WebGL

Programming Guide

Interactive 3D Graphics Programming
with WebGL

Kouichi Matsuda = Rodger Lea

Praise for
WebGL Programming Guide

“WebGL provides one of the final features for creating applications that deliver ‘the desk-
top application experience’ in a web browser, and the WebGL Programming Guide leads the
way in creating those applications. Its coverage of all aspects of using WebGL—JavaScript,
OpenGL ES, and fundamental graphics techniques—delivers a thorough education on ev-
erything you need to get going. Web-based applications are the wave of the future, and this
book will get you ahead of the curve!”

Dave Shreiner, Coauthor of The OpenGL Programming Guide, Eighth Edition; Series Editor,
OpenGL Library (Addison Wesley)

“HTMLS is evolving the Web into a highly capable application platform supporting beauti-
ful, engaging, and fully interactive applications that run portably across many diverse
systems. WebGL is a vital part of HTMLS, as it enables web programmers to access the

full power and functionality of state-of-the-art 3D graphics acceleration. WebGL has been
designed to run securely on any web-capable system and will unleash a new wave of devel-
oper innovation in connected 3D web-content, applications, and user interfaces. This book
will enable web developers to fully understand this new wave of web functionality and
leverage the exciting opportunities it creates.”

Neil Trevett, Vice President Mobile Content, NVIDIA; President, The Khronos Group

“With clear explanations supported by beautiful 3D renderings, this book does wonders in
transforming a complex topic into something approachable and appealing. Even without
denying the sophistication of WebGL, it is an accessible resource that beginners should
consider picking up before anything else.”

Evan Burchard, Author, Web Game Developer’s Cookbook (Addison Wesley)

“Both authors have a strong OpenGL background and transfer this knowledge nicely over
to WebGL, resulting in an excellent guide for beginners as well as advanced readers.”

Daniel Haehn, Research Software Developer, Boston Children’s Hospital

“WebGL Programming Guide provides a straightforward and easy-to-follow look at the me-
chanics of building 3D applications for the Web without relying on bulky libraries or wrap-
pers. A great resource for developers seeking an introduction to 3D development concepts
mixed with cutting-edge web technology.”

Brandon Jones, Software Engineer, Google

“This is more great work from a brilliant researcher. Kouichi Matsuda shows clear and con-
cise steps to bring the novice along the path of understanding WebGL. This is a complex
topic, but he makes it possible for anyone to start using this exciting new web technology.
And he includes basic 3D concepts to lay the foundation for further learning. This will be a
great addition to any web designer’s library.”

Chris Marrin, WebGL Spec. Editor

“WebGL Programming Guide is a great way to go from a WebGL newbie to a WebGL expert.
WebGL, though simple in concept, requires a lot of 3D math knowledge, and WebGL Pro-
gramming Guide helps you build this knowledge so you’ll be able to understand and apply
it to your programs. Even if you end up using some other WebGL 3D library, the knowl-
edge learned in WebGL Programming Guide will help you understand what those libraries
are doing and therefore allow you to tame them to your application’s specific needs. Heck,
even if you eventually want to program desktop OpenGL and/or DirectX, WebGL Program-
ming Guide is a great start as most 3D books are outdated relative to current 3D technology.
WebGL Programming Guide will give you the foundation for fully understanding modern 3D
graphics.”

Gregg Tavares, An Implementer of WebGL in Chrome

WebGL Programming
Guide

OpenGL Series

from Addison-Wesley

OpenGL “ B WebGL . .penCL

gra ming Guide Programir o Programming Guide

vv Addison-Wesley

Visit informit.com/opengl for a complete list of available products.

he OpenGL graphics system is a software interface to graphics hardware.
T("GL” stands for “Graphics Library”) It allows you to create interactive programs
that produce color images of moving, three-dimensional objects. With OpenGL,
you can control computer-graphics technology to produce realistic pictures, or
ones that depart from reality in imaginative ways.

The OpenGL Series from Addison-Wesley Professional comprises tutorial and
reference books that help programmers gain a practical understanding of OpenGL
standards, along with the insight needed to unlock OpenGL's full potential.

Ynu
a2

Make sure to connect with us!
informit.com/socialconnect

INfOrMIT.COM | Addison-Wesley | Safari

the trusted technology learning source

ALWAYS LEARNING PEARSON

WebGL
Programming
Guide:

Interactive 3D
Graphics Programming
with WebGL

Kouichi Matsuda
Rodger Lea

Upper Saddle River, NJ ® Boston ¢ Indianapolis ¢ San Francisco
New York e Toronto ¢ Montreal ® London ¢ Munich e Paris ¢ Madrid

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals. OpenGL is a registered
trademark and the OpenGL ES logo is a trademark of Silicon Graphics Inc.
Khronos and WebGL are trademarks of the Khronos Group Inc. Google, Google
Chrome, and Android are trademarks of Google Inc. The Firefox web browser

is a registered trademark of the Mozilla Foundation. Apple, iPhone, Macintosh,
Safari and their logo are trademarks or registered trademarks of Apple Inc.
Microsoft, Microsoft Internet Explorer, Windows, Windows 7, and Windows 8
is a registered trademark of Microsoft Corporation. Nvidia and Nvidia Geforce
are trademarks of NVIDIA Corporation. AMD and Radeon are trademarks of
Advanced Micro Devices, Inc.

The authors and publisher have taken care in the preparation of this book, but

make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. No liability is assumed for incidental or consequen-

tial damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quan-
tity for bulk purchases or special sales, which may include electronic versions
and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw
Library of Congress Control Number: 2013936083
Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or trans-
mission in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or likewise. To obtain permission to use material from this
work, please submit a written request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-90292-4
ISBN-10: 0-321-90292-0

Text printed in the United States on recycled paper at Edwards Brothers Malloy
in Ann Arbor, Michigan

First printing: June 2013

Editor-in-Chief
Mark Taub

Executive Editor
Laura Lewin

Development Editor
Sheri Cain
Managing Editor
Krista Hansing

Senior Project Editor
Lori Lyons

Copy Editor

Gill Editorial Services
Senior Indexer
Cheryl Lenser

Proofreader
Paula Lowell

Technical Reviewers
Jeff Gilbert

Daniel Haehn

Rick Rafey

Editorial Assistant
Olivia Basegio
Interior Designer
Mark Shirar

Cover Designer
Chuti Prasertsith

Senior Compositor
Gloria Schurick
Graphics

Laura Robbins

Manufacturing Buyer
Dan Uhrig

Thoughts are filled along with time, the distant days will not return,
and time passed is like a spiral of semiprecious stones...
—Kouichi Matsuda

To my wife, family, and friends—for making life fun.
—Rodger Lea

Contents

Preface xvii
Overview of WebGL 1
Advantages Of WeDGLcoiviiiiiiiiiiiiiiicccccete et 3
You Can Start Developing 3D Graphics Applications Using Only a Text Editor.....3
Publishing Your 3D Graphics Applications IS Easy.........cccoevueiiiiiiiiiniiieinnniecenneen. 4
You Can Leverage the Full Functionality of the Browsercccoccceeriiieiiniicecnnnns S
Learning and Using WebGL IS EaSY....cccccutiiiiiiiiiiieiinieciieceeitee et 5
Origins Of WEDGL.....ciiiiiiiiiiiiiiiitee ettt S
Structure of WebGL APPLiCAtiONS.coocuiiiiiiiiiiiiiiiiiiicciicccecceie e 6
SUITIIMATY ittt sbra s e e e e s e s raae s e e e e s ssssnnnaes 7
Your First Step with WebGL 9
What IS @ Canvas? ..ot 9
Using the <Canvas> Tagcccvvvviiiiiiiiiiiiiieeiiiee et 11
DrawReCtANGIE. S .oeeieuiiiiiiiiiiiiiiiie ettt s 13
The World’s Shortest WebGL Program: Clear Drawing Areaccccceeveveeerneveeennnee. 16
The HTML File (HelloCanvas.html)...........ccccoooiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 17
JavaScript Program (HellOCanvas.jS)......cceeeureeerrureeemiueeerniieeeenieeeeesiieeessnreeesaneeeens 18
Experimenting with the Sample Programcccccccovviiiiiniiiiiiniiiiiniiniiiieees 23
Draw a POINt (VEISION 1) ..cvviviiiiiiiiiiiiiiiiiiiiieeieieieaereesreeeseeneannsennnannssnnnnennnnnnnnnnnnnnnnnnnnnnnns 23
HelloPointl.html........cccooiiiiiiiiiiiiii 25
HeEILOPOINEL .S ceetieeieiiiee ettt ettt ettt e st e e eire e s enneeeeane 25
What Is @ Shader?.........cccoiiiiiiiiii 27
The Structure of a WebGL Program that Uses Shaders.......ccccocceeveviiieinniieennnneeen. 28
INitializing SNAadeTS......cuvviiiiiiiii e 30
VerteX SNAderooviiiiiiiiiiii 33
Fragment SNadercooviiiiiiiiiiiice e 35
The Draw OPerationcccoccieiimiiiiiiiiiieiiiieeeiece et eesneee s 36
The WebGL Co0ordinate SYSteIm.......ccocuiiiiriiieiniiieeiniieeeiieeeerree et eeireee e 38
Experimenting with the Sample Programccceccceeeriiieiiinieeeiniieeennieeeenieeeeane 40
D1raw a POINt (VEISION 2) cuuuuiieiiiiiiiiiiieeieeeieiiiieeeeeeeevttieeeeeeeetatanaeeseeesarannneesaeesssssnnnaaaaens 41
Using Attribute Variables..........c.cccooiiiiiiiii 41
Sample Program (HelloPOINt2.js)ccceiviiiiiiiiiiiiiiiiiiiiiciicceecccecc e 42
Getting the Storage Location of an Attribute Variablec.cccccoviiiinnninnin, 44
Assigning a Value to an Attribute Variablecccoocciiiiiiiiiniiiiinniiiiiieeeeee 45
Family Methods of gl.verteXAttrib3£()cceevoiiiimiiiiiiiieice e, 47

Experimenting with the Sample Programcccccceerviiieiinieeiiniieeennieeeeeieeeeane 49

Draw a Point with @ MoOUSE CHCK.....coiiiiiiiiiiiieeiiiiieiiieeee e 50

Sample Program (CliCKedPOINTS.jS) ...veeeeerurerernriiiieiiiiieeniiieee et eeieeeeeiiree e 50
Register Event Handlerscccciiiiiiiiiiiiiiiiiiiiiiccicc e 52
Handling Mouse CliCK EVENtS.......coocciiiiiiiiiiiiiiiiiiieciecc e 53
Experimenting with the Sample Programccccoccceeeiviieiiniiieiinnieeeniiieeeeiieeenne 57
Change the POINt COLOT......cccoiiiiiiiiiiiiiieeete ettt e e srreee s 58
Sample Program (ColoredPOINTS.jS)cceevuererriiieeriiiieeiiieee et e eeieeeeereee e 59
UnNiform Variablesceoieiiiiiiiiiieiiieeeeteee ettt e e s s 61
Retrieving the Storage Location of a Uniform Variable...........cccocceeirniiiiinninnnnne. 62
Assigning a Value to a Uniform Variablecccoooeiiiiniiiiiiniiiiiniiecneen 63
Family Methods of gl.uniforma4£()ccccccveeieiiiiiiiiiiiiiiceceec e 65
SUITIIMATY 1ttt s e e e e e e s s sabbba e s e e e s e ssnnnns 66
Drawing and Transforming Triangles 67
Drawing Multiple POINtS........cccciiiiiiiiiiiiiiiiii e 68
Sample Program (MultiPOINt.jS)......ccceiiriiiiiiiiiiiiiiiiieiiiec e 70
USINg BUffer ODJECEScoiviiiiiiiiiiiiiiiieceeccetec et 72
Create a Buffer Object (gl.createBuffer().....c.ococeeeviuieiniiieiinniieiiniieeciiceceieeeee 74
Bind a Buffer Object to a Target (gl.bindBuffer())......cc.cccceeerveeiiniiiiinniiieiniiieennnne 75
Write Data into a Buffer Object (gl.bufferData()).......cccceevuveeereiieeeriiieeiniiieenneeeenn 76
TYPEA ATTAYS....oiiiiiiiiiiiiiiii it 78
Assign the Buffer Object to an Attribute Variable
(gl.verteX AttriDPOINTET()) ...eeierrrieiiiiieiiiice e 79
Enable the Assignment to an Attribute Variable (gl.enableVertexAttribArray()) ... 81
The Second and Third Parameters of gl.ArawAITays()......ccceeeervuverernireeeenineeeennnneeenn 82
Experimenting with the Sample Programcccocceeeriiieiiniieiiniieeenrieeeeieeeeane 84
Hello THanGLecooiiiiiiiiiiiiiiii e 85
Sample Program (HelloTriangle.js)cooccvviiiiiiiiiiiiiiiiiiiiiiiiiiiceiecciceceieeeee 85
BasiC SRAPES...ccooiiiiiiiiiiiiiice e e 87
Experimenting with the Sample Programccccoccceeriiieiiniiieiiniiieniiieecniieeenne 89
Hello Rectangle (HelloQuUad)ccooouueiiiiiiieiniiiieeiiieeeriiee et eneeeeeireee e 89
Experimenting with the Sample Programcccocceeeriiieiiniiieeiniieeennieeenieeeeane 91
Moving, Rotating, and SCAlINGcccccoueeiriiiiiiiiiiiieeeeeeee e 91
TranSIATION ..eeeeiiiiiiiieiee e e e e e e e e e e e 92
Sample Program (TranslatedTriangle.js)ccocoeviviiiiiiiiiiiiniiiiiniiicicceieeeee 93
ROTALION ..o 96
Sample Program (RotatedTriangle.js)......ccccceveiieiiniiieiiiiieiiniiccerieeeceeeceieee e 99
Transformation Matrix: Rotationcccceeiiiiiiiiiii e, 102
Transformation Matrix: Translationcccoecueeieiiiiiiiiiieeiniec e 105
Rotation MatriX, AGAINccceiiiiiiiiiiiiiiiiiiiieee e eeeeeee s 106
Sample Program (RotatedTriangle_Matrix.js)cccccoviiiviiiiiiiiiiiiiiiiiicciiienn 107

Contents

ix

Reusing the Same Approach for Translationcccccevvvieeiriniiinnieieiniieeeeieeeene 111

Transformation Matrix: SCAlingccoovuiiiriiiiiiiiiieeeee e 111
SUIMIMIATY oottt e e s era e e s 113
4. More Transformations and Basic Animation 115
Translate and Then ROtatecccciiiiiiiiiiiiiie e 115
Transformation Matrix Library: cuon-matrixX.jsccceceeevieviieniieniiinieencneene. 116
Sample Program (RotatedTriangle_Matrix4.js)cccccerviiiiiiniiiiiniiiiiiiiieecieeee 117
Combining Multiple Transformation.........cccccceeeveiiiiiniiiiiiiiiiniiccieeeceeeee 119
Sample Program (RotatedTranslatedTriangle.js).......cccoovveeiiniiiiniiiiiiiniiieennineeene 121
Experimenting with the Sample Programcccoccceeinieeiiiiiiiinnieieiniieeecieeeene 123
ADNIMATION ceiiiiiiiiiiiiii e
The Basics Of ANIMAtION ..coovuiiiiiiiiiiiiiiieeeeeeeeeee et
Sample Program (RotatingTriangle.js)
Repeatedly Call the Drawing Function (tick()).......cccccovvviiiiniiiiinniiiiiniiciiineee. 129
Draw a Triangle with the Specified Rotation Angle (draw()).......ccccceevevvveevnneene 130
Request to Be Called Again (requestAnimationFrame()).......cccceeevvvereencneeennnneenne 131
Update the Rotation Angle (animate())ccceovveeerriiieeniireiniieeciee e, 133
Experimenting with the Sample Programcccoccceeiniiiiiiiiiiiinnieiennieeeeieeeene 135
SUITIIMIATY .ottt ettt ettt et e e e e sttt e e e e s e amaraee e e e e e senneaaeeeeeeennnns 136
5. Using Colors and Texture Images 137
Passing Other Types of Information to Vertex Shaders..........ccccocuveerviieeinniieennnnneee. 137
Sample Program (MultiAttributeSize.js)......cooovveeimiiiiiiiiiiiiiiiiirieecceeeceeeee 139
Create Multiple Buffer ODJECESccooueiiiiiiiiiiiiiieiiteeececeeee et 140
The gl.vertexAttribPointer() Stride and Offset Parameters..........cccceevveeerrnveeennnnee 141
Sample Program (MultiAttributeSize_Interleaved.js)........cccoccvirviiiiiniiiiiininnennn. 142
Modifying the Color (Varying Variable)........c.ccccccovviiiiniiiiiiniiiiiiiiiciiinceeeee, 146
Sample Program (MultiAttributeColor.jS)...cccoouveiiriiieiiniiiiiiiiiieiereeieeceeeeee 147
Experimenting with the Sample Programcccoccceeinieeiniiiiiinnieieeniieeeeieeeene 150
Color Triangle (ColoredTriangle.js)....ccooouuteiriiieiiiiiieeiiiieeeieteeeiee et 151
Geometric Shape Assembly and Rasterizationcccecceevviiiiiiiiniiniinniinnnnen. 151
Fragment Shader INVOCAtIONScccceviiiiiiiiiiiiiiiiiiiiic e
Experimenting with the Sample Program
Functionality of Varying Variables and the Interpolation Process....................... 157
Pasting an Image onto a ReCtangleccovvvieiiiiiiiiniiiiniiiceeccecceee e 160
Texture CoOrdinates...........coceiiiiiiiiiiiiiiiiiii e 162
Pasting Texture Images onto the Geometric Shapecccoecceeiirvieiiiniiieennieeennn. 162
Sample Program (TexturedQuad.js)ccccevviiiiiiiiiiiiniiiiiiiieee 163
Using Texture Coordinates (initVertexBuffers()).........cccocvevviveiiiiiiiiiiiiccnnnnnnn. 166
Setting Up and Loading Images (InitTextures())ccccoevveeerrieiiinniiiieiniieeennnneeenne 166
Make the Texture Ready to Use in the WebGL System (loadTexture())............... 170

