
Nuclear Engineering
Mathematical Modeling and Simulation



Nuclear Engineering
Mathematical Modeling and Simulation

Zafar Ullah Koreshi
Air University, Islamabad,

Pakistan



Academic Press is an imprint of Elsevier
125 London Wall, London EC2Y 5AS, United Kingdom
525 B Street, Suite 1650, San Diego, CA 92101, United States
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2022 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with
organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be
noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding,
changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information,
methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their
own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury
and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of
any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-323-90618-0

For Information on all Academic Press publications
visit our website at https://www.elsevier.com/books-and-journals

Publisher: Charlotte Cockle
Editorial Project Manager: Sara Valentino
Production Project Manager: Niranjan Bhaskaran
Cover Designer: Christian J. Bilbow

Typeset by MPS Limited, Chennai, India

http://www.elsevier.com/permissions
https://www.elsevier.com/books-and-journals


Dedication

To

My Mother

Mahbano Begum

My Father

Ambassador Dr. Samiullah Mujahid Koreshi (PhD)

My Wife

Nasia

My Sons

Mekael, Saif, and Zain



Contents

About the author xiii

Foreword xv

1. The atom and nuclear radiation 1

1.1 The atom 1

1.1.1 Nuclear stability 5

1.1.2 Binding energy 6

1.2 Radioactive decay 6
1.2.1 Alpha decay 8

1.2.2 Beta decay 9

1.2.3 Gamma decay 10

1.2.4 Radioactive nuclides in nuclear

technologies 11

1.3 Interaction of radiation with matter 12

1.3.1 Interaction of alpha rays with matter 12

1.3.2 Interaction of beta radiation with
matter 16

1.3.3 Interaction of gamma radiation with

matter 19

1.4 Sources and effects of radiation 24

1.4.1 Radiation dose 26

1.4.2 Absorbed dose 26

1.4.3 Equivalent dose 27

1.4.4 Effective dose 28
1.4.5 Radiation safety limits 28

1.4.6 Radiation detection 29

1.5 Atomic densities of elements

and mixtures 30

1.6 Mathematical modeling and simulation 34

1.6.1 Alpha particle transport simulation 35

1.6.2 Interaction of electrons with matter 35

1.6.3 Interaction of gamma radiation
with matter 40

1.6.4 Radiation dose from Calfornium-252

gamma source in water 41

Capabilities developed 44

Nomenclature 44

Problems 46

References 47

2. Interactions of neutrons with matter 51

2.1 Kinetic theory 51

2.2 Types of neutron interactions 53

2.2.1 Neutron scattering in the lab and

center of mass systems 55
2.3 The microscopic cross-section 58

2.4 The macroscopic cross-section 63

2.5 Flux measurement 64

2.6 Reaction rates 66

2.7 Neutron slowing down, diffusion and

thermalization 67

2.8 Resonance cross-section 74

2.9 Nuclear fission 80
2.9.1 The fission process 80

2.9.2 Critical energy 81

2.9.3 Fission yield 84

2.9.4 Number of neutrons emitted in

fission 84

2.9.5 Fissile and fertile materials 85

2.9.6 The fission spectrum 86

2.10 Criticality 88
2.10.1 Diffusion theory 90

2.10.2 Transport theory 91

2.10.3 Monte Carlo simulation 92

Problems 98

Nomenclature 98

References 100

3. Nuclear reactors and systems 103

3.1 Status of nuclear power 103

3.1.1 Generations of nuclear power 103

3.1.2 Reactors shut down 106

3.1.3 The future of the nuclear power

industry 106
3.2 Nuclear reactor systems 107

3.2.1 Pressurized water reactor 108

3.2.2 Boiling water reactor 110

3.2.3 Pressurized heavy water reactor 112

3.2.4 Gas cooled reactor 113

3.2.5 Fast breeder reactor 114

3.3 Marine propulsion reactors 116

3.3.1 Introduction 116
3.3.2 US nuclear submarine program 116

3.3.3 Former Soviet/Russian nuclear

submarine program 117

vii



3.3.4 Submarine programs: UK, France,

China, India and Pakistan 117

3.3.5 Modern-day submarines 117

3.3.6 Technical features 118

3.3.7 HEU/LEU submarine reactors 120

3.4 Plutonium production reactors 120
3.5 Small modular reactors 121

3.5.1 Design features of SMRs 121

3.5.2 Very small modular reactor 125

3.5.3 Generation-IV reactors 125

3.5.4 Radiation source term 127

3.6 Nuclear fusion 128

3.6.1 The fusion reaction 128

3.6.2 Magnetic confinement fusion 129
3.6.3 Inertial confinement fusion 130

3.7 Space propulsion 132

3.7.1 Conventional rocket designs 132

3.7.2 Space exploration 132

3.7.3 Nuclear rocket designs for deep

space exploration 134

3.8 Nuclear power systems in space 138

3.8.1 Radioisotope thermal generators 138
3.8.2 Small nuclear auxiliary power

systems 138

3.9 Conclusions 141

Problems 141

Nomenclature 142

References 144

ANNEX: The physics of nuclear fusion 145

4. Mathematical foundations 149

4.1 Ordinary differential equations 150
4.1.1 The Poisson equation: steady-state

heat conduction in 1-D 153

4.1.2 Coupled first-order ODEs: the point

kinetics equations 155

4.2 Partial differential equations 156

4.2.1 Equations of fluid dynamics 156

4.2.2 The 1-D time-dependent heat

conduction 157
4.2.3 Laplace equation: 2-D steady-state

heat conduction 158

4.2.4 Heat conduction in 2-D and 3-D 159

4.2.5 Flux formulation 164

4.3 Integral equations 165

4.3.1 An important integral equation for

neutron transport 169

4.3.2 Integral equations in neutron
transport 169

4.4 Integro-differential equations 170

4.5 Numerical methods 174

4.5.1 The Finite Difference Method 174

4.5.2 The Finite Element Method 178

4.6 Approximate methods 185

4.6.1 The Ritz method 185

4.6.2 The Rayleigh�Ritz variational

method 186

4.6.3 The weighted residual method 186

4.7 The adjoint function 186
4.8 Random processes, probability, and

statistics 187

4.8.1 Random processes 188

4.8.2 Markovian processes 188

4.8.3 Population and sample 188

4.8.4 Random variables, PDF, and CDF 189

4.8.5 Random numbers 195

4.8.6 Sampling from PDFs 196
4.8.7 Kullback�Leibler divergence for

uniform random numbers 199

4.8.8 The law of large numbers 199

4.8.9 The central limit theorem 200

4.9 Evaluation of integrals 201

4.9.1 The Monte Carlo method for

numerical integration 203

Problems 206
Nomenclature 207

References 208

5. The neutron diffusion equation 211

5.1 The conservation equation 211

5.2 The one-group diffusion equation 213

5.2.1 Nonmultiplying systems 213

5.2.2 Multiplying systems 215

5.2.3 One-group criticality 219
5.3 The two-group diffusion equation 221

5.3.1 Nonmultiplying systems 221

5.3.2 Multiplying systems 227

5.3.3 Two-group criticality 230

5.4 The multigroup diffusion equation 234

5.4.1 Numerical solution of the

multigroup diffusion equations 235

5.5 Effect of fuel concentration on critical
mass 238

5.5.1 Goertzel’s theorem 239

5.5.2 Nonuniform fuel distribution:

a slab model 239

5.5.3 Nonuniform fuel distribution:

a spherical model 244

5.5.4 Critical core with flat thermal flux

loading 247
5.6 The two-group adjoint diffusion equations 248

5.7 Core neutronics with diffusion equations 251

Problems 256

Nomenclature 257

References 258

viii Contents



6. The neutron transport equation 259

6.1 Structure of the neutron transport

equation 260

6.1.1 An integro-differential form of the
neutron transport equation 260

6.1.2 The two-group transport equation 265

6.1.3 The integral form of the transport

equation 266

6.1.4 Multigroup form of the integral

transport equation 268

6.2 Exact solutions of the transport equation 268

6.2.1 The classic albedo problem 270
6.2.2 Infinite medium with a plane

isotropic source 270

6.2.3 Finite sphere with a point isotropic

source 274

6.3 Numerical methods for solving the

transport equation 285

6.3.1 The discrete ordinates method 285

6.3.2 The Spherical harmonics method 287
6.3.3 The DPN method 293

6.3.4 The BN method 295

6.3.5 The finite element method 296

6.3.6 The nodal method with transport

theory 296

6.3.7 Hybrid methods 297

6.3.8 Criticality estimates 297

6.4 Transport theory for reactor calculations 298
6.4.1 Collision probability method 299

6.4.2 Method of characteristics 299

Problems 302

Nomenclature 302

References 303

7. The Monte Carlo method 305

7.1 Stochastic simulation 305

7.1.1 Markov processes 305

7.1.2 Events in a random walk 305

7.1.3 The physics of interactions 306

7.1.4 Nuclear interaction data 306

7.1.5 How do we know an answer
is good? 306

7.2 Simulation of a random walk 308

7.2.1 Monte Carlo simulation 308

7.2.2 Estimators and tallies 309

7.2.3 Sampling a source 312

7.2.4 Sampling the “distance

to collision” 313

7.2.5 Determining the type of event 313
7.2.6 Determining the nuclide of

interaction 314

7.2.7 Processing a scattering event 314

7.2.8 Processing a fission event 314

7.2.9 Processing a capture event 315

7.2.10 Processing an escape-from-system

event 315

7.2.11 Mean and variance 315

7.2.12 Batch, history, random walk and
events 316

7.3 Modeling the geometry 316

7.3.1 Geometries for illustration of

Monte Carlo simulation 320

7.4 Demonstration 328

7.5 Variance reduction methods 332

7.6 Estimating perturbations with Monte

Carlo simulation 333
7.7 Conclusions 333

Problems 334

Nomenclature 334

References 335

8. Computer codes 337

8.1 Neutron and radiation transport codes 338

8.1.1 ANISN 338

8.1.2 DOT 338

8.1.3 TORT 338

8.1.4 PARTISN 339

8.1.5 MCNP 339

8.1.6 TART 339
8.1.7 MORSE 339

8.1.8 KENO 340

8.1.9 Other Monte Carlo codes 340

8.2 Time-dependent reactor kinetics codes 340

8.3 Thermal hydraulics codes 340

8.4 Radiological protection codes 341

8.5 Performance and safety analyses 341

8.6 Nuclear data 341
8.6.1. MCNP 344

8.7 Conclusion 344

Problems 344

Nomenclature 345

References 345

9. Optimization and variational
methods 349

9.1 Introduction 349
9.2 Deterministic optimization 350

9.2.1 Deterministic optimization

without constraints 350

9.2.2 Deterministic optimization with

algebraic constraints 351

9.2.3 Optimal solution with a system of

first-order ordinary differential

equation constraints 352

Contents ix



9.2.4 Optimal solution with a system of

first-order ordinary differential

equation constraints 355

9.2.5 Optimal discrete control

(Pontryagin maximum principle) 360

9.3 Controller design and optimization 361
9.4 Dynamic programming 365

9.5 Stochastic optimization 367

9.5.1 Genetic algorithms 367

9.5.2 Particle swarm optimization 372

9.6 Applications of optimization

in reactors 373

9.6.1 Multi-objective core optimization 373

9.6.2 Pressurized water reactor core
pattern optimization 374

9.6.3 Controller proportional integral

derivative 374

9.6.4 Radiation shielding 374

9.6.5 Some other applications of

optimization 375

Problems 375

Nomenclature 375
References 376

10. Monte Carlo simulation in
nuclear systems 379

10.1 Introduction 379

10.2 Bare critical assemblies 381

10.2.1 Godiva 381
10.2.2 Jezebel 386

10.3 Criticality safety 388

10.3.1 Storage of interacting units 388

10.3.2 Storage of uranium

hexafluoride cylinders 388

10.4 Radiation moderation and shielding 389

10.4.1 Radiation moderation for a

neutron generator 389
10.4.2 Radiation shielding 390

10.5 Nuclear fission applications 390

10.5.1 Unit lattice cell and fuel

assembly of the AP1000

reactor 390

10.5.2 The Toshiba 4S reactor 394

10.5.3 Micronuclear reactor 400

10.6 Nuclear fusion applications 401
Problems 405

Nomenclature 405

References 406

Annex A MCNP listing for Godiva

(Section 10.2.1) 408

Annex B MCNP input listing (Jezebel,

Section 10.2.2) 410

Annex C MCNP input listing (BK10Shld,

Section 10.5.1) 412

Annex D MCNP input listing (BK10AP10,

Section 10.5.1) 413

11. Comparisons: Monte Carlo,
diffusion, and transport 417

11.1 Introduction 417

11.2 Criticality in a bare sphere 417

11.2.1 One-group diffusion theory

criticality 417

11.2.2 Two-group diffusion theory

criticality 418
11.2.3 One-speed transport theory

criticality 419

11.3 The classic albedo calculation 421

11.4 Flux in a slab 423

11.4.1 Diffusion theory 423

11.4.2 Transport theory 424

11.4.3 Monte Carlo simulation 425

11.4.4 Comparison 425
11.5 Flux in a finite sphere with a point

isotropic source 428

11.5.1 Diffusion theory 428

11.5.2 Transport theory exact solution 430

11.5.3 Monte Carlo simulation 431

Problems 433

Nomenclature 433

References 434
Annex A MATLAB Program

AlbedoSlabDiffTh.m (Section 11.3) 435

Annex B MCNP Input File BK11Albd

(Section 11.2) 438

Annex C MATLAB Program

CH11ExactSolSlabJan03.m (Section 11.4.4) 440

12. Exercises in Monte Carlo simulation 449

12.1 Sampling from a distribution function 449

12.1.1 Sampling from a normal

distribution 450

12.1.2 Sampling from a Watt fission

spectrum 451

12.2 Estimating the neutron flux in a non-
multiplying sphere 453

12.2.1 The simulation process 453

12.2.2 MATLAB program for point source

in a finite non-multiplying sphere 456

12.2.3 Results 460

12.3 Reflected assemblies 462

12.4 Reactor core modeling 464

12.4.1 Input file 464
12.4.2 Surrounding cells 465

x Contents



12.4.3 Source description 466

12.4.4 Plotting the geometry 467

12.4.5 Tally cards 470

12.4.6 Reaction rates 470

12.4.7 Plotting tallies 471

12.5 Radiation safety and shielding 473
12.6 Perturbation calculations 474

12.7 MCNP geometry plotting in core

neutronics 476

Problems 480

Conclusions 482

Nomenclature 482

References 483

Annex A: MATLAB Program
CH12_NormalSampling.m 484

Annex B MATLAB Program CH12_Watt

Sampling.m 486

13. Optimization in nuclear systems 489

13.1 Introduction 489

13.2 Reactor core design optimization 489

13.3 Fusion neutronics design optimization 493

13.4 Radiation shielding design optimization 494

13.5 Fuel loading pattern optimization 495

13.5.1 Optimal distribution: Pontryagin’s

maximum principle 498

13.6 Radiation detection or optimization 501

13.7 Controller design optimization 503

Problems 504

Nomenclature 505
References 506

14. Monte Carlo simulation in medical
physics 509

14.1 Introduction 509

14.1.1 The production of radio-isotopes 510

14.1.2 Alpha radiation therapy 511

14.2 Brachytherapy 512

14.2.1 Monte Carlo simulation in
brachytherapy 512

14.2.2 Monte Carlo simulation to

calculate energy deposition

and dose distribution for

brachytherapy 514

Nomenclature 517

References 517

Index 521

Contents xi



About the author

Zafar Ullah Koreshi [BSc (Hons) Nuclear Engineering, Queen Mary College, University of

London (UK); MS, Nuclear Engineering, University of Wisconsin, Madison (USA), PhD

Nuclear Engineering, University of Cambridge] is professor at Air University, having contrib-

uted as Dean Faculty of Engineering and is currently the Dean of Graduate Studies at Air

University. His experience includes positions at the Pakistan Atomic Energy Commission, Dr.

AQ Khan Research Laboratories, National University of Sciences and Technology, and at Air

University, Islamabad. He has published in the Annals of Nuclear Energy, Progress in Nuclear

Energy, Nuclear Technology and Radiation Protection, ASME Journal of Nuclear Engineering

and Radiation Science, and in several other leading international journals. Dr. Koreshi has

been Track Chair at the International Conference on Nuclear Engineering held in the United

States, China, and Japan and has presented his research at the American Nuclear Society

Annual Meetings. He is a member of the American Society of Mechanical Engineers (ASME), Professional Engineer

Pakistan Engineering Council, and a life member of the Pakistan Nuclear Society. He has also received commendations

as a reviewer for prestigious journals. Prof. Zafar Koreshi is also an associate editor of the ASME Journal of Nuclear

Engineering and Radiation Science.

xiii



Foreword

This book has evolved from over four decades of involvement in nuclear engineering, industry, and academia beginning

as an undergraduate at Queen Mary College, University of London, then at the University of Wisconsin, Madison

(USA), followed by an engineering career, then at the University of Cambridge for my PhD. The last 35 years of my

career have been at the Pakistan Atomic Energy Commission, at the National University of Sciences and Technology

and the last two decades as professor at Air University.

Even though my teaching and administrative positions kept me busy, I always stayed close to my first academic pas-

sion: nuclear engineering, for which I was lucky to have learnt from professors Mike Williams and Charlie Maynard,

Dr. Jeffery Lewins, and many other learned professors. To them, I owe all my knowledge and confidence developed as

a student. Professor Williams took us students to our first conference in London when we had not the slightest clue as

to what a conference was! From Charlie Maynard I learned not only from his lectures but from his personal values.

From Jeffery Lewins, at Cambridge, I received encouragement and exposure to some of the finest opportunities to listen

to great minds. When Jeffery Lewins was the president of the Institution of Nuclear Engineers, I met Dr. Otto Frisch

and briefly spoke to him. He was one of the first three credited with the discovery and first experiments of nuclear fis-

sion! And of course I must mention my friendship with Prof. Abdus Salam, an accomplished Pakistani scientist and

Nobel Laureate. In congratulating him at his office at Imperial College soon after his Nobel Prize was announced, I

was elated and had many opportunities to accompany him on conferences and to receive his guidance and advice.

In writing this book, I feel that I have completed one duty—transferring whatever knowledge I gained in this field

to the scientific community and especially to the young students studying nuclear engineering in universities all over

the world.

This book is my way of presenting things to the body of knowledge that encompasses nuclear engineering. In it is

the right proportion, I feel, of physics, mathematics, nuclear technology, diffusion theory, transport theory, Monte Carlo

simulation, optimization, and applications and exercises that are essential to an academic nuclear engineer who will

complete a PhD and continue in the profession.

The first two chapters of this book are the foundations, physics, and science of the atom (as known to an engineer);

I think it is an appropriate amount of information to comprehend the alpha, beta, gamma, x- and neutron radiations that

are modeled in nuclear engineering. A difficult concept, Doppler broadening, is explained in a relatively easy way!

Chapter three is an overview of nuclear technology deliberating on nuclear reactors, their types and generations, the

renaissance reactors, and their applications in marine propulsion, in rockets, and towards the exploration of deep space.

This year three missions went to Mars, and we should all be getting some more pictures and information on what the

red planet is like. This was a one-way trip so people could not be sent; in the future we can hope that nuclear rockets,

with far more power than today’s chemical fuels, will take and bring people to and from Mars. So, Chapter 3 gives a

picture on the big systems developed in the nuclear world. I have put in nuclear fusion, both magnetic and inertial, as

ITER could give humanity some hope and the next DEMO reactor could produce electricity from the technology of our

Sun and from fuel made out of water!

Chapter 4 is on mathematical foundations, both deterministic and stochastic; again, in the right proportion! With

this background, Chapter 5 shifts gears into modeling neutrons with simple diffusion theory which, in spite of its sim-

plicity, is quite useful in the design of nuclear reactors and systems. This is followed by neutron transport, which is a

step higher than diffusion, as it incorporates a full six-dimensional phase space formulation in Boltzmann’s transport

theory. This is where an advanced undergraduate student begins to take things a bit more seriously. And then, in

Chapter 7, we step into the world of Monte Carlo (MC) simulation, where the power of big computing comes to our

help in simulating processes to design nuclear reactors. Chapter 8 is a brief description of some well-known and exten-

sively used computer codes in nuclear engineering.

With the foundations more-or-less clearly defined and understood, Chapter 9 deliberates on the mathematics of opti-

mization and optimality as nuclear systems have not only to be designed but designed in the best way.

xv



The next three chapters, Chapters 10�12, focus on MC simulation and compare MC with diffusion and transport to

give the feel of a unified way of looking at the modeling of neutron transport and generalizing it to radiation transport.

Chapter 13 reviews current research in the applications of optimization methods in nuclear engineering. Finally,

Chapter 14 gives a little insight into MC simulations in medical physics; this is an area where humanity has benefitted

so much from medical radio-isotopes to cure cancer and to undergo medical treatments and diagnostics.

In this journey, I have to acknowledge the support and encouragement of friends and colleagues, most notably Prof.

Anil Prinja (QMC), Drs. Afzaal Malik, Tasneem Shah, Syed Arif Ahmad, and my colleagues at Air University and all

the other organizations I have had the privilege to work. From my students, too, I have learned a great deal; from Dr

Hamda Khan and Engr. Umair Aziz, and PG students and undergrads in all these years.

Even after all the effort I have put into this book, I must say, a lot remains and I hope this is just the first edition to

be improved into newer editions.

I give this book to the next generations; this is my best effort and I hope that you will do much better. The caravan

of knowledge moves slow but yes it moves.

In the end, the wealth of humans is the knowledge and values that we have and that has all come from our families,

schools, and universities that we must value, love, and sustain. The custodians of that knowledge are the professors

who have shaped this world and will take it to places that we cannot even imagine.

This book is addressed to the scientific community in radiation transport; as a text book, it would be suitable for a

graduate level course spread over two semesters. This would prepare a PhD scholar to be “fully-equipped” to undertake

research in big simulations for design optimization of present-day systems as well as for new systems, such as micro-

nuclear power reactors for space exploration and possibly power generation on a planet such as Mars.

It is necessary to understand that while a great amount of subject matter is covered in this book, several gaps and

shortcomings may appear. It is, in that sense, just a small contribution to the vast body of knowledge which has existed

in this area from which several generations have benefitted.

I would like to thank Elsevier Publishers, particularly Ms. Maria Convey, Acquisitions Editor, Ms. Sara Valentino,

Editorial Manager, Ms. Madeline Jones and Mr Niranjan Bhaskaran, Elsevier, for their continued support and

encouragement.
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Chapter 1

The atom and nuclear radiation

This chapter comprises what can be considered as the essentials of nuclear engineering as a discipline that owes much

of its present knowledge to theoretical science, discoveries, inventions, and technology.

Nuclear systems are based on the science of atomic and subatomic particles, namely neutrons, protons, electrons

and the interaction of nuclear radiation (gamma and beta) and atomic radiation (X-rays) with matter.

These particles and radiations were discovered over many decades. Pioneering milestones include the discovery of

X-rays by Wilhelm Conrad Röntgen at the University of Würzburg in 1895, spontaneous radioactivity by Antoine

Henri Becquerel (University of Paris) in 1896, radioactivity by Pierre Curie and Marie Curie leading to the discovery of

polonium and radium in 1898 (University of Paris). In 1897, Sir Joseph John Thomson, at the University of Cambridge

discovered the electron. In 1919, one of his students Ernest Rutherford discovered the proton (Blackett, 1924;

Rutherford, 1919) demonstrating transmutation: 14
7 N 1 4

2He-17
8 O1 1

1H and worked on radioactivity and named alpha

and beta radiation. Another breakthrough was the reaction proposed as: 9
4Be1

4
2He-13

6 C1 radiation, by Bothe and

Becker and by Mme. Curie but with brilliant arguments, theory and experimentation shown to be a neutron by

Chadwick (1932). In this paper Chadwick writes “If we suppose that the radiation is not a quantum radiation, but con-

sists of particles of mass very nearly equal to that of the proton, all the difficulties connected with the collisions disap-

pear, both with regard to their frequency and to the energy transfer to different masses.” Chadwick goes on to say, “We

may then proceed to build up nuclei out of a-particles, neutrons and protons, and we are able to avoid the presence of

uncombined electrons in a nucleus” and concluding, among other properties of the proposed neutron that “. . .the mass

of the neutron is about 1.006, just a little less than the sum of the masses of a proton and an electron.” Thus

Chadwick’s correct interpretation of these experiments gave us the neutron. Clearly, Chadwick had no knowledge of

quarks and thought that the neutron was an elementary particle. This chapter is on these particles and the nuclear and

atomic radiations as well as on the atomic models for which quantum physics emerged as a field which explained phe-

nomena based on particle-wave duality at very small dimensions.

In quantum physics, the “creators” of the field include Max Planck for the concept of the quanta, de Broglie for giv-

ing the de Broglie wavelength of matter waves, Bohr for the structure of the atom, Compton for demonstrating that

electromagnetic radiation behaves as particles during their interaction with electrons (Compton scattering), Heisenberg

for the uncertainty principle, Schrodinger for the wave function in the Schrodinger equation, Dirac for several develop-

ments in the field and significantly for quantum electrodynamics, and Pauli for the Pauli exclusion principle. Toward

the photoelectric effect, Einstein’s contribution demonstrated the absorption of an incident photon leading to the ejec-

tion of an orbital electron as one based on discrete values of energy rather than merely increasing the intensity of a

lower frequency photon.

The knowledge on science is far from complete; the challenges that remain and are being pursued are the under-

standing of elementary particles and the search for a grand unification theory.

1.1 The atom

The Bohr-Rutherford model, proposed in 1913, resembles our solar system with planets going around the sun. This

model was useful in explaining several observations but had serious deficiencies; one of them was that the release of

electromagnetic radiation by the orbiting electrons would lead to a spiraling-in movement and an ultimate collapse of

the atom. Thus improvements had to be made and three postulates were proposed regarding electron orbits, discretized

angular momentum, and the ability of electrons to move from one orbit to another by discretized energy exchange.

With all the model contributions and research into new directions for the search for the smallest “indivisible” parti-

cles we come to the present knowledge of the atom in which we understand that all atomic and subatomic particles are

built from elementary particles which are quarks and leptons.

1
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Thus an atom has a dense nucleus at its center, as shown in Fig. 1.1, consisting of neutrons with rest-mass mn and pro-

tons with rest-mass mp surrounded by a “cloud” of electrons with rest-mass me (Table 1.A1, Fundamental Physical

Constants). An atom has an atomic number Z which is the number of protons or electrons, and a mass number A which is

the number of protons and neutrons; thus A5N1 Z. It is written as ZAX. The masses of atomic and subatomic particles

are so small that they are expressed in terms of the atomic mass unit 1 u is defined as 1/12th the mass of an unbound car-

bon C12 atom (1 amu5 1:660543 10227 kg). Neutrons and protons are made from quarks, which are indivisible elemen-

tary matter particles assigned properties of up, charm, top, down, strange and bottom. A neutron, as shown in Fig. 1.1, is

two “up” quarks and 1 “down” quark while a proton is two “down” quarks and one “up” quark. The electron is itself an

elementary particle in the family of leptons which consists of six particles. Of the four forces of nature: electromagnetic,

strong, weak and gravitation, the nucleus is held together by the strong force carried by gluons. A more detailed insight

into elementary particles would fall beyond the scope of this book and the reader can consult books and papers in particle

physics (Kibble, 2015; Peskin, 2019). The neutron is stable as a bound particle within the nucleus but unstable as a free

neutron decaying to a proton, electron and antineutrino with a mean lifetime of 885.76 0.8 s.

TABLE 1.A1 Fundamental physical constants.

Avogadro’s number Nav 6:0221413 10223

Planck constant h 6:626090043 10234 m2/kg/s
Electron charge e 1:602176565310219C
Atomic mass unit amu 1:660543 10227 kg
Mass of neutron mn 1:674933 10227 kg

1.0086649156 amu
939.550 MeV

Mass of proton mp 1:672623 10227 kg
1.0072764663 amu

Mass of electron me 9:109383 10231 kg

5:4857973 1024 kg
Bohr radius rB 5:2917723 10211 m
Classical electron radius re 2:8179403 10215

Rydberg constant R 10973731.568/m

Source: From https://physics.nist.gov/cgi-bin/cuu/Category?view5 html&Atomic1 and1 nuclear.x5 85&Atomic1 and1 nuclear.y5 11

FIGURE 1.1 Bohr’s model of an atom.
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A measure of the size of the atom was obtained by Bohr from the radius of an electron orbit in the hydrogen atom

from (1) the discretized angular momentum, and (2) the coulomb and centripetal forces

L5mevr5 n
h

2π

k
Zq2e
rn

5
mev

2
e

rn

for which the radius of the nth shell is

rn 5
n2

Z
rB

where the Bohr radius is

rB 5
h2

4π2mekq2e
5 0:52918 10210 m5 0:52918A

o

in units of an Angstrom (1 Å5 10210 m) used for an atomic dimension. Similarly the unit of fermi (1 fm5 10215 m) is

used for expressing the size of a nucleus. The radius of a nucleus, defined as the distance from its center to where its

density falls to a half of its value from the center, is R5R0A
1=3 where R0 5 1:2 fm.

For a hydrogen atom (Z5 1, n5 1) the Bohr radius is thus an estimate of the atomic radius. The energy of the shells

from similar arguments is

En 52
Z2e4m0

2ℏ2n2

The dual idea of particle and wave, and the nature of light is “connected” through the de Broglie wavelength

λ5
h

p

where h is Planck’s constant and p is the momentum given by p5mv:

Exercise 1:

1. From the definition of Avogadro’s number, estimate the diameter of a carbon atom (density of carbon ρ5 2:26 g/

cm3, A5 12 g (g-atom)21 and “packing fraction ε” ð0, ε, 1).

2. Calculate the radius of a carbon nucleus and compare the dimensions of the nucleus and the atom. Can the nucleus

be considered to be a “point” nucleus as Rutherford did in his famous gold foil experiment?

In the Bohr model, there are four quantum numbers assigned to each electron: the principal quantum number n, the

azimuthal quantum number l5 0; 1; 2;?n2 1, the magnetic quantum number ml 52 l; 2 l1 1?0; l2 1; l thus a total

of 2l1 1 states, and the spin quantum number ms 52 1; =2; 1; =2. These numbers refer to the size of the orbit (n5 1 is

the innermost orbit, the next is n5 2 and so on) and its shape (l5 0; 1; 2; 3,. . . called the s, p, d, f,. . . type have spheri-

cal, dumbbell or complex shapes and are related to the energy of the electron.)

At the level of an atom, the equivalent Newton’s second law of motion is the Schrodinger wave equation which

gives the wave function Ψ x; tð Þ for an electron when the quantum numbers i.e. energy descriptors are specified. The

Schrodinger wave equation for nonrelativistic particle is

iℏ
@

@t
Ψ x; tð Þ½ �5 2

ℏ2

2m

@2

@x2
1V x; tð Þ

� �
Ψ x; tð Þ

with classical and quantum “connections”

E ! iℏ
@

@t
;P ! 2 iℏr

The Schrodinger equation can be solved for a hydrogen atom, to show that the solution is a function of the radial

position r, orthogonal and azimuthal angles θ;ϕ and the three quantum numbers n; l;m. The closest shell, called the K
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shell, has n5 1 shell, for which the maximum number of electrons permissible, 2n2, is two electrons. Generally, the fill-

ing order for shells is 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, . . . The Pauli exclusion principle states that electrons that occupy

the same orbital must have different spins, that is, (2l1 1) electrons of one spin can fill an orbit while (2l1 1) electrons

of another, so that 2(2l1 1) electrons can fill an orbit; thus for l5 1, 6 electrons can fill an orbit for n5 2. The follow-

ing cases illustrate the filling order: hydrogen (Z5 1)5 1s1, helium (Z5 2)5 1s2, lithium (Z5 3)5 1s2 2s15 [He] 2s1,

and calcium (Z5 20)5 2s2 2p6 3s2 3p6 4s2. Uranium is an example where the total angular momentum filling-in rule

gives for (Z5 92)1s 2 (2s2 2p6) (3s2 3p6 4s2 3d10) (4p6 5s2 4d 5p 6s 4f 5d 6p 5p6 4f14 5d10 6s2 6p6 5f3 6d1 7s2)5
2,8,18,32,21,9,2 electrons.

Electrons can travel fast, close to the speed of light, for which their kinetic energy (KE) is related to their momen-

tum through the relativistic relation

KEr 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2ð Þ2 1 p2c2

q
2mc2

for which the wavelength is

λ5
2πℏc
pc

5
2πℏcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KEr
2 1 2KErðmc2Þ

p
For a hydrogen atom, the MATLAB program below computes the energies and velocities of orbital electrons in the

ground state (n5 1) and two excited states (n5 2, 3).

MATLAB program 1: .

The energies of the electrons in the first three states are 213.6, 23.39, and 21.51 eV, respectively. The lowest

(ground) state has the largest negative value while the highest excited state would have the lowest value and a free elec-

tron would have a zero binding energy (BE). In these three states, the electrons have speeds less than 1% of the speed

of light and thus can be considered as nonrelativistic.

Example 1: Use both nonrelativistic and relativistic expressions to calculate the KE of an electron (me 5 9:113 10231

kg) with speed 0.01c and 0.9c. The classical KEc and relativistic KEr KE expressions are

KEc 5
1

2
mv2

and

KEr 5 γ2 1ð Þmc2
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where

γ5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 v=c
� �2q

v γ KEcðJÞ KErðJÞ KEc=KEr

0.01c 1.0001 4:09953 10218 4:09983 10218 0.9999

0.9c 2.2942 3:32063 10214 1:06113 10213 0.3129

Clearly, the relativistic kinetic energy KEr becomes larger than the classical kinetic energy KEc and in the limit

v-c;KEr-N.

Nuclei, like atoms, have excited states at discrete levels and decay by emitting alpha, beta or gamma radiation. The

emitted radiation subsequently interacts with matter in a number of ways described below. Just as atoms take part in

atomic reactions (where the electrons participate), nuclei take part in nuclear reactions which will be discussed in detail

in Chapter 2. In nuclear engineering, two energy-producing reactions are fission and fusion. In nuclear fission energy is

released by the breaking-up of heavy nuclei such as uranium-235 and plutonium-239 into lighter nuclei. In nuclear

fusion, the reaction of the sun and the stars, energy is released by the “fusing” or joining of light nuclei such as isotopes

of hydrogen, into heavier nuclei such as helium. Fission is the basis of the present nuclear fission power reactors while

nuclear fusion has yet to be achieved. The biggest fusion experiment is the 35-nation International Tokamak

Experimental Reactor (ITER) located in France, which is expected to begin operation in 2025.

1.1.1 Nuclear stability

Inside the nucleus, the two competing forces that determine stability are the attractive nuclear force between neutrons

and protons and the repulsive electric force between protons. For Z . B20, N/P. 1 as seen in Fig. 1.2 and thus the

nuclei are “above” the straight line N5 Z. Neutron-rich nuclides get rid of their excess neutrons by emitting beta parti-

cles and at the very high end, for high A, nuclei emit heavier alpha particles. Nuclei with “magic numbers” for Z or (A-

Z): 2, 8, 20, 28, 50, 82, 126 are strongly bound, more than their neighbors. Doubly magic numbers for A5 4, 16, 40,. . .,
are bound even stronger than those with magic numbers.

In nature 176 of the 286 (over 60%) primordial stable nuclides have even mass number; 146 stable nuclides are

even-even Z, A others are mixed while very few (B3%) are odd-odd.

FIGURE 1.2 Nuclear stability (Z-N).
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1.1.2 Binding energy

The nucleus is held together with a (negative) BE in which both pair up with opposite spins. This BE is the energy

equivalent of the difference, called the “mass defect Δm” between the mass-energy of constituent nucleons

ðZmp 1NmnÞc2and the nuclear mass-energy Mnc
2; thus by Einstein’s equivalence BE5Δmc2.

For nuclides with A. 20, the BE can be calculated by semiempirical “liquid drop model”

BE A; Zð Þ5 aVA2 aSA
2
3 2 aC

Z2

A1=3
2 aA

Z2Nð Þ2
A

1
ð21ÞZ 1 ð21ÞN

2

aP

A1=2

where aV 5 15:56MeV, aS 5 17:23MeV; aC 5 0:697MeV, aA 5 23:285MeV, aP 5 12:0 0. The first term, proportional to

the mass number A, represents the volume terms with a nucleon modeled as interacting only with its neighbors rather

than with all other nucleons. The following three negative terms reduce the BE. The surface reduction is proportional to

the surface area Br2, or A2/3. The next reduction term is due to coulombic repulsion between protons. The fourth term

is a reduction due to the Pauli exclusion principle which allows two protons or two neutrons of opposite spin in each

energy level. The last “pairing” term represents an experimentally observed phenomenon inversely proportional to the

square root of the atomic mass number. Binding energies re plotted in Fig. 1.3 which shows low values at the left end

where nuclear fusion, the reaction of the sun and the stars takes place. Both these reactions make the system “move”

toward an increase in the BE per nucleon and are accompanied by the release of energy. This is followed by an increase

up to 8.7542 MeV/nucleon for chromium, manganese, iron (8.8 MeV), cobalt, nickel, copper and zinc, then gradually

falling to 7.5855 MeV/nucleon for uranium-238.

A nuclear reaction has Q value, defined as the difference of the rest-mass energies of the reactants r1; r2 and pro-

ducts p1; p2 Q5 mr1 1mr2 2 mp1 1mp2

� �� �
c2 5 Tp1 1 Tp2 2 Tr1 1 Tr2ð Þ5 ½ðBEp1 1BEp2Þ2 ðBEr1 1BEr2Þ� KE T is exo-

thermal or exoergic if Q. 0 and with endothermic or endoergic if Q, 0.

Exercise 2: From the BE formula above, explain why the elements with odd Z are expected to be less abundant in

nature?

1.2 Radioactive decay

When an unstable radionuclide spontaneously emits energy, it is said to be radioactive to an extent measured by the

number of its disintegrations per second with 1 Becquerel (Bq) representing 1 disintegration per second. A commonly

used unit is the curie with 1 curie (Ci) denoting 37 billion Bq.

Decay data of over 3000 radionuclides are maintained by Brookhaven National Nuclear Data Services and published

monthly in Nuclear Data Sheets (Elsevier) which are produced mainly from the Evaluated Nuclear Structure Data File

(ENSDF) maintained by the US National Nuclear Data File Center http://www.nndc.bnl.gov.

FIGURE 1.3 Binding energy per nucleon from the liquid drop model.
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Radioactivity arises in nuclear reactors due to fission reactions resulting in fission fragments such as cesium and

iodine. The number of such radioactive atoms can become significant, for example, about 6 atoms of cesium-137 are

produced per 100 fission events. Considering that one fission reaction produces 3.20 3 10211 J and that a 3000 MW

(th) reactor would be undergoing B 1020 fissions per second, the production of cesium-137 would be B 6 3 1018

atoms per second, or B 2 3 1026 atoms per full operating year. Later in this chapter, we will see how to estimate this

quantity of atoms into mass from the Avogadro number.

Radioactive decay results in a “decay chain” where further nuclides are produced. Consider the decay of iodine-135

atoms due to its decay constant λI

d

dt
I tð Þ52λI I tð Þ

At any instant, the number of iodine-135 atoms is then

I tð Þ5 Ið0Þe2λI t

By the definition of half-life t1=2 is the time for half the atoms from the beginning to have remained; thus

I t1=2
� �

5 Ið0Þ=2 so that

1

2
5 e

2λIt1=2

yielding a relationship between the decay constant and half-life:

λt1=2 5 ln25 0:693

The activity of a radionuclide (disintegrations per second) is then A5λN Bq.

Iodine-131, for example, decays to xenon-131 through two reactions, namely

131
53 I -

8:02d 131
54 Xe � 1 β1 νe

which is the predominant reaction, and

131
54 Xe � -

11:9d 131
54 XeðstableÞ1 γð0:39% of reactions in 131

53 I decayÞ
In a radioactive chain, there is the progression of a nuclide, such as tellurium-135, shown below. This results in the

production of iodine-135, which successively decays to xenon-135, cesium-135, and barium-135.

135
52 Te-135

53 I-135
54 Xe-135

55 Cs-135
56 Ba

Just as the iodine-135 decay rate equation above, we can write down the equations for the number of atoms of each

of the radioisotopes in the tellurium decay chain to obtain their concentrations as a function of time.

We shall see the important consequences of this decay chain in Chapter 3 in the context of nuclear reactor control.

For now, we note that iodine has a “source” term (production by tellurium) and a “loss” term (decay to xenon-135).

This permits us to write an ordinary differential equation for the number of atoms of iodine-135 IðtÞ in terms of the

number of atoms of tellurium-135 T tð Þas
d

dt
I tð Þ5λTT tð Þ2λI I tð Þ

Similarly, for xenon and cesium,

d

dt
X tð Þ5λI I tð Þ2λXX tð Þ

d

dt
C tð Þ5λXX tð Þ2λCC tð Þ

The above first-order ordinary differential equations, also known as the Bateman equations, can be expressed in

matrix form and solved as an initial value problem

d

dt
B tð Þ5λB tð Þ
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The solution for I tð Þ and X tð Þ ignoring the initial concentration of T tð Þ as well as the third equation for C tð Þ, an exact

solution can be obtained by standard methods.

With initial conditions I 0ð Þ5 100 atoms and X 0ð Þ5 0, the solution, obtained with MATLAB (Annex 7) is shown in

Fig. 1.4. Iodine-135 with a half-life of 6.6 h and xenon-135 with 9.2 h reaches a maximum xenon strength of 43.0370

atoms at 11.2 h. These decays and buildups are calculated in the event of a nuclear accident to determine the dynamics

of radiation effects.

1.2.1 Alpha decay

The radioactive decay of heavy unstable nuclides shown in Fig. 1.2, with alpha particles, as shown in Fig. 1.5, results

in the emission of a helium-4 nucleus and hence is associated with reduction of atomic number by 2 and of atomic

mass by 2. Early work on radiation by Becquerel, Rutherford and Curie showed that radiation is emitted by atoms

which change their form. The discovery of polonium and radium in 1898 from its presence in uranium ores, and the

subsequent isolation of radium in metallic form by Marie and Pierre Curie in 1911 led to several experiments.

Compounds of radium showed a faint blue light in the dark which was caused by the excitation, and subsequent de-

excitation, of electrons in elements of the compounds caused by the spontaneous emission of radiation from radium. It

was then discovered that the element has several isotopes which undergo alpha decay; for example, the isotopes

Ra223;Ra224 and Ra226 have a half-life 11.43 d, 3.66 d, and 1600 y each. The radium decay chain of Ra226 is

Ra226 �!α;1600 y Rn222 �!α;3:82d Po218 �!α;3:05m Pb214 �!β;26:8 m Bi214 �!β;19:7 m Po214 �!α;0:16 ms Pb210. . .
�!β;22y Bi210 �!β;5d Po210 �!α;138d Pb206ðstableÞ

decaying ultimately to Pb-206 which is stable. All radioactive chains end with a stable product. In this chain, radon-222

is an odorless radioactive decay present in earth as background radiation due to its transient production from uranium

and thorium.

FIGURE 1.4 Radioactive decay of iodine-135 to xenon-135.

FIGURE 1.5 The process of spontaneous alpha decay.
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Other powerful alpha emitters include Polonium-210 emitting a 5.305 MeV alpha particle with the emission of one

milligram equal to that from 5 g of radium and Plutonium-238 emitting a 5.456 MeV alpha. The alpha decay reactions

of uranium-238 and plutonium-238 are

238
92 U-234

90 Th1 4
2He;Qα 5 4:268 MeV;T1=2 5 4:513 109 y

238
94 Pu-234

92 U1 4
2He;Qα 5 5:593 MeV; T1=2 5 87:7 y

The energy of alpha particles ranges from B1 to B 11 MeV, although most alpha emitters produce alpha particles

in the range 4�5 MeV. The number of alpha emissions is a function of the activity of an alpha emitter for which some

commonly used sources are: Am-241, Pu-238, Pu-239, Po-210, Ra-226; and the portable sources, for example, Am-Be,

Pu-Be, Ra-Be of 10�50 mCi. Alpha particles led to several new developments including an understanding of the struc-

ture of an atom in Rutherford’s gold foil experiment and the discovery of the neutron by Chadwick by the alpha bom-

bardment of beryllium in the reaction 49Beðα; nÞ612C.

1.2.2 Beta decay

In beta decay, a neutron-rich nuclide decays by the conversion of a neutron into a proton and an electron accompanied

by the emission of an antineutrino. The antineutrino is an antiparticle (same mass but opposite electric charge and mag-

netic moment) of the neutrino. It is a lepton like an electron which is an elementary particle of spin 1/2. Unlike an elec-

tron the antineutrino has no electric charge. Antineutrinos cannot be easily detected as they pass the earth without any

interactions. The beta decay of carbon-14 is

14
6 C

6

-14
7 N

7

1 2 10β1 ν; T1=2 5 5730y

Exercise 3: How is the beta decay of carbon-14 used in “carbon-dating” to estimate the age of fossils?

For excess of neutrons (beta β2 decay)

n-p1β2 1 ν

while excess of protons (positron β1 decay) leads to the emission of a positron, which is an antiparticle of an electron

(Fig. 1.6)

p-n1 β1 1 ν

Reactions follow conservation laws for charge and lepton number conservation. The radioactive decays of iodine-

131 and cesium-137, both powerful beta emitters with significant half-life and associated with cancer resulting

from nuclear tests and explosions are shown in Figs. 1.7 and 1.8, respectively. Some positron emitting radionuclides

with half-lives and mean energies are 611Cð20:38 min; 0:385MeVÞ; 713Nð9:96 min; 0:491MeVÞ; 917F;
ð64:5 s; 0:739MeV; 918F; ð109:77 min; 0:2498MeVÞ and 1938Kð7:636 min; 2:323MeVÞ:

FIGURE 1.6 The process of spontaneous beta decay.
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1.2.3 Gamma decay

Gamma decay takes place as a result of the relaxation process of a nucleus in its excited state just as X-rays are emitted

in the relaxation process of electrons. With discrete energy levels for nucleons, determined by quantum physics, each

excited state is characterized by quantum numbers. The nuclear Shell Model describes the motion of each nucleon

based on the forces it experiences from neighboring nucleons. Since the nucleus is tightly bound, the energy of gamma

rays are much higher than that of X-rays, typically MeV compared with keV. A comprehensive list of intense (.
1 keV) gamma rays, based on the ENSDF Brookhaven National Laboratory data, is given in Narita and Kitao (1992)

(Fig. 1.9)

One of the strongest gamma rays produced has an energy of 7.11515 MeV (4.9% intensity) from the beta decay of

716N (Bielajew, 1990). One method of determining uranium enrichment is from the alpha decay of uranium-235 to

thorium-231 which produces 4:33 104 gamma rays, of 185.7 keV, per gram uranium-235 per second.

FIGURE 1.7 Radioactive decay of iodine-131.

FIGURE 1.8 Radioactive decay of cesium-137.

FIGURE 1.9 The process of spontaneous gamma decay.
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It is important to note that energetic gamma rays can produce neutrons as in the photo-neutron ðγ; nÞ reactions
49Beðγ; nÞ48Be and 12Hðγ; nÞ11H.

1.2.4 Radioactive nuclides in nuclear technologies

Nuclear power reactors: In nuclear power reactors, the main source of nuclides is the nuclear fission reaction which

produces fission products as will be discussed in detail in the next chapter devoted to neutrons. These fission fragments

give rise to the radiations discussed here. Some fission fragments are a problem in the operations of nuclear reactor;

these are called poisons such as 53131Xe, which can cause a reactor to shut down for some time. This results in a loss

of power which is serious for reactors on ground but more so for propulsion reactors in submarines. In some cases,

“poisons” such as burnable boron solutions are used to control the reactor from staying within permissible power

bounds.

Radiation in nuclear weapons and accidents: In the early days of nuclear technology, weapons testing led to the

release of radioactive nuclides in the atmosphere. In the 1945 nuclear explosions over Hiroshima and Nagasaki, casual-

ties occurred due to the immediate blast and long-term radiation mainly from iodine and cesium isotopes. The iodine

isotope 53131I is harmful and had been found over in the Chernobyl accident, one of the four nuclear reactors of the

former Soviet RBMK-1000 Light Water Graphite (LWGR) were destroyed resulting in the release of B 5% of radioac-

tive core (Anspaugh, Catlin, & Goldman, 1988; World Nuclear Association, 2012) in the environment causing 28 fatali-

ties, within weeks, due to acute radiation syndrome. In the Fukushima disaster, caused by the Tohoku 9.0 magnitude

earthquake and tsunami, the radiation released was B18 1015 Bq of radioactive Cs-137 into the Pacific during the acci-

dent (Langlois, 2013). Water and soil samples nearby indicated the presence of strontium, iodine and cesium. The

Japanese Red Cross reported that as of 2011, the casualties consisted of almost 16,000 people confirmed dead, almost

4000 missing and that approximately 90% of the deaths were due to drowning (INPO, 2011).

Exercise 4: Estimate the fraction of cesium and iodine concentrations from the Hiroshima and Nagasaki blasts remaining

from 1945.

Space technologies: The exploration of space, starting from 1957 with increased interest in the 1960s followed by a

long gap, has revived this year (2020) with three missions to Mars launched in July by China (Mallapaty, 2020), UAE

(Gibney, 2020), and the United States (Witze, 2020). Traveling at about 20,000 kilometers per hour, they are expected

to complete the 500 million kilometer journey to Mars in about seven months. In the US mission, the Perseverance

Rover uses radioactive plutonium-238 for power. As described earlier, plutonium-238 is an alpha emitter but also emits

beta and gamma radiations as well as neutrons from spontaneous fissions (Matlack & Metz, 1967). Thus for future mis-

sions, possibly with personnel in returnable rockets, radiation shielding would be required. Plutonium-238 generating

0.55 W/g (th) with a half-life of 88 years and strontium-90 giving 0.93 W/g (th) with a half- life of 28 years as well as

others such as polonium-210, cesium-144 and curium-242 generate 141, 25, and 120 W/g (th) with lower half-lives of

0.378, 0.781, and 0.445 years, respectively, can all be used. In the Mars 2020 Perseverance Rover, plutonium-238 has

been used in the form of plutonium oxide as in several previous US space missions. The radioactive decay heat in space

systems can be converted into electrical energy by several methods such as the conventional ones used in power plants

based on the Rankine or Brayton cycles, or by conversion to mechanical energy in a Stirling engine or by directly con-

verting to electrical in a thermoelectric generator as in the Perseverance Rover. Such systems have a long history espe-

cially for space systems (Bennet, 1989; Demuth, 2003; Determan et al., 2011; El-Genk, 2008; Miskolczy & Lieb,

1990). NASA’s latest multimission radioisotope thermoelectric generator (MMRTG) is based on earlier SNAP (Small

Nuclear Auxiliary Power) systems uses General Purpose Heat Source (GPHS) Modules with a thermoelectric generator

and radiator funs, to produce electrical power without moving parts and to use heat for spacecraft operation and temper-

ature control.

Medical therapy: Over 200 radioisotopes are used in medicine such as technetium 99mTc, iodine 125I, palladium
103Pd, iridium 192Ir, cesium 137Cs, and cobalt 60Co, for diagnostics and cancer therapy (Harkness-Brennan, 2018). They

are used both for the imaging of organs, such as the thyroid, bones, heart, liver, and for the treatment of cancer of lungs,

breast, colon and rectum, prostate, stomach, and liver, etc. The photons, protons, and positrons from these radiations are

also used in tomography such as in Positron Emission Tomography (PET), in medical imaging procedures (Gray;

Ulaner, 2018) using radio-tracers to determine changes such as in blood flow or in the condition of the heart muscle. In

the COVID-19 pandemic beginning from 2019, PET has also been used (Loforte, Gliozzi, Suarez, & Pacini, 2020) for

the detection of potential COVID-19 respiratory syndrome.
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A relatively new therapy, boron neutron capture therapy (BNCT), based on the short range of alpha particles is

being developed for the treatment of brain tumors. Improvements in cancer therapy, such as dose enhancement by radia-

tion by nanoparticles and better computational methods for its estimation, are the focus areas of research. The reaction

10
5 B1 1

0n-
7
3Li1

4
2He

is used in boron neutron capture therapy (Kumada, 2014; Nedunchezhian, Aswath, & Thiruppathy, 2016; Suzuki, 2020) with

the product ions producing very high linear energy transfer due to high stopping power and high ionization with � 150 keV/

μm from the alpha particle and � 175 keV/μm from the lithium ion in pathways ,10 μm which is comparable to the diame-

ter of one cell. One of the obstacles in the development of BNCT has been the thermal neutron flux required for the reaction;

for this the use of a tandem particle accelerator has been achieved with the required values of current and energy for the

nuclear reaction to take place with increased quality (Dymova, Taskaev, Richter, & Kuligina, 2020).

Exercise 5: In what medical applications would alpha radiation be preferred over beta radiation?

Nondestructive testing: In industry, due to the penetrating power of gamma radiation with an ability to go through

commonly used dense materials such as concrete and steels, nondestructive testing (NDT) is an established discipline

with widespread applications covering the testing of roads, bridges, pipes and structural materials. The use of radiation

for elemental identification and assaying, such as determining the purity of gold, is also carried out accurately with the

use of X-ray fluorescence (XRF) using the absorption edges of the photoelectric cross-section.

1.3 Interaction of radiation with matter

As highlighted above, radiation is an area of major concern in nuclear engineering and thus its interaction with matter

is central to calculations of activity of radionuclides as they are formed and as they decay in various radioactive chains.

Radiation, both ionizing and nonionizing, interacts in several ways. Some significant mechanisms are discussed

below (Fig. 1.10).

1.3.1 Interaction of alpha rays with matter

As described in Section 1.2.1, alpha particles are energetic ionizing radiation consisting of a helium nucleus with an

electrical charge of two units.

As alpha particles move in matter, they “see” atoms on the scale of a few Angstroms with “lots” of electrons and a

tiny point nucleus on the scale of a few fermis. It is thus more probable that they interact with the electrons. In their

movement, they constitute a charged particle with charge 12e moving in the vicinity of several electrons of charge �e
moving in orbits of the target medium. The force between the alpha and an electron, in Newtons, is given by the cou-

lomb field with the force

F5
kð2eÞðeÞ

r2

where k is the conversion constant N/m2/C and r is the distance between them. In their interaction, three events are thus

likely: removal of electrons from their orbits (ionization), excitation of the orbital electrons, or transfer of energy to the

FIGURE 1.10 Interaction of radiation with matter.
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“point” nuclei. Thus alpha particles can be understood to lose their energy via ionization, excitation and nuclear

collisions.

Since alpha particles are heavy (compared with electrons), they move in a relatively straight line between collisions

and undergo a series of “small-angle” deflections while the electrons receive energy from them and undergo deflection

themselves. The collision can be modeled with the usual kinematics governed by conservation of momentum and

energy. They lose energy by electronic excitation and ionization creating ion pairs. Due to their charge, they can be

deflected by electric and magnetic field.

The stopping power SðEÞ which is defined as the energy loss by collisions traveled, in units of energy/cm, is due to

energy lost to electrons Se and nuclei Sn both. Thus

2
dE

dx
5 Se 1 Sn

Clearly, the stopping powers would be expected to be functions of the alpha particle’s mass, energy and electrical charge,

and the atomic number of the target material as well as its density (which would determine the electron density).

An elementary two-body interaction with coulomb potential gives the electronic energy loss as

2
dE

dx
5

4πNk2e4

mev2α
ln
γ2mev

3
αf ðZÞ

ke2

With the maximum energy transfer

Wmax 5 2meγ2v2α

where

γ2 5
1

12 β2

A quantum-mechanical relativistic expression is given by Bethe-Bloch as

S Eð Þ52
dE

dx
5

4πNz2

β2

e2

4πε0

	 
2

ln
Wmax

I

	 

2β2 2

δ
2
2

C

Z

� �

in terms of the projectile atomic number z and speed v, and the density of electrons N and charge of electrons e and the

ionization potential I of the slowing-down medium. The two correction terms (1) the “density effect” accounts for the

shielding of distant electrons by the polarization of electrons caused by the electric field of the high-energy projectile,

and (2) the “shell correction” (given the symbol “C”) due to effects at low energy of tightly bound electrons.

The nonrelativistic Bethe formula

dE

dx
52

4πNz2

mev2
e2

4πε0

	 
2

ln
2mev

2

I

	 


The dependence of stopping power is 1/v2 so that low speed gives high energy loss (Table 1.1).

The collisions stopping power is the energy lost per cm due to coulomb collisions with the target atoms and elec-

trons which result in ionization and excitation, while the nuclear stopping power is the loss transferred to recoiling

atoms in an elastic collision. It is worth noting that the difference between the CSDA range and the projected range

reduces for high energy

The range, defined as

R5

ðE0

0

dE

SðEÞ
can be interpreted as the mean range if at each point in the ion’s track, the stopping power is the total of the collision

and nuclear terms.

Alpha particles, which are “heavy” compared with electrons by a factor of 7273, lose their energy very quickly and

thus travel small distances in typically straight lines before inducing ionization.
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Example 2: Calculate the stopping power for alpha particles of KE 1�10 MeV in oxygen and nitrogen. From these,

obtain the stopping power in air.

The MATLAB program implementing the Beth-Bloch formula (without the density factor and shell correction) is

listed below, for the results shown in Fig. 1.11. Data used for mean ionization energy and density from NIST is

included in the listing.

MATLAB Program 2: .

The values for ASTAR from NIST are reproduced below, showing excellent agreement. The stopping power for air

can be obtained by incorporating the composition of air; thus (Table 1.2)

dE

dx
jair 5 0:79

dE

dx
jN 1 0:21

dE

dx
jO

Energy loss is a statistical quantity resulting in a distribution of path lengths giving a mean value higher than the

CSDA value and a straggling is thus found. This becomes important in experiments where “projected ranges” of actual

penetration of particles are measured and theoretically correlated with the CSDA range. The energy straggling is incor-

porated in simulation codes, as will be mentioned in Section 1.6 by, for example, a Gaussian distribution function. The

mean energy loss in ionization from the Rutherford scattering cross-section is

TABLE 1.1 Stopping power and range of alpha particles.

Material Energy (MeV) Stopping power ðMeV cm2

g Þ CSDA Range

electronic nuclear g
cm2

� � ðcmÞ
Dry air ρ5 1:2253 1023 g

cm3

� �
131023 8:7503 101 1:3403 102 5:3773 1026 4.3893 1023

131021 1:0183 103 1:3683 101 1:6653 1024 0.1359

1:00 1:9223 103 2:103 6:6983 1024 0.54722

10 4:6343 102 2:8173 1021 1:3093 1022 10.686

Water ρ5 1 g
cm3

� �
131023 9:8913 101 2:2823 102 3:2733 1026 3:2733 1026

131021 1:1313 103 1:9213 101 1:4253 1024 1:4253 1024

1:00 2:1903 103 2:898 5:9313 1024 5:9313 1024

10 5:3403 102 3:8443 1021 1:1303 1022 1:1303 1022

Source: ASTAR data from NIST.

FIGURE 1.11 Stopping power for alpha particles in oxygen and

nitrogen.
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ΔE
 �

5
2πz2e4NZx

mev2

for which the fluctuations over a large number of collisions can be modeled with a Gaussian; for thin targets, that is,

few collisions, the Vavilov and Landau distributions can be used (Peralta & Louro, 2014). The Gaussian probability dis-

tribution function (PDF) for the fraction of particles f(E)5N(E)/N having energy in dE between E and E1 dE is

f Eð Þ5 1ffiffiffi
π
p

σstr
exp 2

E2 ΔE
 �� �2
σ2str

 !

in terms of the mean energy E and the standard deviation σstrwhich is given by

σ2str 5 ΔE
 �

Emax 12
1

2
β2

	 


The methods and implementation of sampling methods for PDF’s will be discussed in Chapter 4.

1.3.2 Interaction of beta radiation with matter

Compared with alpha particles discussed in the previous section, beta particles have less mass and at energy 1 MeV

they are at almost twice their rest-mass energy; they move ‘swiftly’ in comparison and thus have a longer range. At low

energy, typically less than few MeV, the energy loss by electrons (and positrons) is mainly by excitation and ionization

with little contribution from Møller (and Bhabha scattering). At high energy, typically greater than 10 MeV, the losses

are mainly from bremsstrahlung, continuous electromagnetic braking radiation in the energy range of X-rays. The “criti-

cal energy” Ec defined as the energy at which ionization and bremsstrahlung losses are equal, decreases from about

300 MeV for hydrogen to B 20 MeV for iron varying as

Ec 5
610MeV

Z1 1:24

The collision mechanism of electrons with electrons of the same mass implies that large energy transfer is possible.

At high energies, the fraction of beta energy converted into photons is directly proportional to the atomic number of the

target and energy of the electrons: f Brβ 5 3:53 1024ZE.

The stopping power for electrons is the sum of the electronic ionization Se and radiative loss Sr due to bremsstrah-

lung (Berger, Coursey, Zucker,& Chang, 2005; Taylor et al., 1970)

2
dE

dx
5 Se 1 Sr

The electronic part is similar to the ion-electron energy loss in the previous section. For electrons

Se Eð Þ52
dE

dx
5

2πr2emec
2Nz2Z

β2

ln
mev

2E

2I2 12 β2
� �

0
@

1
A2 ln2 β2 2 11 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12β2

p� �

1 12β2
� �

1
1

8
12

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12β2

q	 

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

TABLE 1.2 Stopping Power from ASTAR NIST for alpha particles in oxygen and nitrogen.

Stopping power ðMeV cm2

g Þ
Energy (MeV) 2 4 6 8 10
Nitrogen 1:4063 103 8:9853102 6:7853 102 5:5233 102 4:6913 102

Oxygen 1:3293 103 8:6023102 6:5193 102 5:3133 102 4:5203 102
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and the radiative loss is

Sr Eð Þ52
dE

dx
jr 5

z1 1ð ÞzρNE
137m2

ec
4

4ln
2E

mec2

	 

2

4

3

� �

The stopping power Se Eð Þ for beta particles in sodium iodide is calculated from the above expression with the

MATLAB program listed below. For the KE of beta particles in the range 1�10 MeV, the stopping power is plotted as

a function of energy in Fig. 1.12, which shows good comparison with the ESTAR stopping powers from NIST. The

NIST values are plotted from 13 1022MeV to 1000 MeV for which Se Eð Þ decreases from 11.16 MeV cm2/g to

1.173 MeV cm2/g at 1.5 MeV then increases slowly to 1.777 MeV cm2/g at 1000 MeV. In contrast, the radiative stop-

ping power Sr Eð Þ increases from 1:5183 1022MeV cm2/g at 13 1022MeV, equaling Se Eð Þ at B 17.5 MeV, then

increasing to 103.8 MeV cm2/g at 1000 MeV.

The ESTAR NIST results are listed in Table 1.3 with the slow increase in Se Eð Þ which is still higher than the radia-

tive energy loss.

MATLAB program 3: .

Stopping power for beta particles in NaI

The range Rðmg=cm2) for beta particles of maximum energy E is given by the empirical relations

R5 412 E1:26520:0954lnE; 0:01 MeV #E# 2:5 MeV

R5 530 E2 106; E. 2:5 MeV

plotted for air, polyethylene, aluminum, iron, and lead in Fig. 1.13.

Thus energetic beta particles can travel more than a meter in air and are easily shielded by a few centimeters of

lead. The effect of bremsstrahlung, for beta particles is shown in Fig. 1.14.

TABLE 1.3 Stopping Power from ESTAR NIST for beta particles in sodium iodide (NaI).

Stopping power ðMeV cm2

g Þ
Energy (MeV) 2 4 6 8 10
Collision 1:192 1:263 1:311 1:347 1:374
Radiative 0:1369 0:2857 0:4464 0:6145 0:7876

FIGURE 1.12 Stopping power for beta particles in sodium iodide

(NaI).
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FIGURE 1.13 The range of beta particles as a function of energy.
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In order to compare the range of both alpha and beta in air, ASTAR (Table 1.1) and ESTAR (Table 1.4) values are

compared; the range is far greater for beta than for alpha by factors of B100, B800, and B400.

The specific ionization of beta particles (MeV/cm)

En11 2En 52

ðsn11
sn

dE

ds
ds

dE

dx
5

2πq4NZ 33 109
� �4

Emβ2 1:63 1026
� �2 ln

EmEkβ2

I2ð12β2Þ 2β2

� �

can be used to estimate the number of ion pairs created by a beta particle as it slows down in an absorber in which the

mean energy required to create an ion pair is W electron volts. The straggling of electrons, that is, the random differ-

ences between electrons is found from a PDF since the energy loss in a step is not the same for every step.

The collisional stopping power of water (liquid) produced by ESTAR (Berger et al., 2005) for electrons gradually

decreases with energy, till about 1 MeV, to a constant value of B2.0 MeV cm2/g while the radiative loss becomes com-

parable at B90 MeV then gradually rises to B 2.7 MeV cm2/g. The total stopping power thus decreases with energy

until the radiative term increase and then rises.

1.3.3 Interaction of gamma radiation with matter

Electromagnetic gamma rays, as discussed in Section 1.2.3, have high energy (Bseveral MeV) and are thus very strong

in terms of penetration in matter. In fact, one of the major problems in nuclear systems is gamma radiation for which

detailed transport simulations are carried out.

FIGURE 1.14 Stopping power of electrons in aluminum from ESTAR.

TABLE 1.4 Stopping power and range of beta particles.

Material Energy (MeV) Stopping power ðMeV cm2

g Þ CSDA range

collision radiative g
cm2

� � ðcmÞ
Dry air ρ5 1:2253 1023 g

cm3

� �
13 1021 3:633 4:2223 1023 1:6233 1022 13.249

1:00 1:661 1:2713 1022 4:9123 1021 400.98

10 1:979 1:7953 1021 5:192 4238.4

Source: ESTAR data from NIST.
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Gamma rays interact with matter in many different ways of which the three most significant are the photoelectric

effect, Compton scattering and pair production. Some other forms of interaction are photoneutron reactions, quasi-

deuteron disintegration and pion production at very high energies (B. 1 GeV). The three main interactions combine to

give the overall parameter which is used to calculate the overall attenuation of gamma transport in matter.

In the photoelectric effect, shown in Fig. 1.15, a photon of frequency ν and energy E5 hν interacts with an orbital

electron of an atom, gets absorbed by the electron, and if its energy is greater than the BE of the electron, then the elec-

tron gets ejected with a maximum KE Kmax 5 h ν2 ν0ð Þ where hν0 is the BE or the “work function” such that the

threshold frequency of the emissive surface is ν0. The photoelectric effect was explained by Einstein on the basis of

quantum physics in which Planck had earlier stated that the transfer of energy takes place in integral amounts of quanta

which depends on the frequency and not on the intensity of light. This was a revolutionary difference from classical

physics in which light was considered a wave. Thus in the photoelectric effect, it is the frequency of the incident photon

rather than its intensity which results in the ejection of an electron.

Ee 5Eγ 2EB

When the host material is a high Z shield such as iron, lead, or tungsten, the number of electrons produced by the

photoelectric effect is large. The X-rays produced from the photoelectric absorption are called fluorescent radiation and

are used for element characterization. After the photoelectric effect has knocked out an electron, an outer electron can

fill the vacancy to produce the fluorescent emission. Subsequently the excess energy can eject another outer shell elec-

tron producing an Auger electron. Similar events can be triggered in subshells. XRF is used as a nondestructive tech-

nique (NDT) for multielemental identification such as determining the purity of gold (Handbook of Practical X-Ray

Fluorescence Analysis, 2006).

For the photoelectric effect to take place, the frequency of an incident photon must be higher than one of the fre-

quencies correspond to the binding energies of the “saw-tooth” absorption edges for K, L,.,. shell electrons shown for

lead in Figs. 1.16 and 1.17. Usually, the most important photoelectric effect is for the K shell electrons, for which the

approximate formula is EK 5 ðZ21Þ213:5eVB88.573 keV (the square of the effective nuclear charge times the Bohr

energy orbit energy for the first orbit in hydrogen.

The probability of a photoelectric interaction σPE depends on the energy of the incident photon, the atomic number

of the element and the BE of the electrons it is proportional to Zn=E3, n5 4�4.8.
The shells and associated energies of elements from hydrogen to lawrencium are K, L, M1 to M7, N1 to N7, O1 to

O5, P1 to P5, Q1. BE in subshells of a free atom (eV) are listed in Table 1.5.

High Z materials would therefore have more photoelectric absorption and would thus be good gamma shields. Thus

one of the best shields is depleted uranium with a density of 19.1 g/cm3, about five times better than lead with a density

of 11.35 g/cm3.

FIGURE 1.15 The photoelectric effect.
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FIGURE 1.17 The photoelectric absorption edges for lead (Pb).

FIGURE 1.16 The mass attenuation coefficient for the photoelectric

effect.

TABLE 1.5 Shell energies (eV).

Z Element Electronic configuration K L1 L2 L3 M1 . . . Q1

1 H 1s1 13.60
2 He 1s2 24.59
3 Li [He] 2s1 58 5.392
4 Be [He] 2s2 115 9.322
5 B [He] 2s22p1 192 12.93 8.298
^ ^ ^ ^ ^ ^ ^ ^ ^ ^
20 Ca 1s22s22p63s23p64s2 4041 441 353 349 46 . . .N2(6.113)
82 Pb [Xe] 4f14 5d10 6s2 6p2 88000 15860 15200 1304
92 U [Rn] 5f36d17s2 115611 21762 20953 17171 5553 . . . 6
98 Cf [Rn] 5f107s2 134967 26008 25103 19907 6733 . . .N3 (1273)
^ ^ ^ ^ ^ ^ ^ ^ ^ ^
103 Lwa [Rn] 5f147s27p1 153040 30091 29101 22356 . . . 7

aLawrencium symbol changed by IUPAC to Lr.
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For a photon of high energy, in comparison with the K shell BE, the atomic absorption is σK

σK 5 4
ffiffiffi
2
p

φ0
Z5

1374
mec

2

hν

� �7=2
where

φ0 5
8π
3

e2

mec2

	 

5 0:66513 10224cm2

and scattering is considered as that of scattering of light from free electrons given by the Thompson cross-section φ0 in

the nonrelativistic case hν{mec
2 but modified to the Klein-Nishina cross-section for relativistic energies.

At higher energies than that compared with K shell binding energies, typically mec
2 5 0:511MeV the photoelectric

effect becomes less important and scattering of photons, called Compton scattering, is considered as taking place with

free electrons. This is reasonable since the K shell edge goes to B0.11 MeV for the heaviest nuclei. Coherent scattering

is classical scattering or Thomson scattering with the cross-section φ0for low-energy (in comparison with the ionization

energy) photons passing in the vicinity of an outer electron of an atom. This causes the electron to vibrate with the fre-

quency of the photon and to emit another photon of the same frequency and energy, but different direction, of the

incoming photon which no longer exists. Coherent scattering is similar to elastic scattering in the sense that energy is

not lost in the interaction. In contrast to coherent scattering, incoherent scattering changes the frequency and energy as

if the electrons were randomly fluctuating.

The kinematics of coherent scattering was first shown by Compton as a two-body collision (Fig. 1.18) where the

massless photon could be treated as a particle. In Compton scattering, at intermediate energies (few hundred keV to

low MeV) and predominantly at low-Z material, a photon transfers some of its energy to an electron and continues to

undergo multiple scattering. A photon of energy E5 hν will have momentum p5E=c5 hν=c with wavelength

λ5 c=ν.
In Compton scattering, a collision results in scattering and recoil which changes the frequency of the photon.

Consider the collision of an energetic (massless) photon with an electron of rest-mass m0 with rest energy E0 5m0c
2 in

which the photon is scattered to the right upwards an angle θ and the electron recoils to the right downwards an angle

ϕ.
The pre- and postcollision two-body parameters are shown below.

Collision parameters

“Particle” Energy Momentum

Before collision After collision Before collision After collision

Photon E 5 hν E
0
5 hν

0 p5h=λ p
0
5 h=λ

0

Electron E0 5m0c
2 Ee 5mc2 pe 5 0 p

0
e 5

1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e 2 E2

0

p

With conservation of momentum and energy the equations are:

λ
0
2λ5

hc

E0

12 cosθÞ5λc 12 cosθÞðð

hν1E0 5 hν
0
1Ee

where the Compton wavelength λc 5 2:4263 10210cm

FIGURE 1.18 Compton scattering for a photon.
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Ee 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0ecÞ2 1E2

0

q
The energy of the photon after collision E

0
is thus found to be related to its energy before collision E and it scatter-

ing angle θ by

1

E
0 2

1

E
5

1

E0

12 cosθð Þ

As seen, λ
0
5λ for forward scattering θ5 0 and the maximum change is for backscattering θ5πc for which the

electron gets maximum energy. The probability of Compton scattering is given by the Klein-Nishina (K-N) differential

cross-section, that is, the probability that the photon gets scattered into solid angle dΩ5 2πdθ, so that the total cross-

section is σ5
Ð

dσ
dΩ dΩ, and

dσ
dΩ

5
1

2
r2e

λ
λ
0

	 
2 λ
λ
0 1

λ
0

λ
2 sin2θ

 !

with units of barns per steradian. At low incident energy, in comparison with the electron energy mec
2 when the scatter-

ing is close to elastic, the final and initial wavelength are the same, while for high-energy scattering is inelastic. In the

Thomson regime, the K-N cross-section reduces to the Thomson “unpolarized” cross-section

dσ
dΩ
jT 5

1

2
r2e 22 sin2θ
� �

The total cross-section for an electron is

σC 5
3

8E
φ0 12

2ðE1 1Þ
E

� �
ln 2E1 1ð Þ1 1

2
1

4

E
2

1

2 2E11ð Þ2
� �

; E5
hν
mec2

For an atom, the Compton scattering cross-section is thus NσC. The K-N cross-section reduces to the value from the

classical Thomson as forward scattering of the photon increases with increasing energy.

At yet higher energies, pair production is the dominant interaction mechanism for gamma resulting in energy depo-

sition and the subsequent creation of a beta particle and a positron as shown in Fig. 1.19. This ejected positron, in turn,

when it has a minimum energy 1.022 MeV, annihilates with an electron to produce two 0.511 MeV gammas.

The cross-section for pair production for sufficiently high energy hνc137mec
2Z21=3can be written in the asymptotic

form

σP 5 Z2r2e
28

9
ln183 Z21=3 2

2

27

	 


The total cross-section (barns) for gamma interaction with matter is thus

σγ
t 5σPE 1NσC 1σP

With nuclei, the photons can be energetic enough to be absorbed and eject protons, ðγ; pÞ reactions, or neutrons in
what are called the photoneutron ðγ; nÞ reactions. Gammas can also elastically or inelastically scatter for neutrons.

However neutron interactions will be discussed in a separate chapter. An excellent reference for photon cross-sections

is the photon cross-sections, Attenuation Coefficients, and Energy Absorption Coefficients from 10 keV to 100 GeV

(Hubbell, 1969).

FIGURE 1.19 Pair production for a photon.

The atom and nuclear radiation Chapter | 1 23



With the cross-section defined above, the liner attenuation coefficient with units of cm21 together with the mass

attenuation coefficient ~μ with units of cm2=g can be defined as

μ5Nσγ
t ;
~μ5

μ
ρ

The intensity of photons can then be found from the source intensity Io across a shield of thickness x as

IðxÞ5 Ioe
2μx

The above expression would hold under ideal conditions, that is, a point anisotropic source of intensity Io incident

on a thin shield. For a point isotropic source, the intensity would be given as

I Rð Þ5 Io
e2μR

4πR2

to include both geometrical and material attenuation. For a broad beam or thick shield, the effects of scattering of radia-

tion inside a shield is better represented by including a “buildup” factor B, a dimensionless number greater than one

representing the effect of secondary radiation over that of primary radiation in which the gamma radiation passes

straight through without appreciable scattering. The buildup factors for exposure rate _X in place of intensity I above are

given in the Radiological Health Handbook (US Dept of Health Education and Welfare, 1970). For a point isotropic

source in water, the buildup factors, tabulated for values in the range E5 0:2552 10:0MeV show that at 0.255 MeV, B

increases from 3.09 for μx5 1, to 982 for μx5 20, thus the effect becomes more significant as μx increases. For fixed

thickness, μx5 1 with increase in energy from 0.255 to 10 MeV, B decreases from 3.09 to 1.33, while at μx5 10, for

the same energy increase, B decreases from 982 to 5.98. With the same trends, the maximum buildup factors are 141

for aluminum, and 55.6 for iron. These trends however diverge for tin as for μx5 20, B increases from 18.8 at 1 to 33.4

at 10 MeV. Similar differences are reported for tungsten and lead, while for uranium the maximum buildup factor is

28.5 for 10 MeV and μx5 20.

For a mixture or compound

~μ5
X
i

wiðμ=ρÞi

The coefficients for some materials are given in Table 1.6.

For gamma interactions with materials, the thickness of a shield is expressed as a Half Value Layer (HVL) as one

which would reduce the intensity by a half of its original intensity, or a Tenth Value Layer (TVL) which would reduce

the intensity to one-tenth. Thus for a 1 MeV gamma, the HVL of lead is 0.76 cm while that of iron is 1.52 cm.

Exercise 6: Compare the severity of radiation from alpha particles, beta particles, X-rays, and gamma rays in the con-

text of shielding personnel in the vicinity of a space station with a nuclear-powered radioisotope generation system.

1.4 Sources and effects of radiation

We are all exposed to natural radiation originating from cosmic radiation and decay chains of which the three main

ones are from thorium-238 called the thorium series, uranium-238 called the uranium or radium series, and uranium-

235 called the actinium series. These produce radon, an inert noble gas, which among other isotopes such as potassium-

39 and potassium-40 goes into the lungs and causes further damage by alpha decay with a half-life of 3.8 days.

TABLE 1.6 Mass attenuation coefficients ~μ for 1 MeV photons.

Material Air Water Concrete Iron Lead Glass, leada Polyethylene

~μðcm2=gÞ 0.06358 0.07072 0.06495 0.05995 0.07102 0.06914 0.07262

aGlass, lead has ,Z/A. 5 0.42101,I5 526.4 eV, ρ5 6.220 g/cm3, composition (weight fraction) oxygen: 0.156453, silicon: 0.080866, titanium: 0.008092,
arsenic: 0.002651, lead: 0.751938.
Source: From https://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z82.html.
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In addition to α, β and γ radiations described above, neutron radiation is important in all fission processes in the

production of energy as well as in nuclear systems used for various applications in industry. Neutrons can be produced

from fission in nuclear reactors, spontaneous fission sources, accelerator-based neutron generators and from other neu-

tron producing reactions such as ðα; nÞ and ðγ; nÞ reactions.
A neutron producing nuclear fission reaction of uranium-235 is

01n1 92235U-54140Xe1 3894Sr1 201n1 200MeV

which is the basis for thermal energy in nuclear reactors.

Portable neutron sources include americium-beryllium (Am-Be) and californium Cf252 with properties listed in

Table 1.7 and neutron spectra shown in Fig. 1.17.

Californium-252 has a shorter half-life than Am-Be but is a more intense source; a small 10 μg pellet of Cf-252

emits 2.31 107 n/s with an average energy less than that from Am-Be. Both are intense sources with diverse and wide-

ranging applications.

The energy spectrum of Cf-252 shown in Fig. 1.20 is of the form f Eð Þ5Ce2E=asinh
ffiffiffiffiffiffi
bE
p

(a5 1.025, b5 2.926)

with a probable energy of 0.7 MeV and average energy 2.1 MeV, while Am-Be produces relatively more high-energy

neutrons.

The Am-Be source is an example of the production of neutrons from an alpha emitter (Am) in the presence of beryl-

lium from an ðα; nÞ reaction such as

He42 1Be94-C13�-
B12
6 1 n10 1 5:6MeV

C12
6 1 n10 1 γ4:4MeV1 1:2MeV

�

The most intense source of neutrons are fission reactors, with a fast neutron (B2 MeV) yield B1012 n/MW though

small accelerator-based neutron generators, such as the van de Graff and Cockroft-Walton generators were used in the

early days with accelerated charged particles striking low-Z targets. Accelerator-based sources were developed mainly

FIGURE 1.20 Neutron energy spectra of Am-Be and Cf252sources.

TABLE 1.7 Am-Be and Cf-252 neutron sources.

Source Am-Be 252Cf

Type α-emitter Spontaneous
Half-life (years) 432.2 2.645
Specific activity (Ci/g) � 532
Neutron yield (n s21 Ci21) 2�2.4 3 106 4.4 3 109

Average energy (MeV) B 4.2 MeV B 2
Maximum energy (MeV) B 11 MeV B 10
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for materials research (Granada, Santisteban, Dawidowski, & Mayer, 2012; Verbeke, Leung, & Vujic, 2000) and are

now being improved for specialized uses such as cancer therapy (Dymova et al., 2020; Letourneau et al., 2017;

Marchix et al., 2018). The latest technology for small intense portable neutron generators is based on the D-D and D-T

fusion reactions

1.4.1 Radiation dose

The first units used in radiation were the Becquerel (Bq5 1 disintegration per second) and the curie (3.7 3 1010 disin-

tegrations per second). The amount of any radioisotope that emits 1 Ci depends on its half-life t1=2 from which its decay

constant λ is found; the number of atoms required to produce 1 Ci are then

NCi 5
3:73 1010

λ

from which the mass of that radioisotope required for an activity of 1 Ci can be found

MCi 5
NCi

NAv

The natural background radiation source from cosmic and decay chains is about 2 mrem/day, or about 0.730 rems

(7.30 mSv) in one year (Cacuci, 2010). As mentioned in the previous section, the natural background radiation exists

mainly due to decay chains from thorium and uranium; thus the human body contains radioactivity from isotopes such

as radon and potassium and has an activity of about 8000 Bq (a few micro Curies). For a neutron source, the half-life of

Cf-252, given in Table 1.7, is 2.645 years so that the amount of Cf-252 producing 1 Ci would be

MCi 5
3:73 1010At1

2

0:693 NAv

5
3:73 1010 3 2:6453 3653 243 36003 252:08163

0:6933 6:0223 1023
5 1:9mg

Thus 1.9 milligram of Cf -252 gives 1 Ci which is a specific activity of B526 Ci/g.

The neutron dose from Cf252 is 2.2�2.3 3 103 rem m2/g/h (22�23 Sv m2/g/h) so that a 25 μg source emitting 5.75

3 107 n/s would give a neutron dose at 1 m in air of 55�57.5 mrem/h or 2.66 3 10215 Sv/s per source neutron.

The dose from 1 μg of 252Cf at 1 m in air is 0.0221 mSv/h (2.21 mrem/h) from fast neutrons and 0.0019 mSv/h from

gamma rays. Thus it is necessary to shield the neutrons as well as any secondary radiation produced from it; only then

it can be safely used.

Neutron dose 0.59�0.73 μSv/h at 1 m/GBq 22�23 Sv m2/g/h
Gamma dose 0.68 μSv/h at 1 m/GBq 1.6 Sv m2/g/h

The gamma dose rate is quoted at R5 100 cm in air, of 1.42368E-20 (0.1346) Sv/source. Assuming the source

strength of 1 g Cf252 to be 2.4 3 1012 n/s the gamma dose is 0.123 mSv m2/g/h from secondary photons produced by

neutron interactions. With a simulation in the photon-only mode, assuming an average gamma energy of 0.8 MeV, the

gamma dose is 3.40568 3 10217 (0.0001) Sv/source gamma which is 1.6249 Sv m2/g/h.

This has been estimated using an average neutron emission of 3.768 neutrons/fission and 2.314 3 1012 n/g.s i.e.

0.6141 3 1012 fissions/g.s and a gamma emission yield of 8.30 6 0.08/fission with an average energy of 0.80

6 0.01 MeV, Thus the gamma emission is estimated as 5.09703 3 1012 gamma/g.s5 1.8349 3 1016 gamma/g.

h5 0.6249 Sv/g.h.

Exercise 7: What would be the effect of radon gas Rn-222 on the lungs when it undergoes alpha decay?

The units used for quantifying the effects of nuclear radiation are the absorbed dose (D), the equivalent dose (H)

and the effective dose (E) defined as follows:

1.4.2 Absorbed dose

The SI unit of absorbed radiation dose is a Gray (Gy) (Commission, 2007; IAEA, 2014; Radiation Effects and Sources,

2016) defined as an absorbed energy dose of 1 J/kg. The absorbed dose (D) is the specific energy absorbed by a mate-

rial. Traditionally, it has been expressed as a rad which is defined as 100 erg/g. Thus
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1 Gy5 1 J=kg5 107 erg=103 g5 100 rad:

Historically, the unit of roentgen (R) has been used to represent the exposure (E) of radiation that results in the gen-

eration of one electrostatic unit of charge in 1 cm3 of air at STP. It is thus better to use the roentgen for electromagnetic

radiation.

Thus

1elementary charge charge on an electronð Þ5 4:83 10210esu

1esu5
1

4:83 10210
elementary charges

One pair requires 32.5 eV

1esu5
32:5

4:83 10210
eV 5 6:763 1010 eV

and 1 eV 5 1:63 10219 J, therefore

1esu5
32:5

4:83 10210
eV5 1:08163 1028J

Thus 1:08163 1028 J is deposited in 1 cm3 dry air at STP and with air density ρ5 0:00129 g/cm3 this is 0:0084J=kg
or 84erg=g, since 1 J5 107 ergs.

Thus

1R5 1
esu

cm3
5 0:0084

J

kg
5 84

ergs

g
5 0:258

C

g

1 R5 2.58 3 1024 C/kg. The exposure of 1 C/kg is equivalent to 33.8 J/kg, or 33.8 Gy.

Example 3: If dry air, with an ionization energy (I) of 32.5 ev/ion pair (B34 J/C), is subjected to an exposure of 1 R,

the absorbed dose is D5E I5 2.58 3 1024 3 32.55 8.4 3 1023 J/kg5 8.4 mGy.

From the roentgen, the CGS units of rem (roentgen equivalent man) is defined as a measure of the stochastic effect

of low level ionizing radiation on the body (1 roentgen5 0.96 rem).

1.4.3 Equivalent dose

Since we would like to quantify the effect of radiation, two more factors must be considered viz (1) the type of radia-

tion, and (2) the response of a tissue of a living organism to that radiation. For these effects, the quantities defined are

the equivalent dose (H) and the effective dose (E).

Since the absorbed dose represents the amount of energy absorbed, another unit is required to represent the “effect”

of the dose. The SI unit of the “effect” called the “equivalent dose” is a Sievert (1 Sv5 100 rems) defined as the

absorbed dose in grays multiplied by a “quality factor” Q which is a measure of the effect of a radiation. For X-rays,

beta and gamma radiation, QB1 while for neutrons an average value of QB10 can be used.

A chest X-ray which gives a dose of 0.1 mSv (0.01 rem5 10 mrem) which is the equivalent of about one week of

natural background radiation. A procedure such as a CT scan of the abdomen and pelvis is about 20 mSv and a PET/CT

scan is B 25 mSv which are very high doses equivalent to over 200 chest X-rays.

The equivalent dose depends on the rate of energy deposition of a radiation as it collides with the host material in

its interactions. For a tissue T subjected to a radiation R with absorbed dose DT ;R, the equivalent dose to that tissue ðHT Þ
is obtained by the cumulative effect of all the radiations on the tissue:

HT 5
X
R

WRDT ;R;

where WR is the radiation weighting factor, formerly called the quality factor Q, resulting from the linear energy trans-

fer of a particular radiation. For X-rays, γ-rays, and generally for β-rays, WRB1, while for α-particles, heavy recoil

nuclei and neutrons, WRvaries between 1 and 20 depending on the energy of the radiation.
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Example 4: Two radiations viz an X-ray, and energetic neutrons, are incident on tissues of lung and skin with the data

provided below. Estimate the equivalent dose (H).

Radiation WR Dlungs;R (rads) Hlungs (rems) Dskin;R (rads) Hskin (rems)

X-rays 1 1 1 2 2
Neutrons 10 0.2 2 0.2 2

From the above, the equivalent dose to the lungs is Hlungs 5 13 11 103 0:25 3 rems (0.03 Sv). Similarly for skin,

Hskin 5 13 21 103 0:25 4 rems (0.04 Sv).

From a medical procedure in a hospital, a single X-ray of the chest, abdomen and pelvis would give an equivalent

dose of 10, 60 and 70 mrem while a full-body CT scan would give 1000�2000 mrem (. 1�2 years of background

radiation).

1.4.4 Effective dose

To represent the tissue-specific response, the stochastic health risk is quantified by a weighting factor WT representing

the relative radio-sensitivity of a tissue. The overall effective dose E is thus expressed as

E5
X
T

WTHT ;

The weighting factors WT , (Lamarsh and Baratta, p. 510) for some organs are listed below (Table 1.8).

The units of effective dose are also rems (Sv in SI).

Thus the overall effective dose is

E5
X
T

WTHT 5Wlungs � Hlungs 1Wskin � Hskin 5 0:12 3ð Þ1 0:01 4ð Þ5 0:40rems:

All the above quantities can be expressed as rates _D; _H and _E with units of rem/h, mrem/s, Gy/hr, Gy/s, mSv/s, etc.

1.4.5 Radiation safety limits

Radiation safety limits are prescribed by the International Commission on Radiological Protection (ICRP) and the US

Nuclear Regulatory Commission (USNRC) for the general public as well as professionals working with or exposed to

any form of radiation. According to US, Article 20.1201 Occupational annual dose limits for adults, the total effective

dose equivalent limit is set at 5 rems (0.05 Sv). The USNRC Code for Federal Regulations 10 CFR Part 19 requires

that” all individuals who, in the course of their employment, are likely to receive a dose of more than 100 mrem in a

year, must receive adequate training to protect themselves against radiation.”

No serious radiation effects have been normally seen for doses less than about 5 rems (0.05 Sv). Beyond this limits,

changes in blood chemistry have been observed. At 70 rems, vomiting takes place followed by hair loss, diarrhea, and

TABLE 1.8 Weighting factor WT for organs.

Tissue ICRP 26a ICRP 60a

Gonads 0.20 �
Breast 0.15 0.05
Red bone marrow 0.12 0.12
Lung 0.12 0.12
Thyroid 0.03 0.05
Bone surfaces 0.03 0.01
Skin � 0.01
Other organs 0.06 0.05

aICRP publications 26, 60.
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hemorrhage at about 100 rems. Possible death within two months can occur at 400 rems (4 Sv). Persons who receive doses

exceeding 5000 rems (50 Sv) die “within few hours of exposure” probably by the failure of the central nervous system.

As Fig. 1.21 shows, the dose from 1 mCi of iodine-131 and cesium-137 one meter away in air is 2.2 R/h and 3.4 R/

h respectively. Assuming a quality factor of 1, this still gives high dose rates which can be reduced to one-tenth of their

values with thin lead shields (1�2 cm thick).

With the above estimates, we can now get an idea of the magnitudes of radiation at Fukushima where the dose rates

were as high as 1.2 rems/h which is at the site boundary; compare this with the maximum (occupational) permissible

dose rate of 5 rems/y (0.05 Sv/y); it comes to the permissible dose of over 2000 years! Even thirty-seven miles (60 km)

away from the site, the dose rate was measured to be 0.8 mrem/h; much higher than the maximum permissible.

1.4.6 Radiation detection

Radiation detectors, both passive and active, are used extensively for routine monitoring of personnel in radiation envir-

onments in nuclear reactors and medical facilities. They are small passive dosimeters, lightweight and wearable on the

chest such as the common thermoluminescent dosimeter (TLD), a detector capable of measuring doses from 0.01 mGy

to 10 Gy, used for personal dose monitoring typically over a period of a few months. TLDs produce luminescence (visi-

ble light) by the thermal effect of ionizing radiation on a chemical compound such as calcium sulfate and lithium fluo-

ride. Other detectors are also used on the body for displaying radiation exposure or as a ring when radiation sources are

being handled. Several other uses include space monitoring to detect radiation, or further to identify radiation sources

from the measurements of the energy spectra. The basic purpose of these dosimeters is to detect and measure radiation

to ensure that, in accordance with regulations (10 CFR Part 20, and ICRP) whole body dose limits of 5 rems/y, or

50 mSv, as the total effective dose equivalent (TEDE) are not exceeded.

