

Web API Cookbook

Level Up Your JavaScript Applications

Joe Attardi

Web API Cookbook

by Joe Attardi
Copyright © 2024 Joseph Attardi. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472.
O’Reilly books may be purchased for educational, business,
or sales promotional use. Online editions are also available
for most titles (http://oreilly.com). For more information,
contact our corporate/institutional sales department: 800-
998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn

Development Editor: Virginia Wilson

Production Editor: Beth Kelly

Copyeditor: Piper Editorial Consulting, LLC

Proofreader: Tove Innis

Indexer: WordCo Indexing Services, Inc.

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

April 2024: First Edition

Revision History for the First Edition

http://oreilly.com/

2024-03-21: First Release

See http://oreilly.com/catalog/errata.csp?
isbn=9781098150693 for release details.
The O’Reilly logo is a registered trademark of O’Reilly
Media, Inc. Web API Cookbook, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.
The views expressed in this work are those of the author
and do not represent the publisher’s views. While the
publisher and the author have used good faith efforts to
ensure that the information and instructions contained in
this work are accurate, the publisher and the author
disclaim all responsibility for errors or omissions, including
without limitation responsibility for damages resulting from
the use of or reliance on this work. Use of the information
and instructions contained in this work is at your own risk.
If any code samples or other technology this work contains
or describes is subject to open source licenses or the
intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with
such licenses and/or rights.
978-1-098-15069-3
[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098150693

Preface

JavaScript has come a long way since its introduction in
late 1995. In the early days, the core APIs built into web
browsers were limited. More advanced functionality
typically required third-party JavaScript libraries, or in
some cases even browser plug-ins.
A web API is a series of global objects and functions
exposed by the browser. Your JavaScript code can use
these to interact with the Document Object Model (DOM),
perform network communication, integrate with native
device features, and much more.

POLYFILLS

Older browsers can take advantage of some of these
APIs by using polyfills. A polyfill is a JavaScript library
that implements missing functionality. Polyfills are
typically used for web API features that aren’t
implemented in older browsers.
While beneficial, polyfills do have some drawbacks:

They are loaded as third-party libraries, which
add to your bundle size.

They generally aren’t maintained by the browser
teams, so there may be bugs or inconsistencies.

Some advanced functionality can’t be polyfilled in
a performant way, or at all.

The Power of Modern Browsers

Modern web APIs have two big advantages for the web
platform:
No more plug-ins

In the past, much of this functionality was only available to
native applications or clunky browser plug-ins. (Remember
ActiveX and Flash?)

Fewer third-party dependencies

Modern browsers provide considerable functionality that
used to require third-party JavaScript libraries. Popular
libraries such as jQuery, Lodash, and Moment are usually
not needed anymore.

Drawbacks of Third-Party Libraries

Third-party libraries can be helpful with older browsers or
newer functionality, but they have some costs:
More code to download

Using libraries increases the amount of JavaScript the
browser has to load. Whether it’s bundled with your app or
loaded separately from a content delivery network (CDN),
your browser still has to download it. This translates into
potentially longer loading times and higher battery usage on
mobile devices.

Increased risk

Open source libraries, even popular ones, can be
abandoned. When bugs or security vulnerabilities are found,
there’s no guarantee of an update. Browsers, in general, are
supported by large companies (the major browsers are from

Google, Mozilla, Apple, and Microsoft), and it’s more likely
that these issues will be fixed.

This isn’t to say that third-party libraries are bad. There are
many benefits as well, especially if you need to support
older browsers. Like everything in software development,
library use is a balancing act.

Who This Book Is For

This book is intended for software developers with some
experience with JavaScript who want to get the most out of
the web platform.
It assumes that you have a good knowledge of the
JavaScript language itself: syntax, language features, and
standard library functions. You should also have a working
knowledge of the DOM APIs used for building interactive,
browser-based JavaScript applications.
There is a wide range of recipes in this book; there’s
something for developers of all skill and experience levels.

What’s in This Book

Each chapter contains a set of recipes—code examples for
accomplishing a specific task. Each recipe has three
sections:
Problem

Describes the problem the recipe solves.

Solution

Contains code and explanation that implements the recipe
solution.

Discussion

A deeper discussion of the topic. This section may contain
additional code examples and comparisons with other
techniques.

Code samples and live demos are on the companion
website, https://WebAPIs.info.

https://webapis.info/

Additional Resources

By its nature, the web is changing all the time. There are
many great resources available online to help clarify any
questions that might come up.

CanIUse.com

At the time of writing, some APIs in this book are still in
development or an “experimental” phase. Watch for
compatibility notes in recipes that use these APIs. For most
features, you can check the latest compatibility data at
https://CanIUse.com. You can search by the name of a
feature and see the latest information about which browser
versions support the API and any limitations or caveats for
particular browser versions.

MDN Web Docs

MDN Web Docs is the de facto API documentation for all
things web. It covers all the APIs from this book in great
detail, as well as other topics such as CSS and HTML. It
contains in-depth articles and tutorials as well as API
specifications.

Specifications

When in doubt, the specification of a feature or API is the
definitive resource. They aren’t the most exciting reads, but
they are a good place to look for details about edge cases
or expected behavior.
Different APIs have different standards, but most can be
found either from the Web Hypertext Application
Technology Working Group (WHATWG) or the World Wide
Web Consortium (W3C).

https://caniuse.com/
https://oreil.ly/rLxi7
https://oreil.ly/PR0x7
https://oreil.ly/dFokl

The standards for ECMAScript (which specifies features in
the JavaScript Language) are maintained and developed by
the Ecma International Technical Committee 39, better
known as TC39.

Conventions Used in This Book

The following typographical conventions are used in this
book:
Italic

Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally
by the user.

Constant width italic

Shows text that should be replaced with user-supplied
values or by values determined by context.

TIP

This element signifies a tip or suggestion.

https://tc39.es/

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is
available for download at https://github.com/joeattardi/web-

api-cookbook. Also check out the companion website,
where many of the code samples and recipes in this book
are expanded into full, live, working examples.
If you have a technical question or a problem using the
code examples, please send email to
bookquestions@oreilly.com.
This book is here to help you get your job done. In general,
if example code is offered with this book, you may use it in
your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a
significant portion of the code. For example, writing a
program that uses several chunks of code from this book
does not require permission. Selling or distributing
examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting
example code does not require permission. Incorporating a
significant amount of example code from this book into
your product’s documentation does require permission.

https://github.com/joeattardi/web-api-cookbook
https://webapis.info/
mailto:bookquestions@oreilly.com

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and
ISBN. For example: “Web API Cookbook by Joseph Attardi
(O’Reilly). Copyright 2024 Joe Attardi, 978-1-098-15069-3.”
If you feel your use of code examples falls outside fair use
or the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and
business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and
a vast collection of text and video from O’Reilly and 200+
other publishers. For more information, visit
https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this
book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

mailto:permissions@oreilly.com
https://oreilly.com/
https://oreilly.com/

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-827-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata,
examples, and any additional information. You can access
this page at https://oreil.ly/web-api-cookbook.
For news and information about our books and courses,
visit https://oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-

media

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments

First of all, a heartfelt thanks to my family and friends for
supporting me, especially to my wife, Liz, and son,
Benjamin, for putting up with listening to my incessant
typing. When I am in the zone, I tend to type very quickly
and loudly.
Thank you to Amanda Quinn, Senior Content Acquisitions
Editor, for bringing me on as an O’Reilly author. I’ve read
countless O’Reilly books over the years and never thought
I’d be writing one of my own one day. Thanks also to Louise

mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/web-api-cookbook
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

Corrigan for making the introduction to Amanda and
getting the process started (and who worked with me some
years back publishing my very first book!).
Special thanks to Virginia Wilson, Senior Development
Editor, for guiding me throughout the process of writing
the book and meeting regularly to keep things on track.
I’d also like to thank the fantastic technical reviewers on
this book: Martine Dowden, Schalk Neethling, Sarah
Shook, and Adam Scott. The book turned out far better
with their helpful feedback.
Lastly, I’d like to give a shout out to the teams designing
and developing these modern web APIs. Without them, this
book would not exist!

Chapter 1. Asynchronous

APIs

Introduction

A lot of the APIs covered in this book are asynchronous.
When you call one of these functions or methods, you might
not get the result back right away. Different APIs have
different mechanisms to get the result back to you when
it’s ready.

Callback Functions

The most basic asynchronous pattern is a callback function.
This is a function that you pass to an asynchronous API.
When the work is complete, it calls your callback with the
result. Callbacks can be used on their own or as part of
other asynchronous patterns.

Events

Many browser APIs are event based. An event is something
that happens asynchronously. Some examples of events
are:

A button was clicked.

The mouse was moved.

A network request was completed.

An error occurred.

An event has a name, such as click or mouseover, and an
object with data about the event that occurred. This might
include information such as what element was clicked or an
HTTP status code. When you listen for an event, you
provide a callback function that receives the event object
as an argument.

Objects that emit events implement the EventTarget
interface, which provides the addEventListener and
removeEventListener methods. To listen for an event on an
element or other object, you can call addEventListener on it,
passing the name of the event and a handler function. The
callback is called every time the event is triggered until it is
removed. A listener can be removed manually by calling
removeEventListener, or in many cases listeners are
automatically removed by the browser when objects are
destroyed or removed from the DOM.

Promises

Many newer APIs use Promises. A Promise is an object,
returned from a function, that is a placeholder for the
eventual result of the asynchronous action. Instead of
listening for an event, you call then on a Promise object. You
pass a callback function to then that is eventually called
with the result as its argument. To handle errors, you pass
another callback function to the Promise’s catch method.

A Promise is fulfilled when the operation completes
successfully, and it is rejected when there’s an error. The
fulfilled value is passed as an argument to the then
callback, or the rejected value is passed as an argument to
the catch callback.

There are a few key differences between events and
Promises:

Event handlers are fired multiple times, whereas a
then callback is executed only once. You can think of
a Promise as a one-time operation.

If you call then on a Promise, you’ll always get the
result (if there is one). This is different from events
where, if an event occurs before you add a listener,
the event is lost.

Promises have a built-in error-handling mechanism.
With events, you typically need to listen for an error
event to handle error conditions.

Working with Promises

Problem

You want to call an API that uses Promises and retrieve the
result.

Solution

Call then on the Promise object to handle the result in a
callback function. To handle potential errors, add a call to
catch.

Imagine you have a function getUsers that makes a network
request to load a list of users. This function returns a
Promise that eventually resolves to the user list (see
Example 1-1).

Example 1-1. Using a Promise-based API

getUsers()

 .then(

 // This function is called when the user list has been loaded.

 userList => {

 console.log('User List:');

 userList.forEach(user => {

 console.log(user.name);

 });

 }

).catch(error => {

 console.error('Failed to load the user list:', error);

 });

Discussion

The Promise returned from getUsers is an object with a then
method. When the user list is loaded, the callback passed to
then is executed with the user list as its argument.

This Promise also has a catch method for handling errors. If
an error occurs while loading the user list, the callback
passed to catch is called with the error object. Only one of
these callbacks is called, depending on the outcome.

ALWAYS HANDLE ERRORS

It’s important to always handle the error case of a
Promise. If you don’t, and a Promise is rejected, the
browser throws an exception for the unhandled
rejection and could crash your app.
To prevent an unhandled rejection from taking down
your app, add a listener to the window object for the
unhandledrejection event. If any Promise is rejected and
you don’t handle it with a catch, this event fires. Here
you can take action such as logging the error.

Loading an Image with a Fallback

Problem

You want to load an image to display on the page. If there’s
an error loading the image, you want to use a known good
image URL as a fallback.

Solution

Create an Image element programmatically, and listen for its
load and error events. If the error event triggers, replace it
with the fallback image. Once either the requested image
or the placeholder image loads, add it to the DOM when
desired.

For a cleaner API, you can wrap this in a Promise. The
Promise either resolves with an Image to be added or rejects
with an error if neither the image nor the fallback can be
loaded (see Example 1-2).
Example 1-2. Loading an image with a fallback

/**

 * Loads an image. If there's an error loading the image, uses a fallback

 * image URL instead.

 *

 * @param url The image URL to load

 * @param fallbackUrl The fallback image to load if there's an error

 * @returns a Promise that resolves to an Image element to insert into the DOM

 */

function loadImage(url, fallbackUrl) {

 return new Promise((resolve, reject) => {

 const image = new Image();

 // Attempt to load the image from the given URL

 image.src = url;

 // The image triggers the 'load' event when it is successfully loaded.

 image.addEventListener('load', () => {

 // The now-loaded image is used to resolve the Promise

 resolve(image);

 });

 // If an image failed to load, it triggers the 'error' event.

 image.addEventListener('error', error => {

 // Reject the Promise in one of two scenarios:

 // (1) There is no fallback URL.

 // (2) The fallback URL is the one that failed.

 if (!fallbackUrl || image.src === fallbackUrl) {

 reject(error);

 } else {

 // If this is executed, it means the original image failed to load.

 // Try to load the fallback.

 image.src = fallbackUrl;

 }

 });

 });

}

Discussion

The loadImage function takes a URL and a fallback URL and
returns a Promise. Then it creates a new Image and sets its
src attribute to the given URL. The browser attempts to
load the image.
There are three possible outcomes:
Success case

If the image loads successfully, the load event is triggered.
The event handler resolves the Promise with the Image, which
can then be inserted into the DOM.

Fallback case

If the image fails to load, the error event is triggered. The
error handler sets the src attribute to the fallback URL, and
the browser attempts to load the fallback image. If that is
successful, the load event fires and resolves the Promise with
the fallback Image.

Failure case

If neither the image nor the fallback image could be loaded,
the error handler rejects the Promise with the error event.

The error event is triggered every time there’s a load error.
The handler first checks if it’s the fallback URL that failed.
If so, this means that the original URL and fallback URL
both failed to load. This is the failure case, so the Promise is
rejected.
If it’s not the fallback URL, this means the requested URL
failed to load. Now it sets the fallback URL and tries to load
that.
The order of checks here is important. Without that first
check, if the fallback fails to load, the error handler would
trigger an infinite loop of setting the (invalid) fallback URL,
requesting it, and firing the error event again.

Example 1-3 shows how to use this loadImage function.

Example 1-3. Using the loadImage function

loadImage('https://example.com/profile.jpg', 'https://example.com/fallback.jpg')

 .then(image => {

 // container is an element in the DOM where the image will go

 container.appendChild(image);

 }).catch(error => {

 console.error('Image load failed');

 });

Chaining Promises

Problem

You want to call several Promise-based APIs in sequence.
Each operation depends on the result of the previous one.

Solution

Use a chain of Promises to run the asynchronous tasks in
sequence. Imagine a blog application with two APIs, both of
which return Promises:

getUser(id)

Loads a user with the given user ID

getPosts(user)

Loads all the blog posts for a given user

If you want to load the posts for a user, you first need to
load the user object—you can’t call getPosts until the user
details are loaded. You can do this by chaining the two
Promises together, as shown in Example 1-4.

Example 1-4. Using a Promise chain

/**

 * Loads the post titles for a given user ID.

 * @param userId is the ID of the user whose posts you want to load

 * @returns a Promise that resolves to an array of post titles

 */

function getPostTitles(userId) {

 return getUser(userId)

 // Callback is called with the loaded user object

 .then(user => {

 console.log(`Getting posts for ${user.name}`);

 // This Promise is also returned from .then

 return getPosts(user);

 })

 // Calling then on the getPosts' Promise

 .then(posts => {

 // Returns another Promise that will resolve to an array of post titles

 return posts.map(post => post.title);

 })

 // Called if either getUser or getPosts are rejected

 .catch(error => {

 console.error('Error loading data:', error);

 });

}

Discussion

The value returned from a Promise’s then handler is wrapped
in a new Promise. This Promise is returned from the then
method itself. This means the return value of then is also a
Promise, so you can chain another then onto it. This is how
you create a chain of Promises.

getUser returns a Promise that resolves to the user object.
The then handler calls getPosts and returns the resulting
Promise, which is returned again from then, so you can call
then once more to get the final result, the array of posts.

At the end of the chain is a call to catch to handle any
errors. This works like a try/catch block. If an error occurs
at any point within the chain, the catch handler is called
with that error and the rest of the chain does not get
executed.

Using the async and await Keywords

Problem

You are working with an API that returns a Promise, but you
want the code to read in a more linear, or synchronous,
fashion.

Solution

Use the await keyword with the Promise instead of calling
then on it (see Example 1-5). Consider again the getUsers
function from “Working with Promises”. This function
returns a Promise that resolves to a list of users.

Example 1-5. Using the await keyword

// A function must be declared with the async keyword

// in order to use await in its body.

async function listUsers() {

 try {

 // Equivalent to getUsers().then(...)

 const userList = await getUsers();

 console.log('User List:');

 userList.forEach(user => {

 console.log(user.name);

 });

 } catch (error) { // Equivalent to .catch(...)

 console.error('Failed to load the user list:', error);

 }

}

Discussion

await is an alternative syntax for working with Promises.
Instead of calling then with a callback that takes the result
as its argument, the expression effectively “pauses”
execution of the rest of the function and returns the result
when the Promise is fulfilled.

If the Promise is rejected, the await expression throws the
rejected value. This is handled with a standard try/catch
block.

Using Promises in Parallel

Problem

You want to execute a series of asynchronous tasks in
parallel using Promises.

Solution

Collect all the Promises, and pass them to Promise.all. This
function takes an array of Promises and waits for them all to
complete. It returns a new Promise that is fulfilled once all
the given Promises are fulfilled, or rejects if any of the given
Promises are rejected (see Example 1-6).

Example 1-6. Loading multiple users with Promise.all

// Loading three users at once

Promise.all([

 getUser(1),

 getUser(2),

 getUser(3)

]).then(users => {

 // users is an array of user objects—the values returned from

 // the parallel getUser calls

}).catch(error => {

 // If any of the above Promises are rejected

 console.error('One of the users failed to load:', error);

});

Discussion

If you have multiple tasks that don’t depend on one
another, Promise.all is a good choice. Example 1-6 calls
getUser three times, passing a different user ID each time. It
collects these Promises into an array that is passed to
Promise.all. All three requests run in parallel.

Promise.all returns another Promise. Once all three users
have loaded successfully, this new Promise becomes fulfilled
with an array containing the loaded users. The index of
each result corresponds to the index of the Promise in the
input array. In this case, it returns an array with users 1, 2,
and 3, in that order.
What if one or more of these users failed to load? Maybe
one of the user IDs doesn’t exist or there was a temporary

network error. If any of the Promises passed to Promise.all
are rejected, the new Promise immediately rejects as well.
The rejection value is the same as that of the rejected
Promise.

If one of the users fails to load, the Promise returned by
Promise.all is rejected with the error that occurred. The
results of the other Promises are lost.

If you still want to get the results of any resolved Promises
(or errors from other rejected ones), you can instead use
Promise.allSettled. With Promise.allSettled, a new Promise is
returned just like with Promise.all. However, this Promise is
always fulfilled, once all of the Promises are settled (either
fulfilled or rejected).
As shown in Example 1-7, the resolved value is an array
whose elements each have a status property. This is either
fulfilled or rejected, depending on the result of that
Promise. If the status is fulfilled, the object also has a value
property that is the resolved value. On the other hand, if
the status is rejected, it instead has a reason property, which
is the rejected value.

Example 1-7. Using Promise.allSettled

Promise.allSettled([

 getUser(1),

 getUser(2),

 getUser(3)

]).then(results => {

 results.forEach(result => {

 if (result.status === 'fulfilled') {

 console.log('- User:', result.value.name);

 } else {

 console.log('- Error:', result.reason);

 }

 });

});

// No catch necessary here because allSettled is always fulfilled.

Animating an Element with

requestAnimationFrame

Problem

You want to animate an element in a performant way using
JavaScript.

Solution

Use the requestAnimationFrame function to schedule your
animation updates to run at regular intervals.

Imagine you have a div element that you want to hide with
a fade animation. This is done by adjusting the opacity at
regular intervals, using a callback passed to request​
A⁠nimationFrame (see Example 1-8). The duration of each
interval depends on the desired frames per second (FPS) of
the animation.
Example 1-8. Fade-out animation using

requestAnimationFrame

const animationSeconds = 2; // Animate over 2 seconds

const fps = 60; // A nice, smooth animation

// The time interval between each frame

const frameInterval = 1000 / fps;

// The total number of frames for the animation

const frameCount = animationSeconds * fps;

// The amount to adjust the opacity by in each frame

const opacityIncrement = 1 / frameCount;

// The timestamp of the last frame

let lastTimestamp;

// The starting opacity value

let opacity = 1;

function fade(timestamp) {

 // Set the last timestamp to now if there isn't an existing one.

 if (!lastTimestamp) {

 lastTimestamp = timestamp;

 }

 // Calculate how much time has elapsed since the last frame.

 // If not enough time has passed yet, schedule another call of this

 // function and return.

 const elapsed = timestamp - lastTimestamp;

 if (elapsed < frameInterval) {

 requestAnimationFrame(animate);

 return;

 }

 // Time for a new animation frame. Remember this timestamp.

 lastTimestamp = timestamp;

 // Adjust the opacity value and make sure it doesn't go below 0.

 opacity = Math.max(0, opacity - opacityIncrement)

 box.style.opacity = opacity;

 // If the opacity hasn't reached the target value of 0, schedule another

 // call to this function.

 if (opacity > 0) {

 requestAnimationFrame(animate);

 }

}

// Schedule the first call to the animation function.

requestAnimationFrame(fade);

Discussion

This is a good, performant way to animate elements using
JavaScript that has good browser support. Because it’s
done asynchronously, this animation won’t block the
browser’s main thread. If the user switches to another tab,

the animation is paused and requestAnimationFrame isn’t
called unnecessarily.
When you schedule a function to run with
requestAnimationFrame, the function is called before the next
repaint operation. How often this happens depends on the
browser and screen refresh rate.
Before animating, Example 1-8 does some calculations
based on a given animation duration (2 seconds) and frame
rate (60 frames per second). It calculates the total number
of frames, and uses the duration to calculate how long each
frame runs. If you want a different frame rate that doesn’t
match the system refresh rate, this keeps track of when the
last animation update was performed to maintain your
target frame rate.
Then, based on the number of frames, it calculates the
opacity adjustment made in each frame.

The fade function is scheduled by passing it to a
requestAnimationFrame call. Each time the browser calls this
function, it passes a timestamp. The fade function
calculates how much time has elapsed since the last frame.
If not enough time has passed yet, it doesn’t do anything
and asks the browser to call again next time around.
Once enough time has passed, it performs an animation
step. It takes the calculated opacity adjustment and applies
it to the element’s style. Depending on the exact timing,
this could result in an opacity less than 0, which is invalid.
This is fixed by using Math.max to set a minimum value of 0.
If the opacity hasn’t reached 0 yet, more animation frames
need to be performed. It calls requestAnimationFrame again to
schedule the next execution.

As an alternative to this method, newer browsers support
the Web Animations API, which you’ll learn about in
Chapter 8. This API lets you specify keyframes with CSS
properties, and the browser handles updating the
intermediate values for you.

Wrapping an Event API in a Promise

Problem

You want to wrap an event-based API to return a Promise.

Solution

Create a new Promise object and register event listeners
within its constructor. When you receive the event you’re
waiting for, resolve the Promise with the value. Similarly,
reject the Promise if an error event occurs.
Sometimes this is called “promisifying” a function.
Example 1-9 demonstrates promisifying the XMLHttpRequest
API.

Example 1-9. Promisifying the XMLHttpRequest API

/**

 * Sends a GET request to the specified URL. Returns a Promise that will resolve

to

 * the JSON body parsed as an object, or will reject if there is an error or the

 * response is not valid JSON.

 *

 * @param url The URL to request

 * @returns a Promise that resolves to the response body

 */

function loadJSON(url) {

 // Create a new Promise object, performing the async work inside the

 // constructor function.

 return new Promise((resolve, reject) => {

 const request = new XMLHttpRequest();

 // If the request is successful, parse the JSON response and

 // resolve the Promise with the resulting object.

 request.addEventListener('load', event => {

 // Wrap the JSON.parse call in a try/catch block just in case

 // the response body is not valid JSON.

 try {

 resolve(JSON.parse(event.target.responseText));

 } catch (error) {

 // There was an error parsing the response body.

 // Reject the Promise with this error.

 reject(error);

 }

 });

 // If the request fails, reject the Promise with the

 // error that was emitted.

 request.addEventListener('error', error => {

 reject(error);

 });

 // Set the target URL and send the request.

 request.open('GET', url);

 request.send();

 });

}

Example 1-10 shows how to use the promisified loadJSON
function.

Example 1-10. Using the loadJSON helper

// Using .then

loadJSON('/api/users/1').then(user => {

 console.log('Got user:', user);

})

// Using await

const user = await loadJSON('/api/users/1');

console.log('Got user:', user);

Discussion

You create a Promise by calling the Promise constructor

function with the new operator. This function receives two

arguments, a resolve and reject function.

The resolve and reject functions are supplied by the
JavaScript engine. Within the Promise constructor, you do
your asynchronous work and listen for events. When the
resolve function is called, the Promise immediately resolves
to that value. Calling reject works the same way—it rejects
the Promise with the error.

Creating your own Promise can help these types of
situations, but in general you usually don’t need to create
them manually like this. If an API already returns a Promise,
you don’t need to wrap that in your own Promise—just use it
directly.

Chapter 2. Simple

Persistence with the Web

Storage API

Introduction

The Web Storage API persists simple data locally, in the
user’s browser. You can retrieve this data later, even after
closing and reopening the browser.

This API has a Storage interface that provides data access
and persistence. You don’t create instances of Storage
directly; there are two global instances: window.localStorage
and window.sessionStorage. The only difference between
these is how long they retain the data.

sessionStorage data is associated with a specific browser
session. It retains the data if the page is reloaded, but
closing the browser completely loses the data. Different
tabs for the same origin do not share the same persisted
data.

On the other hand, localStorage shares the same storage
space across all tabs and sessions for the same origin. The
browser retains this data even after you close the browser.
In general, session storage is a good choice if you want to
store something ephemeral or sensitive that you want to be
destroyed once the browser is closed.
In both cases, storage space is specific to a given origin.

WHAT IS AN ORIGIN?

A page’s origin is a string combining the protocol (http
or https), host, and port of a URL. For example, the
URLs https://example.com/path/to/index.html and
https://example.com/profile/index.html both have the
same origin: https://example.com.

Getting and Setting Items

Web Storage can only store string values. Each value has a
key that you can use to look it up. The API is simple:

getItem(key)

Returns the string bound to a key, or null if the key doesn’t
exist.

setItem(key, value)

Stores a string value under the given key. If the key already
exists, you’ll overwrite it.

clear()

Deletes all stored data for the current origin.

Disadvantages

Web Storage can be really useful, but it does have a few
disadvantages:
Data storage limitations

Web Storage can only store string data. You can store simple
objects, but not directly—you’ll need to convert them to a
JavaScript Object Notation (JSON) string first.

Size limitations

Each origin has a limited amount of space available for
storage. In most browsers this is 5 megabytes. If an origin’s
storage becomes full, the browser will throw an exception if
you attempt to add more data.

Security concerns

Even though the browser stores each origin’s data
separately, it’s still vulnerable to cross-site scripting (XSS)
attacks. An attacker can inject code via an XSS attack that
steals locally persisted data. Be mindful of what sensitive
data you store here.

NOTE

The recipes in this chapter all use local storage, but they all apply to
session storage as well, since both objects implement the same
Storage interface.

Checking for Web Storage Support

Problem

You want to check if local storage is available before using
it to avoid crashing your app. You also want to handle the
situation where local storage is available but blocked by
user settings.

Solution

Check the global window object for the localStorage property
to verify that the browser supports local storage. If the

check passes, local storage is available (see Example 2-1).
Example 2-1. Checking if local storage is available

/**

 * Determines if local storage is available.

 * @returns true if the browser can use local storage, false if not

 */

function isLocalStorageAvailable() {

 try {

 // Local storage is available if the property exists.

 return typeof window.localStorage !== 'undefined';

 } catch (error) {

 // If window.localStorage exists but the user is blocking local

 // storage, the attempt to read the property throws an exception.

 // If this happens, consider local storage not available.

 return false;

 }

}

Discussion

The function in Example 2-1 handles both cases: if local
storage is supported at all, and if it exists and is not
blocked by user settings.

It checks to see if the window.localStorage property is not
undefined. If this check passes, this means the browser
supports local storage. If the user has blocked local
storage, just the act of referencing the window.localStorage
property throws an exception with a message saying access
is denied.

By surrounding the property check with a try/catch block,
you can also handle this case. When catching the exception,
it considers local storage not available and returns false.

Persisting String Data

Problem

You want to persist a string value to local storage and read
it back later.

Solution

Use localStorage.getItem and localStorage.setItem to read
and write the data. Example 2-2 shows how we can use
local storage to remember the value of a color picker.
Example 2-2. Persisting data to local storage

// A reference to the color picker input element

const colorPicker = document.querySelector('#colorPicker');

// Load the saved color, if any, and set it on the color picker.

const storedValue = localStorage.getItem('savedColor');

if (storedValue) {

 console.log('Found saved color:', storedValue);

 colorPicker.value = storedValue;

}

// Update the saved color whenever the value changes.

colorPicker.addEventListener('change', event => {

 localStorage.setItem('savedColor', event.target.value);

 console.log('Saving new color:', colorPicker.value);

});

Discussion

When the page first loads, local storage is checked for a
previously saved color. If you call getItem with a key that
doesn’t exist, it returns null. The return value is only set in
the color picker if it is not null or empty.
When the color picker’s value changes, the event handler
saves the new value to local storage. If there’s already a
saved color, this overwrites it.

Persisting Simple Objects

Problem

You have a JavaScript object, such as a user profile, that
you want to persist to local storage. You can’t do this
directly because local storage only supports string values.

Solution

Use JSON.stringify to convert the object to a JSON string
before saving it. When loading the value later, use
JSON.parse to turn it back into an object, as shown in
Example 2-3.

Example 2-3. Using JSON.parse and JSON.stringify

/**

 * Given a user profile object, serialize it to JSON and store it in local

storage.

 * @param userProfile the profile object to save

 */

function saveProfile(userProfile) {

 localStorage.setItem('userProfile', JSON.stringify(userProfile));

}

/**

 * Loads the user profile from local storage and deserializes the JSON back to

 * an object. If there is no stored profile, an empty object is returned.

 * @returns the stored user profile or an empty object.

 */

function loadProfile() {

 // If there is no stored userProfile value, this will return null. In this

case,

 // use the default value of an empty object.

 return JSON.parse(localStorage.getItem('userProfile')) || {};

}

Discussion

Passing the profile object directly to localStorage.setItem
won’t have the desired effect, as shown in Example 2-4.
Example 2-4. Attempting to persist an array

const userProfile = {

 firstName: 'Ava',

 lastName: 'Johnson'

};

localStorage.setItem('userProfile', userProfile);

// Prints [object Object]

console.log(localStorage.getItem('userProfile'));

The saved value is [object Object]. This is the result of
calling toString on the profile object.

JSON.stringify takes an object and returns a JSON string
representing the object. Passing the user profile object to
JSON.stringify results in this JSON string (whitespace added
for readability):

{

 "firstName": "Ava",

 "lastName": "Johnson"

}

This approach works for objects like the user profile, but
the JSON specification limits what can be serialized to a
string. Generally speaking, these are objects, arrays,
strings, numbers, booleans, and null. Other values, like
class instances or functions, can’t be serialized in this way.

Persisting Complex Objects

Problem

https://www.json.org/

You want to persist an object that can’t be directly
serialized to a JSON string, to local storage. For example,
the user profile object might have a Date object in it
specifying when it was last updated.

Solution

Use replacer and reviver functions with JSON.stringify and
JSON.parse to provide custom serialization for the complex
data.
Consider the following profile object:

const userProfile = {

 firstName: 'Ava',

 lastName: 'Johnson',

 // This date represents June 2, 2025.

 // Months start with zero but days start with 1.

 lastUpdated: new Date(2025, 5, 2);

}

If you serialize this object with JSON.stringify, the resulting
string has the lastUpdated date as an ISO date string (see
Example 2-5).

Example 2-5. Attempting to serialize an object with a Date

object

const json = JSON.stringify(userProfile);

The resulting JSON string looks like this:

{

 "firstName": "Ava",

 "lastName": "Johnson",

 "lastUpdated": '2025-06-02T04:00:00.000Z'

}

Now you have a JSON string that you can save to local
storage. However, if you call JSON.parse with this JSON
string, the resulting object differs slightly from the original.
The lastUpdated property is still a string, not a Date, because
JSON.parse doesn’t know that this should be a Date object.

To handle these situations, JSON.stringify and JSON.parse
accept special functions called replacer and reviver,
respectively. These functions provide custom logic to
convert nonprimitive values to and from JSON.

Serializing with a replacer function

The replacer argument to JSON.stringify can work in several
different ways. MDN has some comprehensive
documentation on the replacer function.

The replacer function takes two arguments: key and value
(see Example 2-6). JSON.stringify first calls this function
with an empty string as the key, and the object being
stringified as the value. You can transform the lastUpdated
field here to a serializable representation of the Date object
by calling getTime(), which gives the date as the number of
milliseconds since the epoch (midnight UTC on January 1,
1970).

Example 2-6. The replacer function

function replacer(key, value) {

 if (key === '') {

 // First replacer call, "value" is the object itself.

 // Return all properties of the object, but transform lastUpdated.

 // This uses object spread syntax to make a copy of "value" before

 // adding the lastUpdated property.

 return {

 ...value,

 lastUpdated: value.lastUpdated.getTime()

 };

 }

https://oreil.ly/H56TM

 // After the initial transformation, the replacer is called once

 // for each key/value pair.

 // No more replacements are necessary, so return these as is.

 return value;

}

You can pass this replacer function to JSON.stringify to
serialize the object to JSON, as shown in Example 2-7.

Example 2-7. Stringifying with the replacer

const json = JSON.stringify(userProfile, replacer);

This generates the following JSON string:

{

 "firstName": "Ava",

 "lastName": "Johnson",

 "lastUpdated": 1748836800000

}

The number in the lastUpdated property is the timestamp for
June 2, 2025.

Deserializing with the reviver function

Later, when you pass this JSON string to JSON.parse, the
lastUpdated property remains as a number (the timestamp).
You can use a reviver function to transform this serialized
number value back into a Date object.

JSON.parse calls the reviver function for each property in the
JSON string. For each key, the value returned from the
function is the value that is set in the final object (see
Example 2-8).

Example 2-8. The reviver function

function reviver(key, value) {

 // JSON.parse calls the reviver once for each key/value pair.

 // Watch for the lastUpdated key.

 // Only proceed if there's actually a value for lastUpdated.

 if (key === 'lastUpdated' && value) {

 // Here, the value is the timestamp. You can pass this to the Date

constructor

 // to create a Date object referring to the proper time.

 return new Date(value);

 }

 // Restore all other values as is.

 return value;

}

To use the reviver, pass it as the second argument to
JSON.parse, as shown in Example 2-9.

Example 2-9. Parsing with the reviver

const object = JSON.parse(userProfile, reviver);

This returns an object that is equal to the user profile
object we started with:

{

 firstName: 'Ava',

 lastName: 'Johnson',

 lastUpdated: [Date object representing June 2, 2025]

}

Discussion

With this reliable method to convert this object to and from
JSON, keeping the Date property intact, you can persist
these values in local storage.
The approach shown here is just one way to work with a
replacer function. Instead of a replacer function, you could
also define a toJSON function on the object being stringified.
Combined with a factory function, no replacer function is
necessary.

FACTORY FUNCTIONS

Example 2-10 uses a factory function to create user
profile objects. It takes some arguments and returns a
new object containing data based on those arguments. A
factory function is similar to a class’s constructor
function. The main difference is that you use a
constructor function with the new operator, but a factory
is called directly like any other function.

Example 2-10. Using a factory that adds a toJSON function

/**

 * A factory function to create a user profile object,

 * with the lastUpdated property set to today and a toJSON method

 *

 * @param firstName The user's first name

 * @param lastName The user's last name

 */

function createUser(firstName, lastName) {

 return {

 firstName,

 lastName,

 lastUpdated: new Date(),

 toJSON() {

 return {

 firstName: this.firstName,

 lastName: this.lastName,

 lastUpdated: this.lastUpdated.getTime();

 }

 }

 }

}

const userProfile = createUser('Ava', 'Johnson');

Calling JSON.stringify with the object in Example 2-10
returns the same JSON string as before, with lastUpdated
properly converted to a timestamp.

NOTE

There isn’t any mechanism like this for parsing a string back to an
object with JSON.parse. If you use the toJSON approach shown here,
you’ll
still need to write a reviver function to properly deserialize a
user profile string.

Since functions can’t be serialized, the resulting JSON
string won’t have a toJSON property. Whatever method you
choose, the resulting JSON is the same.

Listening for Storage Changes

Problem

You want to receive a notification when another tab on the
same origin makes changes to local storage.

Solution

Listen for the storage event on the window object. This event
fires when other tabs or sessions in the same browser, on
the same origin, make changes to any data in local storage
(see Example 2-11).
Example 2-11. Listening for storage changes from another

tab

// Listen for the 'storage' event. If another tab changes the

// 'savedColor' item, update this page's color picker with the new value.

window.addEventListener('storage', event => {

 if (event.key === 'savedColor') {

 console.log('New color was chosen in another tab:', event.newValue);

 colorPicker.value = event.newValue;

 }

});

Consider the persistent color picker from “Persisting String
Data”. If the user has multiple tabs open and changes the
color in another tab, you can get notified and update the
local in-memory copy of the data to keep everything in
sync.

NOTE

The storage event is not triggered on the tab or page that made the
storage change. It’s meant to listen for
changes that other pages
have made to local storage.

A storage event specifies which key was changed and what
the new value is. It also includes the old value, in case you
need it for comparison.

Discussion

The main use case for the storage event is to keep multiple
sessions in sync with each other in real time.

NOTE

The storage event is only triggered for other tabs and sessions in the
same browser on the same device.

Even if you don’t listen for the storage event, all sessions on
the same origin still share the same local storage data. If
you call localStorage.getItem at any point, you’ll still get the
latest value. The storage event just provides a real-time
notification when such a change happens so the app can
update the local data.

Finding All Known Keys

Problem

You want to know all the keys that are currently in local
storage for the current origin.

Solution

Use the length property with the key function to build a list
of all the known keys. Storage objects don’t have a function
to return the list of keys directly, but you can build such a
list by using the following:

The length property returns the number of keys.

The key function, given an index, returns the key at
that index.

You can combine these with a for loop to build an array of
all the keys, as shown Example 2-12.
Example 2-12. Building a list of keys

/**

 * Generates an array of all keys found in the local storage area

 * @returns an array of keys

 */

function getAllKeys() {

 const keys = [];

 for (let i = 0; i < localStorage.length; i++) {

 keys.push(localStorage.key(i));

 }

 return keys;

}

Discussion

You can combine the length property and the key function to
perform other types of queries, too. This could be, for
example, a function that takes an array of keys and returns
an object containing just those key/value pairs (see
Example 2-13).
Example 2-13. Querying for a subset of key/value pairs

function getAll(keys) {

 const results = {};

 // Check each key in local storage.

 for (let i = 0; i < localStorage.length; i++) {

 // Get the ith key. If the keys array includes this key, add it and its value

 // to the results object.

 const key = localStorage.key(i);

 if (keys.includes(key)) {

 results[key] = localStorage.getItem(key);

 }

 }

 // results now has all key/value pairs that exist in local storage.

 return results;

}

NOTE

The ordering of the keys, as referenced with the key function, may
not be the same across different browsers.

Removing Data

Problem

You want to remove some, or all, data from local storage.

Solution

Use the removeItem and clear methods as appropriate.
To remove a particular key/value pair from local storage,
call localStorage.remove​I⁠tem with the key (see Example 2-
14).
Example 2-14. Removing an item from local storage

// This is a safe operation. If the key doesn't exist,

// no exception is thrown.

localStorage.removeItem('my-key');

Call localStorage.clear to remove all data from local storage
for the current origin, as shown in Example 2-15.
Example 2-15. Removing all items from local storage

localStorage.clear();

Discussion

Browsers limit the amount of data that you can store in
Web Storage. Typically, the limit is about 5 MB. To avoid
running out of space and throwing an error, you should
remove items once they are no longer needed. Depending
on what you’re using Web Storage for, you can also provide
a way for your users to clear stored data. Consider an emoji
picker that stores recently selected emojis in local storage.
You might add a Clear Recents button that removes these
items.

Chapter 3. URLs and

Routing

Introduction

Most web pages and applications deal with URLs in some
way. This could be an action like crafting a link with certain
query parameters, or URL-based routing in a single-page
application (SPA).
A URL is just a string that complies with some syntax rules
as defined in RFC 3986, “Uniform Resource Identifier
(URI): Generic Syntax”. There are several component parts
of a URL that you may need to parse or manipulate. Doing
so with techniques like regular expressions or string
concatenation isn’t always reliable.
Today, browsers support the URL API. This API provides a
URL constructor that can create, derive, and manipulate
URLs. This API was somewhat limited at first, but later
updates added utilities like the URLSearchParams interface
that simplified building and reading query strings.

Parts of a URL

When you call the URL constructor with a string
representing a valid URL, the resulting object contains
properties representing the URL’s different component
parts. Figure 3-1 shows the most commonly used of these:

protocol (1)

https://oreil.ly/SUziR

For web URLs, this is typically http: or https: (note that the
colon is included, but not the slashes). Other protocols are
possible such as file: (for a local file not hosted on a server)
or ftp: (a resource on an FTP server).

hostname (2)

The domain or host name (example.com).

pathname (3)

The path of the resource relative to the root, with leading
slash (/admin/login).

search (4)

Any query parameters. The ? character is included (?
username=sysadmin).

Figure 3-1. An example URL with its component parts highlighted

Some other parts of the URL include:

hash

If the URL contains a hash, returns the hash portion
(including the hash symbol, #). This is sometimes used for
internal navigation for older SPAs. For the URL
https://example.com/app#profile, the value of hash would be
#profile.

host

Similar to hostname, but also includes the port number (if
specified), for example localhost:8443.

origin

The origin of the URL. This usually includes the protocol,
hostname, and port (if specified).

You can get the entire URL string by calling toString on it,
or by accessing its href property.

If an invalid URL string is passed to the URL constructor, it
throws an exception.

Resolving a Relative URL

Problem

You have a partial or relative URL like /api/users that you
want to resolve to a full, absolute URL like
https://example.com/api/users.

Solution

Create a URL object, passing the relative URL and the
desired base URL, as shown in Example 3-1.
Example 3-1. Creating relative URLs

/**

 * Given a relative path and a base URL, resolves a full absolute URL.