X WebGL Programming Guide

FIIP an TMage’s Y-AXIS ..ceiirutetiiiiieeitteeeiite et eitee et eeee e et e st eeseabeeee e 170

Making a Texture Unit Active (gl.activeTeXture()).....ccceevvvveeeevireerniieeeniieeereeee. 171
Binding a Texture Object to a Target (gl.bindTexture()).......ccccceevuvriivcniieinincennne 173
Set the Texture Parameters of a Texture Object (gl.texParameteri())..........c...c.... 174
Assigning a Texture Image to a Texture Object (gl.texImage2D()).....ccccccueeerunneee. 177
Pass the Texture Unit to the Fragment Shader (gl.uniform1i())cccceeovveeevnneeene 179
Passing Texture Coordinates from the Vertex Shader to the Fragment Shader ... 180
Retrieve the Texel Color in a Fragment Shader (texture2D())ccccceevrvvuneveeeeenn. 181
Experimenting with the Sample Programccccooiiviiiniiniiii 182
Pasting Multiple Textures t0 @ SHape........cccoecuviiiriiiiiiniiiii e 183
Sample Program (MultiTeXture.js)cccovevveeiriiiieiiiiieeiniiccieieceiece e 184
SUITIIMATY ittt s e e e e e e s aaaaeeeeeesnans 189
The OpenGL ES Shading Language (GLSL ES) 191
Recap of Basic Shader PrOGraImsccoocviiiiiiiiiiiiiiiiiiiiceeiccercc e 191
OVerview Of GLSL ES ...coooiiiiiiiiic ettt 192
Hello Shader! ... 193
BaSICS ettt 193
Order Of EX@CUIONueeiiiiiiiiiiiiieeieteete ettt e 193
COTIIIICIIES . titeeee ettt ettt e e e et e e e e e s e e e e e e e e e emmrre et eeeesesannnnnneeeens 193
Data (Numerical and Boolean Values)uueerieeiiieiiiiriureieeiiienieeniieeeeennaenneenneennees 194
Variablesoooiiiiiii e 194
GLSL ES Is a Type Sensitive Language........ccccceeeeviviniiiiiiiiiiiininiiceiineeeeeeeennne 195
BaSIC TYPES ittt 195
Assignment and Type CONVEeISION........ccouviiieiriiieirniiieeeiieeeeieee e e erreeesaeeees 196
(0] 515 21 (0] s KU OO TSP PP P PP RTRRPPPPPR 197
Vector Types and MatriX TYPeS.....ccoocoiiiiiiiiiiiiiiiiiiiiicicc e 198
Assignments and CONSIIUCLOTScccccviiiiiiiiiiniiiiiiiie e 199
Access tO COMPONEILES......cc.uuviiiiiiiiiiiiiiiiiiiiiri e saaannes 201
OPETALIONS c.eiiiiiiiiiii ittt aas s e 204
SEIUCTUTES ..ot 207
Assignments and CONSIITUCTOTSccoiuiieiiiiiieriiiieeertte ettt e eereeesereeeesaeeees 207
ACCESS tO MEIMDETS ...eeeiiiiiiiiiiiiiiiieeee ettt e e e 207
OPCIAtIONS ...ttt 208
ATTAYS oottt e st e e 208
SAIMPIETS oottt 209
Precedence Of OPETALOLScccovuiiiiriiiiiiniiiee ittt et eeeireeeesrreeesnneees 210
Conditional Control Flow and Iteration............cccccoioiiiiiiniiiiii 211
if Statement and if-else Statement........cccovvuiiiriiiiiiiiiiie e 211
FOT STATEIMEIIT..ceiiiiiiiiiiiiii ittt ettt e et e e s ebaee e seaeeees 211
continue, break, discard Statements..........ccceeeeeieiiiiiiiiiee e 212

Contents

xii

FUNCHIONIS ..ottt et e e e ettt e e e e e e e st e e e sateesataeeesaneeesesaneesrannns 213

Prototype Declarations........ceiviueeiiiiiiieeiiieeeeitee ettt ettt ettt e e e e 214
Parameter QUALITIOISuuuereeeeiiiiiiiiieti e e e e e e e eeeeeeeeeeeenns 214
Built-In FUNCHONSoooiiiiiiiiiiiii 215
Global Variables and Local Variables............cccccooviiiiiiiiiiiniiiii 216
StoTage QUALITICTS .eeoueeviiiiiiiieee ettt e 217
CONSE VATIADIESeeiiiiiiiiiiiiii ittt 217
Attribute Variables.........coiiiiiiiiiiiiiiiieee e 218
Uniform Variablesc.ccooiiiiiiiiiiiiiiciiieeee et e 218
Varying Variablesccooviiiiiiiiiiiiiiic e 219
Precision QUALITIETSceivvviiiiee et e e eer e e e e eeeeebb e e e eeesrasaseneeeessesssrannneees 219
Preprocessor DIr€CtiVesciiiiiiiiiiiiiiiiiiiiiiiiiicirre e 221
SUITIIMIATY .iiiiiiiiiiieiitt ettt e s aba e e e e e e s s ssrraeeeeeeesnanns 223
Toward the 3D World 225
What's Good for Triangles Is Good fOr Cubes............coovviiiiiiiiieiiniiiiniiecinieeeens 225
Specifying the Viewing DireCtion.......cccocccceeriiiiiiniiiiiniiiiinieiccieeceeee e 226
Eye Point, Look-At Point, and Up Directioncccccevvveeiriiiciinnieiiiniiieeeiieeene 227
Sample Program (LOOKAtTTIANGLeS. S) ..cceuvreiirriiiiiniieiiieeeeeeeeeieeeeeeee e 229
Comparing LookAtTriangles.js with RotatedTriangle_Matrix4.js.....cccccceeevreeenn. 232
Looking at Rotated Triangles from a Specified Positionccccceeeereierniienncen. 234
Sample Program (LookAtRotatedTriangles.js)ccccccovviiimiiiiiinniiiiiniiiieiiineene 235
Experimenting with the Sample Programccccccceiviiiiniiiiiinniiiiiniieeeceeeene 236
Changing the Eye Point Using the Keyboard...........ccccoeveeiriiiiinniiiiniiieenniieenn. 238
Sample Program (LookAtTrianglesWithKeys.js)cccceevvveeiinieeiinnieriinieeeeiieeene 238
MISSINIE PATES .ttt e e 241
Specifying the Visible Range (BOX TYPe)....cccccovuiiriiiriiiiiiiiiiiiiiieciiccec e 241
Specify the Viewing VOIUME.........c.cccciiviiiiiiiiiiiiiiiiiicec e 242
Defining a Box-Shaped Viewing VOIUmMEccoccueeiiviiiiiniiiiiniiiiiiieccieeee 243
Sample Program (OrthoView.html).......cccccoviiiiiiiiiiiiniiceeceeeee 245
Sample Program (OrthOVIEW.jS) ..ccccuiiiiiiiiiiiiiiieiiiieciiee ettt 246
Modifying an HTML Element Using JavaScriptccccceevveeieriiieiiiiieeeniiiee e, 247
The Processing Flow of the Vertex Shadercccoeiiiiiiiiiiiiiiiiciniiecieiceeee 248
Changing Near OF Far..........cccocciiiiiiiiiiiiiiiiiiicnc e 250
Restoring the Clipped Parts of the Triangles
(LookAtTrianglesWithKeys_ViewVoIuIme.js)cccccoeeevieiriiieiiniieciineecenieeeenne 251
Experimenting with the Sample Programcccocccceeiviiiiiiiiiiiinnieiceniieeecieeeene 253
Specifying the Visible Range Using a Quadrangular Pyramid.........ccccccceeernieernnnneee. 254
Setting the Quadrangular Pyramid Viewing Volume........cc.ccccccovviiriinniieennnneenn. 256

Sample Program (PerspectiveView.js)
The Role of the Projection Matrix
Using All the Matrices (Model Matrix, View Matrix, and Projection Matrix)...... 262

WebGL Programming Guide

Sample Program (PerspectiveView_IMVP.js) ...cccueeerrieeeiniiieeriiiieenieeeeeieeeeeieeeens 263

Experimenting with the Sample Programcccccooeviiiiiiiiiiiniiiiiiiieciiieeeeeeen. 266
Correctly Handling Foreground and Background Objectscccccoevviiiiiniiiiinnnnen. 267
Hidden Surface Removal...........ccccoiviiiiiiiiiiiiiiiiiii 270
Sample Program (DepthBuffer.js)cccooevviiiiiiiiiiniiiiiiiiecceecc e 272
Z FIGNTINIZ cooiiiiiiiie ettt 273
HEIlo CUDE ... 275
Drawing the Object with Indices and Vertices Coordinates...........ccceeeuveeeevneeeen. 277
Sample Program (HelloCube.js)
Writing Vertex Coordinates, Colors, and Indices to the Buffer Object................ 281
Adding Color to Each Face of @ Cube..........cccoeviiiiniiiiinniiiiiiiiiiceec e, 284
Sample Program (ColoredCube.js)ccoeeuieirriiiiiiiiieeiiiieeiiieeeieeeeereee e 285
Experimenting with the Sample Programcccoccceeirieeiiniiiiinniiiennniieecieeeene 287
SUITIITIATY ittt ettt e e e s e aaban e e e e e e s s mraaeeeeeeeenns 289

Lighting Objects

Lighting 3D ODJECES....cciiviiiiiiiiiiieiieeete ettt s
Types Of Light SOUICE.......cooiiiiiiiiiiiiiiiiceeteetee et
Types of Reflected Light
Shading Due to Directional Light and Its Diffuse Reflectionccceccvveeeenneeen. 296
Calculating Diffuse Reflection Using the Light Direction and the
Orientation of a Surface............ccccoiiiiiii 297
The Orientation of a Surface: What Is the Normal?ccccoociiiiiiiiininnnn. 299
Sample Program (LightedCube.js)ccooevviiiiiiiiiiniiiiiiiiieciiieeieecceecc e 302
Add Shading Due to Ambient Lightcccccccceimiiiiiiiiiiiiieecee e, 307
Sample Program (LightedCube_ambient.js)cccecoueeiriieeerniiiieniiiieenieeeeeeeeenne 308

Lighting the Translated-Rotated ODjectccccceirriieiiniiiiiiniiiiieiieeeeeeeeeeee e 310
The Magic Matrix: Inverse Transpose MatriX.........cccovviiiiiiiiiiiiinininiiceee, 311
Sample Program (LightedTranslatedRotatedCube.js)ccocceevivviiiiiniiiiiinineennn. 312

Using a Point Light ODJectccccceiiiiiiiiiiiiiiiiieicccecc e 314
Sample Program (PointLightedCube.js)......ccooveeiriiiiiniiiiiiniiiiiiiiieceieeccieeee 315
More Realistic Shading: Calculating the Color per Fragment............cccoocveernnneee. 319
Sample Program (PointLightedCube_perFragment.js)cccccceeervivreinnieeennnneeenn. 319

SUIMIMIATY .oiiiiiiiiiiiiii e s s 321

Hierarchical Objects 323

Drawing and Manipulating Objects Composed of Other Objectsccccoeuveeerunneee. 324
Hierarchical Structure
Single Joint Model........ccooooiiiiiiiiiiiiiiiiiii e
Sample Program (JoINtMOdeL.jS)ccceiiviiiiiiiiiiiiiiiiiiiiiiiceiccecceee e 328
Draw the Hierarchical Structure (dAraw())ccoeeeeeeeeeeeereirieiricsrieereeeseeeeeeeeeeeeeeeeeee e 332
A MUultijoint MOAeLooiiiiiiiiiiiiiiiiecc e 334

Contents Xiii

10.

Xiv

Sample Program (MultiJointModel.js)ccoevouieeiriieiiniiieiiiiieeieeeeeeee e 335

Draw Segments (ATaWBOX())..cceeeeermmreiiieiiiiiiiieeee et eeeeeee s 339
Draw Segments (drawSegment())cccoevreiriiiiiiiiiiiiiiiiieiiiiie e 340
Shader and Program Obijects: The Role of initShaders().........ccccoeevveeeveiieinnnneeennnne. 344
Create Shader Objects (gl.createShader()).......cccceeveuveeiniieeiiiiiiiiniiieeieeeeieeeee 345
Store the Shader Source Code in the Shader Objects (g.shaderSource()).............. 346
Compile Shader Objects (gl.compileShader()).......cccceerrvveeerrrueiinnierernieeeeieeeene 347
Create a Program Obiject (gl.createProgrami()).......cocceeerveeeernreeeenniereennieeennneeeenns 349
Attach the Shader Objects to the Program Object (gl.attachShader())................. 350
Link the Program Object (gl.linkProgram())......cccccoceerviueiirniiiiinniiiiiniieeiieeeee 351
Tell the WebGL System Which Program Object to Use (gl.useProgramy())........... 353
The Program Flow of initShaders()ccceeevuviiiriiiieiiiiieeiiiecieec e 353
SUINIIMATY ittt r et e e e s s esbbae e e e e e essaas 356
Advanced Techniques 357
Rotate an Object with the MouUSe........ccccciiiiiiiiiiiiiiicceeceec e 357
How to Implement Object ROtation..........ccevvuieiiiiiieiiniiiiiiiiiieccceecceeee 358
Sample Program (ROtateODJeCt.jS)uveeevurieiriiiiiiiiiiieiiieeceece et 358
SeIECt AN ODJECT ..eeeiiiiiiiiiiiieeitte ettt e e 360
How to Implement Object SeleCtionccccuveeeiiiiiiiiiiiiiiiiiiiiieec e 361
Sample Program (PicKODjJeCt.jS)cccoiiiiviiiiiiiiiiiiiiiiiiiiiciiiciceccceee e 362
Select the Face of the ODjJecCt......cccueeiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 365
Sample Program (PiCKFacCe.js)......ccoovvuiiiiviiiiiiiiiiiiiiiiciiiic e 366
HUD (Head UP DiSPIaY) ...eveierriiiiiiiiiiiiiiieeeiiee ettt ettt srnee e s 368
How to Implement @ HUD........cccoooiiiiiiniiiiiiiieiec et 369
Sample Program (HUD.RtmI)......cooooiiiiiiiiiiiiiiiiiieeceeec e 369
Sample Program (HUD.jS) ..ccciiiiiiiiiiiiiiiiiiiiiieeeee e 370
Display a 3D Object on a Web Page (3DoverWeb)cccoocviiiniiiiiiniiiniininnnnn. 372
Fog (AtmoSpheric EffeCt)ccoooiiiiiiiiiiiiiiiiicicec e 372
How to Implement FOZ.......ccooviiiiiiiiiiiiiiiiecieec et 373
Sample Program (FOZ.jS)...oueeermuuetirriiieiiiieeeiieeeeitee ettt e entereeenreeeesareeee e 374
Use the W Value (FOZ W.jS) .eeeiruieiiiiiiiiiiiieeeiieeeetee ettt 376
Make a ROUNAEd POINT ..eoouviiiiiiiiiiiiiiecieitec ettt et 377
How to Implement a Rounded Pointcccccceoviiiiiiniiiiiiiieeee 377
Sample Program (ROundedPoOints.js).......ccccceevuiiiiiiiiiiiniiiiiiiiiiiiiiccieeccieeeee 378
Alpha BIENINGooiiiiiiiiiiiiiiiiiccc e 380
How to Implement Alpha Blendingcccoecveeiniiieiiniiiiiniiciiieececieeeceeeee 380
Sample Program (LookAtBlendedTriangles.js)....cc.covveeirvueeirniueienniereenieeeeiieeene 381
Blending FUNCHIOMcciiiiiiiiiiiiiiiieee ettt 382
Alpha Blend 3D Objects (BlendedCube.js)ccuceerruueiirniireiniiieiiiieeeeieee e 384
How to Draw When Alpha Values COexXiStcccooceiiviiiiiiniiiiiniiiiiiiinicieeee 385

WebGL Programming Guide

SWItChING SHAEISeeiiiiiiiiiieee ettt e s
How to Implement Switching Shaders..........ccccceeiiiiiiiiiiiiiiieeee,
Sample Program (ProgramODject.js)ccccviviiiiiiiiiiiiiiiiiiiiiiciiiicciiecceeee

