page titles, Discussion
attributes and, Discussion
client-side routing, Feedback
div button, accessibility of, Discussion
form and search roles exposed in, Discussion
grouping related fields, Discussion-Dos and don’ts
landmark navigation shortcuts with, Navigation
lang attribute, Assistive technology
navigating by headings, Discussion

navigation via landmark feature, Navigation
semantic link role, It conveys its semantic link role
switching voice profiles, Discussion
table navigation, Discussion, Labeling
testing aria-current attribute with, Testing aria-
current="page” with screen readers
testing details element with, Cons
testing lists with, Testing lists with screen readers
testing submenus with, Testing with screen readers

screen splitting, Narrow viewports versus narrow screens
script subtags, Usage
scrollable content, Sections, Responsiveness
search engine optimization (see SEO)
search forms, Solution
<section> element, Sections-Sections
<select> element, Use the right field for a given purpose,
Form elements
selected attribute, Discussion
self-hosting, Discussion
semantic information

buttons, Discussion, Buttons and links
form elements, Form elements-Form elements
hiding content, Visually and semantically hidden
links, It conveys its semantic link role, Buttons and links

lists, Lists
preserving while styling, Problem-All elements
tables, Tables

SEO (search engine optimization)
document outline, benefits of, Discussion
natural language definition, Search Engine Optimization
(SEO)

session time limits, Discussion
Shadow DOM

accessing shadow root, Accessing the shadow root
creating ARIA references, Solution-Cross-root ARIA
reflection
debugging and, Solution-Discussion
delegating focus, Delegating focus
focus elements in, Problem-Delegating focus
working with IDs, Solution-Discussion

shadow root, Discussion
sidebars, Narrow viewports versus narrow screens
Silver, Adam, Use well-established patterns, Placeholders and
float patterns, Discussion, Error messages, Discussion
single-page applications (SPAs), Discussion-The title must be
unique
skip links, Discussion

hiding, Solution

for pagination, Discussion
providing quick access, Discussion-Discussion, Skip links-
Skip links

slide-in animations, Problem-Testing reduced motion
slot element, Progressive enhancement
Smith, Matt, Placeholders and float patterns
spanned table headers, Other
SPAs (single-page applications), Discussion-The title must be
unique
Spool, Jared, Error messages
structure

of documents, Structuring Documents-contentinfo
landmark

landmarks, Problem-contentinfo landmark
natural language, Problem-Form controls
rendering order optimization, Problem-Discussion
titles, Problem-Context-dependent information
viewport width, Problem-Justified reasons to disable
zoom

of pages, Structuring Pages-Discussion
content presentation order, Problem-Discussion
document outlines, Problem-Discussion
form landmarks, Problem-Discussion
label landmarks, Problem-Picking a label

main content structure, Problem-Testing lists with
screen readers
navigation landmarks, Problem-Discussion

styling, Styling Content-Reduced motion
buttons, removing default styles, Problem-Discussion
color, Problem-Color vision

color contrast, Color contrast-Color contrast
color vision deficiencies, Color vision-Color vision

currently active page, Styling-Box-shadow
currently focused elements, Problem-Default focus styles

default styles, Default focus styles-Default focus styles
:focus pseudoclass, The :focus pseudoclass
:focus-visible pseudoclass, The :focus-visible
pseudoclass
:focus-within pseudoclass, The :focus-within
pseudoclass

font sizes, Problem-The Ideal Font Sizes and Line Height
absolute units, Absolute units
ideal sizes, The Ideal Font Sizes and Line Height
media queries, Media Queries-The Ideal Font Sizes and
Line Height
relative units, Relative units-Relative units

links, Problem-High contrast mode
focus styling, Focus styling

forced-colors mode, High contrast mode
state styling, States
target sizes, Target size

lists on narrow viewports, Styling-Styling
main navigation, Styling
motion and animation, Problem-Reduced motion

motion sensitivity, When animation goes bad
reducing motion, Reduced motion-Reduced motion

preserving semantic information and operability,
Problem-All elements

buttons, Buttons and links
form elements, Form elements-Form elements
links, Buttons and links
lists, Lists
tables, Tables

tables, Responsiveness
user preferences, Problem

submenus, Problem-Testing with screen readers
animation, Animation
automatic activation, Automatic activation
links versus buttons, Solution-Links versus buttons

submit button, Discussion
subtags, Usage
Sutton, Marcy, Focus management, The page title

SVGs (scalable vector graphics), Solution, Solution
Swan, Henny, Use well-established patterns
switch buttons, Solution
switches, Checked state

