

Web Security: Learning HTTP
Security Headers

Liran Tal

This book is for sale at
http://leanpub.com/web-security-learning-http-security-headers

This version was published on 2023-01-17

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2023 Liran Tal

http://leanpub.com/web-security-learning-http-security-headers
https://leanpub.com
https://leanpub.com/manifesto

Contents

About The Author . 1
Liran Tal . 1

About The Book . 3
Requirements . 3
Source Code . 4

Introduction . 5
Requirements . 5
Headers as browser security controls 6
Helmet - a Node.js package to set HTTP security headers 8

HTTP Security Headers . 12
HTTP Strict Transport Security 12
X Frame Options . 21
Content Security Policy . 28
Referer and Referrer Policy 36
Deprecated security headers 40

Testing for Security Headers 43
The State of HTTP Security 43
WebPageTest . 47
Lighthouse . 52
Check My Headers command line application 56
Summary . 58

CONTENTS

What’s next? . 60
Establish a CSP and Security Headers standard 60
Monitor your web application 62
Other browser security headers and controls 63
Referrer-Policy . 64
Educational resources . 65
Security headers tooling 66

About The Author

Liran Tal

Liran Tal is a software developer, and a GitHub Star, world-
recognized for his activism in open source communities and ad-
vancing web and Node.js security. He engages in security research
through his work in the OpenJS Foundation and the Node.js ecosys-
tem security working group, and further promotes open source
supply chain security as an OWASP project lead. Liran is also
a published author of Essential Node.js Security and O’Reilly’s
Serverless Security. At Snyk, he is leading the developer advocacy
team and on a mission to empower developers with better dev-first
security.

At Snyk*, he leads the Developer Advocacy team where he engages
developers about open source security in various ways, from engi-
neering tools, to education and awareness. Liran also co-authored
O’Reilly’s Serverless Security† with Guy Podjarny, Snyk’s co-
founder, president and long-time security professional.

Liran is a seasoned international speaker and greatly enjoys build-
ing and engaging communities. He is an ambassador for Romania’s
JSHeroes‡, and the DevSecCon§ community, among others.

Previously, Liran held roles as an Engineering Manager for Hewlett
Packard Enterprise and Nielsen Marketing Cloud, where he played
a key technical role in system architecture and shaped the technol-
ogy strategy in stacks including Angular, React, and Node.js.

*https://snyk.io
†https://www.oreilly.com/library/view/serverless-security/9781492082538/
‡https://jsheroes.io
§https://www.devseccon.com/

https://snyk.io
https://www.oreilly.com/library/view/serverless-security/9781492082538/
https://jsheroes.io
https://www.devseccon.com/
https://snyk.io
https://www.oreilly.com/library/view/serverless-security/9781492082538/
https://jsheroes.io
https://www.devseccon.com/

About The Author 2

Liran graduated cum laude in his Bachelor of Business and Infor-
mation Systems Analysis studies and enjoys spending his time with
his belovedwife Tal, and his magical son Ori. Amongst other things,
his hobbies include playing the guitar, hacking all things Linux, and
continuously experimenting and contributing to open source, and
web development projects.

You can follow and engage with Liran at https://twitter.com/liran_-
tal

About The Book
This book is a follow-up on Liran Tal’s Essential Node.js Security
for Express web applications* and teaches you hands-on practical
use of HTTP security headers as browser security controls to help
secure web applications.

For each HTTP security header that can enhance your web appli-
cation security, you’ll learn what is the overall risk of not imple-
menting it, and what does a proposed solution help with. Finally,
you’ll learn how to implement and configure the security header
with Helmet, a popular and well-maintained Node.js package on
npm.

This book includes 18 Lessons, 8 Quizzes, 30 Code Snippets, and 19
Illustrations to help you level up on your HTTP security headers
skills, and includes:

• Secure web applications using HTTP security headers
• Understand Content Security Policy
• Setup Node.js web applications securely
• Learn how to test and monitor for security headers and
vulnerable JavaScript libraries

• Roadmap for future web controls

Requirements

The source code, and examples through-out this book are based on
the Long Term Support version of Node.js†, which at the current
edition of the book is Node.js 14.

*https://leanpub.com/essential-nodejs-security/
†https://nodejs.org/en/

https://leanpub.com/essential-nodejs-security/
https://leanpub.com/essential-nodejs-security/
https://nodejs.org/en/
https://leanpub.com/essential-nodejs-security/
https://nodejs.org/en/

About The Book 4

Source Code

All the source code examples, and many more variations of them
can be found in their complete setup and form in the following
GitHub repository inside the code/ directory https://github.com/
lirantal/learning-http-security-headers-book.

Feedback and comments are highly appreciated and welcome.
If you find any issues, improvements, or room for updates
please open a GitHub issue, submit a pull request, or contact
the author directly via email (liran.tal@gmail.com), or Twitter
(https://twitter.com/liran_tal).

https://github.com/lirantal/learning-http-security-headers-book
https://github.com/lirantal/learning-http-security-headers-book

Introduction

Requirements

If you have a development environment set with Node.js, git, npm,
and working Internet connectivity, you’re all set to get started!

Some exercises require work with a valid HTTPS-enabled website,
for which we defer to Heroku as the web hosting platform due to its
ease of use and supporting simultaneously both HTTP and HTTPS
web hosting.

Web knowledge prerequisites

It is expected that you have basic knowledge of HTTP, such as
the meaning of HTTP headers, an HTTP request, and response,
and general knowledge of how the web works in terms of the
interactions between a web server and a web client (the browser).

It is also expected that you have Chrome installed, but not manda-
tory. This book refers to Chrome’s DevTools, and includes screen-
shots using the Chrome browser. If you are using any other browser
and can make the parallels yourself, you should be fine moving
forward with the book.

A JavaScript and Node.js development
environment

This book uses the Express web application framework for Node.js
to create web applications and set headers using open source
modules from the npm ecosystem.

Introduction 6

It is expected that you have a working development environ-
ment with a supported Node.js version (LTS), along with the npm

command-line utility.

You’ll also need git to clone example repositories used along with
the exercises if you wish to practice locally.

Heroku hosting

While you are free to deploy the Node.js web application provided
in the code references to anyweb hosting you’d like, such as Vercel*,
or Netlify† - the exercises explain how to use a free Heroku account
to deploy.

Headers as browser security
controls

What are HTTP security headers? How can they be useful to secure
web applications and specially used as low-hanging fruits, which
are easy to implement? At the same time, they may break a web
application if not applied correctly.

Intro

Developing web applications means that our application depends
on communication protocols that already have a set of standards
defined and implemented for how to transfer data and how to
manage it in a secure manner.

Browsers utilize headers sent over HTTP (secureHTTP connections
mostly) to enforce and confirm such communication standards as

*https://vercel.com
†https://www.netlify.com

https://vercel.com
https://www.netlify.com
https://vercel.com
https://www.netlify.com

Introduction 7

well as security policies. Making use of these HTTP headers to
increase security for the code running on the browser client-side
is a quick and efficient method to mitigate security vulnerabilities
and add defense in depth.

Security headers and Node.js

In this book, we will introduce browser security controls by imple-
menting HTTP headers for increased security.

We’ll learn about Helmet as a library that can be easily added to
any Express project and configure it to provide additional security
for Node.js web applications.

The HTTP security headers that we will review are:

• Strict-Transport-Security: HTTP Strict Transport Security,
also known as HSTS, for short. Enforces a secure communi-
cation channel to the web server.

• X-Frame-Options: X Frame Options header defines the poli-
cies of rendering a web page as an HTML frame.

• Content-Security-Policy: Content Security Policy, or CSP
for short, defines a wide range of security policies for web
browsers.

• X-XSS-Protection: The Cross-site Scripting protection header
instructs the brower to set specific XSS-mitigating policies.

• X-Content-Type-Options: The X Content Type Options is a
browser-specific header to instruct the browser to apply strict
settings to the Content-Type value of the response.