 * @param relativePath The relative path for the URL

 * @param baseUrl A valid URL to use as the base

 */

function resolveUrl(relativePath, baseUrl) {

 return new URL(relativePath, baseUrl).href;

}

// https://example.com/api/users

console.log(resolveUrl('/api/users', 'https://example.com'));

Without the second argument, the URL constructor would
throw an error because /api/users is not a valid URL. The
second argument is the base for constructing a new URL. It
constructs the URL by assuming the given path is relative
to the base URL.

Discussion

The second argument must be a valid URL. To construct
the final URL, the typical rules for a valid relative URL are
applied depending on the first argument.
If the first argument starts with a leading slash, the
pathname of the base URL is ignored and the new URL is
relative to the root of the base URL:

// https://example.com/api/v1/users

console.log(resolveUrl('/api/v1/users', 'https://example.com'));

// https://example.com/api/v1/users

// Note that /api/v2 is discarded due to the leading slash in /api/v1/users

console.log(resolveUrl('/api/v1/users', 'https://example.com/api/v2'));

Otherwise, the URL is calculated relative to the base URL:

// https://example.com/api/v1/users

console.log(resolveUrl('../v1/users/', 'https://example.com/api/v2'));

// https://example.com/api/v1/users

console.log(resolveUrl('users', 'https://example.com/api/v1/groups'));

If the first argument is a valid URL on its own, the base
URL is ignored.
If the constructor’s second argument is not a string,
toString is called on it and the resulting string is used. This
means you can pass other URL objects, or even other objects
that are similar to URL. You can
even pass window.location (a

Location object, which has similar properties to a URL) to
generate a new URL on the current origin (see Example 3-
2).
Example 3-2. Creating a relative URL on the same origin

const usersApiUrl = new URL('/api/users', window.location);

Removing Query Parameters From a

URL

Problem

You want to remove all query parameters from a URL.

Solution

Create a URL object and set its search property to an empty
string, as shown in Example 3-3.
Example 3-3. Removing a URL’s query parameters

/**

 * Removes all parameters from an input URL.

 *

 * @param inputUrl a URL string containing query parameters

 * @returns a new URL string with all query parameters removed

 */

function removeAllQueryParameters(inputUrl) {

 const url = new URL(inputUrl);

 url.search = '';

 return url.toString();

}

// Results in 'https://example.com/api/users'

removeAllQueryParams('https://example.com/api/users?user=sysadmin&q=user');

Discussion

The query parameters in the URL are represented in two
ways: with the search property and the searchParams
property.

The search property is a single string containing all of the
query parameters along with the leading ? character. If you
want to delete the entire query string, you can set this to
an empty string.

Note that the search property is set to an empty string. If
you set it to null, you’ll get the literal string null in the
query string (see Example 3-4).
Example 3-4. Incorrectly trying to remove all query

parameters

const url = new URL('https://example.com/api/users?user=sysadmin&q=user');

url.search = null;

console.log(url.toString()); // https://example.com/api/users?null

The searchParams property is a URLSearchParams object. It has
methods to view, add, and remove query parameters. When
adding query parameters, it automatically handles
encoding characters. If you want to remove just a single
query parameter, you can call delete on this object, as
shown in Example 3-5.
Example 3-5. Removing a single query parameter

/**

 * Removes a single parameter from an input URL

 *

 * @param inputUrl a URL string containing query parameters

 * @param paramName the name of the parameter to remove

 * @returns a new URL string with the given query parameter removed

 */

function removeQueryParameter(inputUrl, paramName) {

 const url = new URL(inputUrl);

 url.searchParams.delete(paramName);

 return url.toString();

}

console.log(

 removeQueryParameter(

 'https://example.com/api/users?user=sysadmin&q=user',

 'q'

)

); // https://example.com/api/users?user=sysadmin

Adding Query Parameters to a URL

Problem

You have an existing URL that may already have some
query parameters in it, and you want to add additional
query parameters.

Solution

Use the URLSearchParams object, accessible via the
searchParams property, to add the additional parameters (see
Example 3-6).
Example 3-6. Adding additional query parameters

const url = new URL('https://example.com/api/search?objectType=user');

url.searchParams.append('userRole', 'admin');

url.searchParams.append('userRole', 'user');

url.searchParams.append('name', 'luke');

// Prints

"https://example.com/api/search?objectType=user&userRole=admin&userRole=user

&name=luke"

console.log(url.toString());

Discussion

This URL already has a query parameter (objectType=user).
The code uses the searchParams property of the parsed URL
to append a few more query parameters. Two userRole

parameters are added. When you use append, it adds new
values and keeps existing values. To replace all parameters
of that name with the new value, you can use set instead.
With the new parameters, the full URL now is:

https://example.com/api/search?objectType=user&userRole=admin&userRole=user

&name=luke

If you call append with a parameter name but no value, you’ll
get an exception, as shown in Example 3-7.

Example 3-7. Attempting to call append without a value

const url = new URL('https://example.com/api/search?objectType=user');

// TypeError: Failed to execute 'append' on 'URLSearchParams':

// 2 arguments required, but only 1 present.

url.searchParams.append('name');

This method gracefully handles other argument types. If it
doesn’t receive a string value, it converts the value to a
string (see Example 3-8).
Example 3-8. Appending nonstring parameters

const url = new URL('https://example.com/api/search?objectType=user');

// The resulting URL has the query string:

// ?objectType=user&name=null&role=undefined

url.searchParams.append('name', null);

url.searchParams.append('role', undefined);

Using URLSearchParams to add query parameters
automatically handles any potential encoding issues. If
you’re adding a parameter with a reserved character (as
defined in RFC 3986) such as & or ?, URLSearchParams
automatically encodes these to ensure a valid URL. It uses
percent encoding, which adds a percent sign followed by
the hexadecimal digits representing that character. For

example, & becomes %26 because 0x26 is the hex code for an
ampersand.
You can see this encoding in action by appending a query
parameter containing some reserved characters together,
as shown in Example 3-9:
Example 3-9. Encoding reserved characters in a query

parameter

const url = new URL('https://example.com/api/search');

// Contrived example string demonstrating several reserved characters

url.searchParams.append('q', 'admin&user?luke');

The resulting URL becomes:

https://example.com/api/search?q=admin%26user%3Fluke

The URL contains %26 in place of &, and %3F in place of ?.
These characters have special meaning in a URL. ?
indicates the beginning of the query string, and & is a
separator between parameters.

As Example 3-6 shows, calling append multiple times with
the same key adds a new query parameter with the given
key. When you call .append('userRole', 'user'), it adds the
parameter userRole=user and keeps the previous
userRole=admin. URLSearchParams also has a set method. set
adds query parameters as well, but with different behavior.
set replaces any existing parameters under the given key
with the new one (see Example 3-10). If you constructed
the same URL again using set, the result would be
different.

Example 3-10. Adding query parameters with set

const url = new URL('https://example.com/api/search?objectType=user');

url.searchParams.set('userRole', 'admin');

url.searchParams.set('userRole', 'user');

url.searchParams.set('name', 'luke');

When you use set instead of append, the second userRole
parameter overwrites the first one, and the resulting URL
is:

https://example.com/api/search?objectType=user&userRole=user&name=luke

Note that there is only one userRole parameter—the last one
that was added.

Reading Query Parameters

Problem

You want to parse and list the query parameters in a URL.

Solution

Use the forEach method of URLSearchParams to list the keys
and values (see Example 3-11).
Example 3-11. Reading query parameters

/**

 * Takes a URL and returns an array of its query parameters

 *

 * @param inputUrl A URL string

 * @returns An array of objects with key and value properties

 */

function getQueryParameters(inputUrl) {

 // Can't use an object here because there may be multiple

 // parameters with the same key, and we want to return all parameters.

 const result = [];

 const url = new URL(inputUrl);

 // Add each key/value pair to the result array.

 url.searchParams.forEach((value, key) => {

((, y) {

 result.push({ key, value });

 });

 // Results are ready!

 return result;

}

Discussion

When listing the query parameters on a URL, any percent-
encoded reserved characters are decoded back to their
original values (see Example 3-12).

Example 3-12. Using the getQueryParameters function

getQueryParameters('https://example.com/api/search?name=luke%26ben');

The name parameter contains a percent-encoded ampersand
character (%26).

This code prints the parameter name=luke%26ben with the
original unencoded value:

name: luke&ben

forEach iterates over each unique key/value pair
combination. Even if the URL has multiple query
parameters with the same key, this prints each unique
key/value pair separately.

Creating a Simple Client-Side Router

Problem

You have a single-page application and want to add client-
side routing. This lets the user navigate between different

URLs without making a new network request and replacing
the content on the client side.

Solution

Use history.pushState and the popstate event to implement a
simple router. This simple router renders the contents of a
template when the URL matches a known route (see
Example 3-13).
Example 3-13. A simple client-side router

// Route definitions. Each route has a path and some content to render.

const routes = [

 { path: '/', content: '<h1>Home</h1>' },

 { path: '/about', content: '<h1>About</h1>' }

];

function navigate(path, pushState = true) {

 // Find the matching route and render its content.

 const route = this.routes.find(route => route.path === path);

 // Be careful using innerHTML in a real app, which can be a security risk.

 document.querySelector('#main').innerHTML = route.content;

 if (pushState) {

 // Change the URL to match the new route.

 history.pushState({}, '', path);

 }

}

With this router in place, you can add links:

Home

About

HISTORY.PUSHSTATE AND THE POPSTATE

EVENT

The global history object’s pushState method changes the
current URL without reloading the page. It adds the new
URL to the browser’s history.
The method takes three arguments:

First, an object containing arbitrary data to
associate with the new history entry. This state
data is available from the popstate event as well.

The second argument is unused, but must be
given. You can use an empty string here.

Finally, the new URL. This can be an absolute
URL, or a relative path. If you use an absolute
URL, it must be on the same origin as the current
page or the browser throws an exception.

Each call to pushState creates a history entry. Whenever
the current history entry changes (usually by using the
browser’s back and forward buttons), the window
triggers a popstate event.

When you click these links, the browser attempts to
navigate to a new page, making a request to the server.
This likely results in a 404 error, which is not what you
want. To use the client-side router, you need to intercept
the click events and integrate with the router from
Example 3-13, as shown in Example 3-14.
Example 3-14. Adding click handlers to route links

document.querySelectorAll('a').forEach(link => {

 link.addEventListener('click', event => {

 // Prevent the browser from trying to load the new URL from the server!

 event.preventDefault();

 navigate(link.getAttribute('href'));

 });

});

When you click one of these links, the preventDefault call
stops the browser’s default behavior (performing a full
page navigation). Instead, it takes the href attribute and
passes it to the client-side router. If it finds a matching
route, it renders the content for that route.
To make this a full solution, there is one more necessary
piece. If you click one of these client-side routes, then click
the browser’s Back button, nothing happens. This is
because the page isn’t actually navigating, but just popping
the previous state from the router. To handle this scenario,
you need to also listen for the browser’s popstate event and
render the correct content, as shown in Example 3-15.
Example 3-15. Listening for the popstate event

window.addEventListener('popstate', () => {

 navigate(window.location.pathname, false);

});

When the user clicks the Back button, the browser fires the
popstate event. This changes the page URL back, and you
just need to look up the content for the route matching the
URL. In this case, you don’t want to call pushState because
that adds a new history state, which probably isn’t what
you want since you just popped an old history state off of
the stack.

Discussion

This client-side router is working, but there’s one issue. If
you click the About link, then click the Refresh button, the
browser makes a new network request, which probably
results in a 404 error. To fix this last problem, the server

needs to be configured to return the main HTML and
JavaScript content regardless of the URL’s pathname. This
loads the router code, which is called with the value of
window.location.pathname. If everything is configured right,
the client-side route handler executes and renders the
correct content.
When using client-side routing, navigating between pages
can be faster since there is no round trip to the server. It
makes navigation smoother and more responsive. There are
disadvantages too. To support the quick page transition,
you often have to load a lot of extra JavaScript up front, so
the initial page load may be slower.

Matching URLs to Patterns

Problem

You want to define a pattern of valid URLs that you can
match URLs against. You may also want to extract part of a
URL’s path. For example, given the URL
https://example.com/api/users/123/profile, you want the
user ID (123).

Solution

Use the URL Pattern API to define the expected pattern
and extract the part you need.

NOTE

This API may not be supported by all browsers yet. See CanIUse for
the latest compatibility data.

https://oreil.ly/Eb-k2

With this API, you can create a URLPattern object that
defines a pattern that you can use to match URLs (see
Example 3-16). It’s created with a string defining the
pattern to match. The string can contain named groups
that, when matching against a URL string, are extracted.
You can access the extracted values by their index. These
groups are similar to capturing groups in a regular
expression.

Example 3-16. Creating a URLPattern

const profilePattern = new URLPattern({ pathname: '/api/users/:userId/profile'

});

Example 3-16 shows a simple URL pattern with a single
named group userId. The group name is preceded by a
colon character. You can use this pattern object to match
URLs and, if they match, extract the user ID from them.
Example 3-17 explores some different URLs and how to test
them against profilePattern using the test method.
Example 3-17. Testing URLs against a pattern

// The pattern won't match a pathname alone; it must be a valid URL.

console.log(profilePattern.test('/api/users/123/profile'));

// This URL matches because the pathname matches the pattern.

console.log(profilePattern.test('https://example.com/api/users/123/profile'));

// It also matches URL objects.

console.log(profilePattern.test(new URL

('https://example.com/api/users/123/profile')));

// The pathname must match exactly, so this won't match.

console.log(profilePattern.test('https://example.com/v1/api/users/123/profile'));

The profilePattern specifies an exact pathname match,
which is why the last example in Example 3-17 did not
work. You can define a less strict version that uses a
wildcard character (*) so it needn’t be exact. With this new
pattern, you can match on partial pathnames.

Example 3-18. Using a wildcard in the pattern

const wildcardProfilePattern = new URLPattern

({ pathname: '/*/api/users/:userId/profile' });

// This matches now because the /v1 portion of the URL matches the wildcard.

console.log(wildcardProfilePattern.test

('https://example.com/v1/api/users/123/profile'));

You can use the pattern’s exec method to get more data
about the match. If the pattern matches the URL, exec
returns an object containing any matches to parts of the
URL. Each nested object has an input property indicating
which part of the URL matched, and a groups property that
has any named groups defined in the pattern.

You can use exec to extract the user ID from matching URLs
in Example 3-19.
Example 3-19. Extracting the user ID

const profilePattern = new URLPattern({ pathname: '/api/users/:userId/profile'

});

const match = profilePattern.exec('https://example.com/api/users/123/profile');

console.log(match.pathname.input); // '/api/users/123/profile'

console.log(match.pathname.groups.userId); // '123'

Discussion

While it doesn’t have full browser support yet, this is a very
flexible API. You can define patterns for any parts of the
URL, matching inputs and extracting groups.

Chapter 4. Network

Requests

Introduction

You’d have a tough time finding a web application today
that doesn’t send any network requests. Since the dawn of
Web 2.0 and the novel approach known as Ajax
(Asynchronous JavaScript and XML), web apps have been
sending asynchronous requests to get new data without
reloading the entire page. The XMLHttpRequest API
started a new era of interactive JavaScript apps. Despite
the name, XMLHttpRequest (or XHR, as it is sometimes
known) can also work with JSON and form data payloads.
XMLHttpRequest was a game changer, but the API can be
painful to work with. Eventually, third-party libraries such
as Axios and jQuery added more streamlined APIs that
wrapped the core XHR API.

In 2015, a newer Promise-based API called Fetch became a
new standard, and browsers gradually started adding
support for it. Today, Fetch is the standard way to make
asynchronous requests from your web apps.
This chapter explores XHR and Fetch as well as some other
APIs for network communication:
Beacons

A simple one-way POST request ideal for sending analytics
data

Server-sent events

A one-way persistent connection with a server to receive
real-time events

WebSockets

A two-way persistent connection for bidirectional
communication

Sending a Request with

XMLHttpRequest

Problem

You want to send a GET request to a public API, and you
want to support older browsers that don’t implement the
Fetch API.

Solution

Use the XMLHttpRequest API. XMLHttpRequest is an
asynchronous, event-based API for making network
requests. The general usage of XMLHttpRequest is this:

1. Create a new XMLHttpRequest object.

2. Add a listener for the load event, which receives the
response data.

3. Call open on the request, passing the HTTP method
and URL.

4. Finally, call send on the request. This triggers the
HTTP request to be sent.

Example 4-1 shows a simple example of how to work with
JSON data using an XHR.

Example 4-1. Making a GET request with XMLHttpRequest

/**

 * Loads user data from the URL /api/users, then prints them

 * to the console

 */

function getUsers() {

 const request = new XMLHttpRequest();

 request.addEventListener('load', event => {

 // The event target is the XHR itself; it contains a

 // responseText property that we can use to create a JavaScript object from

 // the JSON text.

 const users = JSON.parse(event.target.responseText);

 console.log('Got users:', users);

 });

 // Handle any potential errors with the request.

 // This only handles network errors. If the request

 // returns an error status like 404, the 'load' event still fires

 // where you can inspect the status code.

 request.addEventListener('error', err => {

 console.log('Error!', err);

 });

 request.open('GET', '/api/users');

 request.send();

}

Discussion

The XMLHttpRequest API is an event-based API. When the
response is received, a load event is triggered. In
Example 4-1, the
load event handler passes the raw
response text to JSON.parse. It expects the response body to
be JSON and uses JSON.parse to
turn the JSON string into an
object.

If an error occurs while loading the data, the error event is
triggered. This handles connection or network errors, but
an HTTP status code that’s considered an “error,” like 404

or 500, does not trigger this event. Instead, it also triggers
the load event.
To protect against such errors, you need to examine the
response’s status property to determine if such an error
situation exists. This can be accessed by referencing
event.target.status.
Fetch has been supported for a long time now, so unless
you have to support really old browsers you most likely
won’t need to use XMLHttpRequest. Most—if not all—of the
time, you’ll be using the Fetch API.

Sending a GET Request with the

Fetch API

Problem

You want to send a GET request to a public API using a
modern browser.

Solution

Use the Fetch API. Fetch is a newer request API that uses
Promises. It’s very flexible and can send all kinds of data,
but Example 4-2 sends a basic GET request to an API.
Example 4-2. Sending a GET request with the Fetch API

/**

 * Loads users by calling the /api/users API, and parses the

 * response JSON.

 * @returns a Promise that resolves to an array of users returned by the API

 */

function loadUsers() {

 // Make the request.

 return fetch('/api/users')

 // Parse the response body to an object.

 .then(response => response.json())

 // Handle errors, including network and JSON parsing errors.

 .catch(error => console.error('Unable to fetch:', error.message));

}

loadUsers().then(users => {

 console.log('Got users:', users);

});

Discussion

The Fetch API is more concise. It returns a Promise that
resolves to an object representing the HTTP response. The
response object contains data such as the status code,
headers, and body.
To get the JSON response body, you need to call the
response’s json method. This method reads the body from
the stream and returns a Promise that resolves to the JSON
body parsed as an object. If the response body is not valid
JSON, the Promise is rejected.
The response also has methods to read the body in other
formats such as FormData or a plain text string.

Because Fetch works with Promises, you can also use await,
as shown in Example 4-3.

Example 4-3. Using Fetch with async/await

async function loadUsers() {

 try {

 const response = await fetch('/api/users');

 return response.json();

 } catch (error) {

 console.error('Error loading users:', error);

 }

}

async function printUsers() {

 const users = await loadUsers();

 console.log('Got users:', users);

}

NOTE

Remember that before using await in a function, that function must
have the async keyword.

Sending a POST Request with the

Fetch API

Problem

You want to send a POST request to an API that expects a
JSON request body.

Solution

Use the Fetch API, specifying the method (POST), and the
JSON body and content type (see Example 4-4).
Example 4-4. Sending JSON payload via POST with the

Fetch API

/**

 * Creates a new user by sending a POST request to /api/users.

 * @param firstName The user's first name

 * @param lastName The user's last name

 * @param department The user's department

 * @returns a Promise that resolves to the API response body

 */

function createUser(firstName, lastName, department) {

 return fetch('/api/users', {

 method: 'POST',

 body: JSON.stringify({ firstName, lastName, department }),

 headers: {

 'Content-Type': 'application/json'

 }

 })

 .then(response => response.json());

}

createUser('John', 'Doe', 'Engineering')

 .then(() => console.log('Created user!'))

 .catch(error => console.error('Error creating user:', error));

Discussion

Example 4-4 sends some JSON data in a POST request.
Calling JSON.stringify on the user object turns it into a
JSON string, which is required to send it as the body with
fetch. You also need to set the Content-Type header so the
server knows how to interpret the body.
Fetch also allows you to send other content types as the
body. Example 4-5 shows how you would send a POST
request with some form data.
Example 4-5. Sending form data in a POST request

fetch('/login', {

 method: 'POST',

 body: 'username=sysadmin&password=password',

 headers: {

 'Content-Type': 'application/x-www-form-urlencoded;charset=UTF-8'

 }

})

 .then(response => response.json())

 .then(data => console.log('Logged in!', data))

 .catch(error => console.error('Request failed:', error));

Uploading a File with the Fetch API

Problem

You want to upload file data with a POST request, using the
Fetch API.

Solution

Use an <input type="file"> element, and send the file
content as the request body (see Example 4-6).

Example 4-6. Sending file data with the Fetch API

/**

 * Given a form with a 'file' input, sends a POST request containing

 * the file data in its body.

 * @param form the form object (should have a file input with the name 'file')

 * @returns a Promise that resolves when the response JSON is received

 */

function uploadFile(form) {

 const formData = new FormData(form);

 const fileData = formData.get('file');

 return fetch('https://httpbin.org/post', {

 method: 'POST',

 body: fileData

 })

 .then(response => response.json());

}

Discussion

There aren’t many steps involved to upload a file using
modern browser APIs. The <input type="file"> provides the
file data through the FormData API and is included in the
body of the POST request. The browser takes care of the
rest.

Sending a Beacon

Problem

You want to send a quick request without waiting for a
response, for example, to send analytics data.

Solution

Use the Beacon API to send data in a POST request. A
regular POST request with the Fetch API may not complete
in time before the page unloads. Using a beacon is more
likely to succeed (see Example 4-7). The browser doesn’t

wait for a response, and the request is more likely to
succeed when sent as the user is leaving your site.
Example 4-7. Sending a beacon

const currentUser = {

 username: 'sysadmin'

};

// Some analytics data we want to capture

const data = {

 user: currentUser.username,

 lastVisited: new Date()

};

// Send the data before unload.

document.addEventListener('visibilitychange', () => {

 // If the visibility state is 'hidden', that means the page just became hidden.

 if (document.visibilityState === 'hidden') {

 navigator.sendBeacon('/api/analytics', data);

 }

});

A NOTE ON BEACON RELIABILITY

In the past, the recommendation was to use the
beforeunload or unload events to send analytics beacons,
but this can be unreliable in many cases. Many sites
such as MDN now recommend using the visibilitychange
event instead.

Discussion

With an XMLHttpRequest or fetch call, the browser waits for
the response and returns it (with an event or Promise). In
general, you don’t need to wait for the response for one-
way requests, such as sending analytics data.

Instead of a Promise, navigator.sendBeacon returns a boolean
value that indicates if the send operation was scheduled.

https://oreil.ly/iBoG-

There are no further events or notifications.

navigator.sendBeacon always sends a POST request. If you
want to send multiple sets of analytics data, such as a
collection of UI interactions, you can collect them in an
array as the user interacts with your page, then send the
array as the POST body with the beacon.

Listening for Remote Events with

Server-Sent Events

Problem

You want to receive notifications from your backend server
without repeated polling.

Solution

Use the EventSource API to receive server-sent events
(SSE).
To start listening for SSE, create a new instance of
EventSource, passing the URL as the first argument (see
Example 4-8).
Example 4-8. Opening an SSE connection

const events = new EventSource('https://example.com/events');

// Fired once connected

events.addEventListener('open', () => {

 console.log('Connection is open');

});

// Fired if a connection error occurs

events.addEventListener('error', event => {

 console.log('An error occurred:', event);

});

// Fired when receiving an event with a type of 'heartbeat'

events.addEventListener('heartbeat', event => {

 console.log('got heartbeat:', event.data);

});

// Fired when receiving an event with a type of 'notice'

events.addEventListener('notice', event => {

 console.log('got notice:', event.data);

})

// The EventSource leaves the connection open. If we want to close the

connection,

// we need to call close on the EventSource object.

function cleanup() {

 events.close();

}

Discussion

An EventSource must connect to a special HTTP endpoint
that leaves the connection open with a Content-Type header
of text/event-stream. Whenever an event occurs, the server
can send a new message across the open connection.

NOTE

As pointed out by MDN, It’s highly recommended to use HTTP/2 with
SSE. Otherwise, browsers impose a strict limit on the number of
EventSource connections per domain. In this case, there can only be up
to six connections.

This limit is not per tab; it is imposed across all tabs in the browser
on a given domain.

When EventSource receives an event over a persistent
connection, it is plain text. You can access the event text
from the received event object’s data property. Here’s an
example of an event of type notice:

https://oreil.ly/MliFN

event: notice

data: Connection established at 10:51 PM, 2023-04-22

id: 3

To listen for this event, call addEventListener('notice') on
the EventSource object. The event object has a data property,
whose value is whatever string value is prefixed with data:
in the event.
If an event does not have an event type, you can listen for
the generic message event to receive it.

Exchanging Data in Real Time with

WebSockets

Problem

You want to send and receive data in real time without
having to repeatedly poll the server with Fetch requests.

Solution

Use the WebSocket API to open a persistent connection to
your backend server (see Example 4-9).
Example 4-9. Creating a WebSocket connection

// Open the WebSocket connection (the URL scheme should be ws: or wss:).

const socket = new WebSocket(url);

socket.addEventListener('open', onSocketOpened);

socket.addEventListener('message', handleMessage);

socket.addEventListener('error', handleError);

socket.addEventListener('close', onSocketClosed);

function onSocketOpened() {

 console.log('Socket ready for messages');

}

function handleMessage(event) {

 console.log('Received message:', event.data);

}

function handleError(event) {

 console.log('Socket error:', event);

}

function onSocketClosed() {

 console.log('Connection was closed');

}

NOTE

To use WebSockets, your server must have a WebSocket-enabled
endpoint you can connect to. MDN has a nice deep dive on creating a
WebSocket server.

Once the socket fires the open event, you can begin sending
messages, as shown in Example 4-10.
Example 4-10. Sending WebSocket messages

// Messages are simple strings.

socket.send('Hello');

// The socket needs the data as a string, so you can use

// JSON.stringify to serialize objects to be sent.

socket.send(JSON.stringify({

 username: 'sysadmin',

 password: 'password'

}));

A WebSocket connection is a bidirectional connection.
Received data from the server fires a message event. You can
handle these as needed or even send a response (see
Example 4-11).
Example 4-11. Responding to a WebSocket message

socket.addEventListener('message', event => {

 socket.send('ACKNOWLEDGED');

});

https://oreil.ly/fzX67

Finally, to clean up when you’re done, you can close the
connection by calling close on the WebSocket object.

Discussion

WebSockets are well suited for apps requiring real-time
capabilities such as a chat system or event monitoring.
WebSocket endpoints have a ws:// or wss:// scheme. These
are analogous to http:// and https://—one is insecure and
one uses encryption.
To initiate a WebSocket connection, the browser first sends
a GET request to the WebSocket endpoint. The request
payload for the URL wss://example.com/websocket looks like
this:

GET /websocket HTTP/1.1

Host: example.com

Sec-WebSocket-Key: aSBjYW4gaGFzIHdzIHBsej8/

Sec-WebSocket-Version: 13

Connection: Upgrade

Upgrade: websocket

This initiates a WebSocket handshake. If it’s successful, the
server responds with a status code of 101 (Switching
Protocols):

HTTP/1.1 101 Switching Protocols

Connection: Upgrade

Upgrade: websocket

Sec-WebSocket-Accept: bm8gcGVla2luZywgcGxlYXNlIQ==

The WebSocket protocol specifies an algorithm to generate
a Sec-Websocket-Accept header based on the request’s Sec-
WebSocket-Key. The client verifies this value, and at that
point the two-way WebSocket connection is active and the
socket fires the open event.

Once the connection is open, you can listen for messages
with the message event and send messages by calling send on
the socket object. Later, you can terminate the WebSocket
session by calling close on the socket object.

Chapter 5. IndexedDB

Introduction

Chapter 2 covered data persistence with local or session
storage. This works well for string values and serializable
objects, but querying is not ideal and objects require JSON
serialization. IndexedDB is a newer, more powerful data
persistence mechanism present in all modern browsers. An
IndexedDB database contains object stores (sort of like
tables in a relational database). Each object store can have
indexes on certain properties for more efficient querying. It
also supports more advanced concepts like versioning and
transactions.

Object Stores and Indexes

An IndexedDB database has one or more object stores. All
operations to add, remove, or query data are done on an
object store. An object store is a collection of JavaScript
objects that are persisted in the database. You can define
indexes on an object store. An index stores extra
information to the database that lets you query objects by
the indexed property. For example, suppose you are
creating a database to store product information. Each
product has a key, likely a product ID or SKU code. This
lets you quickly search the database for a given product.
If you want to also be able to query the data by price, you
can create an index on the price property. This lets you
look up objects by their price. With an index, you can
specify a specific price or a range of prices, and the index
can quickly find those records for you.

Keys

Objects in a store have a key that uniquely identifies that
object within that store. This is similar to a primary key in a
relational database table. There are two types of keys in an
IndexedDB object store.
In-line keys are defined on the object itself. For example,
here’s a to-do item with an in-line key:

{

 // Here, id is the key.

 id: 100,

 name: 'Take out the trash',

 completed: false

}

Here, the key is the id property. When adding to-do items
to such an object store, they must have an id property
defined. Additionally, when creating the object store, you
would specify a key path of id. The key path tells
IndexedDB the name of the property that contains the key
when using in-line keys:

const todosStore = db.createObjectStore('todos', { keyPath: 'id' });

If you want to use in-line keys and don’t want to worry
about maintaining unique keys, you can tell IndexedDB to
use auto-incrementing keys:

const todosStore = db.createObjectStore('todos',

 { keyPath: 'id', autoIncrement: true });

Out-of-line keys are not stored within the object. An out-of-
line key is specified as a separate argument with add or put
when storing an object. Following the previous example,
you could also use out-of-line keys for to-do items. This

means the key, or the id property, would not be stored as
part of the object:

const todo = {

 name: 'Take out the trash',

 completed: false

};

// later, when adding the new to-do

todoStore.add(todo, 100);

Transactions

IndexedDB operations use transactions. A transaction is a
logical grouping of database tasks executed together to
perform some work. They are meant to protect the integrity
of the data in the database. If one of the operations within a
transaction fails, the entire transaction fails and any
completed work is rolled back to the state that existed
before the transaction.
A transaction can be read-only or read-write, depending on
the type of operation you want to perform. You can create a
transaction by calling the transaction method of an
IndexedDB database. You pass the names of any object
stores that should be involved in this transaction and the
transaction type (readonly or readwrite).
Once you have a transaction, you can get a reference to the
object store(s) you need. From there you can start
performing your database operation. These operations
return an IndexedDB request. All read and write operations
in an IndexedDB database require a transaction.

Requests

When you perform an operation on an object store, within a
transaction, you’ll get back a request object that
implements the IDBRequest interface, and the requested
work begins asynchronously.
When the work is done, the request object triggers a
success event containing the results. For example, a query
operation’s success event includes the objects found by the
query.
Figure 5-1 shows the general flow of an IndexedDB
operation: creating a transaction, opening the object store,
creating a request, and listening for events.

Figure 5-1. The parts of an IndexedDB operation

Creating, Reading, and Deleting

Objects in a Database

Problem

You want to create a basic IndexedDB database where
objects can be created, read, and deleted. For example, this
could be a contact list database.

Solution

Create a database with a single object store, and define the
create/read/delete operations.

To create or open the database, call indexedDB.open (see
Example 5-1). If the database was not previously created, it
triggers an upgradeneeded event. In the handler for that
event, you can create the object store. When the database
is opened and ready for use, it triggers a success event.
Example 5-1. Opening the database

/**

 * Opens the database, creating the object store if needed.

 * Because this is asynchronous, it takes a callback function, onSuccess. Once

the

 * database is ready, onSucces will be called with the database object.

 *

 * @param onSuccess A callback function that is executed when the database is

ready

 */

function openDatabase(onSuccess) {

 const request = indexedDB.open('contacts');

 // Create the object store if needed.

 request.addEventListener('upgradeneeded', () => {

 const db = request.result;

 // The contact objects will have an 'id' property that will

 // be used as the key. When you add a new contact object, you don't need to

 // set an 'id' property; the autoIncrement flag means that the database will

 // automatically set an 'id' for you.

 db.createObjectStore('contacts', {

 keyPath: 'id',

 autoIncrement: true

 });

 });

 // When the database is ready for use, it triggers a 'success' event.

 request.addEventListener('success', () => {

 const db = request.result;

 // Call the given callback with the database.

 onSuccess(db);

 });

 // Always handle errors!

 request.addEventListener('error', () => {

 console.error('Error opening database:', request.error);

 });

}

Before rendering the contacts, you’ll need to load them
from the database. For this, use a readonly transaction and
call the object store’s getAll method, which retrieves all
objects in the object store (see Example 5-2).
Example 5-2. Reading the contacts

/**

 * Reads the contacts from the database and renders them in the table.

 * @param contactsDb The IndexedDB database

 * @param onSuccess A callback function that is executed when the contacts are

loaded

 */

function getContacts(contactsDb, onSuccess) {

 const request = contactsDb

 .transaction(['contacts'], 'readonly')

 .objectStore('contacts')

 .getAll();

 // When the data has been loaded, the database triggers a 'success' event on

the

 // request object.

 request.addEventListener('success', () => {

 console.log('Got contacts:', request.result);

 onSuccess(request.result);

 });

 request.addEventListener('error', () => {

 console.error('Error loading contacts:', request.error);

 });

}

Adding a contact requires a readwrite transaction. Pass the
contact object to the object store’s add method (see
Example 5-3).

Example 5-3. Adding a contact

/**

 * Adds a new contact to the database, then re-renders the table.

 * @param contactsDb The IndexedDB database

 * @param contact The new contact object to add

 * @param onSuccess A callback function that is executed when the contact is

added

 */

function addContact(contactsDb, contact, onSuccess) {

 const request = contactsDb

 .transaction(['contacts'], 'readwrite')

 .objectStore('contacts')

 .add(contact);

 request.addEventListener('success', () => {

 console.log('Added new contact:', contact);

 onSuccess();

 });

 request.addEventListener('error', () => {

 console.error('Error adding contact:', request.error);

 });

}

You’ll also need a readwrite transaction for deleting a
contact (see Example 5-4).
Example 5-4. Deleting a contact

/**

 * Deletes a contact from the database, then re-renders the table.

 * @param contactsDb The IndexedDB database.

 * @param contact The contact object to delete

 * @param onSuccess A callback function that is executed when the contact is

deleted

 */

function deleteContact(contactsDb, contact, onSuccess) {

 const request = contactsDb

 .transaction(['contacts'], 'readwrite')

 .objectStore('contacts')

 .delete(contact.id);

 request.addEventListener('success', () => {

 console.log('Deleted contact:', contact);

 onSuccess();

 });

 request.addEventListener('error', () => {

 console.error('Error deleting contact:', request.error);

 });

}

Discussion

When creating the database, you call indexedDB.open, which
creates a request to open the database. If it triggers an
upgradeneeded event, you can create the necessary object
store.

INDEXEDDB VERSIONS

IndexedDB has the notion of a versioned database. Any
time you make changes to your database schema (in the
case of IndexedDB, the set of object stores and indexes),
you need to consider all the users out there that already
have an older version of the database persisted in their
browsers.

This is where the upgradeneeded event comes in. When
you call indexedDB.open, you can specify a version number
for the database. Each time you modify the schema, you
increment this number. If a user with an older version of
your database encounters this new version number,
IndexedDB triggers the upgradeneeded event. This event
tells you the old version and new version of the
database. Given these, you can determine what changes
you need to make to the database.
This allows your database design to evolve while
keeping users’ data intact.

Each object in the object store must have a unique key. If
you try to add an object with a duplicate key, you’ll get an

error.
The pattern for the other operations is generally the same:

1. Create a transaction.

2. Access the object store.

3. Call the desired method on the object store.

4. Listen for the success event.

Each of these functions takes an argument called onSuccess.
Because IndexedDB is asynchronous, you need to wait until
an operation is complete before proceeding. The
openDatabase function passes the database to the onSuccess
function where you can save it to a variable for later (see
Example 5-5).

Example 5-5. Using the openDatabase function

let contactsDb;

// Open the database and do the initial contact list render.

// The success handler sets contactsDb to the new database object for later use,

// then loads and renders the contacts.

openDatabase(db => {

 contactsDb = db;

 renderContacts(contactsDb);

});

Once you have the contactsDb variable set, you can pass it to
the other database operations. When you want to render
the contact list, you have to wait until they are loaded first,
so you’d pass a success handler that receives the contact
objects and renders them (see Example 5-6).
Example 5-6. Loading and rendering contacts

getContacts(contactsDb, contacts => {

 // Contacts have been loaded, now render them.

 renderContacts(contacts);

});

Similarly, when adding a new contact, you have to wait
until the new object is added, then load and render the
updated contact list (see Example 5-7).
Example 5-7. Adding and rerendering contacts

const newContact = { name: 'Connie Myers', email: 'cmyers@example.com' };

addContact(contactsDb, newContact, () => {

 // Contact has been added, now load the updated list and render it.

 getContacts(contactsDb, contacts => {

 renderContacts(contacts);

 })

});

If you don’t want to be constantly passing around a
database reference, you could encapsulate your database
reference and functions inside a new object, as shown in
Example 5-8.
Example 5-8. An encapsulated database

const contactsDb = {

 open(onSuccess) {

 const request = indexedDB.open('contacts');

 request.addEventListener('upgradeneeded', () => {

 const db = request.result;

 db.createObjectStore('contacts', {

 keyPath: 'id',

 autoIncrement: true

 });

 });

 request.addEventListener('success', () => {

 this.db = request.result;

 onSuccess();

 });

 },

 getContacts(onSuccess) {

 const request = this.db

 .transaction(['contacts'], 'readonly')

 .objectStore('contacts')

 .getAll();

 request.addEventListener('success', () => {

 console.log('Got contacts:', request.result);

g(, q);

 onSuccess(request.result);

 });

 },

 // Other operations follow similarly.

};

With this approach, you still need callbacks to notify you
when the operations are done, but the contactsDb object
keeps track of the database reference for you (and avoids a
global variable!).

Upgrading an Existing Database

Problem

You want to update an existing database to add a new
object store.

Solution

Use a new database version. When handling the
upgradeneeded event, determine if the current user’s
database needs the new object store to be added based on
the version.

Imagine you have a to-do list database with a todos object
store. Later, in an update to your app, you want to add a
new people object store so that tasks can be assigned to
people.

The indexedDB.open call now needs a new version number.
You can increment the version number to 2 (see Example 5-
9).
Example 5-9. Upgrading a database

// todoList database is now at version 2

const request = indexedDB.open('todoList', 2);

// If the user's database is still at version 1, an 'upgradeneeded' event

// is triggered so that the new object store can be added.

request.addEventListener('upgradeneeded', event => {

 const db = request.result;

 // This event is also triggered when no database exists yet, so you still need

 // to handle this case and create the to-dos object store.

 // The oldVersion property specifies the user's current version of the

database.

 // If the database is just being created, the oldVersion is 0.

 if (event.oldVersion < 1) {

 db.createObjectStore('todos', {

 keyPath: 'id'

 });

 }

 // If this database has not yet been upgraded to version 2, create the

 // new object store.

 if (event.oldVersion < 2) {

 db.createObjectStore('people', {

 keyPath: 'id'

 });

 }

});

request.addEventListener('success', () => {

 // Database is ready to go.

});

// Log any error that might have occurred. The error object is

// stored in the request's 'error' property.

request.addEventListener('error', () => {

 console.error('Error opening database:', request.error);

});

Discussion

When you call indexedDB.open, you can specify a database
version. If you don’t specify a version, it defaults to 1.
Whenever the database is opened, the current database
version in the browser (if any) is compared with the version

number passed to indexedDB.open. If the database doesn’t
exist yet or the version is not up to date, you’ll get an
upgradeneeded event.

In the upgradeneeded event handler, you can check the
event’s oldVersion property to determine the browser’s
current database version. If the database doesn’t exist yet,
oldVersion is 0.

Based on the oldVersion, you can determine which object
stores and indexes already exist and which need to be
added.

WARNING

If you try to create an object store or index that already exists, the
browser throws an exception. Before creating these objects, make
sure to check the event’s oldVersion property.

Querying with Indexes

Problem

You want to efficiently query for data based on a property
value other than the key (commonly referred to as the
“primary key”).

Solution

Create an index on that property, then query on that index.
Consider the example of a database of employees. Each
employee has a name, department, and a unique ID as its

key. You might want to filter the employees by a certain
department.

When the upgradeneeded event is triggered and you create
the object store, you can also define indexes on that object
store (see Example 5-10). Example 5-11 shows how to
query by the index that is defined.
Example 5-10. Defining an index when the object store is

created

/**

 * Opens the database, creating the object store and index if needed.

 * Once the database is ready, onSuccess will be called with the database object.

 *

 * @param onSuccess A callback function that is executed when the database is

ready

 */

function openDatabase(onSuccess) {

 const request = indexedDB.open('employees');

 request.addEventListener('upgradeneeded', () => {

 const db = request.result;

 // New employee objects will be given an autogenerated

 // 'id' property that serves as its key.

 const employeesStore = db.createObjectStore('employees', {

 keyPath: 'id',

 autoIncrement: true,

 });

 // Create an index on the 'department' property called 'department'.

 employeesStore.createIndex('department', 'department');

 });

 request.addEventListener('success', () => {

 onSuccess(request.result);

 });

}

Example 5-11. Querying the employees by the department

index

/**

 * Gets the employees for a given department, or all employees

 * if no department is given

 *

 * @param department The department to filter by

 * @param onSuccess A callback function that is executed when the employees

 * are loaded

 */

function getEmployees(department, onSuccess) {

 const request = employeeDb

 .transaction(['employees'], 'readonly')

 .objectStore('employees')

 .index('department')

 .getAll(department);

 request.addEventListener('success', () => {

 console.log('Got employees:', request.result);

 onSuccess(request.result);

 });

 request.addEventListener('error', () => {

 console.log('Error loading employees:', request.error);

 });

}

Discussion

An IndexedDB object store can have more than one index,
depending on your needs.
This example uses specific values for querying the index,
but an index can also be queried for a range of keys. These
ranges are defined with the IDBKeyRange interface. A range is
defined in terms of its bounds—it defines a starting and
ending point for the range, and all keys within that range
are returned.