Use What You've Drawn as a Texture Image.........cccceeeveiieiiniiieiiniiieennieeenieeeenns
Framebuffer Object and Renderbuffer Objectcccoovueeiriiiiiiniiiiiiniiiieeiieeee
How to Implement Using a Drawn Object as a TexXture.........cccceecevreeveieeeennnneeene
Sample Program (FramebufferObjectj.js).....ccoovveermrieeiniieiiniiiiinieieeeieeeeeeeee
Create Frame Buffer Object (gl.createFramebuffer())........ccceeeueeevviiviiinnieennnneeenn.
Create Texture Object and Set Its Size and Parameters.......cc.ceeeeuveeeeeeernnicneeeeeenn.
Create Renderbuffer Object (gl.createRenderbuffer()).......cccocccceevvciiiiviiiiinnnnnenn.
Bind Renderbuffer Object to Target and Set Size (gl.bindRenderbuffer(),
gl.renderbufferStorage()) «ooooveeeirreiiiieee e
Set Texture Object to Framebuffer Object (gl.bindFramebuffer(),
gl.framebufferTexture2D()ccooureeriiiieiiiiie i
Set Renderbuffer Object to Framebuffer Object
(gl.framebufferRenderbuffer())ccocceeeveeriiiiiiiiniiieeccee e
Check Configuration of Framebuffer Object (gl.checkFramebufferStatus())
Draw Using the Framebuffer Object..........cccovcviiiniiiiiiniiiiiiniiiiiiiiccieccceeeee

DiSPlay SHAAOWS ..cconneiiiiiiiiiieiiieeeee ettt e e e s e e s
How to Implement ShadOWsccoccuiiiiiiiiiiiiiiiiiieee ettt
Sample Program (ShadOW.jS)....cueiirruiiiiiiiieiiiiteeeiiee ettt e
Increasing PrecCiSioncccccccvviiiniiiiiiiiiiiiii i
Sample Program (Shadow_highp.js)ccccciiiiiiiiiiiiiiiiiiieee

Load and Display 3D MOAELSccccouiiiiiiiiiiiiiiiiiiiieeiiicceecc e
The OBJ File FOIMALuciiiiiiiiiiieeii e eeeveee e e e e e e eebaee e e eeeeeabaneeeeeeeees
The MTL File FOrmat..........cccooiiiiiiiiiiiiiiii i,
Sample Program (OBJVIEWET.|S) ...cccooutrirriiiiiiiiiieiniiiee ittt
User-Defined ODJECT.......coouiiiiiiiiiiiiiieeeeiee ettt
Sample Program (Parser Code in OBJVIEWEL.|S) ..cccccceiiviiiiiiiiiiiiniiiiiiiiicccieeee

Handling Lost COMEXtcoiiviiiiiiiiiiiiiiiiiiiiicrtec e
How to Implement Handling Lost COntextcccccceeiviiiiiniiiiinniiieenieeeceeeee
Sample Program (RotatingTriangle_contextLost.js)ccccrvvvueiirniiriinciiieennineennn.

SUITIIMIATY ittt et e e iaaaa et e e e e s srraaeeeeeeeeaas

No Need to Swap Buffers in WebGL

Built-in Functions of GLSL ES 1.0

Angle and Trigonometry FUNCHONSccoovuiiiiiiiiiiiiiieieiiccetec et
Exponential FUNCHONS..........ooociiiiiiiiiiiiiii e
Common FUNCHONSooiiiiiiiiiiiii
Geometric FUNCHIONSoouviiiiiiiiiiiiic e

Contents

b%

Xvi

Matrix Functions

Vector Functions

Texture LoOKUpP FUNCHIONS........cccoiiiiiiiiiiiii e 451
Projection Matrices 453
Orthogonal Projection MatriXccceeiiriiieiiiiieeiiiiee et 453

Perspective Projection Matrix

WebGL/OpenGL: Left or Right Handed?

Sample Program CoordinateSystem.jS.......cccoevueeervueeernuueeennnne

Hidden Surface Removal and the Clip Coordinate System

The Clip Coordinate System and the Viewing Volume.............ccccccoeeiiiiniiiinnnnnnnn.
What IS COITeCt?ccoviiiiiiiiiiiiiiiiiiiceec e

Summary

The Inverse Transpose Matrix 465
Load Shader Programs from Files 471
World Coordinate System Versus Local Coordinate System 473
The Local Coordinate SySteml.........cccoocuuiiiiiiiiiiiiiiiiiiiii e 474
The World Coordinate SYSteIMcccccuiiiiiiiiiiiiiiiiiiieeiiicc e 475
Transformations and the Coordinate SysteIms.......cccoccceeirviiiiiniiiiiiniiiiiiiieeeeieeene 477
Web Browser Settings for WebGL 479
Glossary 481
References 485
Index 487

WebGL Programming Guide

Preface

WebGL is a technology that enables drawing, displaying, and interacting with sophis-
ticated interactive three-dimensional computer graphics (“3D graphics”) from within

web browsers. Traditionally, 3D graphics has been restricted to high-end computers or
dedicated game consoles and required complex programming. However, as both personal
computers and, more importantly, web browsers have become more sophisticated, it has
become possible to create and display 3D graphics using accessible and well-known web
technologies. This book provides a comprehensive overview of WebGL and takes the
reader, step by step, through the basics of creating WebGL applications. Unlike other

3D graphics technologies such as OpenGL and Direct3D, WebGL applications can be
constructed as web pages so they can be directly executed in the browsers without install-
ing any special plug-ins or libraries. Therefore, you can quickly develop and try out a
sample program with a standard PC environment; because everything is web based, you
can easily publish the programs you have constructed on the web. One of the promises
of WebGL is that, because WebGL applications are constructed as web pages, the same
program can be run across a range of devices, such as smart phones, tablets, and game
consoles, through the browser. This powerful model means that WebGL will have a signif-
icant impact on the developer community and will become one of the preferred tools for
graphics programming.

Who the Book Is For

We had two main audiences in mind when we wrote this book: web developers looking
to add 3D graphics to their web pages and applications, and 3D graphics programmers
wishing to understand how to apply their knowledge to the web environment. For web
developers who are familiar with standard web technologies such as HTML and JavaScript
and who are looking to incorporate 3D graphics into their web pages or web applica-
tions, WebGL offers a simple yet powerful solution. It can be used to add 3D graphics to
enhance web pages, to improve the user interface (UI) for a web application by using a 3D
interface, and even to develop more complex 3D applications and games that run in web
browsers.

The second target audience is programmers who have worked with one of the main 3D
application programming interfaces (APIs), such as Direct3D or OpenGL, and who are
interested in understanding how to apply their knowledge to the web environment. We
would expect these programmers to be interested in the more complex 3D applications
that can be developed in modern web browsers.

However, the book has been designed to be accessible to a wide audience using a step-by-
step approach to introduce features of WebGL, and it assumes no background in 2D or 3D
graphics. As such, we expect it also to be of interest to the following:

Preface xvii

® General programmers seeking an understanding of how web technologies are evolv-
ing in the graphics area

® Students studying 2D and 3D graphics because it offers a simple way to begin to ex-
periment with graphics via a web browser rather than setting up a full programming
environment

* Web developers exploring the “bleeding edge” of what is possible on mobile devices
such as Android or iPhone using the latest mobile web browsers

What the Book Covers

This book covers the WebGL 1.0 API along with all related JavaScript functions. You will
learn how HTML, JavaScript, and WebGL are related, how to set up and run WebGL appli-
cations, and how to incorporate sophisticated 3D program “shaders” under the control

of JavaScript. The book details how to write vertex and fragment shaders, how to imple-
ment advanced rendering techniques such as per-pixel lighting and shadowing, and basic
interaction techniques such as selecting 3D objects. Each chapter develops a number of
working, fully functional WebGL applications and explains key WebGL features through
these examples. After finishing the book, you will be ready to write WebGL applications
that fully harness the programmable power of web browsers and the underlying graphics
hardware.

How the Book Is Structured

This book is organized to cover the API and related web APIs in a step-by-step fashion,
building up your knowledge of WebGL as you go.

Chapter 1—Overview of WebGL

This chapter briefly introduces you to WebGL, outlines some of the key features and
advantages of WebGL, and discusses its origins. It finishes by explaining the relationship
of WebGL to HTMLS and JavaScript and which web browsers you can use to get started
with your exploration of WebGL.

Chapter 2—Your First Step with WebGL

This chapter explains the <canvas> element and the core functions of WebGL by taking
you, step-by-step, through the construction of several example programs. Each example
is written in JavaScript and uses WebGL to display and interact with a simple shape on
a web page. The example WebGL programs will highlight some key points, including:
(1) how WebGL uses the <canvas> element object and how to draw on it; (2) the linkage
between HTML and WebGL using JavaScript; (3) simple WebGL drawing functions; and
(4) the role of shader programs within WebGL.

xviii WebGL Programming Guide

Chapter 3—Drawing and Transforming Triangles

This chapter builds on those basics by exploring how to draw more complex shapes and
how to manipulate those shapes in 3D space. This chapter looks at: (1) the critical role of
triangles in 3D graphics and WebGL'’s support for drawing triangles; (2) using multiple
triangles to draw other basic shapes; (3) basic transformations that move, rotate, and
scale triangles using simple equations; and (4) how matrix operations make transtorma-
tions simple.

Chapter 4—More Transformations and Basic Animation

In this chapter, you explore further transformations and begin to combine transformations
into animations. You: (1) are introduced to a matrix transformation library that hides the
mathematical details of matrix operations; (2) use the library to quickly and easily combine
multiple transformations; and (3) explore animation and how the library helps you
animate simple shapes. These techniques provide the basics to construct quite complex
WebGL programs and will be used in the sample programs in the following chapters.

Chapter 5—Using Colors and Texture Images

Building on the basics described in previous chapters, you now delve a little further into
WebGL by exploring the following three subjects: (1) besides passing vertex coordinates,
how to pass other data such as color information to the vertex shader; (2) the conver-
sion from a shape to fragments that takes place between the vertex shader and the frag-
ment shader, which is known as the rasterization process; and (3) how to map images (or
textures) onto the surfaces of a shape or object. This chapter is the final chapter focusing
on the key functionalities of WebGL.

Chapter 6—The OpenGL ES Shading Language (GLSL ES)

This chapter takes a break from examining WebGL sample programs and explains the core
features of the OpenGL ES Shading Language (GLSL ES) in detail. You will cover: (1) data,
variables, and variable types; (2) vector, matrix, structure, array, and sampler; (3) opera-
tors, control flow, and functions; (4) attributes, uniforms, and varyings; (5) precision
qualifier; and (6) preprocessor and directives. By the end of this chapter you will have a
good understanding of GLSL ES and how it can be used to write a variety of shaders.

Chapter 7—Toward the 3D World

This chapter takes the first step into the 3D world and explores the implications of
moving from 2D to 3D. In particular, you will explore: (1) representing the user’s view
into the 3D world; (2) how to control the volume of 3D space that is viewed; (3) clipping;
(4) foreground and background objects; and (5) drawing a 3D object—a cube. All these
issues have a significant impact on how the 3D scene is drawn and presented to viewers.
A mastery of them is critical to building compelling 3D scenes.

Preface Xix

Chapter 8—Lighting Objects
This chapter focuses on lighting objects, looking at different light sources and their effects

on the 3D scene. Lighting is essential if you want to create realistic 3D scenes because it
helps to give the scene a sense of depth.

The following key points are discussed in this chapter: (1) shading, shadows, and different
types of light sources including point, directional, and ambient; (2) reflection of light in

the 3D scene and the two main types: diffuse and ambient reflection; and (3) the details of
shading and how to implement the effect of light to make objects look three-dimensional.

Chapter 9—Hierarchical Objects

This chapter is the final chapter describing the core features and how to program with
WebGL. Once completed, you will have mastered the basics of WebGL and will have
enough knowledge to be able to create realistic and interactive 3D scenes. This chapter
focuses on hierarchical objects, which are important because they allow you to progress
beyond single objects like cubes or blocks to more complex objects that you can use for
game characters, robots, and even modeling humans.

Chapter 10—Advanced Techniques

This chapter touches on a variety of important techniques that use what you have learned
so far and provide you with an essential toolkit for building interactive, compelling 3D
graphics. Each technique is introduced through a complete example, which you can reuse
when building your own WebGL applications.

Appendix A—No Need to Swap Buffers in WebGL
This appendix explains why WebGL programs don’t need to swap buffers.

Appendix B—Built-In Functions of GLSL ES 1.0

This appendix provides a reference for all the built-in functions available in the OpenGL
ES Shading Language.

Appendix C—Projection Matrices

This appendix provides the projection matrices generated by Matrix4.setoOrtho() and
Matrix4.setPerspective ().

Appendix D—WebGL/OpenGL: Left or Right Handed?

This appendix explains how WebGL and OpenGL deal internally with the coordi-
nate system and clarify that technically, both WebGL and OpenGL are agnostic as to
handedness.

XX WebGL Programming Guide

Appendix E—The Inverse Transpose Matrix

This appendix explains how the inverse transpose matrix of the model matrix can deal
with the transformation of normal vectors.

Appendix F—Loading Shader Programs from Files

This appendix explains how to load the shader programs from files.

Appendix G—World Coordinate System Versus Local Coordinate System

This appendix explains the different coordinate systems and how they are used in 3D
graphics.

Appendix H—Web Browser Settings for WebGL

This appendix explains how to use advanced web browser settings to ensure that WebGL
is displayed correctly, and what to do if it isn’t.

WebGL-Enabled Browsers

At the time of writing, WebGL is supported by Chrome, Firefox, Safari, and Opera. Sadly,
some browsers, such as IE9 (Microsoft Internet Explorer), don’t yet support WebGL. In
this book, we use the Chrome browser released by Google, which, in addition to WebGL
supports a number of useful features such as a console function for debugging. We have
checked the sample programs in this book using the following environment (Table P.1)
but would expect them to work with any browser supporting WebGL.

Table P.1 PC Environment

Browser Chrome (25.0.1364.152 m)

(O] Windows 7 and 8

Graphics boards NVIDIA Quadro FX 380, NVIDIA GT X 580, NVIDIA GeForce GTS 450,
Mobile Intel 4 Series Express Chipset Family, AMD Radeon HD
6970

Refer to the www.khronos.org/webgl/wiki/BlacklistsAndWhitelists for an updated list of
which hardware cards are known to cause problems.

To confirm that you are up and running, download Chrome (or use your preferred
browser) and point it to the companion website for this book at https://sites.google.com/
site/webglbook/

Navigate to Chapter 3 and click the link to the sample file HelloTriangle.html. If you can
see a red triangle as shown in Figure P.1 in the browser, WebGL is working.

Preface XXi

http://www.khronos.org/webgl/wiki/BlacklistsAndWhitelists
https://sites.google.com/site/webglbook/
https://sites.google.com/site/webglbook/

Helle Triangle X _
& > C f [1cho3/HelloTriangle.html 5'.

Figure P.1 Loading HelloTriangle results in a red triangle

If you don’t see the red triangle shown in the figure, take a look at Appendix H, which
explains how to change your browser settings to load WebGL.

Sample Programs and Related Links

All sample programs in this book and related links are available on the compan-
ion websites. The official site hosted by the publisher is www.informit.com/
title/9780321902924 and the author site is hosted at https://sites.google.com/site/
webglbook/.

The latter site contains the links to each sample program in this book. You can run each
one directly by clicking the links.

If you want to modify the sample programs, you can download the zip file of all the
samples, available on both sites, to your local disk. In this case, you should note that
the sample program consists of both the HTML file and the associated JavaScript file
in the same folder. For example, for the sample program HelloTriangle, you need
both HelloTriangle.html and HelloTriangle.js. To run HelloTriangle, double-click
HelloTriangle.html.

Xxii WebGL Programming Guide

http://www.informit.com/title/9780321902924
http://www.informit.com/title/9780321902924
https://sites.google.com/site/webglbook/
https://sites.google.com/site/webglbook/

Style Conventions

These style conventions are used in this book:
® Bold—TFirst occurrences of key terms and important words
® [talic—Parameter names and names of references

® Monospace—Code examples, methods, functions, variables, command options,
JavaScript object names, filenames, and HTML tags

Preface Xxiii

Acknowledgments

We have been fortunate to receive help and guidance from many talented individuals
during the process of creating this book, both with the initial Japanese version and the
subsequent English one.

Takafumi Kanda helped by providing numerous code samples for our support librar-

ies and sample programs; without him, this book could not have been realized. Yasuko
Kikuchi, Chie Onuma, and Yuichi Nishizawa provided valuable feedback on early versions
of the book. Of particular note, one insightful comment by Ms. Kikuchi literally stopped
the writing, causing a reevaluation of several sections and leading to a much stronger
book. Hiroyuki Tanaka and Kazsuhira Oonishi (iLinx) gave excellent support with the
sample programs, and Teruhisa Kamachi and Tetsuo Yoshitani supported the writing of
sections on HTMLS and JavaScript. The WebGL working group, especially Ken Russell
(Google), Chris Marin (Apple), and Dan Ginsburg (AMD), have answered many techni-
cal questions. We have been privileged to receive an endorsement from the president

of the Khronos Group, Neil Trevett, and appreciate the help of Hitoshi Kasai (Principal,
MIACIS Associates) who provided the connection to Mr. Trevett and the WebGL working
group. In addition, thank you to Xavier Michel and Makoto Sato (Sophia University), who
greatly helped with the translation of the original text and issues that arose during the
translation. For the English version, Jeff Gilbert, Rick Rafey, and Daniel Haehn reviewed
this book carefully and gave us excellent technical comments and feedback that greatly
improved the book. Our thanks also to Laura Lewin and Olivia Basegio from Pearson, who
have helped with organizing the publication and ensuring the whole process has been as
smooth and as painless as possible.

