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Marena Manley
Stellenbosch University
Stellenbosch, Western Cape  
South Africa

In Canada, until 1972, milling-quality wheat had 
always been marketed on the basis of grade 
determined by hectolitre mass and visual 
characteristics, which was difficult to verify by 
purchasers of the wheat. During the late 1960s, 

the Canadian Wheat Board (CWB) 
decided to offer the top two grades 
of Canadian hard red spring wheat 
at guaranteed protein levels, following 
a similar decision made in Australia 
and the USA – the major difference 
being that wheat marketing was (and 
still is) under federal government 
control in Canada. Most of the flour 

mills operated with, or had access to, laboratories. 
Overnight protein content became a critical factor 
in quality assurance. The enormous task of protein 
content determination became the responsibility 
of the Kjeldahl laboratory at the Canadian Grain 
Commission (CGC) in Winnipeg. 

Early in February 1970, Dr Phil Williams was 
appointed as the ‘Chemist-in-Charge’ of protein-
testing operations. Phil accepted this responsibility, 
and subsequently upheld the 60 years of integrity 
in quality assurance for Canadian grains. Up until 
that time the Grain Research Laboratory at the 
CGC had used the Gunning-Arnold (back-titration) 
option of the Kjeldahl test. Phil introduced the 
more convenient Winkler modification even 
though the test still took about 2 hours per sample. 
It became clear that an alternative test was needed 
for testing rail-carloads at the time of unload into 
grain terminals at shipping ports, where it took 
only 4 minutes to unload up to 90 tonnes of wheat. 
The Orange-G dye-binding test was evaluated, but 
was found to be too variable. 
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Late in September 1971, Phil heard of a ‘miracle’ instrument that would do a 
protein test in 10 seconds, with an accuracy of 0.1%. The instrument was made 
by the Neotec Corporation somewhere in eastern USA. Phil tracked Neotec to 
Rockville, Maryland, and phoned the company. The call was relayed to the President 
of Neotec, Bob Rosenthal, who called Phil within the hour, and described their 
Instrument. Phil advised his director that they should investigate the instrument, 
referred to as the ‘Grain Quality Analyzer’ (GQA).

In November 1971, Phil signed the requisition for what was probably the first near-
infrared spectroscopy (NIRS) instrument ever purchased for commercial use in the 
world. The price was C$7,200. The GQA arrived at the Grain Research laboratory, 
CGC, on 2 February 1972, a truly memorable day.

Phil had never heard of NIRS until September 1971. He told me that he did not 
even qualify as a novice. Neither had he heard of Karl Norris, whom he first met in 
November 1973. 

During the next few months Phil regularly communicated with Don Webster, 
Neotec’s Chief Engineer, and just as often with Harold Moyer, Neotec’s ‘fix-
it’ engineer. Temperature sensitivity proved to be one of the first challenges in 
the stability of the instrument. Neotec addressed this issue by controlling the 
temperature of the lead sulphide (PbS) detectors. Towards the end of 1973, Neotec 
loaned the CGC three GQA instruments which enabled protein testing also to be 
done at elevator level. This meant that testing could now be done at the terminals 
in Thunder Bay and Vancouver. Phil rejected Bob Rosenthal’s offer to design an 
instrument that would do 10 tests per minute because the operators would not 
be able to load the sample cells fast enough to keep up with the instrument. 
He suggested that if Neotec could invert the system so that the sample was 
scanned from below, a tray could be designed that held 10 cells. Neotec agreed 
and designed the instrument for delivery by 31 March 1974. The Automated Digital 
Analyzer (ADA) was conceived and a new era, the NIRS era, was born. The ADA 
enabled the testing of 2500 samples in a seven-and-a-half-hour shift. It was the 
first near-infrared (NIR) instrument to use a digital computer. This allowed the 
operator to optimise the wavelengths by changing the ‘pulse-points’. It also 
revealed areas where improvements could be made to bench-top instruments, 
which had all been driven by analogue computers.

By May 1975, every wheat sample analysed by Kjeldahl, (which became 
increasingly difficult to run, due to excessive flask breakage) was also analysed by 
the ADA, and over 200,000 comparisons had been made. The weekly statistics from 
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all of the terminal elevators looked promising. Overnight, Phil secretly changed 
the multibillion-dollar protein segregation operation from Kjeldahl to NIRS, using 
the ADA – as of 1 August 1975, the 60-year integrity of Canada’s multibillion-dollar 
wheat industry was controlled by NIRS. This was the first actual application of 
NIRS in industry in the world.

From November 1976 to November 1977 Phil got the opportunity to work with Karl 
Norris in Beltsville, Maryland. This led to a life-long collaboration and beautiful 
friendship which continued until Karl’s recent death at the age of 98. Since Karl’s 
retirement, Phil kept contact with him by phone every few weeks.

In this book, Phil shares nearly 50 years of experience in the application of NIRS, 
and its implementation in industry. The legacy of his life-long contribution to the 
application of NIRS is documented and shared. New (and all other) users of NIRS 
can, for many years to come, benefit from Phil’s knowledge and vast experience 
of the use and implementation of NIRS. 

Phil, we salute you for your work and dedication – still to this date. You have 
ensured that the NIR technology developed by Karl, received its rightful place 
in industry.
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e
Phil Williams
PDK Projects, Inc.
Nanaimo, British 
Columbia, Canada

The driving force behind compiling this book is to 
provide knowledge on all aspects of near-infrared 
spectroscopy (NIRS) to potential users, and to users 
who would like to delve a little deeper into the 
technology. We have assembled the book to also 

help in the application of near-infrared 
(NIR) instruments and technology in 
the industry. The book has been put 
together from an NIRS users’ course, 
which was first compiled 16 years ago. 
The course has been presented in 8 
countries, and updated many times 
based on questions from the audience 
during the 2-day presentations.

This book covers the essential features for 
successful NIRS application in a practical and 
easily understandable format. The content on the 
chemistry and physics of NIRS is conveyed as such 
that it can be understood by all users. The importance 
of accurate reference analysis is emphasised. This 
is followed by the explanation and discussion of 
the statistics, software, instrumentation, sampling, 
sources of variance, calibration procedures and 
interpretation of calibration statistics based on 
practical experience. Suggestions for further reading 
are given for those who seek a more in-depth 
knowledge.

The molecular concept is introduced as a way to 
envisage the materials for the analysis of which 
NIRS is to be used. The principle of NIRS analysis 
differs from classical chemical analysis in that it is 
based exclusively on the spectra. The spectra are, 
of course, derived from the chemical and physical 
make-up of the material, but different growing 
or processing conditions can affect the molecular 
arrangement in space and, as a consequence, the 
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relationship between the spectra and the reported composition that results from 
the calibration process. 

Because of the time and expense involved in the development of calibrations that 
are applicable with confidence in the day-to-day world of the industry, together 
with the fact that such work is often proprietary, this type of application does not 
lend itself to publication in scientific journals. These calibrations call for extensive 
and expensive research, and the book focuses on the procedures involved in 
setting up such comprehensive calibration models. Because of the proficiency 
of modern NIR instruments, the reproducibility and reliability of the future NIRS 
results will often be superior to those of the reference laboratory.
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The first words

Imagine an analytical technique that uses no chemicals, gives accurate and 
precise results in minutes or even continuously and is simple to install and safe 
to use. Near-infrared spectroscopy (NIRS) supplies this dream. It is a rapid method 
for qualitative and quantitative analysis of a very wide range of materials such as 
powders, liquids, slurries, solid materials and gases. A ‘rapid’ method is defined as 
a method that will provide accurate and precise results in two minutes or less – 
including the time for sample preparation, as well as presenting the sample and 
removing it from the instrument. The forté of the NIRS technique lies in its speed. It 
fulfills the requirement of a rapid method, and is also applicable to continuous on-
line analysis. On-line analysis is not only faster, but obviates the need for sampling, 
and the associated sampling error because everything is being tested. Because of 
the first-rate precision of the spectral data of modern NIRS instruments, relative 
to the reproducibility of most laboratories, the NIRS predicted results for any 
application are virtually more reliable than those of the laboratory.

The concept and principle of NIRS analysis differs from classical chemical analysis 
in that it is based exclusively on the spectra. The spectra are derived from the 

01
Introduction, 

history and the 
economic benefits 

of near-infrared 
spectroscopy



08

chemical and physical make-up of the material, and can differ among materials 
with the same apparent chemical composition. For example, consider the spectra 
of wheat samples from the same variety when grown in the northern wheat-
growing areas of Alberta and southern Saskatchewan (Canada). The samples 
may be reported to contain the same protein and moisture content, but the 
different growing conditions can affect the molecular arrangement in space 
and, as a consequence, the relationship between the spectra and the reported 
composition that results from the calibration process. This is the reason underlying 
the recommendation for replication of samples of agricultural materials with the 
same or closely similar reference data. A difference of even 0.1% in protein content 
represents a vast number of molecules.

Six things are absolutely essential to the successful application of NIRS. These 
are (1) accurate and (2) reproducible reference analysis, (3) excellent spectral 
precision, (4) comprehensive sample selection and (5) assembly, as well as (6) 
efficient sample presentation to the instrument. No matter how comprehensive 
the chemometric software, it will not fully compensate for imperfections in any 
one of these prerequisites.

There is a crucial need for education in NIRS technology at a university 
undergraduate level. This book assumes that the reader knows little or nothing 
about NIRS. It includes areas of the philosophy of NIRS that do not appear in most 
texts, but are an important part of the background needed to understand what 
is involved in an effective application of this fascinating technology. It will not 
delve deeply into the theoretical aspects of the physics and chemistry of NIRS. 
There are other books that treat these aspects very well. For those who seek 
the fundamentals of NIRS, i.e. the physics, the chemistry and the chemometrics, 
Williams and Norris (2000) (see Suggestions for further reading) is recommended. 
The chapters on these subjects were compiled by the finest of experts. 

This book is aimed at teaching the essentials of NIRS to industrial-type analysis. 
It was originally requested by the Royal Australian Chemistry Institute’s Cereal 
Chemists group (now the Australian Grain Science Association, AGSA). As a result, 
there are many references to grain and grain products, but the principles are 
applicable to the wide range of materials and parameters to which NIRS is routinely 
applied. It is also aimed at teaching the principle of developing calibrations that 
can reliably be used in the workplace, which is different from simply producing a 
scientific paper. It is aimed at introducing the reader to the practical aspects of 
NIRS application that may not be taught elsewhere. It is intended for potential 
users of NIRS, as well as those who have been operating an instrument for some 
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time and would like to learn more about the technology. The book addresses 
all aspects of the practical implementation and use of NIRS. It is also aimed at 
teaching management why they need NIRS. 

The things most clients, including management, really need to know about NIRS 
instrumentation, are which instrument best suits their operation and how can 
they use it to improve efficiency and revenue. Operators need to know how to 
use their instrument, how to ensure that their instrument is working properly and 
that it continues to do so over time.

Readers of this book are encouraged to read it all. As well as the basics, there 
are a lot of useful facts and hints buried in the text. It attempts to present the 
technology in easy-to-understand terms, and includes explanations of words 
or phrases such as ‘stray light’ and ‘non-linearity’ that are widely-used in the 
technology, but are sometimes not fully understood. Most of the examples are 
based on applications to the agricultural and food industries. This is because these 
materials offer the most diversity in terms of physical and chemical composition 
– the principles explained are however applicable to any type of material. There 
is an increasing interest in mid-infrared (mid-IR) spectroscopy for some of the 
applications usually performed by NIRS. The principles of application that this 
book presents are general, and for the most part can be applied to either near-
infrared (NIR), mid-IR or Raman spectroscopy.

There are two main types of NIRS applications. The first type can best be described 
as the ‘feasibility study’. The experimental work involves the assembly of a set 
of samples, scanning them, determining the reference data, as well as using 
chemometrics to develop and evaluate the calibration. 

The feasibility study can be approached in two ways. The first considers the 
adoption of NIRS in order to replace an existing method of analysis – it also 
needs to determine whether NIRS is the most appropriate procedure. Sampling 
for such investigations are concerned mainly with calibration development. All 
major sources of variance should be represented. Samples should be assembled 
for the calibration development of such feasibility studies – representing all of 
the identified sources of variance and replicated at least three times. The samples 
should be divided into calibration and validation sample sets. The adoption of NIRS 
is based on the statistics of the feasibility study and, if these are acceptable, the 
final adoption of NIRS calls for further work, including a much more comprehensive 
set of samples. 
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Another way of approaching the feasibility study is more academic, and generally 
includes the presentation or submission of a scientific paper. A major portion 
of this type of study concerns more tenuous applications, e.g. using NIRS as a 
replacement for a traditional method, such as visual appraisal – an operation 
which has proven successful over the years. The statistics of such studies are often 
not sufficiently acceptable to denote practical application, or justify replacement 
of the time-honoured system by industry. Samples for such feasibility studies are 
often ‘grab’ samples, assembled by no particular system. They may be assembled 
simply by buying them from a store, or stores. The results are published in the form 
of a scientific paper, thousands of which now constitute the NIRS bibliography.

The second main type of NIRS application constitutes the ‘development of 
calibrations’, which is applicable with confidence in the day-to-day world of 
industry. Because of the time and expense involved, together with the fact 
that such work is often proprietary, this type of application does not lend itself 
to publication in scientific journals. These calibrations call for extensive and 
expensive research, and this book focuses on the procedures involved in setting 
up such comprehensive calibration models. Samples should encompass all 
sources of variance, and be replicated several times. The main difference between 
feasibility studies and calibrations intended for use in industry is that, apart from 
gross outliers, such as those caused by the incorrect entering of reference data, 
there can be no outliers in an industrial calibration. This is because every sample 
that is presented to the instrument in day-to-day analysis has to be scanned 
and the results reported. The calibration will be based on the reference data, 
the reproducibility and reliability of which will vary among laboratories. The 
reproducibility of the future NIRS results will often be superior to those of the 
reference laboratory.

For operations that involve testing large numbers, such as in plant breeding 
programmes, or testing of some of the more demanding constituents, or 
parameters such as Falling Number, calibrations with r2-values of 0.90 or even 
0.85 can be a valuable tool in screening. This type of application will identify 
samples that are very high or very low in the parameter. Upper and lower limits 
of acceptability are established by experience. Samples that exceed either limit 
can be accepted as high or low with confidence. Samples that fall between those 
limits should be tested by the appropriate laboratory method to determine 
acceptability into the system, but the screening will eliminate up to two-thirds 
of the testing, with commensurate savings in time, convenience and expenses.

The technique is Near-InfraRed Spectroscopy, and the abbreviation should always 
include the ‘S’. ‘NIR’ refers only to a wavelength range, i.e. near-infrared and not 
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to an analytical technique. Alternatively, the word spectroscopy should always 
accompany the acronym NIR, thus NIR spectroscopy. Since its early adoption 
as a dependable method for analysis of grain in the early 1970s, NIRS has been 
incorporated into many types of industry, including materials as diverse as rocket 
fuel, milk, manure, rubber, petrochemicals, plastics, pharmaceuticals, wood, 
cosmetics, fish, fresh meats and fruits, confectionery and many more. The most 
recent explorations have focused on applications to environmental factors, 
sensory factors, and diagnosis of diseases in animals and people. Many of the 
suggestions and examples cited in this book are taken from the cereal foods 
and feeds industries, but the principles are pertinent to application to any type 
of material.

The most successful industrial applications of NIRS involve prediction of one or 
more important constituents, such as protein, moisture, sugar or fat/oil contents, 
for which abundant absorption bands are present in the NIR region. Some 
functionality characteristics, such as flour water absorption and flour ash can be 
predicted with confidence by NIRS because these features are strongly affected 
by constituents, such as protein content, for which absorbers are plentiful. 
In the case of ash there is no ash in flour until it has been burned, and what is 
being measured is related to the cellulosic components of the flour, for which 
absorbers are also clear-cut (Williams et al., 1981). In general, the further an item 
to be predicted is remote from actual constituents, such as a flavour component, 
the less trustworthy the application is likely to be, and the less likely it is to 
be reliable for use in industry. The impact of error on the commercial aspect in 
industry, and the consequences of erroneous diagnosis in the medical profession 
are both features that call for careful consideration before the adoption of NIRS 
as a replacement for existing methods of analysis in either field.

An NIRS calibration translates the spectral data directly into terms of the 
reference data, whether that be composition, physical or functionality factors. 
After calibration the instrument multiplies the spectral data from any sample 
presented to it by the calibration equation which is essentially a constant, so the 
efficiency of the prediction depends heavily on the quality of the spectra. If the 
spectral precision is poor this will inevitably result in impaired reproducibility of 
analytical results.

Having established the need for an NIRS calibration, before attempting any work 
on NIRS, the first priority is to identify the methods used for reference testing and 
to determine their precision. The results from any laboratory must be accepted 
as the accuracy from that laboratory. The second most important requirement is 
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to determine the precision of the NIRS instrument for application to the material 
that is to be analysed (i.e. the spectral precision).

Spectral precision depends on the instrument design (mainly its sample 
presentation system), the physical nature of the material, the composition with 
particular respect to moisture content and the skill of the operator in presenting 
the sample to the instrument. It can be determined by scanning a single sample 
of the material 10 times, with re-blending and re-loading the sample cell between 
scans (see Chapter 9, section 9.1.2). After each scan, the scanned sample should not 
be returned to the original sample. It should be saved in a separate receptacle and 
returned to the original sample after the determination of the spectral precision 
exercise has been completed. After the 10th scan, the sample is left in the cell and 
re-scanned a further 9 times without disturbing the sample in the cell at all. 

The standard deviation (SD) of the raw spectral absorption data is calculated 
for both series of scans at selected wavelengths. Wavelengths 1210 and 2230 
nanometre (nm) are suggested. Wavelength 2230 nm is one of the ‘classical’ 
reference wavelengths originally used in discrete filter instruments. The SD of the 
first series represents the overall spectral precision (reproducibility). The SD of the 
second series represents the contribution of the instrument to the overall spectral 
precision (repeatability of the instrument). Because there has been no interference 
caused by the operator, the SD for repeatability is usually very low compared to 
the reproducibility. No calibration model is needed for this exercise, because it 
involves only spectral data. An example is given in Chapter 9 (see Table 9.2).

The third requirement is to ensure the reliability of the samples used in the 
calibration development. This involves the identification of all of the sources of 
variance likely to influence the spectra. The fourth requirement is the assembly 
of a set of samples that includes and replicates all of these sources at least five 
times. This also involves the sampling technique. The fifth prerequisite is the 
efficient presentation of the sample to the instrument. This is related to the 
sample presentation system of the instrument, the type of material, and the 
proficiency of the operator. The type of material refers to its physical form, e.g. 
solid or granular surface, powder, slurry, fibrous, liquid or high-moisture. The sixth 
and final prerequisite is to establish the accuracy of the NIRS predicted results, 
relative to the results of the reference analysis, because that is the yardstick by 
which all future analysis by the NIRS instrument will be compared. Every question 
that arises from the results of NIRS work comes back to these basic facts, and not 
even the most sophisticated chemometrics will fully compensate for irregularity 
in any of these six factors.
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1.1	 What does the operator really need to know?

This book will explain all of the factors needed to run an NIRS operation. There 
is much more to setting up and running a successful operation than using the 
instrument. That is the easiest part. There are things that the operator needs 
to know, to obtain and sustain the best performance of the instrument, and to 
obtain confidence in the technology.

Firstly (1), it is important to know what can (and cannot) be measured by NIRS. 
Secondly (2), one should understand how and where does NIRS fit into the 
‘bigger picture’ of the day-to-day operation. Further items include (not in order of 
importance) how to:
3.	 select the most suitable 

instrument;
4.	 operate the instrument efficiently;
5.	 maintain the instrument, to assure continued good performance;
6.	 monitor the performance of the instrument, including the 

instrument diagnostics;
7.	 interpret the results of monitoring;
8.	 recognise the onset of inferior performance;
9.	 select samples for calibration;
10.	 prepare samples for calibration and subsequent analysis;
11.	 calibrate the instrument;
12.	 update calibrations;
13.	 evaluate a calibration;
14.	 understand the basic statistics;
15.	 get the best out of the software;
16.	 extend the scope of the instrument, and to apply it to its best capability;
17.	 interpret what has happened during development of a calibration; and
18.	 improve and extend a calibration.

These features will all be addressed in the book, but not necessarily in the above 
order. Item 2, the ‘bigger picture’ looks into the future and should be considered 
at the outset. It refers to the implications of using NIRS in place of the analytical 
method(s) that have been used hitherto. The three main factors affected 
are those of the implications on staff requirements, and the obvious need for 
reduction in laboratory staff which may involve consultations with affected 
unions. The second factor is the impact of replacing a previous analytical method 
on the overall economics of the operation. The third factor considers the impact 
of obtaining essentially instantaneous results for quality control in comparison 
with the intervals of several hours between sampling, as well as obtaining results 
by previous methods. Another factor for a commercial analytical laboratory, is 
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the possibility of introducing significant reductions on the cost of testing for the 
constituents most frequently tested. This could lead to an increase in clientele 
and in commensurate revenue. There are several other factors, all of which attest 
to the benefits of introducing NIRS to many types of operation. Items 4 and 5 are 
explained in the operating manual that accompanies the instrument at the time 
of purchase. 

Certain parts of the book might overlap, but ‘repetition is the corner stone of 
learning’. More detailed descriptions of areas such as the pure physics and 
chemistry of NIRS, instrument design and other features are given in Suggestions 
for further reading at the end of each section for those who want to learn more. 
Background is given and some basics are introduced. The index at the end of the 
book will help in finding specific areas of the technology.

1.2	 What can and cannot be measured with NIRS

The most successful applications are the prediction of composition in terms of 
constituents such as water, fat, protein, starch, cellulose, and other constituents, 
all of which have abundant absorbers, such as O-H, C-H and N-H (see Chapter 2). 
Prediction of functionality factors such as flour water absorption, digestibility, 
particle size and slurry viscosity carry no direct absorbers. These factors are 
predictable to a fairly high degree of efficiency because of their physical 
composition, as well as by association with constituents in their make-up that 
carry absorbers, in such a way which relates the functionality to the spectral 
characteristics. 

Viscosity and density, the texture of flours and ground grains, as well as solid 
materials and sludges can be measured by NIRS because they depend to a large 
extent on particle size, and the way in which the particles arise. Attempts at 
application of NIRS to factors for which there are no apparent absorbers, such as 
tastes and flavours in foods, and even the degree of freshness in fruits, vegetables 
and meat may lead to disappointing results. Constituents that affect these are 
present in parts per million, such as pesticide and herbicide residues or flavour 
components. These are difficult to determine with sufficient accuracy to comply 
with regulations because the absorbers that they contain can be dominated by 
the same absorbers present in constituents, such as C-H, O-H and N-H, which 
are present in much higher concentration. It may be possible to determine some 
such substances in soils, which contain fewer absorbers than most agricultural 
materials. Heavy metals have no absorbers in the NIR region and are theoretically 
impossible to predict, but under some circumstances their association with other 
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materials, such as cellulose, may enable their prediction with a reasonable degree 
of success (Malley & Williams, 1997).

Differences in the thickness of thin films of materials, such as plastic which may 
be only a few micrometers in thickness, can be determined using NIRS. The few 
micrometres represent the thickness of millions of molecules, all of which can be 
detected by NIRS. When the light energy penetrates the molecular layer as far 
as the material that it encloses, such as copper wire, the NIRS signal will change 
abruptly and differences in the thickness of the molecular layer can be measured. 
What the operator needs to do for the NIRS analysis of any material is to tell the 
instrument which molecules to identify. This is done by ‘marrying’ the spectral 
data to the reference data. The more precise and accurate the reference data, 
the more precisely the desired information in the spectral data will be identified, 
and the more effective the NIRS analysis. In the example of the prediction of the 
thickness of a film, such as the coating of a cable, the calibration can be developed 
from samples of cables with differences in the coating material and its thickness, 
and in small differences in thickness that transpire throughout the length of the 
cable. No chemical analysis is needed.

It is important to determine whether NIRS is a practicable technique to employ 
in any specific operation. The technique is particularly applicable to situations 
that call for rapid on-the-spot analysis, such as unloading of farm trucks carrying, 
e.g. wheat, and also where continuous on-line analysis is required. It is also an 
important asset to operations that demand analytical methods that involve 
purchase and disposal of large amounts of chemical reagents – also to operations 
such as screening or plant-breeding that call for the analysis of large numbers 
of samples. However, for operations that require only periodical analysis, the 
economics may favour the traditional ‘wet-chemistry’ methods.

1.3	 The economic benefits of NIRS

Management pays the bills. This book is also designed to help Management 
understand why their operation needs NIRS, and what are the many benefits 
that it offers. Probably the most important advantage of NIRS is the speed of the 
analysis. NIRS provides the user with the same precision (often even better) as 
any reference method. It does this at a fraction of the cost and in a fraction of the 
time per test with complete safety and flexibility to take the instrument into the 
field. The costs of standard ‘wet chemistry’ tests vary from about C$15,00–800,00 
or more per test. An NIRS test costs C$2,00–5,00, but several constituents can 
be measured at the same time, for the same cost for all the parameters included. 
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An aspect that Management can accept with confidence is the economic benefit 
of introducing NIRS to their operation. Diode array NIR instruments are fast 
enough to allow continuous on-line analysis of material on moving belts and 
other processing equipment. On-line analysis allows factories to monitor their 
production continuously which allows them to correct, in minutes, what could 
possibly become expensive deviations from the quality of their products. Because 
all of the material is being scanned and analysed continuously, sampling and the 
associated errors are eliminated.

NIRS has made it possible and practicable for people to test for constituents or 
parameters for which they had always wanted to test, but were previously not 
able to, because of restrictions in time and expense. The gains in revenue to all 
aspects of the grain industry coming from protein as a commodity have been 
astronomical over the past almost 50 years since protein testing of wheat and 
barley has become widespread. Other examples include testing for amino acids in 
grains, fatty acid composition in oils, fibre components, digestibility, energy factors 
in feeds and forages, and nitrogen and phosphorus in manures, all expensive and 
time-consuming applications to which NIRS has been successfully applied.

The costs of an NIRS instrument and its calibration must be considered in relation 
to the intended application. Modern NIR instruments can be expected to function 
efficiently for 10 years or more. An NIRS instrument that cost thousands of dollars 
can be used for analysis of commodities or products worth millions. For example, 
it can truly be said that NIRS has revolutionised wheat handling and marketing. 
The value of the respect gained in the world of wheat marketing by the Canadian 
Wheat Industry as a result of their pioneer use of NIRS in 1975, goes beyond pricing. 
Use of NIRS adds to the integrity, efficiency and flexibility of any operation.

Another aspect of assessing the value of using NIRS is the consequence of not 
testing, or not testing with sufficient frequency, again due to the time and/or 
expense of testing. An example here is feed mills that may rely on ‘book’ values for 
composition, and as a result may not utilise expensive ingredients, such as protein 
supplements, with the best efficiency. Analysis of major ingredients, together 
with analysis of finished products can improve the consistency of performance 
of the feeds, as well as boost the integrity and reputation of the feed company.

Yet another aspect deals with testing raw materials and developing products 
during processing in a manufacturing plant. Checking these by reference analysis 
is expensive, but more important is the time factor. Using ‘wet chemistry’ 
methods may take two or three hours, even days, before the plant learns that 



Introduction, history and the economic benefits of near-infrared spectroscopy

17

their product is deficient in or contains excess of one or more ingredients, or that 
their products are variable due to inefficient mixing. Raw materials and process 
control can be monitored instantly by NIR instruments located at key points in the 
plant. Remote sensing using fibre optics cables and networking software enables 
several instruments to be controlled from a single computer.

An earlier critical examination of the economics of NIRS demonstrated that an 
operation involving at least 10 laboratory analyses during each working day would 
benefit economically by switching from traditional ‘wet chemistry’ methods to 
NIRS, while an operation that involved 20 or more daily analyses simply could not 
afford not to use NIRS.

1.4	 Development and implementation history of NIRS

The NIR region of the electromagnetic spectrum extends from about 700 nm to 
nearly 3000 nm. Because of the limitations of their detectors, most NIR instruments 
do not record spectra past 2500 nm. There is increasing interest in the mid-IR range. 
Mid-IR spectroscopists describe wavelength in terms of frequency, recorded as 
wavenumbers, or reciprocal centimetres (cm-1). The wavelength in nanometres is 
given by 10,000,000 (107) divided by the wavenumber. Similarly, the wavenumber 
can be determined by 10,000,000 (107) divided by the wavelength. The spectral 
range for mid-IR spectroscopy extends from about 3300–800 cm-1 (3000–12,500 
nm). The relationship between wavelength and frequency (wavenumber) is 
non‑linear. 

First of all, where did NIRS start? Spectroscopists have recognised the existence of 
absorption of energy that occurred in the infrared (IR) region for many years since 
William Herschel drew attention to the phenomenon in 1800 (Herschel, 1800). All 
fundamental absorptions occur in the mid-IR region, and the bands that appear 
in the NIR region are all overtones or combinations of these (see Chapter 2). Like 
ripples on a pond, the fundamental absorptions occurring in the mid-IR region 
extend down to the lower NIRS wavelengths as overtones.

Unlike the sharp spectral peaks seen in the mid-IR region, those in the NIRS region 
are broad and overlapping. The number of fundamental absorbers that can come 
from a molecule is given by (3 × N) − 6, where N is the number of atoms in the 
molecule. Water, for example, with 3 atoms has (3 × 3) = 9 − 6 = 3 possible fundamental 
absorbers. A molecule such as glucose (C6H12O6) has a possible 66 fundamental 
absorbers. All of these fundamental absorbers have up to 4 usable overtones, so 
that it is easy to see that the NIR region contains many absorbing bands and is 
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very complicated. Until the introduction of the computer, studies were limited to 
the fundamental absorbers in the mid-IR region, mainly because absorption bands 
are sharper in the mid-IR region and there were too many overlapping absorbers 
in the NIR region. The wealth of absorbers, including overtones and combination 
bands in the NIR region, is actually an asset to quantitative analysis. The large 
number of overtones and combination bands offer more flexibility for wavelength 
selection when absorbers may interfere with one another.

In the late 1950s, Karl H. Norris at the U.S. Department of Agriculture (USDA, 
Beltsville, Maryland) was the first to consider that this mass of absorbers could be 
analysed by means of a computer. With a series of co-workers, he demonstrated the 
feasibility of using the NIR information to determine moisture content of soybeans 
using 1940 nm as the main absorption band. During his work on the prediction of 
the moisture content of soybeans, he noted that the measurement was affected 
by the high protein content of soybeans which can reach over 40%. This was 
subsequently attributed to a strong protein absorber at 1978 nm. Karl H. Norris is 
justifiably credited with being the ‘father’ of modern NIR technology.

Karl Norris (left), the ‘father’ of NIRS, together with Phil Williams at the 2010 International 
Diffuse Reflectance Conference (IDRC).

The first commercial application of NIRS in industry is credited to the CGC who 
adopted it as the method for testing an annual workload of over 500,000 rail-
car and cargo samples of CWRS (Canada Western Red Spring) wheat for protein 
content. Their NIRS operation commenced in early 1972, using the Neotec GQA.
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                       The Neotec GQA Model I used by the CGC in 1972.

The Automated Digital Analyzer 
(ADA) (Williams, Stevenson & Irvine, 
1978) followed the GQA and deserves 
its place in history The ADA was the 
first commercial NIRS instrument that 
employed a digital computer and 
allowed the operator to optimise the 
wavelengths by changing the ‘pulse-
points’. It was designed and built 
in 1974 by the Neotec Corporation 
with input from the CGC on sample 
presentation. Bob Rosenthal was the 
president of Neotec Corporation at 
the time, together with their chief 
engineer, Don Webster. It tested 
10 samples of ground wheat per 
minute, and in 1975 it enabled the 
CGC to convert their entire protein 

segregation programme (over 500,000 samples annually) from a 100% Kjeldahl to 
an NIRS operation – monitored (then) and validated by Kjeldahl testing. 

Replacement of the original analogue computer by a digital computer in the ADA 
(which used the same optical system as the original Neotec 3-filter instruments) 
also opened the door to solving some of the chronic problems of the early 
generation of NIR instruments. The ADA operated for 18 years during which it 

The ADA – note the vintage computer (top) 
and illustration of loading the cells of the 
ADA sample tray.
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completed over 11 million tests for protein and 
moisture content without any serious downtime. 
Lessons learned from the use of the ADA led 
to the development of the Neotec GQA 31EL in 
which Dr  Ron Moen, Neotec’s statistician, was 
instrumental.

The NIRS system was in full operation at terminal 
grain elevators. by late 1976. Conversion from 
the chemical reference Kjeldahl analysis to NIRS 
currently saves the CGC an estimated more than 
C$3 million annually in operating costs besides 
being an environmentally clean operation. To 
effect segregation and marketing of wheat on the 
basis of guaranteed protein content every rail-car 
load delivered into terminal shipping elevators at 
the ports is tested and stored on the basis of its 
protein content. The time of unloading a 90-tonne 
hopper car is only 3–4 minutes. This type of 
segregation would be impossible with any other 
method of testing. 

Switching from Kjeldahl to com
bustion analysis as a reference 
method in 1996, the CGC was the 
first operation in the world to 
achieve a chemical-free system 
for large-scale testing of grain for 
protein content. The use of NIRS 
in determining the government-
guaranteed protein content for 
their multibillion-dollar wheat 
industry by the CGC, gave NIRS 
instant integrity worldwide. The 
ability of elevator managers to 
pay farmers on the basis of protein content has generated millions of on-the-spot 
dollars for western Canadian wheat farmers over the past almost 50 years.

The door had been opened and other groups entered the field. DICKEY-john had 
already developed the GAC (Grain Analysis Computer) using 6 filters and log 1/R 

Bob Rosenthal, a true pioneer 
and the president of the Neotec 
Corporation during the early 
1970s (top) and Don Webster, 
their chief engineer.

The Neotec GQA Model 31 EL filter instrument. 
This picture was taken at ICARDA in Syria – 
probably the oldest, frequently-used instrument 
in the world in over 30 years.
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with no pre-treatment. In 1974, Technicon Industrial Systems became associated 
with DICKEY-john and David Funk introduced major changes to the GAC. In 1978, 
DICKEY-john introduced their updated version of the GAC, the InstaLab®. In the 
meantime, Dr Fred McClure from North Carolina State University, and particularly 
Dr John S. Shenk from Penn State University had developed computerised 
spectrophotometers and software for work in the field of NIRS.

In 1975–1976, a group of workers in the 
USA, under the leadership of Dr John 
Shenk, recognised the potential of 
NIRS for the determination of quality 
in forages, the major ingredient in 
the diets of many domestic animals. 
The energy and dedication of John 
Shenk led to the development of 
the first network of NIR instruments, 
and the introduction of on-farm 
testing of fresh and matured forages, 
using NIR instruments transported 
in a cargo van. Dr John Shenk, in 
partnership with Dr F.E. ‘Woody’ Barton, 
as well as Rick Hoover and Dr Mark 
Westerhaus, who later developed 
WinISI software, developed the first 
NIRS network. WinISI incorporated 
many of Dr  Shenk’s innovative ideas 
and became the world’s most widely-
used NIRS software.

Between 1974 and 1978 improve
ments in instrument design and 
software, together with the perse
verance on the application side, 
expanded applications from protein 
and moisture to oil, fibre and starch 
contents. In 1978, Neotec introduced 
the first computerised NIRS scanning 
spectrophotometer offered commer
cially, the Model 6350. This instrument 
was driven by a digital computer and 

Country primary elevators (top) and a 
terminal grain elevator.

The Kjeldahl laboratory at the CGC in 1972.
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operated using a precursor of the DOS-driven Near-infrared Spectral Analysis 
Software (NSAS), the first software ever dedicated to an NIRS instrument. It 
operated over a wavelength range of 1100–2500 nm and enabled the use and 
optimisation of derivatives, as well as the wavelength range. This development 
extended NIRS testing to constituents such as amino acid and fatty acid 
composition and parameters such as wheat kernel texture, barley metabolisable 
energy and others. Since then other companies have developed computerised 
scanning spectrophotometers and associated software. During the mid-1980s the 
wavelength range was extended down to 380 nm.

                The first computerised scanning NIR spectrophotometer, the Pacific  
                Scientific Model 6350, introduced by Neotec in 1978.

Technicon soon followed the Pacific Scientific 
Model 6350 with their InfraAlyzer Model 500, 
largely designed by Dr Ed Stark. A new company, 
LT Industries, was formed by Izaac and Aviva 
Landa. LT Industries introduced their Quantum 
series of computerised spectrophotometers. 
The 1970s was a keynote decade for NIRS.

Probably the last major advance to NIR techno
logy was made in the year 1991 when Ed Stark 
introduced the diode array instrument that 
he had designed at the international NIRS 

conference in Aberdeen, hosted by Ian Murray and Ian Cowe. This was the first 
ultra-rapid instrument that has since facilitated continuous on-line industrial NIRS 
analysis of liquids. In 1980, Trebor company introduced the first commercial NIRS 

Dr Ed Stark who designed the first 
diode array instrument in 1991.
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instrument developed for testing 
whole wheat and barley kernels 
for protein and moisture content 
(Williams, Norris & Sobering, 1985). 
This was a significant milestone 
since it essentially removed 
grinding as an important source of 
error in grain-testing and halved 
the testing time. It was also an 
advantage to plant breeders since 
whole-grain testing allows the 
breeder to select heritable characteristics in generations as early as F3 and retain 
the entire sample for planting. The Trebor 90 operated in transmittance mode 
over the wavelength range of around 950 to 1100 nm using NIRS light-emitting 
diodes. In 1987 Tecator introduced their Infratec Model 1225. This instrument used 
a monochromator, and updated versions of the Infratec are widely-used in the 
grain industry.

Figure 1.1 shows a typical spectrum of ground wheat from 1100–2500 nm. Note the 
characteristic ‘peak’ at 1936 nm. This corresponds to one of the most important 
absorption bands for water. Other important water bands occur at 964, 1154, 1410 
and 1460 nm (these might differ slightly, depending on the instrument).

1936 nm

-0.055

1098 1444 1789 2135 2481

0.031

0.318

0.504

0.691

Figure 1.1	 Spectrum of ground wheat with the characteristic moisture absorption band 	
	 indicated at 1936 nm.

The Trebor 90 whole-grain NIRS analyser.
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Differences in particle characteristics result in differences in the way that light 
is reflected back from the sample, or through the sample, to the detector. 
Samples with bigger particle size, including whole grains, cause more energy to 
be absorbed and less light is reflected. Most NIR instruments record the spectral 
data as the log 1/R (apparent reflectance), sometimes called Absorbance or 
Optical Density. Transmittance instruments record spectral data as the log 1/T 
(apparent transmittance). When a sample is irradiated with light energy, some of 
the energy is scattered and lost within the sample. Most of the energy is diffusely 
reflected, some of which is captured by the detectors and used in analysis.

The degree to which the energy is scattered is affected by particle size and shape. 
Bigger particles, such as whole grains and seeds, cause a higher degree of scatter. 
This results in more absorbance by the sample and less reflectance. The visible 
effect is that spectra of larger particles, such as whole wheat kernels, will appear 
higher in the plot than particles of ground wheat or flour. Figure 1.2 shows log 
1/R spectra of ground hard and soft wheats from 400–2500 nm, while Figure 1.3 
gives spectra of ground and whole wheat. The main reason for the spectra to rise 
towards the longer wavelengths is that the absorbers in that region are stronger. 
The high spectral signals in the visible region, from 400–700 nm show a colour 
effect. Dark-coloured materials appear higher in the plot than brighter-coloured, 
such as yellow, materials.

During the 1974–1978 period, the use of first and second derivatives of the log 1/R 
spectral data was developed and introduced by Karl Norris (Norris & Williams, 1984) 
(see Chapter 5, section 5.2.5). An excellent description of derivatives is given by 
Hruschka (2001). Figure 1.4 shows the log 1/R spectrum of a sample of whole-
kernel winter wheat, and the 2nd derivative (2 4 4 1) spectrum of the same wheat. 
The main water band at 1908 nm and its overtones at 1412, 1162 and 982 nm 
(arrowed) are very clear. Modern NIRS software systems all include the option of 
using derivatives.

Chemometrics has become a widely-used tool in NIRS. Chemometrics is defined 
as the application of mathematical or statistical methods to chemical data. The 
introduction of principal component analysis (PCA) (Cowe & McNicol, 1985) and 
partial least squares (PLS) regression in the mid-1980s (Martens & Næs, 2001) 
has resulted in the replacement of multiple linear regression by PLS regression 
for most calibration development. Subsequently, application of the artificial 
neural networks (ANN) concept (Borgaard, 2001) has resulted in development 
of very stable calibrations based on substantial sample sets and has facilitated 
development of large-scale networking of instruments.
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PSI = 46 (hard)

PSI = 74 (soft)
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Figure 1.2	 NIR spectra of hard and soft ground wheat (PSI = particle size index).

Whole wheat

Ground wheat
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400 925 1449 1974 2498

0.229

0.536

0.844

0.151

Figure 1.3	 NIR spectra of ground and whole wheat.

Advances in computer design and software have kept up with instrument 
development. These advances have brought NIRS technology to the stage where 
memory capacity and computing time are no longer obstacles to most operations 
including storage of large numbers of spectra, calibration development and 
evaluation, optimisation of wavelength and mathematical treatment, as well as 
calibration transfer.
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Figure 1.4	 Log 1/R spectrum of whole wheat and the 2nd derivative (2 4 4 1) spectrum 	
	 of the same wheat showing overtones (1412, 1162 and 982 nm) of the 		
	 moisture band at 1908 nm.

In 1978, Dr Karoly Kaffka was the first purchaser ever of a computerised spectro
photometer, the Neotec, Pacific Scientific Model 6350. It was at a conference 
organised by him in Budapest, Hungary in 1986 where the International Council 
for Near-infrared Spectroscopy (ICNIRS) was inaugurated. The meeting was the 
first of what has been a long series of International biennial NIRS conferences.
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Karoly Kaffka (left) and Karl Norris. Two NIRS giants together.

In 1982, Dr Gerry Birth, a physicist working at the USDA laboratory (Athens, 
Georgia) had masterminded a conference that grew into the International Diffuse 
Reflectance Conference (IDRC) held every two years in the US. He selected Wilson 
College in Chambersburg (Pennsylvania, USA) as the venue and organised the 
conference using the same format as the Gordon conferences; morning and 
evening sessions with afternoons free for discussions and recreation. The IDRC 
series quickly became recognised as an excellent forum for discussion of the latest 
discoveries and revelations of NIRS. It continues to be one of few conferences 
where beginners and seasoned troupers can intermingle and where newcomers 
can rub shoulders with the big names and find that they are very approachable.

1.5	 Advantages and disadvantages of 		
	 NIR technology

The advantages of NIR technology:
�� Speed – results in seconds, or even continuously, 
rather than in hours or days.

�� Accuracy equivalent to any reference methods.
�� Precision (reproducibility) equal or superior to 
reference methods.

�� Low cost per test – low labour costs, no 
chemicals (to purchase or dispose of).

�� Flexibility in sample presentation to the instrument 
– no other test method offers the flexibility of 
accepting whole- or ground-state materials in 
amounts of up to a kilogram of material without 
affecting the sample in any way.

Dr Gerry Birth who initiated 
the IDRC series.
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�� Flexibility in testing – many (up to 12) constituents can be tested 
simultaneously.

�� Environmentally clean – no chemicals.
�� Easy and cheap to install – no drainage or exhaust needed.
�� Little or no sample preparation.
�� Stand-alone instruments, with no peripherals.
�� Small instrument size.
�� Durability – instruments work well for 10+ years.
�� Simple and safe to operate.
�� Calibration transferability among instruments of the same model (and even 
different models).

�� Networking – many instruments, even remote from each other, can be 
networked to use the same calibration, and performance controlled from a 
single control centre.

�� Continuous on-line and interactance analysis (using a fibre optice probe) by 
NIRS obviate the need for taking samples.

There are also some disadvantages associated with NIR technology. These include:
�� Separate calibrations are needed for every commodity and constituent – 
however, many modern instruments can now be calibrated at the factory and 
the user simply has to verify performance).

�� The need to monitor accuracy and reproducibility (also needed in 
reference analysis).

�� Instruments are expensive to purchase, but quickly pay for themselves in costs 
saved in labour, installation, time and chemicals.

�� Skepticism – many people lack faith in the technology.
�� Lack of knowledge as to how to operate instruments most efficiently.
�� The crucial need for education in NIR technology at a university 
undergraduate level.

1.6	 Last words on advantages of NIRS

NIRS has revolutionised many aspects of the branches of industry and commerce. 
Its increasing use is bringing about substantial reductions in the amounts 
of corrosive and potentially harmful chemicals used in analytical work. The 
contribution of NIRS to the overall economics of any industrial operation that calls 
for analytical work is equaled by its contribution to the environment. A sideline 
effect of NIRS is that it has focused attention of many laboratories on the accuracy 
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and reproducibility of their ‘tried and trusted’ reference methods. This is having 
the effect of causing a gradual improvement in laboratory precision. One of the 
most important contributions of NIRS is speed of analysis. Time is an important 
commodity when analysing samples which deteriorate over time. NIRS provides a 
simple and effective method for rapid analysis of samples that could not really be 
analysed before NIRS due to the time required. NIRS has opened and will continue 
to open peoples’ minds to a new world of possibilities in analysis.
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Basic physics and 
chemistry of NIRS

The efficiency of NIRS analysis depends heavily on the integrity of the reference 
analysis and the quality of the spectra. However, NIRS works because of the 
physics and chemistry of all of the materials to which it is applied. The physics 
affects the technique by its influence in the way that the energy is reflected 
from the sample. This is a combination of the size, shape and general physical 
make-up of the material (solid, particulate, slurry or liquid). A degree of scatter is 
introduced as a result of interactions among these physical factors and the sample 
preparation process. The degree of scatter is the degree to which the energy 
with which the sample or material is irradiated, is diffusely reflected back to the 
detectors. The chemistry affects the technique by the arrangement of the atoms 
of the molecules. It is the vibrations of the molecules and groupings of atoms 
of which the materials are composed that are measured by NIRS, which is then 
translated into the constituents and functional parameters that its users need.

This chapter covers the essentials of the physics and chemistry. It will not delve 
into the laws of physics or the various molecular vibrations and laws of chemistry 
as they apply to NIRS. Full details are cogently explained in the Suggestions for 
further reading towards the end of the chapter for those who want to learn more.

02
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2.1	 The physics

NIRS is a ‘marriage’ between spectroscopy and applied statistics. The technology 
is derived from the basic chemistry of the material to be analysed, but is strongly 
influenced by some laws of physics. Of these, the most important is light scattering. 
Our ability to see objects depends entirely on detecting the light energy diffusely 
reflected from them. The light is reflected at different wavelengths of the 
electromagnetic spectrum, including the visible range from about 380 nm at the 
violet end of the spectrum to about 780 nm at the red end. Because of this, the 
object appears in different colours to the human eye. The human eye can detect 
several thousand different shades of the primary colours. Because we have two 
eyes we are able to view the object in the three dimensions – length, width and 
depth. Because of the ability of light energy to penetrate into the cells that make 
up a material, and even into the molecules, NIRS can be regarded as having super 
three-dimensional capability.

There are two types of reflectance. Surface reflectance is termed ‘specular’ 
reflectance and does not carry any information about the object. Diffuse 
reflectance comes from within the object and carries information concerning its 
composition and other characteristics. Imagine that you are outside a building. 
Light is being reflected from the surface of the windows at an angle. This is surface 
or specular reflectance, it carries no information and you cannot see into the room. 
If you now approach the window and look through it directly, you will be able to 
see everything inside the room within your vision since you are able to detect the 
light that is being reflected from all of the objects in the room. This is similar to 
the diffuse reflectance or transmittance that carries information on composition 
and functionality from within the sample to the detector of an NIR instrument. In 
terms of NIRS, diffuse reflectance from a powdered or granular sample is a type of 
multiple reflectance of the incident light diffusely reflected from the surfaces of 
all of the particles or granules (including whole grains or seeds), and even from the 
molecules of solid materials and liquids that make up the sample as it is scanned. 
The fraction of the incident light energy that exits the sample and reaches the 
detectors, is the energy used in NIRS analysis.

Some workers prefer to use ‘reflection’ or ‘remission’ rather than ‘reflectance’, and 
‘transmission’ as opposed to ‘transmittance’ when discussing NIR technology or 
instruments. Reflection means the act of reflecting, which is the change in direction 
of energy at an interface between two different media, such as air and glass or 
any type of material. In NIRS, the energy that carries information is reflected 
from within the sample by diffuse reflectance. Because by definition reflection 
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occurs at the surface, it is specular reflection and contains no information about 
the material, so there is little value to the NIR spectroscopist from reflection. 
Remission means reduction or diminution and is not appropriate for use in NIR 
technology. 

Reflectance means the ratio of the amount of energy (in NIRS this is energy from 
light) reflected from the surface to the amount of energy that originally strikes 
the surface. This is what is actually measured by an NIR instrument. Transmittance 
is defined as the fraction of energy that passes through a sample, relative to 
the amount of energy that strikes the sample. This is what is measured by near-
infrared transmittance (NIT) instruments. In terms of spectroscopy, transmission is 
not clearly defined. As such, for practical purposes, reflectance and transmittance 
are the preferred terms in this book.

The different pathways that light energy can take through or from a sample are 
illustrated in Figure 2.1. Some light energy (1) is reflected directly from the surface 
and carries no information (specular reflectance). Some of the energy (5) gets 
completely scattered within the sample to the extent that it never emerges. 
Some energy (4) passes right through the sample in transmittance mode to reach 
the detector and is used in NIR transmittance spectroscopy while other energy 
is diffusely reflected (3) or transmitted (6) from within or through the sample, 
but does not reach the detector. The energy that is used by NIRS (2 and 4) is 
diffusely reflected from within, or transmitted through the sample, and reaches 
the detector(s).
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1. Surface (specular) 
reflectance

2. Diffuse reflectance 
to detector

3. Diffuse reflectance 
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4. Diffuse transmittance 
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6. Diffuse transmittance 

dissipated

Figure 2.1	 Pathways of light through a sample.
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Figure 2.2	 Spectra of hard red spring whole kernels and flour, milled from the same 	
	 wheat samples.

Diffuse reflectance from solid materials, such as wheat flour or whole seeds of any 
type, is affected by the physical characteristics of the material, including particle 
size and shape. Figure 2.2 shows the spectra of about 50 samples (whole kernels) 
of western Canadian hard wheat. All of these are classified as hard, on the basis 
of the PSI test (Approved Method No. 55-30.01; AACC, 2000a). The spectra show 
considerable variation on the y-axis (log 1/R or Absorbance) related to variability 
in size of the kernels and to differences in composition. This spread in spectra 
throughout the spectrum is what is often referred to as ‘scatter’. Note the very 
large spread of spectral data above 1450 nm. The main reason underlying why 
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the scatter appears to increase at the higher wavelengths is that in this region 
the absorbers are stronger and the scattering effect is more pronounced. Whole 
kernels of wheat or other grains can be considered as particles, even though these 
particles are much bigger than those of ground grains.

Figure 2.2 also shows the spectra of flours milled from the same wheat samples. 
The spread (y-axis) or scatter in spectral data is smaller. This is due to the smaller 
particle size and greater uniformity in particle characteristics in flours as compared 
to wheat kernels. The flour spectra show much less variability in particle size and 
less variance in spectral data. Partly because of the lower degree of scatter, the 
spectral data afford excellent prediction of composition and functionality factors. 
The principles of scatter are explained lucidly by Birth and Hecht (2001) and Dahm 
and Dahm (2007), see Suggestions for further reading.

2.2	 Texture 

Most solid biological materials are cellular in structure. Non-biological materials, 
such as the many forms of plastics are not cellular in the same way, but they 
are all composed of molecules. An NIR spectrophotometer sees past the surface 
of the material being scanned, through the cells or matrix of which the material 
is composed, and into the actual molecules of which the material is made. 
The irradiating energy that carries information to the detector and computer 
penetrates not only the cellular structure of the material that is being analysed, 
but also the molecules that make up the cells. As a result, the pattern of energy 
that is diffusely reflected from within the sample is affected by the internal cellular 
structure or architecture of the material. 

The architecture of the material is the way in which the cells or particles are 
combined to create the material. Differences in the association between this 
architecture and the density of the material create differences in texture. Factors 
that cause changes in the texture of solids, grains or slurries can be measured by NIR 
instruments using the diffuse reflectance from or through the sample. Prediction 
of viscosity in slurries is another application that comes from this concept. In 
Chapter  7 (see Figure 7.3) differences in the number of particles in a slurry are 
shown which can affect the diffuse reflectance. When less particles are present, the 
samples should be scanned in transflectance mode (see Chapter 7,  section 7.7.2). 
In the presence of more particles, more signal is returned to the detectors and the 
system becomes progressively denser until it is a true diffuse reflectance system.
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One of the most important of these factors, causing changes in texture, is the 
degree of hardness or softness in cereal grains such as wheat. Kernel hardness 
or texture can be measured by the PSI method (Approved Method No. 55-30.01; 
AACC, 2000a). The PSI test is a grinding/sieving test with a high degree of precision. 
The cellular structure of hard wheat kernels is radically different from that of soft 
wheat kernels; this characteristic is strongly controlled by genetics (Symes, 1965). 
Because of these differences in the architecture of the kernels, the particle size 
of ground hard wheats is larger than that of soft wheats to the extent that wheat 
kernel texture can be reliably predicted by NIRS (Approved Method  39-70.02; 
AACC, 2000b). The cell walls of hard wheat are thicker than are those of soft 
wheat to the extent that soft wheat cells may rupture as the cells fill with starch 
during maturation. These differences in the cellular structure of the kernels also 
cause differences in the path of light energy through intact cellular kernels. This 
enables wheat kernel texture to be predicted in whole wheat kernels by NIRS. 

2.3	 The chemistry 

The tendency for users of NIRS is to think of the composition, particularly in terms 
of the reference data, for the prediction of which the technique is to be used. 
The concept and principle of NIRS analysis differs from classical chemical analysis 
in that it is based exclusively on the spectra. The spectra are, of course, derived 
from the chemical and physical make-up of the material, but the spectra can differ 
among materials that are reported as having the same chemical composition. For 
example, consider the spectra of two samples of the same variety and genetic 
constitution when grown in the northern wheat-growing areas of Alberta and 
southern Saskatchewan, Canada. The samples may be reported to contain the 
same protein and moisture content, but the different growing conditions can 
affect the molecular arrangement in space and, as a consequence, the relationship 
between the spectra and the reported chemical composition that results from 
the calibration process. Turning to materials such as silages, the materials will 
be composed of a range of plant species and substances of different spectral 
composition, but of similar chemical make-up.

The molecular concept of material is introduced here. To begin with, the hydrogen 
atom can be visualised as a basketball (the nucleus) with a pea (the electron) 
circulating it rapidly and at a considerable distance from the nucleus. The 
unpredictable pathway followed by the electron is called an orbital. The atoms 
of all elements have similar basic construction, so continuing this concept, no 
matter how solid a material may appear, it consists mainly of space. The degree of 
solidity, that differentiates between gases, liquids, slurries and solids is a function 
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of the density with which the molecules are combined in the material, which is 
also affected by the electronic structure and density of the atoms themselves. 

Molecules, or groups of molecules that are capable of reaction as a group, 
continuously react with each other. One of the most functional of these is the 
water molecule. The water molecule contains two hydrogen atoms and one 
oxygen atom. Oxygen has two pairs of free electrons and two water molecules 
can form up to four hydrogen bonds. Hydrogen bonds can link water molecules 
together or link water molecules to other molecules, such as protein or oil. They 
can form links between molecules of these and other constituents which affect 
the functionality of the materials. This interaction results in changes in all materials, 
many of which can be detected and measured using an NIR instrument. Hydrogen 
bonds are actually coordinate covalent bonds. These are similar to covalent bonds, 
but not as strong. Nevertheless, because there are so many of them they are very 
effective. Ice is formed completely from hydrogen bond-linked water molecules, 
and a metre of ice can support a heavy load.

Avogadro’s number gives the number of molecules in a gram-molecule as 
6.022  × 1023. A gram-molecule is the molecular weight of the molecule in grams, so 
a gram-molecule of water would weigh 18 g. To give some idea of the significance 
of this, assume an arbitrary value of 250,000 to be the molecular weight of a 
(small) wheat protein, 1,000,000 to be that of starch and the value of 932 to be 
the molecular weight of a typical triglyceride. Then a single kernel of hard red 
spring wheat, weighing about 35 mg, with 12% protein, 12% moisture, about 65% 
starch and 2% oil would contain approximately 1.4 × 1020 molecules of water, 2.5 
× 1017 molecules of protein, 4.5 × 1018 molecules of oil and 1.43 × 1017 molecules of 
starch – plenty of molecules to react with light, all moving around constantly. 
A consequence of this is that an error of as little as 0.1% water, for example, 
represents billions of molecules – all with the potential for hydrogen-bonding. 
The molecular composition of the sample will not change, but the spectral 
composition can change as a result of the different degrees of hydrogen bonding.

Hydrogen bonding can cause associations between constituents, such as protein 
and oil. Such associations change the shapes of the molecules and consequently 
the spectral features, as well as the functionality. Even when chemical analysis 
indicates that the composition of two samples of a material such as wheat are 
identical, with differences that are usually reported to only 2 decimal places, the 
samples may actually differ in the 3rd or 4th decimal place. Such differences result 
in differences in the order of billions of molecules undetectable by reference 
chemistry, but spectrally detectable by spectrophotometers. 
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Metals ranging in atomic mass from magnesium (24) to lead (207) become 
associated, but not necessarily in direct combination with proteins and cellulose 
in agricultural materials, and affect the shape of the molecules. The presence of 
metals such as calcium, magnesium, potassium and manganese, when absorbed  
at different levels in soils, can affect the spectra of crops. This is why replication 
is strongly recommended when selecting samples of agricultural materials with 
similar composition for calibration development. These differences in spectral 
composition, incurred by the differences in molecular composition, confer stability 
to the calibration. Differences in spectral characteristics of similar types of material 
of the same reported chemical composition offer a possible explanation for the 
occurrence of what are regarded as outliers. When NIR spectrophotometers  
are used in industry, the calibration equation is regarded as a constant and 
directly applied to the scanned sample. Spectral precisison is usually superior to 
that of laboratory analysis. Provided that the samples assembled for calibration 
development have included all of the identifiable sources of variance for 
commodities such as grains and seeds, the NIRS predicted results can be expected 
to be more reliable than those of the laboratories from which the reference 
results originate. Referring to wheat protein content, differences of up to even 
1% can be caused by differences in the spectra that have come about as a result 
of external influences that have affected the spectra but not the composition, as 
determined by chemical analysis.

The position of the atoms in the molecules influences the shape of the molecules 
in space, as well as their reactivity. The presence of a particularly reactive 
substance even at the parts per million (ppm) level, would be present in the form 
of billions of molecules. This could influence the shapes of bigger molecules and 
affect both their behaviour and spectral signals. The chemical constitution of 
some constituents, such as cellulose, causes them to exist in plant materials in 
the form of characteristic shapes – some of which are microscopically visible. The 
shapes of large molecules such as starch, cellulose and proteins can be expected 
to change to a lesser degree than the shapes of smaller molecules, as a result 
of activities such as hydrogen bonding. The cellular structure can influence the 
pattern of light passing through the cells. An NIR instrument can be imagined as 
being a super microscope that sees through the surface, through the cells that 
form the materials, as well as through all of the molecules that form the cells. 

2.4	 How does NIRS work?

It all comes down to chemistry. All agricultural and food materials are built 
from cells that are composed of molecules, and contain other molecules. These 
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molecules consist of atoms and groups of atoms linked together in various 
combinations by various types of bonds. Practically all organic materials consist 
of molecules, the atoms of which are bound by covalent bonds. Covalent bonds 
differ from ionic bonds. In covalent bonds, electrons are shared between adjacent 
atoms in a molecule. In ionic bonds, electron transfer occurs between the atoms. In 
inorganic materials, including common acids and bases, and salts such as sodium 
chloride in solution in water, the atoms form ions which are linked by ionic bonds. 

2.4.1	 Vibration of molecules

All molecules are continually vibrating at specific frequencies at what is called 
the ground level. Irradiation of materials by an energy source such as light causes 
some molecules to change their vibrations from one energy level, e.g. the ground 
level, to another. These transitions are constantly taking place, and when they 
happen energy is absorbed. Such absorption occurs when the vibrations at a 
certain frequency coincide with those of a molecular grouping in the material 
being scanned. These transitions are explained in more detail in Dahm and Dahm 
(2007), as well as Colthup, Daly and Wiberley (1975), see Suggestions for further 
reading. Because the fundamental absorbers and their overtones happen over 
more than a single nanometre, they are called absorption ‘bands’. The absorptions 
of energy can be detected and measured spectroscopically. These are called the 
fundamental absorbers. They all occur in the mid-IR region, mainly between 3000 
and 12,500 nm, and become repeated in the NIR region as overtones (the ‘ripples’). 
Some overtones also occur in the area between 1800–2500 nm, but most of the 
overtones appear at shorter wavelengths.

2.4.2	 Functional groups, combination bands and overtones

Certain groups of small atoms, such as carbon-hydrogen (C-H), oxygen-hydrogen 
(O-H) and nitrogen-hydrogen (N-H) that are parts of molecules, absorb at 
characteristic wavelengths. These are called functional groups, an example of 
which is the -CH2 (methylene) group. Most of the major constituents of agricultural 
and food materials contain C-H and O-H groups, while proteins contain all three, 
together with other formations, such as carbon-nitrogen (C-N), carbon-oxygen 
(C-O), sulphur-hydrogen (S-H) and phosphorus-hydrogen (P-H). 

Absorptions at different areas of the wavelength range between 700 and 
2500 nm are all overtones or combination bands which can be assigned to these 
individual functional groups. Sometimes two absorbers coincide to the extent 
that an absorption band appears near the sum of the frequencies of the two 
(sometimes 3) fundamental bands. These are called combination bands, and 
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combinations of more than one fundamental vibration appear in the NIR region. 
These combinations, and their overtones, can be found in the wavelength areas 
between about 800–1100, 1350–1550 and 1850–2500 nm. 

Imagine a round pool of water with a perfectly flat surface. Now throw a pebble 
into the center of the pool. The big splash is the fundamental absorber, and is much 
bigger than any of the ripples. The ripples that spread outwards are the overtones. 
The first ripple is the biggest and analogous to the first overtone. Theoretically 
there are an infinite number of overtones, but like the ripples themselves, the 
further away that they occur from the fundamental, the smaller and weaker do 
they become. For practical purposes, only the first four overtones are sufficiently 
strong to be of much use in NIRS analysis mainly because of interference from 
stronger overtones. Now imagine throwing two pebbles into the pool. They will 
fall at slightly different positions, but will cause two splashes which will overlap 
each other closely. This is comparable to the creation of combination bands. Both 
splashes will cause ripples and overtones. Because of the closeness of the two 
splashes that form the combination, their ripples and overtones coincide with 
each other. The appearance of colour combinations, such as orange and turquoise, 
can be compared to combinations in NIR technology.

Combination bands and their overtones occur in the NIR region, between as low 
as 800, and up to 2500 nm. Although some overtone and combination bands 
appear to be higher in intensity than others, some of which occur in the same 
area, they may not be selected in development of a calibration model – partly 
because they interfere with one another when the spectral data are regressed 
against the reference data. When this happens, the highest overall correlations 
between the spectral and reference data may include absorbers at wavelengths 
of lower intensity. The use of these absorbers is another reason for including many 
samples in the development of calibration models. The smaller overtones may not 
be prominent in some samples (of the same material), and replication of spectral 
variance is necessary to give stability to the calibration model.

It is interesting, and to a certain extent informative to be able to relate absorbers 
selected during calibration development to ‘classical’ absorbers that have been 
documented by spectroscopists (Colthup et al., 1975; Workman & Weyer, 2012 see 
Suggestions for further reading). Because of the occurrence of up to four ‘useful’ 
overtones and combination bands, more than one of these groups is absorbing at 
any wavelength point, which complicates assigning wavelengths selected during 
calibration development to specific absorbers. Absorptions for individual atomic 
groups, such as -CH2 have been identified over a range of wavelengths that can 
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overlap the ranges at which other groups absorb. If a particular wavelength is 
selected for calibration development, the actual group or groupings responsible for 
the absorption selected by the computer for use in development of the calibration 
model, may not be obvious. Most of the early work on identification of absorbers 
was done using pure organic compounds. These are relatively uncomplicated and 
easier to work with than, e.g. maize silage, where absorbers from sugars, starch, 
cellulose, water, protein and oil all interact with one another. These interactions 
complicate the development of calibration models for prediction of composition 
of these materials.