The IDBKeyRange interface supports four types of bounds:

IDBKeyRange.lowerBound

Matches keys starting at the given lower bound

IDBKeyRange.upperBound

Matches keys ending at the given upper bound

IDBKeyRange.bound

Specifies a lower and upper bound

IDBKeyRange.only

Specifies a single key only

The lowerBound, upperBound, and bound key ranges also accept
a second boolean parameter to specify whether the range is
open or closed. If true, then it’s considered an open range
and excludes the bounds
themselves.
IDBKeyRange.upperBound(10) matches all keys less than or

equal to 10, but IDBKeyRange.upperBound(10, true) matches all
keys less than 10 because 10
itself is excluded. The bounds
for a key range don’t have to be numbers. Other object
types such as strings and Date objects can be used as keys.

Searching for String Values with

Cursors

Problem

You want to query an IndexedDB object store for objects
with a string property matching a pattern.

Solution

Use a cursor, checking each object’s property to see if it
contains the given string.
Imagine an employee list application. You want to search
for all contacts whose name contains the entered text. For

this example, assume the database has already been
opened and the object store is called employees.
A cursor iterates through each object in the object store. It
stops at each object, where you can access the current item
and/or move on to the next item. You can check if the
contact name includes the query text and collect the results
in an array (see Example 5-12).
Example 5-12. Searching string values with a cursor

/**

 * Searches for employees by name

 *

 * @param name A query string to match employee names

 * @param onSuccess Success callback that will receive the matching employees.

 */

function searchEmployees(name, onSuccess) {

 // An array to hold all contacts with a name containing the query text

 const results = [];

 const query = name.toLowerCase();

 const request = employeeDb

 .transaction(['employees'], 'readonly')

 .objectStore('employees')

 .openCursor();

 // The cursor request will emit a 'success' event for each object it finds.

 request.addEventListener('success', () => {

 const cursor = request.result;

 if (cursor) {

 const name = `${cursor.value.firstName} ${cursor.value.lastName}`

 .toLowerCase();

 // Add the contact to the result array if it matches the query.

 if (name.includes(query)) {

 results.push(cursor.value);

 }

 // Continue to the next record.

 cursor.continue();

 } else {

 onSuccess(results);

 }

 });

 request.addEventListener('error', () => {

 console.error('Error searching employees:', request.error);

 });

}

Discussion

When you call openCursor on the object store, it returns an
IDBRequest request object. It fires a success event for the
first object in the store. For every success event, the request
has a result property that is the cursor object itself. You
can access the current value that the cursor is pointing to
with its value property.
The success handler checks the current object’s first and
last name fields, converting both to lowercase first so that
it’s a case-insensitive search. If it matches, it’s added to a
result array.
When you’re done processing the current object, you can
call continue on the cursor. This advances to the next object
and emits another success event. If you have reached the
end of the object store, and there are no objects left,
request.result is null. When this happens, you know that
the search is complete and you have the matching contacts.
At each iteration of the cursor, any objects that match the
search query are added to a results array. This is passed to
the success callback when the cursor is complete.

Paginating a Large Data Set

Problem

You want to break up a large data set into pages, each with
an offset and a length.

Solution

Use a cursor to skip to the first item on the requested page
and collect the desired number of items (see Example 5-
13).
Example 5-13. Using a cursor to get a page of records

/**

 * Uses a cursor to fetch a single "page" of data from an IndexedDB object store

 *

 * @param db The IndexedDB database object

 * @param storeName The name of the object store

 * @param offset The starting offset (0 being the first item)

 * @param length The number of items after the offset to return

 */

function getPaginatedRecords(db, storeName, offset, length) {

 const cursor = db

 .transaction([storeName], 'readonly')

 .objectStore(storeName)

 .openCursor();

 const results = [];

 // This flag indicates whether or not the cursor has skipped ahead to the

 // offset yet.

 let skipped = false;

 request.addEventListener('success', event => {

 const cursor = event.target.result;

 if (!skipped) {

 // Set the flag and skip ahead by the given offset. Next time around,

 // the cursor will be in the starting position and can start collecting

 // records.

 skipped = true;

 cursor.advance(offset);

 } else if (cursor && result.length < length) {

 // Collect the record the cursor is currently pointing to.

 results.push(cursor.value);

 // Continue on to the next record.

 cursor.continue();

 } else {

 // There are either no records left, or the length has been reached.

 console.log('Got records:', request.result);

 }

 });

 request.addEventListener('error', () => {

 console.error('Error getting records:', request.error);

 });

}

Discussion

You may not want to start at the first record—that’s what
the offset argument is for. The first time through, the event
handler calls advance with the requested offset. This tells
the cursor to jump ahead to the starting item you want.
Technically speaking, advance doesn’t move to the specified
offset but rather advances by the given number starting at

the current index. For this example, though, it’s effectively
the same because it always starts at index zero.
You can’t start collecting values until the next iteration of
the cursor. To handle this, there’s a skipped flag that is set
to indicate that the cursor has now skipped ahead. The next
time through, this flag is seen as true and it won’t try to
skip again.

Once the cursor has advanced, another success event is
fired. Now the cursor is pointing to the first item to be
collected (assuming there are items remaining—the cursor
object is null if there are no more objects). It adds the
current value to the result array. Finally, it calls continue on
the cursor to move on to the next value.
This process continues until the result array has reached
the requested length, or there are no more objects
remaining in the object store. This would happen if offset +

length was greater than the number of objects in the object
store.
Once there are no more objects to collect, the full page of
results is ready.

Using Promises with the IndexedDB

API

Problem

You want a Promise-based API for working with an
IndexedDB database.

Solution

Create Promise wrappers around IndexedDB requests. When
the request triggers the success event, resolve the Promise. If
it triggers the error event, reject it.

Example 5-14 creates a wrapper around the indexedDb.open
function. It opens or creates the database and returns a
Promise that is resolved when the database is ready.

Example 5-14. Creating a database with a Promise

/**

 * Opens the database, creating the object store if needed.

 * @returns a Promise that is resolved with the database, or rejected with an

error

 */

function openDatabase() {

 return new Promise((resolve, reject) => {

 const request = indexedDB.open('contacts-promise');

 // Create the object store if needed.

 request.addEventListener('upgradeneeded', () => {

 const db = request.result;

 db.createObjectStore('contacts', {

 keyPath: 'id',

 autoIncrement: true

 });

 });

 request.addEventListener('success', () => resolve(request.result));

 request.addEventListener('error', () => reject(request.error));

 });

}

To load some data from the database, Example 5-15
provides a wrapper around the getAll method. It requests
the data, then returns a Promise that is resolved with an
array of the objects when they have been loaded.

Example 5-15. Getting objects from a store with a Promise

/**

 * Reads the contacts from the database.

 * @returns a Promise that is resolved with the contacts, or rejected with an

error

 */

function getContacts() {

 return new Promise((resolve, reject) => {

 const request = contactsDb

 .transaction(['contacts'], 'readonly')

 .objectStore('contacts')

 .getAll();

 request.addEventListener('success', () => {

 console.log('Got contacts:', request.result);

 resolve(request.result);

 });

 request.addEventListener('error', () => {

 console.error('Error loading contacts:', request.error);

 reject(request.error);

 });

 });

}

Now that you have an API that returns Promises, you can
use then or async/await when working with your database
(see Example 5-16).

Example 5-16. Using the promisified database

async function loadAndPrintContacts() {

 try {

 const db = await openDatabase();

 const contacts = await getContacts();

 console.log('Got contacts:', contacts);

 } catch (error) {

 console.error('Error:', error);

 }

}

Discussion

Using a Promise API with async/await removes the need to
pass success handler callbacks around. As Example 5-16
shows, you can also take advantage of Promise chaining to
avoid nested callbacks and event handlers.

Chapter 6. Observing DOM

Elements

Introduction

This chapter looks at three types of observers that the
browser gives you for watching DOM elements:
MutationObserver, IntersectionObserver, and ResizeObserver.
These observer objects can watch DOM elements and notify
you of certain changes or events.
Observers are created with a callback function. This
function is called whenever relevant events occur in the
page. It’s called with one or more entries that contain
information about what occurred. This just creates the
observer. To actually start watching an element, you need
to call observe on the observer, passing the element you
want to observe and an optional set of options.

MutationObserver

MutationObserver watches for changes in the DOM for an
element. You can watch for changes to:

Child elements

Attributes

Text content

What the browser observes is defined in an options object
passed to the observe function. You can also give an optional
subtree option when observing an element. This extends the

monitoring of child elements, attributes, and/or text
content to all descendant nodes (instead of just the element
and its direct children).
When a mutation occurs that you are interested in, your
callback gets executed with an array of MutationEntry
objects that describe the mutation that just occurred.

ResizeObserver

As its name suggests, ResizeObserver notifies you when an
element’s size changes. When the size changes, your
callback is called with information about what was resized.
The entries contain information about the element’s new
size.

IntersectionObserver

IntersectionObserver watches for changes in an element’s
position relative to a viewport. The viewport can be a
scrollable element or the browser window itself. If any
portion of the child element is visible within the scrollable
area, it is said to be intersecting the ancestor element.
Figure 6-1 shows elements on a scrollable page.

Figure 6-1. Element 1 is not intersecting, element 2 is partially intersecting,

and element 3 is fully intersecting

IntersectionObserver uses the concept of an intersection

ratio—what portion of the element is actually intersecting
the root. If the element is fully visible, it has a ratio of 1. If
it is completely off-screen, it has a ratio of 0. If it is exactly
half visible and half invisible, it has a ratio of 0.5. The
entries passed to the callback function have an
intersectionRatio property specifying the current
intersection ratio.

When you create an IntersectionObserver, you can also
specify a threshold. This defines when the observer fires.
By default, the threshold is 0. This means the observer fires
as soon as the element becomes partially visible, even if it’s
just a single pixel. A threshold of 1 only fires when the
element becomes completely visible.

Lazy Loading an Image When Scrolled

into View

Problem

You want to defer loading of an image until its position is
scrolled into view. This is sometimes called lazy loading.

Solution

Use IntersectionObserver on the element and wait until
it intersects with the viewport. Once it enters the viewport,
set the src attribute to start loading the image (see
Example 6-1).
Example 6-1. Lazily loading an image with

IntersectionObserver

/**

 * Observes an image element for lazy loading

 *

 * @param img A reference to the image DOM node

 * @param url The URL of the image to load

 */

function lazyLoad(img, url) {

 const observer = new IntersectionObserver(entries => {

 // isIntersecting becomes true once the image enters the viewport.

 // At that point, set the src URL and stop listening.

 if (entries[0].isIntersecting) {

 img.src = url;

 observer.disconnect();

 }

 });

 // Start observing the image element.

 observer.observe(img);

}

Discussion

When you create an IntersectionObserver, you give it a
callback function. Every time an element enters or exits,
the observer calls this function with information about the
element’s intersection status.
The observer may be observing multiple elements whose
intersection could change at the same time, so the callback
is passed an array of elements. In Example 6-1, the
observer is only observing a single image element, so the
array only has one element.
If multiple elements enter (or leave) the viewport at the
same time, there is one entry for each element.

You want to check the isIntersecting property to determine
if it’s time to load the image. This becomes true when the
element becomes even partially visible.
Finally, you have to tell the observer what element to watch
by calling observe on the observer object. This starts
watching the element.
Once you scroll down enough so that the element enters
the viewport area, the observer calls the callback. The
callback sets the URL of the image, then stops listening by
calling disconnect. The callback stops listening because
once the image is loaded, there is no need to continue
observing the element.

Before IntersectionObserver, there weren’t many options to
do this. One option would be to listen for the parent’s scroll
event, and then calculate if the element is in the viewport
by comparing the parent’s and child’s bounding rectangles.
This, of course, is not very performant. It’s also generally
considered bad practice. You’d have to throttle or
debounce this check to prevent it from running on every
scroll operation.

LAZY LOADING IN NEWER BROWSERS

IntersectionObserver has very good browser support, but
if you are targeting only newer browsers, there is a way
to lazily load images without JavaScript.

In these newer browsers, the element supports a
loading attribute. If this is set to lazy, the image won’t be
loaded until the element is scrolled into the viewport:

You can find the latest data on browser support for the
loading attribute on CanIUse.

Wrapping IntersectionObserver with

a Promise

Problem

You want to create a Promise that resolves once an element
enters the viewport.

https://oreil.ly/coP8C

Solution

Wrap an IntersectionObserver in a Promise. Once the element
intersects its parent, resolve the Promise (see Example 6-2).

Example 6-2. Wrapping an IntersectionObserver with a

Promise

/**

 * Returns a Promise that is resolved once the given element enters the viewport

 */

function waitForElement(element) {

 return new Promise(resolve => {

 const observer = new IntersectionObserver(entries => {

 if (entries[0].isIntersecting) {

 observer.disconnect();

 resolve();

 }

 });

 observer.observe(element);

 });

}

Discussion

When the observer executes your callback with an entry
that indicates the element is intersecting, you can resolve
the Promise.
As shown in Example 6-3, you could use this approach to
lazily load an image, similar to “Lazy Loading an Image
When Scrolled into View”.

Example 6-3. Using the waitForElement helper to lazily load

an image

function lazyLoad(img, url) {

 waitForElement(img)

 .then(() => img.src = url)

}

Once you have resolved the Promise, the calling code can be
sure the element is in the viewport. At that point the
lazyLoad function sets the src attribute on the image.

Automatically Pause and Play a Video

Problem

You have a <video> element in a scrollable container. When
the video is playing, you want to automatically pause it if it
scrolls out of view.

Solution

Use IntersectionObserver to watch the video element. Once
it no longer intersects the viewport, pause it. Later, if it
reenters the viewport, resume it (see Example 6-4).
Example 6-4. Automatically pausing and resuming a video

const observer = new IntersectionObserver(entries => {

 if (!entries[0].isIntersecting) {

 video.pause();

 } else {

 video.play()

 .catch(error => {

 // In case of a permission error autoplaying the video.

 // This avoids an unhandled rejection error that could crash your app.

 });

 }

});

observer.observe(video);

Discussion

This observer watches the video element. As soon as it
scrolls out of view, it is paused. Later, if you scroll it back
into view, it is resumed.

AUTOMATICALLY PLAYING VIDEOS

Browsers are strict about automatically playing videos.
If you try to programmatically play a video, like in
Example 6-4, the browser may throw an exception. If
you don’t mute the video by default (by setting the video
element’s muted attribute), you can’t automatically or
programmatically play it until the user has interacted
with the page.

The play method of the video element actually returns a
Promise. To gracefully handle this situation, you should
add a call to catch to the Promise.
You shouldn’t automatically start playing a video when a
page first loads, though. This is annoying and creates
accessibility issues. For example, an automatically
playing video could be triggering to someone with a
vestibular disorder. The audio could also interfere with
a screen reader user being able to hear narration.
In a real-world application, you should use this solution
only as a convenience once a user has clicked the play
button.

Animating Changes in Height

Problem

You have an element whose contents may change. If the
content changes, you want a smooth transition in the
height.

Solution

Use a MutationObserver to watch the element’s children. If
the element adds, removes, or changes any child elements,
use a CSS transition to smoothly animate the height
change. Because you can’t animate an element with an auto
height, this requires some extra work to calculate explicit
heights between which to animate (see Example 6-5).
Example 6-5. Animating an element’s height due to child

element changes

/**

 * Watches an element for changes to its children. When the height changes

 * due to child changes, animate the change.

 * @param element The element to watch for changes

 */

function animateHeightChanges(element) {

 // You can't animate an element with 'height: auto', so an explicit

 // height is needed here.

 element.style.height = `${details.offsetHeight}px`;

 // Set a few CSS properties needed for the animated transition.

 element.style.transition = 'height 200ms';

 element.style.overflow = 'hidden';

 /**

 * This observer will fire when the element's child elements

 * change. It measures the new height, then uses requestAnimationFrame

 * to update the height. The height change will be animated.

 */

 const observer = new MutationObserver(entries => {

 // entries is always an array. There may be times where this array has

multiple

 // elements, but in this case, the first and only element is what you need.

 const element = entries[0].target;

 // The content has changed, and so has the height.

 // There are a few steps to measure the new explicit height.

 // (1) Remember the current height to use for the animation's starting point.

 const currentHeightValue = element.style.height;

 // (2) Set the height to 'auto' and read the offsetHeight property.

 // This is the new height to set.

 element.style.height = 'auto';

 const newHeight = element.offsetHeight;

 // (3) Set the current height back before animating.

 element.style.height = currentHeightValue;

 // On the next animation frame, change the height. This will

 // trigger the animated transition.

 requestAnimationFrame(() => {

 element.style.height = `${newHeight}px`;

 });

 });

 // Begin watching the element for changes.

 observer.observe(element, { childList: true });

}

Discussion

As with other observers, you need to pass a callback
function when you create a MutationObserver. The observer
calls this function whenever an observed element changes
(which changes trigger the callback, specifically, depends
on the options passed to observer.observe). When your app
causes any changes to the element’s child list (adding,
removing, or modifying elements), the callback recalculates
the height to accommodate the new content.
There’s a lot going on here, mostly because the browser
won’t let you animate an element with a height of auto. To
make the animation work, you have to use explicit values
for the start and end heights.
When first observing the element, you calculate its height
by reading the offset​Height property. The function then
explicitly sets this height on the element. This takes care of
the height: auto for now.
When the element’s children change, the parent won’t
resize automatically because it now has an explicit height
set. The observer callback calculates the new height. With

an explicit height set, the offsetHeight property has the
same value.
To measure the new height, you must first set the height
back to auto. Once you do this, offsetHeight gives the new
height value. However, recall that you can’t animate from
height: auto. Before updating the height, it has to be set
from auto back to what it was previously set to.
At this point you have the new height. The actual height
update goes in a call to requestAnimationFrame.
This method of calculating the heights adds a lot of extra
code. Chapter 8 covers the Web Animations API, which
makes these types of animations less painful.

Change an Element’s Content Based

on Size

Problem

You want to show different content within an element
depending on its size. For example, you may want to handle
the case when the element is very wide.

Solution

Use a ResizeObserver on the element and update the content
if the size goes above or below your defined threshold (see
Example 6-6).
Example 6-6. Updating an element’s content when it is

resized

// Look up the element you want to observe.

const container = document.querySelector('#resize-container');

// Create a ResizeObserver that will watch the element for size changes.

const observer = new ResizeObserver(entries => {

 // The observer fires immediately, so you can set the initial text.

 // There's typically only going to be one entry in the array—the first element

is

 // the element you're interested in.

 container.textContent = `My width is ${entries[0].contentRect.width}px`;

});

// Start watching the element.

observer.observe(container);

Discussion

The ResizeObserver calls the callback that you pass every
time the element’s size changes. The observer also calls it
initially when the element is first observed.

The callback is called with an array of ResizeObserverEntry
objects—here, where you’re only observing one element,
it’s typically going to just be one entry. The entry object has
a few properties, including contentRect, which defines the
bounding rectangle of the element. From there you can get
the width.
As a result, when the element is resized, the observer
callback changes its text to indicate the current width.

WARNING

Use care when working with ResizeObserver to ensure the code in your
callback doesn’t trigger the observer again. Such a callback can
cause an infinite loop of ResizeObserver callbacks. This can happen if
you make changes to the element within the callback that cause its
size to change again.

Applying a Transition When an

Element Scrolls into View

Problem

You have content that is not initially shown. When the
content enters the viewport, you want to show it with an
animated transition. For example, when an image scrolls
into view, you want to make it fade in by transitioning its
opacity.

Solution

Use an IntersectionObserver to watch for when the element
scrolls into view. When it does, apply the animated
transition (see Example 6-7).
Example 6-7. Fading in all images on the page when they

scroll into view

const observer = new IntersectionObserver(entries => {

 // There are multiple images per row, so there are multiple

 // entries.

 entries.forEach(entry => {

 // Once the element becomes partially visible, apply the animated transition,

 if (entry.isIntersecting) {

 // The image is 25% visible, begin the fade-in transition.

 entry.target.style.opacity = 1;

 // No need to observe this element any further.

 observer.unobserve(entry.target);

 }

 });

}, { threshold: 0.25 }); // Fires when images become 25% visible

// Observe all images on the page. Only images with the 'animate'

// class name will be observed, since you might not want to do this to

// all images on the page.

document.querySelectorAll('img.animate').forEach(image => {

 observer.observe(image);

});

Discussion

This recipe uses the IntersectionObserver’s threshold option.
By default, an observer fires as soon as the element
becomes visible (a threshold of 0). This isn’t ideal here
because you want enough of the image to be visible so that
the user notices the transition. By setting a threshold of
0.25, the observer won’t execute the callback until the
image becomes at least 25% visible.
The callback also checks to see if the image is actually
intersecting; that is, if it has become visible. This is
necessary because when the observer first starts observing
an element, it fires immediately. In this case, the images
that are offscreen are not yet intersecting, so this check
prevents them from becoming visible too early.
If the entry is intersecting, you can set new styles that
trigger an animation or transition. In this case, the callback
is setting the image’s opacity to 1. To make this effect
work, you need to have previously set the opacity to 0 and
defined a transition property of opacity (see Example 6-8).
Example 6-8. Styling images to fade in

img.animate {

 opacity: 0;

 transition: opacity 500ms;

}

With this style, the images are invisible. When the observer
callback sets the opacity to 1, the transition takes effect
and you’ll see the image fade in.
You only want to perform this animation once, so once the
image is visible you don’t need to observe it anymore. You
can clean up by calling observer.unobserve and passing the
element to stop observing.

Using Infinite Scrolling

Problem

You want to automatically load more data when the user
scrolls to the bottom of a list without the user having to
click a Load More button.

Solution

Place an element at the end of the scrollable list and
observe it with an Intersection​Observer. When the element
starts intersecting, load more data (see Example 6-9).

Example 6-9. Using IntersectionObserver for infinite

scrolling

/**

 * Observes a placeholder element with an IntersectionObserver.

 * When the placeholder becomes visible, more data is loaded.

 *

 * @param placeholder The Load More placeholder element

 * @param loadMore A function that loads more data

 */

function observeForInfiniteScroll(placeholder, loadMore) {

 const observer = new IntersectionObserver(entries => {

 // If the placeholder becomes visible, it means the user

 // has scrolled to the bottom of the list. In this case, time to

 // load more data.

 if (entries[0].isIntersecting) {

 loadMore();

 }

 });

 observer.observe(placeholder);

}

Discussion

The placeholder element could say Load More, or it can be
visually hidden. The IntersectionObserver watches the

placeholder element. Once it enters the viewport, the
callback starts loading more data. Using this technique, a
user can keep scrolling and scrolling until they reach the
end of the data.
You could make this placeholder a loading spinner. When
the user scrolls to the bottom of the list, triggering a new
request, they’ll see the spinner while the new data is
loading. This is accurate because with the default threshold
of 0.0, the observer fires just before the user scrolls far
enough to see the spinner. By this time, the data is already
loading, so it’s not an artificial spinner.
When the observer first starts observing, the callback fires
immediately. If the list is empty, the placeholder is visible,
which triggers the code to load the first page of data.

Chapter 7. Forms

Introduction

Forms collect user input that is submitted to a remote URL
or API endpoint. Modern browsers have many built-in form
input types for text, numbers, colors, and more. A form is
one of the main ways you get input from your user.

FormData

The FormData API provides a data model for accessing
form data. It saves you the trouble of having to look up
individual DOM elements and get their values.

Even better, once you have a FormData object, you can pass
it directly to the Fetch API to submit the form. Before
submission, you can alter or add to the data in the FormData
object.

Validation

To prevent users from sending invalid data, you can (and
should) add client-side validation for your forms. This could
be something as simple as marking a field as required, or
more complex validation logic that involves coordinating
multiple form values or calling an API.
In the past, a developer would usually need to reach for a
JavaScript library to perform form validation. This could
cause headaches due to data duplication; it exists in the
form data and an in-memory object used by the validation
library.

HTML5 added more built-in validation options, such as:

Marking a field as required

Specifying the minimum and maximum values in a
number field

Specifying a regular expression to validate the
field’s input

These options are used as attributes on the <input>
elements.
The browser shows basic validation error messages (see
Figure 7-1), but the style may not look good with your app’s
design. You can use the Constraint Validation API to
inspect the built-in validation results as well as perform
custom validation logic and set your own validation
messages.

Figure 7-1. A built-in validation message in Chrome

To validate a form, you call its checkValidity method. All of
the fields within the form are validated. If all fields are
valid, checkValidity returns true. If one or more fields are
invalid, checkValidity returns false and each invalid field
triggers an invalid event. You can also check a specific
element by calling checkValidity on the form field itself.

Every form field has a validity object that reflects the
current validity state. It has a boolean valid, which
indicates the form’s overall validity state. This object also
has additional flags that tell you the nature of the validation
error.

Populating a Form Field from Local

Storage

Problem

You want to remember a form field’s value in local storage.
For example, you may want to remember the user name
entered in a login form.

Solution

When submitting the form, use a FormData object to get the
field value and set it in local storage (see Example 7-1).
Then, when first loading the page, check for a remembered
value. If you find a value, populate the form field.

Example 7-1. Remembering the username field

const form = document.querySelector('#login-form');

const username = localStorage.getItem('username');

if (username) {

 form.elements.username.value = username;

}

form.addEventListener('submit', event => {

 const data = new FormData(form);

 localStorage.setItem('username', data.get('username'));

});

Discussion

When you pass a form to the FormData constructor, it is
populated with the form’s current values. You can then use
the get method to retrieve the desired field and set it in
local storage.

Populating the form on load is a little different. A FormData
object is not kept in sync with the current form values;
rather, it includes the form values at the time the FormData
object was created. The opposite is also true—if you set a
new value in the FormData object, it won’t be updated in the
form itself. Given this, a FormData object won’t help when
populating the form. Example 7-1 uses the form’s elements
property to look up the username field and set its value that
way.

LOOKING UP FORM FIELDS WITH THE

ELEMENTS PROPERTY

The elements property of a form lets you look up form
fields by their names. Every field within this form that
has a name property has a corresponding property in
form.elements. For example, you can look up an input
with the name username by referencing
form.elements.username. Note that you need to specify the
field’s name attribute, not its id.

Submitting a Form with Fetch and the

FormData API

Problem

You want to submit a form using the Fetch API. You might
want to do this to add additional information to the form
submission
that wouldn’t be included by the browser, or
because the form submission might need an API token that
is stored in memory
rather than entered in the form.
Another reason you might want to do this is to prevent the
browser from redirecting to a new page, or causing a full
page refresh.

Solution

Create a FormData object containing the data to be
submitted. Add the additional required data, then submit
the form with the Fetch API (see Example 7-2).
Example 7-2. Adding data with the FormData API

// In a real-world application, the API token would be stored somewhere and

// not hardcoded like this.

const apiToken = 'aBcD1234EfGh5678IjKlM';

form.addEventListener('submit', event => {

 // Important: Stop the browser from automatically submitting the form.

 event.preventDefault();

 // Set up a FormData object and add the API token to it.

 const data = new FormData(event.target);

 data.set('apiToken', apiToken);

 // Use the Fetch API to send this FormData object to the endpoint.

 fetch('/api/form', {

 method: 'POST',

 body: data

 });

});

Discussion

Normally, when you click the Submit button, the browser
gets the form data and submits it for you. Here you don’t
want that because you need to add the API token.

The first thing the submit handler does is call preventDefault
on the submit event. This stops the browser from
performing the default submit behavior so that you can
provide your custom logic. The default behavior here is a
full page refresh, which is probably not what you want.

You can create a FormData object by passing the form object
to the FormData constructor. The resulting object will have
the existing form data in it, at which point you can add
additional data like the API token.

Finally, you can pass the FormData object as the body of a
POST request using the Fetch API. When submitting a form
this way, the body is not JSON; rather, the browser submits
it with a content type of multipart/form-data.
Consider an object representing your form data:

{

 username: 'john.doe',

 apiToken: 'aBcD1234EfGh5678IjKlM'

}

The equivalent request body looks something like this:

------WebKitFormBoundaryl6AuUOn9EbuYe9XO

Content-Disposition: form-data; name="username"

john.doe

------WebKitFormBoundaryl6AuUOn9EbuYe9XO

Content-Disposition: form-data; name="apiToken"

aBcD1234EfGh5678IjKlM

------WebKitFormBoundaryl6AuUOn9EbuYe9XO--

Submitting a Form as JSON

Problem

You want to submit a form to an endpoint that expects
JSON data.

Solution

Use the FormData API to transform the form data into a
JavaScript object, and use the Fetch API to send it as JSON
(see Example 7-3).
Example 7-3. Submitting a form as JSON using Fetch

form.addEventListener('submit', event => {

 // Important: Stop the browser from automatically submitting the form.

 event.preventDefault();

 // Create a new FormData containing this form's data, then add each

 // key/value pair to the response body.

 const data = new FormData(event.target);

 const body = {};

 for (const [key, value] of data.entries()) {

 body[key] = value;

 }

 // Send the JSON body to the form endpoint.

 fetch('/api/form', {

 method: 'POST',

 // The object must be converted to a JSON string.

 body: JSON.stringify(body),

 // Tell the server you're sending JSON.

 headers: {

 'content-type': 'application/json'

 }

 })

 .then(response => response.json())

 .then(body => console.log('Got response:', body));

});

Discussion

This approach is similar to sending the FormData object
directly. The only differences are that you are converting

the form data to JSON and sending it with the correct
Content-Type header.
You can perform the conversion by creating a new empty
object and iterating over the key/value pairs in the FormData.
Each pair is copied into the object.
A disadvantage of this approach is that you can’t use it with
FormData having multiple values bound to the same key. This
happens when you have a group of checkboxes with the
same name; there are multiple entries with the same key.
You could enhance the conversion to detect this case and
set an array of values, as shown in Example 7-4.
Example 7-4. Handling array form values

/**

 * Converts a form's data into an object that can be sent as JSON.

 * @param form The form element

 * @returns An object containing all the mapped keys and values

 */

function toObject(form) {

 const data = new FormData(form);

 const body = {};

 for (const key of data.keys()) {

 // Returns an array of all values bound to a given key

 const values = data.getAll(key);

 // If there's only one element in the array, set that element directly.

 if (values.length === 1) {

 body[key] = values[0];

 } else {

 // Otherwise, set the array

 body[key] = values;

 }

 }

 return body;

}

Example 7-4 uses the FormData’s getAll function, which
returns an array containing all values bound to the given

key. This lets you collect all values for a given checkbox
group into an array.

getAll always returns an array. If there’s only one value, it
is an array with one element. toObject checks for this
scenario, and if the array only has one element, it uses that
element as the single value in the resulting object.
Otherwise, it uses the array of values.

Making a Form Field Required

Problem

You want to require a form field to have a value, causing a
validation error if it is left blank.

Solution

Use the required attribute on the <input> element (see
Example 7-5).
Example 7-5. A required field

<label for="username">Username</label>

<input type="text" name="username" id="username" required>

The required attribute does not have a value.

Discussion

When a field is marked as required, it must have a value. If
the field is blank, its validity.valid property is false and its
validity.valueMissing property is true.
A required field is only considered empty if the value is an
empty string. It does not trim whitespace, so a value
consisting of a few empty spaces is considered valid.

Constraining a Number Input

Problem

You want to specify a range of allowed values for a number
input (<input type=​"num⁠ber">).

Solution

Use the min and max properties to specify the allowed range
(see Example 7-6). These values are inclusive, meaning that
the minimum and maximum values themselves are allowed.
Example 7-6. Specifying a range for a number field

<label for="quantity">Quantity</label>

<input type="number" name="quantity" id="quantity" min="1" max="10">

Discussion

If a number input’s value is below the minimum or above
the maximum, its validity.valid property is false. If it’s
below the minimum, the rangeUnderflow validity flag is set.
Similarly, if it exceeds the maximum, the rangeOverflow flag
is set instead.

When you make an input of type number, the browser adds a
spinner control—clickable up and down arrows to increase
and decrease the value. This spinner control enforces the
minimum and maximum values—it refuses to decrease the
value if it’s already at the minimum or increase the value if
it’s already at the maximum. However, a user is still free to
type any value in the field. They can enter a number
outside of the allowed range, at which point the validity
state is set accordingly.

If you want more fine-grained control over allowed values,
you can also specify a step value. This limits the allowed
values so that the increment must be a multiple of the step.
Consider an input with a minimum of 0, a maximum of 4,
and a step of 2. The only acceptable values for this field
would be 0, 2, and 4.

Specifying a Validation Pattern

Problem

You want to limit a text field’s value so that it matches a
certain pattern.

Solution

Use the pattern attribute of the input to specify a regular
expression (see Example 7-7). The field is considered
invalid unless its value matches the regular expression.
Example 7-7. Limiting a field to alphanumeric characters

only

<label for="username">Enter a username</label>

<input type="text" pattern="[A-Za-z0-9]+" id="username" name="username">

The username field is invalid if it contains anything other
than alphanumeric characters. When invalid, the validity
state’s patternMismatch flag is set.

Discussion

This is a flexible validation option, second only to using
your own custom validation logic (see “Using Custom
Validation Logic”).

TIP

Creating a regular expression to validate URLs or email addresses
can be tricky. To handle these cases, you can set the input’s type
attribute to url or email, and the browser will validate that the field is
a valid URL or email address for you.

Validating Forms

Problem

You want to manage the form validation process and show
your own error messages in the UI.

Solution

Use the Constraint Validation API and the invalid event to
detect and mark invalid fields.
There are many ways to handle validation. Some websites
are too eager and show an error message before the user
gets a chance to enter a value. Consider an input of type
email, which is considered invalid until a valid email
address is entered. If validation occurs immediately, the
user sees an error about an invalid email address before
they’ve even finished typing it.
To avoid this, the validation approach shown here only
validates a field under two conditions:

When the form is submitted.

If the field has been focused and then lost focus.
These fields are considered to have been “touched.”

First, you’ll need to disable the browser’s built-in validation
UI by adding the novalidate attribute to the form, as shown
in Example 7-8.
Example 7-8. Disabling the browser validation UI

<form id="my-form" novalidate>

 <!-- Form elements go here -->

</form>

Each field needs a placeholder element to contain the error
message, as shown in Example 7-9.
Example 7-9. Adding error message placeholders

<div>

 <label for="email">Email</label>

 <input required type="email" id="email" name="email">

 <div class="error-message" id="email-error"></div>

</div>

In this example, an error message is associated with an
input field by its ID. The field with the ID email has an error
message with ID email-error, a name field has an error
message name-error, and so on.
With this validation approach, each form element listens for
three events:

invalid

Triggered when the form is validated and the field is marked
invalid. This sets the error message.

input

Triggered when the value in the field changes. This performs
revalidation if necessary and clears the error message if the
field becomes valid.

blur

Triggered when the field loses focus. This sets a data-should-
validate attribute to mark the field as touched, after which it
is validated in the input event handler.

The validation code is shown in Example 7-10.
Example 7-10. Setting up validation for a form field

/**

 * Adds necessary event listeners to an element to participate in form

validation.

 * It handles setting and clearing error messages depending on the validation

state.

 * @param element The input element to validate

 */

function addValidation(element) {

 const errorElement = document.getElementById(`${element.id}-error`);

 /**

 * Fired when the form is validated and the field is not valid.

 * Sets the error message and style, and also sets the shouldValidate flag.

 */

 element.addEventListener('invalid', () => {

 errorElement.textContent = element.validationMessage;

 element.dataset.shouldValidate = true;

 });

 /**

 * Fired when user input occurs in the field. If the shouldValidate flag is

set,

 * it will recheck the field's validity and clear the error message if it

 * becomes valid.

 */

 element.addEventListener('input', () => {

 if (element.dataset.shouldValidate) {

 if (element.checkValidity()) {

 errorElement.textContent = '';

 }

 }

 });

 /**

 * Fired when the field loses focus, applying the shouldValidate flag.

 */

 element.addEventListener('blur', () => {

 // This field has been touched; it will now be validated on subsequent

 // 'input' events.

 // This sets the input's data-should-validate attribute to true in the DOM.

 element.dataset.shouldValidate = true;

 });

}

NOTE

This example listens to the input event. If your form contains
checkboxes or radio buttons, you may need to listen for the change
event instead for those elements, depending on the browser. See the
article about input events from MDN:

For <input> elements with type=checkbox or type=​radio, the input

event should fire whenever a user toggles  the  control,  per  the  

HTML  Living  Standard  specification. However, historically this

has not always been the case. Check compatibility, or use the

change event instead for elements of these types.

To complete the basic validation framework, add the
listeners to the form fields, listen for the form’s submit
event, and trigger validation (see Example 7-11).
Example 7-11. Triggering form validation

// Assuming the form has two inputs, 'name' and 'email'

addValidation(form.elements.name);

addValidation(form.elements.email);

form.addEventListener('submit', event => {

 event.preventDefault();

 if (form.checkValidity()) {

 // Validation passed, submit the form

 }

});

Discussion

This code sets up a good basic validation framework that
handles the browser’s built-in validation. Before submitting

https://oreil.ly/cFIjY

the form, it calls checkValidity, which starts checking all of
the inputs inside the form. The browser triggers an invalid
event for any input that fails validation. To handle this, you
can listen for the invalid event on the input elements
themselves. From there, you can render an appropriate
error message.
Once the user has validation errors, you want to clear them
as soon as the fields become valid. This is why addValidation
listens for the input event—this is triggered as soon as the
user types something in the input field. From there, you
can immediately recheck the input’s validity. If it is now
valid (checkValidity returns true), you can clear the error
message. An input is only revalidated if the data-should-
validate attribute is set to true. This attribute is added
when validation fails during form submission, or when an
element loses focus. This prevents validation errors from
appearing before the user is done typing. Once the field
loses focus, it starts revalidating on every change.

Using Custom Validation Logic

Problem

You want to perform a validation check that is not
supported by the Constraint Validation API. For example,
you want to validate that a password and password
confirmation field have the same value.

Solution

Perform the custom validation logic before calling
checkValidity on the form. If the custom validation check

fails, call the input’s setCustomValidity method to set an
appropriate error message. If the check passes, clear any
previously set validation message (see Example 7-12).
Example 7-12. Using custom validation

/**

 * Custom validation function that ensures the password and confirmPassword

fields

 * have the same value.

 * @param form The form containing the two fields

 */

function validatePasswordsMatch(form) {

 const { password, confirmPassword } = form.elements;

 if (password.value !== confirmPassword.value) {

 confirmPassword.setCustomValidity('Passwords do not match.');

 } else {

 confirmPassword.setCustomValidity('');

 }

}

form.addEventListener('submit', event => {

 event.preventDefault();

 validatePasswordsMatch(form);

 if (form.checkValidity()) {

 // Validation passed, submit the form.

 }

});

NOTE

If you’re using the browser’s built-in validation UI, you need to call
the form field’s reportValidity method after setting a custom validity
message. If you are handling the validation UI yourself, this isn’t
needed—but make sure to show the error message in the appropriate
place.

Discussion

When you call setCustomValidity on an element with a non-
empty string, the element is now considered invalid.

The validatePasswordsMatch function examines the values of
the password and confirmPassword fields. If they don’t match,
it calls setCustomValidity on the confirmPassword field to set a
validation error message. If they do match, it sets it to an
empty string, which marks the field as valid again.

The form’s submit handler calls validatePasswordsMatch
before performing the built-in validation. If the
validatePasswordsMatch check fails, and a custom validity is
set, form.checkValidity fails and the invalid event fires on
the confirmPassword field just like any other invalid element.

Validating a Checkbox Group

Problem

You want to enforce that at least one checkbox in a group
of checkboxes must be checked. Setting the required
attribute on checkboxes won’t help here because it applies
to that individual input only, not the group. The browser
checks if that input is checked and causes a validation
error, even if other checkboxes in the group are checked.

Solution

Use a FormData object to get an array of all selected
checkboxes, and set a custom validation error if the array is
empty.

When performing the custom validation, use the FormData’s
getAll method to get an array of the selected checkbox

values (see Example 7-13). If the array is empty, no
checkboxes are selected, and this is a validation error.
Example 7-13. Validating a checkbox group

function validateCheckboxes(form) {

 const data = new FormData(form);

 // To avoid setting the validation error on multiple elements,

 // choose the first checkbox and use that to hold the group's validation

 // message.

 const element = form.elements.option1;

 if (!data.has('options')) {

 element.setCustomValidity('Please select at least one option.');

 } else {

 element.setCustomValidity('');

 }

}

To keep the validation state of the whole group in one
place, set the custom validity message on the first checkbox
only (assuming a name of option1). This first checkbox
serves as a container for the group’s validation message,
which is necessary because you can only set validity
messages on actual <input> elements.

Then, listen for the invalid and change events. On the invalid
event, show the error message. On the change event (when a
checkbox is toggled), perform the custom validation and
clear the error message if validation succeeds (see
Example 7-14).
Example 7-14. Setting up checkbox validation

/**

 * Adds necessary event listeners to an element to participate in form

validation.

 * It handles setting and clearing error messages depending on the validation

state.

 * @param element The input element to validate

 * @param errorId The ID of a placeholder element that will show the error

message

 */

function addValidation(element, errorId) {

 const errorElement = document.getElementById(errorId);

 /**

 * Fired when the form is validated and the field is not valid.

 * Sets the error message and style.

 */

 element.addEventListener('invalid', () => {

 errorElement.textContent = element.validationMessage;

 });

 /**

 * Fired when user input occurs in the field.

 * It will recheck the field's validity and clear the error message if it

 * becomes valid.

 */

 element.addEventListener('change', () => {

 validateCheckboxes(form);

 if (form.elements.option1.checkValidity()) {

 errorElement.textContent = '';

 }

 });

}

Finally, add validation to each checkbox field and call the
validateCheckboxes function before checking the form’s
validity. Example 7-15 expects that you have an element
with the ID checkbox-error. If there is a checkbox validation
error, the message will be set on that element.
Example 7-15. Validating the checkbox form

addValidation(form.elements.option1, 'checkbox-error');

addValidation(form.elements.option2, 'checkbox-error');

addValidation(form.elements.option3, 'checkbox-error');

form.addEventListener('submit', event => {

 event.preventDefault();

 validateCheckboxes(form);

 console.log(form.checkValidity());

});

Discussion

Using the required attribute on the checkboxes in the group
won’t have the desired effect. This is good for a single
checkbox, like one requiring that a user accept a license
agreement, but when used on a group, it would make each
individual checkbox required, and form validation would
fail unless all of them were checked. Because there is no
HTML element for a “checkbox group,” you’ll need to do a
little extra work to get the desired behavior.
This example picks the first checkbox in the group as a
“container” for the validation message. When the user
toggles any of the checkboxes, the browser calls the
change handler and it looks to see if any of the checkboxes
are checked. If the selection array is empty, this is an error.
The custom validity message is always set on the first
checkbox only. This is to ensure the message is always
shown and hidden when necessary.
Let’s look at what would happen if you instead applied the
custom validity to the checkbox being changed.
If no options are checked and the user submits the form,
each checkbox has a custom validity error message now.
All three options are invalid. If you then go and check one
of the checkboxes, the checkbox’s change event will fire and
check the checkbox group. Now there is an option selected,
so it clears the custom validity message. However, the
other checkboxes are still in an error state. This is
essentially now equivalent to having set the required
attribute on all the checkboxes.
You could get around this by setting the validation message
in all checkboxes from the validateCheckboxes function, but
it’s less work to just pick one and use that as the target for
all custom validation messages. The group as a whole has a

single error message element that gets populated with the
validation error.