The modes of operation of detectors are based on the ionization caused by charged-particle alpha and beta radiation,

as well as by the photoelectric, Compton and pair production interactions of gamma rays. In its simplest form, a gas-

filled cylindrical ionization chamber with a central positively charged anode and a negatively charge wall cathode, both

with a potential, attract electrons and positive charges created by the energy deposited by the incident radiation. As the

potential is increased, the mobility of charges is also increased to give a flow of measurable current until the signal is

proportional to the intensity of the incident radiation. Proportionality is achieved when each electron, from the ion pair

created by the incident radiation, in turn produces its own secondary ionization and builds an avalanche with a high

multiplication. In this mode of operation, with an applied voltage typically of a few thousand volts, the ionization cham-

ber is called a proportional counter. At a higher voltage, the electric field surrounding the anode becomes weaker due

to a discharge caused by several avalanches spreading into the volume of the gas which reduces further secondary ioni-

zation. Proportional counters operate in a voltage range which inhibits this discharge. Beyond this voltage, a positive

space charge builds around the anode and the discharge terminates.

Proportional counters are better for alpha particle detection and measurements due to their short range, as described

in Section 1.3.1; they are also used for low-energy electrons produced by X-rays and for beta particles. In the Geiger-

Mueller mode, each pulse is counted and an audible signal indicates the presence of radiation; the GM tube is thus a

robust pulse counter.

Compact solid state detectors are used for measuring incident radiation the production of electron-hole pairs in a

semiconductor p-n junction due to the small band gap (in silicon 1.14 eV and in germanium 0.67 eV). These gaps, being

FIGURE 1.21 The radiation dose in air from 1 mCi of iodine-131 and

cesium-137.
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much less than the B32 eV energy required to create an ion pair in a gas detector, gives an edge to semiconductor

detectors which thus have better efficiency and resolution. Another very important application of germanium-based

semiconductor detectors is in nondestructive gamma ray spectroscopy which permits accurate measurement of excited

levels of nuclei (see Section 1.3.3). One important application of gamma ray spectroscopy is the determination of ura-

nium enrichment by measuring the 185.7 keV gamma rays emitted in the decay of uranium-235 to thorium-231.

The property of certain materials to “scintillate,” that is, to emit visible or ultraviolet light by energy deposition of

incident radiation is used for the detection of gamma rays. Though the resolution is lower than that for solid state detec-

tors, the long range of gamma rays makes scintillation detectors attractive.

Some commonly used inorganic scintillators with high photoelectric cross-sections, and hence high efficiency, are

sodium iodide and cesium iodide activated with thallium NaI(TI), CsI(TI), and silver activated zinc-sulfide. Organic

materials, such as plastics, are also used; however, due to their low atomic number, they are better suited to the detec-

tion of radioisotopes with low-energy beta emissions (Section 1.4.2).

Cherenkov detectors are used for the detection of very high velocity (β. 1=nÞ subatomic particles by photomulti-

plier tubes with light sensitive “photocathodes.” For electrons, this velocity is B 1 MeV which is easily reached by

electrons, while for protons and neutrons it is in the GeV range. The speed of light in a material of refractive index n

can be less than the speed of light in vacuum c since n5 c=v; thus for vacuum, for example, n5 1 and for water

n5 1:33; thus light moves at B75% of the speed of light in vacuum; thus a 500 MeV muon (vB0:98c) would be travel-

ing faster than light and would produce a radiation such as the bluish white tinge of light observed by Cherenkov in the

water pool of a nuclear reactor.

For more detailed information on the energy spectrum of a radiation source, or of several sources, a multichannel

analyzers (MCA) is used to obtain “pulse height” tallies. The principle used in a MCA is that incident radiation which

produces charge Q would produced a voltage V5Q/C which could be “discriminated” by its’ electronics to permit a

measurement of the energy spectrum of the incident radiation. As will be illustrated in a simulation exercise

(Section 1.6), pulse height tallies are now available in simulation codes so that the energy spectrum can be identified

for various sources.

In nuclear forensics, and for security applications, activation techniques such as prompt neutron activation, are also

used for the detection and identification of nuclear material and explosives.

Neutrons are detected by the secondary ionization they produce during their interaction with matter, for example, in

their passage in air or a gas, they can create ionization which can be detected in the form of a voltage (Knoll & Kraner,

1981). In a commonly used gas detector containing boron trifluoride gas (BF3), the detector consists of a cylinder (of

aluminum, brass or copper) filled with BF3 gas at a pressure of 0.5�1 atmospheres.

The nuclear reaction with cross-section shown in Fig. 1.22 that takes place in the gas is

510B1 01n-37Li1 24He:

The products 37Li and α (24He) travel in opposite directions after the collision creating ion pairs in the BF3 gas.

When the lithium is left in the ground state (about 6% of the time) the particles have 2.792 MeV to create ion pairs. In

the other case where lithium is left in the excited state, the KE available is 2.310 MeV and hence a smaller resulting

signal. In the ground state of lithium, the energy carried by the α particle is 1.78 MeV while the remainder1.012 MeV

is carried by the lithium.

In naturally occurring boron, the B-10 percentage is 20% while B-11 is 80% and the boron n;αð Þ cross-section is

attractive for the isotope B-10. Thus it is necessary to enrich the gas in B-10. Thus in practice the enrichments for B-10

is increased to 96%. In the detection system, the cylinder is the detector (cathode) while a single thin wire running

down the axis of the tube is the anode.

1.5 Atomic densities of elements and mixtures

Several elements and mixtures are used in standard nuclear engineering for various materials and processes used in the

front-end fuel cycle, in nuclear systems and in the water and reprocessing “back-end” fuel cycle. The first step in the

modeling process is thus preparing the atomic and molecular data. For criticality calculations, the atomic densities of

the following are calculated: uranium-235, uranium-238, plutonium, natural boron, water, boron carbide, uranium diox-

ide fuel, UO2F2 in solution with water and several other commonly used materials (Harmon et al., 1994). An excellent

sourcebook for modeling and simulation data is the Compendium of Material Composition Data for Radiation

Transport Modeling (McConn et al., 2011) which contains data for 372 materials from A-150 tissue equivalent plastic

to zirconium hydride including explosives and medical materials.
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The atomic number density N is given by the expression N5 ρNav=M, where ρ is the gram-density (g/cm3), Nav is

Avogadro’s Number (6.023 3 1023 atoms � gm-atom21 for an element, or molecules � g/mol for a molecule). This definition

of Avogadro’s number is crucial to the understanding of number density. As an example, consider the number density of water

molecules, of hydrogen atoms and oxygen atoms in such molecules. The number of water molecules can be found as

NH2O 5
ρH2O

Nav

MH2O

5
13 6:023 1023

18
5 0:33463 1023 molecules cm23

From the above, we can find the number of hydrogen and oxygen atoms: NH 5 2NH2O, and NO 5NH2O with units of

atoms/cm3.

Example 5: Calculate the number density of an element given its density and molecular weight.

For a single element, we know that Avogadro’s number of atoms Nav, or one gram-atom, would weigh its atomic

weight A, so one gram would have Nav=A atoms, and for a density ρ g=cm3, there would be

N5
ρNav

A
atomscm23:

Calculate the number density of pure U238 with ρ5 19:1 g=cm3 and A5 238:0508g � ðg:atomÞ21

N5
19:1X0:60231024

238:0508

gcm23 � atomsðg � atomÞ21

gðg � atomÞ21

FIGURE 1.22 B(n,a) cross-section.
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which gives N5 0:048331024 atomscm23.

Example 6: Calculate the atomic fractions and atomic weight of an element given weight fractions of its constituent

elements.

Derivation from first principles: Consider two elements i and j, of atomic weight Ai g � ðg:atomÞ21 and Aj

g � ðg:atomÞ21with weight fractions ε5wi=w; and12ε5wj=w, where w5wi 1wj, respectively. Then, for Ni and Nj

atoms/cm3, since Avogadro’s number of any substance k weighs Ak grams, we can write

Ni 5
ρiNav

Ai

; and Nj 5
ρjNav

Aj

; so that
Ni

Nj

5
ρiAj

ρjAi

5
wiAj

wjAi

5
εAj

ð12 εÞAi

and

ε5
AiNi

AiNi 1AjNj

:

The above can be readily used to express the atomic fractions αk of each element in terms of the “enrichment” ε.
Thus in this two-component mixture

Ni

Nj

5
αi

αj

5
εAj

ð12 εÞAi

from which

αi 5
εAj

12 εð ÞAi 1 εAj

;withαj 5 12αi:

From the above, we can write the mass of 1 g.atom, or its atomic weight A as

A5αiAi 1αjAj

so that

1

A
5

ε
Ai

1
12 ε
Aj

:

A relation between atomic fraction and weight fraction can be readily obtained as

αi

wi

5
A

Ai

:

Application: Consider U235 and U238 mixed with weight fractions ε5w5 5 0:03 and 12 ε5w8 5 0:97, respectively.
The average atomic weight of the mixture A and the atomic fractions α5;α8 are required to be determined.

The average atomic weight is found as

1

A
5

ε
Ai

1
12 ε
Aj

5
0:03

235:04
1

0:97

238:05
;A5 237:9586;

and the atomic fractions are

α5

w5

5
A

A5

5
237:9586

235:04
;α5 5 0:0304:

Similarly

α8

w8

5
A

A8

5
237:9586

238:05
;α5 5 0:9696:
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Example 7: Calculate the density of a mixture prepared from two elements of given densities and weight fractions.

Derivation from first principles: Consider a substance made by mixing two elements A and B, of density ρA g=cm3

and ρB g=cm3 with weight fractions wA; andwB, respectively. The density of the mixture ρmix is found from the ‘first

principles’ approach as follows.

Consider a volume of 1 cm3, in which the volume fractions of elements A and B are VA and VB respectively. Then

VA 1VB 5 1:

Thus for x grams of the mixture, which in this case is also ρmix, the individual amounts are ρA VA and ρBVB respec-

tively, and so

ρAVA 1 ρBVB 5 x:

Thus the volume fractions can be found, from which the density is

1

ρmix
5

wA

ρA
1

wB

ρB
:

The above can be generalized, for a n2 component mixture, to

1

ρmix
5
Xn
i51

wi

ρi
:

Example 8: Calculate the number density of each element in a molecular substance of given density and weight

fraction.

Calculate the atomic densities of U235, U238, and O2 in U (4 wt. %) O2 fuel pellets. Assume that the density of UO2

is 10.9 g=cm3.

Calculate the average atomic weight of U:

1

AU

5
ε
Ai

1
12 ε
Aj

5
0:04

235:04
1

0:96

238:05
;AU 5 237:9281:

The atomic fractions are found to be α5 5 0:0405;α8 5 0:9595.
The molecular weight of UO2 can now be determined, since one molecule of UO2 has one atom of U and one mole-

cule (2 atoms) of oxygen.

AUO2
5AU 1 2AO 5 237:92811 2 16ð Þ5 269:9269:

Calculate the molecular density of UO2:

NUO2
5ρUO2

Nav=AUO2
5 0:02432 1024molecules=cm3:

The atomic density of U and O2 can now be determined as

NU 5NUO2
5 0:02432 1024atoms=cm3

and

NO 5 2NUO2
5 0:04864 1024atoms=cm3:

From the atomic fractions of U235 and U238, calculate the atomic densities of U235 and U238

The atomic fractions are α5 5 0:04049 and α8 5 0:95951, and from Eq.(-) the individual atomic densities of U235

and U238 are found to be

N5 5 0:00098 1024atoms=cm3
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and

N8 5 0:02334 1024atoms=cm3:

Preparing such “mixture” cross-sections is a crucial “preprocessing” exercise for retrieving elemental cross-section

data from a data library and multiplying by the constituent number densities.

1.6 Mathematical modeling and simulation

The interaction mechanisms of charged particles and photons discussed in the previous sections are the basis of mathe-

matical modeling and computer simulation using the relevant databases and computer programming. Their applications

are diverse such as in shielding, radiation therapy, plasma physics, and astrophysics. For mathematical modeling, the

most accurate representation of particle transport is by the Boltzmann Transport Equation (BTE) which describes the

transport of particles in phase space but suffers due to its complexity as an integro-differential equation making analyti-

cal solutions possible only for regular geometries restricted to simple scattering laws. In a deterministic approach, the

linear BTE has an asymptotic limit expressed as the Fokker-Planck equation (BT-FPE) (POMRANING, 1992) equation

with roots in quantum and statistical mechanics as an evolution of the probability distribution of a system with drift and

diffusion. In another formulation, the simplification of the “in-scattering” integration term resulted in a form of the

Fokker-Planck equation convenient for modeling electron, ion and photon transport.

The BTE is a central focus area, along with its stochastic counterpart: the Monte Carlo method which is an outcome

of the integral form of the BTE. These aspects form the core of this book in chapters developed to their development

and applications.

As will be highlighted, the integro-differential BTE was, in the pre-supercomputing era, the main model for neutron

transport in nuclear engineering, and thus a lot of effort has gone into analytical solutions for idealized models, and the

development of powerful theoretical and numerical models in 3D codes capable of solving realistic problems with dis-

cretization in a finite number of energy groups, angle discretization as in the discrete ordinates (SN) and spherical har-

monics (PN) methods, and space discretization with finite-element, finite volume, nodal and several advancements of

numerical methods.

In simulations, it is possible to model realistic configurations and use elaborate theoretical models with extensive

databases to obtain reliable answers. Real-world systems and engineering designs are not restricted to regular geometry

and hence the first step is to model the geometry. This is fortunately possible by methods, such as combinatorial geome-

try, which will also be described in detail. The second step is the use of elaborate physics models with the support of

voluminous data compiled from sophisticated models, empirical formulas and experiments. The power of simulation is

thus strong enough to undertake realistic design analysis in nuclear engineering, and it is precisely the strength of such

mathematical modeling enforced and advanced by simulation with modern high performance computing that is the

essence of education today.

For simulation, efficient numerical methods are continuously being developed for deterministic as well as stochastic

methods. These will be covered in detail in later chapters, especially the Monte Carlo method which gains its wide-

spread acceptance from powerful methods as well as from the features of high performance computing such as proces-

sing speed and vector and parallel processing.

Computer codes provided by contributing research and academic institutions are maintained at organizations includ-

ing the International Atomic Energy Agency (IAEA), the OECD Nuclear Energy Agency (NEA), and Radiation Safety

Information Computational Center (RSICC) at Oak Ridge National Laboratory. Extensive databanks are available from

several sources such as the National Institute for Science and Technology (NIST), the Korean Atomic Energy Research

Institute (KAERI), and the National Nuclear Data Center (Bielajew, 1990).

Of the several available particle transport codes, some are SRIM (Ziegler, Ziegler, & Biersack, 2010), electron

gamma shower EGS (Kawrakow & Rogers, 2003), the Monte Carlo particle simulation code GEANT (Research, 2020),

AlfaMC (Peralta & Louro, 2014), MCNPX (Waters et al., 2007), the electron and photon coupled Monte Carlo code

PENELOPE (Salvat et al., 2011), the multiparticle transport code FLUKA (Battistoni et al., 2016). For electron trans-

port ETRAN (Muraz et al., 2020; Seltzer, 1991) with the stopping power databases from ESTAR, ASTAR and PSTAR

for electrons, alpha particles and protons (Berger et al., 2005) are extensively used.

Both deterministic (based on the BTE) and stochastic (based on MC) methods are extensively used for charged-

particle simulations and have their advantages and disadvantages. Decisive factors are clearly, their ability to model

realistic design problems and the underlying physics, and to give reliable results with computational efficiency (Adams

& Martin, 1992; Patel, Warsa, & Prinja, 2020). In the former, this means acceleration schemes while in the latter it
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means a careful selection of the simulation parameters which include several artifacts such as biasing, variance reduc-

tion, and importance sampling.

Exercise 8: What is the commonality between the Boltzmann Transport Equation, the Neutron Transport Equation, and

the Fokker-Planck equation?

1.6.1 Alpha particle transport simulation

The Monte Carlo simulation of alpha particles is based on simulating events in the transport of a particle from its

“birth” as a source particle to its “death” when it has lost all of its energy during interactions or has escaped from the

system. One birth-to-death sequence is called a random walk or a history. The word “random” is used because laws of

probability apply at each “event” in a history so the next one could consist of a different sequence. Many such histories

are followed to accumulate the tallies of interest. Each event in the random walk is modeled using the Bethe-Bloch

stopping power formula described in Section 1.3.1. The flowchart, in a very simplified form, is shown in Fig. 1.23.

Simulation parameters, such as the number of histories to be simulated, the number of materials to be used, and cut-off

parameters are specified. The tallies (e.g., energy deposited, transmitted energy, energy straggling, the CSDA range and

the projected range) are initialized. The energy loss and step size (% of energy allowed for each step) is specified so

that the step size is assigned.

A new particle with given parameters is started, and “located” in a volume and given a step length in its initial

direction. At the end of the step, its position and energy are updated and a check is carried out to determine if the new

position is in the same volume or whether it is a boundary crossing or system escape. The counters are updated

accordingly.

For charged-particle transport, the interaction physics is based on the coulomb electric force in collisions between

ions and electrons or ions and nuclei. One method used is based on the Continuous Slowing-Down Approximation

(CSDA) in which it is assumed that at every point in the trajectory, the energy loss by the alpha particles is gradual

modeled by the unrestricted (i.e. not cut-off energy to specify catastrophic events) stopping power.

For large energy losses in a target, the “thick target model” is used in which a Gaussian straggling model is used to

estimate the energy loss. Conversely, for intermediate and low energy losses the Vavilov and Landau distributions have

been used (Peralta & Louro, 2014; Ziegler, Ziegler, & Biersack, 2010). Stopping powers are used from various models

or from databases such as ASTAR (Berger et al., 2005) for both the nuclear and electron contributions.

Postcollision angles are determined from multiple scattering distributions. The change of angle in the scattering pro-

cess is by a series of many small angles to constitute “multiple scattering”; this is modeled by a Gaussian distribution.

In the case of large angle scattering, where the alpha particle would lose a large part of its energy the distribution of

angles would have a Rutherford scattering behavior with larger tails than a Gaussian. In the AlphaMC code, the stan-

dard deviation of the deflection angles varies as θ0 5 13:6MeV
pcβ Zα

ffiffiffiffi
s
X0

q
so that the true path length is then t5 s1 K

4
s2

where K5
13:6MeV Zα

pcβ

� �� �2
X0

B θ02
s
; this correction is important as alpha particle energy decreases and standard deviation θ0

increases as well as for high Zα.

The history is continued until the particle comes to a stop or escapes from the system. Many more such histories are

simulated to obtain reliable statistical results with standard deviation and variance.

As the alpha particles slow down, their stopping power increases due to the Bragg peak followed by a sudden end

of the trajectory.

The range of alpha particles is one of the several quantities estimated from such simulations. The range calculated

from CSDA is based on the evaluation of the integral RCSDA 5
ÐKEα

0
dEdE

dx

21
; projected range is the mean value of the

maximum penetration depth computed from the distribution function of particles.

1.6.2 Interaction of electrons with matter

Following Section 1.3.2, the simulation of electron transport (Olbrant & Frank, 2010) is based on the interaction of beta

radiation incorporated through a realistic simulation of elastic and inelastic processes using forward-direction scattering

and transport coefficients extracted from the ICRU 77 database (Berger et al., 2007). This reduction introduces the stop-

ping dower into the BT-FPE. One application carried out with this formulation for light propagation in biological
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tissues calculates reflectance and transmittance in the liver tissue (González-Rodrı́guez & Kim, 2008; Olbrant & Frank,

2010) and compares results with the transport equation discrete ordinates method taken as a benchmark. In another

application, the absorbed dose D rð Þ, from 5- and 10-MeV electron beams in a semi-infinite water phantom, is calculated

via the stopping power and the angular flux from the transport equation. Good agreement is found with the standard

physics MC code GEANT and with PENELOPE. The compared results are for cancer therapy applications of an elec-

tron beam of 10-MeV on muscle (0�1.5 cm) followed by bone (1.5�3 cm) and then lungs (3�9 cm).

In the stochastic approach, the histories of a large number of electrons are followed and tallies gathered during the

simulation to obtain estimates based on means, variances and the laws of probability.

Electron transport is much more “complicated” than that for alpha particles due to the large number of collisions

dominated by the long-range coulomb force with a large number of continuous deflections. Due to the large number of

small-angle collisions, the simulation of electron transport can become computationally laborious if each interaction is

processed. Thus a “condensed history” approach is used in which a single event is taken to represent several, possibly

hundreds of thousands, small-angle collisions.

The classic paper on electron transport by Berger (1963), using Monte Carlo simulation written in FORTRAN and

implemented on an IBM704 computer, led to the development of the ETRAN code (Seltzer, 1991). In this paper,

Berger gives two classes of simulation strategies varying essentially in terms of their selection of slowing-down energy

and multiple scattering models. A good understanding of the simulation process, based on a random walk, can be

obtained from Berger’s “Class I” model based on the simplest approach as shown in Fig. 1.24. The process consists of

the following steps:

1. At the start of the simulation, the history counter is set to n5 0 for a maximum number of histories N to be simu-

lated, and the slab thickness, material and the source parameters r0;E0; Ω̂0; t0 are given. Tallies and counters, such

FIGURE 1.23 Flowchart of alpha particle transport simulation.
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as the number of steps in the random walk, absorptions, transmissions and reflections are initialized. Berger’s pro-

gram does not carry out variance reduction schemes which are an important feature of modern codes.

2. The energy loss index k5 22
1
m, for En11 5 kEn in a condensed step is specified for the number of steps in a logarith-

mic spacing in which the electron loses half its energy; for example, m5 4 would consist of four steps in which the

electron energy would be E0;E1 5 22
1
4E0;E2 5 22

1
2E0;E3 5 22

3
4E0 and E4 5 221E0.

3. Angular deflections are computed considering kinematics with mean square deflections in multiple scattering calculated

from the Goudsmit-Saunderson model in conjunction with the Mott scattering cross-section; accounting for deflection of

electrons. The spatial displacement of the electron is computed by accounting for straggling through random variables.

4. The energy loss of the electron in the medium is computed once a collision has been processed.

5. Checks are made for boundary crossing to update counters and begin a new history until the maximum specified his-

tories are processed.

6. The tallies are estimated from arithmetic means, if variances are not calculated. Most codes now compute variances

and relative standard errors to give figures of merit to establish convergence.

The flowchart of a class II algorithm, used in EGS4, is different from the class I described above (Bielajew and

Rogers) as it samples the distance to an interaction rather than specifying the step size. It also calculates the energy loss

FIGURE 1.24 Flowchart of elec-

tron transport simulation.
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rather than sampling it from a distribution. Such differences have an effect on the results and thus simulation, especially

Monte Carlo simulation, is considered both an art and a science where parameters are selected based on some intuitive

sense of what is “more important” and otherwise. These aspects of simulation, such as importance sampling and vari-

ance reduction, will be covered later in this book. A similar selection of parameters is required in MCNP (Hughes,

1996) and its upgrade (Grady Hughes, 2014) which does not use restricted stopping powers and builds distribution

tables such as energy-dependent histograms for angular bins from Goudsmit-Saunderson for substep lengths and scatter-

ing angles, as well as for bremsstrahlung production probabilities. These parameters are selected in MCNP on the

PHYS:E card where default, or user-specified values are used for the simulation. The values include the upper limit for

electron energy, the choice of whether photons will produce electrons, whether electrons will produce photons, the use

of full bremsstrahlung or simple angular distribution approximations, the use of sampled or expected straggling, and the

number of electron-induced X-rays, the number of knock-on electrons, the number of photon-induced secondary elec-

trons and the option of producing bremsstrahlung at each substep.

The simulation used in MCNP for positrons is identical to that for electrons distinguishing the particles for purpose of tal-

lying only. For electron transport in aluminum, Berger sets m5 16, that is, 16 steps for the electron to lose half its energy.

This covers the range of slowing-down from 2.0 to 0.03125 MeV in 97 steps as shown in Fig. 1.25 below. The step size is

Δs 5
ðk2 1ÞEs

dEðs0 Þ
ds
0

��� ���
From Fig. 1.24 it is seen that that in the range 0.01�2 MeV the stopping power decreases; thus while slowing-

down, the energy Es and stopping power increases thus Δsdecreases. In Berger’s simulation, the step size is

Δs 5 0.057476 g=cm2 at 2 MeV for the first energy interval in steps 1�16, while in the last interval (steps 81�96),
Δs 5 0.000184 g=cm2. In all intervals, the deflection angle increases from 11.4 degrees in the first interval to 16.5

degrees in the fourth interval and then decreases to 14.7 degrees.

For multiple scattering, Goudsmit and Saunderson (1940a, 1940b) derived the exact angular distribution for the scat-

tering angle as a Legendre series. Here

AGS ωð Þsinω dω5
XN
i50

l1
1

2

	 

exp 2

ðs
0

Glðs0 Þds0
� �

Pl cosωð Þsinωdω

where

Gl sð Þ5 2πN
ðπ
0

σ θ; sð Þ 12Plðcosθ
� �

sinθdθ

The GS distribution peaks at small values of ωB103 2 253 as shown for a calculation for a pencil beam of 20 MeV

electrons passing through a 0.25 cm thick slab of water (Rogers & Bielajew, 1990).

FIGURE 1.25 Electron energy versus steps in simulation in aluminum

from 2.0 to 0.03125 MeV for m5 16.
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The problem considered by Berger was a one-dimensional slab with a given source in phase space Pðr0;E0; Ω̂0; t0Þ.
The simulation was carried out to estimate the transmission, reflection, and absorption of electrons in a slab of alumi-

num for which the range is shown in Fig. 1.26.

The effect of keeping the smallest step size for all energy values would thus be seen to be computationally

inefficient.

In other strategies for simulation, path length is modeled with log spacing so that energy loss is constant per step or

a mixed-log model depending on where the electron is (near a boundary or inside the medium), or fixed path length

making it shorter to keep angular deflections small.

Similarly, energy loss models can be continuous slowing-down or fluctuation models. Angular deflections are com-

puted considering kinematics with mean square deflections in multiple scattering as in GEANT4 for a detailed descrip-

tion of multiple scattering collisions calculated from single-scattering Rutherford scattering law, Gaussian distribution

or Molière distribution (considering the occasional large angle event which are not incorporated in the Gaussian model).

In GEANT4, the Lewis theory computes moments of the spatial distribution as well as described by Urban (2005,

2006) with results given for distributions of transmission, energy deposition and spectra of MeV electrons in aluminum

layers.

In a comparison between the Molière and Goudsmit-Saunderson model for the Rutherford and Mott models for elec-

trons and positrons, Berger has shown that the angular distribution for both electrons and positrons, slowing-down in

aluminum from 1 to 0.9576 MeV, has B40% each for small-angle scatterings (B41% for 0�15 degrees and B42% for

15�30 degrees) and the rest as follows: B12%, 3%, B1%, B0.36%, 0.27%, 0.08% and 0.02% for each successive 15

degree interval to 180 degrees. Thus the chance for a “catastrophic” event in which a large deflection occurs with a

strong influence on the subsequent history has a probability of occurrence for a large number of collisions in a step.

Alternately, catastrophic collisions can be explicitly incorporated by specifying a cut-off energy loss beyond which

such an event occurs.

In more detailed models, such as in MCNP (Werner, 2017; X-5 Monte Carlo Team, 2008) simulations, production

of secondary electrons are also considered (electron-induced X-rays, electrons produced from electron-impact ionization

called “knock-on” electrons, and bremsstrahlung photons) particles shown in MCNP5 print Table 86 below.

In MCNP, the algorithms used are the Goudsmit-Saunderson theory for angular deflections, and the Landau theory

for modeling energy loss fluctuations. Straggling is accurately modeled when path length steps are less than 0.5 g/cm2

(McLellan, Med Phys, 1994).

There is considerable variation in commonly used codes. In the EGS4 code (Bielajew and Rogers) electron and posi-

tron models include standard models for low-energy Møller and Bhabha scattering as part of restricted (implying less

than a specified cut-off) collision stopping power, atomic excitation, soft bremsstrahlung and elastic particle multiple

scattering, as well as provisions for modeling “catastrophic” phenomena including large energy loss scatterings. The

parameters, such as cut-off thresholds, selected in a model have a bearing on the results. Clearly low thresholds will use

more computer time but would give better results which may not always be needed beyond some level of accuracy. In

energy deposition computations, both thresholds of secondary particle creation and bremsstrahlung production would

FIGURE 1.26 Continuous Slowing Down Approximation range in alu-

minum from ESTAR.
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have an effect on the results and a user would need to model with carefully selected parameters considering whether

the nature of the problem corresponds to a thin or thick target.

Comparisons have been made between MCNP, GEANT, and PENELOPE (Archambault & Mainegra-Hing, 2015) to

highlight the effect of algorithms in the simulations. For beam energies of 0.5, 1.0, and 5.0 MeV on a water-filled

sphere, the estimated energy depositions showed good agreement for the single-scattering calculations. However, differ-

ences of up to 5% have been found between EGSnrc and PENELOPE for some problems such as the “in air” case for

decreasing radius at 0.5 MeV.

1.6.3 Interaction of gamma radiation with matter

In photon transport simulation shown in Fig. 1.27, a Monte Carlo simulation would begin, as for alpha and electron

transport, with a description of the geometry, materials, and photon source. Then the simulation parameters such as

number of photon histories (random walks) to simulate, “weight cutoffs,” the interaction physics treatment.

In a code like MCNP, the user has the option to use “simple photon transport,” where, for example, for high-energy

photons, coherent (Thomson) scattering and fluorescent photons production is ignored, or the “detailed physics trans-

port” in which coherent scattering and fluorescent photons are transported and form factors FðZ;E; θÞ are used to

account for binding effects. The Thomson ‘unpolarized’ differential cross-section (Section 1.3.3) is then written as

dσðZ;E; θÞ
dΩ

jT 5
1

2
r2e 22 sin2θ
� �

F Z;E; θð Þ

For which data is available for several material. The simple model reduces simulation effort and makes assumptions

that the photoelectric effect is an absorption process and its simulation continues or stops according to statistical criteria.

For Compton scattering, with appropriate probability, the collision is simulated and the photon transport continues while

the recoil energy is deposited at the collision site and can be used to generate a recoil electron for further transport.

FIGURE 1.27 Flowchart of photon transport simulation.
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A typical photonuclear data library would contain the following interaction data for photons.

The simulation can be specified to run single mode or mixed-mode (photon-electron). Electron interaction data for

Z5 1 to 94 contain stopping power parameters, bremsstrahlung data as well as data for K-edge energies, Auger

electrons.

Exercise 9: In the transport simulations for alpha particles, beta particles, and photons, what are common features in

Monte Carlo simulations that may contribute to better results and what would be their effect on their computation time?

1.6.4 Radiation dose from Calfornium-252 gamma source in water

Many practical problems require mixed-mode simulations where, for example, a photon transport simulation would

include the transport of electrons produced which could subsequently result in the production of X-rays. In such mixed-

mode “P-E” simulation, the electrons created by photons are banked and stored for later transport. When the electron

mode is not initiated, then a thick target bremsstrahlung (TTB) model is used in which electrons are generated but

locally stopped. When electrons are not transported, then their energy is assumed to be locally deposited.

This mini-simulation is a step toward understanding the elaborate physics that is incorporated into simulation tools.

Consider a point source emitting S gammas per second incident from the left in a straight line (anisotropic) striking

a rectangular material labeled a detector “D” as shown in Fig. 1.28. We carry out a simulation to estimate how many

gammas reach across the transverse water layers.

The gamma source, Cf252 placed at the center, has an energy spectrum shown in Fig. 1.29. This simulation is carried

out to tally the currents and dose inside the transverse water shells of radii 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and

2.0 cm and length 1 cm.

The MCNP program Book1_06 is attached in Annex 1 and the MATLAB program from which these figures were

produced, is listed in Annex 3.

This simulation uses the photo-atomic data for hydrogen and oxygen from the Evaluated Nuclear Data File ENDF/

B-VI and electron data from the file e103. Each region is assigned equal statistical importance for photons and elec-

trons. In the simulation, the maximum photon energy is 100 MeV.

A typical code output describing the libraries used would read: The mcplib04 library used is 1000.04p 1898 ENDF/

B-VI Release 8 with photo-atomic data for hydrogen (1-H mat 100) and oxygen 8000.04p 3272 ENDF/B-VI Release 8

photo-atomic data for 8-O mat 800 02/07/03 indicating the release version and the element ID.

For the electron step size, MCNP uses the value k5 221=8 to compute steps on a grid from a high value, in this case

E5 100 MeV down to a given low value, 1.079 keV, which at an average loss of 8.3% per step requires 133 steps. At

these steps, the collision and radiation stopping powers are determined from the formulas described in Section 1.3

(Bethe, 1930). These major steps are broken down into m substeps where the value m ranges from 2, for Z, 6 to 15 for

Z. 91. In this simulation, m5 3. The range table gives stopping power (collision, radiation, total), the range from

CSDA, the value of “drange” which, divided by the density gives the step size in cm. Five lines of the 133-line table 85

of MCNP, steps 1, 2, 10 and 100 give the following values for the energy, stopping powers, CSDA range and “drange.”

FIGURE 1.28 Source and detector configuration.
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Table 1.9 shows that the energy from step 1 to step 2, and all successive steps, decreases by 8.3% due to the selec-

tion of the value 21=8. Similarly, half the energy is lost in eight collisions from step 1 to step 9. The next two columns

give the collision and radiative stopping powers, while the fourth column gives the CSDA range and the last column

gives the “drange” value giving a step size of 1.833 cm in the first step, which reduces to 7.647 3 1027 at the 133rd

step where the electron energy is 1.079 keV.

As shown in the flowchart for electron transport, the condensed random walk is sampled using interpolated data

from the grid. Each path length s (of length “drange”) in the first major step consists of s/m minor steps for which the

Goudsmit-Saunderson model is used for angular deflection. At each collision point, the probability of secondary particle

(fluorescent radiation or knock-on electrons) production is estimated. Bremsstrahlung photons are produced according

to a Poisson distribution with energy sampled from distribution tables. The electron energy is subsequently reduced to

account for this production. Similarly, the ionization from K shell impact and Auger electrons is also included in the

cross-section library.

The electron secondary production table is generated for the same energy grid as above, with values for bremsstrah-

lung, X-rays and knock-on electron cross-sections. For energy straggling, the term responsible for the difference of the

actual path from a straight path, sampling is done from Landau’s distribution function which has been further extended

by Blunck and Leisegang to estimate the variance of the straggling Gaussian (Hughes, 1996).

The simulation is started by sampling photons from the specified source. In this case, all source photons are gener-

ated at the origin with direction cosine (1,0,0); the energy is sampled from the PDF (Fig. 1.28).

For 1 million particles simulated, the photon summary shows that the average source energy is 0.97764 MeV, for

which the production is mainly from bremsstrahlung (722 tracks, energy 2.2502 1025 MeV) and from photon annihila-

tion; thus for every track started 1.0008 tracks are simulated. The loss terms are mainly from escape (986466, average

energy 0.96453 MeV), capture (14224, 2.6118 1024 MeV) and pair production (98, 4.0133 1024 MeV). On the average

there were only 67256 (B6.7%) photon collisions.

FIGURE 1.29 Probability distribution function of cobalt-60 gamma

source.

TABLE 1.9 MCNP simulation steps for electron transport.

Step Energy (MeV) Stopping Power (MeV cm2/g) Range (MeV cm2/g) drange (MeV cm2/g)

133 1.079 31023 1.140 3 1022 2.888 31023 4.873 3 1026 7.647 31027

100 1.8826 3 1022 13.8 3.938 31023 7.70 3 1024 1.095 31024

9 50 2.140 1.145 19.83 1.286
2 91.7 2.195 2.220 30.74 1.765
1 100 2.203 2.438 32.58 1.833
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Similarly, the electron summary table shows creation of electrons from pair production (196, 3.0117 1024 MeV),

from Compton recoil (47805, 1.2507 1022 MeV), photoelectric effect (14224, 2.6118 1024 MeV) and from knock-on

events (623758, 2.4104 1023 MeV). Thus total production was 685983 electrons with an energy of 1.5480 1022 MeV.

The total electron energy would thus be obtained by multiplying by the source term; for example if there are 106

photons per second emitted from the source, the electron energy produced would be 1.5480 104 MeV. The electrons

were “lost” in the simulation by escape (4642, 4.8246 1023 MeV) and by energy cut-off (681341, 6.6631 1024 MeV).

The above summary tables should be carefully analyzed to understand the essential phenomena taking place in the

problem of interest.

From the overview of the accounting described in the summaries, the activity table gives estimates of the average

track, that is, movement of photons in each transverse water region. From this table, we learn that there were 9554 colli-

sions with hydrogen atoms and 52381 collisions with oxygen atoms in the innermost water region (cell 1). We also see

that in the transverse direction, the number of collisions reduces drastically from innermost regions in the transverse

direction due to the “current” or boundary conditions reducing from 3.15% (0.0057) to 0.63% (0.0126) with the stan-

dard relative error increasing about three times, as seen in Fig. 1.30.

In later chapters, we will learn how we can reduce the errors in estimates to get better more reliable results.

Similarly, the photon flux across the right surface of the inner source cylinder region is 7.95881 1022 photons/cm2

(0.0005) with a surface area 12.5664 cm2. The volume averaged photon flux in the transverse regions is shown in

Fig. 1.31 to decrease from 3.9512 (0.0001) photons/cm2-s to 5.992 1024 (0.0126) photons/cm2-s. In the detector region,

the flux is 3.0178 1021 (0.0002) photons/cm2-s.

FIGURE 1.30 Surface current of photons across transverse surfaces.

FIGURE 1.31 Intensity of photons across transverse surfaces.
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Exercise 10: How would you interpret the reduction in the photon surface current versus distance in the context of

interaction of gamma rays with matter (Section 1.3.1)?

Another important quantity is the photon energy deposition shown in Fig. 1.32. This follows the same patterns as in

the previous tallies, that is, a decrease from 7.62 1023 (0.0072) MeV to 1.02176 1025 (0.0926) photons/cm2-s.

The dose estimates using three different data sets (Monte Carlo Team, 2005), H*10, ICRP-21and ANSI-1977, give

the radiation in rem/h shown in Table 1.10 for the inner and outer regions. The reduction by four orders of magnitude

is an important estimate of the amount of attenuation of a californium source due to water.

This simulation took 0.64 min on an Intel(R) Core(TM) i7�2620M CPU@ 2.70 GHz 32-bit operating system.

Capabilities developed

A basic understanding of

1. an atom

2. stability

3. binding energy

4. radioactivity

5. radiation and interaction mechanisms of alpha and beta particles and gamma rays

6. radiation in nuclear systems

7. mixed-mode simulation

8. skills for computing atomic densities for commonly used materials

Nomenclature

English
c speed of light

f Brβ fraction of incident beta energy converted by Bremsstrahlung into photon energy

FIGURE 1.32 Energy deposition in transverse regions.

TABLE 1.10 Radiation dose rate (rem/h) in water regions.

Data set Inner region Outer region

H*10 6.15572 1023 (0.0008) 2.68817 1027 (0.0132)
ICRP-21 5.95151 1023 (0.0009) 2.21992 1027 (0.0134)
ANSI-1977 6.78671 1023 (0.0008) 3.31944 1027 (0.0131)

44 Nuclear Engineering



h Planck’s constant

ℏ reduced Planck’s constant ℏ5 h=2π
k conversion factor

l azimuthal quantum number

ml magnetic quantum number

ms spin quantum number

n principal quantum number

n number of shell

n neutron

p momentum

p proton

qe charge on an electron

rB Bohr radius

re electron radius

rn radius of the nth shell

t1=2 half-life

u atomic mass unit

v speed of electron

wi weight fraction of the ith component in a mixture

English capital
A relative atomic mass

B binding energy as a function of A and Z

C coulomb

D absorbed dose

E exposure

E equivalent dose

Ek kinetic energy of beta particle

En energy of the nth shell

Em electron mass energy equivalent (0.511 MeV)

F form factor in Compton scattering

H equivalent dose

I intensity

I mean ionization and excitation potential of absorber atoms (MeV)

I tð Þ atoms of iodine-135 at time t

KEc kinetic energy (classical)

KEr kinetic energy (relativistic)

L angular momentum

N number of absorber atoms/cm3

Nav Avogadro’s number

NZ number of absorber electrons/cm3

Q quality factor

R range

R roentgen

S target width

Sv Sievert

T tð Þ atoms of tellurium-135 at time t

V volume

X tð Þ atoms of xenon-135 at time t

X0 material radiation length

Z atomic number of absorber
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Greek lower
α alpha particle

αi atomic fraction of ith constituent in mixture

β beta particle

β βv=c speed of beta particle relative to speed of light c

β1 positron (positively charged beta particle)

γ gamma ray

γ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 v=cð Þ2

p
ε packing fraction

ε0 permittivity of free space

θ orthogonal angle

θ0 standard deviation of deflection in alpha transport Gaussian model

λ decay constant

λ wavelength

μ linear attenuation coefficient

μ linear attenuation coefficient

ν neutrino

ν antineutrino

ρ density

σ cross-section

φ0 Thomson cross-section

ϕ azimuthal angle

Greek capital
Ω solid angle

Ψ wave function

Abbreviations
A angstrom

Bq Becquerel

Ci curie

eV electron volt

fm Fermi

Gy gray

ICRP International Commission on Radiological Protection

MeV million electron volt

Rad radiation absorbed dose

Rem Röntgen equivalent man

TLD thermoluminescent dosimeter

USNRC US Nuclear Regulatory Commission

Problems

1. Given atomic fractions: U234 (0.0057%), U235(0.72%), and U238(99.27%), find the average atomic weight and the

corresponding weight percentages.

2. Given that Q5 ½ðBEp1 1BEp2Þ2 ðBEr1 1BEr2Þ�, if Q. 0 and the reaction is exothermic, what is the implied by

the statement that “the BE of the products is more that the binding energies of the reactants”?

3. In the tellurium-135 decay chain (Section 1.2), with a half-life of tellurium of 11 s, λI 5 2:8743 1025=s,
λX 5 2:0273 1025=s, assume initial conditions and solve the rate equations for iodine-135 and xenon-135.

4. To propose a power source for the Mars rover, compare three alpha emitters, radium, polonium-210 (140 W/g,

gamma dose 0.012 Gy/h), and plutonium-238. From their specific heat, estimate the temperatures they will attain

for a capsule of half a gram.

5. Consider an alpha particle with charge ze with KE moving ‘head on’ toward a nucleus with charge Ze and assume

both to be point particles having an elastic collision. As the alpha particle approaches the heavier nucleus it comes

to a point beyond which it can not continue so it “stops and turns back,” that is, scattering angle 180 degrees, write
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the conservation of energy for kinetic and potential and show that the closest distance between the two is

d5 2Ze2

4πε0ðKEÞ 5
197:32Z
137KE

fm where the KE is in MeV.

6. Estimate the wavelength of the bremsstrahlung photons from a beta particle emitted from P32 with a maximum

energy of 1.71 MeV if all its energy is lost in a single collision.

7. Give reasons to support the choice of a low-Z shield for beta particles even when the range is shorter than in a

high Z absorber.

8. Given that the mean energy required to create an ion pair in air is 33.7 eV, estimate the number of ion pairs created

by a beta particle of KE 2 MeV. For the mean ionization and excitation potential, use the approximate formulas

IB19:0eV for Z5 1, IB11:21 11:7Z eV for 2# Z# 13, and IB52:81 8:71Z eV for Z. 13,.

9. Calculate atomic densities for the following:

a. Natural uranium with ρ5 19.1 g/cm3 and atomic fractions U238 0.992745 U235 0.007200.

b. Bare Pu239 metal delta phase 100% Pu239 with ρ5 15.8 g/cm3.

c. Given the following data for the fast critical assemblies Godiva, Jezebel and Jezebel23 (Cullen et al., 2007)

determine the weight fractions of each of the materials listed.

10. Calculate atomic densities of the fuels

a. UO2 of density 10.5 g=cm3with a U235 enrichment of 17%.

b. PuO2 of density 11.46 g=cm3, with weight fractions of O16
8 0.118055 and Pu23994 0.881945.

c. U-10 wt% Zr alloy powder of density 15.48 g=cm3with uranium consisting of 17wt.% U235 and the rest U238

(Table 1.P1).

11. Calculate atomic densities of the reflectors

a. Beryllium metal density 1.85 g=cm3

b. Beryllium oxide with a density of 3.01 g=cm3, and weight fractions 4Be
9 0.360320, 8O

16 0.639680

12. Find the atomic densities in boron carbide given its density ρ5 2:52 g=cm3 (weight fraction B10
5 5 0.782610,

B11
5 5 0.217390) Atomic Weight5 55.24, Answer: N(B4C)5 0.0277, N(Bnat)5 0.1108, N(B10

5 Þ5 0.02205, N

(B11
5 Þ5 0.08875, N(C)5 0.0277

13. Find the atomic densities in a solution of UO2F2 with a uranium enrichment of 5%, density of U235 of 0.04 g/cc

and a given ratio of hydrogen to fissile atoms (H/X) of 500.U(4.89)O2F2 solution N55 1.0889 3 1024,

N85 2.0909 3 1023, NF5 4.3996 3 1023, NH5 5.7058 3 1022, No5 3.2929 3 1022, Nt5 9.6586 3 1022

(atomic densities are in units of 1024 atoms/cm3

14. Calculate the atomic densities in the following structural materials

a. stainless steel consisting of Fe with 18% chromium by weight, 8% nickel and 0.08% carbon, find the atomic

densities

b. aluminum (atomic weight 26.9815, density ρ5 2:7 g=cm3)
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Chapter 2

Interactions of neutrons with matter

The interaction of a neutron with matter is influenced by the presence of atoms it encounters during its transport; the

electrons it comes across have a relatively smaller mass and are unable to cause any significant deflection while interac-

tions with nuclei are orders of magnitude less due to the smaller chance of “coming in the way.” Similarly, the proba-

bility of neutron-neutron collisions is also small. This leaves neutron-nuclei encounters which form the basis of neutron

interactions in matter. The single quantity that determines the probability of interaction is a microscopic cross-section

which is like the circular cross-section of a sphere. The higher the cross-section, the higher will be the probability of

interaction and vice versa. Further, neutrons carry no electrical charge and do not therefore cause direct ionization.

Neutron detectors, discussed in Chapter 1, thus use indirect ionization in a gas to induce a measurable current. The neu-

tron, as a free neutron, is unstable and decays with the formation of a proton and a beta particle 1
0n-

1
1H 1 0

2 1e.

The basic concept of neutron interaction in matter is the matter-wave duality, in which the analysis considers a neu-

tron as a wave function. This analysis will be briefly reviewed in this chapter. It is based on quantum physics, and

draws several concepts from optics, and one model is therefore called the optical model of neutron interaction.

2.1 Kinetic theory

We start our description by considering the kinetic theory of gases, for which Boltzmann formulated the Boltzmann

transport equation (BTE) described in Chapter 1 in the context of the Fokker-Planck equation for charged particles and

the photon transport equation for photons (gamma rays and X-rays). The BTE is applicable to neutron transport as well

and provides a ‘complete’ model of neutron transport in terms of a statistical distribution function and uses the micro-

scopic cross sections from their underlying quantum descriptions. The works of Boltzmann and Max Planck are both

early 20th century at which time kinetic theory of gases was refined as a basis for modeling transport phenomena and

quantum physics was born. There was no knowledge then of elementary particle physics or that a neutron was com-

posed of quarks. Thus present-day knowledge on neutron interaction with matter rests on quantum physics, which is the

basis of all data used in later chapters of this book for carrying out neutron and photon transport in nuclear systems.

This data is compiled in elaborate form in large ‘libraries’ that is used for simulating phenomena and obtaining engi-

neering design information.

For the distribution function, a kinetic theory description of a gas, containing n0 molecules, says that all molecules

do not have the same energy but a distribution n Eð Þ, modeled as a Maxwellian distribution

n Eð Þ5 2πn0E1=2

πkTð Þ3=2
e2E=kT (2.1)

with units of molecules per unit energy.

In “velocity space,” the distribution function n vð Þ, with units for the speed of molecules v is obtained from the above

as E5 1=2mv2, so that n vð Þdv5 n Eð ÞdE gives

dn vð Þ5 4πn0v2

2πkT=m
� �3=2 e2mv2=kT dv (2.2)

Thus what we understand as macroscopic quantities, such as temperature and pressure, represent the average of a

statistically large sample of gas molecules each moving about randomly with their own temperature.
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The most probable energy Ep and most probable speed vp are obtained by setting the first derivative for nðEÞ in
Eq. (2.1) and for nðvÞ in Eq. (2.2) to zero

dnðvÞ
dv

jvp 5 0

is

vp 5

ffiffiffiffiffiffiffiffi
2kT

m

r

Thus the most probable energy is Ep 5
1
2
kT . The average speed v and average energy E can be found as

v5

ÐN
0

vn vð ÞdvÐN
0

n vð Þdv 5

ffiffiffiffiffiffiffiffi
8kT

πm

r
5

2ffiffiffi
π

p vp

E5

ÐN
0

En Eð ÞdEÐN
0

n Eð ÞdE 5
3

2
kT

The distributions n vð Þ and n Eð Þ are plotted in Fig. 2.1 with the transformations

x5
vffiffiffiffiffiffi
2kT
m

q ; n vð Þ5 4n0

π1=2
ffiffiffiffiffiffi
2kT
m

q x2e2x2

and for n Eð Þ

x5
E

kT
; n Eð Þ5 2n0

π1=2kT
x1=2e2x

so that the vertical axis is in units of n0=kT for n Eð Þ, and in units of n0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ð2kTÞ

p
for n vð Þ so that vp 5 1 in Fig. 2.1. At

room temperature, T 5 300 K, the most probable speed of a neutron is thus

vp 5

ffiffiffiffiffiffiffiffi
2kT

m

r
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 1:380663 10223 3 300

1:674933 10227

s
5 2239 m=s

FIGURE 2.1 Maxwellian distribution.
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for which E0 5 0.025 eV. Neutrons in thermal equilibrium with their surroundings at room temperature with a speed of

B2200 m/s and energy 0.025 eV are referred to as thermal neutrons. Neutrons with higher speeds, with energies on the

order of several MeV, are referred to as fast neutrons.

Exercise 2.1: Thermal flux show that the function φ Eð Þ5 nv can be written as φ Eð Þ5φthMðE;TÞ where

M E; Tð Þ5 E

kTð Þ2 e
2E=ðkTÞ

where φth 5
ffiffiffiffiffiffi
8kT
πm

q
n0 � vMn0 and

ÐN
0

M E;Tð Þ5 1. Compare vM with vp found above.

Matlab Example 2.1: Distribution function plot the distribution functions nðvÞ and nðEÞ

k=1.38066e-23;% J/K
i=0;
for x=0:0.1:4
% for E, x=E/kT   for v, x=v/sqrt(2kT/m)
i=i+1;

nE(i)=(2/pi^0.5)*sqrt(x)*exp(-x);
nv(i)=(4/pi^0.5)*x^2*exp(-x^2);
xx(i)=x;
end

It will be seen in subsequent chapters that the distribution function requires knowledge of the phase space compris-

ing seven variables (three variable of space, two of angle, one of energy and one of time) for a complete description of

transport. Clearly this is beyond the scope of deterministic treatment and thus moments of the distribution function are

often used. This is left as an exercise for the reader to appreciate the physical significance of moments which, in princi-

ple, can be used to reconstruct a distribution function.

Exercise 2.2: Moments of distribution function find expressions for the zeroth, first, and second moments of the distri-

bution function nðEÞ and describe their physical significance.

In nuclear engineering, the fundamental quantity of interest is the neutron flux φ r ;E; Ω̂; t
� �

5 n r ;E; Ω̂; t
� �

v with

units of neutrons per cm2 per second per unit energy interval per steradian. With some simplifications, the integrated

or “averaged” flux can also be defined as φ5 nv where n is the number of neutrons per unit volume, in a domain, and

v is the neutron speed. Neutron flux has units of neutrons (cm/s) cm3 and is thus a ‘distance traveled’ in a volume, or a

track length (neutrons � cm2/s). The neutron current is the vector form of the flux, given by J 5 N̂ ∙ vn where N̂ is a unit

normal vector on area dA so that the net number of neutrons leaving dA is JdA neutrons per second. Note that v5 Ω̂v

and N̂ ∙ Ω̂. 0 implies that neutrons are leaving the surface and conversely N̂ ∙ Ω̂, 0 implies neutrons entering a

surface.

2.2 Types of neutron interactions

We now return to the particle-wave duality by which neutron interactions with matter are described. A neutron has a

de Broglie wavelength (Chapter 1) which varies from B 10214 m for a fast neutron to 10210 m for a thermal neutron

causing thermal neutrons to have a larger cross-section. At the quantum level, the discrete angular momentum L5 lh̄

can have values for waves s; p; d; . . . for which l5 0; 1; 2; . . . while at the classical level, the angular momentum of

the incident neutron is the product of its linear momentum and its impact parameter. Thus if an elastic collision is to

take place, it can happen at the lowest level of angular momentum for which the impact parameter must be of the

order of a fermion (nuclear size) which corresponds to the lowest wave scattering, that is, s-wave scattering ðkR{1Þ.
As shown in Fig. 2.2, for a neutron scattering off uranium 238, the angular momentum quantum number varies as

lB0:0019E1=2 (Ein eVÞ so that l5 1 at EB277keV. Thus s-wave scattering in uranium 238 can be assumed to hold

for E&277keV, while p-wave scattering will become significant at E. 277keV. For neutrons colliding with light

nuclei, this ‘boundary’ will increase to the right i.e. s-wave scattering can be assumed to hold till higher energies as

depicted in Fig. 2.3.
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Matlab Example 2.2: Angular quantum number plot the angular quantum number l versus energy E for elastic

scattering.

m=1;A=238;mu=m*A/(m+A);c=2.99e8; 
h=4.1413e-15;% eV-s
m=1.6749e-27;% kg
mE=m*c^2*1e19/1.6; %eV
Radn=1.2e-15;% m
RadU238=Radn*A^(1/3);
KK=(2*pi/(h*c))*sqrt(2*mE)*(Radn+RadU238)
E=0:10:100;
l=KK*sqrt(E); % E in eV

The de Broglie wavelength is used to represent the neutron in the optical model (Hodgson, 1994; Lamarsh, 1966;

Reuss, 2008) as an incident plane wave with amplitude ψBeikx and wave number k5 2π=λ which is related to the neu-

tron energy as kB
ffiffiffiffi
E

p
. The incident wave is represented as a superposition of an infinite number of partial waves char-

acterized by the angular momentum and divided into cylindrical zones of radii which are multiples of h. It can then be

shown that elastic scattering is an s-wave phenomenon as presented with simplified reasoning above. These models

were presented at a time when the neutron was considered to be a particle and a wave but its composition as quarks

was unknown.

For the moment, theory presents neutron interactions as either potential scattering, in which there is no physical col-

lision but a scattering such that the neutron and nucleus both undergo deflections, or an actual collision where the neu-

tron enters the nucleus, stays in the compound nucleus for some time and then exits from the nucleus.

Elastic scattering, shown in Fig. 2.4, is thus considered to be an interaction, far from a resonance, where no com-

pound nucleus is formed but a two-body collision appears to take place. It can be modeled as potential scattering in

terms of the radius of the neutron (Rn 5 1:23 10215 m), and the radius of the target nucleus (RA 5RnA
1=3m) when it

FIGURE 2.2 Angular quantum number versus kinetic energy of neutron.

FIGURE 2.3 s-wave (l5 0) and p-wave (l5 1) scattering for neutron scattering.
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takes the value σs 5 4πR2
A. In the presence of a resonance, the elastic scattering cross-section has been modeled in terms

of a single resonance and potential scattering as well an “interference” term. All neutron interactions, such as inelastic

scattering, radiative capture and neutron multiplication ðn; 2nÞ shown in Fig. 2.4, other than elastic scattering away from

a resonance, undergo compound nucleus formation.

In an inelastic reaction an incident neutron enters the target nucleus adding its binding and kinetic energy to the

compound nucleus, resides for some time in the compound nucleus, and then exits with some energy retained in the

compound nucleus. The emitted particle can be a neutron itself or some other particle exiting from the nucleus. While a

neutron is in the compound nucleus, it exchanges energy with other nucleons; the outcome depends on whether or not it

imparts energy sufficient for a nucleon to be ejected. An ‘ejection’ takes place on the order of B10217s, which is

instantaneous for all practical purposes, but large compared with the nuclear time, of the order of B10221s. When a

neutron emerges from such an inelastic reaction, we describe it as a ðn; n0Þ reaction. In case of high incident energy,

above a threshold, a neutron can result in multiplication ðn; 2nÞ or ðn; 3nÞ reactions.
A possible reaction is a direct interaction causing charged particles to be expelled from a nucleus as in the case of

such as ðn;αÞ and ðn; pÞ reactions.
In neutron interactions where a neutron enters the target nucleus and has insufficient energy to cause ejection of a

nucleon, it gets absorbed while the relaxation energy can be emitted from an isomer in the form of a gamma ray. When

the incident energy corresponds to one of the excited states of a nucleus, ‘resonance’ can take place where the cross-

section becomes very large. These states are called ‘metastable’ states if they exist for B10217s.

2.2.1 Neutron scattering in the lab and center of mass systems

Neutron scattering with target nuclei is indeed a complicated phenomenon both theoretically and experimentally.

Scattering experiments are conducted in the laboratory (L) system with an incident neutron of velocity vL incident

on a stationary nucleus, while another system, called the center of mass (CM) system is used for mathematical simplic-

ity, as shown in Fig. 2.5.

FIGURE 2.4 Selected neutron interactions.
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Laboratory Center of mass

Neutron Nucleus Neutron Nucleus

Precollision Speed vL VL vC VC

Energy EL EAL � �
Post collision Speed vL

0 VL
0 vC

0 VC
0

Energy EL
0 EAL

0 � �
Scattering angle θL � θC �

Some simplicities of the CM system are as follows:

1. Velocities before and after collision: vC 5 vC
0 ;VC 5VC

0

2. Momentum before collision and after collision is zero.

The CM system is useful for another property of scattering called isotropic scattering. The two systems are con-

nected, as shown in Fig. 2.6; the velocity of the center of mass VCM observable in the L-system. The incident neutron

has direction Ω̂ in the L-system and scatters into the Ω̂0 direction with Ω̂ ∙ Ω̂0 5 cosθL; notice that the azimuthal angle ϕ
is not shown in Fig. 2.6 as it is considered unchanged.

Applying the conservation of momentum

A1 1ð ÞVCM 5 vL 1AVL (2.3)

When VL 5 0, the velocities of the neutron and nucleus in the CM system are

vC 5
A

A1 1
vL;

and

VC 52
1

A1 1
vL:

Energy conservation, assuming a target nucleus initially at rest, gives

EL 5EL
0 1EAL

0

FIGURE 2.5 Elastic scattering on a neutron and nucleus.

FIGURE 2.6 Scattering angle in Lab and center of mass systems.
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which can be shown with the conservation of horizontal and vertical momentum, to yield a relationship between the

final energy of a neutron EnL
0 and its initial energy EnL:

EL
0 5

EL

A11ð Þ2 cosθL1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A22sin2θL

q� �2
:

The above can be written as

EL
0 5

1

2
EnL 11αð Þ1 12αð ÞcosθC½ � (2.4)

where

α5
A21

A11

	 
2

We can see from the above that if θC 5 0, EL
0 5EL 5ELmax

0 (forward scattering) and when θC 5π, EL
0 5ELmin

0 5αEL

(back-scattering).

Thus for hydrogen, A5 1, all the energy can be lost by a neutron in a single collision, while for a heavy nucleus

such as U238, α5 0:9833 so that a neutron can lose just a small amount of energy since its minimum energy after colli-

sion is 0.9833EL; a 1 MeV neutron striking a U238 nucleus will thus have an energy between 0.9833 and 1 MeV so that

the maximum energy transferred to the U238 nucleus can be 0.0167 MeV. The energy (in the Lab system) after a colli-

sion of a neutron with nuclei of hydrogen, carbon, iron and U238 is shown in the Fig. 2.7 below. For hydrogen, it is

seen that on average 50% of the neutron’s energy is lost in a collision.

From the horizontal and vertical components:

vL
0 cosθL 5VCM1vC

0 cosθC (2.5)

and

vL
0 sinθL 5 vC

0 sinθC (2.6)

yielding the relationship:

tanθL 5
sinθC

1=A1 cosθC
: (2.7)

FIGURE 2.7 Neutron energy in Lab

system after a collision (initial energy

is 1 MeV).
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Thus for heavy nuclei such as U238 (Ac1) θL � θC since the center of mass velocity VCM is much less than the inci-

dent neutron velocity in the laboratory system. This is a significant statement in the context of expressing isotropic scat-

tering in the C-system, which will differ from results of the L-system for light target nuclei.

Exercise 2.3: Scattering angles: from the scattering angles in the Lab and CM systems [Eq. (2.7)] find a relationship

between the solid angles dΩ5 sinθ dθ dϕ in both systems.

The scattering cross-section has a smooth variation at low energies, like the absorption cross-section, but extends to

somewhat higher energies (typically a few MeV), then exhibits broad resonances, and then smoothens off.

At low energies, neutrons exhibit s-wave scattering for light as well as heavy nuclei, which is predominantly isotro-

pic in the center of mass system. At higher energies and for larger nuclear radius, the scattering is p-wave scattering

which is forward-biased rather than isotropic. Thus a neutron scattering off a U238 nucleus is bound to be forward-

biased i.e., favoring forward scattering rather than higher angles of back-scattering. Light nuclei, with a high threshold

for inelastic reactions, are more likely to undergo elastic collisions at low energies while heavy nuclei will mainly

undergo inelastic scattering.

Exercise 2.4: Solid angle: from elementary considerations of solid geometry, consider a volume element in a solid sphere

of radius R and show that dV5
Ð R
0
r2
Ð 2π
0

dϕ
Ð π
0
sinθ dθ. Calculate the solid angle subtended by an electron on a nucleus.

2.3 The microscopic cross-section

The microscopic cross-section, with units of area, represents the measure of an interaction at the nuclear level. It can be

expressed as a probability of an interaction of a certain type. It is visualized as the cross-sectional area (cm2) of a sphere

which a neutron can “see” as it moves in matter. A small cross-section indicates a small probability of that particular

interaction. Since atoms and neutrons are very small, these cross sections are expressed in units of 10224 cm2 which

was code-named a “barn” during the Manhattan Project days.

Each interaction, such as an elastic scattering, inelastic scattering, absorption, fission, radiative capture etc. has an

associated cross-section. The sum of all cross sections is called the ‘total’ cross-section σt

σt 5σs 1σa 1σf 1σn;γ 1σn;2n 1 . . .

The intensity of neutrons reduces as they interact with matter, as described in Section 1.3.3 for photons, since the

reduction dI is proportional to the intensity I, the atomic density N, the rate of interaction Nσt and the volume of mate-

rial dV5Adx, where A and dx are the cross-section area and thickness of the slab respectively as shown in Fig. 2.8.

The intensity of neutrons can then be found from the source intensity Io across a shield of thickness x from elemen-

tary considerations. The intensity across a thin strip dx is

I x1 dxð Þ5 IðxÞ 12Nσtdxð Þ
so that the change in intensity across the strip is dI xð Þ given as

dI xð Þ5 I x1 dxð Þ2 I xð Þ52 I xð ÞNσtdx

from which

dI xð Þ
I xð Þ 52Nσtdx

FIGURE 2.8 Intensity reduction.
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Finally, integration over the width of the slab givesðX
0

dI xð Þ
I xð Þ 52

ðX
0

Nσt dx

ln
IðXÞ
Ið0Þ 52NσtX

IðXÞ5 Ioe
2NσtX (2.8)

The above expression would hold under ideal conditions, that is, a point anisotropic source of intensity Io incident

on a thin shield. For a point isotropic source, the intensity would be given as

I Rð Þ5 Io
e2NσtR

4πR2
(2.9)

to include both geometrical and material attenuation.

Exercise 2.5: Intensity: given an incident intensity of 108 neutrons/cm2/s on a composite slab consisting of a water

region 5 cm thick followed by an iron slab 3 cm thick, find the transmitted intensity.

Material At. Weight* Density (g/cm3) σa (b) σs (b)

Iron (Fe) 55.847 7.87 2.53 11
Water (H2O) 18.0153 1.00 0.664 103

1. Based on C12 (12 amu)

To obtain a probability of scattering, a normalized probability distribution function can be written as

f Eð ÞdE5
1

σðEÞ
dσ
dE

dE

so that this probability, from initial energy E to final energy E0 (in the Lab system) is

P E-E0ð ÞdE0 5
σs θð ÞdΩðθ;ϕÞ

σs

(2.10)

Now, since dΩ θð Þ5 sinθCdθCdϕ5 dμdϕ and with no preferential azimuthal angle, then

P E-E0ð ÞdE0 5
2πσs θð Þdμ

σs

which, in the case of isotropic scattering in the center of mass system reduces to

P E-E0ð ÞdE0 5
dμ
2

52
1

2
sinθC dθC (2.11)

From Eq. (2.4)

dEL
0

dθC
5

EL

2
12αð ÞsinθC

giving

P E-E0ð Þ5 1

Eð12αÞ (2.12)

This is a significant result in the context of s-wave scattering discussed in the previous section for which scattering

is isotropic in the CM system as is the case for light nuclei such as carbon 12 for low-energy neutrons. When kR, 1,

for light nuclei the scattering is always isotropic in the CM system while for kRc1, due to p-wave interference, the

scattering is anisotropic (in the forward direction).
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Exercise 2.6: Probability distribution: Consider the forward and backward scattering cases for the differential scattering

cross-section by assuming linear forms and sketch the probability P E-E0ð Þ vs the final energy E0 which should be con-

stant for the isotropic case given above.

Exercise 2.7: Moments of scattering cross-section: Expand the angular scattering cross-section

Σs r ;E0-E; Ω̂0-Ω̂
� �

5
XM
l50

2l1 1

4π
Σsl r ;E

0-Eð ÞPl Ω̂0 ∙ Ω̂
� �

to M5 1 and explain what advantage there would be in using this expansion.

To further understand the process of slowing down, consider an infinite medium of hydrogen with a uniform distrib-

uted source emitting S neutrons/cm3/s with energy Eo: Assuming no absorption in hydrogen, we can write the probabil-

ity of scattering [Eq. (2.12)] into any energy E in dE as

P Eo-Eð ÞdE5
dE

Eo

Thus a neutron colliding with a hydrogen atom can lose all its energy as was shown in Fig. 2.7.

Exercise 2.8: Final energy after scattering: Calculate the probability that a neutron at an initial energy E5 1MeV scat-

tering in hydrogen will have its final energy in the range 0.5 MeV�1 MeV.

The resonance region has irregular peaks which can be described by models such as the Breit-Wigner model which

takes into account quantum-mechanical phenomenon and compound nucleus formation.

Fig. 2.9 shows the total ENDF/B-VIII.0 cross sections of selected light nuclei lithium-7, beryllium-9 and carbon-12,

in the energy range 13 1025�13 1028 eV plotted from http://atom.kaeri.re.kr/. In a low-energy range, 13 1025

eV�13 1023 eV, the cross sections behave as

σt 5A1
Bffiffiffiffi
E

p (2.13)

(A, B are constants). It is readily seen on a linear-linear scale that the carbon-12 cross-section, for example falls off

rapidly from B25 b at 13 1024 eV to B9 b at 13 1023 eV and then remains constant till B0.1 MeV. This low-

energy cross-section dependence is usually referred to as the 1=v-dependence and holds for light nuclei. At very low

temperature, below the thermal neutron energy B0.025 eV, the cross sections show temperature-dependent variations

due to crystalline effects.

In the energy range from B0.1 to B 10 MeV, resonances of varying widths and intensities are observed extend-

ing to about 20 MeV for carbon. At lower energies, the resonances are identifiable and are called resolved resonances

while at higher energies they become unresolved. For selected heavy nuclei, U-233, U-235, and Pu-239, the ENDF/

B-VIII.0 total fission cross sections are shown in Fig. 2.10 with the same three distinct regions for light nuclei but

with the resonance region having moved toward lower energies (few electron volts) and overlapping into ‘unre-

solved’ resonances.

Figs. 2.9 and 2.10 plotted from the point data evaluations available in ENDF/B files (Brown et al., 2018) are contin-

uous energy evaluations. From the figures, three energy groups, can be identified viz thermal, intermediate and fast, typ-

ically in the ranges 0 & 0.1 eV, 1 eV—few kilo electron volts, and few keV—MeV. In practice, these point cross

sections are processed and group averaged cross sections are prepared for use in nuclear design calculations. The

nuclear data processing system NJOY (Macfarlane, Muir, Boicourt, & Kahler, 2012) is used to prepare multigroup

cross-section data in general form or for specific codes and applications. For commonly used transport codes such as

ANISN (Engle, 1967), WIMS-D (Deen & Woodruff, 1995) and MCNP (Pelowitz et al., 2013), NJOY uses the modules

DTFR, WIMSR and ACER.

Some nuclear reactions, such as nuclear fission and multiplication take place when an incident neutron has energy

in excess of some threshold energy and are usually high energy reactions. One such reaction is the multiplication

ðn; 2nÞ reaction for which cross sections are shown in Fig. 2.11 for Be-9, U-238, and Pu-239.

Cross sections of selected elements are shown in Table 2.1 to indicate their probabilities of interactions. Thus

light nuclei such as carbon are predominantly scattering materials at thermal energy while plutonium-239 has very

high fission cross-section, and indium has very high absorption cross-section. These values have engineering design
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applications. Similarly, boron-10 and xenon-135 have (thermal) absorption cross sections 3840 b and 2.65 Mb; thus

boron-10 is used as an absorber rod in nuclear reactors while xenon-135 is highly undesirable as it absorbs valuable

thermal neutrons which could otherwise have continued to produce fissions in the uranium fuel of a power reactor.

When microscopic cross sections are averaged over the energy spectrum in a nuclear reactor, they become

application-specific, and are more efficiently used than point cross sections, for carrying out large simulations.

Plutonium 239 cross sections are given in Table 2.2 averaged over a Maxwellian spectrum

,σM Tð Þ. 5
2ffiffiffi
π

p
Ð EU

EL
σ E;Tð ÞM E;Tð ÞdEÐ EU

EL
M E;Tð ÞdE

(2.14)

for the energy range EL 5 1025eV; EU 5 10eV, a 1=E spectrum over ðEL 5 1025eV; EU 5 10keVÞ

, σri Tð Þ. 5

ðEU

EL

σ E; Tð Þ 1
E
dE (2.15)

and a fission χ Eð Þ spectrum

,σf Tð Þ. 5

Ð EU

EL
σ E;Tð ÞχðEÞdEÐ EU

EL
χðEÞdE

(2.16)

FIGURE 2.9 Total microscopic cross sections of Li-7, Be-9 and C-12.
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where

χ Eð Þ5
ffiffiffiffiffiffiffiffiffiffi
4

πa3b

r
exp 2

ab

4
2

E

a

	 

sinh ðbEÞ12

h i
ðEL 5 1025eV; EU 5 20MeV; a5 0:988MeV; b5 2:249MeV21Þ:

The Westcott g-factor is the ratio of the Maxwellian averaged cross-section to the 2200 m/s averaged cross-section

and has the value B1 for 1=v nuclides

g Tð Þ5 ,σM Tð Þ.
σð0:0253eV; TÞ

Calculations of neutron thermal cross sections, Westcott factors, resonance integral averaged cross sections for 843

ENDF materials from major nuclear libraries are given at various temperatures (Pritychenko & Mughabghab, 2012).

Exercise 2.9: Generate group cross sections: Write a program to generate thermal group cross sections for Pu-239 by

curve-fitting the data in Fig. 2.10 (in the energy range 0�0.1 eV) and weighting them with a Maxwellian distribution

[Eq. (2.14)].

MT numbers are listed in the ENDF-6 Formats Manual (Trkov, Herman, & Brown, 2018). Nuclear cross sections from

the National Nuclear Data Center, Brookhaven National Laboratory released as ENDF/B-VIII.0 (Brown et al., 2018) are

the latest version with IAEA standards and benefit from experimental data and improvements in theory in simulation.

FIGURE 2.10 Total microscopic fission cross sections of U-233, U-235 and Pu-239.
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2.4 The macroscopic cross-section

The macroscopic cross-section Σ is an interaction rate per unit distance traveled by the neutron obtained by multiplying

the microscopic cross-section σ (a measure of the probability of interaction expressed as an area) by the atomic density

N. From Section 1.5, for the data given in Table 2.3, with ρ5 19:1gcm23, the thermal macroscopic absorption cross-

section Σa of natural uranium is Σa 5
P3
i51

Niσa;i, where Ni 5αiA. The atomic weight of natural uranium with the above

FIGURE 2.11 (n,2n) reactions Be-9, U-238, and Pu-239.

TABLE 2.1 Thermal neutron absorption cross sections of selected elements.

Element σa (b) σs (b)

12
6 C 0.0034 4.8
238
92 U 7.6 8.3

Mn 13.3 2.3
In 197 2.2
239
94 Pu 1022 9.6
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specified atomic fractions is A5 238:0179. This gives an atomic density

NU 5
19:13 0:6023 1024

238:0179
5 0:0483 1023 atoms ∙cm23:

from which the individual atomic densities N234;N235;N238 can be calculated. The thermal macroscopic cross-section is

Σa 5 0:3678/cm.

Exercise 2.10: Weight fractions of isotopes: From the atomic abundance, find the weight fractions of the uranium iso-

topes in Table 2.3.

The mean free path is the free-flight distance traveled between interactions and is the inverse of the macroscopic

cross-section; thus

λ5
1

Σ

Exercise 2.11: Half value layer thickness: For neutrons from Cf-252 calculate the Half Value Layer (HVL) in polyeth-

ylene, water, concrete and lead. From the HVL for gamma rays (Section 1.3) repeat your calculation to find the HVL

considering both neutron and gamma emissions from Cf-252.

Exercise 2.12: Average number of collisions: From the definition of the mean free path, estimate the average number

of collisions a neutron of 1 MeV and a gamma of 2 MeV would have in a 5-cm thick slab of iron. Justify any assump-

tions you make.

2.5 Flux measurement

In a nuclear reactor or any nuclear system with a source of neutrons, the energy spectrum is typically spread over sev-

eral orders of magnitude. Thus a wide range of neutrons are available for flux measurements based on the exposure or

fluence (IAEA, 1970) defined as the time integral of the neutron flux density with units of neutrons/cm2.

TABLE 2.2 Averaged cross sections of Pu-239.

MTa Reaction 0.025 eV Maxwellian

average

g-factor Resonance

integral

14-MeV Fission spectrum

average

,σM Tð Þ. g Tð Þ ,σri Tð Þ. ,σf Tð Þ.
1 (n,total) 1.028 kb 1.110 kb 1.080 � 5.933 b 7.835 b
2 (n,elastic) 8.813 b 9.728 b 1.104 � 2.944 b 4.396 b
4 (n,inelastic) E-thr5 7.894 keV 416.4 mb 1.581 b
16 (n,2n) E-thr5 7.894 keV 229.6 mb 3.325 mb
17 (n,3n) E-thr5 7.894 keV 2.318 mb 988.9 nb
18 (n,fission) 747.4 b 790.5 b 1.058 301 b 2.334 b 1.802 b
102 (n,gamma) 271.5 b 310.1 b 1.142 179.7 b 847.4 μb 52.61 mb

aMT numbers from ENDF-6 Table formats.
Source: https://wwwndc.jaea.go.jp/cgi-bin/Tab80http://WWW.cgi?/data/JENDL/JENDL-4-prc/intern/Pu239.intern.

TABLE 2.3 Thermal absorption cross-section of some uranium isotopes.

Nuclide Atomic abundance (%) Atomic weight (u) σaðbÞ
U-234 0.0057 234.04 103.47
U-235 0.72 235.04 680.8
U-238 99.27 238.05 2.73
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Thermal flux is measured by the activation of thin foils in a nuclear reactor for sufficient time to cause transmuta-

tion with beta emission, in most cases, which can subsequently be counted. For a flux φ0 for neutrons at a most proba-

ble speed of 2200 m/s corresponding to a temperature of T0 5 293.6�K, the integral value thermal flux for a reactor

temperature T can be found as

φth 5φ0

ffiffiffiffiffiffi
4T

T0

r

Foils of manganese, silver, indium, gold, and dysprosium with isotopes and activation cross sections listed in

Table 2.4, are used.

The slowed down (epithermal) and thermal neutron components of the spectrum are separated using cadmium cov-

ers which discriminate between the two ranges, like a high-pass filter, due to the very high thermal absorption cross-

section of cadmium. Two measurements are carried out; in the first, a bare foil detector is used where the total activity

is measured and in the second, the foil is covered by cadmium so that it is subject to only epicadmium neutrons which

pass through the cadmium cover.

Fig. 2.12 shows the activation cross sections for Ag-109, Cd-113, In-115, and Au-197 with capture resonances, par-

ticularly of indium at 1.41 eV and gold at 4.9 eV, and high absorption cross-section of cadmium below B0.4 eV.

Cobalt-59 has also been used as a detector; its main advantages are that it exists in the form of this isotope with 100%

abundance, it is easy to make wires or thin disks and it can be used at high temperatures.

Fast neutron fluence is measured from threshold reactions such as ðn;αÞ and ðn; pÞ reactions using threshold activa-

tion detectors (Hyvönen-Dabek & Nikkinen-Vilkki, 1980) which have a good response to neutrons of a typical fission

spectrum. Commonly used detectors for dosimetry in materials use Fe54(n,p) and Ni58(n,p) monitors while for fission

monitors for very long irradiations, Ti46(n,p), Sc46 and Cu63(n, α) are used. Other methods include BF3 counters, ioniza-

tion chambers, U235 fission chambers, and semiconductor neutron spectrometers and silicon detectors (Shafronovskaia,

Zamyatin, & Cheremukhin, 2014; Zamyatin, Cheremukhin, & Shafronovskaya, 2017).

A thin foil of material such as Ag 109, In 115, and Au 197 is exposed to the neutron flux, which undergoes transmu-

tation to produce the radioactive nuclide. The amount of induced radioactivity will be proportional to the incident inten-

sity, exposure time and activation cross-section. Across the foil, the intensity will be given by Eq. (2.8) and the number

of nuclides PðtÞ can be found from the first-order rate equation (Section 1.2),

dPðtÞ
dt

5Σactφ2λP (2.17)

In the production term, Σactφ, the neutron flux has been assumed to be time-dependent but space-independent due to

the assumption of a thin foil. Eq. (2.17) gives

P tð Þ5 Σactφ
λ

12 e2λt� �
When the foil has been exposed for T seconds, the number of atoms per unit volume of the foil, of radionuclide pro-

duced is ΣactφT . The activity of the foil A5λP is subsequently measured in, for example, an ionization chamber

TABLE 2.4 Transmutations of Mn-55, Ag-109, In-115, Au-197, and Dy-164 by neutrons.

Parent nuclide Reaction Radioactive nuclide

Identity % abundance σact (b)
a Identity T1=2 Radiations, MeVb

Mn 55 100 13.460.3 ðn; γÞ Mn 55 2.6 h β2 2:81;1:04;1:0:65ð Þ; γð0:82; 1:77;2:06Þ
Ag 109 48.65 2.86 0.5 ðn; γÞ Ag110m 270 days β2 I:Tð Þ; γðcomplexÞ
Ag 109 48.65 1106 20 ðn; γÞ Ag110 24.5 s β2 2:24;2:82ð Þ; γð0:66; 0:9Þ
In 115 95.8 1456 15 ðn; γÞ In 116 m 54 min β2 1:0;0:87; 0:60ð Þ; γð0:142 2:19Þ
In 115 95.8 526 6 ðn; γÞ In 116 13 s β2 2:95ð Þ; γðnoneÞ
Au 197 100 966 10 ðn; γÞ Au 198 2.7 days β2 0:96;0:29;1:37ð Þ; γð0:41;0:68;1:09Þ
Dy 164 28.2 ,1000 ðn; γÞ Dy 165 2.4 hr β2 1:25;0:88;0:42ð Þ; γð0:12 0:76Þ
afor neutrons of 2200 m/s.
bbeta energies are maximum energies with average energy about 40% of maximum.
Source: Nuclear Engineering Handbook, 7-7, (1958), D. J. Hughes et al., “Neutron Cross Sections,” BNL-325, McGraw Hill Book Company, Inc., New York
1955; J. M. Hollander, I. Perlman and G. T. Seaborg, Table of Isotopes, Revs. Med. Phys. 25(2): 469�651 (1953). Natl. Bur. Standards Circ. 499.
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Exercise 2.13: Foil activation: A thin gold foil of mass 0.4 grams is placed in a nuclear reactor for one hour; subse-

quent measurements for the activity give 104 disintegrations per second. Estimate the thermal flux.

2.6 Reaction rates

The purpose of calculating the neutron flux in a system is to obtain reaction rates Rx where

Rx 5ΣxφV : (2.18)

all volumetric reaction rates and surface leakages are obtained from the flux.

In a more general form

Rx 5

ð
dx NðxÞ

ð
dE σxðEÞφðx;EÞ (2.19)

The neutron flux can be used to estimate the reaction rate of a particular reaction within a region of interest. As an

example, the number of fission reactions taking place per second Rf in a volume V is given by

Rx 5Nσxφ

In the Evaluated Nuclear Data File ENDF/B library, the ENDF/B-6 Formats Manual lists the MT numbers, from 1

to 999, of available reaction cross-section data. These are given for the incident neutron energy in the Laboratory sys-

tem. Each set has one (or more) Q value(s) depending on the possible number of outcomes of a reaction.

FIGURE 2.12 Cross sections of Ag-109, Cd-113, In-115, Au-197.
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In the following chapters in this book, simulations will be based on computing the neutron (or photon) flux in a sys-

tem and then using the reaction cross-section data, with the appropriate MT number, to compute reaction rates.

Some commonly used MT numbers are listed in Table 2.5.

Several other forms of data are also assigned MT numbers such as MT5 500 for total charged particle stopping

power (Section 1.3), 502 for total photon interaction, 522 for photoelectric absorption, 527 for electro-atomic brems-

strahlung. Note that cross sections for charged particles and photons are also included.

Exercise 2.14: Reaction MT numbers: Which reaction rate MT numbers would be used to calculate the energy released

from fission reactions in UO2 fuel in the thermal, epithermal and fast groups?

Radiation dose can also be calculated from the neutron and photon flux-to-dose conversion factors shown in

Fig. 2.13; the H*10 dose due to neutrons and photons a distance 1 m away from a point isotropic source, are used to

estimate the radiation dose.

2.7 Neutron slowing down, diffusion and thermalization

In the transport process, a neutron at a source energy E0, slows down to some energy, E, as it loses energy, or gains

lethargy u5 lnE0=E, in collisions by elastic and inelastic scattering. Since the threshold of inelastic reactions for low

mass nuclei is very high (BMeV) the energy loss by inelastic scattering is mainly from heavy nuclei. The fractional

energy loss of neutrons with light nuclei can be very high while only a small fraction of its energy is lost in collisions

with heavy nuclei such as uranium.

TABLE 2.5 Commonly used reaction cross-section MT numbers.

MT Reaction Description

1 (n,total) Total cross-section
2 (z,z0) Elastic scattering cross-section for incident particle z5 all particles (n, p, e. . .)
3 (z,nonelas.) Nonelastic neutron cross-section.
4 (z,n) Production of one neutron in the exit channel. Sum of the MT550-91
16 (z,2n) Production of two neutrons and a residual1. Sum of MT5 875-891, if they are present.
19-21 (n,f), (n,nf), (n,2nf) First-, second-, and third-chance neutron-induced fission cross-section
27 (n,abs) Absorption; sum of MT5 18 and MT5 102 through MT5 117
102 (z,γ) Radiative capture
105 (z,t) Production of a triton, plus a residual. Sum of MT5 700-749, if they are present.

Source: ENDF/B-6 Formats Manual.

FIGURE 2.13 Flux-to-dose conversion factors for neutrons and gammas.
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The neutron spectra in a micronuclear reactor (Aziz, Koreshi, Sheikh, & Khan, 2020) with a predominantly fast

spectrum in the matrix and a thermal spectrum in the water reflector is shown in Fig. 2.14. In fast reactors, for example,

the spectrum is “hard,” that is, predominantly high energy (BMeV) while in thermal reactors, it is “soft,” that is,

shifted toward lower energies. Since the fission cross-section is low at high energies and vice versa, fast reactors will

have a higher flux to maintain reactor power. Typical orders of magnitude of neutron flux in thermal and fast reactors

are B1012 n/cm2/s and B1015 n/cm2/s respectively.

Ignoring space dependence, the behavior of the energy-dependent flux φðEÞ in an infinite medium can be found

from elementary considerations. As shown in Fig. 2.15 the slowing down of a neutron from source (initial) energy E0

in the case of hydrogen medium (left fig) can take place to final energy E5 0 as discussed in Section2.3. Note that the

source energy corresponds to zero lethargy since u5 lnE0=E since a source neutron has high energy and hence is the

opposite of a lethargic neutron. The energy range 0,E,E0 thus corresponds to a lethargy range N. u. 0. The

figure on the right in Fig. 2.15 shows neutron collisions in a medium for which A. 1. In this case, a source neutron can

have energy in the range αE0 #E#E0 while a neutron at E0 can have energy Ev in the range αE0 #Ev#E0.
Defining collision density F Eð Þ5ΣtðEÞφðEÞdE as the total number of interactions at E in dE, the two contributions

will consist of a ‘direct’ contribution from the source and an ‘indirect’ contribution from collisions taking place at some

higher energy which lead to scattering into dE. Using Eq. (2.12), these two terms (for α5 0) are

1. source neutrons falling into dE5 SdE=Eo

2.
Ð E05Eo

E05E
Σt E

0ð Þφ E0ð ÞdE0P E0-Eð ÞdE5 dE
Ð E05Eo

E05E
Σt E

0ð Þφ E0ð Þ
E0 dE0

The balance equation for the collision density in dE is

F Eð ÞdE5
SdE

Eo

1 dE

ðE05Eo

E05E

F E0ð Þ
E0 dE0 (2.20)

FIGURE 2.14 Typical neutron flux spectra in a micronuclear reactor.

FIGURE 2.15 Energy and lethargy scattering diagrams.
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The above integral equation can easily be solved by differentiating to yield

dF

dE
52

F

E

from which the neutron flux is

φ Eð Þ5 S

ΣtE
B

1

E
(2.21)

Another quantity of interest is the slowing down density qðEÞ which is defined as the average number of neutrons at

some energy E0 .E falling below energy. The collision density is thus a reaction rate while the slowing down density

is analogous to the current J . It can be shown by similar reasoning that for the case of an infinite hydrogen medium

with a uniform source and in the absence of absorption, q Eð Þ5 S.

For neutron moderation for A. 1, the entire energy domain is not available for a neutron after collision, thus the

Placzek discontinuities shown in Fig. 2.16 are found for the collision density based on whether a neutron has had one

or more collisions while reaching the energy interval of interest. On the horizontal axis is the collision density for

hydrogen (A5 1;α5 0) while the infinitely heavy medium (A5N;α5 1) has very little (or zero) energy transfer in a

collision hence it can have an infinite number of collisions in the first interval. For all other media, the wiggles or tran-

sients die out as shown and the collision density assumes a constant value (in lethargy).

When discontinuities appear only near the source, then in the asymptotic energy region, the solution can be shown to be

F5
S

ξE
(2.22)

FIGURE 2.16 Placzek wiggles for neutron scattering.
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and subsequently

φ Eð Þ5 S

ξΣtE
B

1

E
(2.23)

where ξ, or Δu, is the average change in lethargy per collision can be obtained using the probability for a neutron going

from E-E0

P E-E0ð Þ5 1

Eð12αÞ
so that

Δu5

ðE
αE

dE0ln
E

E0

	 

P E-E0ð Þ (2.24)

where the integral has been carried out over final energy for the range permissible. This gives

Δu5 ξ5 12
ðA21Þ2
2A

ln
A1 1

A2 1

	 

D

2

A1 2=3
:

Thus for neutrons colliding in hydrogen ξ5 1 i.e. the change in lethargy is maximum while for A.. 1, ξ{1. The

number of collisions needed for a neutron to slow down from 1 MeV to 1 eV assuming isotropic scattering in the CM

system is shown in Table 2.6.

Exercise 2.15: Collision density: Write an expression for the collision density for neutrons reaching the energy interval

dE (Fig. 2.15) after one collision F1ðEÞ.

The smallest number of collisions is for hydrogen (13.6) while the largest is for uranium (1649); these values have

are important for the selection of materials for achieving a neutron spectrum of interest.

Matlab Example 2.3: Number of collisions: Calculate the number of collisions in hydrogen, carbon, iron and uranium-

238 for a fission neutron at 1 MeV to slow down to energy 1 eV.

Exercise 2.16: Lethargy: Calculate the average gain in lethargy per collision ξ for light water and heavy water.

Extending the above analysis for hydrogen, it can be shown that for A.. 1

q Eð Þ5
ðE05E=α

E05E

F E0ð ÞdE0 E2αE0

ð12αÞE0 5Cξ (2.25)

TABLE 2.6 Number of collisions needed to slow down from 1 MeV to 1 eV.

Nucleus Mass no α ξ n

Hydrogen 1 0 1.0000 13.8
Deuterium 2 0.111 0.7253 19
Beryllium 9 0.640 0.2066 66.9
Carbon 12 0.716 0.1578 87.6
Oxygen 16 0.779 0.120 115.2
Sodium 23 0.840 0.0845 163.5
Iron 56 0.931 0.0353 391.5
Uranium 238 0.983 0.0084 1649
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where for no absorption in which case all neutrons eventually slow down past energy E, C5 S=ξ, so that again

q Eð Þ5 S. Extensions to the case of nonmonoenergetic source show the same result for hydrogen as obtained for the

monoenergetic source considered above. For mixtures, again a similar dependence is found except that properties are

averaged over the elements of the mixture.

The above results can be used to estimate a moderating time tm defined as the time taken by a neutron to slow down

from some high energy, (e.g., fission energy) to some cutoff energy Em. If the cutoff is set at 1 eV, then it is above the

thermal range and generally ‘beyond’ the resonances. The energy group lower than Em, is the ‘thermal’ group; we now

have two distinct regions for slowing down and diffusion. In the first region, the neutrons will slow down or undergo

moderation; in the second, from 1 eV down to some equilibrium energy, neutrons will diffuse for a further diffusion

time td until they are captured or reach equilibrium.

The moderating time is easily found from Fermi’s “age” theory which assumes an “average” behavior for the slow-

ing down region and assumes that Fick’s law is valid for all energies, which is clearly a poor assumption especially for

hydrogenous media. The average number of collisions n is found using Δu [Eq. (2.24)] giving

n5
du

Δu
5

dE

Eξ

In Fermi’s continuous slowing down model, an average behavior is assumed for each neutron undergoing collisions.

A continuity equation for the neutrons crossing “boundaries” of a lethargy interval is written, using Fick’s Law which

introduces neutron flux φ in terms of the slowing down density qðuÞ. Using the relationship

q r; uð Þ5
ðu
u2ξ

F r; u0ð Þdu0

the “Fermi age equation” is written as

r2q r; τð Þ5 @qðr; τÞ
@τ

(2.26)

where the neutron age τ (with units of area) is defined as

τ5
ðu
0

DðuÞ
ξΣsðuÞ

du (2.27)

The interpretation of the age is possible by expressing the lethargy increase as du5 ξΣsdx, i.e. the increase in leth-

argy per collision multiplied by the number of scattering collisions. Thus

τ5
ðu
0

DðuÞ
ξΣsðuÞ

ξΣs uð Þdx5Dl uð Þ

where the distance lðuÞ is a measure of the movement which results in a lethargy increase from 0 to u. Eq. (2.26) can be

solved to obtain the slowing down density q with boundary conditions for the source q r; 0ð Þ5 SðrÞ, flux and current

continuity at the interface conditions requiring, and at the surface where q vanishes, The flux continuity is

φ r; uð Þ5 qðr; uÞ
ξΣsðuÞ

while the current continuity is to preserve

J52Drφ r; uð Þ52
D

ξΣsðuÞ
rφ r; uð Þ

For a plane source in an infinite slab, the solution to the Fermi age equation is very illustrative for the physical

understanding of neutron age. The slowing down density is

q x; τð Þ5 Sffiffiffiffiffiffiffiffi
4πτ

p e2x2=4τ (2.28)

which gives a picture of neutrons moving outwards from a source in the form of a Gaussian distribution as they settle into

the host medium. In 3D, the number of neutrons that started at r5 0 and have slowed down to within a shell dr at r is

q r; τð Þ5 4πr2dr
S

ð4πτÞ3=2
e2r2=4τ (2.29)
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The probability of finding a neutron in a spherical shell is thus

p rð Þ5 4πr2
1

ð4πτÞ3=2
e2r2=4τ (2.30)

Since ðN
0

r2e2r2=4τdr5
4τ

ffiffiffiffiffiffiffiffi
4πτ

p

4

the total probability is ðN
0

drp rð Þ5 4π

ð4πτÞ3=2
ðN
0

drr2e2r2=4τ 5
4π

ð4πτÞ3=2
4τ

ffiffiffiffiffiffiffiffi
4πτ

p

4
5 1

With this probability, the variance or spread will be a measure of the age of neutrons in terms of the physical spread.