We both owe a debt of gratitude to the authors of the “Red Book” (OpenGL Programming
Guide) and the “Gold Book” (OpenGL ES 2.0 Programming Guide) both published by
Pearson, without which this book would not have been possible. We hope, in some small
way, that this book repays some of that debt.

XXiv WebGL Programming Guide

About the Authors

Dr. Kouichi Matsuda has a broad background in user interface and user experience design
and its application to novel multimedia products. His work has taken him from product
development, through research, and back to development, having spent time at NEC,
Sony Corporate Research, and Sony Computer Science Laboratories. He is currently a chief
distinguished researcher focused on user experience and human computer interaction
across a range of consumer electronics. He was the designer of the social 3D virtual world
called “PAW” (personal agent-oriented virtual world), was involved in the development

of the VRML97 (ISO/IEC 14772-1:1997) standard from the start, and has remained active
in both VRML and X3D communities (precursors to WebGL). He has written 15 books on
computer technologies and translated a further 25 into Japanese. His expertise covers user
experiences, user interface, human computer interaction, natural language understanding,
entertainment-oriented network services, and interface agent systems. Always on

the lookout for new and exciting possibilities in the technology space, he combines his
professional life with a love of hot springs, sea in summer, wines, and MANGA (at

which he dabbles in drawing and illustrations). He received his Ph.D. (Engineering)

from the Graduate School of Engineering, University of Tokyo, and can be reached via
WebGL.prog.guide@gmail.com.

Dr. Rodger Lea is an adjunct professor with the Media and Graphics Interdisciplinary
Centre at the University of British Columbia, with an interest in systems aspects of multi-
media and distributed computing. With more than 20 years of experience leading research
groups in both academic and industrial settings, he has worked on early versions of shared
3D worlds, helped define VRML97, developed multimedia operating systems, prototyped
interactive digital TV, and led developments on multimedia home networking standards.
He has published more than 60 research papers and three books, and he holds 12 patents.
His current research explores the growing “Internet of Things,” but he retains a passion
for all things media and graphics.

About the Authors XXV

This page intentionally left blank

Chapter 1

Overview of WebGL

WebGL is a technology that enables drawing, displaying, and interacting with sophisticated
interactive three-dimensional computer graphics (“3D graphics”) from within web browsers.
Traditionally, 3D graphics has been restricted to high-end computers or dedicated game consoles
and has required complex programming. However, as both personal computers and, more impor-
tantly, web browsers, have become more sophisticated, it has become possible to create and
display 3D graphics using accessible and well-known web technologies. WebGL, when combined
with HTMLS and JavaScript, makes 3D graphics accessible to web developers and will play an
important role in the development of next generation, easy-to-use and intuitive user interfaces
and web content. Some examples of this are shown in Figure 1.1. Over the next few years, you
can expect to see WebGL used on a range of devices from standard PCs to consumer electronics,
smart phones, and tablets.

® 3D Vvirtual World ® 3pul

= C @ 3pvirtualWorld.html b A N &« C @ 3puLhtml bdih ¥

A little bear is sleeping with his}
friend... 3

summer.

Figure 1.1 Complex 3D graphics within a browser. © 2011 Hiromasa Horie (left), 2012
Kouichi Matsuda (right)

HTMLS, the latest evolution of the HTML standard, expands traditional HTML with
features covering 2D graphics, networking, and local storage access. With the advent of
HTMLS, browsers are rapidly evolving from simple presentation engines to sophisticated
application platforms. With this evolution comes a need for interface and graphics capa-
bilities beyond 2D. WebGL has been designed for that central role of creating the visual
layer for new browser-based 3D applications and experiences.

Traditionally, creating compelling 3D graphics required you to create a stand-alone appli-
cation using a programming language such as C or C++ along with dedicated computer
graphics libraries such as OpenGL and Direct3D. However, with WebGL, you can now
realize 3D graphics as part of a standard web page using familiar HTML and JavaScript—
with a little extra code for the 3D graphics.

Importantly, because WebGL is supported as the browser’s default built-in technology for
rendering 3D graphics, you can use WebGL directly without having to install special plug-
ins or libraries. Better still, because it’s all browser based, you can run the same WebGL
applications on various platforms, from sophisticated PCs down to consumer electronics,
tablets, and smart phones.

This chapter briefly introduces you to WebGL, outlines some of the key features and
advantages of WebGL, and discusses its origins. It also explains the relationship of WebGL
to HTMLS and JavaScript and the structure of WebGL programs.

2 CHAPTER 1 Overview of WebGL

Advantages of WebGL

As HTML has evolved, web developers have been able to create increasingly sophisticated
web-based applications. Originally, HTML offered only static content, but the introduc-
tion of scripting support like JavaScript enabled more complex interactions and dynamic
content. HTMLS introduced further sophistication, including support for 2D graphics via
the canvas tag. This allowed a variety of graphical elements on a web page, ranging from
dancing cartoon characters to map animations that respond to user input by updating the
maps in real time.

WebGL takes this one step further, enabling the display and manipulation of 3D graphics
on web pages by using JavaScript. Using WebGL, it becomes possible to create rich user
interfaces and 3D games and to use 3D to visualize and manipulate a variety of informa-
tion from the Internet. Although the technical capabilities of WebGL are impressive, it is
perhaps the ease of use and accessibility that differentiate it from other technologies and
that will ensure its impact. In particular:

® You can start developing 3D graphics applications using only a text editor and
browser.

® You can easily publish the 3D graphics applications using standard web technolo-
gies, making them available to your friends or other web users.

® You can leverage the full functionality of the browser.

® Learning and using WebGL is easy because a lot of material is already available for
study and development.

You Can Start Developing 3D Graphics Applications Using Only
a Text Editor

One handy and convenient point in developing applications using WebGL is that you
don’t need to set up an application developing environment for WebGL. As explained
earlier, because WebGL is built into the browser, there is no need for special applica-

tion development tools such as compilers and linkers to create 3D graphics applications.
As a minimum, to view the sample programs explained in this book, you only need a
WebGL-enabled browser. If you want to edit them or create your own, a standard text
editor (for example, Notepad or TextEdit) is enough. In Figure 1.2, you can see a WebGL
application running in Chrome and the HTML file opened in Notepad. The JavaScript file
(RotateObject.js) that uses WebGL is loaded by the HTML file and could also be edited
using a simple text editor.

Advantages of WebGL 3

[} Rotate Cube File Edit Format View Help

C [J file:///C:/samples/ch09/RotateObject.html <IDOCTYPE hinl>
<html lang="en™>
<head>
<meta charset="utf-8" />
<title>Rotate Cube</titlp>
</head>

<body onload="wain()">
<canvas id="webgl” width="400" height="400" >,
Please use a browser that supports “canvas”
</canvas>

<seript sre="../lib/webel-utils.is">¢/script>
<script sre="../lib/vebzl-debug.is™></script>
<script sre="../lib/cuon-utils.js"></script>
<script sre= ib/cuon-matrix.is"></script>
<script sre= Rutaleﬂhject is™></seript>
</body>
</htnl>

Browser (Chrome) Notepad

Figure 1.2 The only tools needed for developing 3D graphics applications using WebGL

Publishing Your 3D Graphics Applications Is Easy

Traditionally, 3D graphics applications have been developed using a programming
language such as C or C++ and then compiled into an executable binary for a specific plat-
form. This meant, for example, the version for a Macintosh wouldn’t work on Windows or
Linux. Additionally, users often needed to install not only the applications themselves but
also libraries required by the applications to run, which meant another level of complexity
when you wanted to share your work.

In contrast, because WebGL applications are composed of HTML and JavaScript files,

they can be easily shared by simply putting them on a web server just like standard web
pages or distributing the HTML and JavaScript files via email. For example, Figure 1.3
shows some sample WebGL applications published by Google and available at http://code.
google.com/p/webglsamples/.

Figure 1.3 WebGL sample applications published by Google (with the permission of Gregg
Tavares, Google)

4 CHAPTER 1 Overview of WebGL

http://code.google.com/p/webglsamples/
http://code.google.com/p/webglsamples/

You Can Leverage the Full Functionality of the Browser

Because WebGL applications are created as part of a web page, you can utilize the full
functionality of the browser such as arranging buttons, displaying dialog boxes, drawing
text, playing video or audio, and communicating with web servers. These advanced
features come for free, whereas in traditional 3D graphics applications they would need to
be programmed explicitly.

Learning and Using WebGL Is Easy

The specification of WebGL is based on the royalty-free open standard, OpenGL, which
has been widely used in graphics, video games, and CAD applications for many years. In
one sense, WebGL is “OpenGL for web browsers.” Because OpenGL has been used in a
variety of platforms over the past 20 years, there are many reference books, materials, and
sample programs using OpenGL, which can be used to better understand WebGL.

Origins of WebGL

Two of the most widely used technologies for displaying 3D graphics on personal comput-
ers are Direct3D and OpenGL. Direct3D, which is part of Microsoft’s DirectX technologies,
is the 3D graphics technology primarily used on Windows platforms and is a proprietary
application programming interface (API) that Microsoft controls. An alternative, OpenGL
has been widely used on various platforms due to its open and royalty-free nature.
OpenGL is available for Macintosh, Linux, and a variety of devices such as smart phones,
tablet computers, and game consoles (PlayStation and Nintendo). It is also well supported
on Windows and provides an alternative to Direct3D.

OpenGL was originally developed by Silicon Graphics Inc. and published as an open
standard in 1992. OpenGL has evolved through several versions since 1992 and has had a
profound effect on the development of 3D graphics, software product development, and
even film production over the years. The latest version of OpenGL at the time of writing
is version 4.3 for desktop PCs. Although WebGL has its roots in OpenGL, it is actually
derived from a version of OpenGL designed specifically for embedded computers such as
smart phones and video game consoles. This version, known as OpenGL ES (for Embedded
Systems), was originally developed in 2003-2004 and was updated in 2007 (ES 2.0) and
again in 2012 (ES 3.0). WebGL is based on the ES 2.0 version. In recent years, the number
of devices and processors that support the specification has rapidly increased and includes
smart phones (iPhone and Android), tablet computers, and game consoles. Part of the
reason for this successful adoption has been that OpenGL ES added new features but also
removed many unnecessary or old-fashioned features from OpenGL, resulting in a light-
weight specification that still had enough visual expressive power to realize attractive 3D
graphics.

Figure 1.4 shows the relationship among OpenGL, OpenGL ES 1.1/2.0/3.0, and WebGL.
Because OpenGL itself has continued to evolve from 1.5, to 2.0, to 4.3, OpenGL ES
have been standardized as a subset of specific versions of OpenGL (OpenGL 1.5 and
OpenGL 2.0).

Origins of WebGL 5

Feature expansion Feature expansion Feature expansion

OpenGL 2.0 OpenGL 3.3

OpenGL 1.5 OpenGL 4.3

Subset Subset Subset
OpenGL ES < OpenGL ES OpenGL ES
1.1 2.0 3.0

compatible

WebGL 1.0 Specifications support shader functions.

Figure 1.4 Relationship among OpenGL, OpenGL ES 1.1/2.0/3.0, and WebGL

Incompatible

As shown in Figure 1.4, with the move to OpenGL 2.0, a significant new capability,
programmable shader functions, was introduced. This capability has been carried
through to OpenGL ES 2.0 and is a core part of the WebGL 1.0 specification.

Shader functions or shaders are computer programs that make it possible to program
sophisticated visual effects by using a special programming language similar to C. This
book explains shader functions in a step-by-step manner, allowing you to quickly master
the power of WebGL. The programming language that is used to create shaders is called

a shading language. The shading language used in OpenGL ES 2.0 is based on the
OpenGL shading language (GLSL) and referred to as OpenGL ES shading language
(GLSL ES). Because WebGL is based on OpenGL ES 2.0, it also uses GLSL ES for creating
shaders.

The Khronos Group (a non-profit industry consortium created to develop, publish, and
promote various open standards) is responsible for the evolution and standardization of
OpenGL. In 2009, Khronos established the WebGL working group and then started the
standardization process of WebGL based on OpenGL ES 2.0, releasing the first version of
WebGL in 2011. This book is written based primarily on that specification and, where
needed, the latest specification of WebGL published as an Editor’s Draft. For more infor-
mation, please refer to the specification.!

Structure of WebGL Applications

In HTML, dynamic web pages can be created by using a combination of HTML and
JavaScript. With the introduction of WebGL, the shader language GLSL ES needs to
be added to the mix, meaning that web pages using WebGL are created by using three

1 WebGL 1.0: www.khronos.org/registry/webgl/specs/1.0/ and Editor’s draft: www.khronos.org/
registry/webgl/specs/latest/

6 CHAPTER 1 Overview of WebGL

http://www.khronos.org/registry/webgl/specs/1.0/
http://www.khronos.org/registry/webgl/specs/latest/
http://www.khronos.org/registry/webgl/specs/latest/

languages: HTMLS (as a Hypertext Markup Language), JavaScript, and GLSL ES. Figure 1.5
shows the software architecture of traditional dynamic web pages (left side) and web pages
using WebGL (right side).

Web page Web page using WebGL

U NI NI NN NN NS NN NN NN NN EEEEEEEE,

[HTML] [JavaScript]

W NN NN EE NN NN NN EENEENEEENNEEEEEEEEEEEN,

[HTML5][JavaScript][GLSL ES]

WebGL

HTML HTML

Rendering Engine Rendering Engine

OpenGL/OpenGL ES

4 sEEEEEEEEEEEEEEEEEEEE

Browser Browser

eNEEEEEEEEEEEEEEEEEEEEN,
eNEEEEEEEEEEEEEEEEEEEEN,

.
-
»
.
u
»
.
u
»
.
u
»
.
u
»
.
u
»
.
u
»
.
u
»
.
u
»
.
u
»
.
u
»
.
u
»
.
u
»
.
u
»
.
.

AssEEEEEEEEEEEEEEEEEEES

Figure 1.5 The software architecture of dynamic web pages (left) and web pages using
WebGL (right)

However, because GLSL ES is generally written within JavaScript, only HTML and
JavaScript files are actually necessary for WebGL applications. So, although WebGL does
add complexity to the JavaScript, it retains the same structure as standard dynamic web
pages, only using HTML and JavaScript files.

Summary

This chapter briefly overviewed WebGL, explained some key features, and outlined

the software architecture of WebGL applications. In summary, the key takeaway from
this chapter is that WebGL applications are developed using three languages: HTMLS,
JavaScript, and GLSL ES—however, because the shader code (GLSL ES) is generally embed-
ded in the JavaScript, you have exactly the same file structure as a traditional web page.
The next chapter explains how to create applications using WebGL, taking you step by
step through a set of simple WebGL examples.

Summary 7

This page intentionally left blank

Chapter 2

Your First Step with WebGL

As explained in Chapter 1, “Overview of WebGL,” WebGL applications use both HTML and
JavaScript to create and draw 3D graphics on the screen. To do this, WebGL utilizes the new
<canvas> element, introduced in HTMLS, which defines a drawing area on a web page. Without
WebGL, the <canvas> element only allows you to draw two-dimensional graphics using
JavaScript. With WebGL, you can use the same element for drawing three-dimensional graphics.

This chapter explains the <canvas> element and the core functions of WebGL by taking you,
step-by-step, through the construction of several example programs. Each example is written in
JavaScript and uses WebGL to display and interact with a simple shape on a web page. Because of
this, these JavaScript programs are referred to as WebGL applications.

The example WebGL applications will highlight some key points, including:
®* How WebGL uses the <canvas> element and how to draw on it
® The linkage between HTML and WebGL using JavaScript
¢ Simple WebGL drawing functions

® The role of shader programs within WebGL

By the end of this chapter, you will understand how to write and execute basic WebGL applica-
tions and how to draw simple 2D shapes. You will use this knowledge to explore further the
basics of WebGL in Chapters 3, “Drawing and Transforming Triangles,” 4, “More Transformations
and Basic Animation,” and 5, “Using Colors and Texture Images.”

What Is a Canvas?

Before HTMLS, if you wanted to display an image in a web page, the only native HTML approach
was to use the tag. This tag, although a convenient tool, is restricted to still images and

doesn’t allow you to dynamically draw and display the image on the fly. This is one of the
reasons that non-native solutions such as Flash Player have been used.

However, HTMLS, by introducing the <canvas> tag, has changed all that, offering a conve-
nient way to draw computer graphics dynamically using JavaScript.

In a similar manner to the way artists use paint canvases, the <canvas> tag defines a
drawing area on a web page. Then, rather than using brush and paints, you can use
JavaScript to draw anything you want in the area. You can draw points, lines, rectangles,
circles, and so on by using JavaScript methods provided for <canvas>. Figure 2.1 shows an
example of a drawing tool that uses the <canvas> tag.