NOTE

Since this example manages its own validation message, make sure
to include the novalidate attribute on the containing form to avoid
showing the browser’s default validation UI along with your custom
validation error.

Validating a Field Asynchronously

Problem

Your custom validation logic requires an asynchronous
operation like making a network request. For example, a
user signup form has a password field. The signup form
must call an API to validate that the entered password
meets password strength standards.

Solution

Perform the network request, then set a custom validity
message. Do this in a function that returns a Promise. In the
form’s submit handler, await this Promise before calling
checkValidity on the form. If the asynchronous validation
code set a custom validity message, the form validation
triggered by checkValidity handles it.
Example 7-16 has the validation logic itself. It calls a
password strength check API and sets the custom validity
message accordingly.

Example 7-16. Performing asynchronous password strength

validation

/**

 * Calls an API to validate that a password meets strength requirements.

 * @param form The form containing the password field

 */

async function validatePasswordStrength(form) {

 const { password } = form.elements;

 const response = await fetch(`/api/password-strength?

password=${password.value}`);

 const result = await response.json();

 // As before, remember to call reportValidity on the password field if you're

using

 // the built-in browser validation UI.

 if (result.status === 'error') {

 password.setCustomValidity(result.error);

 } else {

 password.setCustomValidity('');

 }

}

WARNING

Make sure you only send passwords over a secure connection
(HTTPS). Otherwise, you’re sending the user’s password out in plain
text, and this is a dangerous practice.

Because the function is marked as async, it returns a
Promise. You just need to await this Promise in the form’s
submit handler, as shown in Example 7-17.

Example 7-17. The async form submit handler

form.addEventListener('submit', async event => {

 event.preventDefault();

 await validatePasswordStrength(form);

 console.log(form.checkValidity());

});

This marks the field as invalid on submission if the
password doesn’t meet the requirements. You can rerun

the validation logic when the field changes, only this time
you’ll do it on the blur event rather than input as you did
with synchronous custom validation (see Example 7-18).

Example 7-18. Revalidating on blur

form.elements.password.addEventListener('blur', async event => {

 const password = event.target;

 const errorElement = document.getElementById('password-error');

 if (password.dataset.shouldValidate) {

 await validatePasswordStrength(form);

 if (password.checkValidity()) {

 errorElement.textContent = '';

 password.classList.remove('border-danger');

 }

 }

});

Discussion

If you did this check on the input event, you’d be sending a
network request every time the user pressed a key. The
blur event defers the revalidation until the field loses focus.
It calls the validation API again and checks the new validity
state.

TIP

You could also use a debounced version of the validation function.
This would revalidate on an input event, but only once the user has
stopped typing for a certain period of time.

This article from freeCodeCamp goes into detail about how to create
a debounced function. There are also npm packages available that
will create a debounced version of a function.

https://oreil.ly/kLRJa

Chapter 8. The Web

Animations API

Introduction

There are a few different ways to animate elements in
modern web browsers. Chapter 1 had an example of using
the requestAnimationFrame API to manually animate an
element (see “Animating an Element with
requestAnimationFrame”). This gives you a lot of control,
but at a cost. It requires keeping track of timestamps to
calculate frame rates, and you must calculate each
incremental change of the animation in JavaScript.

Keyframe-Based Animation

CSS3 introduced keyframe animations. You specify the
beginning style, ending style, and a duration within CSS
rules. The browser automatically interpolates, or fills in,
the intermediate frames of the animation. Animations are
defined with the @keyframes rule and used via the animation
property. Example 8-1 defines a fade-in animation.
Example 8-1. Using a CSS keyframe animation

@keyframes fade {

 from {

 opacity: 0;

 }

 to {

 opacity: 1;

 }

}

.some-element {

 animation: fade 250ms;

}

A fade-in animation starts with an opacity of 0 and ends
with an opacity of 1. When the animation runs, the browser
calculates the intermediate style frames over the course of
250 milliseconds. The animation starts as soon as the
element enters the DOM or the some-element class is
applied.

Keyframe Animation with JavaScript

The Web Animations API lets you use keyframe animations
in your JavaScript code. The Element interface has an animate
method where you can define the keyframes and other
options of the animation. Example 8-2 shows the same
animation from Example 8-1 using the Web Animations API.
Example 8-2. Fading in with the Web Animations API

const element = document.querySelector('.some-element');

element.animate([

 { opacity: 0 },

 { opacity: 1 }

], {

 // Animate for 250 milliseconds

 duration: 250

});

The result is the same. The element fades in over the
course of 250 milliseconds. In this case, the animation is
triggered by the element.animate call.

Animation Objects

When you call element.animate, an Animation object is
returned. This allows you to pause, resume, cancel, or even
reverse an animation. It also provides you with a Promise
that you can use to wait until the animation completes.

Be careful what properties you animate. Some properties,
like height or padding, affect the layout of the rest of the
page; animating them can cause performance issues, and
the animations are usually not smooth. The best properties
to animate are opacity and transform, as these don’t affect
the page layout and can even be accelerated by the
system’s GPU.

Applying a “Ripple” Effect on Click

Problem

You want to show a “ripple” animation when clicking a
button, starting at the position within the button that the
user clicked.

Solution

When the button is clicked, create a temporary child
element for the “ripple”. This is the element that will be
animated.
First, create some styles for the ripple element. The button
also needs a couple of styles applied (see Example 8-3).
Example 8-3. Styles for the button and ripple elements

.ripple-button {

 position: relative;

 overflow: hidden;

}

.ripple {

 background: white;

 pointer-events: none;

 transform-origin: center;

 opacity: 0;

 position: absolute;

 border-radius: 50%;

 width: 150px;

 height: 150px;

}

In the button’s click handler, dynamically create a new
ripple element and add it to the button, then update its
position and
perform the animation (see Example 8-4).
Example 8-4. Performing the ripple animation

button.addEventListener('click', async event => {

 // Create the temporary element for the ripple, set its class, and

 // add it to the button.

 const ripple = document.createElement('div');

 ripple.className = 'ripple';

 // Find the largest dimension (width or height) of the button and

 // use that as the ripple's size.

 const rippleSize = Math.max(button.offsetWidth, button.offsetHeight);

 ripple.style.width = `${rippleSize}px`;

 ripple.style.height = `${rippleSize}px`;

 // Center the ripple element on the click location.

 ripple.style.top = `${event.offsetY - (rippleSize / 2)}px`;

 ripple.style.left = `${event.offsetX - (rippleSize / 2)}px`;

 button.appendChild(ripple);

 // Perform the ripple animation and wait for it to complete.

 await ripple.animate([

 { transform: 'scale(0)', opacity: 0.5 },

 { transform: 'scale(2.5)', opacity: 0 }

], {

 // Animate for 500 milliseconds.

 duration: 500,

 // Use the ease-in easing function.

 easing: 'ease-in'

 }).finished;

 // All done, remove the ripple element.

 ripple.remove();

});

Discussion

The ripple element is a circle, sized relative to the size of
the button. You achieve the ripple effect by animating its
opacity and scale transform.
There are a few things here to point out about the element
styles. First, the button itself has its position set to relative.
This is so that when you set the ripple’s absolute position, it
is relative to the button itself.

CSS ABSOLUTE POSITIONING

When you set an element’s position property to absolute,
the browser removes it from the document layout and
positions it relative to its nearest ancestor element that
is positioned. An element is considered positioned if it
has a position property set to anything but the default of
static.
If you have an element with absolute positioning, and
the position doesn’t seem right, check to make sure that
it’s using the correct positioned ancestor. This may or
may not be the element’s immediate parent.

The button also has overflow: hidden. This prevents the
ripple effect from being visible outside of the button.

You may also notice that the ripple has pointer-events: none
set. Because the ripple is inside the button, the browser
delegates any click events on the ripple up to the button.
This means clicking the ripple triggers a new ripple, but
the position is wrong because it’s based on the click
position within the ripple rather than within the button.

The easiest way to get around this is to set pointer-events:
none, which makes the ripple element ignore click events. If
you click on a ripple while it is animating, the click event

goes to the button, which is what you want in order to have
the next ripple be positioned properly.
Next, the ripple code sets the top and left position such
that the center of the ripple is where you just clicked.
Then the ripple is animated. The animation returned by
ripple.animate has a finished property, which is a Promise
that you can wait for. Once this Promise resolves, the ripple
animation is complete and you can remove the element
from the DOM.
If you click the button while a ripple is in progress, another
ripple starts and they’ll animate together—the first
animation isn’t interrupted. This is more difficult to achieve
with regular CSS animations.

EASING FUNCTIONS

An easing function, specified by the easing property,
defines the rate of change of the properties being
animated. Customizing and fine-tuning these are beyond
the scope of this book, but there are a few built-in ones
to understand:

linear (the default)

The animation happens at a constant rate.

ease-out

The animation starts faster, then gradually slows down.

ease-in

The animation starts slow, then gradually speeds up.

ease-in-out

The animation starts slow, speeds up, then slows down
again at the end.

Starting and Stopping Animations

Problem

You want to be able to programmatically start or stop an
animation.

Solution

Use the animation’s pause and play functions (see
Example 8-5).
Example 8-5. Toggling an animation’s play state

/**

 * Given an animation, toggles the animation state.

 * If the animation is running, it will be paused.

 * If it is paused, it will be resumed.

 */

function toggleAnimation(animation) {

 if (animation.playState === 'running') {

 animation.pause();

 } else {

 animation.play();

 }

}

Discussion

The Animation object returned from an element.animate call
has a playState property, which you can use to determine if
the animation is currently running or not. If it is running,
its value is the string running. Other values are:

paused

The animation was running, but was stopped before it
finished.

finished

The animation ran to completion and stopped.

Depending on the playState property, the toggleAnimation
function calls either pause or play to set the desired
animation state.

Animating DOM Insertion and

Removal

Problem

You want to add to, or remove elements from, the DOM
with an animation effect.

Solution

The solution differs slightly for each operation.
For adding an element, add the element to the DOM first
then immediately run the animation (such as a fade in).
Since only elements in the DOM can be animated, you need
to add it before running the animation (see Example 8-6).
Example 8-6. Showing an element with an animation

/**

 * Shows an element that was just added to the DOM with a fade-in animation.

 * @param element The element to show

 */

function showElement(element) {

 document.body.appendChild(element);

 element.animate([

 { opacity: 0 },

 { opacity: 1 }

], {

 // Animate for 250 milliseconds.

 duration: 250

 });

}

To remove an element, you need to run the animation first

(such as a fade out). Once the animation completes,
immediately remove the element from the DOM (see
Example 8-7).
Example 8-7. Removing an element with an animation

/**

 * Removes an element from the DOM after performing a fade-out animation.

 * @param element The element to remove

 */

async function removeElement(element) {

 // First, perform the animation and make the element disappear from view.

 // The resulting animation's 'finished' property is a Promise.

 await element.animate([

 { opacity: 1 },

 { opacity: 0 }

], {

 // Animate for 250 milliseconds.

 duration: 250

 }).finished;

 // Animation is done, now remove the element from the DOM.

 element.remove();

}

Discussion

When you run the animation at the same time you add the
element, it begins animating from zero opacity before it has
a chance to initially be rendered. This produces the effect
you want—an element that is hidden and fades into view.
When you’re removing the element, you can use the
animation’s finished Promise to wait until the animation is
finished. You don’t want to remove the element from the
DOM until the animation is completely finished, otherwise
the effect could only run partially and the element would
disappear.

Reversing Animations

Problem

You want to cancel an in-progress animation, such as a
hover effect, and smoothly revert it back to the initial state.

Solution

Use the Animation object’s reverse method to start playing in
the reverse direction.
You can keep track of the in-progress animation with a
variable. When you change the desired animation state, and
this variable has a value, it means another animation is
already in progress and the browser should reverse it.
In the example of a hover effect (see Example 8-8), you can
start the animation when the mouse hovers over the
element.
Example 8-8. The hover effect

element.addEventListener('mouseover', async () => {

 if (animation) {

 // There was already an animation in progress. Instead of starting a new

 // animation, reverse the current one.

 animation.reverse();

 } else {

 // Nothing is in progress, so start a new animation.

 animation = element.animate([

 { transform: 'scale(1)' },

 { transform: 'scale(2)' }

], {

 // Animate for 1 second.

 duration: 1000,

 // Apply the initial and end styles.

 fill: 'both'

 });

 // Once the animation finishes, set the current animation to null.

 await animation.finished;

 animation = null;

 }

});

When the mouse moves away, the same logic applies (see
Example 8-9).
Example 8-9. Removing the hover effect

button.addEventListener('mouseout', async () => {

 if (animation) {

 // There was already an animation in progress. Instead of starting a new

 // animation, reverse the current one.

 animation.reverse();

 } else {

 // Nothing is in progress, so start a new animation.

 animation = button.animate([

 { transform: 'scale(2)' },

 { transform: 'scale(1)' }

], {

 // Animate for 1 second.

 duration: 1000,

 // Apply the initial and end styles.

 fill: 'both'

 });

 // Once the animation finishes, set the current animation to null.

 await animation.finished;

 animation = null;

 }

});

Discussion

Since the keyframes are the same in each case (they only
differ in their order), you can have a single animation
function that sets the animation’s direction property. When
the mouse hovers over the element, you want to run the
element in the forward, or normal, direction. When the
mouse leaves, you’ll run the same animation, but with the
direction set to reverse (see Example 8-10).
Example 8-10. A single animation function

async function animate(element, direction) {

 if (animation) {

 animation.reverse();

 } else {

 animation = element.animate([

 { transform: 'scale(1)' },

 { transform: 'scale(2)' }

], {

 // Animate for 1 second.

 duration: 1000,

 // Apply the end style after the animation is done.

 fill: 'forward',

 // Run the animation forward (normal) or backward (reverse)

 // depending on the direction argument.

 direction

 });

 // Once the animation finishes, set the variable to

 // null to signal that there is no animation in progress.

 await animation.finished;

 animation = null;

 }

}

element.addEventListener('mouseover', () => {

 animate(element, 'normal');

});

element.addEventListener('mouseout', () => {

 animate(element, 'reverse');

});

The result is the same as before. When you hover over the
element, it starts to increase in size due to the scale(2)
transform. If you move the mouse away, it starts shrinking
again by reversing the animation’s direction.
The difference is in the event handlers. They both call a
single function, using different values for the animation’s
direction option.

Example 8-8 sets the animation’s fill mode to both. The
animation’s fill mode determines the style of the element
before and after the animation. By default, the fill mode is
none. This means that when the animation completes, the
element’s style jumps back to what it was before the
animation.
In practice, this means that when you hover over the
element, it starts growing until it reaches its final size, but
then it immediately jumps back to its original size, due to
no fill mode being set.

There are three options (other than none) for the fill mode:

backward

The element’s style is set to the animation’s starting
keyframe before the animation starts. This is usually only
applicable when using an animation delay, as it defines what
the element’s style is within the delay period.

forward

After the animation finishes, the ending keyframe styles
remain applied.

both

Applies the rules of both backward and forward.

The animation in Example 8-10 has no delay, so the forward
option is used to retain the style after the animation ends.

Showing a Scroll Progress Indicator

Problem

You want to show a bar at the top of the page that moves as
you scroll. As you scroll down, the bar moves to the right.

Solution

Use a scroll-linked animation by creating a ScrollTimeline
and passing it to the element’s animate method. To make the
element grow from left to right, you can animate the
transition property from scaleX(0) to scaleX(1).

NOTE

This API may not be supported by all browsers yet. See CanIUse for
the latest compatibility data.

First, set some styles for the progress bar element, as
shown in Example 8-11.
Example 8-11. Scroll progress bar styles

.scroll-progress {

 height: 8px;

 transform-origin: left;

 position: sticky;

 top: 0;

 transform: scaleX(0);

 background: blue;

}

The position: sticky property ensures that the element
remains visible as you scroll down the page. Also, its initial
style is set to scaleX(0), which effectively hides it. Without
this, the bar would appear at its full width for an instant
then disappear. This ensures you won’t see the bar at all
until you scroll.

Next, create a ScrollTimeline object and pass it as the
animation’s timeline option, as shown in Example 8-12.
Example 8-12. Creating the scroll timeline

const progress = document.querySelector('.scroll-progress');

// Create a timeline that's linked to the document's

// scroll position.

const timeline = new ScrollTimeline({

 source: document.documentElement

});

// Start the animation, passing the timeline you just created.

progress.animate(

 [

https://oreil.ly/l-hvN

 { transform: 'scaleX(0)' },

 { transform: 'scaleX(1)' }

],

 { timeline });

You now have a scroll-linked animation.

Discussion

An animation’s timeline is an object that implements the
AnimationTimeline interface. By default, an animation uses
the document’s default timeline, which is a DocumentTimeline
object. This is a timeline that’s linked to elapsed time on
the clock. When you start an animation with the default
timeline, it starts at the initial keyframe and runs forward
until it reaches the end (or you stop it manually). Because
this type of timeline is linked to elapsed time, it has a
defined start value and continuously increases as time
passes.
However, a scroll-linked animation provides a timeline
linked to the scroll position. When you scroll all the way to
the top, the scroll position is 0 and the animation remains
at its initial state. As you scroll down, the position increases
and the animation advances. Once you have scrolled all the
way to the bottom, the animation reaches its end. If you
scroll back up, the animation runs in reverse.

A ScrollTimeline is given a source element. In Example 8-
12, the source is the document element (the body tag). You
can pass any scrollable element as the source, and the
ScrollTimeline uses that element’s scroll position to
determine the current progress.

At the time of writing, DocumentTimeline is supported in all
modern browsers but ScrollTimeline is not. Be sure to

always check browser support before using a
ScrollTimeline.

Making an Element Bounce

Problem

You want to apply a momentary bouncing effect to an
element.

Solution

Apply a series of animations, one after another. Use an
animation’s finished Promise to wait for it to finish before
running the next one.
The element moves up and down three times. On each pass,
the element is moved up the page by applying a translateY
transform, then back down to its original position. The first
pass bounces the element by 40 pixels, the second by 20
pixels, and the third by 10 pixels. This gives the appearance
of gravity slowing the bounce down each time. This can be
done with a for-of loop (see Example 8-13).
Example 8-13. Applying the bounce animations in series

async function animateBounce(element) {

 const distances = ['40px', '20px', '10px'];

 for (let distance of distances) {

 // Wait for this animation to complete before continuing.

 await element.animate([

 // Start at the bottom.

 { transform: 'translateY(0)' },

 // Move up by the current distance.

 { transform: `translateY(-${distance})`, offset: 0.5 },

 // Back to the bottom

 { transform: 'translateY(0)' }

], {

 // Animate for 250 milliseconds.

 duration: 250,

 // Use a more fluid easing function than linear

 // (the default).

 easing: 'ease-in-out'

 }).finished;

 }

}

Discussion

This example demonstrates an advantage of the Web
Animations API: dynamic keyframe values. Each iteration
through the loop uses a different distance value inside the
keyframe effect.

The for-of loop walks through the three distances (40px,
20px, and 10px) and animates them in turn. In each
iteration, it moves the element up by the given distance and
back down again. The key is the last line, where it
references the animation’s finished property. This ensures
that the next loop iteration doesn’t start until the current
animation finishes. The result is the animations run in
series, one after the other, providing the bounce effect.

You may be wondering why this example uses a for-of loop
rather than a forEach() call on the array. Using await inside
array methods such as forEach does not work as you’d
expect. These methods were not designed for asynchronous
use. If you used a forEach call, the element.animate calls
would all be called immediately after one another, resulting
in only the last animation being played. Using a for-of loop
(a regular for loop would work as well) works as expected
with async/await and gives the desired result.

Running Multiple Animations

Simultaneously

Problem

You want to apply multiple transforms to an element using
multiple animations.

Solution

Call animate on the element multiple times, with the
different transform keyframes. You must also specify the
composite property to combine the transforms, as shown in
Example 8-14.
Example 8-14. Combining two transform animations

// The first animation will move the element back and forth on the x-axis.

element.animate([

 { transform: 'translateX(0)' },

 { transform: 'translateX(250px)' }

], {

 // Animate for 5 seconds.

 duration: 5000,

 // Run the animation forward, then run it in reverse.

 direction: 'alternate',

 // Repeat the animation forever.

 iterations: Infinity,

 // Slow to start, fast in the middle, slow at the end.

 easing: 'ease-in-out'

});

// The second animation rotates the element.

element.animate([

 { transform: 'rotate(0deg)' },

 { transform: 'rotate(360deg)' }

], {

 // Animate for 3 seconds.

 duration: 3000,

 // Repeat the animation forever.

 iterations: Infinity,

 // Combine the effects with other running animations.

 composite: 'add'

});

The alternate direction means the animation runs forward
to completion, then runs backward to completion. Because
iterations is set to Infinity, the animation runs forever.

Discussion

The key to this effect is the composite property added to the
second animation. If you don’t specify composite: add, you
only see the rotate transform because it overrides the
translateX transform. The element would rotate but not
move horizontally.
This, in effect, combines both transforms into a single
transform. Also note, however, that these transforms are
happening at different rates. The rotation lasts for three
seconds, while the translation lasts for five. The animations
use different easing functions as well. Despite the different
options, the browser smoothly combines the animations.

Showing a Loading Animation

Problem

You want to show a loading indicator to the user while
waiting for a network request to complete.

Solution

Create and style the loading indicator, then apply an
infinite rotation animation to it until the Promise returned by
fetch resolves.

To make a smooth effect, you can first apply a fade-in
animation. Once the Promise resolves, you can fade it out.
First, create a loader element and define some styles, as
shown in Example 8-15.
Example 8-15. The loader element

<style>

 #loader {

 width: 64px;

 height: 64px;

 /* Make a circle shape */

 border-radius: 50%;

 border-width: 10px;

 border-style: solid;

 border-color: skyblue blue skyblue blue;

 /* Set the initial opacity so the animation that appears is smooth */

 opacity: 0;

 }

</style>

<div id="loader"></div>

The loader is a ring with alternating border colors, as
shown in Figure 8-1.

Figure 8-1. The styled loader

Next, define a function that starts the animation and wait
for the Promise, as shown in Example 8-16.
Example 8-16. The loader animations

async function showLoader(promise) {

 const loader = document.querySelector('#loader');

 // Start the spin animation before fading in.

 const spin = loader.animate([

 { transform: 'rotate(0deg)' },

 { transform: 'rotate(360deg)' }

], { duration: 1000, iterations: Infinity });

 // Since the opacity is 0, the loader isn't visible yet.

 // Show it with a fade-in animation.

 // The loader will continue spinning as it fades in.

 loader.animate([

 { opacity: 0 },

 { opacity: 1 }

], { duration: 500, fill: 'both' });

 // Wait for the Promise to resolve.

 await promise;

 // The Promise is done. Now fade the loader out.

 // Don't stop the spin animation until the fade out is complete.

 // You can wait by awaiting the 'finished' Promise.

 await loader.animate([

 { opacity: 1 },

 { opacity: 0 }

], { duration: 500, fill: 'both' }).finished;

 // Finally, stop the spin animation.

 spin.cancel();

 // Return the original Promise to allow chaining.

 return promise;

}

You can now pass your fetch call as an argument to
showLoader, as shown in Example 8-17.
Example 8-17. Using the loader

showLoader(

 fetch('https://example.com/api/users')

 .then(response => response.json())

);

Discussion

You don’t necessarily need the Web Animations API to
create an animated loader—you can do that with plain CSS.

As this example shows, though, the Web Animations API
lets you combine multiple animations. The infinite spin
animation continues to run while the fade-in animation
runs. This is a little tricky to do with regular CSS
animations.

Respecting the User’s Animation

Preference

Problem

You want to tone down, or disable, animations if the user
has configured their operating system to reduce motion.

Solution

Use window.matchMedia to check the prefers-reduced-motion
media query (see Example 8-18).
Example 8-18. Using the prefers-reduced-motion media

query

if (!window.matchMedia('(prefers-reduced-motion: reduce)').matches) {

 // Reduced motion is not enabled, so animate normally.

} else {

 // Skip this animation or run a less intense one.

}

Discussion

This is extremely important for accessibility. Users with
epilepsy or vestibular disorders could have seizures,
migraines, or other ill effects triggered by a large or fast-
moving animation.
You don’t necessarily have to disable animation altogether;
you could instead use a more subtle one. Suppose you are

showing an element with a bounce effect that looks really
good but could be disorienting for some users. If the user
has reduced motion enabled, you could instead provide a
simple fade-in animation.

Chapter 9. The Web

Speech API

Introduction

In the age of smart devices and assistants, your voice has
become another commonly used input method. Whether
you’re dictating a text message or asking for tomorrow’s
weather forecast, speech recognition and synthesis are
becoming useful tools in app development. With the Web
Speech API, you can make your app speak or listen for a
user’s voice input.

Speech Recognition

The Web Speech API brings speech recognition to the
browser. Once the user gives you permission to use the
microphone, it listens for speech. When it recognizes a
series of words, it triggers an event with the recognized
content.

NOTE

Speech recognition may not be supported by all browsers yet. See
CanIUse for the latest compatibility data.

You’ll need the user’s permission before you can start
listening for speech. Due to privacy settings, the first time
you attempt to listen, the user is prompted to grant your
app permission to use the microphone (see Figure 9-1).

https://oreil.ly/SGLlc

Figure 9-1. A microphone permission request in Chrome

Some browsers, such as Chrome, use an external server for
analyzing the captured audio to recognize speech. This
means speech recognition won’t work when you’re offline,
and it might also raise privacy concerns.

SPEECH RECOGNITION VERSUS LANGUAGE

PROCESSING

It’s important to distinguish between speech recognition
(determining what words were spoken) and language
processing (understanding what those words mean).
The Web Speech API, on its own, does not give any
meaning to the recognized words; it returns them to you
as a string and it’s up to you to do any additional
processing. You can integrate this data with third-party
natural language processing (NLP) APIs such as
Microsoft LUIS or IBM Watson NLP. These APIs and
services are beyond the scope of this book.

Speech Synthesis

The Web Speech API also provides speech synthesis. Given
some text, it can create a synthesized voice that speaks the
text. The browser has a set of built-in voices that it can use
to speak your content. Once you have selected a voice
appropriate for the target language, you can customize the
voice’s pitch and speaking rate.
You can combine speech recognition and synthesis to
create conversational voice user interfaces. They can listen
for a question or command and speak the output or
feedback.

Browser Support

At the time of writing, support for the Web Speech API is
somewhat limited.
The specification for this API also adds a few other pieces
that enhance speech recognition and synthesis once they

are supported in browsers.
The first of these is custom grammar, which lets you fine-
tune speech recognition by specifying words and phrases
that you want to recognize. For example, if you were
designing a calculator with voice commands, your custom
grammar would include digits (“one,” “two,” etc.) and
calculator operations (“plus,” “minus,” etc.). Using a
custom grammar helps guide the speech recognition engine
to capture the words your application is looking for.
The SpeechSynthesis API supports Speech Synthesis
Markup Language (SSML). SSML is an XML language that
customizes speech synthesis. You can switch between male
and female voices or specify that the browser should read
something letter by letter. At the time of writing, SSML
markup is parsed and understood—the engine won’t speak
the markup tags—but browsers currently ignore most
instructions.

Adding Dictation to a Text Field

Problem

You want to recognize spoken text and add it to a text
field’s content, allowing the user to dictate the text field’s
contents.

Solution

Use the SpeechRecognition interface to listen for speech.
When speech is recognized, extract the recognized text and
append it to the text field (see Example 9-1).
Example 9-1. Adding basic dictation to a text field

/**

 * Starts listening for speech. When speech is recognized, it is appended

 * to the given text field's value.

 * Recognition continues until the returned recognition object is stopped.

 *

 * @param textField A text field to append to

 * @returns The recognition object

 */

function startDictation(textField) {

 // Only proceed if this browser supports speech recognition.

 if ('webkitSpeechRecognition' in window || 'SpeechRecognition' in window) {

 const SpeechRecognition = window.SpeechRecognition

 || window.webkitSpeechRecognition;

 const recognition = new SpeechRecognition();

 recognition.continuous = true;

 recognition.addEventListener('result', event => {

 const result = event.results[event.resultIndex];

 textField.value += result[0].transcript;

 });

 recognition.addEventListener('error', event => {

 console.log('error', event);

 });

 recognition.start();

 // Return the recognition object so recognition

 // can be stopped later (like when the user clicks a toggle button).

 return recognition;

 }

}

Discussion

At the time of writing, in the WebKit browsers that support
it, the SpeechRecognition constructor is prefixed as
webkitSpeechRecognition. In unsupported browsers, neither
SpeechRecognition nor webkitSpeechRecognition are defined, so
it’s important to check the browser support before
continuing.

To future-proof the code, the example checks for either the
prefixed version (webkitSpeechRecognition) as well as the
standard SpeechRecognition version. This way, you won’t
have to change the code to accommodate browsers that
implement the API in the future.

Next, the startDictation function creates a SpeechRecognition
object and sets its continuous flag to true. By default, no
further recognition is performed once a result is
recognized. Setting the continuous flag tells the speech
recognition engine to continue listening and to deliver
additional results.
When the recognition engine recognizes some speech, it
triggers a result event. This event has a results property
that is an array-like object (actually a
SpeechRecognitionResultList object) containing the results.
When operating in continuous mode, as this example does,
the results list contains all results that the recognition
engine recognized. The first time the user speaks and some
speech is recognized, this has a single result. When the
user speaks again and the browser recognizes some more
words, there are two results—the original result and the
new one that was just recognized. If you set continuous to
false (the default), the engine only recognizes one phrase,
then no further result events are triggered.

Helpfully, the event also has a resultIndex property that
points to the index within the list of the new result that
triggered this event.
The result object is another array-like object (a
SpeechRecognitionAlternative object). When you create a
SpeechRecognition object, you can give it the property

maxAlternatives. The browser presents a list of possible
matches for the recognized speech, each with a confidence
value. However, the default maxAlternatives value is 1, so
this dictation code only ever has one
SpeechRecognitionAlternative object in the list.

Finally, this object has a transcript property that is the
actual phrase that the engine recognized. You can take this
value and append it to the text field’s current value.

Calling start on the recognition object begins listening for
speech, emitting events when it hears something. The
startDictation function then returns the recognition object,
so that you can stop recognition once the user is finished
dictating.
Like with any API, it’s also important to handle any errors
that occur. With speech recognition, some common errors
you might face are:
Permission error

If the user did not grant permission to use the microphone.
The event has an error property of not-allowed.

Network error

If the browser couldn’t reach the speech recognition service.
This has an error of network.

Hardware error

If the browser was unable to access the microphone. This
has an error code of audio-capture.

Creating a Promise Helper for Speech

Recognition

Problem

You want to encapsulate speech recognition into a single
function call.

Solution

Wrap the speech recognition call in a new Promise inside a
helper function. Within the helper function, create a new
SpeechRecognition object and listen for speech. You can
resolve the Promise when the browser recognizes some
speech (see Example 9-2).

Example 9-2. A Promise helper for speech recognition

/**

 * Listens for speech and performs speech recognition.

 * Assumes that speech recognition is available in the current browser.

 * @returns a Promise that is resolved with the recognized transcript when speech

 * is recognized, and rejects on an error.

 */

function captureSpeech() {

 const speechPromise = new Promise((resolve, reject) => {

 const SpeechRecognition = window.SpeechRecognition ||

 window.webkitSpeechRecognition;

 // If this browser doesn't support speech recognition, reject the Promise.

 if (!SpeechRecognition) {

 reject('Speech recognition is not supported on this browser.')

 }

 const recognition = new SpeechRecognition();

 // Resolve the promise on successful speech recognition.

 recognition.addEventListener('result', event => {

 const result = event.results[event.resultIndex];

 resolve(result[0].transcript);

 });

 recognition.addEventListener('error', event => {

 // Reject the promise if there was a recognition error.

 reject(event);

 });

 // Start listening for speech.

 recognition.start();

 });

 // Whether there was successful speech recognition or an error, make sure

 // the recognition engine has stopped listening.

 return speechPromise.finally(() => {

 recognition.stop();

 });

}

Discussion

The captureSpeech helper does not use continuous mode. This
means you can only use it to listen for a single speech
recognition event. If you want to capture additional speech
after the returned Promise resolves, you need to call
captureSpeech again and wait on the new Promise.
You might notice that Example 9-2 doesn’t return the
Promise directly. Instead, it calls finally on that Promise to
stop the speech recognition engine regardless of the
outcome. The captureSpeech function lets you quickly
recognize speech by just waiting on a Promise (see
Example 9-3).

Example 9-3. Using the captureSpeech helper

const spokenText = await captureSpeech();

Getting the Available Voices

Problem

You want to determine what speech synthesis voices are
available in the current browser.

Solution

Query the voice list by calling speechSynthesis.getVoices, and
then listen for the voiceschanged event if necessary, as
shown in Example 9-4.
Example 9-4. Getting the list of available speech synthesis

voices

function showVoices() {

 speechSynthesis.getVoices().forEach(voice => {

 console.log('Voice:', voice.name);

 });

}

// Some browsers load the voice list asynchronously. In these browsers,

// the voices are available when the voiceschanged event is triggered.

speechSynthesis.addEventListener('voiceschanged', () => showVoices());

// Show the voices immediately in those browsers that support it.

showVoices();

Discussion

Some browsers, such as Chrome, load the list of voices
asynchronously. If you call getVoices before the list is ready,
you’ll get an empty array back. The speech Synthesis object
triggers a voiceschanged event when the list is ready.
Other browsers, including Firefox, have the voice list
available right away. In these browsers, the voiceschanged
event never fires. The code in Example 9-4 handles both
cases.

NOTE

Each voice has a lang property that specifies the voice’s language.
When speaking text, the voice uses the pronunciation rules for its
language. Make sure you use a voice with the correct language for
the text you’re synthesizing. Otherwise, the pronunciation won’t
sound right.

Synthesizing Speech

Problem

You want your app to speak some text to the user.

Solution

Create a SpeechSynthesisUtterance and pass it to the
speechSynthesis.speak method (see Example 9-5).
Example 9-5. Speaking some text with the Web Speech API

function speakText(text) {

 const utterance = new SpeechSynthesisUtterance(text);

 speechSynthesis.speak(utterance);

}

Discussion

An utterance is the set of words you want the browser to
speak. It’s created with a SpeechSynthesisUtterance object.

NOTE

Browsers will only permit speech synthesis once the user has
interacted with the page in some way. This is to stop a page from
speaking immediately upon loading. As such, the speakText helper
function will not speak anything until there is some user activity on
the page.

This speaks the text with the default voice. If you want to
use a different supported system voice, you can use the
technique from “Getting the Available Voices” to get the
array of available voices. You can set the utterance’s voice
property to one of the voice objects from this array, as
shown in Example 9-6.

Example 9-6. Using another voice

// Assuming the voices are available now

const aliceVoice = speechSynthesis

 .getVoices()

 .find(voice => voice.name === 'Alice');

function speakText(text) {

 const utterance = new SpeechSynthesisUtterance(text);

 // Make sure the "Alice" voice was found.

 if (aliceVoice) {

 utterance.voice = aliceVoice;

 }

 speechSynthesis.speak(utterance);

}

Customizing Speech Synthesis

Parameters

Problem

You want to speed up, slow down, or adjust the pitch of the
spoken text.

Solution

When creating a SpeechSynthesisUtterance, use the rate and
pitch properties to customize the speaking voice (see
Example 9-7).
Example 9-7. Customizing speech output

const utteranceLow =

new SpeechSynthesisUtterance('This is spoken slowly in a low tone');

utterance.pitch = 0.1;

utterance.rate = 0.5;

speechSynthesis.speak(utterance);

const utteranceHigh =

new SpeechSynthesisUtterance('This is spoken quickly in a high tone');

utterance.pitch = 2;

utterance.rate = 2;

speechSynthesis.speak(utterance);

Discussion

The pitch option is a float number that can have a value
between 0 and 2. Lower values result in a lower pitch, and
higher values result in a higher pitch. Lowering the pitch
does not affect the speaking rate. Depending on the
browser or voice being used, the range of supported pitch
values may be limited.
To speed up or slow down the speaking rate, you can adjust
the rate property. Each voice has a default speaking rate,
which is represented by a rate of 1. The value of rate has a
multiplier effect. If you set rate to 0.5, it is half of the
default speaking rate. Similarly, if you set rate to 1.5, it is
50% faster than the default rate. The specification defines
the valid range as 0.1 to 10, but browsers and voices
typically limit this to a smaller range.

Automatically Pausing Speech

Problem

When your app is speaking, you want to pause speech when
you switch to another tab so that it doesn’t interfere with
the usage of the other tab. You also want to stop speaking
when leaving the page.

Solution

Listen for the visibilitychange event and check the
document.visibilityState property. When the page becomes

hidden, pause speech synthesis. When it becomes visible
again, resume speaking (see Example 9-8).
Example 9-8. Pausing speech when the page becomes

hidden

document.addEventListener('visibilitychange', () => {

 // speechSynthesis.speaking is true:

 // (1) when speech is currently being spoken

 // (2) when speech was being spoken, but is paused

 if (speechSynthesis.speaking) {

 if (document.visibilityState === 'hidden') {

 speechSynthesis.pause();

 } else if (document.visibilityState === 'visible') {

 speechSynthesis.resume();

 }

 }

});

Discussion

By default, if you switch to another tab while the Web
Speech API is speaking some text, it continues speaking.
This might be what you expect—after all, the same thing
happens if you are streaming audio or video then change to
another tab; you’ll continue to hear the audio from the
other tab.

When you switch tabs, the visibilitychange event fires. The
event itself doesn’t have any information about the visibility
state, but you can get that by checking the
document.visibilityState property. Example 9-8 pauses the
speech when you switch to another tab. When you switch
back, it continues where it left off.
Some browsers keep playing the speech even when you
navigate away from the page or perform a full page refresh.
Leaving or refreshing the page also triggers the
visibilitychange event, so the code in Example 9-8 correctly
stops the speech in these cases as well.

Chapter 10. Working with

Files

Introduction

Reading and writing files are part of many applications. In
the past, you couldn’t really work with local files within the
browser. To read data, you’d upload a file to a backend
server, which would process it and return data to the
browser.
To write data, the server would send a downloadable file.
Without browser plug-ins, there wasn’t a way to work
directly with files.
Today, browsers have first-class support for reading and
writing files. The file input type opens a file chooser and
provides data about the selected file. You can also limit the
supported files to specific extensions or MIME types. From
there, the File API can read the contents of the file into
memory.
Taking it a step further, the File System API enables your
JavaScript code to interact directly with the local
filesystem, without needing a file input to select a file first
(though, depending on settings, the user may need to grant
permission!).
You can use these APIs to create text editors, image
viewers, audio or video players, and more.

Loading Text from a File

Problem

You want to load some text data from the user’s local
filesystem.

Solution

Use an <input type="file"> to select the file (see
Example 10-1).
Example 10-1. A file input

<input type="file" id="select-file">

When you click on the file input, the browser will show a
dialog where you can browse files and folders on the local
system. The exact dialog shown will depend on the browser
and operating system version. Navigate to, and select, the
desired file. One you have a selected file, use a FileReader
as shown in Example 10-2 to read the file’s text content.
Example 10-2. Loading plain text from a file

/**

 * Reads the text content of a file.

 * @param file The File object containing the data to be read

 * @param onSuccess A function to call when the data is available

 */

function readFileContent(file, onSuccess) {

 const reader = new FileReader();

 // When the content is loaded, the reader will emit a

 // 'load' event.

 reader.addEventListener('load', event => {

 onSuccess(event.target.result);

 });

 // Always handle errors!

 reader.addEventListener('error', event => {

 console.error('Error reading file:', event);

 });

 // Start the file read operation.

 reader.readAsText(file);

}

const fileInput = document.querySelector('#select-file');

// The input fires a 'change' event when a file is selected.

fileInput.addEventListener('change', event => {

 // This is an array, because a file input can be used to select

 // multiple files. Here, there's only once file selected.

 // This is using array destructuring syntax to get the first file.

 const [file] = fileInput.files;

 readFileContent(file, content => {

 // The file's text content is now available.

 // Imagine you have a textarea element you want to set the text in.

 const textArea = document.querySelector('.file-content-textarea');

 textArea.textContent = content;

 });

});

Discussion

A FileReader is an object that reads files asynchronously. It
can read a file’s content in several different ways,
depending on the type of file. Example 10-2 uses the
readAsText method, which retrieves the file content as plain
text.
If you have a binary file, such as a ZIP archive or image,
you can use readAsBinaryString. An image can be read as a
data URL with Base64-encoded image data using
readAsDataURL, which you’ll see in “Loading an Image as a
Data URL”.

This API is event based, so the readFileContent function
takes a callback function that is called with the content
when it’s ready.

You could also wrap this with a Promise to make a Promise-
based API, as shown in Example 10-3.

Example 10-3. Promisified readFileContent function

function readFileContent(file) {

 const reader = new FileReader();

 return new Promise((resolve, reject) => {

 reader.addEventListener('load', event => {

 resolve(event.target.result);

 });

 reader.addEventListener('error', reject);

 reader.readAsText(file);

 });

}

try {

 const content = await readFileContent(inputFile);

 const textArea = document.querySelector('.file-content-textarea');

 textArea.textContent = content;

} catch (error) {

 console.error('Error reading file content:', error);

}

Once you have the text content, you can add it to the page
in several ways. You could set it as the textContent of a
DOM node, or you could even load it into a textarea to make
the content editable.

Loading an Image as a Data URL

Problem

You want to let the user select a local image file, then
display that image on the page.

Solution

Use the readAsDataURL method of FileReader to get a Base64-
encoded data URL, then set that as the src attribute of an
img tag (see Examples 10-4 and 10-5).

Example 10-4. File input and image placeholder

<input

 type="file"

 id="select-file"

 accept="image/*"

>

Restricts the file chooser to only allow images to be selected.
A wildcard pattern is used here, but you can also specify an
exact MIME type such as image/png.

Example 10-5. Loading an image into the page

/**

 * Loads and shows an image from a file.

 * @param file The File object containing the image data

 * @param imageElement A placeholder Image element that will

 * show the image data

 */

function showImageFile(file, imageElement) {

 const reader = new FileReader();

 reader.addEventListener('load', event => {

 // Set the data URL directly as the image's

 // src attribute to load the image.

 imageElement.src = event.target.result;

 });

 reader.addEventListener('error', event => {

 console.log('error', event);

 });

 reader.readAsDataURL(file);

}

const fileInput = document.querySelector('#select-file');

fileInput.addEventListener('change', event => {

 showImageFile(

 fileInput.files[0],

 document.querySelector('#placeholder-image')

);

});

Discussion

A data URL has the data URL scheme. It specifies the data’s
MIME type, then the image data is included in Base64-
encoded format:



When the FileReader returns the image encoded as a data
URL, the data URL is set as the image element’s src
attribute. This renders the image in the page.
It’s important to note that this is all being done locally in
the user’s browser. Nothing is being uploaded to a remote
server, as the File API works on the local filesystem.
“Uploading a File with the Fetch API” in Chapter 4 shows
an example of using an <input type="file"> to upload file
data to a remote server, though this uses the FormData API
instead of the File API.
For more details about data URLs and Base64 encoding,
see this article from MDN.