The second moment (measure of variance) is thenðN
0

r2p rð Þdr5 r2 5 6τ

The physical significance of “age” is that

τ5
1

6
r2

The neutron age, shown in Fig. 2.17 is thus a measure of how far a neutron travels, or what its age becomes, in

going from a high energy to some low energy.

The measured age of fission neutrons slowing down to the indium resonance energy at 1.45 eV is given in

Table 2.7. Neutrons in water moderate in much shorter a distance than they do in graphite implying that neutrons reach

further into a nonhydrogenous material than into a hydrogenous material.

The moderation time for slowing down from E0 to E is obtained by integration:

tm 5
2

ΔuΣs

1

vm
2

1

v0

	 

B

2

ΔuΣsvm
; v0cvmð Þ (2.31)

The moderating time for water, heavy water and beryllium is B1:0 μs, B8:1 μs, and B9:3 μs respectively. Estimates for

the diffusion time, obtained from the speed and mean free path as: td 5 vth=λa, give B100:0 μs, B1:53 105 μs,
B4:33 103 μs and B23 μs for water, heavy water, beryllium and graphite. The diffusion length L, of neutrons is defined as

L2 5
D

Σa

; whereD5
1

3Σtr

FIGURE 2.17 Neutron slowing down density.

TABLE 2.7 Age-to-thermal (fission to 1.45 eV) of selected materials.

Moderator H2O D2O Be BeO Graphite

τ In (cm2) B 26 111 85 80 311

Source: Lamarsh, J. R. Introduction to Nuclear Engineering, p.203.
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in terms of the transport cross-section Σtr 5Σsð12μ0Þ for average cosine of the scattering angle μ0 5 2=ð3AÞ.
Table 2.8 lists the values of some diffusion length in some moderating materials.

A schematic of the moderation and diffusion of neutrons in water and graphite is shown in Fig. 2.18.

Total cross-section ,65., ,, 35.. carbon and water, good picture ,, p.38.., theory ,, 39...

When neutrons reach thermal energies, they are in equilibrium with the host nuclei which have similar energies, and

hence neutrons can receive energy from the nuclei, or up-scatter in contrast to their slowing which was down-scattering

only. The transport and energy exchange of thermal neutrons takes into account the binding of nuclei in the host

medium. It is found that the cross sections of water are substantially different from the cross-section obtained by the

sum σwater 5 2σH 1σO. The distribution is

Fa 5
2πnN

ðπkTÞ3=2
2

μ

	 
1=2 ðN
0

σsðEÞe2E=kTdE

Fa 5

ðN
0

X
a
ðEÞφμðEÞdE (2.32)

where
P

a Eð Þ5Nσa Eð Þ and φμ Eð Þ is given by

φμ Eð Þ5 2πn

ðπkTÞ3=2
2

μ

	 
1=2

Ee2E=kT (2.33)

The thermal corrections for thermal flux at temperature Tand cross sections with 2200 m/s neutrons is:

νT
νo

5
T

To

	 
1=2

φT 5
2ffiffiffi
π

p T

To

	 
1=2

φo; and Σ5

ffiffiffi
π

p
2

g Tð Þ To

T

	 
1=2

Σ Eoð Þ (2.34)

where gðTÞ is the non-1=v Westcott factor shown in Table 2.9 for U-235, U-238, and Pu-239.

Exercise 2.17: Gold foil activation: Repeat the gold foil calculation of Exercise 2.13 with the thermal cross-section

assuming the temperature in the reactor was 100�C.

TABLE 2.8 Diffusion length of selected materials.

Moderator Diffusion length L (cm)

H2O 2.85
D2O 116
C 54

Source: Murray R. L., Nuclear Energy, Elsevier, 6th (Ed.) p.55.

FIGURE 2.18 Neutron collision paths in water and carbon.
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2.8 Resonance cross-section

Resonances for light and heavy nuclei cross sections were seen in Figs. 2.9 and 2.10 to occur as peaks where the cross

sections jump to very high values. An understanding of the phenomenon of resonance is based on the quantum-

mechanical structure of the nucleus where excited levels exist, and when an incident neutron adds energy to the nucleus

which matches the level of an excited state, the cross-section shows a sudden jump. The terminology of resonance is

similar to that in conventional mechanical and electrical systems where the amplitude of a response suddenly increases

when an induced signal matches a natural frequency of the system.

The probability of an interaction in which a compound nucleus is formed is the product of the probability that a

compound nucleus is formed, and subsequently that it relaxes in a particular emission such as a neutron emission or a

gamma emission. A reaction α-β where α5 n1A and β5 b1B thus proceeds in two stages as α-CN-β.
This probability P tð Þ5 ΨðtÞ

�� ��2 is obtained from the wave function

Ψ tð Þ5Ψð0Þe2iE0t=h̄ e2t=ð2τÞ

To find the probability of finding a state at energy E, taking the Fourier transform

Φ Eð Þ5 1ffiffiffiffiffiffi
2π

p
ðN
2N

dteiEt=h̄Ψ tð Þ

yields

Φ Eð Þ5 ih̄Ψð0Þffiffiffiffiffiffi
2π

p 1

E2E0ð Þ2 1 ih¯
2τ

� �
Now

P Eð Þ5 ΦðEÞ
�� ��2

which gives P Eð Þ5 h̄2jΨ 0ð Þj2
2π

1

E2E0ð Þ2 1 -h
2τð Þ2

The width of a resonance, denoted by Γ (energy) is given by the Heisenberg uncertainty relation

ΓD
h̄

τ

where τ is the lifetime. Thus

P Eð Þ5 N0

E2E0ð Þ2 1Γ2

where the normalization constant is

N0 5
-h2jΨ 0ð Þj2

2π

TABLE 2.9 Non-1=v factors.

T, oC U235 U238 Pu239

ga gf ga ga gf

20 0.9780 0.9759 1.0017 1.0723 1.0487
100 0.9610 0.9581 1.0031 1.1611 1.1150
200 0.9457 0.9411 1.0049 1.3388 1.2528
400 0.9294 0.9208 1.0085 1.8905 1.6904
600 0.9229 0.9108 1.0122 2.5321 2.2037
800 0.9182 0.9036 1.0159 3.1006 2.6595
1000 0.9118 0.8956 1.0198 3.5353 3.0079
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The cross-section for compound nucleus formation is thus

σCN Eð ÞB 1

E2E0ð Þ2 1Γ2=4
(2.35)

σCN E5E0 6
Γ
2

	 

5

1

2
σCN E5E0ð Þ

With nuclei at rest (T5 0oK), the ith cross-section is given by the Breit�Wigner formula

σiE5πλ~
2

1 g
E0

E

	 
1=2 ΓnΓi

E2E0ð Þ2 1Γ2=4
(2.36)

where Γ5Γn1Γi and

λ~1 5
h̄ffiffiffiffiffiffiffiffiffiffiffi
2μE0

p ; g5
ð2JC 1 1Þ

ð2Jn 1 1Þð2JA 1 1Þ

with

x5
2

Γ
E2E0ð Þ;σ1 5

4π λ~
2

1 gΓn

Γ
;σi xð Þ5 σ1Γi

Γ
1

11 x2

For radiative capture i5 γ, for fission i5 f , . . .
For the scattering cross-section, the Breit�Wigner formula has i5 n with the potential scattering p5 4πR2 and an

interference term

σs 5 πγg
Γ2
n

E2E0ð Þ2 1Γ2=4
1 2

ffiffiffiffiffiffiffiffi
πgp

p Γn E2E0ð Þ
E2E0ð Þ2 1Γ2=4

1 p (2.37)

σs xð Þ5 σ1Γn

Γ
1

11 x2
1

2σ1R

λ~1

x

11 x2
1 4πR2 (2.38)

The total cross-section is

σt 5πg
ΓnΓ

E2Eoð Þ2 1Γ2=4
1 2

ffiffiffiffiffiffiffiffi
πgp

p Γn E2E0ð Þ
E2Eoð Þ2 1Γ2=4

1 p (2.39)

At higher energies, for the above light nuclei * 20 MeV, the total cross-section falls off rapidly as 1=v. This behav-
ior for light nuclei is also observed for some magic-number heavy nuclei.

The total cross-section for uranium-238 shown in Fig. 2.19 has resonances in the intermediate region similar

to those for U-233, U-235, and Pu-239 (Fig. 2.10). Comparing the resonance regions of Figs. 2.5 and 2.6, it is seen

that the resonances of uranium-238 extend in the region from B 6 eV to B 20 keV are sharper and resolved at the

lower limits but become unresolved at higher energies. The cross sections for heavy nuclei generally exhibit this

trend.

The first few resonances of uranium-238 are at 6.67, 20.8, 36.7, and 66.03 eV with relative widths 27.5, 31.8, 63,

and 49 meV, respectively. These correspond to excited states of the nucleus which occur at discrete levels similar to the

excited states of atoms; the difference being that these nuclear excited states are separated at energies of MeV rather

than in eV for atoms.

When ΓB27meV, τB2:443 10214 s which is a very ‘long’ time and hence a gamma would be emitted as in the

time in between, no nucleon had sufficient energy to be emitted. Sharp peaks are thus radiatively captured peaks while

broad resonances represent resonance scattering.

Each excited state is called an isomer and with the ground state, it makes an “isomer pair.” The return to the

ground state is by gamma emission which could be “delayed” due to spin effects. This delay is orders of magnitude
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of compound nucleus formation which is B10214 s (compared with B10222 s for a new nuclear bond to form). The

distance between the excited states decreases, going to higher energies, till the isomers overlap in the “continuum”

domain. States which do not return to the ground state immediately and ‘hold on’ for a while are called metastable

isomers (Fig. 2.20).

Fig. 2.21 shows the total and scattering cross sections of U-238 showing the relative magnitudes and asymmetry.

The potential scattering cross-section is the value of σsfar from the resonance [Eq. (2.38)].

A simple model to understand a resonance cross-section is the Breit�Wigner one-level model [Eq. (2.36)] demon-

strated in Matlab example 2.4.

Matlab Example 2.4: Breit-Wigner Formula: Demonstration of Breit�Wigner single resonance formula.

FIGURE 2.19 Total microscopic cross-section of U-238.
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The above discussion has assumed that nuclei are at rest, or at absolute zero K. when the cross-section depends on

the energy of the neutron, the nuclide and quantum-mechanical phenomena. As temperature increases, the thermal

vibration of nuclei increases and within the nucleus more states are available for capture by the neutron. When relative

motion between neutrons and nuclei becomes important, the radiative capture cross-section is

σγ E;Tð Þ5 σ1Γγ

Γ
E1

E

	 
1
2

ψ ς; xð ÞBσ1Γγ

Γ
ψ ς; xð Þ (2.40)

where

ψ ς; xð Þ5 ς
2

ffiffiffi
π

p
ðN
2N

exp 2 1
4
ς2 x2yð Þ2� 

11 y2
dy

This effect of Doppler broadening is shown in Fig. 2.22 with the zero K value plotted from the Breit�Wigner for-

mula (Matlab example 2.4).

From Fig. 2.22, plotted for Eq. (2.40) and demonstrated in Matlab Example 2.5, it is seen that the area under the

curves remains the same as they reduce in value but increase in width with an increase in the probability of resonance

capture.

FIGURE 2.20 First few resonances of U-238.
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FIGURE 2.21 Total and scattering microscopic cross-section at first resonance of U-238.

FIGURE 2.22 Doppler broadening due to temperature.
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Matlab Example 2.5: Doppler Broadening: Doppler broadening due to temperature.

The resonance escape probability can be written as

pi 5 12

ðEi1

Ei2

Σa

Σs 1Σa

dE

ξE
(2.41)

but this expression cannot be solved analytically since the flux across a resonance is not known analytically. In the

above, scattering can be considered to take place due to the moderator while absorption would be due to the presence

of absorber (fuel). A dilution ratio representing the moderator to fuel ratio is used in the analysis, with a dilution cross-

section σd defined as

σd5NMσsM=NaA

Thus approximate methods are used starting from a single resonance model with infinite and finite dilution with the

narrow resonance (NR) and the narrow resonance infinite mass (NRIM) models with and without the effect of tempera-

ture. When resonances are separated and narrow, they can be treated separately, and the resonance escape probability

can be expressed as the product of individual probabilities pi as

p5L
N

i51

pi

p5 exp 2

ðEi1

Ei2

Σa

Σs 1Σa

dE

ξE

2
4

3
5 (2.42)

with Σa 5NAσγA and ΣP 5NAσPA 1ΣsM 5 constant. The scattering cross-section is written as

σs xð Þ5 σ1Γn

Γ
1

11 x2
1

2σ1R

λ~1

x

11 x2
1 4πR2 5σ

0
sA 1 σPA

with

σγA xð Þ5 σ1Γγ

Γ
1

11 x2

giving

p5 exp 2

ðEi1

Ei2

Σa

NMσsM 1NAðσ0
sA 1σPAÞ1Σa

dE

ξE

� �

or in terms of the dilution cross-section σd 5Σp=NA

p5 exp 2
NA

ξΣP

ðEi1

Ei2

σγA

11 ðNA=ΣPÞðσ0
sA 1 σγAÞ

dE

E

� �
(2.43)
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The resonance escape probability is then

p5 exp 2
NAI

ξΣP

� �
(2.44)

with the effective resonance integral, for resonance in the range ðEi2, Ei1Þ defined as

I5

ðEi1

Ei2

σγA

11 ðNA=ΣPÞðσ0
sA 1σγAÞ

dE

E
(2.45)

In Eq. (2.44) the average lethargy gain averaged over the moderator and absorber is

ξ Eð Þ5 ξMΣsM 1 ξAΣpA

ΣsM 1ΣpA

5
ξMΣsM 1 ξAΣpA

ΣP

Thus ξ Eð ÞΣP 5 ξMΣsM 1 ξAΣpA and finally

p5 exp 2
NAI

ξMΣsM 1 ξAΣpA

� �
(2.46)

Eq. (2.46) is used for calculating the resonance escape probability in reactors.

Exercise 2.18: Resonance escape probability: Given a graphite moderator-uranium (U238) absorber system with

the data: NM 5 7:963 1022 cm23, NM 5 3:983 1020 cm23, σSM 5 4:8 b, σγA 5 7:64 b, I5 73 b, calculate the resonance

escape probability.

2.9 Nuclear fission

Nuclear fission, first observed by Otto Hahn and Fritz Strassmann in December 1938, named and conceptualized by

Lisa Meitner and Otto Frisch as depicted in Fig. 2.23, was a revolutionary breakthrough that led to the production of

sustainable energy from a nuclear reaction. This discovery laid the basis for the Manhattan Project in which nuclear

weapons were designed, tested and used at the end of the second world-war in 1945. Subsequently, nuclear fission was

developed for several useful applications including naval propulsion, electricity generation from nuclear reactors, and

the production of radioisotopes for medicine and agriculture.

2.9.1 The fission process

The nuclear fission reaction takes place when a neutron incident on a nucleus gets absorbed in it leading to the breakup

of the nucleus into two fission fragments accompanied with the release of two or more energetic neutrons, radiation and

a burst of energy. Several combinations of fission fragments can be emitted; one possible reaction shown in Fig. 2.23 is

1
0n1

235
92 U-140

54 Xe1 94
38Sr1 210n1 200MeV

with a neutron striking a 92U
235 atom resulting in a compound nucleus 92U

236 which fissions almost spontaneously with

energy released of the order of 200 MeV (3.2 10211 J). The mean lifetime of the compound nucleus formed was initially

FIGURE 2.23 Nuclear fission.
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estimated (Feather, 1939) to be of the order of B 10213 s. By B 10212 s, the fission fragments have lost their energy

and come to rest with the subsequent release of radiation.

This is indeed a very small amount of energy compared with that involved in applying a 10 N force and moving an

object by 1 m (10 J). The power produced by a “small” nuclear reactor capable of supplying electricity to a small city

is B300 MW which means energy of B9.46 1015 J in one year. To produce this much energy, we would need to fission

B2.96 1026 atoms, or about 490 gram-atoms (B 115 kg) of U235. But that would require a 100% enrichment of ura-

nium and the fission of every single atom in the material which is not possible because natural uranium has only 0.71%

of the isotope U-235 and the absorption cross-section of U-238 is much lower than that of U-235 (Table 2.3). Due to

this and other reasons, a nuclear reactor producing 300 MW of power would require about 30,000 kg of uranium fuel

enriched to only 3% of the isotope U235. With this much fuel, it would only be a cylinder of height and diameter 2 m

which means that very high energy density is achievable, and that nuclear fission is a great source of energy.

During fission. there is also a probability that three fragments (two main and a light particle) and neutrons are pro-

duced. This emission occurs in less than one in hundred fissions. The process is sometimes called ternary fission as a

third fragment is produced. In Table 2.5, cross-section MT numbers in ENDF/B files are given for first-, second- and

third-chance fissions for reactions ðn; f Þ, ðn; nf Þ, and ðn; 2nf Þ reactions, respectively.
While fission can be induced as discussed above, it also takes place on its own; such spontaneous fission is due to a prob-

abilistic arrangement where tunneling leads to the occurrence of fission. The nuclear fission yields listed in ENDF/B-VIII.0

library released in 2018 by the National Nuclear Data Center Brookhaven National Laboratory have sub-libraries No.5 for

spontaneous fission yields with nine elements (uranium-238, curium-244,246,248, californium-250,252, einsteinium-253 and

fermium-243,256) and No. 11 for induced fission yields with 31 elements (from thorium-227 to fermium-255). Table 2.10

lists the spontaneous fission rates of some uranium, plutonium and curium isotopes. The high spontaneous fission of Pu-238,

together with its half-life of B 88 years, makes it an attractive radioisotope power source (Section1.0)

The reason that spontaneous fission takes place is the instability caused by a high N/P ratio (stability curve

Section 1.1); this ratio remains 1.0 till calcium 40 and then increases to B1.5 causing an excess of neutrons for heavy

nuclides which is “corrected” by alpha decay. In fission, neutrons are released but the ratio remains high so that beta

decay takes place in which N is reduced while mass number remains the same charge increases (Fig. 2.24).

The N/P ratio is then reduced by successive isobaric (same number of A) beta decays β2 with, in most cases,

increasing half-lives until a stable configuration is achieved such as in the Krypton 93 decay to stable niobium 93

(Hanson et al., 2016) (Fig. 2.25).

2.9.2 Critical energy

Fission takes place with the compound nucleus formation as an intermediate stage in which the binding energy as well

as the kinetic energy of the absorbed neutron is added to the target nucleus. This energy is then shared with the

nucleons while the compound nucleus readjusts to a new form depending on the energy sharing process. To break the

nucleus, energy must be sufficient enough to give it potential energy larger than it had in its original form; the threshold

energy is the height of the coulomb barrier

EC 5
Z1Z2ke

2

R1 1R2ð Þ

TABLE 2.10 Spontaneous fission rates.

Nuclide Half-life (years) Spontaneous fission rate (n/g-s)

Uranium 235 7:043108 7:4331024

Uranium 238 4:503109 1:8031022

Plutonium 238 87:70 2:643103

Plutonium 239 2:403104 2:3031022

Plutonium 240 7:003103 8:433102

Plutonium 242 7:043108 1:803103

Curium 242 7:043108 1:803107

Curium 244 7:043108 1:173107
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The difference between this energy and the Q value of fission is then a minimum requirement called the critical

energy for fission to take place.

The Q value of a nuclear reaction was defined in Section1.1 as the difference of the rest mass energies of the reac-

tants r1; r2 and products p1; p2:

Q5 mr1 1mr2 2 mp1 1mp2

� �� 
c2

with Q. 0 for endothermic or endoergic and Q, 0. For fission, the Q value varies depending on the fission fragments;

it is thus measured from the energy deposited over all fissions. For the fission reaction in Example 2.1, the Q value is

B182 MeV.

Example 2.1: Q value: calculate the Q value of the fission reaction 235
92 U1 1

0n-
144
56 Ba1 90

36Kr1
1
0n

Reactants Products

Reactant Mass (a.m.u) Product Mass (a.m.u)

235
92 U 235.044 144

56 Ba 143.92(11.5 s)
1
0n 1.0082 90

36Kr 89.92 (32.32 s)

23 1
0n 2.0164

Total 236.0522 235.8564
Q5 0:19583 931:55 182:39 MeV

Source: Isotope mass was obtained from the Commission on Isotopic Abundances and Atomic Weights. http://www.ciaaw.org, 92235U https://ciaaw.org/
uranium.htm, 56144Ba https://pubchem.ncbi.nlm.nih.gov/element/Bariumsection5Atomic-Mass-Half-Life-and-Decay.

FIGURE 2.24 An isobaric decay chain.

FIGURE 2.25 Isobaric decay chains in uranium and plutonium fission.
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Critical energies of some fissile nuclides is shown in Table 2.11.

Matlab Example 2.6: Critical energy.

The energy released in fission of U235 is shown in Table 2.12. With the exception of the energy associated with

neutrinos, all energy is recoverable. Most of the fission energy, over 80%, is carried by fission fragments; this is

released within the fuel as will be discussed in detail in Chapter 3. Charged particles such as beta rays, as discussed

in Chapter 1, will also have a short range. Gamma rays from fission, as well as those produced from radiative cap-

ture, would travel a few centimeters into the surroundings of the fuel, while neutrons would be expected to go little

further.

From elementary considerations, the energy produced in fission can be estimated from the binding energy curve.

For U238 the binding energy is 7.5 MeV/nucleon; if the nucleus breaks into two nuclei of mass 238/25 119 each, for

which the binding energy per nucleon is 8.4 MeV/nucleon then the gain is 0.9 MeV/nucleon so that the energy

released would be 238*0.9B214 MeV. These numbers compare well with Table 2.12 where a detailed breakdown is

given.

TABLE 2.11 Critical energy.

Nuclide Critical energy (MeV)

Th 232 5.9
U 233 5.5
U 235 5.75
U 238 5.85
Pu 239 5.5

Source: Lamarsh, Introduction to Nuclear Reactor Theory, p.85.

TABLE 2.12 Energy released in a nuclear fission reaction.

Product MeV

Fission fragment (kinetic energy) 166�168
Fission neutrons (kinetic energy) 5
Prompt gamma rays 7
Fission product gamma rays 7
Fission product beta particles 5�8
Neutrinos 10�12
Total 200�207
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2.9.3 Fission yield

The fission yield is defined in terms of the independent fission yield which is the number of atoms of a specific nuclide

produced “immediately” in 100 fission reactions, the cumulative fission yield which is the total number of atoms of a

nuclide produced in 100 fission reactions, and the chain yield, which is the total chain yield, after the emission of

prompt neutrons, for fission is cumulative yield of the last chain member. There are at least 500 nuclides which can be

produced in fission directly or by beta decay of precursors depending on the incident energy and the mass and charge

distributions. Several models have been proposed to estimate the fission yield. One such model is based on the partition

of the nuclear yield on isomeric states (Madland & England, 1977; Okumura, Kawano, Jaffke, Talou, & Chiba, 2018)

and the spin distribution of the fragments.

We cannot say with certainty what the fission fragments will be as there is a probability of emission of fragment

fragments with conservation of atomic number and atomic mass (before and after reaction). For U235, the distribution of

fission fragments is shown in Fig. 2.26. This shows that there is a high probability of getting two fission fragments of

mass numbers 95 and 140. Some nuclides close to A5 140 are Tellurium 135, Iodine 135, neon 135, Cesium 135 and

Barium 135.

A possible nuclear fission reaction is 1
0n1

235
92 U-140

54 Xe1 94
38Sr1 210n1 200MeV, with both fission fragments xenon

and samarium being unstable like other fission fragments and undergo beta decay.

2.9.4 Number of neutrons emitted in fission

The number of neutrons emerging from a fission reaction, ν, varies between zero and seven; for U235 the average num-

ber of neutrons is νB2:5. As a function of energy,

ν Eð Þ5 ν0 1 aE

where ν0 5 2.43, a5 0.065/MeV in the range 0�1 MeV, and ν0 5 2.45, a5 0.150/MeV for E. 1 MeV. In U 233,

ν0 5 2.48, a5 0.075/MeV in the range 02 1 MeV, and ν0 5 2.41, a5 0.136/MeV for E. 1 MeV. In Pu 239,

ν0 5 2.87, a5 0.148/MeV in the range 02 1 MeV, and ν0 5 2.91, a5 0.133/MeV for E. 1 MeV. These prompt

neutrons are ejected by evaporation from the fission fragments, such as 87
36Kr, instantaneously, i.e. within B10214

to 10212 s of a fission reaction. Some fission fragments, such as 87
35Br ðdecay time55sÞ emit neutrons with a little delay

which can be from a fraction of a second to a minute as shown in Table 2.13 for thermal fission in uranium 235. These

delayed neutrons, though less than one percent of the total number of neutrons emitted in fission, play a beneficial role

FIGURE 2.26 Fission fragment yield for U233, U235 and Pu239.
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in the control of nuclear reactors. The delayed neutron yield was measured by Keepin in 1957 (Keepin, Wimett, &

Zeigler, 1957) and measured by Krick and Evans (Evans, 1974) for fast fission of U-233, U-235, U-238, Pu-239, Pu-

240 and Th-232 averaged over 0.1-1.8 MeV. For U-235, the measured value by Krick and Evans is 0.0163 6 0.0013.

Fission is also accompanied with prompt gamma ray, within the first 69 ns of thermal neutron fission from U-235,

with an energy distribution nγ Eð Þ neutrons emitted per MeV per fission (Peele & Maienschein, 1970).

nγ Eð Þ5
6:6

20:2e21:78E

7:2e21:09E

8><
>:

0:1,E, 0:6MeV

0:6,E, 1:5MeV

1:5,E, 10:5MeV

where E is in MeV.

2.9.5 Fissile and fertile materials

Nuclides, such as uranium-233, uranium-235, and plutonium-239, which undergo fission directly are called fissile

nuclides while nuclides that need to be transmuted (change of the nucleus) to become fissile nuclides are called fertile

nuclides. As uranium resources are finite, and plutonium does not exist in nature, the potential role of fertile nuclides

has remained an important concern.

Two important “fertile” nuclides found in nature are thorium-232 and uranium-238, which can be induced to

undergo transmutation by two-stage nuclear reactions

232
90 Th1 1

0n-
233
90 Th1 γ

233
90 Th���������������������!β2ð22minÞ 233

91 Pa���������������������!β2ð27dayÞ 233
92 U

and

238
92 U1 1

0n-
239
92 U1 γ

239
90 U ���������������������!β2ð23:5minÞ 239

93 Np���������������������!β2ð2:3dayÞ 239
94 Pu

The thermal and fast cross sections for some fissile and fertile nuclides are given in Tables 2.14 and 2.15, respec-

tively (Nuclear Energy Agency, 2015). These tables use a thermal spectrum for an averaged Pressurized Water Reactor

(PWR) and a fast spectrum for a reference fission spectrum. The data of Tables 2.14 and 2.15 for U-233, U-235 and

Pu-239 shown in Fig. 2.10 show very high fission cross sections for these fissile nuclides with U-233 and Pu-239

TABLE 2.13 Prompt and delayed neutrons for thermal fission in U235.

Group i Half-Life (s) Decay constant (λi, s) Energy (keV) Yield, neutrons per fission Fractions (β)

1 55.72 0.0124 250 0.00052 0.000215
2 22.72 0.0305 560 0.00346 0.001424
3 6.22 0.111 405 0.00310 0.001274
4 2.30 0.301 450 0.00624 0.002568
5 0.610 1.14 0.00182 0.000748
6 0.230 3.01 0.00066 0.000273

Total yield: 0.0158
Total Delayed fraction(β): 0.0065

Source: Lamarsh and Baratta, Introduction to Nuclear Engineering, p88. Based in part on G. R. Keepin, Physics of Nuclear Kinetics, Reading, Mass: Addison-
Wesley 1965.
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formed from Th-232 and U-238, respectively; in fact, both U-233 and Pu-239 have higher fission cross sections, than

for U-235, for both thermal and fast spectra.

The data of these tables is valid for a fresh core as it does not consider the changes in the spectra due to changes in

the fuel composition as the fuel is consumed.

2.9.6 The fission spectrum

Neutrons emerging from a fission reaction can have energies ranging from 0 to 10 MeV; a typical average value is

2 MeV. The number of neutrons emerging from fission with energies in the range E to E1 dE is ν Eð Þχ Eð ÞdE, where
χðEÞ is the fission spectrum. The following empirical expression, shown is the Watt fission spectrum

χ Eð Þ5 πa3b
4

	 
1=2

eab=4e2E=asinh ðbEÞ12
h i

(2.47)

where the constants a, b are listed in Table 2.16 for thermal and fast fissions at 1 and 14 MeV in thorium-232,

uranium-233, uranium-235, and plutonium-239.

The shapes of the fission spectra for the nuclides is shown in Fig. 2.27.

Some other fits to the experimental fission energy spectrum are the Maxwell spectrum

χ Eð ÞdE5
2π

πTð Þ3=2
ffiffiffiffi
E

p
exp 2

E

T

	 

dE

(T 5 1.33 MeV for uranium) for which the average energy is: Eav 5 3=2TB2MeV, and the Cranberg spectrum

χ Eð ÞdE5
2exp ð2AB=4Þffiffiffiffiffiffiffiffiffiffiffi

πA3B
p exp 2

E

A

	 

sinh

ffiffiffiffiffiffi
BE

p
dE

(A5 0.965 MeV, B5 2.29 MeV21 for uranium). For some other fission spectra used for modeling and simulation,

the reader is referred to the MCNP Manual (Werner, 2017).

Exercise 2.19: Watt Spectrum: Find the most probable and average energy of neutrons from the Watt fission spectrum.

TABLE 2.14 Averaged cross sections for fissile/fertile nuclides (thermal spectrum).

Thermal spectrum Th232 U233 U235 U238 Pu238 Pu239 Pu240 Pu241

Neutron capture (n,g) (b) 5.010 11.270 14.380 14.898 37.052 83.656 479.200 51.600
Fission (n,f) (b) 0.009 79.710 53.310 0.040 2.767 142.644 0.370 139.300

Source: NEA, OECD, 2015.

TABLE 2.15 Averaged cross sections for fissile/fertile nuclides (fast spectrum).

Fast spectrum Th232 U233 U235 U238 Pu238 Pu239 Pu240 Pu241

Neutron capture (n,g) (b) 0.093 0.068 0.085 0.067 0.096 0.057 0.099 0.117
Fission (n,f) (b) 0.078 1.893 1.229 0.321 1.997 1.793 1.376 1.649

Source: NEA, OECD, 2015.
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TABLE 2.16 Constants a and b for the Watt fission spectrum.

Nuclide energy Th-232 U-233 U-235 Pu-239

th 1 MeV 14 MeV th 1 MeV 14 MeV th 1 MeV 14 MeV th 1 MeV 14 MeV

a MeV 1.0888 1.1096 1.17 0.977 0.977 1.0036 0.988 0.988 1.028 0.966 0.966 1.055
b MeV221 1.6871 1.6316 1.461 2.546 2.546 2.6377 2.249 2.249 2.084 2.842 2.842 2.383

Source: ENDF/B.



2.10 Criticality

When fission takes place, the number of neutrons can rapidly multiply leading to the release of a large explosive

energy. It thus needs to be controlled so that the population remains steady as in the case of a nuclear power reactor.

Three such regions can be identified in terms of the system multiplication kðgÞ in the gth generation defined as the

neutron population in a generation divided by the neutron population in a previous generation

kðgÞ 5
nðgÞ

nðg21Þ (2.48)

The regions are

kðgÞ
, 1 subcritical

5 1 critical

. 1 supercritical

8<
:

In a nuclear reactor, the objective is to produce steady electrical power so that the objective is to keep the system

critical. It is important to understand that nuclear criticality can be achieved at different power levels, for example, a

300 MW reactor, a 600 MW reactor and a 1200 MW reactor are all kept critical. When an experiment in a lab is being

carried out, it is usually subcritical for safety purposes while when a system is designed to release an explosive burst of

energy, such as a nuclear weapon, then it is designed to become supercritical.

Nuclear fission can result in the uncontrolled multiplication of neutrons as fission proceeds if neutrons are not cap-

tured or do not escape from the system. If we assume that a fission reaction is accompanied with the release of two neu-

trons, then N fissions will result in 2 N neutrons. Thus for N5 10 fission reactions, there will be 2105 1024 neutrons

and ten “generations” later, this number will have grown to 2205 1,048,576, and subsequently by the 30th generation,

there will be 2305 1.0737 109 neutrons. Such a runaway situation is called super-criticality as it is accompanied by the

uncontrolled release of energy as in a nuclear bomb or a nuclear accident.

Exercise 2.20: Generations in fission: Estimate the number of generations needed for the release of energy equivalent

to the energy from 1 ton of TNT explosive.

Neutrons ‘born’ as fission neutrons at energies of the order of 1 MeV, with energy distribution as modeled by the

Watt spectrum (Fig. 2.27) slow down by collisions, as they travel in a medium, as discussed in Section 2.7, until they

achieve equilibrium with their surroundings at ‘thermal’ energies. To understand criticality, we consider a simplified

picture shown in Fig. 2.28.

For S “fast” neutrons injected into a system, PFS neutrons leak out of the system boundaries; of the remaining

ð12PFÞS, the fast fission multiplication increases the number to εð12PFÞS. These fast neutrons, while colliding with

host nuclei, lose their energy gradually and reach the “resonance” region where εpð12PFÞPTS escape the resonances,

FIGURE 2.27 Watt fission energy spectrum.
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while εð12pÞð12PFÞS are “captured,” and continue to slow down to thermal energies. At this “lower-energy,” some

neutrons are captured in moderator and structural material while εpf ð12PFÞð12PT ÞS are absorbed in fissile material

and thus εpηf ð12PFÞð12PT ÞS neutrons are produced by fission. In summary, the cycle began with S neutrons and

ended with εpηf ð12PFÞð12PT ÞS neutrons. This picture gives us an estimate of the ‘multiplication’ of the system,

viewed as the number of neutrons emerging in the “next generation” divided by the corresponding number in the previ-

ous generation. This is called the effective multiplication of the system and is written from Eq. (2.48) as

keff 5
εpηf 12PFÞð12PTð ÞS

S
(2.49)

The above can be simplified for an “infinite” system from which there is no leakage. In that case, keff 5 kN PNL,

where kN is the infinite multiplication factor

kN 5 εpηf (2.50)

and PNL is the nonleakage probability due to the finite size of the system expressed as the product nonleakage probabili-

ties PNL 5 12PFÞð12PTð Þ. For a finite system, the effective multiplication factor is

keff 5 kN PNL;F PNL;T (2.51)

From the cycle in Fig. 2.28, the quantities are defined as follows:

1. epsilon ε, the fast fission factor is a measure of the number of fissions caused by “fast” neutrons; thus we would

need to specify the cutoff energy Eth above which neutrons are classified as fast neutrons. For neutrons in the energy

range (0;E0) where E0 is the maximum energy of neutrons, with the fast group (Eth;E0) and the thermal group

(0, Eth), ε is defined as

ε5
no:of fission reactions

no:of fission reactions by thermal neutrons
5

Ð
dV

Ð E0

0
Σf ðr;RÞφðr;EÞdEÐ

dV
Ð Eth

0
Σf ðr;RÞφðr;EÞdE

5 11

Ð
dV

Ð E0

Eth
Σf ðr;RÞφðr;EÞdEÐ

dV
Ð Eth

0
Σf ðr;RÞφðr;EÞdE

(2.52)

2. the resonance escape probability p [Section 2.8, Eq. (2.46)] is defined as the probability of escaping resonance cap-

ture while slowing down from fast to thermal energies. In terms of the absorbing (fuel) atoms and the scattering

(moderator) atoms, and the effective resonance integral I,

p5 exp 2
NAI

ξMΣsM 1 ξAΣpA

� �

3. eta η is defined as

η5
no:of fission neutrons produced

no of thermal neutrons aborbed in fuel
5

Ð
υΣfφthdVÐ
ΣaFφthdV

5
υΣf

ΣaF

(2.53)

FIGURE 2.28 The processes contributing to the system

multiplication.
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4. and the thermal utilization f as

f 5
thermal neutrons absorbed in fuel

total no of thermal neutrons absorbed
5

Ð V
0
ΣaFφthdVÐ V

0
ðΣaF 1Σa;otherÞφthdV

(2.54)

where Σa;other 5Σa;M 1Σa;structural materials 1 . . . is the thermal macroscopic thermal cross-section for absorption in fuel,

moderator with absorption cross-section Σa;M and structural material etc. If absorption is considered to take place only

in fuel and moderator, then for a homogeneous mixture of fuel and moderator (so that they occupy the same volume)

f 5
ΣaF

ΣaF 1ΣaM

(2.55)

In a most elementary analysis, the criticality for an ‘infinite’ system thus depends on four factors viz ε; p; η and f.

Example 2.2: Six-factor formula: One-group criticality of a bare sphere of uranium-235 using the six-factor formula,

one-group diffusion theory, one-speed neutron transport and Monte Carlo simulation.

For a one-group calculation, the data of Table 2.17 is used.

2.10.1 Diffusion theory

Based on the four-factor formula [Eq. (2.50)], kN can be calculated from the data. A sphere of U-235 will have a fast

spectrum since there is no light-weight material; the fast fission the neutron spectrum will be fast. The fission factor,

resonance escape and thermal fuel utilization,εB1; pB1; fB1, so that kN 5 η5 2:25. This says that an infinitely large

system will have no leakage and its multiplication will be very high; in fact supercritical. The nonleakage probabilities

for fast and thermal neutrons will be derived in Chapter 4 (diffusion theory) for one- and two-group equations. For

now we accept the results to demonstrate calculation of keff ; the critical equation. The fast and thermal nonleakage

probabilities are

PNL;F 5
1

11B2τ
(2.56)

and

PNL;T 5
1

11 L2B2
(2.57)

respectively, so that

keff 5 15
kN

11B2τð Þ 11 L2B2ð Þ (2.58)

in terms of the buckling B, that is, the curvature of the neutron flux, given by

B2
m 5

kN 2 1

L2
5B2

g 5
π
Rc

	 
2

(2.59)

TABLE 2.17 One-Group cross sections for Uranium-235.

U-235 υ σf (b) σc (b) σs (b) σt (b)
υσf

σa

(A) 2.50 1.3 � 4.0 5.3 2.25
(B) υσf 5 5:297 σa 5 2:844 σtr 5 8:246 � 1.8625

Source: (A) Bell and Glasstone, Nuclear Reactor Theory: p.126; (B) Reactor Physics constants ANL-5800.
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for a sphere with critical radius Rc. Criticality requires that the material buckling Bm and geometrical buckling Bm are

equal. The critical radius is then found as

Rc 5 π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

kN 2 1

s
(2.60)

In Eq. (2.55), the diffusion length is interpreted as the fast diffusion length Lf since there is no thermalization of

neutrons.

L2 5
D

Σa

5
1

3ΣtrΣa

The results are: D5 0:8413cm; L2 5 6:1568cm2; critical radius Rc 5 8:3935cm, and the critical mass

Mc 5
4
3
πRc

3 5 46:443kg. This is to be compared with the critical radius and mass of a pure U-235 bare sphere (critical

radius 8.46 cm and critical mass 48 kg) given by de Volpi (DeVolpi, 1982) listed in Table 2.20.

Diffusion theory is an elementary model and useful for obtaining approximate solutions; a better formalism is pro-

vided by transport theory which is covered in some detail in Chapter 6. Here, we use some results from the one-speed

transport equation which has a diffusion approximation little better than the one-group diffusion model.

2.10.2 Transport theory

The one-speed transport equation (Bell & Glasstone, 1979) reduced from the continuous energy neutron transport

equation has been solved analytically for several idealized geometries and scattering models. Exact form solutions for

criticality in slabs and spheres (Bell & Glasstone, 1979; Kaper, Lindeman, & Leaf, 1974; Öztürk, 2012; Rawat &

Mohankumar, 2011) have been obtained which are both elegant and useful but of course need validation with elaborate

computer simulations.

The transport theory asymptotic flux in a sphere of radius R is

φas rð Þ5 A

r
sin

r

ν0j j (2.61)

where ν0 is a solution of the transcendental equation

15 cν0 tanh21 1

ν0
5

cν0
2

ln
ν0 1 1

ν0 2 1
(2.62)

For the mean number of secondaries c, that is, the number of neutrons emerging from an interaction

c5
υσf 1σs 1 σn;2n 1?

σt

(2.63)

The sphere is approximately critical when the asymptotic flux is zero at the extrapolated radius R
B
; thus φas R

B� �
5 0

at R
B
5Rc 1 x0 5πjν0 cð Þj.

The solutions of Eq. (2.62) are real for c, 1 and complex for c. 1; an approximation for ν0 is

1

ν02
5

3ð12 cÞ
c

12
9

5

12 c

c
2?

� �
(2.64)

To find the critical radius ν0 is determined form the transcendental equation [Eq. (2.62)]

Rc 5π ν0j j2 x0 (2.65)

and the extrapolation distance x0 can be calculated from the Mark P1 boundary condition

x0 5
1ffiffiffi
3

p 12
1

3
c2 1ð Þ1 1

5
c21ð Þ2 1?

� �
(2.66)

From the data of Table 2.17,
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In the spherical harmonics P1 “diffusion approximation,” the neutron flux is

φ xð Þ5 1

2

ffiffiffiffiffiffiffiffiffiffiffi
3

12 c

r
e2 xj j=L (2.67)

where the diffusion length is

L5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð12 cÞ
p (2.68)

Criticality verification benchmark sets for one-group U-235 and Pu-239 bare spheres are listed in Table 2.17 (Sood,

Arthur Forster, & Kent Parsons, 2003); these give the value k5 1 for the critical radii Rc listed.

2.10.3 Monte Carlo simulation

For criticality calculations, as for most other nuclear design calculations, Monte Carlo (MC) simulation is one of the

most elaborate methodologies due to its capability of handling realistic 3D geometries and interaction models. Details

of the Monte Carlo method will be covered in Chapter 8; here only the results are presented and discussed in the con-

text of this example.

The objectives of the MC simulation are i- to estimate keff , ii- to obtain the values of ε; p; η and f in the four-factor

formula, and iii- the leakage of neutrons.

The composition of the Godiva sphere is: (wt.%) U-235 93.71, U-238 5.27, U-234 1.02 with a density 18.74 g/cm3

and radius 8.7407 cm. The Godiva assembly was one of the first critical experiments for the experimental validation of

calculations as well as for kinetics experiments; it has continued since the 1950s with the present Godiva IV assembly

for research on nuclear as well as high energy lasers (Thompson et al., 2020). Several hand calculation methods have

also been developed for critical assemblies as well as for reactor configurations (Bowen & Busch, 2005; Caplin, Duluc,

& Richet, 2015); these are usually based on one- and two-group diffusion theory as well as interacting array models

and validating with codes such as MCNP (Brown, 2009; Harmon, Busch, Briesmeister, & Forster, 1994).

In MC simulation, you only get the answer you ask for; in deterministic codes, the solution i.e. neutron flux and

reactions rates are given in the problem domain specified in the input files. Thus the tallies and group boundaries need

to be specified. For this, we need to have a basic understanding of the physics and engineering of the problem. That

was the purpose of the preceding sections of this chapter.

So, now we take a look at Fig. 2.29, in the context of the underlying theory covered in Section 2.8 and

Figs. 2.19�2.21, to ‘see’ the resonance structures of both U-235 and U-238. The impressions we get are: i- both iso-

topes have similar resonance structures, ii- there are three distinct energy regions, iii- resonances are spread over the

energy range, few eV�1 keV for U-235 and few eV to B 2 keV for U-238, and iv- U-238 has higher resonance cross-

section values at lower energies. Fig. 2.29 shows resolved resonances at lower energies and unresolved resonances at

higher energies.

In order to select bin boundaries for energy groups, another detailed picture of the resolved resonances is required;

for this we take a look at Figs. 2.30 and 2.31.

From Fig. 2.31, we are in a position to select bin boundaries to tally absorptions in the low-energy resonance regions.

While Fig. 2.29 suggests group boundaries: 02 1eV, 1eV2 2keV, 2keV2 14MeV, Fig. 2.31 suggests “finer”

boundaries 1; 1:6; 2:5; 4; 5:2; 5:7; 6:6; 7; 7:5 and 10 eV and 2keV; 1MeV, and 14MeV. This process tells that MC simula-

tion is both an art and a science.

The simulation was carried out for 5000 neutrons per batch, 200 batches, and 20 “skip” cycles; all these terms will

be covered in detail in this book. The interactions of one million neutrons in the uranium sphere were simulated with a

computational effort of 1.95 min on an Intel (R) Core i7-2620M CPU @ 2.70 GHz processor with a 32-bit Operating

System and 8.00 GB RAM.

The energy-dependent neutron flux obtained from simulation is shown in Fig. 2.32. It appears to be a “hard” spec-

trum, essentially all above 1 keV which is understandable as there is no light material present in Godiva.

From Fig. 2.32, it can be expected that resonances will play no part in the neutron population as neutrons will most

probably not reach the resonance energies during their slowing down process. The energy group boundaries for neutron

flux: 300 equal-lethargy bins from 0-10 MeV. This would not have been expected in the presence of water as in a Light

Water Reactor.
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The average flux for one source neutron is φ5 2.4213 3 1023 (0.0006) neutrons per cm2 per second. The tallies,

their bin structures and results from simulation are given in Table 2.18.

Reactions tallied: ΣtφV , υΣfφV , ΣfφV , Σðn;2nÞφV , Σðn;3nÞφV , Σðn;fxÞφV , Σðn;f ÞφV in energy groups 02 1eV,

1 eV2 2 keV, 2 keV2 14 MeV;

Results showed no radiative captures Σ n;γð ÞφV in groups with bin boundaries at 1, 1.6 2.5, 4, 5.2 5.7 6.6, 7, 7.5 and

10 eV since there were no neutrons at these energies. The radiative captures in the range 10 eV�2 keV were found to

be 3.58282 3 1025 (0.1048) and in the range 1 MeV�14 MeV there were 8.68463 3 1023 (0.0014); the total captures

being 4.48660 1023 (0.0014). Thus in the four-factor formula, it is justifiable to set ε5 p5 1. Similarly there is no

moderator so that fuel utilization f 5 1 and keff 5 ηPNL;f . The system multiplication based on the average of three esti-

mators is keff 5 0:99739. From the tallies, ηB2:3319 and PNL;fB0:4263 giving keffB0:9941:

Exercise 2.21: Godiva: From the results of the above Monte Carlo simulation, write a conservation equation balancing

the total number of interactions with all other interactions. What information can you obtain from this balance

equation?

Several benchmarks are given for criticality validation calculation (Sood et al., 2003) with one-group data for U-235

and Pu-239 given in Table 2.19. Notice that these values give a critical radius for a U-235 sphere which is different

from that of Godiva (Table 2.22). The same is true for Pu-239 from the values in Tables 2.21 and 2.22.

FIGURE 2.29 Radiative capture cross sections of U-235 and U-238.
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It is important to understand that criticality depends on a number of factors such as the enrichment of fissile materi-

als, their geometrical shapes, and the environment which they are placed in. The first step in a nuclear system such as a

nuclear reactor is to determine its critical composition and size. The data that must be used for such calculations is

strongly dependent on the neutron spectrum. Only a basic understanding of the system can be obtained from generalized

data such as that shown in Table 2.20, for example, the difference in the fission cross-section for three situations viz

thermal energy σ(fs,th), a reactor spectrum σ(fs,rs) and a fast spectrum σ(fs,f). Some basic questions that can be

answered by looking at the data in Table 2.20 are:

1. Would it more hazardous to sit in the vicinity of a U-235 or a U-238 sphere in terms of neutron emissions from

spontaneous fission?

2. Which isotope of plutonium would be most suitable for a thermoelectric generator?

3. What would be the effect of water placed in the vicinity of a Godiva sphere?

In the early days of nuclear technology, the most important challenge was to determine the critical masses of fissile

nuclides and experimentally verified for bare and reflected spheres of uranium and plutonium listed in Table 2.21. It is

important to note that criticality can be achieved by significant reductions of fissile material when the core is sur-

rounded with a “reflector” such as U-238 though with a penalty of increased mass.

In Table 2.21, the critical mass for U-235 is 48 kg for a pure U-235 sphere; this is different from the Godiva bare

sphere (Rowlands et al., 1999) which has a weight composition given in Table 2.22.

A study of neutronic systems can be carried out with the use of diffusion theory, transport theory or Monte Carlo

simulation which are based on group averaged cross-section data and spectrum calculations described in this chapter.

FIGURE 2.30 Low-energy range radiative capture cross sections of U-235 and U-238.
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FIGURE 2.31 Low-energy resolved resonances of U-235 and U-238.

FIGURE 2.32 Energy-dependent neutron flux in Godiva.
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TABLE 2.18 Monte Carlo simulation results for Godiva.

Tally Quantity estimated Reaction MT number Energy Bins

02 1eV 1eV2 2keV 2keV2 14MeV Total

Neutron current J � � � 0.5737 (0.0006)
Total interactions ΣtφV 1 � 2.32193 1024 (0.1002) 2.6531 (0.0007)a 2.6534 (0.0007)

Fission reactions Σf φV 26 � 7.19393 1025 (0.1023) 3.83853 1021 (0.0006) 3.83923 1021 (0.0006)

Neutrons produced from fission υΣf φV 26 �7 � 1.75093 1024 (0.1023) 9.96973 1021 (0.0006) 9.97153 1021 (0.0006)

Multiplication (n,2n) Σðn;2nÞφV 16 � � � 2.65313 1023 (0.0076)

Multiplication (n,2n) Σðn;3nÞφV 17 � � � 4.59173 1026 (0.1428)

Total fissionb Σðn;fxÞφV 18 � � � 3.77273 1021 (0.0006)

fission Σðn;f ÞφV 19 � � � 6.54293 1023 (0.0010)

arelative standard error; read as 2.6531(16 0.0007).
bsum of (n,f),(n,n’f), (n,2nf),(n,3nf).



TABLE 2.20 Some useful actinide physical properties.

Nuclide α α ν ν σ σ σ σ σ τ N Q

(th) (f) (th) (f) (fs, th) (fs, rs) (fs, f) (c, th) (c, rs) (total)

b/b b/b n/fs n/fs b b b b b y n/s-kg W/kg

Th-232 2.10 0 0.08 7 1.4E10 0.1

U-233 0.09 2.45 2.61 528 1.90 50 1.6E5

U-234 2.60 0 3.9 1.50 281 2.5E5 1.7

U-235 0.17 0.27 2.40 2.56 580 409 1.30 100 105 7.1E8 0.2

U-236 2.50 3.2 0.80 6 74 2.4E7 1.7

U-236 2.30 3.7E7 2E4

Np-237 7 2.85 0 2.5 1.4 170 359 2.2E6 B1

U-238 2.50 0 0.6 0.3 3 8 4.9E9 17

Pu-238 (3) 19 2.5 500 366 8.8E1 2.6E6 567

Pu-239 0.36 0.22 2.86 3.08 742 1060 1.8 243 433 2.4E4 30 1.9

Pu-240 1.6 2.8 3.10 0 2.5 1.4 300 897 6.6E3 1E6 7.1

Pu-241 0.38 0.13 2.96 3.0 1010 1110 1.8 420 334 1.4E1 3.4

th5 thermal, f5 fast, rs5 reactor spectrum, fs5 fission, c5 capture.
α5 capture-to-fission ratio, v5neutron yield, σ5 cross-section (in barns).
τ5 half-life, Q5 specific power (heat), N5 spontaneous fission neutron rate.
E5 exponent (to power of ten).
Neutron emission rate from (α, n) reaction in 238Pu oxide is 1.4E7 n/s-kg.
Some infinity-dilute resonance integers (0.6eV-10 MeV):
α(239Pu)50.6; σ(c) (240Pu)58500 b; σ(c) (242Pu)5 1120b.

Source: DeVolpi, A., Denaturing Fissile Materials, Progress in Nuclear Energy, Vol. 10, No. 2, pp. 161-220: from Table 2.

TABLE 2.21 Critical solid spherical systems: bare and reflected with 10 cm U.

Material Density (g/cc) Configuration Core Ref. Total mass (kg)

Radius (cm) Core mass (kg) Ref. mass (kg)

U233 18.9 Bare 5.87 16 � 16
Ref. 4.2 5.7 221 227

U235 18.9 Bare 8.46 48 � 48
Ref. 5.8 15.7 300 316

Pu239 α 15.9 Bare 5.49 11 � 11
Ref. 3.8 4.5 204 209

Pu239 δ 19.5 Bare 5.68 15 � 15
Ref. 4.7 7.0 243 250

Source: DeVolpi, A., Denaturing Fissile Materials, Progress in Nuclear Energy, Vol. 10, No. 2, pp. 161-220: Table 3.

TABLE 2.19 One-Group isotropic cross sections and critical radius of bare spheres.

Material υ Σf (cm) Σc (cm) Σs (cm) Σt (cm) υΣf

Σa
(cm) Rc (cm)

U-235 (a) 2.70 0.065280 0.013056 0.248064 0.32640 2.25 7.428998
Pu-239 (a) 2.84 0.081600 0.019584 0.225216 0.32640 2.612903 6.082547

Source: Sood, A., Forster, A., and Parsons, D. K. Analytical Benchmark Test Set for Criticality Code Verification, Progress in Nuclear Energy, Vol. 42, No. 1,
pp. 55-106, 2003.
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Problems

2.1. Describe the Boltzmann equation for the kinetic theory of gases and the significance of its moments.

2.2. From the size of aU-238 nucleus, calculate the potential scattering cross-section and compare with the

figures for U-238 cross sections in this chapter.

2.3. How would you find the average lethargy gain for a mixture consisting of four elements with given atomic num-

ber densities Ni; i5 1; 2; 3; 4?
2.4. Write a formula for the intensity reduction of a spherical multilayered shield of neutrons.

2.5. What is the significance of the cadmium ratio in the measurement of neutron flux?

2.6. How can the neutron age used in a “modified” one-group formula to compute neutron leakage in a finite

system?

2.7. On an energy-flux figure, for a narrow resonance sketch the flux and the absorption cross-section and describe

the phenomenon known as self-shielding. Show that the lethargy dependent flux decreases inversely with the

total cross-section.

2.8. For the first resonance of U-238 at 6.67 eV calculate the total cross-section given in Eq. (2.39) ignoring the inter-

ference term.

2.9. Write a formula for estimating the critical energy of fission in Pu-239.

2.10. Calculate the value of c for the Godiva one-speed data given in Table 2.17 and solve the transcendental equation

[Eq. (2.62)].

2.11. Calculate the extrapolation distance x0 from the Mark boundary condition [Eq. (2.63)] and estimate the critical

radius for Godiva.

2.12. Given a homogenous mixture of a fissile material and water, outline the steps for calculating the critical dimen-

sions of slab system. The given data is i-concentration of the fissile material cF grams per liter, and ii- the non-

1/v gi, factors and cross sections σifor both materials, i5 abs; f . For a slab system, the buckling is B5π= aB,

where the physical slab thickness is a5 a
B

2 2d, a
B

is the extrapolated thickness and d5 0:71λtr. Justify any

other assumptions you make.

2.13. In the above problem (criticality for a homogeneous system) consider the effect of slowing down (Section 2.8)

including both neutron age τ and the diffusion length L to calculate the nonleakage probabilities in the six-factor

formula.

2.14. In the above problem (criticality for a homogeneous system), outline the procedure if you are required to find

the concentration of the fissile material to make a slab of given dimensions critical.

Nomenclature

English lower case
c mean number of secondary neutrons per collision

f thermal utilization factor

keff effective multiplication

kN infinite system multiplication

m mass of neutron

n(E) number of molecules with energy E per unit interval dE

TABLE 2.22 Bare critical assemblies.

Model Godiva Jezebel Jezebel23

Radius (cm) 8.7407 6.3849 5.9838
Density (g/cm3) 18.74 15.61 18.424
Composition (atoms/barn-cm) U235 4.4994e-2 Pu239 3.7047e-2 U233 4.6712e-2

U238 2.4984e-3 Pu240 1.7512e-3 U234 5.9026e-4
U234 4.9184e-4 Pu241 1.1674e-4 U238 2.8561e-4

Ga69 8.26605e-4 U235 1.4281e-5
Ga71 5.48595e-4

Mass (g) 52419.98 17019.77 16534.98
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n0 total number of molecules

tm moderating time

vc velocity of neutron in center of mass system

Vc velocity of nucleus in center of mass system

vl velocity of neutron in laboratory system

�vM average Maxwellian neutron velocity

vp most probable velocity

vr relative speed of neutron and nucleus in the laboratory system

x0 extrapolation distance

English upper case
A relative mass of nucleus (relative to neutron mass)

B buckling

D diffusion coefficient

E0 resonance center of mass energy

EC critical energy

Ec kinetic energy of neutron and nucleus center of mass energy

EAL kinetic energy of target nucleus before collision (Lab system)

EAL
0 kinetic energy of target nucleus after collision (Lab system)

EL kinetic energy of neutron before collision (Lab system)

EL
0 kinetic energy of neutron after collision (Lab system)

Ep most probable energy

F collision density

I effective resonance integral

J neutron current

L diffusion length

P potential scattering

P resonance escape probability

PF,T leakage probability (F5 fast, T5 thermal)

PNL,F,T nonleakage probability (F5 fast, T5 thermal)

Rx reaction rate type x

Rc critical radius

S source

T temperature

V volume

VCM velocity of center of mass

Vl velocity of nucleus in the laboratory system

J spin

Greek lower case
μ reduced mass m1m2=ðm1 1m2Þ
α capture-to-fission ratio

α A21
A11

� �2
ε
η number of fission neutrons emerging per thermal neutron absorbed

ξ average gain in lethargy per collision

λ mean free path

λ~1 reduced wavelength

ν0 transport relaxation length

ν neutrons emerging from fission reaction

χ fission distribution function

θL scattering angle in the lab system

θCM scattering angle in the CM system

τ neutron age
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τ half-life

τ lifetime of compound nucleus

φas asymptotic flux

φ average flux

ϕ azimuthal angle

Greek upper case
Γ measure of the width of a resonance (energy)

Γi=Γ probability of ith particle emission from a resonance

Γγ=Γ probability of gamma emission from a resonance

Σa macroscopic transport cross-section

Σf macroscopic fission cross-section

Σ(n,γ) macroscopic radiative capture cross-section

Σtr macroscopic transport cross-section

Σ(n,2n) macroscopic n; 2nð Þcross-section
Σ(n,3n) macroscopic ðn; 3nÞcross-section
Σ(n, fx) sum of n; fð Þ; n; n0fð Þ; n; 2nfð Þ; n; 3nfð Þ cross sections
Σ(n, f) macroscopic fission cross-section

Φ probability

Ψ wave function

Abbreviations
L Laboratory system

CM center of mass system

CN compound nucleus

MT material reaction number
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Chapter 3

Nuclear reactors and systems

A nuclear reactor is based on the utilization of energy from a nuclear reaction such as fission or fusion. In a nuclear

power reactor, the thermal energy from nuclear reactions is converted into mechanical energy, which can subsequently

be converted into electrical energy which we know as electricity that powers our homes, cities, and industries. Energy

is what makes our 21 century world so different from earlier centuries. It is in our interest to sustain the production of

energy and develop better, cleaner, and more sustainable forms of energy that will make it possible for human beings to

live high-quality lives.

There has been renewed worldwide interest in nuclear energy due to its success, resilience and innovations leading

to competitive high-density power systems compatible with sustainable development goals.

Nuclear reactors have been operating since the first power reactor went critical on December 1, 1942 producing

only 60 W just enough to light a bulb. Since then, the nuclear industry has undergone great advancements; the first gen-

eration reactors have mostly retired and advanced third generation reactors are being commissioned and several are con-

nected to the grid. The contribution to global electricity now exceeds 11% while the nuclear industry faces competition

from renewable solar and wind energy technologies.

In the last 80 years of nuclear power production, the nuclear industry has seen a very high safety record with three

exceptions namely Three Mile Island (USA, 1979) Chernobyl (Ukraine, 1986) and Fukushima (Japan, 2011). In the

Three Mile Island (TMI) accident, partial core melt resulted due to a loss of primary coolant; the reactor shut down

within a second, there was no injury or loss of life by significant radioactive release into the environment. Chernobyl

was a major accident due to both design and operational failures; the radiation release was significant and the accident

caused a number of deaths and thyroid cancers. The Fukushima accident was also a major accident resulting from a

large earthquake followed by a Tsunami causing damage to the cores of reactors and large-scale evacuations. With the

knowledge that followed from detailed analyses, nuclear reactor design and practices have improved to reduce the prob-

ability of such occurrences significantly.

This chapter presents a review of the current status of nuclear reactors leading to the next generation, Gen-IV,

designs aimed for the coming decades, followed by a birds’-eye view of the modeling and simulation requirements of

the nuclear industry. The technology of nuclear reactors is based on particles and radiation (electrons, protons, neutrons,

X-rays and gamma-rays) and nuclear reactions discussed in the preceding chapters. Here, the overall systems will be

discussed and, in their context, engineering requirements and challenges to be addressed by scientists, engineers and

designers will be highlighted.

3.1 Status of nuclear power

Nuclear power contributes to over 11% of the world’s electricity with generation units established in the 1950s. This

section reviews the generations of nuclear power reactors from the early 1950s to the next generation reactors.

3.1.1 Generations of nuclear power

Nuclear reactors are classified in several ways and can now, with hindsight, be categorized in generations with the first

generation beginning in the early 1950s to the current beginning of what will soon be called the fourth generation.

According to the neutron spectrum, coolant and moderator a reactor is classified as a thermal reactor for a thermal

(low energy) spectrum and conversely as a fast reactor when it has a fast (relatively high energy) spectrum, with little

neutron moderation. Going by the coolant and moderator, a water cooled and moderated reactor is called a light water

reactor (LWR), which can be subclassified as a pressurized water reactor (PWR) or a boiling water reactor (BWR), a

103
Nuclear Engineering. DOI: https://doi.org/10.1016/B978-0-323-90618-0.00003-X

© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-323-90618-0.00003-X


heavy water (D2O) cooled and moderated reactor is called a pressurized heavy water reactor (PHWR), when gas is used

as coolant, it is called a gas cooled reactor (GCR).

Reactors are also classified according to their capacity as shown in Table 3.1.

In earlier generations, several variants were tested and developed with materials and moderators such as beryllium

and beryllium oxide to verify their compatibility with water, sodium and lead-bismuth alloys. The supercritical water

reactor, operating beyond the critical point of water, was tested at high temperatures to enhance the thermodynamic

efficiency. Organic coolants were tested for their moderating properties and corrosion reduction. The behavior of mate-

rials under intense radiation was a deciding factor in their selection. The latest developments in reactor design,

Generation-IV systems, aim for compact architecture, the use of liquid coolants (instead of water) for higher operating

temperatures instead of water, enhanced safety systems and new proliferation-resistant fuel technologies. Small and

modular reactors further ease the factory manufacturing process and since they require less water than larger reactors,

so they can be located in off-grid locations with limited water supply.

The nuclear submarine program of the Navy supported and benefited commercial land-based PWR development;

the same is true for space nuclear systems that benefited the development of compact systems.

The first power-producing nuclear reactor at the Calder Hall plant, in the United Kingdom, started generating elec-

tricity in 1951. These reactors, for example, Calder Hall (GCR), Dresden-1 (BWR), Shippingport (PWR), Fermi-I

(SFR), Kola-I (PWR) and Kola-II Russian Vodo-Vodyanoi Energetichesky PWR (VVER) reactors were part of the first

generation reactors (IAEA, 2020).

Generation I (1950s�1970s) refers to these earliest nuclear reactors. These reactors were the products of military-

and submarine-inspired efforts taking place with huge financial inputs, infrastructure developments in the post-Second

Word War era. This knowledge and experience, with massive financial expenditures, found useful application in the

construction and subsequent grid connections to the grid. Between 1954 and 1960, there were fifteen (15) operational

reactors with capacity 1087 MW(e).

Generation II (1970s�1990s) reactors, at higher capacity, were being deployed on a large scale with the objectives of

improving the performance, increasing capacity and fuel burnups with better safety and increased lifetime from 30�40 year

to 50�60 years. The number of reactors increased to 84 units with a capacity of 16,656 MW(e). Canada had developed the

PHWR from its Chalk River experience and was looking forward to its first exports. The UK had improved the gas-cooled

reactors, and the Soviet Union had upgraded the RBMK (Reactor Bolshoy Moshchnosty Kanalny) graphite moderated reac-

tors. In the next decade 161 reactors were added to the grid taking the number of NPPs to 245 with a capacity exceeding

133 GW(e). The US had 47 commercial reactors, USSR had 10, followed by Canada (4), India (3), Argentina (3) and Japan

(2), while China, Germany, and South Korea were the countries that had none. The size of reactors had increased to

B3000 MW(t)/1000 MW(e), with a few B3500 MW(t)/1200 MW(e) in the US, 1500 MW(t)/655 MW(t) in the UK and

going up to B3200 MW(t)/925 MW(e) in Russia. The United States had 31 PWRs and 16 BWRs, while the UK had

GCRs, and Russia had four types namely the large LWGR (RBMK-1000) 3200 MW(t) to the small LWGR Bilibino

62 MW(t)/11 MW(e), and intermediate PWRs (VVER) B1375 MW(t)/440 MW(e) reactors. The emphasis in these systems

was to go toward large designs for favorable economies of scale. These were large-scale power plants, for example, Bruce

(CANDU), Kalanin (PWR), Kursh 1�4 (LWGR), Palo Verde (PWR), Grand Gulf (BWR) and Fukushima II (BWR).

In the 1980s, the Republic of Korea and Germany added seven (7) and six (6) reactors, respectively, to their com-

mercial grids while China still had none.

The average capacity of nuclear reactors had increased from B200 MW(e) in 1970 to B540 MW(e) by 1980 and to

B760 MW(e) by 1990. Thus, the fivefold increase in the number of commercial NPPs had undergone a capacity

increase of about four times. These numbers indicate the sharp rise of the nuclear industry and the operational confi-

dence that led to the capacity increase.

TABLE 3.1 Nuclear reactor classifications by size.

Reactor size Standard terminology Power (MWe) Typical applications

Large NPP .1000 Baseload power
Medium � 700�1000 Baseload power
Small SMR 100�700 Flexible grid power
Very small vSMR ,100 Remote locations
Micro MNR ,10 Propulsion
Battery Nuclear battery ,1
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The two events that affected the awareness levels in the nuclear industry in this time period were TMI and

Chernobyl.

In 1975, the “Reactor Safety Study” report WASH-1400, known as the Rasmussen Report (Bartel, 2016) was the

“first full-scope use of Probabilistic Risk Assessment PRA techniques” that contributed to the awareness of quantifying

the risk of what can go wrong, its likelihood, and consequences. Published 4 years before TMI, the WASH-1400 Report

could correctly identify that a small scale Loss of Coolant Accident (LOCA) could initiate core damage which is a

design basis accident that occurred at TMI.

Generation III (1990 onwards) nuclear reactors were considered to have begun, with the purpose of design improve-

ments producing simpler and rugged designs which would lead to standardization and more efficient licensing and

construction processes. Technological improvements included enhanced passive safety features, higher operating

lifetimes of up to 60 years, higher burnup for better fuel utilization and reduced waste, reduced core melt and damage

probability, and reduced power generation cost. These reactors required certifications from the European Utility

Requirements (EUR) in Europe and by EPRI (Electric Power Research Institute)/URD (Utility Requirements

Document) in the United States.

In Europe, the European Pressurized Reactor, also called the Evolutionary Power Reactor (EPR) was the first to

obain the EUR license; the first EPR unit became operational in CHina (Taishan 1) in 2018. Anotehr large Generation

III Advanced Power Reactor APR1400, Section 3.3, is a 1400 MW(e) large PWR designed with safety barriers and pro-

tection on “defense in depth” implemented to five levels of protection. These include successive barriers to prevent the

release of radioactive material to the environment and an integral design (steam generators inside the Reactor Pressure

Vessel) to prevent a LOCA.

wGeneration III1 had realized innovative and evolutionary designs in which safety features were enhanced,

radiation exposures reduced and the maintenance and operations made simpler. In 1994, China had its first connec-

tion to the grid; a 300 MW(e) PWR Qinshan-I. Globally, between 1990 and 2000, fifty-two (52) new reactors

were connected to the grid. The number of reactors increased in number to 416 by 1990 with a capacity of

B318 GW(e).

The Gen-III1 , Advanced Passive Reactor AP1000, Section 3.3, is an upgrade of the Gen-III AP600 at 1100 MW

(e) is also a relatively large reactor. Its distinguishing features include a relatively large pressurizer connected to one

of the hot leg pipes variable fuel enrichment (2.3%2 4.8%), fuel burnable absorbers for better lifespan, high average

burnup of 60 GWd/t, and thermodynamic efficiency B34%. A modular design is applied to the containment and for

the fabrication of equipment such as the reactor internals and the condenser. The advancements to the AP600 include

low maintenance and high availability. The AP1000 has good safety margin for shutdown and core damage frequency

B 5 3 1027/reactor year (RY). It meets very high standards of reliability and cost affordability and satisfies sustain-

able development goals, mitigating climate change and reducing carbon emissions associated with fossil fuel thermal

plants. These reactors included the CANDU 6, AP600, the Advanced Power Reactor APR1400, and the advanced

boiling water reactor (ABWR).

The Fukushima earthquake in March 2011, led the nuclear industry to take a fresh look at the nuclear industry.

The evolution of nuclear power reactors and designs (IAEA, 2020) from the early prototypes of the first generation

reactors of the 1950s thus led to large-scale deployment with second generation designs in the 1970s.

In the period 1990�2000, there were 52 new reactors connected on their grids. This was the period of the beginning

of evolutionary Generation III1 designs, such as the Advanced Passive AP1000 Reactor. In the next two decades,

from 2000 to 2010 there were 32 new reactors and from 2010 to end of December 2019, there were 58 new reactors

connected to the grid.

The most notable programs were those of China with forty-eight (48) new reactors, India with sixteen (16), Japan

twenty-six (26) until 2010, South Korea twenty-one (21) and Russia seventeen (17). Thus, from 2000 until the begin-

ning of 2020, out of the 90 new reactors, 71 were in Asia and twelve (12) in Russia.

As of the end of 2019, there were 448 operational nuclear reactors in the world. Most of the reactors in the world

are PWRs (68%), followed by BWRs (14%), PHWRs (11%), GCRs (3%), LWGR (3%), and Fast Breeder Reactors

(FBRs) (1%). There are 305 operating PWRs in the world (IAEA, 2020) out of which 42 produce less than 600 MWe

and 263 produce greater than or equal to 600 MWe. Out of 54 new constructions, 44 are PWRs. By far, the PWR pro-

gram is the most successful in the world contributing to over 60% of the total nuclear power reactors.

The number of nuclear reactors by region indicates the rising trend of nuclear energy in Asia, the stagnation in the

United States, and the decline in Europe and the United Kingdom. Asia (Far East) is leading with both operational and

under-construction reactors counted, followed by Northern America, Western Europe, Central and Easter Europe, then

Middle East and South Asia and Africa.
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In China, nuclear power development is taking place at a phenomenal level; with its 49 reactors and a B48 GW(e)

capacity, 16 reactors are under construction. This will modernize China’s power infrastructure and reduce its heavy

dependence on coal which presently contributes to over 65% of the electricity generation. The carbon dioxide emissions

of China at 28% of the world’s total places it at first position and hence its’ move to nuclear power is bound to in line

with sustainable development goals. The new builds are mainly large reactors such as AP1000, Hualong One (based on

the GenII1 CPR1000 and AP1000 technologies) and the CAP1400 whose extensions will be 1400 and 1700 MW reac-

tors with China holding intellectual property rights. With reactors under construction, as well as 43 planned reactors,

China with 107 nuclear power plants (NPPs) is set to become the world’s number one nuclear power program with a

capacity exceeding 100 GW(e).

It is important to consider the number of permanent shutdowns, and its long-term effect on nuclear power at the

global level. As of December 2019, there have been 186 permanent shutdowns with Europe seeing 62, USA 37, UK 30,

Japan 27 and Canada 6. By February 2020, the number of shutdowns had increased in Europe with closures of 30 reac-

tors in Germany, six in Sweden, four each in Italy, Ukraine and Bulgaria, and three each in Spain and Slovakia. Many

of these have been due to the expiration of design life. The number of shutdowns peaked in 2011 with the Fukushima

disaster in March 2011 leading to the closure of four units.

Another peak in shutdowns was in 2019 mostly due to the aging of reactors and expiration of licenses. The average

age of nuclear reactors in the world is about 20 years while the US reactors on the average have an age of about 40 years.

3.1.2 Reactors shut down

The design life of Generation-1 nuclear reactors was generally about 30�40 years; several reactors were shut down

before the expiry of this design life due to economics of their electricity generation or other operational problems. In

spite of this design life span, the operational life span, as in improved reactors, can be much longer as there are no

strong technical limits to prevent extending reactor operations by another 20 years, and possibly up to 80 years. In the

United States, for example, with 96 operational reactors, as of January 1, 2021, providing about 20% of the electricity,

it is likely that most will get life extensions to go up to possibly 80 years.

Of the shut down reactors across the world, 57 are PWRs, 50 are BWRs, and 38 are graphite-moderated GCRs; this

probably marks the end of the UK-type GCRs and a decline in BWRs although four are under construction and nine are

planned. The PWRs, however, are on the ascendance, with 44 under construction and 57 reactors planned.

The UK program of early Magnox GCRs, the first in the world to have generated electricity, had to shut down reducing

its fleet to AGRs and a PWR With these shutdowns, The UK is considering the Chinese Hualong Design; similar to the two

1100 MWe units which China has constructed in Pakistan out of which one was connected to the grid in March 2021.

With its quick progress, China has also entered into foreign agreements most notably with Pakistan and fourteen

other countries including Romania, Argentina, the UK, Iran and Turkey. In Pakistan, 300 MW PWRs are in operation

at Chashma as the C-1 to C5 series and in December 2020, the fuel loading of the Karachi-2 (K2) Hualong 1100 MW

was followed by criticality in March 2021 and grid connection the same month. Out of 8 nuclear reactors in Pakistan,

seven PWRs (B3700 MW) have been set up by China.

3.1.3 The future of the nuclear power industry

The future of the nuclear industry is thus of vital concern to several countries. As the largest operator of nuclear reac-

tors, the United States currently has 96 operational reactors at 58 NPPs; these have an average age of B40 years which

approaches the limit of the design lifespan. These reactors provide B20% of the total electricity generation of the US.

After the Fukushima earthquake disaster of March 11, 2011, the nuclear energy prospects have suffered a setback.

In earlier days, Japan had 61 NPPs, out of which 27 were shut down and one was under construction. Out of the

remaining operational 33 NPPs, 16 were PWRs and 17 were BWRs. Currently 31 NPPs have a capacity of 31.7 GW(e).

Japan’s energy situation is heavily dependent on oil imports and hence it has been looking toward a reduced depen-

dency on fossil fuels, as well as on nuclear energy after Fukushima; leaving renewables as the preferred source. In spite

of this, the share of nuclear is planned to be B20% by 2030.

Since its inception in the 1950s, the nuclear industry has had an excellent safety record; it has been a reliable clean

energy baseload power source contributing to B16% of the electricity at one time and reducing now to B 11%. From

the three accidents that have taken place, TMI, Chernobyl and Fukushima, considerable knowledge has been gained

and incorporated into new designs especially the Gen-IV designs.

Based on the statistics and trends discussed above, there are conflicting signals on the growth of the nuclear industry.
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The key advantages of nuclear energy are:

1. clean and low-carbon energy generation; if col or gas would be burnt instead of nuclear, hundreds of millions of

tons of carbon dioxide woud be released in to the atmosphere, worsening the environmental problems,

2. high-density energy,

3. safe track record, and

4. reliability.

The nucler industry faces challenges due to

1. high capital cost and

2. radioactive high-level waste management.

Some sustainable growth strategies for the nuclear industry are

1. technology improvements and enhanced safety in large power reactors,

2. development of small modular reactors (SMRs) to become commercially viable by the 2030s, and

3. hydrogen production from nuclear reactors.

3.2 Nuclear reactor systems

Nuclear reactors are huge and capital intensive power infrastructures integrating technologies that are both conventional

and hi-tech. Each NPP as a system consists of several subsystems. The International Atomic Energy Agency has classi-

fied the major systems as

1. The primary system

2. Balance of plant

3. Spent fuel storage

4. Nonelectrical systems

Essentially, a nuclear reactor is a system that produces thermal energy from fissions in the fuel elements placed in

its core. The thermal energy can be converted into any other form of energy from which “useful” work can be extracted.

In the form of a mathematical statement, this is the First Law of Thermodynamics which states that energy can neither

be created nor destroyed but it can be converted from one form to another. In the PWR core, the heat produced Q raises

the enthalpy H of the water entering at some temperature and pressure Ti;Pi, and the heat is used to produce work W in

the turbine from which electricity is generated. After the steam has been used, it loses its energy, flows through a con-

denser and is pumped back into the steam generator. The efficiency η of a reactor is a measure of the ratio of net work

to heat generated. Reactors are designed in a way that maximizes their efficiency; for this it should produce heat at the

highest temperature possible and reject heat at the lowest temperature possible.

The subsystems (IAEA, 2007) of each system are classified as follows:

The reactor vessel (RV) which includes the reactor core and the control systems, the coolant system, the pressurizer

and the steam generator with safety and protection systems.

In the reactor core, the components include the fuel assembly with fuel rods and cladding surrounded by the moder-

ator and coolant. The engineering design of the reactor core covers the areas of neutronics, radiation transport, thermal

hydraulics, structural mechanics and control systems. Detailed calculations are used to obtain design and operating para-

meters for the amount and placement of fissile material in the core, the flow of coolant, and the control of reactivity.

The system pressure, in a PWR for example, is maintained by a pressurizer which ensures the state of the coolant and

maintains the high pressures required.

At the heart of the control system is the control rod mechanism and the calculation of operational load following

movements as well as maintaining reactivity margins for safe shutdown in the event of any departure from the pre-

scribed set points. In addition to control rods, nuclear reactors use burnable absorbers such as boron, gadolinium, euro-

pium in the form of compounds. Boric acid, for example, is dissolved in the coolant to reduce the reactivity in case it

increases. Another operational feature, to “flatten the flux” is to provide the fuel rods with a burnable poison at the

beginning of a cycle to enhance the performance of the reactor.

A steam generator is a major component where heat transfer from the nuclear system takes place to the working fluid

such as water which gets converted to hot “superheated” steam which is intended to drive a turbine. Here, the shell and

Nuclear reactors and systems Chapter | 3 107



tube exchange process is dependent on the flow rate and thermal capacity of the fluid as well as the physical condition of

the system. The design and operation parameters of a steam generator are based on thermodynamics and structural analysis.

Safety systems are based on several independent and interdependent subsystems to ensure operational functionality

in case of any minor or major departures from set points. These utilize containment pressure suppression systems, core

spray pumps, flowrate regulators, and other components, which includes the turbine and condenser.

In the “secondary” or conventional part of a nuclear plant the major components are turbine(s), generator(s), con-

denser, feed-water system, emergency power supply systems and fire protection systems.

For spent fuel storage, the reactor has subsystems comprising spent fuel pool and an interim storage facility.

The major areas are discussed in the context of specific reactor designs in the following subsections.

3.2.1 Pressurized water reactor

The PWR, illustrated in Fig. 3.1, is classified as a light water (thermal) reactor since it uses light (ordinary) water as the

moderator and coolant. As discussed in Chapter 2 (interaction of neutrons with matter) fission neutrons colliding with a

hydrogenous light material are able to slow down and thermalize in a small number of collisions. This gives a “thermal”

flux for which the fission cross-section is higher than that for fast neutrons.

The major components in the primary side of a PWR are the pressure vessel, the core, the pressurizer, the steam

generator, the coolant pump and the control system shown in Fig. 3.1 with the residual heat removal system in a sepa-

rate building. The secondary side is the “balance of plant” which is common with conventional power plants.

These are common to all PWRs though the number of loops may vary depending on the size of the plant. A “four-

loop” Westinghouse PWR core, shown in Fig. 3.2, has four steam generators and a pressurizer within the pressure ves-

sel. The terminology refers to the number of steam generators and primary circuit coolant pumps. The internals of the

core are shown in detail in Fig. 3.2B.

The fuel rods and control rods are vertically placed within the reactor while “cold” coolant fluid enters from the top

of the core on one side flows downwards then upwards and exits as a hot fluid from the top on the other side. In the

steam generator, heat is transferred to the secondary side fluid (water in a PWR) from which superheated steam flows

to the turbine where electricity is generated. The secondary loop is closed through the condenser and return pump.

Some representative figures for the Westinghouse Advanced Passive reactors AP600 and AP1000, and the KEPCO

Advanced Power Reactor APR1400 are shown in Table 3.2. AP1000 and APR1400 are typical of the “big” league of

reactors, with the European Pressurized Reactor (EPR) 4590 MW(t)/1660 MW(e) Taishan units 1 and 2 as mentioned in

the previous section.

FIGURE 3.1 Schematic diagram of a pressurized water reactor.
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As Table 3.2 shows, the reactors are “high power density,” for example, 3983 MW(t) in a volume of B 40 m3

is B100 MW(t)/m3. With such high power densities, PWRs require very high levels of safety and control.

The efficiencies of these reactors is still a maximum of 35% due to thermodynamic limits of the Rankine cycle. These

efficiencies are optimized by minimizing the energy losses in the system. The lifetimes of the PWRs given in Table 3.2

are B60 years although there is no technical limit other than the usual wear and tear of components. These plants have

to be safe to avert any unplanned departure from design conditions. Some safety goals of the AP1000 are: core damage

frequency, 5.09 3 1027 per RY, occupational radiation exposure, 0.7 person-Sv/RY, and operator action time of

half an hour.

A design comparison of a typical 1000 MW(e) PWR with a small 300 MW(e) reactor is given in Table 3.3 illustrat-

ing significant differences in size and fuel and coolant flow.
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FIGURE 3.2 (A) A four-loop PWR, (B) PWR core. https://www.nrc.gov/reading-rm/basic-ref/students/for-educators/04.pdf. Courtesy of

Westinghouse Electric Company (c) 2021. All rights reserved.

TABLE 3.2 Overall characteristics of AP-PWR and APR1400 nuclear reactors.

Parameter AP600 AP1000a APR1400b

Thermal power (MW(t)) 1940 3400 3983
Net electrical power (MW(e)) 600 1100 1400
Efficiency (%) 31 32 35
Plant life span (y) 60 60 60
Average plant factor (%) 93 93 . 90
Equivalent core diameter (m) 2.921 3.04 3.63
Active core height (m) 3.658 4.267 3.81

aAP1000 https://aris.iaea.org/PDF/AP1000.pdf.
bAPR1400 Advanced Power Reactor https://aris.iaea.org/PDF/APR1400_2020May.pdf https://aris.iaea.org/sites/core.html.
Source: AP1000 iaea.org https://www.osti.gov/etdeweb/servlets/purl/20256613; AP600 https://aris.iaea.org/PDF/AP-600.pdf.
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The scale-up in process variables of both systems is given in Table 3.4 showing a double discharge burnup, higher

operating centerline temperature and higher coolant flow rate.

The control systems of both reactors use Ag-In-Cd control rods and borated dilution

3.2.2 Boiling water reactor

In a BWR (Fig. 3.3), heat is carried by the coolant (water) flowing upwards through the core; this steam-water mixture

then passes through separation systems at the top of the core, and hot dry steam leaves the core. The hot dry steam goes

TABLE 3.3 Physical design parameters of AP1000 and PWR 300 MW(e).

Core AP1000a CHANSNUPPb (300 MW)

Active height (m) 4.267 2.9
Equivalent diameter (m) 3.04 2.486
Fuel material Sintered UO2 UO2

Fuel enrichment (%) 2.35/3.40/4.45 2.4/2.67/3.0
Fuel inventory (t) 96.176 35.917
No. of assemblies 157 121
Rods per assembly 264 204
Assembly pitch (cm) � 20.03
Rod pitch (cm) 1.26 1.33
Geometry (no. of rods) 173 17 153 15
Pin outer dia. (mm) 9.5 10
Pellet height (mm) 9.83 10
Pin height (mm) � 3210
Clad/thickness (mm) 0.5715 0.70
Clad material ZIRLO Zircalloy
Moderator H2O (liquid) H2O (liquid)
Moderator inventory (MT) � 57
Coolant H2O (liquid) H2O (liquid)
Primary pumps 4 2
No. of loops 2 2

ahttps://www.westinghousenuclear.com/new-plants/ap1000-pwr.
bMian, Z. and Nayyar, A. H. (1999). Pakistan’s Chashma Nuclear Power Plant, PU/CEES Report. No. 321, Center for Energy and Environmental Studies,
Princeton Environmental Institute, Princeton University, Princeton, NJ 08544�5263, Dec. 1999, p. 62.
Source: AP1000 fuel data from https://www.nrc.gov/docs/ML0715/ML071580895.pdf.

TABLE 3.4 Process variables of AP1000 and CHASNUPP.

Core AP1000* CHANSNUPP** (300 MW)

Burnup (MWD/t) 60,000 30,000
Max. centerline temperature (�CÞ 2593 1806
Max. clad temperature (�CÞ � 345.7
Coolant Water Water
Coolant flow rate (tph) 14300 kg/s, (51480 tph) 24,000
Coolant inlet temperature (�CÞ 279.4 288.5
Coolant outlet temperature (�CÞ 324.7 315.5
Pressure (kg/cm2) 155.13 155
Geometry 17317 153 15
Moderator temperature at full load (�CÞ 303 302

*https://www.nrc.gov/docs/ML0715/ML071580895.pdf.
**Mian, Z., and Nayyar, A. H., Pakistan’s Chashma Nuclear Power Plant, PU/CEES Report. No. 321, Center for Energy and Environemntal Studies, Princeton
Environemental Institute, Princeton University, Princeton, NJ 08544-5263, Dec. 1999, p. 62.
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to the turbine where thermal energy is converted into mechanical energy and eventually to the generator where mechan-

ical energy is converted into electrical energy.

On exit from the turbine, the “low quality” steam and water is condensed into water and pumped back into the core.

The physical design parameters of Unit 6 of the Fukushima BWRs are shown in Table 3.5. The units 1�4 of the

Fukushima Daiichi NPP were abolished on April 19, 2012, and units 5, 6 were abolished on January 31, 2014 in accor-

dance with the Electric Utility Law. The Fukushima Daiichi BWRs reactors are GE designs of the 1960s known as

Mark I containment. They came into commercial operation from 1971 onwards; the earlier units were 460 and 780 MW

(e) while unit 6 given in the Table was 1100 MW(e) During normal operation they all had a core outlet temperature of

FIGURE 3.3 Schematic design of a Boiling Water Reactor.

TABLE 3.5 Physical design parameters of BWR (Fukushima).

Main
specifications

Electric output (MW) 1100
Start of construction May-73
Start of commercial operation Oct-79
Reactor type BWR5
Containment type Mark II
Main contractor GE/Toshiba

Nuclear reactor Heat output (MW) 3293
Number of fuel assemblies 764
Full length of fuel assemblies (in.) 176
Number of control rods 185
Reactor pressure vessel (RPV) Inner diameter (in.) 252

Height (in.) 906
Total weight (short ton) 827
Design pressure (psi) 1249.9
Design temperature (�F) 576

Primary containment vessel
(PCV)

Height (ft) 157.5
Diameter of cylindrical portion (ft) 32.8 (top)
Diameter of spherical portion (ft) 82.0 (bottom)
Suppression pool water amount
(kgal)

845.4

Design pressure (psig) 40.6
Design temperature (�F) 340 (DW) 221 (SC)

Steam turbine Number of revolutions (rpm) 1500
Steam temperature (�F) 540
Steam pressure (psig) 950

Fuel Type Uranium dioxide (Unit 3 contains
MOX)

Uranium (ton) 132

Source: https://www.tepco.co.jp/en/nu/fukushima-np/outline_f1/index-e.html.
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286�C under a pressure of 6930 kPa and with 115�130 kPa pressure in dry containment. The operating pressure was

about half that in a PWR. A drawback of the safety system was that the reactors had analog instrumentation in a ground

floor building instead of digital controls on an elevated floor; thus, information could not be accessed remotely.

For improved designs, the 1350 MW(e) advanced ABWR, with overall parameters listed in Table 3.6, has an

improved plant life of 60 years, plant availability of 87%, longer refueling period of 24 month intervals, and reduced

probability of core damage of 1025 per RY. The enhanced safety systems include an emergency core cooling system

designed to ensure emergency cooling in the event of a design basis LOCA, so that the cladding temperature does not

reach the limit of 2200�F (1204�CÞ in accordance with USNRC 10CFR50.46. Concerns of radiation have been

addressed by reducing both the radiation exposure (limited to 100 man-rem/year) and radiation waste.

As of December 2019, there were 65 operational BWRs while 50 were shut down, four were under construction,

and nine are planned. Most of the operational units were of capacity greater than 600 MW(e).

In Japan, 16 BWRs (out of which 10 were in Fukushima) were permanently shut down. In the US, 13 BWRs, mostly

connected to the grid in the 1960s, (Big Rock Point US-155, Bonus US-014, Dresden-1 US-10, Elk River US-11, GE

Vellecitos US-018, Humboldt Bay US-133, Lacrosse US-409, Millstone-1 US-245, Oyster Creek US-219, Pathfinder US-

130, Pilgrim-1 US-293, Shoreham US-322, Vermont Yankee US-271) were permanently shut down. In Europe 19 BWRs

were permanently shut down: 10 in Germany, 2 in Italy, 4 in Sweden, and 1 each in Switzerland, Spain and Netherlands.

Based on current information (IAEA, 2020), the only countries planning BWRS are Japan (six ABWRs, 3926 MW(t)

each) and USA (1 ESBWR 4500 MW(t) and 2 ABWR 3926 MW(t)) while two ABWRs are under construction in Japan.

3.2.3 Pressurized heavy water reactor

The design of the CANDU PHWR can be traced back to the Manhattan Project when the Chalk River Laboratory was

established in 1944 for supplying spent fuel from the plutonium production reactor NRX for the US weapons program.

The NRX suffered a partial meltdown and was replaced by the higher flux NRU to increase production.

The experience from NRX and NRU led to the CANDU design starting with a small 20 MW(e) reactor, called the

Nuclear Power Demonstration (NPD). Subsequently, the 200 MW(e) Douglas Point reactors were built and commis-

sioned in 1966. The reactor power was increased to 500 MW by increasing the diameter of the calandria from B 8 to

B10 cm with a corresponding increase in the number of fuel elements per fuel bundle from 19 to 28.

The PHWR uses natural uranium fuel rods, heavy water cooled and moderated “horizontal” reactor with several

simple and safe features. The overall plant schematic is shown in Fig. 3.4.

The fuel is bundled in a pressure tube typically 8�10 cm in diameter and placed horizontally in pressure tubes within

a calandria (a horizontal cylindrical tube). Several calandria tubes are inserted into the horizontal moderator tank. Coolant

flows though horizontal channels between fuel rods as shown in Fig. 3.4. Overall physical design parameters of CANDU

variants are listed in Table 3.7 from the relatively low power Indian PHWR to the Enhanced CANDU 6 design.

Another variant of the PHWR design is the 300 MW(e) thorium-fueled Indian advanced heavy water reactor (AHWR)

designed and developed by the Bhabha Atomic Research Center (BARC). This uses a vertical pressure tube with boiling

light water coolant and heavy water moderator reactor The design incorporates passive safety systems working on natural

TABLE 3.6 The advanced boiling water reactor (ABWR).