It is the interaction among all of the absorbers, large and small, that establishes 
the overall spectral variance. At any wavelength point one or more absorbers will 
predominate, and their influence will extend over wavelength points adjacent 
to that wavelength. PCA identifies the areas of wavelength that account for 
the variance and categorises them on the basis of the proportion of the overall 
variance that is explained. The first principal component (PC) may explain >80% 
of the variance, but it is the interaction among all of the absorbers active in that 
wavelength area that is combined to give the first principal component. The same 
process is applied to the absorbers in the spectral variance remaining (the residual 
variance), until most of the variance has been explained. If the total amount of 
variance explained falls far short of the total variance, e.g. by 15% or more, the 
application of NIRS to that analysis is questionable for practical purposes since the 
unexplained spectral variance is not related to the composition of the material. 

When the PCs are displayed, the ‘peaks’ show the actual wavelengths where the 
combined intensity of the absorbers has exerted the most influence – whether 
or not the spectral data have been pretreated. These interactions become most 
important when NIRS is applied to the prediction of parameters other than 
discrete constituents such as moisture, oil or protein content.

PLS regression adds variance contributed by the reference data to the overall 
variance, but the principle of selection of the most important wavelength areas 
is the same. Display of the PLS factors may show ‘peaks’ at slightly different 
wavelength areas than display of the PCs. This shows the influence of the reference 
data on the overall variance.

2.4.3	 Calibration process

The calibration process tells the computer which absorbers to select to correspond 
with the reference data. The calibration models instruct the instrument as to 
which wavelengths to monitor in order to provide the information needed by 
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the operator. Substances such as proteins contain many N-H groups, fats and 
oils contain many C-H groups, water contains O-H groups, and so on. By making 
measurements at the wavelengths at which these groups are known to absorb 
energy, it is possible to determine the amount of protein, moisture, and other 
constituents present. It has become accepted among NIRS users that the -CH2 
wavelength area is assigned to oil (and fat) and the O-H area to water, but it is 
important to remember that -CH2 and O-H are present in constituents other than 
oil and water. Protein, starch, oil and cellulose all contain -CH2 groups and O-H 
groups. Merely monitoring wavelengths where C-H, O-H and N-H are known to 
absorb is not sufficient to assign absorbances at wavelengths characteristic of 
these known absorbers to the specific absorbers because some of them overlap 
each other. 

Another factor that complicates assigning wavelengths selected during calibration 
development to specific absorbers, is the effect of interactions among constituents 
on the actual spectra of the constituents. Table 2.1 and Figure 2.3 show how the 
positions of the main absorption bands of water can change, depending on the 
material that contains the water. The data of Table 2.1 were recorded as the 2nd 
derivative of the two main water bands (segment and gap each of 4 wavelength 
points). Figure 2.3 shows how the positions of the water bands change in different 
materials. In the cases of low moisture maize, wheat flour and starch it is possible

Table 2.1	 Changes in position of water absorption bands

Material
Position of absorption bands

1900 nm area 1400 nm area 1150 nm area

HM maize* 1894 1408 1154

LM maize* 1912 1426 1160

Hog manure 1892 1414 1152

Starch 1928 1430 1158

Flour 1928 1430 1158

Fresh chicken -** 1396 1150

Hemp seed 1908 1414 1162

Clay mineral 1910 1410 1152

Oats 1912 1428 1160

Water 1904 1410 1154

Range 36 nm 34 nm 10 nm

*	 HM = high moisture; LM = low moisture
**	Because of the very  high moisture content of fresh chicken the 1900 nm water band is indistinct

Table 2.1	 Changes in position of water absorption bands (continued)
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that the bands at 1426 and 1430 nm are the result of O-H groups on the glucose 
molecules of the starch or cellulose, rather than on actual water. The curious small 
band in the 1150 nm area is included. It is not assigned to any functional group in 
the literature, but it occurs in many materials and is more stable than the bands in 
the 1400 and 1900 nm areas.

-0.042

1104 1451 1798 2144 2498

-0.023

-0.004

0.015

0.034

Figure 2.3	 Changes in position of water absorption bands (LM = low moisture;  
	 HM = high moisture).

The ‘undulating’ appearance of NIR spectra come about because the absorbers 
overlap each other, which hides the sharpness of the absorbers. The actual 
positions of the absorbers can be seen by developing the 2nd derivative of the 
log 1/R spectra (see Chapter 1, section 1.4 and Chapter 5, section 5.2.5). By making 
preparations of starch, protein, cellulose and oil as free from other constituents as 
possible, scanning several samples of water and these constituents several times 
over the full NIRS wavelength range over a period of time, and then averaging the 
spectra, it has been possible to identify the wavelength bands associated with 
the main constituents of agricultural and food materials. Table 2.2 summarises the 
most important bands for common constituents in biological material. Because of 
minute differences among instruments, the exact position of these bands may not 
be the same when materials are scanned using different NIR instruments, and may 
differ by 1–5 nm. Also, the positions of the absorption bands in different materials 
are affected by interactions among the constituents (Table 2.1, Figure 2.3), as well 
as by temperature. 

Due to interactions among the 1st and 2nd overtones of some constituents, the 
small bands (3rd and even 4th overtones) are sometimes selected by the software 
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in developing calibrations, provided they are consistent in position. Furthermore, 
some constituents are highly correlated with one another, and the software may 
use a wavelength associated with one constituent in development of a model to 
predict another constituent with which it is correlated. For example, prediction of 
protein content in canola or soybean may use a wavelength associated with oil, 
because there is a strong negative relationship (r = −0.80 to −0.90) between the 
oil and protein contents of these materials.

Any of these, even the small bands, may be used in calibration model development. 
The relative degree to which the bands appear in the spectra of different 
agricultural materials may also change. For example, the very small and often 
indistinct water band at 2204–2208 nm is prominent in the spectra of soil (see 
Chapter 11, section 11.17) and also occurs in the PLS factors used in development of 
calibration models for several constituents, but it is not prominent in the spectra 
of wheat or other grains. Because of its prominence in the spectra of soil, it is 
believed to be associated with silicates.

Table 2.2	 Wavelengths of principal absorption bands for common constituents of  
	 biological material

Wavelength (nm)

Strong Fair Weak Strong Fair Weak

Protein Oil

708* 660*

808* 758* 816*

868* 928* 1210

908* 982* 1042* 2144

1018* 1140 1724 1162

1692 1186 1276 1762 1390

1734 1428 1360 2306 1410

1930 1498 1454 2346 1896

1978 2202 1578 1932

2054 2308 1628 1724 2008

2172 2346 1798 1762 2120

2274 1824 2306 2270

2466 2108 2346 2384

2380

2418
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Wavelength (nm)

Strong Fair Weak Strong Fair Weak

Cellulose (dry) Water

678* 1906 1410 758*

758* 816* 1460 964*

982* 914* 2486 1044*

1216 1004* 1154

1364 1488 1156 1342

1428 1588 1272 1778

2054 1702 1636 2208

2076 1828 1768 2384

2104 1918 2188

2270

2332

2480

Starch Starch (dry)

614* 610*

758* 754* 820*

914* 1160 914* 1062*

986* 1268 980* 1262*

1200 1360 1204 1272

1432 1584 1750 1360 1574

1928 1700 1826 1432 1700 1750

2094 1780 2188 2282 2044 1784

2282 2370 2322 2094 1910

2318 2474 2446 2478 2180

*These bands are probably 3rd and 4th overtones, but are relatively strong absorbers. The positions 
of the bands may differ slightly among different spectrophotometers, even of the same model.

This leads to another key point. Prediction of composition depends on the fact that 
the constituents, such as water, fat and protein all have characteristic absorbers, 
arising from C-H, O-H stretching and deformation. However, functionality factors 
such as kernel texture (degree of hardness or softness), metabolisable energy or 
slurry viscosity and density are not directly associated with specific absorbers. 
Their prediction depends on the association between their constituents and the 

Table 2.2	 Wavelengths of principal absorption bands for common constituents of  
	 biological material (continued)



46

degree to which interactions by these constituents result in the functionality. 
Because the prediction of functionality is really a secondary issue, and the 
influence of absorbance at the wavelength points of the constituents are twice-
removed, the efficiency of the prediction of functionality factors may not be of 
the same standard as that of composition factors. 

Attempts to predict organoleptic factors such as flavour components are affected 
by the fact that a flavour may arise as a result of interactions among several 
constituents that are each present in minute amounts. All of these substances 
would be made up of the same combinations of O-H, C-H and N-H functional 
groups, which will again be dominated by the overwhelming presence of the 
same groupings in major constituents. 

Yet another apparent anomaly is the ability to predict concentrations of heavy 
metals, such as lead, cadmium and mercury in some organic materials. Theoretically 
these types of prediction should be impossible because the metals have no 
absorbers in the NIR region. However, by their association with constituents such 
as cellulose, successful calibrations have been developed for their prediction in 
materials such as sediments (Malley & Williams, 1997).

The original assignments of absorbances caused by O-H stretching and 
other functional groups were identified by classical infrared spectroscopists, 
mainly in the 1930–1950 era. These workers gave small ranges over which the 
absorbances had been observed, and did not ‘pin-point’ a single nanometre (or 
reciprocal centimetre) at which an absorber would be expected to occur. Some 
of the absorbers were obtained by dissolving the substances, such as aliphatic 
hydrocarbons of different chain length, in carbon tetrachloride, which has no 
absorbers. A detailed list of absorbers is given in Table 2.3.
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Table 2.3	 Wavelength assignments 

Range 
(nm)

Observed 
(nm)

Structure
Functional 

group
Material type

700–800  

714 C-H (4th overtone) C-H aromatic Hydrocarbons 
aromatic

747 C-H (4th overtone) C-H methyl (CH3) Hydrocarbons aliphatic

758        Cellulose, starch, oil

762 C-H (4th overtone) C-H methylene 
(CH2) 

Hydrocarbons aliphatic

767 O-H (3rd overtone) O-H as -CH2-OH   Primary alcohols

773 O-H (3rd overtone) O-H as >CH-OH Secondary alcohols

800–900 

796 C-H combination (C-H and δCH3) Hydrocarbons aliphatic

803 C-H combination (C-H and CH3) 
Hydrocarbons 

aromatic

808 Protein

813 C-H combination (C-H and δCH3)
Hydrocarbons 
aliphatic, oil

816 Cellulose (dry)

820 Starch (dry)

830 C-H combination (C-H and δCH3) Hydrocarbons aliphatic

868 Protein

876 C-H (3rd overtone) C-H aromatic Hydrocarbons 
aromatic

900–1000 

908 C-H (3rd overtone) C-H, CH3 Hydrocarbons methyl

930 C-H (3rd overtone) C-H, >CH2

Hydrocarbons 
methylene

962 O-H O-H no 
H-bonding Alkyl alcohols

964 O-H O-H water  
Room temperature

996 O-H O-H, -CH2-OH Primary alcohols
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Range 
(nm)

Observed 
(nm)

Structure
Functional 

group
Material type

1000–1100 

1003 N-H N-H Aromatic amine

1004 Cellulose (dry)

1018 Protein

1021 C-H combination C-H (CH3 
and δCH3)

Hydrocarbon aromatic 
& aliphatic

1024 O-H Possible 
H-bonding Water 1–2oC 

1041 C-H combination C-H (CH2 
and δCH2)

Hydrocarbons aliphatic

1047 O-H O-H with 
H-bonding Alkyl alcohols

1100–1200

1142-3 C-H C-H aromatic Hydrocarbons 
aromatic

1156 O-H O-H Water in many 
materials

1160 C = O C = O carbonyl Ketones aliphatic

1170 C-H HC = CH Alkenes

1195 C-H (2nd overtone) C-H methylene Hydrocarbons aliphatic

1200–1300
1211-5 C-H (2nd overtone) C-H C-H, CH2 Hydrocarbons aliphatic

1225 C-H (2nd overtone) C-H tertiary Hydrocarbon aliphatic

1300–1400
1370-90 C-H combination C-H CH3 and 

δCH3

Hydrocarbon aliphatic 
& aromatic

1390 SiOH SiOH Silica

1400–1500

1410 C-H combination C-H and δC-H Linear aliphatic, 
e.g. oils

1410 O-H (1st overtone) O-H hydroxyl O-H not hydrogen 
bonded

1415 C-H combination C-H methylene 
(CH2) 

Hydrocarbons, 
aliphatic

1415 O-H O-H alcoholic Alcohols 

1420 O-H (1st overtone) O-H aromatic Phenolic O-H

1430 N-H (1st overtone) N-H primary 
amides N-H primary amides

1441 O-H (1st overtone) O-H Sugars, sucrose

Table 2.3	 Wavelength assignments (continued)

Table 2.3	 Wavelength assignments (continued)
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Range 
(nm)

Observed 
(nm)

Structure
Functional 

group
Material type

1400-1500

1445 N-H (1st overtone) N-H aromatic Aromatic 
primary amine

1450 C = O (1st overtone) C = O > carbonyl Ketones and aldehydes

1450 O-H (1st overtone) O-H -CH2-OH Starch, primary 
alcohols

1460 N-H (1st overtone) N-H Urea

1460 O-H (1st overtone) O-H Alkyl alcohols, water

1463 N-H (1st overtone) N-H -CONH2 Amide/protein

1483 N-H (1st overtone) N-H -CONH2 Amide/protein

1490 O-H (1st overtone) O-H Cellulose

1500–1600

1500 N-H (1st overtone) N-H Amide/protein

1500 O-H (1st overtone) O-H Alcohols, water

1520 N-H (1st overtone) N-H -CONH2 Amide/protein

1540 O-H (1st overtone) O-H Starch/polymeric 
alcohol

1570 N-H (1st overtone) N-H -CONH Amide/protein

1580 O-H combination O-H Alcohols, water

1600–1700

1620 C-H (1st overtone) C-H =CH2 Alkenes

1680 C-H (1st overtone) C-H aromatic Classic reference 
wavelength

1690-96 CONH2 CONH2 Proteins

1694 C-H (1st overtone) C-H3 Hydrocarbons aliphatic

1700–1800

1705 C-H (1st overtone) C-H CH3 Hydrocarbons methyl

1725 C-H (1st overtone) C-H CH2

Hydrocarbons 
methylene, oils

1738 CONH CONH Proteins

1740 S-H (1st overtone) S-H thiols Thiols

1765 C-H (1st overtone) C-H CH2

Hydrocarbons, 
methylene

1780 C-H (1st overtone) C-H CH2 Methylene, cellulose

1790 O-H combination O-H Water

Table 2.3	 Wavelength assignments (continued)
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Range 
(nm)

Observed 
(nm)

Structure
Functional 

group
Material type

1800–1900
1820 O-H combination O-H C-H comb Cellulose

1900 C-O 
(2nd overtone) C-O C = OOH Carboxylic acids

1900–2000

1908 P-OH 
(1st overtone) O-H P-OH Phosphate

1920 C-O 
(2nd overtone) C-O (C = ONH) Amide

1930 O-H combination O-H and HOH Starch, cellulose

1940 O-H combination (O-H and H-O-H) Water (classical 
filter reference) 

1950 C = O 
(2nd overtone) C = O (= OOR) Acids and esters

1960 O-H combination (O-H and H-O-H) Polysaccharides

1980 N-H combination N-H (-CONH2)   Amides/protein

1990 N-H combination NH = CONH2 Urea

2000 N-H combination N-H combination Ammonia in water

2000–2100

2010 N-H combination (R-C = O-NH2) Amides

2030 N-H combination NH2-C = ONH2 Urea

2055 N-H combination N-H/C = O 
as‑CONH

 AmideI: Amides, 
protein

2060 N-H combination

N-H bend and 
N-H stretch 
combinaton 

amide II

Protein

2070 N-H N-H deformation Urea

2080 N-H combination NH2-C = O-NH2 Urea

2090 O-H combination O-H polymeric Complex 
carbohydrates

2096 O-H O-H deformation Water or alcohols

2100 C = O combination C = O-O Polysaccharides

2100 C = O-O 
(3rd overtone)

C = O and C-O 
stretch Polysaccharides

2100 O-H/C-O O-H C-O 
combination Polysaccharides

Table 2.3	 Wavelength assignments (continued)
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Range 
(nm)

Observed 
(nm)

Structure
Functional 

group
Material type

2128 N-H/C = O N-H/C = O 
combination Polyamides

2140 C-H/C = O
RC = CH and  

RC = O 
combination

Lipids

2167 CONH CONH 
peptide linkage Proteins

2170 C-H combination -HC = CH Alkenes

2174 CONH CONH 
combination Proteins at low pH

2180 N-H combination N-H/C-N/C = O 
combination Proteins

2200 C-H C-O C-H and C = O 
combination Carbohydrates

2230 CHO CHO classic Classic reference λ

2270 OH combination
O-H stretch/
C-O stretch 
combinaton

Cellulose, glucose

2280 C-H combination C-H stretch + 
CH2 deformation   Polysaccharides, starch

2308 C-H combination C-H methylene Hydrocarbons aliphatic

2310 C-H C-H Lipids

2322 C-H combination -C-H + CH2 Polysaccharides, starch

2332 C-H combination -C-H + CH2

Polysaccharides, 
cellulose

2347 C-H combination C-H + R(CH2)nR Hydrocarbons 
aliphatic, lipids

2352 C-H C-H bending Polysaccharides, 
cellulose

2380 C-H combination
C-H stretch 

+C-C stretch 
combination

Lipids

2407 C-H C-H aromatic Hydrocarbons 
aromatic

Table 2.3	 Wavelength assignments (continued)
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Range 
(nm)

Observed 
(nm)

Structure
Functional 

group
Material type

2445 CONH CONH peptides Proteins

2463 CONH2 CONH2  Peptides, proteins

2470 C-N-C C-N-C amide Proteins

2488 C-H combination C-H + C-C 
combination Cellulose

2500 C-H combination C-H/C-C/C-O-C 
combination Polysaccharides

Source: Adapted from Workman and Weyer (2012)
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Reference  
Analysis

Just as the spectra form the heart of NIR technology, the reference test is the 
heart of NIRS application. Without the spectra, there is no technology at all. 
Without reference tests, there can be no quantitative applications, and even 
qualitative applications often require reliable reference data for the samples used 
in development of the training set. One major difference between reference and 
NIRS tests is that the NIRS method uses a much larger sample. Reference methods 
rarely use more than 1–2 g, and some use only a few micrograms or microlitres for 
the final assay. 

This chapter is intended for users and potential users who aspire to obtain the best 
possible outcome from the application of their NIR instrument. It is particularly 
important to verify the accuracy and precision of reference testing before any NIRS 
work, because the NIRS results are always compared to those of the reference 
methods. Networked instruments are usually connected to a master instrument, 
and all adjustments to calibrations are made through the master instrument. Only 
the master instrument itself is calibrated to reference methods – there are legal 
as well as practical reasons for this.

03
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3.1	 Reliability of the reference method

Before attempting the development of a calibration, it is essential to determine 
the precision (standard error) of the reference testing that will be used to develop 
the calibration. One of the most difficult obstacles that instrument companies 
and their representatives have faced ever since the introduction of NIRS as a 
practicable method back in the early 1970s, has been the faith that companies 
and organisations have in their laboratories. When disagreements occur between 
reference and NIRS results, management and clients tend to believe the results 
of the ‘tried and trusted’ reference methods, rather than those of the ‘black box’ 
NIRS method. 

Few users of NIRS pay enough attention to the reproducibility of their reference or 
NIRS testing. Poor results obtained by new or even seasoned NIRS users, are most 
frequently blamed on the instrument, whereas in many cases it is the reference 
method used for monitoring, or inefficient sample presentation that has caused 
the problem. The NIRS results are probably more reliable – once a calibration 
model has been developed and thoroughly evaluated, there are fewer areas for 
error in the NIRS than in reference ‘wet chemistry’ methods. This is because sample 
preparation is usually simpler, the sample size is much larger and the precision of 
spectral data on the repeat testing of any commodity is usually as good as, if not 
better than that of the reference test. The spectral data replace all of the chemical 
reagents, apparatus, addition of often small aliquots of sample and reagents, 
attention to conditions of reactions and other features of reference analysis, all 
of which are possible sources of error. The instruments are very stable, and the 
main sources of error in the NIRS test are the spectral precision, the integrity of 
the calibration, the natural heterogeneity of the sample and the operator through 
sample presentation.

This chapter will not recommend or describe reference methods in detail. It is 
intended to emphasise the need for accuracy and precision in the reference tests 
used in the development of calibration models (see Chapter 9) in order to identify 
areas of error in some tests, to encourage operators to study the precision of 
their reference test methods and to research areas where errors may be met. 
Error sources should be identified in any type of test. The chief concern is that 
the effectiveness of any reference method used in NIRS work influences the 
efficiency of the NIRS analysis. The tests described in more detail in this book are 
those most commonly used in grain and flour-mill laboratories. The principles of 
the identification of sources of error are, however, applicable to any test methods 
and any materials.
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Many NIR instrument companies offer factory calibrations for a wide selection 
of applications. Clients should verify that these calibrations are satisfactory for 
their own uses. To do this, they should establish or identify a laboratory which 
they can rely on for reference data on samples that they submit for checking and 
monitoring their calibrations. The reproducibility of the selected laboratory can be 
determined by re-submitting samples under different identification from time to 
time. This is a necessary procedure. The laboratory will be using certified methods 
for reference testing, the subject of this chapter.

A reference test refers to any composition or functionality feature against 
which the spectral data of an NIR instrument is linked in the development of a 
calibration model. The first factors to which NIRS was applied historically were 
composition factors in grain – notably moisture, protein and oil contents. These 
are referred to as ‘constituents’ in this book. In terms of soil and manure analysis, 
moisture, total (elemental) nitrogen, phosphorus and carbon are among the most 
important constituents. For more than 40 years, NIR technology has also been 
applied to the prediction of functionality factors, such as kernel texture in wheat 
and digestibility in forages. Functionality factors are referred to as ‘parameters’ 
here, and refer to the physical and physicochemical attributes of the material to 
be tested that affect its end-use performance rather than chemical composition. 
Functionality of a material or commodity indicates if the material will actually do 
what it is supposed to.

The constituents most frequently tested for in agricultural materials, foods and 
feeds are: moisture, protein, starch and oil or lipids. These are considered ‘easy’ 
ones. In food and feed materials, fibre is also an important constituent. Even so, 
we come to the question of which fibre method should be used as reference test? 
There are five methods that are recognised for the determination of the fibre 
constituent. These are: crude fibre, neutral detergent fibre (NDF), acid detergent 
fibre (ADF), and total dietary fibre (TDF) that consists of NDF plus soluble dietary 
fibre (SDF).

Crude fibre is the constituent that is most widely-tested because food and feed 
companies are obliged to state the composition of their products for marketing 
purposes – crude fibre is legally recognised as the fibre content of the material. 
The other types of fibre are more directly related to its nutritional value, and are 
also tested by nutritionists in feed manufacturing companies. Total dietary fibre 
content tests are expensive and usually take 24 hours, so NIRS calibrations are 
particularly useful for this type of analytical work.
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Functionality parameters such as metabolisable energy are further items for 
which successful calibrations have been developed. True metabolisable energy 
(TME) and apparent metabolisable energy (AME) are versions of metabolisable 
energy determined by different methods, and are applicable to different types 
of animals. The success of NIRS in predicting these more complicated factors has 
fired the ambition of the more innovative workers to attempt prediction of even 
less well-defined parameters, such as flavours in foods, and even the degree of 
freshness in fruits, vegetables and meat. For all of these parameters, the success 
of the application depends on the reliability of the reference method, the physical 
nature of the material and the sample presentation system.

3.2	 Accuracy and precision

The reliability of a method includes accuracy and precision. Sometimes there is 
confusion about these two terms. ‘Accuracy’ implies ‘closeness to the true value’. 
This is hard to achieve in agricultural commodities, because no constituents 
except water can be prepared in a pure state. Even water exists in different states 
in different materials (see the molecular concept in Chapter 2, section 2.3). For 
practical purposes, NIRS analysis accuracy means closeness to the reference value 
since that is the data which is used in the development of calibrations, as well as 
the values to which subsequent NIRS results will be equated.

Within a laboratory, accuracy can be established at the same time as precision 
through repeated analysis of a well-blended check sample. Provided that the 
reproducibility of the results is acceptable (see below), the mean result can be 
accepted as the accuracy for that laboratory. Accuracy can be assessed among 
all of the laboratories belonging to the same group by using the mean results 
of collaborative studies (ring tests) among these laboratories, using at least 
6  samples with a range in composition. Provided that the reproducibility of 
all of the laboratories is acceptable, a consensus can be arranged among the 
participants that these mean results will be accepted as the accuracy that will 
form the basis of their future work. 

‘Precision’ in NIRS testing means getting the same result every time. It includes 
repeatability and reproducibility. ‘Reproducibility’ includes all features of the test, 
including sub-sampling, sample preparation and presentation to the instrument, 
and testing by all of the operators likely to be doing the testing. It is determined 
by repeated analysis of the same sample (at least 10 times), including all of these 
steps, and all of the operators likely to be involved in future testing. The (standard 
deviation) SD of the results is the standard error of the test. ‘Repeatability’ 
includes all features of the test except sub-sampling and sample preparation. 
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It is determined by performing replicate tests (again, at least 10 repeats) on the 
same sample after sample preparation, and is a test of the method itself on the 
sample. The values are usually lower than for reproducibility, but should also be 
determined separately for all staff that are likely to use the methods – this will 
reveal the extent of individual operator error. Repeatability should be determined 
at the same time as reproducibility, because it is not possible to determine the 
error due to sub-sampling and sample preparation unless the error of the actual 
testing is known.

A useful exercise is to determine the relationship between the reproducibility and 
repeatability of a test method.

The percentage reproducibility attributable to repeatability can be calculated 
as follows: 
	 [(repeatability)2 × 100] ÷ (reproducibility)2

Thus if,
	 reproducibility = 0.231 and repeatability = 0.174

Then,
	 % reproducibility attributable to repeatability  
	 = [(0.174)2 × 100] ÷ (0.231)2 = 56.7%

The sub-sampling and sample preparation steps contributed only 43.3% of 
the total error. This ratio is affected by the type of material. For example, the 
repeatability of testing wheat flour can be expected to be a lot lower than that of 
testing ground forage, or even whole grains. 

One method of establishing the overall precision of the reference test is to select 
12 to 20 samples and submit them for testing, some as single samples and others 
in duplicate. All aspects of the testing have to be involved, including sub-sampling 
where necessary, as well as sample preparation. At least four of the samples 
should be introduced as ‘blind’ duplicates. Table 3.1 gives an example of a suitable 
sequence, together with two sets of results, typical of excellent and of mediocre 
analytical performance. Five blind duplicates are included.

To calculate reproducibility, the first results of the respective ‘blind’ duplicates 
are used (e.g. 11.81 from the duplicates 11.81 and 11.84, 13.42 from the duplicates 
13.42 and 13.57). This duplicate testing system allows one to determine the SD 
of duplicate testing on the same sample (repeatability; SD1) – the SD of the 
blind duplicate results also gives information on the overall reproducibility 
(SD2). In the case of the second example in Table 3.1 (‘Mediocre result’), the SD1 
(repeatability) values were similar for both series, showing that the error within 
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the laboratory after sample preparation was satisfactory. The higher value for 
SD2 (reproducibility) showed that sample preparation was an important source 
of error. The respective contributions of the repeatability to the overall error was 
57.7% in the case of the ‘Excellent’ result, but only 12.8% for the ‘Mediocre’ overall 
error. This emphasises the importance of careful sample preparation on overall 
reproducibility. Information of this type is valuable in detecting areas where 
laboratory reference versus NIRS performance can be improved. 

Table 3.1	 Sequence for determination of laboratory performance for reference 		
	 protein‑testing of wheat

Laboratory ID Sequence
Laboratory 

ID
Actual 

ID
Excellent 

Result 
Mediocre 

Result 

1 Single 1 1 14.26 14.31

2 Duplicate 2 2 11.81 11.72

3 Duplicate 2 2 11.77 11.82

4 Single 3 3 13.42 13.40

5 Duplicate 4 4 15.71 15.73

6 Duplicate 4 4 15.66 15.66

7 Single 5 5 10.43 10.51

8 Duplicate 6 6 12.93 12.87

9 Duplicate 6 6 13.10 12.79

10 Single 7 2BD* 11.84 11.66

11 Duplicate 8 7 14.97 14.88

12 Duplicate 8 7 14.90 14.96

13 Single 9 6BD 12.77 13.00

14 Duplicate 10 8 9.50 9.56

15 Duplicate 10 8 9.56 9.64

16 Single 11 9 13.28 13.34

17 Duplicate 12 3BD 13.57 13.14

18 Duplicate 12 3 13.48 13.20

19 Single 13 10 14.38 14.16

20 Duplicate 14 11 12.16 12.48

21 Duplicate 14 11 12.24 12.33

22 Single 15 12 16.11 16.38

23 Duplicate 16 10BD 14.28 14.56



Reference  Analysis

61

Laboratory ID Sequence
Laboratory 

ID
Actual 

ID
Excellent 

Result 
Mediocre 

Result 

24 Duplicate 16 10 14.36 14.66

25 Single 17 4BD 15.74 15.41

26 Duplicate 18 13 12.55 12.41

27 Duplicate 18 13 12.48 12.31

SD1  
(repeatability)**

0.061 0.067

SD2  
(reproducibility)**

0.077 0.187

*‘BD’ = blind duplicate; the results of each ‘blind’ duplicate is shown in bold; 
**SD difference = √ 〈[Σ(xn)2] ∕ (N × 2)〉; Note: n = 1 to N; Σ(xn) = sum of all differences (a − b) from 

1 to N (Mark, 1991)

The establishment of accuracy and reproducibility means a lot of repetitive and 
painstaking work, but it is the basis of any successful application of NIRS. Table 3.2 
gives details of the calculation of the repeatability (SD1) and reproducibility (SD2) 
from Table 3.1 (Mark, 1991). It is emphasised that the accepted level of both the 
accuracy and reproducibility of any analytical method should be established at 
the beginning of any project. If the reproducibility is excellent, unless the accuracy 
has also been established, all future results could be reported precisely wrong. 

Table 3.2	 Method of calculation of the repeatability and reproducibility from the 		
	 data of Table 3.1

Excellent results

Repeatability (SD1) Reproducibility (SD2)

Duplicate Duplicate

ID a b a − b ID a b a − b

2, 3 11.81 11.77 0.04 2, 10 11.81 11.84 -0.03

5, 6 15.71 15.66 0.05 4, 17 13.42 13.57 -0.15

8, 9 12.93 13.10 -0.17 5, 25 15.71 15.74 -0.03

11, 12 14.97 14.90 0.07 8, 13 12.93 12.77 0.16

14, 15 9.50 9.56 -0.06 19, 23 14.38 14.28 0.10

17, 18 13.57 13.48 0.09  SD difference 2* 0.077

20, 21 12.16 12.24 -0.08 Mean difference 2 0.010

23, 24 14.28 14.36 -0.08

Table 3.1	 Sequence for determination of laboratory performance for reference 		
	 protein‑testing of wheat (continued)
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Excellent results

Repeatability (SD1) Reproducibility (SD2)

Duplicate Duplicate

26, 27 12.55 12.48 0.07

SD difference 1* 0.061

Mean difference 1 -0.008

Mediocre results

2, 3 11.72 11.82 -0.10 2, 10 11.72 11.66 0.06

5, 6 15.73 15.66 0.07 4, 17 13.40 13.14 0.26

8, 9 12.87 12.79 0.08 5, 25 15.73 15.41 0.32

11, 12 14.88 14.96 -0.08 8, 13 12.87 13.00 -0.13

14, 15 9.56 9.64 -0.08 19, 23 14.16 14.56 -0.40

17, 18 13.14 13.20 -0.06 SD difference 2* 0.187

20, 21 12.48 12.33 0.15 Mean difference 2 0.022

23, 24 14.56 14.66 -0.10

26, 27 12.41 12.31 0.10

SD difference 1* 0.067

Mean difference 1 -0.002
*SD difference = √ 〈[Σ(xn )2] ∕ (N × 2)〉; Note: n = 1 to N; 
Σ(xn) = sum of all differences (a − b) from 1 to N (Mark, 1991)

3.3	 Approved reference methods

For contractual reasons, many commercial users of NIRS use as reference methods 
only those approved by associations such as the Association of Official Analytical 
Chemists (AOAC), the American Association of Cereal Chemists International 
(AACCI), the International Association of Cereal Science and Technology (ICC), the 
European Society of Brewing Chemists (ESBU), the American Society of Brewing 
Chemists (ASBC), the American Oil Chemists’ Society (AOCS), the Australian Grain 
Science Association (AGSA) and others specific to different materials, such as 
forages, soils and pharmaceuticals. Analytical laboratories in other areas of industry 
will use certified methods that have been identified by the individual industries. 

Although these methods are described in detail by the respective associations 
and societies, many of their users have implemented their own, usually minor, 
modifications to the methods, to suit their own equipment. It is important that 

Table 3.2	 Method of calculation of the repeatability and reproducibility from the 		
	 data of Table 3.1 (continued)
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the users of any of these modified methods ensure that the results are exactly 
the same as the original methods, and that the changes to the methods as well 
as the results (before and after the changes) have been properly documented. 
Otherwise, contracts subject to cases of dispute can be declared invalid. This is 
particularly important if a laboratory seeks to gain certification under ISO 17025, 
the main standard used by testing laboratories.

During the past few years, several of the more frequently used Approved Methods 
of the AACCI have been the subject of re-examination by means of collaborative 
studies termed ‘ring-tests’. The results of some of these are summarised in 
Table 3.3. All of the participants were well-established professional laboratories. 
The data of Table 3.3 are actual results. The reason for inclusion of this table is to 
show the levels of precision, as well as the errors that are encountered when a 
relatively simple test such as an ash test is carried out even by highly reputable 
laboratories, at least 8 of which were involved in all of the collaborative tests.

Table 3.3	 Summary of collaborative tests of AACCI Approved Methods

Constituent Method Mean Maximum Minimum SD CV (%)

Moisture* 44-15.02 13.46 13.77 13.06 0.26 1.90

Ash 8-01.01 0.582 0.608 0.558 0.019 3.26

Ash** 8-02.01 0.611 0.678 0.561 0.043 7.04

Ash*** 8-12.01 0.595 0.609 0.561 0.021 3.53

Starch 
damage 76-30.01 8.52 10.40 7.50 0.85 10.0

Protein 44-30.01 12.78 12.90 12.62 0.145 1.14

Wet gluten ICC 
Standard 155 31.8 35.7 27.4 1.87 5.80

Gluten Index ICC 
Standard 155 51.7 66.9 25.0 12.49 33.70

*Whole wheat, two-stage air-oven; **Rapid Magnesium Acetate method; 
***Semolina method; CV = coefficient of variation

All of these tests are routinely carried out in flour mill and (large) bakery laboratories 
all over the world. The wet gluten and gluten index tests were carried out on the 
same samples. Ideally the coefficient of variation (CV) should be between 2.0 and 
3.0% for approved analytical methods for composition. This was achieved in only 
two of these methods. The CV values of over 3% are questionable, while values 
of 7–10% are unacceptable. When this is observed, the reasons should be sought. 
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Table 3.7 gives guidelines for the CV that should be achieved for some commonly-
used tests in cereal- and animal feed-mill laboratories. The CV-values for analysis 
of more complex materials, such as soils, may reach 10% or even higher.

Table 3.4	 Coefficient of variation (CV) guidelines for some cereal test methods

Constituent Method* Acceptable CV (%)

Protein 46-16.01 1.5–2.0

Protein 46-30.01 1.0–1.5

Moisture: oven single-stage 44-15.02 1.5–2.0

Moisture: oven two-stage 44-15.02 2.0–3.0

Flour ash 8-01.01 2.5–3.5

Flour ash 8-02.01 3.5–5.0

Starch damage 76-31.01 2.5–3.5

Wet gluten 38-12.02 3.5–5.0

Crude fibre (feeds) 32-10.01 3.5–5.0

*All methods are taken from the AACCI method database

Some of the reasons for poor inter-laboratory reproducibility in AACCI Approved 
Methods are given in sections 3.3.1 to 3.3.3 for three of the cereal laboratory 
methods. It is important to research the possible causes for error in any test 
method used in an analytical laboratory. The examples explain errors that 
commonly occur in some methods carried out frequently in cereal laboratories. 
Many laboratories do not use the check sample method to check on their 
reproducibility. The cost of testing a check sample is the same as for testing any 
other samples, and the laboratory may consider check sample tests as a waste 
of time and money, and overlook the value of establishing and verifying their 
own reliability, or that of a laboratory that they choose to use as a reference 
laboratory. 

3.3.1	 Chief sources of error in Method 44-15.02 – Two-stage 			 
	 air-oven moisture

Undetected moisture loss during grinding at Stage A (if no pretreatment is carried out)

Method 44-15.02 (AACC, 2000a) recommends no pre-treatment (air-drying to 
lower moisture level) unless the moisture content is above 13% (as determined by 
moisture metre). Grinding samples in preparation for testing causes variable and 
undetermined loss in moisture – this can lead to undetected moisture loss of up 
to over 1% at 13% (see Chapter 8, Table 8.4).
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Undetected moisture uptake during grinding in Stage B  
(after pretreatment in Stage A)

If pre-treatment by air-drying brings the moisture level down below, e.g. 8–9%, 
the ground grain will be sufficiently hygroscopic to allow moisture to be absorbed 
from the atmosphere during sample preparation for Stage B.

General carelessness

The main reasons underlying carelessness are boredom and excessive speed. The 
repetitive routine of many analytical methods can induce boredom and lack of 
concentration. Supervisors need to remember that the members of their technical 
staff are all people. There are three parts to daily life – sleeping, living and working. 
If a task becomes sufficiently repetitive that the steps become automatic, there 
is a tendency for people to start to think about things of more interest in their 
lives. The drift in concentration can cause mistakes. Excessive speed is a more 
frequent cause of error. When a certain number of tests have to be completed in a 
normal day, factors such as late delivery of samples or unexpected telephone calls 
shorten the time available. The increased speed that is necessary to complete the 
day’s workload can be an important cause of mistakes.

3.3.2	 Chief sources of error in Methods 8-01.01 (wheat flour) and 		
	 8-02.01 (semolina) for ash

Ash is very hygroscopic. The few milligrams of ash resulting from a 5 g sample 
(only 25 mg at 0.5% ash) have a very large surface area and will rapidly absorb 
water even from within the desiccator. The ash is a better desiccant than CaSO4 

(Drierite). This is not a significant factor if only a few (up to 3) samples have been 
tested. However, with a larger number of samples, the repeated opening of the 
desiccator will change the relative humidity inside. An uptake of only 1 mg is a 4% 
error at an ash content of 0.50% – this will increase the apparent ash content from 
0.50 to 0.52%. The rapid method 8-02.01 was developed to save time in flour mills 
(from 5–6 hours or overnight to 2 hours or less), and it is unusual to test more than 
one or two samples in duplicate so that moisture uptake in the desiccator is not 
a serious problem. Here non-uniform ashing is a more important source of error.

Method 8-01.01 – Basic method for flour ash content (AACC, 2000b)

1.	 Moisture uptake in desiccators
2.	 Number of samples
3.	 Moisture uptake during weighing of ash
4.	 General carelessness and excessive speed
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Method 8-02.01 – Rapid magnesium acetate method for flour ash content 
(AACC, 2000c)

1.	 Incomplete and variable ashing due mainly to inefficient mixing of magnesium 
acetate with the flour

2.	 Moisture uptake in desiccators
3.	 Moisture uptake during weighing ash
4.	 General carelessness and excessive speed

3.3.3	 Chief sources of error in Method 46-30.01 – Crude protein-combustion 	
	 method for protein

Below are frequent sources of error in the Dumas (combustion) method for the 
determination of total nitrogen and protein contents in food and agricultural 
materials (Method 46-30.01 of the AACC International; AACC, 2000d).
1.	 Sampling and sample size
2.	 Sample preparation (grinding and especially blending after grinding)
3.	 Impure gases, especially oxygen (the main impurity is nitrogen) – Only the 

purest oxygen should be used (99.96%). This is the most expensive, but the 
best to use. The cost of the test must be considered in relation to the value 
of the result, which is invariably far greater than the few extra cents per test 
incurred by using the best oxygen available.

4.	 Inefficient pellet preparation (all nitrogen must be excluded) – The best way 
to prepare the pellet is to exclude any contaminating air (that contains about 
70% nitrogen) by compressing and twisting the pellet by hand, possibly using 
a glove. The small pelleting devices that are supplied are less effective and 
may break the pellet during preparation.

5.	 Small amounts of moisture in reference chemical (e.g. EDTA)
6.	 Use of other than pure chemicals as reference – Again, the best chemicals 

should be used as reference. Pure EDTA has been found to contain small 
amounts of moisture. These are enough to change the calibration factor to the 
extent of giving significant day-to-day variability. Precision can be improved 
by drying the EDTA at 100°C before use. Tris-(hydoxymethyl)-amino-methane 
is a good reference, but is more difficult to dry consistently. Use of a material 
such as ground wheat as a reference is not recommended. This is a major 
and very variable source of error. Some laboratories use hippuric acid as a 
standard chemical, but it is not commercially available in such a high degree 
of purity as EDTA.

7.	 Moisture correction of data
8.	 Poor instrument maintenance
9.	 Sporadic use of instrument – Many instruments such as combustion analysers 

use capillary tubes and other small components in their construction. 
Experience has shown that they perform at their best by sustained use. 
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Performance suffers if the instruments are not used for even a few days. So, it 
is a good idea to analyse a few samples at least every other day, or to allow a 
day or two of consistent use between necessary down-times, before day-to-
day analysis is resumed.

10.	 Insufficient reference or blank tests used during calibration
11.	 Instrument malfunction
12.	 General carelessness

Laboratories that contemplate use of NIR technology to replace some of their 
reference testing should carefully evaluate their reference methods to seek out 
and correct the sources of error. The early days of the use of NIRS in protein-
testing of wheat in North America had the valuable side effect of focusing more 
attention on the accuracy and precision of Kjeldahl testing, and the importance of 
reporting protein results on constant moisture basis. 

3.4	 Arbitrary reference methods 

Arbitrary methods are often developed to obtain information on materials such 
as fresh meat, fruit and vegetables. Analysis of these materials by standard 
methods is complicated by their high moisture content and variable physical 
size, shape and general characteristics. A basic issue is that of moisture content. 
Most materials contain moisture and to avoid errors and misinterpretation, it is 
important to report results on a constant moisture basis (usually moisture-free). In 
the application of NIRS to materials with varying moisture content, it is necessary 
to determine the composition on a constant moisture basis. For direct application 
of NIRS, the analytical results must be re-computed to the original moisture 
content of the material before use in calibration development. Laboratory reports 
of analytical moisture tests results should include both as-is and constant moisture 
content data.

Many laboratories develop their own methods of determining functionality 
parameters to give them the information they need. In the case of such methods, 
absolute accuracy cannot be determined. The method simply has to provide the 
information sought. Though an experienced technician can get results of excellent 
reproducibility with the method, it does not guarantee that it is suitable for long-
term application, or for use as a reference method for NIRS model development. 
At the very least, experienced technicians will need vacations, experience 
sickness and eventually retire. It is imperative that such methods are made as free 
as possible of error sources, and that other technicians are equally competent 
with the method. If an arbitrary method proves to be reliable over time it could 
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be submitted for official approval by a recognised body, such as the AOAC. Many 
of such methods are time-consuming, and their users quickly realise the potential 
of NIRS to save turn-around time and cost per test. Sample presentation is a key 
factor in these NIRS applications.

3.5	 Last words on reproducibility 

Reproducibility of results is the most important criterion. The reproducibility of 
arbitrary methods must be established in the same way as any other methods 
intended for use as reference methods for NIRS model development. This can be 
done by repeated analysis of a check sample or samples, and may not reach the 
level of precision as the approved methods. Identification of sources of variance 
and error in such tests, as well as sample assembly also follow the same rules as 
any other method. Obtaining and maintaining check samples of fresh materials, 
such as meat, fish, milk and other perishable materials is recognised as being 
difficult, but a reasonable substitute is to retain one sample from early testing 
each day, protect it as well as practicable and re-test it a few times during the 
day in order to establish the degree of reproducibility. Over a period of a few days 
an average value for the reproducibility can be obtained. The reproducibility of 
NIRS testing is usually superior to that of reference testing. This is particularly true 
in the case of continuous on-line testing by NIRS, which eliminates the need for 
sampling and associated errors.
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Statistical terms 
for evaluation 

of accuracy and 
precision

Most people are put off by the word ‘statistics’. Two things are important here: how 
to apply the formulae and how to interpret the results. There is no need to know 
the complex mathematics or how these formulae were derived – this expertise 
has been incorporated into software used in the calibration and monitoring of 
NIR instruments.

Before discussing the statistical terms, there are five important messages to all 
NIRS users.

First, the values of X and Y used in this book will usually refer to reference and 
NIRS data, but can apply to any two sets of data. The second is that a single result 
for any test on any sample is called an ‘observation’, and the total number of 
samples tested, or data evaluated is called the ‘population’ in this book. There are 
two types of population. The first type is the population of whatever is there, e.g. 
all of the bales of hay in a field. Sample selection is not a factor because all of the 
samples are included and have to be tested. The second type is the population 
as defined by the samples that have been assembled to test a hypothesis, for 
example: What is the correlation between maize hardness and milling quality? 
The success of this type of exercise depends on the selection of samples. Practical 

04
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application will rely heavily on the results of the statistical analysis, and sample 
selection and assembly are also crucial. Unless the sample selection and assembly 
have been carefully considered, and the samples truly represent the variance 
likely to be met, biases and outliers could occur. Decisions and actions based on 
the statistics may thus not be valid. 

The third message is to look at all of the data. The statistics are all computed 
from them. Ideally, this should be done as the data are being generated, which 
takes place during daily analysis or when recording spectra for calibration model 
development (using a computerised spectrophotometer). If you are doing day-to-
day analysis you should keep an eye on the results to make sure that they look 
‘familiar’ and that there are no sudden major changes. For example, if the results 
for a certain test normally lie between 11 and 15% and a result of 9 or 17% appears, 
it should be checked. If a value of, e.g. 23.7% appears in the same series of testing, 
it is more likely to be a clerical error than an analytical one.

The fourth message is that in this section there are a lot of formulae. These 
are included in ‘long-form’ detail so that the reader can follow the reasoning 
underlying the calculations. Different versions of these formulae occur, which are 
more familiar to chemometricians, but the formulae presented in this book give 
all of the factors needed to calculate the statistics. In practice nowadays, few 
people actually calculate statistics such as standard deviations, or coefficients of 
correlation or regression since statistical packages include all the formulae – users 
only have to enter their data.

Finally, the fifth message. This draws attention to the difference between 
accurate analysis and screening. Accurate analysis by NIRS requires an r2-value 
of 0.95 or better. But values of even as low as 0.70 can provide an adequate way 
of screening large numbers of samples into high, low and intermediate levels 
of acceptability in industry. Guidelines can be established for upper and lower 
limits of acceptability. All samples above the high limit can be safely accepted, 
those below the lower limit, rejected or down-graded, while the samples that 
fall between these limits will need testing by established methods. The NIRS 
screening can affect up to 67% reduction in the expense and time of application 
of conventional test methods to large populations of samples, such as the arrival 
of loads of grain at a grain terminal by train.

4.1	 Useful statistical terms for evaluating NIRS calibrations 

Experienced operators can tell whether their instrument is performing properly 
just by ‘eyeballing’ the results, but for reporting purposes the efficiency of an NIRS 
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calibration is usually evaluated and reported on the basis of applied statistics. 
Several terms are needed for the interpretation of statistical analysis of the results 
of NIRS testing. Unless all of them are understood and correctly appraised, the 
operator may draw the wrong conclusions leading to frustrating and sometimes 
costly discrepancies. Important terms include the following:

1.	 mean;
2.	 standard deviation (SD) – an estimate of the degree of homogeneity, or 

heterogeneity of the population;
3.	 coefficient of variation (CV) – which relates the SD to the mean;
4.	 bias – the mean difference between any two sets of data;
5.	 correlation coefficient (r) – indicates an association between the X 

(independent variable) and Y (dependent variable) data; 
6.	 coefficient of determination (r2) – a measure of how close the data are to the 

fitted regression line, or to assess how well a model explains and predicts 
future outcomes;

7.	 regression coefficient (b) and intercept (a) from the simple linear 
regression equation;

8.	 distribution of differences between x and y data – in NIRS work, these are 
usually NIRS predicted and reference results;

9.	 standard error of a single test (SET) or analytical precision – also referred to 
as the standard error of the laboratory (SEL);

10.	 standard error of prediction (SEP) – SD of differences between NIRS 
predicted and reference values in the validation sample set; 
standard error of calibration (SEC) – SD of differences between NIRS and 
reference values in the calibration sample set; 

11.	 standard error of cross-validation (SECV);
12.	 root mean square error of prediction (RMSEP) – also termed root mean 

square deviation of differences (RMSD); and
13.	 ratio of the SEP to the SDy (RPD) – the Ratio of (standard error of) Prediction 

to (standard) Deviation or RPD.

4.1.1	 Mean

There are three forms of the mean. The most common is the arithmetic mean. It 
is calculated by summing all values of x (or y) and dividing by N, the number of 
observations. It is symbolised by x-bar (x̄) or y-bar (ȳ). The formula for computing 
the mean is: 

	 Mean (x̄)  = Σxn ∕ N

	 Where, Σxn = the sum of all x-values and n = 1 to N
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Table 4.1 gives an example of calculating the arithmetic mean. The data are typical 
results for wheat protein content in percentage (%), but the principle applies to 
any population of data.

Table 4.1	 Example of calculation of the mean

Observation
Data (x)

Wheat protein content (%)
Statistic Value

1 9.7 N 12

2 11.9 Σxn 157.0

3 17.3 Mean 13.08

4 14.2

5 12.6

6 10.3

7 15.1

8 14.8

9 11.1

10 12.4

11 13.5

12 14.1

Note: Σxn = the sum of all x-values from 1 to N

The second form of the mean is the 'running mean'. The running mean is based 
on a sequence of e.g. 12 observations. When the next (13th) observation is made 
the first observation is left off, and the running mean is calculated from the 12 
that have been retained. Table 4.2 gives an example of calculation of the running 
mean. It is used to maintain a record of, e.g. the protein content of increments of 
wheat during loading of a ship (assuming that the increments are of approximately 
equal weight). The sequence here is 12 samples. When the 13th sample is added the 
original first value (12.8) is omitted, and the original 2nd sample becomes the first 
in the second sequence, and so on.

Table 4.2	 Example of calculation of the running mean

N (1st sequence) Protein (%) N (2nd sequence) Protein (%)

1 12.8 2 13.6

2 13.6 3 13.1

3 13.1 4 13.5
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N (1st sequence) Protein (%) N (2nd sequence) Protein (%)

4 13.5 5 13.2

5 13.2 6 13.7

6 13.7 7 12.9

7 12.9 8 14.4

8 14.4 9 13.3

9 13.3 10 13.4

10 13.4 11 13.5

11 13.5 12 13.3

12 13.3 13 13.8

Sum 160.7 Sum 161.7

Mean 13.39 (13.4) Running Mean 13.48 (13.5)

The third form of the mean is the 'weighted mean'. The weighted mean is used to 
calculate the average of a series of observations, such as protein content based 
on, for example, the different quantities of grain of different protein contents 
that may be added to a silo or cargo. It is calculated by multiplying the weight of 
each increment (such as farmers’ deliveries to a country elevator) by the protein 
content, then dividing the total (weight × protein) by the total (weight). Table 4.3 
gives an example of calculation of the weighted mean.

Table 4.3	 Example of calculation of the weighted mean

N Protein (%)
Weight  

(tonnes)
Weight × Protein 

Cumulative 
Protein

1 12.8 14.6 186.88 12.80

2 13.6 21.2 288.32 13.27

3 13.1 20.3 265.93 13.21

4 13.5 44.6 602.10 13.33

5 13.2 28.7 378.84 13.31

6 13.7 16.9 231.53 13.35

7 12.9 33.3 429.57 13.27

8 14.4 24.9 358.56 13.41

9 13.3 18.3 243.39 13.40

Table 4.2	 Example of calculation of the running mean (continued)
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N Protein (%)
Weight  

(tonnes)
Weight × Protein 

Cumulative 
Protein

10 13.4 26.6 356.44 13.40

11 13.5 37.5 506.25 13.41

12 13.3 29.6 393.68 13.40

Sum - 316.5 4241.49

Weighted mean protein content = ∑ (weightn × proteinn) ∕ total weight

4.1.2	 Standard deviation (SD)

The SD is an expression of the variability, or variance in the data. It is the square 
root of the variance. One formula for computing the SDx (or SDy) is: 

	 SDx = √ 〈{Σxn
2 – [(Σxn)2 ∕ N]} ∕ (N −1)〉 

	 Where, n = 1 to N
	 Σxn = sum of all x-values from 1 to N.

Table 4.4	 Details of two alternative methods for calculating the standard deviation (SD)

Observation
Data
(x)

Data-squared
(x2)

Alternative 
method

Difference 
(x − mean)

Difference-
squared

1 9.7 94.09 -3.383 11.445

2 11.9 141.61 -1.183 1.400

3 17.3 299.29 4.217 17.783

4 14.2 201.64 1.117 1.248

5 12.6 158.76 -0.483 0.233

6 10.3 106.09 -2.783 7.745

7 15.1 228.01 2.017 4.068

8 14.8 219.04 1.717 2.948

9 11.1 123.21 -1.983 3.932

10 12.4 153.76 -0.683 0.466

11 13.5 182.25 0.417 0.174

12 14.1 198.81 1.017 1.034

N 12
x̄ (mean) 13.08

Σxn 157.00 Σ(xn − x̄) 0.04

Σxn
2 2106.56 Σ(xn − x̄)2 52.4768

Table 4.3	 Example of calculation of the weighted mean (continued)
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Observation
Data
(x)

Data-squared
(x2)

Alternative 
method

Difference 
(x − mean)

Difference-
squared

(Σxn)2 ∕ N 2054.0833 [Σ(xn − x̄)2] ∕ 
(N − 1) 4.7706

Σxn
2 − [(Σxn)2 ∕ N] 52.4767

√ 〈[Σ(xn − x̄)2] ∕ (N − 1)〉 = SD

2.18

{Σxn
2 − [(Σxn)2 ∕ N]} ∕ (N − 1) 4.7706

√ 〈{Σxn
2 − [(Σxn)2 ∕ N]} ∕  

(N −1)〉 = SD
2.18

Note: n = 1 to N; Σxn = the sum of all x-values from 1 to N

Table 4.4 gives an example of calculation of the SD by two methods. The SD is also 
the square root of the sum of the squares of the differences between each value 
and the mean (because some of the differences will be positive and the others 
negative it is necessary to square the differences), divided by N−1. Figure 4.2 is a 
graphical representation of the SD. 

An important point, with regard to Figure 4.1, is that only about 68% of the 
total population falls between one SD above and below the mean. The values 
of the mean ±1.96 times the SD are referred to as the 95% confidence limits. For 
practical purposes the 95% confidence limit is a better guideline to the variance 
of a population than is the SD. Figure 4.1 illustrates this for a normal (Gaussian) 
distribution of data.

1 x SD

1.96 x SD

2.576 x SD

-1 SD +1 SDMean

Figure 4.1	 Illustrating the standard deviation (SD). The mean ±1.96 times the SD are 	
	 referred to as the 95% confidence limits.

But why N−1? N−1 is called the ‘degrees of freedom’. This is the number of 
observations in a population that are able to vary. Consider a set of 12 samples 

Table 4.4	 Details of two alternative methods for calculating the standard deviation (SD) 	
	 (continued)
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(N  =  12), with a mean of 13.5% protein content. No matter how variable the 
individual data of the first 11 samples, for the mean to be 13.5 the 12th value must 
be 13.5, and only 11 of the observations are free to vary. Table 4.5 gives examples 
of the true meaning of the SD for protein content and Falling Number (FN), two 
commonly tested parameters in wheat. To account for 99.9% of the variance in 
the population the SD is multiplied by 3.0.

Using the 99% confidence limits, the range between which 99% of the samples 
will fall is surprisingly large, even at the low SDs (standard errors per test) of 0.15% 
for protein and 20 seconds for the FN. Remember also that 1% of the population 
will fall outside of these limits. This means that in a population of 200 and a SD of 
0.15, 2 samples will fall outside of a range of 12.9 ± 0.39 %. These are not outliers – 
they are part of the population.

Table 4.5	 Implication of the standard deviation (SD)

Parameter Mean ± SD Mean ± 1.96*SD
Mean ± 

2.576*SD

Percent of 
population (%) 68 95 99

Protein 
content (%) Low High Low High Low High Range

Mean = 12.9;  
SD = 0.15 12.75 13.05 12.61 13.19 12.51 13.29 0.78

Mean = 12.9; 
SD = 0.25 12.65 13.15 12.41 13.39 12.26 13.54 1.28

Falling Number(s)

Mean = 350; SD = 20 330 370 311 389 298 402 104

Mean = 350; SD = 25 325 375 301 399 286 414 128

4.1.3	 Coefficient of variation (CV)

The CV is the population SD x 100 divided by the population mean (x̄):

	 CV = (SD*100)/Mean (x̄)

It is expressed as a percentage. It relates the SD to the mean and provides a 
relative measure of variability in the population that is independent of the unit of 
measurement used. Table 4.6 gives an example of calculation of the CV based on 
data from Table 4.4.
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Table 4.6	 Example of calculation of the coefficient of variation (CV)

Observation Data Statistic Value

1 9.7 N 12

2 11.9 Mean (x̄) 13.08

3 17.3 Σxn 157.0

4 14.2 Σxn
2 2106.56

5 12.6 SD ±2.18

6 10.3 CV (%) 16.67

7 15.1

8 14.8

9 11.1

10 12.4

11 13.5

12 14.1

Note: Σxn = sum of all x-values from 1 to N

Table 4.7	 Typical results for repeatability and reproducibility for testing grain for 		
	 protein content (%)

Test Repeatability Reproducibility

1 13.28 13.18

2 13.35 13.45

3 13.64 13.84

4 13.58 13.38

5 13.42 13.42

6 13.61 13.71

7 13.47 13.37

8 13.33 13.13

9 13.67 13.77

10 13.29 13.39

11 13.59 13.64

12 13.38 13.33

Mean (%) 13.47 13.47

SD 0.143 0.216

CV (%) 1.07 1.60
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The above sections on Mean, SD and CV (%) are illustrated by examples of data 
for incoming deliveries of wheat (or similar grains or crops), where the variance 
can be high. Table 4.7 gives data more typical of the results for the repeatability 
and reproducibility (see Chapter 3, section 3.2) of testing a check sample for 
protein content. Based on reproducibility data, the 95% confidence limits for 
protein content would be ±0.432 (0.43), and the overall range in results that 
could be expected would be 1.30% (±0.216 x 3 = 0.65). The extreme results of 
13.13 and 13.84 are not outliers. The data in Table 4.7 are typical of NIRS testing for 
protein content in whole wheat kernels. Determination of repeatability in whole-
grain NIR instruments for which the sample is introduced using a hopper is not 
practicable because of the method of sample presentation. 

When the CV is used to examine variance among replicate analyses on the same 
sample, it can be used to express and report the reproducibility of the method. 
The size and interpretation of the CV depends partly on the source of the data. 
For quality assurance applications, the CV of reference testing for constituents 
such as protein and moisture contents should be about 1.0–1.5%. Values of the CV 
between 2 and 3% are acceptable for some tests (see Chapter 3, Table 3.7). Table 4.8 
gives some guidelines for the interpretation of the CV. For some applications such 
as analysis of soils and manures, that are very variable, calibrations have been 
used with CV values as high as 8–10%.

Table 4.8	 Interpretation of the coefficient of variation (CV) for replicate determinations on 	
	 a sample in three situations

CV-value
Interpretation of 

reference test results 
(e.g. protein content)

Interpretation of 
NIRS-predicted 

constituents

Interpretation of 
NIRS-predicted 

functionality

0.5–1.0 Exceptional * *

1.1–2.0 Excellent Exceptional *

2.1–3.0 Very good Excellent Exceptional

3.1–4.0 Good Very good Excellent

4.1–5.0 Fair Good Very good

5.1+ Needs investigation Fair Good

*Unlikely to be achieved

The mean and CV are accessories to the SD and SEP (see sections 4.1.2 and 4.1.10). 
The CV will be inflated when the reference value for the check sample is low, and 
when the SEP is constant over the concentration range. In cases where check 
samples extend over a large range of concentration, it is often better to report 
the SEP than the CV. This is illustrated in Table 4.9 for two constituents, protein 
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and deoxynivalenol (DON) contents in wheat. The CV of 2.5% is considered to be 
high for protein predictions in whole wheat or flour. The CV of 7.5% for prediction 
of DON is also high, but not uncommon for prediction of parameters such as DON.

Table 4.9	 Influence of concentration on the CV (coefficient of variation) at constant  
	 SEP (standard error of prediction)

Constituent / SEP Reference result (mean values)

Protein (%) /  
SEP = 0.20 8.0 10.0 12.0 14.0 16.0 18.0

CV (%) 2.50 2.00 1.67 1.43 1.25 1.11

DON ppm / SEP = 0.60 0.25 0.50 1.00 2.00 4.00 8.00

CV (%) 240 120 60 30 15 7.5

The SEP should be determined at high and low levels of composition because the 
efficiency of prediction may be higher or lower at different levels. The same applies 
to determination of the SET method (see section 4.1.9), because the efficiency 
of reference methods may also change at different levels of concentration. The 
CV is not really applicable to calculations such as the SD of differences between 
duplicates. The mean difference is likely to be low, which would inflate the CV 
unrealistically, or even 0.00, which would make the CV impossible to compute.

4.1.4	 Bias 

The bias in a series of comparisons is the difference between the independent 
and the dependent variable. When calculated from the NIRS predictions of data 
in the validation sample set, the bias is the mean of the differences between the 
NIRS and reference data, and is an important part of the overall accuracy of the 
calibration (the SEP is the other component of accuracy). In the world of commerce 
and industry, the bias is one of the most important statistics. When payments 
are being made on the basis of composition, such as premiums or discounts 
for protein or moisture content, biases mean money. A bias of as little as 0.1% 
can incur considerable profits or losses when large volumes of a commodity are 
involved. Also, when NIRS data are being used to formulate feed mixes and so on, 
biases can cause inaccuracies in the composition of the final products, which can 
change the nutritional quality, and subsequent changes in animal productivity. 
Biases can occur even when the correlation coefficient and SEP statistics indicate 
that an excellent calibration has been developed. The main causes of bias include 
changes in the source of raw materials, grains or other commodities from different 
locations or seasons, changes in processing conditions, changes in ambient 
temperature and humidity, as well as other factors. 
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The formula for calculating bias (which can be positive or negative) is:
	 Bias = (Σxn ∕ N) − (Σyn ∕ N)

	 Where, 	xn and yn can be any two sets of data

		  n = 1 to N

		  Σxn = sum of all x-values from 1 to N

		  Σyn = sum of all y-values from 1 to N

4.1.5	 Correlation coefficient (r)

The r shows the degree to which two sets of data, xn and yn (n = 1 to N), e.g. 
the NIRS and reference results, agree with each other. Perfect agreement, with 
no difference at all between the two data sets will result in an r of 1.000. In 
practice this is impossible since a certain amount of error in both X and Y data are 
unavoidable. The xn and yn data may be either positively or negatively correlated. 
Figure 4.2 illustrates how the correlation plot will change, depending on the value 
of r. Table 4.10 gives guidelines for the interpretation of r.

Actual protein content (%)

r = 0.998
a

9.160

9.117 11.072 13.027 14.983 16.938

11.069 

13.032

14.968

16.904

Actual protein content (%)

r = 0.995
b

9.160

8.968 10.990 13.012 15.034 17.056

11.069 

13.032

14.968

16.904

Actual protein content (%)

r = 0.990
c

9.160

8.960 10.957 12.954 14.951 16.948

11.069 

13.032

14.968

16.904

Actual protein content (%)

r = 0.954
d

9.160

8.487 10.681 12.874 15.068 17.262

11.069 

13.032

14.968

16.904

Actual protein content (%)

r = 0.908
e

9.160

9.108 10.979 12.850 14.721 16.592

11.069 

13.032

14.968

16.904

Actual protein content (%)

r = 0.850
f

9.160

8.487 10.681 12.874 15.068 17.262

11.069 

13.032

14.968

16.904

Figure 4.2	 Illustration of how the correlation plot will change, depending on the 		
	 value of the correlation coefficient (r).
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The formula for computing r is:
			   Σ(xn × yn)− [(Σxn × Σyn) ∕ N]

	 r =	 √ 〈{Σxn
2 − [(Σxn)2 ∕ N]} × {Σyn

2 − [(Σyn)2 ∕ N]}〉

	 Where,	 n = 1 to N

		  Σxn = sum of all x-values from 1 to N

		  Σyn = sum of all y-values from 1 to N

4.1.6	 Coefficient of determination (r2)

It is important to distinguish between the use of R or r. Authors may use either 
R and R2, or r and r2. R is normally associated with multiple linear regression or 
correlation, and r with simple linear regression or correlation. When reporting the 
results of correlations between NIR and reference data, e.g. in the evaluation of 
a calibration model, this is a simple linear relationship, and r or r2 is the correct 
form to use.