Loading a Video as an Object URL

Problem

You want the user to select a video file, then play it in the
browser.

Solution

Create an object URL for the File object, and set it as the
src attribute of a <video> element.

https://oreil.ly/kMtDy

First, you’ll need a <video> element and an <input
type="file"> to select the video file (see Example 10-6).
Example 10-6. The video player markup

<input

 id="file-upload"

 type="file"

 accept="video/*"

>

<video

 id="video-player"

 controls

>

Only allows the selection of video files

Tells the browser to include playback controls

Next, listen for the file input’s change event and create an
object URL, as shown in Example 10-7.
Example 10-7. Playing the video file

const fileInput = document.querySelector('#file-upload');

const video = document.querySelector('#video-player');

fileInput.addEventListener('change', event => {

 const [file] = fileInput.files;

 // File extends from Blob, which can be passed to

 // createObjectURL.

 const objectUrl = URL.createObjectURL(file);

 // The <video> element can take the object URL to load the video.

 video.src = objectUrl;

});

Discussion

An object URL is a special URL that refers to the file
content. You can do this without a FileReader, since the file

itself has a createObjectURL method. This URL can be passed
to the <video> element.

DATA URLS AND OBJECT URLS

There are some important differences between data and
object URLs.
A data URL contains the data within the URL. The data
(usually binary) is encoded in Base64 format and is
appended to the URL itself.
An object URL represents some data that has been
loaded into the browser’s memory, usually Blobs and
Files. It doesn’t contain the data itself in the URL, but is
a reference to the actual data. When you’re done using
it, an object URL can be revoked to prevent memory
leaks.

Loading an Image with Drag and Drop

Problem

You want to be able to drag an image file into the browser
window and display that image on the page when it is
dropped.

Solution

Define an element to serve as the drop area, and a
placeholder image element (see Example 10-8).
Example 10-8. The drop target and image elements

<label id="drop-target">

 <div>Drag and drop an image here</div>

 <input type="file" id="file-input">

p yp p

</label>

Note that this example still includes a file input. This is so
that those using assistive technologies can also upload an
image without having to attempt a drag and drop
operation. Because the drop target is a label, containing
the file input, you can click anywhere inside the drop target
to open the file chooser.
First, create a function that receives the image file and
reads it as a data URL (see Example 10-9).
Example 10-9. Reading the dropped file

function showDroppedFile(file) {

 // Read the file data and insert the loaded image

 // into the page.

 const reader = new FileReader();

 reader.addEventListener('load', event => {

 const image = document.querySelector('#placeholder');

 image.src = event.target.result;

 });

 reader.readAsDataURL(file);

}

Next, create handler functions for the dragover and drop
events. These events are attached to the drop target
element (see Example 10-10).
Example 10-10. Adding the drag and drop code

const target = document.querySelector('#drop-target');

target.addEventListener('drop', event => {

 // Cancel the drop event. Otherwise, the browser will leave the page

 // and navigate to the file directly.

 event.preventDefault();

 // Get the selected file data. dataTransfer.items is a

 // DataTransferItemList. Each item in the list, a DataTransferItem, has data

 // about an item being dropped. As this example only deals with a single file,

it

 // gets the first item in the list.

 const [item] = event.dataTransfer.items;

 // Get the dropped data as a File object.

 const file = item.getAsFile();

 // Only proceed if an image file was dropped.

 if (file.type.startsWith('image/')) {

 showDroppedFile(file);

 }

});

// You need to cancel the dragover event as well to prevent the

// file from replacing the full page content.

target.addEventListener('dragover', event => {

 event.preventDefault();

});

Finally, make sure to wire up the fallback file input. You
just need to get the selected file, then pass it to the
showDroppedFile method to provide the same result (see
Example 10-11).
Example 10-11. Handling the file input

const fileInput = document.querySelector('#file-input');

fileInput.addEventListener('change', () => {

 const [file] = fileInput.files;

 showDroppedFile(file);

});

Discussion

By default, when you drag an image into a page, the
browser navigates away from the current page. The URL
changes to the path of the file, and the image is shown in
the browser window. In this example, you instead want to
load the image data into an element and stay on the
current page.
To prevent the default behavior, the drop handler calls
preventDefault on the drop event. To fully prevent the
behavior, you also need to call preventDefault on the
dragover event, which is why you need the second event

listener. This makes it so that the element can actually
receive drop events.

Checking and Requesting Permissions

Problem

You want to check—and request if necessary—permissions
to access a file on the local filesystem.

Solution

Show a file picker, and when a file is selected, call
queryPermission to check for existing permission. If the
permission check returns prompt, call requestPermission to
show a permission request (see Example 10-12).
Example 10-12. Selecting and checking permissions for a

file

/**

 * Selects a file, then checks permissions, showing a request if necessary,

 * for a file.

 * @return true if the file can be written to, false otherwise

 */

async function canAccessFile() {

 if ('showOpenFilePicker' in window) {

 // showOpenFilePicker can select multiple files, just

 // get the first one (with array destructuring).

 const [file] = window.showOpenFilePicker();

 let result = await file.queryPermission({ mode: 'readwrite' });

 if (result === 'prompt') {

 result = await file.requestPermission({ mode: 'readwrite' });

 }

 return result === 'granted';

 }

 // If you get here, it means the API isn't supported.

 return false;

}

NOTE

This API may not be supported by all browsers yet. See CanIUse for
the latest compatibility data.

Discussion

The queryPermission function returns either granted (the
permission was previously granted), denied (access is
denied), or prompt (need to ask for permission).

The requested mode is readwrite, which means the browser
is able to write to your local filesystem if you grant the
permission. This is why the permission check is important
from a security and privacy perspective.

queryPermission checks the permission only and does not
show a prompt. If this comes back as prompt, you can then
call requestPermission, which shows a permission request in
the browser. The file is considered writable if either call
returns granted.

Exporting API Data to a File

Problem

You are requesting JSON data from an API, and you want to
give the user an option to download the raw JSON data.

Solution

https://oreil.ly/AfNpL

Let the user select an output file, then write the JSON data
to the local filesystem.

NOTE

This API may not be supported by all browsers yet. See CanIUse for
the latest compatibility data.

First, define a helper function that shows the file picker
and returns the file that was selected (see Example 10-13).
Example 10-13. Selecting an output file

/**

 * Shows a save file picker and returns the selected file handle.

 * @returns a file handle to the selected file, or null if the user clicked

Cancel.

 */

async function selectOutputFile() {

 // Check to make sure the API is supported in this browser.

 if (!('showSaveFilePicker' in window)) {

 return null;

 }

 try {

 return window.showSaveFilePicker({

 // The default name for the output file

 suggestedName: 'users.json',

 // Limit the available file extensions.

 types: [

 { description: "JSON", accept: { "application/json": [".json"] } }

]

 });

 } catch (error) {

 // If the user clicks Cancel, an exception is thrown. In this case,

 // return null to indicate no file was selected.

 return null;

 }

}

Next, define a function that uses this helper, and perform
the actual export (see Example 10-14).

https://oreil.ly/tsT_j

Example 10-14. Exporting data to a local file

async function exportData(data) {

 // Use the helper function defined previously.

 const outputFile = await selectOutputFile();

 // Only proceed if an output file was actually selected.

 if (outputFile) {

 try {

 // Prepare a writable stream, which is used to save the file

 // to disk.

 const stream = await outputFile.createWritable();

 // Write the JSON t the stream in a human-readable format.

 await stream.write(JSON.stringify(userList, null, 2));

 await stream.close();

 // Show a success message.

 document.querySelector('#export-success').classList.remove('d-none');

 } catch (error) {

 console.error(error);

 }

 }

}

Discussion

This is a good approach for allowing a user to back up or
export their data from your app. Some regulations, like the
General Data Protection Regulation (GDPR) in the
European Union, require you to make a user’s data
available for download.
In this case, text data is being written to the stream, which
is of type FileSystem WritableFileStream. These streams also
support writing ArrayBuffer, TypedArray, DataView, and Blob
objects.

In order to create the text to write to the file, exportData is
calling JSON.stringify with some extra arguments. The
second null argument is the replacer function, which you
saw in Chapter 2. This argument has to be provided in

order to provide the third argument, which specifies the
amount of indentation whitespace to apply. This creates a
more readable output format.
At the time of writing, this API is still considered
experimental. You should avoid using it in a production
application until it has better browser support.

Exporting API Data with a Download

Link

Problem

You want to provide export functionality but don’t want to
worry about filesystem permissions, like in “Exporting API
Data to a File”.

Solution

Put the API data into a Blob object, and create an object
URL to set as a link’s href attribute. Then you can export
the data with a normal browser file download, without
needing filesystem permissions.
First, add a placeholder link to the page, which becomes
the export link (see Example 10-15).
Example 10-15. The placeholder export link

Export User Data

The download attribute provides a default filename to use
when downloading.

After you fetch the data from the API and render it in the
UI, create the Blob and object URL (see Example 10-16).

Example 10-16. Preparing the export link

const exportLink = document.querySelector('#export-link');

async function getUserData() {

 const response = await fetch('/api/users');

 const users = await response.json();

 // Render the user data in the UI, assuming that you

 // have a renderUsers function somewhere that does this.

 renderUsers(users);

 // Clean up the previous export data, if it exists.

 const currentUrl = exportLink.href;

 if (currentUrl) {

 URL.revokeObjectURL(currentUrl);

 }

 // Need a Blob for creating an object URL

 const blob = new Blob([JSON.stringify(userList, null, 2)], {

 type: 'application/json'

 });

 // The object URL links to the Blob contents—set this in the link.

 const url = URL.createObjectURL(blob);

 exportLink.href = url;

}

Discussion

This method of exporting requires no special permission.
When the link is clicked, and it has the object URL set, it
downloads the Blob’s contents as a file, using the suggested
filename of users.json.

A Blob is a special object that holds some piece data.
Usually this is binary data like a file or image, but you can
also create a Blob with string content, which is what this
recipe does.

The Blob resides in memory, and the created object URL
links to it. Once the object URL is set in the link element, it
becomes an export download link. When the link is clicked,

the object URL returns the raw string data. Since the link
has a download attribute, it is downloaded to a local file.
To prevent memory leaks, clean up the old URL by calling
URL.revokeObjectURL and passing the object URL as its
argument. You can do this once you no longer need the
object URL—for example, after the user downloads the file
or before leaving the page.

Uploading a File with Drag and Drop

Problem

You want to allow the user to drag and drop a file, such as
an image, then upload that file to a remote service.

Solution

Pass the received File object to the Fetch API in the handle
for the drop event (see Example 10-17).
Example 10-17. Uploading a dropped file

const target = document.querySelector('.drop-target');

target.addEventListener('drop', event => {

 // Cancel the drop event. Otherwise, the browser will leave the page

 // and navigate to the file directly.

 event.preventDefault();

 // Get the selected file data.

 const [item] = event.dataTransfer.items;

 const file = item.getAsFile();

 if (file.type.startsWith('image/')) {

 fetch('/api/uploadFile', {

 method: 'POST',

 body: file

 });

 }

});

// You need to cancel the dragover event as well, to prevent the

// file from replacing the full page content.

target.addEventListener('dragover', event => {

 event.preventDefault();

});

Discussion

When you call getAsFile on the data transfer object, you get
a File object. File extends from Blob, so you can use the
Fetch API to send the file (Blob) contents to a remote
server.
This example checks the MIME type of the uploaded file
and will only upload it if it is an image file.

Chapter 11.

Internationalization

Introduction

Modern browsers include a robust Internationalization API.
This is a collection of APIs centered around language- or
locale-specific tasks, such as:

Formatting dates and times

Formatting numbers

Currency

Pluralization rules

Before this API was available, you might have had to reach
for a third-party library like Moment.js (for dates and
times) or Numeral.js (for numbers). However, today’s
browsers support many of the same use cases, and you may
not need these libraries in your app anymore.
Most of these APIs use the concept of a locale, which is
usually a combination of a language and a region. For
example, the locale for US English is en-US, and the locale
for Canadian English is en-CA. You can use them with the
default locale, which is the one being used by the browser,
or you can specify a particular locale to format data
appropriately for your desired region.

NOTE

There is a new JavaScript date and time API in development called
Temporal. At the time of writing, this is currently an ECMAScript
proposal. It may become part of the language in the near future, but
for the time being this book will cover the standard Date API.

Formatting a Date

Problem

You want to display a Date object in a format appropriate
for the user’s locale.

Solution

Use Intl.DateTimeFormat to format the Date object to a string
value. Create the format object with two arguments: the
desired locale and an options object where you can specify
the format style. For dates, the supported format styles are
(examples shown in the en-US locale):

short: 10/16/23

medium: Oct 16, 2023

long: October 16, 2023

full: Monday, October 16, 2023

To get the user’s current locale, you can check the
navigator.language property (see Example 11-1).
Example 11-1. Formatting a date

const formatter = new Intl.DateTimeFormat(navigator.language, { dateStyle: 'long'

});

const formattedDate = formatter.format(new Date());

Discussion

You can also include the time information from a Date
object by specifying a timeStyle property in the options
object along with dateStyle (see Example 11-2).
Example 11-2. Formatting a date and time

const formatter = new Intl.DateTimeFormat(navigator.language, {

dateStyle: 'long', timeStyle: 'long' });

const formattedDateAndTime = formatter.format(new Date());

Getting the Parts of a Formatted Date

Problem

You want to split a formatted date into tokens. This is
useful, for example, if you want to style different parts of
the formatted date differently.

Solution

Use the formatToParts method of Intl.DateTimeFormat to
format the date and return an array of tokens (see
Example 11-3).
Example 11-3. Getting the parts of a formatted date

const formatter = new Intl.DateTimeFormat(navigator.language,

 { dateStyle: 'short' });

const parts = formatter.formatToParts(new Date());

Discussion

For a short date of 10/1/23, the parts object shown in
Example 11-3 looks like Example 11-4.

Example 11-4. The formatted date parts

[

 { type: 'month', value: '10' },

 { type: 'literal': value: '/' },

 { type: 'day': value: '1' },

 { type: 'literal', value: '/' },

 { type: 'year', value: '23' }

]

Formatting a Relative Date

Problem

You want to format the difference between a given date and
today in an approximate, human-readable format. For
example, you want a formatted string like “2 days ago” or
“in 3 months.”

Solution

Use Intl.RelativeTimeFormat. It has a format method that you
call with a value offset, such as –2 (in the past) or 3 (in the
future), and a unit such as “day,” “month,” etc. For
example, calling format(-2, day) in the en-US locale results in
the string “2 days ago.”

This is actually a two-step process. Intl.RelativeTimeFormat
doesn’t directly calculate this between two dates. Rather,
you need to first determine the offset and the unit to pass
to the format method. The idea is to find the largest unit
that differs between the two dates.
First, create a helper function that returns an object
containing the offset and unit, as shown in Example 11-5.
Example 11-5. Finding the offset and unit

function getDateDifference(fromDate) {

 const today = new Date();

 if (fromDate.getFullYear() !== today.getFullYear()) {

 return { offset: fromDate.getFullYear() - today.getFullYear(), unit: 'year'

};

 } else if (fromDate.getMonth() !== today.getMonth()) {

 return { offset: fromDate.getMonth() - today.getMonth(), unit: 'month' };

 } else {

 // You could even go more granular: down to hours, minutes, or seconds!

 return { offset: fromDate.getDate() - today.getDate(), unit: 'day' };

 }

}

This function returns an object with two properties: offset
and unit, which you can pass to an Intl.RelativeTimeFormat
(see Example 11-6).
Example 11-6. Formatting the relative date

function getRelativeDate(fromDate) {

 const { offset, unit } = getDateDifference(fromDate);

 const format = new Intl.RelativeTimeFormat();

 return format.format(offset, unit);

}

Here is the expected output if you called this function with
the given dates on October 7, 2023 (keep in mind that
when creating Date objects in this way, the months start at
0, but the days start at 1):

October 1, 2023: getRelativeDate(new Date(2023, 9,
1)): “6 days ago”

May 2, 2023: getRelativeDate(new Date(2023, 4, 2)):
“5 months ago”

June 2, 2025: getRelativeDate(new Date(2025, 5, 2)):
“in 2 years”

Discussion

getDateDifference works by comparing the year, month, and
day (in that order) of the given date with today’s date, until
it finds one that doesn’t match. Then it returns the
difference and the name of the unit, which are passed to
the Intl.RelativeTimeFormat.

The getRelativeDate function doesn’t give an exact relative
time in months, days, hours, minutes, and seconds. It gives
an approximation of the magnitude of the time difference.
Consider comparing May 2, 2023 to October 7, 2023. This
is a difference of 5 months and 5 days, but getRelativeDate
only says “5 months ago” as an approximation.

Formatting Numbers

Problem

You want to format a number with thousands separators
and decimal places in a locale-specific way.

Solution

Pass the number to an Intl.NumberFormat’s format method.
This method returns a string containing the formatted
number.

By default, Intl.NumberFormat uses the default locale
(assume that the default locale in Example 11-7 is en-US).
Example 11-7. Formatting a number in the default locale

// outputs '5,200.55' for en-US

console.log(

 new Intl.NumberFormat().format(5200.55)

);

You can also specify a different locale to the
Intl.NumberFormat constructor (see Example 11-8).

Example 11-8. Formatting a number in the de-DE locale

// outputs '5.200,55'

console.log(

 new Intl.NumberFormat('de-DE').format(5200.55)

);

Discussion

Intl.NumberFormat applies locale-specific formatting rules to
format individual numbers. You can also use it to format a
range of numbers by passing two values to formatRange, as
shown in Example 11-9.
Example 11-9. Formatting a range of numbers

// outputs '1,000-5,000' for en-US

console.log(

 new Intl.NumberFormat().formatRange(1000, 5000)

);

Rounding Decimal Places

Problem

You want to take a fractional number, which can have many
decimal places, and round it to a set number of decimal
places.

Solution

Use the maximumFractionDigits option to specify the number
of digits after the decimal point. Example 11-10 shows how
to round numbers to up to two decimal places.
Example 11-10. Rounding a number

function roundToTwoDecimalPlaces(number) {

 const format = new Intl.NumberFormat(navigator.language, {

 maximumFractionDigits: 2

 });

 return format.format(number);

}

// prints "5.49"

console.log(roundToTwoDecimalPlaces(5.49125));

// prints "5.5"

console.log(roundToTwoDecimalPlaces(5.49621));

Formatting a Price Range

Problem

Given an array of prices, stored as numbers, you want to
create a formatted price range that reflects the low and
high prices in the array.

Solution

Determine the minimum and maximum prices, then pass
the style: currency option when creating an
Intl.NumberFormat. Use this Intl.NumberFormat to create the
range. You can also specify the currency to get the proper
symbol in the output. Finally, call formatRange on the
Intl.NumberFormat with the lower and upper price bounds
(see Example 11-11).
Example 11-11. Formatting a price range

function formatPriceRange(prices) {

 const format = new Intl.NumberFormat(navigator.language, {

 style: 'currency'.

 // The currency code is required when using style: 'currency'.

 currency: 'USD'

 });

 return format.formatRange(

 // Find the lowest price in the array.

 Math.min(...prices),

 // Find the highest price in the array.

 Math.max(...prices)

);

}

// outputs '$1.75—$11.00'

console.log(

 formatPriceRange([5.5, 3, 1.75, 11, 9.5])

);

Discussion

The Math.max and Math.min functions take multiple
arguments, and they return the maximum or minimum from
the whole set of those arguments. Example 11-11 uses the
array spread syntax to pass all elements from the prices
array to Math.max and Math.min.

Formatting Measurement Units

Problem

You want to format a number along with a measurement
unit.

Solution

Use the unit style when creating the Intl.NumberFormat
object, and specify the target unit. Example 11-12 shows
how to format a number of gigabytes.
Example 11-12. Formatting gigabytes

const format = new Intl.NumberFormat(navigator.language, {

 style: 'unit',

 unit: 'gigabyte'

});

// prints "1,000 GB"

console.log(format.format(1000));

Discussion

You can also customize the unit label, by specifying the
unitDisplay option to the NumberFormat. Possible values are:

short

Shows the abbreviated unit, separated with a space: 1,000 GB

narrow

Shows the abbreviated unit, with no space: 1,000GB

long

Shows the full unit name: 1,000 gigabytes

Applying Pluralization Rules

Problem

You want to use the correct terminology when referring to
different numbers of items. For example, consider a list of
users. In English, you’d say “one user” (singular), but
“three users” (plural). Other languages have more complex
rules, and you want to make sure you cover these.

Solution

Use Intl.PluralRules to select the correct pluralized string.

First, construct an Intl.PluralRules object with the desired
locale, and call its select method with the number of users
(see Example 11-13).
Example 11-13. Determining the plural form

// An array containing the users

const users = getUsers();

const rules = new Intl.PluralRules('en-US');

const form = rules.select(users.length);

The select method returns a string depending on the plural
form to be used and the specified locale. For the en-US
locale, it returns either “one” (when the user count is one)
or “other” (when the user count is not one). You can define
messages using these values as a key, as shown in
Example 11-14.
Example 11-14. A full plural rules solution

function formatUserCount(users) {

 // The variations of the message, depending

 // on the count

 const messages = {

 one: 'There is 1 user.',

 other: `There are ${users.length} users.`

 };

 // Use Intl.PluralRules to determine which message

 // should be displayed.

 const rules = new Intl.PluralRules('en-US');

 return messages[rules.select(users.length)];

}

Discussion

This solution requires knowing the different forms ahead of
time so you can define the correct messages.

Intl.PluralRules also supports an ordinal mode, which
works slightly differently. You can use this mode to format
ordinal values like “1st,” “2nd,” “3rd,” etc. The formatting

rules vary from language to language, and you can map
them to suffixes that you apply to the numbers.

For example, with the en-US locale, an ordinal
Intl.PluralRules returns values such as:

one for numbers ending in 1—“1st,” “21st,” etc.

two for numbers ending in 2—“2nd, 42nd,” etc.

few for numbers ending in 3—“3rd, “33rd,” etc.

other for other numbers—“5th,” “47th,” etc.

Counting Characters, Words, and

Sentences

Problem

You want to calculate the character, word, and sentence
count of a string using locale-specific rules.

Solution

Use Intl.Segmenter to split the string and count the
occurrences.
You can create a segmenter with grapheme (individual
characters), word, or sentence granularity. The granularity
determines the boundaries of the segments. Each
segmenter can only have one granularity, so you need three
segmenters (see Example 11-15).
Example 11-15. Getting the character, word, and sentence

count of a string

function getCounts(text) {

 const characters = new Intl.Segmenter(

 navigator.language,

 { granularity: 'grapheme' }

);

 const words = new Intl.Segmenter(

 navigator.language,

 { granularity: 'word' }

);

 const sentences = new Intl.Segmenter(

 navigator.language,

 { granularity: 'sentence' }

);

 // Convert each segment to an array, then get its length.

 return {

 characters: [...characters.segment(text)].length,

 words: [...words.segment(text)].length,

 sentences: [...sentences.segment(text)].length

 };

}

NOTE

This API may not be supported by all browsers yet. See CanIUse for
the latest compatibility data.

Discussion

When you call segment on a segmenter with some text, it
returns an iterable object containing all of the segments.
There are several ways to get the length of items in this
iterable, but this example uses the array spread syntax,
which creates an array containing all of the items. Then you
just need to get the length of each array.
You may have solved this problem in the past by using the
split method of a string. For example, you could split on
whitespace to get an array of words and get the word
count. This approach may work in your language, but the

https://oreil.ly/OL9G0

advantage of using Intl.Segmenter is that it takes the given
locale’s rules for breaking up words and sentences.

Formatting Lists

Problem

You have an array of items that you want to display in a
comma-separated list. For example, an array of users is
shown as “user1, user2, and user3.”

Solution

Use Intl.ListFormat to combine the items into a list using
the rules of the given locale. Example 11-16 uses an array
of users, each of which has a username property.
Example 11-16. Formatting a list of user objects

function getUserListString(users, locale = 'en-US') {

 // The locale of the ListFormat is configurable.

 const listFormat = new Intl.ListFormat(locale);

 return listFormat.format(users.map(user => user.username));

}

Discussion

Intl.ListFormat adds words and punctuation as needed. For
example, in the en-US locale, you get the following:

1 user: “user1”

2 users: “user1 and user2”

3 users: “user1, user2, and user3”

Here’s another example using the de-DE locale:

1 user: “user1”

2 users: “user1 und user2”

3 users: “user1, user2 und user3”

Notice the use of “und” instead of “and,” and also notice in
the third case that there’s no comma after user2 as there is
in en-US. This is because German grammar does not use this
comma (called the “Oxford comma”).

As you can see, using Intl.ListFormat is much more robust
than using an array’s join method to join its values with a
comma. That method, of course, does not take locale-
specific rules into account.

Sorting an Array of Names

Problem

You have an array of names that you want to sort using
locale-specific sorting rules.

Solution

Create an Intl.Collator to provide the comparison logic,
then use its compare function to pass to Array.prototype.sort
(see Example 11-17). This function compares two strings. It
returns a negative value if the first string comes before the
second, zero if the strings are equal, or a positive value if
the first string comes after the second.
Example 11-17. Sorting an array of names with

Intl.Collator

const names = [

 'Elena',

 'Mário',

 'André',

 'Renée',

 'Léo',

 'Olga',

 'Héctor',

]

const collator = new Intl.Collator();

names.sort(collator.compare);

NOTE

A Collator can return any negative or positive value, not just
necessarily –1 or 1.

Discussion

This is a concise way to sort an array of strings. Before
Intl.Collator, you might have done something like
Example 11-18.
Example 11-18. Sorting an array of strings directly

names.sort((a, b) => a.localeCompare(b));

This works fine, but one major difference is that you can’t
specify which locale’s sorting rules to apply when
comparing strings. Another benefit of Intl.Collator is its
flexibility. You can fine-tune the logic it uses to compare
strings.

For example, consider the array [1, 2, 20, 3]. Using the
default collator, this would be the sorted order since it’s
using string comparison logic. You can pass the numeric:
true option to Intl.Collator, and the sorted array then
becomes [1, 2, 3, 20].

Chapter 12. Web

Components

Introduction

Web components are a way to build new HTML elements
with their own behavior. This behavior is encapsulated in a
custom element.

Creating a Component

You can create a web component by defining a class that
extends HTMLElement, as shown in Example 12-1.
Example 12-1. A barebones web component

class MyComponent extends HTMLElement {

 connectedCallback() {

 this.textContent = 'Hello from MyComponent';

 }

}

When you add the custom element to the DOM, the
browser calls the connectedCallback method. This is typically
where most of your component’s logic resides. This is one
of the lifecycle callbacks. Some other lifecycle callbacks
include:

disconnectedCallback

Called when you remove the custom element from the DOM.
This is a good place to do cleanup, such as removing event
listeners.

attributeChangedCallback

Called when you change one of the element’s watched
attributes.

Registering a Custom Element

Once you’ve created your custom element class, you must
register it with the browser before using it in an HTML
document.
You can register your custom element by calling
define on the global customElements object, as shown in
Example 12-2.
Example 12-2. Registering a custom element with the

browser

customElements.define('my-component', MyComponent);

NOTE

If you try to define a custom element that has already been defined,
the browser throws an error. If this is a possibility for you,
you can
call customElements.get('my-component') in order to check if it’s already
defined. If this returns undefined, it’s safe to call
customElements.define.

Once you register the element, you can use it like any other
HTML element, as shown in Example 12-3.
Example 12-3. Using the custom element

<my-component></my-component>

NOTE

Custom elements must always have a hyphenated name. This is
required by the specification. They also must always
have a closing
tag, even if there is no child content.

Templates

There are several ways to get HTML markup into a web
component. For example, in the connectedCallback, you can
manually create elements by calling document.createElement
and manually appending them.
You can also specify a component’s markup with a
<template> element. This contains some HTML that you’ll
use during the connectedCallback to give your component its
content.
These templates are very simple—they don’t
support data binding, variable interpolation, or any kind of
logic. They only serve as a starting point of the HTML
content. Within
the connectedCallback, you can select
elements, set dynamic values, and add event listeners as
needed.

Slots

A <slot> is a special element you can use in a template. A
slot is a placeholder for some child content that is passed
in. A component can have a default slot as well as one or
more named slots. You can use named slots to place
multiple pieces of content inside your component.
Example 12-4 shows a simple template that has a named
and default slot.
Example 12-4. A template with slots

<template>

 <h2><slot name="name"></slot></h2>

 <slot></slot>

</template>

Suppose this template is used in an <author-bio>
component, as shown in Example 12-5.
Example 12-5. Specifying content for slots

<author-bio>

 John Doe

 <p>John is a great author who has written many books.</p>

</author-bio>

In the component’s child content, you can specify a slot
attribute that corresponds to a named slot in the
component template. The span element containing the text
“John Doe” will be placed in the component’s name slot,
inside the h2 element. Any other child content, without a
slot element, is placed in the default slot (the one with no
name).

Shadow DOM

A shadow DOM is a collection of elements that are isolated
from the rest of the main DOM. Web components use
shadow DOM extensively. One main advantage of using
shadow DOM is for scoped CSS styles. Any styles you
define in a shadow DOM only apply to elements inside that
shadow DOM. Other elements in the document, even if
they’d normally match the selector of a CSS rule, do not
have the CSS applied.
This style scoping goes both ways. If you have global styles
on your page, they will not apply to any of the elements in a
shadow DOM.
A shadow DOM, created by attaching a shadow root to a
web component, can be open or closed. When a shadow
DOM is open, you can access and modify its elements with
JavaScript. When it is closed, a web component’s shadowRoot
property is null so you can’t access the content within.

Light DOM

Using shadow DOM is completely optional, however. The
Light DOM refers to the regular, non-encapsulated DOM

inside the web component. Because Light DOM is not
encapsulated from the rest of the page, global styles will be
applied to its child elements.

Creating a Component to Show

Today’s Date

Problem

You want a web component that formats and shows today’s
date in the browser’s locale.

Solution

Use Intl.DateTimeFormat inside the web component to format
the current date (see Example 12-6).
Example 12-6. A custom element that formats the current

date

class TodaysDate extends HTMLElement {

 connectedCallback() {

 const formatter = new Intl.DateTimeFormat(

 navigator.language,

 { dateStyle: 'full' }

);

 this.textContent = formatter.format(new Date());

 }

}

customElements.define('todays-date', TodaysDate);

Now you can show today’s date by using this web
component without any attributes or child content, as
shown in Example 12-7.
Example 12-7. Showing the current date

<p>

 Today's date is: <todays-date></todays-date>

</p>

Discussion

When a <todays-date> element enters the DOM, the browser
calls the connectedCallback method. In the connectedCallback,
the TodaysDate class formats the current date with an
Intl.DateTimeFormat object, which you may remember from
Chapter 11. The connectedCallback sets this formatted date
string as the element’s textContent, which is inherited from
Node (an ancestor of HTMLElement).

Creating a Component to Format a

Custom Date

Problem

You want a web component that formats an arbitrary date
value.

Solution

Give the web component a date attribute, and use this to
generate the formatted date (see Example 12-8). You can
watch this attribute for changes and reformat the date if
the date attribute changes.
Example 12-8. A custom date component

class DateFormatter extends HTMLElement {

 // The browser will only notify the component about changes, via the

 // attributeChangedCallback, for attributes that are listed here.

 static observedAttributes = ['date'];

 constructor() {

 super();

 // Create the format here so you don't have to

 // re-create it every time the date changes.

 this.formatter = new Intl.DateTimeFormat(

 navigator.language,

 { dateStyle: 'full' }

);

 }

 /**

 * Formats the date represented by the current value of the 'date'

 * attribute, if any.

 */

 formatDate() {

 if (this.hasAttribute('date')) {

 this.textContent = this.formatter.format(

 new Date(this.getAttribute('date'))

);

 } else {

 // If no date specified, show nothing.

 this.textContent = '';

 }

 }

 attributeChangedCallback() {

 // Only watching one attribute, so this must be a change

 // to the date attribute. Update the formatted date, if any.

 this.formatDate();

 }

 connectedCallback() {

 // The element was just added. Show the initial formatted date, if any.

 this.formatDate();

 }

}

customElements.define('date-formatter', DateFormatter);

You can now pass a date to the date attribute to get it
formatted in the user’s locale (see Example 12-9).

Example 12-9. Using the date-formatter element

<date-formatter date="2023-10-16T03:52:49.955Z"></date-formatter>

Discussion

This recipe expands on “Creating a Component to Show
Today’s Date” by adding the ability to specify your own
date via an attribute.
By default, if you change the value of an attribute passed to
a custom element, nothing happens. The logic in
connectedCallback only runs when you first add the
component to the DOM. To make the component react to
attribute changes, you can implement the
attributeChangedCallback method. In the date-formatter
component, this method takes the updated date attribute
and create a new formatted date. When an attribute
changes, the browser calls this method with the attribute
name, the old value, and the new value.
However, this alone won’t solve the problem. If you just
implement attribute​Change⁠dCallback, you still won’t be
notified of attribute changes. This is because the browser
only calls attributeChangedCallback for observed attributes.
This lets you define a subset of attributes so the browser
only calls attributeChangedCallback for those attributes
you’re interested in. To define these attributes, add a static
observedAttributes property to your component class. This
should be an array of attribute names.

In the date-formatter component, you’re only watching one
attribute (the date attribute). Because of this, in
attributeChangedCallback you don’t need to check the name
argument since you already know it’s the date attribute that
changed. In a component with multiple watched attributes,
you can check the name to find out which attribute has
changed.

If you change the value of the date attribute with
JavaScript, the attributeChangedCallback will run and update
the formatted date.

Creating a Feedback Component

Problem

You want to create a reusable component where a user can
provide feedback about whether or not the page is helpful.

Solution

Create a web component to present the feedback buttons
and dispatch a custom event when the user clicks on one.
First, you need to create a template element to contain the
markup that this component uses, as shown in Example 12-
10.
Example 12-10. Creating the template

const template = document.createElement('template');

template.innerHTML = `

 <style>

 .feedback-prompt {

 display: flex;

 align-items: center;

 gap: 0.5em;

 }

 button {

 padding: 0.5em 1em;

 }

 </style>

 <div class="feedback-prompt">

 <p>Was this helpful?</p>

 <button type="button" data-helpful="true">Yes</button>

 <button type="button" data-helpful="false">No</button>

 </div>

`;

This component uses a shadow DOM that contains the
template markup (see Example 12-11). The CSS style rules
are scoped to this component only.
Example 12-11. The component implementation

class FeedbackRating extends HTMLElement {

 constructor() {

 super();

 // Create the shadow DOM and render the template into it.

 const shadowRoot = this.attachShadow({ mode: 'open' });

 shadowRoot.appendChild(template.content.cloneNode(true));

 }

 connectedCallback() {

 this.shadowRoot.querySelector('.feedback-prompt').addEventListener('click',

 event => {

 const { helpful } = event.target.dataset;

 if (typeof helpful !== 'undefined') {

 // Once a feedback option is chosen, hide the buttons and show a

 // confirmation.

 this.shadowRoot.querySelector('.feedback-prompt').remove();

 this.shadowRoot.textContent = 'Thanks for your feedback!';

 // JavaScript doesn't have a 'parseBoolean' type function, so convert the

 // string value to the corresponding boolean value.

 this.helpful = helpful === 'true';

 // Dispatch a custom event, so your app can be notified when a feedback

 // button is clicked.

 this.shadowRoot.dispatchEvent(new CustomEvent('feedback', {

 composed: true, // This is needed to "escape" the shadow DOM boundary.

 bubbles: true // This is needed to propagate up the DOM.

 }));

 }

 });

 }

}

customElements.define('feedback-rating', FeedbackRating);

Now you can add this feedback component to your app (see
Example 12-12).
Example 12-12. Using the feedback-rating component

<h2>Feedback</h2>

<feedback-rating></feedback-rating>

You can listen for the custom feedback event to be notified
when the user selects a feedback option (see Example 12-
13). It’s up to you what to do with this information; maybe
you want to send the data to an analytics endpoint with the
Fetch API.
Example 12-13. Listening for the feedback event

document.querySelector('feedback-rating').addEventListener('feedback', event => {

 // Get the value of the feedback component's "helpful" property and send it to

an

 // endpoint with a POST request.

 fetch('/api/analytics/feedback', {

 method: 'POST',

 body: JSON.stringify({ helpful: event.target.helpful }),

 headers: {

 'Content-Type': 'application/json'

 }

 });

});

Discussion

The feedback-rating component presents a prompt and two
buttons. The user clicks one of the two buttons depending
on whether they think the website content is helpful or not.

The click event listener uses event delegation. Instead of
adding a listener to each button, it adds a single listen that
responds to a click anywhere inside the feedback prompt. If
the clicked element does not have a data-helpful attribute,
then the user must not have clicked on a feedback button,
so do nothing. Otherwise, it converts the string value to a
boolean and sets it as a property on the custom element

that can be retrieved later. It also dispatches an event that
you can listen for elsewhere.
In order for this event to cross the shadow DOM into the
regular DOM, you must set the composed: true option.
Otherwise, any event listener that you added to the custom
element won’t be triggered.
Once that event is triggered, you can check the feedback
element itself (available as the event.target property) for
the helpful property to determine which feedback button
the user clicked.
Because the styles and markup are contained in a shadow
DOM, the CSS rules do not affect any elements outside of
the shadow DOM. This is important to note, as otherwise an
element selector like button would style every button on the
page. Because the styles are scoped, they are only applied
to buttons inside the custom element.
However, the content passed to the component’s slots can

be styled by global CSS rules. The slotted content does not
move into the shadow DOM, but rather remains in the
standard, or light, DOM.

Creating a Profile Card Component

Problem

You want to create a reusable card component to show a
user profile.

Solution

Use slots in your web component to pass content to certain
regions.

First, define the template with some styles and markup, as
shown in Example 12-14.
Example 12-14. The profile card template

const template = document.createElement('template');

template.innerHTML = `

 <style>

 :host {

 display: grid;

 border: 1px solid #ccc;

 border-radius: 5px;

 padding: 8px;

 grid-template-columns: auto 1fr;

 column-gap: 16px;

 align-items: center;

 margin: 1rem;

 }

 .photo {

 border-radius: 50%;

 grid-row: 1 / span 3;

 }

 .name {

 font-size: 2rem;

 font-weight: bold;

 }

 .title {

 font-weight: bold;

 }

 </style>

 <div class="photo"><slot name="photo"></slot></div>

 <div class="name"><slot name="name"></slot></div>

 <div class="title"><slot name="title"></slot></div>

 <div class="bio"><slot></slot></div>

`;

This template has three named slots (photo, name, and
title) and one default slot for the biography. The component
implementation itself is rather minimal; it just creates and
attaches a shadow root with the template (see Example 12-
15).

Example 12-15. The component implementation

class ProfileCard extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({ mode: 'open' });

 this.shadowRoot.appendChild(template.content.cloneNode(true));

 }

}

customElements.define('profile-card', ProfileCard);

To use the component, you can specify the slot attribute on
child elements to specify which slot the content should go
into (see Example 12-16). The biography element, which
does not have a slot attribute, is placed in the default slot.
Example 12-16. Using the profile card

<profile-card>

 <div slot="name">Phillip Chavez</div>

 <div slot="title">CEO</div>

 <p>Philip is a great CEO.</p>

</profile-card>

<profile-card>

 <div slot="name">Jamie Lynch</div>

 <div slot="title">Vice President</div>

 <p>Jamie is a great vice president.</p>

</profile-card>

Figure 12-1 shows the rendered result of the profile card
component.

Figure 12-1. The rendered profile card

Discussion

In the CSS styles, you might have noticed the :host
selector, which represents styles that are applied to the
custom element’s shadow host. This is the element that the
shadow DOM is attached to.
With this example, you can see how web components let
you create reusable content and layouts. Slots are a
powerful tool that enables you to insert content exactly
where it’s needed.

Creating a Lazy Loading Image

Component

Problem

You want a reusable component that contains an image
that isn’t loaded until it scrolls into the viewport.

Solution

Use an IntersectionObserver to wait for the element to scroll
into view, then set the src element on the contained image.

This recipe adapts “Lazy Loading an Image When Scrolled
into View” from Chapter 6, presenting its solution inside a
web component (see Examples 12-17 and 12-18).

Example 12-17. The LazyImage component

class LazyImage extends HTMLElement {

 constructor() {

 super();

 const shadowRoot = this.attachShadow({ mode: 'open' });

 this.image = document.createElement('img');

 shadowRoot.appendChild(this.image);

 }

 connectedCallback() {

 const observer = new IntersectionObserver(entries => {

 if (entries[0].isIntersecting) {

 console.log('Loading image');

 this.image.src = this.getAttribute('src');

 observer.disconnect();

 }

 });

 observer.observe(this);

 }

}

customElements.define('lazy-image', LazyImage);

Example 12-18. Using the LazyImage component

<lazy-image src="https://placekitten.com/200/138"></lazy-image>

Discussion

Once the element scrolls into view, the IntersectionObserver
callback gets the src attribute and sets it as the image’s src
attribute, which triggers the image to load.

NOTE

This example illustrates how to create a custom element that extends
a built-in element, but for lazy loading images you may not need it.
Newer browsers support the loading="lazy" attribute on img tags,
which has the same effect—the image is not loaded until it scrolls
into view.

Creating a Disclosure Component

Problem

You want to show or hide some content by clicking a
button. For example, you may have an “Advanced” section
of a form that is collapsed by default, but can be expanded
by clicking a button.