Security headers caveats

Utilizing security headers can be a great strategy to help prevent
security vulnerabilities, but a common mistake is to rely solely on
them tomitigate such issues. This is because responding to a request

Introduction 8

with a security header depends on the browser to actually support,
implement, and adhere to the specification to enforce it. You
may consult the Strict Transport Security browser compatibility
matrix* to verify if the browsers used for your web application are
supported.

As such, security headers should be used as a defense in depth†
security mechanism that helps in adding a security control, but
they shouldn’t be the only security control to defend against
vulnerabilities like Cross-site Scripting.

Defense in Depth

A defense in depth is a security concept in which
multiple layers of security controls are placed in order
to create a better security posture.

Helmet - a Node.js package to set
HTTP security headers

HTTP security headers are a generic tool that can be employed by
any technology at the HTTP Protocol Layer, such as load balancers,
an API gateway, reverse proxies, or web application frameworks.

Helmet‡ is an open source project which comprises a collection
of HTTP middleware functions that configure HTTP headers by
setting the HTTP response object accordingly.

If you’re building Node.js web applications with the help of Ex-
press§, then Helmet is the go-to npm package to use and all source
code examples in the book will follow its usage. If you’re using

*https://caniuse.com/#feat=stricttransportsecurity
†https://en.wikipedia.org/wiki/Defense_in_depth_(computing)
‡https://helmetjs.github.io
§http://expressjs.com

https://caniuse.com/#feat=stricttransportsecurity
https://caniuse.com/#feat=stricttransportsecurity
https://en.wikipedia.org/wiki/Defense_in_depth_(computing)
https://helmetjs.github.io
http://expressjs.com
http://expressjs.com
https://caniuse.com/#feat=stricttransportsecurity
https://en.wikipedia.org/wiki/Defense_in_depth_(computing)
https://helmetjs.github.io
http://expressjs.com

Introduction 9

other frameworks, such as Fastify, then consult the source-code
example in the follow sub-sections.

Helmet wrappers for other Node.js web frameworks are available
as follows:

• For Koa refer to the koa-helmet* package.
• For Hapi refer to blankie† package.

Helmet and Express

If you’re using an Express web application setup, begin by installing
the Helmet module:

1 npm install --save helmet

Then, continue to instantiate an Express application object, and
set an application middleware using Helmet. Specifically, in this
example, we’re setting the X-Frame-Options using Helmet’s built-
in frameguard method:

1 const express = require("express");

2 const helmet = require("helmet");

3

4 const app = express();

5

6 app.use(

7 helmet.frameguard({

8 action: "sameorigin",

9 })

10);

*https://github.com/venables/koa-helmet
†https://github.com/nlf/blankie

https://github.com/venables/koa-helmet
https://github.com/nlf/blankie
https://github.com/venables/koa-helmet
https://github.com/nlf/blankie

Introduction 10

Helmet and Fastify

If you’re using the Fastify* web application framework, begin by
installing the Helmet wrapper module fastify-helmet†:

1 npm install --save fastify-helmet

Then, in a Fastify web application, register the fastify-helmet

plugin and provide it a configuration object that includes any of
the Helmet-supported security headers:

1 const fastify = require("fastify")();

2 const helmet = require("fastify-helmet");

3

4 fastify.register(helmet, {

5 contentSecurityPolicy: {

6 directives: {

7 defaultSrc: ["'self'"],

8 },

9 },

10 });

11

12 fastify.listen(3000, (err) => {

13 if (err) throw err;

14 });

By registering the fastify-helmet plugin without any configura-
tion, the following default security headers and their values will be
set:

*https://github.com/fastify/fastify
†https://github.com/fastify/fastify-helmet

https://github.com/fastify/fastify
https://github.com/fastify/fastify-helmet
https://github.com/fastify/fastify
https://github.com/fastify/fastify-helmet

Introduction 11

1 {

2 "x-dns-prefetch-control": "off",

3 "x-frame-options": "SAMEORIGIN",

4 "x-download-options": "noopen",

5 "x-content-type-options": "nosniff",

6 "x-xss-protection": "0"

7 }

HTTP Security Headers

HTTP Strict Transport Security

HTTP Strict Transport Security, also known as HSTS, is a
protocol standard to enforce secure connections to the server
via HTTP over SSL/TLS. HSTS is configured and transmitted
from the server to any HTTP web client using the HTTP header
Strict-Transport-Security which specifies a time interval during
which the browser should only communicate over an HTTP
secured connection (HTTPS).

Tip

When a Strict-Transport-Security header is sent over an
insecure HTTP connection the web browser ignores it
because the connection is insecure, to begin with.

In future requests, after the header has been set, the browser
consults a preload service, such as that of Google’s*, to determine
whether the website has opted in for HSTS.

The Risk

The risk that may arise when not communicating over a secure
HTTPS connection is that a malicious user can perform a Man-
In-The-Middle (MITM) attack and down-grade future requests to
the webserver to use an HTTP. Once an HTTP connection is
established, a malicious attacker can see and read all the data that
flows through.

*https://hstspreload.org/

https://hstspreload.org/
https://hstspreload.org/

HTTP Security Headers 13

Interesting fact: The original HSTS draft* was published
in 2011 by Jeff Hodges from PayPal, Collin Jackson from
Carnegie Mellon University, and Adam Barth from
Google.

A website that uses HTTPSmay still create insecure HTTP requests
which end users wouldn’t suspect but expose end-users to MITM
attack security concerns.

In the following flow diagram, Figure 1-1, we can see an example
scenario where the server returns an HTML file for the login page
to the browser, which includes some resources that are accessible
over HTTP (http://cdn.server.com/images/submit.png), like the
submit button’s image.

If an attacker can perform a Man-In-The-Middle attack and “sit on
the wire” to listen and sniff any un-encrypted traffic that flows
through, then they can access and read those HTTP requests which
may include sensitive data. Even worse scenarios may include
HTTP resources set for POST or PUT endpoints where actual data
is being sent and can be sniffed.

*https://tools.ietf.org/html/rfc6797

https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797

HTTP Security Headers 14

The Solution

When web servers want to protect their web clients through
a secured HTTPS connection, they need to send the
Strict-Transport-Security header with a given value which
represents the duration of time in seconds for which the web client
should send future requests over a secured HTTPS connection.

e.g. to instruct the browser to upgrade all requests sent to the server
to HTTPS for the next hour:

1 Strict-Transport-Security: max-age=3600

Helmet Implementation

To use Helmet’s HSTS library we need to download the npm
package and we will also add it as a package dependency to the

HTTP Security Headers 15

Node.js project we’re working on:

1 npm install helmet --save

Let’s set up the hstsmiddleware to indicate to a web client, such as
a browser, that it should only send HTTPS requests to our server’s
hostname for the next month:

1 const helmet = require("helmet");

2

3 // Set the expiration time of HTTPS requests to the

4 // server to 1 month, specified in milliseconds

5 const reqDuration = 2629746000;

6

7 app.use(

8 helmet.hsts({

9 maxAge: reqDuration,

10 })

11);

In the above snippet, we instruct the Express app to use
the hsts middleware and respond to all requests with the
Strict-Transport-Security header set.

Note that if for any reason the browser receives multiple HSTS
header directives it will only respect and enforce the policy based
on the first one sent.

It is common for web servers to have sub-domains to fetch assets
from or make REST API calls to, in which case we would also like
to protect them and enforce HTTPS requests. To do that, we can
include the following optional parameter to the hsts options object:

1 includeSubDomains: true;

HTTP Security Headers 16

Tip

If it is necessary to instruct the browser to disable
the Strict-Transport-Security a server can respond with
this header’s max-age set to 0 which will result in the
browser expiring the policy immediately and enable
access over an insecure HTTP connection.

Exercise

The following exercise shows a practical example of using HTTP
Strict Transport Security (HSTS), as a browser security control
to allow only HTTPS-enabled resources to be fetched from the
primary domain for a website.

Requirements

We will be using Heroku* as our hosting platform for an Express
Node.js application, as we will need both an HTTPS-enabled host-
ing, as well as an HTTP hosting to switch on and off the HTTP
Strict Transport Security header.