T

tabbing order
changing visual order and, Discussion
visualizing, Problem-Discussion

tabindex attribute, Focus management, The tabindex
attribute
tables, Presenting Tabular Data-Discussion

adding interactive elements, Problem-Discussion
form controls inside, Labeling
picking right elements for, Problem-Discussion
sorting columns, Problem-Discussion
structuring, Problem-Other

labels, Labeling
responsiveness, Responsiveness

styling while maintaining operability, Tables
tabs, Problem-Focusable elements
TalkBack screen reader

announcing article elements, Articles
landmarks, Navigation

testing details element with, Cons
time limits, for filling out forms, Discussion
titles

of documents, Problem-Context-dependent information
conciseness of, The title should be concise
context-dependent information, Context-dependent
information
descriptive nature of, The title should be descriptive
prioritizing relevant information, The relevant
information comes first
uniqueness of, The title must be unique

of pages, The page title
toggle buttons, Solution, Pressed state, Use well-established
patterns
toggling content visibility, Toggling Content Visibility-
Navigation

custom disclosure widget, Problem-Discussion
groups of disclosure widgets, Problem-Navigation
hiding content, Problem-Incorrect hiding
native disclosure widgets, Problem-When not to use it

tooltips, Tooltips
TPGi ARC Toolkit, Discussion, ARC Toolkit
translation tools, Translation
transparency, Transparency

U

underlining links, Solution
unordered lists, Ordered versus unordered lists, Ordered
versus unordered lists
unset keyword, Discussion
URL encoding, Discussion
user agent styles, Sections
user flows, Discussion
user preferences, respecting, Problem

color contrast, More contrast
color schemes, Color schemes, also known as dark mode
disabling JavaScript, JavaScript
forced-colors mode, Forced colors
inverted colors, Inverted colors
transparency, Transparency

user-scalable setting, Solution

V

validating code, Discussion, The explicit list role
vestibular disorders, When animation goes bad, Problem
viewport width, Problem-Justified reasons to disable zoom

disabling zoom, Justified reasons to disable zoom

hiding navigation on narrow viewports, Problem-
Progressive enhancement

burger icon, To burger or not to burger
CSS, CSS-CSS
hiding lists, Hiding the list
HTML, HTML
JavaScript, JavaScript
narrow viewports versus narrow screens, Narrow
viewports versus narrow screens
progressive enhancement, Progressive enhancement
styling, Styling-Styling
toggling list visibility, Toggling the visibility of the list-
Toggling the visibility of the list

pinch-zoom, Media Queries
virtual cursor, Discussion
visibility: hidden property declaration, Hiding the list,
Discussion
vision impairments, Discussion

(see also color vision deficiencies; low vision)
visual hierarchy, Discussion
visual order, Discussion
visually hidden text, Discussion, Visually hidden
voice profiles, switching, Discussion
VoiceOver, Discussion, Navigation

announcing article elements, Articles
semantic information of lists in, The explicit list role
testing lists with, Testing lists with screen readers

Vries, Hidde de, The title must be unique

W

W3C validator, Discussion
Watson, Léonie, Discussion, Use well-established patterns
WAVE, Discussion, WAVE
WCAG (Web Content Accessibility Guidelines)

button requirements, Discussion
opening links in new tabs, Exceptions
target sizes, Target size
WCAG 3.0, Color contrast

web browsers
analyzing accessibility tree in, Solution-Discussion
announcing linked images, Discussion
ARIA Mixins support, ARIA Mixins
automated testing software, Automated testing software-
Strengths and limitations
default focus styles, Default focus styles
details element, Cons
focus behavior, Focus management
font size responding to settings in, Relative units

lang affecting hyphenation in, Hyphenation
mobile, Discussion, Absolute units
reduced motion, Testing reduced motion, Solution-
Discussion
selecting fonts, Font selection
supporting native disclosure widgets, Pros
tabbing order visualization tools, Discussion
tooltips, Tooltips
viewport width, Narrow viewports versus narrow screens

web components, Creating Custom Elements-Error reporting
ARIA references, Problem-Cross-root ARIA reflection
debugging and testing, Problem-Discussion
enforcing best practices, Problem-Error reporting
focus elements in Shadow DOM, Problem-Delegating focus
IDs, Problem-Discussion

Web Content Accessibility Guidelines (see WCAG)
Web Hypertext Application Technology Working Group
(WHATWG), Sections
WebAim color contrast checker, Solution, Color contrast
WebAIM Million

detected accessibility errors, Discussion
empty buttons, Discussion
empty links, Discussion
skip links, Discussion

WebAim screen reader survey, Discussion
WebAIM WAVE, Discussion, WAVE
WHATWG (Web Hypertext Application Technology Working
Group), Sections
WHCM (Windows High Contrast Mode), Forced colors
Whitenton, Kathryn, Keep it short
width property, Solution
Windows

forced-colors mode, Forced colors
reduced motion settings, Reduced motion, Testing reduced
motion
reducing transparency, Transparency

Windows High Contrast Mode (WHCM), Forced colors
wrapping images, Discussion

Z

z-index property, Solution 4: Pseudoelement
zero dimensions, Buttons and links
zoom feature

justifiable reasons for disabling, Justified reasons to
disable zoom
media queries and font size, Media Queries
narrow viewports, Narrow viewports versus narrow
screens

pinch-zoom and media queries, Media Queries

About the Author

Manuel Matuzović is a frontend developer, consultant,
accessibility auditor, and teacher with over 15 years of
experience creating websites. He has helped cities, universities,
retail stores, ecommerce sites, and small and large businesses
create accessible products.

Manuel is passionate about HTML and CSS, and enjoys sharing
his knowledge and experience in blog posts and at meetups and
conferences worldwide.