The coefficient of determination is given by r2. It shows the proportion of the 
variance of the NIRS predicted data that can be predicted by the spectral or log 
1/R data, and shows the degree to which the predicted data can be expected to 
change, for a given change in the spectral data. For example, an r-value of 0.97 
gives r2 of 0.941. This means that 94.1% of the variance in yn (n = 1 to N) can be 
predicted by xn (n = 1 to N). It follows that only a combined 5.9% of the variance 
in xn is attributable to other factors, such as sample preparation, reference 
testing and so on. Values of r2 are always positive, regardless of the sign of r. For 
screening purposes, an r-value of 0.71 can be considered as a cut-off point. The 
r2 value is 0.504. This means that one single variable explains slightly more than 
50% of the total variance, so that all other factors combined cannot exceed the 
importance of that one variable. For practical purposes r2 gives more information, 
and is preferred to r. Guidelines for the interpretation of both r and r2 are given in 
Table 4.10.

A word of caution about r. Some authors report the statistical significance of r. The 
statistical significance of r can be calculated by the formula:

			    r

	 t =	 √ 〈(1 − r2) ∕ (N − 2)〉

The value of t (obtained from statistical tables) depends on the number of 
degrees of freedom, which depends on the number of observations. If the number 
of observations is very large, the term (1 − r2) is divided by a large value, and 
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the value of t can appear to be statistically significant at quite low values of r. 
Table 4.11 shows how the significance of r at the 95% significance level (P = 0.05) 
changes as the number of observations increases:

Note that with a population of 60 samples or more, the value of an r of only 0.26 
(r2 = 0.068) is statistically significant at the P = 0.05 level. However, an r2‑value 
of 0.068 leaves over 93% of the residual variance unexplained. So, while the 
correlation coefficient may be statistically significant, it has little practical value in 
relating the x to the y variables. 

Table 4.10	 Guidelines for the interpretation of r and r2 

r r2 Interpretation

Up to 0.5 Up to 0.25 Not usable in NIRS calibration

0.51–0.70 0.26–0.49 Poor correlation, reasons should be researched

0.71–0.80 0.50–0.64 Acceptable for very rough to rough screening

0.81–0.90 0.66–0.81 Acceptable for screening and some other 
‘approximate’ calibrations

0.91–0.95 0.83–0.90 Usable with caution for most applications, 
including research

0.96–0.98 0.92–0.96 Usable in most applications, including 
quality assurance

0.99+ 0.98+ Excellent, usable in any application

Table 4.11	 Levels of significance of r at different values of N

N t (P = 0.05) r (P = 0.05) r2 % residual variance*

12 2.18 0.58 0.336 66.4

15 2.13 0.52 0.271 72.9

20 2.09 0.45 0.202 79.8

24 2.06 0.41 0.168 83.2

40 2.02 0.32 0.102 89.8

60 2.00 0.26 0.068 93.2

100 1.99 0.20 0.040 96.0

*Percentage of residual variance not accounted for

4.1.7 Regression coefficient (b) and intercept (a)

The regression coefficient (b), also called the ‘slope’, is a useful indication of the 
potential effectiveness of the calibration. The slope shows the rate of change of 



Statistical terms for evaluation of accuracy and precision

83

Y as a function of the rate of change in the other variable (X). The slope, together 
with the intercept (a) shows the degree to which values of Y can be predicted 
from those of X, or vice versa. In a perfect relationship between X and Y (where 
both X and Y refer to the same types of data, e.g. protein content by NIRS and 
reference methods), the values of ‘r’ and ‘b’ will both be 1.000, and ‘a’ will be 0.000. 
Again, a certain amount of error is unavoidable, so that the slope will be more or 
less than 1.000, and the intercept will differ from zero. In NIR technology, the error 
level of the spectral data is usually lower than that of the reference data. As in 
the case of the correlation coefficient, b and a can also be positive or negative. 
Table 4.12 provides full details for the calculation of r, b and a.

The formula for computing byx is: 

		  Σ(xn × yn) − [(Σxn × Σyn) ∕ N]

	 byx =	        {Σxn
2 − [(Σxn)2 ∕ N]} 

Where,	 n = 1 to N

	 Σxn = sum of all x-values from 1 to N

	 Σyn = sum of all y-values from 1 to N

The formula for computing a is:

	 a = ȳ − (byx × x̄)

Table 4.12	 Details for calculating coefficient of correlation (r), regression coefficient or 	
	 slope (byx) and intercept (ayx)

Observation x-data
x-data-
squared

(x2)
y-data

y-data-
squared

(y2)

x-data × 
y-data
(x × y)

1 9.7 94.09 10.0 100.00 97.00

2 11.9 141.61 11.8 139.24 140.42

3 17.3 299.29 17.1 292.41 295.83

4 14.2 201.64 14.6 213.16 207.32

5 12.6 158.76 13.0 169.00 163.80

6 10.3 106.09 10.0 100.00 103.00

7 15.1 228.01 14.8 219.04 223.48

8 14.8 219.04 15.1 228.01 223.48

9 11.1 123.21 11.7 136.89 129.87

10 12.4 153.76 12.9 166.41 159.96



84

Observation x-data
x-data-
squared

(x2)
y-data

y-data-
squared

(y2)

x-data × 
y-data
(x × y)

11 13.5 182.25 13.1 171.61 176.85

12 14.1 198.81 13.8 190.44 194.58

N = 12 Σxn = 157.0 Σxn
2 = 2106.56 Σyn = 157.9 Σyn

2 = 2126.21 Σ(xn × yn) = 
2115.59

x̄ = 13.08 ȳ = 13.16

SDX = 2.18 SDy = 2.10

(ΣX)2 ∕ N  
= 2054.08

(ΣY)2 ∕ N  
= 2077.70

(ΣX × ΣY) ∕ N 
= 2065.86

ΣX2 - (ΣX2 ∕ N) = 52.48 ΣY2 – (ΣY2 ∕ N) = 48.51
Σ(X × Y) − 
[(ΣX × ΣY) ∕ N] 
= 49.73

√ 〈[Σxn
2 − (Σxn

2 ∕ N)] ×[Σyn
2 - (Σyn

2 ∕ N)]〉 = √ 〈52.48 × 48.51〉 = 50.45
r = {Σ(xn × yn) − [(Σxn × Σyn) ∕ N]} ∕ √ 〈[Σxn

2 − (Σxn
2 ∕ N)] × [Σyn

2 − (Σyn
2 ∕ N)]〉 = 49.73 / √50.74 

= 0.9857 

byx = {Σ(xn × yn) − [(Σxn × Σyn) ∕ N]} ∕ {Σxn
2 − [(Σxn)2 ∕ N]} = 2115.59 ∕ 2065.86 = 0.9477 

axy = (ȳ) − (byx × x̄) = (13.16) − (0.9477 × 13.08) = 0.7594 (ayx)

Note: n = 1 to N; Σxn = sum of all x-values from 1 to N; Σyn = sum of all y-values from 1 to N

The slope that is developed when NIRS-predicted data are compared with 
reference data can be used to correct deviations between the NIRS and reference 
data in the prediction set (and subsequent samples). This slope correction is 
carried out by multiplying all of the calibration constants including the intercept, 
by b. Following that, a is added to (or subtracted from) the original calibration 
intercept. This will change the size of errors at extremes of the reference data. 
This will not change the value of r, which means that it will not have changed the 
closeness of the relationship between the xn and yn-data (n = 1 to N). Most NIRS 
software packages in use today include options to change slopes or biases at 
the touch of a key, so the operator does not have to worry about application of 
the actual formula. Figure 4.3 illustrates the slope and intercept. Sometimes users 
confuse the intercept with the bias. The intercept is a separate statistic. It can 
be substantially different from the bias, and should not be confused with it. An 
intercept can occur even if the bias is ±0.00.

Table 4.12	 Details for calculating coefficient of correlation (r), regression coefficient or 	
	 slope (byx) and intercept (ayx) (continued)
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Slope changes to NIR calibrations are generally not recommended. If the slope is 
within 0.05 of 1.00, a slope adjustment will not improve the data very much. On 
the other hand, in practical terms if the slope differs from 1.00, e.g. by ±0.85 to ±1.15 
or by an even greater deviation, this means that the calibration will be affected. 
The data will apparently be improved by slope adjustment, but the model may 
not be reliable for prediction of future sample sets. What can happen when NIRS 
is applied to a problematical assignment, such as prediction of, e.g. mycotoxin in a 
grain or prediction of soil mineraliseable nitrogen content, is that an acceptable r 
and SEP may be achieved for the calibration/test set combination – the slope will 
however be much higher or lower than 1.00. If this happens, when the calibration 
model is used to predict the same substance in a new set of samples, the results 
will be untrustworthy, particularly at extremes of concentration. 

Ideal slope (b = 1.000, a = 0)

b

a

Figure 4.3	 Illustrating the slope (b) and intercept (a).

Addition of predicted samples of the same type to the calibration may appear to 
improve the statistics, but application of the updated model to further samples 
may again show little improvement over the original statistical data. The main 
reason why this happens is that the samples that have been predicted and added 
to the original calibration set in an attempt to improve the calibration, are also 
subject to the same factors that caused the original poor slope. Because of this 
they are unlikely to change the slope, so that it is logical that they will not bring 
much improvement to the application. The reasons for the poor slope have to be 
researched, and perhaps NIRS is not suitable for that application. 

An example of the use of b to correct results is given in Table 4.13. The values are 
typical of those obtained in the NIRS analysis of wheat for protein content, but 
the principle of the table is applicable to any application. The predicted values 
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of yn (the reference data and n = 1 to N) are commonly referred to as y-hat (ȳ). 
Y-hat is the symbol that represents the predicted equation for a line of best fit 
in linear regression. The equation is ȳ = a + bx, where b is the slope and a is the 
intercept. It is used to differentiate between the predicted data and the observed 
data (y). The y-hat-value is also used in calculating the residuals of (yn − ȳ), where 
n = 1 to N. The residuals are the differences between the observed and predicted 
values. The example illustrates the application of the regression equation to 
predict the values of yn (n = 1 to N). In practice, validation of the calibration model, 
and determination of the slope and bias should be based on far more than 10 
samples. The RPD statistic (see section 4.1.13) in Table 4.13 relates the SEP to the 
SD of the reference data in the sample set used for validation. Notice that the 
pattern of differences between reference and NIRS protein content differed after 
application of the slope/bias correction. The root mean square error of prediction 
(RMSEP) was higher before application of the correction, but the same as the SEP 
after correction. The SEP was slightly improved by the correction. The correction 
did not affect the correlation coefficient, but b became 1.0000 and a 0.0000.

Table 4.13	 Application of regression coefficient (slope) (b) and bias correction

Observation 
/ Statistic

Protein 
(%) 

Reference
(1)

Protein 
(%) NIRS

(2)

Difference*
(1 − 2)

Corrected 
protein

NIRS
(3)

Difference**
(1 − 3)

12.3 12.0 0.3 12.18 0.12

10.9 10.7 0.2 10.82 0.08

13.6 13.2 0.4 13.43 0.17

15.2 15.1 0.1 15.41 -0.21

10.3 10.1 0.2 10.20 0.10

13.1 13.2 -0.1 13.43 -0.33

17.4 16.9 0.5 17.29 0.11

9.8 9.7 0.1 9.78 0.02

14.7 14.1 0.6 14.37 0.33

11.9 12.1 -0.2 12.28 -0.38

Mean (%) 12.92 12.71 0.21 12.92 0.00

SD 2.381 2.272 0.251 2.370 0.231

CV (%) 18.43 17.88 18.34

R 0.9953 0.9953

r2 0.9906 0.9906
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Observation 
/ Statistic

Protein 
(%) 

Reference
(1)

Protein 
(%) NIRS

(2)

Difference*
(1 − 2)

Corrected 
protein

NIRS
(3)

Difference**
(1 − 3)

byx 1.04302 1.0000

ayx -0.3368 0.0000

SEP (%)*** 0.251 0.231

RMSEP 0.334 0.231

RPD 9.49 10.26

Corrected protein = (NIRS Protein × byx) + ayx; *Differences between reference and NIRS protein;
**	Differences between reference and NIRS corrected protein; ***SD of differences between 

reference and NIRS protein content results

4.1.8	 Distribution of differences between NIRS and reference results

The pattern, or the distribution of differences between NIRS and reference results, 
should be studied for any calibration involving materials that have not been tested 
before since the relationship between reference and NIRS results may change at 
higher or lower concentration. Nine different patterns may characterise the slope 
of the relationship between NIRS predicted and reference data. These are listed in 
Table 4.14. A slope change may be accompanied by a positive or negative overall 
bias in which a slope/bias correction may be applicable. Biases (types 8 and 9) can 
also occur, but with no slope difference. Figure 4.4 shows examples of slope types 
1, 4, and 7. Types 8 and 9 can be corrected with a bias adjustment. All of the other 
types of bias can be corrected with a slope/bias adjustment.

Table 4.14	 Patterns of slopes indicating relationship between reference and NIRS 		
	 predicted results at low and high reference values

Observation Low reference value High reference value

1 Accurate Accurate

2 Accurate High 

3 Accurate Low 

4 High Low

5 Low High

6 High Accurate

7 Low Accurate

8 High High 

9 Low Low

Table 4.13	 Application of regression coefficient (slope) (b) and bias correction (continued)
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High results at low end

Low results at low end

Low results at high end

Accurate at high end

1

4

7

Figure 4.4	 Examples of slopes with slope patterns of numbers 1, 4 and 7 from 		
	 Table 4.14.

4.1.9	 Standard error of a single test (SET)

The SET (sometimes referred to as the standard error of the laboratory, SEL) 
is the SD of the results of analysis of a check sample, whether by reference or 
NIRS methods, using all steps of the test, including sub-sampling and sample 
preparation. The sample should be tested at least 8–10 times and the SD calculated. 
This is discussed in more detail in Chapters 3 and 9. The SET is an intrinsic part of 
the SEP (see section 4.1.10). Before attempting the development of a calibration, 
it is essential to determine the precision (standard error) of the reference test 
that will be used to develop the calibration. This can be done by means of ‘blind’ 
duplicates, or by using a ‘secret’ check sample that is introduced under a coded 
number at intervals in the daily work-load (see Chapter 3, section 3.2).

To protect against hidden biases, all results for agricultural commodities should 
be reported on a constant moisture basis. This involves testing the sample for 
moisture content before and after sample preparation. For example, an error of 
0.5% moisture, if unnoticed, results in an automatic bias of about 0.1% in protein-
testing of cereal grains, and greater errors in the case of testing high protein 
material, such as soybean meal. The error in protein-testing of fresh forages or 
any fresh material can be even greater because of the higher moisture content. 
The SET should also be determined for every NIR instrument in a laboratory or 
any operation. It is particularly important to determine the SET for methods for 
the prediction of functionality, as well as other methods where some subjectivity 
could occur.
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If the SET is determined for samples that range widely in concentration, it is useful 
to correlate the SET with concentration by using samples of high, medium and 
low levels of concentration. If the SET changes as the concentration goes up or 
down, this may mean that the reference method is not reliable at all levels. This 
is important in calibration development because an increase in the error of the 
reference test at different composition levels will affect the development of the 
calibration model. Because the principle of the NIR technique derives solely from 
the spectra, the NIR instrument may be more reliable than the reference method 
at different levels of composition.

4.1.10	 Standard error of prediction (SEP)

The SEP is the SD of differences between NIRS predicted and reference values 
after correction for bias.

The formula for its calculation is as follows:

	 SEP = √ 〈{Σ(xn − yn)2 − [Σ(xn − yn)]2 ∕ N} ∕ (N − 1)〉

Where,	 n = 1 to N

	 xn = reference data from 1 to N

	 yn = NIRS predicted data from 1 to N

Unlike the RMSEP (see section 4.1.12), the SEP is independent of bias. The SEP 
should be computed from the results of prediction of a set of samples that have 
not been used in development of the calibration. This sample set is usually called 
the 'prediction', or more often, the 'validation' sample set. Ideally, the sample set 
used in the independent validation of a calibration should consist of samples 
of the same type that are completely unrelated to the calibration sample set. 
Nevertheless, often the validation samples are part of a single population from 
which both calibration and validation samples sets are compiled. Ideally, a test set 
should be used for validation of a model using totally new samples of the same 
commodity. If the population of samples is large (500 or more), the requirement 
for the validation sample set to be made up of totally different samples is less 
important because sufficient variance from all sources will have been incorporated 
into the population, and the addition of more samples of the same type will add 
little to the integrity of the calibration. 

The ultimate test of a calibration is the application of the calibration to fresh ‘real-
world’ samples that have entered the testing area for the first time and represent 
the material for which the application of NIRS is intended. As an example, when 
the CGC had completed the research on development of the calibrations that 
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they would be using in their wheat industry for the prediction of protein content, 
the first ‘real world’ sample was a 35,000-tonne cargo of grade 1 CWRS wheat at a 
guaranteed protein content of 13.5%, shipped to a flour mill in England.

Computing the results of prediction of the samples used in the development of the 
calibration gives the SEC. The SEC is the SD of differences between NIRS predicted 
and reference samples in the calibration sample set. The calculations are based 
on a bias of 0.0 and a slope of 1.0. The spectral signals at adjacent wavelengths 
are highly correlated with each other, and if multiple linear regression (MLR) is 
used, the r and SEC statistics will progressively improve as more terms are added. 
This is called over-fitting of data (multicollinearity) and can be misleading. If the 
validation exercise indicates that r is unacceptably low and the SEP is unacceptably 
high, the calibration set should be predicted and the individual data viewed. The 
SEC may indicate the presence of one or more gross outliers, the removal of which 
may bring about a significant improvement in the actual r and SEP values when 
the validation set is predicted. Validation using a separate set of samples enables 
the operator to optimise the number of constants to use in either MLR equations 
or PLS regressions.

In practice, the SEP may not always be higher than the SEC, particularly if calibration 
and validation sample sets are compiled from small populations (100 samples or 
less), or if a ‘repeatability file’ of samples is included in calibration development 
(WinISI software) with differences in temperature or moisture contents for 
the purpose of adding variance to improve the stability of the calibration. The 
precision of the NIR instrument is often superior to that of the reference method.  
Sample selection for calibration and validation sets may result in one or more of 
the calibration samples having a higher reference test error than any of those in 
the validation set, which will also cause the SEP to be slightly lower than the SEC. 

A note about outliers: A spectral ‘outlier’ is defined as a sample that does not 
conform to the bulk of the population in terms of the spectral data (see Chapter 5, 
section 5.2.11). In a validation exercise, an outlier is a sample, of which the predicted 
result differs from the reference result by three times the SEP or more. In the 
industrial world there are no outliers, everything has to be tested. However, during 
calibration development, samples/spectra that appear as outliers can occur. It is 
important to determine whether these are really outliers. NIR instruments are very 
precise, so that spectral outliers can be confirmed as outliers by re-scanning the 
sample. If the spectral data of the second scan is clearly different than that of the 
first scan, the sample should be re-scanned in order to determine which of the 
two scans were correct. If the spectral data of the second scan remain essentially 
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the same as for the first scan, the sample is spectrally different from the rest 
of the population. The source should then be traced to find what has caused it 
to be different, e.g. growing location or a change in ingredients or processing 
conditions. Additional samples of the same type should be sought and added 
to the calibration/validation sample sets. If a spectral outlier can be traced to a 
sample that is not likely to occur again (e.g. a single sample of soft wheat that has 
accidentally become mixed with the hard wheat), it can be removed.

The spectral characteristics of every individual sample exerts an influence on 
the calibration model to a certain extent. This is called ‘leverage’. The degree 
to which most samples exert leverage is related to their chemical, physical and 
physicochemical make-up which determines their positions within the PCs. Most 
of the samples exert approximately the same amount of leverage. Their position 
along the PCs of the variance governs the sign and degree of their influence.

Outliers interact with the incident energy in a way that does not conform to the 
rest of the population. As a result, they exert a much higher degree of leverage 
than they should and tend to bias the calibration model toward themselves to 
an extent that the model may not predict future samples that do conform to the 
population, accurately. Figure 4.5 shows the influence of an extreme outlier on a 
calibration.

Outliers can occur where the predicted results differ considerably from the 
reference results, but the spectral data of the outliers look normal. These may 
be ‘reference’ or ‘chemical’ outliers. Sometimes these are due to entry errors, 
e.g. entry of a reference value of 1.43% protein instead of 14.3%. The authenticity 
of suspected reference outliers can be verified by repeating the reference test. 
Again, if the new result differs from the original result significantly (e.g. by 2–3 
times the SEL), the reference test must be repeated in order to determine which 
test was correct. If the new result brings the sample in line with the rest of the 
population, the sample is no longer an outlier. If the new result agrees to the 
previous result to within the SET, the sample will persist as an outlier. If this is the 
case, a decision has to be made. 

For calibration purposes, up to 2% outliers can be retained in a large population 
without distracting from the integrity of the calibration. They represent samples 
of which the spectral data differ from the mean of the population, and will add 
stability to the calibration because such samples will happen in the day-to-day 
industrial operation. If there is a much higher proportion of apparent outliers, 
they are probably not outliers. It may mean that the reference data are unreliable, 
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the calibration requires some fine-tuning, e.g. by optimising mathematical 
pretreatment or wavelength range, or that NIRS is not applicable to the prediction 
of the parameter sought. One anomaly of NIRS that has been with us ever since 
the introduction of the computerised spectrophotometer, concerns spectra that 
‘look’ normal yet predict as outliers. One explanation of this is the influence of 
external factors such as growing location on the spectra of samples of the same 
chemical composition (see Chapter 9, section 9.1.4).

Actual protein content (%)

Outlier

r2 = 0.737
SEP = 0.414%
b = 1.099

0.114

10.970 12.457 13.944 15.431 16.918

4.730

9.346

13.962

18.579

Actual protein content (%)

r2 = 0.972
SEP = 0.132%
b = 1.005

0.114

12.512 13.619 14.725 15.831 16.937

4.730

9.346

13.962

18.579

Figure 4.5	 Model evaluation before and after removal of a gross outlier.

A word of caution when using PLS regression in developing calibrations is that, 
although the use of all available wavelengths may lead the operator to believe 
that over-fitting is impossible, very attractive values for r and SEC for up to 15 
PLS factors do not necessarily mean that those values will be achieved for the 
validation set. A type of over-fitting can occur if too many factors are used. 
The r, r2 and SEP values when a validation set is predicted can indicate that a 
different optimum number of PLS factors should be used from that determined 
and suggested by the software. The number of PLS factors should be optimised 
by prediction in the same way as the number of wavelength points in MLR. This 
can be done by means of cross-validation (see section 5.2.9). Both over-fitting and 
under-fitting can occur with PLS regression. In applications where only a single PLS 
factor appears to have been used, the calibration is usually unreliable. Because of 
all of the variance introduced by the spectra and reference data it is essentially 
impossible for a single factor to account for all of the variance in a data set. 

Theoretically most of the variance in an NIRS PLS calibration system should be 
accounted for by the first 3 or 4 factors so that the PLS calibration model will 
contain at the most 5 factors. In practice, unless the relationship between spectra 
and reference data is very strong, successful PLS models rarely use less than 6–8 
factors. On the other hand, a useful guideline is that the lower the number of PLS 
factors, the better, and a PLS calibration that indicates the use of 15 factors should 
be regarded with caution.
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The SEP should not be regarded as an indication of accuracy by itself. It is the SD 
of differences between reference and NIRS data, and reporting the effectiveness 
of an NIRS calibration model must include any bias as well as the SEP. Freedom 
from bias is the true indication of accuracy. Table 4.15 gives reference data with 
two sets of NIRS data, showing that excellent statistics for r, r2 and SEP can be 
obtained with or without bias.

Table 4.15	 NIRS results with and without bias

Statistic Reference NIRS I Difference I NIRS II Difference II

11.7 12.0 0.3 12.0 0.3

13.9 13.8 -0.1 13.8 -0.1

15.3 15.6 0.3 15.0 -0.3

14.6 14.8 0.2 14.4 -0.2

10.4 10.7 0.3 10.4 0.0

12.3 12.6 0.3 12.5 0.2

13.2 13.3 0.1 13.3 0.1

16.1 16.3 0.2 15.5 -0.6

14.7 14.8 0.1 14.5 -0.2

11.2 11.4 0.2 11.4 0.2

13.4 13.5 0.1 13.5 0.1

12.8 13.0 0.2 13.0 0.2

14.0 14.4 0.4 13.9 -0.1

12.5 12.8 0.3 12.7 0.2

15.7 16.0 0.3 15.3 -0.4

Mean 13.45 13.67 0.213 13.41 -0.04

SD 1.67 1.66 1.45

SEP* 0.125* 0.261*

Bias 0.22 -0.04

R 0.997 0.995

r2 0.994 0.991

byx 0.9897 0.8674

ayx 0.35 1.74

RPD 13.4 6.4

*SEP = standard deviation of differences

Table 4.15	 NIRS results with and without bias (continued)



94

Note that, while the values of r2 are excellent for both sets of NIRS data the SEP, 
b- and a-values for the NIRS II data are quite different from that of NIRS I data. 
Table 4.16 shows the effects of predicting the results using the b- and a-values 
from the NIRS I and II data. The predicted results using the NIRS I data show a 
consistent bias of about 0.2% which can be easily adjusted. Prediction of the 
results using the regression formula from the NIRS II data give results typical of a 
type 4 slope (see section 4.1.8 and Figure 4.4).

Table 4.16	 Prediction results using regression equations NIRS I and NIRS II 		
	 from Table 4.15

Actual results Prediction I* Prediction II*

10 10.25 10.42

11 11.24 11.29

12 12.23 12.15

13 13.22 13.02

14 14.21 13.89

15 15.20 14.75

16 16.19 15.62

4.1.11	 Standard error of cross-validation (SECV)

Cross-validation legitimately uses the same samples for validation as it uses for 
calibration development. It does this by leaving out one sample, or groups of a 
few samples, and developing the calibration model with the remaining samples. 
The sample, or group of samples, that has been eliminated is predicted and the 
residual(s) recorded. This sample(s) is then replaced, another sample or group of 
samples is eliminated and the process repeated until all samples have been used 
in model development and predicted with the residuals recorded. None of the 
samples predicted have actually been used in development of the model with 
which they have been predicted. If only one sample has been left out at a time 
the method is called ‘full’ or ‘leave-one-out’ cross-validation. If batches of samples 
have been left out it is called ‘segmented’ or ‘group’ cross-validation. The standard 
deviation of differences of the residuals between NIRS predicted and reference 
data is the SECV.

Cross-validation has become widely-accepted and is used in many publications. 
It is useful to determine the optimum number of PLS factors for a calibration. It 
has the drawback that full information is not generated for bias or slope/intercept 
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because all of the samples have been drawn from the same population. For 
small sample sets (up to N = 100), cross-validation is preferred over the test-set 
method for evaluation of a calibration model. The reason is that with small sample 
sets there is a predisposition to select samples that represent as full a range as 
possible in the test set. Prediction of these tends to ‘flatter’ the calibration model. 
If there are only 100 or so samples sorted from high to low in terms of reference 
data, and the 80:20 system is used for setting up calibration and validation sample 
sets, there will be only about 20 samples in the test (validation) set. With cross-
validation, particularly leave-one-out cross-validation, the validation will be 
based on the whole population of 100 or so samples, which is better. Leave-one-
out cross-validation only takes a few seconds with modern computers and gives 
a more realistic picture of the efficiency of the calibration model for these small 
sample sets. 

If cross-validation is to be used for evaluation of calibrations for large sample 
sets, e.g. 300 or more it is best to use segmented (group) cross-validation, leaving 
out groups of 5 or more samples. With the random system for selection of the 
groups, this adds the variance within each group to the overall cross-validation. 
Note that when random selection of the ‘left-out’ groups is used, the r2 and SECV 
statistics can be expected to differ slightly if the exercise is repeated, because the 
composition of the groups will have differed due to the random selection.

With large sample sets, e.g. between 300 and 400 or more, a good system is to sort 
the samples by the values of the constituent, then use about 20% of the samples 
as a first validation test set, another 20% for a second validation test set and to 
use the remaining 60% to develop the calibration model. The first validation test 
set (the ‘optimisation’ set) is used to optimise wavelength range and spectral data 
pretreatment. This can be done using group cross-validation to save time. The 
first test-set is then added into the calibration model and the updated model 
re-evaluated using the second test-set. The second validation set (the ‘validation’ 
set) will then have been developed from 80% of the population and is used to 
evaluate the resulting most updated model. 

4.1.12	 Root mean square error of prediction (RMSEP)

The RMSEP, also termed root mean square of the differences (RMSD), or simply 
the root mean square error (RMSE) gives another measure of the efficiency of 
a calibration equation. It is the root mean square of differences between NIRS 
predicted and reference results. The RMSEP includes bias error. If no bias exists the 
SEP and RMSEP or RMSD are identical.
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The formula for computing the RMSEP is:

	 RMSEP = √ 〈[Σ(xn − yn)2] / N〉
	 Where,	 n = 1 to N

The RMSEP (or RMSE) does not give information on the magnitude or sign of 
the bias and in reporting the statistics of an NIRS calibration the use of the SEP 
together with the bias is preferred. The use of the RMSEP statistic, rather than the 
SEP is preferred by some workers. The data in Table 4.17 show how the RMSEP is 
related to the SEP. In the case of the original NIRS data, where there was a positive 
bias of 0.21, the RMSEP was substantially higher than the SEP. After correction 
using the regression equation where there was no bias, the RMSEP and SEP values 
were equal. The separate SEP and bias figures are preferred for reporting accuracy 
since the RMSEP by itself incorporates the bias but does not indicate its size or 
sign. This is immaterial if the bias, or both x̄ and ȳ, are reported separately. Table 
4.17 gives details of calculation of the SEP and the RMSEP.

Table 4.17	 Details for calculating the SEP and RMSEP

Observation
Reference 

protein (%) 
(x)

NIRS predicted 
protein (%) 

(y) 

Difference 
(y − x) 

1 13.28 13.38 0.10

2 13.15 13.60 0.45

3 13.64 14.04 0.40

4 13.58 13.56 -0.02

5 13.42 13.64 0.22

6 13.61 13.81 0.20

7 13.47 13.59 0.12

8 13.33 13.43 0.10

9 13.67 13.66 -0.01

10 13.29 13.60 0.31

11 13.59 13.84 0.25

12 3.38 13.53 0.15

Sum (Σxn) 161.41 163.64 2.27

Mean (x̄) 13.45 13.64 0.189

SD 0.168 0.182 0.147

Bias 0.14
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Observation
Reference 

protein (%) 
(x)

NIRS predicted 
protein (%) 

(y) 

Difference 
(y − x) 

√ 〈{Σ(xn − yn)2 – [(Σ(xn − yn))2 ∕ N]} ∕ (N−1)〉
√ 〈{0.6669 − [2.27 ∕ 12]} ∕ 11〉
√ 〈{0.6669 − 0.4294} ∕ 11〉

= SEP (SD of differences
= SEP
= √ 〈0.2375 ∕ 11〉
= 0.147

√ 〈[Σ(xn − yn)2] ∕ N〉
√ 〈0.6669 ∕ 12〉

= RMSEP (root mean square of differences)
= 0.236%

Note: n = 1 to N; Σxn = sum of all x-values from 1 to N; Σyn = sum of all y-values from 1 to N

4.1.13 Ratio of SEP to the SD (RPD) 

The RPD is a non-dimensional statistic for the evaluation of a NIRS calibration 
model. The Ratio of (standard error of) Prediction to (standard) Deviation, or RPD, 
is a simple statistic that enables the relative evaluation of a SEP in terms of the SD 
of the reference data of the validation sample set. It is calculated by dividing the 
SD of the reference values used in the validation (SDy), by the SEP: 

	 RPD = SDy ∕ SEP

An alternative formula for computing the RPD is:

	 RPD = 1 ∕ √ (1 − r2)

Most people find SDy ∕ SEP easier to remember, but the 1 ∕ √ (1 − r2) formula gives 
a useful estimate of the RPD when information on the SD of the reference data 
is not available. The RPD can be computed for evaluations for cross-validation as 
well as for test-set evaluation. This is useful when only cross-validation is used in 
calibration development.

One of the most frequently-used statistics for evaluating the efficiency of NIRS 
analysis (as determined by the size and consistency of deviations from reference 
analyses) is the SEP. If the SEP value is equal to the SDy (it may be even higher), 
it means that the instrument is not predicting the reference values at all because 
the differences between each predicted value and the mean are the same as the 
differences between the reference values and the mean. If this happens the RPD 
will be 1.0. The SEP should be considerably lower than the SDy, and ideally the ratio 
of the SDy to SEP should be 3 or higher.

Using the data in Table 4.13, the original RPD was calculated as 2.38 ∕ 0.251 = 9.5. 
Because the SEP was reduced after slope/bias correction, the RPD changed to 

Table 4.17	 Details for calculating the SEP and RMSEP (continued)
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10.3. For a series of fairly uniform samples where the SD is not high, the RPD may 
not be as high as this, but should indicate that the SEP is appreciably lower than 
the SD. For example, RPD-values of even 2.5–3.0 will verify accurate analysis if 
the SD is only 0.4–0.5. From a practical point of view, if the SD is very low for a 
population of reasonable size (60 or more), this may indicate that the variance is 
so low that frequent analysis is not necessary. This type of situation may appear, 
e.g. in a flour mill, and in many industrial applications where the objective is to 
maintain uniformity in the product and minimise variance. Despite the low range 
in reference values, and consequent low SD, there is still a need for regular analysis 
and quality control in order to ensure that specifications are being met. Table 4.18 
gives the interpretation of some values of the RPD for grains, flours and meals, for 
composition.

Table 4.18	 The RPD statistic – grains, flours, constituents

RPD-value Classification Application

0.0–2.3 Very poor Not recommended

2.4–3.0 Poor Very rough screening

3.1–4.9 Fair Screening

5.0–6.4 Good Quality control

6.5–8.0 Very good Process control

8.1+ Excellent Any application

NIRS has been successfully applied to a very variable range of commodities, 
constituents and functionality factors. Because of complications with the inherent 
heterogeneity of the samples, sample preparation, sample presentation to the 
instrument and difficulties with reference testing, RPD-values of as high as 3.0 
may be difficult to achieve with some applications. Even with lower values for the 
RPD, this statistic still gives a useful indication of the evaluation of applications of 
NIRS for these types of industrial and scientific analytical work. Table 4.19 gives the 
interpretation of RPD-values for some different and more ‘difficult’ applications, 
such as analysis of forages, high moisture materials, such as silages vegetables, 
fruits, meat and fish, soils and manures, where the application of NIRS is affected 
by the more complex nature of the materials. 

Table 4.19 is also applicable to the prediction of functionality factors such as grain 
texture, digestibility and energy or other parameters that are not associated 
with any ‘classical’ absorbers. The different interpretation does not change the 
statistical consequences of the lower values, but it places them in a category of 
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explanation that is more realistic in terms of the results likely to be achieved with 
these applications. 

Table 4.19	 The RPD statistic – forages, feeds, functionality parameters

RPD-value Classification Application

0.0–1.9 Very poor Not recommended

2.0–2.4 Poor Rough screening

2.5–2.9 Fair Screening

3.0–3.4 Good Quality control

3.5–4.0 Very good Process control

4.1+ Excellent Any application

4.2	 Summary of statistical terms

To summarise the interpretation of the statistical terms, the SEP indicates the 
variability in deviations of X from Y, and the bias shows the average amount by 
which the results differ. The SEP, together with the bias, describe the overall 
accuracy of the test procedure. The RPD relates the SEP to the SD of the reference 
data used in validation data, and standardises the interpretation of the SEP. 
High values for the RPD (ideally 5 or more, but at least 3) indicate efficient NIRS 
predictions. Remember that the SEP is a standard deviation, and as such is subject 
to the same limitations as the SD (see Table 4.4). 

The r or r2 indicates the closeness of fit between the NIRS and reference data over 
the range of composition. A high r with a low SEP and bias, together with a slope 
close to 1.0, means that the NIRS results are accurate over the anticipated range, 
and likely to remain so provided that these statistics were based on a sufficient 
number of observations. Useful guidelines are to use at least 25 samples for every 
wavelength, using MLR, and at least 15 samples per factor using PLS regression. 
A high r (>0.95), with a bias throughout, or at one or both extremes of composition, 
means that these discrepancies will almost certainly persist.

Qualitative and quantitative analysis by NIRS can be compared in this way – 
with high values of r2 and RPD (0.95+ and 8+) quantitative analytical results can 
be expected that would be good enough for quality control in a factory, and 
qualitative results in terms of classification that would identify classes correctly 
more than 90% of the time. With values in the ‘screening’ area (e.g. an RPD of 
2.5–2.9, Table 4.19) quantitative analysis results could be expected that would 
estimate composition or functionality well enough to identify high, medium and 
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low levels, and qualitative results that would identify classes correctly about 66–
70% of the time, again probably still better than methods used before NIRS, and 
better than doing no testing at all.

The slope shows the degree to which NIRS predicted values change, relative to 
reference values. A slope of near 1.0 is excellent because it shows that the rate 
of change in both sets of data is identical. Deviations from 1.0 of greater than 
0.05 may appear to require slope, and possibly bias, correction. Deviations of 
greater than 0.1 are more significant and require investigation as to the cause. The 
regression statistics ‘b’ and ‘a’ can be used in the equation y = a + bx to correct 
the slope and bias. In practice, slope changes are not recommended and are rarely 
used. Based on test set evaluation, if the slope is different from 1.0 by more than 
±0.10 the calibration model will probably not work well for subsequent samples.

Slope/bias adjustment will improve the accuracy of prediction at extremes of 
reference data. The correlation coefficient will not change. If the correlation 
coefficient is low (<0.8), it is usually not possible to obtain consistently high accuracy 
by NIRS analysis even after slope/bias adjustment because the calibration model 
will not be reliable. A low correlation coefficient between NIRS and reference data 
means that the NIRS analysis has not been successful. If all sources of error for 
poor NIRS results have been carefully studied, including reference analysis, and no 
improvement can be achieved, the sad truth may be that NIRS is not applicable 
to the analysis.

The coefficient of determination, r2, the bias and the RPD are the most meaningful 
statistics for ‘instant’ appraisal of analytical efficiency by NIRS and comparison 
of calibrations. The slope is an indication of the potential effectiveness of 
the calibration.

4.3	 Reporting of NIRS results

To present the results of an application of NIRS effectively, up to 18 pieces of 
information should be included. These are summarised in Table 4.20. In many 
cases the r2 and SEP are reported without all of the information that had to be 
involved in the development of the calibration and its application. The use of 
cross-validation provides no information on the slope or bias. The slope is most 
important when NIRS is applied to complex materials, such as fresh or mature 
forages, soils, manures, composts, meat and fish, fresh fruit and vegetables and 
others. Reporting the intercept is optional, and its inclusion illustrates differences 
between the intercept and the bias. More items are discussed in a Journal of Near 
infrared Spectroscopy  tutorial (Williams, Dardenne & Flinn, 2017).
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Table 4.20	 Statistical and other information to be included when reporting the results of an 	
	 NIRS application

Number Statistical term/other information

1 Source of samples

2 Number of samples in calibration and test sets

3 Sample preparation and storage method 

4 Reference method

5 Standard error of the reference method on the material to be tested 
(SET or SEL)

6 Mean of reference data

7 SD of reference data

8 Method of developing calibration model, e.g. MLR or PLS

9 Number of wavelengths (MLR) or number factors (PLS) used in final model

10 Cross-validation system (e.g. leave-one-out or size of blocks left out)

11 SECV or RMSECV

12 SEP or RMSEP

13 r and/or r2 

14 Regression coefficient or slope

15 Intercept (optional)

16 Bias

17 RPD

18 Standard error of the NIRS method

Provided that the calibration has been developed using samples that have 
represented all of the variance of the population, the standard error of the NIRS 
method may be superior to that of the reference method. This is because there 
are usually more sources of error in the reference method.

Reference

Williams, P, Dardenne, P & Flinn, P. 2017. Tutorial: Items to be included in a report on a 
near infrared spectroscopy project. Journal of Near Infrared Spectroscopy, 25(2), 85–90. 
https://doi.org/10.1177/0967033517702395
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Introduction to 
NIRS software

This chapter describes the purpose of NIRS software which is to translate spectral 
data into the information required on items such as composition, functionality 
and other properties of biological samples. This is usually achieved by stepwise 
MLR, principal component regression (PCR) and PLS regression, and sometimes by 
ANN (artificial neural networks) regression. 

An ANN calibration is based on thousands of spectra, all of which are accompanied 
by reference data. These have been assembled by instrument companies (originally 
by Tecator) from their clients using spectra recorded on a number of instruments 
with reference data from an equal number of laboratories which incorporate 
a wide range of operating conditions with respect to temperature, relative 
humidity and dust conditions. Provided that the results of the reference testing 
are unbiased, the combination of spectral and reference data from a large number 
of instruments and sources will add valuable variance in spectral data with the 
same range of reference data to the calibration model. This has the overall effect 
of stabilising the model. ANN calibration models demand very large numbers of 
samples, and it is difficult to obtain sufficient samples with reliable reference data 
for constituents such as, e.g. NDF. It is even more difficult to acquire sufficient 

05
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samples for development of an ANN calibration for things like metabolisable 
energy, where each test costs C$800.00 or more per sample.

Modern computers and software can process data very quickly. In the early 
days of computerised spectrophotometers, development of a four-wavelength 
point calibration model took several hours using MLR. This limited research on 
optimisation of wavelength ranges and mathematical pretreatment of the 
spectral data. Modern computers can process the same calibration model in a 
few seconds. This allows the operator to optimise the wavelength range and 
mathematical pretreatments (see section 5.2.5) in a very short time. A detailed 
study of these features that would have taken several weeks 45 years ago can now 
be completed in a couple of hours. Operators are advised to learn the software 
thoroughly, and then to test variations in wavelength ranges, mathematical 
pretreatment of spectral data and scatter correction in detail before deciding 
which is the most reliable calibration model. This is a very good investment in time 
and allows operators to become skilled in the use of the software. 

5.1	 Types of NIRS software

Modern NIRS literature and conference papers contain many references to new 
forms of chemometrics that are aimed at resolving all the problems of calibration. 
The talented people that design and programme software, such as WinISI, 
Pirouette®, OPUS, NIRCal and The Unscrambler® read these papers and attend 
the conferences. If they note a new feature that may be effective they test it 
themselves in their own laboratories, and if it does indeed prove to be useful they 
will incorporate it into the software. 

Software can be grouped into two main classes, dedicated and generic software. 
The first type is dedicated to specific NIR instruments. It enables recording of 
spectra, operation of the instrument in regular analytical mode and instrument 
diagnostics. Calibration models can be developed directly using the dedicated 
software, and the models are automatically set into the instrument for use in 
future analysis. The FOSS WinISI, Metrohm Vision, BÜCHI NIRCal and the Bruker 
OPUS are examples of dedicated NIRS software. 

Generic software, such as MATLAB®, The Unscrambler®, Grams®, PLS_Toolbox® and 
Solo® is usually not limited to use in the NIR wavelength range and may be used 
to process other than spectral data. Instruments that require generic software 
for calibration development and related functions are provided with dedicated 
software that allows recording of spectral data, sample identification, instrument 
diagnostics, acceptance of the calibration models and routine analysis. For 
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development of calibration models, the spectral data must be transferred to the 
generic software to be used in calibration development and evaluation, usually 
on another computer, and the final model transposed back into the instrument 
for use in future analysis.

The terms ‘gap’ and ‘segment’ were originally introduced by Neotec/Pacific 
Scientific to explain the dimensions of the distance between two wavelength 
points when a derivative was created. The gap provides the dimensions of the 
derivative, while the segment describes the degree of smoothing (see section 5.2.5).

5.2	 Purposes of NIRS software

The purposes of NIRS software include: 
1.	 instrument set-up and standardisation;
2.	 recording of spectra;
3.	 regular (‘day-to-day’) analysis; and
4.	 data handling:

a.	 viewing (plotting) of spectra, singly or grouped;
b.	 entering and editing sample ID;
c.	 entering and editing reference data;
d.	 capability of selecting spectra from large sets of data files, such as the 

individual files recorded by, e.g. OPUS, for use in setting up calibration and 
validation files;

e.	 capability to import data and spectra from clipboard;
f.	 averaging of replicate spectra;
g.	 file set-up and organisation, e.g. for calibration and validation sample sets, 

and development of repeatibility files;
h.	 capability to add or remove samples to existing files individually or 

in blocks;
i.	 capability to delete and restore samples;
j.	 capability to create new files by removing spectra from other files and 

combining them;
k.	 compatibility with other software, such as Excel for importing 

reference data;
l.	 capability to ‘zoom’ on areas of spectra to magnify them;
m.	capability to subtract spectra from one another; and
n.	 movement of the cursor, to any point of the spectrum to identify 

wavelength and absorbance.
5.	 mathematical pre-treatment of optical data (smoothing and derivative 

development). The software should allow mathematical pretreatment and 
display of selected spectra from spectra files of any size;
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6.	 application of scatter correction;
7.	 optimisation of wavelength range;
8.	 development of calibration models;
9.	 evaluation of calibration models (statistical analysis)
10.	 slope/bias correction;
11.	 outlier detection;
12.	 discriminant analysis (classification);
13.	 networking of instruments;
14.	 instrument diagnostics;
15.	 special graphics in order to display statistical parameters and to illustrate 

publications and reports;
16.	 capability to change colours of backgrounds, graphs and spectra;
17.	 report generation;
18.	 client service; and
19.	 capability of clients to extend factory calibrations with their own samples.

Comprehensive software for use in application of NIR technology using 
computerised spectrophotometers should possess all these options. To describe 
each of the software packages in detail is beyond the scope of this book. The 
manuals that accompany the instruments describe how the software works and its 
capabilities. Software packages present features, such as file manipulation, data-
processing, scatter correction, instrument diagnostics and graphics in their own 
unique manner. The algorithms (methods) that they use to develop derivatives, 
principal components and PLS factors may differ among software companies, 
but the end results are quite similar. The manuals that accompany the software 
usually do not include all of the steps entailed in using all of the options. Users are 
advised to take the time to explore all of the options, and to develop their own 
stepwise operating manuals for training purposes.

5.2.1	 Instrument set-up and standardisation

Some instrument companies have developed software to set up and standardise 
instruments to a master instrument at company headquarters so that their clients 
can use the same calibrations for all of their instruments for the same applications. 
The clients send in a sample of the commodity with which they are going to 
work. The company makes a sealed cell, scans it on their master instrument 
and sends the cell back to the client, together with a diskette that contains an 
equation. The client scans the cell and applies the equation. This standardises 
the instrument to the instrument company’s master instrument. Calibrations 
can then be transferred among all instruments that have been standardised. On 
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receipt of the calibrations by the client they should be checked to verify that no 
biases have been introduced.

5.2.2	 Recording of spectra

Recording of spectra involves creation of spectral data files. The process includes 
setting up projects under which files are to be stored, naming files in which spectra 
are to be stored, number of scans per sample, specification of whether the data 
are to be recorded in analytical or calibration development modes, identifying 
method of sample naming and numbering, identifying method of adding reference 
data, specifying the resolution (of interferometers) and other features specific to 
the individual instrument or software. Furthermore, the method of transferring 
the spectral data to generic software may be specified. Some instruments do not 
allow the operator to add reference data at the time of recording spectra. These 
data are added after scanning using dedicated or generic software.

Some instrument/software combinations create a separate file for each sample 
and feature a system for identifying spectra/samples for data-processing, as well 
as calibration model development. Some software programmes allow reference 
data to be imported directly from Excel files. It is imperative that when this very 
useful and time-saving feature is used, that the spectra and Excel reference data 
are sorted to correspond with each other, and check samples, duplicates are 
removed before importing the reference data.

Most NIRS reflectance instruments record spectral data as the log 1/R where ‘R’ 
is apparent reflectance. NIT instruments record data as the log 1/T where ‘T’ is 
apparent transmittance. The terms absorbance or optical density (OD) are often 
used instead of log 1/R. A higher log 1/R value means that more of the incident 
radiation has been absorbed by the sample. Because more of the radiation is 
absorbed, less is reflected, hence 1/R gives a higher value. This affects the vertical 
position of the spectra, the more the degree of absorbance, the higher will the 
spectra appear on a display (see Chapter 1, Figure 1.3). 

5.2.3	 Routine analysis

Routine analysis, including on-line analysis, means ‘real world’ analysis at commodity 
receiving and shipping points, strategic locations in processing plants and so on. 
Software can enable the instrument to be set up to scan the samples, report 
the data and store the spectra as required. In processing operations, the data 
can be recorded automatically and displayed so that quality control can be 
monitored and maintained, and adjustments made if necessary. Selected spectra 
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can subsequently be used to update and extend calibrations. The spectra can be 
stored in separate files if the operator selects samples for this purpose during 
daily analysis.

5.2.4	 Data handling

Data handling includes viewing the spectra, adding and editing sample 
identification (ID) and reference data, as well as setting up files for calibration 
development and evaluation. Most stand-alone reflectance instruments allow the 
operator to view the numerical spectral data, usually as log 1/R or absorbance 
values. An experienced operator can detect obvious abnormalities in spectral 
data. In these cases, the numerical data can only be displayed graphically as 
spectra in the software used for calibration development. Operators of scanning 
spectrometers sometimes need to view spectra singly and the associated 
software should include that option. Some software allows the spectral data to 
be exported to Excel as vertical columns. This can be useful, e.g. if special graphics 
are to be used in preparing reports or scientific papers.

Based on scans on a scanning spectrophotometer, the log 1/R values in the 
1100–2500 nm range for commodities such as wheat flour vary from around 
0.01 to 0.70. For ground wheat-meal, such as produced by the Cyclone grinder 
with a 1.00 mm screen, log 1/R values range from about 0.01 to 0.75. There is 
not much difference in the spectral data between flour and ground wheat. The 
significant differences in mean particle size between flour and wheat meal are 
balanced by the fact that the wheat meal is much darker than the flour, which 
affects reflectance from the surface. Log 1/R values for whole wheat kernels 
range from about 0.11 to 1.15 for hard wheats and from 0.20 to 1.25 for soft wheats. 
Values for durum wheats vary from 0.29 to 1.3. Slightly different values are likely 
to be obtained with different NIRS reflectance instruments. Values of spectral 
data recorded in reflectance mode on whole grains by interferometers may 
be higher, and optical densities range up to 1.4. Absorbance of other materials, 
such as high moisture samples can reach over 2.0 units. These spectra should be 
treated with caution since some non-linearity could occur that will interfere with 
calibration development. Interferometers record spectral data in the form of cm-1 
(reciprocal entimetres).

The absorbance values for NIT instruments usually vary from about 1.5 to 4.0 for 
grains. A value of 4.5 is very high, and adjustment should be made to reduce these 
values to around 3.0 to 3.5. This can be achieved by changing the path length 
(actually sample thickness; see Chapter 6, sections 6.2.1 & 6.2.2).
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Sample ID of individual samples is usually added before or during scanning. 
Some instruments limit ID to 8 characters. It is a good idea to include some 
numerals in the sample ID, so that the spectra can be sorted by sample number 
for subsequent importing of reference data, e.g. from Excel. Reference data can 
be imported to several systems directly from Excel. This is particularly useful 
when large databases are available for calibration development, and several 
constituents/parameters have to be added. Data have to be entered into Excel 
manually, usually in the analytical chemistry laboratory at the time of reference 
testing. Importing the reference data to the NIRS software saves a lot of time 
and avoids further typographical errors. It is essential that the reference data are 
imported in the same order that the spectra are recorded. This can be done by 
sorting both the spectra and reference data by sample ID. Software systems may 
differ in the way that samples are sorted numerically. The ones may all be sorted 
in sequence, e.g. 1–19, then all of the 100s before passing to the twos (2, 20s, 200s). 
Operators should check that the instrument software sorts samples in the same 
way as Excel. As mentioned above, check samples and blind duplicates must be 
removed from the files of spectra before importing from Excel, because they 
change the order of samples in the spectra file relative to the reference data in 
the Excel file. It is important to verify the order of both spectra and reference data 
before calibration development. Inadvertent inclusion of a duplicate spectrum will 
displace all of the reference data which will result in spurious calibration statistics.

With a population of samples much larger than 100, the test-set system is often 
preferred to cross-validation for evaluation of the calibration model. Samples can 
be sorted by the constituent for which the calibration is being developed. The 
recommended system for large populations of  up to 500 samples is to set up two 
files, the first contains 20% of the samples. The remaining 80% forms the calibration 
set. Sorting on the basis of the constituent, and taking every fifth sample of the 
sorted samples, ensures that each file has similar distributions of samples on the 
basis of the constituent. The file with 80% of the samples is the calibration file. It 
is used to develop numerous trial calibration models representing various spectral 
data pretreatments and wavelength ranges using cross-validation. Selected 
models are then used to predict the validation sample set in order to determine 
the best of the trial calibration models. This is termed optimisation of wavelength 
range and mathematical pretreatment. This best model is the one with the highest 
r2, lowest SEP (standard error of prediction), lowest SET (standard error of a single 
test) and highest RPD (ratio of the SEP to the SDy).

For bigger populations the system suggested in Chapter 4 (see section 4.1.11) is 
preferred where the population is sorted then sub-divided into two validation 
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sets, each 20% with 60% of the samples being used for the development of the 
calibration model. The model is optimised using the first validation set, extended 
by adding this first set of 20% of the samples into the calibration set and updating 
the new calibration set which now contains most of the samples. The calibration 
is finally evaluated using the second set of 20% of the original samples, which 
have not been used previously. To optimise mathematical pretreatment, gaps 
and segments can be set at, e.g. 2, 4, 8, 10 and 20 wavelength points, and cross-
validation is recommended for this. This means a total of 25 possible combinations 
of gap and segment (smoothing). These are all tested by prediction of the first 
validation sample set. With a given commodity, certain combinations of gap and 
segment will emerge as optimum, as wavelength ranges are tested. This means 
that not all gap and segment combinations will need to be tested. This apparently 
formidable project can be completed in about an hour.

Cross-validation is recommended for evaluation of any calibration models 
based on small sample sets, e.g. up to 100–150 samples. The best model from 
cross-validation again has the highest r2, lowest SECV (standard error of cross-
validation) and highest RPD. If cross-validation is to be used, there is no need to 
sort or subdivide the samples, because all of the samples will be used.

All of the options listed in this section are useful and should be available in the 
software. Features, such as moving the cursor, ‘zooming’ in on areas of the spectra 
to examine them in more detail and subtraction of spectra to identify areas of 
maximum difference are useful in finding out more about the spectra. Averaging 
of spectra with subsequent display is useful to see at a glance whether two types 
or classes of material differ from one another spectrally.

5.2.5	 Mathematical pretreatment of optical data 

Calibration of the original discrete 6-filter instruments involved MLR of the ‘raw’ 
log 1/R data against the reference data to obtain b and a. Modern scanning 
spectrometers and interferometers use a variety of pretreatments of the spectral 
data, the most common of which is smoothing, multiplicative scatter correction and 
derivatisation. Although the concepts of smoothing and derivative development 
had been discussed by earlier workers, the initiative of using a ‘derivative’ of the 
log 1/R data was introduced by Karl Norris (Williams & Norris, 1984), for use with 
computerised spectrometers.

Many monochromators record log 1/R at intervals of 2 nm called wavelength points. 
Calibrations can often be improved by ‘smoothing’ the spectral data. Derivatives 
are usually developed on smoothed data. This can be done in more than one 
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way, but the most popular way is called ‘moving point’ or ‘boxcar’ smoothing. 
This is done by averaging the spectral data over a number of wavelength points, 
specified by the operator, and replacing each log 1/R value with the average. 
For example, if the spectral data were to be smoothed by 4 wavelength points, 
the spectral data would be handled in sets of five points. The mean would be 
calculated by summing the two points on either side of the central point and 
dividing by 4. The mean would replace the log 1/R value of the central wavelength 
point. Each wavelength point would then represent the mean of four data points. 
This would be repeated throughout the spectrum. The few wavelength points at 
each end would then not be available. 

The number of 2 nm wavelength points used for averaging has been referred to as 
the ‘segment’. The bigger the segment, the more smoothing has been done. Too 
much smoothing can cause loss of some resolution, and potentially useful data 
may be lost. The effect of smoothing is most obvious in areas of the spectrum 
where the system noise is highest. This is illustrated in Table 5.1, which also shows 
the effect of wavelength range on the smoothing. The effect of smoothing is 
determined here by calculating the SD of the spectral data from 10 spectra before 
and after smoothing. Smoothing over 10 wavelength points had a greater effect 
than smoothing over 5 points in reducing the SD of the spectral (log 1/R) data. 
The effect of smoothing is clearly indicated in Figure 5.1, where the smoothed 
spectrum in the area around 2300 nm shows how the changes in the spectra are 
evened out by the smoothing action.

Table 5.1	 Influence of smoothing on spectral data (log 1/R) of wheat flour at three 		
	 wavelength ranges

λ 416–450 nm 868–910 nm 2316–2346 nm

Raw S5* S10* Raw S5 S10 Raw S5 S10

Mean 0.1816 0.1814 0.1811 0.11352 0.11353 0.11356 0.6150 0.6151 0.6156

SD 0.0128 0.0126 0.0116 0.00292 0.00290 0.00280 0.00572 0.00563 0.00535

CV 7.071 6.929 6.424 2.570 2.551 2.469 0.9302 0.9154 0.8694

Diff.** - -2.01% -9.15% - -0.74% -3.93% - -1.59% -6.54%

*	 S5 = raw log 1/R data smoothed by 5 points; S10 = raw log 1/R data smoothed by 10 points;
**	Diff = difference in CV (%) from raw data induced by smoothing; CV = coefficient of variation

The wavelength region over which the derivative is developed is the ‘gap’. 
For example, the gap could be set at 10 wavelength points and the segment 
(smoothing) at 5 points. The derivative could then be defined as having a gap 
of 10 and a segment of 5 (i.e. 2 10 5 1). Such a derivative would extend over 
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10  wavelength points in the spectrum regardless of the degree of smoothing. 
Third and fourth derivatives are sometimes mentioned in scientific papers, but 
only first and second derivatives are routinely calculated and used. The use of a 
derivative of the log 1/R is intended to correct for baseline drift and for some of 
the variance in diffuse reflectance caused by particle characteristics. 
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Figure 5.1	 Effect of smoothing between 420–500 nm (left) and 2280–2360 nm on flour 	
	 spectra. The straightest spectrum in each plot has been smoothed over 	
	 10 wavelength points.

Developing a derivative of the log 1/R brings all of the spectra to a common 
baseline. The second derivative assists in resolution of overlapping absorption 
bands for viewing purposes. Figure 5.2 illustrates the principle of derivatives. The 
wavelength point A is the log 1/R value. Points B and C are the wavelength points 
used in computing the derivatives. The first derivative of OD or absorbance, uses 
two wavelength points, A and B. These may have already been smoothed. The log 
1/R values for wavelength point B are subtracted from the data of point A, and 
replace the smoothed log 1/R data for the first wavelength point. This is continued 
throughout the spectral range. The distance in wavelength points between points 
A and B is the ‘gap’.

Using WinISI software, a first derivative with gap and segment each of 4 points 
can be written as 1 4 4 1 where the first digit is the order of the derivative, the 
second is the gap over which the derivative is calculated, the third is the number 
of smoothing data points and the fourth is the second smoothing (a value of 1 
indicates no smoothing thus no effect). The formula for calculating the first 
derivative is: 

	 1st derivative = log 1/RA − log 1/RB
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Figure 5.2	 Illustration of the principle of derivatives. Point A is the log 1/R. Points B 	
	 and C are the wavelength points used in computing the derivatives.

Development of a derivative involves subtraction of values of spectral data so 
that the individual data for derivatised spectra will be considerably smaller than 
the original spectral data. For example, the actual data from whole grain at 1410 
nm will change from about 0.65 for raw data to about 0.02 for first derivative data. 
The same applies to second derivative data (Figure 5.6).

The 2nd derivative uses three wavelength points. Twice the values of the data at 
point B are subtracted from the data at point A, and the data from the third point 
C are added to the result. The formula is:

	 2nd derivative = log 1/RA - (2 × log 1/RB) + log 1/RC

The 2nd derivative has the effect of sharpening the absorption bands, which appear 
as sharp ‘valleys’. This makes it easier to identify the bands where absorptions 
overlap. Figure 5.6 illustrates the 2nd derivative of whole wheat in the NIR region. 
The combination water band at 1908 nm and its overtones at 1424, 1202 and 
968 nm are very clear. Remember that all fundamental absorptions occur in the 
mid-IR region, and the bands that appear in the NIR region are all overtones or 
combinations of these. The combination bands in the NIR region (above 1850 nm) 
are first overtones of the combinations that arise in the mid-IR region. 
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Figure 5.3	 Log 1/R spectrum of whole wheat and the influence of the 1st derivative 		
	 (1 4 4 1) and 2nd derivative (2 4 4 1) on the NIR spectrum, with moisture 		
	 bands indicated.
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Models based on 1st derivatives often give better results than 2nd derivatives, 
but the spectra are not so easy to interpret. Second derivatives orientate bands 
downwards, and the minima (‘valleys’) are useful in identifying what is likely 
to be causing the main absorption band. Fourth derivatives provide an even 
sharper definition of absorption bands, and the bands are orientated upwards. 
Higher derivatives above the second derivative are not favoured for calibration 
model development, mainly because the signal-to-noise (S/N) ratio is reduced 
at higher derivatives. The S/N ration is defined as the ‘ratio of the useable NIR 
spectral data received by the detector to the amount of signal contributed by 
extraneous factors (the noise) to the total signal (amount of information) received 
by the detector’, as reflected from or transmitted through the sample. The signal 
itself carries the relevant NIR information. ‘Noise’ is defined as disturbance in the 
electronic signal that interferes with the required utilisation of the signal. It can 
be caused by several factors, some of which may not be related to the log 1/R or 
derivatised log 1/R information. The higher the S/N ratio, the better.

Many absorption bands in the NIR region overlap each other and cannot be clearly 
seen. One effect of the 2nd derivative is to make absorption bands appear sharper, 
because it removes most of this overlapping. For calibration development 
the smoothing, if log 1/R is to be used, and the sizes of the gap and segment 
(smoothing) if a derivative is to be used, should be optimised. An excellent 
explanation of derivatives is given by Hruschka (2001).

Instruments such as the Perten Model 7200 and Zeiss Corona, both diode array 
instruments, record spectral data at intervals of between 5 and 6 nm. The spectra 
appear to be much smoother than monochromator spectra, but the larger 
wavelength interval has an effect similar to smoothing 2 nm interval spectra by 
up to 3 wavelength points. These instruments tend to work quite well using their 
raw log 1/R spectral data, and derivatives may not be as helpful as they are with 
grating monochromator instruments. 

5.2.6	 Application of scatter correction 

In NIR technology light scattering means that the pathway of light through a 
sample, or reflected from the sample is deflected from a straight path to the 
detector by features in the material being scanned. Scatter is always a factor 
in NIRS applications because of the physical nature of the materials to which 
it is being applied. The concept of multiplicative scatter correction (MSC) was 
introduced by Harald Martens and co-workers in 1983 (Geladi, MacDougal & 
Martens, 1985; Martens & Næs, 2001). The option is available in most software 



116

packages used for NIRS calibration. There is more than one version of scatter 
correction available, including standard normal variate (SNV) with or without de-
trend (Barnes, Dhanoa & Lister, 1989), but standard MSC appears to be the most 
suitable.

The process involves correction for differences between the individual spectral 
data for all samples at a wavelength point, and the average spectral data for all of 
the samples at that wavelength. Figure 5.4 illustrates the effect of application of 
MSC to a set of wheat spectra selected from a particle size index (kernel texture) 
sample set. 

The variance in spectral data is significantly reduced, but this does not necessarily 
mean that the calibration will be improved. The normal scattering of the light 
energy signal by the sample is part of the variance needed for computing and 
stabilising, the equation. Application of scatter correction only improves the 
calibration if the multiplicative and/or additive effects of the scattering interfere 
with the natural scattering of the energy caused by the particle and composition 
characteristics of the sample set. The basis of successful NIRS calibration is the 
translation of inherent variance in the spectral data into reliable information of 
composition and functionality, by regression of this spectral variance against the 
reference data. Removal of some of this variance may inhibit, rather than enhance 
the integrity of the calibration. 

Figure 5.4 shows the different effect of applying the SNV and de-trend version of 
scatter correction to the same sample set. Note the differences in the shape of 
the spectra, especially in the low wavelength range. The data in Table 5.2 show 
the effects of MSC, SNV and de-trend and only SNV on the prediction of NDF by 
the crucible method in barley and kernel texture in wheat.
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Figure 5.4	 Raw log 1/R spectral of whole wheat of different kernel texture and the effect 	
	 of applying MSC, SNV and de-trend to the raw spectral data.