Source code

Obtain the source code from the official GitHub repository at:
https://github.com/lirantal/nodejssecurity-headers-hsts.

Once you cloned the repository, the overall projects file structure
that you should be aware of is:

1. An express server in server.js

2. A handlebars template in views/home.handlebars which
serves as an example website

3. A public directory which has an image that we will use
*https://www.heroku.com/

https://www.heroku.com/
https://www.heroku.com/

HTTP Security Headers 17

Deployment

You’ll need a Heroku account to deploy the Express web app there.

1. Sign-up for a free Heroku account, and have the heroku CLI
installed.

2. npm install all the dependencies in the project.
3. Create a Heroku Node.js project
4. Login from the CLI using: heroku login

5. Using the heroku CLI create a new project, such as: heroku
git:remote -a hsts-express-example to instantiate a git
remote for the project, assuming hsts-express-example is the
name of the heroku project name you used in step (3).

6. Deploy the app using git push heroku master

At this point, it should be available as both HTTPS and HTTP
endpoints, such as:

• https://hsts-express-example.herokuapp.com/
• http://hsts-express-example.herokuapp.com/

Exercise 1

Once the Express app is deployed, try to access it:
https://hsts-express-example.herokuapp.com/

HTTP Security Headers 18

Quiz time!
What is special about the request to load the static
unplash image* ? a) It is originally an HTTP request
b) This request is upgraded to an HTTPS request c)
Nothing special about this HTTP request

The correct answer is both A and B.

Are you seeing anything going wrong with the net-
work requests?What is not working with the favicon?

a) The favicon is not loading because it’s a bigger
image than it should be. b) The favicon is not loading
due to the HSTS security header. c) The favicon is not
loading because the web server is misconfigured.

The correct answer is B. The favicon is not loading
because it is only served from an HTTP domain, but
the HSTS security header is upgrading all requests to
be HTTPS and so it fails to load.

Did you look at the network tab in the browser’s DevTools? What
did you find?

You should notice a few things happening:

• Themain request to the page https://hsts-express-example.herokuapp.com/
replies with a Strict-Transport-Security security header.

• The request to load the image http://hsts-express-example.herokuapp.com/harley-davidson-zGzXsJUBQfs-unsplash.jpg
gets an internal browser redirect to its HTTPS version
because the HSTS version does just that - it upgrades all
requests to their HTTPS counterpart to load them securely.

• The favicon from http://http.rip/favicon.ico is blocked
from being loaded.

*http://hsts-express-example.herokuapp.com/harley-davidson-zGzXsJUBQfs-
unsplash.jpg

http://hsts-express-example.herokuapp.com/harley-davidson-zGzXsJUBQfs-unsplash.jpg
http://hsts-express-example.herokuapp.com/harley-davidson-zGzXsJUBQfs-unsplash.jpg
http://hsts-express-example.herokuapp.com/harley-davidson-zGzXsJUBQfs-unsplash.jpg
http://hsts-express-example.herokuapp.com/harley-davidson-zGzXsJUBQfs-unsplash.jpg

HTTP Security Headers 19

Quiz time!
Update the expiration time of the HSTS setting to 0
(zero): js X> httpApp.use(X> helmet.hsts({ X>

maxAge: 0, X> }) X>); X>

What changed?

a) Strict-Transport-Security is set but with an expira-
tion time of 0 which disables it. b) The unsplash image
is loaded from HTTP directly, without any redirect c)
The favicon is fetched and displayed for the website

The correct answers are A, B, and C.

Debugging HSTS settings in Chrome

As you experiment with the HTTP Strict Transport Security header,
you may be setting it on localhost served pages, which could end
up as a footgun due to HTTP-only pages being forcefully redirected
to HTTPS.

Reviewing Chrome’s HSTS settings

If such an issue occurs and you wish to review your Chrome setup
of HSTS settings andmanually include or exclude domains from the
HSTS list, navigate to chrome://net-internals/#hsts in Chrome’s
address bar and update as necessary.

It should look like the image depicted in Figure 1-2 below:

HTTP Security Headers 20

Clear cache

Sometimes, no localhost entry will exist on the HSTS internal
configuration for Chrome, yet a forceful redirect to HTTPS will
still take place.

To ensure you clear the cache, do as follows:

1. Navigate to the localhost domain at http://localhost
2. Open DevTools by pressing CTRL+SHIFT+I or F12
3. Locate the address bar’s reload page icon and right-click it. In

the menu that opens up select Empty Cache and Hard Reload

Reloading the localhost website over HTTP, such as
http://localhost:3000 should now work as expected without an
HTTPS redirect.

HTTP Security Headers 21

X Frame Options

The X-Frame-Options* HTTP header was introduced to mitigate
an attack called Clickjacking. It allows an attacker to disguise page
elements such as buttons, and text inputs by hiding their view
behind real web pages which render on the screen using an iframe
HTML element or similar objects.

Deprecation notice The X-Frame-Options header was
never standardized as part of an official specification
but many of the popular browsers today still support
it. Its successor is the Content-Security-Policy (CSP)
header which will be covered in the next section and
one should focus on implementing CSP for newly built
web applications.

The Risk

The Clickjacking† attack, also known as UI redressing, is about
misleading the user to perform a seemingly naive and harmless
operation while in reality, the user is clicking buttons that belong
to other elements, or typing text into an input field which is under
the attacker’s control.

Common examples of employing a Clickjacking attack:

1. If a bank or email account website doesn’t employ an
X-Frame-Options HTTP header, then a malicious attacker
can render them in an iframe, and place the attacker’s input
fields on the exact location of the bank or email website’s
input for username and password and record your credentials
information.

*http://tools.ietf.org/html/7034
†https://owasp.org/www-community/attacks/Clickjacking

http://tools.ietf.org/html/7034
https://owasp.org/www-community/attacks/Clickjacking
http://tools.ietf.org/html/7034
https://owasp.org/www-community/attacks/Clickjacking

HTTP Security Headers 22

2. A web application for video or voice chat that is insecure can
be exploited by this attack to let the user mistakenly assume
they are just clicking around on the screen or playing a game,
while in reality, the series of clicks is actually turning on your
webcam.

The Solution

To mitigate the problem, a web server can respond to a browser’s
request with an X-Frame-Options HTTP header which is set to one
of the following possible values:

1. DENY - Specifies that the website can not be rendered in an
iframe, frame, or object HTML elements.

2. SAMEORIGIN - Specifies that the website can only be rendered if
it is embedded on an iframe, frame, or object HTML elements
from the same domain the request originated from.

3. ALLOW-FROM <URI> - Specifies that the website can be framed
and rendered from the provided URI. It is important to note
that you can’t specify multiple URI values, but are limited to
just one.

A few examples to show how this header is set are:

1 X-Frame-Options: ALLOW-FROM http://www.mydomain.com

and

1 X-Frame-Options: DENY

Beware of Proxies

Web proxies are often used as a means of caching and
they natively perform a lot of header manipulation.

Beware of proxies that might strip off this or other
security-related headers from the response.

HTTP Security Headers 23

Helmet Implementation

WithHelmet, implementing this header is as simple as requiring the
helmet package and using Express’s app object to instruct Express
to use the xframe middleware provided by Helmet.

To set the X-Frame-Options to completely deny all forms of embed-
ding:

1 const helmet = require("helmet");

2

3 app.use(

4 helmet.frameguard({

5 action: "deny",

6 })

7);

Similarly, we can allow frames to occur only from the same origin
by providing the following options object:

1 {

2 action: "sameorigin";

3 }

Or to allow frames to occur from a specified host:

1 {

2 action: 'allow-from',

3 domain: 'https://mydomain.com'

4 }

Exercise

The following exercise shows a practical clickjacking attack by a
malicious party. In this example, the attacker deploys a website they

HTTP Security Headers 24

control with a hidden iframe. The website is rendered in an iframe
is an innocent, third-party website. The attacker’s aim is to hijack
any clicks made by unsuspecting users on that website.

Requirements

Node.js and npm are expected to be available in your development
environment as we will run this exercise locally.

Note: In this exercise, there’s no strict need for serving the web
pages content over HTTPS.