(D) Canvas Painter
L C | @ caimansys.com/painter/ brdi 8
brush

brush 2

line

rectangle
circle

clear Y

new

4
\9 @) > w0

Canvas Painter
© Rafael Robayna

download source

< 1, | 3

Figure 2.1 A drawing tool using the <canvas> element (http://caimansys.com/painter/)

This drawing tool runs within a web page and allows you to interactively draw lines, rect-
angles, and circles and even change their colors.

Although you won't be creating anything as sophisticated just yet, let’s look at the core
functions of <canvas> by using a sample program, DrawRectangle, which draws a filled
blue rectangle on a web page. Figure 2.2 shows DrawRectangle when it’s loaded into a
browser.

10 CHAPTER 2 Your First Step with WebGL

http://caimansys.com/painter/

[} Draw a blue rectangle

- C [file:///C:/samples/ch02/DrawRectangle.html ¢';

Figure 2.2 DrawRectangle

Using the <canvas> Tag

Let’s look at how DrawRectangle works and explain how the <canvas> tag is used in the
HTML file. Listing 2.1 shows DrawingTriangle.html. Note that all HTML files in this book
are written in HTMLS.

Listing 2.1 DrawRectangle.html

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <meta charset="utf-8" />

5 <title>Draw a blue rectangle (canvas version)</titles>
6 </head>

7

8 <body onload="main()">

9 <canvas id="example" width="400" height="400">
10 Please use a browser that supports "canvas"
11 </canvas>
12 <script src="DrawRectangle.js"></scripts>
13 </body>
14 </html>

What Is a Canvas? 11

The <canvas> tag is defined at line 9. This defines the drawing area as a 400 x 400 pixel
region on a web page using the width and height attributes in the tag. The canvas is given
an identifier using the id attribute, which will be used later:

<canvas id="example" width="400" height="400"></canvas>

By default, the canvas is invisible (actually transparent) until you draw something into it,
which we’ll do with JavaScript in a moment. That’s all you need to do in the HTML file to
prepare a <canvas> that the WebGL program can use. However, one thing to note is that
this line only works in a <canvass>-enabled browser. However, browsers that don’t support
the <canvas> tag will ignore this line, and nothing will be displayed on the screen. To
handle this, you can display an error message by adding the message into the tag as
follows:

9 <canvas id="example" width="400" height="400">
10 Please use a browser that supports "canvas"
11 </canvas>

To draw into the canvas, you need some associated JavaScript code that performs the
drawing operations. You can include that JavaScript code in the HTML or write it as a
separate JavaScript file. In our examples, we use the second approach because it makes the
code easier to read. Whichever approach you take, you need to tell the browser where the
JavaScript code starts. Line 8 does that by telling the browser that when it loads the sepa-
rate JavaScript code it should use the function main () as the entry point for the JavaScript
program. This is specified for the <body> element using its onload attribute that tells the
browser to execute the JavaScript function main () after it loads the <body> element:

8 <body onload="main()">

Line 12 tells the browser to import the JavaScript file brawRectangle.js in which the
function main () is defined:

12 <script src="DrawRectangle.js"></script>

For clarity, all sample programs in this book use the same filename for both the HTML file
and the associated JavaScript file, which is imported in the HTML file (see Figure 2.3).

12 CHAPTER 2 Your First Step with WebGL

<IDOCTYPE html> :
<html lang="en"> /I DrawRectangle.js
<head> : function main() {
<meta charset="utf-8" /> H /I Retrieve the <canvas> element
<title>Draw a blue rectangle (canvas version)</title> var canvas = document.getElementByld(‘example’);
</head> H if (Icanvas) {
console.log(Failed to retrieve the <canvas> element ');
<body onload="main()"> H return false;
<canvas id="example" width="200" height="150"> }
Please use a browser that supports “canvas” :
</canvas> /I Get the rendering context for 2DCG
<script src="DrawRectangle.js"></script> €———— - var ctx = canvas.getContext('2d");
</body>
</html> : /I Draw a blue rectangle
ctx fillStyle = 'rgba(0, 0, 255, 1.0)'; // Set a blue color
DrawRectang|e_htm|)clx.fiIIRect(120, 10, 150, 150); /I Fill a rectangle with the color
DrawRectangle.js

Figure 2.3 DrawRectangle.html and DrawRectangle.js

DrawRectangle.js

DrawRectangle.js is a JavaScript program that draws a blue rectangle on the drawing area
defined by the <canvas> element (see Listing 2.2). It has only 16 lines, which consist of
the three steps required to draw two-dimensional computer graphics (2D graphics) on the
canvas:

1. Retrieve the <canvas> element.
2. Request the rendering “context” for the 2D graphics from the element.

3. Draw the 2D graphics using the methods that the context supports.

These three steps are the same whether you are drawing a 2D or a 3D graphic; here, you
are drawing a simple 2D rectangle using standard JavaScript. If you were drawing a 3D
graphic using WebGL, then the rendering context in step (2) at line 11 would be for a 3D
rendering context; however, the high-level process would be the same.

Listing 2.2 DrawRectangle.js

1 // DrawRectangle.js

2 function main() {

3 // Retrieve <canvas> element <- (1)
4 var canvas = document.getElementById('example');

5 if (lcanvas) {

6 console.log('Failed to retrieve the <canvas> element');

7 return;

8 }

9

10 // Get the rendering context for 2DCG <- (2)
11 var ctx = canvas.getContext ('2d');

What Is a Canvas? 13

12

13 // Draw a blue rectangle <- (3)
14 ctx.fillStyle = 'rgba(0, 0, 255, 1.0)'; // Set a blue color

15 ctx.fillRect (120, 10, 150, 150); // Fill a rectangle with the color
16}

Let us look at each step in order.

Retrieve the <canvas> Element

To draw something on a <canvas>, you must first retrieve the <canvas> element from the
HTML file in the JavaScript program. You can get the element by using the method docu-
ment .getElementById (), as shown at line 4. This method has a single parameter, which is
the string specified in the attribute id in the <canvas> tag in our HTML file. In this case,
the string is 'example' and it was defined back in DrawRectangle.html at line 9 (refer to
Listing 2.1).

If the return value of this method is not nul1, you have successfully retrieved the element.
However, if it is null, you have failed to retrieve the element. You can check for this
condition using a simple if statement like that shown at line 5. In case of error, line 6 is
executed. It uses the method console.log() to display the parameter as a string in the
browser’s console.

Note In Chrome, you can show the console by going to Tools, JavaScript Console or
pressing Ctrl+Shift+J (see Figure 2.4); in Firefox, you can show it by going to Tools, Web
Developer, Web Console or pressing Ctrl+Shift+K.

- — T P
<5 Elements lg Resources @Ne{wurk g sources @nmeﬁne (" Profles »

Console

B, = Q @ <topframe> v (I} | Errors Warnings Logs £+

Figure 2.4 Console in Chrome

14 CHAPTER 2 Your First Step with WebGL

Get the Rendering Context for the 2D Graphics by Using the Element

Because the <canvass> is designed to be flexible and supports both 2D and 3D, it does not
provide drawing methods directly and instead provides a mechanism called a context,
which supports the actual drawing features. Line 11 gets that context:

11 var ctx = canvas.getContext ('2d');

The method canvas.getContext () has a parameter that specifies which type of drawing
features you want to use. In this example you want to draw a 2D shape, so you must
specify 2d (case sensitive).

The result of this call, the context, is stored in the variable ctx ready for use. Note, for
brevity we haven’t checked error conditions, which is something you should always do in
your own programs.

Draw the 2D Graphics Using the Methods Supported by the Context

Now that we have a drawing context, let’s look at the code for drawing a blue rectangle,
which is a two-step process. First, set the color to be used when drawing. Second, draw (or
fill) a rectangle with the color.

Lines 14 and 15 handle these steps:

13 // Draw a blue rectangle <- (3)
14 ctx.fillStyle = 'rgba(0, 0, 255, 1.0)'; // Set color to blue
15 ctx.fillRect (120, 10, 150, 150); // Fill a rectangle with the color

The rgba in the string rgba (0, 0, 255, 1.0) on line 14 indicate r (red), g (green), b
(blue), and a (alpha: transparency), with each RGB parameter taking a value from 0
(minimum value) to 255 (maximum value) and the alpha parameter from 0.0 (transpar-
ent) to 1.0 (opaque). In general, computer systems represent a color by using a combina-
tion of red, green, and blue (light’s three primary colors), which is referred to as RGB
format. When alpha (transparency) is added, the format is called RGBA format.

Line 15 then uses the fillstyle property to specify the fill color when drawing the rect-
angle. However, before going into the details of the arguments on line 15, let’s look at the
coordinate system used by the <canvas> element (see Figure 2.5).

What Is a Canvas? 15

Clear <canvas>

©0)| «© WX
>

[oz0.10 _<canvas>
-7 drawing area

e SR e

v (400, 400)

Figure 2.5 The coordinate system of <canvas>

As you can see in the figure, the coordinate system of the <canvas> element has the hori-
zontal direction as the x-axis (right-direction is positive) and the vertical direction as the
y-axis (down-direction is positive). Note that the origin is located at the upper-left corner
and the down direction of the y-axis is positive. The rectangle drawn with a dashed line
is the original <canvas> element in our HTML file (refer to Listing 2.1), which we speci-
fied as being 400 by 400 pixels. The dotted line is the rectangle that the sample program
draws.

When we use ctx.fillRect () to draw a rectangle, the first and second parameters of this
method are the position of the upper-left corner of the rectangle within the <canvass>, and
the third and fourth parameters are the width and height of the rectangle (in pixels):

15 ctx.fillRects (120, 10, 150, 150);// Fill a rectangle with the color
After loading DrawRectangle.html into your browser, you will see the rectangle that was
shown in Figure 2.2.

So far, we’ve only looked at 2D graphics. However, WebGL also utilizes the same <canvas>
element to draw 3D graphics on a web page, so let’s now enter into the WebGL world.

The World’s Shortest WebGL Program:
Clear Drawing Area

Let’s start by constructing the world’s shortest WebGL program, HelloCanvas, which
simply clears the drawing area specified by a <canvas> tag. Figure 2.6 shows the result of
loading the program, which clears (by filling with black) the rectangular area defined by a

<canvas>.

16 CHAPTER 2 Your First Step with WebGL

/' [Clear <canvas=

c [file:///C:/samples/ch02/HelloCanvas.html <> @5 A

Figure 2.6 HelloCanvas

The HTML File (HelloCanvas.html)

Take a look at HelloCanvas.html, as shown in Figure 2.7). Its structure is simple and starts

by defining the drawing area using the <canvas> element at line 9 and then importing

HelloCanvas.js (the WebGL program) at line 16.

Lines 13 to 15 import several other JavaScript files, which provide useful convenience

functions that help WebGL programming. These will be explained in more detail later. For

now, just think of them as libraries.

The World’s Shortest WebGL Program: Clear Drawing Area

17

1 <!IDOCTYPE htmlI>
2 <html lang="en”">
3 <head>

4 <meta charset="utf-8" />
5 «<«title>Clear canvas</title>
6 </head>
7
8

<body onload="main()">
9 <canvas id="webgl" width="400" height="400"> <canvas> into which
S " WebGL draws shapes
10 Please use the browser supporting "canvas
11 </canvas>
12
13 <script src="../lib/webgl-utils.js"></script> JaV?S_C,“pt files t
. " o . . containing convenien
14 <script src="../lib/webgl-debug.js"></script> functions for WebGL
15 <script src="../lib/cuon-utils.js"></script>
16 <script src="HelloCanvas.js"></script> JavaScript file drawing
17 </body> shapes into the <canvas>
18 </html>

Figure 2.7 HelloCanvas.html

You've set up the canvas (line 9) and then imported the Hellocanvas JavaScript file (line
16), which actually uses WebGL commands to access the canvas and draw your first 3D
program. Let us look at the WebGL program defined in HellocCanvas.js.

JavaScript Program (HelloCanvas.js)

HelloCanvas.js (see Listing 2.3) has only 18 lines, including comments and error
handling, and follows the same steps as explained for 2D graphics: retrieve the <canvas>
element, get its rendering context, and then begin drawing.

Listing 2.3 HelloCanvas.js

1 // HelloCanvas.js
2 function main() {

3 // Retrieve <canvas> element

4 var canvas = document.getElementById('webgl');
5

6 // Get the rendering context for WebGL
7 var gl = getWebGLContext (canvas) ;
8 if (1gl) {

9 console.log('Failed to get the rendering context for WebGL') ;

10 return;
11}

18 CHAPTER 2 Your First Step with WebGL

12

13 // Specify the color for clearing <canvass>
14 gl.clearColor (0.0, 0.0, 0.0, 1.0);

15

16 // Clear <canvas>

17 gl.clear (gl.COLOR_BUFFER_BIT) ;

18 }

As in the previous example, there is only one function, main (), which is the link between
the HTML and the JavaScript and set at <body> element using its onload attribute (line 8)
in HelloCanvas.html (refer to Figure 2.7).

Figure 2.8 shows the processing flow of the main() function of our WebGL program and
consists of four steps, which are discussed individually next.

4 3\
Retrieve the <canvas> element

\ J

4 * 3\

Get the rendering context for WebGL

| J

4 * 3\
Set the color clearing <canvas>

| J

(* 3\

Clear <canvas>
| J

Figure 2.8 The processing flow of the main() function

Retrieve the <canvas> Element

First, main () retrieves the <canvas> element from the HTML file. As explained in
DrawRectangle.js, it uses the document .getElementById () method specifying webgl as the
argument. Looking back at HelloCanvas.html (refer to Figure 2.7), you can see that attri-
bute id is set at the <canvas> tag at line 9:

9 <canvas id="webgl" width="400" height="400">

The return value of this method is stored in the canvas variable.

The World’s Shortest WebGL Program: Clear Drawing Area 19

Get the Rendering Context for WebGL

In the next step, the program uses the variable canvas to get the rendering context
for WebGL. Normally, we would use canvas.getContext () as described earlier to
get the rendering context for WebGL. However, because the argument specified in
canvas.getContext () varies between browsers,! we have written a special function
getWebGLContext () to hide the differences between the browsers:

7 var gl = getWebGLContext (canvas) ;

This is one of the convenience functions mentioned earlier that was written specially for
this book and is defined in cuon-utils.js, which is imported at line 15 in Hellocanvas.
html. The functions defined in the file become available by specifying the path to the file
in the attribute src in the <script> tag and loading the file. The following is the specifica-
tion of getWebGLContext ().

getWebGLContext (element [, debugl)

Get the rendering context for WebGL, set the debug setting for WebGL, and display any
error message in the browser console in case of error.

Parameters element Specifies <canvas> element to be queried.

debug (optional) Default is true. When set to true, JavaScript errors
are displayed in the console. Note: Turn off after
debugging; otherwise, performance is affected.

Return value non-null The rendering context for WebGL.

null WebGL is not available.

The processing flow to retrieve the <canvas> element and use the element to get the
rendering context is the same as in DrawRectangle.js shown earlier, where the rendering
context was used to draw 2D graphics on the <canvass.

In a similar way, WebGL uses the rendering context returned by getwebGLContext () to
draw on the <canvas>. However, now the context is for 3D rather than 2D, so 3D (that is,
WebGL) methods are available. The program stores the context in the variable g1 at line
7. You can use any name for the variable. We have intentionally used g1 throughout this
book, because it aligns the names of the WebGL-related methods to that of OpenGL ES
2.0, which is the base specification of WebGL. For example, gl.clearcolor () at line 14
corresponds to glclearcolor () in OpenGL ES 2.0 or OpenGL:

14 gl.clearColor (0.0, 0.0, 0.0, 1.0);

1 Although most browsers are settling on “experimental-webgl” for this argument, not all do.
Additionally, over time, this will evolve to plain ‘webgl,” so we have chosen to hide this.

20 CHAPTER 2 Your First Step with WebGL

This book explains all WebGL-related methods assuming that the rendering context is
held in the variable g1.

Once you have the rendering context for WebGL, the next step is to use the context to set
the color for clearing the drawing area specified by the <canvas>.

Set the Color for Clearing the <canvas>

In the previous section, DrawRectangle.js set the drawing color before drawing the rect-
angle. In a similar way, with WebGL you need to set the color before actually clearing the
drawing area. Line 14 uses gl.clearColor () to set the color in RGBA format.

gl.clearColor (red, green, blue, alpha)

Specify the clear color for a drawing area:

Parameters red Specifies the red value (from 0.0 to 1.0).
green Specifies the green value (from 0.0 to 1.0).
blue Specifies the blue value (from 0.0 to 1.0).
alpha Specifies an alpha (transparency) value (from 0.0 to 1.0).

0.0 means transparent and 1.0 means opaque.

If any of the values of these parameters is less than 0.0 or more than 1.0, it
is truncated into 0.0 or 1.0, respectively.

Return value None

Errors? None

The sample program calls g1.clearcolor(0.0, 0.0, 0.0, 1.0) at line 14, so black is specified
as the clear color. The followings are examples that specify other colors:

(1.0, 0.0, 0.0, 1.0) red

(0.0, 1.0, 0.0, 1.0) green
(0.0, 0.0, 1.0, 1.0) blue

(1.0, 1.0, 0.0, 1.0) yellow
(1.0, 0.0, 1.0, 1.0) purple
(0.0, 1.0, 1.0, 1.0) light blue
(1.0, 1.0, 1.0, 1.0) white

2 In this book, the item “errors” is shown for all specifications of WebGL-related methods. This
indicates errors that cannot be represented by the return value of the method when the method will
result in as error. By default, the errors are not displayed, but they can be displayed in a JavaScript
console by specifying true as the second argument of getWebGLContext ().