118

Table 5.2	 Effect of applying three versions of multiplicative scatter correction to log 1/R 	
	 spectra to the prediction of two parameters

Mathematical pretreatment r2 SEP Bias Slope RPD

Neutral detergent fibre – barley

No scatter correction 0.964 0.646 0.136 1.019 5.25

Multiplicative scatter correction (MSC) 0.967 0.615 0.132 1.003 5.51

Standard normal variate (SNV) 0.960 0.685 0.200 1.027 4.95

SNV and de-trending 0.965 0.648 0.187 1.035 5.23

Kernel texture – wheat

No scatter correction 0.892 1.938 0.070 1.027 3.03

MSC 0.887 1.975 0.057 1.012 2.98

SNV 0.881 2.029 0.101 1.021 2.90

SNV and de-trending 0.871 2.118 0.154 1.107 2.78

In only one case did the application of MSC or SNV with or without de-trending 
lead to an improvement in the results, and the effects of scatter correction 
were not of great consequence in either of these applications. In using NIRS for 
prediction of whole wheat kernel texture, the scatter induced by differences in 
particle characteristics is essential to development of the calibration model, and 
application of scatter correction may inhibit model development. In applications 
to grains and derived products MSC is usually more successful than SNV and de-
trending. SNV and de-trending was originally developed for use with applications 
of NIRS to forages, thus in materials such as ground roughages, straws, soil and 
other more complex materials, this method of scatter correction has had a more 
significant influence. Modern computers are very fast and the usefulness of testing 
the influence of scatter correction is recommended for any new application.

5.2.7	 Optimisation of wavelength range

Modern computerised spectrophotometers scan the wavelength range from 
400–2500 nm, while Fourier-transform interferometers (FT-NIRS instruments) scan 
from 12,500–4000 cm-1. Calibrations or many constituent/material combinations 
do not necessarily require the full wavelength range, and when using dedicated or 
generic software to develop equations for application in analysis, the wavelength 
range and mathematical pretreatment of raw spectral data should be optimised. 
Some dedicated software, such as OPUS and NIRCal offer an optimisation option 
in their calibration procedure. The software scans the calibration set and gives 
recommendations for the best combination of wavelength and mathematical 
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pre-treatment. This operation is discussed in more detail in Chapter 9 (see section 
9.1.12). It can be carried out using either cross-validation or test-set validation. The 
most robust calibrations are a combination of optimum wavelength selection 
and mathematical pretreatment that provide the best SEP and precision (SET). 
If efficiency in NIRS predictions is to be defined by the SEP then consistency in 
arriving at the same result repeatedly (precision) has to be an inherent part of it. 

5.2.8	 Development of calibration models

Stand-alone whole-grain instruments can be delivered pre-calibrated for the 
most commonly-tested constituents. The factory calibrations use ANN or PLS 
regression. These instruments have to be calibrated for other constituents and 
parameters. The early generation filter instruments originally used any software 
that could supply MLR. Some of these instruments could also be calibrated 
using PLS regression even though they had as few as 20 wavelength points 
(discrete filters).

Calibration model development can be carried out by several methods. The two 
methods most frequently used in calibration development for computerised 
spectrophotometers are MLR and PLS regression, which is the method most 
frequently used. In NIRS calibration model development MLR regresses all of the 
X-values (spectral data at up to 1050 wavelength points) against each Y-value for 
the population of spectra (samples). There are four forms of MLR, i.e. forward step-
up, forward step-wise, backward stepwise and quotient mathematics. Forward 
step-up selects a wavelength based on the best correlation between spectral and 
reference data. This selection accounts for a certain amount of the total variance 
in combined spectral and reference data. The second wavelength is selected 
on the basis of the best correlation between the remaining spectral and optical 
data. The first wavelength is fixed when the second wavelength is selected, and 
subsequent wavelength selections are retained in the order in which they are 
selected. This is rarely the most successful method.

Forward stepwise MLR selects the first wavelength in the same way. When the 
second wavelength is selected, the software searches all of the variance to 
determine whether the first wavelength is best fitted to the second, in view of 
the now-changing pattern of variance. If it is not, the first wavelength is removed 
and replaced by a more suitable wavelength. This process is repeated until the 
specified number of wavelengths have been selected. The wavelength first 
selected may not even be retained in the final equation.
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Forward stepwise MLR has proven itself to be the most useful form of MLR. 
Table  5.3 illustrates the difference between forward step-up and stepwise 
regression on actual sample sets for prediction of protein content in whole wheat 
grains (N = 107). Notice that a) the results were significantly better using stepwise 
regression, b) the wavelengths selected first by both step-up and stepwise 
regression were similar, c) after the first wavelength, wavelengths did not change 
very much during step-up, but changed significantly during stepwise regression, 
and d) that the first wavelength selected by stepwise regression did not appear 
in the final calibration model at all.

Table 5.3	 Comparison of forward step-up and stepwise multiple linear regression (MLR) 	
	 when developing models for protein content (%) in whole wheat grains

Wavelengths (nm)* r2 SEP (%) Bias Slope RPD

Step-up MLR

1)  2204 0.386 1.27 0.151 1.023 1.00

2)  2204, 2244 0.774 0.815 0.052 1.149 1.56

3)  2204, 2244, 2198 0.796 0.775 0.063 1.125 1.64

4)  2204, 2244, 2198, 2194 0.819 0.732 0.065 1.054 1.73

Step-wise MLR 

1)  2210 0.452 1.13 0.146 1.025 1.12

2)  1760, 1580 0.804 0.757 0.134 1.014 1.68

3)  1520, 1730, 1550 0.922 0.461 0.075 1.029 2.75

4)  1700,1550, 1430, 1520 0.986 0.206 0.014 1.041 6.16

Backward stepwise regression was the method preferred for some fixed-filter 
instruments. By this method, the spectral data from all of the filters are regressed 
against the reference data and an equation developed and evaluated. Subsequent 
calibration models are developed by eliminating wavelengths one by one. The 
models are developed and evaluated at each step. The number of wavelengths (in 
this case, filters) that gives the lowest SEP is accepted as the selected equation.

The fourth form of MLR is the quotient mathematics version. Here, the best 
wavelength is selected as in forward step-up or stepwise MLR and retained. This 
wavelength is designated as the numerator. A second wavelength is then selected 
to serve as the denominator. The system is then revisited in order to determine 
whether the first wavelength is indeed the best numerator to go with the selected 
denominator. This process, developed by Karl Norris (Norris & Williams 1984) is 
repeated until the most suitable numerator and denominator have been selected. 
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The process can be repeated to select a second pair of wavelengths (or more). 
The most recent version of the Norris quotient software allows optimisation of 
the mathematical pretreatment of both the numerator and the denominator. 
The equations all have to be evaluated by prediction of a validation set or by 
cross-validation. Of the four MLR methods, forward and backward stepwise MLR 
are the only two that have actually been employed in commercial software and 
instruments.

The spectral data at all wavelength points are highly inter-correlated throughout 
the spectral range although the degree of inter-correlation decreases, the further 
wavelength points are distant from each other. This is illustrated in Table 5.4.

Table 5.4	 Correlation coefficient (r) matrix for spectral data among representative 		
	 wavelength points 

Wavelengths (nm)

Wavelengths 
(nm) 1154 1426 1696 1910 2054 2310

982 0.9975 0.9424 0.9451 0.8998 0.8961 0.8851

1154 0.9613 0.9608 0.9251 0.9184 0.9057

1426 0.9968 0.9910 0.9877 0.9786

1696 0.9820 0.9871 0.9826

1910 0.9934 0.9838

2054 0.9976

2310 -

For any sample set, inter-correlations between spectral data at immediately 
adjacent wavelength points are often in excess of 0.999, but begin to fall off 
slightly even within 2 wavelength points. Because of the high degree of inter-
correlation among spectral data, wavelength points may be selected by MLR 
that are very close to one another. This was apparent in Table 5.3 in the step-up 
regression example. This is because the first wavelength selected accounts for 
the highest proportion of the variance in spectral and reference data. Because 
spectral data of adjacent wavelengths are highly correlated with one another 
with step-up regression the second wavelength selected is likely to be close to 
the first wavelength. This does not address the residual variance effectively. 

Stepwise MLR is comparable with the PLS model in that wavelengths subsequent 
to the first wavelength take in hand residual variance in both the spectral and 
reference data.
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MLR suffers from the possibility of over-fitting data. This can give a misleading 
impression of the efficiency of an equation containing, e.g. 8 wavelength points. 
From a set of wavelength points selected by stepwise MLR, the optimum number 
of wavelengths can best be determined by validation using a separate set of 
samples. Computerised spectrometers access up to 1050 data points. ‘Over-fitting’ 
data, when using MLR means that, mathematically, the r2 and SEC (standard 
error of calibration) values improve as more data points are added. This can be 
misleading unless the calibration equations are tested by validation with a test-
set. Table 5.5 illustrates this for prediction of β-glucan in barley.

Table 5.5	 Comparison of SEC and SEP for β-glucan in barley using increasing number of 	
	 wavelength points from in MLR

Number of 
wavelength points

r2 SEC r2 SEP

1 0.496 0.362 0.244 0.394

2 0.623 0.313 0.336 0.369

3 0.653 0.301 0.383 0.356

4 0.680 0.288 0.440 0.339

5 0.721 0.270 0.507 0.318

6 0.759 0.250 0.424 0.344

7 0.771 0.244 0.497 0.321

8 0.779 0.240 0.492 0.322

Although these results were not outstanding, the r2 and SEC continued to improve 
as more wavelength points were added, whereas for prediction (validation) the 
r2 and SEP did not improve after 5 wavelength points. A trap into which users 
may fall would be to use the SEC result without further verification, e.g. use the 
8-wavelength equation directly from Table 5.5.

PLS regression was introduced to NIR technology in the early 1980s as an alternative 
to MLR for calibration development that would minimise the likelihood of over-
fitting data (Martens & Næs, 2001). The technique of PLS regression uses all of 
the wavelength points in populations of up to 1050 data points. The regression 
equation is based on factors computed similar to PCA of the total variance in 
the system, however, in this case both spectral and reference data are used 
when calculation the factors. The PLS factors are sometimes referred to as ‘latent 
variables’. In practice, most of the variance is accounted for by 8 factors or less. In 
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PLS regression, the spectral data and the constituent reference data are modeled 
together to obtain an optimal regression. 

It is possible to over-fit PLS equations by utilising too many factors. It is also 
possible to under-fit. In that case, some of the useful information in the spectra 
is not captured. As with any other system for evaluation of calibrations, the most 
reliable method is to evaluate equations developed from 2 or 3 to up to 15 PLS 
factors. Equations are stored for the increasing number of factors, and used to 
predict the results of a test set. This will enable optimisation of the number of 
factors. Alternatively cross-validation can be used. Some software automatically 
stops selecting PLS factors when they reach the optimum, based on cross-
validation, using the calibration sample set. When the operator is setting up these 
systems for calibration development the best technique is to specify a reasonably 
large number of PLS factors, such as 15, more than is likely to be required for the 
calibration. The software will stop when the optimum number has been reached. 

Some software systems offer PLS1 and PLS2 options. With PLS1 the spectral data 
together with one dependent variable (reference data) are used to compute the 
PLS loadings (weights). With PLS2 the spectral data are combined with more than 
a single dependent variable in computing the PLS factors. When the reference 
data include constituents and functionality factors they are often not highly 
inter-correlated. For example, moisture content is usually not related to any other 
constituent. Unless the constituents are highly correlated with one another the 
addition of this extra variance in reference data rarely improves the calibration, 
and PLS1 is the more widely-used method. 

Table 5.6 gives typical results using PLS regression on the same data set as the 
one used in Table 5.5, and demonstrates that the apparent improvement in r2 
and SEC as more factors were used were not matched by improvements in the r2 
and SEP achieved when a test set was used for validation. The r2 and SEC-values 
gave a misleading impression of the efficiency of the calibration. This is often the 
case with more difficult applications. For example, for predicting protein content 
of wheat, the PLS SEC-values are closer to the SEP-values than they are for the 
prediction of β-glucan in barley. This can be verified by displaying the loadings 
(weights) generated during development of PLS regressions. 

PLS regression does not always out-perform MLR and where possible, both 
methods should be tested. The wavelengths selected by PLS are often the same 
as, or close to those selected by MLR. These loadings can be displayed across the 
spectral range. What appear to be ‘peaks’ and ‘valleys’ in the loadings displays are 
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areas of wavelength that have been used in development of the PLS equations. 
Table 5.7 gives some typical results, using MLR and PLS regression for two very 
different examples.

Table 5.6	  Comparison of SEC and SEP for β-glucan in barley using PLS regression

Number of 
PLS factors

Calibration Validation

r2 SEC r2 SEP

2 0.526 0.358 0.241 0.394

3 0.612 0.326 0.310 0.376

4 0.625 0.324 0.346 0.366

5 0.702 0.291 0.463 0.331

6 0.716 0.287 0.466 0.331

7 0.759 0.267 0.504 0.319

8 0.788 0.253 0.533 0.309

9 0.799 0.249 0.530 0.310

10 0.823 0.236 0.494 0.322

11 0.842 0.225 0.514 0.315

12 0.855 0.218 0.585 0.292

13 0.868 0.211 0.568 0.298

14 0.883 0.200 0.547 0.295

15 0.900 0.187 0.546 0.295

The underlying principle of NIR spectroscopy is that it derives exclusively from 
the spectra. The use of similar wavelengths by both regression techniques is very 
logical, because these are the wavelengths that carry the information relevant to 
the development of the models. One reason why PLS regression is usually more 
effective than MLR is that MLR uses variance at specific wavelengths, while PLS also 
uses variance at wavelengths both above and below, but close to the wavelengths 
selected by MLR. WinISI offers the alternative of MPLS (modified partial least 
squares) regression. PLS regression works with covariances. A  covariance can 
be visualised as a spectrum high in an absorbance minus a spectrum low in the 
absorbance. MPLS regression works with correlations. Small peaks in absorbance 
that correlate highly to a constituent or a parameter can contribute more strongly 
to an MPLS than to a PLS calibration. Both MPLS and PLS regression should be 
tested during the development of calibration models. Table  5.8 gives several 
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examples of calibration models for very different applications. In all cases the 
statistics for the MLR and PLS predictions are similar. 

Table 5.7	 Comparison of wavelength areas used by MLR and PLS regression on same 	
	 sample sets 

True metabolisable energy – 
barley (units)

Flour protein (%)

MLR
SEP = 0.223

PLS
SEP = 0.218

MLR
SEP = 0.108

PLS
SEP = 0.121

Wavelengths Wavelengths* Wavelengths Wavelengths*

2420 2412 2020 2016

2360 2360 2420 2420

1560 1568 1980 1980

2280 2284 2080 2084

1720 1722 1460 1454

2140 2144 2100 2096

1260 1268

2400 2394

*’Peaks’ of PLS weights

Table 5.8	 Some typical comparisons of predictions using MLR and PLS regression

Constituent Commodity N* λ** r2 SEP RPD Factors** r2 SEP RPD

MLR PLS

DON (ppm) Wheat 53 8 0.73 744 1.92 10 0.73 750 1.91

FN (s) Wheat 174 9 0.60 44.1 1.57 14 0.59 44.2 1.57

TME (units) Barley 56 8 0.89 0.22 5.14 7 0.89 0.22 5.26

Oil (%) Canola 52 8 0.94 0.82 4.07 8 0.92 0.95 3.49

Moisture 
(%)

Canola 52 2 0.98 0.46 8.76 5 0.98 0.50 8.02

Protein (%) Wheat flour 104 6 0.99 0.108 14.3 9 0.99 0.12 12.7

Ash (%) Wheat flour 95 8 0.82 0.024 2.34 12 0.84 0.021 2.50

*N = number of samples in prediction set; **Number of wavelengths and factors; 
DON = deoxynivalenol; FN = Falling Number; TME = True metabolisable energy
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5.2.9	 Evaluation of calibration models

There are three main methods for evaluation of calibration models. These are cross-
validation, test-set validation and prediction of completely unknown samples. 
Cross-validation is favoured by many NIRS users. It is particularly useful when 
working with small data sets (up to about 150 samples). It involves elimination of 
samples from the development of the equation, either in groups or individually. 
The sample or group of samples is then predicted using the equation that has 
been developed using the remaining samples, and replaced in the original sample 
set. A second sample or group is then removed and the exercise repeated until 
all samples have been used in development of the calibration and predicted, but 
none of them have actually been used during the computing of the equations. 
The software lets the operator specify the group size (number of samples per 
group). For the most efficient use of cross-validation in such small sample sets, 
single samples can be eliminated/predicted. This is called ‘leave-one-out’ cross-
validation. With larger sample sets group, or segmented cross-validation is 
recommended. Samples are left out in groups of 5 or more samples. By using 
group cross-validation, with random selection, the variance within the group, as 
well as among them is used, which improves the evaluation, even groups as small 
as 2 or 3 samples in the group. The final result is displayed as SECV, accompanied 
by the r2-value.

Cross-validation is theoretically satisfactory for the evaluation of any NIRS 
calibration equation. It saves the steps involved in setting up separate calibration 
and validation sample sets. But because cross-validation is carried out on the same 
overall sample set it suffers from the fact that it does not provide full information 
on the bias or slope. The RPD statistic can be applied as in test-set evaluation. 

Cross-validation is particularly useful in optimising mathematical data pre-
treatment, including scatter correction. It is also useful in detecting gross errors 
in calibration. The SEC is obtained by predicting the samples that have been used 
in the calibration. This can be useful if the SEP value is high but smaller than the 
SEC because, if there are really bad outliers they can be detected and removed 
before attempting to evaluate the calibration on ‘normal’ samples. Such outliers 
should be investigated and if the error is caused by incorrect documentation or 
reference data entry these can be corrected and the samples can be returned 
to the calibration sample set (see Chapter 4, section 4.1.10). If they are spectral 
outliers, the source(s) should be investigated. 

With a population of samples much larger than 150, the test-set system is often 
preferred to cross-validation for evaluation of the calibration model. Samples 
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should be sorted by the constituent for which the calibration is being developed. 
The recommended system for large populations of up to 300 samples is to set 
up two files, the first contains 20% of the samples. This is the validation set. The 
remaining 80% forms the calibration set. Sorting on the basis of the constituent 
and taking every fifth sample of the sorted samples ensures that each file has 
similar distributions of samples on the basis of the constituent. The calibration 
file is used to optimise spectral data pretreatments and wavelength ranges, 
using cross-validation. The model with the highest r2, lowest SEP, lowest SET 
(see Chapter 4, section 4.1.9), and highest RPD is used to predict the validation 
sample set. Scatter correction can then be applied to test whether it improves 
the prediction statistics.

For bigger populations the system suggested in Chapter 4 (see section 4.1.11) is 
preferred, where the population is sorted on the basis of reference data, then 
sub-divided into two validation sets, each of 20%, with 60% of the samples 
being used for the original development of the calibration model. The model is 
optimised using the first validation set using group-type cross-validation. The 
calibration set is then extended by adding this first set of 20% of the samples into 
the calibration set and up-dating the new calibration set, which now contains 
80% of the samples. The calibration is finally evaluated using the second set of 
20% of the original samples, which have not been used previously. To optimise 
mathematical pretreatment, gaps and segments can be set at, e.g. 2, 4, 8 and 10 
wavelength points, and cross-validation is recommended for this. This means a 
total of 16 possible combinations of gap and segment (smoothing). These are all 
tested by prediction of the first validation sample set. With a given commodity, 
certain combinations of gap and segment will emerge as optimum, as wavelength 
ranges are tested. This means that not all gap and segment combinations will 
need to be tested. This apparently formidable project can be completed in about 
an hour.

Test-set validation involves setting up calibration (also termed ‘training’), and 
validation sample sets. The validation set is the ‘test-set’, and should be composed 
of samples of the same general type or commodity, but assembled separately from 
the calibration sample set. Test-set evaluation has traditionally been achieved by 
using the correlation coefficient (r), the coefficient of determination (r2), standard 
error of prediction SEP, the bias and the regression coefficient or slope (b) (see 
Chapter 4 for discussion of these statistical terms).

Test-set evaluation provides all of the statistics necessary for a true evaluation 
– it provides the slope (b), intercept (a) and bias data, as well as the r2 and SEP 
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statistics. The RPD statistic (Williams, 2014) has been introduced as a method 
of relating the SEP to the SD (standard deviation) of the reference data of the 
samples used in validation (see section 4.1.13). It offers a simple non-dimensional 
method for appraisal of a calibration model, and for comparison between models. 
It is computed by dividing the SD of the reference data used in the validation 
sample set by the SEP (an operation that has to be carried out manually). It is 
logical to compare the variance in the differences between NIRS and reference 
data (SEP) to the total variance in the reference data (SD). If they are equal or 
nearly equal, as denoted by an RPD of 1.0, then the calibration equation is not 
achieving a prediction. If the test set is derived as a sub-set of the same initial 
sample set, cross-validation is probably as good as test set evaluation because 
slope or bias changes are not likely to be important. The RPD statistic can also be 
used to evaluate models developed using cross-validation.

Test set evaluation is best suited to large populations, and cross-validation is 
more suitable than test set evaluation for small populations. The reason for this 
is that when a test set of, e.g. 20% is removed from a population of up to 100 
samples, the tendency is to select samples to represent the full range of reference 
data. Because the number of samples in the test set is fairly small this will tend to 
‘flatter’ the statistics. Cross-validation uses all of the samples, and is acceptable 
for working with small sample sets. With very large sample sets (1000 or more), 
use of 20% of the population as a test set still means that the calibration will be 
developed from 100s of samples by either test set or cross-validation, so either 
method can be used.

The final and ultimate test of a calibration is to set it into the instrument and use 
it at-line or on-line for testing ‘real world’ samples. A set of these samples should 
be submitted for reference analysis to verify the true efficiency of the calibration 
as an analytical tool. Probably the first instance of this type of evaluation was the 
first cargo of 35,000 tonnes of wheat at guaranteed protein content of 13.5% that 
was shipped from Canada to a flour mill in England in 1975. Since that first shipment 
several 1000s of cargoes have been shipped world-wide, and no complaints were 
ever received by the Canadian Wheat Board, during its existence.

5.2.10	Slope and bias correction

To apply a slope and bias correction to a set of NIRS equation constants, multiply 
all of the constants by the slope and add the new intercept to the corrected 
original intercept. Most modern NIRS software provide for slope/bias correction, 
so the operator simply needs to apply the corrections according to the software 
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instructions. The slope and bias are discussed in Chapter 6. Slope correction is 
generally not recommended (see Chapter 6, section 6.2.20). 

5.2.11	 Outlier detection 

Because NIRS is totally based on the spectra, anything that affects the spectra 
will affect the relationship between the spectral and reference data, even at 
the same chemical composition. An outlier is a sample that does not conform 
to the rest of the population. Some definitions are based on the spectral data 
alone, others on the results of prediction, but in the case of spectral data the 
consensus appears to be that an outlier is a sample/spectrum that differs from 
the mean of the population by 3 or more Mahalanobis distances. Oversimplified, 
the Mahalanobis distance is the distance of the spectral datum for an individual 
sample from that of the population mean at each wavelength point. In the case of 
prediction results, an outlier is defined as a sample that differs from the mean of 
the residuals by 3 or more times the SEP (see Chapter 4, section 4.1.10). 

Outliers can be detected and corrective measures taken during calibration 
development and validation. The most important first step to take when an 
outlier has been identified is to verify that it is indeed an outlier. First check that 
all reference data has been correctly entered, and that all sample identification 
is correct. The next step can best be done by re-testing the sample by the 
appropriate reference method. Re-testing may result in a significant change in 
the reference data. If this happens the sample has to be re-tested again in order 
to determine which of the first two results is the correct one. This is where it is of 
great importance to know the SET (standard error of the test) for the reference 
method (see Chapter 4, section 4.1.9). The SET of the reference method is the basis 
for comparison. If the difference between the results of re-testing is within the 
limits of the SET, the sample is probably a spectral outlier.

A re-scan may show the new spectrum to be significantly different from the 
earlier scan of the same sample. Spectral data are usually very precise. However, 
occasionally, because of factors such as a sudden ‘spike’ in the electrical supply, 
an uncharacteristic spectrum may be recorded (the standard electrical supply to 
a building can fluctuate by up to ±5 %). If this is the case, the sample should be 
scanned again in order to verify which scan is correct. If this shows the first scan to 
be irregular, the sample may no longer be an outlier. If the new scan is essentially 
identical to the earlier scan of the same sample and the reference tests match 
each other, the sample is an outlier by definition. Some samples will scan as an 
apparently normal spectrum, but will predict with an error large enough to qualify 
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as an outlier. This is because the spectral characteristics of that one sample have 
not matched the matrix that has been established between the calibration sample 
set and the reference data developed during development of the calibration. How 
this happens may indicate that an element that affects the spectral data has not 
been included in the assembly of samples used in calibration development.

The outlier may be a sample from a different origin, an origin that was not 
considered as a source of variance during the initial assembly of samples for 
calibration development, and it could be the forerunner of more samples of the 
same type. It then behooves the operator to search for more samples from the 
new origin in order to improve the integrity of the calibration. In the case of 
grains, the influence of different growing seasons at a single location or region 
tends to have a more important effect on the inherent characteristics of the grain 
than does that of different growing locations within a season. This is why it is 
important for an industrial operation to monitor NIRS instrument performance in 
grain analysis at the beginning of each new season. 

5.2.12	Discriminant analysis (classification)

Some software packages, such as The Unscrambler®, offer an NIR discriminant 
(classification) analysis option (see Chapter 11, section 11.12). This enables the 
operator to determine the degree to which samples of (known) different types 
differ from each other. The data can be displayed graphically and numerically 
(Figure 5.5, Table 5.9). Discriminant analysis is sometimes called classification 
analysis. Discriminant analysis is useful for identification of materials by class, and 
for identification of the influence of factors such as growing locations, seasons or 
processing conditions. It is also useful as a screening method in order to determine 
whether a sample belongs to the population to which it is supposed to belong. 
Calibration equations can be developed for NIR classification analysis (Figure 5.5; 
Table 5.9) and used in combination with calibrations for composition analysis, and 
other parameters, so that, e.g. wheat could be classified, as well as tested for 
constituents, such as protein and moisture contents at delivery points. Software 
packages such as WinISI, The Unscrambler, Grams, OPUS, and Pirouette all offer 
classification options. 
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Figure 5.5	 Results of NIRS classification analysis among Canadian Red Wheat classes. 	
	 The cluster at the top is Canada Western Red Spring (CWRS) wheat, the 	
	 group to the left CWES (Canada Western Extra Strong) and the lower right 	
	 group is Canada Prairie Spring (Red) (CPSR) wheat.

Table 5.9	 NIRS classification analysis among Canadian wheat classes 

Wheat class* CWRS CWES CPSR
% Correct 

classification = 93.2

Guidelines Red Red Red
570–1092 nm

1 4 4 1***Predicted (N)** 29 18 22

Actual (N)** 28 19 22

Wheat class WCWW CPSW CSWS
% Correct 

classification = 99.8

Guidelines White White White
570–1092 nm

0 0 4 1***Predicted (N) 33 40 40

Actual (N) 33 40 40

*CWRS = Canada Western Red Spring; CWES = Canada Western Extra Strong; CPSR = Canada Prairie 
Spring (Red); WCWW = Western Canada White Wheat; CPSW = Canada Prairie Spring (White); 
CSWS = (Western) Canada Soft White Spring; **Number of samples predicted to be within the 
class and Number of samples actually in the class; ***Mathematical pretreatment (WinISI notation)

Qualitative analysis by NIRS is now more widely-used. In the past most applications 
have been quantitative, and have focused on answering the question: ‘how much?’ 
Results have been recorded in percentages, or other appropriate data. Qualitative 
analysis answers the questions ‘what is there?’ and ‘will it work?’ Calibrations are 
set up as ‘teaching’ sets, using samples of classes that are the most pertinent 
to the operation. New samples are then recognised as whether they do or do 
not belong, and are accordingly accepted or rejected. The teaching set has to be 
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very carefully prepared, and the importance of identifying and including all of the 
variables likely to affect the spectra of the different materials for the teaching 
sets are the same as for normal calibration development. Guidelines must be set 
to allow for a certain degree of uncertainty in use of NIRS classification.

The teaching set can be set up simply on the basis of sample type or class 
(e.g. different classes of wheat, as illustrated in Chapter 11 (see section 11.12), or on 
the basis of composition using reference data. This would approach quantitative 
analysis. ‘Bands’ of composition could be established, and new samples would be 
classified on the basis of to which band they belonged. For example, if an elevator 
intended to market wheat at two or three different protein levels, the limits of 
protein content would be designated for each level and the teaching set would be 
made up of samples with appropriate protein contents. New deliveries of wheat 
would then be assigned to a level. This would simplify storage. Deliveries that 
approached the lower limits of acceptability could be flagged by the software, 
and tested by normal NIRS to assign them to the correct level. The system would 
be applicable to any type of commodity and constituent. In plant-breeding 
bands could be set up for functionality factors, so that breeders could get a 
rough screening at early generations. There are many possible applications for 
qualitative NIRS. The classification model results can be expressed as classification 
accuracy (correct classification), but also in terms of sensitivity and specificity. 
Classification model sensitivity is the ability of the model to correctly identify 
those samples belonging to the class (true positives), whereas model specificity 
is the ability of the model to correctly identify those not belonging to the class 
(true negatives). 

5.2.13	 Instrument networking

Instrument networking is described in more detail in Chapter 9 (see section 9.2). 
The software offered by some instrument companies provides methods for 
identification of clients and corrections to calibration models. Some organisations 
develop their own systems for these procedures. The software should include a 
system for identification of all of the individual instruments in the network. This 
is usually done by means of the serial numbers of the instruments. Systems then 
have to be developed for monitoring of the performance of each instrument which 
can be done through regular supply and testing of check samples for correction 
of biases if necessary, and for verification that the biases have been corrected by 
re-scanning of the check samples. 
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5.2.14	Instrument diagnostics 

Most modern NIRS instruments are furnished with either built-in diagnostics or 
a diagnostic option with the accompanying software. The instruments are fitted 
with an internal standard reference material, such as polystyrene, which has 
characteristic absorption peaks at or near 805.2, 876.5, 1143.6, 1681.3, 2166.4 and 
2305.9 nm. Diagnostics monitor the performance of the instrument. System noise 
and wavelength accuracy (actual instrument absorbance peak as recorded by the 
instrument, compared with true peak) and precision (peak-to-peak noise) are the 
parameters usually measured by the diagnostics. The operators’ manual either 
carries acceptable guidelines for the parameters measured, or the instrument 
is programmed to display error messages if specifications for the selected 
parameters are not achieved. Things that the operator needs to know include 
why the instrument fails diagnostics, e.g. what is the significance to performance 
if the instrument fails its diagnostics because one of the selected wavelengths 
has exceeded specifications by 0.2 nm. These can often be determined only by 
experiment.

For instruments where the diagnostics is a software option, it is advisable to run 
the diagnostics at least two or three times each week. The diagnostics should 
ideally be run at different times during the day, to determine whether performance 
is affected by working conditions, including changes in temperature, relative 
humidity, dust accumulation and so on, or by length of continuous operation. The 
presence of people in the room will change both the temperature and relative 
humidity. Instrument operating manuals usually include instructions as to what 
steps to take should error messages appear. Lamp failure is the most dramatic 
occurrence – the instrument simply stops functioning. When this happens and 
a new lamp is installed, it is essential that the diagnostics are run after the 
instrument has been turned on for an hour or two in order to check whether the 
performance conforms to recommended specifications. Although lamp failure is 
obvious, occasionally a lamp deteriorates for some time before it fails, causing 
anomalies in the spectra. This may be detected by the diagnostics. Failure of the 
cooling fan will also cause dramatic changes in performance. Accurate records 
of the diagnostics output are helpful to service technicians in the event of the 
instrument requiring repair.

Scanning a sealed check cell is also useful and can be used in conjunction with the 
diagnostics. The cell is prepared with the commodity or commodities that will be 
used most frequently and should be firmly-packed in order to prevent movement 



134

of the material inside the cell, and sealed to prevent changes in moisture content. 
The sealed check cell should be scanned 10–12 times at the time of its preparation 
(or receipt from the instrument company), and the SD of a constituent or spectral 
data at selected wavelengths determined to establish the precision of scanning. 
It should then be scanned and the results recorded at the beginning and once or 
twice during each day, after the instrument has been allowed time to warm up. 
The daily results can be used to up-date the SD. Provided that the daily results of 
the check cell do not change to a degree greater than would be accommodated 
by the SD, there would be no need to run the diagnostics every day. This system is 
impossible with instruments that use hopper-type sample presentation.

5.2.15	 Special graphics

This includes all aspects of displaying spectra, derivatised spectra, PLS loadings, 
scatter plots, discriminant analysis distributions, PCA scores plots, 3-dimensional 
plots and several other features. Most graphics software includes a ‘zoom’ 
option that is very useful to illustrate small differences in spectral characteristics. 
The software also allows for exporting or copying and pasting the figures into 
programmes such as Microsoft Word and PowerPoint for inclusion in reports, 
presentations and publications. 

Graphics are usually displayed in colour and offer the options of changing the 
background, and ideally the changing of colour of individual spectra or data 
points. It is usually best to use a white background for printing. Some graphics 
can also be imported to other software packages that enables the change of 
format of objects like spectra from a coloured line to various forms of dotted 
lines. This is particularly useful for preparation of reports and publications. For 
oral presentation of data at meetings or conferences in PowerPoint – a careful 
consideration of colours is essential. Red and deep blue often do not project well, 
especially on dark backgrounds. Yellow on a white background also does not 
project well.

5.2.16	Report generation

Some software systems include the facility to prepare reports in a consistent 
format. This includes separate reports for recording the results of diagnostics, day-
to-day check cell and check sample analysis. Operator records of such long-term 
instrument performance with regard to diagnostics and check sample analysis are 
useful to instrument companies when instruments require service.
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5.2.17	 Client service

Software used in networking includes a system for contacting participants. This 
is used for monitoring instrument performance, making small bias changes as 
required, monitoring diagnostics and detecting changes in performance among 
other things. Networked participants may operate many instruments all served 
from a central computer. Each instrument in the network is identifiable by its 
unique serial number.

5.2.18	Compatibility with other forms of software

This is very useful if the NIRS software that drives the instrument and is used in 
calibration development, is compatible with other software, such as Excel that 
can be used to import reference data and align it with the spectral data. Also, 
features such as ‘autoshapes’ (lines and arrows used on figures) are often useful in 
preparing step-wise operating manuals. 

5.2.19	Capability of extending factory calibrations

Calibration transferability is becoming increasingly important as instrument 
companies offer factory-developed calibrations. Instrument software must 
include the option for clients to add samples of their own to the data-bases 
upon which the factory calibrations have been developed. There is no obligation 
for the instrument manufacturer to supply the client with the database, but the 
option of being able to extend the calibration will improve the usefulness of the 
calibration to the client. Agreement can be developed between company and 
client to share their spectra and reference data with the company so that both 
participants benefit.
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NIRS Intrumentation
NIR instruments are called spectrophotometers or spectrometers, the names are 
interchangeable. They are driven by electricity, either from the main supply or 
a battery-or-generator operation. An NIR instrument is made up of a source of 
light energy, a system for wavelength selection, a detection system, a method 
for presenting the sample to the instrument, an internal standard, an internal 
computer with associated software to drive the instrument and record and 
store spectra, and a display system. At-line, benchtop instruments have all of 
these features. On-line instruments and computerised spectrophotometers work 
through an external computer, desktop or laptop. On-line, sometimes called in-
line instruments are used for continuous analysis. They are also all controlled from 
an external desktop or laptop computer.

6.1	 The basics – how do NIR instruments work?

The instruments all record information as a spectrum from the sample and from 
the internal standard. The internal software subtracts the spectral signal of the 
standard from that of the sample and uses the difference in absorbance or 
transmittance to compute the results. This information is translated into data 

06
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on composition and functionality of the sample by means of calibration models. 
Spectral data (absorbance) is recorded in the form of the log1/R for instruments 
that operate in reflectance mode (where R = apparent reflectance) or the log 1/T 
(where T = apparent transmittance) for instruments that operate in transmittance 
mode. The wavelengths of the absorbance data are reported in the form of 
nanometres (10-9 m). Data mathematical pretreatment, such as 1st or 2nd derivative 
can be applied before calibration development (see Chapter 5, section 5.2.5). 
Interferometers record spectral data in the form of reciprocal centimetres (cm-1). A 
key point is that the instrument regards the calibration model as a constant factor. 
It will apply the model to the spectrum of any new material to which it is exposed. 
So, the effectiveness of any application is heavily dependent on the quality of the 
spectra, as well as the identification and assembly of samples that accommodate 
all of the variables associated with the material to be analysed.

6.2	 Types of NIR Instruments

In this chapter, ‘NIR’ is used generically to refer to NIR reflectance instruments, 
operating in the wavelength area between 700–2500 nm. NIR instruments can 
operate in reflectance or transmittance modes. Transmittance devices are usually 
called NIT instruments. All NIR instruments require calibration, whether it is done 
by the manufacturer or the operator. Calibrations are developed by relating the 
spectral data of each individual sample of a calibration sample set to the reference 
data on composition or functionality of the sample using regression analysis (see 
Chapter 9). Reference data are obtained by analysis of the sample using certified 
or approved chemical or physiochemical (sometimes even arbitrary) methods. 
In reflectance instruments the internal standard is usually a plastic, such as 
Spectralon® (www.labsphere.com) or a ceramic tile. In transmittance instruments 
the reference standard is air. 

The effectiveness of a calibration model is assessed by statistical methods, 
described in detail in Chapter 4. The accuracy is summarised by the SEP (standard 
error of prediction), which is the SD (standard deviation) of differences between 
the reference and NIRS predicted data, and the bias, while r2 gives the overall 
degree to which the NIRS data agree with the reference data.

6.2.1	 Reflectance vs. transmittance instruments

Reflectance instruments are those in which the light source and the detector are 
on the same side of the scanned sample (either above or below), and the energy 
is diffusely reflected back to the detector. In instruments that use a revolving 
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turntable where the sample is scanned from below the detector(s) are located 
below the sample. In some instruments the sample on the revolving turntable 
is irradiated from above and the detectors are located above the sample. In 
transmittance instruments the light from the light source is diffused through, and 
received by the detector on the other side of the sample. Figure 6.1 illustrates the 
basic differences between reflectance and transmittance instruments.
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D

D

S
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B

Figure 6.1	 Basic instrument design. A = light source; B = wavelength selection system;  
	 C = detector; D = computer; S = sample, including sample presentation system.

Path length in terms of diffuse reflectance and transmittance spectroscopy, is the 
distance that radiation travels within the sample before it reaches the detector(s), 
and is important in both reflectance and transmittance spectroscopy. The path 
length is affected by the nature of the sample in terms of physical state, which 
changes the degree of scatter. This can vary from flour or ground forages with fine 
particle size, to coarse materials, such as chopped forages, to slurries and solid 
materials. 

In working with transmittance instruments, the sample thickness affects the 
path length and has to be optimised during calibration development. This can 
be determined by developing and evaluating preliminary calibrations with 80–
100 samples at different instrument path lengths, which can be adjusted using 
the instrument software. This calls for extra work, but is extremely important to 
obtaining the best analytical performance from a transmittance instrument with 
different materials. For example, using the Foss/Tecator Infratec a path length of 
18 mm is optimum for analysis of whole grain wheat and barley, whereas 30 mm 
is optimum for maize (corn) and only 6 mm for canola seed because of its smaller 
seed size, and commensurate difference in sample packing density. 
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6.2.2	 Sample thickness and density

Sample thickness in reflectance instruments depends partly on the thickness of 
the sample cell. In instruments that present the sample using a sample cell on a 
revolving turntable, the sample thickness has to be sufficient in order to prevent 
the irradiating energy from passing right through the sample, which would mean 
that the signals that reach the detector would not truly represent the sample. 
The sample thickness depends on the particle characteristics of the material. 
For example, a thickness of about 3 cm is sufficient for whole grain wheat, but 
a thickness of at least 5 cm is recommended for whole kernel maize, whereas a 
3 mm thickness will be sufficient for wheat flour. Figure 6.2 shows the difference 
between reflectance and transmittance instruments in terms of optical geometry 
and sample thickness. 

A

S SS

C C

C C

AA
Transmittance I Transmittance II Reflectance

Figure 6.2	 Illustrating differences in sample thickness between transmittance and 		
	 reflectance instruments. A = light source; C = detector; S = sample.

Particles in suspension in liquids and slurries also affect light scattering. Imagine a 
clear solution of liquid. Light energy will pass straight through the liquid and will 
reach a detector located on the other side, and the path length, the distance that 
the light must travel before reaching the detector, will be the thickness of the 
liquid. If there are particles suspended in the liquid, e.g. from a single drop of milk, 
they will scatter the path of the light in random directions, so the path length will 
be increased, but the thickness of the liquid will not have been changed. In terms of 
spectroscopic analysis, the light will have collected information from the particles, 
but the intensity of light energy that reaches the detector from the sample will 
have been reduced by the amount that has been absorbed during its passage. 
The instrument measures the difference between the light energy applied to the 
sample, and the energy that reaches the detector, and translates that difference 
into composition or functionality data, using appropriate calibrations.
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Sample density has an impact on both NIR reflectance and transmittance analysis. 
In transmittance the density may be as such to prevent any transmittance. In 
reflectance there will always be a certain amount transmitted, regardless of 
sample size and density (packing). In interactance (see section 6.2.3) the surface 
density influences the distance that the signal can penetrate the sample surface.

In diffuse reflectance from solid materials, light energy is diffusely reflected from 
within the sample before it reaches the detector. The particles of the sample will 
cause some of the light energy to be scattered, and some to be absorbed by 
molecular groups at the surface of and within the particles. The degree of scatter 
is related to the size and shape of the particles. This is greater with large, than 
with small particles, so that with large particles, such as whole seeds, pellets, or 
chopped forages, the net effect is that the energy that reaches the detector by 
diffuse reflectance will be reduced to a greater or lesser degree, depending on 
the seed, or forage fragment size. The light energy that does reach the detector 
will have gained information during its passage through the sample, and can be 
expected to contain the same type of information regardless of particle size, 
but less actual light energy, and therefore less actual information will reach the 
detector after having been more diffusely reflected from large, than from small 
particles. This energy is the actual information that is converted by the instrument/
calibration model into information on composition or functionality.

In the case of whole wheat and flour (Figure 6.3), the intensity of the energy that 
reaches the detector from the whole kernels is much less than that which reaches 
the detector from the flour. The degree of scatter caused by the flour particles is 
less than is the case with the whole kernels, but the smaller particles will have a 
far greater surface area. Because of the greater number of particles of the flour, 
the amount of useful information concerning composition will be correspondingly 
greater, so that in general the efficiency of diffuse reflectance analysis can be 
expected to be higher in flours than is the case with whole grains, and with 
smaller, rather than larger particles in ground grains. In the case of wheat, this is 
further complicated by the fact that whole grains differ in composition from the 
outer bran layers to the inner endosperm, whereas, in the case of wheat flour 
the particles consist only of endosperm, and are more uniform in composition. 
In ground grains the composition will be more uniformly distributed among the 
particles than from whole kernels. Because of this, the greater number of particles 
from which information can be gathered by the light energy, which represents 
far more kernels than are scanned in whole-grain analysis. The efficiency of 
NIRS analysis of ground grains can also be expected to be better than that of 
whole grains.
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Figure 6.3	 Spectra of whole kernels of Hard Red Spring wheat and flour 
	 (milled from the same wheat).

In transmittance mode some of the signal probably passes through the individual 
kernels or particles, as well as being reflected from their surfaces. The light energy 
can penetrate the kernels and even their cells. The same factors apply with regard 
to scatter. The sample thickness has to be optimised for analysis of different 
commodities. The reasoning for this is that there is a need for sufficient signal to 
reach the detector consistently. The scatter caused by large grains, such as maize, 
means that the sample has to be thicker so that enough signal diffusely reflected 
from the surfaces of the actual kernels gets through to the detector (rather than 
passing straight through gaps in the sample). 
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In the case of canola and sesame the seeds are very small. There is plenty of 
energy diffusely reflected from the individual seeds, but the scatter of the signal 
is so effective that the sample thickness has to be reduced so that sufficient signal 
can pass through to the detector (thicknesses of 3–6 mm have been reported). 
The sample thickness of wheat and barley at 18 mm, is intermediate. A rough 
calculation based on seed size would put about 6 canola seeds in a thickness of 
6 mm, 7–8 wheat kernels in 18 mm and only about 5–6 kernels of maize in 30 mm. 
But the large surface area of the individual maize kernels would provide enough 
diffusely-reflected energy to provide for analysis by NIRS. Flour particles are even 
smaller than canola seeds, and a thickness of 2 mm is used for flour analysis by 
NIR transmittance.

Some whole-grain seeds, including soybeans and sunflower introduce another 
feature which may be related to some components of the seed coat that inhibit 
absorbance in some way. As a result, the optimum sample thickness for NIR 
transmittance analysis of whole soybeans is 30 mm, the same as for maize although 
the seed size is much smaller, and the shape quite different. In the case of whole 
soybeans and sunflower seeds, the characteristic oil bands in the 2300–2350 nm 
area are not apparent even though there may be respectively between 20% and 
over 50% oil in the sample. In both soybeans and sunflower seeds, the bands are 
present in the ground seeds. This shows that this apparent anomaly is a feature 
of the seed-coat and the difficulty of the measuring beam to penetrate the seed-
coat to the germ, where the oil is located (Figure 6.4).
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Figure 6.4	 Log 1/R spectra of ground and whole sunflower seeds.
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Figure 6.5	 Second derivative (2 4 4 1) spectra of ground and whole sunflower seeds 	
	 (top), as well as ground and whole soybean seeds.

Figure 6.5 shows 2nd derivative (2 4 4 1) spectra of ground and whole sunflower 
and soybean seeds in the 2300–2350 nm region. The designation 2 4 4 1 denotes 
second derivative, a gap and segment size of 4 wavelength points each, using 
WinISI software. The last digit of 1 indicates a segment of 1 which means that no 
second smoothing was applied. The prominent -CH2 bands in the ground spectra 
are essentially absent from the spectra of the whole seeds.

6.2.3	 Interactance

Interactance is another form of application of NIRS. Interactance measurements 
are made with a special fiber optics sensor containing two sets of fibers. A concentric 
bundle of fibres spaced a small distance from the centre bundle provides the 
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incoming radiation. The centre bundle of fibres collects the radiation transmitted 
into the sample and diffusely reflects back to the detector, which measures 
the interactance. The depth of penetration into the sample is a function of the 
distance between the two fibre bundles and the density of the material. This is 
illustrated in Figure 6.6. This arrangement provides for analysing the composition 
of tissue below the surface, and has to be optimised for different materials 
because the density of the material will affect the distance between the fibres. 
Interactance minimises the surface reflectance component if the sensor is placed 
in contact with the sample. Because of the small area of the sensing head, several 
scans should be taken and averaged for the most reliable results. The sensing head 
usually carries a sapphire window due to its resilience.

A B C B A A B C B A

Overall thickness of material

Penetration

Less dense Dense
DD

Figure 6.6	 Illustrating the interactance principle. A = outer wall of cable;  
	 B = incoming radiation energy; C = diffusely-reflected energy;  
	 D = area of material scanned.

Optical fibres can be used in spectrophotometers to transmit radiation from one 
point to another. The absorption within the fibre material must be very low for 
this application, and in the case of NIR instruments this limits their use to shorter 
wavelengths or to shorter distances of up to about 5 m. 

6.2.4	 Instrument components

Apart from their physical size and appearance, the main differences among NIR 
instruments and whether they work in reflectance or transmittance mode, are 
the systems for wavelength selection, the detector, the presence or otherwise 
of an internal standard, the method of sample presentation and the system for 
instrument diagnostics. The instrument software is the software that instructs the 
instrument to record and store spectra, as well as translate spectral data into 
predicted reference data using the appropriate calibration. This software is similar 
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in principle for all types of instrument. Systems for wavelength selection include 
discrete narrow band-pass filters, acousto-optic tunable filters (AOTF), NIR light-
emitting diodes (NIR LEDs), NIR diode lasers, moving-grating monochromators, 
fixed-grating monochromators with diode array detectors and interferometers. 

Detectors

Detectors in most common use are the silicon detector in the wavelength range 
from 380–1100 nm, indium gallium arsenide (InGaAs) from around 900–1700 nm 
and lead sulphide (PbS) from 1100–2500 nm. Extended InGaAs detectors are 
available that extend their range to about 2400 nm. To cover the full wavelength 
range from 380–2500 nm, some instruments are equipped with both silicon and 
PbS or extended InGaAs detectors. 

Sample presentation systems

Sample presentation systems include the method of sample access to the 
instrument and the system for irradiating (illuminating) the sample. Sample 
cells include static, moving or rotating cells of various shapes and sizes, with or 
without a glass or quartz cell cover. If the sample presentation system is designed 
so that the cell rotates on a turntable, the cell should rotate during the whole 
time of the scan. In this way the sample is stationary in the cell throughout the 
scanning and a large surface is presented to the detectors. Some instruments are 
designed so that the turntable stops between individual scans. If this is the case, 
the instrument will be programmed to process the spectral data at the instant 
that the turntable stops. This means that a smaller surface will be presented to 
the detector. Furthermore, the contents of the cell will not actually stop and 
will continue to move slightly for a few microseconds after the turntable stops. 
During this time, the instrument will be recording data on a moving sample. The 
combination of the smaller surface and the slight movement of the sample in the 
cell can have an adverse effect on the precision of the spectral data.

The sample can be radiated from either above or below. If the sample is viewed 
from above without a cell cover the surface will be more or less uneven, however, 
this can be compensated for by the rotation of the cell. If the sample is viewed 
from below, the surface will be the bottom of the cell, and will be planar (level). 
Provided the sample is viewed from below, open cups can be used with low-
density fibrous materials such as wool and forages if a suitable weight is provided 
to compress the sample inside the cell. This is not practicable if the sample is 
viewed from above and viewing the sample from below gives more flexibility to 
the sample presentation system. If the sample cell can be used with a transparent 
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cover illumination from above is possible, but differences in the amount of 
sample loaded introduces another variable. The same principles with regard to 
path length apply when the sample is irradiated either from above or below. 
Some instruments are set up so that the sample is presented in a cell that moves 
vertically or horisontally, rather than rotating.

On-line instruments

For the purpose of this book, ‘on-line’ means that the instrument is installed to 
analyse in-stream, continuously during processes. These can also be called ‘in-line’. 
This method calls for very rapid scanning which can be provided by diode array 
and AOTF instruments. ‘At-line’ means that the instrument is installed near the 
process, so that samples can be withdrawn and analysed whenever necessary. 
They may or may not require an external computer. Several sensing heads can be 
multiplexed to a single instrument and computer, e.g. for quality control within a 
processing plant.

Stand-alone instruments or at-line instruments

‘Stand-alone’ instruments are instruments that have been calibrated off-line. The 
calibrations are installed into the instrument, either manually, or if the instrument 
has a RS-232 or equivalent port, the calibration can be entered directly from an 
external computer. These instruments contain software to scan samples and 
compute results and need no peripherals. 

Other at-line instruments are calibrated using off-line software that is installed 
into a computer. The instrument has software to record spectra and analyse future 
samples using calibration models. The external (generic) software uses spectral 
data recorded by the instrument using its data-storage options. The spectral data 
are transferred to the computer that carries the generic software and regressed 
against reference data to develop the calibration model. The model is set into the 
instrument that then uses it to analyse fresh ‘unknown’ samples.

Discrete filter instruments

The original discrete filter instruments contained up to 20 discrete narrow band-
pass filters, each of which covered a wavelength range with maximum efficiency 
at a designated wavelength such as, e.g. a 1940 nm and a 2310 nm filter for moisture 
and oil analysis respectively. Narrow band-pass filters record the maximum 
absorbance at the designated single wavelength, but useable signals can be 
obtained down to the half peak-height (about ±5 nm) from that wavelength. No 
signals were recorded for wavelengths that occurred between filters. Some of 
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these used only 3 filters, but by tilting the filters through 90o a greater wavelength 
range was accessed than by ordinary discrete filter instruments. These instruments 
were programmed to record spectral data only at designated points, called ‘pulse 
points’ that corresponded to protein, moisture and oil during the rotation of the 
filter wheel. No signal was recorded from wavelengths that were not specified. The 
instruments used the log 1/R signal in the form of a precursor of the 1st derivative, 
and were all calibrated using MLR (multiple linear regression). The energy source 
of the first generation of whole-grain analysers came from NIR LEDs (near-infrared 
light-emitting diodes) and worked in transmittance mode. Subsequent generation 
of transmittance instruments used monochromators.

Grating monochromator

The introduction of the moving-grating monochromator in 1978 opened a new 
world of applications. Until then, NIRS technology had been limited to prediction 
of constituents such as moisture, protein, starch and oil in grains and seeds, as well 
as the same constituents plus ash in flour. The grating monochromator covered a 
larger and continuous wavelength range and allowed prediction of more complex 
constituents, including dietary fibre and individual amino acids and fatty acids 
together with some functionality parameters. It also made possible the use of 
PCA (principal component analysis) and PLS (partial least squares) regression for 
development of calibration models. 

There are two forms of grating monochromator. The moving grating monochromator 
is used in most computerised spectrometers. The fixed-grating monochromator 
works with diodes and is the wavelength selection medium of most diode array 
instruments. Diode array instruments have no moving parts in the electro-optical 
system and are very fast in analysis, taking about 600 scans, and averaging them 
to give about 30 spectra per second. Many on-line applications use diode array 
instruments for continuous analysis of materials on moving belts or other systems. 
On-line instruments are usually calibrated with static samples. The calibrations 
are then tested and monitored using samples taken off the line, to verify that the 
calibrations are working properly. 

Interferometer

Another type of instrument is the interferometer which can be used in the 
NIR or mid-IR range. The mid-IR range extends from about 3000 to 12,500 nm 
(3333 to 800 cm-1). The terminology used to describe wavelength range in these 
instruments is reciprocal centimeters (cm-1). In terms of reciprocal centimetres, 
the effective NIR range (from 800–2500 nm) extends from 12,500 to 4000 cm-1. 
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The relationship is non-linear and wavenumbers can be converted to wavelengths 
using the formula, 

	 x nm = 10,000,000 / y cm–1

or wavelengths can be converted to wavenumbers using the formula,

	 y cm–1 = 10,000,000 / x nm 

Appended to this chapter is Table 6.5, which translates reciprocal centimetres 
(cm-1) into nanometres (nm) over the NIR range. The table has been organised 
to provide a difference of 2 to 4 nm per wavelength point. Spectral data of the 
interferometer are preprocessed using Fourier transform (FT), and the instruments 
are referred to as FT-NIR or FT-IR instruments depending upon the wavelength 
range. Sample presentation for these instruments used to limit their applicability 
to liquids, but recent advances have resulted in the introduction of a turntable/
rotating cell technique that has opened up their field of application to solid 
samples, including grains and pellets, forages, textiles and slurries as well as 
liquids. Wavelength precision of interferometers is superior to that of the more 
familiar dispersive (‘normal’) instruments.

Instrument noise

‘Noise’ is defined as any electronic signal that reaches the detector that is not 
directly related to the actual spectral data of the sample at absorption bands 
required for calibration and subsequent analysis. It is produced as a by-product of 
other activities in the system. Although NIR instruments are designed to reduce 
noise to the minimum, noise is always present to some extent in any NIR reflectance 
or transmittance system. Some instrument company brochures will state the 
signal-to-noise ratio of their instrument. The ratio of S/N is the ratio of the useful 
signal, in terms of the spectral data, to the electronic noise that is corrupting the 
signal at that wavelength point. The S/N ratio is greatest at the wavelength of 
the maximum radiation, and this is the figure reported by the instrument maker 
(usually around 1640 nm). It should be as high as possible. Typical S/N ratios for NIR 
instruments range from 25,000:1 to over 100,000:1.

6.3	 Criteria for instrument selection  

Successful application of NIRS depends to a certain extent on choosing the 
instrument most suitable for the application. Considerations in selecting an 
instrument are summarised in Table 6.1. These are not in order of importance – all 
of them are important. 

.
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Table 6.1	 Factors to consider in selection of an NIR instrument

Factor Explanation

Instrument purpose

�� Why is NIRS needed?
�� What measurements are needed?
�� In what material?
�� What speed of analysis is required?

Instrument economics
�� Instrument price, in relation to intended application.
�� What is the present cost of analysis, and how can an NIR 

instrument reduce costs and improve profits?

Instrument type �� What is the mode of operation (e.g. monochromator, 
diode array, interferometer)?

Speed of testing 
required

�� On-line testing requires a very fast instrument, such as a 
diode array or AOTF instrument

Instrument size �� How much bench space is required?

Internal reference 
standard �� External reference standard is inconvenient to operator

Spectral range �� Relates to type of analyses needed

Sample presentation 
system

�� Expected sample type and size; sample cell design; 
method of accessing sample to the cell, continuous, on-
line testing

Instrument software �� Dedicated or generic software for calibration model 
development

Calibration system �� Transferability and efficiency of networking

Availability of 
factory calibrations �� Factory calibrations are available for many factors

Operating manual �� Often needs explanation to include more details

Simplicity in use

�� Are calibration models developed with instrument 
software?

�� Are diagnostics adequate?
�� Is it easy-to-use for non-technical people?

Durability

�� How long can an NIR instrument be expected to work?
�� What is the life-span of energy source, detector(s) and 

sample access system?
�� Ease of replacement of lamps.

Spectral quality �� Are there noisy areas of spectra?

Instrument 
peripherals required �� Keyboards and monitors use extra bench space.
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Factor Explanation

Suitability for field 
operation and 
portability

�� Can the instrument be battery-operated?
�� Is the instrument weather, dust and vibration resistant?
�� Can the instrument be taken on-site to the field?

Instrument 
technical support

�� Company support for provision of calibrations, problem-
solving and repair.

Instrument cost

�� Price of instrument relative to value of testing.
�� This is more difficult to confirm if the instrument is to be 

used for analysis of materials such as waste products, soil, 
or for research. 

Instrument networking �� Important for clients with multiple instruments.

Diagnostics and 
maintenance �� Simplicity in both of these criteria is an advantage

6.3.1	 Purpose for the instrument 

The first question to ask is ‘why is an NIR instrument needed?’ The question 
can be answered mainly by two things – the economics and the convenience. 
From the economic aspect the questions are ‘by how much will NIR technology 
help to cut down operating costs and improve the efficiency of the operation?’ 
and ‘how can revenue be generated by using NIR technolgy?’ The convenience 
questions are answered by ‘what can be tested with NIR technology that would 
be very useful, but not possible without it?’ and ‘what is the benefit of getting 
the results immediately when they are most needed vs. getting the results in 
several hours or maybe even days’? Also, ‘would the instrument be adaptable to 
continuous on-line testing?’ and ‘can the instrument be used in the field, i.e. away 
from the laboratory or other building?’ The speed and low cost per test of an NIR 
instrument also offers the opportunity of testing raw materials, finished products, 
and in-process materials more frequently than was practicable with customary 
‘wet chemistry’ analysis.

There is an increasing demand for information on composition, and functionality 
potential in industry, including modern grain handling and commodity processing 
to the extent that some form of analysis is becoming essential. Continuing quality 
and composition in a flour or feed mill or other type of processing plant must be 
assured. NIRS analysis can be very useful in determination of composition, both 
at the time of delivery of raw materials for pricing and during the manufacturing 
process. Constituents such as protein, oil and starch affect the value of grain, and 
instant on-site analysis by NIRS provides excellent potential to reduce costs of 

Table 6.1	 Factors to consider in selection of an NIR instrument (continued)
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monitoring and even generate revenue. Grain is stored for marketing, marketed 
directly or purchased as an ingredient for feed manufacture, and a price for a 
commodity such as grain has to be established. The moisture content of grains is 
an important criterion if grain is to be stored for periods of more than a few days. 

In a food- or feed-processing plant, ingredients need to be tested to assure that 
they are suitable for use, and the progress of the processing needs to be monitored, 
including the composition of the final products. Materials such as manures that are 
stored in tanks or lagoons need to be tested continuously during pump-out and 
application to fields, because the manure in the storage facilities varies widely in 
composition. The same applies to sewage and waste water disposal.

Fresh fruits and vegetables need to be screened for grading before marketing. An 
NIR instrument can fill all of these needs (and many others) quickly and cheaply. 
Fresh forages used in the biogas industry need to be tested for moisture content, 
ideally during harvest, because payments are made on the basis of dry matter. 
Meats of all types, including fish, must be tested for quality, including parameters 
such as fat content, moisture loss during processing and marketing, and parasites.

The efficiency of soil analysis has always suffered from the costs of sampling 
and the subsequent analysis. NIRS analysis can reduce the analytical costs 
substantially, thereby reducing most of the costs of soil analysis to those involved 
with sampling. It enables testing of all samples taken from a field, rather than 
testing a composite prepared from all samples, which masks the variance in the 
field. Analysis of substances such as waste waters for biological oxygen demand 
(BOD) and other parameters is also handicapped by the costs of analysis and 
the long duration of conventional tests. The NIR technique is applicable to these 
materials and their associated tests.

Speed of analysis for the most part means whether the test is to be done on a 
stationary or moving sample. If the testing has to be done on-line, a diode array 
instrument is most suitable because of its speed. If the testing is to be done on a 
stationary sample, such as at grain receiving areas, feed or flour mill laboratories 
there are more choices of instrument. No matter how fast is the scanning, an NIRS 
test using a static at-line instrument takes about one to two minutes, because the 
sample has to be put into the instrument and taken out of it, and where necessary 
the sample cell has to be cleaned. A difference of a few seconds in actual scanning 
time has little effect on the overall time per test. Continuous on-line sampling 
eliminates the need for sampling, because all of the material is being analysed.



NIRS Intrumentation

153

6.3.2	 Economics

Having decided that an NIR instrument is required, the next thing is to work 
out the economics. Table 6.3 gives guidelines for the items to include in costing. 
Costs per test come down as the daily work-load increases. Table 6.3 is based 
on an expensive instrument, priced at US$90,000.00, and 1, 10, 20 and 50 tests 
per day. A survey of costs charged by commercial laboratories for reference 
testing revealed costs per test of US$24.00 for protein, US$13.50 for moisture, 
US$25.00 for fat/oil and US$25.00 for fibre for a total of US$87.50 per sample 
for proximate analysis (excluding ash and non-fibre carbohydrate material). The 
cost of testing varies, depending on the difficulty and expense of chemicals of 
the test. Some reference tests, such as metabolisable energy, cost US$800.00 or 
more per sample. NIRS tests all cost the same for every constituent. The costs 
of instruments and reference testing will vary (and usually increase). Table 6.3 is 
included to illustrate the difference between NIRS and reference testing. Total 
costs for an NIRS analysis of the same sample show that for an operation that 
carries out only 10 tests per day, the cost per test is a fraction of that of reference 
testing in a commercial laboratory. Remember that the cost per test includes all 
constituents and parameters tested (up to 12), because the NIR instrument tests 
them all simultaneously. 

The costs reflected in Table 6.3 can be expected to increase over time, but the 
costs of NIRS testing will always be substantially lower than those of reference 
‘wet chemistry’ testing, and the value in quality control of obtaining data 
continuously when needed is a further major benefit to any operation.

Table 6.3	 Cost per test estimates for NIRS testing at different daily workloads 

Number of tests per day 1 10 20 50

Instrument purchase price = US$90,000.00

Instrument cost1 34.62 3.46 1.73 0.69

Calibrations (purchased)2 2.31 0.23 0.12 0.05

Calibrations (developed)3 21.88 2.19 1.09 0.44

Instrument set-up4 6.80 0.68 0.34 0.14

Labour5 0.68 0.68 0.68 0.68

Rental of laboratory space 1.53 0.15 0.08 0.03

Power 0.10 0.10 0.10 0.10

Total 67.92 7.49 4.14 2.13
1Values are in US$, amortised over 10 years; 2Based on an average cost of a single calibration, 
amortised over 1 year; 3Includes reference analysis on 200 samples; 4Based on 20 min set-up and 
maintenance time per day; 5Based on 2 minutes per test
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Some instrument companies offer calibrations for a variety of commodities and 
constituents and functionality factors, such as metabolisable energy. Clients 
need to verify the accuracy of the calibrations by sending samples of their own 
commodities to a laboratory with which they are familiar. Biases may appear 
that have to be corrected since biases can become expensive. Operators can 
update their calibrations by adding their own samples with reference data. Note 
that calibrations developed in the laboratory are more expensive than factory 
calibrations. 

To summarise the economics, NIR technology supplies the operation with very 
rapid on-the-spot testing with the same accuracy as reference testing, with 
equivalent or improved precision and at a fraction of the cost. An operation that 
has to obtain results from more than 20 tests each day is well-advised to use NIRS, 
and operations that need 30–40 or more tests per day really cannot afford not to 
use it. For an operation that handles commodities worth hundreds of thousands 
or even millions of dollars in a single year, the initial cost of a NIR instrument is a 
key investment in improvement of the operation. 