Solution

Build a disclosure web component. The component has two
parts: the button that toggles the content, and the content
itself. Each of these two parts will have a slot. The default
slot will be for the content, and there will be a named slot
for the button. This component can also be expanded or
collapsed programmatically by changing the value of its
open attribute.
First, define the template for the disclosure component, as
shown in Example 12-19.
Example 12-19. The disclosure component template

const template = document.createElement('template');

template.innerHTML = `

 <div>

 <button type="button" class="toggle-button">

 <slot name="title"></slot>

 </button>

 <div class="content">

 <slot></slot>

 </div>

 </div>

`;

The component implementation is shown in Example 12-20.
Example 12-20. The disclosure component implementation

class Disclosure extends HTMLElement {

 // Watch the 'open' attribute to react to changes.

 static observedAttributes = ['open'];

 constructor() {

 super();

 this.attachShadow({ mode: 'open' });

 this.shadowRoot.appendChild(template.content.cloneNode(true));

 this.content = this.shadowRoot.querySelector('.content');

 }

 connectedCallback() {

 this.content.hidden = !this.hasAttribute('open');

 this.shadowRoot.querySelector('.toggle-button')

 .addEventListener('click', () => {

 if (this.hasAttribute('open')) {

 // Content is currently showing; remove the 'open'

 // attribute and hide the content.

 this.removeAttribute('open');

 this.content.hidden = true;

 } else {

 // Content is currently hidden; add the 'open' attribute

 // and show the content.

 this.setAttribute('open', '');

 this.content.hidden = false;

 }

 });

 }

 attributeChangedCallback(name, oldValue, newValue) {

 // Update the content's hidden state based on the new attribute value.

 if (newValue !== null) {

 this.content.hidden = false;

 } else {

 this.content.hidden = true;

 }

 }

}

// The element name must be hyphenated.

customElements.define('x-disclosure', Disclosure);

One last thing—you need to add a small bit of CSS to the
page. Otherwise, the child content will flicker on the page
for a moment, then disappear. This is because before the
custom element is registered, it has no behavior, and the
browser isn’t aware of its slots. This means that any child
content will be rendered in the page.
Then, once the custom element is defined, the child content
moves into the slot and disappears.
To fix this, you can use CSS to hide the element’s content
until it is registered by using the :defined pseudo-class.
Example 12-21. Fixing the flicker issue

x-disclosure:not(:defined) {

 display: none;

}

This will initially hide the content. Once the custom
element becomes defined, the element is shown. You won’t
see the flicker because the content has already been moved
to the slot.
Finally, you can use the disclosure element, as shown in
Example 12-22.
Example 12-22. Using the disclosure element

<x-disclosure>

 <div slot="title">Details</div>

 This is the detail child content that will be expanded or collapsed

 when clicking the title button.

</x-disclosure>

The toggle button will have the text “Details,” since that is
placed in the title slot. The remaining content is placed in
the default slot.

Discussion

The disclosure component uses its open attribute to
determine whether or not to show the child content. When
the toggle button is clicked, it adds or removes the
attribute depending on the current state, then conditionally
applies the hidden attribute to the child content.
You can also programmatically toggle the child content by
adding or removing the open attribute. This works because
the component is observing the open attribute. If you
change it with JavaScript, or even in the browser developer
tools, the browser calls the component’s
attributeChangedCallback method with the new value.

The open attribute does not have a value. If you want the
content to be open by default, simply add the open attribute
with no value, as shown in Example 12-23.
Example 12-23. Showing the content by default

<x-disclosure open>

 <div slot="title">Details</div>

 This is the detail child content that will be expanded or collapsed

 when clicking the title button.

</x-disclosure>

If you remove the attribute, the newValue argument to
attributeChangedCallback will be null. In that case, it will
hide the child content by applying the hidden attribute. If
you add the attribute with no value, as shown in
Example 12-23, the newValue argument will be an empty
string. If that’s the case, it will remove the hidden attribute.

Creating a Styled Button Component

Problem

You want to create a reusable button component with
different style options.

Solution

There will be three variants of the button:

the default variant, with a gray background

the “primary” variant, with a blue background

the “danger” variant, with a red background

First, create the template with the custom button styling,
along with CSS classes for the “primary” and “danger”
variants, as shown in Example 12-24.
Example 12-24. The button template

const template = document.createElement('template');

template.innerHTML = `

 <style>

 button {

 background: #333;

 padding: 0.5em 1.25em;

 font-size: 1rem;

 border: none;

 border-radius: 5px;

 color: white;

 }

 button.primary {

 background: #2563eb;

 }

 button.danger {

 background: #dc2626;

 }

 </style>

 <button>

 <slot></slot>

 </button>

`;

Most of this template is the CSS. The actual markup for the
component itself is quite simple: just a button element with
a default slot.
The component itself will support two attributes:

variant

The name of the button variant (primary or danger)

type

The type attribute that is passed into the underlying button
element. Set this to button to prevent submitting a form (see
Example 12-25).

Example 12-25. The button component

class StyledButton extends HTMLElement {

 static observedAttributes = ['variant', 'type'];

 constructor() {

 super();

 this.attachShadow({ mode: 'open' });

 this.shadowRoot.appendChild(template.content.cloneNode(true));

 this.button = this.shadowRoot.querySelector('button');

 }

 attributeChangedCallback(name, oldValue, newValue) {

 if (name === 'variant') {

 this.button.className = newValue;

 } else if (name === 'type') {

 this.button.type = newValue;

 }

 }

}

customElements.define('styled-button', StyledButton);

To add a click listener, you actually don’t have to do any
further work. You can add a click listener to the styled-

button element and it will be triggered when you click the
underlying button, thanks to event delegation. With event
delegation, you can add an event listener to a parent
element, and events on its children will also trigger the
parent’s event listener.

Finally, here is how you use the styled-button component
(see Example 12-26).

Example 12-26. Using the styled-button component

<styled-button id="default-button" type="button">Default</styled-button>

<styled-button id="primary-button" type="button" variant="primary">

 Primary

</styled-button>

<styled-button id="danger-button" type="button" variant="danger">

 Danger

</styled-button>

Discussion

The styling is applied by setting a class name on the button
element equal to the variant name. This will cause the
corresponding CSS rule to apply the desired background
color.

You don’t need to have any code in the connectedCallback to
apply the class, because the browser will call the
attributeChangedCallback with the initial values as well as
any subsequently updated values.

You can add a click event listener to the styled-button in the
same way as you would a normal button (see Example 12-
27).
Example 12-27. Adding a click listener

<script>

document.querySelector('#default-button').addEventListener('click', () => {

 console.log('Clicked the default button');

});

</script>

<styled-button id="default-button" type="button">Default</styled-button>

Chapter 13. UI Elements

Introduction

Modern browsers have a few powerful built-in UI elements
that you can use in your app. These UI components
previously required third-party libraries (or you could build
your own).

Dialogs

Pop-up dialogs are a mainstay of many apps, providing
feedback and prompting for input. There are countless
dialog libraries out there, and it’s possible to build your
own. Modern browsers have already done this for you with
the <dialog> element. This is a pop-up dialog and includes a
backdrop that covers the rest of the page. You can apply
styles to both the backdrop and the dialog with a little CSS.
By default, the dialog is just a box that pops up with the
backdrop behind it. It’s up to you to add a title, buttons,
and other content.
Some dialogs contain multiple buttons, and you want to run
different code depending on which option they chose. For
example, a confirmation modal might have Confirm and
Cancel buttons. You’ll need to handle this yourself as well,
adding click event listeners to the buttons. In each event
listener, you can close the dialog by calling close on it. The
close method is a built-in method on the dialog that takes
an optional argument that lets you specify a “return value.”
This can be checked later from the dialog’s returnValue

property. This lets you pass data from the dialog back to
the page that opened it.

Details

A <details> element is a component whose content is
collapsible. It has some summary content that is displayed
in an interactive element. By clicking this element, you can
show or hide the detailed content. Like with dialogs, you
can style the component with CSS and toggle its visibility
with JavaScript.

Popovers

A popover is similar to a dialog. This is another type of pop-
up element. There are a few differences between a popover
and a dialog:

Clicking outside of the popover will close it.

You can still interact with the rest of the page while
a popover is visible.

You can turn any HTML element into a popover.

Notifications

Smartphones use notifications extensively, and newer
operating systems also support notifications. Modern
browsers have an API for showing native operating system
notifications, triggered from JavaScript. The user must
grant permission before these notifications can be sent.
These notifications are created in your JavaScript code, on
demand, while the app is running.

Creating an Alert Dialog

Problem

You want to show a dialog with a simple message, with an
OK button to close it.

Solution

Use a <dialog> element with an OK button.

NOTE

This API may not be supported by older browsers. See CanIUse for
the latest compatibility data.

First, define the HTML for your dialog, as shown in
Example 13-1.
Example 13-1. The dialog markup

<dialog id="alert">

 <h2>Alert</h2>

 <p>This is an alert dialog.</p>

 <button type="button" id="ok-button">OK</button>

</dialog>

<button type="button" id="show-dialog">Show Dialog</button>

You need two snippets of JavaScript. First, you’ll need a
function to trigger the dialog to be displayed, and then
you’ll need an event listener for the OK button to close the
dialog (see Example 13-2).
Example 13-2. JavaScript for the dialog

// Select the dialog, its OK button, and the trigger button elements.

const dialog = document.querySelector('#alert');

const okButton = document.querySelector('#ok-button');

https://oreil.ly/tk52g

const trigger = document.querySelector('#show-dialog');

// Close the dialog when the OK button is clicked.

okButton.addEventListener('click', () => {

 dialog.close();

});

// Show the dialog when the trigger button is clicked.

trigger.addEventListener('click', () => {

 dialog.showModal();

});

This results in the dialog shown in Figure 13-1.

Figure 13-1. The alert dialog

Discussion

The dialog’s showModal method shows a modal dialog. A
modal dialog blocks the rest of the page until it is closed.
This means if you open a modal dialog, clicking on other
elements on the page will have no effect. With a modal
dialog, the focus is “trapped” inside the dialog. Using the
Tab key will cycle focus through the focusable elements in
the dialog only. If this isn’t what you want, you can also call
the show method. This will show a modeless dialog, which
still allows you to interact with the rest of the page while
the dialog is open.
Clicking the OK button will close the dialog due to the click
listener calling dialog.close, but you can also close the
modal by pressing the Escape key. To capture this, you can

listen for the dialog’s cancel event. Canceling the dialog
with the Escape key will also trigger the dialog’s close
event. Finally, closing the dialog manually by calling close
on it will trigger the close event as well.

The dialog element also has some nice keyboard
accessibility features. When you click the Show Dialog
button and the dialog opens, the first focusable element
button automatically receives focus. In this case, it’s the OK
button. You can change this behavior by adding the
autofocus attribute to the element that you want to receive
the initial focus when the dialog is opened.
When you close the dialog, either by pressing the Escape
key or clicking the OK button, the keyboard focus will
return to the Show Dialog button.
You can style both the dialog itself and its semitransparent
backdrop with CSS. For the dialog, you can add a CSS rule
targeting the <dialog> element itself. To style the backdrop
—for example, you might want it to be a more opaque black
—you can use the ::backdrop pseudo-element (see
Example 13-3).
Example 13-3. Styling the backdrop

#alert::backdrop {

 background: rgba(0, 0, 0, 0.75);

}

Creating a Confirmation Dialog

Problem

You want to prompt the user to confirm an operation. The
prompt should show a question and have Confirm and
Cancel buttons.

Solution

This is another great use case for a <dialog>. First, create
your dialog content with the prompt and buttons, as shown
in Example 13-4.
Example 13-4. The confirmation dialog markup

<dialog id="confirm">

 <h2>Confirm</h2>

 <p>Are you sure you want to do that?</p>

 <button type="button" class="confirm-button">Confirm</button>

 <button type="button" class="cancel-button">Cancel</button>

</dialog>

NOTE

This API may not be supported by all browsers yet. See CanIUse for
the latest compatibility data.

You want both buttons to close the dialog, but to take
different actions. To do this, you can pass a string
argument to dialog.close. This will set the returnValue
property on the dialog itself, which you can examine when
you receive the close event (see Example 13-3).
Example 13-5. Event listeners for the confirmation dialog

const dialog = document.querySelector('#confirm');

confirmButton.addEventListener('click', () => {

 // Close the dialog with a return value of 'confirm'

 dialog.close('confirm');

});

cancelButton.addEventListener('click', () => {

 // Close the dialog with a return value of 'cancel'

 dialog.close('cancel');

});

dialog.addEventListener('cancel', () => {

https://oreil.ly/tk52g

 // Canceling with the Escape key doesn't set a return value.

 // Set it to 'cancel' here so the close event handler will get

 // the proper value.

 dialog.returnValue = 'cancel';

});

dialog.addEventListener('close', () => {

 if (dialog.returnValue === 'confirm') {

 // The user clicked the Confirm button.

 // Perform the action, such as creating or deleting data.

 } else {

 // The user clicked the Cancel button or pressed the Escape key.

 // Don't perform the action.

 }

});

The resulting confirmation dialog looks like Figure 13-2.

Figure 13-2. The confirmation dialog

Discussion

If the user clicks one of the buttons, the dialog is closed
with a return value that depends on which button was
clicked. After the dialog closes, it will emit the close event
where you can check the returnValue property. If the
returnValue is confirm, you know the user clicked the
Confirm button. Otherwise, the returnValue is cancel and you
can cancel the operation.

This example also listens for the cancel event. This event is
triggered if the dialog is closed by pressing the Escape key.
When the dialog is closed in this way, the dialog’s
returnValue is not updated and will retain whatever previous

value it had. To make sure the returnValue is correct, the
cancel event handler sets it. This works because the close
event is triggered after the cancel event. Because the
Escape key triggers this event, you don’t need to actually
listen for the Escape key to be pressed.
Why do you need to handle this case? Well, if you close the
dialog, it is not destroyed. It still exists in the DOM, just
hidden, and still has the same returnValue set. Suppose you
opened the dialog previously, and you clicked Confirm. The
return value is now set to confirm. If you open the
confirmation dialog again and cancel by pressing Escape,
the return value will still be confirm when the close event is
handled. To avoid this potential bug, you can use the cancel
event handler to explicitly set the returnValue to cancel.

Creating a Confirmation Dialog Web

Component

Problem

You want to create a customizable confirmation dialog.
When you show the dialog, you want to get a Promise that
resolves to the return value rather than having to listen for
multiple events.

Solution

Wrap the dialog in a web component, using a slot for the
confirmation message. The component exposes a
showConfirmation method that uses a Promise.

NOTE

This API may not be supported by all browsers yet. See CanIUse for
the latest compatibility data.

As with most web components, start by defining the
template, as shown in Example 13-6.
Example 13-6. The template for the confirmation dialog

component

const template = document.createElement('template');

template.innerHTML = `

 <dialog id="confirm">

 <h2>Confirm</h2>

 <p><slot></slot></p>

 <button type="button" class="confirm-button">Confirm</button>

 <button type="button" class="cancel-button">Cancel</button>

 </dialog>

`;

The template contains a slot that will receive the
component’s child content. Next, Example 13-7 show the
component implementation.
Example 13-7. The confirmation component implementation

class ConfirmDialog extends HTMLElement {

 connectedCallback() {

 const shadowRoot = this.attachShadow({ mode: 'open' });

 shadowRoot.appendChild(template.content.cloneNode(true));

 this.dialog = shadowRoot.querySelector('dialog');

 this.dialog.addEventListener('cancel', () => {

 this.dialog.returnValue = 'cancel';

 });

 shadowRoot.querySelector('.confirm-button')

 .addEventListener('click', () => {

 this.dialog.close('confirm');

 });

 shadowRoot.querySelector('.cancel-button')

https://oreil.ly/tk52g

 .addEventListener('click', () => {

 this.dialog.close('cancel');

 });

 }

 showConfirmation() {

 this.dialog.showModal();

 return new Promise(resolve => {

 // Listen for the next close event and resolve the Promise.

 // Resolve the Promise with a boolean indicating whether or not the

 // user confirmed.

 this.dialog.addEventListener('close', () => {

 resolve(this.dialog.returnValue === 'confirm');

 }, {

 // Only listen for the event once, then remove the listener.

 once: true

 });

 });

 }

}

customElements.define('confirm-dialog', ConfirmDialog);

Suppose you want to use this component to confirm a
delete operation. You can add the element to your page
with the confirmation prompt as the child content (see
Example 13-8).
Example 13-8. The component markup

<confirm-dialog id="confirm-delete">

 Are you sure you want to delete this item?

</confirm-dialog>

To show the dialog, select the DOM element and call its
showConfirmation method. Await the returned Promise to get
the return value (see Example 13-9).
Example 13-9. Using the confirmation dialog component

const confirmDialog = document.querySelector('#confirm-delete');

if (await confirmDialog.showConfirmation()) {

 // perform the delete operation

}

As with “Creating a Disclosure Component” from
Chapter 12, you need to add some CSS to hide the child
content until it is placed within the slots to prevent a flicker
of the dialog content (see Example 13-10).
Example 13-10. Fixing the flicker issue

confirm-dialog:not(:defined) {

 display: none;

}

Discussion

This is a good example of the usefulness of web
components to encapsulate custom behavior. In this case,
you also added a custom method to be called from the
outside. This method shows the dialog and abstracts away
having to listen for multiple events. You just show the
dialog and wait for the result.

Using a Disclosure Element

Problem

You have some content you want to show or hide using a
toggle button.

Solution

Use the built-in <details> element (see Example 13-10).

Example 13-11. Using the details element

<details>

 <summary>More Info</summary>

 Here are some extra details that you can toggle.

</details>

When the details are collapsed, you’ll just see the More Info
trigger button, as shown in Figure 13-3.

Figure 13-3. The collapsed details element

When you click the summary, the details open and the
arrow changes to indicate that the content is expanded, as
shown in Figure 13-4.

Figure 13-4. The expanded details element

Discussion

By default, the inner content is hidden, and you’ll just see a
disclosure element with the contents of the <summary>
element. In this case, the button will read More Info. When
you click the More Info button, the hidden content will
appear. If you click it again, the content again becomes
hidden.

You can change this default behavior with the open
attribute. If you add this attribute, the content will start out
visible (see Example 13-12).

Example 13-12. Controlling the default state with the open

attribute

<details open>

 <summary>More Info</summary>

 This content is visible by default.

</details>

Finally, you can also toggle the content with JavaScript.
You can change the value of the element’s open attribute
directly, as shown in Example 13-13.
Example 13-13. Toggling the visibility with JavaScript

// Show the content

document.querySelector('details').open = true;

Most browsers have good accessibility support for this
element, identifying the trigger element to screen readers
and indicating its expanded or collapsed state.

Showing a Popover

Problem

You want to show pop-up content by clicking a button, but
still allow the user to interact with the rest of the page.

Solution

Give the element a popover attribute, and add the
popovertarget attribute to the trigger button (see
Example 13-14).
Example 13-14. Automatically wiring a popover

<button type="button" popovertarget="greeting">Open Popover</button>

<div popover id="greeting">Hello world!</div>

NOTE

This API may not be supported by all browsers yet. See CanIUse for
the latest compatibility data.

https://oreil.ly/YFjQX

Discussion

A popover differs from a dialog in a few ways:

You can open it without any JavaScript.

There is no backdrop like there is with a dialog.

Unlike a dialog, you aren’t blocked from interacting
with the underlying page while the popover is
displayed.

When you click outside of a popover, it will close.

To make an element into a popover, you give it the popover
attribute. The popover element also needs an id attribute.
To link a trigger button to the popover, the button is given
a popovertarget attribute. The value of this attribute should
correspond to the id of the popover.
One drawback of the popover API in its current state is that
there is no mechanism to position the popover relative to
its trigger. By default, the popover always appears
centered on screen. If you want to change its position,
you’ll need to manually do that with CSS.
In the future, you will be able to use CSS anchor
positioning to position the popover relative to its trigger. In
the meantime, there are third-party libraries such as
Floating UI that you can use to augment this solution in
order to position the element.

Manually Controlling a Popover

Problem

You want to use the popover attribute but programmatically
use JavaScript to have control over when the popover is
shown and hidden.

Solution

Set the popover attribute to manual and call its showPopover,
hidePopover, or togglePopover methods (see Example 13-15).
Example 13-15. The popover and trigger markup

<button type="button" id="trigger">Show Popover</button>

<div id="greeting" popover="manual">Hello World!</div>

NOTE

This API may not be supported by all browsers yet. See CanIUse for
the latest compatibility data.

The popover="manual" attribute tells the browser that the
popover will be manually controlled (see Example 13-16).
To show the popover, select the popover element and call
its togglePopover method. This will show the popover when it
is hidden and hide the popover when it is shown.
Example 13-16. The toggle button code

const trigger = document.querySelector('#trigger');

const popover = document.querySelector('#greeting');

trigger.addEventListener('click', () => {

 popover.togglePopover();

});

Discussion

If you want to manually control the popover’s visibility,
make sure that you set the popover attribute to manual. When
the popover element is set to manual control, clicking

https://oreil.ly/YFjQX

outside of the popover will not close it. To close the
popover, you’ll need to call either its hidePopover or
togglePopover methods.

Positioning a Popover Relative to an

Element

Problem

You want to show a popover, but you don’t want it in the
middle of the screen. You want to position it relative to
another element, such as the button that triggered it.

Solution

Calculate the bounding rectangle of the element, then
adjust the popover’s position accordingly. This example will
cover positioning the tooltip just below the element.

NOTE

This API may not be supported by all browsers yet. See CanIUse for
the latest compatibility data.

First, you’ll need to apply some styles to the popover
element, as shown in Example 13-17.
Example 13-17. The popover styles

.popover {

 margin: 0;

 margin-top: 1em;

 position: absolute;

}

https://oreil.ly/YFjQX

By default, the browser uses margin to center the popover
within the viewport. To position the popover relative to
another element, you need to remove this margin. Since
you are positioning the tooltip below the other element, you
can set a margin-top so that there’s a small amount of space
between the element and the popover. Finally, to make the
popover scroll along with the element, you need to set
position: fixed.

Next, you can use the popovertarget attribute on the trigger
to automatically show the popover on click (see
Example 13-18).
Example 13-18. The popover and trigger markup

<button type="button" class="trigger" popovertarget="popover">Show

Popover</button>

<div class="popover" popover>

 This is popover content anchored to the trigger button.

</div>

The last step is to update the popover’s position whenever
it is shown. You can listen for the popover element’s toggle
event, which is triggered when the popover is either shown
or hidden. When handling this event, you can calculate the
trigger element’s position and use it to update the
popover’s position (see Example 13-19).
Example 13-19. Setting the popover’s position

const popover = document.querySelector('.popover');

const trigger = document.querySelector('.trigger');

popover.addEventListener('toggle', event => {

 // Update the position if the popover is being opened.

 if (event.newState === 'open') {

 // Find the position of the trigger element.

 const triggerRect = trigger.getBoundingClientRect();

 // Since the popover is positioned relative to the viewport,

 // you need to account for the scroll offset.

 popover.style.top = `${triggerRect.bottom + window.scrollY}px`;

 popover.style.left = `${triggerRect.left}px`;

 }

});

Discussion

If you are familiar with CSS positioning, you might be a
little confused about the behavior of position: absolute
here. Normally, position: absolute will position the element
relative to its closest positioned ancestor element. In this
case, though, the popover will always be positioned relative
to the viewport.
This is because popovers are positioned inside the
browser’s top layer. This is a special layer that is on top of
all other layers in the document. Regardless of where in the
DOM your popover element exists, the popover content is
placed in the top layer. Since it’s in this special top layer,
position: absolute will position the element relative to the
viewport.
The position of the popover is calculated by calling
getBoundingClientRect on the trigger element. As you scroll
the page, the top and bottom positions of this rectangle will
change. To make sure the popover is positioned correctly
underneath the trigger, you also need to include
window.scrollY in the calculation.
There are a few limitations to note of this implementation.
First, if the trigger element is at the bottom of the
document, there may not be enough room underneath the
element to show the popover. You may want to check for
this and, when there isn’t enough room, position the
popover above the trigger instead.
Another thing you might want to handle is if the window is
resized while the popover is visible, the position may not be

updated correctly. You could use a ResizeObserver or the
window’s resize event to handle this case.

Showing a Tooltip

Problem

You want to show a tooltip when hovering over, or focusing,
an element.

Solution

Use a manually controlled popover, showing and hiding it
with the corresponding mouse events. This will use the
same positioning approach as in “Positioning a Popover
Relative to an Element”, so first you’ll need to define the
custom styles for the popover (see Example 13-20).
Example 13-20. The tooltip styles

#tooltip {

 margin: 0;

 margin-top: 1em;

 position: absolute;

}

NOTE

This API may not be supported by all browsers yet. See CanIUse for
the latest compatibility data.

Implement the tooltip as a popover with the popover
attribute set to manual, as shown in Example 13-21.
Example 13-21. The tooltip markup

https://oreil.ly/YFjQX

<button type="button" id="trigger">Hover Me</button>

<div id="tooltip" popover="manual" role="tooltip">Here is some tooltip

content</div>

When the mouse hovers over the trigger, calculate the
position and show the popover element on the mouseover
event. On the mouseout event, hide the popover element (see
Example 13-22).
Example 13-22. Showing and hiding the tooltip

const button = document.querySelector('#trigger');

const tooltip = document.querySelector('#tooltip');

function showTooltip() {

 // Find the position of the trigger element.

 const triggerRect = trigger.getBoundingClientRect();

 // Since the popover is positioned relative to the viewport,

 // you need to account for the scroll offset.

 tooltip.style.top = `${triggerRect.bottom + window.scrollY}px`;

 tooltip.style.left = `${triggerRect.left}px`;

 tooltip.showPopover();

}

// Show and hide the tooltip in response to mouse events.

button.addEventListener('mouseover', () => {

 showTooltip();

});

button.addEventListener('mouseout', () => {

 tooltip.hidePopover();

});

// For keyboard accessibility, also show and hide the tooltip

// in response to focus events.

button.addEventListener('focus', () => {

 showTooltip();

});

button.addEventListener('blur', () => {

 tooltip.hidePopover();

});

Discussion

Since this uses the same positioning technique as
“Positioning a Popover Relative to an Element”, it has the
same limitations:

It doesn’t account for the case where there’s not
enough room to show the tooltip below it.

It doesn’t account for resizing the window.

Showing a Notification

Problem

You want to notify the user when something occurs in your
app.

Solution

Use a Notification object to show a native operating system
notification.
In order to show notifications, you must first ask the user
for permission. This is done with the
Notification.requestPermission method. To check if the user
has already given permission, you can check the
Notification.permission property.

NOTIFICATIONS VERSUS PUSH NOTIFICATIONS

The notifications described in this recipe are only
triggered when a user is on the page. This is different
than push notifications, which can be delivered even
when the page is not active. This is more involved, and it
typically requires the use of a third-party service.

Example 13-23 shows a helper function that checks the
permission, asks the user for permission if necessary, and
returns a boolean indicating whether or not notifications
can be shown.
Example 13-23. Checking notification permissions

async function getPermission() {

 // If the user has already explicitly denied permission, don't ask again.

 if (Notification.permission !== 'denied') {

 // The result of this permission request will update the

Notification.permission

 // property.

 // The permission request returns a Promise.

 await Notification.requestPermission();

 }

 // Only show a notification if Notification.permission is 'granted'.

 return Notification.permission === 'granted';

}

Once you have checked for permission, you can send a new
notification by creating a new Notification instance. Use
the getPermission helper to determine if a notification
should be shown (see Example 13-24).
Example 13-24. Showing a notification

if (await getPermission()) {

 new Notification('Hello!', {

 body: 'This is a test notification'

 });

}

If you try to show a notification when permission hasn’t
been granted, the Notification object will trigger an error
event.
Figure 13-5 shows what this notification might look like on
a desktop computer.

Figure 13-5. A notification rendered on macOS 14

Discussion

Notifications can only be shown from apps running in a
secure context. Typically, this means it must be served with
HTTPS or from a localhost URL.

The Notification.permission property has one of three
values:

granted

The user has expressly granted permissions to show
notifications.

denied

The user has expressly denied permission to show
notifications when prompted.

default

The user hasn’t responded to a notification permission
request. Browsers will treat this the same as the denied case.

A Notification can trigger some other events as well:

show

Triggered when the notification is shown

close

Triggered when the notification closes

click

Triggered when the notification is clicked

Chapter 14. Device

Integration

Introduction

The modern web browser platform includes APIs to interact
with all kinds of device information and capabilities,
including:

Battery status

Network status

Geolocation

Device clipboard

Sharing content

Tactile feedback

At the time of writing, some of these APIs are not well
supported yet. Some are still considered experimental, so
you shouldn’t use them in a production application just yet.
Some of these APIs may be supported by a given browser,
like Chrome, but still won’t work if the device is missing the
required capabilities. For example, the Vibration API is well
supported by Chrome, but won’t work on a laptop or other
device without vibration support.

Reading the Battery Status

Problem

You want to show the device’s battery charging status in
your app.

Solution

Use the Battery Status API.

NOTE

This API may not be supported by all browsers yet. See CanIUse for
the latest compatibility data.

You can query the Battery Status API by calling
navigator.getBattery. This method returns a Promise that
resolves to an object containing battery information.
First, write some HTML placeholder elements to hold the
battery status, as shown in Example 14-1.
Example 14-1. The battery status markup

 Battery charge level:--

 Battery charge status:--

Then, you can query the Battery Status API to get the
battery charge level and charging status, adding them to
the corresponding DOM elements (see Example 14-2).
Example 14-2. Querying the Battery Status API

const batteryLevelItem = document.querySelector('#battery-level');

const batteryChargingItem = document.querySelector('#battery-charging');

navigator.getBattery().then(battery => {

 // Battery level is a number between 0 and 1. Multiply by 100 to convert it to

 // a percentage.

 batteryLevelItem.textContent = `${battery.level * 100}%`;

 batteryChargingItem.textContent = battery.charging ? 'Charging' : 'Not

https://oreil.ly/DWFvk

charging';

});

What if you unplug your laptop? The displayed charging
status is no longer accurate. To handle this, there some
events you can listen for:

levelchange

Triggered when the battery’s charge level changes

chargingchange

Triggered when the battery starts or stops charging

You can update the UI when these events occur. Make sure
you have a reference to the battery object, then add event
listeners (see Example 14-3).
Example 14-3. Listening for battery events

battery.addEventListener('levelchange', () => {

 batteryLevelItem.textContent = `${battery.level * 100}%`;

});

battery.addEventListener('chargingchange', () => {

 batteryChargingItem.textContent = battery.charging ? 'Charging' : 'Not

charging';

});

Now your battery status stays updated. If you unplug your
laptop, the charging status changes from “Charging” to
“Not charging.”

Discussion

At the time of writing, some browsers don’t support this
API at all. You can use the code in Example 14-4 to check if
the Battery Status API is supported on the user’s browser.
Example 14-4. Checking for Battery Status API support

if ('getBattery' in navigator) {

 // request the battery status here

} else {

 // it's not supported

}

There are some additional properties available in the
battery object, too. These include:

chargingTime

The number of seconds remaining until the battery is fully
charged, if the battery is charging. If the battery is not
charging, this has the value Infinity.

dischargingTime

The number of seconds remaining until the battery is fully
discharged, if the battery is not charging. If the battery is not
discharging, this has the value Infinity.

These two properties also have their own change events that
you can listen for, called chargingtimechange and
dischargingtimechange, respectively.
There are many things you can do with the information
provided by the Battery Status API. For example, if the
battery level is low, you can disable background tasks or
other power-intensive operations. Or, it could even be
something as simple as letting the user know they should
save their changes because the device’s battery level is
low.
You could also use it to show a simple battery status
indicator. If you have a series of icons representing
different battery states (fully charged, not charging,
charging, low charge) you could keep the displayed icon up
to date by listening to the change events.

Reading the Network Status

Problem

You want to know how fast the user’s network connection
is.

Solution

Use the Network Information API to get data about the
user’s network connection (see Example 14-5).
Example 14-5. Checking the network capabilities

if (navigator.connection.effectiveType === '4g') {

 // User can perform high-bandwidth activities.

}

NOTE

This API may not be supported by all browsers yet. See CanIUse for
the latest compatibility data.

Discussion

The network information is contained in the
navigator.connection object. To get an approximation of the
network connection capabilities, you can check the
navigator.connection.effectiveType property. At the time of
writing, the possible values for
navigator.connection.effectiveType based on download speed
are:

slow-2g: Up to 50 Kbps

2g: Up to 70 Kbps

https://oreil.ly/krDAV

3g: Up to 700 Kbps

4g: 700 Kbps and above

These values are calculated based on the measurement of
real user data. The specification states that these values
may be updated in the future. You can use these values to
determine, approximately, the network capabilities of the
device. For example, an effectiveType of slow-2g probably
cannot handle high-bandwidth activities like HD video
streaming.
Should the network connection change while the page is
open, the navigator.connection object can trigger a change
event. You can listen for this event and adjust your app
based on the new network connection information that was
received.

Getting the Device Location

Problem

You want to get the device’s location.

Solution

Use the Geolocation API to get the position in latitude and
longitude. The Geolocation API exposes the
navigator.geolocation object, which is used to request the
user’s location with the getCurrentPosition method. This is a
callback-based API. getCurrentPosition takes two
arguments. The first argument is the success callback, and
the second is the error callback (see Example 14-6).
Example 14-6. Requesting the device location

navigator.geolocation.getCurrentPosition(position => {

 console.log('Latitude: ' + position.coords.latitude);

 console.log('Longitude: ' + position.coords.longitude);

}, error => {

 // Either the user denied permission, or the device location could not

 // be determined.

 console.log(error);

});

This API requires permission from the user. The first time
you call getCurrentPosition, the browser asks the user for
permission to share their location. If the user does not
grant permission, the geolocation request fails and the
browser calls the error callback.
If you want to check for permission ahead of time, to avoid
having to catch an error, you can use the Permissions API
to check its status (see Example 14-7).
Example 14-7. Checking for geolocation permission

const permission = await navigator.permissions.query({

 name: 'geolocation'

});

The returned permission object has a state property that
can have one of the values granted, denied, or prompt. If the
state is denied, you know the user has already been
prompted and they declined, so you shouldn’t bother trying
to get their location because it will fail.

Discussion

There are a few ways the browser can try to detect a user’s
location. It can attempt to use the device’s GPS, or it may
use information about the user’s WiFi connection or IP
address. In some cases, such as when the user is using a
VPN, IP-based geolocation may not return the correct
location for the user’s device.

The Geolocation API has very good browser support, so you
don’t need to check for feature support unless you are
targeting old browsers.

In addition to the coordinates, the position object contains
some other interesting information that may not be
available on all devices:

altitude

The device’s altitude above sea level, in meters

heading

The device’s compass heading, in degrees

speed

The velocity of the device, if it is moving, in meters per
second

You can also watch for changes in the device’s location by
calling navigator.geolocation.watchCurrentPosition. The
browser calls the callback that you pass to this method
periodically when the location changes, providing updated
coordinates.

GEOLOCATION VERSUS GEOCODING

The Geolocation API can only get the device’s
coordinates (latitude and longitude). It can’t determine
the state, city, or specific address you are at. For this,
you need a geocoding API, which is not built into the
browser. There are many external geocoding APIs
available from vendors such as Microsoft and Google.
Geocoding is the process of taking an address and
converting it to latitude and longitude. Some of these
services can also do reverse geocoding, which takes
latitude and longitude coordinates and converts them
into an address.

Showing the Device Location on a

Map

Problem

You want to show a map of the device’s location.

Solution

Use a service like Google Maps API or OpenStreetMaps to
generate a map, passing the latitude and longitude
coordinates from the Geolocation API.

NOTE

For this recipe, you need to sign up for a Google Maps API key. You
can find instructions to sign up for an API key on the Google
Developers website.

https://oreil.ly/9Uujk

This example shows how to embed a map with the Google
Maps Embed API. You can use the Google Maps Embed API
by embedding an iframe element with a specially crafted
URL. The URL must contain:

The type of map (for this example, you need a place
map)

Your API key

The geolocation coordinates

Request the device location, and in the success callback
you can create the iframe and add it to the document (see
Example 14-8.
Example 14-8. Creating a map iframe

// Assuming you have a placeholder element in the page with the ID 'map'

const map = document.querySelector('#map');

navigator.geolocation.getCurrentPosition(position => {

 const { latitude, longitude } = position.coords;

 // Adjust the iframe size as desired.

 const iframe = document.createElement('iframe');

 iframe.width = 450;

 iframe.height = 250;

 // The map type is part of the URL path.

 const url = new URL('https://www.google.com/maps/embed/v1/place');

 // The 'key' parameter contains your API key.

 url.searchParams.append('key', 'YOUR_GOOGLE_MAPS_API_KEY');

 // The 'q' parameter contains the latitude and longitude coordinates

 // separated by a comma.

 url.searchParams.append('q', `${latitude},${longitude}`);

 iframe.src = url;

 map.appendChild(iframe);

});

Discussion

See this article from Google to learn more about properly
securing a Google Maps API key.
This is just one of many possible map integrations you can
use once you have received the device’s location. Google
Maps has other types of APIs, and there are other services
such as Mapbox or OpenStreetMap. You can also integrate
a geocoding API to show a map marker with the actual
address.

Copying and Pasting Text

Problem

Within a text area, you want to add copy and paste
functionality. The user should be able to highlight some
text and copy it, and when pasting, it should replace
whatever text is selected.

Solution

Use the Clipboard API to interact with the selected text
within the text area. You can add Copy and Paste buttons to
your UI that call the corresponding functionality in the
Clipboard API.

NOTE

This API may not be fully supported by all browsers yet. See CanIUse
for the latest compatibility data.

https://oreil.ly/WhO-r
https://oreil.ly/4i7sm

To copy the text, get the selection start and end indexes
and take that substring of the text area’s value. Then, write
that text to the system clipboard (see Example 14-9).
Example 14-9. Copying text from a selection

async function copySelection(textarea) {

 const { selectionStart, selectionEnd } = textarea;

 const selectedText = textarea.value.slice(selectionStart, selectionEnd);

 try {

 await navigator.clipboard.writeText(selectedText);

 } catch (error) {

 console.error('Clipboard error:', error);

 }

}

Pasting is similar, but there’s an extra step. If there is text
selected within the text area, you need to remove the
selected text and splice in the new text from the clipboard
(see Example 14-10). The Clipboard API is asynchronous,
so you’ll need to wait on a Promise to receive the value in
the system clipboard.
Example 14-10. Pasting text into a selection

async function pasteToSelection(textarea) {

 const currentValue = textarea.value;

 const { selectionStart, selectionEnd } = textarea;

 try {

 const clipboardValue = await navigator.clipboard.readText();

 const newValue = currentValue.slice(0, selectionStart)

 + clipboardValue + currentValue.slice(selectionEnd);

 textarea.value = newValue;

 } catch (error) {

 console.error('Clipboard error:', error);

 }

}

This replaces the currently selected text with the text from
the clipboard.

Discussion

Note that even though you aren’t doing anything with the
return value of navigator.clipboard.writeText, you are still
awaiting the Promise. This is because you need to handle the
case when the Promise is rejected with an error.
Also, when pasting, there are two other scenarios to be
aware of:

If no text is selected but the text area has focus, the
text is pasted at the cursor position.

If the text area does not have focus, the text is
pasted at the end of the text area’s value.

As you might expect, reading from the system clipboard
programmatically can be a privacy concern. As such, it
requires user permission. The first time you try to read
from the clipboard, the browser asks the user for
permission. If they allow it, the clipboard operation
completes. If they deny the permission, the Promise
returned by the Clipboard API is rejected with an error.
If you want to avoid permission errors, you can use the
Permissions API to check if the user has granted
permission to read from the system clipboard (see
Example 14-11).
Example 14-11. Checking clipboard read permission

const permission = await navigator.permissions.query({

 name: 'clipboard-read'

});

if (permission.state !== 'denied') {

 // Continue with the clipboard read operation.

}

The three possible values for permission.state are:

granted

The user has already explicitly granted permission.

denied

The user has already explicitly denied permission.

prompt

The user has not been asked for permission yet.

If permission.state has the value prompt, the browser
automatically prompts the user the first time you attempt
to perform a clipboard read operation.

Sharing Content with the Web Share

API

Problem

You want to give the user an easy way to share a link using
the native sharing capabilities of their device.

Solution

Use the Web Share API to share the content.

NOTE

This API may not be supported by all browsers yet. See CanIUse for
the latest compatibility data.

Call navigator.share and pass an object containing the title
and URL (see Example 14-12). On supported devices and

https://oreil.ly/1IwEq

browsers, this brings up a familiar sharing interface that
allows them to share the link in various ways.
Example 14-12. Sharing a link

if ('share' in navigator) {

 navigator.share({

 title: 'Web API Cookbook',

 text: 'Check out this awesome site!',

 url: 'https://browserapis.dev'

 });

}

From here, the user can create a text message, email, or
other communication containing a link to the content.

Discussion

The sharing interface looks different depending on the
device and operating system. For example, Figure 14-1 is a
screenshot of the sharing interface on my computer
running macOS 14.

Figure 14-1. The share interface on macOS 14

Making the Device Vibrate

Problem

You want to add some tactile feedback to your app, making
the user’s device vibrate.

Solution

Use the Vibration API to programmatically vibrate the
device.

NOTE

This API may not be supported by all browsers yet. See CanIUse for
the latest compatibility data.

To perform a single vibration, you can call navigator.vibrate
with a single integer argument (the duration of the
vibration), as shown in Example 14-13.
Example 14-13. Triggering a single vibration

// A single vibration for 500ms

navigator.vibrate(500);

You can also trigger a sequence of vibrations by passing an
array to navigator.vibrate (see Example 14-14). The
elements of the array are interpreted as a sequence of
vibrations and pauses.
Example 14-14. Vibrating three times

// Vibrate for 500ms three times, with a 250ms pause in between

navigator.vibrate([500, 250, 500, 250, 500]);

Discussion

This API is supported on some devices that don’t vibrate,
for example Chrome on a MacBook Pro. For these devices,
calling navigator.vibrate has no effect, but it also won’t
throw any error.
If a sequence of vibrations is running, you can call
navigator.vibrate(0) to cancel any in-progress vibrations.
Like autoplaying videos, you can’t trigger vibration
automatically when the page first loads. The user must
have interacted with the page in some way before vibration
can be done.

https://oreil.ly/G0d6m

Getting the Device Orientation

Problem

You want to determine if the device is in portrait or
landscape orientation.

Solution

Use the screen.orientation.type property to get the device
orientation, or use the screen.orientation.angle property to
get the device’s orientation angle relative to its natural
orientation.

Discussion

screen.orientation.type can have one of four values,
depending on the device and its orientation (see Figure 14-
2):

portrait-primary: 0 degrees (the natural device
position)

portrait-secondary: 180 degrees

landscape-primary: 90 degrees

landscape-secondary: 270 degrees

Figure 14-2. The different orientation values

The preceding values are for devices such as phones,
whose natural orientation is portrait. For other devices
whose natural orientation is landscape, like some tablets,
the values are reversed:

landscape-primary: 0 degrees (the natural device
position)

landscape-secondary: 180 degrees

portrait-primary: 90 degrees

portrait-secondary: 270 degrees

The screen.orientation object also has a change event you
can listen for to be notified of changes in the device
orientation.

Chapter 15. Measuring

Performance

Introduction

There are many third-party tools for measuring
performance in a JavaScript app, but the browser also has
some handy tools built in for capturing performance
metrics.
The Navigation Timing API is used to capture performance
data about the initial page load. You can inspect how long
the page took to load, how long it took for the DOM to
become interactive, and more. It returns a set of
timestamps that indicate when each event happened during
the page load.
The Resource Timing API lets you inspect how long it took
to download resources and make network requests. This
covers page resources such as HTML files, CSS files,
JavaScript files, and images. It also covers asynchronous
requests such as those made with the Fetch API.
The User Timing API is a way to calculate the elapsed time
of arbitrary operations. You can create performance marks,
which are points in time, and measures, which are
calculated durations between marks.
All of these APIs create performance entries in a buffer on
the page. This is a single collection of all types of
performance entries. You can inspect this buffer at any
time, and you can also use PerformanceObserver to listen
asynchronously for new performance entries to be added.