Colophon

The animal on the cover of Web Accessibility Cookbook is a
Nova Scotia Duck Tolling Retriever. This breed of medium-sized
gundog is the smallest retriever, and it was developed in the
early nineteenth century by the Acadian community of Little
River Harbour in Yarmouth County, Nova Scotia. It was
originally referred to as the Little River Duck Dog, which later
became its current name. They are often referred to simply as
Tollers.

While Tollers are often mistaken for small golden retrievers,
they are more physically and mentally active than goldens and
are slightly different in build. Tollers are medium to heavy
boned, muscular, compact, athletic, powerful, and balanced.
Their heads are clear cut and slightly wedge shaped, and their
ears sit high on their head and are triangular with a rounded
tip. The underside of their tail, legs, and body have some
feathering. Typical coat colors range from golden red to
crimson.

Tollers were bred as hunting dogs that lure waterfowl within
hunting range of their owners and then spook the birds to make
them fly so they can shoot them. After the bird is shot, the dog is

sent to retrieve it, which often involves retrieving the bird from
icy waters. Fortunately, Tollers have a water-repellent double
coat of fur to help them remain warm while doing so. Tollers
love to hunt, swim, hike, and play and are happiest when
working and using up their boundless energy. It is said that
their expressions turn sad when they don’t have a task to work
on. Tollers are also highly intelligent, alert, affectionate, and
have a desire to please their owners. They are good family dogs
that get along well with children and other dogs.

While Tollers are not at risk of being endangered, many of the
animals on O’Reilly covers are; all of them are important to the
world.

The cover illustration is by Karen Montgomery, based on an
antique line engraving from a loose plate, source unknown. The
series design is by Edie Freedman, Ellie Volckhausen, and Karen
Montgomery. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s
Ubuntu Mono.

	Foreword
	Preface
	Who This Book Is For
	What’s in This Book/Organization
	Conventions Used in This Book
	Using Code Examples and Supported Software
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Structuring Documents
	1.1. Define the Natural Language
	1.2. Describe the Document
	1.3. Set the Viewport Width
	1.4. Optimize Rendering Order
	1.5. Structure the Document

	2. Structuring Pages
	2.1. Create Navigation Landmarks
	2.2. Create Form Landmarks
	2.3. Label Landmarks
	2.4. Structure the Main Content
	2.5. Create a Sound Document Outline
	2.6. Present Content in Order

	3. Linking Content
	3.1. Pick the Right Element
	3.2. Style Links
	3.3. Create Download Links
	3.4. Create Email Links
	3.5. Link Images
	3.6. Inform Users of Changing Context
	3.7. Fix Client-Side Rendering
	3.8. Add Links to Groups of Elements

	4. Performing Actions
	4.1. Pick the Right Element
	4.2. Label Buttons Clearly
	4.3. Remove Default Button Styles
	4.4. Add States and Properties
	4.5. Don’t Disable Buttons

	5. Styling Content
	5.1. Work with Color
	5.2. Respect User Preferences
	5.3. Work with Units and Sizes
	5.4. Preserve Semantic Information and Operability
	5.5. Add Motion and Animation

	6. Managing Focus
	6.1. Provide Focus Styles
	6.2. Make Elements Focusable
	6.3. Move Focus
	6.4. Keep Focus Contained
	6.5. Preserve Order
	6.6. Allow Users to Skip Elements

	7. Navigating Sites
	7.1. Create a Main Navigation
	7.2. Highlight the Active Page
	7.3. Announce the Number of Items
	7.4. Provide Quick Access
	7.5. Hide the Navigation on Narrow Viewports
	7.6. Add a Slide-in Animation
	7.7. Add Submenus
	7.8. Avoid Confusion with Menus

	8. Toggling Content Visibility
	8.1. Hide Content
	8.2. Create a Native Disclosure Widget
	8.3. Create a Custom Disclosure Widget
	8.4. Create Groups of Disclosure Widgets

	9. Constructing Forms
	9.1. Create Forms
	9.2. Identify Form Elements
	9.3. Describe Form Fields
	9.4. Highlight Erroneous Fields
	9.5. Group Fields in a Form
	9.6. Split Forms into Steps

	10. Filtering Data
	10.1. Create a Form
	10.2. Filter the Data
	10.3. Paginate Results
	10.4. Sort and Display Results
	10.5. Group Filters

	11. Presenting Tabular Data
	11.1. Pick the Right Elements
	11.2. Structure Tables
	11.3. Add Interactive Elements
	11.4. Sort Columns

	12. Creating Custom Elements
	12.1. Working with IDs
	12.2. Creating ARIA References
	12.3. Focus Elements in Shadow DOM
	12.4. Debugging and Testing
	12.5. Enforce Best Practices

	13. Debugging Barriers
	13.1. Find Accessibility Issues Automatically
	13.2. Explore the Accessibility Tree
	13.3. Debug Roles, Names, Properties, and States
	13.4. Visualize Tabbing Order
	13.5. Emulate Color Deficiencies, Reduced Motion, and More
	13.6. Write Custom Debugging Rules

	Index
	About the Author