Parameter ABWR ABWR-II

(GEHa, HGNEb, and Toshiba) GE-Hitachi

Thermal power (MWt) 3926 4960
Net electrical power (MWe) 1350 1638
Efficiency (%) 34 33
Plant life span (y) 60 60
Average plant factor (%) 90 93
Equivalent core diameter (m) 5.163 5.41
Active Core height (m) 3.81 3.71

aGeneral Electric Hitachi.
bHitachi General Electric Nuclear Energy.
Source: ABWR https://aris.iaea.org/PDF/ABWR(Hitachi-GE)_2020.pdf, ABWR-II https://aris.iaea.org/PDF/ABWR-II.pdf, Core data https://aris.iaea.org/sites/
core.html.
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laws such as force of gravity and heat absorption in a gravity-driven water pool, independent shutdown systems, passive

poison injection into the moderator for a wired-system failure. Due to boiling in the coolant, a steam generator is replaced

by a simpler steam drum; similarly a number of major components such as primary coolant pumps are not required. All

reactivity temperature coefficients (fuel, channel, void and moderator) are negative. Minor actinide production, including

plutonium production, is reduced due to the thorium fuel making the fuel proliferation-resistant.

As of December 2019, there are 49 PHWRs operational in world; with 19 in Canada, 18 in India, 3 in South Korea,

2 in China, 2 in Romania, 3 in Argentina, and 1 in Pakistan, and 1 is under construction.

3.2.4 Gas cooled reactor

Gas cooled Magnox (magnesium-aluminum alloy cladded fuel rods) reactors, as depicted in Fig. 3.5 below, were con-

structed in the 1950s for both commercial and military use. The first Magnox reactors at Calder Hall, commissioned in

August 1956, and decommissioned in 2003, were also the first nuclear reactors to produce electricity on a commercial

basis, though their main purpose was plutonium production. Each of the four 268 MW(t)/60 MWh reactors used natural

uranium fuel, graphite moderator, and carbon dioxide gas as the coolant.

The first generation Calder Hall reactors were decommissioned and succeeded by the second generation Windscale

Advanced Gas Cooled Reactor. As pioneer of the civil nuclear program, the UK had 26 Magnox units, with grid connections

between 1962 and 1971, including Berkely, Calder Hall, Chapelcross, Dungeness, Hinkley Point, Hunterston, Oldbury,

Sizewell, Trawsfynydd and Wylfa. These have all been decommissioned by Magnox Ltd. on behalf of the UK government.

The Calder Hall reactors had natural uranium metal fuels, in the form of one cast bar, with element length 1.016 m

and 6 elements in a channel. The reactor had an active core height of 6.4 m and an active core diameter of 9.45 m. The

last Magnox reactor, Wylfa, produced power about seven times more thermal power, but with about 10 times more elec-

trical output than that from Calder Hall. Thus efficiency had been significantly increased mainly by increasing both the

mass of uranium in the core and the total gas flow.

FIGURE 3.4 Schematic diagram

of a pressurized heavy water reactor.

TABLE 3.7 Physical design parameters of PHWR designs.

Parameter IPHWR-220 APHWR (BARC) Enhanced CANDU 6

Thermal power (MWth) 754.50 920 2084
Net electrical power (MW(e)) 235.81 284 740
Efficiency (%) 26.5 � 35.5
Plant life span (y) 40 100 60
Average plant factor (%) .90 90 90
Equivalent core diameter (m) 4.51 6.9 7.595
Active Core height (m) 4.95 3.5 6.28

Source: IPHWR-220: https://aris.iaea.org/PDF/IPHWR-220.pdf, EC6: https://aris.iaea.org/PDF/EC6.pdf, APHWR:Bhabha Atomic Research Center http://www.
barc.gov.in/reactor/ahwr.pdf.
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Currently there are 14 operational reactors, all in the UK (IAEA) at 6 sites and 7 stations. Table 3.8 shows the over-

all data for Torness GCR which is based, as the previous Magnox reactors, on graphite moderator and CO2 coolant but

with a change of fuel from metal natural uranium to 2.2% enriched uranium in UO2 fuel. These changes have reduced

the physical size of the plant, raised outlet operating pressure and gas flow rate as well as the gas temperature, resulting

in 40.7% efficiency.

The AGRs need to improve in their design to be competitive with LWRs particularly PWRs to which they have lost

the market, even though GCRs were the first nuclear reactors to produce commercial power.

3.2.5 Fast breeder reactor

The FBR program began in the 1940s with the objective of using high enriched uranium to produce small-size reactors

with liquid metal coolants. This would increase the overall plant efficiency as well as the neutron economy by “breeding”

plutonium, which does not occur in nature, from a fast neutron spectrum. These efforts led to the experimental breeder reac-

tor (EBR-I) which in 1951 was the first reactor to demonstrate the production of electricity. The EBR-I, followed by EBR-

II and the French Phoenix FBR were all shut down after just a few years of operation due to several technical difficulties.

At present the only two fast reactors in operation, BN-600 and BN-800, are in Beloyarsk in Russia (IAEA, 2017).

As shown in Fig. 3.6, a liquid metal cooled fast reactor has a primary circuit in which high temperature liquid metal,

such as sodium, flows the core and exchanges heat in an intermediate heat exchanger with a coolant, such as water.

From there on, the conventional part of the power conversion unit is the same as discussed in the previous sections for

the PWR, BWR and GCR.

The BN-600 reactor with overall parameters and design evolutions shown in Table 3.9, has been in operation in

Beloyarsk since the last 30 years. The design improvements were made due to lessons learned from operational experiences

FIGURE 3.5 Schematic diagram

of a gas cooled reactor.

TABLE 3.8 Physical design parameters of the Torness GCR.

Parameter Torness AGR

Thermal power (MW(t)) 2 3 1623
Net electrical power (MW(e)) 2 3 660
Efficiency (%) 40.7
Plant life span (y) Grid connection 1989; lifespan increased to 2030a

Average plant factor (%)
Equivalent core diameter (m) 9.5
Active core height (m) 8.3

ahttps://www.world-nuclear-news.org/C-EDF-Energy-extends-lives-of-UK-AGR-plants-1602164.html.
Source: Nonbel, E. (1996). Description of the advanced gas cooled type of reactor (AGR), Riso National Laboratory, Roskilde, Denmark, Nov. 1996. https://
www.osti.gov/etdeweb/servlets/purl/448871.
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the power of the plant was kept the same while increasing the active core height from 750 mm to 1030 mm, “flattening” the

flux by incorporating three enrichment zones, and increasing the fuel inventory of the core from B8.3 tons to B12 tons; all

these modifications improved fuel utilization enhancing the burnup by almost 50%, to 60 MWd/kg U.

A power upgrade to BN-600, the sodium cooled BN-800 reactor was commissioned for commercial operation in

2016 at the Beloyarsk NPP. In addition to these two operational reactors, the BN-1200 design is under development for

technical and economic feasibility.

The directions for possible improvements in fast reactor design are under investigation; several material selection

decisions are yet to be taken such as the selection of sodium, lead, gas, molten salt, supercritical water cooled systems,

as well as hybrids, such as accelerator-driven systems. As work continues toward innovative Gen-IV designs for the

next decades, safety and sustainability are being enhanced and being incorporated in new designs.

Out of 54 new constructions, one 470 MW FBR was under construction as of December 2019 in India and one

1500 MW(t)/600 MW(e) CFR-600 sodium cooled fast reactor (SFR) is under construction in Fujian province, China.

In spite of the major advantages of FBRs including their efficiency, compact design, and plutonium breeding, their

safety and proliferation resistance are issues that must be addressed for better public acceptance.

FIGURE 3.6 Schematic diagram

of a Liquid Cooled Fast Reactor.

TABLE 3.9 Characteristics of the BN-600 Sodium cooled Fast Breeder Reactor (FBR).

Parameter Reactor Type I Type M Type M-1

Thermal power (MWth) 1470 1470 1470
Net electrical power (MWe) 600 600 600
Efficiency (%)
Plant life span (y)
Average plant factor (%) � � �
Equivalent core diameter (m) 2.058 2.058 2.058
Active core height (m) 0.750 1.000 1.030
Fuel inventory in core (kg) 8260 11630 12090
Average fuel burnup (MWd/kg U) 42.5 44.5 60.0
Fuel enrichment (U-235)
Low enrichment zone 21 17 17
Medium enrichment zone � 21 21
High enrichment zone 33 26 26

LEZ, low enrichment zone; MEZ, medium enrichment zone; HEZ, high enrichment zone.
Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development FR17, Proceedings of an International Conference
Yekaterinburg, Russian Federation, 26�29 June 2017. https://www-pub.iaea.org/MTCD/Publications/PDF/STIPUB1836web.pdf.
Source: IAEA Tecdoc 1569, p. 123.
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3.3 Marine propulsion reactors

3.3.1 Introduction

The use of nuclear reactors extend far beyond production of electricity for cities; they are used for numerous other

applications such as marine propulsion for submarines and icebreakers, radioisotope production for medicine and agri-

culture, testing of materials, desalination and plutonium production. This section presents an overview of the applica-

tions of nuclear reactors for marine propulsion that includes the propulsion systems of merchant ships, icebreakers, and

the nuclear navies with submarines, aircraft carriers and cruisers (Fig. 3.7).

Nuclear reactors for marine propulsion are attractive, in comparison with fossil fuels since they do not need air to

operate and hence submarines can stay under water for long periods, they have high power density, long operational

periods, and low operational costs.

3.3.2 US nuclear submarine program

Lobner (2018) presents the timeline for development of marine nuclear power in the US from Enrico Fermi’s briefing to

the Navy Department in 1939, followed by the first controlled critical pile (CP-1) established under Fermi’s leadership on

2nd December 1942, to Manhattan Project, Alvin Weinberg’s first description of the PWR, the Gunn-Abelson 1946 nuclear

plant design concept for a submarine, involvement of Argonne National Lab and Westinghouse to the beginning of the

construction work on the Submarine Thermal Reactor (STR) Mark 1 Prototype in 1950. The contractors included Bechtel

(B), Combustion Engineering (C), General Electric (G), and Westinghouse (W). Their codes appear in the naming of ship

power systems; for example, A1W represent aircraft carrier generation 1 built by Westinghouse. Other first alphabetic

codes are C for cruiser, D for destroyer and S for submarine. It was on the 1st of August 1946 that the US Atomic Energy

Commission was established. Two reactor designs actively pursued in the 1950s were based on the liquid metal cooled

fast reactor and the STR series.

After the second world war, the US Navy was quick to replace diesel and battery systems on their fleet with nuclear

power systems, starting from the nuclear-powered submarine USS Nautilus in 1955, powered by the STR Mark II

(S2W) reactor. The three big projects at that time were USS Nautilus in January 1955 STR Mark II Thermal PWR, USS

Seawolf in 1955 SSN-575 Liquid Metal Cooled Reactor S2G and USS Skipjack in May 1956, SSN-585 Advanced

Submarine Fleet Reactor (ASFR). The poor performance of the liquid metal reactor S2G on USS Seawolf led to its

removal and replacement by the Nautilus PWR. This was probably the turning point that gave the field to PWRs which

Westinghouse spearheaded for commercial reactor designs.

In 1958, keels were laid for the first US civilian nuclear-powered merchant ships NS Savannah, the SSN USS

Scorpion, and the USS George Washington.

Work on a GCR program began in the US in 1956. By 1959, the liquid metal design for submarine reactors had

been discarded in favor of PWRs.

By 1962, the US Navy had rapidly built up a fleet of 26 nuclear submarines which included the aircraft carrier USS

Enterprise powered with eight PWRs and the cruiser USS Long Beach powered with two PWRs. At that time, 30 more

nuclear submarines were under construction in a large nuclear submarine industrial infrastructure.

FIGURE 3.7 USS Gerald R Ford aircraft carrier. https://upload.

wikimedia.org/wikipedia/commons/b/b2/USS_Gerald_R._Ford_

%28CVN-78%29_underway_on_8_April_2017.JPG (in public

domain, permitted use).
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3.3.3 Former Soviet/Russian nuclear submarine program

In Russia, work on a submarine using a nuclear propulsion reactor was initiated in 1952 (Reistad & Olgaard, 2006).

Within 4 years after USS Nautilus, the first Soviet nuclear submarine Leninsky Komsomol was commissioned in June

1958 and became operational in 1959 powered with two water cooled reactors 1.4 kW each in addition to two diesel

generators and two auxiliary electric motors. Around the same time, the first nuclear-powered civilian surface ship and

icebreaker Lenin, was constructed and commissioned in 1959 powered with three PWR nuclear reactors.

3.3.4 Submarine programs: UK, France, China, India and Pakistan

The S5W (Submarine 5th Generation Westinghouse) nuclear reactor propulsion system was provided to the UK, under

agreement, to power the UK’s first submarine HMS Dreadnought commissioned in 1960. S5W provided 15,000 shaft

horsepower (shp) equivalent to 11 MW for the submarine to achieve speeds of 20 knots (37 km/h) on surface and 28

knots (52 km/h) submerged. The S5W Westinghouse design enabled Rolls Royce to develop its first PWR in 1965

which powered the UK’s second nuclear submarine.

Apart from the UK which had nuclear submarines together with the US in the 1950s, France, China and India had

developed significant programs independently.

The first French nuclear submarine Le Redoutable (S611), commissioned in December 1971 was also powered by

a PWR.

The first Chinese nuclear submarine was commissioned in 1974; at present four ballistic missile submarines

(SSBNs) with two additional Jin-class SSBNs added in 2020, and six attack submarines (SSNs) form the nuclear part

of the total submarine fleet estimated at 60 (NTI: https://www.nti.org/analysis/articles/china-submarine-capabilities/)

The first Indian nuclear submarine INS Arihant (S2 for Strategic Strike) SSBN was commissioned in August 2016

and is powered by an 83 MW(e) PWR with 40% enriched uranium. This was followed by the INS Arighat ballistic mis-

sile submarine (S3) which will be part of a fleet of four nuclear-powered submarines to be armed with ballistic missiles

carrying nuclear warheads (Mian, Ramana, & Nayyar, 2019). In addition to these nuclear submarines, India has 15

diesel-electric attack submarines.

The submarine fleet of Pakistan has five diesel-electric attack submarines and three mini submarines; collaborative

efforts with China are underway for the construction of eight Type 39 Yuan-Class attack submarines (Mian et al., 2019;

Pakistan Navy, 2021) including two Agosta-70 commissioned in 1979�80 and three Agosta-90B, all diesel-electric ves-

sels purchased from France and subsequently assembled and made entirely in Pakistan.

3.3.5 Modern-day submarines

Today, forty countries have attack submarines, but only have five nuclear-weapon states � China, France, Russia, the

United Kingdom, United States � have nuclear-powered attack submarines while India has two SLBMs.

For naval submarines, they offer the added advantage of enhanced capability of stealth movement and quiet propul-

sion under water enabling them to undertake combat and intelligence-gathering activities. However, nuclear ships are

expensive; for example, the USS Gerald R. Ford aircraft carrier, length 1,092�1,106 ft and height nearly 250 ft and dis-

placement B 100,000 tons, with two nuclear reactors on board, would cost about $12.9 billion which is roughly the

cost of four 1000 MW nuclear power reactors. The total naval reactors budget request in 2018 was in excess of US

$1.47 billion in three heads namely naval reactors operations and infrastructure (US$ 467 million), naval reactors devel-

opment (US$ 473 million), and S8G prototype refueling (US$ 190 M). The weapons carried on submarines include

Tomahawk missiles, Trident missiles (SSBN), antiship cruise missiles, nuclear-tipped missiles, cruise missiles, subma-

rine launched ballistic missiles (SLBMs), intercontinental ballistic missiles (ICBMs), and multiple independently

targetable reentry vehicles (MIRVs).

Today, the US has 83 nuclear submarines including 10 aircraft carriers and 1 research vessel, with over 50 attack

submarines (SSNs), 14 strategic ballistic missile submarines (SSBNs), 11 nuclear aircraft carriers (CVNs) including 10

Nimitz-class CVNs and 1 Ford-class CVN.

The ship service life is 30�33 years and reactors are mainly S5W, S6W, S9G (Submarine platform 9th Generation

design by General Electric). The size of the subs varies from the smallest Virginia-class with a length of 377 ft, Beam

34 ft to the largest Ohio class with a length of 560 ft, beam 33 ft. The subs travel at speeds from 201 knots for the

large subs and from 251 knots for the smaller subs.
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Most marine reactors are PWRs while some are liquid metal cooled reactors; in both cases, the steam produced

from the reactor heat is used either directly to power the propulsion system or indirectly by producing electricity from

turbo-electric generators.

The former Soviet Union produced 246 nuclear submarines, each with two PWRs, with most decommissioned in the

1990s, leaving Russia with 58. Typical mission times for first generation submarines were 60 days with underwater (at

depths of 200�300 m) speeds of 20�25 knots. At the height of the cold war in the early 1980s, both the US and the

then USSR were actively pursuing their programs with the total estimated to be over 460 nuclear-powered submarines.

Between 1955 and 1995, three generations and classes of nuclear submarines have been classified (Reistad & Olgaard,

2006) for attack, cruise missile and ballistic missile classes including 56, 102 and 78 submarines built with a total of

246. A few others were built between 1974 and 1996 bringing the total built to 264. Russia has continued with the

development of nuclear-powered icebreakers, for maintaining the Northern Sea Route in the frozen Arctic coast of the

North Pole region which is mostly free of ice only 2 months of the year and connects the Atlantic and Pacific Oceans.

From the first icebreaker Lenin, several are operational with 5 let Pobedy being the world’s largest icebreaker powered

by two OK-900A (171 MW(t) each) nuclear reactors. The design parameters of Lenin’s first generation LEU OK-150

nuclear reactor and the HEU KLT-40 reactor are given in Table 3.10.

In today’s scenario, nuclear ships including submarines, aircraft carriers and cruisers armed with hundred-kiloton or

more nuclear warheads and ballistic missiles as well as stealthy intelligence-gathering mobile platforms are part of mili-

tary strategy for global dominance. All of this has been made possible by fast moving nuclear-powered ships capable of

maneuvering battle conditions to defend themselves as well as to operate in the attack mode. In future, this list is bound

to expand, with Canada, Pakistan, Australia, Iran, Israel, and Brazil taking interest in the development of nuclear

submarines.

3.3.6 Technical features

There are major differences in the requirements of land-based and water-based nuclear systems such as the availability

of space, longer refueling period, power maneuverability, physical movement, vibrations, and corrosion. Space require-

ments necessitate compactness of nuclear systems which translates immediately into the need for higher fuel enrich-

ment. Fortunately, the power requirements are much less than that for typical land-based 1000 MW power plants.

Some distinguishing features of submarine nuclear reactors (Ragheb, 2011) are

1. The use of HEU, as high as 93%�96% enriched weapon grade uranium, in PWRs.

2. The use of high burnup fuels such as U-Zr, U-Al and ceramics.

3. The requirement of “lifetime cores” which means no refueling for B50 years.

4. The requirement of overcoming dead time from xenon 54135Xe (half life 9.2 hours) poisoning.

5. Internal radiation (neutron and gamma) shielding.

6. Operating temperatures B600�700 �F (maximum fuel temperatures) in earlier U-Zr fuel elements, increasing to

B1700�F in UO2 fuel clad in stainless steel with beryllium moderator and reflector to give an intermediate neutron

spectrum and hence a higher thermodynamic efficiency.

7. Noise reduction from coolant pumps and speed reduction gearboxes.

8. Power levels typically 10�200 MW(e) compared with 300�1200 MW(e) for commercial plants.

9. Containment vessel design to withstand pressures (B13 atmospheres for earlier designs) that could be attained in

accident conditions.

Some variations in operating parameters are also mentioned in the literature; these could reflect changes in operating

conditions. Similarly, design improvements were made from OK-150 due to the LOCA; these included moving the inlet

and outlet tubes of the reactor tank to the top of the tank to avoid operator error resulting in loss of coolant from drain-

age, as had occurred in the Lenin reactor.

From Table 3.10, the total number of fuel rods is 7,704 with 189 fuel elements containing 36 fuel rods each and 30

elements containing 30 rods each. The diameter of each rod was 6.1 mm. With the burnup of 1 kg equivalent to B
1000 MWd, OK-150 achieved B20% full burnup. The control rods were inserted vertically, and flux flattening was

achieved by boron-10 burnable poison in the shroud tubes of the central rods.

For the present KLT-40 design, similar to OK-900, the burnable poison used is natural gadolinium with fuel ele-

ments. Shielding for most reactors is steel-water layers on the sides (radially) and concrete on top.

In Russian submarine reactors, the first generation water cooled and water-moderated reactors had enrichments of

B20% power limited to 70 MW(t) with separated primary and secondary system. These plants all had U-Al alloy fuels

118 Nuclear Engineering



with enrichment varying from 5.45 to 21% with 30�50 kg U-235 in the core, except for K-140 which had a higher

power (90 MW(t)), 21% enrichment and 116.3 kg U-235. With fuel densities of the order of 10 g/cm3, the core height

suggested is B 1 m. Improvements for second generation systems, such as the reorganization of reactor systems and

reducing the number of reactors from two to one as well as the use of lighter material made the reactors more compact

with more assemblies at B20% enrichment or less assemblies with B40% enrichment; shaft power and mission time

were increased. Third generation systems requiring more power contain more fissile material than earlier designs.

These reactors used heavy biological (steel-water-concrete) shielding amounting to B50% of the plant weight. For con-

trol systems, europium rods, in the form of Eu2O3 were used.

TABLE 3.10 Nuclear submarine reactors OK-150 and KLT-40.

OK-150, first core load KLT-40

General

Time period 1950s Present
Reactor power (MW(t)) 90a 135c

Burnup (MWd) 18,000�20,000b 62,000�68,000
Pressure vessel diameter/height (m) 2/5

Core

Core height (m) 1.58 1.0
Core diameter (m) 1.0 1.21

Fuel

U-enrichment (%) 5 90
Mass of U235 in core (kg) 85 150.7
Fuel material UO2 U-Zr-alloy
Number of fuel elements 219 241
Fuel element lattice pitch (mm) 64 72
Fuel element lattice type Triangular Triangular
Shroud, outer diameter (mm) 54 60
Shroud material Zr-alloy? Zr-alloy?
Number of fuel pins per element 36 53
Fuel pin diameter (mm) 6.1 5.8
Fuel pin lattice pitch (mm) Not available 7.2
Cladding thickness (mm) 0.75 Not available
Cladding material Zr-alloy or SS Zr-alloy
Helium gas gap fuel and cladding (mm) 0.05 �
Fuel pellet diameter (mm) 4.5 Not given

Coolant

Loops 2 �
Steam generator per loop 1 �
Coolant pump per loop 2
Pressurizers (total number); in Russian, called volume compensators 4 �
Inlet temperature (�C ) 248 278
Outlet temperature (�C ) 325 318
Pressure (bar) 200 130
Coolant flow rate (m3/h) 1000

Steam

Output (t/h) 360
Pressure (bar) 29 40
Temperature (�C ) 310 290

aModified to 159 MWth for OK-900 in 1967�70, then to 171 MWt for nuclear-powered icebreakers Arktika, Sibir, Rossia, Sovetskiy, Soyus, and Yamal.
bBurnup was increased to 29,000�38,000 MWd for OK-900 lin 1967�70, later increased to 88,000�96,000 MWtd.
cIn Sevmorput; for icebreakers Taimyr and Vaigatch, 171 MWt.
Source: Reistad, Nuclear Plants Russia, p. 18.
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3.3.7 HEU/LEU submarine reactors

The use of HEU makes it possible to meet the space constraints of submarines as well as to overcome, to a significant

extent, the “dead time” caused by the buildup of xenon poison.

The present life of US submarine HEU cores is 33 years for the Virginia-class attack submarines being extended to

42 years for the cores of the Columbia-class ballistic missile submarines. All UK submarine reactors are HEU fueled

PWRs based on earlier Westinghouse designs with typical power levels of 15,000 shaft horsepower (78 MWth/11 MW

(e)) for the PWR-1 design, and 27,500 shaft horsepower (145 MW(t)/20.5 MW) for the PWR-2 design with improve-

ments planned for PWR-3. (Lobner, 60 years of marine power https://www.lynceans.org/wp-content/uploads/2015/09/

Part-4_UK-France-Others-60-yrs-of-marine-nuc-power.pdf)

Commercial power reactors use low enriched uranium (LEU) fuel; for example, LWRs typically use 3%�5%

enriched fuel while fast reactors use 13%�19.5% enriched fuel. Enrichment below 20% U235 concentration in ura-

nium, is called LEU while above 20%, called Highly Enriched Uranium (HEU) is prohibited for commercial nuclear

reactors as well as research reactors which were earlier based mainly on HEU. Another classification for uranium

enrichment is WG-HEU (Weapons Grade Highly Enriched Uranium) which is above 85% enrichment.

The role of PWRs for nuclear propulsion seems to be as large as that for commercial power; it may further

strengthen SMR technologies and extend into higher power densities for micronuclear reactors (MNRs) making it possi-

ble to enable return journeys to Mars. However, as more countries aspire for nuclear submarines, the use of weapons

grade uranium will increase as it is not prohibited by international law. At present HEU is used by submarines of the

USA, Russia, and the United Kingdom (Philippe & von Hippel, 2016). The use of HEU by the US nuclear submarines

is B2.5 tons which is B60% of global navel HEU and sufficient for manufacturing 100 nuclear weapons every year.

This may be slow due to the long experience particularly of the US Navy, with over 60 years of operational experience,

30 different designs and a good safety record, the conversion of HEU cores to LEU cores would be inevitable just as in

the case of research reactors. The technical difficulties that would need to be surmounted would be the decrease in

power of LEU cores of similar size to the HEU cores; this would indeed require design changes in the space allocations

for submarine reactors.

As the lifespan of older submarines has come to an end, several have been decommissioned and dismantled in elab-

orate and integrated programs. Out of B465 nuclear submarines built in the world, over 300 have most likely been

decommissioned and largely dismantled. It has been reported that in the dismantling effort, in most cases “20�45 per-

cent uranium-235 has been used as fuel. . .,” that all but one US submarine has one reactor while most Russian submar-

ines had two reactors, that the “cores of these reactors typically hold between 200 and 300 fuel assemblies each

containing up to a few tons of fuel rods,” and that the thermal power varies from 10 MW in older submarines to

200 MW in newer classes of submarines (Kopte, 1997). There have been serious issues and concerns in the dismantling

process due to the radiation levels of the spent fuel, and other liquid and solid radioactive waste, and the safety of pro-

cedures as well as the waste disposal procedures, and long-term ecological effects, in land sites or in deep oceans.

3.4 Plutonium production reactors

The term “production” for a reactor represents the production of plutonium; since plutonium does not occur in nature

(except for in trace amounts in naturally occuring uranium ores), it must be produced. Plutonium is more fissile than

uranium-235 (Chapter 1) resulting in smaller-sized weapons. In nuclear power reactors, plutonium is produced during

normal operation from the transmutation of uranium-238. Typically, 5 kg of Pu-239 and 2 kg are produced ton of fuel

in a 1000 MW(e) PWR over a period of about 3 years. It is separated from the spent fuel in a reactor by reprocessing

methods. Some of its main isotopes are Pu-238, Pu-239 (fissile), Pu-240 (fertile), Pu-241 (fissile), and Pu-242.

The purpose of production reactors has been to produce weapons grade plutonium (Pu-239 with less than 8% Pu-240).

As discussed in the previous section, the NRX reactor with natural uranium and heavy water, and Magnox reactors

with natural uranium metal, graphite, and CO2 were production reactors. Similarly, breeder reactors, fast or thermal,

have been utilized for breeding plutonium in a fast reactor such as the Liquid Metal Fast Breeder Reactor (LMFBR),

the gas cooled fast reactor (GCFR) and the Lead Cooled Fast Reactor (LFR).

The present reactor grade plutonium (55%�70% Pu-239, 30%�35% nonfissile Pu, and more than B19% Pu-240)

production from power reactors in the world is about 70 tons annually. It is estimated that there are hundreds of tons of

weapons grade plutonium in the world. This is clearly a tremendous radiation and proliferation hazard and a major area

of concern for the public acceptance of the nuclear industry. Similarly, thermal breeders can be used with thorium 232

to breed the fissile fuel uranium 233.
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The EBR-I built at Idaho (USA) became the first plant to produce electricity on the December 20, 1951 and to dem-

onstrate in 1953 that a reactor could breed fissile fuel. The EBR-I reactor operated for 12 years but was shut down in

1963. EBR-I was followed by the SFR EBR-II which achieved criticality in 1965, produced 62.5 MWt/20 MWe with

65% enriched uranium fuel and demonstrated several safety systems and procedures for a HEU reactor. EBR-II was

shut down after about 30 years operations in 1994. A similar breeder reactor Phoenix was built and commissioned in

France in December 1973 and operated at 590 MW(t)/233 MW(e) demonstrating a breeder ratio 1.16. The plant was

shut down in 2009. The reasons for closing down breeders were most probably technical difficulties such as their shut-

down for refueling resulting in low capacity factors, and safety and proliferation concerns. Two power reactors, similar

to breeders operating in Russia are BN-600 and BN-800 which are discussed in the next section.

In thermal reactors, plutonium is produced as a by-product from the radiative capture of uranium-238 in the fuel.

It is separated by reprocessing spent fuel and is then fed again into reactors as a mixed oxide fuel (MOX). The amount

of plutonium produced in a 1000 MW(e) LWR with B25 tons spent fuel per fuel is B290 kg, of which more than half

is the fissile plutonium 239. This fraction is higher for CANDU and Magnox reactors; for the former with low burnup,

it can be B80%.

The early-day production reactors in the US have been Hanford and Savannah River estimated to have produced

103.4 tons of plutonium in the 50 years from 1944 to 1994. In Russia, according to IAEA (IAEA TECDOC-1591) esti-

mates the spent fuel reprocessed till 2002 exceeded 300,000 metric tons. Today’s stockpiles of plutonium are “sufficient

for tens of thousands of nuclear weapons” https://vcdnp.org/plutonium-stockpiles-causes-and-solutions/ and efforts are

underway in several countries to limit their production and seek sustainable solutions.

3.5 Small modular reactors

As described in Section 3.1, a SMR is defined by the IAEA as a NPP with a capacity in the range 100�700 MW(e)

(Bari, 2014; IAEA, 2018).

As of December 2019 there were 97 small and medium operational reactors with gross capacity less than 700 MW

out of 443 operational reactors worldwide (IAEA, 2020, p. 65). The rationale to develop SMRs includes specialized

applications, such as powering of production facilities, desalination, hydrogen production, district heating, reaching off-

grid remote locations, and providing incremental demands to large nuclear reactors.

The technology of SMRs is mostly well-known and derived from the earlier designs of the 1970s and 1980s. Out of

the 45 SMR designs being pursued, most are in the conceptual or detailed design phase and none of the innovative SMR

designs are commercially available. Some designs (e.g., NuScale 50 MW/module; mPower 125 MW; Westinghouse

200 MW; PRISM 311 MW; SMART 100 MW; 4S 10 MW; HTR-10 10 MW; HTR-PM 250 MW) are moving toward

licensing. The USNRC issued a Standard Design Approval to NuScale in September 2020 https://www.nuscalepower.

com/about-us/faq#ES1 making it possible to move ahead with the development of small plants such as the 77 MW(e)

NuScale Power Module which can be integrated into a 12 module plant with an output of 924 MW(e).

3.5.1 Design features of SMRs

The design features of SMRs, some of which are listed for land-based reactors in Table 3.11 and for marine-based and

other designs in Table 3.12, are based on innovative designs with scaling-down of large NPPs essentially integrating all

primary components inside a RV resulting in a small size, in addition to passive safety systems. The water cooled

SMRs are limited to outlet core temperatures of the 300�C range as compared to the high temperature reactors with

enhanced efficiencies in Table 3.12.

The Westinghouse lead fast reactor (LFR), listed in Table 3.12 and shown in Fig. 3.8, with a power capacity of

.450 MW(e), is classified as a medium-output modular, passively-safe plant uses MOX fuel. It is cooled by lead

which has a high boiling point of 174�C. It has a fast spectrum with high burnup core and a high operating temperature.

It has innovative design features that include the use of advanced materials to enable high temperature operation leading

to good thermodynamic efficiency; of the order of 40%�50% at temperatures in the range 600�C�700�C.
The safety features of the WLFR include DC power capacity for over 72 hours and no events for which immediate

operator action is needed. The integral design eliminates concerns of LOCAs. Lead has better performance than that

observed with sodium. Reactor shutdown is achievable with automatically-actuated passive cooling systems, without

the need for instrumentation and control signals or moving parts and, with lessons learned from Fukushima, passive

heat removal of decay heat is possible by radiation transfer between the RV and the guard vessel (GV) as well as by

the use of naturally�circulating air. Another advantage is the use of smaller size turbomachinery as no condenser is
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TABLE 3.11 Overall parameters of some water cooled SMRs.

No. SMR Power

MW t/

MWe

Design En. % Fuel Core In

/Out �C
P

(MPa)

RPV H/D

(m)

Burnup

GWD/t

Life

(y)

Design Primary

Circ.

1 CAREM A 100/B30 Int. PWR 3.1 UO2 284/326 12.25 11/3.2 24 40 UCP NC/PSC
2 ACP100 C 385/125 -do- ,4.95 -do- 286/319.5 15 10/3.5 ,52 60 BDF FC
3 CAP200 C 660/. 200 4.2 -do- 289/313 15.5 8.845/3.280 37 60 CDF FC
4 DHR C 400/none Pool type ,5.0 -do- 68/98 30 60 BDF FC
5 IRIS I 1000/335 Int. PWR 4.95 -do- 92/330 15.5 21.3/6.2 65 (max) 60 BDF FC
6 DMS J 840/ 300 BWR , 5 -do- 186/287 7.17 15/4.8 , 60 60 BDF NC
7 IMR J 1000/350 Int. PWR 4.8 -do- 329/345 15.51 17/6 . 40 60 CDF NC
8 SMART K 330/100 Int. PWR ,5 -do- 296/323 15 15.5/6.5 ,60 60 LC FC
9 ELENA R 3.3/0.068 PWR 15.2 -do- 311/328 19.6 3.7/1.25 57600/273900 - CDF NC
10 KARAT-45 R 180/45�50 BWR 4.5 -do- 180/286 7 11.5/3.10 45.9 80 CDF NC
11 KARAT-100 R 360/100 BWR 4 -do- 104/286 7 13.25/4 45.9 80 CDF NC
12 RITM-200 R 175/50 Int. PWR ,20 -do- 277/313 15.7 8.5/3.3 - 60 UD FC
13 RUTA-70 R 70/NA Pool type 3 -do- 75/102 atm 17.25/3.2 25�30 60 CDF FC
14 UNITHERM R 30/6.6 PWR 19.75 -do- 249/330 16.5 9.8/2.9 1.15 25 CDF NC
15 VK-300 R 750/250 SP BWR 4 -do- 190/285 6.9 13.1/4.535 41.4 60 DD NC
16 UK SMR UK 1276/443 PWR ,4.95 -do- 296/327 15.5 11.3/4.5 55�60 60 MC FC
17 mPower U 575/195 Int. PWR ,5 -do- 290.5/318.9 14.8 27.4/4.15 ,40 60 UD FC
18 NuScale U 160/50 Int. PWR ,4.95 -do- 258/314 12.8 17.8/3.0 .30 60 URR NC
19 SMR-160 U 525/160 PWR 4.95 -do- 209/321 15.5 15/3 45 80 PD NC
20 WSMR U 800/. 225 Int. PWR ,5 -do- 294/324 15.5 28/3.7 .62 30 CDF FC

A, Argentina; C, China, IIC-Iris International Consortium; J, Japan; K, Republic of Korea; RF, Russian Federation; U, America.
Design status: UCP, under construction as prototype; BDF, basic design finished; LC, license certified; UD, under development; DD, detailed design; MC, mature concept; URR, under regulatory review; PD, preliminary
design in progress; Primary circulation: NC PSC, natural circulation, pressure suppression containment; FC, forced circulation.
Source: Advances in Small Modular Reactor Technology Developments, A Supplement to: IAEA Advanced Reactors Information System (ARIS), 2018 Edition.



TABLE 3.12 SMRSs: marine-based LWRs, HTGCR, Molten Salt, eVinci.

No. SMR Power MW Th/e Design En. % Fuel Core In/

Out, �C

P (MPa) RPV H/D

(m)

B

GWD/t

Life (y) Design Primary

Circ.

1 ACPR50S C 200/50 Loop type PWR ,5 UO2 299.3/321.8 15.5 7.2/2.2 ,52 40 CDF FC

2 KLT-40S R 150/35 PWR 18.6 -do- 280/316 12.7 4.8/2 45.4 40 UT FC

3 RITM-200M R 175/50 Int. PWR ,20 -do- 277/313 15.7 9.2/3.5 - 60 UD FC

4 VBER-300 R 917/325 Int. PWR 4.95 -do- 292/328 16.3 9.3/3.9 50 60 LS FC

Gas cooled

1 HTR-PM C 2x250/210 GCR 8.5 Sph. 250/750 7 25/5.7

(inner)

90 40 UC FC

2 GTHTR300 J ,600/100B300 Prismatic HTGR 14 UO2 TRISO 587�633/

850�950

7 23/8 120 60 BDF FC

3 GT-MHR R 600/288 Mod. He LEU or WPu Coated

particle fuel

490/850 7.2 29/8.2 100�720 60 PDF FC

4 PBMR-400 S 400/165 high

temperature

GCR

9.6% Pebble bed with

coated particle fuel

500/900 9 30/6.2 92 40 PD FC

Liquid Metal Cooled

1 4S Toshiba J 30/10 (pool type) , 20 (U-Zr alloy) 355/510 atm 24/3.5 34 60 DD FC

2 BREST-OD-300 R 700/300 B13.5 U-Pu /N 420/535 Low pressure 17.5/26 61.45 30 DDS FC

3 LFR-TL-X N 15/5; 30/10; 60/20 (pool type) 19.75 LEU,

cylindrical cassette

360/420 atm 3.5/2 40 30 CD FC

4 WLFRa U 950/.450 Pool type # 19.75 Oxide, with

provision for

transition to UN

420/600 Nearly atm 8.0/7.5 $ 100 60�100 CD FC

Molten Salt

1 IMSRb Ca 400/190 MSR ,5 Molten salt fuel 625�660/

670�700

, 0.4 7.0/3.6 - 60 CDF FC

2 CMSRc D 250/100�115 MSR (U 1.1%, Pu 69%

fissile) Sodium-

actinide fluoride

600/700 or

700/900

1 2.5/2.1 250 60 CD FC

3 CAWBd D 50/20 MSR _ LiF-ThF4 _ _ _ _ 3�5 CD FC

4 ThorCone I 557/250 Th. MSR 19.7 LiF-ThF4 565/704 1.2 12/8 220 80 CBD FC

1 eVinci U 0.6�4�40/0.2�15 Monolithic core

HP

19.5 UO2 or UN NA NA NA ,10 10 TRL 5 HP

UT, under test; LS, licensing stage; PDF, preliminary design completed; S, South Africa; DDS, detailed design startup in early 2023; P, heat pipe; D, Denmark; Ca, Canada.
aWestinghouse Lead Fast Reactor.
bIntegral Salt Molten Reactor, Canada.
cCompact Molten Salt Reactor, Seaborg Technologies, Canada.
dCopenhagen Atomics Waste Burner, Denmark.
eThorCon International, Indonesia, 557 mWth/250 MWe (per module).

Source: Advances in Small Modular Reactor Technology Developments, A Supplement to: IAEA Advanced Reactors Information System (ARIS), 2018 Edition.



required with supercritical CO2 in the power conversion system. The Westinghouse LFR is anticipated to start construc-

tion of full-scale prototype by B2030 and convert to a first of a kind (FOAK) commercial unit by about 2035.

Another new very small, portable and advanced Westinghouse design eVinci (Table 3.13) is modular, transportable,

factory-built, fueled and assembled configuration with installation time of less than 30 days. With minimal moving

FIGURE 3.8 Westinghouse liquid cooled fast reactor (WLFR). Courtesy of Westinghouse Electric Company (c) 2021. All rights reserved.

TABLE 3.13 Physical design parameters of LFR and Evinci Westinghouse designs.

Core WLFRa Evincib

Reactor type Lead cooled fast reactor Monolith core with heat pipes
Power (MW(th)/MW
(e))

950/.460 0.6�4�40/0.2�15

RPV height/diameter
(m)

Approx. 8.0/7.5 N/A

In-house plant
consumption

B15 MWe N/A

Fuel Oxide (UO2 or MOX) UO2 or UN
Coolant Pb Heat pipes/metal hydride moderator
Core discharge
burnup

$ 100 MWd/kgHM ,10 GWd/ton for a 1.2 MWth reactor

Fuel material UO2, MOX then UN UO2, UN
Fuel enrichment # 19.75% 19.5
Fuel cycle (months) 24 120
Main reactivity
control

Rods Ex-core control drums

Approach to
engineering safety

Passive, inherent
IAEA passive safety category B goal

Passive, inherent
IAEA passive safety category B goal

Design life (years) 60 for components, 100 for structures 10
Plant footprint (m2) N/A ,1500
Distinguishing
features

Low pressure reactor vessel; high BP coolant, no
moving parts or actuation for decay heat
removal; high efficiency

Transportable reactor (vSMR) operating
semiautonomously, no moving parts or actuation for
decay heat removal; high efficiency

Design status Conceptual design TRL-5 (Technology Readiness Level 5 with USNRC and
CNSC) Canadian Nuclear Safety Commission

ahttps://www.westinghousenuclear.com/new-plants/lead-cooled-fast-reactor.
bhttps://www.westinghousenuclear.com/new-plants/evinci-micro-reactor.
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parts and high reliability, it has the advantages of a small footprint and a near-zero Emergency Planning Zone (EPZ).

Some overall design parameters of the WLFR and eVinci designs are compared in Table 3.13.

A step forward for eVinci was its selection, on the March 10, 2021 by the Department of Energy (US DOE) with a

DOE funding of BUS$ 12.9 million out of a total value of BUS$ 28.6 million, to “prepare for the Nuclear

Demonstration Unit (NDU) through design, analysis, testing and licensing to manufacture, site and test the NDU

by 2022” Source: SMR-Book, IAEA (Status of eVinci on March 10, 2021, https://www.energy.gov/ne/articles/us-

department-energy-further-advances-nuclear-energy-technology-through-industry-awards).

The SMRs at various stages are: one mature concept, six basic design, four preliminary design, 24 conceptual

design, five under development, four detailed design, one final design, one certified design, one licensing stage, three

under construction (CAREM, KLT-40S, HTR-PM). Both NuScale and eVinci are set to progress for the commercial

markets.

3.5.2 Very small modular reactor

At the low power level, a very small modular reactor (vSMR) such as the Toshiba 4S (Super Safe Small and Simple)

10 MW(e) reactor (Table 3.13) with active core height: 2.5 m, and diameter 1.16 m has a small core size with. 1.69 t

fissile U-235 inventory, out of 9.23 t U, has high burnup (average 34 GWd/t) and low source term for radiation release

in case of an accident.

Both the 4S designs (30 and 50 MW) are small and address Gen-IV requirements including nonproliferation, essen-

tially due to the absence of blanket breeders typically incorporated in fast reactors, and passive safety in LEU reactor

systems. One of the most attractive features of the 4S reactor is that refueling is not required in the entire 30-year

operation.

Key design and technology issues of SMRs are based on their inherent features which include:

� Small factory-built systems leading to reduction in on-site work
� A single (integrated) pressurized vessel containing steam generator so that a large break LOCA is eliminated from

DBAs
� A small core will have less risk due to less accident radioactive release
� Passive safety systems, for example, natural gravity-driven circulation in LWR SMRs

The above factors lead to reductions in the EPZ from 5 to 25 km, suggested by IAEA for 100�1000 MWth reactors,

to possibly 1000 ft as listed by Babcock and Wilcox for its mPower reactor. SMRs can thus be shifted closer to the

location requiring power in contrast to present-day NPPs. Thus resilient and isolated micro grids of high reliability can

be set up.

As mentioned in Section 3.4, one issue of concern for SMRs is the amount of plutonium production which over the

30 year operation period of 4S could be as high as 11 kg after 2 years, 82 kg after 15 years and 159 kg after 30 years.

Unfortunately, this is a negative aspect of a SMR of the 4S type which means that proliferation resistance is an issue

that would require careful security standards and practices.

3.5.3 Generation-IV reactors

With increased global competitiveness from conventional fossil-based and renewable energy systems, the nuclear indus-

try finds itself in a position in which it has to offer compact, reliable, flexible and safe systems addressing additional

public concerns on the long-term disposal of nuclear waste and proliferation of sensitive nuclear material. A nuclear

renaissance depends on the ability of the nuclear industry to meet the challenges of free markets. As discussed in

Section 3.1.3, the present developments indicate growth in Asia and a down-swing in Europe and the United States.

To address these challenges, new reactor designs have been considered as Generation-IV reactors for the coming

years. These are “new” in the sense of having improved designs and technologies on old systems.

Essentially, the capability of nuclear reactors to respond to natural and operational events, potentially leading to

accident conditions, has been increased. The lessons learned from over 60 years of nuclear power generation with three

accidents (TMI, Chernobyl, Fukushima) have contributed to design changes. These have led to enhanced performance

objectives with improved safety, passive and self-actuated shutdown systems, better decay heat remove, and severe

accident prevention.

The overall objectives translate into a shift from water systems to nonwater systems with higher operational tem-

peratures and higher power densities.
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The Generation-IV International Forum (GIF), created in January 2000 to study potential systems, consists of four-

teen partners (Argentina, Australia, Canada, People’s Republic of China, Euratom, France, Japan, Republic of Korea,

Russian Federation, Republic of South Africa, Switzerland, United Kingdom, the United States and Brazil as a nonac-

tive member). This Forum has selected six reactor technologies “to support the next generation of innovative nuclear

systems.” The systems are

1. Gas Cooled Fast Reactor (GCFR)

2. Lead Cooled Fast Reactor (LFR)

3. Molten Salt Reactor (MSR)

4. Supercritical Water Cooled Reactor (SCWR)

5. Sodium Cooled Fast Reactor (SFR)

6. Very High Temperature Reactor (VHTR)

These systems, as stated above, were selected on the basis of their enhanced safety, improved economics and new

products such as hydrogen for transport applications, reduced nuclear waste and increased proliferation resistance.

While Gen-III1 systems were evolutionary, Gen-IV systems are revolutionary in terms of their energy conversion sys-

tems as well as the nuclear fuel cycle technologies.

Some highlights from the Technology Roadmap Update for Generation-IV Nuclear Energy Systems, (Nuclear

Energy Agency [NEA], 2014), are:

1. the importance given to fast reactors is mainly due to their breeding capability reducing the magnitude of waste

disposal,

2. the development of advanced separation technologies will avoid separation of sensitive fissile material for any unde-

sirable diversion,

3. significant resources dedicated to the development of the SFR and VHTR, are due to the considerable historical

effort associated with these technologies,

4. materials testing and corrosion, and lead chemistry, core instrumentation, fuel development (MOX for first core,

then minor actinide MA-bearing fuels); and possibly nitride fuel for lead cooled reactors will be carried out with the

Russian reactor BREST-OD-300 as the reference design, and that,

5. efforts will be dedicated toward improving safety and operation with advanced instrumentation and control systems,

prevention and mitigation of sodium fires, and the overall prevention and mitigation of severe accidents with poten-

tial of large energy releases.

For the 2400 MW(t) Gas Cooled Fast Reactor, the 75 MW(t) two-loop He/water ALLEGRO experimental demon-

strator in Czech Republic is a test-bed to demonstrate the viability of the thermal tolerance of (U-Pu)C fuel, the func-

tionality of the He/gas heat exchangers and of safety systems. Based on utilizing the advantages of both fast and high

temperature reactors, ALLEGRO also tests the utilization of process gas for hydrogen production.

Similarly, the Pb-Bi-cooled Fast Reactor (LFR) SVBR-100 test-bed BREST-300 in Russia will carry out tests and

study functionality of components.

The MSR is an old concept from the 1950s to 1970s; at that time they were mainly thermal-neutron-spectrum

graphite-moderated reactors but since 2005 the liquid-fueled MSR research and development efforts have focused on

fast spectrum designs.

For the SCWR two baseline concepts are the pressure-vessel-based and pressure-tube-based LWR designs operating

at high temperature and high pressure above the thermodynamic critical point of water (374�C, 22.1 MPa). The neutron

spectrum depends on the core design.

For the SFR, there is an extensive body of knowledge operational reactors operational, for example, in China, India,

Japan and Russia. The SFR uses liquid sodium as the reactor coolant, at low pressure and high outlet temperature

500�550�C. Much of the basic technology for the SFR has been established in former fast reactor programs and was

further confirmed by the EBR-I and EBR-II in the US, from Phénix in France, the BN-600 reactor in Russia and the

Monju fast reactor in Japan.

The VHTR is a graphite-moderated, helium-cooled thermal reactor with high core exit temperatures, in the range

700�C�950�C. In the Japanese HTTR, the reactor core is a prismatic-block type such as the Japanese HTTR, while the

Chinese HTR-10 is of a pebble bed type. For these reactors, TRISO fuel is used at high operating temperature (up to

1250�C) giving high burnups (up to 200 GWd/tHM).

Generally SMRs and Gen-IV reactors can be classified based on their core exit temperature; a temperature of

B300�C is a water cooled SMR, B500�600�C is a liquid cooled fast reactor, B600�700�C is a MSR, and greater
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than B700�C is a gas cooled fast reactor. As a rule of thumb, the higher the exit temperature, the higher will be the

thermal efficiency of the reactor power plant.

3.5.4 Radiation source term

Although the nuclear industry has generally had a good record in terms of radiation release to the environment, with the

exceptions of TMI, Chernobyl and Fukushima, the dose in the vicinity of a reactor is a public concern. A person living

within 80 km from a NPP would have an annual dose of about 400 mrem (4 mSv), out of which half would be from

radon.

In case of an accident at a plant with a release of radiation in the environment, the “source term” estimates for a

power plant would be mainly strontium, iodine and xenon. For a 300 MW(e), the inventory of fission products is given

in Table 3.14.

Source: CHASNUPP (p. 67 Zia Mian).

In the case of a core melt, for rupture of cladding, the assumed release fraction from fuel is generally assumed to be

1% for xenon, krypton, cesium and iodine. Gen-IV reactors such as the Lead Cooled Fast Reactor lead will have better

shielding to retain iodine and cesium at temperatures up to 600�C, thereby reducing the source term in case of release

of volatile fission products from the fuel.

TABLE 3.14 Source term for a 300 MW(e) PWR.

Fission product Inventory (Ci/MW(e))

Kr-85 560
Kr-85m 24,000
Kr-87 47,000
Kr-88 68,000
Sr-89 94,000
Sr-90 3700
Sr-91 110,000
Y-91 120,000
Mo-99 160,000
Ru-103 110,000
Ru-106 25,000
Te-129m 5300
Te-131m 13,000
Te-132 120,000
Sb-127 6100
Sb-129 33,000
1�131 85,000
1�132 120,000
1�133 170,000
1�134 190,000
1�135 150,000
Xe-131m 1000
Xe-133 170,000
Xe-133m 6000
Xe-135 34,000
Xe-138 170,000
Cs-134 7500
Cs-136 3000
Cs-137 4700
Ba-140 160,000
La-140 160,000
Ce-144 85,000
Np-239 1.643106

Source: CHASNUPP (p. 67 Zia Mian).
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3.6 Nuclear fusion

Our planet earth revolves around the sun, at the center of our solar system, which is our source of light, heat and gravi-

tation. The sun is a massive star by our standards, but otherwise of moderate size in comparison with other stars, about

50 times larger than the earth consisting of over 90% (atomic) hydrogen and about 9% helium, with a core temperature

understood to be over 15 million �C and a surface temperature of B5500�C. At its core, it undergoes nuclear fusion

reactions where hydrogen is converted into helium. Clearly, when all the hydrogen has been consumed in such reac-

tions, the life of the sun will have come to an end and it would no longer be capable of sustaining its role in the solar

system.

The big question for humans is whether nuclear fusion, of the same type happening in the sun and stars, can be rep-

licated on earth in our scientific laboratories. Can such high temperatures be maintained; do we have materials strong

enough to withstand such excessive heat loads, and can this energy be harnessed to produce electricity? If all these

questions can be addressed, then we have a virtually inexhaustible source of energy since hydrogen and its isotopes

occur in the vast oceans of earth.

First, we need to understand how the sun undergoes nuclear fusion reactions. Before it became a star, the sun was a

collection of hydrogen and helium gases which gained density and formed gravity. The gravity pulled nuclei into a core

and became heavy enough to form into a star. As the nuclei came close together, they fused and reactions were initi-

ated, that continue today.

On earth, we first need the fusion fuels: hydrogen and its isotopes deuterium and tritium. Hydrogen is available in

(light) water in the form of H2O while deuterium is available in the ratio 1:8000 in sea water. Tritium does not occur in

nature and has to be produced from nuclear reactions such as the bombardment of lithium by neutrons.

3.6.1 The fusion reaction

From the mass defect and binding energy it is evident that energy can be produced from nuclear reactions in two cases

(Section 1.3); for heavy nuclei breaking into smaller nuclei, called nuclear fission, and for light nuclei combining or

fusing into heavier nuclei, called nuclear fusion.

Fig. 3.9 illustrates the nuclear fusion reaction of two isotopes of hydrogen namely deuterium and tritium. The fusion

reaction results in the production of alpha particles (helium) and a neutron

2
1H1 3

1H-4
2He1

1
0n 17:6MeVð Þ

The energy released in this reaction, 17.6 MeV; the alpha particle carries 3.6 MeV which is deposited “locally” due

to the relatively short range of an alpha particle in matter (Section 1.1) while the neutron carries 14 MeV which can

escape from the system as neutrons have a relatively larger range (Section 2.1). The physics of nuclear fusion is

reviewed in Annex.

The figure of merit is the Lawson criterion, which for DT fusion is

nτE $ 1:53 1020 m23s

The goal of achieving nuclear fusion by plasma confinement is to achieve breakeven by meeting this criterion.

Of the three confinement schemes namely gravitational confinement, magnetic confinement and inertial confine-

ment, the latter two have been investigated in scientific laboratories. Gravitational confinement is an appropriate

description of nuclear fusion that takes place in the sun where very large confinement times are evident. Here, on earth

it is only possible to try magnetic confinement fusion (MCF) and inertial confinement fusion (ICF) for which, so far, it

has not been possible to achieve even the short confinement times which would enable nuclear fusion reactors to oper-

ate in the way that nuclear fission reactors can for years.

To further appreciate the technological challenges of advanced nuclear systems, and before that, the modeling and

simulation efforts necessary, both MCF and ICF are briefly reviewed.

FIGURE 3.9 DT nuclear fusion reaction.
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3.6.2 Magnetic confinement fusion

When a plasma, that is, free ions and electrons, is in a magnetic field, the charged particles experience a Lorentz force,

which causes them to gyrate about a magnetic field line. The force is proportional to the magnetic field, and the radius

of gyration is directly proportional to the perpendicular velocity (perpendicular to the magnetic field) and inversely pro-

portional to the applied field. A plasma could be pinched by the application of a strong electric field too. Thus a strong

field leads to a gyration of very small radius and a charged particle is confined about the field. Both electrons and ions

move in circular orbits about a field line. Due to their longitudinal speed they drift away from their orbit. One of the

first attempts of magnetic confinement were based on the pinch and mirror concepts; thus in a magnetic mirror, in

which both ends had strong field lines would bounce the plasma back and forth between the two ends. The concept of

mirrors was one of the earliest for confinement schemes from the 1960s; the Mirror Test Facility at Lawrence

Livermore Laboratory was designed in the 1970s but research work by then had shifted to several other devices such as

the stellerator and the Soviet Tokamak design. By the 1980s, the Joint European Torus (JET) at Culham, England, and

the Tokamak Fusion Test Reactor at Princeton as well as other tokamaks around the world were operated to demon-

strate scientific feasibility.

Currently the Tokamak project is the leading effort with work underway on the International Thermonuclear

Experimental Reactor (ITER), illustrated in Fig. 3.10, an international project with 35 states, to demonstrate scientific

and technological feasibility of fusion.

The basic principle of plasma confinement is the use of magnetic coils placed around a vacuum vessel in the shape

of a toroidal chamber. These produce toroidal and poloidal fields which close upon themselves. In the vacuum of the

chamber, the plasma is injected in the form of gaseous fuel. With the induced current, the gas is ionized into the plasma

state. The ions and electrons are confined along magnetic field lines and energized to fusion temperatures of up to 300

million �C.
The first plasma is scheduled to be introduced in ITER when its construction phase will be over by December 2025.

36Li1 01n-24He1 13T1 4:8MeV

37Li1 01n-24He1 13T1 01n2 2:46MeV

A schematic of a nuclear fusion power reactor is shown in Fig. 3.11; the toroidal chamber where the hot plasma

undergoes fusion temperatures at few hundreds of million �C is the source of thermal energy. The core is surrounded

by a lithium blanket where tritium breeding is achieved by the 14 MeV neutrons produced from the DT reaction. The

FIGURE 3.10 The ITER Tokamak for

magnetic fusion. Courtesy ITER @iter.org

https://www.iter.org/newsline/-/3037.
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thermal energy is carried out of the reactor into a conventional power conversion system very similar to that described

in previous sections for nuclear fission reactors.

The fusion reactor, though a power plant, has a virtually inexhaustible fuel supply which comes from water in the

form of deuterium; tritium is bred within the reactor. There is no fissile fuel or radiation hazard with the exception of

some neutron and gamma radiation, but no safety, waste disposal, or proliferation issues. It is thus the ultimate energy

source which would most probably not find any competitor.

3.6.3 Inertial confinement fusion

Fusion can also take place when a deuterium and tritium pellet is heated to very high temperatures, as illustrated in

Fig. 3.12 for direct- and indirect-drive mechanisms, and held together merely by its inertia for sufficient time to achieve

Lawson’s criterion nτE $ 1:53 1020 m23s. In this approach, called inertial confinement fusion, the high temperatures

are obtained by intense heating of a tiny pellet to burn its surface, causing ablation, or evaporation, of a thin layer which

expands and, by newton’s third law of motion, causes an inward moving shock wave. Thus the outwards explosion

results in an inwards implosion which, if carefully shaped to be symmetric, results in the compression of a spherical tar-

get and subsequent heating and confinement to enable fusion.

The dynamics of ICF, in the context of external heating, requires a slightly different form of the Lawson criterion to

model the energy and its transport.

Since ICF involves compression, the figure of merit is based on the density ρ5mn of the imploding material and

the speed of the imploding material

v5

ffiffiffiffiffiffi
kT

mi

r
The time scale would then be, in terms of the pellet radius R

τEB
R

v

and the Lawson criterion could be written as

ρRBC
T3=2

σvh i
where

C � 12 k3=2mi
1=2

Ec

With the appropriate “best values” the Lawson criterion is expressed as

ρr. 3g=cm2

FIGURE 3.11 Schematic of a

nuclear fusion power plant.
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The confinement properties depend on the areal density of the compressed core, ρR5
Ð R
0
ρ rð Þdr

ρR
T

4:7

� �2:2

. 1

Research into ICF has been going on for decades with significant investments in facilities for delivering large amounts

of laser energy (BMJ) into tiny DT pellets (B1 mm diameter) over very short periods of time driving imploding DT

shells up to over 360 km/h compressing it to initiate ignition in a “hot spot” at the center as illustrated in Fig. 3.13.

The idea is to hold this hot spot for sufficient time to cause a thermonuclear burn wave in its vicinity which is sur-

rounded with cold and dense material and still collapsing. As the hot plasm burns, its pressure and hence its expansive

force begins to increase; it competes with the imploding surrounding until the pressure is so much that the entire assembly

explodes; whatever fusion energy is produced is that between the ignition of the hot spot and disassembly. These types of

experiments comprise direct-drive ignition and have the best chance for succeeding for spherical pellets. There are several

other “requirements” to ensure success, such as slow isentropic compression and perfect implosion symmetry.

The gain G is expressed as

G5
Eout

Ein

where fusion output Eout is achieved typically from a high-powered laser providing the input energy Ein. The gain value

of the JET has been B0.67 while ITER aims for a value of 10 producing 500 MW(e) for an input of 50 MW(e).

FIGURE 3.13 Stages of implosion in a

direct-drive laser ICF.

FIGURE 3.12 Laser compression

of a pellet by direct- and indirect-

drive.
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Research efforts in the US (Betti & Hurricane, 2016), Europe (Tikhonchuk, 2020), Japan (Horioka, 2018), China

(He, 2016; He & Zhang, 2007) and several other countries, are focused on achieving larger values for the Lawson

criterion.

The best-performing indirect-drive implosions with a 1.9 MJ laser have “accelerated the DT mass to about

360�380 km/s, reaching a fuel kinetic energy of about 12 kJ and producing about 26 kJ of fusion energy” (Betti &

Hurricane, 2016).

Some of today’s challenges in ICF are the development of advanced schemes to reduce losses and mitigate instabil-

ities, and improve implosion technologies.

3.7 Space propulsion

Space travel must have fascinated humans from times immemorial; history records the proposal for rockets over 100

years ago by the Russian theoretician Konstantin Ziolkovsky. The then Soviet work, finding its way to Europe, culmi-

nated in Germany in the 1930s. There, under the leadership of Werner von Braun, the German rocket program produced

the first rocket to fly into space, the V-2. Since the 1960s spacecraft with nuclear heaters and power systems have been

operating

Space propulsion can be achieved by a number of routes including chemical combustion, nuclear thermal energy to

a propellant and direct nuclear fission and nuclear fusion energy. Liquid and solid propellants based on combustion are

most common for missile and space systems from the first ballistic missiles to NASA’s 2020 Mission to Mars. Before

the present mission, the most notable has been the Apollo landing of three US astronauts on the Moon in 1969. These

were followed by the Viking, Pioneer, Voyager, Galileo, Ulysses, and Cassini missions. The first use of Pu-238 as a

source for radioisotope power was for Pioneer 10.

3.7.1 Conventional rocket designs

Ballistic missiles and rockets today are based on the German V-2 Vergeltungswaffe-2 rocket, technical name A-4 shown

in Fig. 3.14 designed by the group led by Wehrner von Braun and used in large quantities in the second world war. On

its first test flight on October 3, 1942, the V-2 flew 80 km high, and as such, was the first rocket ever to reach such a

height. The V-2 was a short-range ballistic, surface-to-surface, missile about 300 km, liquid-propelled missile that car-

ried a 1000 kg chemical warhead and was used in Europe against Allied targets. It was fired at an angle to reach its tar-

get as control systems were not very advanced in those days. Still, it had gyroscopes to determine angles and an

accelerometer for engine cutoff. It could reach altitudes of about 80 km during its powered flight; if fired vertically it

could go as high as about 200 km and achieve a maximum speed of 2880 km/h compared with 1100 km and

24,100 km/h for the most advanced long-range intercontinental ballistic missiles (ICBM), Minuteman III, developed in

1964�70 for the US land-based nuclear strategic force. The submarine launched ballistic missile (SLBM) Trident D-5,

with two other SLBMs Polaris (IRBM) and Poseidon (IRBM) is also an intercontinental submarine launched ballistic

missile (SLBM), deployed in 1990 with a unit cost of US$ 29.1 million, launched from SSBN submarines of the types

discussed in the previous section.

The overall design parameters of the V-2 rocket, up-scaled to the present Minuteman III and Trident D5 missile

designs is shown in Table 3.15. With the same basic design concept, there are differences in the size, the propellant and

casing materials, and in the thrust. Minuteman III has three rocket motors of length and diameter 18.6/5.5, 9.1/4.3 and

5.4/4.3 ft with thrusts 200,400, 60,700, and 34,500 lbf, respectively.

The Trident II D5, first deployed in 1990 is part of missile inventory on the US Ohio class and British Vanguard

class submarines also has a three-stage rocket motor system.

3.7.2 Space exploration

The V2 design was based on ethanol and liquid oxygen with ethanol having a higher heat of vaporization (B846 kJ/kg)

than kerosene (B251 kJ/kg) which means that ethanol would take longer to vaporize keeping the engine from melting.

These technologies were improved to design better performing systems.

From missiles to rockets, the thrust and size changes, for example, The Saturn V rocket that carried Apollo 11,

the first human mission to the Moon, generated 34.5 million Newtons (about 7.7 million lbf) thrust at launch

https://solarsystem.nasa.gov/news/382/10-things-rockets-we-love-saturn-v/ which is about twenty times the thrust of

Minuteman III.
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FIGURE 3.14 The V-2 rocket. Courtesy NASA grc.nasa.

gov 2021.
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The rocket, launched from Cape Kennedy on July 16, 1969 carrying three astronauts, Neil Armstrong, Michael

Collins, and Edwin Aldrin, landed on the Moon from where on July 20, 1969, Armstrong voice was heard with the his-

torical sentence “. . . on small step for a man, one giant leap for mankind.” The specific impulse of Saturn V with

Liquid Oxygen (LOX)/Rocket Propellant (RP) powered with Rocketdyne engines was 265 seconds for the first stage

and 424 seconds for the second and third stages with LOX/LH2.

Fifty years later, NASA’s mission to Mars with the Perseverance Rover was launched on a two-stage Atlas V-541

rocket from Cape Canaveral, Florida, on July 30, 2020 landed on February 18, 2021. Weighing 531,000 kg fully fueled

with the spacecraft on top, the 58 m high rocket fueled with type RP-1 kerosene fuel/ liquid oxygen, in the first stage,

and liquid hydrogen/liquid oxygen in the second stage Centaur RL-10 engine, can provide a thrust of 3.8 million

Newtons. The thrust-to-weight ratio of the system at B0.8 is better than that for previous space rockets.

The NASA Mars Mission 2020 to the Red Planet along the trajectory shown in Fig. 3.20 took 6 months and 19 days

to travel a distance of about 470 million km with an average speed of 98,000 km/h (B27 km/s)

The RD-180 engine, used in the Atlas V rocket of the Mars 2020 mission is a high performance engine LOX/kero-

sene engine built and marketed 50�50 by NPO Energomash (Russia) and Pratt and Whitney (USA). Some technical

features of the RD-180 engine, used in Atlas III and Atlas V launchers, are its specific impulse of 337.8 seconds in vac-

uum, thrust of 0.9 million lbf, and a chamber pressure of 257 atmospheres. The launch vehicle has stage 1 and 2 Atlas

V and Centaur engines with four solid rocket boosters; their combined thrust is over 5 million lbf. Before the 2020

Mars mission, Apollo missions 4, 6, 8 used 1.5 million lbf thrust while Apollo missions 9�17 used 1.522 million lbf
thrusts.

These are the limits of chemical propulsion systems, and thus define the limits of deep space travel with severe con-

straints of delivering payloads with reusable rockets.

3.7.3 Nuclear rocket designs for deep space exploration

To improve the capability of rockets to perform better than the chemical propulsion systems described above, there has

been an awareness for decades that nuclear propulsion may hold the key to the future of deep space exploration.

The work on nuclear rockets began in the 1950s with the Project Rover and the Nuclear Engine for Rocket Vehicle

Application (NERVA) shown in Fig. 3.15; design improvements and testing continued with development of state of the

art systems. Nuclear thermal propulsion (NTP) engines were demonstrated from the 1950s to 1970s during Project

Rover and later by the NERVA (Nikitaev & Thomas, 2020). Fuel is uranium nitride (UN) (supplies the heat) and pro-

pellant (that carries the heat) is hydrogen. Recently, efforts in deep space exploration have intensified with several mis-

sions to the Moon and the most recent (2020) missions to Mars (NASA, 2021).

The nuclear option for rockets is an attractive one due to its very high heating value compared with other fuels, as

shown in Table 3.16.

The values in Table 3.16 show that the nuclear advantage is orders of magnitude higher in comparison to chemical

fuels. Further, as concluded from an overview of Gen-IV reactors, high temperature systems would become available in

the near future, with liquid metal and GCRs ideal for safe and efficient power. With these advantages, a nuclear rocket

TABLE 3.15 Physical design of V-2, Minuteman III and Trident D5 missiles.

Design parameter V-2 Minuteman III Trident D5

Classification SRBM ICBM ICBM (SLBM)
Range (km) 320 13,000 12,000
Length (m) 14 18.2 13.42
Diameter (m) 1.65 1.85 2.11
Fuel 75% ethanol, 25% water Three-stage Solid Three-stage solid
Oxidizer Liquid oxygen Combined in solid Combined in solid
Warhead chemical thermonuclear Thermonuclear MIRV
Launch weight (kg) B13,000 34,467 59.090
Specific impulse (s) 203�239 Varies by stage
Thrust (kN) 264.90 935
Control system Gyroscope/accelerometer INS/IGS INS, SRS

Source: V-2: http://www.worldwar2facts.org/v2-rocket-facts.html http://www.astronautix.com/v/v-2.html ICBM: https://missilethreat.csis.org/country/united-
states/.
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would essentially be used a thermal energy source for heating a propellant, as shown in Fig. 3.16 giving it high exhaust

velocity and thrust.

NTP offers an alternative to CPT since more thermal energy could be provided to propellants; this is likely to result

in higher nozzle exit velocities and hence higher thrust. If realized, NTP could reduce the travel time for outer space

exploration.

TABLE 3.16 Heating values of some conventional fuels compared with uranium fuels.

Fuel Heating value (MJ/kg)a

Hydrogen (H2) 120�142
Petrol/gasoline 44�46
Crude oil 42�47
Hard black coal 25
Natural uranium in LWR 500 GJ/kg
Uranium enriched to 3.5% in LWR 3900 GJ/kg
Natural uranium in FNR 28,000 GJ/kg

aA Giga-Joule is a large amount of energy; the explosive yield of one ton of chemical explosive trinitrotoluene is TNT 4.18 GJ.
Source: World Nuclear Association https://www.world-nuclear.org/information-library/facts-and-figures/heat-values-of-various-fuels.aspx.
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FIGURE 3.15 NERVA rocket

engine. Courtesy NASA grc.nasa.

gov 2021.

FIGURE 3.16 The concept of a nuclear propulsion rocket system.
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It is worth estimating the comparative advantage of NTP over CPT with regards to propulsion efficiency and spe-

cific impulse for deep space exploration and, specifically, the possibility of reducing flight time to Mars and then the

possibility of a return flight as well. In the present NASA mission, the rocket is used for launching the spacecraft carry-

ing the Perseverance Rover and descent systems.

The NTP engine, unlike chemical systems which depend on combustion to produce thrust, uses a propellant pumped

into a nuclear reactor heated to high temperatures and with thermal energy converted to kinetic energy, the monopropel-

lant exits the nozzle with very high velocity.

LEU NTP engines have been extensively studied by Aerojet Rocketdyne (AR) with the objective of providing a sys-

tem to NASA for payload mass and high thrusts to enable crewed missions from the 2030s through the 2050s (Joyner

et al., 2020). These include moving heavy cargo within 200 days to Mars.

LEU thermal spectrum systems based on ceramic-metallic (CERMET) fuel were moderated using materials in a

structural assembly [tie-tubes (T/T)] similar to the NERVAs design. The LEU NTP approach has been shown to be

technically feasible based on work from 2016 to 2019.

Significant conceptual design evaluations have been completed for the LEU NTP design approach at 25,000-lbf thrust and

have shown high specific impulse and thrust-to weight ratios at or above 3:1. Analyses has been carried out with results show-

ing that a NTP can be used for Mars architectures for crewed missions using a 25,000-lbf (111-kN) NTP engine system.

A nuclear thermal rocket does not require oxygen; it is thus a monopropellant system. It needs the highest specific

impulse for high temperature, low molecular weight, and chamber pressure; thus a high temperature reactor and hydrogen

fuel are the best combination. For hydrogen, M5 2:016 g/mol, while for on the average propellants, MB13:8 g/mol with

TB2800K; for all other conditions fixed, the increase in specific impulse is more than twice, from Isp B300 to B770 sec-

onds. A nuclear rocket (Fig. 3.17) could give IspB900 seconds with significant advantage in deep space exploration mis-

sions, such as reducing mission time and carrying crew and equipment. The power of a nuclear thermal rocket depends

most significantly on the temperature achievable; the higher the better. Thus, the SMRs and Gen-IV technologies reviewed

in the previous section are all candidates, provided space and weight constraints are satisfied. These are the same chal-

lenges characteristic of Gen-IV systems such as the technological development of advanced fuels and materials as well as

the optimization of design and operational parameters.

Bimodal nuclear thermal rocket engines, working for both propulsion and power generation, have been shown

(Clough) to reduce the weight of space vehicles to the Moon, Mars, and beyond. The NERVAs NERVA reactor can be

used for both propulsion and power; a 316 MW(t) reactor that produces a thrust of 66.6 kN and specific impulse a spe-

cific of 917 seconds can be run at 73.8 kW(t) to produce the necessary 16.7 kW electric power with a Brayton cycle

generator with a flow as illustrated in Fig. 3.16.

Four engines, using HEU and liquid hydrogen, have been simulated for the RL-10, RL-60 and CERMET engines.

The results from these simulations are given in Table 3.17. In all cases, the specific impulse far exceeds the capabilities

of chemical fuels while providing high thrust-to-weight ratio.

The improvements considered to the above HEU designs have included optimization of LEU core configurations

(Joyner) to maximum specific impulse and minimum the core reactor mass.

Better fuel materials such as UN with a matrix of molybdenum and tungsten to raise the melting temperature led to

an improvement in performance. Several other candidate materials, for example, zircaloy, zirconium hydride, and zirco-

nium carbide have been considered for cladding uranium dioxide fuels to raise the operating conditions.

Similar to the issue of HEU in submarine reactors, space systems will require LEU fuels in NTP systems. It has

been shown that modifications can be made to fast systems in the NERVA to achieve a thermal spectrum for which

LEU-based nuclear thermal rockets can offers distinct advantages over existing HEU systems.

TABLE 3.17 Engine comparisons for NERVA and CERMET systems.

Description Small NERVA Small CERMET Large NERVA Large CERMET

Engine diameter (cm) 87.7 55 98.5 68
U-235 mass (kg) 27.5 177.3 36.8 376.7
Reactor mass (kg) 1435 1215 2645 2722
Engine total mass (kg) 1730 1450 3305 3327
Thrust (kN) 33.2 33.8 113.3 111.2
Specific impulse (s) 899.6 885.4 911.5 824.2
Thrust-to-weight 1.96 2.38 3.49 3.41
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FIGURE 3.17 Engine flow in NERVA-

type nuclear propulsion rocket engine.

TABLE 3.18 Design characteristics of some SNAP systems.

Characteristic SNAP-2A SNAP-8 SNAP-10A

Power (kW) 3 35 0.58
Design lifetime (a) 1 1 1
Reactor power (kW) 55 600 43
Reactor outlet (K) 920 975 833
Fuel and spectrum U-ZrH thermal U-ZrH thermal U-ZrH thermal
Coolant Na-K-78 Na-K-78 Na-K-78
Power conversion Rankine (Hg) Rankine (Hg) Thermoelectric (Si-Ge)
Turbine inlet (K) 895 950 777 K/610 K
Unshielded weight (kg) 545 4545 295

Source: IAEA.
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3.8 Nuclear power systems in space

The two kinds of nuclear power systems used in space have been the radioisotope thermal generators (RTGs) and small

nuclear auxiliary power (SNAP) reactor systems. The new systems under development are more efficient and are classi-

fied as nuclear batteries or MNRs. These are briefly described in the following sections.

3.8.1 Radioisotope thermal generators

As described in Chapter 1, the alpha decay of heavy nuclides can be used as a thermal source of energy which can be

directly converted to electrical energy in, for example, a thermoelectric generator. Such systems, called RTGs have

been used since the 1960s for satellite and space probes. The most recent is a Pu-238 powered RTG to supply electrical

power to the Perseverance Rover in the NASA Mission to Mars 2020. The thermal energy from the radioisotope Pu-

238 is used to charge the batteries as well as to keep the various systems in the rover at their correct operating tempera-

tures. The hot side from such a source and the cold side at space temperatures are both connected to a thermocouple

which converts thermal energy into electricity. For the Perseverance Rover, about 110 W(e) is produced from a 2 ft by

2 ft, 45 kg power system containing 4.8 kg Pu-238 with an operational life of about 14 years.

3.8.2 Small nuclear auxiliary power systems

In addition to the RTGs used for heat and very small amounts of power, nuclear power reactors were also developed and

used in space systems. The Romashka reactor developed and used by the former Soviet Union, in the 1950s and 1960s,

was a nuclear reactor, with 49 kg HEU in a core of diameter 241 mm and height 351 mm, with an electrical output of

460�475 W produced from a thermoelectric generator weighing 635 kg. By 1970, the Topaz thermionic reactor converter

FIGURE 3.18 The SNAP-10A reactor. Courtesy NASA grc.nasa.gov 2021.
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was developed based on the “boiling” of electrons, used as the working fluid, from a very hot static emitter surface typi-

cally at 1800K collected at a cooler surface typically at about 1000K. This electrical plant had electrons as the working

fluid. From the 1970s to the late 1980s, the former Soviet Union operated a series of the Cosmos spacecraft.

SNAP power systems, such as the SNAP-10A shown in Fig. 3.17, based on the Soviet program, were developed in

the 1960s.

Design characteristics of some SNAP (Fig. 3.18) models are listed in Table 3.18; these systems were intended for

use in the kilowatt electrical range but were not successful.

Small power systems, in the range of 3�20 kW(e), have also been proposed for converting nuclear fission thermal

energy using thermoelectric generators with heat pipes instead of the conventional coolant with pump flow. The Heat

pipe Operated Exploration Reactor is based on this concept.

3.8.2.1 Nuclear reactors for space

With missions to the Moon and Mars (Fig. 3.19), several designs of MNRs for space have been investigated with

renewed vigor. These represent improvements on the early designs of the 1950s and 1960s.

Very small, micronuclear (MNR) reactors have been designed for space and marine applications. One such design is

shown in Fig. 3.18 with a solid matrix core comprising fuel and heat pipes surrounded by radial and axial reflector,

absorber, and shielding region. The reactor core is embedded with cylindrical fuel rods of UN and heat pipes in a mono-

lith, surrounded with radial and axial reflectors and radiation shields, with boron carbide (B4C)-tipped control drums

embedded within the radial reflector. Thermal energy produced from nuclear fission in the critical core is transported

by heat pipes from the core to the TEG. The objective of this design is power conversion from nuclear thermal energy

in the core to electrical energy in the TEG without the use of rotating machinery such as pumps and turbines. The

shielding is designed so that permissible safety levels are maintained.

FIGURE 3.19 Core of a micronuclear

heat pipe reactor.
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The main features of the overall core design are listed in Table 3.19 and Table 3.20. The thermal power is 700 kW

with a thermoelectric conversion system giving 35 kW(e) which gives an efficiency of only 5%.

The total uranium fuel is B149 kg, out of which B104 kg is U-235, with a compact core within a barrel of radius

35 cm and height 40 cm. The thermal output of this reactor can be as high as B700 kW(t) with lithium in heat pipes; with

TABLE 3.20 MNR design parameters.

Design parameter Data

Fuel rod

Diameter (cm)/Height (cm), Density (g/cm3)
Cross-section area of fuel rod (cm2)
Mass fuel rod (kg)
Mass fraction U235/ U238

Mass fraction N
Mass of U (kg)/Mass of U235 (kg)

2.03/40, 13.6
3.2365
1.7607
0.6608/0.2743
0.0560
1.6621/1.1635

Fuel and fissile material

No. of fuel rods
Area of fuel rods (cm2)
Mass of fuel rods (kg)/Mass of fuel rods/length (kg/cm)
Mass U (kg)/Mass of U235 (kg)

90
291.2893
158.46/3.9615
149.5890/104.7150

Heat pipes

No. of heat pipes
RadiiVapor/Wick/Liq/Struc (cm)
Area of heat Pipe (cm2)
Total area of heat pipes (cm2)
Den of vapor (g/cm3)
Den of wick, structure (g/cm3)
Mass (kg), Mass/length (kg/cm)

37
0.90/1.00/1.02
3.2685
120.9345
0.01
12.0, 12.0
12.8538/0.321345

Matrix

Material, density (g/cm3)
Area of Hexagon (cm2)
Area (Hexagon-Fuel-HP) (cm2)
Mass (kg), Mass/length (kg/cm)

Nb-1Zr, 6.55
1585.1
1172.9
331.9531

Core

Mass (kg)
Mass/length (kg/cm)

503.2669
12.5817

Axial shield

Top and Bottom shield water
Top and Bottom shield tungsten

35 cm
40 cm

TABLE 3.19 Overall characteristics of a MNR.

Parameter Material

Power kW(t)/kW(e) 700/35
Fuel/enrichment UN (70%)
Heat pipe Li (wick Mo-12Re)
Reflector/configuration BeO/side and top
Control system Control drums in reflector
Radiation shield/configuration Water and tungsten/side, top, and bottom
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electrical output depending on the thermoelectric efficiency. With typically B5%, the MNR is thus capable of providing

B35 kW(e). The shielding is the only major disadvantage in terms of weight when tungsten becomes necessary for

gamma dose reduction. It is necessary to minimize the shield weight to suit space and permissible dose requirements. The

consequences of heavy shield will be acceptable for on-ground specialized power applications but unfavorable for space

missions where a compromise on the dose might be necessary for conforming to any propulsion constraints.

Further, the use of HEU with over 90% enriched fuel will not be able to satisfy the requirements of criticality safety

in case of a launch abort; thus fuel enrichment in the range 55%�80% will be preferable.

In the kilopower range, 1�10 kW(e), reactors can be smaller and useful for space and specialized surface applica-

tions. Most recently, a 5 kW(t)/1 kW(e) prototype called KRUSTY (Kilopower Reactor Using Stirling Technology) was

fueled with a solid core HEU (Poston, Gibson, Godfroy, & McClure, 2020) U-8Mo, 32.2 kg fuel (27.7 kg U235) was

demonstrated at Los Alamos National Laboratory at fuel temperatures greater than 800�C. The heat removal system

uses sodium as the fluid and nickel wick in heat pipes connected to a Stirling engine. Thus, there are no movable parts.

This compares with a larger 2400 kW(t)/120 kW(e) 70% enriched UN fueled reactor with a 310 kg core and a thermo-

electric generator (Sun et al., 2018). An advantage of using high-density UN fuel is a reduction in the core size In another

conceptual design by Wang et al. (Chenglong, Sun, Simiao, Wenxi, & Suixheng, 2020), a 500 kW(t), 25 kW(e) 65%

enriched UN fueled HPR is given with a core weight also of 310 kg. Heat pipes of sodium, lithium and potassium have

been studied for a number of designs (El-Genk & Tournier, 2011) and appear promising for near future space applications.

3.9 Conclusions

This chapter reviewed nuclear reactor systems and designs that have evolved over the last seven decades. Some, like

MCF and ICF have yet to be demonstrated with technological and commercial feasibility.

The objective of this chapter was to develop a realization of the nature and scale of nuclear technologies.

For nuclear power reactors, the need to demonstrate economically competitive reactors with enhanced safety and

proliferation-resistant features were identified as the most important goals of Generation-IV reactors.

Nuclear propulsion reactors, especially for submarine, require a transition from HEU to LEU designs which must be

addressed but may not be achievable for several reasons.

For nuclear fusion reactors, ICF appears to be at its very early stages of development while MCF is anticipated to

show technological promise with success in ITER by 2025.

Nuclear propulsion is an area that appears both necessary and promising due to the limits of chemical propulsion

technologies that restrict deep space exploration and habitation of Mars.

In all these areas, there is a need for more R&D efforts, with more extensive modeling and computationally power-

ful simulation as well as validations with new technologies such as advancements in fuel and separation technologies.

Some identifiable challenges in modeling and simulation include

1. The development of advanced neutronic and thermal-hydraulic coupling models

2. A detailed safety analysis with coupled nuclear models

3. An improvement of computational tools

4. Validation of existing calculation tools and nuclear data libraries

5. Simulation of fuel burnup for developing high burnup minor actinide (neptunium, americium, curium) bearing fuels

6. Modeling the clad behavior at high temperature

7. Modeling the core-cooling capability

8. Modeling passive heat removal system

9. Modeling hydrogen production methods

10. Modeling the effect of high core outlet temperatures 700�950�C
11. Carrying out system integration studies

12. Carrying out a full design optimization

Problems

1. Why is it not necessary to use heavy water in a PWR?

2. What are the significant design differences between a BWR and a PWR?

3. What is the purpose of breeding in a FBR?
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4. When did enriched uranium become available to NPP designers and why was the STR Mark II designed as a ther-

mal reactor rather than a fast reactor?

5. If you had to choose from a PWR or a liquid metal cooled reactor (LMCR) for a submarine, with the objective of

space constraints and enhanced power, which would you select and for what reasons? Consider the following fac-

tors: energy spectrum, size, pressure vessel, moderator, coolant, xenon poisoning, refueling, coolant melting point,

coolant-water interaction.

6. Comment on the following Russian design for RM-1 and VM-40A reactors in terms of their advantages and

disadvantages.

RM-1

Fuel:90% enriched U-Be13 dispersed in a beryllium matrix

Amount of U-235 in core: 90 kg

Fuel rod pellet diameter B10 mm covered with 0.1 mm MG clad in SS with 0.5 mm thickness

Number of fuel rods: B3000

Coolant: eutectic lead-bismuth alloy (44.5 wt.% Pb, 55.5 wt.% Bi), melting pointB125�C
VM-40A

Fuel:90% enriched U-Be13 dispersed in a beryllium matrix

Amount of U-235 in core: 200 kg

Coolant: eutectic lead-bismuth alloy (44.5 wt.% Pb, 55.5 wt.% Bi), melting pointB125�C
7. In view of the critical mass of Godiva (Section 3.2), comment on the amount of U-235 in a submarine reactor core.

8. How is high temperature achieved in Gen-IV reactors?

9. Neutronics of a submarine core: For a U-Zr fuel consisting of 15 wt.% Zr and 85 wt.% U enriched to 93% in U-

235, calculate the fast and thermal cross-sections and comment on the size of a submarine reactor core using this

fuel. How much would the size differ from that of a commercial PWR?

10. Estimate the natural uranium required for a submarine reactor 150 MW(t) operating at an average of 25% power for 1

year. Assume that 50% of all U235 atoms undergo fission and that 60% of the natural uranium goes into the submarine.

Nomenclature

English (lower case)

cp specific heat at constant pressure

cv specific heat at constant volume

e internal energy

k thermal conductivity

k Boltzmann constant

mi mass of ion

p pressure

English (upper case)

A� cross-section area at throat

Ae cross-section area at exit (diverging part)

Ec energy of charged particle

G gain

H
B

extrapolated height

H enthalpy

Isp specific impulse

M molecular weight

Pe exit pressure

Pe inlet pressure

Q heat

R universal gas constant

T absolute temperature

Q heat

T temperature
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U internal energy

W work

Greek lower case

β delayed neutron fraction

E expansion ratio

γ ratio of specific heats cp=cv
η efficiency

ρ density

τE energy confinement time

Abbreviations and acronyms

Ci curie

kN kilo newton

Sv Sievert

Zr zirconium

ABWR advanced boiling water reactor

AP advanced power

BARC Bhabha Atomic Research Center

BWR boiling water reactor

CANDU Canadian Deuterium Uranium

CERMET ceramic metal

CHASNUPP Chashma nuclear power plant

D2O deuterium oxide

FBR Fast Breeder Reactor

GCFR gas cooled fast reactor

GCR gas cooled reactor

GW(e) gigawatt electric

HEU highly enriched uranium

HTR high temperature reactor

IAEA international atomic energy agency

ICBM intercontinental ballistic missile

ICF inertial confinement fusion

INS inertial navigation system

ITER international thermonuclear experimental reactor

LEU low enriched uranium

LOCA loss of coolant accident

LFR lead cooled fast reactor

LMFBR liquid metal cooled Fast Breeder Reactor

LWGR light water gas cooled reactor

MIRV multiple independently targetable reentry vehicle

MCF magnetic confinement fusion

MNR micronuclear reactor

MOX mixed oxide

MSR molten salt reactor

MW(e) megawatt electric

MW(t) megawatt thermal

MWd megawatt-day

NASA National Aeronautics and Space Administration

NERVA Nuclear Engine for Rocket Vehicle Application

NTP nuclear thermal propulsion

NPP nuclear power plant

PHWR pressurized heavy water reactor
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PWR pressurized water reactor

RTG radioisotope thermal generator

SCR sodium cooled fast reactor

SCWR supercritical water cooled reactor

SHP shaft horsepower

SLBM submarine launched ballistic missile

SMR small modular reactor

SNAP small nuclear auxiliary power

SSBN submersible ship, ballistic, nuclear

SRS stellar reference system

TNT trinitrotoluene

USNRC United States Nuclear Regulatory Commission

VHTR very high temperature reactor

vSMR very small modular reactor

VVER water-water energetic reactor
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ANNEX: the physics of nuclear fusion

For fusion to take place, the nuclei must be brought close to each other. As their energy is increased, the atoms are

stripped of their electrons and ionize into the plasma state. To get ions closer to fuse, the coulomb barrier must over-

come the repulsive forces. Once the barrier is crossed, the nuclear strong attraction forces enable fusion.

V rð Þ5 Z1Z2e
2

4πε0r

where

k5
1

4πε0
B9 3 109Nm2=C2

The potential energy is then

V rð Þ5 Z1Z2e
2

4πε0r
5 9 3 109 Z1Z2

1:63 10219
� �2

r
∙

106

10215
MeV rin fmð Þ

Thus

V rð Þ5 1:44Z1Z2
r

MeV rin fmð Þ

For D-D (with Z1 5 Z2 5 1), and r5 10 fm, V rð Þ5 0:144MeV. Taking the radius of a nucleus as

r5 1:2 A1=3fm

the radius of a deuterium nucleus is 1.5119 fm; at twice this distance, that is, if two D nuclei are touching each other,

V 5 0:4762 MeV. This energy corresponds to a temperature found from E5 kBT from which

T 5
E

kB
5

0:4762 3 106

8:6173 1025
B5:53 109K

If the coulombic barrier is the only dominant barrier, then the thermal energy is calculated to be in excess of 109 K

for D-D. This is the theoretical critical ignition temperature below which fusion should not be expected to be possible.

However, fusion does take place at temperatures lower than this critical estimate. Two phenomena make fusion possible

below this critical temperature. The first is the Maxwellian distribution of energies and the second is the tunneling

of ions through the coulomb barrier; both these phenomena lower the critical temperature. If this were not the case,

then fusion would not have been possible on the sun, as its core temperature is of the order of 1:53 107 K which is

lower than the critical temperature for D-T fusion.

At a given temperature, or energy, all the ions do not have the same energy; in fact, most have a probable energy

while a few have much lower and much higher energies. This is illustrated in Fig. 3.A1 for the distributions n Eð Þ; nðvÞ;
for n Eð Þ; x5E=kT; for n vð Þ; x5 v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=2kT

p
.

The probability of quantum-mechanical tunneling, given by the Gamow factor, is Be2EG=
ffiffiffi
E

p
while the number of

particles at high energies due to their Maxwellian distribution (Section 2.1) is Be2E=kT ; thus at high energies the num-

ber of ions tunneling through the barrier is Be2
ffiffiffiffiffiffiffiffi
EG=E

p
e2E=kT . This is a result obtained from the Schrodinger equation

(Section 1.1). Here, the Gamow energy EG is given by

EG 5 2 mrc
2 παZ1Z2ð Þ2

where EG, Gamow energy; mr, reduced mass; α, fine structure constant α5 e2=ð4πε0h̄ÞB137
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The transmission probability has a maxima at

EM 5EG

kT

2EG

� �2=3

Several other fusion reactions are also possible but the reactions between isotopes of hydrogen are more likely than

the reactions between heavier nuclei such as helium due to the stronger coulomb barrier in case of the latter. The D-D

fusion reactions possible are

2
1H1 2

1H-
3
2He1

1
0n

3
1H1 1

1H

(

The fusion reaction rate for two species with n1 and n2 atoms cm23 is given by

R5nDnT σvh i cm23s21

where σvh i, the Maxwellian-averaged cross-section is a function of the temperature T of the reaction. For DD and DT

reactions,

σvh iDD 5 2:333 10214T22=3exp 2 18:76T21=3
� �

cm3s21

and

σvh iDT 5 3:683 10212T22=3exp 2 19:94T21=3
� �

cm3s21

where T is in keV (1 eVB11,600K). The functions σvh iDT and σvh iDT, have maximum values of 3.6 3 10�17 cm3/s at

825.3 keV and 53 10�15 cm3/s at 991 keV respectively, that is, B 100 million degrees.