Source code

Obtain the source code from two official GitHub repositories:

• https://github.com/lirantal/nodejssecurity-headers-xframe-
malicious - serves the contents of a malicious website that
embeds a remote iframe in an attempt to trick the user to
click on.

• https://github.com/lirantal/nodejssecurity-headers-xframe-
innocent - serves the contents of an innocent website. In our
example, this serves as a Twitter profile card.

Once you cloned both repositories locally we are ready to run both
servers.

Deployment

To run this exercise we will begin by installing all the dependencies
for each npm project and then run the Express servers:

In each directory where the projects are cloned:

1. npm install all the dependencies

HTTP Security Headers 25

2. Run npm start in two terminal windows so we can have the
Express servers run in parallel

The servers will require that you have ports 3000 and 3001 available
to bind to by default. Otherwise, you may provide a PORT environ-
ment variable to each web server project to configure a different
local port.

Note: you should be running both servers simulatanously.

Exercise 1

Load up the malicious website by navigating to
http://localhost:3000.

You will be presented with a website asking you to sign-up for a
React developer newsletter. Would you?

Quiz time!
The invite to join this React newsletter is quite tempt-
ing. Did you click it? What happened?

HTTP Security Headers 26

It looks like clicking the Sign up! button on this website doesn’t do
what you hoped it would.

Exercise 2

In the previous excercise we observed a peculiar behavior, where
clicking an website’s invitation to a newsletter didn’t result in the
way we expected.

You’re not sure what was going on, right? What if you could see
the actual element you clicked on?

Add reveal=1 query parameter to the website, such as:
http://localhost:3000?reveal=1 and the iframe that has
been loaded in the background will be revealed in 50% opacity so
you can see how it renders on the screen and perfectly aligns with
the “Sign up!” button.

HTTP Security Headers 27

Exercise 3

In the cloned malicious website directory, open
views/home.handlebars and update the iframe URL to some
other websites, such as Twitter itself (i.e: https://twitter.com). The
change should look like this:

1 <iframe src="https://twitter.com"></iframe>

Re-run the malicious website Express server with the change you
made, and visit the page again at http://localhost:3000.

Quiz time!
What happened when you changed the iframe URL to
something else? Can you try and find a website that
should be secure but allows rendering in an iframe?

Exercise 4

Ok, let’s fix things.

HTTP Security Headers 28

In the cloned malicious website directory, open again the
file views/home.handlebars and update the iframe URL to
http://localhost:3001/html/twitter.html and make sure the
other innocent web server, which we cloned earlier, is running.
The change should look like this:

1 <iframe src="http://localhost:3001/html/twitter.html"></i\

2 frame>

Save the file changes, re-run the malicious website Express
server with the change you made, and visit the page again at
http://localhost:3000. Observe the current behavior. The iframe
is now rendering the content of the innoccent website we have
running at http://localhost:3001

To protect the innocent website, let’s make sure that we update it
to disallow rendering itself as an iframe with the help of Helmet’s
frameguard middleware:

1 const helmet = require("helmet");

2 app.use(helmet.frameguard({ action: "deny" }));

Refresh the malicious website and note the changes.

Content Security Policy

As reviewed before with the X-Frame-Options header, there are
many attacks related to content injection in the user’s browser.
These include Clickjacking attacks or other forms of attacks such
as Cross-Site-Scripting (XSS).

HTTP Security Headers 29

What is an XSS?

A Cross-site scripting, or XSS for short, is a type of
security attack in which a user can inject JavaScript,
or other types of scripts (for example injecting CSS, or
HTML) to trigger the execution of them by the context
interpreter, such as the browser.

Another improvement to the previous set of headers we reviewed
so far is a header that can tell the browser which content to trust.
This allows the browser to prevent attempts of content injection
that are not trusted in the policy defined by the application owner.

With a Content Security Policy* (CSP) it is possible to prevent
a wide range of attacks, including Cross-site scripting and other
content injections. The implementation of a CSP renders the use of
the X-Frame-Options header obsolete.

The Risk

Using a Content Security Policy header will prevent and mitigate
XSS and other injection attacks. Examples of some of the issues it
can prevent by setting a CSP policy:

• Inline JavaScript code specified with <script> tags, and any
DOM events which trigger JavaScript execution such as
onClick() etc.

• Inline CSS code specified via a <style> tag or attribute
elements.

The Solution

With CSP allowlists, we can allow many configurations for trusted
content, and as such the initial setup can grow to a set of complex

*https://developer.mozilla.org/en-US/docs/Web/Security/CSP/Introducing_Content_
Security_Policy

https://developer.mozilla.org/en-US/docs/Web/Security/CSP/Introducing_Content_Security_Policy
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/Introducing_Content_Security_Policy
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/Introducing_Content_Security_Policy

HTTP Security Headers 30

directives.

Let’s review one directive called connect-src. It is used to control
which remote servers the browser is allowed to connect to via XML-
HttpRequest (XHR), or <a> elements. Other script interfaces that
are covered by this directive are: Fetch, WebSocket, EventSource,
and Navigator.sendBeacon().

Acceptable values that we can set for this directive:

• ‘none’ - not allowing remote calls such as XHR at all.
• ‘self’ - only allow remote calls to our domain (an exact
domain/hostname - sub-domains aren’t allowed).

An example for such content security policy being set is the follow-
ing directive which allows the browser to make XHR requests to
the website’s own domain and Google’s API domain:

1 Content-Security-Policy: connect-src 'self' https://apis.\

2 google.com;

Another directive to control the allowlist for JavaScript sources is
called script-src. This directive helps mitigate Cross-Site-Scripting
(XSS) attacks by informing the browser which sources of content
to trust when evaluating and executing JavaScript source code.

script-src supports the ‘none’ and ‘self’ keywords as values and
includes the following options:

• ‘unsafe-inline’ - allow any inline JavaScript source code such
as <script>, and DOM events triggering like onClick() or
javascript: URIs. It also affects CSS for inline tags.

• ‘unsafe-eval’ - allow execution of code using eval()

For example, a policy for allowing JavaScript to be executed
only from our own domain and from Google’s, and allows inline
JavaScript code as well:

HTTP Security Headers 31

1 Content-Security-Policy: script-src 'self' https://apis.g\

2 oogle.com 'unsafe-inline'

Note, the 'unsafe-inline' directive refers to a website’s own
JavaScript sources.

A full list of supported directives can be found on the CSP policy
directives page on MDN* but let’s cover some other common
options and their values.

• default-src - where a directive doesn’t have a value, it defaults
to an open, non-restricting configuration. It is safer to set a
default for all of the un-configured options and this is the
purpose of the default-src directive.

• script-src - a directive to set which script sources we allow to
load or execute JavaScript from. If it’s set to a value of ‘self’
then it will only allow sources from our own domain. Also,
it will not allow inline JavaScript tags, such as <script>. To
enable those, add 'unsafe-inline' too.

On implementing CSP It should also be noted that the
CSP configuration needs to meet the implementation
of your web application architecture. If you deny inline
<script> blocks then your R&D team should be aware
and well prepared for this as otherwise, this will be
breaking features and functionality across code that
depends on inline JavaScript code blocks.

Helmet Implementation

Using Helmet we can configure a security policy for trusted content.
Due to the potential for a complex configuration, we will review

*https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives

https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives

HTTP Security Headers 32

several different policies in smaller blocks of code to easily explain
what is happening when we implement CSP.

The following Node.js code will add Helmet’s CSP middleware on
each request so that the server responds with a CSP header and a
simple security policy.

We define an allowlist in which JavaScript code and CSS resources
are only allowed to load from the current origin, which is the exact
hostname or domain (no sub-domains will be allowed):

1 const helmet = require("helmet");

2

3 app.use(

4 helmet.contentSecurityPolicy({

5 directives: {

6 scriptSrc: ["'self'"],

7 styleSrc: ["'self'"],

8 },

9 })

10);

It is important to remember that if no default policy is specified
then all other types of content policies are open and allowed, and
also some content policies simply don’t have a default and must be
specified to be overridden.