The World’s Shortest WebGL Program: Clear Drawing Area 21

You might have noticed that in our 2D programming example in this chapter,
DrawRectangle, each value for color is specified from O to 255. However, because WebGL
is based on OpenGL, it uses the traditional OpenGL values from 0.0 to 1.0. The higher the
value is, the more intense the color becomes. Similarly, for the alpha parameter (fourth
parameter), the higher the value, the less transparent the color.

Once you specify the clear color, the color is retained in the WebGL system and not
changed until another color is specified by a call to g1.clearcolor (). This means you
don’t need to specify the clear color again if at some point in the future you want to clear
the area again using the same color.

Clear <canvas>
Finally, you can use gl.clear() to clear the drawing area with the specified clear color:

17 gl.clear (gl.COLOR_BUFFER_BIT) ;

Note that the argument of this method is g1.coLorR_BUFFER BIT, not, as you might expect,
the <canvas> element that defines the drawing area to be cleared. This is because the
WebGL method gl.clear () is actually relying on OpenGL, which uses a more sophisti-
cated model than simple canvases, instead using multiple underlying buffers. One such
buffer, the color buffer, is used in this example. By using g1 .COLOR_BUFFER_BIT, you are
telling WebGL to use the color buffer when clearing the canvas. WebGL uses a number of
buffers in addition to the color buffer, including a depth buffer and a stencil buffer. The
color buffer will be covered in detail later in this chapter, and you'll see the depth buffer
in action in Chapter 7, “Toward the 3D World.” The stencil buffer will not be covered in
this book because it is seldom used.

Clearing the color buffer will actually cause WebGL to clear the <canvas> area on the web
page.

gl.clear (buffer)

Clear the specified buffer to preset values. In the case of a color buffer, the value (color)
specified by gl.clearcolor () is used.

Parameters buffer Specifies the buffer to be cleared. Bitwise ORr (|) operators are used
to specify multiple buffers.

gl.COLOR BUFFER BIT Specifies the color buffer.
gl.DEPTH BUFFER BIT Specifies the depth buffer.

gl.STENCIL BUFFER BIT Specifies the stencil buffer.

Return value None

Errors INVALID_VALUE buffer is none of the preceding three values.

22 CHAPTER 2 Your First Step with WebGL

If no color has been specified (that is, you haven’t made a call to gl.clearcolor()), then
the following default value is used (see Table 2.1).

Table 2.1 Default Values to Clear Each Buffer and Associated Methods

Buffer Name Default Value Setting Method

Color buffer (0.0, 0.0, 0.0, 0.0) gl.clearColor (red, green, blue, alpha)
Depth buffer 1.0 gl.clearDepth (depth)

Stencil buffer 0 gl.clearStencil (s)

Now that you've read through and understand this simple WebGL example, you should
load Hellocanvas into your browser to check that the drawing area is cleared to black.
Remember, you can run all the examples in the book directly from the companion
website. However, if you want to experiment with any, you need to download the exam-
ples from the book’s website to a location on your local disk. If you've done that, to load
the example, navigate to that location on your disk and load HelloCanvas.html into your
browser.

Experimenting with the Sample Program

Let’s experiment a little with the sample program to become familiar with the way you
specify colors in WebGL by trying some other colors for the clear operation. Using your
favorite editor, rewrite Line 14 of HelloCanvas.js as follows and save your modification
back to the original file:

14 gl.clearColor (0.0, 0.0, 1.0, 1.0);

After reloading HelloCanvas.html into your browser, HelloCanvas.js is also reloaded,
and then main () is executed to clear the drawing area to blue. Try to use other colors and
check the result. For example, gl.clearColor (0.5, 0.5, 0.5, 1.0) clears the area to

gray.

Draw a Point (Version 1)

In the previous section, you saw how to initialize WebGL and use some simple WebGL-
related methods. In this section, you are going to go one step further and construct a
sample program to draw the simplest shape of all: a point. The program will draw a red
point using 10 pixels at (0.0, 0.0, 0.0). Because WebGL deals with three-dimensional
graphics, three coordinates are necessary to specify the position of the point. You'll be
introduced to coordinates later, but for now simply accept that a point drawn at (0.0, 0.0,
0.0) is displayed at the center of the <canvas> area.

Draw a Point (Version 1) 23

The sample program name is HelloPoint1 and, as shown in Figure 2.9, it draws a red
point (rectangle) at the center of the <canvas>, which has been cleared to black.? You will
actually be using a filled rectangle as a point instead of a filled circle because a rectangle
can be drawn faster than a circle. (We will deal with how to draw a rounded point in
Chapter 9, “Hierarchical Objects.”)

Figure 2.9 HelloPointl

Just like clearing the color in the previous section, the color of a point must be specified
in RGBA. For red, the value of R is 1.0, G is 0.0, B is 0.0, and A is 1.0. You will remember
that brawRectangle.js earlier in the chapter specifies the drawing color and then draws a
rectangle as follows:

ctx.fillStyle='rgba(0, 0, 255, 1.0)';
ctx.fillRect (120, 10, 150, 150);

So you are probably thinking that WebGL would do something similar, perhaps some-
thing like this:

gl.drawColor (1.0, 0.0, 0.0, 1.0);
gl.drawPoint (0, 0, 0, 10); // The position of center and the size of point

3 The sample programs in Chapter 2 are written in the simplest way possible so the reader can focus
on understanding the functionality of shaders. In particular, they don’t use “buffer objects” (see
Chapter 3), which are generally used in WebGL. Although this helps by simplifying the explanation,
some browsers (especially Firefox) expect buffer objects and may fail to display correctly any
examples without them. In later chapters, and in actual application development, this will not
cause problems because you will be using “buffer objects.” However, if you are having problems, try
another browser. You can switch back in the next chapter.

24 CHAPTER 2 Your First Step with WebGL

Unfortunately, this is not possible. WebGL relies on a new type of drawing mechanism
called a shader, which offers a flexible and powerful mechanism for drawing 2D and 3D
objects and must be used by all WebGL applications. Shaders, although powerful, are
more complex, and you can'’t just specify a simple draw command.

Because the shader is a critical core mechanism in WebGL programming that you will use

throughout this book, let’s examine it one step at a time so that you can understand it
easily.

HelloPoint1.html

Listing 2.4 shows Helloroint1.html, which is functionally equivalent to HelloCanvas.
html (refer to Figure 2.7). The title of the web page and the JavaScript filename were
changed (lines 5 and 16), but everything else remains the same. From now on, unless
the HTML file is different from this example, we’ll skip showing the HTML files for the
examples.

Listing 2.4 HelloPoint1.html

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <meta charset="utf-8" />

5 <title>Draw a point (1)</title>

6 </head>

7

8 <body onload="main()">

9 <canvas id="webgl" width="400" height="400">
10 Please use the browser supporting "canvas".

11 </canvas>

12

13 <script src="../libs/webgl-utils.js"></scripts>
14 <script src="../libs/webgl-debug.js"></script>
15 <script src="../libs/cuon-utils.js"></scripts>
16 <script src="HelloPointl.js"></script>

17 </body>

18 </html>

HelloPoint1.js

Listing 2.5 shows HelloPoint1.js. As you can see from the comments in the listing,
two “shader programs” are prepended to the JavaScript (lines 2 to 13). Glance through
the shader programs, and then go to the next section, where you’ll see more detailed
explanations.

Draw a Point (Version 1)

25

Listing 2.5 HelloPointl.js

1 // HelloPointl.js
2 // Vertex shader program
3 var VSHADER SOURCE =

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

26

'void main() {\n' +

gl Position = vec4(0.0, 0.0, 0.0, 1.0);\n'
gl _PointSize = 10.0;\n' +

l}\nl’.

// Fragment shader program
var FSHADER SOURCE =

'void main() {\n' +

gl FragColor = vec4(1.0, 0.0, 0.0, 1.0);\n'

l}\nl’.

function main() {

//

Retrieve <canvas> element

var canvas = document.getElementById('webgl') ;

//

Get the rendering context for WebGL

var gl = getWebGLContext (canvas) ;

if

//

(1gl) |

return;

Initialize shaders

+ // Coordinates

// Set the point size

+ // Set the color

console.log('Failed to get the rendering context for WebGL') ;

if (!initShaders(gl, VSHADER SOURCE, FSHADER SOURCE)) {

//

gl.

//

gl.

//

gl.

return;

Set the color for clearing <canvass>
clearColor (0.0, 0.0, 0.0, 1.0);

Clear <canvas>
clear (gl.COLOR_BUFFER BIT) ;

Draw a point
drawArrays (gl.POINTS, 0, 1);

CHAPTER 2 Your First Step with WebGL

console.log('Failed to initialize shaders.');

What Is a Shader?

HelloPointl.js is our first WebGL program that uses shaders. As mentioned earlier,
shader programs are necessary when you want to draw something on the screen in
WebGL. Essentially, shader programs are “embedded” in the JavaScript file and, in this
case, set up at the start. This seems at first sight to be complicated, but let’s take it one
step at a time.

WebGL needs the following two types of shaders, which you saw at line 2 and line 9:

® Vertex shader: Vertex shaders are programs that describe the traits (position, colors,
and so on) of a vertex. The vertex is a point in 2D/3D space, such as the corner or
intersection of a 2D/3D shape.

¢ Fragment shader: A program that deals with per-fragment processing such as light-
ing (see Chapter 8, “Lighting Objects”). The fragment is a WebGL term that you can
consider as a kind of pixel (picture element).

You'll explore shaders in more detail later, but simply put, in a 3D scene, it’s not enough
just to draw graphics. You have to also account for how they are viewed as light sources
hit them or the viewer’s perspective changes. Shading does this with a high degree of flex-
ibility and is part of the reason that today’s 3D graphics are so realistic, allowing them to
use new rendering effects to achieve stunning results.

The shaders are read from the JavaScript and stored in the WebGL system ready to be used
for drawing. Figure 2.10 shows the basic processing flow from a JavaScript program into
the WebGL system, which applies the shader programs to draw shapes that the browser
finally displays.

JavaScript program is executed (onload) JavaScript

\ 4

WebGL-related methods are executed

3 . g . function main() {
Per vert?x operation Per: fragm/ent operation var gl=getWebGL...

i.r-1-itShaders(...);

Vertex Shader Fragment 3
y Shader

Browser

X
Position: Color:

e 2%% 00,00, 1.0) (1.0, 0.0, 0.0, 1.0)

Render to the color buffer

Color Buffer

L.

Figure 2.10 The processing flow from executing a JavaScript program to displaying the result
in a browser

Draw a Point (Version 1) 27

You can see two browser windows on the left side of the figure. These are the same; the
upper one shows the browser before executing the JavaScript program, and the lower one
shows the browser after execution. Once the WebGL-related methods are called from the
JavaScript program, the vertex shader in the WebGL system is executed, and the fragment
shader is executed to draw the result into the color buffer. This is the clear part—that is,
step 4 in Figure 2.8, described in the original Hellocanvas example. Then the content in
the color buffer is automatically displayed on the drawing area specified by the <canvas>
in the browser.

You'll be seeing this figure frequently in the rest of this book. So we’ll use a simplified
version to save space (see Figure 2.11). Note that the flow is left to right and the right-
most component is a color buffer, not a browser, because the color buffer is automatically
displayed in the browser.

Per-verte)s operation Per-fragrlnent operation
/ /

JavaScript

Vertex Shader Fragment

function main() { y Shader
var gl=getWebGL...

X
Position: Color:

o o 00,0010 (1.0,0.0, 0.0, 1.0)

initShaders(...);
Color Buffer

Figure 2.11 The simplified version of Figure 2.9

Getting back to our example, the goal is to draw a 10-pixel point on the screen. The two
shaders are used as follows:

* The vertex shader specifies the position of a point and its size. In this sample
program, the position is (0.0, 0.0, 0.0), and the size is 10.0.

* The fragment shader specifies the color of fragments displaying the point. In this
sample program, the color is red (1.0, 0.0, 0.0, 1.0).

The Structure of a WebGL Program that Uses Shaders

Based on what you've learned so far, let’s look at HellopPointl.js again (refer to Listing
2.5). This program has 40 lines and is a little more complex than HelloCanvas.js (18
lines). It consists of three parts, as shown in Figure 2.12. The main () function in JavaScript
starts from line 15, and shader programs are located from lines 2 to 13.

28 CHAPTER 2 Your First Step with WebGL

1 // HelloPint1.js A
2 /I Vertex shader program

3 var VSHADER_SOURCE =

4 ‘void main() {\n' + >
5 ' gl_Position = vec4(0.0, 0.0, 0.0, 1.0);\n' +

6 ' gl_PointSize =10.0;\n' +

7 "An'% J
8 ~
9 // Fragment shader program

IWAZIRESI LRl Re o 2 _ Fragment shader program

11 'void main() {\n + (Language: GLSL ES)
12 ' gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);\n' +

13 n'; J

Vertex shader program
(Language: GLSL ES)

14

Main program
(Language: JavaScript)

J

Figure 2.12 The basic structure of a WebGL program with embedded shader programs

The vertex shader program is located in lines 4 to 7, and the fragment shader is located in
lines 11 to 13. These programs are actually the following shader language programs but
written as a JavaScript string to make it possible to pass the shaders to the WebGL system:

// Vertex shader program
void main() {

gl Position = vec4(0.0, 0.0, 0.0, 1.0);

gl _PointSize = 10.0;
}
// Fragment shader program
void main() {

gl _FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}

Draw a Point (Version 1) 29

As you learned in Chapter 1, shader programs must be written in the OpenGL ES shading
language (GLSL ES), which is similar to the C language. Finally, GLSL ES comes onto the
stage! You will get to see the details of GLSL ES in Chapter 6, “The OpenGL ES Shading
Language (GLSL ES),” but in these early examples, the code is simple and should be under-
standable by anybody with a basic understanding of C or JavaScript.

Because these programs must be treated as a single string, each line of the shader is
concatenated using the + operator into a single string. Each line has \n at the end because
the line number is displayed when an error occurs in the shader. The line number is
helpful to check the source of the problem in the codes. However, the \n is not manda-
tory, and you could write the shader without it.

At lines 3 and 10, each shader program is stored in the variables VSHADER SOURCE and
FSHADER_SOURCE as a string:

2 // Vertex shader program
3 var VSHADER SOURCE =

4 'void main() {\n' +

5 ' gl Position = vec4(0.0, 0.0, 0.0, 1.0);\n' +
6 ' gl PointSize = 10.0;\n' +

7 'N\n';

8

9 // Fragment shader program
10 var FSHADER_ SOURCE =
11 'void main() {\n' +
12 ' gl FragColor = vec4(1.0, 0.0, 0.0, 1.0);\n' +
13 ‘}\n‘;

If you are interested in loading the shader programs from files, refer to Appendix F,
“Loading Shader Programs from Files.”

Initializing Shaders

Before looking at the details of each shader, let’s examine the processing flow of main ()
that is defined from line 15 in the JavaScript (see Figure 2.13). This flow, shown in Figure
2.13, is the basic processing flow of most WebGL applications. You will see the same flow
throughout this book.

30 CHAPTER 2 Your First Step with WebGL

[Retrieve the <canvas> element]

v

e \

Get the rendering context for WebGL

\ 7)

Initialize shaders

v

Set the color for clearing <canvas>

v

Clear <canvas>

v

Draw

\. J

Figure 2.13 The processing flow of a WebGL program

This flow is similar to that shown in Figure 2.8 except that a third step (“Initialize
Shaders”) and a sixth step (“Draw”) are added.

The third step “Initialize Shaders” initializes and sets up the shaders that are defined at
line 3 and line 10 within the WebGL system. This step is done using the convenience

function initShaders () that is defined in cuon-util.js. Again, this is one of those special

functions we have provided for this book.

initShaders (gl, vshader, fshader)

Initialize shaders and set them up in the WebGL system ready for use:
Parameters gl Specifies a rendering context.
vshader Specifies a vertex shader program (string).
fshader Specifies a fragment shader program (string).

Return value true Shaders successfully initialized.

false Failed to initialize shaders.

Figure 2.14 shows how the convenience function initsShaders () processes the shaders.
You will examine in detail what this function is doing in Chapter 8. For now, you just
need to understand that it sets up the shaders in the WebGL system and makes them
ready for use.