The fusion cross-sections, from the Naval Research Lab’s plasma physics formulary are

σF Eð Þ5 A5 1 A42A3Eð Þ211
� �21

A2

E exp A1E
21

2

� �
2 1

� �
with the coefficients listed in Table 3.A1

The fusion cross-sections for DD and DT reactions are shown in Fig. 3.A2.

The DD cross-sections are orders of magnitude lower than the DT reaction and so the DT reaction is preferred.

The power density released in the form of charged particles (Huba, 2011) is

PDD 5 3:33 10213n2D σvh iDDW=cm3

and

PDT 5 5:63 10213nDnT σvh iDTW=cm3

FIGURE 3.A1 Distribution functions n(v) and n(E).
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Assuming nD 5 nT 5 n=2, the rate of reactions is

R5
1

4
n2 σvh i

The energy of the hot plasma is

E5 3nkBT

As a first estimate, equating the power produced by fusion, with the assumption that the neutron energy is lost and

the charged particle energy Ec remains (due to the short range of ions) to the power lost during the energy confinement

time, τE, gives an energy balance

1

4
n2 σvh iEc $

3nkBT

τE
which is rearranged to give

nτE $
12kB

Ec

T

σvh i
For D-T, the minimum value of T= σvh i at 26 keV (B260 million K) and the values of kB and Ec gives the Lawson

criterion for DT fusion

nτE $ 1:53 1020 m23s

The Lawson criterion is fundamental figure of merit to the realization of fusion as source of energy. In simple

words, it says that the product of plasma density n and confinement τE must exceed the quantity 1:53 1020 m23s

which means the higher the density, the lower the confinement time and vice versa. To achieve breakeven through

Lawson’s criterion is the goal of all experiments.

FIGURE 3.A2 D-D and D-T fusion cross-section.

TABLE 3.A1 Coefficients of the fusion cross-sections.

Coefficient D(T,n)He4 D(D,p)T3 D(D,n)He3

A1 45.95 46.097 47.88
A2 50200 372 482
A3 1.3683 1022 4.363 1024 3.0831024

A4 1.076 1.22 1.177
A5 409 0 0
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Chapter 4

Mathematical foundations

This chapter reviews the mathematical foundations and knowledge required for understanding the formulation, performing a

simulation, and coding for numerical implementation of problems in nuclear engineering. The material is presented in the

following order: general mathematics covering ordinary and partial differential equations, mathematics specific to the neutron

diffusion and transport equations followed by probability and statistics for Monte Carlo methods used in simulation. The

objective is, again, to provide a comprehensive review of the mathematics applicable to nuclear engineering, usually spread

over different subjects, in one resource available for study before or during the phase when problems are encountered.

Modeling in simulation in nuclear engineering covers several areas including neutron diffusion and transport, fluid

dynamics, heat transfer, dynamics and control, and structural mechanics as depicted in Fig. 4.1.

The mathematical formulation of the governing equations is mostly in the form of differential equations, integral

equations and integro-differential equations. Other than the deterministic formulations, simulation is carried out based

on probability distributions and estimates in a stochastic formalism.

The objectives of mathematical modeling and simulation in nuclear engineering incude the design and performance

anlayses of nuclear systems in many cases to compute the power produced in a nuclear reactor and to ensure it remains

within safe critical bounds. For example, in a model of a reactor core shown in Fig. 4.2, the innovative nuclear reactor

design has a core at the center, contains fuel rods and control rods placed vertically in assemblies, moderator and coolant

and is surrounded by radiation shielding. The fluid removes the heat from the fissioning fuel rods and, as described in

Section 4.3 for reactor designs, transfers its thermal energy to produce steam for a turbine and an electrical generator.

The mathematical models described in this chapter are intended to be applied for the computation of neutron and

photon flux inside the core, carrying out a dynamic and safety analysis as well as to estimate the radiation leaving the

FIGURE 4.1 Modeling and simulation in nuclear engineering.
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core for which radiation shielding is designed as shown by the presence of water and tungsten shields in Fig. 4.2. The

underlying physics of nuclear radiation and radiation transport was covered in Chapter 1 for charged particles and elec-

tromagnetic radiation and in Chapter 2 for neutron interactions with matter.

4.1 Ordinary differential equations

Ordinary differential equations (ODEs) are used to represent systems with one independent variable such as the spatial

variable x, and can, in many cases, be solved exactly (Baker, 2016; Polyanin & Manzhirov, 2006; W. G. & D.

Zwillinger, 1993). ODEs can be first-, second-, or higher order, where the order represents the power of the highest

derivative of the dependent variable with respect to the independent variable.

A linear ODE is of the nth-order if it can be expressed as

yðnÞ 1 f1 xð Þyðn21Þ 1 . . . 1 fn21 xð Þy0 1 fn xð Þy5R xð Þ (4.1)

where yðnÞ is the nth derivative of the function y. If the RHS5 0, the ODE is called a homogeneous linear ODE. If any

of the coefficients are a function of the dependent variable y, the ODE is nonlinear.

Thus, first-order differential equations are linear if they can be expressed as yð1Þ 1 f xð Þy5R xð Þ. They are easiest

solved by the use of an integrating factor exp ðÐ f xð ÞdxÞ; thus, the ODE yð1Þ 1 2xy5 x can be written as

d

dx
yex

2

5 xex
2

and by integrating both sides

y xð Þex2 5
ð
xex

2

1C

FIGURE 4.2 Model of a micronuclear reac-

tor (side view).
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giving the results

y xð Þ5 1

2
1Ce2x2 :

Solving Nth-order ODEs is possible by reducing them to N first-order ODEs which, when linear, are easily cast into

state-space equations amenable to standard matrix methods of linear algebra.

Examples of nonlinear first- and second-order ODEs are

y
dy

dx
2 x5 0

and

a1
d2y

dx2
1 a2 y2 2 1

� � dy
dx

1 a3y5 0:

If an ODE has coefficients that are functions of the independent variable x,

dy

dx
1 2xy5 x

it is called a variable coefficient linear ODE.

Equations of the form

dy

dx
1 p xð Þy5 g xð Þ

have an exact solution

y xð Þ5 e
2
Ð
p xð Þdx

ð
g xð Þe

Ð
p xð Þdx

dx:

In standard form, the Sturm�Liouville theory applies to second-order linear ODE boundary value problems (BVPs)

that can be written as

d

dx
p xð Þ dy

dx

� �
1 q xð Þy52λw xð Þy xð Þ (4.2)

where the functions p xð Þ; q xð Þ;wðxÞ are the coefficient functions and λ, if it exists, is called the eigenvalue which is a

scalar for which the equation is balanced and has eigenfunctions associated with the eigenvalue.

As an example, the steady-state neutron diffusion (Section 4.5) equation

r ∙Drφ2Σaφ1 S5 0 (4.3)

and the steady-state heat conduction equation

r:krT 1 S5 0 (4.4)

are both second-order ODEs which can be expressed in the form of the Sturm�Liouville equation.

Let us therefore review a method of obtaining an exact solution of a simple form of such an equation: the linear

nonhomogeneous form

a1 xð Þ d
2y

dx2
1 a2 xð Þ dy

dx
1 a3 xð Þy5Fext

which arises in several areas of science and engineering such as the Schrodinger equation discussed in Chapter 1,

forced vibrations in mechanical systems, including the Euler equation, the Bessel equation, the Airy equation. The

Legendre equation. Eq. (4.2) also represents the 1-D motion in the mass-spring-damper problem, when φ represents

the displacement xðtÞ, and x represents time t, where the restoring force of the spring is represented by Hooke’s Law

and an external time-dependent force Fext is applied. The procedure of solving this equation is to seek a complemen-

tary solution ycðxÞ from the homogeneous equation and a particular solution yðxÞ from the inhomogeneous term, and

express the solution as

y xð Þ5 yc xð Þ1 yp xð Þ:
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Thus, in operator form

a1D̂
2
1 a2D̂1 a3

� �
yc xð Þ5 0

The operator D̂ is treated as a scalar and roots are obtained for a1m
2 1 a2m1 a3 5 0. For roots m1;m2, the solution

is expressed as yc 5
P2

i51 Aie
mix. For the particular solution

yp xð Þ5 1

a1D̂
2
1 a2D̂1 a3

� �Fext:

The solution

yp xð Þ5
X
i

Aie
mix

where mi are found from the particular solution and the coefficients Ai are determined from the given boundary condi-

tions which can be Dirichlet (with the dependent variable specified on the boundaries), Neumann (with the normal

derivative specified on the boundaries), or mixed boundary conditions.

Exercise 4.1: Find the exact solution of the equation.

D
d2φ
dx2

2Σaφ5 0

for a planar source at x5 0 emitting S neutrons cm22 s21 with the boundary conditions: (1) Dirichlet b. c: finite flux

φ xð Þ, and (2) source Neumann condition: limx-0 J xð Þ5 S=2; ðL2 5D=Σa). Answer: φ5 SL
2D

e2x=L.

Example 4.1: Find the exact solution of the second-order ODE.

D
d2φ
dx2

2Σaφ52 S

for a planar source at x5 0 emitting S neutrons cm22 s21 in a finite slab of thickness 2d. With the boundary conditions:

(1) φ a1 dð Þ5φ 2 a2 dð Þ5 0, and (2) source condition: limx-0 J xð Þ5 S=2; ðL2 5D=Σa). First obtain the complemen-

tary solution using the homogeneous equation

D̂
2
2 1=L2

� �
φc xð Þ5 0:

The roots are m1 5 1=L, m2 52 1=L, giving the complementary solution

φc xð Þ5C1e
x=L 1C2e

2x=L

For the particular solution

φp 5
1

D̂2 1=L
� �

D̂1 1=L
� � 2 Sð Þ

which can be written in partial fractions as

φp 5
1

2

1

LD̂2 1
� � 2 1

LD̂1 1
� �

" #
2 SL2
� �

and expressed as

φp 5
1

2
12LD̂
� �21

1 11LD̂
� �21

h i
SL2
� �

Now expanding 12LD̂
� �21

5 11 LD̂2 LD̂
� �2

1?, gives

φp 5 SL2
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The solution is thus

φ xð Þ5A1coshx=L1A2sinhx=L1 SL2

and the coefficients A1;A2 can be found from the boundary conditions. Using the boundary conditions gives

φ xð Þ5 SL

2D

sinh a1 d2 xj jð Þ=L� 	
cosh a1 d

L

� 	 :

In case there are a number of sources, placed at different locations, the Green’s function can be used for calculating the

flux in the medium.

4.1.1 The Poisson equation: steady-state heat conduction in 1-D

The steady-state heat conduction equation (Eqs. 4.3 and 4.4) with Fick’s law q52 krT , gives the steady-state heat

conduction (as for neutron diffusion) equation with heat generation for constant k in regular geometry:

rectangular
d2T

dx2
1

qw
k

5 0

cylindrical
1

r

d

dr
r
dT

dr


 �
1

qw
k

5 0

spherical
1

r2
d

dr
r2
dT

dr


 �
1

qw
k

5 0

of the form r2φ5 S, which is called the Poisson equation; in the homogeneous case ðS5 0Þ, the equation reduces to

the Laplace equation. These equations can be solved by the standard procedure given above.

Exercise 4.2: For a fuel rod considered as a plate of thickness 2a and clad of thickness b with the boundary conditions:

T 0ð Þ5 Tm;
dT

dx

����
x50

5 0

obtain the temperature distribution, in the fuel and clad, and the heat flow using the AP1000 data from Chapter 3

(Table 3.3): fuel radius5 4.095 mm, gap thickness 0.082 mm, clad thickness 0.5715 mm.

The AP1000 fuel rods are of a cylindrical configuration with cross section. In this model, we can assume that the

“half-thickness” of a fuel plate is a equal to the radius of the fuel (Fig. 4.3).

Assume that the thermal conductivity of UO2 (IAEA, 2008) is given as

kf τð Þ5 100

7:54081 17:692τ1 3:6142τ2
1

6400

τ5=2
exp 2

16:35

τ


 �
W=m K

where

τ5
T

1000

and for the cladding, kc 5 36W=mK.

Recall that the steady-state heat equation

r2T 1
qw
k

5 0

is valid for constant thermal conductivity while kf is generally a function of temperature or space in the case of a com-

posite wall. Thus to solve the equation, it will be easier to assume that kf is constant. When this assumption is valid,

the above ODE can be easily solved to yield the temperature distribution

T xð Þ5 Tm 2
qw
2kf

x2
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and the heat flow is found by integrating from
Ð a
0
q dx52 k

Ð a
0
dTðxÞ. Also

q5
Tm 2 Ts

Rf

where T að Þ5 Ts and the “resistance” (analogous to Ohms Law V 5 IR) is

Rf 5
a

2kf A
:

In the cladding, the temperature is found by integrating r2T 5 0 to get

TðxÞ5C1x1C2

in terms of the constants of integration C1 and C2.

With the outer surface temperature T a1 bð Þ5 Tc, the temperature in the cladding is

T xð Þ5 Ts 2
x2 a

b
Ts 2 Tcð Þ:

Thus the overall heat flow is

q5
Tm 2 Tc

Rf 1Rc

where the resistance of the cladding is

Rc 5
b

kcA
:

FIGURE 4.3 AP1000 fuel rod in a moderator cell.
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In the above exercise, the thermal conductivity is a function of the dependent variable TðxÞ; thus the governing

equation in plane geometry is the nonlinear equation

kf Tð Þ d
2T

dx2
1 qw5 0:

In some cases, it is possible to obtain exact solutions of such nonlinear equations, but generally numerical methods are

required as will be discussed in this chapter.

4.1.2 Coupled first-order ODEs: the point kinetics equations

The Point Kinetics Equations (PKE) in a lumped model of a nuclear reactor, for the neutron density n tð Þ and the con-

centration of the ith nuclide Ci tð Þ from Chapter 2, are

dnðtÞ
dt

5
ρ tð Þ2β

B

Λ
n tð Þ1

X6
i51

λiCi tð Þ

and

dCi tð Þ
dt

5
βi tð Þ
Λ

n tð Þ2λiCi tð Þ; i5 1;?6

with initial conditions n 0ð Þ and Cið0Þ. These are two coupled first-order ODEs that can be solved by combining them

into one second-order ODE, or by taking Laplace transforms

N sð Þ5
ðN
0

n tð Þe2stdt

and

Γi sð Þ5
ðN
0

Ci tð Þe2stdt

which yields

N sð Þ5
l n 0ð Þ1Pi

λiCið0Þ
s1λi

h i
ls1β2 ρo 2

P
i
βiλi

s1λi

:

The solution, obtained by inversion, is

n tð Þ5
X7
i51

Aie
ωit

with each root ωi satisfying the “inhour equation”

ρ0 5 β1 lω2
X

i

βiλi

ω1λi

:

Since the total delayed fraction β5
P

iβi

ρ0 5 lω1
X

i

βiω
ω1λi

:

Thus the roots ωi can be found explicitly or by solving the transcendental equation giving the solution.

Exercise 4.3: Solve the coupled equations PKE to show, for one group of delayed neutrons, that the solution is.

n̂ðtÞ
ĈðtÞ
� �

5 a0

1
β

Λ λ1ω0ð Þ

2
4

3
5eω0t 1 a1

1
β

Λ λ1ω1ð Þ

2
4

3
5eω1t
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where the roots are

ω0;1 5
1

2

ρ2β
Λ

2λ

 �

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2β
Λ

2λ

 �2

1 4λ
ρ
Λ

s2
4

3
5:

Evaluate the roots for ρ5 0:2β given the thermal fission U235 data

λ5 0:0767s21;β5 0:00650;Λ5
β
λ
5 0:0847s

and plot the solutions. In general, there is one real root with the same sign of the applied reactivity while all other roots

are negative and real.

4.2 Partial differential equations

Partial differential equations (PDEs) represent systems where the differential equation has two or more independent variables

such as spatial dimensions x; y; z, orthogonal and azimuthal angles θ;ϕ, energy E, and time t. A linear second-order PDE

a x; yð Þ @
2φ
@y2

1 b x; yð Þ @
2φ

@x@y
1 c x; yð Þ @

2φ
@x2

1 d x; yð Þ @φ
@y

1 e x; yð Þ @φ
@x

1 f x; yð Þφ5 0 (4.5)

is classified as elliptic, parabolic, or hyperbolic if b2 2 4ac is less than, equal to, or greater than zero, respectively.

Using the classification criterion specified above, we can classify the PDE:

1

v

@φðr; tÞ
@t

5D
@2φ
@x2

2Σaφ r; tð Þ1 S r; tð Þ

with a5 b5 0; c5D; thus b2 2 4ac5 0, as a parabolic equation.

This implies a certain kind of boundary conditions: a Dirichlet or Neumann boundary condition on an open surface to

be specified for a stable solution. Similarly, elliptical PDEs require Dirichlet or Neumann boundary conditions on a closed

surface surrounding the region of interest, while hyperbolic PDEs require Cauchy boundary conditions on an open surface.

The Handbook of Nonlinear Partial Differential Equations (Polyanin & Zaitsev, 2004) gives solutions for nonlinear

parabolic, hyperbolic, and elliptic equations, nonlinear equations with exponential, hyperbolic, logarithmic, and trigono-

metric nonlinearities in one, two, or more space variables, as well as for higher order equations. The exact methods

given for solving nonlinear PDEs include characteristic equations and canonical forms.

The solution procedure is usually to convert PDEs to ODEs and then solved to obtain exact analytical solutions

where possible, or a system of algebraic equations A
5
x5B where A

5
is a matrix, x is the vector being solved, and B is a

known “force” vector. The solution is thus obtained, from standard numerical techniques, such as Gaussian elimination,

Gauss�Siedel iterative methods, LU decomposition methods, etc., by inversion of the matrix A
5
giving x5A21B.

4.2.1 Equations of fluid dynamics

Examples of PDEs used in thermal hydraulics are the continuity equation

@ρ
@t

1r ∙ ρuð Þ5 0;

the conservation of momentum equation

@ρu
@t

1r ∙ ρuuð Þ52rp1rτ1 ρg;

and the conservation of energy equation

@ρe
@t

2
@ρ
@t

1r ∙ ρueð Þ5r ∙ krT
� �

2 pr ∙ uð Þ1Φ1 S

To “close” the above system, an equation of state

ρ5 ρ ðP;TÞ
is used for solving for the six independent variables ρ; u; p; e.
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4.2.2 The 1-D time-dependent heat conduction

A 1-D time-dependent form of Eq. (4.4) for temperature, with constant thermal conductivity k, from an energy balance, is

@2T

@x2
1

qw
k

5
1

α
@T

@t

where α5 k=ρc is the thermal diffusivity of the material and can be solved with given boundary conditions for a 1-D

slab shown in Fig. 4.4.

Assuming separability T x; tð Þ5XðxÞΓðtÞ and setting equal to a separability constant 2β2

1

XðxÞ
d2XðxÞ
dx2

5
1

αΓ tð Þ
dΓðtÞ
dt

52β2

the PDEs are converted to a set of ODEs

dΓðtÞ
dt

1αβ2Γ tð Þ5 0

d2XðxÞ
dx2

1β2X xð Þ5 0

with solutions Γ tð Þ5 e2αβ2τ and XðβmxÞ. This is an eigenvalue problem, as it satisfies a boundary condition such as

X
0 ��
0
5 0 and for X xð Þ5 cosβx, X

0 ��
0
5 52βsinβx5 0, so either β5mπ, m5 0; 1; 2; . . .. The solution is thus

T x; tð Þ5
XN
m51

cmX βmxð Þe2αβm
2τ :

The spatial part of the solution is

F xð Þ5
XN
m51

cmX βmxð Þ

for which the coefficients are determined using orthogonalityðL
0

X βm; xð ÞX βn; xð Þdx5 0 for m 6¼ n

N βmð Þ for m5 n

�

where the normalization integral N βmð Þ is defined as

N βmð Þ5
ðL
0

Xðβm; xÞ
� 	2

dx

and

cm 5
1

N βmð Þ 5
ðL
0

Xðβm; xÞFðxÞdx

to yield the time-dependent solution

T x; tð Þ5
XN
m51

e2αβm
2τ 1

N βmð ÞX βm; xð Þ
ðL
0

Xðβm; x
0 ÞFðx0 Þdx0

:

Here F(x) is an arbitrary function and the X functions depend on the boundary conditions.

FIGURE 4.4 Boundary conditions on a 1-D slab.
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4.2.3 Laplace equation: 2-D steady-state heat conduction

For 2-D steady-state conduction with constant k and no heat generation, that is, qw5 0, Eq. (4.4) is the Laplace equation

@2

@x2
1

@2

@y2


 �
T x; yð Þ5 0

for a square plate of width W and height H. Given the Dirichlet boundary conditions T x;Hð Þ5 Tu and

T W ; yð Þ5 Tð0; yÞ5 Tðx; 0Þ5 Ts the equation is solved by assuming separability T x; yð Þ5XðxÞYðyÞ; this gives
1

X

d2X

dx2
1

1

Y

d2Y

dy2
1λ2 5 0

with two second-order ODEs

1

X

d2X

dx2
52 β2;

1

Y

d2Y

dy2
52 γ2;

where β2 1 γ2 5λ2. The solutions of X and Y are trigonometric functions with four constants determined by the bound-

ary conditions and from the orthogonality of Legendre polynomials. The exact solution is

T x; yð Þ5 Tu 2 Tsð Þ 2
π

XN
n51

21ð Þn11 1 1

n
sin

nπx
W

� � sinh nπy
W

� �
sinh nπH

W

� � 1 Ts:

The above solutions were considered for steady-state and constant thermal conductivity k. A numerical finite-

difference solution for this 2D plate is given in Section 4.5.1. In general, if k Tð Þ5 f ðTÞ, the equation on a square plate

is an elliptic nonlinear Poisson equation.

k Tð Þ @2

@x2
1

@2

@y2


 �
T x; yð Þ1 qw5 0:

Some homogeneous cases for which numerical methods are compared with exact solutions (Filipov & Faragó, 2018;

Yeih, 2020) are for k Tð Þ5 T on a circle of unit radius and on an annular region; k Tð Þ5 eT and on a square plate

0# x# 1, 0# y# 1.

For k Tð Þ5 eT , the exact solution is T x; yð Þ5 logðxy1 5Þ, shown in Fig. 4.5, which is compared with numerical solu-

tions which are generally used for nonlinear PDEs.

Since it is not always possible to obtain exact solutions, numerical methods are used as discussed later in this

chapter.

FIGURE 4.5 Temperature field T x; yð Þ on a square plate

(k Tð Þ5 eT).
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4.2.4 Heat conduction in 2-D and 3-D

In rectangular, cylindrical, and spherical coordinate systems, the governing heat conduction equation can be written as

1

rn
@

@r
rnk

@T

@r


 �
1 q

0 0 0
5 ρc

@T

@t

with n5 0 (slab), 1 (cylinder), an 2 (sphere).

Thus, in rectangular geometry,

k
@2

@x2
1

@2

@x2


 �
T x; yð Þ1 q

0 0 0
5 ρc

@T

@t

This equation is solved assuming separability, similar to the 1-D case. In the steady-state heat conduction equation,

for 2-D or 3-D problems, the governing equation becomes a PDE with the appropriate forms of the Laplacian.

The Laplace equation is solved by assuming separability when the resulting equations can be written as ODEs of the

form for harmonic motion. With the relevant boundary conditions, solutions can be expressed in terms of modes, or

eigenfunctions, for eigenvalues. The solutions can be expressed in terms of an infinite series and have orthogonal

properties.

In 3-D, the rectangular coordinate equation for thermal conductivity k which may be space- or temperature-

dependent, the equations are

@

@x
k
@T

@x


 �
1

@

@y
k
@T

@y


 �
1

@

@z
k
@T

@z


 �
1 q

0 0 0
5 ρc

@T

@t

For a cylinder x5 rcosφ; y5 rsinφ

1

r

@

@r
k
@T

@r


 �
1

1

r2
@T

@φ
k
@T

@φ


 �
1

@

@z
k
@T

@z


 �
1 q

0 0 0
5 ρc

@T

@t

For a sphere, x5 rcosφsinθ; y5 rsinφsinθ, and z5 cosθ (Fig. 4.6)

1

r2
@

@r
kr2

@T

@r


 �
1

1

r2sin2θ
@

@φ
k
@T

@φ


 �
1

1

r2sinθ
@

@θ
ksinθ

@T

@θ


 �
1 q

0 0 0
5 ρc

@T

@t

Some boundary conditions and initial conditions need to be specified to solve the above: Neumann, Dirichlet, or

mixed are given in Table 4.1.

FIGURE 4.6 Solid angle.
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In the time-dependent case, assuming separability T r; tð Þ5ψðrÞΓðtÞ in the usual manner

1

ψ rð Þ r
2ψ rð Þ52

1

αΓ tð Þ
dΓ tð Þ
dt

52λ2

to get the Helmholtz equation

r2ψ rð Þ1λ2ψ rð Þ5 0

Which can be reduced to ODEs in coordinate systems including the rectangular, cylindrical, and spherical systems.

Exercise 4.4: For 3-D Cartesian geometry, extend the analysis of Sections 4.4.2.3 and 4.2.3 to find the exact solution

for the time-dependent temperature given the initial conditions.

In cylindrical geometry, with the same procedure followed above, for

1

ψ
@2ψ
@r2

1
1

r

@ψ
@r

1
1

r2
@2ψ
@φ2

1
@2ψ
@z2


 �
5

1

αΓ tð Þ
dΓ tð Þ
dt

52λ2

and r;φ; zð Þ5RðrÞΦðφÞZðzÞ, the ODEs are
1

Z

d2Z

dz2
52 η2;

1

Φ
d2Φ
dφ2

52 v2; and
1

Rv

d2Rv

dr2
1

1

r

dRv

dr


 �
2

v2

r2
52 β2

The separated ODEs and their solutions are

d2Z

dz2
1 η2Z5 0Z η; zð Þ:sinηzandcosηz

d2Φ
dφ2

1 v2Φ5 0Φ v;φð Þ:sinυφandcosυφ

d2Rv

dr2
1

1

r

dRv

dr
1 β2 2

v2

r2


 �
Rv 5 0Rv β; rð Þ:Jv βrð ÞandYv βrð Þ

β2 1 γ2 1 η2 5λ2

dΓ
dt

1αλ2Γ5 0Γ tð Þ:e2αλ2τ

Bessel functions are solutions of the νth order (ν is a nonnegative real number) second-order ODEs

d2y

dx2
1

1

x

dy

dx
1 12

ν2

x2


 �
y5 0

There are functions of the first kind, which are regular at the origin (e.g., I0; I1; J0; J1), and functions of the second

kind which are singular at the origin (e.g., Y0;Y1;K0;K1). The solutions which are linear combinations of JνðxÞ and

TABLE 4.1 Dirichlet, Neuman and mixed boundary conditions.

Boundary type Boundary condition

Temperatures at surfaces T 0; tð Þ5T1, T L; tð Þ5 T2
Heat fluxes ðW=m2Þ q52 k @T

@x

Insulated boundary @T 0;tð Þ
@x 5 0

Reflecting boundary @T L=2;tð Þ
@x 5 0

Convection boundary condition 2k @T 0;tð Þ
@x 5 h1 TN1 2 T 0; tð Þ½ �

Radiation boundary condition 2k @T 0;tð Þ
@x 5 ε1σ T 4

surr;1 2 T 4ð0; tÞ
h i

Interface boundary conditions TA x0; tð Þ5 TB x0; tð Þ, 2kA
@TA x0 ;tð Þ

@x 52 kB
@TB x0 ;tð Þ

@x
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YνðxÞ. These are related as

Yυ xð Þ5 cosπυJυ xð Þ2 J2υ xð Þ
sinπυ

for J2ν 5 21ð ÞνJν . When the differential equation is written in a modified form:

d2y

dx2
1

1

x

dy

dx
2 11

υ2

x2


 �
y5 0

the solutions are a linear combination of Iν xð Þ and KνðxÞ: KvðxÞ5 π
2
I2vðxÞ2 lvðxÞ

sinπν . Functions of the first and second kind are

shown in Fig. 4.7.

Now, consider the 1-D cylindrical form of the neutron diffusion equation (Eq. 4.3)

D
d2

dr2
1

1

r

d

dr


 �
φ rð Þ2Σaφ rð Þ1 S rð Þ5 0

For a “line source” where the source extends along a line on the z-axis at r5 0, the homogeneous form of the equation

will apply to all r excluding the source. This will be the modified Bessel equation form given above with ν5 0 and a

FIGURE 4.7 (A�D) Bessel functions of the first and second kind.
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solution of the form

φ rð Þ5A1I0 rð Þ1A2K0ðrÞ
where A1 and A2 are constants. Since we require a solution at r 6¼ 0, and the function I0ðrÞ grows with increasing r

while K0ðrÞ remains bounded and decreases, the solution will be φ rð Þ5A2K0ðrÞ. For the Bessel functions, the series

forms are:

I0 xð Þ5 11
x2

4
1

x4

64
1

x6

2304
1 . . . and K0 xð Þ52 γ1 ln

x

2

� �
I0 xð Þ1 x2

4
1

3x4

128
1

11x6

13; 824
1 . . .

where γ52 0:577215665 . . . is Euler’s constant.

4.2.4.1 Spherical geometry

In spherical coordinates, the temperature field, in general, is T 5 Tðr; θ;φ; tÞ given by the governing equation

@2T

@x2
1

2

r

@T

@r
1

1

r2sinθ
@

@θ
sinθ

@T

@θ


 �
1

1

r2sin2θ
@2T

@φ2
5

1

α
@T

@t

with μ5 cosθ

@2T

@r2
1

2

r

@T

@r
1

1

r2
@

@μ
12μ2
� � @T

@μ

� �
1

1

r2ð12μ2Þ
@2T

@φ2
5

1

α
@T

@t

defining a new variable V 5 r1=2T and simplifying for azimuthal symmetry, temperature is a function of r;μ; t:

@2V

@r2
1

1

r

@V

@r
2

1

4

V

r2
1

1

r2
@

@μ
12μ2
� � @V

@μ

� �
5

1

α
@V

@t

With separability

V r;μ;φ; tð Þ5ΓðtÞRðrÞMðμÞ
the ODEs are

d

dμ
12μ2
� � @M

@μ

� �
1 n n1 1ð ÞM5 0

d2R

dx2
1

1

2

dR

dr
1 λ2 2 n1

1

2


 �2
1

r2

" #
R5 0

with elementary solutions

Pn μð Þ and Qn μð Þ
Jn11=2 λrð Þ and Yn11=2 λrð Þ

where Pn μð Þ and Qn μð Þ are Legendre functions of the first and second kinds, respectively.

dΓ
dt

1αλ2Γ5 0Γ tð Þ:e2αλ2τ

The above can also be written as, with x5 rsinθcosϕ, y5 rsinθsinϕ, z5 rcosθ, and f r; θ;[ð Þ5RðrÞΘðθÞΦðϕÞ, the
equations are

@2Φ
@ϕ2

52m2Φ ϕð Þ

1

sinθ
@

@θ
sinθ

@Θ
@θ


 �
2

m2

sin2θ
Θ θð Þ52 l l1 1ð ÞΘ θð Þ

1

r2
@

@r
r2
@R

@r


 �
2

l l1 1ð Þ
r2

R5λαR rð Þ
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where Θ θð ÞΦ ϕð Þ5 Yl;mðθ;ϕÞ. Here, l; m are integers, and l$ jmj, or 2m# l#m, and

Yl;m θ;ϕð Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l1 1

4π
l2mð Þ!
l1mð Þ!

s
Pm
l cosθÞeimϕ�

where Yl;m are spherical harmonics and Pm
l are associated Legendre functions. Note that

Pm
l xð Þ5 21ð Þm 12x2

� �m=2 dm

dxm
Pl xð Þ

For azimuthal symmetry, m5 0 (azimuthal symmetry) Pm
l xð Þ5PlðxÞ. The orthogonality condition gives the orthogonal-

ity condition ð1
21

Pm
l xð ÞPm

n xð Þdx5 2

2n1 1

n1mð Þ!
n2mð Þ! δln

The spherical harmonics functions are orthogonal and normalized; being complete, any function can be expressed in

terms of spherical harmonics. The solution can thus be written in the form:

fα r; θ;[ð Þ5 Yl;m θ;[ð Þ 1ffiffi
r

p Jl11
2
jl11=2;nr=aÞ
�

where jl11=2;n represents the nth zero of the Bessel function Jl11
2
. α5 n; l;mð Þ; n5 1; 2; 3;?.

Legendre’s equation is

1

sinθ
@

@θ
sinθ

@Θ
@θ


 �
1 l l1 1ð ÞΘ θð Þ5 0;

which, for x5 cosθ, can be expressed as an eigenvalue equation

d

dx
12 x2
� � d

dx


 �
Θ xð Þ52 l l1 1ð ÞΘ xð Þ

for 21# x# 1, has solutions PlðxÞ, called Legendre polynomials, defined by Rodriguez’ formula (Abramowitz &

Stegun, 1964)

Pl xð Þ5 1

2ll!

dl

dxl
x221
� �l

:

These polynomials are complete and have the orthogonality condition:ð1
21

Pl xð ÞPm xð Þdx5 2

2l1 1
δlm

Pl 2 xð Þ5 21ð ÞlPl xð Þ:
Note that for the normalization Pn 1ð Þ5 1 for Legendre polynomials given in Table 4.2, it is easily seen for these

cases. The recurrence relation (Abramowitz & Stegun, 1964)

n1 1ð ÞPn11 xð Þ2 2n1 1ð ÞxPn xð Þ1 nPn21 xð Þ5 0

TABLE 4.2 Legendre polynomials.

l PlðμÞ l PlðμÞ
0 1 1 μ
2 1

2 3μ2 2 1
� �

3 1
2 5μ3 2 3μ
� �

4 1
8 35μ4 230μ2 1 3
� �

5 1
8 63μ5 2 70μ3 115μ
� �

6 1
16 231μ6 2 315μ4 1 105μ2 2 5
� �

7 1
16 429μ7 2 639μ5 1 315μ3 2 35μ
� �

8 t
128 6435μ8 212012μ6 1 6930μ4 2 1260μ2 1 35
� �
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can be used to obtain higher terms. Since the Legendre polynomials form a complete set, a function such as gðz;μÞ can
be expressed as

g z;μð Þ5
XN
l50

glðzÞPlðμÞ

gl zð Þ5
2l1 1

2

ð1
21

g z;μð ÞPl μð Þdμ

with moments gl zð Þ. We can thus express gðz;μÞ as: Isotropic: g z;μð Þ5g0ðzÞ; First-order angular: g z;μð Þ5g0 zð Þ1μg1ðzÞ;
Second-order angular: g z;μð Þ5g0 zð Þ1μg1 zð Þ1 1

2
3μ2 2 1
� �

g2 zð Þ and higher orders.

Exercise 4.5: Show the connection between the spherical geometry equation for 1-D spherical geometry.

@2T

@r2
1

2

r

@T

@r
5

1

α
@T

@t

and the one-dimensional rectangular geometry equation.

4.2.5 Flux formulation

In the flux formulation of the 1-D time-dependent equation (Ozisik, 1993)

@2T

@x2
5

1

α
@T x; tð Þ

@t

can be written in terms of the heat flux

q x; tð Þ52 k
@Tðx; tÞ

@x

as

@2q

@x2
5

1

α
@qðx; tÞ

@t

ð0, x,N; t. 0Þ with boundary conditions

q x; tð Þ5 f0 5 constant at x5 0; t. 0

q x; tð Þ5 0 for t5 0With Q x; tð Þ5 q x; tð Þ2 fo
@2Q
@x2 5 1

α
@Qðx;tÞ

@t in 0, x,N; t. 0

Q x; tð Þ52f0 5 constant at x5 0; t. 0

Q x; tð Þ5 0 for t5 0 and

Q x; tð Þ52foerf
xffiffiffiffiffiffiffi
4αt

p

 �

q x; tð Þ5 fo 1Q x; tð Þ5 fo 12 erf
xffiffiffiffiffiffiffi
4αt

p

 �� �

and

q x; tð Þ5 foerfc
xffiffiffiffiffiffiffi
4αt

p

 �

From q x; tð Þ, the temperature distribution is found by integrating the above

T x; tð Þ5 fo

k

ðN
x

erfc
yffiffiffiffiffiffiffi
4αt

p

 �

dy
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and

T x; tð Þ5 2f0

k

αt
π


 �1=2

e2x2=4αt 2
x

2
erfc

xffiffiffiffiffiffiffi
4αt

p
" #

Exercise 4.6: Compare the heat flux formulation with the Fermi Age formulation and comment on the similarities or

differences.

4.3 Integral equations

Several problems in science and engineering, such as the Boltzmann transport equation, are formulated in terms of

integral equations where the unknown appears in an integral (Kanwal, 2013; Polyanin & Manzhirov, 2008). In general,

a differential equation can be converted into an integral equation. It is important to note that initial value problems as

well as boundary value problems can be converted into equations.

Integral equations are classified according to the limits on the integral, the occurrence of the unknown function and

the homogeneity of the equation. Some equations with their classification are listed in Table 4.3.

In the above equations, Kðx; yÞ is called the “kernel of the integral operator.”

Exercise 4.7: Show that the IVP.

d2y

dx2
2 5

dy

dx
1 6y5 0; y 0ð Þ5 0; y

0
0ð Þ52 1

can be converted to a Volterra equation of the second kind

g xð Þ5 6x2 5ð Þ1
ðx
a

52 6x1 6tð ÞgðtÞdt

Exercise 4.8: Show that the BVP.

d2y

dx2
1 xy5 1; y 0ð Þ5 0; y 1ð Þ5 1

can be converted to a Fredholm integral equation of the second kind.

y xð Þ5 1

2
x 11 xð Þ1

ð1
0

K x; tð Þy tð Þdt

Obtain the kernel K x; tð Þ.

TABLE 4.3 Classification of integral equations.

Equation Name Type

u xð Þ5 Ð b
a K x; y
� �

f y
� �

dy Fredholm Homogeneous I

f xð Þ5 Ð b
a K x; y
� �

f y
� �

dy Fredholm Homogeneous II

f xð Þ5 Ð b
a K x; y
� �

f y
� �

dy1 gðxÞ Fredholm Inhomogeneous II

u xð Þ5 Ð x
a K x; y
� �

f y
� �

dy Volterra Homogeneous I

f xð Þ5 Ð b
x K x; y
� �

f y
� �

dy Volterra Homogeneous II

f xð Þ5 Ð x
a K x; y
� �

f y
� �

dy1 gðxÞ Volterra Inhomogeneous II
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The above equations are called nonsingular linear integral equations since the unknown function appears inside one

or more integrals and linear operations are performed on it. Examples of nonlinear inegral equations are

y xð Þ5
ðb
a

K x; tð Þ yðtÞ½ �2dt

y xð Þ5
ðb
a

ðb
a

K x; s; tð Þy sð Þy tð Þdsdt; a# s# b

If the function to be determined in the above equations, f xð Þ, appears as hðxÞf xð Þ and hðxÞ is neither zero or one, then

the equation is called a linear integral equation of the third kind.

In this section, the integrals considered are nonsingular, linear, and either homogeneous or nonhomogeneous.

Some of the methods to solve integral equations are:

1. differentiating under the integral sign using Leibnitz’s rule

2. using successive approximations

3. using a resolvant kernel

4. Laplace transform for an integral of the convolution type

The formula for Leinnitz’s rule is

d

dx

ðbðxÞ
aðxÞ

F x; tð Þdt5
ðbðxÞ
aðxÞ

@F

@x
dt1F x; bðxÞ½ � db

dx
2F x; aðxÞ½ � da

dx

A Laplace transform method is used for an integral equation of the convolution type

y xð Þ5 f xð Þ1
ðb
a

K x2 tð ÞyðtÞdt

y xð Þ5 f xð Þ1λ
ðx
a

K x2 tð ÞyðtÞdt

where the convolution theorem holds for transforms such as Laplace and Fourier transforms and algebraic properties

apply, that is, additive, associative, distributive and multiplicative.

One way of solving integral equations is by integral transforms, for example, for Fredholm integrals, when

K x; yð Þ5Kðx2 yÞ, the Fourier transform can be used while for Volterra equations, the Laplace transform can be used.

Example 4.2: Fredholm Equation by successive approximations.

f xð Þ5 g xð Þ1
ðb
a

k x; yð Þf ðyÞdy

Write as a fixed-point equation to define a transformation operator

Tf 5 f

where the operator T is

Tf xð Þ5 g xð Þ1
ðb
a

k x; yð Þf ðyÞdy

By the contraction Mapping Theorem, the integral equation has a unique solution in C([a, b]).

The successive approximations are

Tf0 5 g1Kf0

T2f0 5 T Tf0ð Þ5 T g1Kf0ð Þ5 g1K g1Kf0ð Þ5 g1Kg1K2f0

T3f0 5 T T2f0
� �

5 g1Kg1K2g1K3f0

^

Tnf0 5 g1Kg1K2g2 1?1Kn21gn21 1Knf0
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Since

lim
n-N

Tnf0 5 0

the function is obtained as

f 5 lim
n-N

Tnf0 5
XN
n50

Kng:

As an example, consider the inhomogeneous Fredholm equation

f xð Þ5 11

ð1
0

xf ðyÞdy

Write the upper limt as α to demonstrate convergence; then

f xð Þ5 11

ðα
0

xf ðyÞdy

for 0,α, 1.

With any starting approximation f0Acð½0; 1�Þ successive approximations

Tf
�
xÞ5 11

ðα
0

xf ðyÞdy

are obtained. Let f0 xð Þ5 1. Then

f2 xð Þ5 Tf1 xð Þ5 11

ðα
0

xf1 yð Þdy5 11

ðα
0

x 11αyð Þdy5 11 x α1
1

2
α3

� �

f3 xð Þ5 Tf2 xð Þ5 11

ðα
0

xf2 yð Þdy5 11

ðα
0

x 11 y α1
1

2
α3


 �
 �
dy

5 11 x α1
1

2
α3 1

1

22
α5

� �

Continuing, the nth approximation is

fn xð Þ5 11 x α1
1

2
α3 1

1

22
α5 1 . . . 1

1

2n21
α2n2111

� �

So that the solution may be reconstructed as

f xð Þ5 limn-Nfn xð Þ5 11 x
XN

n50

1

2n
α2n11

5 11 xα
XN

n50

α2

2n


 �n

5 11 xα ∙
1

12α2=2

which gives the solution

f xð Þ5 11
2α

22α2
x 5 1 1 2x:

This satisfies the starting integral equation. In the solution, the denominator converges for αA 2
ffiffiffiffi
2;

p ffiffiffi
2

p� �
; the solu-

tion is not valid for and furthermore that the solution satisfies for any α5 6
ffiffiffi
2

p
.

Example 4.3: Solve the Fredholm integral equation.

y xð Þ5 ex 1λ
ð1
0

2exetyðtÞdt
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Let

C5

ð1
0

etyðtÞdt

Then y tð Þ5 etð11 2CλÞ, and using this, the value of C can be found as

C5 ðe2 2 1Þ
2½11λðe2 2 1Þ� ; where λ 6¼ 1=ðe2 2 1Þ

The solution is

y xð Þ5 ex

12λðe2 2 1Þ ; where λ 6¼ 1=ðe2 2 1Þ
A resolvent kernel Rðx; t;λÞ can be obtained for both nonhomogeneous Fredholm and Volterra integrals to remove

the unknown function from under the integral sign; for a Fedholm integral equation

y xð Þ5 f xð Þ1λ
ðb
a

kðx; tÞyðtÞdt

the equation then becomes

y xð Þ5 f xð Þ1λ
ðb
a

Rðx; t;λÞf ðtÞdt

which is easily solved since f(x) is given.

Then this resolvent kernel satisfies the following relationship:

Rðx; t;λÞ5K x; tð Þ1λ
ðb
a

kðx; sÞRðs; t;λÞds

giving

Rðx; t;λÞ5
XN

m51
λm21Km x; tð Þ

Exercise 4.9: Classification of an integral equation.

The integral equation for Chandrasekhar’s H function (Chandrasekhar, 1960) appears in the exact solution of the

neutron transport equation which will be used in Chapter 6. How would you classify this equation?

H μð Þ5 11μH μð Þ
ð1
0

ψ μ
0� �

μ1μ0 H μ
0� �
dμ

0

Exercise 4.10: Fredholm equation by successive approximations. Consider the integral equation

y xð Þ5 3

x
ex 2

1

2
xex 2

1

2
1

1

2

ð1
0

ty tð Þdt:

Let

K1 x; tð Þ5K x; tð Þ5 t

so that the kernel is

Km x; tð Þ5
ð1
0

Kðx; sÞKm21ðs; tÞds

show that

Km x; tð Þ5
ð1
0

K x; sð ÞKm21 s; tð Þds5 1

2


 �m21

t
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and the resolvant kernel is

R x; t;λð Þ5
XN

m51
λm21Km x; tð Þ5

XN

m51

1

2


 �m21
1

2


 �m21

t

5
XN

m51

1

4


 �m21

t5 t 11
1

4
1

1

4


 �2

1?

" #
5

4t

3

from which

y xð Þ5 f xð Þ1λ
ð1
0

Rðx; t;λÞf ðtÞdt

and the solution is easily obtained as

y xð Þ5 3

x
ex 2

1

2
xex 2

e

3
1 1:

Exercise 4.11: Solve the Volterra equation u xð Þ5 Ð x
0
ex2yu yð Þdy, given the boundary condition u 0ð Þ5 0 by differentiat-

ing with respect to x.

Exercise 4.12: Solving the Volterra equation using the convolution theorem.

Solve the Volterra equation u xð Þ5 f xð Þ1 Ð x
0
k x2 yð Þu yð Þdy by taking the Laplace transform.

4.3.1 An important integral equation for neutron transport

In the previous section, the integral equation of a Volterra form was obtained from a PDE

φ x;μð Þ5 1

μ

ðx
0

e2
x2y
μ f xð Þdy1Ce2x=μ (4.6)

When this equation is integrated over μ, the equation can be written in operator form as

f xð Þ5 K̂ x2 yð Þf ðxÞ1 gðxÞ (4.7)

where

K̂ x2 yð Þf xð Þ �
ð
dμ

1

μ

ðx
0

e2
x2y
μ f xð Þdy

and

g xð Þ �
ð
dμCe2x=μ:

We will return to this form in the chapter on Transport Theory to obtain a numerical solution to an important bench-

mark in nuclear engineering.

4.3.2 Integral equations in neutron transport

Several “special” functions (Abramowitz & Stegun, 1964) are used to represent source distributions and neutron flux

especially for the separation of variables to facilitate exact solution or numerical procedures.

The delta function δ xð Þ is visualized to be zero everywhere and have a large value at x5 0. In engineering, espe-

cially in the context of a neutron source, it is used to represent a source at some spatial position, angle or time. As an

example a source defined as

S x;E;Ω; tð Þ5 δðx2 x0ÞδðE2E0ÞδðΩ2Ω0Þδðt2 t0Þ
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represents a unit source located at position x0 with energy E0, emitting neutrons in the solid angle dΩ0 about Ω0 at

time t0. The response to this unit point instantaneous source is the Green’s function which can be used to find the flux

distribution from a general source.

Among the several definitions of the δ function, consider the normal distribution with an infinitesimal variance σ2:

δ xð Þ5 lim
σ-0

1

σ
ffiffiffiffiffiffi
2π

p e
2 x2

2σ2

and a variation, used in complex integration, of the form:

δ xð Þ5 1

π
lim

ε-0

ε
x2 1 ε2

One of the properties of the δ functions is ðN
2N

f xð Þδ x2 að Þdx5 f ðaÞ

4.4 Integro-differential equations

An integro-dfifferential equation has the unknown function in the derivative term as well as under the integral sign. An

example is the Volterra integro-differential equation

dnφ xð Þ
dxn

5 f xð Þ1λ
ðx
0

K x; yð Þφ yð Þdy (4.8)

From Table 4.3 this is classified as an Volterra equation of the second kind since the unknown function φ xð Þ is on both

sides of the equation in the derivative and under the integral sign, and the presence of f ðxÞ makes it nonhomogeneous.

Similar to the successive approximation methods described above, the Adomian decomposition method can be used to

determine the solution from recurrence relations when an exact solution is not possible.

Consider the equation

dφ xð Þ
dx

5 12

ðx
0

φ yð Þdy

with the initial condition φ 0ð Þ5 0. The simplest method is to apply a Laplace transform

sΦ sð Þ2Φ 0ð Þ5 1

s
2

ΦðsÞ
s

Rearrranging

Φ sð Þ5 1

ðs2 1 1Þ
giving the solution as φ xð Þ5 sinx. There are several other methods such as the variational iteration method and the

Laplace transform method as applied here as well for the convolution integral. Now consider the first-order PDE (Bell

& Glasstone, 1952)

μ
@

@x
φ x;μð Þ1φ x;μð Þ5 f xð Þ1 S x;μð Þ

where f xð Þ5 c
2

Ð 1
21

dμ0φ x;μ0ð Þ. A solution for this can be obtained by multiplying both sides by the integration factor

e2x=μ and integrating over x:

φ x;μð Þ5 1

μ

ðx
0

e2
x2y
μ f xð Þdy1Ce2x=μ

where C, a constant of integration, can be obtained from the given boundary condition.
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To prepare for the mathematical formulation to come in the following chapters, consider an integro-differential

equation of the form

μ
@

@x
1 1


 �
φ x;μð Þ5 c

2

ð1
21

dμ0φ x;μ0ð Þ1 S x;μð Þ:

A general solution is obtained in the classical albedo problem for a semiinfinite half-space xAð0;NÞ, shown in Fig. 4.6,

for an incident source φ 0;μð Þ5 1 at the free boundary z5 0. For c# 1 (nonmultiplying medium) and without an extraneous

source, that is, S x;μð Þ5 0, this problem was considered originally for radiative transfer (Chandrasekhar, 1960) (Fig. 4.8).

Note that transport is along the s direction although the equation is written for the x variable, that is, it is a one-

dimensional representation of two-dimensional transport. The connection between the variables is

s5
x2 x0

μ

and, since the contribution to the flux [ðx;μÞ will come from all x0, we need to connect the variable through the

transformation

d

ds
5

@x0

@s

@

@x0
52μ

@

@x0

The equation thus becomes

d

ds
2 1

� �
φ x0;μð Þ52

c

2
φ x0ð Þ

where

φðx0Þ �
ð1
21

dμ0 φðx0;μ0Þ

Multiplying by the integrating factor e2s and integrating from 0 to s

φ x;μð Þ5φ x0;μð Þe2x2x0
μ 1

c

2μ

ðx
x0

φ tð Þe2x2t
μ dt

The neutron transport equation, describing the angular flux distribution in a nuclear reactor is an integro-differential

equation in phase space

Ω ∙rφ ~r ;Ω;Eð Þ1Σt ~r ;E; tð Þφ ~r ;Ω;Eð Þ5
ðN
0

dE0
ð
dΩ0Σs ~r ;E

0;Ω0 ∙Ωð Þφ ~r ;Ω0;E
0� �

1
1

4π
χ Eð Þ

ðN
0

dE0
ð
dΩ0νΣf E

0ð Þφ ~r ;Ω0;E0ð Þ1 S ~r ;Ω;Eð Þ:
(4.9)

FIGURE 4.8 Neutron transport in 1-D.
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During reactor operation, the composition Ni tð Þ of isotopes at any time t is found by solving the integro-differential

burnup equation coupled with the point kinetics equation described earlier in this chapter. This time-dependent integro-

differential equation is

dNi tð Þ
dt

5
X
j

ðN
0

γji E; tð Þσfj E; tð Þφ E; tð ÞdE
� �

Nj tð Þ1σci21 E; tð Þφ E; tð ÞNi21 tð Þ1λi
0Ni

0 tð Þ

2

ðN
0

σfi E; tð Þ1 σci E; tð Þφ E; tð ÞdE� �� �
1λi

� �
Ni tð Þ:

(4.10)

The composition of an ith nuclide changes with time due to creation in processes a to c and destruction to process d

and e as follows:

a. fission of some isotope j which produces the ith by an amount γji,ðN
0

γji E; tð Þσfj E; tð Þφ E; tð ÞdE
� �

Nj tð Þ

b. radiative capture of an i2 1ð Þth nuclide:

σci21 E; tð Þφ E; tð ÞNi21 tð Þ
c. radiative decay of another nuclide λi

0Ni
0 tð Þ

d. fission and capture in which some other nuclide is producedðN
0

σfi E; tð Þ1σci E; tð Þφ E; tð ÞdE� �� �
NiðtÞ

e. its radioactive decay λiNiðtÞ
These calculations are coupled with reactor kinetics on the short-term (Bseconds and minutes) as described by the

PKE as well as on the long-term (Bdays and months) with the burnup equations. Such coupled kinetic-dynamics,

which incorporate dynamics with fuel burnup, as illustrated in Figs. 4.9 and 4.10, are used for reactor start-up simula-

tions. The short-term changes in reactivity affect the reactor power during start-up which could take about 5 days to

FIGURE 4.9 Coupling of neutronics with thermal hydraulics.

FIGURE 4.10 Coupling of neutronics with ther-

mal hydraulics and point kinetics.
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reach 100% full power. Consider a model (Johnson, Lucas, & Tsvetkov, 2010) based on the point kinetic equations,

Bateman equations for nuclide transmutation, and a lumped thermal model computing the dynamics of the power and

fuel temperature (Bell & Glasstone, 1979; Hetrik, 1993; Lamarsh & Baratta, 2001). This is a simplified lumped model

which considers the reactor as a point, that is, spatial dependence is ignored.

The flow of the calculation procedure is as follows

1. Initial conditions specified include the fuel vector consisting of atomic densities of actinides NiðtÞ, fuel TF and mod-

erator temperatures TM , feedback coefficients αF , αM and source term QðtÞ, and the input reactivity ρ0; this gives

the reactivity ρ tð Þ in Eq. (4.11).

2. The neutron density n tð Þ and precursor concentrations CiðtÞ are determined from Eqs. (4.12) and (4.13), giving the

flux φ tð Þ5 n tð Þv, and reactor power PðtÞ (Eq. 4.14).
3. The new system multiplication k is found from Eq. (4.15), which gives the reactivity ρ tð Þ and the change in reactiv-

ity Δρ tð Þ from Eq. (4.16).

4. The fuel temperature TFðtÞ is updated from the reactor power PðtÞ, using the heat balance Eq. (4.17); the temperature

is then used to calculate the coefficient of reactivity αFðtÞ from Eq. (4.18).

5. The fuel vector N is updated by solving the Bateman equations (Eq. 4.19) for all the actinides considered in the

model [24 actinides in (Johnson et al., 2010)].

6. The generation time Λ is calculated from the time for absorption ΛN, for absorption or leakage Λ0, based on the

new fuel vector and system multiplication k, from Eq. (4.20).

ρ tð Þ5 ρ0 1αF TF tð Þ2 TF0ð Þ1αM TM tð Þ2 TM0ð Þ (4.11)

dφðtÞ
dt

5
ρ tð Þ2β

B

Λ
φ tð Þ1

X6
i51

λiCi tð Þ1QðtÞ (4.12)

where

dCiðtÞ
dt

5
βi tð Þ
Λ

φ tð Þ2λiCi tð Þ; i5 1;?6 (4.13)

and

P tð Þ5ERΣfφ tð ÞV (4.14)

The system multiplication is

keff tð Þ5
υΣf ðtÞ
ΣaðtÞ

1

11 L2B2
(4.15)

Where the numerator is calculated from the atomic densities NiðtÞ in the fuel vector N

υΣf tð Þ5
X
i

υiσf ;iNiðtÞ

The reactivity and the change in reactivity are calculated (in $) from

ρ5
k2 1

k
; Δρ $ð Þ5 k0 2 k

βkk0
(4.16)

and

mcp
dTF tð Þ
dt

5P tð Þ2 hA TF tð Þ2 TM tð Þð Þ (4.17)

The temperature coefficients of reactivity are

αi 5
dρ
dTi

; i5F;M (4.18)

The Bateman equations are

dNA
Z

dt
5 NA21

Z σc 2NA
Zσc

� �
φ tð Þ2λNA

Z 1λN�
� (4.19)
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and

ΛN 5
1

vΣa

;Λ0 5
ΛN

11 L2B2
;Λ5

Λ0

keff
(4.20)

The procedure described above constitutes a large set of ODEs which can be solved using standard methods in

Matlab.

For a more elaborate analysis, the full phase space-dependence of the neutron flux is required and the computational

effort increased by orders of magnitude.

4.5 Numerical methods

Several numerical and computational methods have been used and developed (Bell & Glasstone, 1979; Case & Zweifel,

1967; Lewis & Miller, 1984) to solve neutron diffusion and transport problems and in thermal hydraulics, structural

mechanics and other areas (Hutton, 2004; Lewis, Nithiarasu, & Seetharamu, 2004; Rao, 2017) with the complexity of

realistic engineering systems. These include the Finite Difference Method (FDM), the Finite Element Method (FEM),

the Finite Volume Method (FVM), nodal methods, spectral methods, quadrature-based methods, and hybrid methods.

This section considers two widely used methods viz the FDM and the FEM.

4.5.1 The Finite Difference Method

In a discretization of the differential equations, the entire domain is divided into elements, or meshes, and the solution

is obtained at the node points. In a 1-D model, the domain a# x# b is divided into a finite number of elements N (e.g.,

N5 3) for which there will be M (e.g., M5 4) mesh points while in a 2-D model, for example, in the Cartesian x2 y

domain the node points will be in the x and y dimensions as shown in Fig. 4.7 (Fig. 4.11).

The FDM is applied to the 2-D steady-state heat conduction equation

@2T

@x2
1

@2T

@y2
1

q_

k
5 0

Applying the first-order forms for the first and second derivatives

@T

@x
ji21=2;j 5

Ti;j 2 Ti21;j

Δx
@T

@x
ji11=2;j 5

Ti11;j 2 Ti;j

Δx
The second derivative is thus

@2T

@x2
ji21=2;j 5

@T
@x ji11=2;j 2

@T
@x ji21=2;j

Δxð Þ2
written as a “three node” term

@2T

@x2
ji;j 5

Ti11;j22Ti;j 1 Ti21;j

Δxð Þ2

FIGURE 4.11 Elements and nodes.
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Similarly, in the y-direction

@T

@y
ji;j21=2 5

Ti;j 2 Ti;j21

Δy
@T

@y
ji;j11=2 5

Ti;j11 2 Ti;j

Δy

The second derivative is thus

@2T

@y2
ji;j 5

@T
@x ji11=2;j 2

@T
@x ji21=2;j

Δxð Þ2

written as a “three node” term

@2T

@y2
ji;j 5

Ti;j1122Ti;j 1 Ti;21j

Δyð Þ2

the FDM is, for Δx5Δy,

Ti11;j22Ti;j 1 Ti21;j

Δxð Þ2 1
Ti;j1122Ti;j 1 Ti;21j

Δyð Þ2 1
_q

k
5 0

which reduces to

Ti11;j22Ti;j 1 Ti21;j 1 Ti;j1122Ti;j 1 Ti;21j 1
_q

k
Δxð Þ2 5 0

or

Ti;j 5
1

4
Ti11;j 1 Ti21;j 1 Ti;j11 1 Ti;21j 1

_q

k
Δxð Þ2

� �

In a square with temperatures given at the four sides and no heat generation ( _q5 0), as shown in Fig. 4.12.

T1 5
1

4
TL 1 TU 1 T2 1 T3½ �

with TL 5 300�C;TU 5 200�C; TR 5 400�C;TD 5 100�C the four simultaneous equations in matrix form are

4 2 1

2 1 4

2 1 0

0 2 1
2 1 0

0 2 1

4 2 1

2 1 4

2
64

3
75

T1
T2
T3
T4

2
64

3
755

TL 1 TU
TR 1 TU
TL 1 TD
TR 1 TD

2
64

3
755

500

600
700

500

2
64

3
75

FIGURE 4.12 Square plate with Dirichlet boundary conditions.
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Solving these equations in Matlab: A5 [4 21 21 0;2 1 4 0 21;2 1 0 4 21;0 21 21 4]; B5 [500;600;750;500];

T5 (A\B) gives the results

T1
T2
T3
T4

2
64

3
755

279:17
289:58
327:08
279:17

2
64

3
75

For a larger number of nodes, the surface temperature can be obtained from the Matlab program listed below, as shown

in Fig. 4.9 for 400 (203 20) node points (183 185 324 interior nodes) (Fig. 4.13) and compared with the exact solu-

tion given in Section (4.2.1).

The boundary conditions are visualized better from Fig. 4.10 (Fig. 4.14).

FIGURE 4.13 Temperature field Tðx; yÞ surface in a square plate.

FIGURE 4.14 Temperature field Tðx; yÞ projection on a square plate.
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4.5.1.1 Matlab program: Finite Difference Method

Steady-state heat conduction in a 2-D square plate with boundary temperatures specified.

% Ch4_FinDif2DSquarePlate.m
% Finite Difference
N = 20;% N-2 interior points
x = linspace(0,1,N);
dx = x(2)-x(1);
y = x; dy = dx;
eps = 1e-6; % convergence criterion     
T  = zeros(N,N);
T(1,1:N) = 100;  %left
T(N,1:N) = 200;  %right
T(1:N,1) = 300;  %bottom
T(1:N,N) = 400;  %top   
dt = dx^2/4;
Qdot=zeros(N,N); % heat generation rate
k=1; % thermal conductivity
err = 1; kk = 0;
while err > eps
kk = kk+1;
Told = T;
for i = 2:N-1
for j = 2:N-1

a=(Told(i+1,j)-2*Told(i,j)+Told(i-1,j))/dx^2;
b=(Told(i,j+1)-2*Told(i,j)+Told(i,j-1))/dy^2;

T(i,j) = dt* (a+b+Qdot(i,j)/k)+ Told(i,j);
end
end
error = max(max(abs(Told-T)));
end
x0=0;delx=1/(N-1);
y0=0;dely=1/(N-1);
for j=1:N
y(j)=y0+(j-1)*dely;
for i=1:N
x(i)=x0+(i-1)*delx;
end
end
surf(x,y,T)
set(gca,'FontSize',12)
xlabel('\bf X (cm)','fontsize',14)
ylabel('\bf Y (cm)','fontsize',14)
zlabel('\bf T ({}^oC)','fontsize',14)

Exercise 4.13: Steady-state head conduction (FDM).

With the given Matlab program, obtain the temperature profile in a 43 4 cm copper plate (thermal conductivity

k5 385 W/(m-K)) with heat generation 2000 W at the center.

The greater the number of elements, the more will the computational effort generally resulting in more accuracy.

For large 3-D models of reactor cores, for example, the FDM is used with refinements for both “structured” and

“unstructured” grids. As problems become large, methods such as the FEM and FVM are used.

The resulting algebraic system can be solved by standard matrix methods such as the Gaussian elimination method,

Choleski’s method, Jacobi’s method, the Gauss�Seidel method, and the Standard Over Relaxation method.
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4.5.2 The Finite Element Method

In the FEM (Hutton, 2004; Lewis et al., 2004; Rao, 2017) the domain of interest is first discretized into a finite number

of elements which fit into the specified (regular or irregular) geometry. For illustration, consider a 1-D domain consist-

ing of three elements and four nodes (Fig. 4.15).

The field function, for example, T(x), in an element with nodes i and j is expressed in terms of nodal values Ti and

Tj and shape functions Ni xð Þ and Nj xð Þ

TðxÞ5NiðxÞTi 1NjðxÞTj 5 Ni xð Þ Nj ðxÞ
� 	 Ti

Tj

� �

where the shape functions are shown in Fig. 4.16.

The field equation is then reduced to a set of linear algebraic equations which are solved, by standard methods, for

the nodal values. The equation for each local element is combined or assembled into a global system expressed mathe-

matically as

K½ � Tf g5 ff g
where K½ � is called the global stiffness matrix and ff g is called the force function. The temperature at the nodes is found as

Tf g5 K½ �21 ff g
and from the nodal values, the temperature distribution is reconstructed using the shape functions. If the problem is in

2-D, the square and triangular elements shown in Fig. 4.13 can be used (Fig. 4.17).

Some commonly used elements in 1-D are the linear element (Fig. 4.11) with two nodes and the quadratic element

with three nodes. In 2-D, the linear triangular element with three nodes (Fig. 4.13), the quadratic triangular element

with six nodes, the quadrilateral element with four, eight or nine nodes, and the isometric element with eight nodes for

curvilinear coordinates, that is, coordinates which change direction with position, are used. In 3-D, the linear tetrahe-

dron element with four nodes, the linear hexahedron element with eight nodes, the linear prism element with six nodes

and the quadratic tetrahedron element with ten nodes (Fig. 4.14) are used (Fig. 4.18).With TðxÞ5 a1 1 a2x applied to

both nodes of the element, coefficients a1; a2 can be found for the shape functions of Fig. 4.12.

FIGURE 4.15 A 3-element, 4 node linear domain.

FIGURE 4.16 Shape functions NðxÞ.

FIGURE 4.17 2-D quadrilateral and triangular

elements.
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At x5 xi, Ti 5 a1 1 a2xi, and at x5 xj, Tj 5 a1 1 a2xj, giving the coefficients and the shape functions listed in

Tables 4.3 and 4.4 respectively. The space-dependence of T xð Þ is

T xð Þ5 Tj2Ti
� �
xj 2 xi
� � x1 xjTi 2 xiTj

� �
xj 2 xi
� �

For other elements, the coefficients and shape functions are listed in Tables 4.4 and 4.5 respectively.

The gradient variable B for the 1-D linear element is

dT

dx
5 g � 2

1

l

1

l

" #
Ti
Tj

� �
5 B½ � T½ �

We first consider the procedure from a variational formulation where the stationary function of a functional (Lewis,

Vrabie, & Syrmos, 2012) is the governing equation. In the case of the 2-D heat conduction equation, for example, the

functional

I Tð Þ5 1

2

ð
Ω

kx
@T

@x


 �2

1 ky
@T

@y


 �2

1 kz
@T

@z


 �2

2 2GT

" #
dΩ1

ð
S2

qT ds1

ð
S3

1

2
hðT2TaÞ2ds

is stationary for

@

@x
kx
@T

@x


 �
1

@

@y
ky
@T

@y


 �
1

@

@z
kz
@T

@z


 �
1G5 0

with the following boundary conditions

T 5 TB on surface S1

kx
@T
@x l

B
1 ky

@T
@y m

B1 kz
@T
@z n

B1 q5 0 on surface S2

kx
@T
@x l

B
1 ky

@T
@y m

B1 kz
@T
@z n

B1 h T 2 Tað Þ5 0 on surface S3

where l, m, and n are surface normal, h is the heat transfer coefficient, k is the thermal conductivity and q is the heat

flux.

The procedure is then as follows:

1. The temperature in each element with r nodes is written as

Te 5
Xr
i51

NiTi 5 N½ �fTg

2. Nodal values are to be selected to make the integral I(T) stationary

δI Tð Þ5
Xn
i51

@I

@Ti
5 0

thus for each element @I
@Ti

5 0 for i5 1; 2; . . . ; n

FIGURE 4.18 The 3-quadratic tetrahedron with ten nodes.
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TABLE 4.4 Coefficients of linear and quadratic polynomials.

Element Form of T(x) a1 a2 a3

1-D
linear

T xð Þ5 a1 1 a2x Tixj 2Tjxi
xj 2 xi

Tj 2Ti
xj 2 xi

�

1-D
quadratic

T xð Þ5 a1 1 a2x1 a3x
2 Ti 1

l 2 3Ti 1 4Tj 2 Tk
� �

2
l2 Ti 2 2Tj 1 Tk
� �

2-D
linear
triangular

T x; y
� �

5 a1 1 a2x1 a3y
1
2A ðxjyk 2 xkyjÞT i 1 xkyi 2 xiyk

� �
Tj 1 ðxiyj 2 xjyiÞTk

� 	
1
2A ðyj 2 yk ÞT i 1 yk 2 yi

� �
Tj 1 ðyi 2 yjÞTk

� 	
1
2A ðxk 2 xjÞT i 1 xi 2 xkð ÞTj 1 ðxj 2 xiÞTk
� 	



TABLE 4.5 Shape functions for linear and quadratic polynomials.

Element Form of T(x) Ni Nj Nk

1-D
linear

T xð Þ5 a1 1 a2x
xj 2 x

xj 2 xi

h i
x2 xi
xj 2 xi

h i
�

1-D
quadratic

T xð Þ5 a1 1 a2x1 a3x
2 12 3x

l 1 2x2

l2

h i
4x
l 1 4x2

l2

h i
2x2

l2 2 x
l

h i
2-D
linear
triangular

T x; y
� �

5 a1 1 a2x1 a3y
1
2A ðxjyk 2 xkyjÞT i 1 xkyi 2 xiyk

� �
Tj 1 ðxiyj 2 xjyiÞTk

� 	
1
2A ðyj 2 yk ÞT i 1 yk 2 yi

� �
Tj 1 ðyi 2 yjÞTk

� 	
1
2A ðxk 2 xjÞT i 1 xi 2 xkð ÞTj 1 ðxj 2 xiÞTk
� 	



3. For an element,

Ie 5
1

2

ð
Ω

kx
@T

@x


 �2

1 ky
@T

@y


 �2

1 kz
@T

@z


 �2

2 2GTe

" #
dΩ1

ð
S2e

qT ds1

ð
S3e

1

2
hðTe2TaÞ2ds

4. The first derivative with respect to nodal temperatures is

@Ie

@½T� 5
ð

Ω

1

2
2½B�T D½ � B½ � T½ �dΩ2

ð
dΩΩ

1

2
2G N½ �T T½ �1

ð
S2e

q N½ �T T½ �1
ð

S3e

h½N�T T½ �ds2
ð

S3e

h½N�TTads5 0

5. The terms are written in compact form as

kx
@Te

@x


 �2

1 ky
@Te

@y


 �2

1 kz
@Te

@z


 �2

5 g
� �T

D½ � g
� �

where

g
� �T

D½ � g
� �

5
@Te

@x

@Te

@y

@Te

@z

( )
kx 0 0

0 ky 0

0 0 kz

2
4

3
5

@Te

@x

@Te

@y

@Te

@z

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
:

The algebraic system obtained is

K½ � Tf g5 ff g
where

K½ �5
ð
Ω
½B�T D½ � B½ �dΩ1

ð
S3

h½N�T N½ �s

and

f½ �5
ð
Ω
G½N�TdΩ2

ð
S2

q N½ �Tds1
ð
S3

hTa N½ �Tds:

This procedure is demonstrated for a three-element, four-node wall of material, with a Neumann boundary condition

on the left wall and a convective boundary condition on the right wall, the various terms are:

ðl
0

dΩ½B�Tk B½ �5 kA

ðl
0

dx

2
1

l

1

l

2
6664

3
7775 2

1

l

1

l

" #
5

kA

l

1 2 1

2 1 1

� �
:

Since the heat generation is zero, G5 0 and

f½ �5 2

ð
S2

q½N�Tds1
ð
S3

hTa½N�Tds

the first term will appear only in the first element at which the Neumann boundary condition applies; similarly, the sec-

ond term will appear only in the third element since the convective heat loss condition appears at the last node.

The element matrices are:for the first element:

K½ �1 5
kA

x1

1 2 1

2 1 1

� �
; f
� �

1
5

qA

0

� �
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for the second element:

K½ �2 5
kA

x2

1 2 1

2 1 1

� �
; f
� �

2
5

0

0

� �

and for the third element:

K½ �3 5
kA

x3

1 2 1

2 1 1

� �
; f
� �

3
5

0

hATa

� �

giving a 43 4 global matrix

kA

x

1 2 1

2 1 2

0 0

2 1 0
0 2 1

0 0

2 2 1

2 1 11 hA

2
64

3
75

T1
T2
T3
T4

2
64

3
755

qA

0

0
hATa

8><
>:

9>=
>;

which can be solved to compute the temperatures Ti at the nodes.

Exercise 4.14: For a rod of length 10 cm, the temperature at the left and right nodes is Ti5 100 C and Tj5 200 C.

Using the shape functions above, sketch the temperature variation in the element and calculate the temperature at a

point 6 cm from the left node of the bar.

Exercise 4.15: For the above rod and end temperatures, use a 1-D quadratic element for which i, j, k are at 0, 5 10 cm

from the left node to calculate the temperature at a point 6 cm from the left node of the bar. Compare the two tempera-

ture profiles.

Exercise 4.16: For the triangular element specified below, write the expression for T(x, y) and plot the surface

temperatures.

Coordinate T (C) X (cm) Y (cm)

i 100 1 2
j 200 2 1
k 300 3 3

From the above elements and shape functions, it is clear that if the nodal values are known, then the function can be

found for the entire element. From a single element, describe how you would solve the 8-element square plate problem

illustrated in Fig. 4.19.

For the neutron diffusion equation, the functional

J φð Þ5
ðb
a

2D xð Þ dφ
dx

� �2
1Σa xð Þ φ xð Þ

�� ��2 2 2S xð Þφ xð Þ
( )

dx

FIGURE 4.19 2-D triangular elements: square plate with Dirichlet boundary conditions.
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gives an extremum that satisfies the governing equation. This extremum can be determined by varying φ to form

the quantity J φ1 δφð Þ2 JðφÞ. The procedure is, as described above, to express the flux in terms of “shape

functions” MðxÞ, so that φ xð Þ5 PN
i51 AiMiðxÞ. The unknown coefficients Ai are determined from the extremum

condition

@J

@Ai

5 0

for all elements i5 1; 2; 3; . . .N.
An important equation in nuclear reactor theory is the eigenvalue equation

L̂φ5
1

ki
νΣfφ

which represent the loss terms on the left hand side and the gain terms on the right hand side; their are several values

or modes for which the equation is balanced. The largest eigenvalue is the system multiplication keff of a reactor for

which the corresponding eigenfunction is the stationary flux distribution.

In a simplified one-group model, the eigenvalue form of the neutron diffusion equation is

d

dx
2D

d

dx


 �
1Σa

� �
φ xð Þ5 1

k
νΣfφ xð Þ1 S xð Þ; 0, x, L

with albedo boundary conditions

J 0ð Þ52αLφ 0ð Þ; J Lð Þ52αLφ Lð Þ
where

J52D
dφ
dx

:

By multiplying the above with Legendre polynomials for linear shape functions PlðNi xð ÞÞ and integrating over an

element results in spatial balance equations for each element. The resulting system of simultaneous equations

A
5
x5B

is solved for the vector x comprising nodal and cell-averaged fluxes and currents. The numerical results of this linear

FEM have been determined to be more accurate for coarser grids than FDM for fixed-source problems (Brandao,

Dominguez, & Iglesias, 2011).

In nuclear reactors with hexagonal cells, discretization with FEM or spectral methods is based on dividing hexagons

into equilateral triangles and assuming that the neutron cross sections remain constant on each triangle. In the colloca-

tion method (González-Pintor, Ginestar, & Verdú, 2008) the flux on each triangle φe, in the eigenvalue equation, is

expanded as

φe x; yð Þ5
X
i;j

φe;igijðx; yÞ

where the spatial dependence is in the gijðx; yÞ polynomial basis functions. The pseudo-spectral methods, based on mod-

ified Dubiner’s polynomials for the basis functions, is applied to a 2-D IAEA reactor benchmark problem to compute

eigenvalues and power distribution in the core.

Spectral methods can be used to obtain an approximate solution to differential equations in terms of a finite number

of basis functions. Both spectral and FEMs are similar in the sense that some shape functions are used; the difference

is that in spectral methods, the basis functions are global while in FEM, they are local, that is, within the nodes of an

element.

One application of spectral methods is illustrated for the 2-D linear steady-state transport equation

μ
@

@x
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12μ2

p @

@y
1Σt x; yð Þ

� �
φ x; y;μð Þ5 1

2
½Σs 1 νΣf �

ð1
21

dμ0φ x; y;μ0ð Þ1 S x;μð Þ

in a rectangular domain 21# x; y# 1, 21#μ# 1 with given boundary conditions.
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The angular flux is expanded in terms of Chebyshev polynomials of the first kind TiðyÞ which are orthogonal to a

weight function w xð Þ

ð1
21

Ti xð ÞTj xð Þw xð Þdx5
0: i 6¼ j

π=2; i5 j 6¼ 0

π; i5 j5 0

8<
:

The expansion is a function of space (y variable), φ x; y;μð Þ5 PN
i50 φiðx;μÞTiðyÞ is then used, after some algebraic

to reduce the 2-D equation into a set of N one-dimensional equations.

Another numerical approximation for the integral (Section 4.4.10) is the use of the quadrature rule, as in the discrete

ordinates (SNÞ method, to separate μ from the angular flux φ x; y;μð Þ
ð1
21

dμ
0
φ x; y;μ

0� �
B
XN
i51

wnφiðx; yÞ

The convergence of such a combined spectral-SN method has been illustrated for the 2-D linear isotropic scattering

transport equation (Asadzadeh & Kadem, 2006) which reduced to a system of 1-D equations.

For unstructured meshes, in the case of complex geometries, FEM and the FVM are used in 2-D and 3-D core calcu-

lations. In the FVM, the transported quantity is conserved within a volume; partial currents and surface fluxes are con-

tinuous at the boundaries of adjacent volumes. This method has been applied for 2-D and 3-D Light Water Reactors by

Bernal, Miró, Ginestar, and Verdú (2014) demonstrating better accuracy and low computational times for 2-D results as

compared to 3-D results.

4.6 Approximate methods

4.6.1 The Ritz method

The heat balance equation for a fin (Lewis et al., 2004) written as

d2θ
dζ2

2μ2θ5 0

With boundary conditions: x5 0; dT=dx5 0 and at x5 L;T 5 Tb, with T 2 Tsð Þ5 θ; ζ5 x=L; hP
kA5m2 and m2L2 5μ2.

At ζ5 0; dθ=dζ5 0 and at ζ5 1; θ5 θ0 and with T 2 Tsð Þ5 θ is solved with the approximation T 5
Pn

i51 aiNiðxÞ
substitute into the equation and residual R.

Then a function θðζÞ which satisfies the b.c. is selected

θðζÞ
θb

5 12 12 ζ2
� �

B

where B is an unknown parameter to be determined by requiring that

ð1
0

d2θðζÞ
dζ2

2μ2θ

 �

dζ5 0:

This determines the constant B

B5
μ2

2

11 μ2

3

:

to yield the approximate solution

θðζÞ
θb

5 12
3

4
12 ζ2
� �

:
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4.6.2 The Rayleigh�Ritz variational method

Consider the second-order ODE

d2θðζÞ
dζ2

2μ2θ5 0

with boundary conditions

dθ 0ð Þ
dζ

5 0 and θ 1ð Þ5 θb:

The variational functional for the govening equation is

I5

ð1
0

1

2

dθ
dζ


 �2

1μ2θ2
" #

dζ

The θ profile that minimizes the integral I is the solution to the governing equation. The procedure is the same as

above; a solution is assumed θðζÞ
θb

5 12 12 ζ2
� �

B, and setting @I
@B 5 0, gives

B5
μ2

2

11 2
5
μ2

and the temperature profile

θðζÞ
θb

5 12 12 ζ2
� � μ2

2

11 2
5
μ2

:

Note that the solution found is different from that with the Galerkin method.

4.6.3 The weighted residual method

With T � T 5
Pn

i51 aiNiðxÞ, the coefficients ai are determined by substituting the approximation and using the residual

with weighting functions wi to getÐ
Ωωi xð ÞRdx5 0 with i5 1; 2; . . . ; n

Several weighting functions can be used, for example, in the collocation method ωi 5 δðx2 xiÞ, in the Galerkin

method ωiðxÞ5NiðxÞ and in the least-squares method, ωi 5 @R=@ai

Exercise 4.17: Use an approximate result for θðxÞ from above in the Galerkin method to obtain a solution. Compare all

three solutions for the given heat transfer equation.

4.7 The adjoint function

Mathematical operators have “adjoints.” Thus an operator

L̂ � @2

@x2
1

@

@x
1 3

would have an adjoint operator written as

L̂
1 � @2

@x2
2

@

@x
1 3

The adjoint of a derivative is its negative. A “forward” equation of the form

L̂φ xð Þ5 SðxÞ

186 Nuclear Engineering



would have a “backward,” or “adjoint” form expressed as

L̂
1
φ1 xð Þ5 S1ðxÞ

Both equations would be solved with the appropriate boundary conditions.

In nuclear engineering, φ1 is the adjoint neutron flux and is also called the “importance” function. For a critical

reactor, the diffusion equation reads

L̂φ xð Þ5 0

where

L̂ � d2

dx2
1B2

The adjoint operator L̂
1
is defined as

ða=2
2a=2

uL̂vdx5

ða=2
2a=2

vL̂
1
udx

where u and v are any two functions which vanish at the physical boundaries. The above is also written in the form of

an inner product as

u; L̂v
� �

5 ðv; L̂1
uÞ

or equivalently as

u; L̂v
� �

5 ðL̂1
u; vÞ

For the second-order “diffusion” operator, it is readily shown, by carrying out an integration by parts, that the operator

is self-adjoint, that is

L̂
1
5 L̂

The solutions, xð Þand φ1 xð Þ, to both the forward and backward homogeneous equations respectively, are thus pro-

portional to each other.

4.8 Random processes, probability, and statistics

Modeling and simulation in nuclear engineering requires mathematical formulation of coupled systems with the central

quantity being the neutron flux φðPÞ in phase space Pðr;E; Ω̂;tÞ where for a Cartesian coordinate system, r5 rðx; y; zÞ
and Ω̂5 Ω̂ðθ;ϕÞ and thus P is defined by seven variables. Thus, a neutron transport FDM, FVM or FEM computation

with 103 points along each x; y; z axis, 10 angular bins, and 10 energy groups would require 1012 node point calculations

in each time interval. Such intensive computational efforts led to alternate ways of modeling neutron transport. Another

way of looking at nature is the probabilistic way where things happen randomly. The debate between scientists such as

Einstein with his famous comment to Max Born that “God doesn’t play dice” supported a deterministic model of nature

an opposed to quantum physics where Planck, Heisenburg, Schrodinger, Dirac and others were creating a probabilistic

interpretation. A similar view of transport phenomena took shape as a random process where particles interact in a

probabilistic manner. The Monte Carlo (MC) method, based on laws of probability, was developed in the 1940s for the

simulation of neutron transport and with advancements in computer hardware and computation, MC simulation has

since been extended to several areas science, engineering, and the social sciences.

The following sections are intended to cover the concepts and mathematics as described for MC simulation of alpha

particle transport (Section 4.1.61), electron transport (Section 4.1.62), gamma transport (Section 4.1.63), and neutron

transport for criticality (Section 4.2.10). The later part of this book focuses on the applications of MC simulation in neu-

tron and photon transport applied to nuclear reactors and systems.

The topics covered in these sections are random processes, random variables, probability distribution functions

(PDFs), cumulative distribution functions (CDFs), random numbers, sampling methods, and accuracy and precision of

MC methods.
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4.8.1 Random processes

Random, or stochastic, processes are considered as an abstraction of events that happen and are observed as a collection

of random variables such as Brownian motion (named after Robert Brown) of particles suspended in a liquid. Such pro-

cesses, as shown below, are observed across science and engineering in signal processing, telecommunications, particle

transport and in financial systems such as the fluctuations of the stock market.

Particle transport is considered to consist of random events as particles are “born” and travel in matter colliding

with host nuclei, exchanging energy and undergoing nuclear interactions until they “die” by some capture or leakage

process. The events are considered to be random as they are determined from probabilistic interaction data (Fig. 4.20).

4.8.2 Markovian processes

A Markovian process is stochastic in nature and has a future state that depends only on the present state without any

dependence on its’ past history. In the above Wiener process, for example, the “standard” Wiener continuous process

Wt begins at zero, has independent increments in which the future is independent of the past, and has Gaussian incre-

ments with mean zero and variance 1 as will be explained in the following sections. In the above, the time step is taken

Δt5 T=N where T 5 1s and N5 10; 000 steps. With j as the time index and W0 5 0, Wt 5Wt21 1 ξ
ffiffiffiffiffiffi
Δt

p
. The ran-

dom variable ξ is independent and drawn from a normal distribution. Several other characterizations of Wt have been

made for modeling Brownian motion. Processes with drift are also used to model fluctuations with a stochastic differen-

tial equation of the form dX tð Þ5 a t;Xð Þdt1 dWðtÞ.
For particle transport, this is a natural way of looking at events in history consisting of random events. In the sto-

chastic sense, a history does not repeat itself and a random walk has a probability of occurrence. In this description of

particle transport, nature is understood to behave in a stochastic rather than in a deterministic manner.

4.8.3 Population and sample

In a stochastic formulation, estimates are obtained from quantities from a finite sample of histories as it is not possible

to consider the whole population which can be of the order of Avogadro’s number of particles. When simulating parti-

cles in nuclear systems, it is typical to consider a sample of B106 for which reasonably acceptable results are obtaine-

able. After reviewing some very powerful theorems of probability and statistics, it will be shown that the variance of a

sample mean can be reduced in comparison with the population mean.

FIGURE 4.20 A random fluctuation depicted as a

Wiener process.
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4.8.4 Random variables, PDF, and CDF

In nuclear transport, modeled through stochastic simulations, the outcomes of an experiment are random; if the simula-

tion is repeated the same result may not be obtained. It is thus considered a random event, just as radioactive transmuta-

tion and the compound nucleus formation described in Chapter 2 were based on one of possibly several outcomes.

Random variables are broadly classified as discrete and continuous; in the former, there are a finite number of reali-

zations of a random variable while in the latter the relaizations are given by continuous functions.

For a discrete random variable X taking values xi; i5 1; 2; 3;?;N with probability pi 5PfX5 xig has an expecta-

tion value Xh i

Xh i5E Xð Þ5
XN
i51

pixi 5μ: (4.21)

Similar expressions can be written for powers of the random variable X as

Xnh i5E Xnð Þ5
XN
i51

pix
n
i :

Consider for example, the second power, which is

X2
� �

5E X2
� �

5
XN
i51

pix
2
i :

If we want a metric for estimating how far each realization of the random variable is from its expectation value Xh i,
it is useful to take the second moment

X2μð Þ2� �
5E X2μð Þ2� �

5
XN
i51

pi xi2μð Þ2

The right hand side can be further simplied as

XN
i51

pi xi2μð Þ2 5 X2
� �

2 Xh i2

which reads “the expectation value of X2 minus the mean squared,” a large value of this would mean that the values are

far from the mean and thus vary to a large extent. This is the reason for this quantity to be called the variance, formally

defined as

var Xð Þ5 σ2 5 X2
� �

2 Xh i2 (4.22)

Eqs. (4.21) and (4.22) define the mean μ and variance σ2 which are very important charactersitics of distributions of

random variables.

As an example, consider the binomial distribution in which the outcome of an experiment can be zero or one. Thus

in ten experiments, the outcome could vary from 0 to 10. If the probability of getting a 1 is p, then the probability of

getting a 0 must be 12 p since there are two possible outcomes and the probabilities therefore must add up to 1. Using

the above analysis, the expectation values for an outcome is

Xh i5E Xð Þ5
XN
i51

pixi 5 p3 11 12 pð Þ3 05 p

and

X2
� �

5E X2
� �

5
XN
i51

pix
2
i 5 p3 12 1 12 pð Þ3 02 5 p

giving the variance

var Xð Þ5σ2 5 X2
� �

2 Xh i2 5 p2p2 5 p 12 pð Þ:
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From the above, the value

S5
XN
i21

Xi

which is the sum of outcomes of N experiments, each of which has an outcome Xi is found if we knew how many of

the exeriments had an outcome of 1; say n experiments had an outcome 1 and therefore N2 n would have outcomes 0.

We can find the probability of having n outcomes as

Pn 5
N

n


 �
pn 12pð ÞN2n

If we carried out N5 100 experiments and p5 0:2, then

Pn 5
100

n


 �
0:2n0:81002n 5

100!

n! 1002 nð Þ! 0:2
n0:81002n

Thus P20 5 0:0993, P40 5 2:3163 1026,P100 5 1:26773 10270. The probability Pn versus the number of outcomes n

with score 1, plotted with the Matlab program CH4_BinomialPDF.m listed below, is shown in Fig. 4.21.

% Program name CH4_BinomialPDF.m
p=0.2;i=0;N=100;
for n=0:1:100
i=i+1;
a=factorial(N)/(factorial(N-n)*factorial(n));
P(i)=a*0.2^n*0.8^(100-n);
x(i)=n;
S(i)=(x(i)*P(i))*1;
end 
OutcomeOfAllNexpts=sum(S)

We can thus find the total outcome of experiments

S5
XN
i21

Xi 5 nPn 5 n
N

n


 �
pn 12pð ÞN2n 5Np

For N5 100; p5 0:2, S5 20 which is given from the Matlab program as OutcomeOfAllNexpts.

FIGURE 4.21 Probability of outcomes Pn versus the number of

events n with score 1.
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If we have N sets of two discrete random variables X and Y, and a joint distribution function fX;Y x; yð Þ5 1=N, that is,
each set is equiprobable, as an example, then the expectation (mean), variances, covariance and correlation can be

obtained as:

EfX ½X�5
XN
i51

xifX xið Þ

EfY ½Y�5
XN
i51

yifY yið Þ

where

fX xið Þ5
X
y

fX;Y x; yð Þ

The variance, covariance, and correlation are defined as

VarfX X½ �5EfX X2
� 	

2 EfX

� 	2
CovfX;Y X;Y½ �5EfX;Y XY½ �2EfXEfY

and

CorrfX;Y X;Y½ �5 CovfX;Y X;Y½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarfX X½ � 3VarfX X½ �

p
The correlation coefficient lies between 21 and 1, the two limits at which the variables are uncorrelated and fully

correlated.

Example 4.4: Given six pairs of values for two random variable, calculate their mean values, variances, covariance and

correlation coefficient.

Let x; yð Þ5 f 0; 0ð Þ; 1; 2ð Þ; 2 1; 2ð Þ; 2; 1ð Þ; 2 1; 4ð Þ; 2; 3ð Þg, fX;Y x; yð Þ5 1=6 Given

fX xið Þ5
X
y

fX;Y x; yð Þ5

2

6
; x52 1

1

6
; x5 0; 1

2

6
; x5 2

8>>>>>>>><
>>>>>>>>:

the expectation values are

EfX X½ �5
XN
i51

xifX xið Þ52 13
2

6
1 03

1

6
1 13

1

6
1 23

2

6
5

3

6

EfX X2
� 	

5
XN
i51

xi
2fX xið Þ5 13

2

6
1 03

1

6
1 13

1

6
1 43

2

6
5

11

6

and the variance is

VarfX X½ �5EfX X2
� 	

2 EfX

� 	2
5

11

6
2

3

6


 �2

5
57

36
5 1:5833

fY yið Þ5
X
x

fX;Y x; yð Þ5

1

6
; y5 0; 1; 3; 4

2

6
; y5 2

8>>><
>>>:
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EfY Y½ �5
XN
i51

yifY yið Þ5 03
1

6
1 13

1

6
1 23

2

6
1 33

1

6
1 43

1

6
5

12

6
5 2

EfY Y2
� 	

5
XN
i51

Yi
2fX yið Þ5 02 3

1

6
1 12 3

1

6
1 22 3

2

6
1 32 3

1

6
1 42 3

1

6
5

34

6

The variance, covariance, and correlation coefficient are given by

VarfY Y½ �5EfY Y2
� 	

2 EfY

� 	2
5

34

6
2 22 5 1:6667;

CovfX;Y X;Y½ �5EfX;Y XY½ �2EfX X½ �EfY Y½ �5 03
1

6
1 23

1

6
2 23

1

6
1 23

1

6
1 63

1

6
2 15 5

2

6

and

CorrfX;Y X;Y½ �5 CovfX;Y X; Y½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarfX X½ � 3VarfX X½ �

p 5
2
6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:58333 1:6667
p 5 0:2052:

For a random variable X that can take on a continuous set of realizations, the pdf f ðxÞ is a density function that repre-

sents the probability that X takes on a realization x. Thus, with the requirement thatðN
2N

f xð Þdx5 1;

as for discrete random variables, the probability P that X has value that lies between a and b is expressed in terms of an

integral

P a#X# bð Þ5
ðb
a

f xð Þdx:

An associated quantity is the cdf

F xð Þ5P X# xð Þ5
ðx
2N

f tð Þdt

Thus, FðxÞ is a montonically increasing function, that is, it continues to increase.

An elementary discrete pdf is the uniformly distributed integer between 1 and n obtained from: 11 nðrndÞ��
.