Let’s construct the following content policy for our web application:

• By default, allow resources to load only from our own domain
origin, or from our Amazon CDN. The defaultSrc refers to
all script types sources, such as CSS, iframes, fonts, etc.

• JavaScript sources are restricted to our own domain and
Google’s hosted libraries domain so we can load AngularJS
from Google.

HTTP Security Headers 33

• Because our web application doesn’t need any kind of iframes
embedding we will disable such objects (refers to objectSrc

and childSrc

• Forms should only be submitted to our own domain origin.

1 var helmet = require("helmet");

2

3 app.use(

4 helmet.contentSecurityPolicy({

5 directives: {

6 defaultSrc: ["'self'", "https://cdn.amazon.com"],

7 scriptSrc: ["'self'", "https://ajax.googleapis.com"\

8],

9 childSrc: ["'none'"],

10 objectSrc: ["'none'"],

11 formAction: ["'none'"],

12 },

13 })

14);

Gradual CSP Implementation

Your Content Security Policy will grow and change as your web
application grows too. With the many varied directives, it could be
challenging to introduce a policy all at once so instead of touch-
and-go enforcement, strive for an incremental approach.

The CSP header has a built-in directive that helps in understanding
how your web application makes use of the content policy. This
directive is used to track and report any actions performed by the
browser that violate the content security policy.

It’s simple to add to any running web application:

HTTP Security Headers 34

1 Content-Security-Policy: default-src 'self'; report-uri h\

2 ttps://mydomain.com/report

Note that the semicolon is added to end the content
security policy directives, and begin a new report-uri

directive.

Once added, the browser will send a POST request to the URI
provided with a JSON format in the body for anything that violates
the content security policy of only serving content from our own
origin.

With Helmet’s csp middleware this is easily configured:

1 const helmet = require("helmet");

2

3 app.use(

4 helmet.contentSecurityPolicy({

5 directives: {

6 defaultSrc: ["'self'"],

7 reportUri: "https://mydomain.com/report",

8 },

9 })

10);

Another useful configuration for Helmet when we are still evalu-
ating a Content Security Policy is to instruct the browser to only
report on content policy violations and not block them:

HTTP Security Headers 35

1 const helmet = require("helmet");

2

3 app.use(

4 helmet.contentSecurityPolicy({

5 directives: {

6 defaultSrc: ["'self'"],

7 reportUri: "https://mydomain.com/report",

8 },

9 reportOnly: true,

10 })

11);

Take-home exercise

Why did we learn about the X-Frame-Options header in a previous
section when the CSP header represent a new breed of mitigating
many sort of browser related attacks, including XSS and IFrame
Clickjacking attacks?

Firstly, this book serves as an educational content, rather than
bullet-points best practices of dogmatic rules to follow, and as
such, I’d like to educate you, the reader, about the X-Frame-Options
header. Moreover, due to the complexity and comprehensive rule-
set that the CSP header requires, it is not as easy to implement as
the X-Frame-Options header, and so teams might want to start with
the X-Frame-Options header and then add the CSP header later as
they gradually enhance their security policy.

As a take-home excericse, I’d like to ask you to implement a content
security policy using the CSP header in the innocent website source
code that disallows cross-site iframes.

HTTP Security Headers 36

Referer and Referrer Policy

When users browse through web pages, the browser may set a
request header called Referer in certain conditions. This Referer
header is often used by backend servers to track users’ behavior for
analytics and other means.

How does Referer look like in an HTTP request?

If we were to search for wikipedia on Google, and click on the
Wikipedia search result on the page, we could then see the Referer
header set as such:

What if a web page had stored sensitive information in a URL such
as an account ID as part of the URL, or other sorts of sensitive
information about the system? If a link on that page is then visited,
and the browser sets the Referer header as it would normally, that
could lead to sensitive information leakage.

This is where the Referrer Policy header comes in. This header,
when set by a web server, instructs the browser whether to populate
the Referer header when navigating out of that web page and into
a new one.

HTTP Security Headers 37

An insecure way of using a Referer header? Because
the Referer header is set on the client-side, and may
be abused, it shouldn’t be trusted as a source of
truth and its integrity should be considered minimal.
This is why browsers will remove the Referer header
when browsing from an HTTPS website to an HTTP
website. Reading reference on this topic would be
Referer Spoofing* on Wikipedia.

Referrer Policies

The Referrer Policy header can set one of the following policies
that instruct the browser’s behavior when navigating off the page:

• no-referrer
• no-referrer-when-downgrade
• origin
• origin-when-cross-origin
• same-origin
• strict-origin
• strict-origin-when-cross-origin
• unsafe-url

Let’s review each of these values.

no-referrer

Instruct the browser to never set a Referer header at all, for any
links related to requests from this web page.

*https://en.wikipedia.org/wiki/Referer_spoofing

https://en.wikipedia.org/wiki/Referer_spoofing
https://en.wikipedia.org/wiki/Referer_spoofing

HTTP Security Headers 38

no-referrer-when-downgrade

If there’s a security downgrade in the form of making requests from
an HTTPS website to an HTTP, then the browser doesn’t set the
Referer header.

We mentioned before in the above hint that this is indeed the
default behavior that browsers follow if a referrer policy is unset,
or invalid.

origin

Instead of sending the full URL - the origin, path, and query
parameters of the current page being navigated from, the browser
will only send the origin, such as https://www.google.com and
nothing beyond that in the URL.

origin-when-cross-origin

As the name implies, only the origin is sent to any requests the
browser makes to navigate off the page, when those addresses
match a cross-origin. Otherwise, when requests are made to URLs
of the same origin (as complies with the same-origin policy), the
default behavior of setting the Referer header to the current URL
is followed.

same-origin

The current URL is set for the Referer header to any requests that
are considered same-origin, otherwise, it isn’t set at all.

strict-origin

As we’ve seen in other policies now - if there’s a security down-
grade in the form of making requests from an HTTPS website to
an HTTP, then the browser doesn’t set the Referer header at all.

HTTP Security Headers 39

When requests are kept in the same origin, only the origin is set as
the Referer value.

strict-origin-when-cross-origin

This policy setting is a bit more nuanced:

• If there’s a security downgrade in the form ofmaking requests
from anHTTPSwebsite to anHTTP, then the browser doesn’t
set the Referer header at all

• If the request is made to an HTTPS cross-origin address, then
only the origin is set for the Referer header.

• If the request is made to the same origin, then the full URL is
set.

unsafe-url

This is the least secure option, which always sets a value for the
Referer header and could lead to a sensitive information leak.

Can you specify a Referrer Policy in HTML? Yes you
can!

Simlar to other security headers, such as the Content Security
Policy, you can define the browser’s behavior with regards to the
Referer header by using HTML meta tags on the page.

For example:

1 <meta http-equiv="Referrer-Policy" content="strict-origin\

2 -when-cross-origin" />

If you are using a Content Security Policy to set trusted content
policies for the browser, and have used the referrer directive,
then this is now deprecated and has been superseded by the
Referrer Policy header as a dedicated means of conveying the
same information.

HTTP Security Headers 40

Helmet Implementation

Using Helmet, we can configure the desired referer policy:

1 const helmet = require("helmet");

2

3 app.use(

4 helmet.referrerPolicy({

5 policy: "no-referrer",

6 })

7);

Deprecated security headers

The following security headers were originally introduced as part
of specific web browser software, to combat security threats such
as Cross-site Scripting, and MIME Sniffing, and have since been
deprecated in favor of better security controls.

X XSS Protection

The HTTP header X-XSS-Protection is used by IE8 and IE9 and
allows toggling on or off the Cross-Site-Scripting (XSS) filter capa-
bility that is built into the browser.

Turning XSS filtering on for any IE8 and IE9 browsers rendering
your web application requires the following HTTP header to be
sent:

1 X-XSS-Protection: 1; mode=block

With Helmet, this protection can be turned on using the following
snippet:

HTTP Security Headers 41

1 const helmet = require("helmet");

2

3 app.use(helmet.xssFilter());

X Content Type Options

When browsers fetch remote sources of content, such as JavaScript
or images, they are instructed using the Content-Type header on
the type of content.