On-site, on-line NIRS testing involves operations such as mounting an NIR 
instrument directly onto a combine or forage harvester and analysing the crop 
continuously during harvest, or continuous testing of liquids during pumping 
operations. In countries where large areas of grain are planted, mapping of fertility 
levels of very large fields increases the efficiency of fertilizer use. Use is already 
being made of protein-based fertility mapping in North America. Farmers who 
have been using the on-site NIR system claim savings of up to 20% in nitrogenous 
fertilizer costs. With the prices of nitrogenous fertilizers reaching, e.g. US$1000.00 
per tonne (about US$0.98 per kg of nitrogen) it is easy to see the economic 
benefits of a 20% saving, when areas of 1000 ha or more have to be fertilized.

6.3.3	 Instrument type 

You do not need an axe to cut flowers. The type of instrument to be purchased 
will depend on the volume and complexity of the daily workload and on the 
precision needed. For example, for testing grain and flour for protein and moisture, 
simplicity of operation and speed of testing are very important. These can be 
met with stand-alone instruments. On the other hand, in a feed mill where up to 
20 ingredients have to be compiled into a single feed mix and blended, a more 
powerful instrument, such as a monochromator-, diode array-, or interferometer-
driven instrument is recommended. For an operation that is contemplating the use 
of NIRS for analytical work, it is important to think ahead to what the instrument 
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might be used for in the future, so that the appropriate instrument is selected even 
if the immediate outlay for the instrument appears to be higher than expected 
when the idea of using NIRS was initially presented to Management. 

If very high-speed analysis is required, diode array and AOTF instruments are 
appropriate. These instruments are equivalent to other NIR instruments in precision 
or accuracy (in terms of SEP and bias), and the speed of analysis (only two to three 
seconds) makes them particularly suitable for some processing and for continuous 
and other on-line applications. There is increasing interest in FT interferometers. 
This technique called FT-NIR technology, is becoming increasingly applied to 
the analysis of agriculture and food materials. The instruments have excellent 
wavelength precision and could prove to be the NIR instruments of choice for the 
determination of some functionality factors, such as metabolisable energy. 

For research work and prediction of functionality and other difficult parameters, 
a comprehensive instrument is recommended. The NIR technique is attractive to 
universities and other areas where basic research is carried out because a large 
amount of work can be completed in a short time, and scientific papers can be 
compiled in a few weeks. Wavelength ranges and mathematical pretreatments 
can be optimised and simulated. It is important to relate the results to eventual 
practical application under industrial and commercial conditions. This often involves 
design and testing of sample presentation systems, and the engineering aspect 
may become more important than the spectroscopy. When research reveals new 
areas where applications of NIRS appear to show potential, consideration must be 
given to the economics involved in the engineering and practical application. The 
‘bigger picture’ includes consideration of the effects of using NIRS in place of the 
more labour-intensive conventional methods of analysis.

6.3.4	 Speed of analysis required

Most benchtop instruments take about 1.5 to 2.0 minutes per test. No matter how 
quickly the actual scanning is done, the sample has to be placed in a sample cell, 
and the cell loaded into the instrument. After the scan is completed the cell has 
to be removed, emptied and the sample replaced into its original container. The 
sample cell usually had to be brushed or wiped clean before the next sample. The 
components of the loading and unloading operations usually take more time than 
the scanning, hence the 1.5 to 2.0 minutes. The difference in speed per testing 
comes when testing is to be carried out continuously on-line. No sample loading or 
unloading is necessary, nor are any samples needed because the whole population 
is being scanned continuously. But the speed of testing must be very fast so that 
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computation of composition is made on the basis of many scans. Diode array and 
AOTF instruments are most suitable for on-line work, but diode array instruments 
are generally less expensive and equally efficient. Advantages of continuous on-
line analysis include elimination of the needs for sampling (because everything is 
being scanned) and bench space (because the instrument is either incorporated 
into the system by way of the production or pumping line). 

6.3.5	 Instrument size and portability 

Instrument size can be important. In some areas bench space is often at a premium, 
such as grain elevators, feed mills, and other processing plants. NIR instruments 
are small – the largest is only about 60 cm long by about 35 cm high. No fume 
or dust exhaust or drainage is required, so installation costs are negligible. Some 
diode array instruments and some other instruments can be battery-driven, are 
fully portable, and can be taken into the field for testing materials, such as grapes, 
forages, soil on-site, and prospecting for different ores. For continuous operation in 
the field instrument, size becomes a factor in the insertion to operating equipment. 
Figure 6.7 shows a diode array instrument installed on a forage-harvester. The 
instrument was installed to measure moisture content during harvesting.

Figure 6.7    Diode array instrument installed on a forage harvester.

6.3.6	 Internal reference standard

Most instruments are equipped with an internal reference. In the absence of such 
an internal reference the operator has to determine light and dark standards 
manually. These should be recorded at intervals of no more than 15 to 30 
minutes. Manual recording of light and dark standards is an inconvenience to the 
operator, particularly at busy periods. The instruments make all measurements 
by comparison of the spectral data for each new sample with those of the most 
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recent standards, until the next standards are run. Minor changes in the spectral 
signal of the reference may occur between reference scans. Provided they are 
small and un-biased, it should not cause problems with the operation. 

Ideally the reference standard should be run before every sample. For at-line 
instruments this can be done while the sample cell is being emptied, cleaned and 
re-loaded. The reference material in most older instruments was a ceramic tile, but 
in modern NIR instruments the internal reference most widely used is a durable 
plastic, called Spectralon®. Some instruments use an external standard that is 
exposed to the atmosphere. This is usually a ceramic tile. Because of dust build-up 
the surface must periodically be cleaned. Whether this is done by brushing or by 
means of a tissue, the action aggravates static electricity build-up, and a ceramic 
tile is less susceptible to static electricity than a plastic standard. 

Transmittance instruments use air as a reference standard and a reference reading 
is taken automatically between each sample. On-line transmittance instruments 
can operate for long periods without taking new reference data.

6.3.7	 Spectral range

The spectral range covered by commercially-available NIR instruments extends 
from 380–2500 nm. The spectral range can add substantially to the price of an 
instrument if more than one type of detector is required. Unless there is a need to 
measure colour components, such as chlorophyll, there is no need to spend the 
extra money on a wavelength area that will not be needed. Interferometers cover 
the range from 850–2500 nm (11,800–4,000 cm-1 expressed as wavenumbers). 
This wavelength range, or 1100–2500 nm, is adequate for most purposes. The 
wavelength range covered by the InGaAs detector (900–1700 nm) is becoming 
more widely exploited. This, coupled with their very practicable speed per test 
(about two seconds), makes diode array instruments very attractive.

The wavelength range scanned by individual NIR instruments depends on the 
purpose for which the instrument has been designed. For working in transmittance 
mode, the low wavelength range from 700–1100 nm is preferred. The main reason 
for this is that the absorbers in that region are all of low intensity, so that it is 
possible to use a thicker sample. The sample thickness must be optimised for 
different commodities. In the higher wavelengths, above 1100 nm the absorbers 
are stronger, and the sample thickness would need to be very thin (2 mm or less) 
for transmittance work. With such small diameter sample cells, it is difficult to fill 
them quickly, and also more difficult to clean them between samples.
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Although some instruments that work in the low wavelength range operate over 
400–1098 nm, the signals between 400 and about 650 nm tend to be noisy, and 
the most practicable range is between 650–1098 nm. For working with a coloured 
constituent such as chlorophyll, the instrument should be capable of scanning 
efficiently down to 674 nm (a prominent band for chlorophyll). For more complex 
applications, such as prediction of fibre components and energy, access to more 
wavelengths and more advanced mathematical pretreatments is helpful. 

6.3.8	 Sample presentation system 

Some whole grain analysers operate over a relatively small wavelength range, 
can be delivered with factory calibrations, and have very simple sample access. 
The operator simply has to pour the sample into a hopper at the top of the 
instrument, the sample is scanned in about 40 seconds, the results are displayed 
and the sample falls into a drawer at the bottom of the instrument. This is ideal 
for elevator operators, who do not have time to load and clean a sample cell. 
Sample access is also simple in instruments that use an open sample cell revolving 
on a turntable and viewed from below. The lower surface is planar so the sample 
can be poured into the cell and emptied out after analysis. Sample thickness 
should ensure complete diffuse reflectance. This calls for a sample thickness of 
3 cm or more, in the case of wheat and seeds of similar size, and at least 5 cm for 
maize, which has bigger kernels, or chopped forages, to ensure that light energy 
is diffusely reflected to the detectors, and is not wasted, by passing right through 
the sample. 

Samples are presented to most instruments in a sample cell which usually has a 
window. Glass and quartz are two materials widely-used as sample cell windows. 
There are differences between these and among different individual glass or quartz 
windows. Figure 6.8 shows differences between quartz and glass windows and 
Figure 6.9 shows differences that can occur between individual quartz windows. 
Such differences can induce very large biases in the prediction of composition or 
functional parameters (see Chapter 7, Tables 7.3 and 7.4). Operators should check 
spare windows to ensure that they are compatible with the windows in use. 
Instrument companies should test deliveries of window materials before using 
them in sample cell assembly. Glass and quartz can both differ in composition, 
and the windows can also differ in thickness, both in average thickness, and in 
thickness in different areas of the window. Glass windows differ to a greater 
degree than quartz windows, both in composition and thickness. 
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Quartz windows are more susceptible to static electricity than glass windows. 
Static electricity is caused by transfer of electrons from one substance to another. 
It can cause samples to become orientated in direction, and samples of ground 
grains and forages can become arranged in certain positions on the surface of 
the cell window, which is what the instrument scans. These differences can cause 
biases. This is the reason why sample cells should be rotated through at least 180o 
when they are being scanned for analysis. This source of error is eliminated when 
sample cells automatically rotate. Oats are particularly prone to static electricity, 
and are arguably the most difficult of all cereals in sample preparation.

Wavelength (nm)

-0.002

2122 2146 2170 2194 2218

-0.001 

-0.000

0.001

0.002

Quartz
Glass

Figure 6.8	 Differences in 2nd derivative (2 4 4 1) spectra of glass and quartz.

Whether or not the instrument uses a cell, every instrument has a ‘window’ of 
quartz or glass to protect the detectors from the atmosphere. These windows are 
subject to the same variability in composition.

The design of the cell has its own influence. Some sample cells are easier to use 
than others. The cell design also has a significant influence on the amount of 
sample that the instrument scans, and therefore on potential sampling error. The 
area of sample scanned also affects the precision of scanning. This is summarised 
in Table 6.4. Note that the precision of the spectral data for the rectangular cell 
was nearly three times better than that of the spinning cup. 
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Figure 6.9	 Differences at around 2204 nm between 2nd derivative (2 4 4 1) spectra of two 	
	 quartz windows.

Table 6.4	 Influence of sample cup size on sample size and instrument precision

Cell type
Area 

(cm2)*
Number 

of kernels

Weight 
of grain 

(g)**

Mean log 
1/R

SD*** CV (%)

Spinning cup 4.9 45 1.51 0.3018 0.00987 3.27

Rectangular 33.8 235 7.87 0.3027 0.00366 1.21

*Area of surface presented to instrument; ** Estimated weight; ***N = 12 scans

6.3.9	 Instrument software

All NIR instruments have their own internal software that drives every function of 
the instrument in the same way that our own brain directs our hearts to keep on 
beating and our senses to keep functioning without our conscious control. The 
software instructs the instruments to take actions, such as revolving a turntable, 
recording and storing spectral signals and also responding to the commands of 
the external software that is used to record and translate the spectral data into 
analytical data. 

Generic software is software that has been designed and prepared for many 
applications, of which only one is to translate NIRS spectral data into analytical 
data. For instruments that use generic software, the operator has to transpose the 
spectral data from the format in which they have been recorded into the format 
of the generic software, for calibration model development. The models are 
developed, evaluated and validated in the generic software and then re-entered 
into the instrument where the model efficiency is tested by analysis of completely 
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new samples. The Unscrambler®, GramsTM, MATLAB® or Pirouette® can be used 
to develop calibration models, using spectral data generated by the instruments 
with their internal software.

Dedicated software means that the software has been designed to enable the 
individual instrument to record spectral data and to employ calibration models 
to generate analytical data, the models having been developed by the same 
software chemometrics. Comprehensive dedicated instrument software has 
been developed by several instrument companies that market computerised 
spectrometers, most of which permit the development of calibration models. 
Examples of dedicated software are WinISI, Opus, and NIRCal. Some companies 
market their instruments factory-calibrated for prediction of frequently sought 
constituents or parameters, and operators can avoid the burdens of calibration. 
Software is discussed in more detail in Chapter 5.

6.3.10	Calibration systems and transferability among instruments

Calibration is a burden that NIRS technology has been forced to bear ever since 
its introduction. It is discussed in detail in Chapter 9 and is only briefly introduced 
here. The systems used for calibration development vary widely among 
instruments, but the principles are the same. Most stand-alone instruments are 
used in operations such as at grain delivery and purchase. These are all calibrated 
externally, using generic software, but can be delivered pre-calibrated for some 
constituents. 

ANN (artificial neural networks) calibrations were first introduced about 25 years 
ago. This method requires a very large database, but ANN has the benefit 
of stabilising the calibrations and facilitating transfer of calibrations among 
instruments. Some grain operations maintain several hundred instruments all 
networked and use the same ANN calibrations. Instrument performance is 
monitored from the central laboratory of the company. The ANN calibrations 
originally developed at Tecator use thousands of spectral data collected from 
Infratec instrument users world-wide, under many operating conditions in terms 
of temperature and relative humidity. By using spectra from a very large number of 
instruments with accompanying reference data, the final calibrations compensate 
for the variance among instruments and laboratories, and the calibrations are 
very stable. One difficulty with the ANN approach is that of acquiring reliable 
reference data for constituents and parameters other than the main components 
of commodities, such as moisture, protein, oil and starch contents. 
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Transferability of calibrations means using the same calibration(s) on a network of 
instruments. Transferability of calibrations among instruments is very important in 
an operation that is using or proposing to use a series of instruments of the same 
type and model, because the output of all of the instruments can be monitored 
and adjusted from a single central desktop or laptop computer. To achieve this, 
ideally all of the instruments should produce identical spectra from a given sample 
and all of the instruments should yield the same results for the same samples. 
One successful method, is to standardise all of the instruments to a single Master 
instrument. A sealed cell containing test material is prepared and scanned and an 
equation developed and the cell and equation are used to standardise as many 
instruments as necessary. In this way, all of the instruments are then standardised 
to the master instrument, and can use the same calibrations. 

Instrument companies can develop and expand their databases by arranging with 
clients to receive spectra with reference data. Organisations that operate more 
than one instrument can combine spectra and reference analysis to increase their 
databases for any constituents or parameters that they routinely measure. Merging 
spectra and samples with different reference analysis creates a form of ‘sample 
noise’. While reference data from different laboratories may not exactly agree 
with one another, provided that there is no one-directional bias, this procedure 
will have the effect of stabilising calibrations. PLS regression, particularly the 
‘Local’ version of PLS developed by WinISI, has also improved the reliability of 
calibrations. 

It is rare to find two instruments that are exactly the same. Very small differences 
in gratings can cause significant differences in the output of even grating 
monochromators. Some manufacturers recommend that calibrations for a set 
of samples developed on up to five instruments are transferable to all other 
instruments of that type. Discrete filter and particularly NIR LED-based instruments 
are prone to even more variability, and these instruments are not preferred 
for networking.  

6.3.11	 Availability of factory calibrations 

Some instrument companies offer factory-developed calibrations for commonly-
sought constituents, such as protein and moisture contents. Such calibrations 
have been developed by experienced technical staff, using adequate numbers 
of samples. Some operations would prefer to use these calibrations, rather than 
undertake the development of calibrations within their operation. It is imperative 
that these operations verify the accuracy of the calibrations for their own 
requirements.
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6.3.12 Instrument operating manual

Operating manuals supplied by the instrument companies are often lacking in 
key areas of day-to-day operation that can cause frustration to operators, and 
complicate efficient training. It is good practice for users to determine every 
step involved in every aspect of instrument operation, then prepare a detailed 
step-wise manual for their own training purposes. The operating manuals should 
include even the smallest details of operation, as well as how to apply corrections 
when an error has been made.

6.3.13	 Simplicity in use

The main steps in day-to-day use of an NIR instrument are to check that the 
instrument is working properly before starting the important analysis of the day. 
This can be done by scanning a check sample or a check cell, and periodically 
using the diagnostics. These steps should be described in detail in an instrument 
operating manual. Instruments that employ a hopper-type sample presentation 
offer a big advantage in simplicity for the user. The sample can just be poured 
in, the analysis started by pressing the appropriate button, or even by simply 
touching the screen. The sample passes through the instrument into a tray when 
analysis is complete. 

For instruments that use a sample cell, the method of filling the cell is a source 
of error, and the operating manual should include precise instructions for this 
all-important part of the test, particularly if the cell has to be cleaned between 
samples, e.g. for slurries and liquids, such as manure, high moisture samples, or 
very dusty samples. The easiest type of sample cell to fill is the open cup type, 
which is placed in a rotating turntable and scanned from below.

Simplicity in use also includes use and interpretation of the instrument diagnostics. 
These are important in assuring that the performance of the instrument optical 
system is functioning consistently. Some instruments contain a built-in system 
that tells the operator to run diagnostics. Some instrument companies offer clients 
a check cell option. The client submits a sample of the commodity or commodities 
for which they want a check cell, and the company prepares the check cells. When 
the check cells are received, they should be scanned 10 to 12 times to determine 
the mean and SD of the results. Thereafter the check cells should be scanned each 
day, ideally at different times, to expose it to different working conditions that 
may develop during the day. Provided the results are consistent the check cell 
approach can reduce the need to run full diagnostics to once or twice a week. If 
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the results of the check cell begin to show excessive variability the diagnostics 
should be run. A check cell can be prepared by any laboratory, provided that it 
is sealed, and protected from change over a reasonable period of time, such as 
4 weeks. 

Some instruments that scan from below, using a rotating turntable offer the 
option of using small cells, such as scintillation vials. For these instruments a vial 
can be used to prepare a check cell. The cell is filled to the top with a check 
sample of the test material, then the cap sealed in place with silicone grease to 
prevent changes in moisture content. The check cell is scanned first thing every 
morning to check that the instrument is working properly, and ideally scanned a 
few times during the day. The results should remain consistent for several weeks. 
If the results begin to change slightly the cell can be re-filled with the same 
check sample, and used over, because it is the bottom of the cell that is being 
scanned. If this system is used it is important to re-fill the same vial, to avoid 
possible differences between the composition of vials. Differences among vials 
will include differences in composition, and more importantly differences in the 
thickness of the bottoms of the vials. Variance introduced by these differences 
will automatically be incorporated into the calibration if a number of vials are 
used in the scanning for calibration development.

6.3.14	Instrument durability

Instrument durability is determined by observing how the instrument performs 
over prolonged use under normal fluctuations in daily workloads and operating 
conditions. Components that can affect the performance by aging include the 
energy source (usually a tungsten halogen lamp), the detectors and the sample 
access system. Modern NIR instruments work well for at least 10 years, and some 
of the older discrete filter instruments have provided good service for over 
30 years. Maintenance is important to prolong the life of the instrument. This is 
usually limited to daily or at least weekly vacuum cleaning of cooling fans and 
careful attention to instrument diagnostics. It is useful to keep detailed, dated 
records of the output of check cells and diagnostics. These are valuable sources of 
information to servicing technicians if the instrument requires repair. 

6.3.15	 Spectral quality

Spectral quality can be studied by viewing the spectra throughout the wavelength 
range of the scan. Whenever working in an ‘unknown’ area, the spectra should 
be viewed to find if there are any noisy areas. This can best be determined by 
developing the 2nd derivative of the spectra. This will emphasise noisy areas. 



NIRS Intrumentation

165

Figure 6.10 shows 2nd derivative (2 4 4 1) spectra of some commodities over the 
400–700 nm range. All of these spectra were taken from whole-grains or seeds. 
The spectra become smoother above 700 nm. Some instruments show very noisy 
spectra at both low and high wavelength extremes. Variation in colour adds to 
the factors of particle size and shape in inducing spectral noise.

The format in which instruments store spectral data influences the appearance of 
the spectra. Some instruments record spectra at 0.5 nm intervals, some at 2 nm 
intervals and others at 5–6 nm intervals. The latter spectra look smoother than 
spectra recorded at 0.5, and 2 nm intervals. These spectra are ‘flattered’ because 
their manner of storing spectra is essentially a form of smoothing. By smoothing 
the 0.5 nm and 2 nm spectra to the same degree as the 5–6 nm spectra, the 
spectra look just as smooth. 
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Figure 6.10	 Noise in 2nd derivative (2 4 4 1) spectra in the low wavelength range. 

Interferometers operate over the wavelength range from 850–2500 nm, but their 
spectral data are recorded as cm-1. There is increasing interest in the use of FT-NIR 
instruments in agricultural applications. This comes partly from improvements in 
sample presentation. Interferometers, use different principles of operation. The 
degree of resolution of the interferometer can be specified by the operator, but as 
the degree of resolution is reduced the S/N ratio decreases, and resolution below 
8 cm-1 is not recommended. Resolution of 16 cm-1 is adequate for most applications 
in the agricultural, feed, forage and food industries. Some FT-NIR software 
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includes an optimise option. The instruments scan the entire wavelength range. 
The software will select the best wavelength and mathematical pretreatment 
combinations for the sample sets presented. For this step the larger the database 
the better. The optimisation can be set up to use cross-validation or a test set. 
With a big data set (500 or more) the optimisation can take 30 minutes, or even 
longer, but the information gained is a valuable guideline.

6.3.16	 Instrument peripherals

Earlier filter instruments and modern whole-grain analysers require no peripherals 
– a big advantage in operations where bench space may be limited. Stand-alone 
instruments are preferred for high volume operations, such as grain elevators and 
processing plants. Scanning monochromators, and similar instruments require 
peripherals such as an external computer, keyboard (in the case of desktop 
computers) and mouse, which increase the bench space required. Together 
with their associated cables, these peripherals are a nuisance in a high-volume 
operation. Provision can be made to accommodate the peripherals in the most 
efficient way so as not to impede the operation. For example, all cables can be 
located behind benching, and computers can be operated using a wireless mouse. 

6.3.17	 Suitability for field operation

In addition to the above specifications, for operation on-site in the field, e.g. 
for testing soils or forages, instruments have to be capable of being driven by 
battery or generator. Such instruments should be capable of being carried in 
a back-pack, including a laptop. Laptop computers have a limited operating 
time, but intermittent use can provide plenty of time for operating in the field. 
Several handheld instruments are available for field-operation. These instruments 
are designed for prediction of a small number of constituents, such as sugar or 
water contents. For these types of field-operated instruments, the instrument is 
presented to the sample, rather than the sample being presented to the instrument.

For sewage, or liquid manure analysis during application, the instrument should 
be capable of direct attachment to the pumping system or applicator. The system 
should include a valve for removal of samples for monitoring. The instrument 
should also be weather-proof, and tolerant of significant changes in ambient 
temperature, relative humidity, dust and vibration. Instruments with few or no 
moving parts are best adapted to these conditions. Diode-array instruments, with 
their high speed of analysis, are suitable for this type of work that is growing in 
application as more people become aware of the scope of NIRS analysis. 
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6.3.18	Instrument technical support

In selecting an NIR instrument, consideration should be given to the performance 
of the instrument company in providing follow-up advice and problem-solving 
after installation of instruments, in supplying and updating calibrations and in 
providing timely repairs. Instrument companies vary widely in the quality of after-
sales service and in the expertise of service technicians. Most offer training in 
the basic operation of the specific instrument. One of the important areas that is 
generally lacking in the industry is thorough tutoring in the technology and how 
best to use it.

6.3.19	  Instrument cost

It was mentioned earlier that the cost of the instruments should be considered 
in the context of the intended application and in terms of direct benefits such 
as cost-savings and producing a more dependable product. Another aspect 
of assessing the value of using NIRS is the consequence of continuing to not 
test, or not test with sufficient frequency due to the inconvenience, time and/
or expense of testing. The purchase price of NIR instruments has often been a 
barrier to potential users of NIRS. Modern NIR instruments can be expected to 
function accurately for 10 years or more. Although the cost of the instrument has 
to be paid in its first year, the overall benefits make the initial purchase price an 
excellent investment.

6.3.20	 Instrument networking

For operations that install more than a single NIR instrument, it is useful to be able 
to manage all of the instruments using a single calibration, or set of calibrations, 
for each constituent. The principle of networking instruments was first established 
a number of years ago and has since become widely used. Some networks consist 
of several hundred instruments, all of which are controlled from a single computer 
located in a central laboratory.

Networking and calibration transfer work best if the instruments all provide 
essentially the same spectral data from a given sample. One instrument is identified 
as the ‘master’ instrument, and all the others as ‘slaves’, or ‘satellites’. The master 
instrument is calibrated to the reference methods. The satellite instruments are 
all calibrated from and to agree with the master instrument. Instrument accuracy 
and precision are monitored via the network using check samples that are 
either generated locally (the cheapest way) or sent out from the central control 
laboratory (the best way because only one laboratory is used for checking the 
reference data). The NIRS-predicted results for check sample analysis by the 
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satellite instruments are compared to the NIRS-predicted results from the master 
instrument for the same samples, rather than to the reference laboratory results.

Changes in satellite instrument performance that require adjustment to slope or 
bias are all carried out on the basis of the results from the master instrument, and 
they are all effected via the network. In practice, slope changes are very rarely 
required and are not recommended. Monochromator-driven instruments are 
preferred for networking. Differences among monochromators and interferometers 
are generally smaller than differences among discrete filters, CCDs or diode arrays. 
NIT monochromator-driven instruments use air as the internal reference and are 
the most suitable for large-scale networking. Networking is discussed in more 
detail in Chapter 9 (see section 9.2).

6.3.21 Instrument maintenance and diagnostics

Simplicity on both instrument maintenance and diagnostics is an advantage 
to day-to day operation. NIR instruments require regular maintenance which 
usually means removal of dust, preferably by vacuum. A record should be kept 
of when the instrument first began to be used, so that an estimate can be made 
of the probable life of the lamp (light or energy source). Most lamps have a life 
expectancy of about 2000–2400 hours, and some modern instruments use lamps 
with 10,000 hours expectancy. It is important to turn the lamp off after use, unless 
the instrument is in constant use, either on-line or because of shift-work. When 
a lamp has to be changed, allow it to warm up for at least one hour then scan 
the check cell and two or three check samples a few times in order to determine 
whether the new lamp has introduced a bias. Also note the date of the installation 
of the new lamp in order to estimate its probable life.

The instrument should never be turned off. Instruments take about 1–2 hours 
to stabilise when they are newly turned on and analysis may not be reliable 
during that period. Moreover, diagnostics may show that the instrument is not 
performing up to standard if it is turned off every night and turned on again in 
the morning. Software is available to turn instruments on for a set time before 
the workday begins to allow the instrument to warm up. By reducing its use this 
prolongs the life of the lamp by up to 50%.

6.4	 Last words on choosing an NIR instrument

Choice of an NIR instrument depends on the use to which it is to be put. Some 
instruments have been designed for rapid, simple analysis of commodities such as 
grain. Most of these are NIT instruments. Others are designed for more complicated 
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analysis, such as prediction of functionality. Still other instruments are bought just 
for research into the field of NIR technology.

The wavelength accuracy and spectral resolution of mid-IR and FT-NIR and FT-
IR instruments are regarded as being superior to those of conventional NIR 
instruments. The mid-IR manufacturers have overcome initial problems associated 
with sample presentation, and there is increasing interest in application of mid-
IR in several fields of agriculture. Nevertheless, for a technique to supersede 
another it has to prove itself to be superior, rather than equivalent, in crucial 
areas of application (including costs). The consensus among long-time users of 
NIRS is that for some applications, especially in the feed industry, FT-IR and FT-NIR 
instruments will continue to gain ground, but for most applications in agriculture 
the ‘classical’ NIR technique will continue to be the method of choice for the next 
few years mainly because of its flexibility in applications, as well as the wealth 
of information that is available on calibration transferability and networking and 
instrument durability. 

The golden rules for successful NIR instrument application:
1.	 Select the instrument appropriate to your applications – usually by discussion 

with the instrument company.
2.	 Develop a sample presentation system that can be used consistently with 

more than one operator.
3.	 Identify or develop a reliable laboratory for reference analysis and determine 

precision of all reference testing.
4.	 Establish check samples for every commodity that will be tested, including 

whole and processed materials – bulk check samples should be very 
thoroughly blended, and stored in airtight containers, ideally refrigerated but 
not frozen – subsamples can be taken from time to time for daily use. 

5.	 Make sure that the instrument spectral data are precise using ‘check’ 
samples and a sealed check cell – keep dated records of check cell and check 
sample results. 

6.	 Make sure that calibration models are accurate and precise, also using 
‘check’ sample.

7.	 Make sure that factory calibration models perform accurately on 
your material.

8.	 Develop a reliable monitoring system. 
9.	 Make sure that all operators are thoroughly trained in the operation of the 

instrument, and that they understand the statistics needed for monitoring of 
accuracy and precision.

10.	 Carry out diagnostics regularly and keep records of diagnostic performance; 
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and prepare a comprehensive operating manual containing all steps of 
the operation.

Most on-line applications are customised, particularly with respect to sample 
presentation, and would-be users are advised to discuss their specific needs 
with instrument companies that offer this type of equipment. Calibrations 
are developed using samples withdrawn from the on-line system. Individual 
instrument manufacturers will advise how manual samples for calibration and 
monitoring should be taken.

Table 6.5	 Conversion of wavenumber (cm-1) to wavelength (nm)
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12500 800 11280 887 10560 947
12460 803 11240 890 10540 949
12420 805 11200 893 10520 951
12380 808 11180 894 10500 952
12340 810 11140 898 10480 954
12300 813 11100 901 10460 956
12260 816 11060 904 10440 958
12220 818 11020 907 10420 960
12080 828 11000 909 10400 962
12140 824 10980 911 10380 963
12100 826 10960 912 10360 965
12060 829 10940 914 10340 967
12020 832 10920 916 10320 969
11980 835 10900 917 10300 971
11940 838 10880 919 10280 973
11880 842 10860 921 10260 975
11840 845 10840 923 10240 977
11800 847 10820 924 10220 978
11760 850 10800 926 10200 980
11720 853 10780 928 10180 982
11680 856 10760 929 10160 984
11640 859 10740 931 10140 986
11600 862 10720 933 10120 988
11560 865 10700 935 10100 990
11520 868 10680 936 10080 992
11480 871 10660 938 10060 994
11440 874 10640 940 10040 996
11400 877 10620 942 10020 998
11360 880 10600 943 10000 1000
11320 883 10580 945 9980 1002
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9960 1004 9100 1099 8240 1214
9940 1006 9080 1101 8220 1217
9920 1008 9060 1104 8200 1220
9900 1010 9040 1106 8180 1222
9880 1012 9020 1109 8160 1225
9860 1014 9000 1111 8140 1229
9840 1016 8980 1114 8120 1232
9820 1018 8960 1116 8100 1235
9800 1020 8940 1119 8080 1238
9780 1022 8920 1121 8065 1240
9760 1025 8900 1124 8050 1242
9740 1027 8880 1126 8035 1245
9720 1029 8860 1129 8020 1247
9700 1031 8840 1131 8005 1249
9680 1033 8820 1134 7990 1252
9660 1035 8800 1136 7975 1254
9640 1037 8780 1139 7960 1256
9620 1040 8760 1142 7945 1259
9600 1042 8740 1144 7930 1261
9580 1044 8720 1147 7915 1263
9560 1046 8700 1149 7900 1266
9540 1048 8680 1152 7885 1268
9520 1050 8660 1155 7870 1271
9500 1053 8640 1157 7855 1273
9480 1055 8620 1160 7840 1276
9460 1057 8600 1163 7825 1278
9440 1059 8580 1166 7810 1280
9420 1062 8560 1168 7795 1283
9400 1064 8540 1171 7780 1285
9380 1066 8520 1174 7765 1288
9360 1068 8500 1176 7750 1290
9340 1071 8480 1179 7735 1293
9320 1073 8460 1182 7720 1295
9300 1075 8440 1185 7705 1298
9280 1078 8420 1188 7690 1300
9260 1080 8400 1190 7675 1303
9240 1082 8380 1193 7660 1305
9220 1085 8360 1196 7645 1308
9200 1087 8340 1199 7630 1311
9180 1089 8320 1202 7615 1313
9160 1092 8300 1205 7600 1316
9140 1094 8280 1208 7585 1318
9120 1096 8260 1211 7570 1321
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7555 1324 6910 1447 6334 1579
7540 1326 6895 1450 6322 1582
7525 1329 6880 1453 6310 1585
7510 1332 6865 1457 6298 1588
7495 1334 6850 1460 6286 1591
7480 1337 6835 1463 6274 1594
7465 1340 6820 1466 6262 1597
7450 1342 6805 1470 6250 1600
7435 1345 6790 1473 6238 1603
7420 1348 6775 1476 6226 1606
7405 1350 6760 1479 6214 1609
7390 1353 6745 1483 6202 1612
7375 1356 6730 1486 6190 1616
7360 1359 6715 1489 6178 1619
7345 1361 6700 1493 6166 1622
7330 1364 6685 1496 6154 1625
7315 1367 6670 1499 6142 1628
7300 1370 6655 1503 6130 1631
7285 1373 6640 1506 6118 1635
7270 1376 6625 1509 6106 1638
7255 1378 6610 1513 6094 1641
7240 1381 6598 1516 6082 1644
7225 1384 6586 1518 6070 1647
7210 1387 6574 1521 6058 1651
7195 1390 6562 1524 6046 1654
7180 1393 6550 1527 6034 1657
7165 1396 6538 1530 6022 1661
7150 1399 6526 1532 6012 1663
7135 1402 6514 1535 6002 1666
7120 1404 6502 1538 5992 1669
7105 1407 6490 1541 5982 1672
7090 1410 6478 1544 5972 1674
7075 1413 6466 1547 5962 1677
7060 1416 6454 1549 5952 1680
7045 1419 6442 1552 5942 1683
7030 1422 6430 1555 5932 1686
7015 1426 6418 1558 5922 1689
7000 1429 6406 1561 5912 1691
6985 1432 6394 1564 5902 1694
6970 1435 6382 1567 5892 1697
6955 1438 6370 1570 5882 1700
6940 1441 6358 1573 5872 1703
6925 1444 6346 1576 5862 1706



NIRS Intrumentation

173

W
av

en
um

be
r 

(c
m

-1
)

W
av

el
en

gt
h 

(n
m

)

W
av

en
um

be
r 

(c
m

-1
)

W
av

el
en

gt
h 

(n
m

)

W
av

en
um

be
r 

(c
m

-1
)

W
av

el
en

gt
h 

(n
m

)

5852 1709 5444 1837 5100 1961
5842 1712 5436 1840 5092 1964
5832 1715 5428 1842 5084 1967
5822 1718 5420 1845 5076 1970
5812 1721 5412 1848 5068 1973
5802 1724 5404 1850 5060 1976
5792 1727 5396 1853 5052 1979
5782 1730 5388 1856 5044 1983
5772 1733 5380 1859 5036 1986
5762 1736 5372 1862 5028 1989
5752 1739 5364 1864 5020 1992
5742 1742 5356 1867 5012 1995
5732 1745 5348 1870 5004 1998
5722 1748 5340 1873 4996 2002
5712 1751 5332 1875 4988 2005
5702 1754 5324 1878 4980 2008
5692 1757 5316 1881 4972 2011
5682 1760 5308 1884 4964 2015
5672 1763 5300 1887 4956 2018
5662 1766 5292 1890 4948 2021
5652 1769 5284 1893 4940 2024
5642 1772 5276 1895 4932 2028
5632 1776 5268 1898 4924 2031
5622 1779 5260 1901 4916 2034
5612 1782 5252 1904 4908 2037
5602 1785 5244 1907 4900 2041
5592 1788 5236 1910 4892 2044
5582 1791 5228 1913 4884 2048
5572 1795 5220 1916 4876 2051
5562 1798 5212 1919 4868 2054
5552 1801 5204 1922 4860 2058
5542 1804 5196 1925 4852 2061
5532 1808 5188 1928 4844 2064
5524 1810 5180 1931 4836 2068
5516 1813 5172 1933 4828 2071
5508 1816 5164 1936 4820 2075
5500 1818 5156 1939 4812 2078
5492 1821 5148 1943 4804 2082
5484 1823 5140 1946 4796 2085
5476 1826 5132 1949 4788 2089
5468 1829 5124 1952 4780 2092
5460 1832 5116 1955 4772 2096
5452 1834 5108 1958 4764 2099
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4756 2103 4428 2258 4162 2403
4748 2106 4420 2262 4156 2406
4740 2110 4412 2267 4150 2410
4732 2113 4404 2271 4144 2413
4724 2117 4396 2275 4138 2417
4716 2120 4388 2279 4132 2420
4708 2124 4380 2283 4126 2424
4700 2128 4372 2287 4120 2427
4692 2131 4364 2291 4114 2431
4684 2135 4356 2296 4108 2434
4676 2139 4348 2300 4102 2438
4668 2142 4342 2303 4096 2441
4660 2146 4336 2306 4090 2445
4652 2150 4330 2309 4084 2449
4644 2153 4324 2313 4078 2452
4636 2157 4318 2316 4072 2456
4628 2161 4312 2319 4066 2459
4620 2165 4306 2322 4060 2463
4612 2168 4300 2326 4054 2467
4604 2172 4294 2329 4048 2470
4596 2176 4288 2332 4042 2474
4588 2180 4282 2335 4036 2478
4580 2183 4276 2339 4030 2481
4572 2187 4270 2342 4024 2485
4564 2191 4264 2345 4018 2489
4556 2195 4258 2349 4012 2493
4548 2199 4252 2352 4006 2496
4540 2203 4246 2355 4000 2500
4532 2207 4240 2358
4524 2210 4234 2362
4516 2214 4228 2365
4508 2218 4222 2369
4500 2222 4216 2372
4492 2226 4210 2375
4484 2230 4204 2379
4476 2234 4198 2382
4468 2238 4192 2385
4460 2242 4186 2389
4452 2246 4180 2392
4444 2250 4174 2396
4436 2254 4168 2399
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Sampling, sample 
preparation and 

sample presentation

Sampling and sample preparation are two aspects of analytical work by NIRS 
or reference methods where research has seemingly lagged behind other 
developments in the technology. The main reason for this is that the requirements 
of sampling in industry have been recognised for many years, and the research 
essential to effective and efficient sampling has been accomplished accordingly. 
In most industrial operations involving large volumes of bulk materials, sampling is 
automated, and the precision and reliability of the systems have been scrupulously 
established. 

There are a number of things that the average NIRS user needs to know about 
samples, sampling, sample preparation and sample presentation to the instrument. 
These include: 

�� What is a sample?
�� What is the significance of a ‘truly representative’ sample?
�� How should a sample be taken?
�� What affects the accuracy of sampling?
�� How many samples are needed for a calibration?
�� How should samples be prepared for analysis?

07
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�� How should samples be stored?
�� How is the sample presented to the instrument?

The spectra are the heart of NIRS application to any type of material, and factors 
that can affect the spectra have to be included in the assembly of samples. In the 
case of grains, factors such as variety, growing location and season can affect 
spectra even of samples with the same chemical composition as determined by 
reference methods. Sample assembly for calibration development should identify 
the most important variables, and assemble samples accordingly. Many of these 
factors are identified in Chapter 8. Before beginning a calibration exercise, it is 
essential to establish the sources of variance, and to identify sources of samples 
that represent the most important variance factors. Although this has nothing to 
do with the actual sampling, it is inherent to the success of sample assembly for 
development and evaluation of NIRS calibration models.

7.1	 What is a sample? 

Statisticians and analytical chemists look upon a sample in different ways. To a 
statistician a sample is a portion of a population that is intended to represent 
accurately the entire population in its original appearance, and physical, chemical 
and physicochemical form. To the analytical chemist, a sample is simply an 
envelope or other container full of material that has to be analysed.

The term ‘population’ is used to describe the total amount of whatever has to be 
tested, whether it is all of the kernels in a truckload of grain, all of the bales in a 
50-hectare field of hay, the full amount of liquid in a lagoon of manure, or any 
amount that is too big for testing in its entirety. Ideally, the whole population 
should be tested to determine its composition or functionality. This is very rarely 
practicable with solid materials, except with small populations such as the seeds 
from a single plant. Because NIRS is non-destructive, the seeds can be planted 
after testing. NIRS has opened small doors, as well as big ones. Continuous on-line 
testing does permit analysis of total populations of liquids, slurries, and of solid 
materials in a moving stream. No samples need to be taken because the whole 
population is being tested so that sampling error is essentially eliminated.

Some confusion may arise about the use of ‘N’ or ‘n’ when discussing statistics. 
The value ‘n’ refers to the number of samples taken from a population, e.g. the 
number of samples taken to represent a cargo of 30,000 tonnes (metric tonnes) 
of grain or the number of bales that have been sampled to represent a field of 
50 hectares. The value ‘N’ refers to the total population. If the sample size is 10 kg 
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of grain and a sample is taken for every 1000 tonnes, this means that 30 samples 
are assumed to represent the total cargo and n = 30, whereas N (the number 
of theoretical samples in the population) = 30,000,000 (kg) ÷ 10 = 3,000,000 an 
unrealistic number. Similarly in a 50 hectare field, that has yielded 4 tonnes of hay 
per hectare, and a sample is taken to represent the total yield of hay in the field, 
the total number of samples (N) will be (200 x 1000) ÷ 2 = 100,000 also an unrealistic 
number. For practicality all NIRS work 'n' is used more frequently than 'N'.

If the precision of the sampling is to be assessed when the samples are analysed 
by NIRS or reference methods, it is essential to know the precision of the testing 
methods. Here the CV (see Chapter 4, section 4.1.3) is useful. If the CV of the SEP 
(standard error of prediction) is high, based on NIRS or reference analysis, but 
the CVs of both of the SETs (Chapter 4, section 4.1.9) are low, it means that the 
sampling error is high. If this is the case, the reasons should be determined and 
corrected. Sampling error is part of the total error, and it is impossible to run an 
efficient analytical system if the sampling error is high. 

Under laboratory conditions the actual sampling is generally not the responsibility 
of the analytical chemist or technician, whose duties are to analyse the samples 
that arrive in the laboratory and report the results. If the reproducibility of the test 
methods is reliable, yet the results prove unsatisfactory to the client, the sampling 
technique may require investigation. In some locations, such as at grain delivery 
points, where samples of farm trucks may have to be taken manually for testing 
for moisture, protein, starch or oil contents, the duties of the person that does the 
test may include that of taking the sample. It is important to establish a reliable 
sampling procedure at such locations. Many modern elevators have pneumatic 
probes for sampling farm trucks. At older elevators samples may be taken manually 
at the rear of the truck during unloading. This is acceptable provided that the 
hand-sampling is continued until the truck has completely unloaded.

7.2  The truly representative sample

The truly representative sample should 
provide the material for the most 
accurate method of determination 
of the composition and functionality 
of the entire population. To save 
expense and time in testing, fully 
representative samples are usually 
thoroughly blended composites of 
sub-samples that have been taken Hand-sampling a farm truck at a grain elevator.
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during operations such as unloading grain from railcars, storage of grain in silos, 
collecting straw bales from fields, pump-out of manure lagoons, sampling large 
fields for soil analysis, and other operations where the populations are too large 
and the number of sub-samples too numerous to test individually. 

The danger with these truly representative composite samples of large bulks is that 
they mask the variance that occurs within the sample. For example, if a composite 
sample is taken during storage of farmers’ deliveries of freshly-harvested grain 
into a big silo, the composite may show that the moisture content is 12.9%, a safe 
value for storage. But the individual deliveries may have ranged from 11 to 16% in 
moisture content. The delivery of, e.g. 12 tonnes of grain at 16% moisture into a 
silo could cause heating, mould development and spoilage within the silo, that 
would not become apparent until the grain was later moved out of the silo for 
marketing. The heated grain would then become dispersed throughout the grain 
as it moved out of the silo (Figure 7.1).

F S D

Silo F = Filling
Silo S = Storage
Silo D = Discharge

High moisture grain

Figure 7.1	 Spread and dispersal of a single delivery of high moisture grain to a silo.

When a composite sample is going to be prepared from a series of deliveries, 
sub-samples of cargo loading, or field samples, the variance or the SD (standard 
deviation) among the samples and the range in analytical data should be 
determined to answer any complaints. To obtain this important information, each 
individual sub-sample that goes to make up the composite should be tested 
before compositing. This was impracticable with reference testing, but it can 
be easily and cheaply achieved using NIRS by scanning every sub-sample as it 
is taken.
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7.3	 Sampling 

The success of both NIRS and reference testing depends heavily on the integrity 
of the sample. On-line NIRS systems offer an advantage. The population is 
continuously scanned and spectra are recorded at designated intervals for NIRS 
analysis. No samples are needed for day-to-day analysis of liquids and slurries 
because all of the material is continually analysed. Nevertheless, samples have to 
be withdrawn for reference testing for calibration and performance monitoring. 
On-line systems are most efficient for application of NIRS where the depth of 
the sample stream is thin enough to preclude stratification, and monitoring the 
surface of the stream is sufficient to provide accurate analysis of the entire stream. 
These systems are less successful in grain streams because the streams are deep 
enough to cause stratification. Vibration of conveyor belts and other conveyors 
cause lighter components of the grain, such as weed seeds and chaff, to migrate 
to the surface and can influence the results. The sampling has to be carried out 
in such a way that the entire depth of the belt or conveyor is being sampled to 
avoid the error of stratification. The determination of such foreign material forms 
an important segment of the pricing so that accurate sampling for determination 
of the foreign material is essential.

Continuous on-line sampling can be achieved by means of sensors located above 
the stream. Alternatively, the instrument can be directly interfaced with the 
stream of material, solid or liquid, by positioning it so that the stream of material is 
passing directly past the sensor. This is best achieved by installing the instrument 
at an angle in ductwork, or at an angle slightly below 90o on the bottom half 
of circular ducting. Continuous in-stream NIRS testing of liquids, such as milk 
or liquid manure, is effective because the material is continuously moving and 
cannot settle out or stratify.

The two main sampling or sample withdrawal systems are manual and automatic. 
Manual sampling of grain can be carried out by probes or other specialised 
handheld sampling devices, or simply by diverting a stream of grain falling from a 
truck into a pail by hand. This method is effective, provided the diverting process 
is continued during unloading of the entire load and the sample is thoroughly 
blended before the NIRS analysis. Truckloads can also be sampled manually or 
automatically by means of hollow probes that are dipped through the volume of 
grain and used to withdraw grain at all levels of the bulk. Trucks and even railcars 
of the box-car type can be sampled in this way. In the case of box-cars or gondola 
cars, at least six probes should be taken to cover the full surface and depth of the 
bulk of grain. Open trucks can also be sampled in this way. Some receiving points 
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such as elevators and mills have pneumatic probes that draw the sample and 
deliver it directly to the testing area. Again, at least six probes should be taken. 
The six sub-samples should then be thoroughly blended before analysis. This can 
best be done by using a blending device such as a Boerner sample divider. 

In large terminal elevators and most flour and feed mills, bulk grain is sampled 
by automatic samplers that continuously withdraw sub-samples from the main 
streams of grain, flour, feed mixes and other types of products. The sub-samples 
are sent to a pneumatic system for transport to the elevator laboratory. This 
method of sampling usually removes too much sample for practicable analysis. 
The streams of sampled materials are consequently passed through a stream-
splitter that allows a certain percentage of the stream to be transferred to the 
laboratory – redirecting the remainder to the original conveyor.

The two main types of samplers for grains are the 
diverter-type and the Woodside samplers. The 
Woodside sampler uses chains that move continuously 
through the stream of grain. Each chain carries small 
cups for removal of sub-samples. Some grains, such as 
peas, are very hard and difficult to sample accurately 
with a Woodside-type of sampler, because hard, 
round seeds tend to ‘jump’ out of the sampling cups. 
Diverter samplers move across the stream, usually at 
the end of belts or conveyors where the grain is being 
discharged into a hopper and divert sub-samples into 
the pneumatic transfer system.

Diverter samples are more efficient than Woodside-type samplers and are 
becoming the sampling method of choice. Still other processing plants, such as 
paper mills, monitor their streams directly with NIRS fibre-optic sensors installed 
over each stream. This calls for careful optimisation of the positioning and 
standardisation of all sensors (there are usually more than a single stream in a 
big plant), so that there are no biases among the sensors. Samples still need to 
be removed for determination of foreign material, which cannot be measured 
accurately or precisely with NIRS. Flour mills can either install NIR instruments 
on selected flour streams and monitor them continuously for protein, moisture 
and ash contents, or withdraw samples automatically into the laboratory. There 
is a very wide diversity of sampling systems custom-designed to serve specific 
purposes in industrial processing plants.

The Boerner sample divider.



Sampling, sample preparation and sample presentation

181

Moving belts can be sampled by hand samplers such as the Ellis cup, and open 
grain streams can be sampled by pelican samplers. These items of equipment are 
available from companies such as Seedburo. Sampling of bags of grain, pellets, 
flour or any other type of bagged material can be carried out by probes that 
penetrate the bags. 

Sampling of soil in a field is usually carried out by 
means of an automatic auger or a manually operated 
auger. Soil sampling is complicated by the size of the 
fields, the topography and the need to take samples 
from at least two depths of the soil. The top 10–15 
cm will contain roots, which should be removed 
before analysis of the soil itself, unless the soil is to 
be sampled for organic matter, including carbon. 
To obtain a reliable estimate of the composition 
and condition of the soil of a field of 100 hectares 
is a formidable task. Sampling of fields of big 
plants, such as whole maize (corn) plants is also 
difficult and operations that work with this type of 
material have to develop and evaluate their own 
sampling methods.

Forages are usually baled in the field before storage or use. Bales can be sampled 
by manual or mechanical probes that penetrate the bale and withdraw samples 
from throughout the bale. The location of bales in the field can be documented to 
allow an estimate to be made of the variability of forage all over the field. Wool 
and cotton bales are sampled in the same way.

The integrity of the sampling also depends on the efficiency with which the 
material, to be sampled, is actually representative of the population. If the 
material is stratified, the sampling must penetrate all of the strata. This becomes 
difficult, e.g. in the sampling of a lagoon of hog manure, where the surface may 
have total solids content of only 0.5–1%, whereas the bottom layers will be much 
higher in total solids and nutrients – so that the lagoon or storage tank must 
be continuously agitated during pump-out. Layering of liquids changes refractive 
indices. Temperature has an effect by changing the viscosity of slurries. All of these 
factors must be incorporated into samples assembled for calibration models for 
NIRS analysis of these types of materials. 

The Vertis soil sampler.
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7.4	 What affects the accuracy of sampling?

The accuracy of sampling is affected mainly by five factors – the type of material, 
the inherent heterogeneity of the material, the location of the sampling system 
and the method and frequency of withdrawal. The type of material mainly concerns 
its physical characteristics. This includes whether it is solid, granular, liquid, slurry, 
powdered, fibrous, such as hay or any other forage, wool or cotton, fresh or 
dried, and other physical factors such as texture. It also includes the composition, 
particularly in terms of moisture and fat contents. All of these factors affect the 
way in which the sample can be taken and stored. 

The location of the sampling systems will be decided by the operator and by the 
operation. Grain, flour, feeds and similar materials can be sampled from belts or 
spouting. Forages, wool and cotton and similar materials can be sampled from 
bales. Soils, manures, and composts can be sampled at the site by suitable augurs 
and probes. Frequency of sampling and sample size will be determined by the 
operator. Sample size depends on the heterogeneity of the material, and in 
general the higher the degree of heterogeneity, the bigger should be the sample, 
and the more frequently should samples be taken. 

The first step in establishing a sampling system is to know the tolerance expected 
(sometimes called the ‘degree of uncertainty’). This will affect the number of 
samples that must be taken. The stricter the tolerance, the higher is the degree of 
sampling needed. There is no need to be stricter than the operation calls for. For 
example, if the tolerance required in analysis of wheat for protein content is ±0.20, 
there is no need to strive for an SEP of 0.15%. This would be more demanding of 
staff, and more expensive. The second step is to determine the precision of the 
method of analysis that will be used to determine the heterogeneity, because 
without that figure it is impossible to determine the true heterogeneity. The third 
step is to determine the heterogeneity of the material. This can only be done 
by experiment. A fourth step is to determine the economics of the frequency 
of sampling and testing, because the costs of the system have to be feasible. 
Determination of the heterogeneity of a blended bulk can be carried out rapidly 
and effectively by NIRS with no need for a calibration. This is discussed in Chapter 
11 (see section 11.11).

A useful system is to take frequent samples, retain and analyse each of the samples 
individually, and make a composite sample using a constant amount, or volume, 
as each of the individual sub-samples is added to it. Each of the progressive 
composites is analysed by the reference method, or by the NIRS method, assuming 
that you have a reliable calibration. It is quicker, cheaper and just as accurate. 
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Then calculate the mean of the individual samples (the weighted mean if the sub-
samples differ in weight or volume). It should agree with the result obtained on 
the final composite sample. The SD of the results of the individual sub-samples 
shows the variance, and heterogeneity of the material. ‘Normal’ values for the CV 
for grain protein content should be between 1–2%. The CV for samples of soil, 
manures, forages and more complicated materials can be expected to be higher, 
but should be determined and should ideally be less than 5%. To determine the 
frequency of sampling, the number of individual samples used to calculate the 
mean is gradually reduced. The minimum number is reached when the mean does 
not change. If the mean of all of the individual samples fails to agree with the 
final composite, the frequency of sampling will need to be increased. When the 
frequency of sampling has been determined the entire exercise should ideally be 
repeated to verify the reliability. 

The guidelines for sampling, presented in sections 7.1 to 7.4, apply particularly to 
solid materials. Liquids and slurries call for different methods of sampling. Water is 
the main constituent of most of these materials. Water contains no constituents 
except total solids, so the application of any analytical method, including NIRS, 
is for the determination of the amount and composition of the solid material 
present.

7.5	 Sample preparation

In these days of direct NIRS testing of intact commodities such as whole grain, 
the errors introduced by grinding and some other aspects of sample preparation, 
are largely eliminated. But sample preparation is as important as ever for the 
reference analysis that is to be used for monitoring instrument performance, and 
for development and extension of calibrations. There are several steps in sample 
preparation, some of which are also applicable to whole-grain NIRS testing. These 
include:
1.	 Careful identification and labeling of samples at the time of sampling or 

receipt of the samples;
2.	 thorough mixing/blending of the sample before any testing is attempted;
3.	 testing for moisture content as received;
4.	 moisture reduction, as necessary;
5.	 accurate sub-sampling, if the sample is too big for processing;
6.	 removal of foreign material, unless the commodity is to be evaluated for 

pricing or functionality as received;
7.	 size reduction, usually by grinding or chopping, to the point where the 

material can be subjected to reference testing;
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8.	 blending the sample after size reduction because grinding usually induces 
stratification;

9.	 cleaning of the grinder between samples where necessary;
10.	 testing for moisture content after sample preparation;
11.	 storage of samples after preparation and before NIRS or reference analysis, 

to avoid changes in composition;
12.	 labelling of the stored samples; and
13.	 refrigeration, as necessary, to protect from changes in composition 

in storage.

Steps 1, 2, 5, 6, and 12 are equally applicable to whole grain testing. Accurate 
documentation is the first priority. Any testing done on a sample with the wrong 
identification is a waste of time and money, and can have serious consequences. 
When assembling samples for developing calibration models, it is important to 
record the source and date (including the year), if the samples are to be preserved 
for more than one year. Thorough blending of the sample is also essential before 
any testing is done, particularly if the sample is a composite sample. 

High moisture materials are the most difficult to handle. High moisture grain 
is difficult to grind, e.g. for reference analysis, and impossible to grind without 
variable and uncertain moisture loss. Furthermore, if grain is to be scanned 
using an NIR instrument after grinding, grinding high moisture grain changes 
the particle characteristics. This can change both slope and bias of the predicted 
results significantly. Grain that is high in moisture (above 12–13%) should be tested 
for moisture content by an approved moisture metre that has been calibrated 
to a standard method (such as Approved Method No. 44-15.01 of the AACCI), 
or ideally by a two-stage oven method before grinding, so that an accurate 
result can be obtained for moisture content. Using this method, a sample of the 
grain is weighed and air-dried to a lower moisture level to determine the stage 
A moisture level. The partly dried sample is ground and re-tested by air-oven to 
determine the stage B moisture content. The total moisture content is calculated 
by a formula that compensates for stage A (AACC, 2000). High moisture forages 
and manures should also be tested for moisture content (total solids in the case 
of liquid manures) before further processing. 

For reference analysis of fresh forages, silages, vegetables, fruits, meat, fish, soils 
and manures, the sample preparation steps will differ. All have to be dried and 
processed before analysis. These materials are more difficult to prepare than high 
moisture grains. One system is to determine the moisture content and scan them 
the way they are at the time of receipt. Then sub-sample, dry and grind them 
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for analysis and determine the moisture content of the material at the time of 
reference analysis. The calibration model is developed using the scans on the fresh 
material, and the reference data have to be converted to the original moisture 
content. Fresh materials, such as forages, cannot be ground and have to be 
reduced to a size that can be dried and ground (for reference analysis) or scanned 
(for NIRS analysis). For large materials, such as whole grass or maize plants, a 
technique has to be developed within the laboratory and the spectral precision 
evaluated for reproducibility before scanning (see Chapter 9, section 9.1.2).

Whether or not results have to be reported on a constant moisture basis, such 
as moisture-free (dry) basis, it is important to test the moisture content before 
and after sample preparation. This minimises the risk of inducing significant 
and variable biases in the reported results. Much confusion in relating NIRS to 
reference data can be avoided by reporting all results on a constant moisture 
basis. Conversely, for preparation of samples such as feed mixes or computation 
of total dietary intake by cattle or sheep, where a large proportion of the intake 
may be as fresh feed, the composition with respect to nutrients (such as protein, 
fibre and energy) should be reported as a function of the actual composition 
of the feed ration. Fresh manures present a unique problem in that they should 
be scanned as received, which is an unpleasant operation in the case of solid 
manures. Drying such material for reference analysis also has to be carried out 
with care, ideally by low temperature or freeze-drying, to avoid losses of steam-
volatile ammonia and other constituents.

In the following example, the actual protein content as consumed gives the 
meaningful information about the intake of protein by the animal. The composition 
of concentrate fed to the animal should be formulated to supplement the 
optimum diet of the animal, based on the intake of the fresh forage (with protein 
content of 5.7%).

Example: Fresh maize silage

   Protein (reference)	 = 21.4%

   Moisture (at time of reference testing) = 6.8%

   Moisture as received 	 = 73.4% (26.6% dry matter)

   Actual protein as eaten	 = 6.1%

Careful blending of the sample before sample preparation is particularly important 
if a sub-sample has to be withdrawn, which is usually necessary. The method of 
sub-sampling is also critical, particularly with forages such as maize and other 
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large materials. It is preferable to take at least two sub-samples of these materials 
and test both. Size reduction usually means grinding. In the case of soil and similar 
materials, air-drying or at least low temperature forced-air drying, is necessary 
before size reduction can be carried out effectively. Air-dried soil can be ground 
in a hammer mill, or preferably by a specialised soil grinder (something like a 
motorised pestle and mortar) that does not exert such a vigorous effect on the 
physicochemical characteristics of the soil. Soil and commodities such as oilseeds 
are usually ground to pass through a 2.0 mm screen. Grains, including soybeans, 
are usually ground to pass through a 1.0 mm screen. 

The Cyclone, Perten KT-3100 and Retsch centrifugal grinders are widely used in 
grain sample preparation. Of these, the Retsch grinder has proved to be the most 
suitable for working with oilseeds. Forages can be ground in any of the Wiley 
series of mills, or in a Christy-Norris 8-inch hammer mill. The Wiley No. 4 grinder 
is a large mill, and is easy to clean. The Christy-Norris mill is very robust, and can 
be used to grind seeds such as faba beans and palm kernels, which are extremely 
hard. This is a direct-drive mill, and noisy, so ear-protection equipment should be 
provided for operators.

Grinders vary and if more than one grinder is used, operators should check that 
spectral characteristics are not affected by differences in grinders. Figure 7.2 shows 
spectra of the same wheat sample ground on two Cyclone grinders. Differences of 
this order would cause significant biases, and would possibly affect slopes. 
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Figure 7.2	 Spectra of the same wheat sample, ground on two Cyclone grinders both 	
	 fitted with 1.0 mm screens.
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Cleaning of grain before analysis is an essential part of sample preparation. 
Foreign material, such as weed seeds, seed pods and stones can interfere with 
NIRS spectroscopic measurements and should be removed before analysis unless 
the on-going samples will always be analysed on arrival with the foreign material 
included. Because the amount of foreign material affects the value and price of 
the commodity, it is important that the blending preserves the distribution of 
foreign material as it was in the original material as received. Large-scale cleaning 
of grains and seeds is carried out in grain-handling and processing plants, and 
detailed descriptions of the equipment and methods involved are outside the 
scope of this book. 

Blending of ground material is another essential to successful analysis. The 
different strata of ground grains have different composition. For example, after 
grinding, the protein content of the finest particles can be 3–4% (absolute) higher 
than the mean protein content obtained after thorough blending. In preparation 
of dried forages, care has to be taken to preserve the ratio of leaf to stem during 
sub-sampling and sample preparation for reference analysis. Leaves are much 
higher in protein and lower in fibre contents than stems. A big advantage of NIRS 
testing is that the sample size that can be scanned by the instrument is usually 
much larger than the sample that can be subjected to reference analysis. For 
example, in testing grain for protein content by reference Kjeldahl or combustion 
analysis, the sample size is usually 250–1000 mg, whereas some NIR instruments 
can scan more than 100 g.

Cleaning of grinders between samples avoids sample-to-sample contamination. 
Some grinders, such as the Cyclone grinder and some hammer mills, are self-
cleaning when grinding cereal grains and pulses. But when grains such as maize 
and oats are to be ground, where the oil content can be as high as 8%, most 
grinders require cleaning between samples. Oats are particularly prone to static 
electricity, and are arguably the most difficult of all cereals in sample preparation. 
Static electricity is caused when two surfaces come into contact with each other. 
Electrons can be transferred. Most of the time the electric charges remain in the 
materials, but if a material carrying a static electricity charge comes into contact 
with another surface, which has lower resistance to electrical conductivity, 
charges will be transferred. Sometimes, when the air is very dry, a metal spatula 
dipped into a sample of ground forages or oats will come out looking like a 
toothbrush. Here the Udy grinder suffers some disadvantage. Its plastic grinding 
chamber intensifies the presence of static electricity.
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Grinders that are not self-cleaning have to be cleaned between samples using 
brushes and a vacuum. Air-streams are not recommended because they increase 
the atmospheric dust and can cause sample-to-sample contamination. Up to over 
2% of samples of grain may remain in a grinder after grinding. These fine particles 
are of different composition from the blended ground material, and should be 
completely removed by brushing, and added to the sample before blending.

Precautions that are needed to avoid changes in composition are particularly 
important in sample preparation for reference analysis. The main reason for this is 
that operations such as moisture reduction and grinding are most likely to cause 
changes in composition with respect to volatile constituents. Low molecular 
weight fatty acids, and some of the esters that contribute toward flavor, are 
volatile in steam and are lost during removal of moisture by oven-drying at 100°C 
or lower. Precautions should be taken either to avoid such losses, or to determine 
these components separately. They can contribute an important amount of the 
digestible energy of some feeds. The Karl Fischer method for determination of 
moisture is preferred for some commodities. One problem with this method is that 
it depends on complete extraction of the water from the commodity. Extraction 
efficiency can be affected by particle size and texture. 

7.6	 Sample storage

Storage of samples is an important aspect of sampling. Samples require protection 
from change between the sampling and sample preparation stages and analysis, 
and possible re-analysis, by NIRS or reference methods. Many commodities can be 
safely stored in plastic bags. Under a low-power microscope a plastic bag looks 
like a chicken-wire fence. The ‘gaps’ allow water molecules to escape. ‘Ziploc’ bags 
can protect grain from changes in moisture content for several years, provided 
the bags are also stored in tight-lidded plastic pails, and at low temperature. 
Ziploc bags should not be stacked too tightly in boxes or pails because they may 
burst open. It is a good idea to insert sample ID inside plastic bags in case the 
labeling wears off from the outside of bags. Rigid plastic containers are available 
in many shapes and sizes. Tight-fitting lids impede changes in moisture content. 
Ground materials that are waiting for testing by reference or NIRS methods 
should be stored in containers that prevent changes in moisture content, such as 
plastic containers with tight-fitting lids, or in metal cans protected by taping the 
lids. Failure to protect the contents by taping will result in moisture loss. This is 
illustrated in Table 7.1.
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Table 7.1	 Moisture losses from ground wheat stored in metal cans with and without 	
	 taping the lids

Initial moisture content (%)

14.3 12.6 10.4

Moisture loss (%) Moisture loss (%) Moisture loss (%)

Days from initial 
moisture test Taped Not 

taped Taped Not 
taped Taped Not 

taped

1 0 0.1 0 0.1 0 0

2 0 0.9 0 0.4 0 0.1

4 0 3.3 0 1.4 0 0.3

6 0 4.0 0 2.1 0 0.3

21 0.4 – 0.2 – 0.1 –

Table 7.2 	 Safe’ moisture levels for grain storage at different environmental relative 		
	 humidities and temperatures

60% Environmental relative 
humidity

70% Environmental relative 
humidity

Grain 20°C 30°C 20°C 30°C

Safe moisture levels (%)

Wheat 14.5 13.5 13.0 12.5

Barley 15.0 14.5 14.0 13.5

Oats 14.5 14.0 13.0 12.5

Maize 14.5 13.5 13.0 12.5

Rice 13.5 13.0 12.5 12.0

Sorghum 14.5 13.5 13.0 12.5

Millet 16.5 16.0 15.5 15.0

Soybeans 12.0 11.5 10.0 9.0

Dry beans 15.5 15.0 14.5 14.0

Sunflower 8.0 7.5 7.0 6.5

Flax 9.0 8.5 8.0 7.5

Canola 8.5 8.0 7.5 7.0

Storage of check samples is particularly important. The results of testing check 
samples cannot monitor reproducibility if the sample itself is changing. Check 
samples should be stored in heavy-duty plastic bags and refrigerated. Sufficient 
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sample should be brought out at each time to last for 2 to 3 days, and should be 
allowed to equilibrate to room conditions before scanning by NIRS. For prolonged 
storage (one week or more in warm climates) samples should be stored at 4 to 
5°C. Table 7.2 gives the maximum moisture levels at which grains can be safely 
stored for up to 5 to 6 days at environmental relative humidity levels (ERH) of 
70% and 60%.