Draw a Point (Version 1)

31

Per—vertelx operation Per—fragmlent operation Color Buffer

/ / /
yi / /
JavaScript L4 |4 »
Vertex Shader Fragment
Shader
> > —>

WebGL System

JavaScript

c
Fuodmaing : Vertex Shader | | £ Fragment
. - | @ 5
: gl_Position = vec4(...); : 2 B Shader 2
: gl_PointSize = 10.0; _ol %
Y : void main() { - void main() { ﬁ.“f
:-_-' P gl Position = vecd(...); @) gl_FragColor = vec4(...); 5
E R gl_PointSize = 10.0; 17} }
"- - Vglld:::lgrg)ol{or=vec4(...);i } B % >
. : 4 2 4
ED S i R o - e
function main() { 3
var gl=getWebGL... | WebGL System

.
w
>
o
a
)
@

}

Figure 2.14 Behavior of initShaders()

As you can see in the upper figure in Figure 2.14, the WebGL system has two containers:
one for a vertex shader and one for a fragment shader. This is actually a simplification,
but helpful at this stage. We return to the details in Chapter 10. By default, the contents
of these containers are empty. To make the shader programs, written as JavaScript strings
and ready for use in the WebGL system, we need something to pass these strings to the
system and then set them up in the appropriate containers; initShaders () performs this
operation. Note that the shader programs are executed within the WebGL system, not the
JavaScript program.

The lower portion in Figure 2.14 shows that after executing initshaders (), the shader
programs that are passed as a string to the parameters of initshaders() are set up in the
containers in the WebGL system and then made ready for use. The lower figure schemati-
cally illustrates that a vertex shader is passing g1_rosition and gl_PointSize to a frag-
ment shader and that just after assigning values to these variables in the vertex shader, the
fragment shader is executed. In actuality, the fragments that are generated after process-
ing these values are passed to the fragment shader. Chapter 5 explains this mechanism in
detail, but for now you can consider the attributes to be passed.

32 CHAPTER 2 Your First Step with WebGL

The important point here is that WebGL applications consist of a JavaScript program executed
by the browser and shader programs that are executed within the WebGL system.

Now, having completed the explanation of the second step “Initialize Shaders” in Figure
2.13, you are ready to see how the shaders are actually used to draw a simple point. As
mentioned, we need three items of information for the point: its position, size, and color,
which are used as follows:

® The vertex shader specifies the position of a point and its size. In this sample
program, the position is (0.0, 0.0, 0.0), and the size is 10.0.

® The fragment shader specifies the color of the fragments displaying the point. In this
sample program, they are red (1.0, 0.0, 0.0, 1.0).

Vertex Shader

Now, let us start by examining the vertex shader program listed in HelloPoint1.js (refer
to Listing 2.5), which sets the position and size of the point:

2 // Vertex shader program

3 var VSHADER_SOURCE =

4 'void main() {\n' +

5 ' gl _Position = vec4 (0.0, 0.0, 0.0, 1.0);\n' +
6 ' gl PointSize = 10.0;\n' +

7

The vertex shader program itself starts from line 4 and must contain a single main () func-
tion in a similar fashion to languages such as C. The keyword void in front of main ()
indicates that this function does not return a value. You cannot specify other arguments
to main ().

Just like JavaScript, we can use the = operator to assign a value to a variable in a shader.
Line 5 assigns the position of the point to the variable g1_position, and line 6 assigns its
size to the variable g1_pointsize. These two variables are built-in variables available only
in a vertex shader and have a special meaning: g1_position specifies a position of a vertex
(in this case, the position of the point), and gl_prointsize specifies the size of the point
(see Table 2.2).

Table 2.2 Built-In Variables Available in a Vertex Shader

Type and Variable Name Description
vec4 gl Position Specifies the position of a vertex
float g1 _PointSize Specifies the size of a point (in pixels)

Draw a Point (Version 1) 33

Note that g1_position should always be written. If you don’t specify it, the shader’s
behavior is implementation dependent and may not work as expected. In contrast, g1_
PointSize is only required when drawing points and defaults to a point size of 1.0 if you
don’t specify anything.

For those of you mostly familiar with JavaScript, you may be a little surprised when you
see “type” specified in Table 2.2. Unlike JavaScript, GLSL ES is a “typed” programming
language; that is, it requires the programmer to specify what type of data a variable holds.
C and Java are examples of typed languages. By specifying “type” for a variable, the
system can easily understand what type of data the variable holds, and then it can opti-
mize its processing based on that information. Table 2.3 summarizes the “type” in GLSL
ES used in the shaders in this section.

Table 2.3 Data Types in GLSL ES

Type Description

float Indicates a floating point number

vecd Indicates a vector of four floating point numbers

|float |float |Float |float |

Note that an error will occur when the type of data that is assigned to the variable is
different from the type of the variable. For example, the type of g1_Pointsize is float, and
you must assign a floating point number to it. So, if you change line 6 from

gl_PointSize = 10.0;

to

gl_PointSize = 10;

it will generate an error simply because 10 is interpreted as an integer number, whereas
10.0 is a floating point number in GLSL ES.

The type of the variable g1_position, the built-in variable for specifying the position of
a point, is vec4; veca4 is a vector made up of three floats. However, you only have three
floats (0.0, 0.0, 0.0) representing X, Y, and Z. So you need to convert these to a vec4
somehow. Fortunately, there is a built-in function, vec4 (), that will do this for you and
return a value of type vec4 —, which is just what you need!

34 CHAPTER 2 Your First Step with WebGL

vec4 vec4 (v0, vl, v2, v3)

Construct a vec4 object from v0, vI1, v2, and v3.

Parameters vO, vi, v2, v3 Specifies floating point numbers.

Return value A vec4 object made from vO, v1, v2, and v3.

In this sample program, veca4 () is used at line 5 as follows:

gl Position = vec4(0.0, 0.0, 0.0, 1.0);

Note that the value that is assigned to g1_Position has 1.0 added as a fourth component.
This four-component coordinate is called a homogeneous coordinate (see the boxed
article below) and is often used in 3D graphics for processing three-dimensional informa-
tion efficiently. Although the homogeneous coordinate is a four-dimensional coordinate,
if the last component of the homogeneous coordinate is 1.0, the coordinate indicates the
same position as a three-dimensional one. So, you can supply 1.0 as the last component if
you need to specify four components as a vertex coordinate.

Homogeneous Coordinates

The homogeneous coordinates use the following coordinate notation: (x, y, z, w). The
homogeneous coordinate (x, y, z, w) is equivalent to the three-dimensional coordinate
(x/w, y/w, z/w). So, if you set w to 1.0, you can utilize the homogeneous coordinate

as a three-dimensional coordinate. The value of w must be greater than or equal to

0. If w approaches zero, the coordinates approach infinity. So we can represent the
concept of infinity in the homogeneous coordinate system. Homogeneous coordinates
make it possible to represent vertex transformations described in the next chapter as a
multiplication of a matrix and the coordinates. These coordinates are often used as an
internal representation of a vertex in 3D graphics systems.

Fragment Shader

After specifying the position and size of a point, you need to specify its color using a frag-
ment shader. As explained earlier, a fragment is a pixel displayed on the screen, although
technically the fragment is a pixel along with its position, color, and other information.

The fragment shader is a program that processes this information in preparation for
displaying the fragment on the screen. Looking again at the fragment shader listed in
HelloPointl.js (refer to Listing 2.5), you can see that just like a vertex shader, a fragment
shader is executed from main ():

Draw a Point (Version 1) 35

9 // Fragment shader program
10 var FSHADER_SOURCE =

11 'void main() {\n' +
12 ' gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);\n' +
13 "N\n';

The job of the shader is to set the color of the point as its per-fragment operation, which
is carried out at line 12. g1_Fragcolor is a built-in variable only available in a fragment
shader; it controls the color of a fragment, as shown in Table 2.4.

Table 2.4 The Built-In Value Available in a Fragment Shader

Type and Variable Name Description

vec4 gl _FragColor Specify the color of a fragment (in RGBA)

When we assign a color value to the built-in variable, the fragment is displayed using
that color. Just like the position in the vertex shader, the color value is a vec4 data type
consisting of four floating point numbers representing the RGBA values. In this sample
program, a red point will be displayed because you assign (1.0, 0.0, 0.0, 1.0) to the
variable.

The Draw Operation

Once you set up the shaders, the remaining task is to draw the shape, or in our case, a
point. As before, you need to clear the drawing area in a similar way to that described

in Hellocanvas.js. Once the drawing area is cleared, you can draw the point using g1.
drawArrays (), as in line 39:

39 gl.drawArrays(gl.POINTS, 0, 1);

gl.drawArrays () is a powerful function that is capable of drawing a variety of basic
shapes, as detailed in the following box.

36 CHAPTER 2 Your First Step with WebGL

gl.drawArrays (mode, first, count)

Execute a vertex shader to draw shapes specified by the mode parameter.

Parameters mode Specifies the type of shape to be drawn. The following symbolic
constants are accepted: gl.POINTS, gl.LINES, gl.LINE STRIP,
gl.LINE LOOP, gl.TRIANGLES, gl.TRIANGLE STRIP, and gl.
TRIANGLE FAN.

first Specifies which vertex to start drawing from (integer).

count Specifies the number of vertices to be used (integer).

Return value None
Errors INVALID_ENUM mode is none of the preceding values.
INVALID_VALUE first is negative or count is negative.

In this sample program, because you are drawing a point, you specify gl.POINTS as the
mode in the first parameter. The second parameter is set to O because you are starting from
the first vertex. The third parameter, count, is 1 because you are only drawing 1 point in
this sample program.

Now, when the program makes a call to gl.drawArrays (), the vertex shader is executed
count times, each time working with the next vertex. In this sample program, the shader
is executed once (count is set to 1) because we only have one vertex: our point. When
the shader is executed, the function main() in the shader is called, and then each line
in the function is executed sequentially, resulting in (0.0, 0.0, 0.0, 1.0) being assigned to
gl_position (line 5) and then 10.0 assigned to g1_pPointSize (line 6).

Once the vertex shader executes, the fragment shader is executed by calling its main ()
function which, in this example, assigns the color value (red) to g1_FragColor (line 12).
As a result, a red point of 10 pixels is drawn at (0.0, 0.0, 0.0, 1.0), or the center of the
drawing area (see Figure 2.15).

Draw a Point (Version 1) 37

Per-verTIex operation Per-fragr/nent operation Color Buffer
/ / !

/ / /
JavaScript L4 = L4 >
Vertex Shader 2 Fragment
— 8 P Shader 3
) . | [$)
function main() { | void main({ =) o =3
var gl=getWebGL... gl_Position = e main() { EI
vec4(0.0, 0.0, 0.0, 1.0); N gl-FragColor = E)
initShaders(...); gl_PointSize = 10.0; || g N) vec4(1.0, 0.0, 0.0, 1.0);
} o
gl.drawArrays(...); ;l
WebGL System

Figure 2.15 The behavior of shaders

At this stage, you should have a rough understanding of the role of a vertex shader and a
fragment shader and how they work. In the rest of this chapter, you’ll build on this basic
understanding through a series of examples, allowing you to become more accustomed to
WebGL and shaders. However, before that, let’s quickly look at how WebGL describes the
position of shapes using its coordinate system.

The WebGL Coordinate System

Because WebGL deals with 3D graphics, it uses a three-dimensional coordinate system
along the x-, y-, and z-axis. This coordinate system is easy to understand because our
world has the same three dimensions: width, height, and depth. In any coordinate system,
the direction of each axis is important. Generally, in WebGL, when you face the computer
screen, the horizontal direction is the x-axis (right direction is positive), the vertical direc-
tion is the y-axis (up direction is positive), and the direction from the screen to the viewer
is the z-axis (the left side of Figure 2.16). The viewer’s eye is located at the origin (0.0, 0.0,
0.0), and the line of sight travels along the negative direction of the z-axis, or from you
into the screen (see the right side of Figure 2.16). This coordinate system is also called the
right-handed coordinate system because it can be expressed using the right hand (see
Figure 2.17) and is the one normally associated with WebGL. Throughout this book, we’ll
use the right-handed coordinate system as the default for WebGL. However, you should
note that it’s actually more complex than this. In fact, WebGL is neither left handed nor
right handed. This is explained in detail in Appendix D, “WebGL/OpenGL: Left or Right
Handed?,” but it’s safe to treat WebGL as right handed for now.

y y

//---Screen

\---Line of sight

Figure 2.16 WebGL coordinate system

38 CHAPTER 2 Your First Step with WebGL

<

N

[y

[y

by
Bk |

Figure 2.17 The right-handed coordinate system

As you have already seen, the drawing area specified for a <canvas> element in JavaScript
is different from WebGL's coordinate system, so a mapping is needed between the two.
By default, as you see in Figure 2.18, WebGL maps the coordinate system to the area as
follows:

® The center position of a <canvas>: (0.0, 0.0, 0.0)
® The two edges of the x-axis of the <canvas>: (-1.0, 0.0, 0.0) and (1.0, 0.0, 0.0)
® The two edges of the y-axis of the <canvas>: (0.0, -1.0, 0.0) and (0.0, 1.0, 0.0)

. o e oW ledy| A
| . 1
! : <canvas>
Lo] .7 drawing area
(0.0, 0.0, 0.0) :‘
1 \ 1
1 ’ X
—e ® >
(-1.0, 0.0, 0.0) (1.0, 0.0, 0.0)
i)
1 1
1 1
1 1
1 1
(0.0, -1.0, 0.0)

Figure 2.18 The <canvas> drawing area and WebGL coordinate system

As previously discussed, this is the default. It’s possible to use another coordinate
system, which we'll discuss later, but for now this default coordinate system will be used.
Additionally, to help you stay focused on the core functionality of WebGL, the example
programs will mainly use the x and y coordinates and not use the z or depth coordinate.
Therefore, until Chapter 7, the z-axis value will generally be specified as 0.0.

Draw a Point (Version 1) 39

Experimenting with the Sample Program

First, you can modify line 5 to change the position of the point and gain a better under-
standing of the WebGL coordinate system. For example, let’s change the x coordinate
from 0.0 to 0.5 as follows:

5 ' gl Position = vec4(0.5, 0.0, 0.0, 1.0);\n' +
Save the modified HelloPoint1.js and click the Reload button on your browser to reload

it. You will see that the point has moved and is now displayed on the right side of the
<canvas> area (see Figure 2.19, left side).

Now change the y coordinate to move the point toward the top of the <canvas> as
follows:

5 ' gl Position = vec4(0.0, 0.5, 0.0, 1.0);\n' +

Again, save the modified HelloPoint1.js and reload it. This time, you can see the point
has moved and is displayed in the upper part of the canvas (see Figure 2.19, right side).

Figure 2.19 Modifying the position of the point

As another experiment, let’s try changing the color of the point from red to green by
modifying line 12, as follows:

12 ' gl FragColor = vec4(0.0, 1.0, 0.0, 1.0);\n' +

Let’s conclude this section with a quick recap. You've been introduced to the two basic
shaders we use in WebGL—the vertex shader and the fragment shader—and seen how,
although they use their own language, they can be executed from within JavaScript.
You've also seen that the basic processing flow of a WebGL application using shaders is
the same as in other types of WebGL applications. A key lesson from this section is that
a WebGL program consists of a JavaScript program executing in conjunction with shader
programs.

40 CHAPTER 2 Your First Step with WebGL

For those of you with experience in using OpenGL, you may feel that something is
missing; there is no code to swap color buffers. One of the significant features of WebGL
is that it does not need to do that. For more information, see Appendix A, “No Need to
Swap Buffers in WebGL.”

Draw a Point (Version 2)

In the previous section, you explored drawing a point and the related core functions of
shaders. Now that you understand the fundamental behavior of a WebGL program, let’s
examine how to pass data between JavaScript and the shaders. Helloroint1 always draws
a point at the same position because its position is directly written (“hard-coded”) in the
vertex shader. This makes the example easy to understand, but it lacks flexibility. In this
section, you'll see how a WebGL program can pass a vertex position from JavaScript to
the vertex shader and then draw a point at that position. The name of the program is
HelloPoint2, and although the result of the program is the same as HelloPoint1l, it’s a
flexible technique you will use in future examples.

Using Attribute Variables

Our goal is to pass a position from the JavaScript program to the vertex shader. There
are two ways to pass data to a vertex shader: attribute variable and uniform variable (see
Figure 2.20). The one you use depends on the nature of the data. The attribute variable
passes data that differs for each vertex, whereas the uniform variable passes data that is
the same (or uniform) in each vertex. In this program, you will use the attribute variable
because each vertex generally has different coordinates.

JavaScript
Color Buffer
[attribute variable] [uniform variable] ,/
v v WebGL System /
function main() { =) |4
var gl=getWebGL... Vertex Shader £ Fragment =
nflng Shader z
initShaders(...); > 3‘ ‘é-?»
w
= o
> N °’
&
=)

Figure 2.20 Two ways to pass data to a vertex shader

The attribute variable is a GLSL ES variable which is used to pass data from the world
outside a vertex shader into the shader and is only available to vertex shaders.

Draw a Point (Version 2) 41

To use the attribute variable, the sample program involves the following three steps:
1. Prepare the attribute variable for the vertex position in the vertex shader.
2. Assign the attribute variable to the gl_Position variable.

3. Pass the data to the attribute variable.
Let’s look at the sample program in more detail to see how to carry out these steps.

Sample Program (HelloPoint2.js)

In Hellopoint2 (see Listing 2.6), you draw a point at a position the JavaScript program
specifies.