For example, when a PDF content type is fetched by the browser,
the server hints the browser about it by setting the following header:
Content-Type: application/pdf.

These content types are standardized by the IANA organization as
MIME types, and a full list of common MIME types can be seen
here*.

Risk

What happens when the browser is instructed an incorrect MIME
type, or not at all entirely? In such a case, the browser will attempt
to guess the content type by reading and interpreting the content
data. This action is referred to as MIME Sniffing.

More information on MIME Sniffing can be found in
the official MIME Sniffing standard†.

The purpose of this header is to instruct the browser to avoid
guessing the web server’s content type which may lead to an
incorrect render than that which the webserver intended.

The X-Content-Type-Options HTTP header is used by IE, Chrome,
and Opera and is used to mitigate a MIME-based attack.

*https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/
Common_types

†https://mimesniff.spec.whatwg.org/

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types
https://mimesniff.spec.whatwg.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types
https://mimesniff.spec.whatwg.org/

HTTP Security Headers 42

An example of setting this header:

1 X-Content-Type-Options: nosniff

Helmet’s implementation:

1 const helmet = require("helmet");

2

3 app.use(helmet.noSniff());

Testing for Security
Headers

The State of HTTP Security

What is the state of HTTP security today for the web? Are most
people enabling HTTPS? Luckily, there’s an open project that tracks
this, and more, in order to gain and share these insights.

The web, primarily runs on HTTP, but to ensure the security,
integrity, and privacy of end-to-end connections, clients commu-
nicate over a secure HTTP known as HTTPS.

The importance of a secure communications channel shouldn’t be
undervalued. Instead, it should be a standard for any size of web
applications, whether static or dynamic and indeed HTTPS is more
prevalent than ever.

An important push for HTTPS has been made by browsers them-
selves, such as Chrome’s continuous attempts to discourage the use
of HTTP by portraying any such websites as potentially dangerous.

A prime example of that is Chrome’s recent hardened policy about
mixed content* which actively blocks HTTP requests, and it follows
prior actions taken to increase the importance of security aspects
of the web, such as:

• Clearer indications of a website’s security based on green lock
icon in the address bar†

*https://security.googleblog.com/2019/10/no-more-mixed-messages-about-https_3.html
†https://blog.mozilla.org/security/2017/01/20/communicating-the-dangers-of-non-secure-

http/

https://security.googleblog.com/2019/10/no-more-mixed-messages-about-https_3.html
https://security.googleblog.com/2019/10/no-more-mixed-messages-about-https_3.html
https://blog.mozilla.org/security/2017/01/20/communicating-the-dangers-of-non-secure-http/
https://blog.mozilla.org/security/2017/01/20/communicating-the-dangers-of-non-secure-http/
https://security.googleblog.com/2019/10/no-more-mixed-messages-about-https_3.html
https://blog.mozilla.org/security/2017/01/20/communicating-the-dangers-of-non-secure-http/
https://blog.mozilla.org/security/2017/01/20/communicating-the-dangers-of-non-secure-http/

Testing for Security Headers 44

• A dedicated Security panel* on Chrome’s DevTools

The HTTP Archive

The HTTP Archive† is an important initiative by web activists
that is tracking various aspects and traits of how the web evolves
over time. The projects in the HTTP archive are open source‡ and
managed by a community of developers.

Some of the well known reports that have been made public and
online from the HTTP Archive are:

• State of the Web§ - tracks the adoption of web technologies
and growing web standards across websites. It reports on
data points such as Total Requests, Pages with Vulnerable

JavaScript libraries, and the prevalence of HTTP/2

Requests in websites, in the aim of identifying trends.

*https://developers.google.com/web/updates/2015/12/security-panel
†https://httparchive.org/
‡https://github.com/HTTPArchive/httparchive.org
§https://httparchive.org/reports/state-of-the-web

https://developers.google.com/web/updates/2015/12/security-panel
https://httparchive.org/
https://github.com/HTTPArchive/httparchive.org
https://httparchive.org/reports/state-of-the-web
https://developers.google.com/web/updates/2015/12/security-panel
https://httparchive.org/
https://github.com/HTTPArchive/httparchive.org
https://httparchive.org/reports/state-of-the-web

Testing for Security Headers 45

• State of JavaScript* - tracks the overall impact of JavaScript
in a website, with identifying data points such as the size
of JavaScript libraries in a website, the amount of JavaScript
requests and the boot-up time which indicates the amount of
CPU time each script consumes on a webpage.

• Accessibility Report† - tracks an overall accessibility score,
as noted by Chrome’s Lighthouse tool, and other accessibility
traits and standards such as the use of Image Alt attributes.

Chrome Lighthouse

Lighthouse is an open-source browser automation
tool which helps in auditing a web page for perfor-
mance, security, accessibility and other metrics. It also
provides an overall score and recommendations for
improving a web page.

The data for all HTTP Archive reports‡) is made available via
Google’s BigQuery for anyone to examine. It is compiled by an-
alyzing Alexa’s top 1 million websites, in bi-weekly scans, using
the open source project and the online web performance tool
WebPageTest§.

HTTPS Requests

Using the HTTP Archive as a tool, we can see the growth in trend
of secure by default with regards to HTTPS adoption by websites.

Secure by default

A secure by default approach refers to using or initial-
izing a component with safe and secure default values,
unless explicitly stated otherwise.

*https://httparchive.org/reports/state-of-javascript
†https://httparchive.org/reports/accessibility
‡https://httparchive.org/faq#how-do-i-use-bigquery-to-write-custom-queries-over-the-

data
§https://webpagetest.org

https://httparchive.org/reports/state-of-javascript
https://httparchive.org/reports/accessibility
https://httparchive.org/faq#how-do-i-use-bigquery-to-write-custom-queries-over-the-data
https://webpagetest.org
https://httparchive.org/reports/state-of-javascript
https://httparchive.org/reports/accessibility
https://httparchive.org/faq#how-do-i-use-bigquery-to-write-custom-queries-over-the-data
https://httparchive.org/faq#how-do-i-use-bigquery-to-write-custom-queries-over-the-data
https://webpagetest.org

Testing for Security Headers 46

The earliest data point is January 2016, which states a 24% of
desktop websites using HTTPS, and whooping 87.7% by August
2020 across the same category.

Secure Hosting

With the growth of HTTPS, static website hosting platforms have
adjusted and adopted similar standards, and help push towards a
more secure web.

All of the following platforms for deploying and hosting your
websites will serve your content over HTTPS:

• Vercel
• Netlify
• Google’s Firebase
• Heroku

This helps strengthen the ubiquity of HTTPS and its accessibility
for small and large websites alike.

Testing for Security Headers 47

Let’s Encrypt* had certainly contributed a lot to a secure web by
making certificates affordable (completely free).

WebPageTest

WebPageTest† is one of the most popular tools around theWeb Per-
formance community to provide page speed insights, bottlenecks
breakdown reports, and further information when measuring a
website’s performance.

It is an open source project‡ that is maintained by long-time
Google’s software engineer Patrick Meenan§. Many leverage the
project to run their performance tests in a hosted environment,
where they can provide their internal resources to run end-to-end
or periodical smoke test scans, to keep an eye on the quality of their
web assets.

Smoke test

Smoke testing is a pattern of running a small sub-set
of tests to ensure a minimal yet vital and critical flow
or business capability.

A relatively recent addition that was introduced to WebPageTest
(May 2020) now provides users with security insights as to the sta-
tus of HTTP security headers and detection of vulnerable JavaScript
libraries that are rendered in scanned web pages.

*https://letsencrypt.org
†https://webpagetest.org
‡https://github.com/WPO-Foundation/webpagetest
§https://github.com/pmeenan

https://letsencrypt.org
https://webpagetest.org
https://github.com/WPO-Foundation/webpagetest
https://github.com/pmeenan
https://letsencrypt.org
https://webpagetest.org
https://github.com/WPO-Foundation/webpagetest
https://github.com/pmeenan

Testing for Security Headers 48

Running a scan

Head over to https://webpagetest.org and enter the URL for a web
page of your preference. For our demo purposes, we’ll use the Fox
News website https://www.foxnews.com/ as a website to scan and
see what security information can we find, to further improve the
website’s security posture.