Some widely used continuous pdf’s are the uniform, exponential, the binomial, and the Poisson distribution func-

tions. Consider the uniform pdf (Fig. 4.22) f xð Þ5 1; xAð0; 1Þ, and the exponential pdf (Fig. 4.23) f xð Þ5 2e22x shown in

Figs. 4.17 and 4.18 (Fig. 4.22).

The Statistics Toolbox of Matlab has GUI-based tools disttool for plotting distribution function (pdf’s and cdf’s) and

randtool for randomly sampling from distribution functions. Of the over twenty distribution functions available, the

ones used here is the uniform, exponential and normal distribution functions. Plots can also be obtained from the com-

mands, for example, x5 0:0.1:3; y5 exppdf(x,0.5); plot(x, y), mean5 sum(x.*y)/sum(y)

The exponential pdf is y5 f xj;μð Þ5 1
μ e

2x=μ with mean μ
The computed mean, obtained from the expression x5

Ð b
a
xy xð Þdx= Ð b

a
y xð Þdx, and I1 �

Ð b
a
xy xð ÞdxDPM

i50 xiyi,

I2 �
Ð b
a
y xð ÞdxDPM

i50 yi is shown in Table 4.3. In the limit b-N, I2-1. Table 4.2 shows that the computed mean

tends to the exact mean μ5 1=2 (Table 4.6).

The mean and variances for three continuous PDFs are given in Table 4.7.where

erf xð Þ5 2ffiffiffi
π

p
ðx
0

e2t2dt:

The PDF and CDF of a normally distributed random variable, with5 5;σ2 5 2, are shown in Fig. 4.24 and 4.25

respectively.

The Matlab program for Figs. 4.24 and 4.25 is listed below.
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FIGURE 4.22 PDF and CDF of a uniformly distributed ran-

dom variable.

TABLE 4.6 Estimated mean from an exponential distribution.

Range and intervals Computed mean

0:0.10:3 0.4454
0:0.01:3 0.4877
0:0.001:3 0.4921
0:0.0001:3 0.4925
0:0.0001:3 0.4999

TABLE 4.7 PDF and CDF of the uniform, exponential and normal distribution functions.

Distribution Uniform Exponential Normal

f ðxÞ 0; x, a; x.b 1
b2 a ; a# x# b 0; x, 0λe2λx ; x$ 0 1

σ
ffiffiffiffi
2π

p e2
x2μð Þ2
2σ2

μ a1b
2

1
λ

μ

σ2 b2að Þ2
12

1
λ2 σ2

FðxÞ
0; x, a

x

b2 a
; a# x# b 1; x.b

0; x, 0 12 e2λx ; x$ 0 1
2 11 erf x2μ

σ
ffiffi
2

p
� �h i
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FIGURE 4.23 PDF and CDF of an exponentially distributed

random variable.

FIGURE 4.24 PDF of a normally distributed random variable.

FIGURE 4.25 PDF of a normally distributed random variable.
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% Program name CH4_NormalPDF.m
gid = fopen('out.txt','w');
mu=5;
sigma=2;
N=1000;
del=10/(N-1);
i=0; sum=0;sum2=0;
for x=0:del:10

i=i+1;

PDF(i)=(1/(sigma*sqrt(2*pi)))*exp(-(x-mu)^2/(2*sigma^2));
CDF(i)= (1/2)*(1+erf((x-mu)/(sigma*sqrt(2))));
xx(i)=x;
sum=sum+x*PDF(i);
sum2=sum2+PDF(i);
end
mean=sum/sum2

The mean value of the random variable is computed in the program to verify the validity of sample size N5 1000

which was set arbitrarily.

4.8.5 Random numbers

Numbers drawn randomly from some underlying population distribution function, using an algorithm, are called

pseudo-random numbers. Since the number of random numbers drawn from a population can be a finite, though large,

sample, they need to satisfy statistical tests to ensure they are truly representative of the population from which they are

drawn. For this, we will generate numbers and compute their means and variances. The correlation coefficient lies

between 21 and 1, the two limits at which the variables are uncorrelated and fully correlated.

The Matlab functions generating uniform, exponential and normal random numbers are rand, exprnd, and randn.
One of the oldest and most reliable methods used for generating random numbers is the linear congruential random

number generator (RNG)

Sk11 5 ðSkg1 cÞmodp

where p5 2m, and the random number ξk 5 Sk=p. Here, S0 is the seed, g and c are multipliers, and modðpÞ implies the remain-

der after division by p; thus 4 mod 25 0. In Matlab the command is mod(4,2). The integers determine the period of the num-

bers and depend on the computer hardware; a large NB36 ensures a large period. The Los Alamos Monte Carlo code uses

m5 48 giving a period of 246B7:033 1013, g5 519, c5 0. These limits are dependent on the word length of a computer.

4.8.5.1 Matlab program

s(1)=1;c=47;p=100;N=100;Nbins=5;
for i=1:Nbins  count(i)=0; end
for i=1:N
t=c*s(i)+1;
s(i+1)=mod(t,p);
end
trand=s/p;
for i=1:N

if (trand(i)<0.2)  count(1)=count(1)+1; end
if ((trand(i)>=0.2) && (trand(i)<0.4))

count(2)=count(2)+1; end
if ((trand(i)>=0.4) && (trand(i) <0.6))

count(3)=count(3)+1; end
if ((trand(i)>=0.6) && (trand(i) <0.8))

count(4)=count(4)+1; end
if ((trand(i)>=0.8) && (trand(i) <=1))

count(5)=count(5)+1; end
end
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The output is: count5 20 20 20 20 20 so that 20 random numbers fall into each bin.

When c5 0, the RNG is called a multiplicative congruential generator or the Lehmer RNG; when c 6¼ 0, the generator

is called a mixed congruential generator. The period depends on the combination of values as shown below (Table 4.8).

The “holes” left by pseudo-random numbers in sampling space uniformly, is filled by quasi-random numbers which

are used for numerical integration for sampling space more efficiently.

Exercise 4.18: Use the Matlab random number generator rand and generate 100 numbers and check their distribution.

Using the tic and toc functions, get an idea of the time taken by your computer to generate 1,000,000 uniform random

numbers.

Exercise 4.19: Generate a set of 1,000,000 uniform random numbers ðξ1; ξ2Þ, test how many of these lie in the first

quadrant of a unit circle and estimate π from the answer π5 4 �ϖ, where ϖ is the fraction of points falling inside the

first quadrant. Now use the value from π5 4 � tan211 to estimate the accuracy of a random number estimate of π.

4.8.6 Sampling from PDFs

4.8.6.1 Sampling from analytic PDFs

Sampling can be carried out from a discrete or continuous PDF by the direct method if the CDF can be analytically

obtained, and by the rejection method otherwise.

For a discrete probability, the domain of interest is divided into a finite number of intervals, or bins, each bin having

a probability fi. As an example, consider the case of three bins. Since the sum of all probabilities is 1,

X3
i51

fi 5 1:

If the bin probabilities are f1 5 0:2; f2 5 0:7; f3 5 0:1; as shown in Fig. 4.26, the CDF is obtained by adding the bin

probabilities. A uniform number ξ in the interval (0,1) is generated; as an example, if ξ5 0:7 as shown in Fig. 4.26, the

dotted lines connect down into the second group.

The selection for a group is done by comparing ξ with the sumsXm21

i51
fi , ξ#

Xm

i51
fi;m5 1; 2; 3

It is seen that ξ5 0:7 falls in the second interval as the sums are 0.2, 0.9, 1.0. Thus the second interval is selected.

In transport simulation, discrete sampling is carried out to decide, for example, which event to select from a number of

possible events, and to select a nuclide for a collision from a compound.

For an example of direct sampling, consider the uniform pdf for which the cdf is

F xð Þ5 x; 0, x, 1

1; x$ 1

�

can be used to represent the uniform pdf. A simple proof is the “conservation of probability” as we move from one vari-

able to another. Consider two random variables X and Y with pdf’s f ðxÞ and gðyÞ. Since probability must be conserved

regardless of the variable used, f xð Þdx5 g yð Þdy, and if X � f ;Y � F, then since dF
dx

5 f , the distribution function

g Fð Þ5 1, that is, the distribution of the cdf is uniform. It is for this reason that F can be used as a pseudo-random

number.

TABLE 4.8 Random number generation.

Seed g c p Period

1 47 1 100 20
1 2 0 9 6
3 2 0 9 2
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Fig. 4.27 shows the PDF and CDF for f xð Þ5 1=2; 2# x# 4. The PDF is rectangular while the CDF is a monotoni-

cally increasing function. The dotted lines show that sampling for a random number ξ generated from a uniform distri-

bution. If, for example, ξ5 0:7, then the intersection with the CDF is projected down to the x2 axis to get a sample

x5 3:40.
For an exponential PDF, shown in Fig. 4.28, f xð Þ5 2e22x, F xð Þ5 Ð x

0
f xð Þdx5 12 e22x the random variable X can be

sampled using x5F21ðξÞ, so that x5 ð2 1=2Þlnð12 ξÞ (Table 4.9).
From Fig. 4.27, for ξ5 0:7, the random variable sampled is x5 0:6020: This procedure is done on a computer where

thousands or possibly millions of random numbers may be required depending on the problem.

FIGURE 4.26 Sampling from a discrete distribution.

FIGURE 4.27 Sampling from a uniform distribution.
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For the case of a linear PDF, xð Þ5 2x; 0# x# 1, the CDF is F xð Þ5 x2; for which x is sampled as x5
ffiffiffi
ξ

p
:

Another useful case is the PDF f rð Þ5 re2r2=2; which can be integrated easily to get the CDF F rð Þ5 12 e2r2=2 from

which the random variable can be sampled as r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2log ð12 ξÞ

p
:

An approximate method to sample from a Gaussian is to form the sum

Z5 ξ1 1 ξ2 1?ξk; largek

from uniform random numbers ξi with mean and variance E ξi
� 	

5 1=2;σ2 5 1=12. The mean and variance of Z are thus

E Z½ �5 k=2; σ2 5 k=12:

With the variable for a standardized normal (mean 0 variance 1), x and Z are related; here μ and σ are the mean and

standard deviation of the Gaussian from which sampling is done. Then

x2μ
σ

5
Z2 k=2ffiffiffiffiffiffiffiffiffiffi

k=12
p

from which the sampled variable is

xDσ
Z2 k=2ffiffiffiffiffiffiffiffiffiffi

k=12
p

 !
1μ;

This method works well for large ð*12Þ.

FIGURE 4.28 Sampling from an exponential distribution function.

TABLE 4.9 Sampling from uniform, exponential and normal PDFs.

Distribution Uniform Exponential Normal

f ðxÞ 0; x, a; x. b 1
b2 a ; a# x# b 0; x, 0λe2λx ; x$ 0 1

σ
ffiffiffiffi
2π

p e2
x2μð Þ2
2σ2

FðxÞ 0; x, a
x

b2 a
; a# x# b 1; x. b 0; x, 0 12 e2λx ; x$ 0 1

2 11 erf x2μ
σ
ffiffi
2

p
� �h i

x x5 a1 ðb2 aÞξ 2 1
λ log 12 ξð Þ p5σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2logξ1

p
θ5 2πξ2μ1psinθ
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4.8.6.2 Sampling from nonanalytic PDFs

Such a direct inversion is not possible for nonintegrable pdf’s such as a rejection scheme in which a simple bounding

function gðxÞ is chosen ðf xð Þ# cg xð ÞÞ; the variable x is sampled from G and the value x̂ is selected if ξ2cgðx̂Þ# f ðx̂Þ, oth-
erwise it is rejected.

Exercise 4.20:

1. Use both direct and rejection schemes for sampling from the PDF: f xð Þ5 2x, xE 0; 1
2

� �
.

2. Use the rejection scheme for sampling from the normal PDF:

f xð Þ5 1ffiffiffiffiffiffi
2π

p
σ
e2

1
2

x2μ
σð Þ2

4.8.7 Kullback�Leibler divergence for uniform random numbers

An important metric for estimating convergence in a sampling process is the Kullback�Leibler divergence,

Dðpj qð Þ5
X
x

p xð Þlog p xð Þ
q xð Þ 5

X
x

pðxÞlogp xð Þ2
X
x

p xð Þlogq xð Þ � 2H Xð Þ1HcðXÞ

between a true pdf represented by p and an estimate q, where HcðXÞ is the cross-entropy which is a measure of the inef-

ficiency. Ideally, the divergence ðpj qð Þ, also called the relative entropy, should be zero so that no information is lost.

Let us consider this metric for deciding how many uniform random numbers are enough for convergence. From

Fig. 2.9, it is clear that less than N5 100 numbers is inadequate and NB500 is a “good” sampling size.

The KL distance is seen in Fig. 4.26 to decrease as the sample size is increased. The convergence is also dependent

on the number of bins where a larger sample size is required for 20 bins compared with that for 10 bins (Fig. 4.29).

4.8.8 The law of large numbers

For random numbers generated as independent and identically distributed, that is, each with the same mean μ then as

their number increases the sample mean μs will tend to the theoretical mean μ.
Chebyshev’s Inequality tells us that the deviation from the mean of a random variable more than k standard devia-

tions is less than or equal to 1/k2. Thus the probability of being out of two standard deviations is 1/4, and

P X2μ
�� ��. kσ
� �

#
V xð Þ
ε2

5
1

k2

FIGURE 4.29 (A and B) KL distance for 10 and 20 bins.
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According to the law of large numbers if X1, X2, . . ., Xn are independent trials, with an expectation μ5EðXjÞ and
finite variance σ2 5VðXjÞ, then for an average Sn � Sn

n
5 X1 1X2 1?Xn

n
, for any ε. 0

lim
n-N

P j Sn
n

2μj$ ε

 �

-0

lim
n-N

P
Sn

n
2μ

����
����, ε


 �
-1

Example 4.5: Consider n Bernoulli trials processes and take a probability of success p5 0:3. If an outcome is a success, let

the random variable be 1 otherwise it is zero. The expectation value E Xj

� �
5 0:3 and variance V Xj

� �
5 pq5 0:21. Let

Sn � Sn
n
5 X1 1X2 1?Xn

n
, then the expectation and variance of the average can be found as , Sn $ 0:3, and VSn

5
VSn

n2
5 0:21

n
,

and according to Chebyshev’s Inequality, P jSn 2 0:3j$ 0:1
� �

# 21=nð0:1Þ2 5 21
n
. If we have n5 1000 trials, then we can

thus show that the probability that this estimate lies between 0.2 and 0.4 is greater than or equal to 0.979; or

Pð0:2, S1000 , 0:4Þ$ 0:979

Thus, for a very large number of trials the probability that the number will lie in the range 0.2 to 0.4 will be one. We

know that the number should be 0.3 for a single trial; this states that it will tend to 0.3 for a large number of trials as well.

4.8.8.1 Application of the law of large numbers

For uniform random numbers between 0 and 1, the mean value and variance are 1/2 and 1/12 respectively. Thus if n

numbers are drawn from this distribution, the EðSn=nÞ5 1=2 and V(Sn/n)5 1/12n so that

P jSn 2
1

2
j$ ε


 �
#

1

12nε2

For ε5 0.1, P# 100=12n, so that a sample size n5 100, would give P# 8%, for n5 1000, P, 5 0.8%, so if want an

error of less than 1%, we must have a sample size of nB1000 (Grinstead & Snell, 1997). Thus Chebyshev’s Inequality

tells us the sample size required for the desired accuracy.

4.8.9 The central limit theorem

Chebyshev’s Inequality gives an idea of the sample size while the stronger Central Limit Theorem tells us the effect of

increasing sample size on the range of estimates.

Let Sn 5X1 1X2 1X3?Xn be the sum of n discrete independent random variables with common distribution having

expected value μ and variance σ2. Then for a, b,

lim
n-N

P a,
Sn 2 nμffiffiffiffiffiffiffiffi

nσ2
p , b


 �
5

1ffiffiffiffiffiffi
2π

p
ðb
a

e2x2=2dx

lim
n-N

P a,
Sn=n2μffiffiffiffiffiffiffiffiffiffi

σ2=n
p , b

 !
5

1ffiffiffiffiffiffi
2π

p
ðb
a

e2x2=2dx�N 0; 1ð Þ

In words, the above says that whatever the population distribution of the random variable X, with mean and vari-

ance, the sampled mean X will be normal as the sample size becomes very large. The sampled mean will have a mean

equal to the population mean; however its variance will have reduced to σ2=n. Thus, as the sample size becomes larger,

the range becomes narrower.

Example 4.6: Population distribution of a random variable X is normal μp;σp;sample size N, sample of the mean has

μs;σs; sample mean X is normally distributed with μs 5μp and σs 5σp=
ffiffiffiffi
N

p
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4.8.9.1 Matlab program: mean and variance

mu=27;std=12;
fid=fopen('OutSample.txt','w');
N=36;
fprintf(fid,'\n  N=%8.0f',N)
for i=1:100
ct=0; % count people less than 30 years old
for j=1:N

age(j)= mu+std*randn;
if (age(j)<30)

ct=ct+1;
end

end
count(i)=ct;
SampleAvg(i)=mean(age);
SampleStd(i)=sqrt(var(age));
fprintf(fid,'\n    %6.0f    %6.0f  %8.4f   
%8.4f',i,count(i),SampleAvg(i),SampleStd(i))
end

% now find the standard error of the SampledMean
AvgSampleMean=mean(SampleAvg);
StdSampledMean=sqrt(var(SampleAvg));
fprintf(fid,'\n    %8.4f   %8.4f',AvgSampleMean,StdSampledMean)

Table 4.10 shows results for N batches with sample sizes 36, 3600, and 360,000, that is, an increase of 100 in each

computation. The decrease in the standard deviation can be seen to be by a factor of 10 while the sample mean tends to

the population mean (μp 5 27;σp 5 12).

4.9 Evaluation of integrals

There are several methods for evaluating integrals; the most basic of ideas is to break the region into a large number of

rectangles and sum the areas of the rectangles. This would give an error at the curves of the function under which the

area is being evaluated. Such methods (Abramowitz & Stegun, 1964) include the trapezoidal rule, Simpson’s rule,

Euler�Maclaurin formulas, Newton�Cotes formulas, and Gauss’ formula (based on Legendre polynomials) for 1-D

integrals. As the dimensionality increases, these methods become inefficient and random sampling begins to look attrac-

tive. In this section, the basics of the sampling methods are described.

A definite integral for a function f(x) is thus expressed as a finite sum

I5

ð1
21

f xð Þdx �
Xn
i51

cif xið Þ;

The reactangles are shown in Fig. 4.30.

TABLE 4.10 Sample mean μs and standard deviation σs.

N (batches) 36 3600 360,000

100 26.8202(1.8477) 26.9864(0.2020) 27.0013(0.0189)
1000 27.1001(1.9830) 26.9950(0.2005) 27.0008(0.0192)
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In the Gaussian quadrature, the abscissa and weights arise out of requiring exact results for ðn1 1Þth order polyno-

mials. For the case n5 2, an integral I is evaluated at to points; thus

I5

ðb
a

f xð Þdx5
X2
i51

wif xið Þ5w1f x1ð Þ1w2f x2ð Þ:

For a third-order polynomial

f xð Þ5 a0 1 a1x1 a2x
2 1 a3x

3

the integration is carried out resulting in four simultaneous linear equations for the four unknowns w1;w2; x1; x2; the
solution gives

I5
b2 a

2
f
b2 a

2
2

1ffiffiffi
3

p

 �� �

1
b1 a

2
1

b2 a

2
f
b2 a

2

1ffiffiffi
3

p

 �� �

1
b1 a

2

Thus, if a52 1; b5 1

I5 f 2
1ffiffiffi
3

p

 �� �

1 f
1ffiffiffi
3

p

 �� �

which requires a change of limits on the integral

I5

ð1
21

f xð Þdx5w1f x1ð Þ1w2f x2ð Þ

yielding the weights and abscissae of Table 4.11

w1 5 1; w2 5 1; x1 52
1ffiffiffi
3

p ; x2 5
1ffiffiffi
3

p :

Similarly, higher order polynomials are used to determine quadrature parameters for n5 2, 3 and 4 .

FIGURE 4.30 Numerical integration.

TABLE 4.11 Abscissa and weights of the Gaussian quadrature.

n xi ci

2 0.5773502691896257
2 0.5773502691896257

1.0000000000000000
1.0000000000000000

3 0.7745966692414834
0
2 0.7745966692414834

0.5555555555555556
0.8888888888888888
-0.555555555555556

4 0.8611363115940525
0.3399810435848563
2 0.3399810435848563
2 0.8611363115940525

0.3478548451374544
0.6521451548625460
0.6521451548625460
0.3478548451374544
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Example 4.7: Sketch the Integrals I1 5
Ð 5
0
x2e2xdx, I2 5

Ð 2π
0

e2xsin4xdx, and I3 5
Ð 10
0

e2x2dx, and evaluate them using

Simpson’s Rule, and Gaussian Quadrature.

4.9.1 The Monte Carlo method for numerical integration

The computational effort for quadrature methods discussed above increases with the dimensionality of the integral thus

a 1000 point evaluation in each dimension requires one billion evaluation points. For such large problems, Monte Carlo

methods are more efficient. An integral evaluation of

I5

ðb
a

g xð Þf xð Þdx

with the Monte Carlo Method (Dunn & Shultis, 2012; Kalos & Whitlock, 2008; Reiher, 1966) is carried out by sam-

pling from the PDF f xð Þ and estimating g xð Þ as

ID g xð Þ� �
5

1

N

XN
i51

gðxiÞ

With the Central Limit Theorem, there is justification to anticipate that as the sample size N-N, that is, a large num-

ber, then the domain of the result will become smaller and smaller with the sample mean tending to the population

mean and the variance reducing inversely with the sample size N.

1. Sketch theiIntegrals, I1 5
Ð 2
0
dx e2x, I2 5

Ð 2
0
xe2xdx and I3 5

Ð 2
0
e2x2dx

2. Obtain an exact solution for each of the above (I3 5
Ð 2
0
exp 2 x2
� �

dx5
ffiffi
π

p
2
erf 2ð Þ5 0:8821)

3. With a calculator, taking N5 10 points, estimate the integrals and the standard deviations

4. Write a program which can be used to estimate the integrals using the MC method.

The functions are plotted in Fig. 4.31.

FIGURE 4.31 Functions for MC integration.
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4.9.1.1 Matlab program

fid=fopen('outMain.txt','w');
x=0:0.001:2;
y1=exp(-x);
y2=x.*exp(-x);
y3=exp(-x.*x);
plot(x,y1,'-k','LineWidth',1.5)
hold on
plot(x,y2,'-.k','LineWidth',1.5)
hold on
plot(x,y3,':k','LineWidth',1.5)
h = legend('y=exp(-x)','y=x*exp(-x)','y=exp(-x^2)',1);
grid on
xlabel('\bf x','FontSize',12)
ylabel('\bf y','FontSize',12)
N=100;
% integral 1
F=@(x)exp(-x);
Q=quad(F,0,2);
sum=0.0; sum2=0.0;
for i=1:N

t = rand;
r = exp(-2.0*t);
sum = sum + r ;
sum2=sum2 + r^2;

end
Int1 = 2.0*sum/N;
var1 = sum2/N - (sum/N)^2;
std1 = sqrt(var1);
PercErr = 100.0*abs((Int1 - Q)/Q);
fprintf(fid,'\n Integral 1');
fprintf(fid,'\n N= %6.0f',N);
fprintf(fid,'\n  quad     Int1      var1');
fprintf(fid,'\n %8.4f %8.4f %12.4e ',Q,Int1,std1);
fprintf(fid,'\n Percentage Error = %8.4f',PercErr);
% integral 2

F=@(x)x.*exp(-x);
Q2=quad(F,0,2);
sum=0.0; sum2=0.0;

204 Nuclear Engineering



for i=1:N
t = rand;
r = t*exp(-2.0*t);
sum = sum + r ;
sum2=sum2 + r^2;

end
Int2 = 4.0*sum/N;
var2 = sum2/N - (sum/N)^2;
std2 = sqrt(var2);
PercErr = 100.0*abs((Int2 - Q2)/Q2);
fprintf(fid,'\n Integral 2');
fprintf(fid,'\n N= %6.0f',N);
fprintf(fid,'\n    quad     Int1      std2');
fprintf(fid,'\n %8.4f %8.4f %12.4e ',Q2,Int2,std2);
fprintf(fid,'\n Percentage Error = %8.4f',PercErr);

% integral 3
F=@(x)exp(-x.*x);
Q3=quad(F,0,2);
sum=0.0; sum2=0.0;
for i=1:N

t = rand;
r = exp(-4.0*t*t);
sum = sum + r ;
sum2=sum2 + r^2;

end
Int3 = 2.0*sum/N;
var3 = sum2/N - (sum/N)^2;
std3 = sqrt(var3);
PercErr = 100.0*abs((Int3 - Q3)/Q3);
fprintf(fid,'\n Integral 3');
fprintf(fid,'\n N= %6.0f',N);
fprintf(fid,'\n    quad     Int3      std3');
fprintf(fid,'\n %8.4f %8.4f %12.4e ',Q3,Int3,std3);
fprintf(fid,'\n Percentage Error = %8.4f',PercErr);
fclose(fid);

Results from MC evaluation of integrals are given in Table 4.12, giving the estimate and relative error with refer-

ence to the exact.

In Monte Carlo simulation, we say an estimate is accurate if its mean is close to the mean of the population, which

is generally unknown. Precision is a measure of the spread or variance of the estimates from which the mean is com-

puted. An estimate is not “good” if it is inaccurate but precise, or accurate and not precise; it is desirable to have an

answer that is both accurate and precise. The “best” MC estimate would have the “correct” mean and “zero-variance.”

TABLE 4.12 Values of integrals from Gaussian Quadrature and random sampling.

Integral Matlab (quad) Exact N5 100 N5 100,000

I1 5
Ð 2
0 dxe2x , 0.8647 0.8647 0.9176b 2.43593 1021 6.13% 0.8649 2.41763 1021 0.027%

I2 5
Ð 2
0 xe2xdx 0.5940 0.5940 0.5924 4.434031022 0.2656% 0.5944 4.18863 1022 0.0656%

I3 5
Ð 2
0 e2x2dx 0.8821 0.8821a 0.8827 3.202331021 0.0651% 0.8792 3.44553 1021 0.322%

aI3 5
Ð 2
0 exp 2 x2

� �
dx5

ffiffi
π

p
2 erf 2ð Þ5 0:8821.

bMean, standard deviation and percentage error (with quad taken as ref).
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There are several methods to obtain better and faster results such as importance sampling and other variance reduc-

tion techniques which will be discussed in the sequel in the context of simulations for nuclear systems.

Problems

1. Show that for a system in equilibrium with n tð Þ5 n0, subject to a step input ρ0 at t5 0, the response nðtÞ is given by

n tð Þ5 no

ω1 2ω2

ρo
l
2ω2

� �
eω1t 1 ω1 2

ρo
l

� �
eω2t

j k
For ρ0 . 0 plot the response and comment on the effect of the roots on the response. Use the data for thermal

fission U235.

λ5 0:0767 s21;β5 0:00650; Λ5
β
λ
5 0:0847s

2. Solve the steady-state heat conduction equation to plot the temperature in a fuel rod using data of Chapter 3. The

volumetric heat generation is

qw5 qmaxw cos
πz
H
B


 �
:

From Chapter 3, use data for fuel rod diameter, clad thickness, fuel rod length, centerline fuel temperature.

3. Solve the steady-state heat conduction equation

d2T

dr2
1

1

r

dT

dr
1

qw
kf

5 0

with boundary conditions (1) T is nonsingular within the rod, (2) T(0)5 Tm. Show that the temperature within the

rod is

T 5 Tm 2
q

0 0 0
r2

4kf

Now solve for the temperature in the clad. Show that the heat flow is

q5
2πHkcðTs 2 TcÞ

ln ð11 b=aÞ
where T(a)5 Ts, T(a1 b)5 Tc

4. Given the advection-diffusion equation

u
dT

dx
2 k

d2T

dx2
5Q xð Þ

in the domain a# x# b, with the boundary conditions T að Þ5 Ta and T bð Þ5 Tb, write a finite difference equation

and describe the computational strategy to solve for the temperature TðxÞ.
In the above equation, write the finite difference equation for the first two nodes for a given heat flux boundary

condition at the boundary x5 a.

5. Solve the Fredholm integral equation xð Þ5 11λ
Ð π
0
sinðx1 tÞyðtÞdt

6. Show that the resolvent kernel for y xð Þ5 11λ
Ð 1
0
ð12 3xtÞyðtÞdt I R x; t;λð Þ5 4

42λ2 11λ2 3λx
2

2 3t x1 λ
2
2λx

� �� 	
and the solution is y xð Þ5 41λð22 3xÞ

42λ2 ; for λj j, 2

7. Estimate the integral I5
Ð 5
0
x2e2xdx with x2 as the estimator and e2x as the pdf.

8. Use the linear congruential RNG Sk11 5 Skg1 cmodp with g5 20, c5 1, So5 1, p5 100 to generate random

numbers.

9. In the previous question, increase the value of g to g5 40 and comment on the period of the random numbers.

What general conclusion can be drawn?

10. Sample random numbers from a linear pdf f xð Þ5 2
7
21 3xð Þ in the range ð0; 1Þ.
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Nomenclature

English lower case
d extrapolation distance

e internal energy

f probability distribution function

ff g the force function

g acceleration due to gravity

fxy joint distribution function

h heat transfer coefficient

k thermal conductivity

k effective multiplication

kc thermal conductivity of cladding

keff effective multiplication

kf thermal conductivity of fuel

n number density

p probability

p pressure

q heat flow (W)

q
0 0 0

volumetric heat generation (W/m3)

u velocity vector

English upper case
Ai area

B buckling

Ci concentration of precursor

D diffusion coefficient

D̂ derivative operator

D Kullback�Leibler divergence

E energy

F force

F cumulative distribution function

HðμÞ Chandrasekhar’s H function

J variational functional

K stiffness matrix

K kernel

L diffusion length

L̂
1

adjoint operator

Ni atomic density of the ith nuclide

Ni shape function in the ith element

Pm
l associated Legendre functions

Rc cladding resistance

Rf fuel resistance

S source

Sk kth random number

T absolute temperature

Tm moderator temperature

TC clad temperature

Greek lower case
α thermal diffusivity

αF temperature coefficient of reactivity of fuel

αM temperature coefficient of reactivity of moderator

β separability constant
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β delayed neutron fraction

β
B

delayed neutron fraction for a mixture

γ separability constant

γji production fraction of the ith isotope due to fission of isotope j

ε emissivity

η separability constant

λ decay constant

μ cosine of angle of scattering

μ expectation, mean

ξ random number

ρ reactivity

ρ density

σ Stefan�Boltzmann constant

σ standard deviation

τ stress

φ flux

φC complementary solution

φP particular solution

χ fission spectrum

Greek upper case
Λ neutron generation time (s)

Ω solid angleP
a macroscopic absorption cross section

Abbreviations
CDF cumulative distribution function

ODE ordinary differential equation

PDE partial differential equation

PDF probability distribution function
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Filipov, S., & Faragó, I. (2018). Implicit euler time discretization and fdm with Newton method in nonlinear heat transfer modeling. arXiv.
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Chapter 5

The neutron diffusion equation

A simple yet representative model of neutron transport is the neutron diffusion equation (NDE) for which analytical

solutions can be readily found for nuclear systems modeled as regular geometries (rectangular, spherical, and cylindri-

cal). For irregular geometries, numerical methods such as the Finite Difference Method (FDM), the Finite Element

Method (FEM) and Finite Volume Method (FVM) are used. In reactor calculations, the Nodal Expansion Method

(NEM) is used with the NDE to calculate the flux and power distribution over a full core. In such calculations, the

NDE is easier to use with less computational effort than the neutron transport equation or the Monte Carlo (MC)

method.

In this chapter, neutron diffusion theory is introduced for nuclear systems with nuclear fuel materials such as U235

and Pu239 as well as nonfissile materials such as aluminum, beryllium, boron, carbon (graphite), and iron used for struc-

tural applications.

The NDE is developed for one-dimensional regular geometries, and extended to three-dimensional geometries, for

obtaining the neutron flux and associated reaction rates (absorption, scattering, etc.) in systems.

5.1 The conservation equation

Deterministic models that describe neutron behavior in a system are based on the diffusion equation (Jevremovic, 2009;

Lamarsh, 2005), the integro-differential Boltzmann equation, and the integral equation. An elementary form of the dif-

fusion equation can be derived from first principles by writing a conservation equation in a volume element assuming

that neutrons do not lose energy during interactions with matter. Consider the volume element ΔV 5ΔxΔyΔz with net

inward and outward currents in the x direction Jin 5 Jx and Jout 5 Jx1Δx shown in Fig. 5.1.

The change in neutron population n x; tð Þ, for this one-group model, can be written from the conservation equation

expressing the net boundary crossings and losses and gains in the volume element. With the net boundary crossings

taken only in the x-direction J in 2 Jout
� �

A\ n/s, the absorptions Σaφ x; tð ÞΔV n/s and the source production Sðx; tÞΔV ,

the rate of change of neutron population is:

@n x; tð Þ
@t

ΔV 5 Jin 2 Jout
� �

A\ 2Σaφ x; tð ÞΔV 1 S x; tð ÞΔV : (5.1)

Using a Taylor series first-order expansion for the current, we can write

JoutA\ � J inA\ 1r � JΔV

so that the diffusion equation, with φ5 nv, becomes

1

v

@φðx; tÞ
@t

52r � J 2Σaφ x; tð Þ1 S x; tð Þ:

Using Fick’s law J 52Drφ, the diffusion equation reads

1

v

@φ x; tð Þ
@t

5Dr2φ2Σaφ x; tð Þ1 S x; tð Þ: (5.2)

The diffusion coefficient D is given by

D5
1

3
λtr �

1

3Σtr
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in terms of the macroscopic transport cross-section

Σtr 5Σt 2μ0Σs:

where the average scattering angle Ω̂ � Ω̂
0
for isotropic scattering in the center of mass system is μ0 5 2=ð3AÞ.

The loss terms are the leakage r � J and the removal Σrφ while the gain terms are the direct source S and the fission

production νΣfφ; thus in general the steady-state diffusion equation can be expressed as

r � J 1Σrφ5 S1 νΣfφ:

In a two-group model, the neutrons produced by fission (per cm3/s)

ν1Σf ;1φ1 1 ν2Σf ;2φ2

would contribute to both groups in proportion to the fission spectrum χi; i5 1; 2:
For steady-state, the one-group balance equation reduces to

Dr2φ2Σaφ1 S5 0 (5.3)

with absorption being the only removal process. If a two-group model is considered, then the processes have to be mod-

eled in the groups separately. Thus the net leakage rate of the group-1 neutrons would be balanced by the removal rate

due to capture in group-1 and to out-scattering to group-2 ΣR;1φ15ΣC;1φ11ΣS;1-2φ1 as well as to the source produc-

tion in group 1. The two-group equations are

D1r2φ1 2Σr;1φ1 1 S1 5 0 (5.4)

D2r2φ2 2Σr;2φ2 1 S2 5 0 (5.5)

where S1 could be a “direct” source and a fission source χ1ðν1Σf ;1φ1 1 ν2Σf ;2φ2Þ and S2 5 pΣS;1-2φ1

1χ2ðν1Σf ;1φ1 1 ν2Σf ;2φ2Þ, a “down-scattered” contribution plus a fission contribution. The eigenvalue form of the dif-

fusion equation, in a 1-D slab of thickness L, as briefly discussed in Section 4.5, is written as

d

dx
2D

d

dx

� �
1Σr

� �
φ xð Þ5 1

k
νΣfφ xð Þ1 S xð Þ; 0, x, L

where k is the eigenvalue that balances the loss and gain terms.

The multigroup form of the diffusion equation for energy group i is

2r � Di rð Þrφi rð Þ1Σi rð Þφi rð Þ5
X
i
0 6¼i

Σ sð Þ
i
0-i

φi
0 rð Þ1χi

X
i
0
νΣf :i0φi

0 rð Þ1 SiðrÞ (5.6)

where SiðrÞ is the independent source.
The forms taken by the r � Di rð Þr were discussed in Chapter 4;for Cartesian

@

@x
D

@

@x
1

@

@y
D

@

@y
1

@

@z
D

@

@z
2Σr

� �
φ x; y; zð Þ1 νΣfφ x; y; zð Þ1 S5 0;

cylindrical

1

r

@

@r
rD

@

@r
1

1

r2
@

@ϕ
D

@

@ϕ
1

@

@z
D

@

@z
2Σr

� �
φ r;ϕ; zð Þ1 νΣfφ r;ϕ; zð Þ1 S5 0;

FIGURE 5.1 A volume element.
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and spherical coordinates

1

r2
@

@r
r2D

@

@r
1

1

r2sinθ
@

@θ
sin θ D

@

@θ
1

1

r2sinθ
@

@ϕ
D

@

@ϕ
2Σr

� �
φ r; θ;ϕð Þ1 νΣfφ r; θ;ϕð Þ1 S5 0:

5.2 The one-group diffusion equation

The time-dependent diffusion Eq. (5.2), for a one-group energy model, can be solved analytically for simple problems

in slab, cylindrical and spherical geometry. In this section, some elementary steady-state solutions are obtained to illus-

trate the flux distributions.

5.2.1 Nonmultiplying systems

Although the one-group model is too simple for practical applications, it gives considerable insight into important neu-

tron characteristics of nuclear systems. For systems which are predominantly “one-group,” that is, when the neutron

spectrum is predominantly “fast” or “thermal,” it is used with the appropriate “averaged” nuclear data to obtain the neu-

tron flux and associated quantities such as criticality parameters and thermal power.

The NDE is a second-order ordinary differential equation (ODE) which can be solved given two boundary condi-

tions: Neumann, Dirichlet or mixed, depending on the physical conditions. A bare assembly, for example, will have the

condition of vanishing flux at the extrapolated boundary (Dirichlet boundary condition) while a reflecting surface will

have a zero flux-gradient, or zero current, (Neumann boundary condition) condition. An interface will have both flux

and current continuity conditions.

The NDE, based on Poisson’s equation, is mathematically much simpler than the integro-differential transport equa-

tion and hence is used for simple problems. Even then, numerical solutions are required for large problems such as

“whole-core” reactor design. In the multigroup form, the diffusion equation is used to obtain “first estimates” and can

serve as a useful step for providing guesses to full transport calculations. A limitation of diffusion equation is near

sources and boundaries where the angular flux requires detailed consideration as provided, for example, in the discrete

ordinates and spherical harmonics methods.

5.2.1.1 Finite slab

In a graphite slab of thickness 2a in the x-direction and infinite in the y and z directions, with uniformly distributed

sources emitting S neutrons/cm3/s the neutron flux is given by

φ xð Þ5 S

Σa

12
cosh x

L

cosh a1 d
L

� �
 !

: (5.7)

Another method for obtaining the flux for a distributed source is by expanding in eigenfunctions and using the

orthogonality property to determine the coefficients. This formulations results in a Green’s function which is useful for

more general source distributions. From Eq. (5.7), the net current in the slab, from Fick’s Law, is

J xð Þ52Drφ xð Þ5 SL
sinhx=L

cosh a1 d
L

� � :
From J xð Þ, the escape probability PesðaÞ, defined as the fraction of neutrons leaking out of the system across the sur-

face x5 a, is

Pes að Þ5 Jðx5 aÞ
aS

5
L

a

sinha=L

cosh a1 d
L

� � :
The total escape probability from the system is Pes5Pes 2 að Þ1Pes að Þ; due to the symmetry of the system

Pes 5
2Jðx5 aÞ

2aS
5

L

a

sinha=L

cosh a1 d
L

� �
From L’Hopital’s rule it is readily seen that in the limit a-0, Pes-1 (for d5 0) that is, all the neutrons escape

from an intesimally thin slab.
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The diffusion length defined as

L2 5
D

Σa

was discussed in Chapter 2 in the context of the slowing down of neutrons.

Example 5.1: .

Calculate the escape probability in a graphite slab of thickness 1 mean free path (mfp).

The first step is to find the atomic density N of graphite:

N5
ρNav

A
5

1:60 X 0:6023 1024

12:01115
5 0:08023 1024atoms cm23

The next step is to determine the macroscopic cross-sections Σa;Σs;Σtr:

Σa 5Nσa 5 0:0802 X 0:00345 2:7268 1024 cm21; Σs 5Nσs 5 0:08023 4:755

0:3809 cm21; Σtr 5Nσtr 5Nσs 12μo

� �
5Nσs 12

2

3A

0
@

1
A5 0:3599 cm21

These are used to find the diffusion coefficient D and the diffusion length L:

D5
1

3Σtr

5
1

3ð0:3599Þ 5 0:9262cm; L5

ffiffiffiffiffiffi
D

Σa

r
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:9262

2:72681024

r
5 58:2804cm

and extrapolation distance d5 0:71λtr 5
0:71
0:3599 5 1:9728cm. The mean free path λ, is found as

λ5
1

Σt

5
1

Σs 1Σa

5
1

0:3812
5 2:6233 cm:

For a graphite slab of thickness 1 mfp, the escape probability is

Pes 5
L

a

sinha=L

cosh a1 d
L

� � 5 58:2804

2:6233=2

sinh1:3116=58:2804

cosh 1:31161 1:9728
58:2804

5 0:9985:

Thus, in this case there is a 99.85% probability that a neutron will escape from the surfaces.

Fig. 5.2 shows the escape probability in the above graphite slab as a function of its thickness. The probability is

“high” since graphite is a weak absorber and is thus used for moderating neutrons in a reactor.

FIGURE 5.2 Escape probability in a graphite slab.
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5.2.1.2 Finite cylinder

The governing equation

1

r

@

@r
rD

@

@r
1

@

@z
D

@

@z
2Σr

� �
φ r; zð Þ1 S5 0

can be solved to obtain exact solutions. For an infinitely long cylinder with a uniformly distributed source as

for the finite slab case, the solution is similar to Eq. (5.7) with the modified Bessel function of the first kind I0
replacing the cosh x function. From the method of eigenfunctions, the flux in a finite cylinder can be found in

the form

φ r; zð Þ5
X
m;n

AmnJ0
xnr

R

	 

cos

mπz
H

; n;m5 1:23; . . . (5.8)

in terms of Bessel functions, eigenvalues and eigenfunctions as described in Chapter 4. The coefficients are then deter-

mined from the diffusion equation using the orthogonality condition.

5.2.1.3 Point source in an infinite medium

The flux in a finite sphere with a uniformly distributed source is of the same form as shown for the slab case in

Eq. (5.7) with the sinh function replacing the cosh function as shown in Table 5.1.

For a point source in an infinite medium, the (thermal) neutron flux is

ϕ rð Þ5 Se2r=L

4πDr
(5.9)

where L � LT , the thermal diffusion length.

Table 5.1 lists some solutions with source conditions, boundary conditions and one-group fluxes for nonmultiplying

systems. Source conditions for infinite plane, point-like and infinite linear sources can also be derived from Gauss’

divergence theorem (Carrillo, 2001) using Fick’s law.

5.2.2 Multiplying systems

When the source is given by S rð Þ5 kNΣaϕðrÞ, with the infinite system multiplication factor kN 5 εpηfT , the diffusion

equation can be written as

r2φ1B2
mφ5 0 (5.10)

where the material buckling Bm is

B2
m 5

kN 2 1

L2
:

Some elementary solutions are given here for slab, cylindrical, and spherical critical reactors.

5.2.2.1 Slab reactor

The 1-D slab reactor equation

d2φ
dx2

1B2
mφ xð Þ5 0 (5.11)

for 2 a=2# x# a=2 with the boundary conditions

φ 2
~a

2

� �
5φ

~a

2

� �
5 0;

dφ
dx

j0 5 0; (5.12)

is critical for the flux

φðxÞ5AcosBx (5.13)
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where the material and geometrical buckling are

Bm 5
kN 2 1

L2
;Bg 5

π
a1 d

:

5.2.2.2 Cylindrical reactor

For an infinite cylindrical reactor (i.e., infinite in height) which is critical and has radius R, the flux is space-dependent.

The reactor equation

1

r

d

dr
r
dφ
dr

1B2φ5 0 (5.14)

has two independent solutions J0 Brð Þ and Y0 Brð Þ which are ordinary Bessel functions of the first- and second-kind. The

general solution is

φ5AJ0 Brð Þ1CY0ðBrÞ (5.15)

where A and C are constants. Since Y0ðxÞ is infinite at x5 0, while J0 0ð Þ5 1, for φ to remain finite, C must be taken to

zero and the flux is

φ rð Þ5AJ0 Brð Þ: (5.16)

The boundary condition therefore takes the form

φ ~R
� �

5AJ0 Brð Þ5 0: (5.17)

The function J0 xð Þ is zero at a number of values of x, so that φ is satisfied if B has eigenvalues

Bn 5
xn
~R
: (5.18)

TABLE 5.1 Exact solutions: 1-group nonmultiplying media.

Medium Source Boundary conditions Flux

Slab

Infinite Planar source
at x5 0
S n/cm2/s

Finite flux φ xð Þ
Source condition
limx-0 J xð Þ5 S=2

φ xð Þ5 SL
2D e2x=LI

Infinite slab (in y and z) of
thickness 2a

Planar source at x50
S n/cm2/s

φ a1 dð Þ5φ 2 a2 dð Þ50
Source condition
limx-0 J xð Þ5 S=2

φ xð Þ5 SL
2D

sinh½ða1d 2 xj jÞ=L�
cosh a1 d

L½ �

Infinite slab (in y and z) of
thickness 2a

Uniformly distributed
sources S n/cm3/s

φ a1 dð Þ5φ 2 a2 dð Þ50
dφ
dx 5 0 at x5 0

φ xð Þ5 S
Σa

12 coshx=L

cosh a1d
Lð Þ

� �

Cylinder

Infinite cylinder (in z axis)
finite radius R

as given φ Rð Þ5 0
dφ
dr 5 0
at r 5 0

P
m AnJ0

xnr
R

� �
;n5 1:23; . . .

Finite cylinder radius R,
height H

φ Rð Þ5φ Rð Þ5 0
φ

0
r50 5φ

0
z5H 5 0

P
m;n AmnJ0

xnr
R

� �
cosmπz

H ;n;m5 1:23; . . .

Sphere

Infinite Point isotropic source at
r 50 S n/s

Finite flux φ rð Þ
Source condition
limr-0 4πr2J rð Þ5 S

φ rð Þ5 Se2r=L

4πDr

Finite sphere of radius R Point isotropic source at
r 50 S n/s

Finite flux φ rð Þ and
φ ~R
� �

5 0
φ rð Þ5 S

4πDsinh R1d
Lð Þ

sinhκðR1d 2 rÞ
r

Finite sphere of radius R Uniformly distributed
sources S n/cm3/s

Finite flux φ rð Þ and
φ ~R
� �

5 0
φ rð Þ5 S

Σa
12 R1d

r
sinhκr

sinhκ R1dð Þ
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In a critical system, the lowest eigenvalue has physical significance; thus

B2
1 5

x1
~R

� �2

5 2:405 ~R
� �2

:

The one-group flux then becomes

φ5AJ0 2:405r ~R
� �

: (5.19)

The constant A is determined after using from the reactor power given by

P5ERΣf

ð
φ rð ÞdV :

For a cylinder, dV 5 2πrdr and

P5 2πERΣf

ðR
0

φ rð Þrdr5 2πERΣf A

ðR
0

J0
2:405r

R

� �
rdr

which is evaluated using
Ð
J0 x

0� �
x
0
dx

0
5 xJ1 xð Þ to get

P5
2πERΣf R

2AJ1 2:405ð Þ
2:405

5 1:35ERΣf R
2A:

After rearranging the equation for A, the flux is

φ rð Þ5 0:738P

ERΣf R2
J0

2:405r

R

� �
: (5.20)

From Section 3.1, the flux in a critical finite cylindrical reactor of radius R and height H is

φ r; zð Þ5AJ0 2:405r ~R
� �

cos
πz
BH

	 

(5.21)

where normalization gives

A5
3:63P

ERΣf V
:

For a reactor such as the pressurized water reactor (PWR) AP1000 described in Chapter 3, the average value of the

fission cross-section in the core of a reactor can be obtained as

Σf jc 5
Σf jrnrVr

Vc

where Σf jc is the average value of thermal fission cross-section in the core, Σf jr is the average value of thermal fission

cross-section in a fuel rod, nr is the number of fuel rods, Vr is the volume of a fuel rod, and Vc is the core volume

The flux, plotted using the Matlab program listed below, is shown in Fig. 5.3 for a cylindrical reactor; the maximum

power is at the origin of the reactor decreasing axially for a given radius. Physically, the flux signifies the power distri-

bution in the reactor core. Thus, fuel rods at the center of a core are much “hotter” than those at the periphery.

FIGURE 5.3 Flux in a critical finite cylindrical reactor of radius R and height.
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Matlab program for flux in a cylindrical reactor

gid = fopen('out.txt','w');
C:\Users\Administrator\Desktop\Elsevier2020\PROGRAMS\Ch5_FluxPlotCyl.m
R=1.52;H=4.267/2;% half height
[X,Y] = meshgrid(0:0.1:R,0:0.1:H);
Z = besselj(0,2.405*X/R).*cos(pi*Y/H);
figure(1)
set(gca,'FontSize',12)
surf(X,Y,Z)
hold on
xlabel('\bf Radius (m)','fontsize',14)
ylabel('\bf Height (m)','fontsize',14)
ylim([0,H])
%legend('\bf n(E), n_0 kT','\bf n(v), n_0 {(m/(2kT))}^{1/2}')
grid on
fclose(gid)

Exercise 5.1: .

Plot the neutron flux in an assembly with H5 2R5 5ft: and S5 107 neutrons/s, kN 5 0:980; p5 0.83, L2T 5 2:8 cm2,

and Σa 5 0:16/cm.

5.2.2.3 Spherical reactor

In a critical spherical reactor, the flux can be obtained by solving

1

r2
@

@r
r2

@

@r
1B2

� �
φ rð Þ5 0 (5.22)

and applying the boundary condition φ ~R
� �

5 0 and the requirement of finite flux inside the reactor. The critical reactor

flux is

φ rð Þ5A
sinBr

r
(5.23)

where the geometric buckling B5Bg 5π= ~R, since φ ~R
� �

5 0. The constant A, as in the cylindrical case, is determined

from the power of the reactor P:

A5
P

4ERΣf R2
:

Exercise 5.2: .

Using Eq. (5.23), obtain the (1) average flux in the reactor, and (2) the neutron current at the surface of the reactor.

Calculate and plot the quantity 4πr2ϕðrÞ for r=RAð0; 1Þ and describe what it physically represents.

Example 5.2: .

Consider a spherical reactor of radius R5 8.7407 cm operating at a power of 100 W. Find the constant A in the

expression for neutron flux.

Use the data: Σf 5 0:0672cm21; ~R5R1 d; d5 1=3λtr 5 1:0212cm. The recoverable energy from fission ER is

assumed to be 200 MeV. Then

A5
100

2001061:610190:0672

1

4ð8:7407Þ2 5 1:52171011
n

cm2 � s
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and since

Bg 5
π

R1 d

For Bm 5Bg 5B, the flux is

φ rð Þ5 1:52171011
sinBr

r

n

cm2 � s :

Fig. 5.4 shows the flux for two power levels 100 and 200 W; the magnitude is determined by the operating power

while the shape is determined by the “buckling,” or the curvature.

Table 5.2 lists some interesting source conditions, boundary conditions and one-group fluxes for multiplying systems.

5.2.3 One-group criticality

From an elementary consideration that all neutrons have the same energy and are therefore classified as neutrons of one

group, it is possible to estimate the criticality of slab, cylindrical and spherical reactors. These are inaccurate due to the

assumptions made but are nonetheless useful to generate an idea of the size of critical systems.

For criticality, equating the material and geometrical bucklings Bm 5Bg 5B, gives

B2 5
π
R

	 
2
5

kN 2 1

L2

in a spherical system from which

Rc 5 π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

kN 2 1

s

gives an estimate for the critical radius Rc. Rearranging the above into a form used for the leakage probability, the

effective multiplication for a critical system keff 5 1 is

keff 5
kN

11B2L2
5 1: (5.24)

Eq. (5.24) can be used, in an elementary analysis, to calculate the critical composition of a slab, cylinder or sphere.

Example 5.3: .

Given a U235-Na fast spherical reactor with 1% weight fraction U235 and kN 5 1:49, determine the critical radius

and the amount of U235 required.

FIGURE 5.4 Neutron flux in a bare spherical reactor.
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The microscopic transport and absorption cross-sections are σtr;F 5 6:8b;σtr;M 5 3:3b;σa;F 5 1:65b;σa;M 5 0:0008b;
With B5 π= ~R, the critical radius Rc 5 ~R2 d is

Rc 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2L2

kN 2 1

s
2 d5

πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ΣtrΣa kN 2 1ð Þ

p 2
1

3Σtr

:

Step 1: Calculate the atomic densities of fuel NF and moderator NM

From the mass ratio it is possible to find the atomic ratio:

NM

NF

5
ρM
ρf

� AF

AM

5 1011:7

To get another equation for NF and NM calculate the atomic weight of the “mixture” A from the atomic fractions

αU 5 1=1012:7 and αNa 5 1011:7=1012:7

A5αFAF 1αMAM 5
1

1012:7
235:041

1011:7

1012:7
235 23:2094:

Calculate the mixture density ρmix from the given weight fractions

1

ρmix

5
wF

ρF
1

wM

ρM
5

0:01

18:7
1

0:99

0:97
5 1:0212;

ρmix 5 0:9792g � cm23, and calculate the atomic density of the mixture

Nmix 5
ρmixAv

A
5

0:9792 0:6023 1024

23:2094
5 0:0254 1024atomsUcm23:

From this the individual atomic densities can be determined using the atomic fractions

NF 5
1

1012:7
Nmix 5 2:50811019atoms � cm23

NM 5
1011:7

1012:7
Nmix 5 2:54001022atoms � cm23

TABLE 5.2 Exact solutions: 1-group diffusion multiplying media.

Medium Source Boundary conditions Flux

Slab

Infinite critical slab reactor of thickness a;
and d{a

Bare critical
reactor

φ a1 dð Þ5φ 2 a2dð Þ50
dφ
dx 5 0 at x5 0

φ xð Þ5 πP
2aERΣf

cos πxa

Bare cubical reactor of sides a Bare critical
reactor

φ a1 dð Þ5φ 2 a2dð Þ50
~a � a1 d
dφ
dx 5 0 at x5 y5 z5 0

φT x; y ; z
� �

5Acos πx~a cos πy~a cos πz~a

Cylinder

Finite cylinder Bare critical
reactor

φ ~R ; z
� �

5 0
φ r ; ~H
� �

5 0
φ r ; zð Þ5AJ0

2:405r
~R

	 

cos πz

~H

	 


Infinite cylinder Bare critical
reactor

Finite flux φ rð Þ and
φ ~R
� �

5 0
φ rð Þ5 0:738P

ERΣf R2 J0
2:405r

R

� �

Sphere

Bare spherical reactor of radius R Bare critical
reactor

Finite flux φ rð Þ and
ϕ ~R
� �

50

φ rð Þ5 P
4ERΣf R

2sinπr= ~R

r

P is the reactor power, ER is the energy recoverable from fission (B200 MeV).
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Step 2: Calculate the macroscopic cross-sections Σtr;Σa

Σtr 5NFσtr;F 1NMσtr;M 5 2:508110256:8
� �

1 2:5410223:3
� �

5 0:0840cm21

and the extrapolation distance is d5 0:71λtr 5 0:71= 0:0840ð Þ5 8:3333cm ; the fuel and moderator macroscopic

absorption cross-sections are:

Σa;F 5NFσa;F 5 2:508110251:65
� �

5 4:13841025 cm21

Σa;M 5NMσa;M 5 2:540010220:0008
� �

5 2:0321025 cm21

from which the mixture absorption cross-section is

Σa 5NFσa;F 1NMσa;M 5 6:17041025 cm21:

Thus

L2 5
1

3ΣtrΣa

5
1

3ð0:0840Þð6:17041025Þ 5 0:64313 105 cm2

and

Rc 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2L2

kN 2 1

s
2 d5

253:5942πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:492 1ð Þ

p 2 8:33335 1130 cm:

The volume of this spherical reactor is 6044 m3. With the mixture density calculated above, this has a weight of

about 6000 tons, of which about 60 tons is U235 and the rest, B5940 tons, is Na.

5.3 The two-group diffusion equation

5.3.1 Nonmultiplying systems

The two-group NDE for the energy-averaged “fast” and “thermal” flux φ1ðrÞ and φ2ðrÞ are

D1ðrÞr2φ1ðrÞ2Σ1ðrÞφ1ðrÞ5 0 (5.25)

D2 rð Þr2φ2 rð Þ2Σ2 rð Þφ2 rð Þ1Σ1 rð Þφ1 rð Þ5 0: (5.26)

For uniform material distribution, that is, constant macroscopic cross-sections, exact solutions can be obtained, from

the above, in both finite and infinite media.

These are illustrated by writing a conservation equation and then going through a detailed derivation of the solution

using complimentary and particular solutions for the above coupled second-order system.

To obtain the two-group fluxes in a nonmultiplying system, we begin with the elementary conservation of neutrons

depicted in Fig. 5.5. In this simple illustration, there is a source of group-1 neutrons at the center of the sphere giving

rise to a group-1 neutron flux, as well providing the slowing-down “source” of neutrons into group-2 in the form of

FIGURE 5.5 Conservation of neutrons in a two-group model.
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slowed-down neutrons Σ1Φ1V and neutrons crossing into the volume element J2
xA1. The “loss” terms of group-2 neu-

trons are the boundary crossings J2
x1Δx A1 and the absorptions Σ2Φ2V.

For group-1 neutrons,

ðD1r2�Σ1ÞΦ1 xð Þ5 0 (5.27)

with the boundary conditions

S5 4πr2
dΦ1

dr

� �
r-0

;Φ1 R1 d1ð Þ5 0

The balance equations for group-2 neutrons is

J2
xA1 1Σ1Φ1V5Σ2Φ2V1 J2

x1Δx A1

which, expanded into a first-order Taylor series

J2
xA1 1Σ1Φ1V5Σ2Φ2V1 ½J2x 1

d

dx
J2

xΔx�A1

simplifies to

d

dx
J2

xV 5Σ1Φ1V2Σ2Φ2V:

Using Fick’s law, this becomes

d

dx
2D2

d

dx
Φ2

� �
V5Σ1Φ1V2Σ2Φ2V

Expressed, for constant diffusion coefficient, in the form

D2

d2

dx2
Φ2 2Σ2Φ2 1Σ1Φ1 5 0 (5.28)

or in operator form

D2r2Φ2 2Σ2Φ2 1 S2 5 0:

The boundary conditions are

2D24πr2Φ2
0 j0 5 0;Φ2 Ṝ2ð Þ5 0

In a spherical coordinate system, with angular symmetry

r2 5
1

r2
@

@r
r2D

@

@r
5

2

r
Φ

0
1Φ

0 0

With the substitution w5 rΦ, w
0
5 rΦ

0
1Φ; and w

0 0
5 rΦ

0 0
1Φ

0� �
1Φ0

w
0 0
5 r Φ

0 0
1

2

r
Φ

0
� �

so that the group-1 equation

r2Φ1 rð Þ2 1

τ
Φ1 rð Þ5 0;

where τ5D1=Σ1; becomes

w
0 0
2

1

τ
w5 0

with the solution

w rð Þ5A1e
rffiffi
τ

p
1A2e

2 rffiffi
τ

p
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giving the group-1 flux

Φ1 rð Þ5 A1

r
e

rffiffi
τ

p
1

A2

r
e
2 rffiffi

τ
p
:

With the identities

coshx5
1

2
ex 1 e2xð Þ; coshx1 sinhx5 ex

sinhx5
1

2
ex 2 e2xð Þ; coshx2 sinhx52 ex

we can write

Φ1 rð Þ5 A1

r
cosh

rffiffiffi
τ

p 1 sinh
rffiffiffi
τ

p
� �

1
A2

r
cosh

rffiffiffi
τ

p 2 sinh
rffiffiffi
τ

p
� �

;

Φ1 rð Þ5 A1 1A2ð Þ
cosh rffiffi

τ
p

r
1 A1 2A2ð Þ

sinh rffiffi
τ

p

r
;

or

Φ1 rð Þ5B1

cosh rffiffi
τ

p

r
1B2

sinh rffiffi
τ

p

r

For the group-2 flux,

D2 rð Þr2Φ2 rð Þ2Σ2Φ2 rð Þ52Σ1Φ1 rð Þ;
We seek complimentary and particular solutions

Φ2 rð Þ5Φ2
c rð Þ1Φ2

p rð Þ:
For the complimentary solution,

D2 rð Þr2Φ2 rð Þ2Σ2Φ2 rð Þ5 0

gives

Φ2
e rð Þ5B3

cosh r
L

r
1B4

sinh r
L

r
:

For the particular solution,

r2Φ2 rð Þ2 1

L2
Φ2 rð Þ5 2Σ1Φ1 rð Þ

D2

;

and in operator form

Φ2
p rð Þ52

1

D̂
2
2 1

L2

Σ1

D2

Φ1 rð Þ

5
L

2

1

D̂2 1
L

2
1

D̂1 1
L

 !
2Σ1ðrÞ
D2ðrÞ

Φ1 rð Þ

52
L2

2
ð12LD̂Þ21 1 ð11LD̂Þ21
� � 2Σ1ðrÞ

D2ðrÞ
Φ1 rð Þ

52
L2

2
11LD̂2 L2D2 1 . . . 1 12LD1 L2D2 1 . . .
� � 2Σ1ðrÞ

D2ðrÞ
Φ1 rð Þ

Φ2
p rð Þ52 L2 11 L2D̂

2
1 L4D̂

4
1 : . . . :

h i2Σ1ðrÞ
D2ðrÞ

Φ1 rð Þ
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For constant cross-sections, the infinite series

Φ2
p rð Þ52 L2 11

L2

τ
1

L2

τ

� �2

1 . . .

" #
L1

D2

Φ1 rð Þ;

is written in compact form, for L2{τ,

Φ2
p rð Þ5 L2 12

L2

τ

� �21
L1

D2

Φ1 rð Þ:

Simplifying further,

Φ2
p rð Þ5

Σ1

Σ2

12 L2

τ

Φ1 rð Þ:

Thus

Φ2 rð Þ5B3

coshr=L

r
1B4

sinhr=L

r
1

P
1P

2

12 L2

τ

Φ1 rð Þ:

We now apply the boundary conditions to get the four coefficients B1;B2;B3;B4:
The current boundary condition gives

dΦ1

dr
5B1

rffiffi
τ

p sinh rffiffi
τ

p 2 cosh rffiffi
τ

p

r2
1B2

rffiffi
τ

p cosh rffiffi
τ

p 2 sinh rffiffi
τ

p

r2
;

4πr2
dΦ1

dr

� �
r-0

5 B14πð Þ 2 1ð Þ1 4πB2 0ð Þ½ � 2D1ð Þ;

S52B1 4πð Þ 2D1ð Þ;
so that

B1 5
S

ð4πÞ D1ð Þ :

Equating the group-1 flux at the extrapolated boundary condition to zero, Φ1 R1 d1ð Þ5 0; gives

B1 cosh
R1 d1ffiffiffi

τ
p 1B2 sinh

R1 d1ffiffiffi
τ

p 5 0

B2 52
cosh R1 d1ffiffi

τ
p

sinh R1 d1ffiffi
τ

p
B1:

Simplifying,

Φ1 rð Þ5B1

cosh rffiffi
τ

p

r
2

cosh R1 d1ffiffi
τ

p

sinh R1 d1ffiffi
τ

p

sinh rffiffi
τ

p

r

" #
;

gives

Φ1 rð Þ5 B1

r

cosh rffiffi
τ

p sinh R1 d1ffiffi
τ

p 2 sinh rffiffi
τ

p cosh R1 d1ffiffi
τ

p

sinh R1 d1ffiffi
τ

p

" #
;

which, upon using the identities,

cosh A6Bð Þ5 cosh A cosh B6 sinh A sinh B

sinh A6Bð Þ5 sinh A cosh B6 cosh A sinh B

224 Nuclear Engineering



‘cosh
rffiffiffi
τ

p sinh
R1 d1ffiffiffi

τ
p 2 cosh

R1 d1ffiffiffi
τ

p sinh
rffiffiffi
τ

p 5 sinh
Ṝ2 rffiffiffi

τ
p

Similarly, applying the boundary condition to the group-2 flux,

Φ1 rð Þ5α

sinh
R1 2 rffiffiffi

τ
p

r

Φ2 rð Þ5 β

sinh
R2 2 rffiffiffi

τ
p

r
1 γΦ1 rð Þ

(5.29)

where

α5
S

4πD1

1

sinhṜ1=
ffiffiffi
τ

p

β5
S

4πD2

1

sinhṜ2=L
L2

τ2 L2

γ5
Σ1

Σ2

τ
τ2 L2

8>>>>>>>><
>>>>>>>>:

n a finite medium, the boundary conditions, for the “fast” group: limr-0 4πr2J1 rð Þ5 S, and φ1
~R
� �

5 0 yield

φ1 rð Þ5 S

4πD1r

sinh ~R2 r
� �

=
ffiffiffiffiffi
τT

p

sinh ~R
=
ffiffiffiffiffi
τT

p
: (5.30)

For the “thermal” group, there is no “direct” source so that the boundary conditions: 4πr2J2ðrÞjr50 5 0, and

φ2
~R
� �

5 0 yield the solution

φ2 rð Þ5 S

4πD2r

L2

τ2 L2
sinh ~R2 r

� �
=L

sinh ~R
=L1

Σ1

Σ2

τ
τ2 L2

φ1 rð Þ: (5.31)

For an infinite medium, it can readily be shown that the fluxes are

φN
1 rð Þ5

S exp 2 rffiffiffiffi
τT

p
	 


4πD1r
(5.32)

and

φN
2 rð Þ5 SL22

4πrD2 L22 2 τT
� � e2r=L2 2 e2r=

ffiffiffiffi
τT

p	 

: (5.33)

5.3.1.1 Computer programming example

Eqs. (3.26) and (3.27) for a slab of thickness, with an incident fast neutron source S=2 neutrons/cm3/s on the left, are

written as

D1

d2φ1

dx2
2Σr1φ1 5 0

D2

d2φ2

dx2
2Σr2φ2 1Σr1φ1 5 0
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with boundary conditions

D1

dφ1

dx
jx50 5 S=2

φ1 x5 Tð Þ5φ2 x5 0ð Þ5φ1 x5 Tð Þ5 0

and the following data:

D1 5 1:1302 cm Σr1 5 0:0418 cm21 S5 1 cm-3s21

D2 5 0:1107 cm Σr2 5 0:0167 cm21

These yield the exact solutions:

φ1 xð Þ5A1e
x=
ffiffi
τ

p
1A2e

2x=
ffiffi
τ

p

and

φ2 xð Þ5A3e
x=L 1A4e

2x=L 1βφ1 xð Þ
where

τ5
D1

Σr1

;L2 5
D2

Σr2

; β5
Σr1

Σr2

τ
τ2 L2

and τ5 27:0080 cm2; L2 5 6:6128 cm2;β5 3:3100:
The constants found from the boundary conditions are: A5 2 0:0010; 2:2981; 0; 2 7:6034½ �.
Fluxes are evaluated with the Matlab program listed below:

den=1.0;MolWt=18;AvNo=0.6022e24;
No=den*AvNo/MolWt; %number density of water
sigr1=1.2508e-24; sigtr1=8.8158e-24; D1=1/(3*No*sigtr1);
sigr2=0.5004e-24; sigtr2=90.000e-24; D2=1/(3*No*sigtr2);
S=1;
Sigr1=No*sigr1;Sigr2=No*sigr2;tau=D1/Sigr1;Lsq=D2/Sigr2;L2=sqrt(Lsq);
beta=(Sigr1/Sigr2)*(tau/(tau-Lsq))
L=20; % slab thickness (cm)
AA=[ 1 -1 0 0;

exp(L/sqrt(tau)) exp(-L/sqrt(tau)) 0 0;
beta beta 1 1;
beta*exp(L/sqrt(tau)) beta*exp(-L/sqrt(tau)) exp(L/L2) exp(-L/L2)]

B= [-S*sqrt(tau)/(2*D1);0;0;0]
A= inv(AA) * B
flux1=@(x) A(1)*exp(x/sqrt(tau))+A(2)*exp(-x/sqrt(tau));
flux2=@(x) A(3)*exp(x/L2)+A(4)*exp(-x/L2)+ 
beta*(A(1)*exp(x/sqrt(tau))+A(2)*exp(-x/sqrt(tau)));
x=0:0.1:20;
FF1=feval(flux1,x); % group 1 flux
FF2=feval(flux2,x); % group 2 flux
figure(1)
plot(x,FF1,'k-','LineWidth',2);
hold on
plot(x,FF2,'k--','LineWidth',2)
grid on
xlabel('\bf x (cm)','fontSize',14)
ylabel('\bf Flux (n cm^{-2} s^{-1})','fontSize',14)
legend('\phi_1','\phi_2','Location','best','fontSize',12)

The resulting fluxes φ1;2 xð Þ are shown in Fig. 5.6. As expected, the fast flux φ1 xð Þ gradually decreases as neutrons

undergo collisions in the host medium giving rising to the thermal flux φ2 xð Þ which subsequently rises and decays. Both
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fluxes fall to zero at the physical (rather than the extrapolated) boundary as required by the specified boundary

conditions.

Exercise 5.3: .

Estimate the time a person can stand a distance R from a Cf-252 point source of given strength S n/s shielded by

water. The maximum permissible dose is 5 rem/y (B100 mrem/week). Use the infinite medium solutions Eqs. (5.32)

and (5.33) and the flux-to-dose conversion factors (Fig. 2.13); justify any other assumptions you make.

5.3.1.2 Temperature effects on neutron flux

As discussed in Chapter 2, thermal properties of materials, such as diffusion coefficient and diffusion length, are

temperature-dependent and corrections must be made to account for this dependence. For the thermal data given in

Table 5.3, the corrections are made with the expressions

D ρ;Tð Þ5D ρ0; T0
� � ρ0

ρ

� �
T

T0

� �m

to evaluate the properties at any desired temperature.

Similarly, the diffusion length is evaluated as L2T ρ; Tð Þ5 L2T ρ0; T0
� � ρ0

ρ

	 
2
T
T0

	 
m11=2
with m5 0:470 for H2O and

m5 0:112 for D2O and zero otherwise.

5.3.2 Multiplying systems

In general, multiplying systems are designed in a way that neutron losses are minimized; this leads to efficient designs.

Thus bare assemblies are surrounded by some scattering material, like water or beryllium, from which some of the leak-

ing neutrons are reflected back into the core.

In such a core-reflector system, the two-group equations for the core are

D1cr2φ1c 2Σ1cφ1c 1 ηΣ2cφ2c 5 0 (5.34)

and

D2cr2φ2c 2Σ2cφ2c 1Σ1cφ1c 5 0: (5.35)

FIGURE 5.6 Two-group fluxes in a slab.
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In the reflector, the equations are

D1rr2φ1r 2Σ1rφ1r 5 0 (5.36)

and

D2rr2φ2r 2Σ2rφ2r 1Σ1rφ1r 5 0 (5.37)

where the subscripts c; r refer to core and reflector, respectively. The boundary conditions are continuity of flux and

current at the interface

φ1c 5φ1r (5.38)

φ2c 5φ2r (5.39)

D1cφ
0
1c 5D1rφ

0
1r (5.40)

D2cφ
0
2c 5D2rφ

0
2r (5.41)

and at the boundaries, for a spherical system,

2D1cφ
0
1cjr50 52D2cφ

0
2cjr50 5 0 (5.42)

and

φ1c
~R
� �

5φ2c
~R
� �

5 0: (5.43)

We follow the solution procedure given in Lamarsh (1966), where two coupled second-order ODEs are converted

into one fourth-order ODE.

From Eq. (5.34), φ2c can be obtained in terms of φ1c to get a fourth-order ODE for φ1c

r2 1μ2
� � r2 2λ2

� �
φ1c 5 0 (5.44)

with

μ2 5
1

2τ1L2
2 τ1 1 L2
� �

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ11L2Þ2 1 4ðkN 2 1Þτ1L2

q� �
(5.45)

and

λ2 5
1

2τ1L2
τ1 1 L2
� �

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ11L2ð Þ2 1 4 kN 2 1ð Þτ1L2

q� �
: (5.46)

For a uniformly distributed fuel, the coefficients in the above equations are constant and solutions are obtained by

expressing the core equations as two 4th-order ODEs to yield the flux

φ1c 5AX1CY (5.47)

TABLE 5.3 Thermal data (at 20�C) for diffusion theory neutron flux: infinite medium.

Moderator Density D Σa LT

g=cm3 cm cm cm

H2O 1.00 0.16 0.0197 2.85

D2O
a 1.10 0.87 9.3 3 1025 97

Be 1.85 0.50 1.04 3 1023 21

Graphite 1.60 0.84 2.4 X 1024 59

aD2O containing 0.25 weight/percent H2O.
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φ2c 5AS1X1CS2Y (5.48)

φ1r 5 FZ1 (5.49)

φ2r 5 S3φ1r 1GZ2 (5.50)

where the “coupling coefficients” S1; S2; S3 are

S1 5
Σ1c

Σ2c

1

11μ2L2c
; (5.51)

S2 5
Σ1c

Σ2c

1

12λ2L2c
; (5.52)

and

S3 5
D1r

Σ2r

1

τT 2 L2r
: (5.53)

The core and reflector functions X; Y for slab, cylinder and spherical geometries are given in Table 5.4 for the core

and in Table 5.5 for the reflector.

After applying the interface conditions, the resulting equations are four linear homogenous equations, for which the

only nontrivial solution, by Cramer’s Rule, will be found when the determinant vanishes, that is,

X Y

D1cX
0

D1cY
0

2 Z1 0

2D1rZ
0
1 0

S1X S2Y

D2cS1X
0

D2cS2Y
0

2 S3Z1 2 Z2
D2rS3Z

0
1 2D2rZ

0
2


5 0: (5.54)

Eq. (5.54) is called the two-group critical determinant. When the material properties are given, the critical dimension

can thus be determined; conversely, when the dimension is given, the material properties (such as enrichment) can be

determined. Consider a U235-H2O dilute homogenous solution with fuel-water ratio 1:500 and two-group data as given

below (Table 5.6).

TABLE 5.4 Two-group core functions.

Geometry X Y

Infinite slab cosμx coshλx

Infinite cylinder J0ðμrÞ I0ðλrÞ
Sphere sinμr

r
sinhλr

r

TABLE 5.5 Two-group reflector functions.

Geometry Z

Reflector thickness b Reflector thickness infinite

Infinite slab sinhκ a
2 1 b2 jxj� �

e2κjxj

Infinite cylinder I0 κrð ÞK0 κ R1bð Þ½ �2 I0 κðR1 bÞ½ �K0ðκr



K0ðκrÞ

Sphere sinhκðR1b2 rÞ
r

e2κr

r
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For uniform fissile distribution, that is, constant values for D and Σ, the fluxes obtained in the core and reflector for

the data in are

φ1c rð Þ5A
sin0:113r

r
2 4:671028 sinh0:651r

r

� �
(5.55)

φ2c rð Þ5 0:676A
sin0:113r

r
1 3:641027 sinh0:651r

r

� �
(5.56)

and

φ1r 5 39:6A
e20:192r

r
(5.57)

φ2r 5 120A
e20:192r

r
2 21:0

e20:351r

r

� �
(5.58)

The core and reflector fluxes are shown in Fig. 5.7. The group-1 fast flux decreases steadily from the core into the

reflector while the group-2 thermal flux also decreases within the core but has a hump at the core-reflector interface

due to the reflection of slowed-down neutrons from the reflector.

For a uniform fissile distribution, with the flux shown in Fig. 5.8, the critical radius and mass obtained from diffu-

sion theory are 21.9 cm and 1.15 kg U235, respectively.

5.3.3 Two-group criticality

The two-group critical determinant results in a transcendental equation from which the critical radius R is determined.

This is written in the form

ζX 5
α1ζYζZ2 1α2ζYζZ1 1α3ζZ1ζZ2

α4ζY 1α5ζZ1 1α6ζZ2
(5.59)

where

ζX � X
0

X
52 μ

1

μR
2 cotμR

� �

ζY � Y
0

Y
5λ cothλR2

1

λR

� �

ζZ � Z
0

Z
52κ

1

κR
1 cothκb

� �

and

α1 5D1cD2r S3 2 S1ð Þ;α2 5D1rD2cS2 2D1cD2rS3;α3 5D1rD2r S1 2 S2ð Þ
α4 5D1cD2c S2 2 S1ð Þ;α55ðD1rD2cS1 2D1cD2rS3Þ;α6 5D1cD2r S3 2 S2ð Þ:

TABLE 5.6 Two-group data for homogeneous spherical reactor.

Data Group 1 Group 2

D (cm) 1.13 0.16

Σc (cm) 0.0419 0.060

σaW (10224 cm2) � 0.664

σa2;5 (10224 cm2) � 678
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The roots μR5 2:472;R5 21:91 cm and μR5 5:61;R5 49:72 cm are determined from the Matlab program listed

below and shown in Fig. 5.8. The critical radius is thus established to be 21.91 cm, in agreement with Lamarsh.

The Matlab program uses the function

ζZ � Z
0

Z
52 κ

1

κR
1 1

� �

for an infinite reflector.

% Lamarsh Spherical Reflected Critical Reactor
% LamarshSphereCriticalityBookReactor.m
fid=fopen('Out.txt','w');
Nav=0.6023;denW=1.0;MolWt=18.02;AtDenW=denW*Nav/MolWt;
AtDen235=(1/500)*AtDenW;
fprintf(fid,'\n AtDen235=%12.4e  AtDenW=%12.4e',AtDen235,AtDenW)
MuFunc     = @(a,b) 0.5* ( -a + sqrt(a^2 + 4*b));
LambdaFunc = @(a,b) 0.5* (  a + sqrt(a^2 + 4*b));

% data
sigaW=0.664; sigaTh5=678; Sig1c=0.0419;Sig1r=0.0419; 
Tauc=27; Taur=27;D1c=1.13; D2c=0.16;D1r=1.13; D2r=0.16;
p=1.0;
Sig2c=0.886*(AtDen235*sigaTh5+AtDenW*sigaW);
Sig2r=0.886*AtDenW*sigaW;
LsqC=D2c/Sig2c;eta=2.07;
LsqR=D2r/Sig2r; K1r=1/sqrt(Taur);K2r=1/sqrt(LsqR);
f=AtDen235*sigaTh5/(AtDen235*sigaTh5+AtDenW*sigaW);
kinf=eta*f;
a=LsqC+Tauc;b=(kinf-1)*Tauc*LsqC;
Mu2    =(1.0/(LsqC*Tauc))*MuFunc(a,b); Mu= sqrt(Mu2);
Lambda2=(1.0/(LsqC*Tauc))*LambdaFunc(a,b); Lambda  = sqrt(Lambda2);
S(1)=(p*Sig1c/Sig2c)/(1+Mu2*LsqC);S(2)=(p*Sig1c/Sig2c)/(1-Lambda2*LsqC);
S(3)=(D1r/Sig2r)/(Taur-LsqR);
Rhs1=D1c*D2r*(S(3)-S(1));
Rhs2=D1r*D2c*S(2)-D1c*D2r*S(3);
Rhs3=D1r*D2r*(S(1)-S(2));
Rhs4=D1c*D2c*(S(2)-S(1));
Rhs5=D1r*D2c*S(1)-D1c*D2r*S(3);
Rhs6=D1c*D2r*(S(3)-S(2));
fprintf(fid,'\n sigaW= %8.5f b  Tauc=%8.4f cm^2  sigaTh5=%8.4f b  
Sig1c=%8.4f D1c=%8.4f cm  D2c=%8.4f cm ',sigaW,Tauc,sigaTh5,Sig1c,D1c,D2c)
fprintf(fid,'\n                 Taur=%8.4f cm^2                   
Sig1r=%8.4f D1r=%8.4f cm  D2r=%8.4f cm ',Taur,Sig1r,D1r,D2r)
fprintf(fid,'\n Rhs1=%8.4f  Rhs2=%8.4f Rhs3=%8.4f',Rhs1,Rhs2,Rhs3)
fprintf(fid,'\n Rhs4=%8.4f  Rhs5=%8.4f Rhs6=%8.4f\n',Rhs4,Rhs5,Rhs6)
fprintf(fid,'\n Sig2c= %8.4f cm^-1   Sig2r=%8.4f cm^-1   LsqC= %8.4f cm^2   
LsqR=%8.4f   K1r=%8.4f cm^-1   K2r=%8.4f  cm^-1   
',Sig2c,Sig2r,LsqC,LsqR,K1r,K2r)
fprintf(fid,'\n f= %8.4f   kinf= %8.4f Mu= %12.4e  Lambda= %12.4e 
',f,kinf,Mu,Lambda)
fprintf(fid,'\n p= %8.4f ',p)
fprintf(fid,'\n S(1)= %12.4e  S(2)=%12.4e   S(3)=%12.4e ',S(1),S(2),S(3))
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%b=22.5; % ref thickness
fprintf(fid,'\n Reflector thickness = %8.4f cm',b)
fprintf (fid,'\n\n        i     MuR         -R*LHS        -R*RHS          
Diff ')
Rmin=0;Rmax=60;Nsteps=1000;del=(Rmax-Rmin)/Nsteps;
R=Rmin;RCrit=1e10;MinDif=1e10;
for i=1:Nsteps 
R=R+del;
XprimeOverX= Mu*(cot(Mu*R)-1/(Mu*R));
YprimeOverY= Lambda*(coth(Lambda*R)-1/(Lambda*R));
% for a finite reflector
%Z1primeOverZ1= -K1r*coth(K1r*b);
%Z2primeOverZ2= -K2r*coth(K2r*b);
% for an infinite reflector
Z1primeOverZ1= -K1r*(1+1/(K1r*R));
Z2primeOverZ2= -K2r*(1+1/(K2r*R));
%
LHS=XprimeOverX;
r1=Rhs1*YprimeOverY*Z2primeOverZ2;
r2=Rhs2*YprimeOverY*Z1primeOverZ1;
r3=Rhs3*Z1primeOverZ1*Z2primeOverZ2;
RHSNum=r1 + r2 + r3;
r4=Rhs4*YprimeOverY;
r5=Rhs5*Z1primeOverZ1;
r6=Rhs6*Z2primeOverZ2;
RHSDen=r4+r5 + r6 ;
RHS=RHSNum/RHSDen;

X(i)=Mu*R;
Y(i)=-R*LHS;
Z(i)=-R*RHS;
Difference=Z(i)-Y(i);
Diff(i)=Difference;
if (abs(Difference)<MinDif)

MinDif=abs(Difference);
RCrit=R; %this is the critical radius found

end
%fprintf(fid,'\n  %6.0f  %8.4f  %12.4e  %12.4e  
%12.4e',i,R,LHS,RHS,Diff(i))
fprintf(fid,'\n  %6.0f  %8.4f  %12.4e  %12.4e  
%12.4e',i,X(i),Y(i),Z(i),Diff(i))
end
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figure(1)
set(gca,'FontSize',14)
plot(X,Y,'k-','LineWidth',2)
hold on
plot(X,Z,'k-','LineWidth',2)
xlabel('\bf \mu R','fontSize',14)
ylabel('\bf ','fontSize',14);
text(4,8,'\bf LHS')
text(2.0,12.5,'\bf RHS')
text(5.0,12.5,'\bf RHS')
XL1=[2.472 2.472];YL1=[-20 4.12];
line(XL1,YL1,'LineWidth',0.5,'Color','k','LineStyle','--')
XL2=[5.61 5.61];YL2=[-20 8.08];
line(XL2,YL2,'LineWidth',0.5,'Color','k','LineStyle','--')
grid off
xlim([0 6.2])
ylim([-20 20])

Partial Output

AtDen235=  6.6848e-05  AtDenW=  3.3424e-02
sigaW= 0.66400 b Tauc= 27.0000 cm^2 sigaTh5=678.0000 b Sig1c= 0.0419 
D1c=  1.1300 cm  D2c=  0.1600 cm 
Taur= 27.0000 cm^2  Sig1r=  0.0419 D1r=  1.1300 cm  D2r= 0.1600 cm 
Rhs1=  0.4283  Rhs2= -1.5021 Rhs3= 1.0738Rhs4= -1.0738 Rhs5= -0.4283 
Rhs6=  1.5021

Sig2c=0.0598 cm^-1  Sig2r=0.0197 cm^-1  LsqC=2.6747 cm^2 LsqR=8.1369   
K1r=  0.1925 cm^-1   K2r=  0.3506  cm^-1   
f=0.6713   kinf=1.3896 Mu=1.1284e-01  Lambda=6.5088e-01 p=  1.0000 
S(1)=   6.7737e-01  S(2)= -5.2617e+00   S(3)=  3.0465e+00

FIGURE 5.7 Two-group fluxes in a spherical reactor.
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The two-group expression for the system multiplication keff with nonleakage probabilities is an extension of the

one-group expression; here the fast and thermal probabilities are both incorporated, based on Fermi’s slowing-down

equation where the neutron age τT , with units of cm2 is introduced as the area “traveled” by a neutron as it slows down

from source energy to thermal energy. Thus

keff 5
kNe2B2τT

11B2L2T
5 1: (5.60)

In order to find the critical radius, we can set x � B2τT , and solve the transcendental equation

kNe2x 5 11
L2T
τT

� �
x (5.61)

to find x, and hence B from which the critical radius R is found.

Eq. (5.61), from Eq. (1.27), compares with

keff 5 kNð12PFÞð12PT Þ
where 12PF and 12PT were defined to be the fast and thermal nonleakage probabilities, from the finite system,

respectively. Thus

PF 5 e2B2τTD
1

11B2τT

where the approximation holds for large reactors for which B2τT , 1, and

PT 5
1

11B2L2T

An alternate expression for large reactors, called the modified one-group critical equation, is

15
kN

11B2M2
T

(5.62)

where M2
T 5 L2T 1 τT is called the thermal migration area.

We now have three expressions to compute critical compositions from one-group theory Eq. (5.24), two-group the-

ory Eq. (5.60) and a modified one-group theory Eq. (5.62).

5.4 The multigroup diffusion equation

When a two-group formulation is inadequate to represent a system, such as for the case of modeling fast, epithermal

and thermal regions, or a larger number of groups, a multigroup formulation is used.

FIGURE 5.8 Transcendental equation for two-group criticality in a reflected

spherical reactor.
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Neutron energy during transport may vary from a few MeV down to a fraction of an electron-volt (thermal

energy ETBkTB0:025 eV). This indeed is a broad range spanning over six orders of magnitude. It is thus conve-

nient to divide the entire range into a finite number of groups within which neutronic properties are averaged and

the neutron “group” equations are written from which group flux are subsequently obtained. While two-group cal-

culations are extensively used for preliminary computations, elaborate MC simulations can be carried out for as

many as 262 groups. Clearly, the more the number of groups, the better the results as fine details, such as cross-

sections in the resonance region, may be represented. For the critical radius and corresponding mass, a detailed

Monte Carlo simulation, with the Monte Carlo N-Particle (MCNP) code, for the 1:500 U235-H2O homogeneous

solution described in the previous section gives a radius of 22.5 cm and mass of 1.2477 kg U235respectively. Thus,

the two-group results can be seen to be fairly accurate.

As an example, in a 6-group diffusion formulation to compute the neutron flux and critical radius of a bare sphere

of Pu239 the group-constants data are given in Table 5.7 (Lamarsh, 1966).

For realistic neutronic analysis, a large number of groups is generally used for which data cross-section libraries are

“generated” using group flux φi and associated reaction rates , σxφ. (where the inner product ,. . .. implies inte-

gration over the energy group of interest), and setting the group cross-section, for group i, as σðiÞ
x 5,σxφ. / φi. The

existing methodology for obtaining multigroup cross-sections is based on reading ENDF pointwise cross-section data,

by processing codes such as NJOY (LANL) and MC2 -3 (ANL) to produce binned cross-sections for use in multigroup

deterministic codes. This is achieved by the group flux-weighting mentioned above and accounting for resonances and

self-shielding.

5.4.1 Numerical solution of the multigroup diffusion equations

In case of nonuniform material loading, the flux can be obtained by a numerical solution of the diffusion equations. A

first step for a numerical procedure is the FDM for which a general iterative form for the multigroup diffusion equa-

tions, for φg,

2r � Dg rð Þrφ ið Þ
g rð Þ1Σr;g rð Þφ ið Þ

g

	
rÞ2

X
i
0 6¼i

Σs;g0-gφ
ið Þ
g
0 ðrÞ5 Sði21Þ

g ðrÞ (5.63)

where, Dg rð Þ5 diffusion coefficient for energy group g at spatial position r, φðiÞ
g 5 “scalar” flux for energy group g at

spatial position r at the ith iteration, Σr;g rð Þ5 removal cross-section for energy group g at spatial position r at the ith

iteration, Σs;g0-g 5 ’in-scattering’ cross-section for energy group g from groups at the ith at spatial position r,

S i21ð Þ
g ðrÞ5 source for energy group g at spatial position r at the (i2 1) iteration.

The source term consists of a fission contribution and the contribution from an independent source S0ðrÞ
S i21ð Þ
g rð Þ5χg

X
g
0
νΣf ;g0 rð Þφ i21ð Þ

g rð Þ1 S0 rð Þ: (5.64)

TABLE 5.7 Multigroup cross-sections for Pu239.

g E MeV ν χ σtr (b) σf (b) σr (b) σðg-hÞ
h5 2 3 4 5 6

1 3.0�N 3.48 0.204 4.25 1.90 0.03 0.20 0.27 0.45 0.31 0.04

2 1.4�3.0 3.09 0.344 4.50 1.95 0.05 � 0.18 0.50 0.35 0.05

3 0.9�1.4 2.99 0.168 4.80 1.83 0.07 � � 0.45 0.30 0.06

4 0.4�0.9 2.93 0.180 5.70 1.70 0.11 � � � 0.29 0.05

5 0.1�0.4 2.88 0.090 8.40 1.67 0.17 � � � � 0.05

6 0.0�0.1 2.86 0.014 12.0 2.05 0.50 � � � � �

Source: From Lamarsh J. R., Introduction to Nuclear Reactor Theory. Addison-Wesley Publishing Company, 1966, p. 368; ANL-5800.
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In this iterative procedure, the first iteration gives φð0Þ
g from the source distribution S0ðrÞ, that is, by solving the equation

2r � Dg rð Þrφð0Þ
g rð Þ1Σr;g rð Þφ 0ð Þ

g ðrÞ2
X
i
0 6¼i

Σs;g0-gφ
0ð Þ
g
0 rð Þ5 S0 rð Þ: (5.65)

With this initial distribution the iterations for i5 1; 2; 3;?;N are carried out from the fission source

2r � Dg rð Þrφ ið Þ
g rð Þ1Σr;g rð Þφ ið Þ

g rð Þ2
X
i
0 6¼i

Σs;g0-gφ
ið Þ
g
0 ðrÞ5χg

X
g
0
νΣf ;g0 rð Þφ i21ð Þ

g
0 rð Þ

Thus for i5 1

2r � Dg rð Þrφ 1ð Þ
g rð Þ1Σr;g rð Þφ 1ð Þ

g rð Þ2
X
i
0 6¼i

Σs;g0-gφ
1ð Þ
g
0 ðrÞ5χg

X
g
0
νΣf ;g0 rð Þφ 0ð Þ

g
0 rð Þ

and for i5 2

2r � Dg rð Þrφ 2ð Þ
g rð Þ1Σr;g rð Þφ 2ð Þ

g rð Þ2
X
i
0 6¼i

Σs;g0-gφ
2ð Þ
g
0 ðrÞ5χg

X
g
0
νΣf ;g0 rð Þφ 1ð Þ

g
0 rð Þ

and so on. The group flux φgðrÞ is then

φg rð Þ5
XN
i50

φ ið Þ
g ðrÞ; (5.66)

which converges, for a critical system for some large N. The system multiplication keff is determined by balancing the

lloss and gain terms from the eigenvalue equation

2r � Dg rð Þrφ ið Þ
g rð Þ1Σr;g rð Þφ ið Þ

g rð Þ2
X
i
0 6¼i

Σs;g0-gφ
ið Þ
g
0 rð Þ5 χg

keff

X
g
0
νΣf ;g0 rð Þφ i21ð Þ

g
0 rð Þ

where

keff
ðiÞ 5

Ð P
g
0 νΣf ;g0 rð Þφ ið Þ

g
0 drÐ P

g
0 νΣf ;g0 rð Þφ i21ð Þ

g
0 dr

: (5.67)

The flux is normalized at each iteration, to satisfy the power output of a reactor;

φ ið Þ
g
0 rð Þ5 1

keff
ið Þ φ

i21ð Þ
g
0 rð Þ: (5.68)

can be written in the discretized form by equating the currents at the interfaces allowing for different materials in each

mesh interval (Sekimoto, 2007) from Fig. 5.9

2r � Drφjk 5 ck21φk21 1 d
0
kφk 1 ekφk11 (5.69)

for meshes numbered k5 1; 2; 3; . . . ;M: With

2e
1ð Þ
1 1ΣðsÞ

1-2

	 

φ 1ð Þ
1 1 e

ð1Þ
1 φ 1ð Þ

2 5 1

the coefficients are given as

ck21 52
2 p1 1ð Þr p

k21
2

r
p11

k11
2

2 r
p11

k21
2

	 

Δrk21
D

ðk21Þ
i

1 Δrk
D

ðkÞ
i

� � ;

ek 52
2 p1 1ð Þr p

k11
2

r
p11

k11
2

2 r
p11

k21
2

	 

Δrk
D

ðkÞ
i

1 Δrk11
D

ðk11Þ
i

� � ;
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and

d
0
k 52 ck21 2 ek

where p5 0; 1; 2 for slab, spherical and cylindrical geometries, respectively. In the above, the origin is at r1=2 and the

outer radius is R5rM11=2. The radii at the midpoints of each mesh interval are r1; r2; r3;?rK so that the mesh width of

the kth mesh is: Δrk 5 rk11=2 2 rk21=2.