Listing 2.6 HelloPoint2.js

1 // HelloPoint2.js
2 // Vertex shader program
3 var VSHADER SOURCE =

4 'attribute vec4 a Position;\n' +

5 'void main() {\n' +

6 ' gl Position = a Position;\n' +

7 ' gl PointSize = 10.0;\n' +

8 'I\n';

9
10 // Fragment shader program

snipped because it is the same as HelloPointl.js

15

16 function main()
17 // Retrieve <canvas> element

18 var canvas = document.getElementById('webgl') ;

20 // Get the rendering context for WebGL
21 var gl = getWebGLContext (canvas) ;

26
27 // Initialize shaders
28 if (!initShaders(gl, VSHADER SOURCE, FSHADER_SOURCE)) {

31}

32

33 // Get the storage location of attribute variable

34 var a Position = gl.getAttribLocation(gl.program, 'a Position');

35 if (a_Position < 0) {

36 console.log('Failed to get the storage location of a Position');

37 return;

42 CHAPTER 2 Your First Step with WebGL

38}

39

40 // Pass vertex position to attribute variable
41 gl.vertexAttrib3f(a_Positiomn, 0.0, 0.0, 0.0);
42

43 // Set the color for clearing <canvas>

44 gl.clearColor (0.0, 0.0, 0.0, 1.0);

45

46 // Clear <canvass>

47 gl.clear(gl. COLOR_BUFFER_BIT) ;

48

49 // Draw a point

50 gl.drawArrays (gl.POINTS, 0, 1);

51}

As you can see, the attribute variable is prepared within the shader on line 4:

4 'attribute vec4 a Position;\n' +

In this line, the keyword attribute is called a storage qualifier, and it indicates that the
following variable (in this case, a_prosition) is an attribute variable. This variable must
be declared as a global variable because data is passed to it from outside the shader. The
variable must be declared following a standard pattern <Storage Qualifiers> <Types
<Variable Name>, as shown in Figure 2.21.

Storage Qualifier Type Variable Name
/ / /

[2 ¥ | 3
attribute vec4 a_Position;

Figure 2.21 The declaration of the attribute variable

In line 4, you declare a_Position as an attribute variable with data type vec4 because,
as you saw in Table 2.2, it will be assigned to g1_Position, which always requires a vec4

type.

Note that throughout this book, we have adopted a programming convention in which
all attribute variables have the prefix a_, and all uniform variables have the prefix u_ to
easily determine the type of variables from their names. Obviously, you can use your own
convention when writing your own programs, but we find this one simple and clear.

Once a_Position is declared, it is assigned to g1_Position at line 6:
6 ' gl Position = a_Position;\n' +
At this point, you have completed the preparation in the shader for receiving data from

the outside. The next step is to pass the data to the attribute variable from the JavaScript
program.

Draw a Point (Version 2) 43

Getting the Storage Location of an Attribute Variable

As you saw previously, the vertex shader program is set up in the WebGL system using
the convenience function initshaders (). When the vertex shader is passed to the
WebGL system, the system parses the shader, recognizes it has an attribute variable, and
then prepares the location of its attribute variable so that it can store data values when
required. When you want to pass data to a_prosition in the vertex shader, you need to
ask the WebGL system to give you the location it has prepared, which can be done using
gl.getAttribLocation(), as shown in line 34:

33 // Get the location of attribute variable
34 var a Position = gl.getAttribLocation(gl.program, 'a Position');

35 if (a_Position < 0) {

36 console.log('Fail to get the storage location of a Position');
37 return;
38}

The first argument of this method specifies a program object that holds the vertex shader
and the fragment shader. You will examine the program object in Chapter 8, but for

now, you can just specify gl.program as the argument here. Note that you should use
gl.program only after initsShaders () has been called because initShaders () assigns the
program object to the variable. The second parameter specifies the attribute variable name
(in this case a_Position) whose location you want to know.

The return value of this method is the storage location of the specified attribute variable.
This location is then stored in the JavaScript variable, a_Position, at line 34 for later use.
Again, for ease of understanding, this book uses JavaScript variable names for attribute
variables, which are the same as the GLSL ES attribute variable name. You can, of course,
use any variable name.

The specification of g1.getAttribLocation() is as follows:

gl.getAttribLocation (program, name)

Retrieve the storage location of the attribute variable specified by the name parameter.
Parameters program Specifies the program object that holds a vertex
shader and a fragment shader.

name Specifies the name of the attribute variable
whose location is to be retrieved.

Return value greater than or equal to O The location of the specified attribute variable.

-1 The specified attribute variable does not exist or
its name starts with the reserved prefix g1 or
webgl .

44 CHAPTER 2 Your First Step with WebGL

Errors INVALID_OPERATION program has not been successfully linked (See
Chapter 9.)

INVALID_VALUE The length of name is more than the maximum
length (256 by default) of an attribute variable
name.

Assigning a Value to an Attribute Variable

Once you have the attribute variable location, you need to set the value using the
a_Position variable. This is performed at line 41 using the gl.vertexaAttrib3f () method.

40 // Set vertex position to attribute variable
41 gl.vertexAttrib3f(a_Position, 0.0, 0.0, 0.0);

The following is the specification of gl.vertexatrrib3f ().

gl.vertexAttrib3f (location, vO0, vl, v2)

Assign the data (v0, v1, and v2) to the attribute variable specified by location.

Parameters location Specifies the storage location of an attribute variable to be modified.

vO Specifies the value to be used as the first element for the attribute
variable.

vl Specifies the value to be used as the second element for the attri-
bute variable.

v2 Specifies the value to be used as the third element for the attribute
variable.

Return value None

Errors INVALID_OPERATION There is no current program object.

INVALID_VALUE location is greater than or equal to the maximum
number of attribute variables (8, by default).

The first argument of the method call specifies the location returned by gl.getattrib-
Location () at line 34. The second, third, and fourth arguments specify the floating point
number to be passed to a_Position representing the x, y, and z coordinates of the point.
After calling the method, these three values are passed as a group to a_Position, which
was prepared at line 4 in the vertex shader. Figure 2.22 shows the processing flow of
getting the location of the attribute variable and then writing a value to it.

Draw a Point (Version 2) 45

P TP, I a_Position
JavaScript
function main({ . Vertex Shader s
var gl=getWebGLContext(); L |2 S
N o
void main() { =
initShaders(gl, VSHADER_SOURCE, ...); L . 2
R > gl_Position = a_Position; J—
" gl_PointSize = 10.0; &
a_Position = — % >
gl.getAttributeLocation(..., ‘a_Position’); } ;:E_’
gl.vertexAttribute3f(a_Position, 0.0, 0.0, 0.0); D
WebGL System
}
S a_Position
JavaScript :
function main() { Vertex Shader: s
var gl=getWebGLContext(); : : _..’_ 2
: : : e
: void main() { VvV : =
initShaders(gl, VSHADER_SOURCE, ...); ; > gl_Position = a_Position: - :%:
e . 8
a_Position = gl_PointSize = 10.0; | 95’)
gl.getAttributeLocation(..., ‘a_Position’); } E
K _
gl.vertexAttribute3f(a_Position, 0.0, 0.0, 0.0)p=++ —
WebGL System
}

Figure 2.22 Getting the storage location of an attribute variable and then writing a value to
the variable

a_Position is then assigned to g1_Position at line 6 in the vertex shader, in effect passing
the x, y, and z coordinates from your JavaScript, via the attribute variable into the shader,
where it’s written to gl_Prosition. So the program has the same effect as HelloPoint1,
where g1_Position is used as the position of a point. However, g1_position has now been
set dynamically from JavaScript rather than statically in the vertex shader:

4 'attribute vec4 a Position;\n' +
5 'void main() {\n' +

6 ' gl Position = a Position;\n' +
7 ' gl PointSize = 10.0;\n' +

8

'}\Il',‘

Finally, you clear the <canvas> using gl.clear () (line 47) and draw the point using
gl.drawArrays () (line 50) in the same way as in HelloPointl.js.

46 CHAPTER 2 Your First Step with WebGL

As a final note, you can see a_Position is prepared as vec4 at line 4 in the vertex shader.
However, gl.vertexattrib3f () at line 41 specifies only three values (x, y, and z), not
four. Although you may think that one value is missing, this method automatically
supplies the value 1.0 as the fourth value (see Figure 2.23). As you saw earlier, a default
fourth value of 1.0 for a color ensures it is fully opaque, and a default fourth value of 1.0
for a homogeneous coordinate maps a 3D coordinate into a homogenous coordinate, so
essentially the method is supplying a “safe” fourth value.

[0.0[0.0]0.0]1.0
....................... > a_POSltlon
JavaScript
: . S
function main() { Vertex Shader : :'%
var gl=getWebGLContext(); : : > EI >
)) : E)
initShaders(gl, VSHADER_SOURCE, ...); void main() { v =
gl_Position = a_Position;*~ o)
a_Position = gl_PointSize = 10.0; @
gl.getAttributeLocation(..., ‘a_Position’)'_;' } B -% —»
: 5
. o
.gl.vertexAttribute3f(a_Position, 0.0, 0.0, 0.0); —
0.0
} 0.0]0.0] WebGL System

Figure 2.23 The missing data is automatically supplied

Family Methods of gl.vertexAttrib3f()

gl.vertexAttrib3f () is part of a family of methods that allow you to set some or all of
the components of the attribute variable. g1.vertexattribif () is used to assign a single
value (v0), glvertexAttrib2f () assigns two values (vO and v1), and gl.vertexAttrib4f ()
assigns four values (v0O, v1, v2, and v3).

gl.vertexAttriblf (location, vO0)
gl.vertexAttrib2f (location, v0, vl)
gl.vertexAttrib3f (location, v0, vl, v2)
gl.vertexAttrib4f (location, v0, vl, v2, v3)

Assign data to the attribute variable specified by location. gl .vertexattribif () indicates
that only one value is passed, and it will be used to modify the first component of the
attribute variable. The second and third components will be set to 0.0, and the fourth
component will be set to 1.0. Similarly, g1.vertexattrib2f () indicates that values are
provided for the first two components, the third component will be set to 0.0, and the
fourth component will be set to 1.0. gl.vertexaAttrib3f () indicates that values are
provided for the first three components, and the fourth component will be set to 1.0,
whereas gl .vertexattrib4f () indicates that values are provided for all four components.

Draw a Point (Version 2) a7

Parameters location Specifies the storage location of the attribute variable.

vO, v1, v2, v3 Specifies the values to be assigned to the first, second,
third, and fourth components of the attribute variable.

Return value None

Errors INVALID_VALUE location is greater than or equal to the maximum number
of attribute variables (8 by default).

The vector versions of these methods are also available. Their name contains “v” (vector),
and they take a typed array (see Chapter 4) as a parameter. The number in the method
name indicates the number of elements in the array. For example,

var position = new Float32Array([1.0, 2.0, 3.0, 1.0]);
gl.vertexAttrib4fv(a_Position, position);

In this case, 4 in the method name indicates that the length of the array is 4.

The Naming Rules for WebGL-Related Methods

You may be wondering what 3f in gl.vertexAttrib3f () actually means. WebGL bases
its method names on the function names in OpenGL ES 2.0, which as you now know,
is the base specification of WebGL. The function names in OpenGL comprise the three
components: <base function name> <number of parameters> < parameter types>
The name of each WebGL method also uses the same components: <base method name>
<number of parameters> <parameter type> as shown in Figure 2.24.

gl. 3f(location, vO, v1, v2)
‘___~ ,/b\ Se
‘I’--- \ \\\
base method name \ parameter type:
¥ “ f” indicates floating point numbers and
\ “i” indicates integer numbers

number of parameters

Figure 2.24 The naming rules of WebGL-related methods

As you can see in the example, in the case of gl.vertexattrib3f (), the base method
name is vertexAttrib, the number of parameters is 3, and the parameter type is f (that
is, float or floating point number). This method is a WebGL version of the function
glvertexAttrib3f () in OpenGL. Another character for the parameter type is i, which
indicates integer. You can use the following notation to represent all methods from g1.
vertexAttriblf () tO gl.vertexAttrib4f (): gl.vertexAttrib[1234]f ().

Where [] indicates that one of the numbers in it can be selected.

48 CHAPTER 2 Your First Step with WebGL

When v is appended to the name, the methods take an array as a parameter. In this case,
the number in the method name indicates the number of elements in the array.

var positions = new Float32Array([1.0, 2.0, 3.0, 1.0]);
gl.vertexAttrib4fv(a_Position, positions) ;

Experimenting with the Sample Program

Now that you have the program to pass the position of a point from a JavaScript program
to a vertex shader, let’s change that position. For example, if you wanted to display a
point at (0.5, 0.0, 0.0), you would modify the program as follows:

33 gl.vertexAttrib3f (a_Position, 0.5, 0.0, 0.0);

You could use other family methods of g1.vertexattrib3f () to perform the same task in
the following way:

gl.vertexAttriblf (a_Position, 0.5);
gl.vertexAttrib2f (a_Position, 0.5, 0.0);
gl.vertexAttrib4f (a_Position, 0.5, 0.0, 0.0, 1.0);

Now that you are comfortable using attribute variables, let’s use the same approach to
change the size of the point from within your JavaScript program. In this case, you will
need a new attribute variable for passing the size to the vertex shader. Following the
naming rule used in this book, let’s use a_rointsize. As you saw in Table 2.2, the type of
gl_PointSize is float, SO you need to prepare the variable using the same type as follows:

attribute float a_PointSize;

So, the vertex shader becomes:

2 // Vertex shader program

3 var VSHADER_SOURCE =

4 'attribute vec4 a_ Position;\n' +

5 'attribute float a PointSize; \n' +
6 'void main() {\n' +

7 ' gl Position = a Position;\n' +

8 ' gl PointSize = a PointSize;\n' +
9 "Nn';

Then, after you get the storage location of a_pointsize, to pass the size of the point to the
variable, you can use gl.vertexAttriblf (). Because the type of a_pointSize is float, you
can use gl.vertexAttribilf () as follows:

33 // Get the storage location of attribute variable
34 var a_Position = gl.getAttribLocation(gl.program, 'a_Position');

Draw a Point (Version 2) 49

39 var a PointSize = gl.getAttribLocation(gl.program, 'a PointSize');
40 // Set vertex position to attribute variable

41 gl.vertexAttrib3f (a_Position, 0.0, 0.0, 0.0);

42 gl.vertexAttriblf(a PointSize, 5.0);

At this stage, you might want to experiment a little with the program and make sure you
understand how to use these attribute variables and how they work.

Draw a Point with a Mouse Click

The previous program HelloPoint2 can pass the position of a point to a vertex shader
from a JavaScript program. However, the position is still hard-coded, so it is not so differ-
ent from HelloPoint1, in which the position was also directly written in the shader.

In this section, you add a little more flexibility, exploiting the ability to pass the position
from a JavaScript program to a vertex shader, to draw a point at the position where the
mouse is clicked. Figure 2.25 shows the screen shot of clickedpoint.?

Figure 2.25 ClickedPoint

This program uses an event handler to handle mouse-related events, which will be famil-
iar to those of you who have written JavaScript programs.

Sample Program (ClickedPoints.js)

Listing 2.7 shows clickedpoints.js. For brevity, we have removed code sections that are
the same as the previous example and replaced these with

4 © 2012 Marisuke Kunnya

50 CHAPTER 2 Your First Step with WebGL

Listing 2.7 ClickedPoints.js

1 // ClickedPoints.js

2 // Vertex shader program

3 var VSHADER SOURCE =

4 'attribute vec4 a_ Position;\n' +
5 'void main() {\n' +

6 ' gl Position = a Position;\n' +
7 ' gl PointSize = 10.0;\n' +

8 "N\n';

9

10 // Fragment shader program

16 function main() {

17 // Retrieve <canvas> element

18 var canvas = document.getElementById('webgl') ;

19

20 // Get the rendering context for WebGL

21 var gl = getWebGLContext (canvas) ;

27 // Initialize shaders

28 if (!initShaders(gl, VSHADER SOURCE, FSHADER_SOURCE)){

31 }

32

33 // Get the storage location of a Position variable

34 var a_Position = gl.getAttribLocation(gl.program, 'a_Position');
40 // Register function (event handler) to be called on a mouse press
41 canvas.onmousedown = function(ev) { click(ev, gl, canvas, a Position); };

47 gl.clear (gl.COLOR_BUFFER_BIT) ;

48 }
49
50 var g points = []l; // The array for a mouse press

51 function click(ev, gl, canvas, a Position) {

52 var x = ev.clientX; // x coordinate of a mouse pointer

53 var y = ev.clientY; // y coordinate of a mouse pointer

54 var rect = ev.target.getBoundingClientRect();

55

56 x = ((x - rect.left) - canvas.height/2)/(canvas.height/2);
57 y = (canvas.width/2 - (y - rect.top))/(canvas.width/2);

58 // Store the coordinates to g_points array

59 g points.push(x); g points.push(y);
60

Draw a Point with a Mouse Click 51

61 // Clear <canvas>

62 gl.clear (gl.COLOR_BUFFER_BIT) ;

63

64 var len = g points.length;

65 for(var i = 0; i < len; i+=2) {

66 // Pass the position of a point to a_ Position variable
67 gl.vertexAttrib3f(a_Position, g points[i], g points[i+1l], 0.0);
68

69 // Draw a point

70 gl.drawArrays (gl.POINTS, 0, 1);

71 }

72}

Register Event Handlers

The processing flow from lines 17 to 39 is the same as Hellopoint2.js. These lines get the
WebGL context, initialize the shaders, and then retrieve the loca