Bulk density of samples has to be taken into consideration when samples are to 
be stored. Samples of 500–1000g of materials, such as soil or grain, have fairly 
small volume, and many samples can be stored in an area of a cubic metre or so. 
Samples of forages and similar light materials should also be of the same size, but 
require much more storage space. 

7.7	 Sample presentation to the instrument 

7.7.1	 Sample presentation for reflectance

The method for sample presentation to the instrument is crucial with both whole 
and ground materials. In reflectance mode, many instruments present samples 
of both whole and ground material in some form of sample cell. The design, size 
and composition of sample cells, is an essential aspect of instrument design. This 
is discussed in Chapter 6 (see section 6.2.8). Cell size has a significant influence 
on the amount of sample that the instrument scans and, therefore, on potential 
sampling error (see Chapter 6, Table 6.4).

Ground materials that are presented to the instrument in a sample cell are viewed 
by the instrument through a window, which is made either of glass or quartz. Both 
glass and quartz differ in composition, but glass windows vary more in thickness 
than quartz windows. Changes in composition affect the spectra of any materials 
scanned, and changes from sample cell to sample cell influence NIRS analysis if 
the windows differ. Changes in window thickness affect the effective distance 
between the sample surface and the detector. Even a small change of a few 
microns can change this distance enough to affect the results, and can change the 
path-length, which is the distance that the light energy travels inside the sample, 
before it is diffusely reflected to the detectors. Differences in the sample surface 
presented to the instrument can be caused by differences in window thickness. 
The errors can be detected by rotating a cell through 180°. Instruments that rotate 
the sample cell eliminate this error.

Tables 7.3 and 7.4 give examples of changes in bias and other statistics induced 
in wheat flour by differences in glass and quartz windows. Errors caused by 
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differences in the composition of sample-cell windows are not limited to glass. 
Although the biases in the quartz series appear to be lower than those of the glass 
series, they are very significant. Such errors also affect precision of NIRS analysis, 
as determined by analysis of check samples.

Table 7.3	 Influence of glass window material on prediction of protein content (%) of flour 	
	 where calibrations developed with an individual window were used to predict a 	
	 sample presented in a cell with the same window and with a different window 

Calibrated with glass window 
#1 – Predicted with #1

Calibrated with glass window #1 
– Predict with #5

Wavelength 
range (nm) SEP (%) Bias RPD SEP (%) Bias RPD

408–1092 0.236 -0.005 8.8 0.297 5.036 7.0

1108–2492 0.097 0.007 21.5 0.107 2.126 19.5

408–2492 0.128 -0.003 16.7 0.130 -0.025 16.0

Calibrated with glass window 
#5 – Predicted with #5

Calibrated with glass window #5 
– Predicted with #1

408–1092 0.347 -0.046 6.0 0.328 0.979 6.4

1108–2492 0.104 0.004 20.1 0.117 4.125 17.8

408–2492 0.143 -0.014 14.1 0.156 -0.231 13.4

Although a great deal of NIRS analysis is carried out on whole materials, NIRS is 
widely used in the analysis of commodities, such as flour and feed mixes, most 
of which are scanned through windows. It is important for any user who carries 
out analyses of any type that requires a quartz or glass window to verify cell-to-
cell variance.

Because many instruments present whole materials to the instrument in some 
sort of sample cell, instrument companies should also determine the extent of 
variance in deliveries of glass or quartz for fabrication of sample cells or viewing 
windows, e.g. in setting up on-line systems where the material being analysed is 
scanned through a window.

The detectors of all instruments are protected from the atmosphere by a window 
of some sort, and these materials (special glass or quartz) can also vary. Because of 
this, instruments wherein the sample is scanned in an open cell without a window 
are not exempt from this source of error. The open cell approach also carries its 
own error sources due to changes in the surface during scanning.
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Static electricity is a source of error with instruments that use a sample cell 
for analysis of flours or meals. When the sample is added to the cell the static 
electricity can cause the sample particles to become dispersed in random patterns 
at the surface of the window, quartz windows are more susceptible than glass 
windows to this phenomenon, and some commodities, such as ground oats and 
some ground forages are also more prone to static electricity than others. The 
changes in the surface presented to the instrument can cause biases. Rotating the 
sample cell through 180o can compensate for this source of error, provided that 
the duplicate results are averaged for reporting. Instruments that automatically 
rotate the sample also avoid this source of error.

Table 7.4	 Influence of quartz window material on prediction of protein content (%) of flour 	
	 where calibrations developed with an individual window were used to predict a 	
	 sample presented in a cell with the same window and with a different window

Calibrated with quartz window 
#1 – Predicted with #1

Calibrated with quartz window 
#1 – Predicted with #5

Wavelength 
range (nm) SEP Bias RPD SEP Bias RPD

408-1092 0.343 -0.048 6.1 0.488 0.009 4.3

1108–2492 0.104 0.007 19.1 0.109 -1.061 18.0

408–2492 0.129 -0.020 16.2 0.120 0.723 13.4

Calibrated with quartz window 
#5 – Predicted with #5

Calibrated with quartz window 
#5 – Predicted with #1

408–1092 0.281 -0.029 8.0 0.283 0.021 7.4

1108–2492 0.107 -0.015 19.5 0.123 0.983 17.0

408–2492 0.137 0.001 15.2 0.158 1.074 13.2

The amounts of ground materials presented for scanning are smaller than those 
of intact materials, and are usually presented in covered sample cells. The layer of 
ground sample should be thick enough to prevent the instrument from scanning 
right through the sample and picking up signal from the back of the cell. The 
radiation from the illumination source will penetrate to about 2 mm of a finely-
ground or powdered material before it becomes completely scattered. When 
analysing straws or forages, the cell must be filled sufficiently densely so that the 
instrument cannot scan through the sample. If this does happen, anomalies may 
appear in the spectra. Radiation penetrates whole grains to depths of a centimetre 
(or more in the case of large-grained materials, such as maize), and penetrates 
packed straw and similar materials to depths of several mm.
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7.7.2	 Sample presentation for transmittance 

The most popular whole grain instruments employed in wheat and barley analysis 
work in transmittance mode. This type of instrument uses an incremental flow-
through system for sample presentation. The number of increments is specified 
by the operator during calibration development.

In transmittance mode, sample thickness is even more important than in 
reflectance mode. The reason for this is discussed in Chapter 6 (see section 6.2.2). 
The optimum path length (thickness) is determined during calibration, and varies 
from about 2 to 3 mm for flours to 3 to 6 mm for small seeds such as canola or 
poppy seeds, and up to 30 mm for maize and soybean. The sample is viewed 
through a window of about 1.0 cm2 so that the total volume of grain scanned at 
each increment (sub-sampling) ranges from about 300–3000 mm3. In the case of 
wheat, for which a path length of 18 mm is recommended, the amount of wheat 
per increment is about 1.55 g, so that an analysis covering 10 increments will 
scan about 16 g of grain (even if the actual sample size is as much as 1 kg). Some 
instruments use a viewing chamber, the walls of which are not square, and the 
increments of grain are proportionately larger.

For constituents or parameters that are evenly distributed among individual 
kernels, as in the case of grains, scanning samples in increments of as small as 1.6–
2.0 g is acceptable. The SD of protein content among individual kernels in a sample 
of wheat is about 0.6%, while for moisture content the SD is only about 0.4%. The 
respective CV values are about 9.5% and 3.2%. This means that most of the kernels 
in the sample have about the same protein and moisture contents. Scanning 10 
increments provides very precise results. The same applies to kernel texture in 
ground wheat, where the CV is about 1.5%. If the constituent or parameter is more 
variable among kernels, the SD of the increments will increase correspondingly, 
and the results will be affected. This has been found to be the case with parameters 
such as Falling Number (FN) in wheat, an indication of sprout damage, or ‘scab’, i.e. 
Fusarium head blight, where only about 2–4% of the kernels may be affected. For 
such applications NIRS is only suitable for rough screening.

Another form of scanning is ‘transflectance’. This method is used for the NIRS 
analysis of liquids. The sample is either loaded into a cell with windows at both 
surfaces, or it may flow through a transparent tube. By either method a highly 
reflective material or reflector is placed behind the cell (or tube). The sample is 
scanned through the cell. Energy is diffusely reflected from the reflector back 
through the cell and reaches the detector with the information that it has gained 
from the sample. When transflectance is used with a liquid that is likely to change 
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its composition to the extent that it becomes opaque the energy will not reach 
the reflector, and the energy then becomes diffusely reflected from the sample. 
This is illustrated in Figure 7.3. As the liquid contains progressively more particles, 
no energy passes through to the reflector.

Transflectance Reflectance Transition

Detector area

Reflector area

Light source

Figure 7.3	 Illustrating transition from transflectance to total reflectance (transition).

Liquid manures and similar materials can be analysed continuously using a flow-
through system. The material is viewed through a window, usually of sapphire. 
The system should also be fitted with apparatus for collecting a sample, for 
monitoring. The spectral signals are passed to the detector either directly, or via 
fibre-optics. The NIRS testing mode can change from a diffuse transflectance to a 
diffuse reflectance measurement, as the composition of the material changes, so 
the system should be fitted with a reflector, and the calibration models developed 
to accommodate both transflectance and reflectance modes. If the material is 
contained in piping or tubing of 10–20 cm, there is no need for such an external 
reflective material because the sample thickness is sufficient to prevent the signal 
from passing completely through.

7.7.3	 Sample presentation on a turntable 

Some instruments employ an open sample cell set onto a revolving turntable. 
This allows a larger amount of sample to be scanned. The sample cell can be 
made from metal, plastic or glass. The sample is scanned using a light source that 
irradiates an area of about 2.0–2.5 cm in diameter. For this type of instrument, if 
the sample is scanned in an open cell from above because the sample is rotating, 
uniformity of the surface is not really essential to reproducible scanning. The 
instrument software will accommodate unevenness of the surface as a variable. 
The problem with scanning from above lies in analysis of materials such as forages 
or wool, where the surface is very uneven, and possibly ‘fluffy’. A uniform surface is 
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assured in instruments that use a transparent sample cup, illuminated from below. 
Forages, wool and similar materials can be compressed with a suitable weight, 
to assure an even surface. This approach, while assuring an even surface for 
scanning, is subject to changes in the material from which the window of the cell 
is made, usually special glass or sapphire. Instruments that use the circular open 
cell/turntable system of sample presentation also avoid some of the problems 
associated with loading high moisture samples. 

The turntable system also presents a large surface area of sample to the instrument. 
The illumination to the turntables is usually off-centre, so that sample cells from 15 
to 25 cm down to scintillation vials can be used to scan samples of different sizes. 

7.7.4	 Sample presentation for fibre-optic sensors

Some instruments scan the sample directly, using a fibre-optic sensor to transmit 
spectral data from the sample to the instrument. The efficiency with which 
data can be passed depends on the wavelength range and on the distance 
from sample to instrument. Fibre-optics become less efficient the greater and 
longer the wavelength range. This is because there are more things that can 
interfere with the wavelengths at which the measurements should be made, 
and shorter wavelength ranges favour transmittance of spectra data. Between 
700–1100 nm fibre-optic cables are effective over 10–12 metres. They are useful 
under operating conditions that are unfavourable to the instrument, such as at 
elevated temperatures. The size of the sampling head is quite small, and where this 
approach is used to scan static samples, several scans should be taken at different 
areas of the sample and the scans averaged to provide a more comprehensive 
image to the instrument. Wavelength ranges should be optimised for application 
of fibre-optics presentation systems to identify wavelengths where constituents 
such as moisture can introduce interferences. Sapphire windows are usually used 
with fibre-optics sensors. 

On-line NIRS systems that continuously scan moving belts or trays of samples, 
mixers or other types of containers where processing is taking place, use no 
sample cells. The moving sample serves as the cell. These instruments overcome 
the potential errors of non-uniform surface by taking and averaging multiple 
scans. Modern diode-array NIR instruments take many scans per second over 
a wavelength range of 900–1700 nm. Filter instruments work over the small 
wavelength range produced by careful selection of discrete filters, and are equally 
applicable to on-line analysis. Samples of liquids can also be presented for NIRS 
analysis by on-line instruments by means of flow-through cells, where again many 
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scans are taken and averaged. Flow-through cells intended for use with slurries 
and liquids that may contain abrasive materials, such as sand, usually use sapphire 
windows which are very hard and resistant to abrasion.

Analysis of soil by NIRS has difficulties associated with sampling and sample 
preparation. Soil has to be sampled at more than a single depth to represent the 
composition of the soil through the profile of the growing depth. Preparation 
of the samples for reference analysis and NIRS scanning is further complicated 
by the fact that the top 10–15 cm or so are usually full of roots. The composition 
of the roots is quite different from that of the soil and will affect the spectral 
signals, and therefore also the results of the analysis of the soil component. 
Commonly-used soil profiles include 0–15 cm and 15–60 cm. Soil texture also 
varies even within a field, which further complicates sample preparation. The 
ultimate way of soil analysis is likely to become a probe, equipped with a NIR 
fibre-optic sensor that can be inserted into the type of hole made by a soil auger, 
and make direct measurements of the soil in situ. This will give a closer estimate 
of the soil moisture and texture as it is in the field. Subsequent analytical results 
determined on air-dried, ground soil should be converted to the as-is reference 
data for calibration purposes.

7.7.5 Sample presentation for interactance

Interactance (see Chapter 6, section 6.2.3) is a system where the instrument is 
brought into direct contact with the sample, using a special type of fibre-optic 
sensor. The sensing head carries a window, usually of sapphire, and the sensor 
is placed directly onto the surface of the material to be tested. It is particularly 
useful for testing changes that are transmitted through skin of animals including 
people, and can also be used for testing materials such as vegetables and large 
fruits, such as pineapples, which cannot be conveniently sampled, partly because 
of their high moisture content and partly because of their size, shape and surface 
characteristics. The interactance sensor can be applied to areas of the surface that 
have been shaved in several areas to expose a smooth surface for application of 
the sensor. Surface water can introduce a degree of non-linearity by increasing 
specular reflectance. Interactance scanning of high moisture samples, such as fruit 
and meat can reduce possible errors caused by surface water. 
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Variables that can affect 
performance of NIR instruments

There is no such thing as an error-free operation. One rule that seems to work is 
that the sources of major errors are usually easy to locate and correct, because 
only a few factors can cause major errors. Failure of a lamp or an internal cooling 
fan can cause obvious changes in output from one sample to the next. Accidentally 
using the wrong calibration can also be a major source of error. Another source of 
such errors is that of mistakes in entering the reference data. Entering one item of 
reference data twice, or failure to enter it once will place all subsequent entries 
wrong by one position, which will disrupt the computing of the calibration model. 
Small errors, whether consistent or variable, are more difficult to find because 
they can be caused by so many factors. 

NIRS, as an analytical tool, differs from chemical analysis in that it derives 
absolutely from the spectra. It is possible to obtain spectra of different spectral 
characteristics from samples with closely similar or even the same chemical 
composition as reported by reference testing. This is because of external 
influences on the material. This section is included because it is important to be 
aware of the sources of error in order to correct or compensate for them. Over 
40 factors can affect the efficiency of NIRS testing. The main sources of error are 

08
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summarised in Table 8.1. Most of the factors under ‘Sample’ are associated with 
agricultural and food materials. Individual operations in other fields will identify 
their own specific factors. 

Table 8.1	 Main sources of error in NIRS applications

Source of error

Instrument Sample Operator

Instrument design Sample type (e.g. solid, 
liquid) Reference method**

Instrument stability Sample size, shape and 
colour Sample preparation

Wavelength precision Sample texture Sample presentation

Non-linearity Sample storage Calibration development

Stray light Chemical composition Wavelength optimisation

Instrument-to-instrument 
variability Growing location Mathematical treatment

Instrument sensitivity* Path length Sample thickness

Wavelength range Growing season Operating conditions

Sample presentation 
system Stage of growth General carelessness

Sample cell variance Sources of ingredients

Processing system

*Sensitivity to temperature, relative humidity, dust and vibration
**Reference methods used in entering data, calibration development, evaluation and monitoring

8.1	 Variables

Variables that can affect instrument performance include factors that come from 
the instrument itself, its design and especially its sample presentation system, 
the sample and the operator. Static electricity is a factor that is attributable to 
the instrument, the grinder and the sample. It causes the particles of ground 
material to become oriented in different patterns in the sample cell to the extent 
of affecting the signal, and the NIRS results. This phenomenon can be overcome 
by rotating the cell through 180° and taking two scans. Instruments that rotate the 
cell during scanning eliminate static electricity as a source of error.
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8.2	 Instrument factors 

Basic instrument design includes the optical system, i.e. whether the instrument 
uses discrete filters, a monochromator, diode array, interferometer or some other 
form of wavelength range selection, the detector(s) and the sample presentation 
system. Stability in output is essential to consistent, accurate NIRS analysis. This 
is affected by several factors, including wear of moving components, mechanical 
vibration, aging and deterioration of components, dust build-up on components 
involved with optics, and expansion and contraction of components due to 
temperature fluctuation. Instruments with no moving parts in their electro-
optical systems, such as diode array and CCD instruments, do not appear to be 
encumbered with this type of mechanical wear, but their sample presentation 
system may use a revolving turntable, the motor of which could generate noise 
due to wear.

The components of all types of instruments are affected by temperature 
fluctuations, and precautions must be taken during scanning material for 
calibration development to include the temperature range likely to be encountered 
during day-to-day operations. Typically, the output of optical components, such 
as discreet filters, can vary by about 0.5 nm for each change in temperature of 
1.0°C. The influence of this on analysis depends on the material and factor to be 
analysed. For some applications a change of as little as 0.1 nm for a particular 
absorber can affect the results, while for others changes of even 2.0 nm can be 
tolerated. In development of the most robust instruments, manufacturers strive 
to anticipate interactions between components and temperature by employing 
internal temperature control, using fans and in-line thermo-electric controls. 
Failure of a fan can cause abrupt changes in performance. 

Operators can compensate for these fluctuations during development of 
calibration models simply by scanning the samples throughout the working day. 
Before the working day begins the atmosphere of a laboratory has settled down 
from the previous day and is stable. As soon as the staff enter the laboratory 
they change the atmosphere by increasing the temperature, maybe by only 1 or 
2 degrees, but that can have an effect. The staff also change the relative humidity 
by breathing out moisture vapour.

Dust is an ever-present hazard, and where possible, instruments should be freed 
of dust build-up by using equipment such as clean air sprays, vacuum and brushes. 
The action of scanning samples changes dust levels. However, by scanning 
samples for calibration development or day-to-day analysis during the normal 
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working day, the instrument will have automatically been exposed to all of these 
fluctuations, which will then have been built into the variance of the calibration.

Most NIR instruments are also sensitive to relative humidity within the instruments. 
If the humidity within the instrument changes during scanning, atmospheric 
absorption bands will show on the sample spectra. These very sharp bands, less 
than 2 nm in width, are most evident in the 1300–1400 nm and 1850–1900 nm 
regions. If the calibration makes use of data in these regions, the predicted results 
will be affected. Transmittance instruments use atmospheric air as a standard 
against which the sample is compared. Changes in the relative humidity can be 
expected to cause changes in the air used as a standard, from sample to sample. 
For this reason, NIT instruments should not be located too close to a doorway, 
open window or items such as a coffee maker.

Spectral precision (see Chapter 9, section 9.1.2) is the reproducibility of the spectral 
signals on scanning a sample, and is both an instrument and a sample factor that 
affects performance. It is a function of the optical system, the detectors, the 
sample presentation system and the material being analysed. Spectral precision 
should be determined for all materials, for which the instrument is expected to 
be used. For example, spectral precision for scanning wheat flour is significantly 
better than precision for scanning whole wheat grains. Similarly, spectral precision 
of dried ground forages will be quite different from that of the original fresh, 
chopped material. The spectral precision of any material will affect all future NIRS 
analysis of the material. 

Stray light is one cause of non-linearity. Some stray light is light energy transmitted 
by the optical system at wavelengths that differ from the desired wavelengths. 
Another source of stray light is light energy that reaches the detectors without 
having passed through the sample. External light, such as room light, could also 
reach the detector directly. Instrument designers take precautions to provide 
adequate protection to minimise this source of error. 

Non-linearity is an instrumental factor that is beyond complete control of the 
instrument manufacturer. It is mainly a function of the signal received by the 
detector(s), relative to the physical and chemical composition of the material. 
Specular reflectance is an important cause. It is not diffuse reflectance and carries 
no information. The effect of specular reflectance is small at wavelengths of low 
log 1/R, but increases as the log 1/R increases, which is not necessarily at higher 
wavelengths. In terms of measurement of log 1/R, consider log 1/R as consisting 
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of log 1/R1 + log 1/R2, where log 1/R2 is specular reflectance. In most cases log 1/R1 is 
well above 95% of the signal processed by the instrument software. 

In general log 1/R tends to increase at higher wavelengths, so the effect of 
specular reflectance also tends to increase at higher wavelengths. So, at 
higher wavelengths the signal that reaches the detector (which the computer 
uses to convert the signal into composition) increases because of the specular 
reflectance. Because specular reflectance carries no information this causes an 
increasing degree of inaccuracy at the higher wavelengths, which is manifested 
in terms of non-linearity. Mathematical pretreatments of the log 1/R signal cannot 
correct completely for this type of non-linearity. This can also be affected by the 
characteristics of the material being scanned. Instrument non-linearity can be 
also caused by temperature changes within the instrument, by changes in the 
lamp and by mechanical changes within the instrument. Another source of non-
linearity lies with materials that may exude liquids at the surface of sample cell 
windows when they are compressed during loading the sample cell. The exuded 
liquid changes the transmission capability of the window. This can be a serious 
source of non-linearity with the applications of NIRS to fresh materials, such as 
fruits and meat, where sample presentation is one of the most important aspects 
of the application.

The internal standards used in NIR reflectance instruments may differ and vary 
slightly in composition from instrument to instrument. This affects the efficiency 
of calibration transfer among instruments of the same make and model. Air is the 
standard used in transmittance instruments.  Theoretically, this should contribute 
to more efficient transferability between NIT instruments than NIR reflectance 
instruments. In most NIR reflectance and transmittance instruments, the sample 
is viewed through a built-in transparent window, which is not part of the sample 
cell. The windows may be made of glass or quartz. The composition of both types 
of window is subject to variability. This has been discussed and illustrated in 
Chapter 6 (see section 6.3.8).

For practical purposes, by the time an instrument is offered for sale, any technical 
problems have been carefully evaluated and solved by the manufacturer. Modern 
NIR reflectance and NIT instruments carry diagnostic software that enables the 
operator to monitor their performance. The diagnostics, or at least a check cell, 
should ideally be run daily at staggered intervals, to check whether changes take 
place during operation. The presence of people and other environmental factors 
cause fluctuations in temperature, relative humidity and dust. Records of the results 
of check cells and diagnostics should be maintained, for long-term monitoring 
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of the instrument. Check cells are useful in monitoring day-to-day instrument 
performance. These are prepared from the commodity or commodities with 
which operators will work. The cells are sealed to prevent changes in the surface. 
Scanning the check cell 2 or 3 times during the day acts as a back-up and is faster 
than running the diagnostics. Provided the check cell results are consistent from 
day to day, the diagnostics can be run once or twice a week. Maintaining a record 
of all check cell and diagnostic data is helpful to the instrument manufacturer 
whenever repairs are required. 

Instruments used outdoors are exposed to wide fluctuations in conditions. 
Temperature, the relative humidity of the working environment, dust and 
other extraneous factors all exert their influences on instrument components 
and performance. Effective performance has been obtained from instruments 
operating under field conditions with temperature ranges from 2°C to over 40°C. 
Calibrations should ideally be developed over a period of time that exposes the 
instrument to the most likely fluctuations in these factors. Instrument performance 
should be monitored as closely as practicable under all operational conditions.

One of the reasons underlying the proven success of the ANN calibrations offered 
by some instrument companies is that the spectral and associated reference data 
have been assembled from a very large number of instruments. The data collection 
also represents an impressive range of fluctuations in working environment, from 
the point of view of temperature, RH, dust and reference laboratory performance. 
This assembly of variance acts as a stabilising influence on calibrations. Yet another 
factor is the altitude and barometric pressure, which in turn influence the relative 
humidity of a work area. 

The diversity of materials analysed by NIRS calls for ingenuity in design of the 
sample presentation system. The fundamental goal of a sample presentation 
system is to present the sample to the instrument the way it really is and in a 
consistent manner. Some instruments use an open sample cup that rotates on 
a turntable. To get the most consistent results the surface can be leveled by 
‘striking’. A better system is the use of a cup based with a transparent window, 
with the sample viewed (scanned) from below. This presents a uniform surface 
and eliminates potential error caused by not leveling the sample, or by differences 
in leveling technique. For such cells the window is made of special glass, quartz 
or sapphire. 

The sample presentation system can become an important source of error. The 
extent of this error can be determined by reloading and scanning a check sample 
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several times and predicting the results. The SD (standard deviation) of these is 
compared to the overall SEP (standard error of prediction). The percentage of 
error attributable to the error of the NIRS test can be calculated as follows:

1.	 Square the SEP 						      …A
2.	 Square the SD of the check sample results			   …B
3.	 Subtract (SDchecks )2 from the (SEP)2				    …A − B
4.	 Extract the square root of (A − B) and divide by the SEP	 …C
5.	 100 − (100 − (C × 100)) = % error attributable to the NIRS test

Example:

If,

	 SEP = 0.250; SDchecks = 0.198

Then,

	 A = 0.0625; B = 0.0392

	 C = √ (0.0625 − 0.0392) ∕ 0.250 = 0.153 ∕ 0.250 = 0.611

Error attributable to the NIRS test = 100 − (0.611 × 100) = 38.9%

The NIRS test error includes instrument error, as well as that of sample presentation. 
Table 8.2 gives some hypothetical values for the NIRS test error as a percentage of 
the overall SEP. The data of the above example are for testing wheat for whole-
grain protein content, but are applicable to any NIRS test. The SD of check samples 
includes the error caused by sample preparation and presentation. The different 
values are included to illustrate their influence as a proportion of the total SEP. 
The protein data show, for example, that if the error of check sample analysis is 
about halved (from 0.198 to 0.107, as measured by SD of the results of prediction), 
the error caused by sample presentation (including instrument error) is reduced 
by about 75%. 

Some new and prototype instruments have been found to include sample 
presentation systems that were responsible for over 70% of the overall SEP. The 
importance of using a check sample to provide the reproducibility information 
where practicable, cannot be over-emphasised. When the error induced by sample 
preparation and presentation is low, relative to the overall SEP, it is important to 
research the other sources of error, in order to improve the SEP. 
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Table 8.2	 Influence of error attributable to the NIRS test on overall SEP

Constituent Protein content (%) of wheat

SEP including SPP* 0.250 Overall SEP

SD of Checks

0.198 39.0

0.149 19.7

0.107 9.6

0.085 6.0

*Sample preparation and presentation

Path length, in terms of NIR spectroscopy, is the distance that radiation travels 
within the sample, and is important in both reflectance and transmittance 
technology (see Chapter 6, section 6.2.1). As a variable it becomes more a factor 
of the sample than of the instrument. In transmittance, the sample thickness 
(sometimes referred to as ‘path length’, but not to be confused with the actual path 
length) should be optimised during calibration development. Sample thickness 
should be optimised by any operator who wants to develop a calibration for a 
new commodity. This is done by developing and evaluating calibrations with the 
same sample sets of at least 50 samples, but with different sample thicknesses, 
e.g. from 5 to 30 mm. The thickness that gives the best statistics is the one to use. 

Sample presentation system design includes sample cells. In reflectance mode, 
the external optical path length is essentially constant but it has been mentioned 
in previous sections that differences occur among sample cell windows in both 
composition and thickness. These can both introduce biases in analysis (Williams, 
2006). Sample cell windows can vary in thickness and are not always completely 
planar. If the window is of different thickness, the diffuse reflectance surface 
presented to the detector will vary by up to several micrometers. In reflectance 
instruments that use sample cells, these small differences change the path length 
in parts of the surface, and can cause biases. Biases introduced in this manner can 
be determined by rotating the sample cell through 180°. Instruments that rotate 
the sample cell, eliminate this source of error.

Sample cells may differ in spectral precision from one another. Operators are 
advised to buy more than one cell, to compare the spectral data for different 
commodities for each cell, to compare the performance from cell to cell and to 
determine whether differences occur among cells. If such differences are noted, 
two or more cells should be used in calibration development. This minimises the 
occurrence of biases whenever the different cells are used. In the absence of 
this, if the cells are numbered, and any of the cells is associated with a small, but 
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consistent bias, the bias could be corrected for when such a cell has to be used, 
e.g. due to breakage of other cells. Differences among sample cells are intensified 
among cells used in automated sample presentation where trays of samples 
are presented to be scanned sequentially. Variation of over 0.02 absorbance 
units have been detected among sets of sample cells which were ostensibly of 
the same characteristics. This type of variance should be detected before, and 
included in calibration development because it can result in significant differences 
in predicted results.

8.3	 Sample factors

These include the basic constitution of the sample, such as solid, liquid or slurry. 
The basic constitution includes whether the sample contains foreign material, 
such as weed seeds, chaff, or broken seeds in grain, stones in soil, solid inclusions 
in manure slurries, shape, size, texture (degree of hardness or softness) and colour. 
It also includes particle size and bulk density of ground materials and powders, 
viscosity of slurries, the presence of weed species in forages and other factors. All 
of these items affect spectral characteristics, and contribute to diffuse reflectance 
and to the variance that has to be included in the calibration. In many industrial 
applications, the material to be tested is fairly consistent in its basic form, such 
as grain or forage. In the application of NIRS, feed manufacturers face a more 
complex situation because of the diversity of the ingredients used in feed mixes. 
Growing location and season both affect all crops, including grains, forages and 
others. Important sources of variance in forages include the species of grasses and 
other types of plants that make up the populations and the stage of growth. The 
physical and chemical composition of grasses are different from those of legumes 
and other types of plants. For example, the stems of lucerne (alfalfa) are more 
‘woody’ than those of grasses, and become fibrous more quickly than grasses 
during maturation.

Applications to fresh forages are complicated by the sizes of the plants, and 
the need for a consistent way to present them to the instrument. Particle size, 
shape and bulk density affect packing in sample cells or scanning compartments, 
which affects the diffuse reflectance. Table 8.3 gives the bulk densities of some 
common powdered commodities, ground in a cyclone grinder fitted with a 1.0 mm 
screen. The figures are the means of triplicate tests carried out using a stoppered 
measuring cylinder. Sample weight was 25 g for all materials except for dried 
alfalfa (20 g) and barley straw (10  g). The cylinder was filled using a stem-less 
funnel, and gently tapped twice before the measurements of volume were taken.
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Table 8.3	 Bulk density of some powdered materials

Material Bulk density (g/cm3)

Faba bean 0.64

Lentil 0.54

Wheat flour (hard wheat) 0.51

Maize (corn) 0.51

Wheat (hard) 0.50

Soybean hulls 0.49

Barley 0.39

Wheat bran 0.35

Oats (whole) 0.34

Defatted canola seed 0.34

Dried alfalfa (lucerne) 0.24

Barley straw 0.14

Kernel texture affects the particle size of ground grains. In the case of whole 
grains, texture is a factor of the association between adjacent cells, mainly of 
the endosperm, which forms the bulk of cereal grains. Differences in the spatial 
arrangement of cells in the endosperm affect the diffuse reflectance of light 
energy, which makes it possible to predict changes in kernel texture in intact 
kernels by NIRS. Some radiated energy passes through the kernels (or seeds), and 
the spectral signals are a combination of the energy passing through and being 
diffusely reflected from the surfaces of the kernels. Figure 8.1 shows the average 
spectra of three composite samples of ground and whole wheat of different 
kernel texture. 

Kernel texture is affected by factors, such as genetic make-up (commercial 
varieties of grains differ in texture), growing location and season, chemical 
composition, moisture content, soil fertility and cultivation practice, harvest and 
storage conditions and others. Growing location and season both have strong 
effects, and calibrations for the large-scale industrial NIRS analysis of agricultural 
crops should include samples from several growing seasons.

In the case of NIRS analysis of whole seeds, seed or kernel size influences the 
diffuse reflectance of whole seeds and has an impact similar to particle size 
in the ground seeds. Figure 8.2 shows the effect of kernel size as indicated by 
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1000-kernel weight (TKW) on the spectra of hard red spring wheat. The spectrum 
of the wheat with biggest kernel size is uppermost. The samples of high, medium 
and low kernel weight were obtained by sieving the sample through sieves with 
oval apertures of 2.8, 2.5 and 2.2 mm.

Sources of wheat intake for flour mills and of feed ingredients for feed mills 
constitute the most important sources of variability in the materials with which 
they work.
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Figure 8.1	 Influence of kernel texture on NIR spectra of ground wheat and whole 		
	 wheat kernels. 

Chemical composition affects the texture and spectral characteristics of most 
materials. Protein, oil, fibre and particularly moisture contents all exert a strong 
influence on the spectral composition of materials. They influence kernel and 
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seed texture, as well as the texture and characteristics of forages and straws. 
High oil content causes grains and seeds to paste during grinding, which affects 
the diffuse reflectance. Factors that change the particle characteristics of ground 
samples cause changes in the path length (see Chapter 6, section 6.2.2). All of 
these sample factors are the reasons why application of NIRS to agricultural and 
food materials is more complicated than applications to many industrial materials, 
where texture is not so strongly affected by interactions among the constituents. 
Some of these factors can be overcome by mathematical pretreatments. 
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Figure 8.2	 Influence of kernel size on spectra of CWRS wheat. 

Moisture content can be considered as an error source. Figure 8.3 shows the 
influence of moisture content on the spectra of whole maize (corn). An NIR 
instrument senses the sample as it is. The results of reference testing are used in 
development of calibration models, and unless these results are reported on the 
basis of the original moisture content of the samples (as scanned by NIRS) the 
reference data will not truly represent the spectral data. This can be overcome up 
to a point by calibrating directly to reference data that have been corrected to a 
constant moisture level, but this will not be effective if the moisture range is very 
high, such as greater than 5% (e.g. from 10.0 to 15.0%). 

Figure 8.4 shows the influence of water content on the spectrum of fresh chicken 
breast. Moisture content of the chicken breast was about 85%. The spectra 
showed no significant information above 1900 nm in the log 1/R or 2nd derivative 
(2 4 4 1) spectra (gap and segment of 4 wavelength points) because the detector 
became ‘saturated’. The 2nd derivative showed that above 1900 nm the ‘spectrum’ 
became essentially noise. 
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Figure 8.3	 Spectra of high (54%) and low (12%) moisture maize. 
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Figure 8.4	 Log 1/R spectrum of fresh chicken breast and the 2nd derivative (2 4 4 1) 	
	 spectrum of the same sample (gap and segment of 4 wavelength points). 

Figure 8.5 illustrates the influence of growing location and season on wheat 
spectra. Each spectrum in Figure 8.5 shows the average of about 120 samples 
of CWRS (Canada Western Red Spring) wheat grown on 10 locations in western 
Canada in 2000. Growing season seems to exert more influence than growing 
location within a season (Figure 8.6).

Another type of non-linearity can be met with prediction of some functional 
factors. Functional parameters may not be closely related to composition. 
For example, no specific absorbers are associated with wheat kernel texture. 
Functional parameters are more likely to be associated with physicochemical, 
rather than simply chemical factors. So, this type of non-linearity may be more 
pronounced in the prediction of functional parameters, particularly those that are 
related to differences in texture. 
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Figure 8.5	 Influence of growing location on spectra of CWRS wheat grown at ten 		
	 locations during one season.
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Figure 8.6	 Influence of growing season on spectra of CWRS wheat grown over 		
	 seven seasons.

Species and stage of growth are the main factors affecting spectral characteristics 
of forages. For the most part, straws are from mature grains, but forages are 
grazed and harvested for analysis from early stages. The main changes in 
composition are in protein, moisture, and fibre contents. Lignification develops 
as the plants mature. This has the effect of stiffening straws, and changes the 
particle characteristics of ground material.

Viscosity, uniformity in composition and total solids content are the most 
important factors that affect slurries such as liquid manures. Figure 8.7 shows log 
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1/R spectra of thin and viscous samples of liquid hog manure. Note the leveling-
off of the thin spectrum above the 1900 nm water band area. The 2nd derivative of 
these spectra showed no absorbance bands in this region.

The thin manure contained over 99% water and the viscous manure contained 88% 
water. Slurries, such as liquid manure, introduce another type of complexity. When 
scanned in transflectance mode, the particles tend to agglomerate as the total 
solids increase. The radiation (light) may not penetrate the sample completely, and 
then transflectance becomes diffuse reflectance (see Chapter 7, Figure 7.7.2). The 
same phenomenon can happen with milk of low and high fat content. Fat content 
of milk can vary from less than 1% to over 10%. Both types of liquid are subject 
to sedimentation. Particles of liquid manure sediment downwards, while the fat 
globules of milk sediment upwards. It is important that such liquids are agitated 
during scanning in order to minimise the effects of sedimentation. Continuous on-
line analysis ensures such agitation. 
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Figure 8.7	 Log 1/R spectra of thin (0.05% total solids) and viscous (12% total solids) 	
	 liquid hog manure.

Soils present a further set of variables. Of these, mechanical composition and 
moisture content rank foremost. Soils with high proportions of clay tend to be 
intractable and form dense agglomerates. They also tend to adsorb water to 
a greater extent than sandy soils. Removal of moisture and size reduction are 
essential to accurate analysis, but like other materials, soils should ideally be 
scanned and analysed by NIRS in their natural state before, as well as after drying 
and size reduction.
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Because the composition and texture of soils differ depending on their profiles, 
soils should be sampled and analysed at different depths. The uppermost 15 cm 
are usually full of roots and partially decayed plant material. This modifies both 
the composition and texture, and affects sample preparation. The efficiency of 
soil analysis has suffered in the past because of the labour and expense of carrying 
out sufficient sampling. For example, in an undulating field of 50–100 hectares, 
because of its flexibility and low cost per test, NIRS can revolutionise the costs 
of soil testing. Instrument attachments can be designed to enable direct, on-the-
spot testing for moisture, nitrogen, carbon and other constituents at far more 
numerous sampling sites than reference analysis would permit. Due to of the speed 
and flexibility of NIRS, the efficiency of the testing can also be improved because 
all samples can be tested on-site, and there will be no need for compositing the 
samples to save the cost of testing. Areas of different fertility can be identified 
within a field, which can improve the efficiency of fertilizer use.

Most NIR reflectance or NIT users who have to deal with high moisture materials, 
such as fruits, vegetables, meat and fish work with the instrument companies 
to develop sample presentation systems. The high moisture and fat contents of 
meat and fish affect sample cell loading and clean-up. Between-sample clean-
up is also a factor in scanning liquid manure, milk and other types of thin and 
greasy or gelatinous slurries. The method of sample storage affects the physical 
and chemical make-up of samples, and as a result it affects the diffuse reflectance 
and effectiveness of NIRS analysis. 

Since its adoption as an authenticated analytical system, NIRS has found 
applications in an assortment of industrial fields other than those associated with 
agriculture and foods. The physical and operational factors entailed in manufacture 
exert influences on the spectra that are specific to the product. Staff engaged in 
different industries will recognise the variables specific to their operation, and 
take appropriate measures to accommodate them.

8.4	 Operator factors

Before starting to work on NIRS for the first time, it is important to establish what 
reference methods are to be used and to determine the standard error of each 
method. The reference methods are what will be used for model (calibration) 
development and evaluation, and subsequent monitoring of the performance. 
The overall accuracy and reproducibility of an instrument includes the error of 
both NIRS and reference testing. The error of the reference method is the basis 
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from which one has to work, and its determination is chiefly the responsibility of 
the operator.

Sampling, especially sub-sampling, and sample preparation are key factors in 
successful analysis by any method. One of the difficulties with NIRS analysis of 
whole commodities, such as grains and forages is that while NIRS can be applied 
to the sample as it is received, reference testing almost invariably calls for sample 
preparation, and usually sub-sampling. For example, a sample of over a kilogram 
can be analysed for protein content by an NIR instrument, but the reference test 
has to be performed on a gram or less of dried and ground sample (equivalent to 
only about 28 kernels of wheat or barley).

Grinding the sample during sample preparation results in losses in moisture 
content that vary depending on the original moisture content, the type of grinder 
and the number of samples ground during a single session. For accurate analysis 
by combustion, the sample should be ground to pass through a 1.0 mm screen in 
the grinder. Moisture loss for some grains during grinding by the Cyclone grinder 
is summarised in Table 8.4. 

Table 8.4	 Moisture loss during grinding bread wheat, durum wheat and barley with a 	
	 Cyclone grinder

Original moisture 
(%)

Moisture loss (%)

Wheat Durum Barley

17 3.2 3.0 4.0

15 3.2 2.6 3.5

13 1.5 1.4 2.5

11 0.9 1.1 1.9

9 0.3 0.5 0.8

Losses using a burr-type mill are about one half of the values shown in Table 8.4, 
but the error of test methods such as combustion protein analysis is increased due 
to the changes in particle characteristics of the ground sample and the smaller 
sample size used in the testing. Burr mill-grinding is more sensitive to moisture 
content than cyclone-grinding in terms of particle characteristics. Another factor 
for which operators are responsible is grinder maintenance. Wear of items, such 
as the screens in grinders and corundum discs causes changes in particle size, bulk 
density and packing in NIR instrument cells. Changes in the rpm (revolutions per 
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minute) of grinders caused by ageing of the motors also cause changes in particle 
size. This also becomes important in reference tests. It is a good idea to assign a 
grinder specifically to grinding for NIRS testing, and to monitor its performance. 
For laboratories that work with paddy rice, the hulls are extremely abrasive and 
cause wear of grinding surfaces and screens of cyclone grinders. This changes the 
particle size of the ground material. 

An error of 1.0% moisture causes errors of about 0.15% protein in wheat, 
approximately 0.2% in canola seed and about 0.4% in soybeans. The cumulative 
error in testing the whole and ground grains for moisture content can easily 
exceed 1.0%. Errors of even 0.1% can become expensive when a difference of 0.1% 
in protein content can mean a dollar per tonne. To protect against arguments 
over prices based on analysis, the combined errors must be evaluated and built 
into contracts. For example, in western Canada tolerances of 0.4% are accepted 
by both farmer and elevator manager before compensation has to be paid. 
This is related to the 95% confidence limits of the precision of the protein test 
(approximately ±0.2%). In some countries the tolerances are even higher.

Undetected moisture loss is an aspect of sample preparation. Oilseeds and other 
seeds, the results of which are reported on a moisture-free (dry) basis, are usually 
dried before analysis by reference methods since the moisture interferes with 
the determination of oil by extraction. If the seeds are dried whole and ground 
for analysis, the ground material will absorb water rapidly, and may contain 2 
to 4% moisture by the time it is analysed. This undetected moisture can induce 
significant errors to the reporting of reference results for oil or protein. Figure 
8.8 illustrates the difference in the moisture band at 1930 nm for soybeans dried 
before and after grinding. Note the commensurate increase in the protein band 
at 1978 nm, as the moisture band at 1930 nm decreases as a result of the different 
drying processes.

The moisture content of the samples of ‘dried’ soybean seed varied up to 3 to 
4%, enough to cause errors of up to 2% in protein content. The reason for the 
absorption of water is the presence of very hygroscopic cellulosic fiber in the 
oilseed testa-pericarp. If the oilseeds are to be analysed by NIRS there is no need 
for drying the samples before analysis. Moisture can be determined directly by 
NIRS to enable reporting of the oil and protein results on a moisture-free basis.

3.	   
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Figure 8.8	 NIRS spectra of soybeans: a) whole as-is; b) after drying and grinding; and c) 	
	 after grinding and drying.

Sample presentation on the part of the operator calls for care and attention, and 
general efficiency in presentation of the sample to the instrument. For most whole 
grain analysers, this has been simplified by use of the hopper-type sample access. 
For operations that use a sample cell, whether it is closed or open, some skill is 
involved with filling the sample cell. With instruments that use an open glass-
bottomed cell where the sample is viewed from below, cell loading is simplified, 
but the operator has to make sure that the cell contains sufficient thickness of 
sample – for most grains, at least 3 cm is recommended. Large grains, such as 
maize and sunflower seed require a thickness of 5 cm.

Operating conditions include temperature, relative humidity and dust levels. As 
a general rule, if the conditions are comfortable for the operator they will be 
suitable for the instrument. In areas like grain elevators, flour and feed mills, and 
other industrial situations it is difficult to provide more than reasonable control 
over these factors. 

Calibrations are always a possible source of error in NIRS testing. Calibration 
methods are the responsibility of the operator, and unless the development 
of the calibration model is carried out properly it will be impossible to obtain 
reliable results by NIRS testing. If the calibrations have been purchased from 
an instrument company or a software company, they have to be tested by the 
operators. This is done with samples of the materials for which they intend to 

3.	   
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use the instrument. Accurate reference data should be used to verify that the 
calibrations are applicable with no biases. Calibration development is discussed 
in detail in Chapter 9.

Carelessness is a hazard in any repetitious operations. It can cause unreliable 
results and, in some cases, it is responsible for accidents. The main reasons for 
carelessness are boredom (in routine analysis) and inadequate allocation of time. 
The time factor is caused by operators trying to work too fast. This causes mistakes, 
such as failure to record results properly and spillage of samples. Telephone calls 
and other interruptions at inconvenient times are frequent causes of excessive 
speed. Stimulating operator interest in the purpose of the testing can alleviate the 
boredom problem to a certain extent. The working day consists of twenty-four 
hours, of which eight can be assigned to sleeping. The remaining time is divided 
between the actual work, including transport to and from work, and the living part 
of the day. It is useful for supervisors of laboratories and other operations to bear 
in mind that their staff are all people with their own personal issues, which may 
intrude upon their concentration on the job. Attributes of successful supervisors 
include degrees of patience and tolerance, in addition to their personal skills and 
thorough understanding of the operation. 

Reference

Williams, P. 2006. The near infrared window – glass or quartz? A study in precision. Journal 
of Near Infrared Spectroscopy, 14, 127-138.
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Calibration development 
and evaluation methods

Calibration has been the main challenge to applications of NIRS since the 
introduction of the technology almost 45 years ago. Several companies now supply 
instruments with factory-developed calibrations for an array of commodities and 
constituents. The calibrations can also be purchased subsequent to purchase of 
the original instrument. The companies can develop calibrations using samples 
supplied by the potential client or by inviting clients already using their NIR 
instruments in order to supply them with spectra and reference data – the system 
originated by Tecator for the development of their ANN calibrations for wheat 
protein and moisture contents some 30  years ago. Nevertheless, calibration 
is still needed for any new applications (e.g. soils, manures, fresh materials, 
such as forages, meat, fish and a host of industrial applications), as well as for 
updating existing calibrations for new sources of variation, whether the models 
are developed by the client or the factory. This chapter provides guidelines for 
calibration development and evaluation methods applicable to any commodity, 
constituent or parameter. 

An important message to all NIRS users is look at the data (spectral and reference). 
Ideally, this should be done as the data are being generated during daily analysis, 

09
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or while recording spectra for development of the calibration model. In this way 
the operator will become familiar with what the data should look like, and also 
the shape of the spectra. The shape of the spectra will differ depending on the 
wavelength range for the same sample, as illustrated in Figure 9.1. All spectra are 
from the same sample. The shapes of 1st  and 2nd derivative spectra (see Chapter 5, 
section 5.2.5) are very characteristic. 
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Figure 9.1	 Log 1/R spectra of whole wheat at different wavelength ranges: 
	 400–1100 nm; 900–1700 nm; 1100–2500 nm; and 400–2500 nm. 

9.1	 Basic steps in calibration

Access to comprehensive sample sets with reliable reference data is absolutely 
essential to calibration model development. Modern chemometrics have greatly 
streamlined and simplified calibration model development. However, no matter 
how sophisticated the chemometrics, they cannot compensate for poor sample 
set assembly, i.e. failure to include enough samples with proficient sampling 
technique that includes all of the anticipated spectral variance, and physical and 
chemical composition.

Whether a calibration is developed by the client or the factory, there are a number 
of basic steps to establish a reliable model. These are essentially the same for any 
application, and are summarised in Table 9.1. The steps are in sequential order and 
not in order of importance – they are all important. 
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Table 9.1	 Steps in the development of a calibration model

Step 1 Determine or develop the methods to be used as reference for calibration 
and monitoring

Step 2 Determine the standard error of each reference method (SET or SEL)

Step 3 Determine the precision of the spectral data with the materials you will 
be analysing

Step 4 Identify all sources of variance for the materials you will be analysing

Step 5 Assemble samples that accommodate all sources of variance, 
ideally replicated

Step 6 Identify or develop a sample preparation system (for reference and 
NIRS analysis)

Step 7 Prepare samples for reference and NIRS (if necessary) analysis 

Step 8 Identify or develop a sample presentation system for NIRS analysis

Step 9 Develop a repeatability file – optional (depending on software), but 
very useful

Step 10 Scan samples and view the spectra

Step 11 Select samples for calibration/validation on basis of reference or 
spectral data 

Step 12 Perform reference analysis and add to spectral data 

Step 13 Develop calibration model

Step 14 Evaluate and optimise calibration model, including wavelength range and 
mathematical pretreatment (or preprocessing)

Step 15 Enter calibration model into the NIR instrument

Step 16 Verify the precision (reproducibility) of the NIRS analysis

Step 17 Verify accuracy of the NIRS calibration model by analysis of completely 
new samples 

Step 18 Carry out slope/bias corrections where necessary

Step 19 Re-analyse fresh samples to verify accuracy has been restored 

Step 20 If a network is to be developed, test calibration transferability 
among instruments 

9.1.1	 Steps 1 and 2 – reference methods and their error

The first step is to identify the reference method, and secondly to determine its 
standard error (see Chapter 4, section 4.1.9). The SD (standard deviation) of the 
reference test (SET) is sometimes referred to as the SEL (standard error of the 
laboratory). For some applications it may be necessary to develop a reference 
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method and verify its effectiveness in terms of providing the desired information 
about the sample before progressing to Step 2. The reference method is the basis 
of the use of NIRS to testing any commodity, constituent or functional parameter. 
It is used to develop and evaluate the calibration model and in subsequent 
appraisal of the calibration performance, by checking the accuracy of subsequent 
analysis. Every aspect of the application relates to the reference method, and 
spectral data, and the establishment of their integrity is fundamental.

9.1.2	 Step 3 – determine the precision of the spectral data with the materials 	
	 to be analysed

No matter what chemometrics are employed in the development of a calibration, 
the instrument will apply the calibration model as a constant to any new spectrum 
that it records, and will translate the spectral data into terms of the reference data 
for which the calibration has been developed. Hence the efficiency of the NIRS 
predicted data depends heavily on the quality and reproducibility of the spectra. 
This step is especially important in the case of modern handheld instruments for 
use in the field. 

No calibration is needed for this step because it is only concerned with the 
spectral data. It is carried out by scanning a thoroughly-blended sample 10 times 
after sample preparation, with reblending of the sample and reloading the sample 
cell between scans. The SD of the spectral data is then determined at selected 
wavelengths. Suggested wavelengths are 1210 nm (a -CH2 band – 8264 cm-1) and 
2230 nm (a ‘reference’ band – 4484 cm-1).

Spectral precision is determined using raw spectral data, and should be done 
before development of a calibration model for a new application. No calibration 
is required for its determination. It can be determined by scanning one or more 
typical samples of the material 10 times, and recording the spectral data at 2 or 
more wavelengths. The sample should be reloaded into the sample cell between 
each scan, and the recently-scanned sub-sample should not be returned to the 
original sample. After the 10th scan the sample should be left in the cell and re-
scanned 9 more times without disturbing the cell. The SD of the spectral log 
1/R data from the first 10 scans is the variability in spectral data that will be 
experienced during NIRS analysis of the material (reproducibility). The SD of the 
spectral data from the 10th–19th scans is the repeatability of the scanning, and is 
strictly a function of the instrument because there will have been no variance 
contributed by the operator. Table 9.2 gives typical data for spectral precision of 
whole wheat kernels at two wavelength points. 
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Table 9.2	 Spectral precision (Log 1/R or Absorbance values) of whole wheat kernels

Scan 1210 nm* Scan 1210 nm** Scan 2230 nm* Scan 2230 nm**

1 0.4741 11 0.4666 1 0.9046 11 0.8738

2 0.4641 12 0.4633 2 0.8871 12 0.8852

3 0.4708 13 0.4702 3 0.9111 13 0.8758

4 0.4549 14 0.4641 4 0.8923 14 0.8711

5 0.4802 15 0.4687 5 0.8947 15 0.8773

6 0.4733 16 0.4674 6 0.8684 16 0.8792

7 0.4691 17 0.4638 7 0.8791 17 0.8823

8 0.4744 18 0.4683 8 0.8663 18 0.8738

9 0.4723 19 0.4662 9 0.8905 19 0.8751

10 0.4666 20 0.4675 10 0.8738 20 0.8756

Mean 0.46998 Mean 0.46661 Mean 0.88679 Mean 0.87691

SD 0.00693 SD 0.00228 SD 0.01491 SD 0.00425

CV (%) 1.47 CV (%) 0.49 CV (%) 1.68 CV (%) 0.48

*samples scanned 10 times with reblending and reloading of the sample between scans
**the 10th sample scan 10 times without being disturbed

Spectral precision should be determined for application of NIRS to any type of 
material. Table 9.3 shows results of precision checks on two instruments using 
whole wheat, barley grains and wheat flour. The SD of the spectral data tends to 
increase at longer wavelengths. Note the excellent precision of the spectral data 
for flour, and also that the spectral data from the FT-NIR instrument were more 
precise than were those of the dispersive instrument using the same whole wheat 
sample. The wavelengths shown Table 9.3 are ‘traditionally’ associated with some 
constituents. The CV (coefficient of variation) can be expected to increase for 
more complex materials such as soil and forages, and especially for fresh and high 
moisture materials. But its determination is a useful contribution to understanding 
the statistics resulting from application of NIRS.
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Table 9.3	 Precision of spectral data obtained from a dispersive and a Fourier Transform 	
	 NIR instrument 

Constituent 
‘assignment’

Wavelength (nm)*

964 1154 1200 1696 2346 2346

Water Water Starch Protein Reference Oil

Statistic Material Dispersive instrument

Absorbance Wheat 0.3071 0.3730 0.4744 0.7507 0.9030 0.9881

SD 0.00351 0.00477 0.00631 0.0119 0.01291 0.01245

CV (%) 1.14 1.28 1.33 1.59 1.43 1.26

Absorbance Barley 0.1284 0.1703 0.2326 0.4100 0.5684 0.6725

SD 0.00402 0.00334 0.00365 0.00517 0.00625 0.00686

CV (%) 3.13 1.96 1.57 1.26 1.10 1.02

Absorbance Flour 0.0715 0.0689 0.1012 0.2596 0.4406 0.5566

SD 0.00055 0.00045 0.00052 0.00090 0.00145 0.00178

CV (%) 0.77 0.65 0.51 0.35 0.33 0.32

Statistic Material FT-NIR instrument

Absorbance Wheat 0.5750 0.6537 0.7593 1.0095 1.1756 1.2410

SD 0.00310 0.0034 0.00494 0.00777 0.00799 0.00782

CV (%) 0.54 0.52 0.65 0.77 0.68 0.63

*The FT-NIR instrument records data in wavenumbers (cm-1). Wavelengths are nearest equivalents 
to corresponding cm-1-values; Absorbance = spectral data

9.1.3 Step 4 – sources of variance

Establishment of a database is fundamental to practical application of NIRS 
in any area of industry. The database is originally established for calibration 
development, but is a very valuable resource in all future applications. Important 
is to determine the sources of variance. Many of these have been identified and 
discussed in Chapter 8, but others that are unique to a specific application may 
occur. Sources of variance affecting the spectra include changes in the testing 
environment. Local conditions include altitude. Industrial conditions include daily 
fluctuations in temperature, RH (relative humidity), dust intensity and barometric 
pressure. Scanning of samples for development of calibration models should be 
carried out under all of the conditions expected to arise during normal operations, 
whether in the laboratory or under industrial or out-of-doors conditions.
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The sources of variance most often considered concern composition, but any 
factors that affect spectral characteristics, such as sample texture, bulk density 
and operating conditions are always key factors. Texture and bulk density affect 
surfaces of materials such as paper. This influences the diffuse reflectance 
and therefore the interaction between sample and instrument. Any factors 
that represent changes in processing conditions that can change the diffuse 
reflectance of the sample should be included. This applies to solid, liquid, or 
viscous samples. If samples of grain are to be ground before scanning, the 
temperature will increase during grinding. Under daily operating conditions it is 
usually not practicable to allow them to cool before testing, so ideally the samples 
used in development of the calibration should also be ground and scanned right 
away. If the samples are ground in batches of 50 or so, the first ones ground will 
cool before they are scanned. The NIRS technique is based on spectra, and it is 
important to include samples of the same chemical composition that have been 
affected by factors such as growing location and industrial processing conditions 
(see Chapter 2, section 2.3).

The sources of variance in the reference methods should also be identified because 
the efficiency of those methods (see Chapter 3, section 3.2) are also affected by 
some of the factors that influence diffuse reflectance.

9.1.4	 Step 5 – assembly of samples with variance

This is the most demanding and time-consuming, and an expensive part of 
the development of an NIRS calibration model due to the costs of laboratory 
reference analysis. Samples must be assembled to include all of the sources of 
variance that have been identified. In the case of many materials, moisture usually 
varies independently of other chemical constituents. It is difficult to assemble 
sufficient samples carrying the required range in moisture at the same time as 
the range in other constituents. Moisture ranges can be generated in wheat and 
barley and some other cereals by tempering, but grains such as maize, soybeans 
and oilseeds cannot be tempered so effectively, while it is impossible to induce 
ranges of moisture artificially in many materials. In terms of grains and forages, 
the best time to assemble samples for calibration development for moisture 
is at harvest time when the moisture range is usually at its extremes. Samples 
must be carefully protected from changes in the moisture content by storage in 
heavy plastic bags, such as Ziploc®, and scanned and analysed quickly to avoid 
development of moulds. The labile nature of moisture content is a serious source 
of error in development of calibration models for accurate prediction of moisture 
by NIR reflectance or NIT instruments. 
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Variance induced by the growing season is the most time-consuming factor in 
developing a stable calibration model in growing crops because it takes several 
years. Growing seasons appear to have a unique tendency to introduce spectral 
variance mainly due to changes in texture. The best way to correct for this is 
to monitor the first few (20–50) samples harvested in a new season, to detect 
whether the existing calibration can be used to test the new season’s samples 
without bias. If bias does appear, the calibration should be strengthened by 
adding new samples early in the season. Addition of at least 30 samples of the new 
season with a range of composition, is recommended. After a few seasons (usually 
5 or 6), the calibrations should be sufficiently stable to include any subsequent 
seasonal variability. The ANN calibrations for wheat protein and moisture have 
proved to be extremely stable to the seasonal effect. Because of environmental 
factors, such as temperature and humidity, seasonal variance is applicable to 
many agricultural and biological materials, including those of animal origin.

The stage of growth is an important factor in developing calibrations for forages. 
Lignification that begins to develop as the plant matures changes the texture of 
the material. Lignin is a complex polymer that cross-links with cellulose and adds 
strength to cell walls. This allows maturing plants to support the growing weight 
of seed development, and literally keeps the heads above ground. Lignification 
affects the particle characteristics of the ground sample that has been prepared 
for reference analysis and affects the precision. For animal feed mills, variance in 
the sources of bulk ingredients, such as grains and supplements should be included 
in samples assembled for calibration development. Flour mills recognise that the 
main source of variance to consider lies in their intake of wheat, especially if the 
mills are purchasing samples directly from farmers. 

As an example, consider the spectra of two samples of the same wheat variety and 
genetic constitution when grown in the northern wheat-growing areas of Alberta 
and in southern Saskatchewan, Canada. The samples may be reported to contain 
the same protein and water contents, but the different growing conditions can 
affect the molecular arrangement in space and, as a consequence, the relationship 
between the spectra and the reported chemical composition that results from the 
calibration process. Variety (genetics), growing location and season, seed texture, 
composition, storage, cultivation practice, as well as soil terrain and fertility level 
are all factors that can affect the molecular arrangement and spectra of grains 
and plant materials, but not necessarily the chemical composition as measured by 
the reference method. Also, silages will be composed of a range of plant species 
and substances of different spectral composition, but can also be of similar 
composition as measured by chemical analysis.
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For industrial-scale calibration development, replication of samples of agricultural 
materials that are reported to be of the same composition is strongly 
recommended. Differences in spectral composition, incurred by the differences 
in growing conditions that affect molecular and spectral composition, confer 
stability to the calibration. The application of chemometrics and pretreatments, 
such as derivatives, are based on the original absorbance data of the samples as 
scanned. Such differences in spectral characteristics of the same types of material 
of the same reported chemical composition, offer a possible explanation for the 
occurrence of what may be regarded as outliers.

When in use, NIR spectrophotometers regard their calibration equation as a 
constant, and apply the equation directly to any sample that they scan. Spectral 
precision is usually superior to that of laboratory analysis. If a significant variable, 
such as an important growing location, has not been included in the samples used 
in calibration development, the instrument will predict its composition using the 
calibration. The NIR technique is based totally on the spectra, and such samples 
would be predicted the way that the spectra appear to the instrument. If the 
results are not in accordance with the sample matrix assembled for development 
of the calibration equation they would be outliers, of which the operator would 
not be aware, because the results would be of the same order of magnitude 
as all of the other samples scanned. Provided that the samples assembled for 
calibration development have included all of the identifiable sources of variance 
for commodities such as grains and seeds, and even high moisture materials such 
as silages, the NIRS predicted results can be expected to be more reliable than 
those of the laboratories from which the reference results originate. This is partly 
a function of the spectral precision, and partly of the larger sample size as scanned 
by the spectrophotometer.

Assembling samples for calibration for applications where uniformity in the 
end product is the goal, is complicated due to the lack of variance. Flour mills 
can overcome this by using millstreams that differ in composition and particle 
characteristics. Industrial plants, such as feed mills, can generate calibration 
samples by creation of samples with a range in composition wide enough to 
provide a stable calibration. When calibrations are developed on these types 
of industrially prepared samples, fewer samples are required, but changes in 
composition, inclusion of different mill streams should be replicated at least 
twice, and preferably more frequently. The lower variance (SD) of the samples 
will affect the RPD, and Table 4.19 (see Chapter 4, section 4.1.13) is more applicable 
to evaluation of these calibrations. Samples for calibration of at-line instruments 
that are to be used to scan products or product mixes on moving belts can be 
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calibrated with static samples, and the calibration evaluated by subsequent 
removal and analysis of samples from the moving belt or mixer.

There has been some interest in development of calibrations for prediction of 
parameters, such as alpha-amylase (sprout damage) or mycotoxins in grains. The 
calibrations are believed to be feasible because of changes in the texture of grains 
induced by, in these cases, sprouting of the grains or penetration of the grains 
by fungal hyphae. The term ‘double variance’ is introduced to explain the rather 
poor efficiency of these calibrations. In a sample of wheat that is reported to 
have a DON content of 2.0 ppm, only about 3–4% of the kernels may be affected 
by the fungus (Fusarium graminearum). This means that in a sample of 100 g only 
about 100 (of 2860) kernels will visually appear to be affected. But these can each 
vary from a few ppm up to over 200 ppm in DON. At a visible damage level of 
only 3–4% only a few of these will actually get scanned by the instrument. This 
variance within the overall variance (double variance) is believed to interfere 
with the interaction between the instrument and the sample. The same principle 
applies to sprout damage in wheat or barley in that only a small percentage of the 
kernels may have visibly sprouted, but a higher proportion are ready to sprout, 
and the alpha-amylase content can vary widely among the kernels.