Further, c0 5 0, and for the first mesh, the point source boundary condition yields the equation

2 e1 1ΣðsÞ
1-2

	 

φ1 1 e1φ2 5 1

where subscripts indicate energy and superscripts indicate the mesh interval. At the extrapolated boundary, it can be

shown (Park et al., 2020) that e
ðKÞ
i is

e
ðKÞ
i 52

2 p1 1ð Þr p
K11

2

r
p11

K11
2

2 r
p11

K21
2

	 

ΔrK
D

ðKÞ
i

1 4:26

� �

The procedure is as follows

1. Discretize Eq. (5.63) to obtain a form for φk;g for mesh interval k and energy group g.

2. Apply boundary conditions.

3. Write the equations in matrix form

A̿φ5
1

keff
Bφ: (5.70)

4. The total number of mesh intervals for a one-dimensional problem is K; the surrounding nodes for the kth element

being xk21=2 and xk11=2. Thus element 1 is from x1=2 to x3=2. The column vector φ is of size K3G; thus for 100

mesh intervals and 2 groups, there are 200 fluxes to compute.

5. The matrix A̿ 5 L̿ 2 S̿ represents the three terms

2r � Dg rð Þrφ ið Þ
g rð Þ1Σr;g rð Þφ ið Þ

g rð Þ2
X
i
0 6¼i

Σs;g0-gφ
ið Þ
g
0 rð Þ

the first two terms, the “loss terms,” have element matrices L̿g; g5 1; 2; 3 . . .G as diagonal elements while the third ter-

minal S̿ is the scattering-in (lower triangular) matrix since down-scattering occurs from higher energy groups. Each ele-

ment matrix L̿g is a tridiagonal matrix of size K3K.

FIGURE 5.9 Mesh intervals for finite difference computation.
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6. The matrix B represent the RHS fission term

χg

X
g
0
νΣf ;g0 rð Þφ i21ð Þ

g
0

7. In the power method, for eigenvalues k1; k2; k3; . . .N, the solution at the ith iteration is

φðiÞ 5
1

L
i21

i
0
51

kðiÞ
A̿ 21B
� � ið Þ

φð0Þ (5.71)

as i-N, the flux φðiÞ converges to the flux φ and the largest eigenvalue is the value of keff .

Finally, the matrix can be solved by standard methods such as Gaussian elimination, Jacobi or Gauss-Siedel meth-

ods, or to reduce the memory advantage is taken of the sparse matrix and Choleski’s method is more efficient.

Computation is accelerated by the use of the Standard Overrelaxation Method (SOM) or a number of other methods.

As an example, for K mesh intervals and 2 groups, the matrices are

A̿5
A1 0

0 A2

� �

in terms of the matrices Ag, where the “group” coefficients c; d; e dk 5 d
0
k 1Σk

� �
are evaluated for each mesh interval.

The group matrices Ag are

d1 e1 0

c1 d2 e2
: :
: : :

ck21 dk ek
: : :

0 : :
cK21 dK

2
66666666664

3
77777777775

(5.72)

The K3 2 flux, for each group and mesh interval, are

φ5 φ1;1 φ2;1 . . .φK;1 φ1;2 φ2;2 . . .φK;2

� �T
(5.73)

and the “source” term is a vector of length 2K (for the case of 2 groups) and B are the fission terms.

5.5 Effect of fuel concentration on critical mass

A research area of interest in nuclear engineering has been the effect of nonuniform fuel distribution on the critical

mass of nuclear systems.

The concept of minimum critical mass (MCM) by Goertzel (2003) is a classical and seminal problem in nuclear

engineering; over the last few decades, it has retained a strong interest and led to further work on the requirement of

flat thermal flux (FTF) as a necessary condition. Starting from a multigroup diffusion model by Goertzel and extending

to a two-group transport model, Williams (2003) has shown that the condition for MCM is that the integral of the prod-

uct of the thermal angular flux and a function related to the adjoint function is a constant and that an unsatisfactory

aspect of the Goertzel theorem (that of adding delta functions at the core-reflector interface) disappears in transport the-

ory. A number of models in reflected systems have been considered by Lewins (2004) in one- and two-group diffusion

formulations to further establish maximum and minimum loading conditions.

There is also an anomaly (Van Dam, 2015) that “the critical size of a MCM system with continuous in-core fuel dis-

tribution can take the same value for two different reflector thicknesses.” The thermal flux flattening has also been dem-

onstrated for heterogeneous systems of thin fuel “foils” in a moderator (Van Dam, 2013).

The objective is to distribute the fissile material in such a way as to achieve criticality with minimum fissile mate-

rial. Theoretical works have necessarily been based on assumptions and artifacts that need to be validated with elaborate

simulations; hence the motivation to include this work in this chapter.
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5.5.1 Goertzel’s theorem

The two-group uniformly distributed fuel spherical reactor considered in Section 5.3.2 had a critical radius of 21.9 cm

with a critical mass 1.15 kg U-235. Goertzel’s theorem states that the critical mass can be reduced if a FTF is achieved

in the core. This corresponds to a nonuniform fuel distribution which is covered in this section for slab and spherical

reflected reactors. Calculations are compared with MC simulations.

5.5.2 Nonuniform fuel distribution: a slab model

Two-group diffusion theory is used for obtaining flux and criticality estimates for both uniform fuel loading and for

loading resulting in a FTF which corresponds to MCM. An intriguing question regarding the “delta function” at the

core-reflector interface and critical conditions arising out of analytical studies based on one- and two-group diffusion as

well as two-group transport theory are illustrated for a “practical” core in which both minimum and maximum fuel

loadings are required for achieving a FTF which corresponds to MCM.

Here, MC simulation, with MCNP5 (Briesmeister, 2000) is used for validation of two-group diffusion results.

Consider a 1D slab of a dilute U235-H2O solution reflected by water. For an exact solution with uniform fuel load-

ing, followed by a FTF requirement, two-group diffusion equations are used. An “optimal” fuel loading is thus obtained

and used in a MC simulation. The criticality conditions are obtained for both cases and used to reverse the larger core

size by the addition of fuel at the core periphery.

These are discussed with Goertzel’s result that more fissile material should be added to the central regions and pro-

gressively less material toward the end of the core region. The work by Williams (2003) concludes that “the major dif-

ference between diffusion and transport theories arises from the origin of the fuel mass required at the edges,” and that

“without the ad hoc addition of delta functions, diffusion theory would fail. In the transport equation on the other hand

these features arise naturally.” A detailed MC simulation is thus a natural extension of this study to compare the validity

of both diffusion and transport models with results obtained from a detailed simulation where none of their assumptions,

such as constant scattering, are used.

In Eqs. (5.34)�(5.37) if a FTF is assumed, that is, φ2c 5φO, then Eq. (5.35) is simplified to 2Σ2cφo 1Σ1cφ1c 5 0.

In the MCM problem, the objective is to find the fuel distribution NF xð Þ which will result in minimum fuel mass Bm

Bm5α
ða=2
0

NF xð ÞdV (5.74)

where α5 2A235=Nav.

For a uniformly distributed fuel, described by Eqs. (5.34)�(5.37) the coefficients in Eq. (5.35) are constant and solu-

tions are obtained by expressing the core equations as two 4th-order ODEs to yield the fluxes (Lamarsh & Baratta,

1955) with the resulting (transcendental) criticality equation for half-thickness ao

μ tanμao=25
α1λ tanhλao=21α2

α3λ tanhλao=21α4

(5.75)

where

α1 52κ2rD1cD2r S3 2 S1ð Þ2κ1rðD1rD2cS2 2D1cD2rS3Þ
α2 5κ1rκ2rD1rD2r S1 2 S2ð Þ
α3 52κ1rD1cD2c S2 2 S1ð Þ

α4 52κ2rD1cD2r S3 2 S2ð Þ2κ1rðD1rD2cS1 2D1cD2rS3Þ
where and μ2 and λ2 and the coupling coefficients are defined in are defined in Section 5.3.2.

For FTF φO in the core, Eqs. (5.34) and (5.35) yield

φ1c xð Þ5C1cosγx1 η
Σ2Mc

γ2D1c

φo (5.76)

φ1r xð Þ5φ1r a=2
� �

e2κ1rðx2 a=2j jÞ (5.77)
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φ2r xð Þ5 fe2κ2rðx2 a=2j jÞ1gφ1r xð Þ (5.78)

where the constant C1 in Eq. (5.76) can be found from the reflector interface condition

C1cosγa5φ1r a=2
� �

2 η
Σ2Mc

γ2D1c

φo:

Here

φ1r a=2
� �

5
D2r

Σ1r

κ1r 1 κ2rð Þκ2r (5.79)

and

f 5
κ1r

κ1r 2κ2r

φo andg5
Σ1r

D2r

1

κ2
2r 2κ2

1r

(5.80)

with a=2 being the half-width of the core.

The criticality condition is then

γκ1rS tanγa5 11
κ1r

κ1r

(5.81)

where

S5
κ1r

κ1r

2
1

η2 1
:

Thus the critical half-thickness is

a5
2

γ
cot21 γD1c

D1rκ1r

2
γτcκ1rγΣ2r

ðη2 1ÞD2rκ2rðκ1r 1κ2rÞ

� �
(5.82)

leading to fuel loading

Σ2F xð Þ5Σ2r

κ1r 1 κ2r

κ2r

� �
cosγx

cosγa=2
1

Σ2Mc

η2 1
: (5.83)

The fuel mass for both cases, uniform loading and FTF, are then

mF;o 5αΣF;o
ao

2
(5.84)

and

mF 5
αΣ2r

η2 1

κ1r

κ2r

κ1r 1κ2rð Þτc 1
a

2

� �
: (5.85)

The two-group data for uniform loading used is given in Table 5.6.

With a H2O-U
235 ratio 500�1 for uniform fuel loading (N55 6.6848 3 1019 atoms/cm3, NW5 3.342 3 1022 mole-

cules/cm3) the criticality equation is

tanμao=25
0:8011tanhλao=21 0:6416

0:6989tanhλao=21 0:4442
(5.86)

μ5 0:1128;λ5 0:6509ð Þ from which the critical thickness was found to be 16.1319 cm (half-thickness 8.06595 cm)

with the two-group flux shown in Fig. 5.10 (mass 0.2106 g /cm2).

Subsequently, for a slab of thickness 8.06 cm, height and width 20 cm with reflecting surfaces, a MCNP5 simulation

with N55 6.7 3 1019, NH5 6.7 3 1022 and NO5 3.35 3 1022 atoms/cm3 (total 0.100567 3 1024) in kcode with

1000 histories per cycle and 500 cycles with 10 skip cycles and tallies accumulated in two groups: group 1 (0.625 eV�
1 MeV) and group 2 (0�0.625 eV) gives the fluxes shown in Fig. 5.11.

The result for this simulation gives keff 5 0:99544ð0:00080Þ with a simulation time of 7.00 min on an Intel (R) Core

(TM) i7�2620M CPU @2.70 GHz processor, 32-bit Operating System.
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The atom and mass fractions of U235 in the solution are 6.66223 3 1024 and 2.54368 3 1022 respectively. Each

core mesh has a volume of 32.56 cm3, and a mass of 33.4736 g, so that for 99 mesh intervals, the mass is 3.3139 kg.

The total fuel mass is thus 84.2947 g, equivalent to 0.2107 g/cm2, which matches very well with the diffusion estimate.

For FTF, the critical half-thickness, from the criticality equation

tanγa=252 3:8833 (5.87)

was found to be 9.1567 cm with flux shown in Fig. 5.12. Thus the ratio of critical dimensions for uniform and FTF can

be estimated as

ao

a
� γ

μ
0:9007

π2 1:3188
5 0:8719 (5.88)

The core region (half-thickness 9.1567 cm) is divided into 20 mesh intervals of equal width (0.4578 cm) and the

reflector of thickness 22.5 cm is also divided into 20 mesh intervals of equal thickness (1.1250 cm). The decrease in

Σ2F is from 4.9002 3 1022 to 1.3522 3 1022/cm over the core.

FIGURE 5.10 Two-group diffusion flux for a critical slab.

FIGURE 5.11 MCNP Two-group fluxes for uniform fuel dis-

tribution in a slab reactor. MCNP, Monte Carlo N-Particle.
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The atomic density of U235, N5, is found from N5 5Σ2F=σa5 where the thermal fission cross-section for U235 is

taken to be σf ;5 5 0:886σa;Th5b. The decrease in N5 is from 8.1574 3 1019 to 2.2510 3 1019 atoms/cm3 per mesh

while the H2O-to-U
235 ratio increases from B410 to B1485 at the periphery. With this, the fuel mass decreases per

mesh from 14.572 to 4.02 mg/cm2 with a total fuel mass 0.2118 g/cm2 compared with a fuel mass of 0.2106 mg/cm2

for the case of uniform loading; hence no significant mass reduction.

With a cross-section area (depth times height) 1 cm2 the volume of the core would be 4.0787 cm3 so that the fuel

concentration would be 3.3589 mg/cm3 or 3.3589 g/L. These results are shown in Figs. 5.13�5.16.

A MCNP5 simulation was carried out with fuel loading of Fig. 5.16 shown in Fig. 5.17.

For a slab of thickness 9.1567 cm, with reflector thickness 22.5 cm, height and width 20 cm with reflecting surfaces,

with varying N5, NH5 6.7 3 1022 and NO5 3.35 3 1022 atoms/cm3 with 1000 histories per cycle and 500 cycles with

10 skip cycles. Tallies were accumulated in two groups: group 1 (0.625 eV�1 MeV) and group 2 (0�0.625 eV) for

which the flux are shown in Fig. 5.17. The result for this simulation was: keff 5 1:00282ð0:0008Þ, with a simulation time

of 4.52 min on an intel processor.

FIGURE 5.12 Two-group flux for flat thermal flux.

FIGURE 5.13 Fuel absorption cross-section.
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The total fuel mass is 84.5594 g, equivalent to 0.2114 g/cm2, which matches very well with the diffusion estimate.

The effect of reducing the core size was found with the truncated flat flux fuel distribution taken till 7.7832 cm,

then continued for mesh intervals at 8.0, 8.02, and 8.06 cm. The mass reduction was 4.5066 g resulting in

keff 5 0:98171ð0:00087Þ. Addition of material toward the end is thus required. With the atomic density shown in

Fig. 5.18, that is, with a total fuel mass of 84.6945 g equivalent to 0.2117 g/cm2, the system has a multiplication

keff 5 1:00074ð0:00083Þ with flux shown in Fig. 5.19.

The addition of fuel at the edges are estimated by MC reruns which is inefficient and recommended to be carried

out by sampling for derivatives in a MC perturbation simulation (Koreshi & Lewins, 1990; Rief, 1984).

Thus, a uniform fuel distribution gave a critical half-thickness and fuel mass of 8.06595 cm, 0.2107 g/cm2 with diffusion

and 8.06 cm, 0.2106 g/cm2 keff 5 0:99544ð0:00080Þ with MCNP5 with the characteristic “hump” in the thermal flux at the

core-reflector interface. With FTF in the core, it was found that the critical half-thickness and fuel mass were 9.1567 cm,

0.2118 g/cm2 with diffusion and for the same thickness, fuel mass was 0.2106 g/cm2 keff 5 1:00282ð0:00080Þ with MCNP5.

FIGURE 5.14 Fuel atomic density.

FIGURE 5.15 Water-to-fuel ratio.
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5.5.3 Nonuniform fuel distribution: a spherical model

In a spherical homogenous U235-H2O core reflected with water, two-group diffusion theory is used for estimating the

critical size given an initial composition. Subsequently, solutions are obtained for a FTF in the core to obtain a fuel dis-

tribution which gives the diffusion estimate of MCM. These estimates are validated with MC simulations using the

MCNP5 code which shows the requirement of a “δ-source” at the core-reflector interface. In practical terms, the amount

of fuel mass to be added in a finite region at the interface is estimated by sensitivity coefficients sampled from MC per-

turbation derivatives. These are used to add fuel at the interface to estimate the MCM. Diffusion theory with uniform

composition gives a critical core of 21.0 cm radius with 1.15 kg fuel while a flat thermal flux gives 15.7668 cm com-

pared with MCNP which gives a critical mass of 718.067 g with a “corrected” fuel distribution. While Goertzel’s origi-

nal work found the MCM to be 30% less than that for uniform fuel distribution, detailed simulations find a reduction

by almost B38%.

This section considers a spherical core surrounded with water reflector. The core is a dilute U235-H2O solution ini-

tially with a water-to-fuel atomic ratio 500 to 1. For an exact solution with uniform fuel loading, followed by a flat

FIGURE 5.16 Fuel loading for flat thermal flux.

FIGURE 5.17 MCNP flux with flat thermal flux fuel loading.

MCNP, Monte Carlo N-Particle.

244 Nuclear Engineering



thermal flux (FTF) requirement, two-group diffusion equations are used. An “optimal” fuel loading is thus obtained and

used in a MC simulation.

For a uniformly distributed fuel, Section 5.3.2, the transcendental criticality equation for radius R is

ζX 5
α1 ζYζZ2 1α2ζYζZ1 1α3ζZ1ζZ2

α4ζY 1α5ζZ1 1α6ζZ2
(5.89)

with

ζX � X
0

X
52 μ

1

μR
2 cotμR

� �

ζY � Y
0

Y
5λ cothλR2

1

λR

� �

ζZ � Z
0

Z
52κ

1

κR
1 cothκb

� �

FIGURE 5.18 Atomic density with addition at periphery.

FIGURE 5.19 Thermal flat flux in core with reduced size.
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and

α1 5D1cD2r S3 2 S1ð Þ;α2 5D1rD2cS2 2D1cD2rS3;α3 5D1rD2r S1 2 S2ð Þ
α4 5D1cD2c S2 2 S1ð Þ;α55ðD1rD2cS1 2D1cD2rS3Þ;α6 5D1cD2r S3 2 S2ð Þ:

For flat thermal flux φ2c5φO in the core

φ1c rð Þ5AX1 η
Σ2Mc

γ2D1c

φo (5.90)

where

X5
sinγr
r

:

The constant A in Eq. (5.90) can be found from the core-reflector interface conditions

AX1 η
Σ2Mc

γ2D1c

φo 5FZ1 (5.91)

and

D1C1X
0
5D1rFZ

0
1: (5.92)

Also, F5α1G; andG5α2φo where

α1 52
Z2

Z1

ζZ2
ζZ1

and

α2 5
Z1

Z2

ζZ1
ζZ1 2 ζZ2

:

The criticality condition is then

R5
1

γ
tan21 γD1c

D1c 1D1rf ðRÞ
(5.93)

where

f Rð Þ5 ζZ1ζZ2
βζZ1 1 12βð ÞζZ2

(5.94)

and

β5 S3η
Σ2Mc

γ2D1c

leading to a fuel loading

Σ2F rð Þ5A
sinγr
r

1
Σ2Mc

η2 1
: (5.95)

The fuel mass for both cases, uniform loading and FTF, are then

mF;o 5αΣF;oVc (5.96)

and

mF 5
α

η2 1

2 4πD1r

φo

AsinγRf Rð Þ1Σ2McVc

� �
: (5.97)

The two-group data for uniform loading used is: D1c 5 1:13 cm, Σ1c 5 0:0419/cm, D2c 5 0:16 cm, Σ2c 5 0:060/cm,

σaW 5 0:664 b, σa25 5 678 b, τc 5 27 cm2, ηT 5 2:07. It is also assumed that D1c 5D1r; D2c 5D2r; τc 5 τr. Then,
μ5 0:1128;λ5 0:6509.

246 Nuclear Engineering



All MC simulations were performed on an Intel (R) Core (TM) i7�2620M CPU @2.70 GHz processor, 32-bit

Operating System with 1000 histories per cycle and 500 cycles with 10 skip cycles. Tallies were accumulated in two

energy groups: group 1 (0.625 eV�1 MeV) and group 2 (0�0.625 eV).

With a H2O-U
235 ratio 500:1 for uniform fuel loading (N55 6.6848 3 1019 atoms/cm3, NW5 3.342 3 1022 mole-

cules/cm3) the criticality equation gives critical radius 21.9 cm with the two-group flux shown in Fig. 5.8 for which the

fuel mass is 1.15 kg.

Subsequently, for a core of radius 22.5 cm with a 22.5 cm thick water reflector a MCNP5 simulation with N55 6.7

3 1019, NH5 6.7 3 1022 and NO5 3.35 3 1022 atoms/cm3 for which the flux are shown in Fig. 5.20. The result for

this simulation was: keff 5 1.001364 (0.0011) with a simulation time of 6.52 min.

For a uniform fissile distribution, the critical radius and mass obtained from diffusion theory are close to the esti-

mates obtained from MCNP: radius 22.5 cm and mass 1.2477 kg U235 (0.0262 kg/L).

5.5.4 Critical core with flat thermal flux loading

For FTF, the critical radius, from the criticality equation was found to be 15.7668 cm with flux shown in Fig. 5.21.

The core and reflector regions are divided into 20 mesh intervals of equal volume in-core and reflector, respectively.

The decrease in Σ2F is from 0.1725 to 0.0266/cm over the core.

The atomic density of U235, N5, is found from N5 5Σ2F=σa5 where the thermal fission cross-section for U235 is

taken to be σf ;5 5 0:886σa;Th5b. The decrease in N5 is from 2.8721 3 1020 to 4.4355 3 1019 atoms/cm3 per interval

while the H2O-to-U
235 ratio increases from B116 to B754 (B1081 at the interface) at the periphery. These results are

shown in Figs. 5.22�5.25.

MC simulation with MCNP5 with the above fuel loading discretized as shown in Fig. 5.26 gives the fluxes shown

in Fig. 5.27.

For a sphere of radius 15.7668 cm, with reflector thickness 22.5 cm, with varying N5, the flux are shown in Fig. 5.9.

For this simulation, keff 5 0:99447ð0:0011Þ, with a simulation time of 4.02 min. The value of keff indicates a require-

ment of more fuel in the core.

The total fuel mass is 702.8952 g, or 0.0428 kg/L.

Now consider the effect on the criticality of addition of fuel toward the interface to correct the keff . To estimate the

amount of fuel to be added at the interface, sensitivity coefficients are obtained for a relative mass change of

δm=mo 5 6 5% with the uniform fuel distribution taken as the “reference” design point. The relative importance of the

intervals, for a mass increase, is maximized at the center and steadily decreases toward the interface where it is seen to

increase, suggesting the addition of mass in the last interval, the δ-source addition. For a 5% fractional increase, in the

interface interval, the increase in system multiplication is δkeff B9.66 3 1024.

FIGURE 5.20 MCNP flux uniform distribution. MCNP,

Monte Carlo N-Particle.
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The addition of 15.1695 g fuel in the last interval increases the critical mass to 718.067 g U235 and the system multi-

plication from keff 5 0:99447ð0:0011Þ to 0.999495 (0.0013), that is, δkeff B5 3 1023 which corresponds to a B25%

fractional increase in the mass of the interval at the interface.

It is also reported in the literature that for “optimum moderation” the smallest critical mass in a water reflected

spherical U235 aqueous solution is 0.784 kg. Table 5.8 shows the results from diffusion and MC simulation; with MC

giving 1.2477 kg U-235 compared with 1.150 kg from two-group diffusion theory. The flat thermal flux (FTF) reduces

the critical mass to 0.7029 kg U-235.

5.6 The two-group adjoint diffusion equations

For the one-group diffusion equation which is a second-order ODE the operator L̂ is self-adjoint, that is, L̂
1
5 L̂. In

contrast, the two-group equations, with χ1 5 1;χ2 5 0;Σf ;1 5 0 are

2r � D1r1Σr;1

� �
φ1 2 νΣf ;2φ2 5 0 (5.98)

2r � D2r1Σr;2

� �
φ2 2Σs;12φ1 5 0 (5.99)

FIGURE 5.21 Two-group flux for flat thermal flux (spherical

reactor).

FIGURE 5.22 Fuel absorption cross-section.
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and with Σs;12 5 pΣs1, the above are written as

div D1 grad2Σr;1 νΣf ;2

pΣs1 div D2 grad

� �
φ1

φ2

� �
5 0 (5.100)

or, in matrix form,

M̿φ5 0 (5.101)

In this case, it is observed that the adjoint operator M̿
1

is the transpose of M̿, that is, the rows and columns are

interchanged. Thus

M̿
1
5

div D1 grad2Σr;1 νΣf ;2

pΣs1 div D2 grad

� �T
5

div D1 grad2Σr;1 pΣs1

νΣf ;2 div D2 grad

� �
(5.102)

FIGURE 5.23 Fuel atomic density.

FIGURE 5.24 Water-to-fuel ratio (spherical reactor).
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and the set of equations is thus

divD1grad2Σr;1 pΣs1

νΣf ;2 divD2grad

� �
φ1
1

φ1
2

� �
5 0 (5.103)

The adjoint equations are thus, like the forward equations, coupled ordinary second-order differential equations

which satisfy the same boundary conditions as the flux, that is, flux and current continuity at a physical interface

and vanishing flux at the extrapolated boundary. The adjoint flux is an importance function which has physical sig-

nificance in sensitivity analysis as will be demonstrated for variational formulations used in sensitivity analysis

and optimization.

FIGURE 5.25 Fuel-to-water ratio.

FIGURE 5.26 Fuel loading for flat thermal flux (spherical

reactor).
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5.7 Core neutronics with diffusion equations

Core neutronics calculations are performed over the whole core consisting of fuel assemblies which have fuel rods as

well as control rods in the presence of a moderator or coolant. The most basic unit of an assembly is the unit lattice

cell. This cell is representative of the fuel and moderator; as an entity it repeats itself within an assembly.

For the AP1000 reactor (Table 3.3) the core, shown in Fig. 5.28 has an equivalent diameter 3.04 m and an active

core height 4.267 m.

Within the core are 157 assemblies with 173 17 rods in an arrangement represented in Fig. 5.29.

Each assembly, Fig. 5.30, is of dimensions 21.40204 3 21.40204 cm.

Within an assembly a unit cell of dimensions 1.26 3 1.26 cm, shown in Fig. 5.31, typically consists of fuel, IFBA

(integral fuel burnable absorber), a helium gap, and cladding.

The fuel pellet is of radius 4.09575 mm, the IFBA is of thickness 0.00518 mm, the helium gap is of thickness

0.59202 mm, and the clad thickness is 0.05715 mm. Thus the outer fuel radius is 4.7475 mm (diameter 0.94950 cm). The

unit cell represents basic nuclear characteristics of the fuel assembly; fluxes and reaction rates are determined within the unit

cell. Lattice parameter programs are written to carry out calculations within this cell. The cell is typically divided into three

regions, namely the fuel, the gap and the coolant. Within a cell, detailed calculations are performed to obtain its overall para-

meters which, in the second stage are used to carry out whole-core calculations. If fuel elements are placed at the corners of

squares, the lattice is called a square lattice. In some configurations, hexagonal lattices are modeled when fuel elements are

placed at vertices of a hexagon. Heterogeneity within a reactor core, for example when strong absorbers are placed within a

FIGURE 5.27 MCNP flux with flat thermal flux fuel

loading (spherical reactor). MCNP, Monte Carlo N-

Particle.

TABLE 5.8 Criticality estimates for a spherical reactor.

Criticality MCNP 2-group diffusion

FTF δ2 source Flat thermal flux (FTF) fuel dist. Uniform Uniform

Rc (cm) 15.7668 15.7668 22.5 21.9

ΔRr (cm) 22.5 22.5 22.5 18.1

keff 0.999495 (0.0013) 0.99447 (0.0011) 1.001364 (0.0011) 1.0

M (kg) 0.718067 0.7028952 1.2477 1.150
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FIGURE 5.28 AP1000 core (equivalent radius 3.04 m, active core

height 4.267 m).

FIGURE 5.29 A typical PWR assembly with 173 17 rods. PWR, pressurized water reactor.
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core, is modeled by the use of macro cells. A detailed transport calculation is carried out for a cell and in the second stage, a

quarter model of the core, as shown in Fig. 5.32, is used with a less cumbersome diffusion model.

Codes produce lattice parameters to study the sensitivity of burnup, for example, to changes in operating conditions.

In a detailed calculation, starting from an initial configuration, a transport equation solution normalized to the given

reactor power, is used for small time scales using the point reactor kinetics equations and for the long time scale using

the burnup equation to calculate the isotopes produced (Section 4.4), and subsequently the new overall reactivity. A

code such as WIMSD (Deen & Woodruff, 1995) is a typical reactor lattice code which at the first level, calculates the

pin cell parameters in a 69-group computation. These are used for few-group calculations with detailed geometry mod-

els, followed by burnup calculations in an iterative procedure. In WIMSD, unit cell calculations are carried out with the

integral transport equation using collision probability methods. One such code is Serpent (Leppänen, Pusa, Viitanen,

Valtavirta, & Kaltiaisenaho, 2015), a multipurpose 3D continuous energy MC particle transport code distributed by

OECD/NEA for neutron/photon transport with burnup calculation capability and coupled multiphysics simulations to

generate homogenized few-group reaction cross-sections among several other parameters.

Here, an insight is given on the use of the NDE to obtain core fluxes and power distribution for which methods

include the FDM, the coarse mesh FDM, and the NEM for structured meshes. In the case of unstructured meshes

required for complex geometries, FEM and the FVM are used.

In the FDM methods for the NDE, the DIF3D code developed at Argonne National Laboratory and used for decades comes

upgraded with diffusion and transport solvers (Nelson, Smith, & Heidet, 2021). In the nodal methods, for example, a coarse

mesh analysis is carried out, with one node representing a fuel assembly; this is preferred over the use of FDM and FEM due

to the computational efficiency of nodal methods though at the expense of detailed information especially if the heterogeneity

FIGURE 5.30 Fuel assembly of AP1000.

FIGURE 5.31 Unit cell of AP1000.
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is large, that is, when the number of control rods in an assembly is large. Some of the widely used nodal codes developed for

thermal reactors are KIKO3D (Keresztúri et al., 2003), DYN3D (Rohde et al., 2016) and RAST-K (Park et al., 2020).

In one approach (Trkov, Najžer, & Škerget, 1990), the 2D (xy) diffusion equation for the quarter core of Fig. 5.32 is

integrated over the y axis to obtain a 1D equation for each energy group. The nodal fluxes and currents are then

obtained analytically. In another approach, the Green;s function is used for a solution of the NDE in which continuity

conditions result in a system of equations giving nodal fluxes and currents.

The multigroup NDE for energy group g

2r � Dg rð Þrφg rð Þ1Σr;g rð Þφg rð Þ5 fg rð Þ (5.104)

with the “source” term

fg rð Þ5
X
g
0 6¼g

Σs;g0-gφg
0 rð Þ1 χg

keff

X
g
0
νΣf ;g0 rð Þφg

0 rð Þ: (5.105)

in 2D rectangular homogeneous zones, are integrated over the transverse direction y and using Fick’s law, a set of one-

dimensional equations are obtained for the quantities

φx jð Þ xð Þ5 1

hð jÞ

ðVj

Vj21

φ x; yð Þdy: (5.106)

For a node Vði;jÞ for column i, xi21 # x# xi width hi and row j, yj21 # y# yj height hj, integration gives the transverse

leakage

Ly jð Þ xð Þ5 1

hð jÞ

ðVj

Vj21

2
@2

@y2
φ x; yð Þdy5 ny

hð jÞ

J x; yj
� �

2 J x; yj21

� �
Dð jÞ

� �
(5.107)

resulting in the set of equations

2D ijð Þ
d2φx jð Þ
dx2

1Σ ijð Þφx jð Þ5fx jð Þ2D ijð Þ rð ÞLy jð Þ: (5.108)

Eq. (5.108) are then solved to obtain the nodal fluxes φxð jÞi and current Jx jð Þi on the node boundaries i. These give the

average leakage in the x direction

Lx ijð Þ 5
1

h ið Þ

Jx jð Þi 2 Jx jð Þi21

D ijð Þ

� �
: (5.109)

FIGURE 5.32 One-fourth model of a reactor core with 52

assemblies.
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The integrations are performed in the x direction over a node, with a weighting function wðxÞ which is the Green’s

function to the problem. This reduces the integrals to an algebraic expression involving the flux φi21;φi and average

current Ji21 and Ji in the node and at boundaries. All such equations for a a row along the x direction, applying continu-

ity conditions for interfaces and external boundaries, are assembled into a global matrix and solved for fluxes and cur-

rents. The same procedure is repeated by integrating over the transverse direction.

In this method, there are no trial functions or a priori assumptions about the shape of the neutron flux.

These methods have been demonstrated for IAEA 2D and 3D PWR BSS-11 and BIBLIS benchmarks with a 20 cm

coarse mesh giving overall system multiplication and power distribution within 4%�5%.

An application of an intermediate mesh method, such as FEM, with a coarse method, such as the Spectral Green’s

Function (SGF) Nodal Method (Rocha, Dominguez, Iglesias, & de Barros, 2016), has been demonstrated to solve the

one-group multiplying media NDE for solving a benchmark problem with a high degree of heterogeneity. The

equations

dJðxÞ
dx

1Σa xð Þφ xð Þ5 1

keff
νΣf xð Þφ xð Þ (5.110)

and

J xð Þ52D xð Þ dφðxÞ
dx

(5.111)

are discretized over a spatial domain 0# x# L, with albedo boundary conditions J1=2 52αLφ1=2, and

JI11=2 5αRφI11=2 on both ends of a grid of I mesh intervals. The above balance equations are multiplied by the

Legendre polynomial

Pl

2 x2 xið Þ
hi

� �

integrated over an element xi21=2 # x# xi11=2 to get averaged flux φi; φ̂i and current J i; Ĵ i equations for the zeroth and

first moments

φi 5
1

hi

ðxi11=2
xi21=2

φ xð Þdx; (5.112)

φ̂i 5
3

hi

ðxi11=2
xi21=2

2 x2 xið Þ
hi

� �
φ xð Þdx; (5.113)

J i 5
1

hi

ðxi11=2
xi21=2

J xð Þdx; (5.114)

and

Ĵi 5
3

hi

ðxi11=2

xi21=2

2 x2 xið Þ
hi

� �
J xð Þdx: (5.115)

The spectral parameters αi; βi are incorporated into the flux and current formulation through the FEM linear

functions

φ xð Þ5αiφi 1
2βi

hi
x2 xið Þφ̂i (5.116)

and

J xð Þ5αiJi 1
2βi

hi
x2 xið ÞĴi: (5.117)

The resulting algebraic equations contain the spectral parameters which are found by analytic solutions first pro-

posed by Case & Zweifel (1967). The linear system of equations for ð6I1 2Þ unknowns, that is, I values each of

φi; φ̂i; J i; Ĵ i;αi;βi and two end points, are reduced to ð2I1 2Þ unknowns, and the same number of equations, by elim-

inating φi; φ̂i; J i; Ĵ i, since they are expressed in terms of the eigenvalues and αi; βi are subsequently determined. Thus
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neutron flux distribution is calculated by direct or iterative techniques and the system multiplication keff is calculated

by the power method described in the previous section.

Rocha et al. (2016) applied the hybrid FEM-SGF method described above to a six-region benchmark and compared

results with a reference 960 element FEM calculation to find that, in the presence of strong heterogeneities, the accu-

racy in flux distribution was within 0.01% for 30 elements in a coarse mesh. This method appears to be promising for

multigroup and higher dimensional eigenvalue calculations.

For unstructured meshes, the FVM has been demonstrated (Bernal, Miró, Ginestar, & Verdú, 2014) for 2D and 3D

two-group NDE applicable to LWRs with the requirement of complex geometry modeling. For 2D reactor models, the

computational time is reported to be in seconds while for 3D models, the time is in hours for fine meshes. A full 3D

Nodal Diffusion Code for PWRs (Park et al., 2020) performs steady-state and transient analyses with generated micro-

scopic cross-sections for 37 isotopes, and can handle a depletion chain with 22 actinides (uranium, plutonium. neptu-

nium, americium and curium isotopes) and 15 fission products (xenon, iodine, samarium, promethium, and

neodymium) and burnable poisons. The multigroup NDE are also solved with parallel computing using the two-node

nodal method with the Coarse Mesh FDM (Song, Yu, & Kim, 2018) reducing the time for quarter-core and whole-core

calculations. For multiphysics full 3D calculations, the computer code, RAST-K-v2, performs calculations with four

nodes for a fuel assembly with 24�46 axial nodes. It can carry out core design, incorporating neutronics, thermal

hydraulics, critical heat flux, departure from nucleate boiling (DNBR) and depletion calculations for prediction of iso-

tope inventory in spent nuclear fuel. The RAST-K-v2 has been verified and validated for several Korean PWRs includ-

ing the OPR-1000, APR-1400 and Westinghouse 2-loop and 3-loop reactors. The diffusion equation models are thus

valuable for carrying out realistic whole-core calculations with parallel computing capabilities.

Problems

1. Consider slabs of aluminum, boron, beryllium, carbon, and iron of thickness 3 m.f.p each with a planar source at

x5 0 emitting 106 neutrons/s. Plot the flux and estimate the surface leakages from their sides (Table 5.9).

2. Show that the neutron flux in a sphere of radius R with a point isotropic source at r5 0 emitting S neutrons/s is

given by

ϕ5
S

4πDsinh R1 d
L

� � sinhκðR1 d2 rÞ
r

Find the leakage probability from the surface of a graphite sphere of radius 2 m.f.p. with a 1 Ci 226Ra-Be point

source at its center emitting 107 neutrons/s.

3. Compare the leakage probability of the above sphere if instead of graphite, the material was boron.

4. What is the magnitude of the flux at the center of a bare cubical reactor of sides 3 m operating at a power of

100 kW(th)?

5. Calculate the geometric buckling for a cylinder of radius 1 m and height 2 m. What information does this give on

the infinite multiplication of the system?

6. How would you calculate the number of absorption and scattering reactions in a graphite sphere if the atomic den-

sity of the graphite is N rð Þ5Noð12 r=RÞ where No is the nominal density?

TABLE 5.9 Thermal cross-sections.

Nuclide Atomic weight Density g=cm3
� �

σaðbÞ σsðbÞ
Aluminum 26.9815 2.70 0.235 1.4

Boron 10.811 2.30 759 4.0

Beryllium 9.0122 1.85 0.0092 6.14

Carbon (graphite) 12.01115 1.60 0.0034 4.75

Iron 55.847 7.87 2.53 11.0
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Nomenclature

English lower case
d extrapolation distance

keff effective multiplication

kN infinite multiplication

n number density

q
0 0 0

volumetric heat generation (W/m3)

English upper case
Ai area

Bg geometrical buckling

Bm material buckling

Ci concentration of precursor

D diffusion coefficient

D̂ derivative operator

J neutron current

L diffusion length

L̂
1

adjoint operator

Ni atomic density of the ith nuclide

Ni shape function in the ith element

Pes escape probability

Pl Legendre functions

Rc critical radius

S source

Greek lower case
λ decay constant

μ cosine of angle of scattering

μ0 average cosine of scattering angle

φ flux

φ1 adjoint flux

φC complementary solution

φP particular solution

τ neutron age

ν number of neutrons produced per fission

χ fission spectrum

Greek upper case
Ω solid angleP

a macroscopic absorption cross-sectionP
f macroscopic fission cross-sectionP
r macroscopic removal cross-sectionP
s macroscopic scattering cross-sectionP
tr macroscopic transport cross-sectionP
t macroscopic total cross-section

Abbreviations
FD finite difference method

FEM finite element method

FVM finite volume method

IFBA integral fuel burnable absorber

NDE neutron diffusion equation

NEM nodal expansion method
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Chapter 6

The neutron transport equation

The neutron transport equation (NTE) is a mathematical statement on the conservation of neutrons for the angular,

rather than scalar, neutron flux in phase space. It is a more accurate description of the underlying phenomena of neutron

transport than the neutron diffusion equation (NDE) described in Chapter 5.

There are several mathematical formulations of the NTE such as the integral form (Section 4.3) and the

integro-differential form (Section 4.4) extensively covered in standard nuclear engineering text books (Bell &

Glasstone, 1979; Case & Zweifel, 1967; Clark & Hansen, 1964; Davison, 1957; Duderstadt & Hamilton, 1976;

Henry, 1975; Williams, 1971). The NTE can be interpreted as the zeroth moment of the Boltzmann transport equa-

tion which Boltzmann had derived for the kinetic theory of gases (Cercignani, 1988; Harris, 1971; Robson, White,

& Hildebrandt, 2017) and is also applicable to radiation transport including charged particles, photons and neutrons

(Section 1.6).

This chapter begins with a derivation of the integro-differential form of the NTE and shows some simple forms of

the NTE, such as the one-speed equation with isotropic scattering, the one- and two-group transport equations similar to

the two-group diffusion equations, the integral form, the collision and transport formulations, and the multigroup

equations.

In Section 6.2, some classical exact, analytical, closed-form solutions obtained in the early days of neutron transport,

the 1950s�70s, under idealized conditions with the Fourier and Laplace transforms are discussed. Classical solutions

for the for infinite, semiinfinite, and some finite media were found with simplified scattering models. These are

described here for the purpose of familiarizing the reader with the early approaches for obtaining the neutron flux and

eigenvalues.

The compact exact solutions are then followed by the development and application of numerical methods described

in Section 6.3. The most extensively used methods are the discrete ordinates (SN) method, and the spherical harmonics

(PN) method. These are followed by the double PN , or the DPN method, the BN method and Finite Element Method

(FEM) described in Section 4.5, nodal and hybrid methods. Such methods are used extensively for neutron transport

computations (Kang & Hansen, 1973; Lewis & Miller, 1984) for the design of nuclear reactor cores by calculations on

lattice cells, in fuel assemblies and in whole-core neutronic analyses as discussed in the context of the NDE

(Section 5.6).

In Section 6.4, two widely used methods for reactor calculations, namely the Collision Probability Method (CPM)

and the Method of Characteristics (MOC), are described for lattice cell calculations and for whole-core eigenvalue cal-

culations for the design of nuclear systems.

Current research and applications of transport theory are focused on the development of efficient computational

methods and algorithms on multiprocessors to carry out multidimensional core neutronics calculations for the design of

Gen III1 and Gen-IV nuclear reactors described in Chapter 3.

It is important to realize that neutron transport contains some of the most elegant mathematics applied in nuclear

engineering, and there are several methods and techniques, each impressive in its own right. It is not possible to include

a more detailed introduction in a single chapter; indeed several books are devoted to neutron transport. The reader is

advised to look into the research publications in journals such as Progress in Nuclear Energy, Annals of Nuclear Energy

and Nuclear Science and Engineering for the latest trends and developments. The body of research contains new devel-

opments on making transport calculations more robust, applicable and fast. The gap between deterministic and stochas-

tic computation is thus bound to become narrower and large reactor design calculations will become easier in the years

to come.

Whatever numerical and computational advancements take place, the role of elegant mathematics will never end, as

the foundations of neutron transport will always lie in the compact analytical expressions of the early days which will

serve as standards for huge computational codes.
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An understanding of neutron diffusion, neutron transport, and in the later chapters, Monte Carlo simulation are the

bedrock upon which nuclear engineering will always stand. It is with this objective that the following sections must be

read to understand the equations.

6.1 Structure of the neutron transport equation

There are at least eight forms in which the NTE, in addition to its most basic integro-differential form, is used

(Ganapol, 2008) viz (1) integral, (2) even-odd parity, (3) slowing down kernel, (4) multiple collision, (5) invariant

embedding, (6) singular integral, (7) pseudoflux, and (8) Green’s function, in addition to the Monte Carlo form which,

though a stochastic simulation of the transport phenomena, can be interpreted to be a Neumann series solution of the

integral equation. Each one of these forms has mathematical properties that enable a class of solutions.

In this chapter, two of these eight (deterministic) forms will be considered in some detail.

6.1.1 An integro-differential form of the neutron transport equation

For a derivation of the NTE from first principles, consider a neutron with energy E at time t at some position

~r 5 xî1 yĵ1 zk̂ where î; ĵ;k̂ are unit vectors along the x; y; z axes moving in a direction defined by two angles θ;ϕ such

that the unit vector is Ω̂5Ωxî1Ωyĵ1Ωzk̂, where Ωx 5 sin θ cosϕ, Ωy 5 sin θ sinϕ, Ωz 5 cos θ. These parameters

define its “position” Pðr;Ω;E; tÞ in phase space. Let’s say in the next Δt seconds, it moves a distance vΔt, during which

the total number of interactions it is likely to have is ΣtvΔt; conversely, the number of interactions it is likely not to

have are 12ΣtvΔt, which means that if there were N r;Ω;E; tð ÞdVdEdΩ neutrons in a packet initially, there are

N ~r ;Ω;E; tð Þ 12Σt ~r ;E; tð ÞvΔt½ �dVdEdΩ neutrons left in the packet (Fig. 6.1).

The change in the number of neutrons is thus

Change5N r1 vΩΔt;Ω;E; t1Δtð Þ2N r;Ω;E; tð Þ:
This can be written as

Change5N r1 vΩΔt;Ω;E; t1Δtð Þ2N r;Ω;E; t1Δtð Þ1N r;Ω;E; t1Δtð Þ2N r;Ω;E; tð Þ
where the term N r;Ω;E;t1Δtð Þ has been added and subtracted to be able to express the four terms as a space deriva-

tive and a time derivative, respectively. In the limit as Δt-0, the first term is vΩ∙rN r;Ω;E; tð Þ; the change in the

packet, per unit volume interval, per unit energy interval and per unit solid angle interval, is thus

v∙ΩrN r;Ω;E; tð Þ1 @

@t
N r;ΩE; tð Þ:

We can write v∙ΩrN r;Ω;E; tð Þ as r∙ΩvN r;Ω;E; tð Þ and with angular flux φ r;Ω;E; tð Þ and the neutron current

J r;E; tð Þ defined as

φ r;Ω;E; tð Þ5 vN r;Ω;E; tð Þ (6.1)

FIGURE 6.1 Coordinates in three-dimensional Cartesian axes.
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and

J r;E; tð Þ5
ð4π
0

Ωφ r;Ω;E; tð ÞdΩ (6.2)

the leakage term is

r∙
ð4π
0

Ωφ r;Ω;E; tð ÞdΩ5r∙J r;E; tð Þ: (6.3)

The change in the neutron population is due to the gains and losses expressed as

Change5Gains2Losses (6.4)

The gains are due to in-scattering, fissions, an independent source, and any other gains due to inelastic scattering or

other nuclear reactions:ðN
0

dE0
ð
dΩ0Σs r;Ω0 ∙Ω;E0ð Þφ r;Ω0 ;E0 ; tð Þ1 1

4π
χ Eð Þ

ðN
0

dE0
ð
dΩ0 νΣf E

0ð Þφ r;Ω0 ;E0 ; tð Þ1 S r;Ω;E; tð Þ (6.5)

Eq. (6.5) can be modified to separate the prompt and delayed fission neutrons by expressing the fission contribution

as

1

4π
χp Eð Þ

ðN
0

dE0
ð
dΩ0 12β E0ð Þ½ �νΣf E

0ð Þφ r;Ω0 ;E0 ; tð Þ1 1

4π

X6
i51

χj Eð ÞλjCj tð Þ: (6.6)

The losses due to the leakage of neutrons and their scattering out from the phase space of interest Pðr;Ω;E; tÞ are
r∙J r;Ω;E; tð Þ1Σt r;Eð Þφ r;Ω;E; tð Þ: (6.7)

Now with the gain and loss terms substitued into Eq. (6.4) gives the time-dependent balance equation

1

v

@

@t
φ r;Ω;E; tð Þ5

ðN
0

dE0
ð
dΩ0Σs r;Ω0 ∙Ω;E0ð Þφ r;Ω0 ;E0 ; tð Þ

1
1

4π
χp Eð Þ

ðN
0

dE0
ð
dΩ0 12β E0ð Þ½ �νΣf E

0ð Þφ r;Ω0 ;E0 ; tð Þ

1
1

4π

X6
i51

χj Eð ÞλjCj tð Þ2 r∙J r;Ω;E; tð Þ1Σt r;Eð Þφ r;Ω;E; tð Þ½ �1 S r;Ω;E; tð Þ: (6.8)

Eq. (6.8) is written with leakage and out-scattering on the LHS and gains on the RHS; rearranging gives the familiar

form of the Linear Transport Equation (Bell & Glasstone, 1979)

1

v

@

@t
φ r;Ω;E; tð Þ1r∙J r;Ω;E; tð Þ1Σt r;Eð Þφ r;Ω;E; tð Þ5

ðN
0

dE0
ð
dΩ0Σs r;Ω0 ∙Ω;E0ð Þφ r;Ω0 ;E0 ; tð Þ

1
1

4π
χp Eð Þ

ðN
0

dE0
ð
dΩ0 12β E0ð Þ½ �νΣf E

0ð Þφ r;Ω0 ;E0 ; tð Þ1 1

4π

X6
i51

χj Eð ÞλjCj tð Þ1 S r;Ω;E; tð Þ (6.9)

where (Section 6.2) the scattering cross section is written in terms of the pre-collision energy and a function based on

the collision dynamics.

Σs r;Ω0 ∙Ω;E0ð Þ5Σs r;E
0 Þf Ω0-Ω;E0-Eð Þð Þ:

Since scattering depends on the dot products of the two directions, rather than the angles themselves, a further simplifi-

cation is

f Ω0-Ω;E0-Eð Þ5 f Ω0 ∙Ω;E0-Eð Þ
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with the normalization ðN
0

dE

ð
dΩf Ω0 ∙Ω;E0-Eð Þ5 1;

where integration is over the solid angle 4π steradians. The conservation of energy and momentum is expressed as

f Ω0 ∙Ω;E0-Eð Þ5 p μ0;E
0� �
δ E2

1

2
11αð Þ1 12αð Þ cos θc½ �E0

� �

with μ5 cos θc in the center-of-mass system.

In Eq. (6.9), the time-dependent precursor concentration equation (Section 6.2) has a decay term as well as a flux-

dependent production term due to the delayed fission neutrons; for the jth precursor, the concentration is

dCj tð Þ
dt

52λjCj tð Þ1
1

4π
χj Eð Þ

ðN
0

dE0
ð
dΩ0β E0ð ÞνΣf E

0ð Þφ r;Ω0 ;E0 ; tð Þ: (6.10)

To look at a simpler form, we neglect delayed neutrons, for which the source term is

q r;Ω;E; tð Þ5
ðN
0

dE0
ð
dΩ0Σs r;Ω0 ∙Ω;E0ð Þφ r;Ω0 ;E0 ; tð Þ1 1

4π
χ Eð Þ

ðN
0

dE0
ð
dΩ0 νΣf E

0ð Þφ r;Ω0 ;E0 ; tð Þ1 S r;Ω;E; tð Þ

(6.11)

which can be justified since delayed neutrons account for less than one percent of the fission neutrons. For this model,

the transport equation can be written in terms as

1

v

@

@t
φ r;Ω;E; tð Þ1Ω∙rφ r;Ω;E; tð Þ1Σt r;Eð Þφ r;Ω;E; tð Þ5 q r;Ω;E; tð Þ (6.12)

With the usual boundary conditions of flux and current continuity at an interface and appropriate surface conditions.

Thus, for distance s traveled in the direction sΩ̂, the quantity N must be constant across an interface from both sides,

i.e.

N r1 sΩ;E; t1 s=v
� �j2 5N r1 sΩ;E; t1 s=v

� �j1: (6.13)

Similarly for a non reentrant or free surface denoted by a boundary b, and a free surface condition

N r
-
;E; t

� �
jb 5 0 for n̂UΩ̂, 0 (6.14)

that is, zero neutrons returning from a boundary.

Consider now the forms of Ω∙r for slab, spherical and cylindrical geometry. In a one-dimensional slab, the distance

traveled s is related to x by x5 s cos θ, so that

Ω∙r5 μ
@

@x
(6.15)

This is extended to rectangular geometry as

Ω∙r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12μ2

p
cosϕ

@

@x
1 sinϕ

@

@y

� �
1 μ

@

@z
; (6.16)

while in spherical geometry Ω∙r5μ and

Ω∙r5
d

ds
5

@

@r

dr

ds
1

@

@μ
dμ
ds

:

With r5 s cos θ5 sμ,

dμ
ds

5
dμ
dθ

dθ
ds

5
sin 2θ
r

� 12μ2

r
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so that

Ω∙r5μ
@

@r
1

12μ2

r

@

@μ
: (6.17)

In cylindrical geometry,

Ω∙r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12μ2

p
cosχ

@

@r
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12μ2

p
r

sinχ
@

@ϕ
2

@

@χ

� �
1μ

@

@z
(6.18)

where the vector r in the Cartesian coordinates has height z azimuthal angle ϕ and χ is the angle between the planes of

Ω and z vectors. The direction of the neutron Ω is μ5Ω∙z and azimuthal angle χ. Thus, for an infinite (in height) cyl-

inder with azimuthal symmetry

Ω∙r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12μ2

p
cosχ

@

@r
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12μ2

p
r

sinχ
@

@χ
:

Another useful relationship between the flight path and variables xðsÞ; tðsÞ is the change when expressed in terms of

ds i.e.

d

ds
5

@

@t

dt

ds
1

@

@x

dx

ds

which is obtained with the relations (given initial conditions) x5 x0 1 sμ, and t5 t0 1 s=v as

d

ds
5

1

v

@

@t
1μ

@

@x
: (6.19)

With the above forms for the leakage term, the NTE can be explicitly written for regular geometry. Now consider

another simplified form of the NTE known as the one-speed form, for which the steady state one-dimensional angular

flux φ x;μ;Eð Þ in a slab would reduce the terms of Eq. (6.12) as follows:

μ
@

@x
φ x;μ;Eð Þ-μ

@

@x
φ x;μð Þ

Σt x;Eð Þφ x;μ;Eð Þ-Σt xð Þφ x;μð Þ
1

2

ðN
0

dE0Σs x;E
0ð Þ
ð1
21

dμ0φ x;μ0 ;E0ð Þ- 1

2
Σs xð Þ

ð1
21

dμ0φ x;μ0ð Þ

and

1

2
χ Eð Þ

ðN
0

dE0 νΣf x;E
0ð Þ
ð1
21

dμ0φ x;μ0 ;E0ð Þ- 1

2
νΣf

ð1
21

dμ0φ x;μ0ð Þ:

The steady-state one-dimensional transport equation is then

μ
@

@x
1Σt xð Þ

	 

φ x;μð Þ5 q x; μð Þ (6.20)

where

q x; μð Þ5
ð
dμ0Σs x;μ0ð Þφ x;μ0ð Þ1 1

2

ð
dμ0 νΣfφ x;μ0ð Þ1 S x;μð Þ: (6.21)

Notice here that χðEÞ has disappeared as it is understood that neutrons emerging from fission will fall in this energy

group (for which the equation is being simplified). Mathematically what we are saying is that χ Eð Þ5 1; there is no

other energy into which an emerging fission neutron can go.
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With the above, a one-dimensional (azimuthal symmetry) one-energy NTE in plane geometry is

μ
@

@x
φ x;μð Þ1Σt xð Þφ x;μð Þ5 1

2
½Σs 1 νΣf �

ð1
21

dμ0φ x;μ0ð Þ1 S x;μð Þ: (6.22)

With the quantity c defined as the mean number of secondary neutrons emerging from a collision by any process,

for example, scattering (c5 1), fission (c5 ν ), the (n,2n) reaction for which c5 2,

c5
Σs 1 νΣf 1Σn;2n 1?

Σt

: (6.23)

Eq. (6.22) is written as

μ
@

@z
φ z;μð Þ1φ z;μð Þ5 c

2

ð1
21

dμ0φ z;μ0ð Þ1 S z;μð Þ (6.24)

where the unit of distance has changed to z5Σtx, the “optical distance,” that is, unit of distance measured in terms of

the mean free path λ5 1=Σt.

In another simplified form of the one-speed transport equation the angular flux is expanded in spherical harmonics

with Legendre polynomials (Section 4.2)

φ z;μð Þ5
XN
l50

2l1 1

2
φl zð ÞPl μð Þ (6.25)

where the moments φl xð Þ are defined as

φl zð Þ5
ð1
21

dμφ z;μð ÞPl μð Þ: (6.26)

Expanding to N5 1, Eq. (6.25) gives the angular flux in terms of the zeroth and first moments:

φ z;μð Þ5 1

2
φ0 zð Þ1 3μφ1ðzÞ
� �

(6.27)

defined as

φ0 5

ð1
-1
φðz;μÞdμ;φ1 5

ð1
-1
μφðz;μÞdμ: (6.28)

These equations, for a plane isotropic source δðzÞ, are
dφ1ðxÞ
dx

1 12 cð Þφ0 zð Þ5 δ zð Þ (6.29)

and

dφ0 zð Þ
dz

1 3φ1 zð Þ5 0: (6.30)

Eq. (6.30) is recognized as Fick’s law and Eq. (6.29) is written as

dJ

dx
1Σaφ5 S (6.31)

or, in the form of the NDE (Section 4.1)

D
d2φ
dx2

2Σaφ1 S5 0: (6.32)

We can also see an equivalence for the diffusion length (with D5 1=3) in units of optical thickness,

L5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð12 cÞ
p :
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For a nonmultiplying medium, this gives

L5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3Σa=Σt

p 5

ffiffiffiffiffiffi
D

Σa

r
:

Thus, for fission

ðN
0

dEχ Eð Þ
ð4π
0

dΩ
1

4π
5 1

and to consider, for a moment, the steady-state equation, we have

Ω∙rφ ~r ;Ω;Eð Þ1Σt ~r ;E; tð Þφ ~r ;Ω;Eð Þ5
ðN
0

dE0
ð
dΩ0Σs ~r ;E

0 ;Ω0 ∙Ωð Þφ ~r ;Ω0 ;E0ð Þ

1
1

4π
χ Eð Þ

ðN
0

dE0
ð
dΩ0 νΣf E

0ð Þφ ~r ;Ω0 ;E0ð Þ1 S ~r ;Ω;Eð Þ (6.33)

The NTE in the above form is an integro-differential equation; it is linear in the sense that superposition applies and

Green’s functions can be used. This means that if the flux is φ1 for a source S1 and φ2 for a source S2; then it must be

φ1 1φ2 for S1 1 S2; which in turn means that a Green’s function Gðr0;Ω0;E0-r;Ω;E) obtained for the steady-state

transport equation with a point isotropic source δðr2 r0ÞδðΩ2Ω0ÞδðE2E0Þ would give the flux for any source from

φ
�
r;Ω;EÞ5

ð
dV0

ð
dΩ0

ð
dE0S r0; Ω0; E0ð Þ G r0;Ω0;E0-r; Ω;EÞ:ð (6.34)

6.1.2 The two-group transport equation

The two-group form of the NTE, similar to the two-group NDEs described in Section 5.3 are obtained from Eq. (6.9).

The neutrons are divided into two energy groups; for group-1 and group-2 energies E are in the range E1 #E#E0

and E2 #E#E1 where E2 5 0 with the assumption that there is no up-scattering. The group-averaged neutron flux is

φg and the group-averaged neutron current is Jg defined as

φ1 rð Þ5
ð
dΩ

ðE0

E1

φ r;Ω;Eð ÞdE;φ2 rð Þ5
ð
dΩ

ðE1

0

φ r;Ω;Eð ÞdE; (6.35)

and

J1 rð Þ5
ð
dΩ

ðE0

E1

Ωφ r;Ω;Eð ÞdE; J2 rð Þ5
ð
dΩ

ðE1

0

Ωφ r;Ω;Eð ÞdE: (6.36)

The fission contribution in group 1 is χ1 νΣf1φ1 rð Þ1 νΣf2φ2 rð Þ� �
. Assuming an isotropic source S0;1 rð Þ in group 1

defined as

S0;1 rð Þ5
ð
dΩ

ðE0

E1

S r;Ω;Eð ÞdE

the balance equation is

r∙J1 rð Þ1Σt0;1ðrÞφ1 rð Þ5χ1 νΣf1φ1 rð Þ1 νΣf2φ2 rð Þ� �
1 S0;1 rð Þ (6.37)

with the flux-current relation Fick’s law as follows:

rφ1 rð Þ1 3Σt;1 rð ÞJ1 rð Þ5 0: (6.38)
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In the above, the group-averaged total and fission macroscopic cross-sections are defined as

Σg rð Þ5
Ð
Σ r;Eð Þφ r;Eð Þ dEÐ

φ r;Eð Þ dE : (6.39)

Similarly for Group 2, the balance equation

r∙J2 rð Þ1Σt0;2ðrÞφ2 rð Þ5Σs;1-2φ1 rð Þ1χ2 νΣf1φ1 rð Þ1 νΣf2φ2 rð Þ� �
(6.40)

has an in-scattering contribution from group 1 neutrons, The scattering cross-section is also defined as a flux-averaged

quantity

Σg0-g 5

Ð
dE0φ r;E0ð Þ Ð Σðr;E0-EÞdEÐ

φ r;E0ð ÞdE0 (6.41)

where it is assumed that scattering is isotropic. The Fick’s law statement for Group 2 is then

rφ2 rð Þ1 3Σt;2 rð ÞJ2 rð Þ5 0: (6.42)

We will see this form of the equation obtained in the spherical harmonics form of the multigroup transport equation

used for obtained numerical solutions for the angular flux.

6.1.3 The integral form of the transport equation

There are two ways possible to readily convert the integro-differential form; one is the MOC, using the derivative terms

of Eq. (6.19) in which a PDE is converted into an ODE, and the other is an integration of the PDE.

with the derivative terms of the integro-differential transport equation in Cartesian geometry

L̂φ r;Ω;E; tð Þ � 1

v

@

@t
1Ωx

@

@x
1Ωy

@

@y
1Ωz

@

@z

� �
φ r;Ω;E; tð Þ (6.43)

which can be expressed as a total derivative

dφ
ds

5
@φ
@t

dt

ds
1

@φ
@x

dx

ds
1

@φ
@y

dy

ds
1

@φ
@z

dz

ds

from which the “characteristics” are identified as t5 t0 1 s=v, and r5 r0 1 sΩ. In three-dimensional Cartesian

geometry,

x5 s sin θ cosϕ5 sΩx

y5 s sin θ sinϕ5 sΩy

z5 s cos θ5 sΩz

so that

dt

ds
5

1

v
;
dx

ds
5Ωx;

dy

ds
5Ωy;

dz

ds
5Ωz

then

L̂φ r;Ω;E; tð Þ5 dφ
ds

:

The transport equation can thus be expressed as a first-order partial differential equation

d

ds
1Σt r0 1 sΩ;Eð Þ

	 

φ r0 1 sΩ;Ω;E; t0 1 s=v
� �

5 q r0 1 sΩ;Ω;E; t0 1 s=v
� �

(6.44)
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and integrated to yield the integral form of the transport equation (Bell & Glasstone, 1979)

φ r;Ω;E; tð Þ5
ðN
0

e
2
Ð s0

0
Σtðr2s0 0Ω;EÞds0 0

q r2 s0Ω;Ω;E; t2 s0=v0
� �

ds0 : (6.45)

If we put the explicit form for q ~r ;Ω;E; tð Þ in the above, we get the integral equation expressed in the form of a scat-

tered contribution and a direct contribution from the extraneous source. Thus, with

q r;Ω;E; tð Þ5
ðN
0

dE0
ð
dΩ0Σs r;E

0 ;Ω0 ∙Ωð Þφ r;Ω0 ;E0ð Þ1 1

4π
χ Eð Þ

ðN
0

dE0
ð
dΩ0 νΣf E

0ð Þφ r;Ω0 ;E0ð Þ1 S r;Ω0 ;E0ð Þ

(6.46)

we can write the terms iteratively as φ0 5 S0 , φ1 5Kφ0,. . .,φn11 5Kφn. The interpretation of these terms is clear:φ0

represents the “uncollided” flux, that is, the flux of source neutrons, multiplied by the attenuation factor, φ1 is the flux

of neutrons that have had one collision, and φn is the flux of neutrons that have had n collisions. The Neumann seriesPN
n50

φn is a solution to the integral equation if it converges.

In this section, the integral formulation of the NTE for collision density ψ r;Ω;E; tð Þ5Σt r;Eð Þφ r;Ω;E; tð Þ is

expressed as

ψ Pð Þ5 S Pð Þ1
ð
K P0-Pð Þψ P0ð Þ dP0 (6.47)

where ψ Pð Þ refers to the collision density in phase space P. This form is obtained by integrating the differential form of

the transport equation described in the previous section. It is also “obvious” intuitively by considering that the collision

density in some phase space P can come from either a direct source into P or by a collision density at some other phase

space P0 that makes a transition into P. This integral form is amenable to computational methods and is “naturally”

suited for analog simulation as will be explained in Chapter 7 (The Monte Carlo Method).

We will later see that this approach is followed in the Monte Carlo simulation of neutrons as they are transported

from the source in a successive series of events. Thus we can write (Rief, 1984)

ψ ðPÞ5
XN
n51

ð
?

ð
K P; unð ÞK ðun; un21Þ?K ðu2; u1Þ S0 ðu1; u0Þ dun . . . du0 (6.48)

where the collision density is the sum of collision densities from the direct source, those that have had one collision,

two collisions and so on, up to n collisions

ψ Pð Þ5ψ01ψ1 1ψ2 1?ψn:

The direct contribution from the source is the integral over all source neutrons that contribute to the phase space of

interest P

ψ0 5

ð
S P; u0ð Þdu0;

The once-collided contribution is the source neutrons born in phase space u0 that have a collision that takes them to

phase space u1 and then to phase space P

ψ1 5

ð
K P; u1ð Þdu1

ð
S u1; u0ð Þdu0;

Thus, a source particle born at u0ðr0;Ω0;E0; t0Þ moves to ðr1;Ω0;E0; t1Þ where it has its first collision that changes

its energy and angle into phase space ðr1;Ω1;E1; t1Þ; we thus express the change as a kernel

Kðr0;Ω0;E0; t0-r1;Ω1;E1; t1Þ in terms of a transport process Tðr0;t0-r1; t1;Ω0;E0Þ followed by a collision process

CðΩ0;E0-Ω1;E1;r1; t1Þ, or simply

Ki21 5Ci21∙Ti21:
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Eq. (6.40) can be written as

ψ ðPÞ5
XN
n51

ð
?

ð
L
n

i51

Ci∙Tidui

� �
S0du0 (6.49)

with the scattering kernel K, expressed as the product of a collision operator C, in which the precollision energy and

angle will transform to the postcollision parameters, and a transport operator T .

Thus a collision will be represented by the term Kφ � C∙Tφ where the collision and transport operators

Ĉ � Ĉðr0 ;E0-E; Ω̂0-Ω̂Þ T̂ � T̂ðr0-r;E0 ; Ω̂0 Þ represent the scattering process.

6.1.4 Multigroup form of the integral transport equation

The integral form of the transport equation can be “solved” in a continuous way which we can call analog simulation,

or in a discrete way, by dividing the energy spectrum in a finite number of energy groups as was shown for diffusion

equation in Chapter 3. In a multigroup form, where the continuous energy spectrum is discretized into a finite number

of groups, as done in the MORSE code (Emmett, 2000), the integral form of the transport equation is obtained from the

multigroup form of Eq. (6.12):

1

vg

@

@t
1Ω∙r1Σ gð Þ

t rð Þ
	 


φðgÞ r;Ω; tð Þ5 qðgÞ r;Ω; tð Þ (6.50)

to yield the collision density integral form

ψðgÞ ~r ; Ω̂; t
� �

5
X1
g05g

ð
dΩ0Σs

g0-gðr; Ω̂ 0
-Ω̂Þψðg0 Þ ~r ; Ω̂; t

� �
1SðgÞ ~r ; Ω̂; t

� �
(6.51)

and with the collision and transport operators:

ψðgÞ ~r ; Ω̂; t
� �

5 Ĉ
g0-g

~r;Ω̂
0
-Ω̂

� �
T̂
g0

r0-r;Ω̂
0

� �
ψðg0 Þ r0 ; Ω̂

0
; t

� �
1 SðgÞ (6.52)

where the collision operator Ĉ is

Ĉ
g0-g

~r;Ω̂
0
-Ω̂

� �
5

X1
g05g

ð
dΩ0 Σs

g0 -gðr; Ω̂ 0
-Ω̂

Σg0
t ðrÞ

(6.53)

and the transport operator T̂ is defined as

T̂
g0

r0-r;Ω̂
0

� �
5

ðN
0

dRΣ gð Þ
t rð Þ e2z gð Þ r;r2RΩð Þ: (6.54)

In the integral form, the analog simulation this begins from a source neutron being transported to a collision site,

where the collision process results in “postcollision” energy and angle of travel. The collision density is tallied and the

simulation continues until a “history” ends due to an escape from the system or some other termination criteria as will

be shown in the next chapter.

6.2 Exact solutions of the transport equation

The complexity of the transport equation makes it impossible to obtain exact solutions for all but idealized configura-

tions such as infinite medium and regular geometry. A number of exact solutions are given in Bell and Glasstone

(1979), and the following benchmarks by Ganapol (Ganapol, 2008) are available for comparing with numerical solu-

tions: (1) Infinite medium slowing down, (2) Slowing down/Laplace transform solution in the BL approximation, (3)

Slowing down/the multigroup solution in the BL approximation, (4) Slowing down and thermalization in an infinite

medium/the embedded multigroup approximation, (5) Monoenergetic transport in an infinite medium/the Fourier trans-

form solution, (6) Monoenergetic transport in a semiinfinite medium/the Laplace transform solution, (7) Monoenergetic

transport in a 1-D slab/the Fn solution, (8) Monoenergetic transport in a 1-D cylinder/the Fn solution, (9) Multigroup

transport in infinite media/the Fourier transform solution, (10) Multigroup slab transport/the Green’s function method,
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(11) Monoenergetic transport in a two-dimensional semiinfinite medium/the searchlight problem (SLP), and (12)

Multgroup transport in a three-dimensional infinite medium/the point kernel method.

For the source-free infinite medium case, analytical solutions can be obtained, assuming separability

φ z;μð Þ5χðzÞψðμÞ, in terms of eigenfunctions ψνðμÞ:
φν z;μð Þ5 e2z=μ ψν μð Þ: (6.55)

It can then be shown (Bell & Glasstone, 1979) that for all values of μAð2 1; 1Þ for ν not both real and in the interval

(21,1), that

ψν μð Þ5 c

2

ν
ν2μ

(6.56)

where the eigenvalues satisfy the transcendental equation

15 cν0 tan h21 1

ν0
5

cν0
2

ln
ν0 1 1

ν0 2 1
: (6.57)

The above uses the relation

tan h21x5
1

2
ln
11 x

12 x
:

When c, 1 the roots are real (Section 2.10), as shown in Fig. 6.2, while for c. 1, they are imaginary.

The value of νo determines the rate of decrease of the asymptotic flux in a source-free infinite medium and is there-

fore called the asymptotic relaxation length.

φ6
o x;μð Þ5 e7x=υ0 cν0

2ðν07μÞ :

When c is near unity,

1

ν02
5

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð12 cÞ

p 11
2

5
12 cð Þ1?

	 


For weakly absorbing media, this relaxation length is the same as the diffusion length L of diffusion theory

L5
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

3ΣtΣa

p 5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3Σt 12 cð Þ
p :

Comparisons between diffusion and transport theory, and Monte Carlo simulation yet to be covered, will be demon-

strated for some simple cases.

FIGURE 6.2 Relaxation length in m.f.p.’s for isotropic scattering.
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It was shown above that for a source-free infinite medium for the asymptotic flux, for real values of νo is of the

form

φ6
o x;μð Þ5 e7x=υ0 cν0

2ðν07μÞ
For the monoenergetic transport solution in a semiinfinite medium, for example, Ganapol (Ganapol, 2008) has

obtained a “classical solution” for the scalar flux φðxÞ in terms of the inverse Laplace transform

φ xð Þ5 2

c
L21
x

φð0; 2 1=sÞ
s

	 

(6.58)

as

φ xð Þ5 2

c
L21
x

c

2

μ0

11 sμ0

H μ0

� �
H 1=s
� �

;Beam source

12
ffiffiffiffiffiffiffiffiffiffiffi
12 c

p
H 1=s
� �� �

s
; Isotropic source

8>>><
>>>:

(6.59)

Chandrasekhar’s H function satisfies the integral equation

H μð Þ5 11μH μð Þ
ð1
0

ψ μ0ð Þ
μ1μ0 H μ0ð Þdμ0

where
Ð 1
0
ψ μð Þdμ5 1. In case of isotropic scattering, ψ μð Þ5 c=2. The equation is solved iteratively (Matlab Program

6.1) with

Hk11=2
m 5 12

c

2
μm

XN
m051

ωm0
Hk

m0

μm1μm0

" #21

Hk11
m 5

α0

αk11=2
0

Hk11=2
m

with αk11=2
0 � PN

m051 ωm0 Hk11=2
m0 , and a normalization α0 �

Ð 1
0
dμH μð Þ5 2

c
12

ffiffiffiffiffiffiffiffiffiffiffi
12 c

p� �
.

This will be referred to in the following sections, especially for exact solution for finite media configurations.

6.2.1 The classic albedo problem

The classic albedo problem, of determining reflectivity of a surface, was addressed originally in radiative transfer

(Chandrasekhar, 1960) and exact solutions have been obtained (Ganapol, 2008) using the Laplace transform. For emerg-

ing radiation, μ, 0; x0-N, the solution is

φ x; 2 μ
 � �

5
c

2jμj
ðN
x

dx0 e2
x2x0
μ φ x0ð Þ (6.60)

which, at the surface x5 0, reduces to

φ 0; 2 μ
 � �

5
c

2jμj
ðN
0

dx0 e2
x0
μ φ x0ð Þ: (6.61)

The exact solution, for an isotropic medium with a point isotropic source at the surface separating the half-space

from the vacuum, in terms of Chandrasekhar’s H functions is

φ 0; 2μð Þ5 12
ffiffiffiffiffiffiffiffiffiffiffi
12 c

p
H μð Þ: (6.62)

Fig. 6.3 shows the albedo for monoenergetic neutrons incident on a surface x5 0 as a function of c.
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PROGRAM 6.1 Chandrasekhar’s H function.
% Program C:\Users\User1\Documents\MATLAB\TrTheory2012\Hfunction
% give a range of values of c
% prog calculates H(mu) vs mu and plots
% open output file
resl=fopen('outTT.txt','w');

N=32;
if (N==32)
t(1)=0.0483076656877383162348126;   w(1)=0.0965400885147278005667648;
t(2)=0.1444719615827964934851864;   w(2)=0.0956387200792748594190820;
t(3)=0.2392873622521370745446032;   w(3)=0.0938443990808045656391802;
t(4)=0.3318686022821276497799168;   w(4)=0.0911738786957638847128686;
t(5)=0.4213512761306353453641194;   w(5)=0.0876520930044038111427715;
t(6)=0.5068999089322293900237475;   w(6)=0.0833119242269467552221991;
t(7)=0.5877157572407623290407455;   w(7)=0.0781938957870703064717409;
t(8)=0.6630442669302152009751152;   w(8)=0.0723457941088485062253994;
t(9)=0.7321821187402896803874267;   w(9)=0.0658222227763618468376501;
t(10)=0.7944837959679424069630973;  w(10)=0.0586840934785355471452836;
t(11)=0.8493676137325699701336930;  w(11)=0.0509980592623761761961632;
t(12)=0.8963211557660521239653072;  w(12)=0.0428358980222266806568786;
t(13)=0.9349060759377396891709191;  w(13)=0.0342738629130214331026877;
t(14)=0.9647622555875064307738119;  w(14)=0.0253920653092620594557526;
t(15)=0.9856115115452683354001750;  w(15)=0.0162743947309056706051706;
t(16)=0.9972638618494815635449811;  w(16)=0.0070186100094700966004071;
j=16;
for jj=1:16

tt(jj)=-t(j); ww(jj)=w(j);
j=j-1;

end
k=1;
for kk=17:32
tt(kk)=t(k); ww(kk)=w(k);
k=k+1;
end
end

%%% Begin
Ncases=6; Niters=50;
cc=[0.1;0.2;0.4;0.6;0.8;0.9];

for icase=1:Ncases
c=cc(icase);

fprintf (resl,'\n c = %6.4f ',c);
Alpha0=(2.0/c)*(1.0-sqrt(1.0-c));
fprintf ('\n Alpha0  = %6.4f ',Alpha0);

for ih1 = 1:N
mu(ih1)=0.5*(tt(ih1)+1.0);
Hf(ih1) = 1.0;

end

(Continued )
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PROGRAM 6.1 (Continued)
for ih6 = 1:Niters   
for ih2 = 1:N    

sum =0.0;
for ih3 = 1:N
sum = sum + ww(ih3)*( Hf(ih3)/(mu(ih2)+ mu(ih3)));
end
sum = 0.5*sum;
Hf(ih2) = 1.0/( 1.0 - (c/2.0)*mu(ih2)*sum );

end

Alpha0k=0.0;
for ih4=1:N

Alpha0k = Alpha0k + ww(ih4)*Hf(ih4);
end
Alpha0k=0.5*Alpha0k;

Error = Alpha0-Alpha0k;

for ih5=1:N
Hf(ih5)=(Alpha0/Alpha0k)*Hf(ih5);

end

end
%keep the H values for this case to be plotted later
for ih7=1:N
HH(icase,ih7)=Hf(ih7);
end

end 
for muVal=1:N
H1(muVal)=HH(1,muVal);
H2(muVal)=HH(2,muVal);
H3(muVal)=HH(3,muVal);
H4(muVal)=HH(4,muVal);
H5(muVal)=HH(5,muVal);
H6(muVal)=HH(6,muVal);
end

figure(1)
plot(mu,H1,':k','LineWidth',1.5)
hold on
plot(mu,H2,':k','LineWidth',1.5)
hold on
plot(mu,H3,':k','LineWidth',1.5)
hold on
plot(mu,H4,':k','LineWidth',1.5)
hold on
plot(mu,H5,':k','LineWidth',1.5)
hold on
plot(mu,H6,'-k','LineWidth',1.5)
xlabel('\mu','FontSize',12)
ylabel('H(\mu)','FontSize',12)
text(0.4,1.7,'c','FontSize',12)

(Continued )
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6.2.2 Infinite medium with a plane isotropic source

The steady-state transport equation exact solution for a plane isotropic source located at x0 has been obtained by Case’s

method and by the Fourier Transform method (Bell & Glasstone, 1979). The angular flux, for x0 5 0, is given by

φ x;μð Þ5 1

4π
ψ1
0 μð Þe2

x2x0
ν0

N1
0

1

ð1
0

ψν μð Þe2x2x0
ν

Nν
dν

" #
(6.63)

for x. 0, where

ψ1
0 5

c

2
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ν0 2μ
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c

2
ν30
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ν20 2 1
2
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ν20

	 


ψν μð Þ5 c

2
P

ν
ν2μ

1λ νð Þδ μ2 νð Þ

PROGRAM 6.1 (Continued)
h = legend('c = 0.1','c = 0.2','c = 0.4','c = 0.6','c = 0.8','c = 0.9',2);
grid on

figure(2)
% plot albedo here
for muVal=1:N

H1(muVal)=(1-sqrt(1-cc(1)))*HH(1,muVal);
H2(muVal)=(1-sqrt(1-cc(2)))*HH(2,muVal);
H3(muVal)=(1-sqrt(1-cc(3)))*HH(3,muVal);
H4(muVal)=(1-sqrt(1-cc(4)))*HH(4,muVal);
H5(muVal)=(1-sqrt(1-cc(5)))*HH(5,muVal);
H6(muVal)=(1-sqrt(1-cc(6)))*HH(6,muVal);

end
plot(mu,H1,':k','LineWidth',1.5)
hold on
plot(mu,H2,':k','LineWidth',1.5)
hold on
plot(mu,H3,':k','LineWidth',1.5)
hold on
plot(mu,H4,':k','LineWidth',1.5)
hold on
plot(mu,H5,':k','LineWidth',1.5)
hold on
plot(mu,H6,'-k','LineWidth',1.5)
xlabel('\mu','FontSize',12)
ylabel('H(\mu)','FontSize',12)
text(0.4,1.7,'c','FontSize',12)
h = legend('c = 0.1','c = 0.2','c = 0.4','c = 0.6','c = 0.8','c = 0.9',2);
grid on

fclose(resl);
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Nν 5 ν λ2 νð Þ1 π2c2
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ν2

	 


λ νð Þ5 12 cνtanh21ν:

The angular fluxes, calculated from Matlab Program 6.2, are shown in Figs. 6.4�6.6 for the cases c5 0:2; 0:4; 0:8,
that is, increasing scattering in the medium. In all cases, the “forward” flux ðμ. 0Þ is larger in magnitude than the

“backward” flux ðμ, 0Þ while the magnitude of the angular flux increases as the material becomes less absorbing

(higher c).

Integrating Eq. (6.63) gives the total flux

φ xð Þ5 1

2

e
2

x2x0
ν0

N1
0

1

ð1
0

e
2

x2x0
ν0

Nν
dν

" #
: (6.64)

The flux given in Eq. (6.64) is the sum of an asymptotic φas and a transient part φtr with the asymptotic part repre-

senting the collision equilibrium component. The ratio of the asymptotic flux to the total flux φ5φas 1φtr is shown in

Fig. 6.7 where a high-scattering medium (high c) achieves equilibrium faster than low scattering media. A pure

absorber (c5 0) would thus never achieve “collisional” equilibrium. The calculation for Fig. 6.7 is given in Matlab

Program 6.3.

6.2.3 Finite sphere with a point isotropic source

For a sphere with a point isotropic source, an exact solution has been obtained by Erdmann and Siewert (1968), and by

(Siewert & Grandjean, 1979) as

φ rð Þ5φN rð Þ2 1

4πr
E ν0ð Þe2R=ν0 sin h

r

ν0

� �
1
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0
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(6.65)

where
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1
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(6.66)

FIGURE 6.3 Albedo for monoenergetic neutrons for

isotropic medium.
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PROGRAM 6.2 Angular flux in an infinite medium with a planar isotropic source.
% Program C:\Users\User1\Documents\MATLAB\TrTheory2012\AngFluxInfMed

% open output file
resl=fopen('outTT.txt','w');

N=32;

if (N==2)
t(1)=0.5773502691896257645091488;
t(2)=-t(1);
w(1)=1.0;
w(2)=1.0;
end

if (N==4)
t(1)=0.3399810435848562648026658;
t(2)=-t(1);
w(1)=0.6521451548625461426269361;
w(2)=w(1);
t(3)=0.8611363115940525752239465;
t(4)=t(3);
w(3)=0.3478548451374538573730639;
w(4)=w(3);
end

if (N==8)
t(1)=0.1834346424956498049394761; t(2)=-t(1);
t(3)=0.5255324099163289858177390; t(4)=-t(3);
t(5)=0.7966664774136267395915539; t(6)=-t(5);
t(7)=0.9602898564975362316835609; t(8)=-t(7);

w(1)=0.3626837833783619829651504; w(2)=w(1);
w(3)=0.3137066458778872873379622; w(4)=w(3);
w(5)=0.2223810344533744705443560; w(6)=w(5);
w(7)=0.1012285362903762591525314; w(8)=w(7);
end

if(N==16)
t(1)=0.0950125098376374401853193;   w(1)=0.1894506104550684962853967;
t(2)=-t(1); w(2)=w(1);

t(3)=0.2816035507792589132304605;  w(3)=    0.1826034150449235888667637;
t(4)=-t(3); w(4)=w(3);

t(5)=0.4580167776572273863424194; w(5)= 0.1691565193950025381893121;
t(6)=-t(5);   w(6)=w(5);

t(7)=0.6178762444026437484466718; w(7)= 0.1495959888165767320815017;
t(8)=-t(7);   w(8)=w(7);

t(9)=0.7554044083550030338951012; w(9)= 0.1246289712555338720524763;
t(10)=-t(9); w(10)=w(9);

(Continued )
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PROGRAM 6.2 (Continued)
t(11)=0.8656312023878317438804679; w(11)=   0.0951585116824927848099251;
t(12)=-t(11);  w(12)=w(11);
t(13)=0.9445750230732325760779884; w(13)=   0.0622535239386478928628438;
t(14)=-t(13); w(14)=w(13);

t(15)=0.9894009349916499325961542; w(15)=   0.027152459411754094;
t(16)=-t(15); w(16)=w(15);
end

if (N==32)
t(1)=0.0483076656877383162348126;   w(1)=0.0965400885147278005667648;
t(3)=0.1444719615827964934851864;   w(3)=0.0956387200792748594190820;
t(5)=0.2392873622521370745446032;   w(5)=0.0938443990808045656391802;
t(7)=0.3318686022821276497799168; w(7)=0.0911738786957638847128686;
t(9)=0.4213512761306353453641194;   w(9)=0.0876520930044038111427715;
t(11)=0.5068999089322293900237475;  w(11)=0.0833119242269467552221991;
t(13)=0.5877157572407623290407455;  w(13)=0.0781938957870703064717409;
t(15)=0.6630442669302152009751152;  w(15)=0.0723457941088485062253994;
t(17)=0.7321821187402896803874267;  w(17)=0.0658222227763618468376501;
t(19)=0.7944837959679424069630973;  w(19)=0.0586840934785355471452836;
t(21)=0.8493676137325699701336930;  w(21)=0.0509980592623761761961632;
t(23)=0.8963211557660521239653072;  w(23)=0.0428358980222266806568786;
t(25)=0.9349060759377396891709191;  w(25)=0.0342738629130214331026877;
t(27)=0.9647622555875064307738119;  w(27)=0.0253920653092620594557526;
t(29)=0.9856115115452683354001750;  w(29)=0.0162743947309056706051706;
t(31)=0.9972638618494815635449811;  w(31)=0.0070186100094700966004071;
for jj=2:2:32

t(jj)=-t(jj-1); w(jj)=w(jj-1);
end
end

%%% Begin
c=0.8;
fprintf (resl,'\n c = %6.4f ',c);
% step 1   calc Nu0
TNu1=0.5; TNu2=10.0; NPTS=50000; del=(TNu2-TNu1)/NPTS;
TNu = TNu1;
for ip=1:NPTS
rt(ip)=TNu;
FN(ip) = 1.0-c*(TNu/2)*log((TNu+1)/(TNu-1));
a(ip)=sign(FN(ip));
TNu=TNu+del;
end
% find the root where the sign changes
root = 1.0;
for ir = 1:NPTS-1

if (a(ir)~=a(ir+1))
root = rt(ir);

end
end
fprintf (resl,'\n nu0 = %6.4f ',root);

(Continued )
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PROGRAM 6.2 (Continued)
% step2    calc N0+
N0Plus = 0.5*c*root^3*( (c/(root^2-1.0)) - (1/root^2));
fprintf (resl,'\n N0Plus = %12.4e ',N0Plus);

%xLo = 1.0; xHi = 10.0; DelX=1.0; Nx=10;
xLo = 0.1; xHi = 10.0;  Nx=100; DelX=(xHi-xLo)/Nx;
muLo=-1.0; muHi=1.0;  DelMu=0.4; Nangles=6;
keyX=0; iX=0; countX=0; 
for iX=1:Nx

x=xLo+(iX-1)*DelX;

xx(iX)=x;

for iM=1:Nangles
mu=muLo+(iM-1)*DelMu;

mm(iM)=mu;

% step 3  calc psi0+
psi0Plus = 0.5*c * root/(root-mu);
phi1 = (psi0Plus*exp(-x/root))/N0Plus; % first term of angular flux

% step 4   calc lambda and N
sum=0.0;
for i=1:N

nu=0.5*(1+t(i)); ww=w(i);
lambda=1-c*nu*atanh(nu);
Nnu = nu*(  lambda^2  + (1.0/4.0)*c^2*nu^2*3.14159^2 );
psiNu=0.5*c*(nu/(nu-mu));
value=(psiNu*exp(-x/nu))/Nnu;
sum = sum + ww*value;
end
beta=0.5*sum;

gamma=0.0;
if (mu>0)
% step 5   calc 2nd term part 2(gamma)
lambdaMu =1-c*mu*atanh(mu);
NnuMu = mu *(  lambdaMu^2 + (1.0/4.0)*c^2*mu^2*3.14159 );
gamma = (lambdaMu/NnuMu)*exp(-x/mu);
end

phi2=beta+gamma;% second term
phi(iX,iM)=(1.0/(4.0*pi))*(phi1+phi2);
end
end

% print the results
% there are countX values of x   and   countM values of mu
fprintf(resl,'\n x values are\n');
for ix = 1:Nx

fprintf(resl,'\n x(%2.0f)=%6.4f',ix,xx(ix));

(Continued )

The neutron transport equation Chapter | 6 277



PROGRAM 6.2 (Continued)
end
fprintf(resl,'\n mu values are\n');
for im = 1:Nangles

fprintf(resl,'\n mm(%2.0f)=%6.4f',im,mm(im));
end

fprintf (resl,'\n flux values are');
for ix = 1:Nx

fprintf(resl,'\n flux at x = %6.4f ',xx(ix));
for im = 1:Nangles

fprintf(resl,'\n phi(%2.0f  %2.0f)=%12.4e',ix,im,phi(ix,im));
end

end

% now collect, for a single angle, all the fluxes as a function of x

for ix1=1:Nx
phiMu1(ix1)=phi(ix1,1);
phiMu2(ix1)=phi(ix1,2);
phiMu3(ix1)=phi(ix1,3);
phiMu4(ix1)=phi(ix1,4);
phiMu5(ix1)=phi(ix1,5);
phiMu6(ix1)=phi(ix1,6);end

figure(1)
set(gca,'FontSize',12)
semilogy(xx,phiMu1,'-k','LineWidth',2)
hold on
%semilogy(xx,phiMu2,'-.k','LineWidth',1.5)
%hold on
semilogy(xx,phiMu3,':k','LineWidth',1.0)
hold on
semilogy(xx,phiMu4,':k','LineWidth',1.0)
hold on
%semilogy(xx,phiMu5,'-k','LineWidth',1.5)
%hold on
semilogy(xx,phiMu5,'-k','LineWidth',2)
hold on
xlabel('\bf x (mfp)','fontsize',14)
ylabel('\bf Angular Flux (cm^{-2} s^{-1} steradian^{-1})')
%h = legend('\mu=-1.0','\mu = -0.6','\mu = -0.2','\mu = 0.2','\mu = 
0.6','\mu=1',2);
%h = legend('\mu=-1.0','\mu = -0.2','\mu = 0.2','\mu=1',2);

grid off
xlim([1 10])
ylim([1e-5 2e-1])
%      etime(clock,t0)
%      t=cputime;
%      fprintf(resl,'\n\n  CPU Time is %9.2f \n\n',t)
text(8.5,1e-1,'\bf c=0.8','fontsize',14)
text(1.3,1e-2,'\mu= -1')
text(1.1,3e-2,' -0.2')
text(1.8,3.5e-2,'0.2')
text(2,1e-1,'\mu=+1')
fclose(resl);
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FIGURE 6.4 Angular flux for c5 0.2, infinite medium.