You may choose to configure other settings for performance, such
as tweaking the location origin for running the test, specifying a
browser type or maybe even a mobile device, and many other fine
tunings.

However, we won’t be needing any of the special configurations to
get a security score so go ahead and hit the START TEST button
on the right once you’ve entered a URL:

Test results

Testing will take a few seconds, perhaps even up to a couple of
minutes as all the test requests are queued up in the publicly
available nodes for WebPageTest.

Testing for Security Headers 49

Once testing is complete, WebPageTest presents the main test
results which include:

• Top-page scores
• Test results summary for browser performance metrics such
as First Byte, First Contentful Paint, Total Blocking Time,
Document Complete, and Fully Loaded. These performance
metrics are, however, out of the scope for us.

• Waterfall for all the requests. Should be familiar and similar
to the browser’s DevTools.

Here is how a test result looks like for https://www.foxnews.com:

Click on the E score rectangle to find out more.

This takes us to the Snyk website scanner results for JavaScript
vulnerabilities and security headers from the WebPageTest scan.

We can clearly see the same score of E on the Snyk results, but
here we also get a split-screen view of the scan. It is comprised of
JavaScript libraries with vulnerabilities that were detected, as well
as missing HTTP security headers in the web page’s response.

Testing for Security Headers 50

JavaScript libraries with vulnerabilities

Let’s take a closer look at each of these security insights that we
received.

We can spot both lodash* and jquery† with 5 vulnerability reports
among them.

Maybe that web page is not exploitable through Prototype Pollution
vulnerabilities and Cross-site Scripting (XSS), or maybe it is. Why
take the chance?

Remediate the security vulnerability and the low score by upgrad-

*https://snyk.io/vuln/npm:lodash
†https://snyk.io/vuln/npm:jquery

https://snyk.io/vuln/npm:lodash
https://snyk.io/vuln/npm:jquery
https://snyk.io/vuln/npm:lodash
https://snyk.io/vuln/npm:jquery

Testing for Security Headers 51

ing to the latest version of these libraries which includes a fix for
the security vulnerability.

Security headers

To the right of the test results, we see the score status related to the
HTTP security headers detected as part of the HTTP response of
the web page.

WebPageTest was able to successfully detect the good practice
of responding with the HTTP Strict Transport Security header.
That’s a great start. However, it looks like there are a bunch of
other HTTP headers that we’ve learned about before which are
missing. Some of these are showing up at the top of the list such
as X-Content-Type-Options, and X-Frame-Options.

Exercise

Now it’s time to test yourself and see what scores you get on your
company website, your personal blog, or your favorite website.

Scan a website and get a security score. Do you know how to fix it?

You’ll find more information about this topic in the following blog
article about website security score*. Dig through and make sure
you know have the skills to assess security headers for a website,
and the notion of vulnerable JavaScript libraries.

Summary

WebPageTest is an online web tool that is well known for per-
formance testing. Small unknown fact is that relatively recently
(May 2020) it received an update to also report on security status
of websites. It is not to be considered as a security penetration

*https://snyk.io/blog/website-security-score-explained

https://snyk.io/blog/website-security-score-explained
https://snyk.io/blog/website-security-score-explained

Testing for Security Headers 52

testing tool, but rather revealing the status of HTTP security
headers employed by a website and detecting vulnerable JavaScript
libraries.

Lighthouse

Using Lighthouse we can learn how to improve our website’s
metrics based on insights and recommendations provided after a
scan is performed.

It’s right there in your Chrome’s DevTools console, and chances are
that you aren’t utilizing it highly enough to get everything you can
out of it, including the security aspects.

Getting started

Continuing with our previous example, let’s browse over to Fox
News’ website.

Once the website has loaded, launch DevTools using the F12

keyboard key or CMD-OPTION-I if you’re on a Mac. The location of
the DevTools console might appear elsewhere in your setup, or as
its own window.

Once opened, click on the Lighthouse tab and you should see the
available categories to include in our tests.

Testing for Security Headers 53

While it may not seem very obvious to begin with, but the security
part is included as part of the Best practices category. This will
reveal any vulnerable JavaScript libraries and their versions that
are loaded on the current web page.

Click the Generate report and let it run and collect the data
about the page. Finally, we’ll be presented with top scores for each
category.

Testing for Security Headers 54

Very clearly, the website is doing poorly on performance, but notice
the best practices score isn’t really high either. Let’s take a further
look down and check what is going on there.

We can click on the Best Practices score or scroll down on our
own and see the results, which open with the Trust and Safety for
the website headline:

• Links to cross-origin destinations were detected on the web-
site, which is considered to be unsafe.

• This website includes front-end JavaScript libraries with
known security vulnerabilities. 8 of them in total, and as we
expand the view we can see the libraries, their versions, and
the vulnerability count for each.

Testing for Security Headers 55

Summary

A repeated theme here from both WebPageTest in the previous
chapter, as well as covering Lighthouse here as a security testing
tool, is JavaScript libraries with known vulnerabilities.

Lighthouse is Google’s open source browser automation and testing
tool to provide you with insights about web best practices for
performance, accessibility, security, and more. It’s right there in
your Chrome’s DevTools console, and chances are that you aren’t
utilizing it highly enough to get everything you can out of it,
including the security aspects.

We primarily focused on the importance of HTTP security headers,

Testing for Security Headers 56

but other web security concerns and best practices shouldn’t be
overlooked.

Check My Headers command line
application

In this lesson, we’ll learn how to use a command-line application
to retrieve HTTP headers set for a web page.

check-my-headers* is a fast and simple command-line application
in Node.js to ping web servers and inspect the HTTP security
headers to provide a status log.

Unlike online and built-in tools, check-my-headers would need to
be installed in your development environment, or perhaps better
yet, in your continuous integration pipeline.

Continuous Integration

A Continuous Integration pipeline harness automa-
tion to verify a software is building successfully, as
well as functioning per an expected threshold and set
of tests.

It is open source, and based on Node.js, and so if you have a
JavaScript tooling environment setup then it can be easily installed.

In a modern Node.js environment we can make use of the npx tool
to execute a one-off executable npm package.

To start a scan, we can run the following command:

1 npx check-my-headers https://example.com

*https://github.com/UlisesGascon/check-my-headers

https://github.com/UlisesGascon/check-my-headers
https://github.com/UlisesGascon/check-my-headers

Testing for Security Headers 57

This will yield a result as the following screenshot proposed by
Ulises Gascon, the author of this tool:

check-my-headers can also be used programmatically. As it is an
npm package, it can be used as a library, in the following way:

1 const checkMyHeaders = require("check-my-headers");

2

3 checkMyHeaders("http://example.com").then(({ messages, he\

4 aders, status }) => {

5 console.log(`Status code: ${status}`);

6 console.log(`Messages:`);

7 console.log(messages);

8 console.log("Current headers:");

9 console.log(headers);

Testing for Security Headers 58

10 });

The above will test the web page http://example.com for HTTP
headers and return a promise, upon which it prints the result data
of the scan to the console.

Summary

We looked at several tools to help us find security issues in web
applications:

• WebPageTest - An online web performance and security
scanning tool for websites.

• Lighthouse - Browser-based web assessment tool for perfor-
mance, accessibility, security, and more.

• Check My Headers CLI app - a handy command-line Node.js
application to test a website’s headers.

Test yourself

Let’s see how well you know the tools we reviewed.

Quiz time!
WebPageTest
WebPageTest helps with:

a) Testing for performance issues in websites b) Test-
ing for security issues in websites c) Testing for per-
formance and security issues in websites and giving
me insights into how to fix them

The correct answer is C.

Testing for Security Headers 59

Lighthouse
Lighthouse is available via Chrome DevTools and
helps with:

a) Finding performance issues b) Finding security
issues c) Finding SEO and Web Accessibility issues d)
Finding issues with Progressive Web Apps

The correct answers are A,B,C, and D.