The most important factors affecting soils are the physical composition and 
moisture content. Soils vary in texture from very light sands and loams to heavy 
intractable clays, and this affects presentation of the sample to the instrument, 
as well as sample preparation for reference analysis. Drying and processing soils, 
manures, composts and similar materials for reference analysis cause irreversible 
changes in texture and other physico-chemical parameters. These materials 
should be scanned in their natural state as far as possible. Slurries such as liquid 
manures vary in total solids content, which changes their diffuse reflectance or 
transmittance characteristics (see Chapter 8, Figure 8.7). Liquid manures and milk 
both tend to sediment very quickly on standing and must be agitated thoroughly 
before scanning or reference analysis. Milk differs in that its fat globules sediment 
upwards. Drying manures and silages can cause losses of volatile constituents, such 
as ammonia and low-molecular-weight fatty acids. Continuous on-line application 
of NIRS to liquids is becoming increasingly exploited. It largely obviates the need 
for sampling, sample preparation and sample presentation, and overcomes errors 
due to sedimentation.
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9.1.5 Step 6 – identification of a sample preparation system

The basic steps in sample preparation include thorough blending, sub-sampling, 
documentation, removal of foreign material, moisture reduction (drying) and size 
reduction by chopping or grinding where necessary, re-blending and storage 
until scanning or analysis. In the case of liquids, accurate dilution may be needed 
before reference analysis. For materials such as liquid manures, worts and mashes, 
NIRS can be carried out on the original material, whereas dilution, sub-sampling 
and perhaps filtering are necessary for practically all reference analysis. For most 
precise results, the moisture content should be determined before and after 
sample preparation. In fresh forages and fruits, liquid manures, worts and similar 
materials it is the data on total solids, rather than the moisture content, that are 
reported. The NIR instrument will scan the sample as-is, and will record spectral 
data on the as-is moisture basis. For materials, such as ground grains, meals and 
flours where the range in moisture content is usually relatively small, calibration 
models can be developed using reference results that have been reported on a 
constant moisture basis, such as 13.5%. Once a sample preparation system has 
been identified, it should be tested for reproducibility in both reference analysis 
and NIR spectral precision. Areas where errors might occur can be identified and 
steps taken to correct for them.

Excel files can be set up for documentation of all samples as they are received. 
The reference data can then be recorded in these files, which makes it easy to 
import reference data to NIR spectral files. Both spectral and reference data can 
be sorted before importing the reference data from Excel.

9.1.6	 Step 7 – preparation of samples for scanning

Sample preparation has been discussed in Chapter 7 (section 7.5). Efficient 
blending before and after sample preparation is essential. Sample preparation is 
often regarded by staff as a dreary chore, and it is here that mistakes can occur 
frequently, due to boredom and carelessness. But efficient sample preparation 
is vital to the effectiveness of subsequent analysis by both NIRS and reference 
methods. Sample preparation should always be assigned to reliable hands.

9.1.7	 Step 8 – Identify or develop a sample presentation system

Most NIR instruments are equipped with a cell for presentation of the sample 
to the instrument. This may be in the form of a hopper into which the sample 
is poured. For on-line applications, a sensor or sensors have to be positioned to 
receive the NIR signals from the sample. The positioning of the sensor must be 
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optimised to give the best resolution and precision of the signals. In the case 
of fresh materials, such as fruits, vegetables, forages and meat, the sample 
presentation system may be unique to the type of material, and development 
of the system may involve the method of size reduction (e.g. by chopping), 
preparation of the surface of the material, positioning of the sensor(s) and other 
features. Specialised sample presentation systems may have to be developed 
between the client and instrument company. The specialised engineering may 
incur significant extra expense, but again, this should be assessed by comparison 
to the improvement in the overall efficiency and expense of running the operation. 
It is important to determine the spectral precision of such sample presentation 
systems (see section 9.1.2).

9.1.8	 Step 9 – repeatability file

A ‘repeatability file’ helps to stabilise calibration models for analysis of solid 
materials. The concept was introduced by Infrasoft International. The file is set 
up by selecting a small number of samples of the material to be scanned that 
represent a range in composition, particularly of moisture content, in agricultural 
and food materials. The samples are packed in cups, sealed and scanned. The 
spectra are stored in a repeatability file. The samples are then subjected to 
variations in temperature, over the range anticipated during day-to-day work, 
re-scanned, and added to the file, under the same sample name. Other factors 
may be identified that can affect the spectra, and the samples should also be 
exposed to variations in these conditions, and re-scanned. The reference data 
used in the repeatability file are the same as those of the original samples. The 
repeatability file is incorporated into development of the calibration model by 
the WinISI software. Repeatability files can be extended by adding more samples 
and/or operating conditions. 

The efficiency of a calibration that has incorporated a repeatability file can be 
verified by using in the validation sample set 2 or 3 different samples of the same 
material that have been subjected to the same variations as the repeatability 
file in operating conditions. These should predict as accurately as all of the other 
samples in the validation set.

For operators that do not use WinISI, a repeatability file can be developed by 
selecting a small number of samples with a range in composition that have 
already been included in the calibration set. These are subjected to a series of 
differing temperatures and other conditions. The samples are re-scanned and 
included in the calibration file. Because some software recognises values of zero 
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as such, the original reference data of the samples should be inserted. Exposure of 
the samples to the different operating conditions will introduce spectral variance 
that will serve the same purpose as the repeatability file in WinISI. If the changes 
in operating conditions are likely to affect the moisture content, the samples will 
need re-analysis.

The main effect of the repeatability file is to introduce extra spectral variance 
at different levels of composition, and with other factors that can affect the 
spectral data of a sample. It is particularly useful when used in conjunction with 
a small sample set. When a calibration is to be developed for a new constituent 
or functional parameter, for which only a few (e.g. up to 20) samples are available 
with reference data, the model can be used to analyse new samples and the 
NIRS predicted results compared statistically to the new reference data. The SEP 
(standard error of prediction) will change as new samples are added, and will 
indicate when the model has become reliable for actual use.

9.1.9	 Step 10 – scanning the samples 

Scanning the samples is the simplest step. The manufacturers’ manuals explain 
the methods for individual instruments. Careful and consistent filling of sample 
cells is critical to reproducible NIRS analysis and is part of the analytical precision. 
This is not a factor with instruments that use the hopper sample access system, 
provided that enough sample is added to enable all of the increments specified. 
If the sample size is slightly too low in some cases, small amounts of the sample 
can be recycled during scanning to prevent abortion of the scan. With instruments 
that use a sample cell that is scanned from below, the amount of sample added to 
the cell must give a layer thick enough to guarantee complete diffuse reflectance. 
Usually 3 cm gives sufficient depth, but with large grains such as maize, 5 cm will 
provide a safe margin. 

Viewing the spectra is possible with scanning spectrophotometers and inter
ferometers. This enables the operator to detect abnormalities in the spectra. For 
example, the shape of the spectra will be abnormal if the wrong sample cell has 
been selected in the software set up, or if the cell has not been properly filled.

Figure 9.2 shows deformities in spectra of a fibrous commodity in comparison to 
a normal spectrum. Varying degrees of abnormality can be seen in the region of 
920–1040 nm. These were caused in this case by incomplete filling of the sample 
cell because the sample size was too small. A good calibration was obtained by 
avoiding the area of the anomaly. The large ‘peak’ at about 680 nm was caused by 
chlorophyll and was not an anomaly.
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Figure 9.2	 Abnormal and normal spectra of straw. Note the distortion around 1000 nm. 

9.1.10	 Step 11 – reference analysis

This step involves the performance of the reference analysis and addition of the 
results to the file containing the spectral data. Be sure to add the reference results 
to the right spectra. About 2% of NIRS outliers are caused by attempting to ‘marry’ 
the wrong partners. 

The importance of accurate and precise reference analysis cannot be over-
emphasised. In terms of day-to-day analysis where money is concerned, such as 
at grain delivery points, there are legal aspects that have to be aligned with the 
reliability of reference analysis. Contracts have to recognise the implications of 
the SEP and the consequences of error. Contracts should be based on the accuracy 
that is achievable as indicated by the 95% confidence intervals on the constituent, 
rather than the SEP. For example, a contract that demanded ‘accuracy’ within 0.1 
or even 0.2% for something like protein content in grain would be unrealistic and 
would be open to a swarm of complaints from disgruntled clients. A SEP of 0.15% 
(in protein content) is excellent for either NIRS or reference testing, but only 68% 
of all samples will fall within the limits of ±0.15. The next 27% of samples will fall 
within limits of ±0.3, the next 3% within limits of ±0.45 and the remaining 2% 
outside of even these limits. Table 9.6 gives examples of the size of errors that 
can occur for different values of the SET (NIRS or reference methods).

Moisture content of the initial material before testing becomes even more 
important with fresh or high moisture material for two reasons. First, it is 
important to convert the analytical results from the dry matter stage normally 
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used for reference analysis, to the original moisture content of the material so 
that the calibration is based on the actual composition of the material as tested. 
The second reason is the effect of the change in moisture on the statistics of 
the calibration. For example, if the reference analysis reports a range in protein 
content of 12–17% but the moisture content of the fresh material was 66–70%, 
the actual protein content of the material as scanned would range from 4.2–5.8%, 
and the SD of the reference data would drop from 1.08 to 0.55. This would affect 
the efficiency as well as the statistics of the calibration.

Table 9.6	 Implications of error in protein testing of wheat

NIRS result = 12.5% SEP = 0.15% SEP = 0.25%

Limits of accuracy Maximum Minimum Maximum Minimum

68% of results 12.6* 12.4 12.8 12.2

95% of results 12.8 12.2 13.0 12.0

99% of results 12.9 12.1 13.1 11.9

*Results rounded to one decimal place at elevators

9.1.11	 Step 12 – selecting samples for calibration

To obtain a rough evaluation of whether NIRS is applicable to the material and 
parameter to be measured, a calibration model based on a calibration set of 
about 40–50 samples with a validation set of 12 to 18 samples, or even just cross-
validation, will provide a quick answer. In the early days of NIRS application, 40 
samples were considered to be enough, mainly because of restrictions imposed 
by the costs of reference analysis, the time of computing and computer memory. 
Advances in memory and computing time (and experience) have removed the 
latter restrictions. The costs of reference analysis remain, but if the instrument is 
to be used in an industrial operation, the cost of reference testing are very small 
compared to the value of the testing to the operation. For testing a commodity 
that is not expected to show much annual or batch-to-batch processing change, 
fewer samples can be used, provided that all sources of spectral variance are well-
represented.

The question ‘how many samples do we need?’ is frequently asked. The answer 
is the more the better as long as the samples accommodate all of the sources of 
variance. One guideline is to assemble 20–25 samples for each factor that you 
intend to use in development of the calibration. Of recent years, PLS (partial 
least squares) regression has become the method of choice for calibration 
model development. If 15 PLS factors are specified, at least 20 samples should be 
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assembled per factor, for a total of 300 samples. For MLR calibrations, 25 samples 
per wavelength are recommended, i.e. for a model of nine wavelength points this 
means assembly of at least 225 samples. The actual number of wavelengths used 
in the final model will be optimised, but a starting point of 9 with 25 samples per 
wavelength will provide a good sample set. Samples should always be selected 
bearing in mind the sources of variance. If eight growing locations are to be 
represented, samples from all of the locations must be assembled. These should 
also represent the range in composition anticipated. NIRS analysis derives solely 
from the spectra. Because of external influences, such as growing location and 
season, samples of agricultural materials (such as grains) that are reported as 
having the same composition by chemical analysis, may have different spectral 
composition – which will increase the total number of samples required. These 
extra spectral data must be included, which is why it is important to identify the 
possible sources of variance before starting to assemble samples for calibration 
model development. 

Sample assembly is the biggest job in developing calibration models for NIRS 
analysis. When an operation is beginning to use NIRS for the first time, it is 
necessary to build up a database. It may not be possible to obtain 200–300  
samples with the required variance all at once. So it is reasonable to begin with 
whatever samples are available with reference data, and add more samples as 
they arrive. Operators that seek to develop their own calibration models can start 
by assembling a database of samples with reference data even before acquiring 
an instrument. The samples should be carefully stored, ideally refrigerated but not 
frozen. When an instrument is acquired, a preliminary calibration can be developed 
using these stored samples (e.g. as few as 30 or so) and applied to every new 
sample as it arrives. The new samples would be tested by reference methods, and 
samples that have been added to the spectral and/or composition variance would 
be used to extend the calibration model, even for the more expensive reference 
methods, such as digestibility and metabolisable energy. As these are tested the 
database can be extended, until over a few years a comprehensive database 
has been built up. This method of establishing a calibration model is helped by 
using a repeatability file to add extra variance. A repeatability file is very useful 
when developing a calibration with a relatively small sample set because it adds 
spectral variance on the commodity without affecting the reference data (see 
section 9.1.8). The same repeatability file of the same material can be used in the 
development of calibrations for any number of constituents/parameters.

For development of calibrations that can reliably be transfered to a network of 
instruments all of the same make and model, spectral data from samples that have 
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been scanned on a group (at least 5, preferably more) of these instruments should 
be included. The extremely stable ANN calibrations supplied by some instrument 
companies incorporate over 70,000 spectra with reference data, recorded on a 
large number of instruments. There will be a range in the accuracy of the reference 
data. However, provided that this is unbiased, the inclusion of variance in both 
spectral and reference data adds a type of ‘sample noise’, which stabilises the 
calibration model (see Chapter 4, section 4.1.10). 

The two main methods for sample selection are: a) selection on the basis of 
reference tests, and b) selection on the basis of spectral characteristics. 

a) Selection on the basis of reference tests – this assumes that the operator has 
access to sufficient samples with reference data to generate the calibration. If the 
samples are distributed in normal (Gaussian) fashion with respect to composition, 
the results of prediction will tend to regress toward the mean (Figure 9.3). This 
phenomenon is called regression to the mean. It causes results at the high end 
to appear to be lower than they are, while results at the low end will appear to 
be higher.

Mean

Theoretical 
protein

Observed 
NIRS protein

% Protein 189

Figure 9.3	 Regression to the mean.

The amount by which the NIRS result of a given sample will differ from the true 
result (actual reference) on prediction depends on the distance of the predicted 
value of the sample from the population mean, and the correlation coefficient (r) 
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between NIRS and reference data. The apparent deviations that can be expected 
can be calculated using the following formula:

   Apparent result (x) = ȳ + (y − ȳ) × r

Thus if, y = 15.6; ȳ = 13.1 and r = 0.98

Then,
   Apparent result (x) = 13.1 + (15.6 − 13.1) × 0.98 = 2.5 × 0.98 = 13.1 + 2.45 = 15.55 
Or if, y = 15.6; ȳ = 13.1 and r = 0.909

Then,
   Apparent result (x) = 13.1 + (15.6 − 13.1) × 0.909 = 2.5 × 0.909 = 13.1 + 2.25 = 15.35 
Or if, y = 9.7; ȳ = 13.1 and r = 0.909

Then,
   Apparent result (x) = 13.1 + (9.7 − 13.1) × 0.900 = -3.4 × 0.900 = 13.1 − 3.06 = 10.04

Recall that for a given SEP, about 68% of all of the samples will be distributed 
within ± one SEP value of the mean result, and 95% will occur within ± twice 
the SEP value of the mean. The effect of regression to the mean is minimal if the 
correlation coefficient is high, but becomes sizeable at lower values of r. At stated 
values close to the mean the effect is also reduced, and an argument in favour of 
selecting samples on the basis of Gaussian distribution – because the majority of 
the population will differ from the mean by only ±1 SD-value, Gaussian selection 
will tend to favour the accuracy of the majority of samples to be tested. A set of 
samples with uniform distribution of components across the full range would, to 
a large extent, overcome regression to the mean, but assembly of such a sample 
set containing, e.g. 200 samples, would be a formidable task. For the purpose of 
day-to-day analytical work where large volumes of commercial samples are to 
be processed and the price depends on accurate analytical data, the Gaussian 
distribution is acceptable for sample assembly.

The best way to minimise the effect of regression toward the mean is to take 
every step to ensure the highest r2-values in model development. Sample 
assembly becomes complicated if the objective is to develop calibrations with 
more or less uniform distribution of composition for more than one constituent or 
parameter, especially when the constituents/parameters are not correlated with 
one another, for example in the case of moisture and protein contents. When 
accuracy at extremes of reference data is important for some constituents, for 
example in plant breeding programmes, uniform distribution across the range of 
reference data is helpful, even if it is only achievable for those constituents. 
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When samples are selected on the basis of reference tests, all samples will have 
reference data. Recommended steps for setting up calibration and validation 
sample sets are: 
1.	 Scan the samples.
2.	 Sort the samples on the basis of the reference data.
3.	 Select every 5th sample and save them as the validation set. 
4.	 Save the remaining samples as the calibration sample set.

Sorting the samples on the basis of reference data in this way assures a similar 
distribution of spectra with associated reference data in both calibration and 
validation sample sets. If check samples or duplicates were scanned, they must 
be removed before selection of calibration and validation sample sets. Reference 
data for these can be set at 1.00 or 100, or some value that is distinct from the true 
reference data. It is then very easy to sort out the check samples. They should 
be stored in a separate file and can subsequently be predicted to determine the 
precision (standard error) of the NIRS test. The check samples and duplicates 
should then be purged from the main sample files before development of the 
calibration model.

If cross-validation will be used to evaluate the model (see Chapter 5, section 5.2.9), 
there is no need to sort the samples because all of them will be used in calibration 
and validation, but it is a good idea to sort the samples by composition, and set 
up a validation set anyway. Use the calibration set for model development and 
optimisation using cross-validation, and test it by predicting the validation set.

b) Selection on the basis of spectral characteristics – this concept was originally 
introduced by Technicon (later Bran+Luebbe) as a means of reducing the amount 
of expensive reference analysis required by selecting samples for calibration 
with maximum variance in spectral data. The technique has been effectively 
refined by InfraSoft International (ISI, Port Matilda, PA), and their WinISI software 
enables user-friendly selection of samples for reference analysis on the basis of 
spectral characteristics before any analytical work is done. The ISI principle is: if 
two or more samples are very similar spectrally, only one of them is needed. The 
software compares the samples on the basis of ‘scores’, that are developed from 
Mahalanobis distances, and selects those that offer the most diverse grouping 
of spectra. Over-simplified, the Mahalanobis distance of a spectrum/wavelength 
point is the distance in spectral data of a that spectrum from the mean of the 
population and from the other samples. 

Samples can be selected on the basis of log 1/R data as recorded, or on the basis 
of pretreated (derivatised) spectral data. The steps are detailed in the WinISI 
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software materials (Infrasoft International, Port Matilda, PA, USA) and are briefly:
1.	 Scan the samples
2.	 Develop scores
3.	 Use the WinISI software option to select samples for the calibration set
4.	 Use this set for model development and cross-validation
5.	 Save the remaining samples (with scores) in a separate file and repeat 

the selection
6.	 Save this second file as a separate validation set 
7.	 Send samples represented in both files for reference analysis

Steps 5 and 6 are optional, and unnecessary if cross-validation is to be used for 
evaluation throughout.

For setting up calibration and validation sample sets (or test set), a useful guideline 
is to use 80% of the samples for calibration and 20% for validation (see Chapter 5, 
section 5.2.4). A downside of the spectral selection system is that a large number 
of samples have to be assembled and scanned anyway to enable the spectral 
selection. 

The WinISI system describes Global H (GH) and Neighbourhood H (NH) 
characteristics for all samples, which are based on Mahalanobis distances. The 
GH value is the distance in space between the sample and the mean of all of the 
samples. The NH value of a sample is the distance in space between any sample 
and its nearest neighbour. WinISI recommends that samples with GH values of 
above 3.0 should not be included in calibration development. Such samples are 
usually present as a small percentage of the population, but will probably persist 
in all samples of the same material for which calibrations are to be developed. 
Their inclusion in the calibration development will have a possible adverse effect 
on the calibration statistics, but their inclusion is also likely to improve the stability 
of the calibration to future analysis.

9.1.12	 Steps 13 and 14 – development and optimisation of the calibration

Model development can be done using MLR or PLS regression. Instruments 
that use discrete filters usually use MLR for development of calibration models. 
A number of instrument companies have developed software specific for the 
computation. Software packages such as WinISI and VISION for use with the Foss/
NIRSystems scanning instruments, and NIRCal for BÜCHI FT-NIR instruments, have 
both MLR and PLS regression options. OPUS for use with the Bruker instruments 
uses only PLS regression. These packages are dedicated to the instruments and 



Calibration development and evaluation methods

237

have the big advantage that the instrument can use the calibration models 
directly. 

WinISI software includes the ‘Local’ option. This is a PLS-based system best 
suited for application to large databases. It has been shown to be superior to 
standard PLS and Modified PLS options. The principle of ‘Local’ is that it scans a 
large database (preferably several hundreds, or even thousands of spectra) and 
develops a ‘model’ (possibly best described as an ‘attitude’) based on all of the 
spectral and reference data. It then predicts any new sample on the basis of the 
spectral characteristics of a specified number of spectra in the database that most 
closely match the new sample.

For large-scale testing, including screening during breeding programmes, grain-
handling operations and day-to-day routine analysis, which involves the analysis 
of large numbers of samples over long periods of time, the ‘database’ and ‘Local’ 
approach is likely to become the way of the future for analysis of the more 
frequently tested constituents. Any organisation involved in large-scale analysis 
of this type can and should accumulate a database of spectra with reference 
data. The ‘Local’ option of WinISI can be updated to include new constituents or 
parameters as the reference data for them becomes available. Operations that 
contemplate using NIRS in the future can start assembling samples to build a 
database before they buy the instrument. The samples would be tested by all 
reference methods and stored until they can be scanned. This is a useful starting 
base for development of stable calibrations, especially if used in conjunction with 
a repeatability file.

For operators that use The Unscrambler®, Grams®, Pirouette® or MATLAB® software, 
the spectral data have to be transferred from the instrument software to the 
preferred software and the calibration models developed – after validation the 
final calibration models are then transferred back to the instrument operating 
software. Software companies provide manuals for their operation, as well as 
background information on NIR technology. 

For instruments that use discrete filters, log 1/R is the only form in which spectral 
data can be processed, and MLR is the method usually used for calibration 
development. The number of filters selected can be optimised by recording 
models for several filter combinations and tested by predicting a validation sample 
set. Operators of scanning spectrophotometers that use MLR for computing the 
calibration can select up to 9 wavelengths, but the number selected using MLR 
should be optimised by validation. 
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PLS regression uses all available wavelengths, but the most stable equations 
often do not need the full wavelength range from 400–2498 nm. Optimising 
the wavelength range usually leads to improved validation statistics and more 
reliable calibration models. The calibration equation is developed using different 
wavelength ranges and the same mathematical pretreatment of the spectra data. 
Table 9.7 shows results of optimising the wavelength range for prediction of 
protein content in whole wheat. 

Table 9.7	 Influence of wavelength range on prediction of protein content (%) in 		
	 whole wheat

Wavelength range 
(nm)

SEP (%)* Bias RPD

408–1092 0.353 -0.136 4.4

408–2492 0.293 -0.164 5.4

658–1792 0.233 0.120 6.8

708–1092 0.244 0.096 6.4

908–1692 0.198 0.169 7.9

1108–1408 0.195 0.088 8.1

1108–2492 0.227 0.074 6.9

*Mathematical pretreatment was log 1/R, smoothed with segment of 4 wavelength points 
(WinISI terminology = 0 0 4 1)

The mathematical pretreatment of the spectral data was log 1/R using WinISI 
software and smoothing by 4 wavelength points. Four of the wavelength ranges 
are used in commercial instruments. The 658–1792 nm wavelenth range has been 
found to be very useful in some applications. The 708–1092 nm range covers the 
low wavelength range, but eliminates most of the noisy area below 700 nm. 
Modern computers and software have combined to make optimisation a simple if 
rather repetitious process, but all of the above wavelength ranges, and any others 
that are of potential interest, can be tested in a few minutes. 

Once the most suitable wavelength range has been identified using, e.g. log 
1/R data, the exercise should be repeated using mathematically pretreated 
spectral data. Pretreatment of the spectral data often improves the validation 
statistics. Most monochromator instruments record spectral data at intervals of 
2 nm. Diode array instruments record at intervals of about 5 to 6 nm. The most 
successful pretreatments are smoothing of the log 1/R signal, and developing 
the 1st or 2nd derivative of the log 1/R signal, usually on already smoothed data. 
The dimensions of the derivative has come to be referred to as the ‘gap’ and the 
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degree of smoothing the ‘segment’ (see Chapter 5, section 5.2.5). Table 9.8 shows 
the influence of optimising the mathematical pretreatment of spectral data for 
the prediction of protein content in whole wheat. The samples were the same 
as those used in compiling Table 9.7, and illustrate the value of optimising both 
wavelength range and mathematical pretreatment.

When working with a constant type of material, e.g. whole barley or fresh forages, 
a pattern will emerge, and one or two of the wavelength ranges will appear 
consistently as the most suitable. Thereafter, there will be no need to test all 
of the other ranges. With a substance such as soil, the wide-ranging variance 
in physical characteristics complicates calibration development, and it may be 
necessary to test several wavelength ranges and mathematical pretreatments 
for these types of materials from different sources. Note the improvement in the 
statistics when the wavelengths between 400–700 nm are avoided. Also note 
that within a wavelength range, the different mathematical pretreatments had 
relatively little effect. Changes in wavelength range usually have more effect than 
mathematical pretreatment.

Table 9.8	 Influence of mathematical pretreatment of spectral data on prediction of protein 	
	 content (%) in whole wheat for selected wavelength ranges

Derivative Gap Segment
WinISI 

notation
SEP Bias RPD

408–1092 nm

None 0 4 0 0 4 1 0.353 -0.136 4.4

1st der* 4 4 1 4 4 1 0.298 -0.176 5.3

1st der 4 8 1 4 8 1 0.296 -0.155 5.3

2nd der* 4 4 2 4 4 1 0.352 -0.367 4.3

2nd der 8 8 2 8 8 1 0.280 -0.052 5.6

708–1092 nm

None 0 4 0 0 4 1 0.244 0.093 6.4

1st der* 4 4 1 4 4 1 0.234 0.073 6.7

1st der 4 8 1 4 8 1 0.248 0.101 6.3

2nd der* 4 4 2 4 4 1 0.253 0.075 6.2

2nd der 8 8 2 8 8 1 0.277 0.063 5.7

1108–2492 nm

None 0 4 0 0 4 1 0.228 0.068 6.9
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Derivative Gap Segment
WinISI 

notation
SEP Bias RPD

1st der* 4 4 1 4 4 1 0.189 0.084 8.3

1st der 4 8 1 4 8 1 0.202 0.123 7.8

2nd der* 4 4 2 4 4 1 0.200 0.108 7.9

2nd der 8 8 2 8 8 1 0.202 0.092 7.8

908–1692 nm

None 0 4 0 0 4 1 0.199 0.169 7.9

1st der* 4 4 1 4 4 1 0.183 0.088 8.6

1st der 4 8 1 4 8 1 0.185 0.093 8.5

2nd der* 4 4 2 4 4 1 0.190 0.103 8.3

2nd der 8 8 2 8 8 1 0.184 0.096 8.5

656–1792 nm

None 0 4 0 0 4 1 0.233 0.118 6.8

1st der* 4 4 1 4 4 1 0.179 0.081 8.8

1st der 4 8 1 4 8 1 0.183 0.104 8.6

2nd der* 4 4 2 4 4 1 0.187 0.091 8.4

2nd der 8 8 2 8 8 1 0.182 0.117 8.6

*1st der = first derivative of the log 1/R spectral data; 2nd der = second derivative of the log 1/R 
spectral data; *WinISI notation: 0 0 4 1 = log 1/R, smoothed by 4 points; 1 4 4 1 = 1st derivative 
with gap and segment of 4 points; 1 4 8 1 = 1st derivative with gap of 4 and segment 8 points; 2 8 
8 1 = 2nd derivative with gap and segment of 8 points

Table 9.9 shows the influence of optimising both wavelength range and 
mathematical pretreatment on prediction of NDF (neutral detergent fibre) content 
in ground barley. Note that the optimum mathematical pretreatment of the log 
1/R spectra data differed depending on the wavelength range. All calibrations 
were developed from samples scanned in reflectance mode. The RPD values for 
wheat protein in Table 9.8 were generally better than were those for prediction 
of barley NDF. This is related to the standard error of the respective tests. NDF is 
subject to more sources of error than the combustion (Dumas) method used for 
determination of protein content. Notice that wavelength range generally again 
has more influence on calibration efficiency than mathematical pretreatment.

Table 9.8	 Influence of mathematical pretreatment of spectral data on prediction of 		
	 protein content (%) in whole wheat for selected wavelength ranges (continued)
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Table 9.9	 Influence of wavelength range and mathematical pretreatment on prediction of 	
	 NDF content of barley

Wavelength range 
(nm)

Mathematical 
pretreatment*

SEP Bias RPD

408–1092 1 4 4 1 0.708 0.188 4.0

408–2492 0 0 4 1 0.574 0.079 5.0

658–1792 1 4 4 1 0.509 0.176 5.6

708–1092 0 0 4 1 1.152 -0.081 2.5

908–1692 1 4 4 1 0.597 0.209 4.8

1108–1408 2 8 8 1 0.643 0.012 3.3

1108–2492 1 4 4 1 0.572 0.200 5.0

1208–2392 1 4 8 1 0.584 0.122 5.0

*WinISI notation: 0 0 4 1 = log 1/R smoothed by 4 points; 1 4 4 1 = 1st derivative with gap and 
segment of 4 points; 1 4 8 1 = 1st derivative with gap of 4 and segment of 8 points; 2 8 8 1 = 2nd 
derivative with gap and segment of 8 points

Some NIRS software, such as Bruker OPUS and BÜCHI NIRCal, include an 
optimising option. The calibration and validation sample sets are identified to the 
system, and the optimum wavelength range and mathematical pretreatments are 
both sought by the software. The calculation takes rather longer than ‘normal’ 
calibration development, but saves the time of researching different wavelength 
ranges and mathematical pretreatments.

9.1.13	 Step 15 – entering the model into the instrument

This is carried out simply by software steps. Where the models have been 
developed by other than dedicated software the model has to be transferred 
from The Unscrambler®, Grams® or other software into the instrument software. 
The instrument operating manuals describe the steps for importing the model. 
Optimisation of wavelength and mathematical pretreatments should be carried 
out in all of these comprehensive software packages before model transfer.

9.1.14	 Step16 – verify accuracy and reproducibility of NIRS-predicted 		
	 results (evaluation)

There are three main methods for evaluation of calibration models. These are 
cross-validation, test-set validation and prediction of completely unknown 
samples. These are discussed in depth in Chapter 5 (see section 5.2.9). One simple 
message is that duplicate testing only takes a very short time by NIRS testing, and 
adds to the reproducibility and overall integrity of the reported result.
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9.1.15	 Step 17 – verify accuracy by analysis of new samples of 			 
	 known composition 

When the model has been satisfactorily developed, the overall picture is completed 
by verification of the reproducibility of the NIRS analysis using the new model. 
The ultimate test of a calibration is to test new, ‘fresh’ (completely unknown) 
samples. These are ‘real world’ samples of the type that will form the future work-
load. A check sample or samples should also be tested periodically to monitor 
the precision. After analysis of a number of new samples using the calibration 
model, some of them should be sent for analysis by the reference method to 
verify the accuracy. The full statistical treatment should include computation of 
the regression (slope) as well as the SEP. If biases occur, the adjustment should be 
made and then further samples analysed to verify that the accuracy is acceptable.

9.1.16	 Steps 18 and 19 – carry out slope and bias adjustments as necessary 	
	 and re-analyse the same samples to ensure that the 			 
	 bias has been removed

If biases occur the adjustment should be made and then further samples analysed 
to verify that the accuracy and precision are acceptable. Slope adjustments are 
generally not recommended (see Chapter 4, section 4.1.7). 

9.1.17	 Step 20 – supplement calibration model with future samples analysed 	
	 for monitoring

This is not actually part of the calibration process, but it is a part of on-going 
calibration maintenance. From time to time, new samples can be selected to 
extend the calibration model. This is advised whenever samples arrive from a new 
source, such as a new location or growing season, or when processing conditions 
change, such as in an industrial plant. As part of the continuing monitoring 
process, during day-to-day analysis of incoming samples, some samples can be 
identified as adding to the range of variance that has been incorporated into the 
calibration. They may have been identified as ‘outliers’ by the instrument based on 
their spectral characteristics. 

Provided that the authenticity of these samples has been established as actually 
adding new and useful variance and that more samples of the same type can be 
obtained, the samples can be stored and used to extend the existing calibration 
model. This is if these samples are not likely to exert sufficient leverage to change 
the whole model radically. This is done by adding the samples to the database used 
for calibration, repeating the calibration process and entering the new calibration 
model into the instrument. Some of the new samples should also be compiled as 
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a test set to make sure that the new samples are predicted accurately after the 
extension of the model. Most typically samples representing new variance will 
appear early in new crop years, but they can also appear from different growing 
locations, different deliveries of ingredients, changes in processing conditions and 
other sources.

9.1.18	 Step 21 – calibration transferability

If the operation is using more than a single instrument of the same make and 
model, the calibration model can be transferred to all of the instruments. Ideally, 
the instruments should be networked so that calibration transfer and performance 
monitoring can be controlled from a single computer (see section 9.2). Networking 
can be carried out using manufacturer-supplied software. The identification 
system for networked instruments can be based on the instrument serial number. 

Calibration transferability depends on the type of instrument. Calibration transfer 
is generally more successful with monochromator- and interferometer-driven 
instruments than with other types of instrument. This is mainly because although 
minute differences do exist among individual instruments of these types, 
differences that occur among discrete filters (of the same nominal wavelength), 
diode arrays and CCD (charge-couple device) arrays, tend to be greater. To 
transfer calibrations among diode array instruments assembling spectral data 
from at least 5 instruments is recommended. That is, the training sample set 
would be scanned on all five instruments and the five data sets combined in 
the calibration development. The resulting calibration should be transferable to 
other instruments within and outside the group of five. The ability to transfer 
calibrations among instruments is an important criterion in evaluation of a new 
instrument and a factor in selecting an instrument for purchase.

9.2	 Networking

Large-scale testing usually involves testing at more than one location. In the case 
of NIRS testing this means more than one instrument. The most efficient way of 
achieving this is by setting up a network of instruments. The instruments should 
all be of the same type and model and should all use the same calibrations. The 
networked instruments can all be controlled at a central laboratory from a single 
computer using the ‘master-slave’ concept.

When an organisation is operating several instruments, they can all be operated 
using a networking system. The instruments can all be monitored and controlled 
from a single personal or main-frame computer at a central laboratory or office. 
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Successful application of NIRS networking depends on the reliability of ten factors: 
1.	 Reference or ‘check’ samples;
2.	 a system for distribution and use of check samples;
3.	 a dependable laboratory for reference testing;
4.	 a set of reliable instruments with reliable calibrations;
5.	 a central computer (this can be a laptop);
6.	 software for monitoring purposes and applying corrections to instruments;
7.	 software for development of calibrations;
8.	 software for operation of the network;
9.	 the person in charge of the networking operation; and
10.	 education and training of staff in all aspects of the operation. 

The principle of networking is based on central control of the accuracy and 
monitoring of the precision (reproducibility) of the on-site instrument(s), all of 
which carry the same calibrations (Williams & Antoniszyn, 2004). The on-site 
operator usually has no access to the system for adjusting the instruments. Most 
large-scale networking operations have been established by commercial and 
government establishments that are involved with large-scale grain-handling. 
These have been developed in-house. Although there is an extensive bibliography 
on NIR technology, there is very little published information on NIRS network 
development. Table 9.10 provides steps to be followed when establishing an NIRS 
network system.

Networking is a way of broadening and getting the maximum benefits from 
the application of NIR technology. Instruments of the same type and model can 
be standardised and networked so that they all use the same calibrations and 
operate with the same accuracy and precision. Calibrations developed by one 
centre can be shared with other locations that use the same type and model of 
instruments. Another aspect of networking is that instruments can be located 
at strategic points in an industrial plant and by networking to one computer all 
aspects of the process can be regulated and controlled, including monitoring of 
the composition of raw materials, the efficiency of blending during processing 
and the composition of the final products. All adjustments are made on the basis 
of check sample results as tested by the master instrument. The master instrument 
is the only one that is monitored on the basis of reference laboratory results.
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Table 9.10	 Steps in establishing an NIRS network system

Step 1 Determine whether an NIRS network will be of economic and/or practical 
benefit to the operation

Step 2 Identify the items involved, and prepare a budget for setting up the network

Step 3 Identify control centre

Step 4 Identify method for networking (e.g. modem, e-mail, wireless 
communication)

Step 5 Identify a person to accept responsibility for running, monitoring, and 
controlling the entire operation

Step 6 Identify locations for instruments (at remote locations or at strategic 
locations within a processing plant)

Step 7 Install dedicated telephone line, or Local Area Network (LAN) system if 
modems are to be used with telephones. 

Step 8 Identify reference methods and reference laboratory

Step 9 Identify the instruments to be used

Step 10 Identify system for monitoring (e.g. frequency of check sample testing, 
system of sample distribution, use of on-site testing)

Step 11 Identify source of check samples

Step 12 Assemble and  prepare check samples

Step 13 Identify system for distribution of check samples

Step 14 Identify method for correction of instrument deviations

Step 15 Identify the Master instrument

Step 16 Assure that all satellite instruments or sensing heads are 
functioning properly

Step 17 Standardise all satellite instruments to master instrument

Step 18 Develop or acquire software for operation of network

Step 19 Train staff in use of network software 

Step 20 Test network using limited number of locations

Step 21 Develop and apply corrective measures to system, as necessary

Step 22 Verify that corrective measures have been successful

Step 23 Extend the network to all locations

Step 24 Test networked instruments at all locations.

Step 25
Prepare a detailed step-wise manual for operating the system for use in 
training new staff, and ensuring that all locations are using exactly the 
same procedures
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Sometimes a laboratory may wish to network different instrument models from 
the same company. The network will work reasonably well, but will use the 
wavelength range of the instrument model with the smallest range. For example, 
if two instruments that operate over a wavelength range of 400–2500 nm are 
networked with a third appliance that uses the range of 900–1700 nm (the diode-
array instrument range), the network will operate on the wavelength range of 
900–1700 nm. The wavelengths below 1100 and above 1700 nm will not be used by 
the first two instruments. The future challenge in networking will be to develop 
networking software that will use instruments of different models and companies. 
Software has also been developed for networking monochromator-driven with 
diode array-driven instruments. The same restrictions apply with regard to 
wavelength accessibility.

9.3	 Last words on calibration development

Whether the calibration model is developed by the operator or the instrument 
company, the basic steps described in this section are the same. This chapter has 
been included for users who either have to develop calibration models, or wish 
to ‘do their own thing’. It is included also to serve the needs of research stations 
and laboratories worldwide, including those in developing countries, where 
large-scale networking, and easy access to the parent instrument company and 
its expertise is not readily available. Calibrations will always be needed for NIRS 
analysis of fresh materials, such as fresh forages, fruits, vegetables, meat, fish, 
manures, and other high moisture materials. Calibrations will also contimue to be 
needed when a new functional parameter calls for rapid analysis. Files of spectra 
should always be retained and backed up. An external hard drive is an excellent 
and inexpensive method for avoiding the possible frustration of losing data. Many 
instruments can now be purchased with factory-developed calibrations. The 
essential requirements for calibration development are samples that represent 
all of the anticipated variance with reliable reference data. Instrument companies 
develop calibrations as described at the beginning of this chapter. The ANN 
calibrations offered by some companies are based on these types of spectra. 
Calibration models developed by instrument companies are marketed, and the 
prices vary depending on the complexity of the model and the parameter for 
which it has been developed to measure.
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Interpretation of 
calibration evaluation

In his classic biography of Michelangelo Buonarotti, The Agony and the Ecstasy, 
author Irvine Stone mentions that Michelangelo noted in his diaries that he could 
visualise statues, including his exquisite statue of David, inside the blocks of 
stone, and that all he had to do was to bring them out. An NIR spectrum can 
be considered in the same way. All of the information relating to the sample 
is contained in the spectrum. What we as operators have to do is to get the 
instrument to translate the spectral data into the information we need. Modern 
NIRS data analysis software contains many options, the chisels that can help us to 
bring it out of the stone.

This chapter is included mainly for the benefit of those who want to learn more 
about NIR technology than just its application. Most operators are content with 
scanning each sample once, or doing a single test on the sample by the reference 
method. The logic here is that in day-to-day analysis there is usually only time for 
a single NIRS test, and doing any more than a single test by reference methods 
adds to the costs and time of developing the calibration model. But again, these 
costs must be considered in the context of how much money and possible liability 
will be saved by using a more reliable NIRS calibration, and a more reliable way 

10
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of doing the test. Duplicate scans can improve the reliability of NIRS testing, and 
only take an extra minute or two.

10.1	 Scope of calibration evaluation

Interpretation of calibration evaluation means finding out why the calibration 
worked, or why it did not work. The first step in calibration evaluation is to look at 
the statistics (see Chapter 4). The coefficient of determination (r2), bias, slope and 
RPD figures are the simplest way of evaluating the calibration model quickly. But 
before doing any calibration work the error of both reference and NIRS testing 
should be determined (see Chapter 9, sections 9.1.1 & 9.1.2).

Most data analysis software packages offer systems for identifying outliers based 
on spectral characteristics. WinISI identifies them on the basis of their global ‘H’ 
(GH) values, and gives the option of removing them from the calibration sample 
set. GH values are based on Mahalanobis distances (see Chapter 9, section 9.1.11). 
They show the distance in spectral data by which individual samples differ from 
that of the population mean at each individual wavelength point. While GH values 
above 3.0 are often associated with large errors in prediction, it is possible to get 
a large error at GH values of even less than 1.0. Neighbourhood H (NH) values 
indicate the distance by which the spectral data of an individual sample differ 
from those of its nearest neighbour. Provided that there are no obvious oultiers 
caused by, e.g. inaccurate reference values, the elimination of samples with GH 
values of higher than 3.0 will improve the statistics of the calibration, but not 
neceassrily improve the integrity of the calibration. There are no outliers in the 
world of industrial application, and the inclusion of samples with high GH values 
should add a degree of stability to the calibration.

Outliers can also be identified at the time of evaluation by plotting the reference 
or actual against the NIRS predicted results. If a test set is used and the results are 
not acceptable even though no outliers are obvious, plot the reference against 
predicted data for the calibration set – one or more significant outliers may 
have been included in that sample set. These will affect the SEC and SEC), as 
well as changing the slope. An outlier can bias the entire model towards itself. 
Outliers should be investigated and if they are believed to be chemical outliers, 
the reference result should be verified by re-testing. If the outliers are spectral 
outliers, their origin should be determined and further samples from the same 
source added to the calibration (and validation) sample set before making a final 
evaluation of the calibration.
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If cross-validation is preferred, the reference versus predicted results can still 
be plotted, and possible outliers identified and dealt with as for a test set. The 
number of outliers is usually quite small. If, on plotting reference against predicted 
results, it appears that there are a lot of outliers in a calibration (10% or more), it 
is unlikely that all of these are outliers. The most likely source of the excessive 
variance is in the reference data – again, the importance of knowing the error of 
the reference testing cannot be over-emphasised. If one is working on a calibration 
for a completely new commodity/constituent combination, and the calibration 
results are poor but there is confidence in the reference data results, NIRS may be 
not applicable to that area of work. 

10.2	 Accuracy and bias

The efficiency of an NIR instrument for determination of a particular parameter 
is a function of the reference analysis, the calibration, the material to be tested 
and the actual instrument error. Once the calibration is developed and validated, 
accuracy can be changed to conform to what is considered to be the true result 
by changing the bias, but for practical purposes the results of NIRS will always 
be aligned with those of the reference laboratory, and the results as reported 
by that laboratory have to be accepted as the accuracy. Remember that neither 
the SEP nor SECV are indications of accuracy by themselves. It is possible 
to achieve excellent values for the SEP but with a significant bias (little or no 
information on bias is given by cross-validation). In reporting the results of an 
NIRS calibration evaluation, the SEP should always be accompanied by the bias. 
The on-going reliability with which this true result can be achieved is the precision 
(reproducibility) of the testing. 

Precision is partly a function of the instrument, partly a function of the natural 
chemical and physical heterogeneity of the material being analysed, partly 
a function of the calibration, and partly a function of the operator in sample 
preparation and presenting the sample to the instrument. Accuracy is only 
established once (at the time of calibration). Thereafter it is maintained, as 
necessary, through monitoring. Precision affects every result because it happens 
with every test. For the most part, the instrument cannot be blamed for poor 
precision. While the importance of a high degree of precision is emphasised, the 
accuracy cannot be overlooked – otherwise all results will be reported precisely 
wrong! Bias can become costly, and every effort should be made to minimise and 
preferably to eliminate it. Small biases of for example 0.1% protein will happen. As 
long as they fluctuate between small levels, such as ±0.1 in protein content, they 
can be tolerated, but if they persist they should be corrected.
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10.3	 Graphical distribution of samples during calibration

Software such as WinISI and The Unscrambler® each include a system for viewing 
samples during calibration development. Figure 10.1 shows a 3-dimensional (3-D) 
WinISI PCA (principal component analysis) scores plot illustrating the distribution 
of samples used for calibration.

Figure 10.1	 Distribution of samples during calibration (3-D WinISI plot).

Figure 10.2 is a 3-D plot (PC1 vs. PC2 vs. PC3), viewed from the right side of the 
above 3-D plot. In both figures trends are apparent, and show up rather more 
clearly in Figure 10.2. The samples were drawn from western Canadian plant 
breeders’ material from 1998–2005. The main trends reflect different growing 
seasons in both figures. Samples at the bottom of Figure 10.2 are from the soft 
wheat class, and samples at the top right are of the western extra strong class, 
with much harder kernel texture. Right to left trends reflect different growing 
seasons. Samples to the right of the figure are from the 2005 season, and the 
earlier seasons are to the left.

Figure 10.3 shows the same type of 3-D plot taken only from the 2001 growing 
season. Here the different ‘clusters’ of scores reflect the different wheat classes. 
The cluster at the bottom of the figure represent the soft white spring class. The 
cluster on the extreme left are the CWES (Canada Western Extra Strong) class, the 
samples to the upper right include the CWRS (Canada Western Red Spring) and 
Central Prairie hard red winter class, and those in the center are of the western 
hard red winter class.
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Figure 10.2	 Distribution of samples during calibration for whole wheat PSI 			
	 (right view, WinISI plot).

Figure 10.3	 Scores plot of 2001 wheat samples, showing distribution of wheat 		
	 classes (WinISI)

Figures 10.1 to 10.3 illustrate the influence of growing season and wheat class on 
the spectral characteristics of the wheat. All growing locations and seven seasons 
are included in the 875 samples of Figures 10.1 and 10.2.

Figure 10.4 shows a different system of studying what has happened during 
the development of a calibration model. The figure is taken from a calibration 
developed using The Unscrambler®. The figure shows a PCA scores plot of the first 
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principal component against the second (PC1 vs. PC2). The ‘scores’ are the position 
of the samples along the principal components (PCs,) and can be used to show 
similarities or differences among samples. The first two PCs usually explain most 
of the variance in most applications.

The display of scores in 2-dimensional (2-D) plots can show how the samples are 
distributed in the calibration and validation sample sets. Obvious trends in the 
distribution of samples can be traced by focusing on individual samples in the 
scores plots to identify the way in which the sources of variance in the samples 
have been interpreted by the analysis, and the way in which groups of samples 
interact with each other in the total population. Although trends may be apparent, 
in the world of practical application often several sources of variance will be 
involved in a population. It is useful to see the way in which various combinations 
of wavelength ranges and mathematical pretreatments resolve these to produce 
reliable calibration models.

The Unscrambler® offers several features that are useful in understanding what 
has happened during development of a calibration model. Figure 10.4 shows the 
distribution of samples by sample number from three classes of whole wheat, 
during development of a calibration for protein content. The positions of the 
points show that the samples were distributed according to the three classes. 
This plot usually appears in the top left panel of The Unscrambler® display after 
computing a calibration model.
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Figure 10.4	 PCA scores plot (PC1 vs. PC2) of samples of three different wheat classes 	
	 used in development of a calibration for protein content with 			 
	 The Unscrambler®.
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Figure 10.5 shows the same scores, identified by category variables, in this case 
wheat class. A category variable is an option in The Unscrambler® that enables 
classification on the basis of the selected parameter. Category variables explain 
the origins of the trends. Note that it was possible to separate the samples 
from the two different (Central and Western) hard red winter wheat breeding 
programmes. 
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Figure 10.5	 The same PCA scores plot as in Figure 10.4, labelled according to the 		
	 category variable ‘wheat class’ (SWS = soft white spring; (CRW = Central red 	
	 spring; WRW = Western red spring). One SWS sample appeared in the same 	
	 group as WRW.

Notice also that one soft white spring (SWS) sample appeared in the same group 
as the western red winter (WRW) class. The breeder had included one hard white 
wheat line for one growing season, and the data analysis software was able to 
identify it as a hard wheat.

Kernel texture has a strong influence on spectral characteristics. Category 
variables can be used to identify spectra by their position and can be developed 
on the basis of features such as growing seasons, wheat class, growing location, 
forage composition, stages of growth, soil type and any other characteristics in 
any material. The data in Figure 10.5 represented three growing seasons and three 
classes of wheat. The main variables were growing season and kernel texture. The 
two winter classes were red wheat and the spring wheat was white. A second 
important difference was that the white wheat was a soft class, whereas both red 
winter wheats were harder in kernel texture. The tendencies were for growing 
season to increase from left to right, and kernel texture, in terms of particle size 
index, to move vertically. 
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10.4	 Spectral basis of calibrations 

10.4.1	 PLS factors (loadings or weights)

A different system for interpretation of calibration results involves plotting the 
weights developed during computation of PLS (partial least squares) regression 
equations. This is done by viewing the PLS weights when the PLS regression is 
complete. The process of PLS regression is based on identification of the major 
sources of the covariance between the spectral data and the reference data. PCA 
searches for the largest variance in X (spectral data). PLS regression searches for 
the largest covariance (or correlation if X is autoscaled, i.e. centred and normalised) 
between the spectral and reference data. The vectors of PLS scores are also called 
'latent variables'. The most important variables can be visualised with the weight 
(loadings) similar to PCA. PCA defines the components of variance in a system. 
Principal components are linear functions of the absorbances in the system, and 
contain all of the information in the spectral data. In NIRS work, PCA is carried 
out on the X-variables (the spectral data) to determine the distribution of the 
variance. The principal components are then regressed against the Y-variables 
(reference data), and used in prediction. This is PCR.

At any wavelength point there are several absorbers all with different degrees 
of intensity, and the highest correlation may not be associated solely with a 
‘classical’ wavelength. The first principal component is the result of interaction 
among the ‘mishmash’ of absorbers, including combination bands and overtones, 
at that wavelength point. In PLS regression, the Y-variables are also used in 
estimating the latent variables (see Chapter 5, section 5.2.8) in order to confirm 
that the major components of the variance are the most suitable for prediction of 
the Y-variables. In theory, PLS regression should give results that are superior to 
PCR, but this is not necessarily true. If PLS proves not to be superior to PCR for a 
given exercise this could indicate that the reference analysis (the Y-data) has not 
improved the relationship between the principal components and the reference 
data, or that the reference data itself may not be reliable. This is yet another 
reason to ensure the precision of the reference method in NIRS application work.

The concept of PCA is easy to illustrate with the first two PCs, which can be 
graphically represented in the form of the x- and y-axis of a correlation scatter 
plot. The existence of a third PC is not difficult to imagine, as being the z-axis 
at right angles to the x and y of the scatter plot. But it is not so easy to visualise 
further PCs. It is easier to understand the concept of PCA if you visualise the 
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components without thinking about graphical representation. In the absence of 
graphical representation it is easier to imagine each of the PCs of the variance as 
being orthogonal (at right angles) to one another ‘in space’.

For practical purposes, the first three or four PCs usually account for most of 
the variance. Getting up to the 11th and 12th PC, while they are still orthogonal to 
each other, the later PCs are accounting for much less of the true variance and 
become increasingly influenced by system noise, i.e. data that are not relevant 
to the measurement. In NIRS analysis, PLS regression includes both spectral and 
reference data and the principle is similar to PCR in that the factors are orthogonal 
to each other. As a general guideline, the fewer the PLS factors used in a model, 
the better. But it is seldom that a model uses only 3 or 4 and most PLS models 
use 6 to 8 factors. Caution must be observed if a PLS calibration uses only 1, or 
15 factors (latent variables). It is impossible for a single factor (latent variable) to 
account for all of the combined spectral and reference data. But if the calibration 
uses 15 factors it is likely that more factors are needed, and that the software is 
considering that the later factors are essential. Such calibrations are unlikely to be 
of sustainable reliability.

Some software systems provide the option of displaying the weights across the 
spectrum. The weights are comparable to the loadings. A weights/loadings plot 
may appear as a spectrum, but it is not a spectrum. It shows the areas across 
the wavelength range where spectral variance has influenced computing of the 
model to a greater or lesser degree. The ‘peaks’ show the wavelength areas of 
the spectrum that has had the most influence on accounting for the variance. The 
spectral variance is influenced by the presence of absorbers such as O-H, N-H and 
C-H, which are recognised in NIRS work to be associated with water, protein, and 
oil, and ‘bands’ may be prominent in a display of the weights at wavelengths in 
the areas of 1900, 1400, 1154 and 960 nm for example. Both O-H and C-H absorbers 
occur in all of the major constituents of agricultural and food materials. The 
weights can best be used in conjunction with the information on the r2-values 
for each PLS factor tabulated during the computation. Figure 10.6 shows the first 
two loadings for prediction of moisture content in whole-grain maize (corn). The 
1st and 2nd PLS factors using log 1/R ‘look’ like the spectra of corn, but the strong 
influence in the wavelength areas associated with moisture is obvious. These two 
factors accounted for 82% of the total variance.

When moisture was predicted in the same sample sets using the 2nd derivative 
(2 4 4 1), the first PLS factor explained 93.6% of the variance, and the influence of 
water on the variance was more clear-cut (Figure 10.7). The ‘bands’ (wavelength 
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areas where the highest influence on variance was apparent) occurred at 1900, 
1404, 1154 and 960 nm. Moisture content ranged from 13.8% to over 50%. An 
interesting point is that the 1st PLS factor for the prediction of moisture in wheat 
flour gave a similar display. Here the range in moisture content was only from 8.6 
to 15.3%. The influence of water is apparent in many applications of NIRS to the 
analysis of grains (Williams, 2009).

Figure 10.6	 First and second PLS factors or loadings line plots for prediction of moisture 	
	 in maize. Calibration has been developed with log 1/R spectra.
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Figure 10.7	 First PLS factors loadings line plots for prediction of moisture 	in maize and 	
	 wheat flour. Calibration has been developed with  2nd derivative 		
	 (2 4 4 1) spectra.

The interpretation of PLS weights becomes more complicated when NIRS is 
used for the prediction of functional parameters, such as wheat kernel texture. 
This is because unlike the NIRS prediction of constituents, such as protein, oil 
and moisture contents, there are no ‘classical’ absorbers assigned to functional 
parameters. The weights show the areas of variance that were most important in 
development of the model which can be used to speculate whether constituents, 
such as water or protein were active in model development. Figure 10.8 shows 
the first PLS factor computed during development of a PLS calibration model for 
prediction of kernel texture in ground wheat.

The log 1/R display looks like an ‘upside-down spectrum’ of wheat. The reference 
method for kernel texture is the PSI (particle size index) test. Wheat is ground to 
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whole-meal by a standardised method. An exact amount (10 g ± 1.0 mg) of whole-
meal is sieved for 10 minutes by rotary action with percussion, using a 200-mesh 
sieve. The percentage of flour (‘throughs’) that pass through the sieve is recorded 
as the PSI. Hard wheat is more difficult to reduce to fine particles than soft wheat, 
and less flour is obtained after grinding than is obtained for soft wheat. Because 
of this, the PSI of soft wheat is much higher than that of hard wheat. The reason 
for the upside-down appearance is that the spectral data of hard wheat whole-
meals show a higher degree of absorbance than do those of soft wheats (see 
Chapter 1, Figure 1.13). The absolute values of the reference data are much higher 
than the absorbance values, and are negatively related to the spectral data. The 
implication here is that the factor that exerts the most important influence on 
the PLS calibration is that of particle size. This is logical because of the known 
influence of kernel texture on the mean particle size of ground wheat. 
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Figure 10.8	 First PLS factor or loadings line plot  for prediction of PSI in ground 		
	 wheat. Calibrations have been developed with log 1/R and 2nd derivative 	
	 (2 4 4 1) spectra.

The strong influence of variance in wavelength areas normally associated with 
water is again clear. The first PLS factor accounted for 91% of the total variance. 
The second PLS factor for prediction of ground wheat kernel texture (Figure 10.9) 
accounted for only 3.7% of the total variance, but the strong influence of variance 
in the main water band area around 1930 nm is obvious. 

The first PLS factor usually accounts for the highest proportion of the total 
variance (i.e. the combined spectral and reference data) of the system. After the 
contribution of the first factor, the contribution of each individual PLS factor 
is accounting only for a proportion of the residual variance. An earlier paper 
(Williams, Cordeiro & Harnden, 1991) drew attention to the possible use of weights 
in interpretation of the process of model development. The paper showed that the 
strong influence of oil and protein on the prediction of dietary fibre components 
in oat bran was clearly revealed by the presence in the first few weights of strong 
peaks of variance in the ‘classical’ wavelength areas for these constituents. 
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Figure 10.9	 Second PLS factor or loadings line plot for prediction of PSI in ground wheat. 	
	 Calibration have been developed with log 1/R spectra. 

Table 10.1	 Regression statistics for prediction of moisture in whole-grain barley

PLS 
factors

SEC
r2-

value
% 

Contribution*
F-value SECV 1-VR SEV Bias

1 1.252 0.128 12.8 15.96 1.247 0.138 1.367 -0.085

2 1.209 0.186 5.8 8.18 1.211 0.186 1.298 -0.063

3 0.534 0.841 65.5** 413.32 0.602 0.799 0.490 -0.111

4 0.498 0.861 2.0 16.15 0.509 0.856 0.434 -0.132

5 0.479 0.872 1.1 8.93 0.491 0.866 0.427 -0.135

6 0.383 0.918 4.6 55.47 0.411 0.906 0.313 -0.049

7 0.373 0.922 0.4 6.01 0.416 0.904 0.295 -0.056

8 0.369 0.924 0.2 2.99 0.422 0.901 0.277 -0.053

9 0.357 0.929 0.5 7.48 0.418 0.903 0.258 -0.041

10 0.338 0.936 0.7 11.73 0.410 0.907 0.251 -0.059

11 0.324 0.942 0.6 9.28 0.365 0.926 0.215 -0.052
*% Contribution to explaining overall variance; ** third PLS factor contributed most toward 
explaining the variance

The use of weights in interpretation of calibration models should be accompanied 
by the relative importance of each weight to the overall model. When developing 
a calibration model the r2-values show how each successive factor is contributing 
to the explanation of the overall variance in the combined spectra and reference 
matrix (Table 10.1) as determined with WinISI software. Subtracting each r2-value 
from the one succeeding gives the contribution of each factor to reducing the 
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residual variance. This is illustrated in column 4 (% Contribution) of Table 10.1, 
which is based on WinISI regression statistics. In the prediction of barley whole-
grain moisture content, the third PLS factor contributed most toward explaining 
the variance in the system. Displaying the 3rd factor showed strong contributions 
to the variance at wavelengths 1410, 1340, 1156 and 964 nm all recognised ‘water-
bands’ (Figure 10.10).
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Figure 10.10	 Third PLS factor or loadings line plot for prediction of whole-grain barley 	
	  moisture content. Calibration have been developed with log 1/R spectra.

The wavelength areas where variance has apparently been used in computing the 
equation are of little practical value if the factor itself does not have a significant 
influence on the overall calibration model. This can be examined by studying the 
r2- and F-values associated with each loading. Factors with the biggest F-values 
are the most important in the model development. The WinISI PLS option displays 
the F-values beside each PLS factor (Table 10.2).

Table 10.2 gives typical data for the calibration models for prediction of moisture 
content of maize and barley (both whole kernels) using PLS regression. In the 
prediction of maize moisture content, the first PLS factor accounted for nearly 
94% of the variance in the system, and the F-values decreased very rapidly for 
the other factors. In the case of barley moisture content the third PLS factor 
had the most influence on the calibration model. The total amount of variance 
accounted for by the 11 factors computed, and the F-values were considerably 
lower and more variable. Table 10.3 gives some typical data for the degree to 
which individual PLS factors contribute to reduction in residual variance for some 
different parameters. The data for flour ash are unusual, in that the first three PLS 
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factors account for less than 20% of the overall variance. This observation was 
confirmed by repetition of the calibration process using different flour samples. 

Table 10.2	 F-values and relative contributions of PLS factors to calibration models for 	
	 prediction of moisture content of whole-grain maize and barley

Moisture content of maize (%) Moisture content of barley (%)

PLS 
factor r2-value % 

Contribution* F-value PLS 
factor r2-value % 

Contribution F-value

1 0.936 93.6 4041 1 0.128 12.8 15.96

2 0.958 2.2 148 2 0.186 5.8 8.18

3 0.983 2.5 412 3 0.841 65.5 413.32

4 0.990 0.7 188 4 0.861 2.0 16.15

5 0.991 0.1 22 5 0.872 1.1 8.93

6 0.992 0.1 43 6 0.918 4.6 55.47

7 0.993 0.1 45 7 0.922 0.4 6.01

8 0.994 0.1 44 8 0.924 0.2 2.99

9 0.994 0.0 20 9 0.929 0.5 7.48

10 0.995 0.1 17 10 0.936 0.7 11.73

11 0.995 0.0 14 11 0.942 0.6 9.28

            Prediction statistics              Prediction statistics

r2 0.993 r2 0.919

SEP 
(%)

0.62 SEP 
(%)

0.30

Bias -0.12 Bias 0.085

Slope 1.010 Slope 1.011

RPD 11.9 RPD 3.5

*% Contribution to explaining overall variance (reduction in total and residual variance)

The PLS factors shown earlier are individual weights/loadings. After the first 
weight, each successive weight represents the residual variance, and even though 
a strong influence may be apparent in the displayed weight, the effect of that 
weight on the total variance in the system is tempered by the amount of the 
residual variance actually represented by the weight.
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Table 10.3	 Proportion of reduction in residual variance contributed by individual 		
	 PLS factors

PLS 
factor

Proportion of reduction in residual variance contributed by each factor

Flour ash Flour 
protein

Maize 
moisture

Flour 
water 

absorption

Wheat 
hardness A*

Wheat 
hardness B*

I / C** I / C I / C I / C I / C I / C

1 4.0 / 4.0 18.4 / 18.4 93.6 / 93.6 84.0 / 84.0 90.8 / 90.8 62.8 / 62.8

2 10.8 / 14.8 52.9 / 71.3 2.2 / 95.8 0.7 / 84.7 2.2 / 93.0 6.9 / 69.7

3 3.3 / 18.1 15.9 / 87.2 2.5 / 98.3 2.1 / 86.8 3.3 / 96.3 7.2 / 76.9

4 27.4 / 45.5 10.2 / 97.4 0.7 / 99.0 0.8 / 87.6 0.5 / 96.8 2.7 / 79.6

5 3.2 / 48.7 1.9 / 99.3 0.1 / 99.1 1.7 / 89.3 0.4 / 97.2 1.8 / 81.4

6 24.7 / 73.4 0.1 / 99.4 0.1 / 99.2 3.1 / 92.4 0.5 / 97.7 2.3 / 83.7

15 1.3/94.2 0.1 / 99.8 0.1 / 99.5 0.5 / 98.8 0.2 / 99.0 1.7 / 95.0

*A = ground kernels; B = whole kernels; **Proportion of reduction in total variance contributed by 
individual factors expressed as I / C = percent of individual / cumulative (total) variance explained

10.4.2	PLS regression coefficients (b)

Regression vectors are the regression coefficient (b) developed at each 
wavelength point. Using PLS regression, they can be displayed in the same way 
as the weights. The regression coefficients (b) are the result of the combined 
influence of all of the PLS factors. Because of interactions among other 
constituents this can result on a confusing array of apparent influences, as 
shown in Figure 10.11. Contributions to explanation of the variance at individual 
wavelength areas can be positive or negative, and the assigning of an absorber 
to an individual peak or valley should be made with caution.