Performance entries use high-precision timestamps. Time is
measured in milliseconds, but can also contain fractional
portions that, in some browsers, can have microsecond
accuracy. In the browser, these timestamps are stored as
DOMHighResTimeStamp objects. These are numbers that start at
zero when the page loads and represent the time since the
page load that a given entry happened.
This chapter’s recipes explore solutions for gathering
performance metrics. What you do with those metrics is up
to you. You can use the Fetch or Beacon API to send the
performance metrics to an API for collection and later
analysis.
You can use these performance metrics during
development for debugging purposes, or leave them in to
collect real performance metrics from your users. These
can be sent to an analytics service for aggregation and
analysis.

Measuring Page Load Performance

Problem

You want to gather information about the timing of page
load events.

Solution

Look up the single performance entry with a type of
navigation, and retrieve the navigation timestamps from the
performance entry object (see Example 15-1). You can then
calculate the interval between these timestamps to figure
out the time taken for various page load events.

Example 15-1. Looking up the navigation timing

performance entry

// There is only one navigation performance entry.

const [navigation] = window.performance.getEntriesByType('navigation');

This object has a lot of properties. Table 15-1 lists a few
examples of useful calculations you can perform.

Table 15-1. Navigation timing calculations

Metric Start time End time

Time to first byte startTime responseStart

Time to DOM interactive startTime domInteractive

Total load time startTime loadEventEnd

Discussion

The startTime property of the navigation timing
performance entry is always 0.
This entry doesn’t only contain timing information. It also
contains information such as the amount of data
transferred, the HTTP response code, and the page URL.
This information is useful to determine how quickly your
application becomes responsive when it first loads.

Measuring Resource Performance

Problem

You want to get information about requests for the
resources loaded on the page.

Solution

Find the resource performance entries in the performance
buffer (see Example 15-2).
Example 15-2. Getting the resource performance entries

const entries = window.performance.getEntriesByType('resource');

You’ll get one entry for each resource on the page.
Resources include CSS files, JavaScript files, images, and
any other requests by the page.
For each resource, you can calculate how long it took to
load by taking the difference between the startTime and
responseEnd properties. The URL of the resource is available
in the name property.

Discussion

Any network requests you make with the Fetch API also
show up as a resource. This makes this API useful for
profiling the real-world performance of your REST API
endpoints.
When the page first loads, the performance buffer includes
an entry for all resources requested during the initial page
load. Subsequent requests are added to the performance
buffer as they are made.

Finding the Slowest Resources

Problem

You want to get a list of the resources that took the longest
to load.

Solution

Sort and filter the list of resource performance entries.
Since this list is just an array, you can call methods such as
sort and slice on it. To find how long the resource took to
load, take the difference between its responseEnd and
startTime timestamps.
Example 15-3 shows how to find the five slowest-loading
resources.
Example 15-3. Finding the five slowest-loading resources

const slowestResources = window.performance.getEntriesByType('resource')

 .sort((a, b) =>

 (b.responseEnd - b.startTime) - (a.responseEnd - a.startTime))

 .slice(0, 5);

Discussion

The key is the sort call. This compares each pair of load
times and sorts the whole list in descending order of load
times. Then, the slice call is just taking the first five
elements of the sorted array.
If you want to instead get a list of the five fastest-loading
resources, you can just reverse the order in which the load
times are compared (see Example 15-4).
Example 15-4. Finding the 5 fastest resources

const fastestResources = window.performance.getEntriesByType('resource')

 .sort((a, b) =>

 (a.responseEnd - a.startTime) - (b.responseEnd - b.startTime))

 .slice(0, 5);

The reversed comparison means the array is sorted in
ascending order rather than descending order. The slice

call now returns the five fastest-loading resources.

Finding Timings for a Specific

Resource

Problem

You want to look up the timings for requests for a specific
resource.

Solution

Use the method window.performance.getEntriesByName to look
up resources by a specific URL (see Example 15-5).
Example 15-5. Finding all resource timings for a specific

URL

// Look up all requests to the /api/users API

const entries =

window.performance.getEntriesByName('https://localhost/api/users',

'resource');

Discussion

The name of a resource entry is its URL. The first argument
to getEntriesByName is the URL. The second argument
indicates that you’re interested in resource timings.
If there were multiple requests for the given URL, you’ll get
multiple resource entries in the returned array.

Profiling Rendering Performance

Problem

You want to record the time it takes to render some data on
the page.

Solution

Create a performance mark just before the rendering
begins. Once rendering is complete, create another mark.
Then you can create a measure between the two marks to
record how long the rendering took.

Imagine you have a DataView component that can be used to
render some data in the page (see Example 15-6).
Example 15-6. Measuring rendering performance

// Create the initial performance mark just before rendering.

window.performance.mark('render-start');

// Create the component and render the data.

const dataView = new DataView();

dataView.render(data);

// When rendering is done, create the ending performance mark.

window.performance.mark('render-end');

// Create a measure between the two marks.

const measure = window.performance.measure('render', 'render-start', 'render-

end');

The measure object contains the start time and the
calculated duration of the measure.

Discussion

Whenever you create performance marks and measures,
they are added to the page’s performance buffer to look up
later. For example, if you wanted to look up the render
measure at a later time, you could use
window.performance.getEntriesByName (see Example 15-7).
Example 15-7. Looking up a measure by name

// There is only one 'render' measure, so you can use

// array destructuring to get the first (and only) entry.

const [renderMeasure] = window.performance.getEntriesByName('render');

Marks and measures can also contain data associated with
them by passing the detail option. For example, when
rendering the data in Example 15-6, you can pass the data
itself as metadata when creating the measure.
When creating a measure in this way, you need to include
the start and end marks inside the options object (see
Example 15-8).
Example 15-8. Measuring rendering performance with data

// Create the initial performance mark just before rendering.

window.performance.mark('render-start');

// Create the component and render the data.

const dataView = new DataView();

dataView.render(data);

// When rendering is done, create the ending performance mark.

window.performance.mark('render-end');

// Create a measure between the two marks, passing the

// data being rendered as the measure detail.

const measure = window.performance.measure('render', {

 start: 'render-start',

 end: 'render-end',

 detail: data

});

Later, when you look up this performance entry, the detail
metadata is available in the measure’s detail property.

Profiling Multistep Tasks

Problem

You want to gather performance data for a multistep
process. You want to get the time for the whole sequence,

but also the time for individual steps. For example, you
might want to load some data from an API and then do
some processing with that data. In this case, you want to
know the time for the API request, the time for the
processing, and also the total time taken.

Solution

Create multiple marks and measures. You can use a given
mark in more than one measure calculation.
In Example 15-9, there’s an API that returns some user
transactions. Once the transactions are received, you want
to run some analytics on the transaction data. Finally, the
analytics data is sent to another API.
Example 15-9. Profiling a multistep process

window.performance.mark('transactions-start');

const transactions = await fetch('/api/users/123/transactions');

window.performance.mark('transactions-end');

window.performance.mark('process-start');

const analytics = processAnalytics(transactions);

window.performance.mark('process-end');

window.performance.mark('upload-start');

await fetch('/api/analytics', {

 method: 'POST',

 body: JSON.stringify(analytics),

 headers: {

 'Content-Type': 'application/json'

 }

});

window.performance.mark('upload-end');

Once the process has finished and marks have been taken,
you can use those marks to generate several measures, as
shown in Example 15-10.
Example 15-10. Generating measures

console.log('Download transactions:',

 window.performance.measure(

 'transactions', 'transactions-start', 'transactions-end'

).duration

)

);

console.log('Process analytics:',

 window.performance.measure(

 'analytics', 'process-start', 'process-end'

).duration

);

console.log('Upload analytics:',

 window.performance.measure(

 'upload', 'upload-start', 'upload-end'

).duration

);

console.log('Total time:',

 window.performance.measure(

 'total', 'transactions-start', 'upload-end'

).duration

);

Discussion

This example shows how you can create multiple marks and
measures to gather performance data on a set of tasks. A
given mark can be used more than once, in multiple
measures. Example 15-10 creates a measure for each step
of the process, then generates a final measure for the
entire task’s duration. This is done by taking the first mark
of the download task and the last mark of the upload task,
and calculating a measure between them.

Listening for Performance Entries

Problem

You want to be notified of new performance entries so that
you can report them to an analytics service. For example,
consider the scenario where you want to be notified of
performance statistics every time an API request is made.

Solution

Use a PerformanceObserver to listen for new performance
entries of the desired type. For API requests, the type
would be resource (see Example 15-11).

Example 15-11. Using a PerformanceObserver

const analyticsEndpoint = 'https://example.com/api/analytics';

const observer = new PerformanceObserver(entries => {

 for (let entry of entries.getEntries()) {

 // Only interested in 'fetch' entries.

 // Use the Beacon API to send a quick request containing the performance

 // entry data.

 if (entry.initiatorType === 'fetch') {

 navigator.sendBeacon(analyticsEndpoint, entry);

 }

 }

});

observer.observe({ type: 'resource' });

Discussion

The PerformanceObserver fires for every network request,
including the one you make to your analytics service. For
this reason, Example 15-11 checks to make sure a given
entry is not the analytics endpoint before sending the
request. Without this check, you end up in an infinite loop
of POST requests. When a network request is made, the
observer fires and you send the POST request. This creates
a new performance entry, which calls the observer again.
Each POST to the analytics service triggers a new observer
callback.
To prevent a high volume of requests in a short period to
your analytics service, for a real application you may want
to collect performance entries in a buffer. Once the buffer

reaches a certain size, you can send all the entries from the
buffer in a single request (see Example 15-12).
Example 15-12. Sending performance entries in batches

const analyticsEndpoint = 'https://example.com/api/analytics';

// An array to hold buffered entries. Once the buffer reaches the desired size,

// all entries are sent in a single request.

const BUFFER_SIZE = 10;

let buffer = [];

const observer = new PerformanceObserver(entries => {

 for (let entry of entries.getEntries()) {

 if (entry.initiatorType === 'fetch' && entry.name !== analyticsEndpoint) {

 buffer.push(entry);

 }

 // If the buffer has reached its target size, send the analytics request.

 if (buffer.length === BUFFER_SIZE) {

 fetch(analyticsEndpoint, {

 method: 'POST',

 body: JSON.stringify(buffer),

 headers: {

 'Content-Type': 'application/json'

 }

 });

 // Reset the buffer now that the batched entries have been sent.

 buffer = [];

 }

 }

});

observer.observe({ type: 'resource' });

Chapter 16. Working with

the Console

Introduction

Despite your best intentions, things can and will go wrong
with your code. There are several debugging tools available
to you. Today’s browsers have powerful debuggers built in
to them that let you step through code and inspect the
values of variables and expressions. Sometimes, though,
you might want to keep it simple and use the console.
In its most basic form, you interact with the console by
calling console.log with a message. This message is printed
to the browser’s JavaScript console. While more verbose
than breakpoint-based debugging, sometimes it can still be
useful to log and inspect values at runtime.

Other than a simple console.log, there are other things you
can do with the console such as group messages, use
counters, display tables, and even style your output with
CSS. There are also other log levels (error, warn, debug)
that you can use to categorize and filter your console
messages.

Styling Console Output

Problem

You want to apply some CSS to your console log output.
For example, maybe you want to make the font larger and

change the color.

Solution

Use the %c directive in your log message to denote what
text you want styled. For each usage of %c, add another
argument to console.log containing CSS styles (see
Example 16-1).
Example 16-1. Styling console output

console.log('%cHello world!', 'font-size: 2rem; color: red;');

console.log('This console message uses %cstyled text. %cCool!',

 'font-style: italic;',

 'font-weight: bold;'

);

Figure 16-1 shows what this styled text looks like in the
console.

Figure 16-1. The styled console output

Discussion

console.log takes a variable number of arguments. For each
use of the %c directive, there should be a corresponding
extra argument containing the styles to apply for that
section of text.
Notice in Figure 16-1 that the styles are reset between
each %c section. The italic font from the first section does
not carry over into the bold font from the second section.

Using Log Levels

Problem

You want to distinguish between informational, warning,
and error messages in the console.

Solution

Instead of console.log, use console.info, console.warn, and
console.error, respectively (see Example 16-2). These
messages are styled differently, and most browsers allow
you to filter log messages by their level.
Example 16-2. Using different log levels

console.info('This is an info message');

console.warn('This is a warning message');

console.error('This is an error message');

The messages are styled differently, with icons, as shown in
Figure 16-2.

Figure 16-2. The different log levels (shown in Chrome)

Discussion

Warning and error messages also present you with a stack
trace that can be expanded and viewed in the console. This
makes it easy to track down where an error occurred.

Creating Named Loggers

Problem

You want to log messages from different modules of your
app, prefixed with the module name in a given color.

Solution

Use Function.prototype.bind on the console.log function,
binding the module name prefix and color style (see
Example 16-3).
Example 16-3. Creating a named logger

function createLogger(name, color) {

 return console.log.bind(console, `%c${name}`, `color: ${color};`);

}

The createLogger function returns a new log function that
you can call just like console.log, but messages have a
colored prefix (see Example 16-4).
Example 16-4. Using the named loggers

const rendererLogger = createLogger('renderer', 'blue');

const dataLogger = createLogger('data', 'green');

// Outputs with a blue "renderer" prefix

rendererLogger('Rendering component');

// Outputs with a green "data" prefix

dataLogger('Fetching data');

This renders log messages with colored prefixes, as shown
in Figure 16-3.

Figure 16-3. Colored loggers (shown in Chrome)

Discussion

Calling bind in this way creates a partially applied version
of the console.log function that automatically adds the
prefix and color. Any further arguments you pass to it are
added after the prefix and color style.

Displaying an Array of Objects in a

Table

Problem

You have an array of objects that you want to log in an
easily readable way.

Solution

Pass the array to console.table and it displays a table. There
is a column for each object property, and a row for each
object in the array (see Example 16-5).
Example 16-5. Logging a table

const users = [

 { firstName: "John", lastName: "Smith", department: "Sales" },

 { firstName: "Emily", lastName: "Johnson", department: "Marketing" },

 { firstName: "Michael", lastName: "Davis", department: "Human Resources" },

 { firstName: "Sarah", lastName: "Thompson", department: "Finance" },

 { firstName: "David", lastName: "Wilson", department: "Engineering" }

];

console.table(users);

Figure 16-4 shows how the data is logged in table form.

Figure 16-4. The logged table (shown in Chrome)

Discussion

You can limit what object properties are shown by passing
a second argument to console.table. This argument is an
array of property names. If given, only those properties are
shown in the table output.

console.table can also be used with an object. In
Example 16-6, the index column contains the property
names rather than array indices.

Example 16-6. Passing an object to console.table

console.table({

 name: 'sysadmin',

 email: 'admin@example.com'

});

Example 16-6 produces the table in Figure 16-5.

Figure 16-5. The logged table (shown in Chrome)

Example 16-7 logs the users in a table, but only shows the
firstName and lastName columns (see Figure 16-6).

Example 16-7. Limiting table columns

const users = [

 { firstName: "John", lastName: "Smith", department: "Sales" },

 { firstName: "Emily", lastName: "Johnson", department: "Marketing" },

 { firstName: "Michael", lastName: "Davis", department: "Human Resources" },

 { firstName: "Sarah", lastName: "Thompson", department: "Finance" },

 { firstName: "David", lastName: "Wilson", department: "Engineering" }

];

console.table(users, ['firstName', 'lastName']);

Figure 16-6. Showing only the first and last name columns (shown in Chrome)

The rendered table is also sortable. You can click on a
column name to sort the table by that column (see
Figure 16-7).

Figure 16-7. Sorting the table by last name (shown in Chrome)

Using Console Timers

Problem

You want to calculate the time taken by some code, for
debugging purposes.

Solution

Use the console.time and console.timeEnd methods (see
Example 16-8).

Example 16-8. Using console.time and console.timeEnd

// Start the' loadTransactions' timer.

console.time('loadTransactions');

// Load some data.

const data = await fetch('/api/users/123/transactions');

// Stop the 'loadTransactions' timer.

// Prints: "loadTransactions: <elapsed time> ms"

console.timeEnd('loadTransactions');

When you call console.time with a timer name, it starts the
named timer. Go perform whatever work you want to
profile and when you’re done, call console.timeEnd with the
same timer name. The elapsed time, along with the timer
name, is printed to the console.

If you call console.timeEnd with a timer name that doesn’t
match a previous call to console.time, no error is thrown,
but a warning message is logged to the console that the
timer does not exist.

Discussion

This is different from using window.performance.mark and
window.perfor⁠mance​.measure as described in Chapter 15.

console.time is used for ad hoc timing, usually during
debugging. The notable difference is that console.time and
console.timeEnd do not add entries to the performance
timeline. Once you call console.timeEnd for a given timer,
that timer is destroyed. If you want timing data that is
persisted in memory, you might want to use the
Performance API instead.

Using Console Groups

Problem

You want to better organize groups of log messages.

Solution

Use console.group to create nested groups of messages that
can be expanded and collapsed (see Example 16-9).
Example 16-9. Using console groups

const users = [

 { id: 1, firstName: "John", lastName: "Smith", department: "Sales" },

 { id: 2, firstName: "Emily", lastName: "Johnson", department: "Marketing" },

 { id: 3, firstName: "Michael", lastName: "Davis", department: "Human Resources"

},

 { id: 4, firstName: "Sarah", lastName: "Thompson", department: "Finance" },

 { id: 5, firstName: "David", lastName: "Wilson", department: "Engineering" }

];

console.log('Updating user data');

for (const user of users) {

 console.group(`User: ${user.firstName} ${user.lastName}`);

 console.log('Loading employee data from API');

 const response = await fetch(`/api/users/${user.id}`);

 const userData = await response.json();

 console.log('Updating profile');

 userData.lastUpdated = Date.now();

 console.log('Saving user data');

 await fetch(`/api/users/${user.id}`, {

 method: 'POST',

 body: JSON.stringify(userData),

 headers: {

 'Content-Type': 'application/json'

 }

 });

 console.groupEnd();

}

This prints grouped messages to the console. You can
expand and collapse the groups so you can focus on the
specific group you’re interested in, as shown in Figure 16-
8.

Figure 16-8. Grouped console messages (shown in Chrome)

Discussion

You can also use console groups to trace complex
algorithms. Groups can be nested several levels deep,
making it much easier to follow your log messages during a
complex calculation. This is particularly valuable when
there are a lot of messages to sort through. If you want a
group to be collapsed by default, you can call
console.groupCollapsed instead of console.group.

Using Counters

Problem

You want to count the number of times a part of your code
is called.

Solution

Call console.count with a counter name that is unique to
your code. Every time the console.count statement is
executed, it prints and increments the counter value. This
lets you keep track of how many times the call to
console.count was hit.
Example 16-10. Using counters

const users = [

 { id: 1, firstName: "John", lastName: "Smith", department: "Sales" },

 { id: 2, firstName: "Emily", lastName: "Johnson", department: "Marketing" },

 { id: 3, firstName: "Michael", lastName: "Davis", department: "Human Resources"

},

 { id: 4, firstName: "Sarah", lastName: "Thompson", department: "Finance" },

 { id: 5, firstName: "David", lastName: "Wilson", department: "Engineering" }

];

users.forEach(user => {

 console.count('user');

});

Example 16-10 prints out the output shown in Example 16-
11.
Example 16-11. The counter output

user: 1

user: 2

user: 3

user: 4

user: 5

Discussion

console.count is useful for tracing loop iterations or
recursive function calls. Like other console methods, it is
primarily intended for debugging purposes and isn’t meant
for collecting usage metrics.

You can also call console.count without any arguments, in
which case it uses a counter called default.

Logging a Variable and Its Value

Problem

You want to log a variable name and its value without
having to type the name twice.

Solution

Use object shorthand notation to log an object containing
the variable (see Example 16-12).
Example 16-12. Logging a variable and its value

const username = 'sysadmin';

// logs { username: 'sysadmin' }

console.log({ username });

This creates an object whose name is username, and whose
value is the value of the username variable, and logs it to the
console, as shown in Figure 16-9.

Figure 16-9. Object with the named value (shown in Chrome)

Discussion

Before object shorthand notation, you would need to type
the variable name twice (see Example 16-13).
Example 16-13. Logging a variable and its value without

object shorthand

const username = 'sysadmin';

console.log('username', username);

It’s not much of a change, but it’s a quick time-saving
shortcut.

Logging a Stack Trace

Problem

You want to see a stack trace of where the code is currently
being executed.

Solution

Use console.trace to log a trace of the current call stack
(see Example 16-14).

Example 16-14. Using console.trace

function foo() {

 function bar() {

 console.trace();

 }

 bar();

}

foo();

This outputs the stack trace shown in Figure 16-10.

Figure 16-10. Logging a stack trace (shown in Chrome)

Discussion

A stack trace is a useful debugging tool. It shows the
current state of the call stack. The first entry in the stack
trace is the console.trace call itself. Then, the next entry is
whatever function called the function containing the
console.trace call, and so on. In most browsers, you can
click on a stack trace element to jump to that line of code.
You can use this to add log statements or set breakpoints.

Validating Expected Values

Problem

While debugging, you want to make sure an expression has
an expected value. If it doesn’t, you want to see a console
error.

Solution

Use console.assert to print an error if the expression
doesn’t match what you expect (see Example 16-15).

Example 16-15. Using console.assert

function updateUser(user) {

 // Log an error if the user id is null.

 console.assert(user.id !== null, 'user.id must not be null');

 // Update the user.

 return fetch(`/api/users/${user.id}`, {

 method: 'PUT',

 body: JSON.stringify(user),

 headers: {

 'Content-Type': 'application/json'

 }

 });

}

If updateUser is called with a user object without an id
property, the error is logged.

Discussion

Assertions are not typically used in production, as it’s a
debugging tool like the other console methods. It’s
important to note that if an assertion fails, it prints an error
but does not throw an error or otherwise stop execution of
the rest of the function. In Example 16-15, if the user ID
assertion fails, it still attempts to make the PUT request to
update the user. This likely results in a 404 error because
null is in the URL.

Examining an Object’s Properties

Problem

You want to inspect the properties of an object, including
deeply nested ones and the prototype chain.

Solution

Use console.dir to log the object.

Example 16-16 shows how to use console.dir to inspect the
console object itself.

Example 16-16. Using console.dir

console.dir(console);

Figure 16-11 shows the expandable tree structure that is
logged to the console. Each function and property in the
object is expandable. It also includes the prototype chain,
which can be expanded and inspected as well.

Figure 16-11. Using console.dir on the console object (shown in Chrome)

Discussion

On some browser versions, console.log also presents an
interactive structure to inspect an object. While this
behavior is browser dependent, console.dir always inspects
the object, as shown in Figure 16-11.

For more information, you can look at the official console
specification.

https://oreil.ly/osZhg

Chapter 17. CSS

Introduction

In the modern browser environment, CSS not only lets you
write style rules but also has a set of APIs you can use to
further enhance your application.
The CSS Object Model (CSSOM) allows you to set inline
styles programmatically from JavaScript code. Not only
that, but you can even change the values of CSS variables
at runtime.

In Chapter 8, you saw an example of using window.matchMedia
to programmatically check a media query to see if it
matches on the current page.
This chapter has some helpful recipes that use some of
these CSS-related APIs. At the time of writing, some of
these APIs do not have good browser support. Always
check browser compatibility before using them.

Highlighting Text Ranges

Problem

You want to apply a highlight effect to a range of text in the
document.

Solution

Create a Range object around the desired text, then use the
CSS Custom Highlight API to apply the highlighting styles

to that range.

The first step is to create a Range object. This object
represents a region of text within the document.
Example 17-1 shows a general purpose utility function to
create a range given a text node and the text to highlight.
Example 17-1. Creating a Range

/**

 * Given a text node and a substring to highlight, creates a Range object

covering

 * the desired text.

 */

function getRange(textNode, textToHighlight) {

 const startOffset = textNode.textContent.indexOf(textToHighlight);

 const endOffset = startOffset + textToHighlight.length;

 // Create a Range for the text to highlight.

 const range = new Range();

 range.setStart(textNode, startOffset);

 range.setEnd(textNode, endOffset);

 return range;

}

NOTE

This API may not be supported by all browsers yet. See CanIUse for
the latest compatibility data.

Suppose you have the HTML element shown in Example 17-
2.
Example 17-2. Some HTML markup

<p id="text">

 This is some text. We're using the CSS Custom Highlight API to highlight some

of

 the text.

</p>

https://oreil.ly/wDJWH

If you wanted to highlight the text “highlight some of the
text,” you can use the getRange helper to create a Range
around that text (see Example 17-3).

Example 17-3. Using the getRange helper

const node = document.querySelector('#text');

const range = getRange(node.firstChild, 'highlight some of the text');

Now that you have the range, you need to register a new
highlight with the browser’s highlight registry. Do this by
creating a new Highlight object with the range, and then
pass that Highlight to the CSS.highlights.set function (see
Example 17-4).
Example 17-4. Registering the highlight

const highlight = new Highlight(range);

CSS.highlights.set('highlight-range', highlight);

This registers the highlight, but by default this has no
visual effect. Next, you need to create some CSS styles that
you’d like to apply to the highlight. This is done by using
the ::highlight pseudo-element. You use this pseudo-
element combined with the key you registered the Highlight
under in Example 17-4 (see Example 17-5).
Example 17-5. Styling the highlight

::highlight(highlight-range) {

 background-color: #fef3c7;

}

With this style applied, the text inside the range is now
highlighted with a light amber color.

Discussion

You can also highlight content by using the <mark> element.
Example 17-6 shows how to highlight some text with <mark>.

Example 17-6. Highlighting using the mark element

<p id="text">

 This is some text. We're using the mark element to

 <mark>highlight some of the text</mark>.

</p>

This has the same visual effect as using the CSS Custom
Highlight API, but the key difference is that using <mark>
involves inserting a new element into the DOM. This can be
tricky depending on where you are adding the new
element.
For example, if the text you want to highlight spans
multiple elements, it may not be possible to do this with a
<mark> element and still be valid HTML. Consider the HTML
in Example 17-7.
Example 17-7. Some markup to highlight

<p>

 This is a paragraph, which is being highlighted.

</p>

<p>

 The highlight extends to this paragraph. This is not highlighted.

</p>

If you want to highlight “which is being highlighted. The
highlight extends to this paragraph,” you can’t do this with
a single <mark> element (see Example 17-8).
Example 17-8. Invalid HTML

<p>

 This is a paragraph, <mark>which is being highlighted.

</p>

<p>

 The highlight extends to this paragraph</mark>. This is not highlighted.

</p>

This is not valid HTML. The solution would be to use two
separate <mark> elements, but then it’s not a single
continuous highlighted region.
Using the CSS Custom Highlight API makes such
highlighting possible by creating a range that spans
multiple tags and applying the highlight effect.

Preventing a Flash of Unstyled Text

Problem

You want to avoid the flash of unstyled text when using web
fonts.

Solution

Use the CSS Font Loading API to explicitly load the font
faces you want to use in your application, and delay
rendering any text until the fonts have been loaded.

To load a font with this API, you first create a FontFace
object containing data about the font face you want to load.
Example 17-9 uses the Roboto font.
Example 17-9. Creating the Roboto font face

const roboto = new FontFace(

 'Roboto',

'url(https://fonts.gstatic.com/s/roboto/v30/KFOmCnqEu92Fr1Mu72xKKTU1Kvnz.woff2)',

{

 style: 'normal',

 weight: 400

 });

The document has a global fonts property, which is a
FontFaceSet, containing all of the font faces used in the

document. In order to use this font face, you need to add it
to the FontFaceSet (see Example 17-10).

Example 17-10. Adding Roboto to the global FontFaceSet

document.fonts.add(roboto);

So far, you’ve only defined the font. Nothing has been
loaded yet. You can start the loading process by calling load
on the FontFace object (see Example 17-11). This returns a
Promise that is resolved once the font is loaded.
Example 17-11. Waiting for the font to be loaded

roboto.load()

 .then(() => {

 // Font has been loaded and is ready for use.

 });

To prevent the flash of unstyled text, you’ll need to hide the
text that uses this font until it has finished loading. If your
app shows an initial loading animation, for example, you
could continue the animation until the necessary fonts are
loaded, then remove the loader and start rendering the
app.
If your app is using multiple fonts, you can wait for the
document.fonts.ready Promise. This Promise is resolved once all
fonts are loaded and ready.

Discussion

When using web fonts with CSS, fonts are declared with a
@font-face rule, which contains the URL of the font file to
download. If text is rendered before the font has finished
loading, a fallback system font is used. Once the font is
ready, the text is re-rendered with the correct font. This
can cause undesirable effects such as layout shifts if the
font metrics are different.

The downside of using @font-face is that you have no way of
knowing when the font has been loaded and is ready for
use. By using the CSS Font Loading API, you can get better
control over your font loading and know exactly when it’s
safe to start using a given font to render text.
If there is an error while loading the font—for example,
maybe you mistyped the font URL—the Promise returned by
the font’s load method rejects with the error.

Animating DOM Transitions

Problem

You want to show an animated transition when removing or
adding elements to the DOM.

Solution

Use the View Transitions API to provide an animated
transition between the two states.

NOTE

This API may not be supported by all browsers yet. See CanIUse for
the latest compatibility data.

This API is used to apply a transition effect between two
DOM states. To start a view transition, call the
document.startViewTransition function. This function takes a
callback function as its argument. You need to perform
your DOM changes within this callback function.

https://oreil.ly/I8RFN

In Example 17-12, imagine you have a single-page app.
Each view of the app is a top-level HTML element with a
unique ID. To route between views, you can remove the
current view and add the new one.
Example 17-12. A simple view transition

function showAboutPage() {

 document.startViewTransition(() => {

 document.querySelector('#home-page').style.display = 'none';

 document.querySelector('#about-page').style.display = 'block';

 });

}

This applies a basic cross-fade transition effect between the
two views.
If you want to adjust the speed of the cross-fade transition,
you can do so with a bit of CSS, as shown in Example 17-
13.
Example 17-13. Slowing down the transition

::view-transition-old(root),

::view-transition-new(root) {

 animation-duration: 2s;

}

Discussion

The view transition effect works by effectively taking a
screenshot of the current DOM state. Once the DOM
changes inside the callback are made, another screenshot
is taken. The browser creates some pseudo-elements on the
page and applies an animated transition between them.
The pseudo-elements created are:

::view-transition

A top-level overlay containing all view transitions

::view-transition-group(<name>)

An individual view transition

::view-transition-image-pair(<name>)

Contains the two images being transitioned

::view-transition-old(<name>)

Image of the old DOM state

::view-transition-new(<name>)

Image of the new DOM state

Some of these pseudo-elements take a name argument. This
can be one of the following:

*

Matches all view transition groups

root

Matches the root transition group, which is the default name
if no custom name is given.

A custom identifier

You can specify the custom identifier by setting the view-
transition-name property on the element to be transitioned.

You can use CSS selectors to target these pseudo-elements
and apply different animations. You can do this by creating
a @keyframes rule for the animation and applying that
animation to the ::view-transition-old or ::view-transition-
new pseudo-elements.

Modifying Stylesheets at Runtime

Problem

You want to dynamically add a CSS rule to a stylesheet on
the page.

Solution

Use the insertRule method of CSSStyleSheet to add the
desired rule (see Example 17-14).
Example 17-14. Adding a CSS rule

const [stylesheet] = document.styleSheets;

stylesheet.insertRule(`

 .some-selector {

 background-color: red;

 }

`);

Discussion

You might want to do this if you have new HTML content
that is dynamically added to the page, such as in a single-
page application. You can dynamically add the style rules
when the new content is added.

Conditionally Setting a CSS Class

Problem

You want to apply a CSS class to an element only if a
certain condition is met.

Solution

Use the toggle method of the element’s classList (see
Example 17-15).
Example 17-15. Toggling a class conditionally

// Assume isExpanded is a variable with the current expanded

// state

element.classList.toggle('expanded', isExpanded);

Discussion

If you call toggle without the second argument, it adds the
class name if it’s not currently set, or removes it if it’s
already set.

In addition to toggle, you can use add and remove to
manipulate the class list by adding and removing the given
class name. If you call add when the class name is already
set, it has no effect. Similarly, if you call remove when the
class name isn’t set, it also has no effect.

Matching Media Queries

Problem

You want to check if a certain media query is satisfied
using JavaScript. For example, you might want to use the
prefers-color-scheme media query to determine if a user’s
operating system is set to a dark theme.

Solution

Use window.matchMedia to evaluate the media query or listen
for changes (see Example 17-16).
Example 17-16. Checking for a dark color scheme

const isDarkTheme = window.matchMedia('(prefers-color-scheme: dark)').matches;

Discussion

window.matchMedia returns a MediaQueryList object that not
only has the matches property but also lets you listen for the
change event. This event fires if the result of the media
query changes.
For example, if the user’s operating system color theme
setting changes while your app is open, the change event
fires for the prefers-color-scheme query. You can then check
for the new match state (see Example 17-17).
Example 17-17. Listening for media query changes

const query = window.matchMedia('(prefers-color-scheme: dark)');

query.addEventListener('change', () => {

 if (query.matches) {

 // switch to dark mode

 } else {

 // switch to light mode

 }

});

Getting an Element’s Computed Style

Problem

You want to find a particular CSS style for an element that
comes from a stylesheet (not an inline style).

Solution

Use window.getComputedStyle to calculate the final styles for
the element.

USE GETCOMPUTEDSTYLE SPARINGLY

When you call getComputedStyle, it forces the browser to recalculate
styles and layout, which can be a performance bottleneck.

Consider the HTML element in Example 17-18 with some
styling applied.
Example 17-18. Some HTML with style

<style>

 #content {

 background-color: blue;

 }

 .container {

 background-color: red;

 color: white;

 }

</style>

<div id="content" class="container">What color am I?</div>

To determine the styles that are applied to the element,
pass the element to window.getComputedStyle (see
Example 17-19).
Example 17-19. Getting the computed style

const content = document.querySelector('#content');

const styles = window.getComputedStyle(content);

console.log(styles.backgroundColor);

Because the ID selector has a higher specificity than the
class selector, it wins the conflict and styles.backgroundColor
is blue. On some browsers, it may not be the string “blue”
but rather a color expression such as rgb(0, 0, 255).

Discussion

An element’s style property only works for inline styles.
Consider Example 17-20.
Example 17-20. An element with inline styles

<style>

 #content {

 background-color: blue;

 }

</style>

<div id="content" style="color: white;">Content</div>

This example specifies the color property as an inline style,
so you can access this by referencing the style property.
However, the background color comes from a stylesheet
and won’t be found this way (see Example 17-21).
Example 17-21. Checking inline styles

const content = document.querySelector('#content');

console.log(content.style.backgroundColor); // empty string

console.log(content.style.color); // 'white'

Since getComputedStyle calculates the final style of the
element, it contains both stylesheet styles and inline styles
(see Example 17-22).
Example 17-22. Checking computed styles

const content = document.querySelector('#content');

const styles = window.getComputedStyle(content);

console.log(styles.backgroundColor); // 'rgb(0, 0, 255)'

console.log(styles.color); // 'rgb(255, 255, 255)'

Chapter 18. Media

Introduction

Modern browsers have rich APIs for working with video
and audio streams. The WebRTC API supports creating
these streams from devices such as cameras.

A video stream can be played live inside of a <video>
element, and from there you can capture a frame of the
video to save as an image or upload to an API. A <video>
element can also be used to play back video that was
recorded from a stream.
Before these APIs were available, you would have needed
browser plug-ins to access the user’s camera. Today, you
can use the Media Capture and Streams API to start
reading data from the camera and microphone with just a
small amount of code.

Recording the Screen

Problem

You want to capture a video of the user’s screen.

Solution

Use the Screen Capture API to capture a video of the
screen, then set it as the source of a <video> element (see
Example 18-1).
Example 18-1. Capturing a video of the screen

async function captureScreen() {

 const stream = await navigator.mediaDevices.getDisplayMedia();

 const mediaRecorder = new MediaRecorder(stream, {

 mimeType: 'video/webm'

 });

 mediaRecorder.addEventListener('dataavailable', event => {

 const blob = new Blob([event.data], {

 type: 'video/webm',

 });

 const url = URL.createObjectURL(blob);

 video.src = url;

 });

 mediaRecorder.start();

}

NOTE

The screen contents are not streamed live to the <video> element.
Rather, the screen share is captured into memory. Once you’ve
finished capturing the screen, the recorded video will play in the
<video> element.

There’s a lot going on here. First, call
navigator.mediaDevices.getDisplayMedia() to initiate a screen
capture. Depending on the browser and operating system,
you will get some sort of prompt about screen recording
(see Figure 18-1).

Figure 18-1. Screen recording prompt from Chrome on macOS

This function returns a Promise that resolves to a MediaStream
of the user’s screen. Once this Promise resolves, the screen
is being recorded, but the data isn’t going anywhere yet.
To stop recording, click the browser-provided button to
stop sharing or call mediaRecorder.stop(). This will trigger
the dataavailable event.

Next, the event handler creates a Blob containing the
captured video data and creates an object URL. You can
then set the video’s src attribute to this object URL.

Once this is done, the screen recording will start playing in
the browser.

Discussion

This example uses the video/webm MIME type, which has
good browser support. WebM is an open audio and video
file format that supports multiple codecs.
If the user does not give permission for screen recording,
the Promise returned by getDisplayMedia will be rejected with
an error.
This example shows how to play back the screen recording
in a <video> element, but there are other things you can do
once you have the Blob and object URL.

For example, you could send the Blob to a server using the
Fetch API (see Example 18-2).
Example 18-2. Uploading the captured screen recording

const form = new FormData();

// Here, "blob" is the Blob created in the captureScreen method.

formData.append('file', blob);

fetch('/api/video/upload', {

 method: 'POST',

 body: formData

});

You could also trigger the browser to download the
captured video (see Example 18-3).
Example 18-3. Triggering a download with a hidden link

const link = document.createElement('a');

// Here, "url" is the object URL created in the captureScreen method.

link.href = url;

link.textContent = 'Download';

link.download = 'screen-recording.webm';

link.click();

Capturing an Image from the User’s

Camera

Problem

You want to activate the user’s camera and take a photo.

Solution

Use navigator.mediaDevices.getUserMedia to get video from
the camera.
First, you’ll need to create a few elements, as shown in
Example 18-4.
Example 18-4. The markup for capturing an image from the

camera

<style>

 #canvas {

 display: none;

 }

 #photo {

 width: 640px;

 height: 480px;

 }

</style>

<canvas id="canvas"></canvas>

<video id="preview">

The canvas is hidden because it’s an intermediate step
before producing an image.
The general approach is as follows:

1. Send the video stream to the <video> element to
show a live preview from the camera.

2. When you want to capture a photo, draw the current
video frame on the canvas.

3. Create a data URL from the canvas to generate a
JPEG image, and set it in the element.

First, open the video stream and attach it to the <video>
element (see Example 18-5).
Example 18-5. Getting the video stream

const preview = document.querySelector('#preview');

async function startCamera() {

 const stream = await navigator.mediaDevices.getUserMedia(

 {

 video: true,

 audio: false

 }

);

 preview.srcObject = stream;

 preview.play();

}

Later, capture the image in response to a button click or
other event (see Example 18-6).
Example 18-6. Capturing the image

// This is the <video> element.

const preview = document.querySelector('#preview');

const photo = document.querySelector('#photo');

const canvas = document.querySelector('#canvas');

function captureImage() {

 // Resize the canvas based on the device pixel density.

 // This helps prevent a blurred or pixellated image.

 canvas.width = canvas.width * window.devicePixelRatio;

 canvas.height = canvas.height * window.devicePixelRatio;

 // Get the 2D context from the canvas and draw the current video frame.

 const context = canvas.getContext('2d');

 context.drawImage(preview, 0, 0, canvas.width, canvas.height);

 // Create a JPEG data URL and set it as the image source.

 const dataUrl = canvas.toDataURL('image/jpeg');

 photo.src = dataUrl;

}

Discussion

As you might expect, reading from the camera raises
privacy concerns. As such, opening the user’s camera for
the first time will trigger a permission request in the
browser that the user must accept to grant access. If this
request is denied, the Promise returned by
navigator.mediaDevices.getUserMedia will be rejected with an
error.

Capturing a Video from the User’s

Camera

Problem

You want to record a video from the user’s camera and play
it back in the browser.

Solution

This solution has several steps:

1. Use getUserMedia to open a stream from the camera.

2. Use a <video> element to show a preview of the
video.

3. Use a MediaRecorder to record the video.

4. Play back the recorded video in the <video> element.

For this recipe, you need the <video> element and buttons
to start and stop recording (see Example 18-7).
Example 18-7. Setting up the video element

<video id="preview" muted></video>

<button id="record-button">Record</button>

<button id="stop-record-button">Stop Recording</button>

Next, open the video stream and set the <video> element to
preview it (see Example 18-8).
Example 18-8. Opening the audio and video stream

const preview = document.querySelector('#preview');

const stream = await navigator.mediaDevices.getUserMedia({

 video: true,

 audio: true

});

preview.srcObject = stream;

preview.play();

Once the stream is open, the next step is to set up the
MediaRecorder (see Example 18-9).

Example 18-9. Setting up the MediaRecorder

mediaRecorder = new MediaRecorder(stream, {

 mimeType: 'video/webm'

});

mediaRecorder.addEventListener('dataavailable', event => {

 const blob = new Blob([event.data], {

 type: 'video/webm',

 });

 const url = URL.createObjectURL(blob);

 // Clear the "muted" flag so that the playback will

 // include audio.

 preview.muted = false;

 // Reset the source of the video element to the object

 // URL just created.

 preview.srcObject = null;

 preview.src = url;

 // Start playing the recording immediately.

 preview.autoplay = true;

 preview.loop = true;

 preview.controls = true;

});

The last step is to wire up the buttons to start and stop the
MediaRecorder (see Example 18-10).
Example 18-10. Adding button event handlers

document.querySelector('#record-button').addEventListener('click', () => {

 mediaRecorder.start();

});

document.querySelector('#stop-record-button').addEventListener('click', () => {

 mediaRecorder.stop();

});

Discussion

You might have noticed the video element initially had the
muted attribute set on it. The media stream you open will
have both video and audio. You want to preview the video,
but you probably don’t want to preview the audio—this
would cause whatever audio is recorded to immediately
play back on the speakers, which could affect the recording
or even cause microphone feedback. To prevent this, you
can set the muted attribute on the <video> element.
Later, when it’s time to play back what you recorded, you
are clearing the muted flag so that the recorded audio will
play as well.

Determining the System Media

Capabilities

Problem

You want to know if a particular media type is supported by
the browser.

Solution

Use the Media Capabilities API to query the browser for the
given media type. The result will tell you if that media type
is supported or not (see Example 18-11).
Example 18-11. Checking media capabilities

navigator.mediaCapabilities.decodingInfo({

 type: 'file',

 audio: {

 contentType: 'audio/mp3'

 }

}).then(result => {

 if (result.supported) {

 // mp3 audio is supported!