Keeping up with security
What are some ways you can make sure you have no
regressions in your security headers setup?

a) Run tools like check-my-headers in my Continuous
Integration systems to fail the build if a regression
happens b) In an End-to-End Continuous Integration
setup I can use the WebPageTest API to schedule tests
of my website and ensure the security score is the
same, or better c) Run a security penetration test after
the web application is published d) This is a manual
and rigorous process that takes time, very expensive
and is hard to keep up repeating effectively.

The correct answers are A and B.

What’s next?

If you’d like to keep security in check, you’d want to automate it
to keep up with the scale of development. All of the above tools
have APIs or integration points that you can connect to continuous
integration systems.

What’s next?

Establish a CSP and Security Headers
standard

Adopt new browser and HTTP security standards and set a plan to
migrate from old HTTP headers.

X-Frame-Options

We previously reviewed the benefits of using the X-Frame-Options
as a response HTTP header in helping address click-jacking security
vulnerabilities in web applications. That said, practices evolve
and browsers rapidly adopt new standards and mechanisms. For
example, the ALLOW-FROM value for the X Frame Options header
has been deprecated and is discouraged from being used because
modern browser versions don’t support it anymore.

As a migration path, the Content Security Policy standards create
a way to adapt to such new standards. One of which is, CSP’s
frame-ancestors directive. For example, setting its value to 'none'

should be compatible with X-Frame-Options setting of DENY value.
A more complete example of the Content Security Policy in action
for click-jacking security controls is:

1 Content-Security-Policy: frame-ancestors 'none';

The above CSP will disallow any URLs of embeddable content in
iframe, object, and other HTML elements which are part of the
frame-ancestors policy.

What’s next? 61

Do note however, that older browsers may not respect Content-
Security-Policy and its directives and as such, you may actually
cause a degraded security status. To avoid such a problem, consult
your supported browser matrix requirements, employ both old
and new headers to ensure all bases are covered, until possible to
deprecate older security controls that are no longer valid.

X-XSS-Protection

Similar to the case with the X-Frame-Options HTTP header, the
X-XSS-Protection header is considered deprecated completely and
should mandate that you establish and roll out a Content Security
Policy HTTP header instead.

It’s still useful to keep as a header if you are targeting older
browsers, but otherwise, note that Chrome and Edge removed their
XSS auditor, and Firefox isn’t planning on implementing support
for X-XSS-Protection.

Following is the browser compatibility matrix for the header* as
listed on MDN:

*https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

What’s next? 62

Summary

Security controls will regularly need fine-tuning and keeping up to
date as newer and modern technologies evolve around them. This
isn’t to say that the two security headers we studied and reviewed
here are useless. On the contrary. We need to understand in which
situations they are still relevant and establish a migration path to
newer standards that will eventually replace them.

Monitor your web application

We learned how to increase security using web controls such as
HTTP headers, but to further ensure that they are kept in check we
need to monitor them.

We learned how to increase security using web controls such as
HTTP headers, but how do we ensure that we’re always up to date
with security controls? How do we ensure there isn’t a regression
next week where headers are removed from an HTTP response?

What’s next? 63

The problem can get a lot harder even if you’re working in a rich
microservices environment, and needing to account for more than
a few services.

Monitoring and Shifting-left

Shift-Left is a concept in which we refer to moving activities to be
as early as possible in the software development lifecycle.

We would ideally want to shift left as much of the monitoring
activities as possible, so we can ensure that problems are detected
earlier in the process rather than after the fact.

We reviewed some tools in which we can easily create a CI
integration during the build process. For example, we can leverage
a full WebPageTest integration for both its performance and secu-
rity insights by triggering an API call upon a successful website
deployment to run an end-to-end build.

Furthermore, we can use command-line tools such as Check My
Headers and others to validate that server response are indeed
conforming to a policy. This helps us shift left in application
security testing and find issues earlier in the software development
lifecycle.

Other browser security headers and
controls

The web is an evolving standard and as such, new security controls
would be introduced. We should keep an eye on them! Embrace
and prepare for privacy, feature controls, and future headers such
as Referrer-Policy, Feature-Policy, Origin-Policy, Integrity,
Accept-CH, and Clear-Site-Data.

What’s next? 64

As the web evolves, it creates new standards for us to adopt. This
also applies to new HTTP headers and we will quickly review a
bunch of them here as your future steps in establishing a wider
range of headers.

Referrer-Policy

Embrace and prepare for privacy-related policies using
Referrer-Policy, which instructs the browser when and how
much information to provide when setting a Referer header as
users navigate from an existing web page.

Some example values for Referrer Policy are:

1 Referrer-Policy: no-referrer

2 Referrer-Policy: origin-when-cross-origin

3 Referrer-Policy: same-origin

The default value set by the browser is no-referrer-when-downgrade,
however, a more recommended setting will be one of the strict-
origin options, such as strict-origin-when-cross-origin. That
setting ensures that complete referrer information is sent when
requests are kept to the same origin and so are bound to the same
web application context. Then only sending the origin (not the full
path) to any requests that are kept within the same secure HTTPS
level, and nothing otherwise.

The browser support matrix as to the date of writing this is as
follows:

What’s next? 65

2. Use the independent feature-policy* module on npm.

Summary

As the web evolves, security controls are evolved along with it. For
example, a security header that increases user privacy is Clear-Site-
Data† which aims at minimizing the scope of data at rest for a
website.

Gradually implement more HTTP security headers to increase the
controls you have for your web application, and create mitigation
points for vulnerabilities.

Educational resources

Where-as this learning experience isn’t geared at being a com-
prehensive list of all available security headers, your next step is

*https://snyk.io/advisor/npm-package/feature-policy
†https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Clear-Site-Data

https://snyk.io/advisor/npm-package/feature-policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Clear-Site-Data
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Clear-Site-Data
https://snyk.io/advisor/npm-package/feature-policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Clear-Site-Data

What’s next? 66

refer to more web resources such as Mozilla’s Developer Network*
and the W3C specs† to keep up to date with standards and best
practices.

In particular, I want to recommend the following topics to enrich
your knowledge on the topic of security headers and gaining an
edge in understanding web security:

• OWASP Secure Headers Project‡
• Cross-Origin topics, and particularly Cross-Origin-Resource-
Sharing§.

• Sub-resource Integrity¶ policies.
• Cross-site Request Forgery‖ and related forms of tokenization.
• Understanding how Cookies** work and spec updates such as
SameSite attribute.

Security headers tooling

The following list of curated resources will help you in your journey
of implementing, debugging and monitoring security headers:

• The report-uri†† service
• Check My Headers‡‡ Node.js CLI

*https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
†https://www.w3.org/standards/
‡https://www.owasp.org/index.php/OWASP_Secure_Headers_Project
§https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
¶https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
‖https://infosec.mozilla.org/guidelines/web_security#csrf-prevention
**https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
††https://report-uri.com
‡‡https://github.com/UlisesGascon/check-my-headers

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://www.w3.org/standards/
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://infosec.mozilla.org/guidelines/web_security#csrf-prevention
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://report-uri.com
https://github.com/UlisesGascon/check-my-headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://www.w3.org/standards/
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://infosec.mozilla.org/guidelines/web_security#csrf-prevention
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://report-uri.com
https://github.com/UlisesGascon/check-my-headers

	Table of Contents
	About The Author
	Liran Tal

	About The Book
	Requirements
	Source Code

	Introduction
	Requirements
	Headers as browser security controls
	Helmet - a Node.js package to set HTTP security headers

	HTTP Security Headers
	HTTP Strict Transport Security
	X Frame Options
	Content Security Policy
	Referer and Referrer Policy
	Deprecated security headers

	Testing for Security Headers
	The State of HTTP Security
	WebPageTest
	Lighthouse
	Check My Headers command line application
	Summary

	What's next?
	Establish a CSP and Security Headers standard
	Monitor your web application
	Other browser security headers and controls
	Referrer-Policy
	Educational resources
	Security headers tooling