The variables that affect the spectral characteristics of a material include its 
physical, as well as its chemical make-up. The display of regression or b-coefficients 
shown in Figure 10.11 were for the prediction of moisture in whole maize kernels 
which vary widely in size, packing density and the consequent degree of scatter. 
If NIRS is applied to a material, such as wheat flour, which is much more uniform 
in particle characteristics, the b-coefficients for moisture prediction show a clear 
effect in the wavelength areas associated with O-H absorbers (Figure 10.12). The 
arrowed regression coefficients (b) in both Figures 10.11 and 10.12 indicate the 
strong water band at 1930 nm (Workman and Weyer, 2012).
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Figure 10.11	 Regression coefficients (b)  for prediction of moisture content of whole 		
	  maize. Calibration has been developed with 2nd derivative (2 4 4 1) spectra. 	
	  The ‘valley’ at 1930 nm can be assigned to O-H (water) which absorb at 	
	  that wavelength.
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Figure 10.12	 Regression coefficients (b) for prediction of wheat flour moisture. Calibration 	
	  has been developed with log 1/R spectra.

For each application of NIRS to different materials and prediction of different 
parameters the PLS factors and b-coefficients give some information on the 
interactions that have taken place during the computing of the calibration model. 
As a general rule the PLS factor or loading line plots, in combination with the r2- 
and F-values, give a better insight to the development of the calibration model 
than do the b-coefficients. 



Interpretation of calibration evaluation

263

10.5	 Assignment of wavelengths to constituents 

Classical infrared spectroscopists have mapped the position of the fundamental 
absorbers for the C-H, O-H, N-H, C-N, C-O and other functional groups in the 
mid-IR region. All absorbances in the NIR wavelength range derive from these 
fundamental absorptions. Because of the multitude of absorbers that occur in the 
NIR wavelength range, extensive overlap of absorbers occurs which complicates 
making definite wavelength assignments. For example, in the immediate area 
of 1940 nm there are no less than ten possible absorbers, including combination 
bands, and overtones involving C-H, O-H and C-O. In biological (including 
agricultural and food) materials, including methyl (CH3) methylene (-CH2) and 
aromatic C-H groupings there are more absorbers associated with C-H than with 
other molecular arrangements. This is because all of the major constituents, starch, 
cellulose, protein and oil/fat are all rich in C-H molecular groupings, such as -CH-X, 
-CH2 and -CH3. In working with materials and derived materials in the agricultural, 
food, forage and feed domains it is more practical to assign an absorber to a 
constituent, such as protein or water, rather than to a specific functional group. 
This mass of absorbers is an asset to quantitative analysis. When absorbers 
interfere with each other at some wavelengths, the computer is able to select 
appropriate absorbers from other wavelengths that are more highly correlated 
with the reference data.

Figure 10.13 shows the approximate positions of the main constituents of 
agricultural materials on the spectrum from 570–2500 nm. The actual spectrum is 
of ground oats, but the positions are applicable to many agricultural commodities.r = 0.954

Log (1/R)

Coefficients

Wavelength (nm)

-0.001

700 1156 1613 2069 2525

0.141 

0.283

0.425

0.567

Figure 10.13	 Spectrum of ground oats showing areas where major constituents absorb 	
	  (C = cellulose or fibre; O = oil; P = protein; S = starch; W = water).
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The main wavelengths where the most important components (in terms of 
composition) of agricultural materials have been found to absorb, are shown 
in Chapter 2. Table 2.2 is included to help with identifying what is influencing 
calibration development in this way. These have been determined by preparing 
the constituents in as pure a form as possible from wheat and canola seed (oil 
only). The spectra were recorded on a computerised spectrophotometer, scanning 
from 400–2500 nm. The mathematical treatment of 2 4 4 1 was applied to the 
spectral data to ‘sharpen’ the bands. It is particularly interesting to identify the 
wavelengths associated with functional parameters, such as wheat kernel texture 
and wheat flour ‘strength’. Full details of absorbers in the NIR region are given in 
Workman and Weyer (2008) (see Suggestion for further reading).
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Applications of NIRS
The message of successful applications of NIRS in agricultural fields has attracted 
the attention of the pharmaceutical, petrochemical and other major industries. 
The early diagnosis of diseases in animals and humans is receiving increasing 
attention. Other important applications include investigations into environmental 
change. The applications of NIR technology are far too extensive to cover in this 
chapter. The excellent handbooks compiled by Don Burns and Emil Ciurczak (2007) 
and by Craig Roberts and co-authors (2004) (see Suggestions for further reading) 
cover many applications. These include applications in the areas of agriculture, 
food, industrial processing, medical, pharmaceuticals, petrochemicals, textiles 
and others. The principles covered in this chapter are, however, applicable to any 
type of NIRS application. 

11.1	 What can be measured with NIRS?

The most frequent applications are for determination of composition, particularly 
moisture, protein, oil/fat, fibre and starch contents. Calibrations are also available 
for factors such as individual amino acids and fatty acids. Texture (the physical 
structure of materials) and particle size affect light scatter, and because of this it 

11
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is possible to measure factors such as degree of hardness/softness in grains, an 
important factor in grain processing, soil particle size (composition relative to the 
contents of sand and clay) and the viscosity of slurries, such as liquid manures. 
Minerals, such as calcium and phosphorus, can be measured because of the way 
in which they occur in plant materials. Some other elements can be measured in 
materials such as liquid manures because of the form in which they exist, and by 
their association with other constituents.

Advances in data analysis software have made it possible to obtain estimates 
of some quality characteristics in grains, such as wheat gluten strength, barley 
malt hot water extract, digestibility in forages and digestible energy in feed 
grains that are sufficiently reliable for use in plant breeding. Elements such as 
nitrogen, phosphorus, carbon and other elements can be measured with accuracy 
in manures and soil. Qualitative analysis, used in the form of classification analysis, 
is employed in the pharmaceutical industry to identify the substances used in 
prescription and other types of medicinal drugs on the basis of the relatively simple 
chemicals used in their manufacture, as well as to verify that the composition is 
within specifications.

What cannot be measured reliably with NIRS? In general, constituents such as 
trace elements, vitamins, pesticide and herbicide residues cannot be reliably 
predicted by NIRS. Although there are millions of molecules present, they are 
present in very small amounts relative to other constituents with the same 
functional groups. Enzymes are proteins and most of them cannot be measured 
reliably because of their general similarity to other proteins that are also present 
in far greater quantities. Some enzymes, such as alpha-amylase and some 
mycotoxins, such as DON, a mycotoxin of Fusarium species that causes ‘scab’ in 
wheat can be estimated indirectly because of their influence on grain texture. 
Heavy metals cannot be predicted reliably using NIRS unless they are strongly 
associated with a constituent that can be predicted accurately, such as cellulose 
(Malley & Williams, 1997).

Constituents that are present in very low amounts are all made up of the same 
basic molecular groupings (C-H, O-H, N-H) as the major constituents. There are 
many more of these absorbers present in the major constituents of a material and 
these will dominate the spectra. As the instruments become even more precise 
than they are now it may be possible to obtain estimates of constituents that are 
present in low concentrations, but because of the way the system works, NIRS is 
not likely to take the place of, for example, atomic absorption spectrophotometry 
for the determination of heavy metals, in terms of accuracy. Similarly, NIRS 
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estimates may be possible of organoleptic qualities, such as flavour, but again, the 
differences in flavours are affected by constituents that are present in extremely 
small concentrations, and often more than one of these interact with each other 
to provide the subtle changes in taste that can be detected reliably by trained 
taste panels.

It is important not to expect too much from an NIR instrument. There are many 
instances where a company, a university, or some other organisation buys an 
expensive instrument and is disappointed and disillusioned when their instrument 
fails to give them the results that they expected. Modern NIR instruments are 
capable of a very high degree of spectral precision. The burden of the effectiveness 
of their application becomes the responsibility of the analyst. In many cases the 
main reason for mediocre results can be traced to mediocre reference analysis. 
In some cases, the application fails because there are simply no absorbers that 
relate to the parameter to which the technique is applied. But in many other cases 
indifferent results occur because the operators do not understand the technology, 
do not know how to use the instrument properly, and as a result are unable to 
exploit its benefits. These situations reflect unfairly on the instruments and give 
NIRS a bad name. Hence one of the main reasons for this book.

A very important aspect of application to agricultural and food materials is the 
method of sample presentation to the instrument because of the diversity of 
physical form of the materials, particularly fresh materials, such as meat, fish, fruit 
and vegetables. 

This chapter is limited to applications in the agriculture, food and feed industries. 
These applications are dealt with alphabetically and not in order of importance, 
although there are probably more instruments applied in grain testing than in any 
other field.

11.2	 Feed industry 

Analytical chemistry is becoming increasingly important in the animal feed 
industry. The constituents most frequently sought are moisture, protein, fibre, fat 
and ash contents. NIRS can save large analytical costs and because of the short 
analytical time, it can also extend the frequency and flexibility of testing. Feed 
manufacture is a continuous process, and the on-the- spot results provided by 
NIRS is a valuable asset to quality control in a feed mill, as well as the prevention 
of costly down-time. The NIRS predicted results should be related to the tolerance 
levels and specifications demanded by the industry, and also to the relative 
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precision (reproducibility) of the laboratory and NIRS methods of analysis. In many 
cases the precision of the NIRS instrument is superior or at least equal to that of 
the laboratory, and the time saved by using NIRS can be a valuable incentive to 
use it in quality control.

Most industrial applications deal with volume and small benefits and small errors 
can translate into big money. Profit margins are often small, and differences in the 
price per tonne (metric tonne) of grain of only one or two dollars per tonne can 
translate into hundreds of thousands of dollars over an annual production cycle. 
Protein supplements such as soybean meal are expensive, and NIRS analysis in 
the feed mill can enable feed manufacturers to derive the most efficient feed 
formulations. 

More attention is being paid to the advantages of formulating feeds on the basis 
of composition and metabolisable energy. Efficient feed formulation results in 
maximum productivity in terms of weight gain, egg and milk production and 
other areas. Metabolisable energy testing requires feeding animals on controlled 
diets for several days. The costs are prohibitive and complicated by the fact that 
large numbers of samples representing the range in energy are required, so that 
a) assembling a sample set is very time-consuming; b) finding a facility to carry 
out the testing is difficult; and c) nutritionists are not in complete agreement as 
to which version of metabolisable energy is the right one to use. AME differs from 
TME, and the most appropriate form depends on the animal. 

Nevertheless, metabolisable energy is fairly highly heritable in grains and a 
calibration model has been developed for prediction of TME in barley. This has 
great potential for barley breeding programmes and also in feed formulation. 
For the development of this type of calibration and the length of time of the 
reference methods, sample assembly can take more than a year. Gross energy can 
be determined using a calorimeter and is easier and cheaper to determine, but 
of less value in feed formulation. Table 11.1 summarises results obtained for NIRS 
prediction of some fibre components in feed barley. The time and costs per test 
for reference and NIRS testing are included. Total time for developing the TME 
calibration is not included in Table 11.1, but it took over three years to accumulate 
the >100 samples used to develop the calibration, and only one day to scan all of 
the samples and develop the calibration model! The difference in analytical costs 
is striking, but realistic.



Applications of NIRS

269

Table 11.1	 Near-infrared analysis of feed barley

Analysis r2a SEPb Biasc bd RPDe Time per test
Cost per test 

($US)

Reference NIRSf Reference NIRSf

NDF (%) 0.978 0.434 0.108 1.002 6.7 12 h 2 min 99 12

ADF (%) 0.973 0.326 0.097 1.011 6.0 12 h 2 min 99 12

CF (%) 0.973 0.255 0.031 1.035 5.9 12 h 2 min 99 12

TME 
(units) 0.851 0.259 0.097 0.972 2.6 10 days 2 min 650 12

Total - - - - - 10 days 2 min 947 12

Cost for calibration model development (100 samples) 94,700 1,200

For definitions see the following sections in Chapter 4: a = 4.1.6; b=4.1.10; c = 4.1.4; d = 4.1.7; 
e = 4.1.13; f = all four tests can be carried out simultaneously

11.3	 Food industry

Applications in the food industries include baking, breakfast cereals, cake 
mixes, dairy products, fish, meat, noodles, oils and sauces, pasta and others. 
The statements on packaging are legal obligations and apply in most countries. 
Processing plants need to know that the correct ingredients are present in the 
correct proportions, and that the final products meet consumer and legal demands. 
The manufacturer must be prepared to answer legal questions should they arise. 
Modern NIR instruments are capable of degrees of accuracy and precision equal 
to those of ‘wet chemistry’, and factory calibrations are offered for application to 
a wide range of foods. Constituents that are most frequently sought include egg 
content, energy, fat, fibre (crude and total dietary fibre), protein, starch, sugar 
and water contents, all of which can be reliably predicted by NIRS. The reference 
made of the advantages of using NIRS in quality control (see section 11.2) is equally 
applicable in the food, and indeed in most industries that call for analytical work.

11.4	 Flour milling

The flour milling industry has employed NIRS for almost as long as it has been used 
in grain-handling. Flour is usually marketed to bakers, noodle-makers and pasta-
makers on the basis of specifications. These involve protein and ash contents, and 
often water absorption and Farinograph or Alveograph parameters. Some mills 
monitor starch damage, which can also be predicted with NIRS. For the actual 
milling process, millers need to know the moisture, ash and protein contents of 
the final products, and of mill streams as the millers have found to be useful in 
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monitoring the continuous performance of the mill. Where mills purchase wheat 
directly from farms, NIRS is used to test for protein content at the time of delivery. 
Grists can be blended to assure that the end-product flours meet specifications 
for protein and ash contents, so the efficiency of blending is also important. 

The Buhler Corporation offers on-line NIR instruments that continuously 
monitor possible fluctuations in moisture, protein and ash contents of the flour. 
Collaborative studies carried out on Approved AACCI Method 08-01.01 for ash 
determination (AACC, 2000a) and Method 08-21.01 for ash determination using 
NIRS (AACC, 2000b) showed that for most collaborators the precision (as measured 
by the standard deviation between blind duplicates) was slightly better for the 
NIRS method than for the incineration method. The respective mean SD (standard 
deviation) of duplicates for NIRS and the incineration method were 0.0048 and 
0.0083, and the respective CVs were 0.87 and 1.51% (see Chapter 4, section 4.1.3 
for definition of CV). The NIRS ash test takes about one minute, and protein 
and moisture contents can be determined at the same time, whereas the ash 
reference test takes at least 2.5 h, and is less precise than the NIRS method. The 
NIRS system can be set up for continuous monitoring of these three constituents. 
A network of two or more instruments can be set up to monitor flour production 
at critical points, all controlled from a single desktop or laptop computer. Flour 
quality parameters that have been predicted by NIRS are summarised in Table 11.2. 

Table 11.2	 Application of NIRS to prediction of quality factors in flour

Test r2 SEP Mean SD RPD Potential

Moisture (%) 0.99 0.187 12.78 1.8 9.6 Excellent

Protein (%) 0.995 0.105 12.7 1.5 14.1 Excellent

Flour ash (%) 0.88 0.016 0.55 0.05 2.9 Good

Flour starch damage 
(Megazyme units)* 0.93 0.38 5.82 1.47 3.9 Very good

Farinograph water 
absorption (%) 0.92 1.32 63.4 4.5 3.4 Very good

Dough development 
time (min) 0.58 1.40 5.2 2.1 1.5 Poor

Dough stability time (min) 0.68 2.78 7.8 5.0 1.8 Poor

Mixing Tolerance Index 0.92 14.1 52.4 51.0 3.6 Very good

Alveograph W 0.98 23.4 237 161 6.9 Excellent
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The determination of flour ash by NIRS is an Approved Method of the AACCI 
(AACC, 2000b). Flour ash is conventionally determined by incinerating the flour 
and weighing the resulting ash (reference method). The ratio of ash (actually 
mineral content) in wheat bran to that of the endosperm (the eventual flour) is 
about 29:1, so a small admixture of bran will increase the ash content of the flour 
significantly. The ratio of fibre in wheat bran, relative to the endosperm is about 
25:1. Cellulose is a major constituent of bran, and the correlation coefficient (r) 
between flour ash and flour cellulose is over 0.9. There is no ash in flour until 
it is incinerated, so the NIRS ash method probably works by predicting ‘ash’ on 
the basis of changes in cellulose content. The cellulose would arise from small 
inclusions of bran during milling.

11.5	 Forage analysis 

It was in the application of NIR technology to forage analysis that the first attempts 
at network development were made. This was in a collaborative effort in the mid-
1970s between USDA scientists, mainly at Athens, GA, USA, and Pennsylvania State 
University, home of the late Dr John Shenk, one of the pioneers in application of 
NIRS. The biggest difficulty with forage analysis, including forage at all stages of 
growth and straws, lies in sampling, sample preparation and presentation to the 
instrument. Probably the best way to sample a large field of mature forage or straw 
is to sample bales from different spots in the field. Core samples can be taken 
from the targeted bales and carefully sub-sampled before sample preparation. If 
the bales are numbered and their locations in the field recorded, the field can be 
mapped according to constituents such as nitrogen and phosphorus.

Fresh, immature forages are usually not baled and samples must be taken of the 
actual forage on the spot. Analysis of fresh or mature forages/straws in the long 
state (before size reduction) is not practicable. Dried forages are quite light, and 
even the Foss ‘natural products’ rectangular sample cell would only be able to 
accommodate samples from a very small area of a field or plot. Because the material 
has to be chopped, and/or dried before sample preparation, determination of 
moisture of fresh forages is essential before and after sample preparation for 
purposes of model development. The true value of the forage as feed depends on 
the state at which it is ingested. Forage that has 24% protein on a dry matter (DM) 
basis, but only 18% DM at the time of ingestion by the animal, has only 4.3% actual 
protein. This, together with the estimated amount of forage ingested, is the value 
that has to be used to compute any supplements that are to be fed to maximise 
production, and also the value to be used in computing a calibration model for 
the fresh forage. The amount of forage eaten by the animal has to be taken into 
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consideration. Voluntary intake (actual consumption of feed by the animal) would 
be a welcome addition to the parameters measurable by NIRS.

Parameters in forages for which NIRS calibration models have been developed 
include dry matter, protein, fibre components, such as NDF, ADF, crude fibre, in 
vitro and in vivo digestibility, lignin, dry matter intake and some ash components. 
Recent advances in instrumentation have resulted in an NIRS instrument being 
attached to a forage harvester. This technique is called on-site NIRS. It allows the 
forage to be tested for moisture content continually during harvest. This is an 
important advantage to farmers, who get paid on a dry matter basis for fresh 
material delivered for the production of bio-gas. Figure 11.1 shows the instrument 
in place on the spout of a forage harvester, and in action in the field.

Figure 11.1	 An NIRS instrument on the spout of a forage harvester (left) and in action in 	
	 the field.

11.6	 Fruit and vegetable applications

Applications of NIRS in the fruit and vegetable industries include the determination 
of °Brix (a measure of sweetness), moisture content, degree of ripening, firmness 
and organic acids. Interior defects can be detected in vegetables such as potatoes, 
while they have also been successfully predicted in apples and some stone-fruits. 
The main difficulties with application of NIRS to fruit and vegetables is sample 
presentation to the instrument, and presentation of the instrument to the sample.

11.7	 Grain handling 

The aspects of grain handling to which NIRS can be applied include composition 
analysis for constituents such as moisture, protein, starch and oil contents. Other 
applications include classification into grains of different types on the basis of 
their functionality, and grading into different categories within a grain type, on the 
basis of damage that has been caused to the grain by weather during maturation 
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and post-harvest, storage and transportation. This is a qualitative rather than a 
quantitative approach.

11.7.1	 Composition

Of all of the applications of NIRS in grain-handling, the most widely-used is 
composition analysis. During the first half of the 1970s analysis of wheat for protein 
content by NIRS brought about a minor revolution in domestic and foreign wheat 
marketing from the point of delivery in the country to the elevator (silo), flour 
mill and shipping port. This was quickly extended to barley, although world-wide, 
wheat is by far the most important grain commodity traded. About 30 years ago 
ANN calibrations were introduced for moisture and protein contents that are 
applicable to both wheat and barley. 

11.7.2	 Classification

Classification of grains into different categories on the basis of their end-use is 
practiced in some form by all of the major exporting countries. In Canada, the 
USA and Australia, examples are classes of wheat such as Dark Northern Spring 
and Soft Red Winter (USA), CWRS (Canada Western Red Spring), CPSR/W (Canada 
Prairie Spring Red and White), CWES (Canada Western Extra Strong), Australian 
Standard White (ASW) and Australia Prime Hard (APH). 

In Canada and the United States, the classes of wheat are bred to carry kernel 
characteristics that enable grain inspectors and elevator managers to distinguish 
them visually from one another. Prices vary, depending on the class and grade 
within a class. In Australia, at least in New South Wales, protein content and kernel 
hardness (based on wheat variety) make up the principal system for separating 
wheat into classes, and NIRS is used for identifying wheat by class and within class 
(pricing level). To date, NIRS is not used in North America for classifying wheat, 
but because of significant premiums paid for protein content, up to US$1.00 per 
0.1% protein above 12% in CWRS wheat, NIRS is an important factor in assessing 
price to the farmer, and to elevator companies. Classification will be discussed 
later in this chapter.

11.7.3	 Grading

Weather conditions during the growing and postharvest periods, infestation by 
fungi, harvesting methods and transportation can all affect the appearance and 
to varying degrees the functional properties of grains. These factors have all been 
studied, as well as their impact on the grains incorporated into systems for grading 
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and pricing the grains. Weather conditions, such as frost during the maturation 
phase and post-harvest sprouting induce changes in grain texture, and therefore 
the spectra. Because of these changes NIRS should be applicable to detection of 
these grade factors. 

Frost tends to cause kernel texture to become denser, and the kernels become 
harder than normal, which affects milling quality. Factors that induce bleach, 
mildew and sprouting, such as postharvest wetting and drying in-swathe, reduce 
the density of the wheat. A lot of the applied research on wheat has been carried 
out by industrial organisations whose main objective is to improve their operation 
by extending NIRS (and other techniques, such as the Perten SKCS - Single Kernel 
Charactersation System), to aspects of grain-handling. As a result, a great deal 
of the work has remained unpublished. Some of the work has been induced by 
‘knee-jerk’ reactions to seasonal conditions that show up as soon as the new crop 
reaches the market place. Work carried out in Canada on the prediction of wheat 
grading factors is summarised in Table 11.3.

Grading by NIRS would probably lead to an overall improvement in the precision 
of grading. This could be assisted by use of hyperspectral imaging. At present, 
introduction of new classes of wheat is exerting pressure on the visual grading 
system, mainly because the differences in kernel characteristics between some 
classes, such as the Canadian CWES and CPSR classes, are subtle. Most of these 
classes differ in functional and end-use potential. 

Table 11.3	 Application of NIRS to visual wheat grading factors

Grading factor r2 SEP Mean SD RPD Potential for use

Test weight (wheat) 0.79 0.77 82.29 2.14 2.8 Good

Falling Number 0.62 42.5 334 54 1.3 Poor

FDK (%) 0.69 0.81 1.80 1.95 2.4 Poor

Frost (%) 0.82 4.62 10.1 19.5 4.2 Good

HVK (%)* 0.77 5.4 70.5 15.1 2.8 Good

Plump kernel (%)** 0.83 11.5 59.5 28.1 2.5 Fair

Chlorophyll (ppm) 0.96 2.06 30.9 10.8 5.2 Excellent

FDK = Fusarium-damaged kernels; HVK = Hard vitreous kernels; *only in durum wheat;  
**only in barley
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11.8	 Hyperspectral imaging

Near-infrared hyperspectral imaging (NIR-HSI) is a relatively recent introduction 
to food and agriculture applications (Manley, 2014). The technique involves taking 
images of materials and objects, dividing the images into a series of sub-images 
called pixels, and developing an NIR spectrum for each pixel. The number and 
complexity of spectra data recorded depend on the size of the array photographed, 
and on the detector used. Even with silicon detectors, over the small wavelength 
range of 700–1100 nm the database becomes very big, and considerably bigger 
with an InGaAs detector, with a wavelength range of 900–2500 nm.

The equipment is expensive. It includes a digital camera, equipped with a built-
in spectrometer with the appropriate detector, and associated software. The 
system is operated with a computer. The database is very big, which also affects 
computing time. The NIR-HSI technology is at present most suited to qualitative 
classification (discriminant) analysis applications. It appears to be the ideal 
system for electronic grading of materials such as grains or meat. The problem 
of sample presentation to provide a representative image of a large population 
of grains appears to have been overcome, but research is continuing on the 
question of translating the enormous amount (terabytes) of data into industrially 
acceptable procedures for grading or classifying grains, meat, fish, fruits and other 
commodities and products.

11.9	 Manure analysis 

Manure is as much an agricultural product as grain or hay. Manure management 
is receiving a great deal of attention world-wide, although up to the present very 
little analysis is being carried out on the industrial basis. The practice of spreading 
animal waste on the land can lead to serious pollution of surface and ground water 
systems and excessively high levels of soil nitrogen and disproportionate amounts 
of phosphorus below the growing zone. The disposal and/or mismanagement of 
manure has the potential to contaminate water supplies to cities, small towns, 
and particularly villages in areas where hog production is high. This can also cause 
human disease, cause intense eutrophication (increase in chemical nutrients, 
particularly nitrogen and phosphorus) of streams, and fish kills; and change the 
species composition of algae in rivers, lakes and oceans adjacent to major hog 
producing areas.

From the farmers’ viewpoint there is a need to know what nutrients are being 
applied to their land, both from the aspects of the degree to which they may need 
to supplement the manure with commercial fertilizer to meet crop requirements, 
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and the degree to which they are meeting restrictions on nitrogen and phosphorus 
application. Hog manure has commanded the most attention, due to the way it 
is often stored, difficulties in handling and its high phosphorus content. In North 
America, it is often stored in tanks, or earthen ponds or lagoons (Figure 11.2), which 
can hold 4 to more than 20 million litres of liquid manure. A significant amount 
of the material in the manure is undigested food. Surface layers of the stored 
manure may contain as low as 0.5% dry matter and lower layers up to over 11% 
dry matter. The solid material tends to settle, so that the manure is very variable in 
composition, and sampling has to be carried out carefully in order to represent the 
whole lagoon. Ideally, the manure is analysed continuously as the manure store 
is pumped into tanker trunks or applied directly to fields. The main constituents 
of concern are nitrogen (N) and especially phosphorus (P). Both of these, as well 
as potassium, ammonia, and carbon, can be determined in liquid manure by NIRS. 

Figure 11.2	 A hog manure lagoon before (left) and after pump-out.

NIR instruments can provide continuous monitoring during the pump-out and 
provide a good estimate of the total amounts of N (nitrogen) and P (phosphorus) 
that has been spread on the land. Manure management is a potentially multimillion-
dollar industry, which can also improve the efficiency of fertilizer application 
and save considerable expense to grain farmers in the area. The objective is to 
apply N and P in a balanced ratio that will be utilised as fertilizer by the crop. 
On the average, hog manure has an overabundance of P relative to the amount 
of N. Analysis by NIRS during lagoon pump-out can be used to assist in applying 
the correct amount of P to the field and indicating the amounts of additional N 
fertilizer that need to be applied to achieve the optimal balance between nitrogen 
and phosphorus.
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Figure 11.3	 Dairy cow (light) and hog (dark) manure 2nd derivative (2 4 4 1) spectra.

Figure 11.3 shows 2nd derivative (2 4 4 1) spectra of dairy cow and hog manure. 
Several features are apparent. First, notice the strong band in the 670 nm area 
in the cow manure due to chlorophyll that gives manure from pasture-fed cows 
the familiar greenish colour. The band is absent from the hog manure. Next, note 
the very prominent bands at 1726, 1762, 2052, 2168, 2308 and 2350 nm in the hog 
manure spectrum, most of which are far less prominent in the dairy cow manure. 
These are caused by residual protein and fat in the hog manure. Hog nutritionists 
can use data of this type to assist in formulation of efficient diets. The data indicate 
that the hogs were not digesting their feed very efficiently. For example, phytates 
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Figure 11.4	 Hog (light) and broiler (dark) manure 2nd derivative (2 4 4 1) spectra.
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in the feed grain are poorly digested by hogs since the animals lack the enzyme 
phytase. This leads to large amounts of residual phosphorus in the manure. Some 
hog-producers use phytase in the diet. This improves the digestibility of phytate, 
and reduces the phosphorus content of the manure. Figure 11.4 compares the 2nd 
derivative (2 4 4 1) spectra of hog and broiler (chicken) manures. While the bands 
in the protein and oil band areas (2300–2380 nm) are prominent in the broiler

11.10	 Meat and fish analysis

Analysis of fish for fat and protein contents dates back to 1987 (Mathias, Williams 
& Sobering, 1987). Since then NIRS has been applied to the analysis of fish to 
determine fat content and the presence of parasites in dead, frozen and live 
fish. As well, changes in muscle development have also been studied, using NIRS. 
The applications of NIRS to meat analysis concern mainly determination of fat 
content, and more recently water holding capacity or ‘drip loss’. Chicken carcasses 
are examined on-line by NIRS for contamination with faeces, using fibre optics.

11.11	 Mixing and blending efficiency 

The efficiency of mixing and blending in flour and feed mills and other processing 
plants is sometimes tested by sending samples for analysis of a minor constituent 
before and after the mixing-blending operation. This method is subject to the 
errors in the analytical tests used, as well as to delays in obtaining the analyses. 
The efficiency of mixing/blending can be determined simply and quickly by using 
NIRS spectral data with no chemical analysis. The first step is to determine what 
wavelengths to monitor. It is a good idea to monitor wavelength points that are 
known to be associated with known constituents, such as water (982, 1162 and 
1412 nm), oil (1210 and 2306 nm) and protein (1692 and 2054 nm). 

Samples (at least 10) are taken and scanned after about five seconds of blending 
and again after blending is believed to be complete. If the blending is efficient, 
the SD of the spectral peak heights after five seconds of blending will be several 
times greater than the SD of the peak heights at the same wavelength points after 
blending is complete. Table 11.4 shows the influence of blending on the spectral 
data of wheat flour at two wavelength points. For brevity, only five replicates are 
shown. The variance in the log 1/R of the unblended series at both 1410 and 2306 
nm was about seven times higher than that of the blended series. This showed 
that monitoring the variance in log 1/R provides an excellent estimate of the 
efficiency of blending. 
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Animal feeds usually contain several ingredients, most of which differ considerably 
from each other in physical characteristics. Applications in the feed industry 
include analysis of raw materials, feed-mix formulation, analysis of the final 
mixes and testing mixing efficiency. Practically all domestic farm animal feeds are 
based on grain. The grain that forms the basic ingredient varies depending on 
price. Other ingredients include protein and mineral supplements, fibre sources, 
such as alfalfa pellets, meat and bone meal and fish-meal depending on local 
availability. Because of major differences in size and texture in their original form, 
these are all ground in a hammer mill before mixing, but still vary widely in their 
spectral signatures.

Table 11.4	 Changes in precision of Log 1/R values as a result of blending flour

Replicate Log 1/R at 1410 nm Log 1/R at 2306 nm

1a* 0.3376 0.5318

1b 0.3364 0.5316

2a 0.3344 0.5277

2b 0.3369 0.5325

3a 0.3373 0.5329

3b 0.3369 0.5322

4a 0.3425 0.5423

4b 0.3376 0.5336

5a 0.3362 0.5303

5b 0.3371 0.5328

SDa 0.00301 0.00555

Mean log 1/Ra 0.3376 0.5330

CVa 0.892 1.042

SDb 0.000432 0.00074

Mean log 1/Rb 0.3370 0.5325

CVb 0.128 0.139

Ratio CVa/CVb 6.97 7.50

*Series ‘a’ samples were unblended; series ‘b’ samples were thoroughly blended

The same system (as the one used in the above example) of testing the efficiency 
of blending flour mill streams can be applied to monitoring mixing efficiency in a 
feed mill. Here the mixing is complicated by the fact that the ingredients used in a 
feed mix are often quite different in physical makeup and spectral characteristics 
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and efficient mixing is essential. The respective SDs and corresponding CVs are 
determined of samples that are withdrawn and scanned early in the mixing and 
after mixing. Figure 11.5 shows the dramatic reduction in CV in a dairy cattle feed 
mix as a result of efficient mixing. The upper line in Figure 11.5 shows the CV in 
spectral data across the spectrum before mixing and the lower line shows the CV 
after mixing. The reduction in the variance in spectral data was dramatic, and gives 
the operator the ability to determine the efficiency of mixing/blending within a 
few minutes, and with no need for laboratory or chemical analysis.

Average CV

r = 0.954

Log (1/R)

Coefficients

Wavelength (nm)

Average CV=1.12 1-2

Average CV=0.045
1-3

Figure 11.5	 Influence of efficient mixing on the standard deviation (SD) of spectral data 	
	 of a feed mix. The coefficient of variance (CV) of  the dry total mixed ration 	
	 (TMR) has been used. Upper line = before mixing and the lower  
	 line = after mixing.

11.12	 Near-infrared discriminant analysis

Near-infrared discriminant or classification analysis is a very useful method for 
classifying and identifying materials by type. The technique can be used with only 
spectral data and no reference data are required. Figure 11.6 shows two classes 
of Canadian hard red wheat, CWES and CPSR classes, commercial deliveries of 
which are difficult to distinguish from one another visually when they occur as 
bulk deliveries. The Soft Independent Modeling of Class Analogy (SIMCA) system 
separates different classes of materials on the basis of their spectral characteristics, 
which, in turn, are a function of their chemical and physical make-up. In the 
example of these two wheat classes SIMCA separates them clearly (Figure 11.6).
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Figure 11.6	 Kernels of CPSR and CWES wheat, and SIMCA classification of these wheats.

Several commercial data analysis software packages offer forms of discriminant 
analysis. Of these, probably the simplest is the WinISI version. Figure 11.7 shows three 
classes of Canadian hard red wheat, with their separation by WinISI classification. 
Calibration models can be developed for the prediction of different classes. These, 
in combination with calibrations for protein and moisture, could provide a realistic 
basis for electronic classification and testing of wheat at delivery.

Discriminant or classification analysis has been applied in several areas of 
agricultural analysis, including materials as diverse as flax straw and wheat. It can 
be applied to a wide variety of other materials, for example to identifying samples 
of fruit, meat, and other fresh products on the basis of accepted quality factors. 
Assembly of samples for classification analysis follows the pattern of sample 
assembly for composition analysis in that the variables that are likely to affect 
the spectra must be identified, and samples gathered that represent all of the 
variables – replicated several times.

Figure 11.7	 Three classes of red wheat, CWRS, CWES and CPSR with classification of 	
	 these three wheats illustrated with WinISI software. 
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11.13	 Near-infrared networking

Most modern large-scale grain handling operations that involve testing of grains 
and seeds for moisture, protein, oil and starch contents where a number of NIRS 
instruments are in use, operate all of their instruments by the use of a network. All 
of the instruments are connected to a ‘master’ instrument, located at the central 
laboratory that is responsible for controlling the entire operation. All of the 
instruments must be of the same make and model and use the same calibrations. 
The network is controlled from a single computer at the central laboratory. 
Accuracy and precision are monitored and controlled using check samples of the 
appropriate commodity. All of the ‘satellite’ or ‘slave’ instruments, located in areas 
outside of the central laboratory are interfaced to the master instrument, which 
is the only instrument that is calibrated and monitored by the reference methods. 
Accuracy is monitored by scanning check samples and all adjustments are made 
on the basis of results of the master instrument. The concept is discussed in 
greater detail in Chapter 9, section 9.2.

11.14	 Peatland environmental work

A high proportion of the world’s carbon is tied up in peatlands (Figure 11.8). With 
the progress of global warming there is some danger of these drying out to the 
extent that they could catch fire. Peat fires can burn for years and convert this 
bound carbon to CO2. Research is in process to monitor the moisture content of 
peat-lands, using NIRS on location. At present the average moisture content is well 
above 80%, but this could change quickly to dangerously lower levels in different 
locations. About 60% of Canada’s reserves exist on first nation reservations. 
NIRS is also being used to determine carbon deposits for which financial credits 
are awarded. 

Figure 11.8	 Canadian fen-type (left) and bog-type (right) peatlands.
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11.15	 Plant breeding

This section will be confined to wheat breeding, mainly because selection of 
wheat lines with the best end-use potential is rather more complicated than 
breeding other crops. Barley specialists may argue that point, but a) there are 
more different classes of wheat than there are of barley and b) the same principles 
apply to barley breeding anyway. 

‘Quality’ in grain means the end-use potential of the grain. The most important 
factors that affect wheat quality are kernel texture, kernel colour, protein content 
and gluten ‘strength’. Selection for quality characteristics must be carried out in 
the laboratory where the breeder recruits the expertise of cereal chemists to 
advise on the quality factors characteristic of each genotype. Screening for quality 
is much more time-consuming and expensive than screening for agronomic traits 
and disease resistance, but equally important. If the quality is not maintained in 
a new variety an increase of e.g. 3% in yield (significant to a plant breeder) may 
lead to an increase in wastage of 3–4%, which cancels the advantage. This is non-
productive and damaging to the reputation of the breeder and the institute from 
which the new variety was released for commercial growing. It can also have 
economic consequences to users of the variety.

Laboratory analytical methods are a valuable asset to plant breeding. An on-
going source of frustration between the breeder and the cereal chemist is that 
the breeder would like full analytical data, including physicochemical data and 
even baking data as early as the F3 generation, but cannot spare more than a few 
grams to the chemist because of the need to plant the selected lines. Practically 
any laboratory analytical process involves grinding the sample, which precludes 
planting the seed. Recent advances in NIRS prediction of functional parameters 
in whole kernels have paved the way for selection of the best (and the worst) 
material in early generations. Calibration models can be developed with as little as 
30 g of whole kernels and the testing is non-destructive, so that the seed can be 
planted after testing and selection. As well, the nature of NIRS testing allows the 
simultaneous screening of 200–300 samples for several parameters in a normal 
work day; far beyond the volume of testing that can be achieved by ‘traditional’ 
methods, and at a fraction of the cost. Thresholds for acceptance or rejection 
based on selected characteristics could be set up using NIR classification analysis.

Wheat breeders’ trials of advanced lines are usually grown in several locations and 
over several seasons. The volume of samples generated can place heavy stress 
on chemical screening due to the time and expense, but NIRS testing of whole 
kernels can revolutionise screening in both early and advanced generations. 
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Testing of whole kernels also saves the lengthy, laborious and destructive chore 
of grinding thousands of samples. Prior to NIRS, testing lines of a given wheat 
class that had been grown on several locations were usually composited before 
full laboratory testing, because time and expense precluded testing all the 
individual lines. This obscured most of the variance induced by growing location, 
and the very important interactions between genetics and growing location 
and season remained unexplored. But NIRS enables testing of all lines grown on 
all locations. This enables the determination of the effects of genetics/season/
location interactions within a season, which provides much more information to 
the breeder. Lines that show excessive variability in kernel texture, gluten strength 
and other functional parameters should be discarded. Wheat quality parameters 
for which NIRS models have been developed are summarised in Table 11.5.

Table 11.5	 Applications of NIRS in wheat breeding – whole grain applications

Quality factor r2 SEP Mean SD RPD
Potential 

for use

Kernel colour (L*, b*) 0.96 0.30 17.4 1.1 3.7 Excellent

Kernel texture (PSI) 0.84 1.98 56.3 5.1 2.6 Fair

Farinograph water 
absorption 0.91 1.09 63.4 5.2 4.8 Very good

Farinograph 
development time 0.62 1.2 5.0 2.7 2.2 Poor

Farrinograph 
stability time 0.70 1.9 7.8 3.5 1.8 Poor

Farinograph mixing 
tolerance 0.72 17.7 52.4. 46.2 2.6 Fair

Extensigraph 
maximum height 0.72 85 506 228 2.7 Fair

CSP mixing energy 0.76 2.5 10.2 6.2 2.5 Fair

Protein content (%) 0.98 0.20 12.7 2.1 10.5 Excellent

HVK (%) (Durum wheat) 0.78 5.3 78.5 12.6 2.4 Fair

Barley TME 0.85 0.26 14.0 0.66 2.5 Fair

Malt fine grind extract 0.52 1.00 73.1 2.2 2.2 Poor

Oat groat (%) 0.81 0.95 74.2 2.7 2.9 Fair

CSP = Canadian Short Process bread making; TME: True metabolisable energy
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To summarise, the use of NIRS testing in wheat or any other plant breeding 
enables screening of whole kernels and seeds in early generations, and increases 
the numbers of samples that can be screened by several hundred percent. 
It also enables the testing of large trials of advanced lines grown on different 
locations within a region. This provides important information on the complex 
genotype/location/season interactions, which was not practicable previously. 
The NIR technology has great potential as a screening method for quality factors 
in generations as early as F3. It can enable screening of very large numbers and 
can greatly reduce costs. 

Calibrations for constituents or functional parameters, such as digestibility that 
call for expensive reference analysis can be developed by starting on a small scale 
with as few as 30 samples. The calibration model is used to predict new samples. 
New samples that add variance in the spectral and/or reference data can be sent 
for analysis, the results of which can be used to evaluate the effectiveness of 
the model. This procedure is continued until a large database with 200 or more 
samples is built up, and a stable calibration obtained. An extra advantage of this 
approach is that samples are likely to be assembled over a considerable time 
period, which will add more variance in the form of seasonal changes in the 
material. Setting up calibrations in this way with small sample sets is supported 
by use of a repeatability file (see Chapter 9, section 9.1.8).

11.16	 Precision agriculture

Precision agriculture is a fairly new area of research. The objective is to map the 
fertility of a field to improve the efficiency of fertilizer use by applying the fertilizer 
more heavily where the crop has removed more of the nutrients, and less where 
less of the nutrients have been removed. The concept depends on the fact that 
the composition of plants growing in a field is a good indication of the fertility 
level. This principle has been successfully applied in New South Wales, Australia, 
where analysis of rice at a very early stage of growth is being used to provide 
fertilizer recommendations to farmers. 

The concept was carried a stage further by workers at Montana State University 
where samples were taken on a combine harvester and used to monitor protein 
content of the wheat as it was being harvested. The harvester was equipped with 
a Global Positioning System (GPS) and a load cell to monitor both crop yield and 
protein content over the field. The data were computed into nitrogen uptake, and 
removal from the soil, and were used in the subsequent season to regulate the 
amount of nitrogenous fertilizer applied. An amount equivalent to replace the 
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nitrogen removed was added, together with sufficient extra fertilizer to provide 
an improvement in yield and/or protein content. Farmers that use the system 
have reported savings in fertilizer expenses of up to 20%. An equally important 
benefit is that farmers can identify grain of higher or lower protein content and 
thereby gain the maximum profit from their crops. Precision agriculture has many 
potential applications in both developed and developing countries.

An NIR instrument for use in this type of action has to be capable of very fast 
testing. Developments in Europe (called ‘on-site’ NIRS analysis) have enabled 
prediction of moisture content of fresh and haying forages during harvest, using a 
modified Zeiss Corona diode array NIRS instrument, which is fitted onto the forage 
harvester (see Figure 11.1). This instrument scans the wavelength range from 900–
1500 nm using an InGaAs detector. The most difficult aspect of this innovative 
approach, namely providing consistent sample access to the instrument, has been 
overcome. The main use of on-site NIRS testing in Europe has been in the bio-fuels 
industry, but it has an even higher potential in sewage and manure management 
and precision agriculture. 

11.17	 Soil, peat and compost analysis 

The most labour-intensive aspect of soil analysis is the sampling. Soil analysis 
shares this with forage analysis, but differs in that soil must be sampled from 
at least two depths to obtain a reasonable estimate of the nutrients present. 
Application of NIRS to soil analysis is further complicated by the fact that there 
are few absorbers in soil and most of the volume of soil is inorganic material with 
few NIR absorbers. 

A third complication with soil analysis, whether by NIRS or reference methods, 
is that of sample presentation. Soils vary widely from heavy intractable clays to 
light sandy soils. To obtain a true picture of the soil as a growing medium, the 
soil should be analysed for nutrients as it is in the field. But accurate reference 
analysis is not possible without size reduction, and this in turn calls for drying. 
Drying of soil is usually carried out at 40°C or room temperature. Even at low 
moisture content, heavy clay soils are difficult to reduce to a condition that 
favours precise analysis. The best way to overcome this is by analysing several 
replicates. This applies to both reference ‘wet chemistry’ and NIRS analysis. This is 
much faster and cheaper by NIRS than by reference methods. Prediction of total 
and organic nitrogen and carbon, pH and cation exchange capacity have been 
the most successful applications of NIRS to soil analysis to date. Prediction of 
phosphorus in soils by NIRS has not been so successful to date. 
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Figure 11.9 shows spectra of three air-dried soils. The main effect is that of particle 
size. Absorption bands in the 1400 and 1900 nm areas due to water appear very 
prominent, even in oven-dried soil. The peak at 2206 nm has been attributed to 
an interaction between silicates and water. The peaks at 1400 and 1900 nm are 
decreased by drying, but not the peak at 2206 nm, which supports the silicate 
hypothesis. Figure 11.9 also presents the 2nd derivative (2 4 4 1) spectra of the same 
samples. Weak bands at 1978 and 2176 nm indicate the presence of nitrogen-
containing constituents.
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Figure 11.9	 Log 1/R and 2nd derivative (2 4 4 1) NIR spectra of three dried soils.
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Soil should be scanned in a form that is as near as possible to the form in which 
it lay in the field. Sample preparation for reference analysis of soils includes air-
drying and size reduction by grinding. The samples bear little resemblance to the 
original soil in terms of its texture or moisture content. Soil is sampled using probes 
or augers that are pushed into the soil to the required depth and withdrawn, 
holding the soil, but ideally the soil should be scanned either in the field or as 
soon as possible after sampling in order to preserve the original moisture content. 
The ideal way of analysis of soil would be to insert a NIRS probe directly into the 
hole made by such augers. Two novel methods of applying NIRS to soil analysis 
have recently been introduced. The first uses a NIR sensor attached to a disc 
plough shank, and the second uses a NIR sensor attached to an augur-type probe, 
which can be forced into the soil to a depth of up to one metre (Figure 11.10) 
Soil parameters that have been measured include moisture and organic carbon 
contents and pH.

Figure 11.11 show log 1/R and 2nd derivative (2 4 4 1) spectra of peat moss, which 
is a form of soil, and a highly organic material. There was a noticeable band shift 
in the 1400 nm area as a result of drying. The prominent bands at 1726, 2308 and 
2348 nm are traditionally oil bands. As they are attributed to C-H stretching 
and deformation they could belong to constituents other than oil. For example, 
proteins, cellulose and starch all contain C-H groupings. The band at 2270 nm is 
characteristic of cellulose.

Peat itself is a preliminary to the formation of coal. Its depth ranges down to 
several metres below the surface and is characterised by moisture contents that 
range up to over 90%. Traditionally peat has been dug, dried in the air and used 

Figure 11.10	The Veris NIRS soil probe
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as fuel. Peat moss used in horticulture occurs at or very close to the surface and is 
much lower in moisture content.

An aspect of soil analysis that is rapidly receiving more and more attention is that 
of carbon sequestration in soil. Because of the increase in greenhouse gases in 
the atmosphere, agricultural practices that transfer carbon from the air into the 
soil are favourable to the environment. Because of this interest, determination 
of carbon in soil has received a lot of focus. The top 10–15 cm of soil is rich in 
roots which are not soil. Roots should theoretically be removed before analysis 
of the soil by the reference method or NIRS. When NIRS is used to predict the 
organic carbon content of the soil, the roots (an important component of the 
soil) contribute a high proportion of the carbon. The form in which the carbon is 
stored in the soil is also important in determining how long the carbon will stay 
in the soil. 

Calibrations have been developed for the determination of organic and total 
carbon in soil by NIRS. These will become valuable in future monitoring of carbon 
exchanges in soils. Nevertheless, more work is required to develop calibrations 
for various carbon fractions that turn over at different rates, particularly those 
that are resistant to breakdown and will remain in soil for long periods. Another 
type of agricultural material that is also receiving a lot of attention is compost. 
Composting is regarded as a practical and environmentally acceptable system 
for disposal of manure from cattle feed lots. Figure 11.12 show spectra of typical 
cattle manure compost before and after air-drying. Bands at 2308, 2348 and 2384 
nm are also prominent in compost. The apparent wealth of compost in nutrients, 
based on absorbers in the traditional protein and oil areas, underlines the value of 
compost as a soil nutrient.
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Figure 11.11	 Log 1/R and 2nd derivative (2 4 4 1) spectra NIR spectra of peat moss as 	
	  received and after air-drying.
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Figure 11.12	 Log 1/R and 2nd derivative (2 4 4 1) spectra NIR spectra of beef cattle 		
	  compost before and after air-drying. 

11.18	 Wine analysis

Analysis of wine begins in the vineyard with the analysis of the growing grape. The 
ratio of sugar content to titratable acids is an important indication of the stage 
of maturity of the fruit. Sugar content is measured in the field by determination 
of total soluble solids (°Brix) using a refractometer. When the sugar content 
reaches a certain level, the grapes begin to be tested for titratable acidity. This 
is done in a laboratory. Analysis of the must (fermenting grapes) begins early 
in the fermentation stage. The most important parameters tested in wine are 
°Brix, alcohol, pH, titratable acidity, malic acid, volatile acidity and alpha-amino 
nitrogen. Other parameters that have been measured include glycosyl-glucose, 
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anthocyanins and some sensory factors. The most advanced work on application 
of NIRS in the wine industry has been carried out at the Australian Wine Research 
Institute in Adelaide, South Australia.

11.19	 Wood analysis

Wood in the form of sawn lumber (timber) has been the major factor in the 
construction of buildings and furniture for centuries. A third major consumption 
of wood is in the production of paper, most of which is produced from wood 
pulp. The effectiveness of wood in construction, furnishing, or pulp-production 
is largely a function of the species, and the growing conditions. For construction 
in particular, features such as density, resistance to mechanical stress, elasticity 
modulus, bending strength and resistance to compression are all key factors in 
the quality of the wood. For paper production, kraft pulp-yield potential, cellulose, 
lignin and moisture contents all contribute to the quality and value of the wood. 
NIRS has been successfully applied to the prediction of most of these parameters. 
Other areas of application include the prediction of the degree of degradation 
due to aging and changes in surface characteristics of wood to which various 
coatings have been applied. 

11.20	 Wool analysis

The moisture content of wool can be as high as 30%. High moisture content 
(above 14%) can cause wool to develop mildew during shipping. Contaminants of 
raw wool as delivered to the scour include wool wax, suint (mainly dried sweat), 
soil, manure, leaves and other organic matter. Wool is tested for residual grease, 
ash and vegetable matter, after washing. Another parameter measured in wool 
by NIRS include medullation, the degree to which air has entered the wool fibres. 
This affects the reaction of wool to dyes. Because of its springy nature, sample 
presentation has always been a problem in wool analysis by NIRS. Working with a 
KES/WRONZ NiraSpec diode array instrument, the Wool Research Organisation of 
New Zealand (WRONZ) have developed a sample presentation method that allows 
testing of 100 g of wool, which very much improved the precision of analysis.

11.21	 Last words on NIRS applications

This chapter has introduced some of the many areas in which NIRS technology 
can be employed with great benefits in terms of time and expense, as well as 
opening the door to analytical work that could not be undertaken prior to the 
advent of NIRS. 
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Probably the most complicated and consistent problem overall with all the diverse 
applications has been sample presentation to the instrument. An NIRS instrument 
can only record what it sees, and calibrations and future analysis depend mainly 
on the quality and veracity of the spectra. This is especially important in the case 
of fruits and vegetables, which differ widely in size and shape. The instrument 
companies strive to ensure that their products accurately record the spectra of 
the samples presented to the instrument. It is up to us, the operators, to prepare 
and present the samples properly. It is particularly important to determine the 
reproducibility of spectral data when NIRS is to be applied to the analysis of these 
very different types of fresh materials. Individual operations that choose to apply 
NIRS to the analysis of fruits and vegetables develop their own systems for sample 
presentation. The reproducibility of scanning is a key aspect of these applications.

A second factor of equal importance is the moisture content of the sample as 
tested and as it exists. Materials such as fresh fruits, vegetables and forages, meat 
and fish are high in moisture and their economic and nutritional values depend 
on their composition at the time that they are used. Most reference analysis calls 
for drying and size reduction, whereas NIRS analysis can be carried out on the 
fresh material. For accurate calibration, it is essential to know the composition on 
the basis of the actual moisture content of the fresh material at the time it was 
scanned, and analytical results should be reported on the basis of the original 
moisture content. 

The final word

This book has attempted to assemble all of the practical elements that operators 
need to know in order to get the most benefit from NIRS technology. The 
technology has changed and become more sophisticated over the 44 years since 
it was first applied to actual analytical work in industry. The basic principles are 
the same as they were in the early days. The wisdom and genius of engineers, 
software experts and chemometricians have enabled tremendous advances to be 
made in instruments and software. But the time per test is still about two minutes 
from sample to sample, because, except for on-line testing, the sample still has to 
be placed in the instrument and removed after testing. For its most widespread 
field of application, in the agricultural, feed and food industries, NIRS is the 
ideal method because of its flexibility in sample presentation, speed, freedom 
from chemicals and economics. Because of its proven superiority in precision 
(reproducibility) over most laboratory reference procedures, NIRS spectra are 
highly reproducible, and provided that the calibrations have incorporated all the 
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sources of variance, NIRS results can confidently be considered as being more 
reliable than most reference laboratories. 

In the interests of time and space, the book has focused to a certain extent on 
grain applications. Applications in areas such as the meat, fish, fresh fruit and 
vegetables, tobacco and numerous other areas have also been successful. All of 
them use essentially the same principles as those described for grain applications.
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A	

Abnormal spectrum   230

Absorbance, definition   138

Absorbers, fundamental   39

Absorbers, fundamental, definition of   39

Absorbing bands of constituents   39

Absorbing groups and constituents   39

Absorption, definition   33

Accuracy, definition of   58

Accuracy, determination and 
establishment of   58

Accuracy, implications of   79

Advantages of NIRS   27

Applications of NIRS in agriculture   265

Application in blending and mixing 
efficiency   278

Applications in Feed industry   267

Applications in the food industry   269

Applications in flour-milling   269

Applications in forage analysis   271

Appications in fruit and vegetable  
analysis   272

Applications in grain-handling   272

Application in manure analysis   275

Applications to meat and fish analysis   278

Applications to determine mixing /
blending efficiency   278

Applications not recommended   266
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Applications to peatlands   282

Applications in plant-breeding   283

Applications in soil analysis   286

Applications in wine analysis   291

Applications in wood analysis   292

Applications in wool analysis   292

Approved methods for reference  
analysis   62

Approved methods, precision of   63, 64

Approved methods, sources of error  
in   64–66

Artificial neural networks   24, 103

At-line instruments, definition of   147

Automated digital analyzer (ADA)   19

B	

Backward stepwise regression   120

Barley, analysis of   273

Bias, definition of   79

Bleaching, influence of on wheat kernel 
texture   274

Blending of flours and feeds, influence  
on spectral data   278

Boerner sample divider   180

Bonds, covalent, definition of   37

Bonds, ionic, definition of   39

‘Boxcar’ smoothing   111

Bulk density of samples, influence  
on storage   190

C	

Calibration   219 

Calibration-free testing   278 

Calibration model, development  
steps in   219

Calibration models, interpretation of   248

Calibration model, optimisation of   236

Calibration transfer   243

Category variables   253

Cell window thickness, influence on  
results   190

Check cell, description   201

Check cell, use of   202

Chlorophyll   274, 277

Classification  
(see Discriminant Analysis)   130, 280

Client/instrument interaction, software  
for   135

Coefficient of determination, definition  
of   81

Coefficient of determination, 
determination of   81

Coefficient of determination, guidelines 
for   82

Coefficient of variation, definition of   76

Coefficient of variation, interpretation  
of   78

Combination bands, description   39

Company/client service   167

Common constituent absorbers  
(Table)   44, 45

Compost, NIRS spectra of   286

Constituents, definition of   57

Correlation coefficient, computing of   81

Correlation coefficient, definition of   80

Correlation coefficient, guidelines  
for   82

Costs per test,  description   153

Cross-validation, definition of   126

D	

Databases, importance, and use of   222

Data pretreatment   110
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Dedicated software, definition of   104

Degree of uncertainty, description   182

Dependent variables, definition of   71

Derivatives, definition of   112

Diagnostics   133

Diffuse reflectance, definition of   32

Discriminant analysis   130, 280

Double variance as a concept   224

Disadvantages of NIRS   28

E	

Economics   15, 150–151, 153–154, 182

Electromagnetic spectrum   17

Error of NIRS test, influence on SEP   203

Errors in NIRS testing, implications of   71

F	

F-values, significance of relative to  
PLS factors   259

Factory calibrations, description   218

Fibre-optics, use of   195

First derivative, description of   112

First derivative, example   114

Flour ash, prediction of   270

Flour, spectra of   34, 207

Flow-through sample cell   193

Forages, sampling of   181

Forage spectra, factors influencing   205

Forage composition, true value  
of fresh   184

Functional groups, description   39

Functionality, definition of   57

Fundamental absorbers, description   39

G	

Gap, definition of   105, 112

Gaussian distribution of samples   233

Generic software, definition of   104

Global H values, description   236

Grain grading   273

Grains, safe moisture levels for storage 
of   189

Graphics   134

Grinders, importance of cleaning of   186

Growing location, influence on  
spectra   209, 210

Growing season as a factor in sample 
assembly   209, 210

Growing season, influence on  
spectra   209, 210

H	

Hard wheat flour, spectra of   34, 207

Hard wheat whole grain, spectra  
of   34, 207

Herschel, William   17

History of NIRS   17

Hyperspectral imaging   275

Hydrogen bonds, description   37

I	

Images, 3-dimensional   250

Images, 3-dimensional, use of   250

Independent variables, definition of   71

Instrument durability   164

Instrument errors   203

Instrument internal standards   156

Instrument maintenance   168

Instrument noise at low wavelength  
range   165

Instrument peripherals   166

Instrument precision, description   155

Interactance   144, 196
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K	

Kernel size, influence on spectra   206, 208

Kernel texture, influence on diffuse 
reflectance   206

L	

Latent variables   122, 254

Leverage   91 

Light scattering   32, 140

Light scattering, description   32, 115

Lignification   210

Lignin, description   224

Local option for calibration model 
development   237

Log 1/R   138

M	

Mahalanobis distance, definition of   235

Manures, NIRS spectra of   275

Manures, sampling of   276

Matlab software   104

Master/slave concept   243

Mathematical pretreatment   110

Mean, definition of   71

Metabolisable energy, prediction by  
NIRS   268

Model evaluation   126

Moisture as error source in moisture 
testing   214

Moisture, importance of   185

Moisture content, influence on  
spectra   214 

Moisture, loss of during grinding   213

Moisture, influence of on errors in protein 
testing   214, 230

Moisture, influence on soil condition   211

Molecular concept, description   36

Molecular vibrations and absorption   39

Monochromator, use of in NIR  
instruments   148

Multicollinearity, description   90

Multiple linear regression (MLR)   90, 119, 
120–122

Multiplicative scatter  
correction   110, 115, 118 

MLR and partial least squares,  
comparison   123–125

N	

Near-infrared absorbers, table of   47

Near-infrared networking   167

Near-infrared (NIR) technology, 
advantages of   27

Near-infrared (NIR) technology, 
disadvantages of   28

Near-infrared reflectance and 
transmittance   138–139

Neotec Corporation   19

Near-infrared spectroscopy, basic 
principles   11, 122

Neighbourhood H values, description   236

Networking instruments, description   234

Neural networks, description   24, 103

NIR technology, economic benefits  
of   15, 153

NIR technology, history of   17

NIR technology, molecular basis of   36

NIR technology, spectral ranges   17, 157

NIR technology and time, significance  
of   16

NIRCal software   104, 236
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NIR discriminant analysis of Canadian Red 
wheat classes   281

NIR discriminant analysis   130, 280

Noise, definition of   111, 149

Non-linearity, definition   200

O	

Observations, definition of   75

On-line instruments, definition of   147, 156

Open turntable sample cell   194

Optical density, definition of   24, 107

Orbitals   36

Orthogonal, description   255

Outliers, definition of   129

Outliers, detection of   129

Over-fitting of data   90, 93, 122 

Overtones, description   39

P	

Parameters, definition of   57

Partial least squares (PLS) regression   122

Particle Size Index test   25, 116, 254, 256

Path length, definition of   139

Peat moss, NIRS spectra of   286

Pirouette software   104

PLS factors, contribution to model   254

PLS1, definition of   123

PLS2, definition of   123

Population, definition of   176

Precision agriculture, description   285

Principal component analysis (PCA), 
description   254

Principal component regression (PCR), 
description   254

Proportions of error, estimation of   58

Q	

Quotient mathematics   120

R	

Reference methods, arbitrary   67

Reference tests, definition of   55

Reference testing, precision of   56

Reflectance, description   32–33

Reflectance instruments   138

Reflection, description   32

Regression coefficient, computation of   83

Regression coefficient, definition of   82

Regression coefficient, example  
of use   85, 88

Regression to the mean, definition   233

Regression to the mean, estimation of 
error due to   233

Repeatability, definition of   58, 59

Replication, influence on  
reproducibility   241

Reproducibility, definition of   58, 59

Reproducibility, estimation of   59

Residual error, application of  
information   41, 260

Residual error, estimation of   41, 260

Root mean square error of prediction, 
definition of   95

Root mean square of differences, 
definition of   96

Rotating turntable sample cell,  
effects of   194

RPD, definition of   97

RPD, interpretation of   98, 99

S	

Sample assembly, difficulties with   223

Sample cell design, importance of   158
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Sample cell rotation as error  
factor   146, 190

Sample cell size, significance of on sample 
scanning   158

Sample cell windows, composition of, 
influence of   159

Sample, definition of   176

Sample factors, influence on error   205

Sample noise, description   162, 233

Sample preparation, importance  
of   183, 198

Sample preparation, steps   183

Sample presentation as error  
source   56, 198

Sample presentation error, estimation  
of   202, 203

Sample presentation, importance of   190

Sample presentation, of whole grains   193

Sample selection methods, for  
calibration   231

Sample thickness, importance of   193

Samples, blending of   12, 66, 180, 183, 227, 
244, 278

Samples, how many to use in  
calibration / validation   231

Sampling frequency, method of 
determination   182

Samples, storage of   188

Sapphire windows for use in sample  
cells   194–196, 202

Scatter correction,  
multiplicative   110, 115, 118

Scatter, influence of on absorbance   33

Scores plots, use of   235

Second derivative, description of   112

Segment and gap, definition of   112

Selection of NIRS instrument,  
criteria for   150

Signal-to-noise ratio   115, 149

Slope correction   128

Slope, definition of   82

Slopes, examples of   85, 88

Smoothing, definition of   105, 110–112

Software, dedicated, definition  
of   104, 150

Software, generic, definition  
of   104, 150

Software, purposes of   103

Soil sampling, difficulties in   181

Soil, NIRS spectra of   286

Soybean, anomaly in spectra of whole 
seeds   143

Spectral data, intervals of recording   165

Spectral data, intercorrelation among   121

Spectrum of wheat, showing overtones of 
water band   26, 117

Specular reflectance, definition of   32

Stability in instrument output   199

Stand-alone instruments, description   147

Standard deviation, definition of   74

Standard deviation, true meaning of   74

Standard error of a single test (SET)   88

Standard error of calibration (SEC)   90

Standard error of cross-validation  
(SECV)   94

Standard error of prediction, (SEP)   89

Static electricity, effects   157, 159, 187,  
192 198

Stepup MLR, definition of   119

Stepwise MLR, definition of   103, 119–121

Stray light, definition   9, 198, 200

Sunflower, anomaly in spectra of  
whole seeds   143

System error, explanation of   199
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T	

Temperature, ambient: 79, 166

Temperature, instrument: 199, 201

Temperature, operating conditions: 103, 
133, 161, 195, 199, 202, 215, 222, 224

Temperature, sample: 90, 188, 223, 228

Test-set evaluation of calibration  
models   127

Texture of grain and diffuse  
reflectance   35

Texture of wheat, influence on  
spectra   35, 206–207, 253, 256–257

The Unscrambler software   104

Time per test   15

Transflectance, definition of   193–194

Transmittance (transmission)  
description   33, 138

Trebor company   23

V	

Variables, dependent, definition of   71

Variables, independent, definition of   71

Viewing of spectra, importance of   217

Vision software   104, 236

W	

Wavelength assignment, difficulties  
of   263

Wavelength range, influence on  
prediction   157

Wavelength range, optimisation of   118

Wavenumbers, definition of   138, 148

Weights/loading plots, explanation of   254

Weights plots, interpretation in ground 
wheat texture   256

Wheat quality, parameters predictable by 
NIRS   284

Whole wheat, spectra of   25, 34, 114, 117, 
142, 207, 218

Window thickness, significance of   190

WinISI software   21, 104, 112, 228, 235, 236, 
237, 250


	Contents

	List of Acronyms & Abbreviations

	Acknowledgements

	Preamble

	Preface

	1 Introduction, history and the economic benefits of near-infrared spectroscopy 
	2 Basic physics and chemistry of NIRS
	3 Reference Analysis

	4 Statistical terms for evaluation of accuracy and precision
	5 Introduction to NIRS software

	6 NIRS Intrumentation
	7 Sampling, sample preparation and sample presentation
	8 Variables that can affect performance of NIR instruments
	9 Calibration development and evaluation methods

	10 Interpretation of calibration evaluation

	11 Applications of NIRS

	Index