 }

});

navigator.mediaCapabilities.decodingInfo({

 type: 'file',

 audio: {

 contentType: 'audio/webm;codecs=opus'

 }

}).then(result => {

 if (result.supported) {

 // WebM audio is supported with the opus codec.

 }

});

Discussion

Example 18-11 shows some examples of checking for audio
codec support. The Media Capabilities API also lets you
check for specific video format support. You can query not
only by codec, but also by other attributes such as frame
rate, bitrate, width, and height (see Example 18-12).

Example 18-12. Checking for a supported video format

navigator.mediaCapabilities.decodingInfo({

 type: 'file',

 video: {

 contentType: 'video/webm;codecs=vp8',

 bitrate: 4000000, // 4 MB

 framerate: 30,

 width: 1920,

 height: 1080

 }

}).then(result => {

 if (result.supported) {

 // This WebM configuration is supported.

 }

});

Applying Video Filters

Problem

You want to apply a filter effect to a video stream.

Solution

Render the video stream to a <canvas>, and apply a CSS
filter to the canvas.

You’ll set the video stream as the source of a <video>
element, as in “Capturing an Image from the User’s
Camera”. However, in this case you’ll hide the <video>
element as it’s just an intermediate step.
Then, based on your desired frame rate, render each frame
of the video to a <canvas> element. From there, you can
apply CSS filters.
First, the markup (see Example 18-13).
Example 18-13. Markup for the video filter example

<canvas id="canvas"></canvas>

<video id="preview" style="display: none;"></video>

Then, open the media stream and set it in the <video>
element (see Example 18-14).
Example 18-14. Setting up the video stream

async function startCamera() {

 const stream = await navigator.mediaDevices.getUserMedia({

 video: true,

 audio: false

 });

 // Hook up the video element to the stream.

 preview.srcObject = stream;

 preview.play();

 // Resize the canvas based on the device pixel density.

 // This helps prevent a blurred or pixelated image.

 canvas.width = canvas.width * window.devicePixelRatio;

 canvas.height = canvas.height * window.devicePixelRatio;

 const context = canvas.getContext('2d');

 // Target frame rate of 30 FPS—draw each frame to the canvas.

 setInterval(() => {

 context.drawImage(preview, 0, 0, canvas.width, canvas.height);

 }, 30 / 1000);

}

Now, you can apply a CSS filter to the <canvas> element
(see Example 18-15).
Example 18-15. Applying a filter

#canvas {

 filter: hue-rotate(90deg);

}

Discussion

Every 0.03 seconds, the current frame of the video will be
drawn to the canvas. This is effectively a preview of the
media stream, using the <video> element as an
intermediate. This is because there’s currently no way to

“draw” a video from a media stream directly to a <canvas>
element.
In addition to setting the filters with CSS, you can also set
them using the filter property of the canvas 2D context.

Chapter 19. Closing

Thoughts

Introduction

I hope you’ve found the recipes and APIs covered in this
book to be useful and interesting. Hopefully you’ve been
able to apply what you’ve learned in this book to level up
your JavaScript applications.

In Defense of Third-Party Libraries

One of the main themes of this book is the fact that you can
do so much without needing third-party libraries. This is
true, but don’t feel like you have to avoid third-party
libraries at all costs. Sometimes using the built-in browser
APIs saves you from needing a dependency, but you might
have to write extra “glue” code to adapt it to what you’re
trying to accomplish.
Some browser APIs can be awkward to work with. Take the
IndexedDB API, for example. It’s a powerful data
persistence and access layer, but its API is callback based
and can be painful to work with. There are libraries
available that wrap IndexedDB and provide a simpler—or,
in some cases, more powerful—API. For example, Dexie.js
wraps IndexedDB with a Promise-based API.
In the end, everything is a trade-off. If you have room to
spare in your JavaScript bundle to provide an easier
developer experience, it’s probably worth it.

Detect Features, Not Browser

Versions

If you need to check if the user is running a browser that
supports the API you want to use, you might think to look
at the user agent string and figure out which browser
version the user has. Try to avoid this. It is notoriously
unreliable, plus it’s trivial to spoof the user agent string to
masquerade as another browser.
Instead, detect if a particular feature is available. For
example, if you wanted to check if the browser supports
IndexedDB, just check for the presence of the indexedDB
property in the window object (see Example 19-1).
Example 19-1. Checking for IndexedDB support

if ('indexedDB' in window) {

 // IndexedDB is supported!

}

Polyfills

If you need to support older browsers, you may be able to
still use some of these APIs with a polyfill. This is a third-
party JavaScript library that adds the missing functionality.
These polyfills may not be as performant as the built-in
APIs, but they allow you to use newer APIs in browsers that
otherwise wouldn’t support them.
Some APIs can’t be polyfilled, of course, because they rely
on integration with native device capabilities like the
accelerometer or geolocation. If the browser has no way to
communicate with these system services, no amount of
third-party code can bridge that gap.

Looking Ahead to the Future

There are even more exciting APIs on the horizon that will
further expand what you can do in browser-based apps
without needing plug-ins or third-party libraries. To close
out the book, this section briefly looks at some upcoming
experimental APIs that will enrich browser apps even more
in the near future.

Web Bluetooth API

Soon you’ll be able to interact with Bluetooth devices
natively in the browser using the Web Bluetooth API. It
provides a Promise-based interface for discovering and
reading information about connected Bluetooth devices.
You can read data such as battery level, or listen for
notifications from devices.
This works by interacting with the device’s GATT (Generic
Attribute) Profile, which defines supported services and
characteristics for a Bluetooth device. This keeps the API
generic, allowing it the flexibility to work with any kind of
device that supports GATT.

Web NFC API

Near-field communication (NFC) allows devices to
exchange information when they are in close proximity to
one another. The Web NFC API will allow devices to
exchange messages and information with NFC hardware.
This API provides the ability to exchange messages using
the NFC Data Exchange Format (NDEF). This is a
standardized format published by the NFC Forum.

EyeDropper API

The EyeDropper API will allow you to select a color from
pixels on the screen via an eye dropper tool. This tool will
work both inside and outside the browser window, allowing
you to pick a color from anywhere on the screen.

You can construct an eye dropper by calling the EyeDropper
constructor. The EyeDropper provides an open method that
shows an eye dropper interface on the screen, and returns
a Promise. Once you select a pixel with the eye dropper, the
Promise resolves with the color of the selected pixel.

Barcode Detection API

This API will give your applications the ability to read
barcodes and QR codes. It supports many types of standard
barcode types. This will be a versatile API that can read
barcodes from many different image sources: image and
video elements, Blobs, canvas elements, and more.
Barcodes are detected by passing image data to a
BarcodeDetector’s detect method. This returns a Promise that
resolves to data about any detected barcodes and their
values.

Cookie Store API

The current mechanism for working with cookies in the
browser is not very convenient. The document.cookie
property is a single string that contains key/value pair
mappings of cookie names and values for the current site.
The upcoming Cookie Store API provides an asynchronous,
more robust interface for accessing cookie information. You
can look up the details of a single cookie with the
CookieStore.get method, which returns a Promise that

resolves to information about the cookie with the given
name.

It also lets you listen to change events, which are fired
whenever cookie data changes.

Payment APIs

The Payment Request API provides a way for a website to
initiate a payment in the browser. You can then use the
Payment Handler API to process the payment without
having to redirect to another website.
This will let you provide a more consistent experience when
using an external payment processor.

Finding What’s Next

The web is always changing. If you want to get a peek at
what other web browser APIs are coming, some good
resources are:

MDN Web Docs has a Web APIs page that shows an
overview of current and upcoming or experimental
APIs.

The W3C standards and drafts page contains a
searchable directory of standards and draft
specifications at all levels of development.

https://oreil.ly/PqBPh
https://oreil.ly/YTWkO
https://oreil.ly/Xu47E

Index

A

alert dialogs, Problem-Discussion

Animation objects, Animation Objects

animations, Problem
(see also Web Animations API)

changes in height, Problem-Discussion

DOM transitions, Problem-Discussion

keyframe-based, Keyframe-Based Animation-Keyframe
Animation with JavaScript

requestAnimationFrame, Problem-Discussion

respecting the user’s preference, Problem

reversing, Problem-Discussion

running multiple animations simultaneously, Problem-
Discussion

scheduling updates with requestAnimationFrame,
Problem

starting and stopping, Problem

AnimationTimeline interface, Discussion

API data
exporting to files, Problem-Discussion

exporting with download link, Problem-Discussion

arrays
displaying an array of objects in a table, Problem

sorting an array of names, Problem-Discussion

async keyword, Problem

asynchronous APIs, Introduction-Discussion
async and await keywords, Problem

basics, Introduction-Promises

callback functions, Callback Functions

chaining Promises, Problem-Discussion

events, Events

fallback image loading, Problem-Discussion

Promises, Promises

Promises in parallel, Problem-Discussion

requestAnimationFrame animation, Problem-Discussion

working with Promises, Problem-Discussion

wrapping an event API in a Promise, Problem-
Discussion

await keyword, Problem

B

Barcode Detection API, Barcode Detection API

Battery Status API, Problem-Discussion

Beacon API
reliability, Solution

sending a POST request with, Problem-Discussion

Blob object, Solution-Discussion, Solution

bouncing effect, Problem-Discussion

browser version, detecting, Detect Features, Not Browser
Versions

button component, styled, Problem-Discussion

C

callback functions, asynchronous APIs and, Callback
Functions

cameras
capturing image from, Problem-Discussion

capturing video from, Problem-Discussion

CanIUse.com, CanIUse.com

catch method (Promise), Discussion

chaining Promises, Problem-Discussion

characters, counting, Problem-Discussion

checkbox groups, validating, Problem-Discussion

client-side routers, Problem-Discussion

client-side validation of forms, Problem-Discussion

Clipboard API, Problem-Discussion

complex objects, persisting to local storage, Problem-
Discussion

confirmation dialogs
creating customizable web component, Problem-
Discussion

creating user prompt with Confirm/Cancel buttons,
Problem-Discussion

console, Introduction-Discussion
basics, Introduction

console groups, Problem

console timers, Problem

counters, Problem

creating named loggers, Problem

displaying an array of objects in a table, Problem

examining an object’s properties, Problem

logging a variable and its value, Problem

logging stack traces, Problem

styling output, Problem

using log levels, Problem

validating expected values, Problem

Constraint Validation API
detecting/marking invalid fields with, Problem-
Discussion

performing validation check not supported by, Problem-
Discussion

Cookie Store API, Cookie Store API

copying and pasting text, Problem-Discussion

counters, Problem

cross-site scripting (XSS) attacks, Disadvantages

CSS, Introduction-Discussion
absolute positioning, Discussion

animating DOM transitions, Problem-Discussion

basics, Introduction

conditionally setting a class, Problem

getting an element’s computed style, Problem-
Discussion

highlighting text ranges, Problem-Discussion

matching media queries, Problem

modifying stylesheets at runtime, Problem

preventing a flash of unstyled text, Problem-Discussion

CSS Custom Highlight API, Problem-Discussion

CSS Font Loading API, Problem-Discussion

CSS Object Model (CSSOM), Introduction

cursors, searching for string values with, Problem-
Discussion

custom elements, registering, Registering a Custom
Element

custom grammar, Browser Support

D

data removal, from local storage, Problem

data URL
loading an image as, Problem-Discussion

object URL versus, Discussion

database
creating/reading/deleting objects in, Problem-
Discussion

upgrading, Problem-Discussion

date formatting, Problem
creating a component to show today’s date, Problem

custom formatting, Problem-Discussion

getting parts of a formatted date, Problem

relative date formatting, Problem-Discussion

debugging (see console)

decimal places, rounding, Problem

<details> element
basics, Details

for disclosure elements, Problem-Discussion

device integration, Introduction-Discussion
basics, Introduction

copying and pasting text, Problem-Discussion

getting device location, Problem-Discussion

getting orientation, Problem

reading battery status, Problem-Discussion

reading network status, Problem

sharing content with Web Share API, Problem

showing device location on a map, Problem-Discussion

vibration, Problem-Discussion

<dialog> element, Dialogs
for alert dialogs, Problem-Discussion

for customizable confirmation dialogs, Problem-
Discussion

for user prompt with Confirm/Cancel buttons, Problem-
Discussion

dictation, adding to text field, Problem-Discussion

disclosure elements, Problem-Discussion

disclosure web component, Problem-Discussion

DOM elements, Introduction-Discussion
animating changes in height, Problem-Discussion

animating insertion and removal, Problem-Discussion

animating transitions, Problem-Discussion

applying a transition when an element scrolls into view,
Problem-Discussion

automatically pause and play a video, Problem-
Discussion

basics, Introduction-IntersectionObserver

changing an element’s content based on size, Problem-
Discussion

IntersectionObserver, IntersectionObserver

lazy loading an image when scrolled into view,
Problem-Discussion

MutationObserver, MutationObserver

ResizeObserver, ResizeObserver

using infinite scrolling, Problem

wrapping IntersectionObserver with a Promise,
Problem-Discussion

drag and drop
loading images with, Problem-Discussion

uploading a file with, Problem

E

easing functions, Discussion

elements property, looking up form fields using, Discussion

errors, Promises and, Discussion

event API, wrapping in a Promise, Problem-Discussion

events
asynchronous APIs and, Events

Promises versus, Promises

EventSource API, Problem-Discussion

EyeDropper API, EyeDropper API

F

factory functions, Discussion

fade animation, Solution-Discussion, Solution-Discussion

fallback, loading an image with, Problem-Discussion

feature detection, Detect Features, Not Browser Versions

feedback component, Problem-Discussion

Fetch API
GET request with, Problem-Discussion

introduction of, Introduction

sending a POST request with, Problem

sending form data as JSON, Problem-Discussion

submitting a form with Fetch and the FormData API,
Problem-Discussion

uploading a file with, Problem

uploading a file with drag and drop, Problem

FileReader object, Solution-Discussion

files, working with, Introduction-Discussion

basics, Introduction

checking and requesting permissions, Problem-
Discussion

exporting API data to, Problem-Discussion

exporting API data with a download link, Problem-
Discussion

loading a video as an object URL, Problem-Discussion

loading an image as a data URL, Problem-Discussion

loading an image with drag and drop, Problem-
Discussion

loading text from, Problem-Discussion

uploading a file with drag and drop, Problem

filter effect, applying to video stream, Problem-Discussion

form fields
asynchronous validation, Problem-Discussion

elements property for looking up, Discussion

making required, Problem

populating from local storage, Problem-Discussion

FormData API, FormData, Problem-Discussion

forms, Introduction-Discussion
basics, Introduction-Validation

constraining a number input, Problem

FormData API, FormData

making a form field required, Problem

populating a form field from local storage, Problem-
Discussion

specifying a validation pattern, Problem

submitting a form with Fetch and the FormData API,
Problem-Discussion

submitting as JSON, Problem-Discussion

using custom validation logic, Problem-Discussion

validating, Problem-Discussion

validating a checkbox group, Problem-Discussion

validating a field asynchronously, Problem-Discussion

Validation API, Validation

G

GATT (Generic Attribute) Profile, Web Bluetooth API

Geolocation API, Problem-Discussion

geolocation, geocoding versus, Discussion

GET request
sending with XMLHttpRequest, Problem-Discussion

with Fetch API, Problem-Discussion

getComputedStyle, Problem-Discussion

Google Maps API, Problem-Discussion

H

height, animating changes in, Problem-Discussion

highlighting text ranges, Problem-Discussion

history.pushState method, Solution-Solution

hover effect, Problem-Discussion

I

IDBKeyRange interface, Discussion

image capture, Problem-Discussion

Image element, Solution

images
lazy loading components, Problem-Discussion, Problem-
Discussion

loading as data URL, Problem-Discussion

loading with drag and drop, Problem-Discussion

loading with fallback, Problem-Discussion

in-line keys, Keys

IndexedDB, Introduction-Discussion
basics, Introduction-Requests

creating/reading/deleting objects in a database,
Problem-Discussion

keys, Keys

object stores and indexes, Object Stores and Indexes

paginating a large data set, Problem-Discussion

querying with indexes, Problem-Discussion

requests, Requests

searching for string values with cursors, Problem-
Discussion

transactions, Transactions

upgrading an existing database, Problem-Discussion

using Promises with the IndexedDB API, Problem-
Discussion

versioned databases, Discussion

indexedDB.open call, Problem-Discussion

indexes
in IndexedDB, Object Stores and Indexes

querying with, Problem-Discussion

infinite scrolling, Problem

inline styles, Discussion

Internationalization APIs, Introduction-Discussion
basics, Introduction

counting characters/words/sentences, Problem-
Discussion

date formatting, Problem

getting parts of a formatted date, Problem

list formatting, Problem

measurement units formatting, Problem

number formatting, Problem

pluralization rules, Problem-Discussion

price range formatting, Problem

relative date formatting, Problem-Discussion

rounding decimal places, Problem

sorting an array of names, Problem-Discussion

intersection ratio, IntersectionObserver

IntersectionObserver, IntersectionObserver
applying a transition when an element scrolls into view,
Problem-Discussion

automatically pausing/playing video, Problem-
Discussion

for lazy loading an image, Problem-Discussion

for lazy loading image component, Problem-Discussion

using for infinite scrolling, Problem

wrapping with a Promise, Problem-Discussion

Intl.Collator, Solution

Intl.DateTimeFormat, Solution-Discussion, Solution

Intl.ListFormat, Solution

Intl.NumberFormat, Problem

Intl.RelativeTimeFormat, Problem-Discussion

Intl.Segmenter, Solution

items, getting and setting, Getting and Setting Items

J

JavaScript, keyframe animation with, Keyframe Animation
with JavaScript

JSON
request body, Problem

string, Problem-Discussion

submitting a form as, Problem-Discussion

JSON.stringify, Solution-Discussion

K

key function, Problem-Discussion

key path, Keys

keyframe animation
basics, Keyframe-Based Animation

using JavaScript, Keyframe Animation with JavaScript

keys
finding all known keys, Problem-Discussion

in IndexedDB, Keys

L

language processing, speech recognition versus, Speech
Recognition

lazy loading
for images, Problem-Discussion, Problem-Discussion

in newer browsers, Discussion

length property, Problem-Discussion

libraries, third-party, Drawbacks of Third-Party Libraries,
In Defense of Third-Party Libraries

lifecycle callbacks, Creating a Component

Light DOM, Light DOM

list formatting, Problem

loading indicator, for animation, Problem-Discussion

locale, for Internationalization API, Introduction

location,of device
getting, Problem-Discussion

showing on a map, Problem-Discussion

logging (see console entries)

M

<mark> element, Discussion

MDN Web Docs, MDN Web Docs

measurement unit formatting, Problem

measuring performance (see performance measurement)

media, Introduction-Discussion
applying video filters, Problem-Discussion

basics, Introduction

capturing image from user’s camera, Problem-
Discussion

capturing video from user’s camera, Problem-
Discussion

determining system support for specific media type,
Problem

matching/evaluating queries, Problem

recording the screen, Problem-Discussion

Media Capabilities API, Solution

modal dialog, Discussion

modeless dialog, Discussion

multistep tasks, profiling, Problem-Discussion

MutationObserver, MutationObserver, Solution-Discussion

N

names, sorting an array of, Problem-Discussion

natural language processing (NLP), speech recognition
versus, Speech Recognition

Navigation Timing API, Introduction

Near-field communication (NFC), Web NFC API

network connection, reading status of, Problem

Network Information API, Problem

network requests, Introduction-Discussion
basics, Introduction

exchanging data in real time with WebSockets,
Problem-Discussion

GET request with the Fetch API, Problem-Discussion

listening for remote events with server-sent events,
Problem-Discussion

sending a beacon, Problem-Discussion

sending a POST request with the Fetch API, Problem

sending with XMLHttpRequest, Problem-Discussion

uploading a file with the Fetch API, Problem

network status API, reading, Problem

NLP (natural language processing), speech recognition
versus, Speech Recognition

notifications
basics, Notifications

push notifications versus, Solution

showing, Problem-Discussion

number formatting, Problem
measurement units with, Problem

rounding decimal places, Problem

number input, constraining, Problem

O

object arrays, displaying in table, Problem

object stores, IndexedDB, Object Stores and Indexes

object URL
data URL versus, Discussion

loading video as, Problem-Discussion

objects (generally)
complex, Problem-Discussion

examining properties of, Problem

simple, Problem-Discussion

observers, for watching DOM elements (see
IntersectionObserver; MutationObserver; ResizeObserver)

orientation, of device, Problem

origin, of page, Introduction

out-of-line keys, Keys

P

page load performance measurement, Problem

page, origin of, Introduction

pagination, of large data set in IndexedDB, Problem-
Discussion

passwords, asynchronous validation of, Problem-Discussion

patterns, matching routers to, Discussion

pausing speech, Problem

Payment APIs, Payment APIs

percent encoding, Discussion

performance entries, listening for, Problem-Discussion

performance measurement, Introduction-Discussion
basics, Introduction

finding slowest resources, Problem

finding timings for a specific resource, Problem

listening for performance entries, Problem-Discussion

page load, Problem

profiling multistep tasks, Problem-Discussion

profiling rendering performance, Problem-Discussion

resource, Problem

PerformanceObserver, Problem-Discussion

permissions, checking/requesting, Problem-Discussion

pluralization rules, Internationalization API, Problem-
Discussion

polyfills, Preface, Polyfills

pop-up dialogs, Dialogs

popovers, Popovers
manually controlling, Problem-Discussion

positioning relative to an element, Problem-Discussion

showing, Problem-Discussion

showing tooltips, Problem-Discussion

popstate event, Solution-Solution

POST request
sending with Beacon API, Problem-Discussion

sending with Fetch API, Problem

uploading file data with the Fetch API, Problem

price ranges, formatting, Problem

profile card, web components for, Problem-Discussion

Promises
asynchronous APIs and, Promises

chaining, Problem-Discussion

creating a Promise helper for speech recognition,
Problem-Discussion

event API wrapping, Problem-Discussion

events versus, Promises

handling error case, Discussion

Image element and, Solution

parallel, Problem-Discussion

using with IndexedDB API, Problem-Discussion

working with, Problem-Discussion

wrapping IntersectionObserver with, Problem-
Discussion

push notifications, Solution

Q

QR codes, Barcode Detection API

query parameters, for URLs
adding, Problem-Discussion

reading, Problem

removing, Problem

querying, with IndexedDB, Problem-Discussion

queryPermission function, Solution-Discussion

R

registering custom elements, Registering a Custom
Element

relative URLs, resolving, Problem-Discussion

remote events, listening for, Problem-Discussion

rendering performance, profiling, Problem-Discussion

replacer function, Serializing with a replacer function

requestAnimationFrame
animating elements with, Problem-Discussion

scheduling updates with, Problem

requests
finding timings for specific resource requests, Problem

in IndexedDB, Requests

ResizeObserver, ResizeObserver, Solution

resolving relative URLs, Problem-Discussion

Resource Timing API, Introduction

resources
finding slowest, Problem

finding timings for, Problem

performance measurement, Problem

reverse geocoding, Discussion

reviver function, Deserializing with the reviver function

RFC 3986 (Uniform Resource Identifier: Generic Syntax),
Introduction

“ripple” animation, Problem-Discussion

rounding, of decimal places, Problem

routers
client-side, Problem-Discussion

matching to patterns, Discussion

routing
adding query parameters for URLs, Problem-Discussion

creating a simple client-side router, Problem-Discussion

removing query parameters for URLs, Problem-
Discussion

runtime, modifying stylesheets at, Problem

S

screen, capturing video of, Problem-Discussion

scroll progress indicator, Problem-Discussion

scroll-linked animation, Discussion

scrolling, infinite, Problem

ScrollTimeline, Discussion

sentences, counting, Problem-Discussion

server-sent events (SSEs), Problem-Discussion

setCustomValidity method, Problem-Discussion

shadow DOM, Shadow DOM, Solution-Discussion

simple objects, persisting to local storage, Problem-
Discussion

<slot> element, Slots
for customizable confirmation dialogs, Problem-
Discussion

for disclosure web component, Problem-Discussion

for profile card, Problem-Discussion

for profile card components, Problem-Discussion

specifications and standards, sources for, Specifications

speech recognition, Speech Recognition
creating a Promise helper, Problem-Discussion

language processing versus, Speech Recognition

speech synthesis, Speech Synthesis, Problem
customizing parameters, Problem

getting available voices, Problem

Speech Synthesis Markup Language (SSML), Browser
Support

SpeechRecognition interface, Problem-Discussion

SSEs (server-sent events), Problem-Discussion

stack traces, logging, Problem

storage (see Web Storage API)

Storage interface, Introduction

string data, persisting to local storage, Problem

string values, cursors for finding, Problem-Discussion

styled button component, Problem-Discussion

stylesheets
getting an element’s computed style, Problem-
Discussion

modifying at runtime, Problem

styling console output, Problem

synthesizing speech (see speech synthesis)

T

tables, displaying an array of objects in, Problem

tactile feedback, Problem-Discussion

tasks, profiling multistep, Problem-Discussion

<template> element, Templates

Temporal API, Introduction

text
copying and pasting, Problem-Discussion

highlighting text ranges, Problem-Discussion

preventing flash of unstyled text, Problem-Discussion

text fields
adding dictation to, Problem-Discussion

specifying validation patterns, Problem

third-party libraries, Drawbacks of Third-Party Libraries, In
Defense of Third-Party Libraries

threshold, with IntersectionObserver, IntersectionObserver

timeline, of animation, Discussion

timers, console, Problem

tooltips, Problem-Discussion

transactions, in IndexedDB, Transactions

transform animations, Problem-Discussion

transitions
animating DOM transitions, Problem-Discussion

applying a transition when an element scrolls into view,
Problem-Discussion

U

UI elements, Introduction-Discussion
alert dialog, Problem-Discussion

basics, Introduction-Notifications

customizable confirmation dialog web component,
Problem-Discussion

details, Details

dialogs, Dialogs

manually controlling a popover, Problem-Discussion

notifications, Notifications

popovers, Popovers

positioning a popover relative to an element, Problem-
Discussion

showing a notification, Problem-Discussion

showing a popover, Problem-Discussion

showing a tooltip, Problem-Discussion

user prompt with Confirm/Cancel buttons, Problem-
Discussion

using a disclosure element, Problem-Discussion

unstyled text, preventing flash of, Problem-Discussion

upgradeneeded event, Discussion, Problem-Discussion

URL Pattern API, Solution-Discussion

URLs, Introduction-Discussion
adding query parameters to, Problem-Discussion

basics, Introduction

creating a simple client-side router, Problem-Discussion

defined, Introduction

matching to patterns, Discussion

parts, Parts of a URL

reading query parameters, Problem

removing query parameters, Problem-Discussion

resolving a relative URL, Problem-Discussion

routing and (see routing)

URLSearchParams object
for adding query parameters to URL, Problem-
Discussion

forEach method, Solution

user feedback, reusable component for, Problem-Discussion

user profiles, profile card component for, Problem-
Discussion

User Timing API, Introduction

V

Validation API, Validation

validation logic, custom, Problem-Discussion

validation of forms (see under forms)

variables, logging, Problem

versioned databases, IndexedDB and, Discussion

Vibration API, Problem

<video> element
for applying video filters, Problem-Discussion

for capturing image from user’s camera, Solution

for capturing video from user’s camera, Problem-
Discussion

for recording user’s screen, Problem-Discussion

video capture
from user’s camera, Problem-Discussion

of user’s screen, Problem-Discussion

video filters, Problem-Discussion

videos
automatically pausing and playing, Problem-Discussion

automatically playing, Discussion

loading as object URL, Problem-Discussion

pause and play automatically, Problem-Discussion

visibilitychange event, Solution

W

Web Animations API, Introduction-Discussion
animating DOM insertion and removal, Problem-
Discussion

Animation objects, Animation Objects

applying a “ripple” effect on click, Problem-Discussion

basics, Introduction

keyframe-based, Keyframe-Based Animation

making an element bounce, Problem-Discussion

respecting the user’s animation preference, Problem

reversing, Problem-Discussion

running multiple animations simultaneously, Problem-
Discussion

showing a loading animation, Problem-Discussion

showing a scroll progress indicator, Problem-
Discussion

starting and stopping, Problem

Web Bluetooth API, Web Bluetooth API

web components, Introduction-Discussion
basics, Introduction-Light DOM

creating, Creating a Component

disclosure, Problem-Discussion

feedback, Problem-Discussion

lazy loading images, Problem-Discussion

Light DOM, Light DOM

profile cards, Problem-Discussion

registering custom elements, Registering a Custom
Element

shadow DOM, Shadow DOM

slots, Slots

styled button component, Problem-Discussion

templates, Templates

to format custom date, Problem-Discussion

to show today’s date, Problem

web fonts, preventing flash of unstyled text with, Problem-
Discussion

Web NFC API, Web NFC API

Web Share API, Problem

Web Speech API, Introduction-Discussion
adding dictation to a text field, Problem-Discussion

automatically pausing speech, Problem

basics, Introduction-Browser Support

browser support, Browser Support

creating a Promise helper for speech recognition,
Problem-Discussion

customizing speech synthesis parameters, Problem

getting the available voices, Problem

speech recognition, Speech Recognition

speech recognition versus language processing, Speech
Recognition

synthesizing speech, Speech Synthesis, Problem

Web Storage API, Introduction-Discussion

basics, Introduction-Disadvantages

data removal, Problem

disadvantages, Disadvantages

finding all known keys, Problem-Discussion

getting and setting items, Getting and Setting Items

listening for storage changes, Problem

persisting complex objects, Problem-Discussion

persisting simple objects, Problem-Discussion

persisting string data, Problem

support, Problem

WebRTC API, Introduction

WebSocket API, exchanging data in real time with,
Problem-Discussion

words, counting, Problem-Discussion

X

XMLHttpRequest
introduction of, Introduction

promisifying, Solution

sending GET request with, Problem-Discussion

XSS (cross-site scripting) attacks, Disadvantages

About the Author

Joe Attardi has more than 20 years of frontend software
development experience and has built many browser-based
applications. He’s also built rich frontend experiences for
Nortel, Dell, Constant Contact, Salesforce, and Synopsys,
and he specializes in JavaScript and TypeScript
development.

Colophon

The animal on the cover of Web API Cookbook is a golden-
headed quetzal (Pharomachrus auriceps). These birds live
in humid forests from Panama to Bolivia.
The word quetzal comes from quetzalli, which means “long
green plume” in the Aztec language Nahuatl. Quetzals are
known for their iridescent green plumage and red belly.
The golden-headed quetzal is named for its brilliant golden
head. Females have more brown feathers than the males.
The weigh from 154 to 182 grams and are 33–36
centimeters long, with the males being larger.
Quetzals are solitary birds until breeding season, when
males and females pair and build a nest together in a
decaying tree trunk. Females lay 1–2 pale blue eggs and
then both birds brood and share responsibility for feeding
the chicks. The birds eat mostly fruit, and they are
therefore important to the dispersal of fruit seeds in their
habitat.
The golden-headed quetzal is common in its range and has
an IUCN status as a species of least concern. Many of the
animals on O’Reilly covers are endangered; all of them are
important to the world.
The cover illustration is by Karen Montgomery, based on an
antique line engraving from Routledge’s Picture Natural

History. The series design is by Edie Freedman, Ellie
Volckhausen, and Karen Montgomery. The cover fonts are
Gilroy Semibold and Guardian Sans. The text font is Adobe
Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

	Preface
	The Power of Modern Browsers
	Drawbacks of Third-Party Libraries
	Who This Book Is For
	What’s in This Book
	Additional Resources
	CanIUse.com
	MDN Web Docs
	Specifications

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Asynchronous APIs
	Introduction
	Callback Functions
	Events
	Promises

	Working with Promises
	Problem
	Solution
	Discussion

	Loading an Image with a Fallback
	Problem
	Solution
	Discussion

	Chaining Promises
	Problem
	Solution
	Discussion

	Using the async and await Keywords
	Problem
	Solution
	Discussion

	Using Promises in Parallel
	Problem
	Solution
	Discussion

	Animating an Element with requestAnimationFrame
	Problem
	Solution
	Discussion

	Wrapping an Event API in a Promise
	Problem
	Solution
	Discussion

	2. Simple Persistence with the Web Storage API
	Introduction
	Getting and Setting Items
	Disadvantages

	Checking for Web Storage Support
	Problem
	Solution
	Discussion

	Persisting String Data
	Problem
	Solution
	Discussion

	Persisting Simple Objects
	Problem
	Solution
	Discussion

	Persisting Complex Objects
	Problem
	Solution
	Discussion

	Listening for Storage Changes
	Problem
	Solution
	Discussion

	Finding All Known Keys
	Problem
	Solution
	Discussion

	Removing Data
	Problem
	Solution
	Discussion

	3. URLs and Routing
	Introduction
	Parts of a URL

	Resolving a Relative URL
	Problem
	Solution
	Discussion

	Removing Query Parameters From a URL
	Problem
	Solution
	Discussion

	Adding Query Parameters to a URL
	Problem
	Solution
	Discussion

	Reading Query Parameters
	Problem
	Solution
	Discussion

	Creating a Simple Client-Side Router
	Problem
	Solution
	Discussion

	Matching URLs to Patterns
	Problem
	Solution
	Discussion

	4. Network Requests
	Introduction
	Sending a Request with XMLHttpRequest
	Problem
	Solution
	Discussion

	Sending a GET Request with the Fetch API
	Problem
	Solution
	Discussion

	Sending a POST Request with the Fetch API
	Problem
	Solution
	Discussion

	Uploading a File with the Fetch API
	Problem
	Solution
	Discussion

	Sending a Beacon
	Problem
	Solution
	Discussion

	Listening for Remote Events with Server-Sent Events
	Problem
	Solution
	Discussion

	Exchanging Data in Real Time with WebSockets
	Problem
	Solution
	Discussion

	5. IndexedDB
	Introduction
	Object Stores and Indexes
	Keys
	Transactions
	Requests

	Creating, Reading, and Deleting Objects in a Database
	Problem
	Solution
	Discussion

	Upgrading an Existing Database
	Problem
	Solution
	Discussion

	Querying with Indexes
	Problem
	Solution
	Discussion

	Searching for String Values with Cursors
	Problem
	Solution
	Discussion

	Paginating a Large Data Set
	Problem
	Solution
	Discussion

	Using Promises with the IndexedDB API
	Problem
	Solution
	Discussion

	6. Observing DOM Elements
	Introduction
	MutationObserver
	ResizeObserver
	IntersectionObserver

	Lazy Loading an Image When Scrolled into View
	Problem
	Solution
	Discussion

	Wrapping IntersectionObserver with a Promise
	Problem
	Solution
	Discussion

	Automatically Pause and Play a Video
	Problem
	Solution
	Discussion

	Animating Changes in Height
	Problem
	Solution
	Discussion

	Change an Element’s Content Based on Size
	Problem
	Solution
	Discussion

	Applying a Transition When an Element Scrolls into View
	Problem
	Solution
	Discussion

	Using Infinite Scrolling
	Problem
	Solution
	Discussion

	7. Forms
	Introduction
	FormData
	Validation

	Populating a Form Field from Local Storage
	Problem
	Solution
	Discussion

	Submitting a Form with Fetch and the FormData API
	Problem
	Solution
	Discussion

	Submitting a Form as JSON
	Problem
	Solution
	Discussion

	Making a Form Field Required
	Problem
	Solution
	Discussion

	Constraining a Number Input
	Problem
	Solution
	Discussion

	Specifying a Validation Pattern
	Problem
	Solution
	Discussion

	Validating Forms
	Problem
	Solution
	Discussion

	Using Custom Validation Logic
	Problem
	Solution
	Discussion

	Validating a Checkbox Group
	Problem
	Solution
	Discussion

	Validating a Field Asynchronously
	Problem
	Solution
	Discussion

	8. The Web Animations API
	Introduction
	Keyframe-Based Animation
	Keyframe Animation with JavaScript
	Animation Objects

	Applying a “Ripple” Effect on Click
	Problem
	Solution
	Discussion

	Starting and Stopping Animations
	Problem
	Solution
	Discussion

	Animating DOM Insertion and Removal
	Problem
	Solution
	Discussion

	Reversing Animations
	Problem
	Solution
	Discussion

	Showing a Scroll Progress Indicator
	Problem
	Solution
	Discussion

	Making an Element Bounce
	Problem
	Solution
	Discussion

	Running Multiple Animations Simultaneously
	Problem
	Solution
	Discussion

	Showing a Loading Animation
	Problem
	Solution
	Discussion

	Respecting the User’s Animation Preference
	Problem
	Solution
	Discussion

	9. The Web Speech API
	Introduction
	Speech Recognition
	Speech Synthesis
	Browser Support

	Adding Dictation to a Text Field
	Problem
	Solution
	Discussion

	Creating a Promise Helper for Speech Recognition
	Problem
	Solution
	Discussion

	Getting the Available Voices
	Problem
	Solution
	Discussion

	Synthesizing Speech
	Problem
	Solution
	Discussion

	Customizing Speech Synthesis Parameters
	Problem
	Solution
	Discussion

	Automatically Pausing Speech
	Problem
	Solution
	Discussion

	10. Working with Files
	Introduction
	Loading Text from a File
	Problem
	Solution
	Discussion

	Loading an Image as a Data URL
	Problem
	Solution
	Discussion

	Loading a Video as an Object URL
	Problem
	Solution
	Discussion

	Loading an Image with Drag and Drop
	Problem
	Solution
	Discussion

	Checking and Requesting Permissions
	Problem
	Solution
	Discussion

	Exporting API Data to a File
	Problem
	Solution
	Discussion

	Exporting API Data with a Download Link
	Problem
	Solution
	Discussion

	Uploading a File with Drag and Drop
	Problem
	Solution
	Discussion

	11. Internationalization
	Introduction
	Formatting a Date
	Problem
	Solution
	Discussion

	Getting the Parts of a Formatted Date
	Problem
	Solution
	Discussion

	Formatting a Relative Date
	Problem
	Solution
	Discussion

	Formatting Numbers
	Problem
	Solution
	Discussion

	Rounding Decimal Places
	Problem
	Solution

	Formatting a Price Range
	Problem
	Solution
	Discussion

	Formatting Measurement Units
	Problem
	Solution
	Discussion

	Applying Pluralization Rules
	Problem
	Solution
	Discussion

	Counting Characters, Words, and Sentences
	Problem
	Solution
	Discussion

	Formatting Lists
	Problem
	Solution
	Discussion

	Sorting an Array of Names
	Problem
	Solution
	Discussion

	12. Web Components
	Introduction
	Creating a Component
	Registering a Custom Element
	Templates
	Slots
	Shadow DOM
	Light DOM

	Creating a Component to Show Today’s Date
	Problem
	Solution
	Discussion

	Creating a Component to Format a Custom Date
	Problem
	Solution
	Discussion

	Creating a Feedback Component
	Problem
	Solution
	Discussion

	Creating a Profile Card Component
	Problem
	Solution
	Discussion

	Creating a Lazy Loading Image Component
	Problem
	Solution
	Discussion

	Creating a Disclosure Component
	Problem
	Solution
	Discussion

	Creating a Styled Button Component
	Problem
	Solution
	Discussion

	13. UI Elements
	Introduction
	Dialogs
	Details
	Popovers
	Notifications

	Creating an Alert Dialog
	Problem
	Solution
	Discussion

	Creating a Confirmation Dialog
	Problem
	Solution
	Discussion

	Creating a Confirmation Dialog Web Component
	Problem
	Solution
	Discussion

	Using a Disclosure Element
	Problem
	Solution
	Discussion

	Showing a Popover
	Problem
	Solution
	Discussion

	Manually Controlling a Popover
	Problem
	Solution
	Discussion

	Positioning a Popover Relative to an Element
	Problem
	Solution
	Discussion

	Showing a Tooltip
	Problem
	Solution
	Discussion

	Showing a Notification
	Problem
	Solution
	Discussion

	14. Device Integration
	Introduction
	Reading the Battery Status
	Problem
	Solution
	Discussion

	Reading the Network Status
	Problem
	Solution
	Discussion

	Getting the Device Location
	Problem
	Solution
	Discussion

	Showing the Device Location on a Map
	Problem
	Solution
	Discussion

	Copying and Pasting Text
	Problem
	Solution
	Discussion

	Sharing Content with the Web Share API
	Problem
	Solution
	Discussion

	Making the Device Vibrate
	Problem
	Solution
	Discussion

	Getting the Device Orientation
	Problem
	Solution
	Discussion

	15. Measuring Performance
	Introduction
	Measuring Page Load Performance
	Problem
	Solution
	Discussion

	Measuring Resource Performance
	Problem
	Solution
	Discussion

	Finding the Slowest Resources
	Problem
	Solution
	Discussion

	Finding Timings for a Specific Resource
	Problem
	Solution
	Discussion

	Profiling Rendering Performance
	Problem
	Solution
	Discussion

	Profiling Multistep Tasks
	Problem
	Solution
	Discussion

	Listening for Performance Entries
	Problem
	Solution
	Discussion

	16. Working with the Console
	Introduction
	Styling Console Output
	Problem
	Solution
	Discussion

	Using Log Levels
	Problem
	Solution
	Discussion

	Creating Named Loggers
	Problem
	Solution
	Discussion

	Displaying an Array of Objects in a Table
	Problem
	Solution
	Discussion

	Using Console Timers
	Problem
	Solution
	Discussion

	Using Console Groups
	Problem
	Solution
	Discussion

	Using Counters
	Problem
	Solution
	Discussion

	Logging a Variable and Its Value
	Problem
	Solution
	Discussion

	Logging a Stack Trace
	Problem
	Solution
	Discussion

	Validating Expected Values
	Problem
	Solution
	Discussion

	Examining an Object’s Properties
	Problem
	Solution
	Discussion

	17. CSS
	Introduction
	Highlighting Text Ranges
	Problem
	Solution
	Discussion

	Preventing a Flash of Unstyled Text
	Problem
	Solution
	Discussion

	Animating DOM Transitions
	Problem
	Solution
	Discussion

	Modifying Stylesheets at Runtime
	Problem
	Solution
	Discussion

	Conditionally Setting a CSS Class
	Problem
	Solution
	Discussion

	Matching Media Queries
	Problem
	Solution
	Discussion

	Getting an Element’s Computed Style
	Problem
	Solution
	Discussion

	18. Media
	Introduction
	Recording the Screen
	Problem
	Solution
	Discussion

	Capturing an Image from the User’s Camera
	Problem
	Solution
	Discussion

	Capturing a Video from the User’s Camera
	Problem
	Solution
	Discussion

	Determining the System Media Capabilities
	Problem
	Solution
	Discussion

	Applying Video Filters
	Problem
	Solution
	Discussion

	19. Closing Thoughts
	Introduction
	In Defense of Third-Party Libraries
	Detect Features, Not Browser Versions
	Polyfills
	Looking Ahead to the Future
	Web Bluetooth API
	Web NFC API
	EyeDropper API
	Barcode Detection API
	Cookie Store API
	Payment APIs
	Finding What’s Next

	Index
	About the Author