FIGURE 6.5 Angular flux c5 0.4, infinite medium.

FIGURE 6.6 Angular flux c5 0.8, infinite medium.
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is the infinite medium solution.

The expansion coefficient Eðν0Þ is given by E ν0ð Þ5G ν0ð Þ1 Ð 1
0
K xð ÞE xð Þdx where EðνÞ satisfies the Fredholm equa-

tion (Section 4.3) E νð Þ5G νð Þ1 Ð 1
0
K x�!νð ÞE xð Þdx. The four known functions G and K are:
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and
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FIGURE 6.7 Total flux, infinite medium isotropic source.
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PROGRAM 6.3 Angular flux in an infinite medium with a planar isotropic source.
% C:\Users\User1\Documents\MATLAB\TrTheory\TotFluxInfMed
% infinite medium  exact solution
% give 4 c values;
% get the total flux and plot

resl=fopen('outTT.txt','w');

N=32; 
if (N==2)
t(1)=0.5773502691896257645091488;
t(2)=-t(1);
w(1)=1.0;
w(2)=1.0;
end

if (N==4)
t(1)=0.3399810435848562648026658;
t(2)=-t(1);
w(1)=0.6521451548625461426269361;
w(2)=w(1);
t(3)=0.8611363115940525752239465;
t(4)=t(3);
w(3)=0.3478548451374538573730639;
w(4)=w(3);
end

if (N==8)
t(1)=0.1834346424956498049394761; t(2)=-t(1);
t(3)=0.5255324099163289858177390; t(4)=-t(3);
t(5)=0.7966664774136267395915539; t(6)=-t(5);
t(7)=0.9602898564975362316835609; t(8)=-t(7);

w(1)=0.3626837833783619829651504; w(2)=w(1);
w(3)=0.3137066458778872873379622; w(4)=w(3);
w(5)=0.2223810344533744705443560; w(6)=w(5);
w(7)=0.1012285362903762591525314; w(8)=w(7);
end

if(N==16)
t(1)=0.0950125098376374401853193;   w(1)=0.1894506104550684962853967;
t(2)=-t(1); w(2)=w(1);

t(3)=0.2816035507792589132304605;  w(3)=    0.1826034150449235888667637;
t(4)=-t(3); w(4)=w(3);

t(5)=0.4580167776572273863424194; w(5)= 0.1691565193950025381893121;
t(6)=-t(5);   w(6)=w(5);

t(7)=0.6178762444026437484466718; w(7)= 0.1495959888165767320815017;
t(8)=-t(7);   w(8)=w(7);

t(9)=0.7554044083550030338951012; w(9)= 0.1246289712555338720524763;
t(10)=-t(9); w(10)=w(9);

(Continued )
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PROGRAM 6.3 (Continued)

t(13)=0.9445750230732325760779884; w(13)=   0.0622535239386478928628438;
t(14)=-t(13); w(14)=w(13);

t(15)=0.9894009349916499325961542; w(15)=   0.027152459411754094;
t(16)=-t(15); w(16)=w(15);
end

if (N==32)
t(1)=0.0483076656877383162348126;   w(1)=0.0965400885147278005667648;
t(3)=0.1444719615827964934851864;   w(3)=0.0956387200792748594190820;
t(5)=0.2392873622521370745446032;   w(5)=0.0938443990808045656391802;
t(7)=0.3318686022821276497799168;   w(7)=0.0911738786957638847128686;
t(9)=0.4213512761306353453641194;   w(9)=0.0876520930044038111427715;
t(11)=0.5068999089322293900237475;  w(11)=0.0833119242269467552221991;
t(13)=0.5877157572407623290407455;  w(13)=0.0781938957870703064717409;
t(15)=0.6630442669302152009751152;  w(15)=0.0723457941088485062253994;
t(17)=0.7321821187402896803874267;  w(17)=0.0658222227763618468376501;
t(19)=0.7944837959679424069630973;  w(19)=0.0586840934785355471452836;
t(21)=0.8493676137325699701336930;  w(21)=0.0509980592623761761961632;
t(23)=0.8963211557660521239653072;  w(23)=0.0428358980222266806568786;
t(25)=0.9349060759377396891709191;  w(25)=0.0342738629130214331026877;
t(27)=0.9647622555875064307738119;  w(27)=0.0253920653092620594557526;
t(29)=0.9856115115452683354001750;  w(29)=0.0162743947309056706051706;
t(31)=0.9972638618494815635449811;  w(31)=0.0070186100094700966004071;
for jj=2:2:32

t(jj)=-t(jj-1); w(jj)=w(jj-1);
end
end

%%% Begin
Ncases=4;
cc=[0.2;0.4;0.6;0.8];

for ic =1:Ncases 
c=cc(ic);
fprintf (resl,'\n c = %6.4f ',c);
% step 1   calc Nu0
TNu1=0.5; TNu2=10.0; NPTS=50000; del=(TNu2-TNu1)/NPTS;
TNu = TNu1;
for ip=1:NPTS
rt(ip)=TNu;
FN(ip) = 1.0-c*(TNu/2)*log((TNu+1)/(TNu-1));
a(ip)=sign(FN(ip));
TNu=TNu+del;
end
% find the root where the sign changes
root = 1.0;
for ir = 1:NPTS-1

if (a(ir)~=a(ir+1))
root = rt(ir);

end

t(11)=0.8656312023878317438804679; w(11)=   0.0951585116824927848099251;
t(12)=-t(11);  w(12)=w(11);

(Continued )

282 Nuclear Engineering



PROGRAM 6.3 (Continued)

xLo = 0.2; xHi = 20.0; Nx = 100; DelX=(xHi-xLo)/Nx;
Nx=Nx+1;
keyX=0; iX=0; countX=0; 
for iX=1:Nx

x=xLo+(iX-1)*DelX;
xx(iX)=x;        

% step 3  calc psi0+
phi1 = (exp(-x/root))/N0Plus; % first term
% step 4   calc lambda and N
sum=0.0;
for i=1:N

nu=0.5*(1+t(i)); ww=w(i);
lambda=1-c*nu*atanh(nu);
Nnu = nu*(  lambda^2  + (1.0/4.0)*c^2*nu^2*3.14159^2 );
value=(exp(-x/nu))/Nnu;
sum = sum + ww*value;
end
beta=0.5*sum;
gamma=0.0;

phi2=beta+gamma;% second term

phi(iX)=(1.0/(2.0))*(phi1+phi2);
phiAs(iX)=(1.0/2.0)*phi1;
ratio(iX)=phiAs(iX)/phi(iX);
end

% print the results

% now calc the total flux
fprintf(resl,'\n Total Flux  Asymp FLux  Ratio PhiAs/Phi \n\n');
fprintf(resl,'\n    i      x         Phi(x)      PhiAs(x)  Ratio ');
for k = 1:Nx   

fprintf(resl,'\n %4.0f  %8.4f  %12.4e %12.4e 
%12.4e',k,xx(k),phi(k),phiAs(k),ratio(k));

phiC(ic,k)=phi(k); % for each c value
phiAsC(ic,k)=phiAs(k);

end

% now write all these values for this value of c
for k1 = 1:Nx

ratioC(ic,k1)=ratio(k1);
end

end

end
Nu0(ic)=root;
fprintf (resl,'\n nu0 = %6.4f ',root);

% step2    calc N0+
N0Plus = 0.5*c*root^3*( (c/(root^2-1.0)) - (1/root^2));
fprintf (resl,'\n N0Plus = %12.4e ',N0Plus);

(Continued )
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The Chandrasekhar H-function satisfies the integral equation

H μð Þ5 11μH μð Þ
ð1
0

ψ μ0ð Þ
μ1μ0 H μ0ð Þdμ0 : (6.72)

The above equations are solved with the MATLAB program SpherePtSrcMain giving the total flux shown in

Figs. 6.8�6.10 for various values of c

The values of flux given in Table 6.1 agree well with the results for c5 0:3 and c5 0:9 given by (Siewert &

Grandjean, 1979).

Fig. 6.11 shows that transport theory flux for values of c approaching the critical case (c5 1) from which the cosine

buckling is observable.

PROGRAM 6.3 (Continued)

xlabel('\bf x (mfp)''fontsize',14)
ylabel('\bf Total Flux cm^{-2} s^{-1}','fontsize',14)
h = legend('\phi','\phi_{as}',2);
grid on
end

if(iplot==2)
set(gca,'FontSize',12)
for ip=1:Nx

ratio1(ip)=ratioC(1,ip); ratio2(ip)=ratioC(2,ip); 
ratio3(ip)=ratioC(3,ip); ratio4(ip)=ratioC(4,ip);

end
plot(xx,ratio1,'-k','LineWidth',1.5)
hold on
plot(xx,ratio2,'-k','LineWidth',1.5)
hold on
plot(xx,ratio3,'-k','LineWidth',1.5)
hold on
plot(xx,ratio4,'-k','LineWidth',1.5)
xlabel('\bf x (mfp)','FontSize',14)
ylabel('\bf \phi_{as}/\phi ','FontSize',14)
xp1=5; yp1= 0.05 ;text(xp1,yp1,'c=0.2','FontSize',12);
xp2=5; yp2= 0.64 ;text(xp2,yp2,'c=0.4','FontSize',12);
xp3=5; yp3= 0.88 ;text(xp3,yp3,'c=0.6','FontSize',12);
xp4=3; yp4= 0.95 ;text(xp4,yp4,'c=0.8','FontSize',12);
%h = legend('c=0.2','c=0.4','c=0.6','c=0.8',2);
grid off
ylim([0 1.05])
end
fclose(resl);

fprintf(resl,'\n\n    c    Nu0');
for in=1:Ncases

fprintf(resl,'\n %6.4f %6.4f',cc(in),Nu0(in));
end

iplot=2;

if(iplot==1)
set(gca,'FontSize',12)

semilogy(xx,phi,'-k','LineWidth',2)
hold on
semilogy(xx,phiAs,'-r','LineWidth',2)
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6.3 Numerical methods for solving the transport equation

The first idealizations of infinite medium, semiinfinite medium and homogeneous half-spaces are useful for obtaining

exact analytical solutions using Laplace and Fourier transforms, Green’s functions, etc., but found very limited practical

application. This was followed by semianalytical and numerical solutions methods such as SN and PN methods. Later,

finite element (Section 4.5), boundary-element and finite volume methods were incorporated with tremendous numeri-

cal effort to extend the capabilities of deterministic codes to full 3D modeling.

6.3.1 The discrete ordinates method

The discrete ordinates method, first used by Wick and Chandrasekhar for radiative transfer analysis in stellar atmo-

spheres (Bell & Glasstone, 1952), was developed for neutron transport by Carlson and Lathrop (1968). In the discrete

ordinates, SN , method, the angular distribution for solid angle Ω is discretized into a quadrature scheme as shown in

Fig. 6.12 (Reuss, 2008) for the cases N5 4:8. Thus each octant has 3 and 10 elements, respectively.

The μ-interval (21,1) is divided into n intervals with μ0 52 1;μN 5 1. Thus, In the S4 approximation,

μ0 52 1;μ1 52 1=2;μ2 5 0;μ3 5 1=2;μ4 5 1.

FIGURE 6.8 Transport theory flux in a finite sphere (c5 0.3).

FIGURE 6.9 Transport theory flux in a finite sphere (c5 0.9).
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In the limits ðμj21;μjÞ, the angular flux is approximated by a linear function

φ r;μð Þ5 μ2μj21

μj 2μj21

φðr;μjÞ1
μj 2μ

μj 2μj21

φðr;μj21Þ: (6.73)

This approximation is then substituted in the transport equation and after integration over μ and N equations are sub-

sequently obtained. To obtain the final equations, an additional equation is required for μ52 1.

For details on the mathematics and iterative algorithms on the SN method, the reader is referred to Clark and

Hansen (1964) and Bell and Glasstone (1979).

FIGURE 6.10 Transport theory flux in a finite

sphere.

TABLE 6.1 Neutron flux in a finite sphere.

r c5 0:3a c5 0:6b c5 0:9c

4πr2ρNðrÞ 4πr2ρðrÞ 4πr2ρNðrÞ 4πr2ρðrÞ 4πr2ρNðrÞ 4πr2ρðrÞ
0 1.0 1.0 1.0 1.0 1.0 1.0
0.1 0.96427 0.96404 1.03384 1.03273 1.12076 1.11470
0.2 0.91944 0.91851 1.04871 1.04420 1.23423 1.20988
0.3 0.87072 0.86856 1.05026 1.03994 1.33831 1.28317
0.4 0.82055 0.81657 1.04180 1.02300 1.43252 1.33356
0.5 0.77035 0.76382 1.02562 0.99527 1.51681 1.36018
0.6 0.72103 0.71102 1.00350 0.95789 1.59138 1.36195
0.7 0.67318 0.65840 0.97682 0.91126 1.65659 1.33720
0.8 0.62717 0.60576 0.94672 0.85480 1.71285 1.28277
0.9 0.58325 0.55204 0.91410 0.78578 1.76064 1.19143
1.0 0.54155 0.49139 0.87972 0.68833 1.80046 1.02745

ac50.3, v05 1.0026, Z05 2.50310.
bc5 0.6, v05 1.1021, Z05 1.19240.
cc50.9, v05 1.9031, Z05 0.78964.
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In the transport equation, the integral term is represented by weighted angular flux at discrete directions. The repre-

sentation is ð1
21

φ x;μ0ð Þdμ0D
XN
i51

wiφðx;μiÞ (6.74)

where the quadrature weights, for a special choice of μi corresponding to PN μi

� �
5 0, given in Table 6.2 (Bell &

Glasstone, 1979)

The discretized transport equation is

μ
@

@z
φ z;μj

� �
1φ z;μj

� �
5

c

2

XN
i51

wiφ z;μi

� �
1 S z;μj

� �

for angular bins specified for

j5 1; 2; 3;?;N:

The discrete ordinates method is extensively applied in reactor calculations for lattice cells and whole-core eigen-

value calculations and is being made faster by using parallel algorithms in supercomputing environments.

6.3.2 The Spherical harmonics method

In this section, the spherical harmonics method, mentioned for the two-group transport equations, is described for a

one-speed infinite slab with isotropic scattering followed by anisotropic scattering and then for a critical finite slab.

FIGURE 6.11 Transport theory flux for values

approaching c5 1.

FIGURE 6.12 Discrete ordinates with N5 4,8.
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Consider now the case of an isotropic plane source S xð Þ5 δðxÞ=4π. The one-speed equation from Eq. (6.22) is

μ
@

@x
φ x;μð Þ1Σt xð Þφ x;μð Þ5 c

2

ð1
21

dμ0φ x;μ0ð Þ1 δðxÞ
4π

: (6.75)

Expanding the angular flux φ x;μð Þ in terms of Legendre polynomials PmðμÞ

φ x;μð Þ5
XN
m50

2m1 1

4π
φm xð ÞPm μð Þ (6.76)

with moments defined by

φm xð Þ5 2π
ð1
21

φ x;μð ÞPm μð Þdμ (6.77)

so that the zeroth moment, as defined earlier, is the scalar flux

φ0 xð Þ5 2π
ð1
21

φ x;μð Þdμ (6.78)

and the first moment is the current

φ1 xð Þ5 2π
ð1
21

μφ x;μð Þdμ5 J xð Þ: (6.79)

In the spherical harmonics, PN , method, the angles are written in terms of spherical harmonic functions which are

orthogonal in the range μEð2 1; 1Þ where μ5 cosϑ. The first few functions (Table 4.2) are

Po μð Þ5 1;P1 μð Þ5μ;P2 μð Þ5 1

2
3μ2 2 1
� �

; . . .

and orthogonality gives ð1
21

Pn μð ÞPm μð Þdμ5
2δn;m
ðn1 1Þ (6.80)

where

δn;m 5
1; n5m

0; n 6¼ m

�

Substituting Eq. (6.76) in Eq. (6.75)

μ
XN
m50

2m1 1ð Þ dφm

dx
Pm μð Þ1

XN
m50

2m1 1ð ÞφmðxÞPm μð Þ5 cφ0ðxÞ1 δ xð Þ (6.81)

Using the recurrence relation for spherical harmonics:

2m1 1ð ÞμPm μð Þ5 m1 1ð ÞPm11 μð Þ1mPm21 μð Þ (6.82)

TABLE 6.2 Quadrature weights and angle for S2; S4; S6 expansions.

N wi μi

2 w1 5w2 5 1:000 μ1 52μ2 5 0:57735
4 w1 5w4 50:65215 μ1 52μ4 5 0:33998

w2 5w3 50:34785 μ2 52μ3 5 0:86114
6 w1 5w6 50:46791 μ1 52μ6 5 0:23862

w2 5w5 50:36076 μ2 52μ5 5 0:66121
w3 5w4 50:17132 μ3 52μ4 5 0:93247
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and the orthogonality of Legendre polynomials, Eq. (6.81) reduces to a numerically useful form:

n1 1ð Þ dφn11 xð Þ
dx

1 n
dφn21 xð Þ

dx
1 2n1 1ð Þ 12 cδ0nð Þφn xð Þ5 δ0nδ xð Þ (6.83)

from which moments can be computed. In Eq. (6.83), φ21 xð Þ5 0, and the Kronecker delta function δ0n 5
1; n5 0

0; n 6¼ 0

�
.

Eq. (6.83) is truncated at n5N, and called the PN approximation, with the condition

dφN11 xð Þ
dx

5 0:

An accurate answer is obtained for large N. The first step towards practical application is a slab finite in one dimension con-

sidered infinite in the other two dimensions. Such a configuration is an idealization of a critical slab for reactor calculations as

described for the NDE in Chapter 5. This would require boundary conditions on both sides for incoming and outgoing flux or

current. Spherical harmonics, based on Legendre polynomials have orthogonality for angles in the range 21#μ# 1 and thus

are inadequate to represent a free boundary condition at the left face of a slab. The inward current at the left face of a slab

(x5 0), J1 0ð Þ is zero if there are no incoming neutrons at this face. Such a condition is written as

J1 0ð Þ5
ð1
0

μφ 0;μð Þdμ5 0: (6.84)

The above is not to be confused with

J2 0ð Þ5
ð0
21

μφ 0;μð Þdμ 6¼ 0 (6.85)

such that the net current

J 0ð Þ5 J1 0ð Þ2 J2 0ð Þ 6¼ 0: (6.86)

Similarly on the right side of a critical slab (x5 a), zero incoming current is expressed as

J2 að Þ5
ð1
0

μφ a; 2μð Þdμ5 0; (6.87)

while

J1 að Þ5
ð1
0

μφ a;μð Þdμ 6¼ 0; (6.88)

and

J að Þ5 J1 að Þ2 J2 að Þ 6¼ 0: (6.89)

The generalized expression of such boundary conditions are the Marshak boundary conditionsð1
0

Pi μð Þφ 0;μð Þdμ5

ð1
0

Pi 2μð Þφ a; 2μð Þdμ5 0; (6.90)

for i5 1; 3; 5; . . .N:

Exercise 6.1: Marshak conditions

Apply the Marshak boundary conditions for i5 1, and use Fick’s Law (P1 equations) to show that the linear extrapo-

lation distance d for which φ dð Þ5 0 is

d5
2

3
mfpð Þ (6.91)

The neutron transport equation Chapter | 6 289



In the P1 approximation, Marshak’s boundary conditions for c2 1# 1, that is, c# 2; lead to the extrapolation

distance

x0 5
2

3
12

4

9
c2 1ð Þ1 1

4

6

5
c21ð Þ2 1?

	 

: (6.92)

Recalling from Eq. (6.31) that c is the mean number of neutrons emerging from a collisions, assumed constant,

c5 0 for an absorber, c5 1 for a pure scattering material, c. 1 for neutron multiplication, c5 ν for fission. Thus, for

the case c5 1, x0 5 d, as in the case for diffusion theory.

The Mark boundary conditions

φ 0;μi

� �
5 0 (6.93)

for i5 1; 2; 3; . . . N1 1ð Þ=2; with N odd are another possibility for representing the boundary conditions at the two sur-

faces of a critical slab. Thus

φ 0;μ1

� �
5φ 0;μ2

� �
5φ 0;μ3

� �
. . . 5 0

where μ1 are obtained from the roots of

PN11ðμiÞ5 0: (6.94)

As an example, for N5 1,

P2 μ1

� �
5

1

2
3μ2

1 2 1
� �

5 0

gives

μ1 5
1ffiffiffi
3

p : (6.95)

which is one of the two Gauss quadratures for N5 2 used in numerical integration also (Section 6.4).

The extrapolation distance for the P1 Mark boundary conditions are

x0 5
1ffiffiffi
3

p 12
1

3
c2 1ð Þ1 1

5
c21ð Þ2 1?

	 

: (6.96)

For c5 1; the Marshak and Mark extrapolations length differ by about 12%.

The discrete ordinates method, using Gauss quadrature sets, and spherical harmonics method with Mark’s boundary

conditions are equivalent.

The preceding formulation for isotropic scattering has been extended to the case of anisotropic scattering

μ
@

@x
φ x;μð Þ1φ x;μð Þ5 c

ð2π
0

dϕ0
ð1
21

dμ0 f Ω0-Ωð Þφ x;μ0ð Þ1Q x;μð Þ: (6.97)

Since f Ω0-Ωð Þ5 f Ω0 ∙Ωð Þ5 f ðμ0Þ, a spherical harmonics expression

f Ω0-Ωð Þ5 f μ0

� �
5

XN
l50

2m1 1

4π
f lPl μ0

� �
(6.98)

is used, with moments

f l 5 2π
ð1
21

f μ0

� �
Pl μ0

� �
dμ: (6.99)

f 0 5 2π
ð1
21

f ðμ0Þdμ5 1 (6.100)

φm xð Þ5 2π
ð1
21

φ x;μð ÞPm μð Þdμ (6.101)
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With the addition theorem

Pl μ0

� �
5Pl μð ÞPl μ0ð Þ1 2

Xl

m51

l2mð Þ!
l1mð Þ!P

m
l μð ÞPm

l μ0ð Þ cosmðϕ2ϕ0 Þ (6.102)

where Ω5Ω μ;ϕð Þ: The angular flux and angular source φ x;μð Þ and Q x;μð Þ are expanded as in Eq. (6.68)

Q x;μð Þ5
XN
m50

2m1 1

4π
Qm xð ÞPm μð Þ (6.103)

with

Qm xð Þ5 2π
ð1
21

Q x;μð ÞPm μð Þdμ: (6.104)

With the expansions (.) inserted into (..) and multiplying both sides by

1

2
2n1 1ð Þ

ð1
21

Pm μð Þdμ� (6.105)

the set of coupled ODEs is

n1 1ð Þ dφn11 xð Þ
dx

1 n
dφn21 xð Þ

dx
1 2n1 1ð Þ 12 cf n

� �
φn xð Þ5 2n1 1ð ÞQn xð Þn5 0; 1; 2; . . . (6.106)

For a P3 solution, for illustration, the four first-order coupled ODEs for a one-dimensional slab are

dφ1 xð Þ
dx

1 12 cf 0
� �

φ0 xð Þ5Q0 xð Þ (6.107)

2
dφ2 xð Þ
dx

1
dφ0 xð Þ
dx

1 3 12 cf 1
� �

φ1 xð Þ5 3Q1 xð Þ (6.108)

3
dφ3 xð Þ
dx

1 2
dφ1 xð Þ
dx

1 5 12 cf 2
� �

φ2 xð Þ5 5Q2 xð Þ (6.109)

and

4
dφ4 xð Þ
dx

1 3
dφ2 xð Þ
dx

1 7 12 cf 3
� �

φ3 xð Þ5 7Q3 xð Þ (6.110)

These can be solved by standard methods, such as the finite difference method (Section 6.4) to obtain the moments

in the expression

φ x;μð Þ5 1

4π
φ0 xð ÞP0 μð Þ1 3φ1ðxÞP1ðμÞ15φ2ðxÞP2ðμÞ17φ3ðxÞP3ðμÞ
� �

(6.111)

The angular flux will then be

φ x;μð Þ5 1

4π
φ0 xð Þ1 3μφ1 xð Þ1 5

2
3μ221
� �

φ2 xð Þ1 7

2
5μ323μ
� �

φ3 xð Þ
	 


(6.112)

Note that for a P3 formulation, there are four coupled ODEs; in general there are N1 1 equations with N1 1 equa-

tions; thus, N1 1 boundary and interface conditions are required. For the critical slab described above, free-surface

boundary conditions, that is, zero incoming current at the left and right boundaries gives

J 0ð Þ52
1

2
φ 0ð Þ; J að Þ5 1

2
φ að Þ (6.113)

which, using Fick’s law can be expressed as

φ1 2Dn̂∙rφ5 0 (6.114)
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where n̂ is an outward unit normal to a boundary surface.

For a unit lattice cell, a reflective boundary condition, shown in Fig. 6.3, would imply zero (net) current at the point

of reflection xr, i.e J xrð Þ5 0 (Fig. 6.13).

The general boundary condition is written in a mixed form, consisting of Dirichlet, Neumann or mixed boundary

conditions.

In spherical geometry, the one-speed equation, using Eqs. (6.11), (6.12) and (6.17),

μ
@

@r
1

12μ2

r

@

@μ
1Σt r;Eð Þ

	 

φ r;Ω;E; tð Þ5

ð2π
0

dϕ0
ð1
21

dμ0Σs r;μ0

� �
φ r;μ0ð Þ1Q x;μð Þ (6.115)

and the spherical harmonics expansions (Bell & Glasstone, 1979) leads to the coupled ODEs

n1 1ð Þ d

dr
1

n1 2

r

� �
φn11 rð Þ1 n

d

dr
1

n2 1

r

� �
φn21 rð Þ1 2n1 1ð ÞΣs;nφn rð Þ5 2n1 1ð ÞQn rð Þ (6.116)

for n5 0; 1; 2; . . .

Σs r;μ0

� �
5

XN
m50

2m1 1

4π
Σs;m rð ÞPm μ0

� �
(6.117)

As for the slab case, the N1 1 equations require the same number of boundary conditions, for which half are speci-

fied at the outer boundary, as the free-surface conditions given above, and the other half requiring all fluxes φnðr5 0Þ
at the origin to be finite.

Another set of boundary conditions, as was applied in Chapter 5, is to use a free-surface boundary condition at the

radius and a zero-current symmetry condition J 0ð Þ5 0 at the origin.

Exercise 6.2: Spherical harmonics for an isotropic source

Show that the P1 equations in spherical geometry for an isotropic source Q0 rð Þ reduce to the diffusion equation

1

r2
d

dr
r2D

dφðrÞ
dr

	 

2Σs;0 rð Þφ rð Þ1Q0 rð Þ5 0 (6.118)

Exercise 6.3: The diffusion coefficient

From the P1 equations, Eqs. (104) and (106), with an isotropic source, show that the diffusion coefficient is

D5
1

3 12 cf 1
� � : (6.119)

FIGURE 6.13 Reflective boundary condition on a unit lattice cell.
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such that the transport cross-section is

Σtr 5Σt 12 cf 1
� �

: (6.120)

The average cosine of the scattering angle μ0 is

μ0 5

Ð 1
21

μ0f μ0

� �
dμ0Ð 1

21
f μ0

� �
dμ0

5 f 1 (6.121)

For a scattering, nonfissile, material Eq. (6.120) is

Σtr 5Σt 2Σsμ0: (6.122)

The forms of r∙J for plane, infinetly long cylinder and sphere are (Section 5.1) of the form,

r∙J5 d

dx
Jx;

r∙J5 d

dr
1

2

r

� �
J;

r∙J5 d

dr
1

1

r

� �
Jr ;

which can be expressed as

r∙J5 d

dr
1

n

r

� �
Jr

with n5 0; 1; 2 for plane, cylinder and sphere. Similarly the diffusion equation, from the P1 equations is

2
1

rn
d

dr
rnD

dφ rð Þ
dr

� �
1Σtφ rð Þ5Q0 rð Þ: (6.123)

6.3.3 The DPN method

The double spherical harmonics DPN method, proposed by Yvon (1957; Ziering & Schiff, 1958), gives an expansion of

angular flux in the forward and backward hemispheres of angle, due to a singularity at μ5 0, that is, at an angle of inci-

dence θ5 π=2 on a free surface. The method gives good accuracy for a planar free surface or interface between differ-

ent materials where the flux could be anisotropic.

The differences between the PN and the DPN methods are shown in Table 6.3. In the PN method, the angular flux

and source are expanded in terms of a complete set of Legendre polynomials with angular moments φl xð Þ and orthogo-

nality in the range Að2 1; 1Þ. In the DPN method, the expansion is for the half range at the left hemisphere 21#μ# 0

TABLE 6.3 Expansions, moments and orthogonality relations for PN and DPN methods.

PN DPN

φ x;μð Þ5 PN
l50

2n11
2 Pn μð Þφn xð Þ φ x;μð Þ5 PN

n50
2n11ð ÞPn 2μ2 1ð Þφ1

n xð Þ; 0#μ# 1

�
φ x;μð Þ5 PN

n50
2n11ð ÞPn 2μ1 1ð Þφ2

n xð Þ; 2 1#μ# 0

φn xð Þ5 Ð 1
21 Pn μð Þφ x;μð Þdμ φ1

n xð Þ5 Ð 1
0 Pn 2μ21ð Þφ x;μð Þdμ

� φ2
n xð Þ5 Ð 0

21 Pn 2μ11ð Þφ x;μð ÞdμÐ 1
21 Pn μð ÞPm μ0ð Þdμ5 2

2n11 δnm
Ð 1
0 Pn 2μ2 1ð ÞPm 2μ2 1ð Þdμ5 1

2n11 δnm
� Ð 0

21 Pn 2μ1 1ð ÞPm 2μ1 1ð Þdμ5 1
2n11 δnm
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and the half range at the right hemisphere 0#μ# 1 of the angular domain with angular moments in the positive range,

φ1
l and in the negative range φ2

l . The orthogonality of the Legendre polynomials is separately for both angular

domains.

When the flux is not heavily angle-dependent a few terms are sufficient in the spherical harmonics PN method; con-

versely a high order PN expansion is required for good accuracy when the angular dependence is prominent as could be

the case for an interface between two very different materials.

Both the DP0 and the P1 are approximations of the diffusion equation. It is better to apply Yvon’s method near the

layer boundaries and for optically thin media while the PN method would be expected to be better at large distance

from boundaries or for optically thick media.

A finite difference form for the DPN expansion can be obtained by mutilying Eq. (6.98) with Pm 2μ2 1ð Þ and inte-

grating over the interval 0#μ# 1 and then by Pm 2μ2 1ð Þ and integrating over 21#μ# 0. The first term is thenð1
0

dμμPm 2μ2 1ð Þ @φ x;μð Þ
@x

which becomes

@

@x

XN
n50

2n11ð ÞPn 2μ2 1ð Þφ1
n xð Þ

ð1
0

dμμPm 2μ2 1ð Þ: (6.124)

The integration over μ is carried out using the recurrence relation

μPn μð Þ5 1

2n1 1
n1 1ð ÞPn11 μð Þ1 nPn21ðμÞ½ �

So that Eq. (6.125) becomes

m

2m1 1

dφ1
m21 xð Þ
dx

1
m1 1

2m1 1

dφ1
m11 xð Þ
dx

The full equation becomes

m

2m1 1

dφ6
m21 xð Þ
dx

1
m1 1

2m1 1

dφ6
m11 xð Þ
dx

6
dφ6

m xð Þ
dx

1 2Σt xð Þφ6
m xð Þ

5
XL
l50

ð2l1 1Þp6
lmΣs xð Þ

XN
n50

�
2n1 1Þ p1lmφ1

n ðxÞ1 p2lmφ
2
n ðxÞ

� �
(6.125)

where

p1lm 5

ð1
0

Pl μð ÞPm 2μ2 1ð Þdμ

and

p2lm 5

ð0
21

Pl μð ÞPm 2μ1 1ð Þdμ

so that p6
0n 5 δ0n: Eq. (6.125) are a set of coupled ODEs which can be solved by standard methods.

The DPN method has been applied by Ziering and Schiff and by Gelbard, Davis, and Pearson (1959) for plane

geometry with four angular intervals to calculate the angular flux accurately. By the 1960s, the method had been

extended to eigenvalue problems in two-dimensional geometries, and by the 1980s, it had been applied to PHWRs using

the one-group and 27-group steady-state integral equation with isotropic scattering and constant source (Krishnani,

1982). A cylindrical lattice cell is used for modeling the 7-, 19- and 28-rod PHWR fuel clusters (Section 3.3) for hexag-

onal lattices with DP1 and DP2 expansions to calculate the flux distribution and overall keff . The DPN method for slab

geometry was incorporated into a multigroup transport code (Stepanek, 1981) and found to be more efficient than com-

parable SN methods. Using a variational principle, the DPN method has been extended to 2D plane geometry (Ghazaie,

Zolfaghari, & Abbasi, 2017) and applied to several benchmarks including a 2D lattice cell and a miniature reactor

problem.
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6.3.4 The BN method

In the BN method, where the B denotes buckling (for spherical or cylindrical bare reactors for example, Section 5.2),

the spatial part of the angular flux is assumed to be of a cosine form for a multiplying medium and an imaginary num-

ber for a nonmultiplying such as a reflector surrounding a core. The flux is assumed to be of the form

φ x;μ;Eð Þ5 e2iBxφ μ;Eð Þ: (6.126)

and similar expansions are assumed for the source term

Q x;μ;Eð Þ5 e2iBxQðμ;EÞ
For a bare reactor B is the buckling, and the real part of the above is

φ x;μ;Eð Þ5 cosBxφ μ;Eð Þ:
With the expansion given by Eq. (6.126), the “within group” flux equation becomes

ΣtðEÞ2 iBμ½ �φ μ;Eð Þ5
XN
n50

2n1 1

2
Pn μð Þ

ð
dE0Σs;n E0-Eð Þ

ð1
21

dμ0φ E0 ;μ0ð ÞPl μ0ð Þ1 1

2
S Eð Þ (6.127)

Dividing by Σt 2 iBμ½ � and multiplying the above by Pl μð Þ and integrating, withð1
21

dμPn μð Þφ μ;Eð Þ5φnðEÞ

and defining

1

2

ð1
21

Pl μð ÞPn μð Þ
12μgðEÞ½ � dμ5Al;n

and

g Eð Þ5 iB=ΣtðEÞ
gives

ΣtðEÞφlðEÞ5
XN
l50

ð2n1 1ÞAl;n

ð
dE0Σs;n E0-Eð ÞφnðE0 Þ1 SðEÞAl;n: (6.128)

For an isotropic source S0 Eð Þ;

ΣtðEÞφ μ;Eð Þ5
XN
l50

ð2n1 1ÞAl;n

ð
dE0Σs;n E0-Eð ÞφnðE0 Þ1 S0 Eð ÞAl;0 (6.129)

Then

A0;0 gð Þ5 1

2

ð1
21

1

12μgðEÞ½ � dμ52
1

2g
ln 12 g
 2 ln 11 g

 � �
5

1

2g
ln
j11 gj
j12 gj 5

1

g
tanh21g

since

1

2
ln

x1 1

x2 1

� �
5 tanh21x:

Also

A1;0 5
1

2

ð1
21

μ
12μgðEÞ½ � dμ5

1

2g2
2 2g2 ln 12 g

 1 ln 11 g
 � �

5
1

g
A0;0 gð Þ2 1
� �

1

g Eð Þ 2n1 1ð ÞAl;n gð Þ2 n1 1ð ÞAl;n11 gð Þ2Al;n21 gð Þ5 δl;n
g

:

Note that Al;n 5An;l.
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Consider the B0 approximation; with l5 0, the scattering moments are truncated at Σs;0 E0-Eð Þ to give the integral

equation

Σt Eð Þφ0 Eð Þ5A0;0

ð
dE0Σs;0 E0-Eð Þφ0 E0ð Þ1 S0 Eð ÞA0;0: (6.130)

For higher moments φl,

ΣtðEÞφlðEÞ5
XN
l50

ð2l1 1ÞAl;n

ð
dE0Σs;l E

0-Eð ÞφnðE0 Þ1 S0 Eð ÞAl;n

and the angular flux φ μ;Eð Þ is easily found as

φ B;μ;Eð Þ5 A0;0

ΣtðEÞ2 iBμ½ �
ð
dE0Σs;0 E0-Eð Þφ0ðE0 Þ1 S0 Eð Þ

	 

(6.131)

It is also possible to find all the φlðEÞ for n5 0 from

ΣtðEÞφlðEÞ5
XN
n50

ð2n1 1ÞAl;n

ð
dE0Σs;n E0-Eð ÞφnðE0 Þ1 S0 Eð ÞAl;0 (6.132)

In the B1 approximation, there will be two equations, one for n5 0 and the other for n5 1: Group constants, as

defined in the two-group transport equation (Section 6.1) can be determined with this method. The general procedure

for the BN method is that a buckling is assumed for which a group-1 calculation is carried out. From this, a multigroup

calculation gives the spatial distribution of the flux; if this differs considerably from the assumed distribution, then a

series of iterations is carried out until the fluxes converge. When multigroup fluxes are found, the overall system criti-

cality can be found. It is found that the converges of the BN method is better than that of the PN method.

6.3.5 The finite element method

The first and simplest numerical methods for computing fluxes were based on easy-to-use finite difference methods

(Section 4.5.1) using spatial discretization but these were suited to square-type grids. These were refined in several

ways, such as the FEM using “shape functions” (Section 4.5.2) to model irregular geometry as well as polynomial-type

variations in the flux. The process of using these finite “elements” which are first solved at a unit level and then com-

bined into a “global” system reduces the coupled differential equations into a system of linear algebraic equations of

the form ̿AX 5B which are subsequently solved by traditional methods of linear algebra. Techniques based on continu-

ous and discontinuous Galerkin FEMs have also been used for improving the computational efficiency. For large pro-

blems, iterative schemes and convergence techniques have been used so that the FEM is widely used in reactor physics

(Ackroyd, 1992; Kang & Hansen, 1973; Rothenstein & de Oliveira, 1991).

6.3.6 The nodal method with transport theory

In a typical 1000 MW PWR, there could be B3 M zones for which multiphysics computations would be required for

carrying out stead state core analysis and other transient and safety studies. If in each zone a fine mesh structure would

be used, the computational burden would become prohibitively large for supercomputers. Thus, in the first step a lattice

cell calculation can be done using a fine mesh and reflective boundary conditions with a 2D transport code.

Subsequently, in the second step, the resulting fluxes can be used to obtain spatially homogenized cross-sections for a

simplified core model with nodes as each of the B3 M zones which could then be simulated with a less computation-

ally expensive diffusion code (Smith, 1986). The nodal fluxes are then given a reconstructed shape from the nodal

expansion function (Lawrence, 1986; Putney, 1986). High speedups with parallel algorithms have been demonstrated

for Open multiprocessors for a pin-resolved 3D seven-group NuScale modular reactor core neutron transport calcula-

tions (Wang et al., 2019). Similarly, high accuracy and attractive computational speed has been demonstrated for pin

power reconstruction by the high order triangle-based polynomial expansion nodal (TPEN) algorithm for a VVER-1000

water-water Russian energetic reactor (Safarzadeh, 2020).
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6.3.7 Hybrid methods

There are several problems in nuclear engineering when a deterministic, or stochastic, approach in itself is not sufficient

to give accurate answers within the limits of realistic computational effort. One such area is radiation shielding in ducts

for which a hybrid computation, coupling a deterministic approach such as a 1D SN transport computation with Monte

Carlo simulation can be beneficial. An initial run of a deterministic code could give the biasing parameters favorable

for a detailed Monte Carlo simulation to get “good” results which otherwise may not be possible due to large variances

from analog simulations.

Another class of problems is the classical source-detector configuration where the “forward” or standard transport

equation represents a solution at a detector given the source and conversely the “backward” or adjoint transport equa-

tion represents the importance function, that is, the importance of a particular phase space to the detector. Carrying out

such coupled forward-backward computations can give the biasing parameters for a Monte Carlo simulation. These

have also been used for design optimization in a variational formulation.

6.3.8 Criticality estimates

The single most important characteristic of a multiplying system is its criticality. In Chapter 2, the criticality of the

Godiva and Jezebel assemblies was described, with critical radii given in Tables 2.19 and 2.22. The one-group critical-

ity equation (Section 5.2.3) was the first expression given for estimating the keff of a bare slab, sphere or cylinder. The

next step was to obtain a slightly better two-group criticality formula (Section 5.3.2) in which both fast and thermal lea-

kages were incorporated. From a two-group, the formulation of a multigroup diffusion model was discussed in

Section 5.4. The eigenvalue formulation of a steady-state neutron balance equation amounted to a problem in which the

largest eigenvalue found had the physical significance of being related to the critical configuration. This was demon-

strated for a two-group two-region spherical core surrounded by a reflector; a deterministic model resulted in the critical

determinant from which the critical dimension was obtained. It was then understood that a criticality problem could be

to determine the critical size of a system given its material composition, or alternately, to determine the material com-

position that would result in criticality for a certain shape. These were central to the description of nuclear power reac-

tors, propulsion reactors and space reactors in Chapter 3. Whether it was PWRs, BWRs, PHWRs or any other reactor

type, the most important design parameter was its critical configuration. We thus came to a description of neutron trans-

port, in the present chapter. The improvement of the formulations in this chapter, over those in the previous chapter,

was essentially in the description of the angular flux. This added a complexity to the mathematical description. We now

realize that exact solutions of transport theory, done in the early 1960s and 1970s could also give criticality estimates,

for example, from the asymptotic flux using the Mark boundary conditions (Eq. 6.96) and requiring the flux to be zero

at the extrapolated distance gave the first estimates from this end point method of critical radius for a bare sphere as

a5π ν0 cð Þ
 2 x0:

As an example, for 5 1:20; ν0 cð Þ5 1:198, These are listed in Table 6.4 for some values of c, the mean number of

secondary neutrons emerging from a collision; the exact method rnsesults are from a transport theory solution by varia-

tional method.

From the exact solutions (Section 6.2) the description of numerical methods such as the SN and PN methods gave a

better capability to solve eigenvalue multigroup transport problems to determine the systems criticality. Comparisons of

transport theory estimates for the Godiva, Jezebel, Topsy and other assemblies (Bell & Glasstone, 1979; Bowen &

Busch, 2005; Rawat & Mohankumar, 2011; Rowlands et al., 1999; Thompson et al., 2020) show good results between

theory and experiments.

TABLE 6.4 Critical radius estimates of a sphere (in mean free paths); exact vs PN method.

c End point Exact P1 P3 P5

1.05 7.277 7.2772 7.543 7.296 7.284
1.20 3.172 3.1720 3.513 3.204 3.181
1.60 1.476 1.4761 1.850 1.550 1.497

Source: Bell, G. I., & Glasstone, S. (1979). Nuclear reactor theory. New York: Robert E. Krieger Publishing Co., Inc., 1979, Table 2.7, p. 101.
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It is seen that a multigroup (typically 6, 12, or 24 groups) S4;P3 calculation is sufficient to estimate the criticality of

fast systems such as Godiva with certain data libraries. To close this chapter, we also describe methods, such as the

MOC which have the capability of performing lattice cell calculations leading to whole-core neutronic eigenvalue cal-

culations useful for the design of nuclear systems described in Chapter 3. Later in this book, we will cover the Monte

Carlo method which is another powerful method as well as a simulation tool for the design of nuclear systems.

6.4 Transport theory for reactor calculations

The NDE, based on Poisson’s equation, is mathematically much simpler than the integro-differential transport equation

and hence is used for simple problems. Even then, numerical solutions are required for large problems such as “whole-

core” reactor design. In the multigroup form, the diffusion equation is used to obtain “first estimates” and can serve as

a useful step for providing guesses to full transport calculations. A limitation of diffusion equation is near sources and

boundaries where the angular flux requires detailed consideration as provided, for example, in the discrete ordinates

and spherical harmonics methods.

Reactor core calculations are carried out primarily to determine the overall core flux and distributions during

steady-state operation as well as in the case of operational perturbations and in the determination of safety margins in

case of accidents.

A typical 1000 MW PWR has an equivalent core diameter of B3.37 m, heightB 3.66 m with 193 fuel assemblies,

each 173 17 assembly containing 264 fuel rods. Thus there are 50,952 fuel rods in the core. If each fuel rod is parti-

tioned, for computational purposes, into 50 zones axially then the total number of zones for which computation is

required becomes 2,547,600. Within the assembly, we can identify a repeating pattern consisting of a cell with a fuel

rod, clad and water coolant.

While it is desirable to carry out calculations for a full reactor core, it is generally quite difficult to do this due to

the complicated geometry of the core, consisting of fuel pellets in fuel pins, cladding and structural material. Further,

the heterogeneity of the core is due to various types of materials such as variable enrichment fuel, absorbers, and guide

tubes. There is also the energy dependence of interaction cross-sections with resonances, as mentioned in Chapter 1.

Thus, a two-step procedure is used. In the first step, lattice calculations over unit lattice cells, typically cylindrical,

square, hexagonal (Fig. 6.4) or plate-type, are carried out with an ultra-fine and fine energy mesh structure for a fuel

pin-cell with reflective boundary conditions. The purpose here is to generate energy- and space-averaged cross-sections,

weighted over the neutron flux, from evaluated nuclear data files. In the second step, these “averages” are used as

homogenized fuel assemblies with a coarse mesh in an integrated whole-core calculation (Fig. 6.14).

In obtaining “averages” for a whole-core calculation, a considerable amount of data processing and reactor physics

is required to accurately obtain multigroup cross-sections particularly accounting for the resonances in the cross-section

data. The number of groups used depends on the level of accuracy required; as an example, it is typical to take a 70-

group structure for fast reactor cores and over 100 groups for thermal reactors which can be further group-collapsed

into two-group cross-sections. The “computational burden” in whole-core calculations is reduced by using the diffusion

equations for scalar flux instead of the transport equation for angular flux.

In deterministic methods, computations for the neutron flux are carried out by discretizing in space, energy and

angle so that the entire domain is divided into a finite number of spatial zones, each of uniform nuclear properties, a

FIGURE 6.14 Cylindrical, square and hexagonal lattice cells.
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finite number of energy groups and a finite number of angles. Thus, each discretization has its own limitations such as

truncation errors.

In a nuclear reactor core there are typically several assemblies consisting of fuel, control rods, grid spacers, modera-

tor, coolant and supporting structures. These assemblies are placed together in a lattice which could be rectangular as in

the case of water-cooled reactors, and hexagonal as in the case of sodium cooled reactors. Thus, the generation of a

reactor core mesh can become very complicated and could require large memory storage for a complete description.

For this purpose, open-source mesh generation software is available for efficiently modeling realistic cores which could

require millions of elements defined by mesh vertices (Jain & Tautges, 2014) requiring a mesh file size of a few GB.

Modeling a fast reactor core, such as the Japanese MONJU reactor, comprising eight assembly types of 715 assemblies

requires 101 million hexahedral elements generated by 712 processors in parallel. In realistic simulations involving the

modeling of neutron transport with thermal hydraulics over possibly more than 1 billion hexahedral elements, the task

of mesh generation is cumbersome as is the task of computation necessitating the most powerful supercomputers with

hundreds of thousands of CPU cores.

6.4.1 Collision probability method

The collision probability Pij;g is defined as the probability that a neutron born, isotropically in the lab system and with a

uniform spatial probability, in any region Vi of the lattice has its first collision in some region of interest Vj of a unit

cell. The neutron flux and collision density are found from the spatially discretized multigroup integral form of the

transport equation by tracking a neutron in a straight line to its next collision. After tracking a large number of trajecto-

ries the collision probabilities for all cells are computed and the scalar fluxes are then determined from a relationship of

the form (Cacuci, 2010)

φj;g 5

P
i Qi;gViPij;g

VjΣj;g
(6.133)

where Qi;g is the source term (including fission) for in-scattering into region i and energy group g, Σj;g is the macro-

scopic total cross-section in region j and energy group g.

In a computer code such as DRAGON (Marleau, Hébert, & Roy, 2011), the integral form of the transport equation

is written in terms of collision probabilities for which symmetry and reciprocity relations can be derived. Together with

conservation relations (Stoke’s theorem across boundaries), and with further assumptions of isotropic and uniform

source, simple and compact expressions can be obtained for scalar flux and angular currents.

In the CPM, there are two main disadvantages: (1) full square matrices are produced, for example, a 203 20 matrix

for 20 spatial regions, and (2) scattering is restricted to isotropic collisions in the L system. The CP method is thus pre-

ferred for problems where the number of regions is small and meshes are unstructured.

6.4.2 Method of characteristics

In the MOC, the solution is found for a fixed angle along a “straight path” across regions divided into uniform zones.

In the integral transport (Section 6.1.2)

φ r;Ω;E; tð Þ5
ðN
0

e
2
Ð s0

0
Σtðr2s0 0Ω;EÞds0 0

q r2 s0Ω;Ω;E; t2 s0=v0
� �

ds0 (6.134)

with

q r;Ω;E; tð Þ5
ðN
0

dE0
ð
dΩ0Σs r;E

0 ;Ω0 ∙Ωð Þφ r;Ω0 ;E0ð Þ1 1

4π
χ Eð Þ

ðN
0

dE0
ð
dΩ0 νΣf E

0ð Þφ r;Ω0 ;E0ð Þ1 S r;Ω0 ;E0ð Þ

(6.135)

the source term is written as

qki:j 5Qk
F;i 1Qk

S;i 1Qk
i (6.136)

where the indices i; j; k refer to the mesh, characteristic line (CL) and energy group respectively (Fig. 6.15).

A MOC computation flowchart, based on Eqs. (6.136�6.140), is shown in Fig. 6.16. At the first level, a unit lattice

cell calculation begins with the selection of a representative cell such as the one shown in Fig. 6.15.
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The cell is divided into zones within which the data is uniform, such as a fuel zone, a cladding zone and a coolant

zone. The group cross-section data for each of these zones is given. The first step is an initialization of scalar fluxes,

angular fluxes and the system multiplication keff .

A CL, represented by the index j, has a specified polar angle θ and a specified azimuthal angle ϕ; parallel lines are
chosen by varying the initial point.

In the first step, with the initialized values, the fission source for zone i, energy group k. Qk
F;i is calculated from the

initialized scalar fluxes ϕk0
i , as

Qk
F;i 5

1

4π
χðEÞ
keff

XG
k051

νΣk0
F φ

k0
i :

The fission source is calculated from Eq. (6.137) for all energy groups k in all meshes i.

In the second step, the scattering source Qk
S;i is calculated from all in-scattering cross-sections and scalar fluxes.

In the next step the outgoing angular flux φout;k
i;j from a mesh is calculated from the incoming angular flux along a

CL ðjÞ, φin;k
i;j

φout;k
i;j 5φin;k

i;j e2Σk
iΔs 1

Qk
i

Σk
i

12 e2Σk
iΔs

� �
(6.137)

where Qk
i 5Qk

F;i 1Qk
S;i and Δs is the distance traveled along the CL across the mesh.

The average angular flux, along this CL is

φ
k

i;j 5
Qk

i

Σk
i

1
φin;k
i;j 2φout;k

i;j

Σk
iΔs

(6.138)

When all such CLs are processed, their average is the cell averaged group scalar flux φ
k

i from which the number of

fissions, summed over all I meshes and G energy groups, is calculated as

XI

i51

XG
k51

νΣk
Fφ

k
i (6.139)

FIGURE 6.15 Characteristic lines in a lattice cell.
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If the “new” scalar fluxes for the mth generation φk
i 5φm;k

i are used for the present generation and the “old” scalar

fluxes φk
i 5φm21;k

i are used for the previous, or m2 1th, generation, then the ratio of the mth and m2 1th generation of

fissions neutrons would be the mth estimate of the system multiplication k
ðmÞ
eff ; thus

k
ðmÞ
eff 5

PI
i51

PG
k51

νΣk
Fφ

m;k
i

PI
i51

PG
k51

νΣk
Fφ

m21;k
i

(6.140)

Inner and outer iterations are carried out until the scalar fluxes and the k
ðmÞ
eff converge. This is the essence of an

eigenvalue calculation at the level of the unit lattice cell.

There are several solvers used in MOC applications in reactor physics such as the cyclic tracking concept using infi-

nite tracks with periodic characteristics and finite tracks with explicit boundary conditions. The latter are “faster sol-

vers” and therefore more widely used in production codes. The numerical computation in the MOC is based on the

ODE form, called the characteristic form, of the NTE and a track is computed as it traverses across homogenized spatial

FIGURE 6.16 Flowchart for the method of characteristic in a lattice cell.
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zones, crossing boundaries in a fixed solid angle, through the entire domain. Integrals are cast using quadrature schemes

to compute scalar fluxes and boundary currents.

Several computation strategies have been developed and demonstrated for acceleration with advantages in solving

unstructured 2D and structured 3D reactor core configurations. The MOC has been implemented in WIMS-E (Lindley

et al., 2017) and DRAGON codes. The MOC has been used for fundamental lattice calculations in several applications

such as in an ACR-type cell (Le Tellier & Hébert, 2005) consisting of a cluster geometry with light water coolant and

heavy water moderator. Algorithms have been successfully implemented for full core simulations with modern single

instruction multiple data (SIMD) computer architectures for high performance computing (Tramm et al., 2016).

Problems

1. Compare the neutron flux obtained by transport theory with that obtained by diffusion theory in a finite sphere with

a point isotropic source at its center. Plot the flux for a source of 107 neutrons s21.

2. The asymptotic flux in a source-free sphere is given as rϕas rð Þ5A sin r
νoj j. In end point theory an estimate for the

critical radius R is obtained by putting the asymptotic flux equal to zero at the extrapolated boundary. This gives

R5π νoðcÞ
 2 d, where d is the extrapolation radius. Using the data for Godiva estimate the critical radius and com-

pare with that obtained with diffusion theory.

3. Compare the asymptotic flux of Problem 2 with the exact transport theory asymptotic flux and with the diffusion

theory flux in Chapter 5.

4. Compare the reflectivity, or albedo, φ 0; 2μð Þ5 12
ffiffiffiffiffiffiffiffiffiffiffi
12 c

p
HðμÞ obtained from transport theory: with the corre-

sponding estimate from diffusion theory and calculate the albedo of a slab of graphite 3 m.f.p. thick.

Nomenclature

English lower case
d extrapolation distance

keff effective multiplication

kN infinite multiplication

n number density

English upper case
Ai area

Bg geometrical buckling

Bm material buckling

BN the BN method

Ĉ collision operator

Ci concentration of precursor

D

D̂ derivative operator

DPN the DPN (double spherical harmonics) method

G Green’s function

J neutron current

L diffusion length

L̂
1

adjoint operator

Ni atomic density of the ith nuclide

Ni shape function in the ith element

Pes escape probability

Pm
l associated Legendre functions

PN the PN (spherical harmonics) method

Rc critical radius

S source

SN the SN (discrete ordinates) method

T̂ transport operator
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Greek lower case
λ decay constant

μ cosine of angle of scattering

μ0 average cosine of scattering angle

φ flux

φ1 adjoint flux

φC complementary solution

φP particular solution

τ neutron age

ν
χ fission spectrum

ψ collision density

Greek upper case
Ω solid angleP

a macroscopic absorption cross-sectionP
f macroscopic fission cross-sectionP
r macroscopic removal cross-sectionP
s macroscopic scattering cross-sectionP
tr macroscopic transport cross-sectionP
t macroscopic total cross-section

Abbreviations
FD finite difference method

FEM finite element method

FVM finite volume method

IFBA integral fuel burnable absorber

MOC method of characteristics

NDE neutron diffusion equation

NEM nodal expansion method
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Polytech. Montréal. (Report IGE�294).

Putney, J. M. (1986). A hexagonal geometry nodal expansion method for fast reactor calculations. Progress in Nuclear Energy.

Rawat, A., & Mohankumar, N. (2011). Benchmark results for the critical slab and sphere problem in one-speed neutron transport theory. Annals of

Nuclear Energy.

Reuss, P. (2008). Neutron physics. Cedex, France: EDP Sciences.

Rief, H. (1984). Generalized Monte Carlo perturbation algorithms for correlated sampling and a second-order Taylor series approach. Annals of

Nuclear Energy.

Robson, R. E., White, R. D., & Hildebrandt, M. (2017). Fundamentals of charged particle transport in gases and condensed matter.

Rothenstein, W., & de Oliveira, C. R. E. (1991). Discrete energy or multigroup finite element transport calculations in lattice physics. Progress in

Nuclear Energy.

Rowlands, J., et al. (1999). Intercomparison of calculations for Godiva and Jezebel.

Safarzadeh, O. (2020). Development of the triangle-based nodal algorithm for reconstructing pin power distributions. Progress in Nuclear Energy.

Siewert, C. E., & Grandjean, P. (1979). Three basic neutron transport problems in spherical geometry. Nuclear Science and Engineering, 70, 96�98.

Smith, K. S. (1986). Spatial homogenization methods for light water reactor analysis. Progress in Nuclear Energy.

Stepanek, J. (1981). The DP N surface flux integral neutron transport method for slab geometry. Nuclear Science and Engineering.

Thompson, N., et al. (2020). National Criticality Experiments Research Center (NCERC) - Capabilities and recent measurements. EPJ Web of

Conferences.

Tramm, J. R., Gunow, G., He, T., Smith, K. S., Forget, B., & Siegel, A. R. (2016). A task-based parallelism and vectorized approach to 3D Method of

Characteristics (MOC) reactor simulation for high performance computing architectures. Computer Physics Communications.

Wang, Y., Zhang, T., Lewis, E. E., Yang, W. S., Smith, M. A., & Wu, H. (2019). Three-dimensional variational nodal method parallelization for pin

resolved neutron transport calculations. Progress in Nuclear Energy.

Williams, M. M. R. (1971). Mathematical methods in particle transport theory. New York: John Wiley & Sons.

Yvon, J. (1957). La diffusion macroscopique des neutrons une methode d’approximation. Journal of Nuclear Energy, 4(3), 305�318.

Ziering, S., & Schiff, D. (1958). Yvon’s method for slabs. Nuclear Science and Engineering.

304 Nuclear Engineering

http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref18
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref19
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref20
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref20
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref21
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref22
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref23
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref24
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref24
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref24
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref25
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref26
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref26
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref27
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref28
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref28
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref29
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref29
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref30
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref31
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref31
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref32
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref33
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref34
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref34
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref35
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref35
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref36
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref36
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref37
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref38
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref38
http://refhub.elsevier.com/B978-0-323-90618-0.00006-5/sbref39


Chapter 7

The Monte Carlo method

The Monte Carlo (MC) method (Dunn & Shultis, 2012; Kalos & Whitlock, 2008; McClarren, 2018) for radiation trans-

port simulation is a powerful methodology for modeling realistic and often complex engineering systems. Though the

method, with all its mathematical rigor and its strong foundations in the laws of probability, was fairly established, it

was not until the Manhattan Project that it attracted the attention of nuclear scientists challenged with the estimation of

the composition, dimensions and configurations of nuclear weapon systems.

The name “Monte Carlo” was given by Nicholas Constantine Metropolis (1915�99), of the Theoretical Physics

Division of the Manhattan Project, in 1942, (Keys & Groves, 1963) to this statistical process of simulation (Metropolis &

Ulam, 1949). His colleagues included Teller, John von Neumann, Stanislaw Ulam, and Robert Richtmyer. Those were the

days of MANIAC, The Mathematical and Numerical Integrator and Computer, designed according to von Neumann’s prin-

ciple of the stored program (Anderson, 1986). It is said that Fermi used statistical sampling techniques as early as 1934,

when he was working on neutron diffusion in Rome. When, in 1944, the development of the atomic-bomb project entered

its final phase; the three problems at the center of the nuclear weapons program: neutron transport, behavior of materials

under very temperatures and pressures, and fluid dynamics, required mathematical computation for design and prediction.

Earlier work was developed by Hammersley and Handscombe and Spanier and Gelbard (Hammersley &

Handscomb, 1964; Hammersley, Handscomb, & Weiss, 1965; Spanier, Gelbard, & Bell, 1970). It does not per se

involve the solution of any equation but can be interpreted to follow the integral form of the transport equation where

the flux is expressed in terms of the uncollided and collided terms.

Several mathematical methods were developed, along with powerful computing hardware, that led to the successful

testing of a nuclear weapon and the advent of the first electronic computer during World War II.

Since then, MC methods have been important in many areas of science and engineering, as well as to medicine and fore-

casting. In nuclear engineering, MC simulation is an essential component of the curriculum, starting preferably at the

advanced undergraduate level. A picture of radiation transport in the mind of a student who has not been exposed to MC

could be restrictive in several ways. Here, it is easier to relate to concepts such as flux, current, and the overall transport

flow in complex geometries.

This chapter builds upon the fundamentals described for charged particles and gamma transport in Chapter 1, neu-

tron interactions with matter in Chapter 2, mathematical foundations given in Chapter 4, and diffusion and transport

modeling in Chapters 5 and 6. Here the simulation process is applied to the nuclear systems covered in Chapter 3 with

emphasis on modeling fission and fusion systems.

7.1 Stochastic simulation

7.1.1 Markov processes

In Section 4.9.2, a Markovian process was described as a stochastic process in which the next state Pi11 depends on its

present state Pibut there is no memory of the past.

The transport kernel (Section 6.1.4) T̂
g0

r0-r; Ω̂0
� �

represents a neutron at r0; Ω̂0;E0 as shown in Fig. 7.1 being trans-

ported to position r where an interaction takes place represented by Ĉ
g0-g

r; Ω̂0-Ω̂
� �

which changes the phase space

of the neutron from Pðr0; Ω̂0;E0Þ to Pðr; Ω̂;EÞ; there is thus no dependence on any state prior to the state Pðr0; Ω̂0;E0Þ.
Since the interaction has no dependence on another state prior to P r0; Ω̂0;E0

� �
, it is classified as a Markovian process.

7.1.2 Events in a random walk

As described in Chapter 1, a neutron source such as californium-252 can emit millions of neutrons per second. Each

neutron is thus born as a source neutron at a position r0 with a certain energy E0 at an angle Ω0; it undergoes
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interactions in a random walk consisting of events. Two such random walks are shown in Fig. 7.2; in the first instance,

a source neutron undergoes scattering collisions at locations 1�5 until it is absorbed at position 6. The second random

walk shows a source neutron undergoing five interactions; the first four are scattering collisions with a change of angle

(and of course energy) while the fifth interaction is an absorption which terminates its random walk. An absorption can

be termed as the death of a neutron as it ends the random walk. In fact any event that takes a neutron out of the domain

of interest, such as a leakage across the physical boundary of a nuclear system, is called a death. A random walk is a

birth-to-death process with millions or several more such random walks considered in a simulation.

In Chapter 2, we discussed the several types of neutron interactions that are possible such as elastic scattering,

inelastic scattering, radiative capture, fission and many more.

7.1.3 The physics of interactions

In MC simulation, the physics of interactions is modeled with very elaborate methods as it is crucial to have accurate

knowledge of exactly what takes place in an interaction. As described in Section 2.2 (neutron interactions), radiative cap-

ture is understood to be a process in which a compound nucleus is formed for a very short while before the emission of a

gamma ray. The details of such an interaction are part of a MC simulation for the calculation of postcollision parameters.

7.1.4 Nuclear interaction data

Data files such as the evaluated nuclear data file (ENDF/B) (Brown et al., 2018) briefly described in Chapter 6 contain

elaborate neutron cross section data for Z5 02 95 (neutron to Amercium-241), neutron reaction sublibrary with 557

materials and photon data for 163 materials mostly with evaluations up to 140 MeV. There are fifteen sublibraries with

photonuclear, photoatomic, radioactive decay, spontaneous fission yields and charged-particle cross sections. These

libraries are used for the charged particle and gamma transport MC simulations described in Chapter 1 and neutron

transport simulations described in Chapter 2.

ENDF/B files are part of the MCNP and SCALE packages but for other codes, group cross sections are prepared

with codes such as NJOY and WIMSD as described in Chapters 5 and 6 for diffusion and transport codes. In MC simu-

lation, the ENDF/B cross sections are used directly rather than going through the process of group-averaging.

7.1.5 How do we know an answer is good?

In MC simulation, quantities such as flux and current are estimated from an average of several random walks or histories.

Generally, the larger the number of histories simulated, the greater will be the confidence level of an estimate, as predicted

by the Central Limit Theorem. However, for a tally that is not well-behaved, such as in a rare event simulation, it is not

FIGURE 7.1 A neutron interaction.

FIGURE 7.2 Random walks.
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necessary that the confidence level will increase with the number of histories. It is thus important to understand how reli-

able an estimate is. Two statistical quantities play a fundamental role here namely the mean of an estimate x and its vari-

ance σ2. Actually we know the sample mean and the sample variance rather than the population mean and the population

variance. The relationship between the sample mean and population mean is through the Law of Large Numbers, which

states that as the sample size N-N, the sample mean x tends to the true mean, or the population mean.

So that leaves us with the question: how is the sample variance σ2
s related to the population variance σ2?

The sample variance of the mean σ2
s ðx) is another quantity that is possible to calculate; this is expected to get smal-

ler as the sample size increases. Thus

σ2
s xð Þ5 σ2

s

N
;

which means that we get continually better estimates of the sampled mean.

Our objective, to have as small as possible a value of σ2
s xð Þ, can be achieved if we reduce the sample variance or

increase the sample size. The first is possible by variance reduction techniques such as importance sampling in which

we bias a simulation to give favorable estimates. As an example, if a quantity is known to be reducing at an exponential

rate, then we would give more importance to lower values in a simulation. Thus instead of using uniformly distributed

random numbers, we would use exponentially distributed random numbers. A simple demonstration of such an impor-

tance sampling will be demonstrated for the evaluation of integrals in Section 7.5.

It is now important to define what we mean by the quality of an estimate. If we get a bad estimate with a small vari-

ance then the answer can be classified as inaccurate but precise. For example, if the true value of a quantity is 32, and

our estimate is 266 0:0001, then this estimate is inaccurate but in terms of standard deviation, it is a precise estimate.

Increasing the sample size N would be futile. On the other hand, an estimate of 316 2 is a better estimate as the mean

is closer to the true mean, while the standard deviation is much higher than that of the previous estimate. Here, it would

be reasonable to expect an improvement in the estimate by increasing the sample size.

In MC simulations, the underlying model uses physics as well as cross section data which are in-built and we have

no control on them. The dynamics of a neutron interaction that determine, for example, compound nucleus formation,

are based on quantum physics (Section 2.8). We thus determine Doppler broadening from a given model. The two fac-

tors in our control are the coding and modeling of a problem. Coding, especially in the case of large computer codes,

relies heavily on mathematical techniques used such as finite-difference, FEM, etc., to solve governing ODEs, PDEs

and integro-differential equations. The modeling of a problem is in the hands of a user; free choices include the use of

a particular method in preference to another, the use of a variance reduction scheme and the number of histories simu-

lated. These choices determine the precision of an estimate.

In Chapter 4, the Central Limit Theorem was used to show that the distribution of the estimated means x would be

approximately normal; the area under such a distribution would be B0.68 within one standard deviation and B0.95

within two standard deviations. These would serve as confidence levels for estimates obtained from a MC simulation. A

useful metric would then be a relative error defined as the ratio of the standard deviation of the mean divided by the mean

R5

ffiffiffiffiffiffiffiffiffiffiffi
σ2
s xð Þ

p
x

:

As described in MCNP Volume I, in the best estimate, R would be zero, while in a bad estimate R would be as large

as the estimated mean x. The relative error would thus lie in the range zero to one. In MCNP, the relative error is classi-

fied as generally reliable when R, 0:10 for a detector other than a point detector, and R, 0:05 for a point detector.

From the definition of the mean and standard deviation, the relative error is

R5

PN
i51

x2i

PN
i51

xi

� �2
2

1

N

2
6664

3
7775
1=2

which means that if a simulation is carried out for which each xi is the same xi 5μ, then

R5

μ2
PN
i51

1

μ
PN
i51

1

� �2
2

1

N

2
6664

3
7775
1=2

5 0:
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An easy example is the integral

I5

ð1
0

e2xdx

for which the PDF can be the uniform PDF f xð Þ5 1, and the estimator is g xð Þ5 e2x (in which case xi
0s are all differ-

ent) or alternately, in which the PDF is f xð Þ5 e2x and the estimator is g xð Þ5 1 (in which case each history gives the

same estimate). This choice of a PDF-estimator combination gives a zero-variance result. So, even one sample would

be sufficient to give the correct answer.

When a zero-variance result is not foreseen, the value of the relative error squared is expected to decrease with an

increase of the sample size N while the computer time would increase more-or-less linearly with N. It would thus be

fair to expect that the quantity R2T would remain constant; this quantity, in MCNP, is listed in the output as a Figure of

Merit, FOM5 1=ðR2T), from which the relative error is given as

R5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FOM3 T
p :

Another useful indicator for the quality of the results given by the MCNP code, is the variance of the variance

(VoV) which is the estimated relative variance of the relative error R; a value less than 0.1 is taken to be indicative of a

good result. Again, the VoV is expected to decrease as the sample size N increases. For a much more rigorous discus-

sion the user is referred to the MCNP Volume I.

7.2 Simulation of a random walk

The integral equation “simulated” in MC for the collision density χ in a multigroup formulation with the collision and

transport operators as discussed in Chapter 6 is

χðgÞ ~r ; Ω̂; t
� �

5 Ĉ
g0-g

~r;Ω̂0-Ω̂
� �

T̂
g0

r0-r;Ω̂0
� �

χðg0Þ r0; Ω̂0; t
� �

1 SðgÞ (7.1)

where Ĉ and T̂ are the collision and transport operators. The MC procedure consists of starting a “source” neutron,

transporting it to a collision site, processing the collision, making the appropriate tallies and continuing the simulation

until the neutron is lost by some terminating process. Many such neutrons are simulated, and at the end of the simula-

tion, tallies are averaged with both mean and variance computations. The MC process, which can be understood to be a

simulation of the integral formulation, is also known as a “Neumann series” solution as will be outlined in more detail

in the next section.

7.2.1 Monte Carlo simulation

In the MC method, a “large sample” of neutrons, representative of the total “population” is simulated to infer on quanti-

ties of interest using laws of probability. The MC approach allows modeling complexity of geometry and collision

physics and hence is not limited to idealizations of the sort that limit deterministic approaches. One of its’ drawbacks is

heavy computational effort; this can be addressed by powerful hardware and by efficiency-improving techniques which

result in considerable “speed-up.”

Fig. 7.3 shows the transport of neutrons in matter. Three starting neutrons, A, B, and C, are shown here though in

actual situations there can be a large number such as 1014 neutrons in a nuclear power reactor. Neutron A collides with

a host nucleus which undergoes the nuclear fission reaction resulting in the prompt emission of three “first generation”

neutrons A-1, A-2, and A-3 while the nucleus recoils to a new position. Neutron A-1 is captured by a host nucleus, while

A-2 collides with another nucleus which undergoes fission and emission of two neutrons A-2�1 and A-2�2. The third

neutron A-3 collides with a host nucleus and scatters “off” it, that is, the neutron transfers some of its’ energy to the

nucleus. Thus the number of first generation neutrons is three. Each of these neutrons continue to be transported and

collide with host nuclei undergoing one of a large possibilities of nuclear reactions, until they are either captured or

they escape from the physical domain by crossing the boundary. In a straightforward simulation of neutron transport,

each neutron is followed from its’ birth as a source neutron to its’ death when it is captured or has escaped. The birth-

to-death process is called a “history” and the straight paths in between interactions during a history is called a “random

walk” as it each interaction is determined randomly from one of several possible interactions. The random walk is “sto-

chastic” in nature, that is, it may not repeat itself, and it is Markovian in the sense that the next event is not related to
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the entire history of a neutron, just to its immediately preceding event. During a history, “tallies” are updated from

which useful information on the neutron flux and subsequent reaction rates can be obtained.

In the MC simulation of neutron transport, several such histories are simulated, and their tallies are processed using laws

of probability and statistics to infer on the averages of quantities obtained from the simulated sample. The usefulness of the

MC method is largely due to the high-speed computing possible with modern processors capable of gigaflop computations.

As a result, nuclear reactors, nuclear weapons and other nuclear systems are designed with great precision using MC

simulation. Since the 1940s MC applications in the Manhattan Project, the techniques have been adapted to a wide

range of areas in computational mathematics and physics, econometrics and forecasting, to biology and medicine.

7.2.2 Estimators and tallies

The fundamental quantity of interest is the flux φðr;Ω;E; tÞ which can be obtained in exact analytical form from the

transport equation for idealized conditions (Section 6.1) but in greater detail through numerical methods and simulation.

In general, this quantity is obtained by dividing the phase space into a number of bins in which tallies are scored. In

MC simulation, a result is obtained in a specified region of interest rather than over the whole domain as for diffusion

and transport calculations. Thus the bin tallies amount to a multiangle multigroup approach which, as we will see, is a

convenient approach for obtaining reliable estimates of the angular flux and from it, any reaction of interest.

Consider the three current and flux tallies (Werner, 2017)

J5

ð
dt

ð
dE

ð
dΩ

ð
dA Ω ∙ n̂j j φ r;Ω;E; tð Þ; (7.2)

the surface flux

φS 5
1

A

ð
dt

ð
dE

ð
dΩ

ð
dA φ r;Ω;E; tð Þ; (7.3)

and the volume-averaged cell flux

φV 5
1

V

ð
dt

ð
dE

ð
dΩ

ð
dA φ r;Ω;E; tð Þ: (7.4)

The track-length and collision estimators (CE) are used to score the scalar neutron flux φ � nv, where n is the num-

ber density (neutrons/cm3) and v is the neutron speed (cm/s). The flux, with units of neutrons/cm2/s, represents the rate

of neutrons crossing a unit area perpendicular to their direction of motion.

FIGURE 7.3 Neutron transport in matter.
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Typical tallies required in neutron/gamma transport calculations of nuclear fission reactors and systems are the

system multiplication keff , neutron and gamma fluxes as well as their distribution in space and associated reaction

rates such as radiative capture (gamma production), radiation dose, energy deposition. The flux loading determines

the effect of radiation on materials in the reactor such as structural materials, coolants, moderators, control and

instrumentation materials and wiring. The effect of radiation streaming through ducts and ports as well as the radia-

tion environment external to the reactor/nuclear systems is an integral part of all neutron/gamma transport

calculations.

For fusion reactors, such as ITER (International Thermonuclear Experimental Reactor), briefly described in

Section 3.10, and the European DEMO reactor (Demonstration Fusion Power Reactor) beyond ITER, the tallies of inter-

est are similar with little differences from nuclear fission reactors due to the differences in basic engineering design.

In fusion reactors, very high temperatures and their loading on the vacuum vessel first wall (FW) as well as beyond

the FW, the effect on superconducting coils, the tritium breeding in blanket are required in addition to the usual

neutron/gamma transport calculations in fission systems. Radiation damage to steel affects its life and operation; it is

calculated in terms of displacements per atom (dpa) per full power year (FPY).

Tallies for water in PWRs as well as in fusion reactor designs utilizing water as coolant, such as DEMO water-

cooled lithium lead, are similar as they are based on the low water density at high temperatures and pressures.

Two main differences between fission and fusion power reactors are the neutron energy which is B 1 MeV on the

average from fission neutrons while a D-T fusion reactor would be a powerful source of 14 MeV neutrons. The other

difference is that in a fusion reactor, the neutrons are born in the central vacuum chamber and stream around relatively

easily due to gaps between surrounding blanket modules and more ducts and channels.

All tallies are based on the neutron/gamma flux, that is, on the current, surface fluxes, and volume-averaged fluxes

[Eqs. (7.2)�(7.4)] and associated reaction rates Rx (Section 2.6) of the form

Rx 5C

ð
dt

ð
dEσxðEÞ φ r;E; tð Þ: (7.5)

where σxðEÞ is a microscopic cross section for reaction type x (taken from a cross section library) and C is a normaliza-

tion constant.

These reaction rates are calculated from a simulation using tally multiplier input commands as will be described for

input files.

In Fig. 7.4 below, for a neutron history consisting of the four scattering events shown, the track lengths are

d1; d2; d3; d4. For better efficiency, nonanalog MC uses a weight modification factor p5Σs=Σt, so that a history is con-

tinued after every collision with a reduced weight. The track-length estimator (TLE) for flux is

φTLE 5 nv5 ðN:dÞ=ðV :tÞ5wd=V (7.6)

so that the flux estimate for this history is, for total starting weight W and volume V ,

φTLE 5
1

WV

� �X4
i51

widi (7.7)

FIGURE 7.4 Random walk of a neutron.
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The same quantity can be found using the collision estimator; in this case the estimate is made only at a collision

site and not on an escape event, unlike the TLE.

φCE 5
1

WV

� �X4
i51

wi

Σt;i
(7.8)

Finally, the surface flux Js, that is, the number of neutrons crossing the surface per unit area, can be estimated from

the weight crossing a surface divided by the total starting weight and the volume to get

Js 5
1

WV

� �X
i

wi (7.9)

The summation is over all the neutrons that cross the surface.

There are three commonly estimators namely the collision estimator (CE), the absorption estimator (AE) and the

TLE with each having their own advantages such as when a large number of collisions are anticipated, the CE will give

a good answer, that is, bot accurate and precise. When fewer collisions are anticipated, then nonanalog simulation is

preferred since biasing a simulation, while preserving overall quantities, will give more tallies. Similarly, when the

medium is optically thin then the TLE is bound to give the best estimate as the number of collisions in both analog and

nonanalog simulations will be low or nonexistent while there will always be a track-length even in the absence of any

collision.

Four estimators for the system multiplication keff
kCEeff , k

A;as
eff , kA;naseff and kTLEeff are listed in Table 7.1.

In the collision estimator, the estimate is made at each collision with the actual (analog) particle weight while in the

AE the tally is updated at each absorption event. With implicit capture, a particle history is continued at an absorption

but with reduced weight (equal to the survival probability). The TLE, in contrast to both, updates a tally regardless of a

collision such as when it is crossing a region without undergoing a collision.

Exercise 7.1:

Assume a starting weight of one, K5 2, (U-235 and U-238) with f5 5 0:2, f8 5 0:8, assume values for ν k and for

cross sections, calculate values for a history with three collisions.

There is no fixed number for simulation parameters, but typical reactor simulations require a few million histories in

over 100 cycles with thousands or hundreds of thousands of neutrons simulated per cycle for accurate results. Such a

calculation takes several hours on multiprocessors with several cores.

Exercise 7.2:

From Fig. 7.5, estimate the TLE flux and the collision estimator flux. Are they the same? Also estimate the surface

flux if line B represents the surface (assume unit surface area) (Table 7.2).

TABLE 7.1 Estimators for the system multiplication keff.

Estimator Tally

Collision estimator

1
N

PNcol

i51

Wi

PK
k51

fk ν kΣf ;kPK
k51

fkΣt ;k

2
64

3
75

Absorption estimator (analog simulation)
1
N

PNabs

i51

Wiν k
Σf ;k

Σc;k 1Σf ;k

Absorption estimator (nonanalog simulation)
1
N

PNabs

i51

Wi
0
ν k

Σf ;k

Σc;k 1Σf ;k

Track-length estimator
1
N

PNpaths

i51

Wiρd
PK
k51

fkν kΣf ;k
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7.2.3 Sampling a source

The source in a simulation is specified according to the problem of interest, which are considered here in three

categories:

1. fixed-source nonmultiplying medium,

2. criticality calculation in nuclear systems, and

3. mixed-mode neutron, photon, electron transport.

In the first category, the source would be specified in terms of its position energy, direction, and time. There could

be one or several sources at fixed points or distributed over a surface or within a volume. A fusion source, for example,

would have energy sampled from a fusion spectrum such as a Gaussian spectrum

p Eð Þ5CE1=2exp 2 E2bð Þ=a� �2h i
where a is the spread in MeV and b is the average neutron energy in MeV; for DT fusion at 10 keV, a52 0:01 MeV

and b52 1.

A fission energy spectrum, such the neutrons from a californium-252 source would be specified with a Watt

spectrum

p Eð Þ5Cexp 2E=a
� �

sinh
ffiffiffiffiffiffi
bE

p

where the parameters are given for the appropriate nuclide as shown for a few cases in Table 7.3.

In the second category, a criticality calculation starts by specifying a starting source at specified points or reading a

source from a previous simulation. The system multiplication is calculated over a number of specified cycles for a spec-

ified number of source histories N, with some cycles skipped for using better estimates for calculating means and var-

iances. The number of source histories is kept constant in each cycle by adjusting the weight of neutrons since one

cycle may produce 1000 neutrons while another may produce 1200 neutrons from fission. The procedure for calculating

keff is as dscribed in the previous section.

FIGURE 7.5 Forward scattering of neutrons in a slab.

TABLE 7.2 Tally estimators in MCNP.

Quantity Estimator Units

Current W Particles
Surface flux W

μj jA Particles/cm2

Cell flux Wd
V Particles/cm2

Point flux
Wp Ωpð Þe2Σt R

R2 Particles/cm2

Energy deposition ρ
mWdΣtH Eð Þ MeV/g

Heating ρ
mWdΣf Q MeV/g

Pulse tally W Weight accumulated in energy bins
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In the third category, the simulation can be run as a neutron, photon, electron or as a mixed-mode simulation

accounting for photon produced from nuclear interactions and secondary electrons produced from photons as described

in Chapter 1.

MC simulations can handle a great variety of source specifications such as several point or distributed sources

defined by discrete probabilities in energy bins. The source(s) can be biased in angle and energy as the problem may

require. In shielding calculations, where very few tallies are scored in regions of interest, an MC simulation can be car-

ried out to write a surface source where a good tally is scored. In a subsequent run, the surface source can be used to

generate histories to score tallies in detector or regions of interest.

In this chapter, a fixed-source MC simulation is described. In a fission criticality problem, an initial fission source

distribution is specified and the next generation fission points are obtained. This gives a first estimate of the system

multiplication k
ð1Þ
eff ; these fission points are started in the second generation to give the next generation estimate and so

on until convergence is reached. The energy of the source neutrons is sampled from a fission spectrum

For a point isotropic source of neutrons, the angles of emission are sampled using random numbers (Section 4.9)

μi 5 2ξi 2 1;ϕi 5 2πξi (7.10)

In Chapters 9 and 11, simulations will be carried out to demonstrate the versatility of MC simulation.

7.2.4 Sampling the “distance to collision”

The probability Y that a neutron at r1, at time t1, traveling with energy E1 in the direction θ1;ϕ1 has its next interaction

within dr2 located at r2 at a later time t1 dt is the product of two probabilities viz (1) the probability Y1 that it does not

have an interaction between r1 and r2, and (2) the probability Y2 that, having reached r2, it has its next collision in dr2. Thus

Y5Y1Y2 � L
2

i51

Yi 5 e2Σt jr22r1jΣtdr2 (7.11)

For a one-dimensional case, the pdf Y is written as

f xð Þ5 e2ΣtxΣtdx (7.12)

and the cdf can be readily found as

F sð Þ5
ðs
0

f xð Þdx5 12 e2Σtx (7.13)

The distance to collision is thus sampled as si 5
1
Σt

� �
ln 12 ξi
� �

, which will have the same distribution as

si 5
1
Σt

� �
ln ξi
� �

since ξi is uniformly distributed in (0,1) as will be 12 ξi.

7.2.5 Determining the type of event

At a collision site, determined by the mean free path, a MC simulation requires a determination of the type of event.

This is selected by sampling from a possible chain of events as shown in Fig. 7.6. A random number ξ is used to deter-

mine whether the event is an absorption or a scattering event. In case of an absorption, another random number is used

TABLE 7.3 Watt fission spectrum parameters.

Fission type Nuclide Energy (MeV) a b

Neutron induced U-235 Thermal 0.988 2.249
1 0.988 2.249
14 1.028 2.084

Pu-239 Thermal 0.966 2.842
1 0.966 2.842
14 1.055 2.383

Spontaneous Cf-252 � 1.025 2.926
Cm-244 � 0.906 3.848
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to determine whether it is a fission or a capture. Similarly, in the case of a scattering event, a random number is used to

determine whether it is elastic or inelastic scattering.

7.2.6 Determining the nuclide of interaction

In a MC simulation which handles nuclides independently, it is required to determine the nuclide with which a neutron

collides at a collision site, for example, a neutron making a collision in water will collide with either a hydrogen atom

or an oxygen atom. This decision is made from the probability of an interaction with nuclide i at incident energy E

given as

pi Eð Þ5 Σt;i Eð Þ
Σt;5 Eð Þ1Σt;8 Eð Þ : (7.14)

7.2.7 Processing a scattering event

In an elastic scattering collision, a neutron changes its direction with conservation of kinetic energy and momentum;

there is no internal energy change or loss in friction.

The energy of a scattered neutron after collision E0 can be found in terms of its energy before collision E, its angle

of scattering in the laboratory system θ as

E0 5
E

ð11AÞ2 cosθ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A22sin2θ

ph i2
(7.15)

The energy of a 1 MeV neutron colliding with a U235 nucleus is shown as a function of the scattering angle is shown

in Fig. 7.7. It is seen that there is very little energy loss due to the high mass number ratio between the target and pro-

jectile. It is easy to understand that maximum energy loss will occur when the collision is between equal-mass particles;

thus a neutron colliding with a hydrogen atom, in water for example, may easily lose most of its energy which essen-

tially means that a “fast” (MeV) neutron can thermalize (B0.025 eV).

7.2.8 Processing a fission event

When a fission reaction (Section 2.9) takes place, two quantities needed are the number of prompt neutrons emitted and

their associated energies. The average number of prompt neutrons emitted in fission is given by ν5 νo 1αE [Lamarsh

(p. 95)] where the constants are given in Table 7.4.

From experiments carried out, it has been determined that neutron multiplication is a stochastic process and there is

a probability distribution function assigned with ν (Schmidt & Jurado, 2018). For U235, the mean values measured were

2.41 for thermal fission, 2.49 for 0.5 MeV fission and 3.19 for 5.55 MeV fission.

The Gaussian distribution is used for the probability Pn, that n neutrons are emitted, given by

Pn 5
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
ðn11=2

n21=2
exp

x2νð Þ2
2σ2

� �
dx (7.16)

For the case n5 0, the lower limit on the integral is replaced by 2N. Sampling is done from this normal distribu-

tion function using a rejection algorithm. The width of the distribution σ is taken as 1.088 for U235 and 1.116 for U238.

The mean ν is energy dependent: for U235 it is 2.41 0.12 E for E ,5 MeV and 2.21 0.16 E for E$ 5 MeV, while for

U238 it is 2.41 0.0666 E for E ,3 MeV and 2.15381 0.1654 E otherwise. The returned value for ν is the rounded inte-

ger ν5 ν 1 σx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2lnz=z

p
.

FIGURE 7.6 Chain of possible events.
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Another method is to estimate ν from the number of neutrons produced by fission νσf =σt and to round off the num-

ber to the nearest integer.

The energy of fission neutrons can be sampled from the empirical, Maxwell or Cranberg fission spectra (Section 2)

or others in the literature. The sampled values will be discussed in detail in a later chapter on MC simulation.

7.2.9 Processing a capture event

In analog simulation, a capture ends a history, as is done in the program written for this paper. However, a better way

is to continue the history with a reduced “weight” until it is ended due to very low weight or escape from the system.

7.2.10 Processing an escape-from-system event

When a neutron escapes from the system, it is not added to the updated number of neutrons generated and thus does not

contribute to the system multiplication.

7.2.11 Mean and variance

The mean and variance of an estimate (Section 4.8) is given as x55 1
N

PN
i51 xi, and the variance of the population is esti-

mated from the sample as σ2 5 1
N

PN
i51 x

2
j 2 x2, from which the variance of the mean is estimated as σ2

x55
σ2

N
.

TABLE 7.4 Neutrons emerging from fission in U235 and U238.

Isotope νo α (MeV21) E (MeV)

U235 2.43
2.35

0.065
0.150

0, E, 1
E.1

U238 2.30 0.160 All E

FIGURE 7.7 Postcollision energy for elastic

scattering of a 1 MeV neutron-U235 nucleus.
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7.2.12 Batch, history, random walk and events

The procedure for neutrons follows the same sequence as for alpha, beta and gamma transport (Section 1.6) depicted in

the flow charts (Figs. 1.23, 1.24, and 1.27).

A simulation for a multiplying system begins with a batch of source neutrons N simulated for G generations for

each source neutron.

The pseudocode is described below:

i5 1

1. Begin source neutron i

2. Initialize n5 1

3. Initialize neutron generation counter ng 5 0; k5 n5 1; j5 1

4. Begin generation j

5. Begin source neutron k for this generation

6. Sample the distance to collision d

7. Sample the type of event

8. Process the event

9. Compute postcollision parameters

10. Determine if neutron still inside system

11. Update ng
12. Update k5 k1 1

13. If k, n go to v (continue the same generation)

14. Comes here when all “mother neutrons” for this gen processed Update n5 ng; k5 k1 1, for the next generation

15. Score for this source neutron i and generation j, Mði; jÞ5ng
16. If k,G1 1 go to iv (begin a new generation)

17. Comes here when all generations processed

18. Update source neutron counter i5 i1 1

19. If i#N go to step I, begin a new source neutron

20. All neutrons have been processed

Estimate keff from the following steps:

a. Compute the number of neutrons produced in each generation: PðjÞ5 PN
i51

Mði; jÞ, for generations j5 1, 2, 3,. . .G
b. Compute the keff for each generation:

keff jð Þ5PðjÞ=Pðj2 1Þ;
j5 2,3,. . .G, with keff 1ð Þ5 1

c. Compute the error for each keff:

ε jð Þ5 keff jð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P jð Þ 1
1

P j2 1ð Þ

s
(7.17)

d. The estimate is

keffðjÞ1 εðjÞ (7.18)

7.3 Modeling the geometry

One of the strengths of the MC method for simulation of neutron transport in nuclear systems is its ability to model

complex geometry typical of practical systems containing a variety of materials in regular and irregular shapes as well

as ducting for instrumentation and biological shielding. An example of regular geometry is shown in Fig. 7.8 consisting

of four boxes generated from the MCNP input file listed below. Another combination of primitive configurations is

shown in Fig. 7.9.
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FIGURE 7.8 Four boxes with sur-

face and cell numbers in MCNP.

FIGURE 7.9 Unions and intersections of volumes.
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A convenient way of describing a volume is in terms of its enclosing surfaces. Fig. 7.10 shows a cylinder and a trun-

cated cone inside a sphere. The surface numbers from 10 to 16 represent the sphere of radius 8 cm centered at the ori-

gin, a cylinder of radius 3 cm on the z-axis within planes (surfaces 12 and 13) perpendicular to the z-axis, a cone with

its vertex on the z-axis at the point (0,0,4) within its outside sheet, truncated by two surfaces perpendicular to the z-axis

(surfaces 15 and 16). This way, large geometrical configurations can be modeled. Similarly Fig. 7.11 shows an XY view

of a cylinder inside a sphere. Better visualizations are possible, and especially helpful for configurations such as the

ITER design (Chapter 3) by the integration of CAD and MC input files.
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The above representations use constructive solid geometry to describe surfaces and regions through equations of

primitive surfaces and combinatorial geometry based on the Boolean operators of intersection and unions.

Surfaces are defined by mnemonics and associated parameters or by specifying points explicitly. Some of the sur-

faces used in MCNP are listed in Table 7.5.

A cell is a physical region in space defined by combinatorial geometry using the Boolean operators for union and

intersection. In Fig. 7.12, for two concentric spheres, the three cells are defined as:

In the above, the first cell is enclosed by surface 1, cell 2 is described as 1�2 which represents the intersection of a

region with a positive with respect to surface 1 and a negative sense with respect to surface 2.

The concentric spheres centered at the origin are represented by the equation

f ðx; y; zÞ � x2 1 y2 1 z2 2R2 5 0

A ray is defined by its origin Ro 5 Xo; Yo;Zoð Þ and its direction (unit) vector Ω̂5Ωxî1Ωyĵ1Ωzk̂ . The equation of a plane

is Ax1By1Cz1D5 0. The normal vector N is A;B;Cð Þ. To find d, the distance from the origin of the ray to the plane

where it intersects, we first need to find the point of intersection. Along the ray, the point is: Xd 5Xo 1Ωxt;Yd 5 Yo 1Ωyt,

Zd 5 Zo 1Ωzt. The point Rd 5 Xd;Yd ;Zdð Þ lies on the plane; therefore AXd 1BYd 1CZd 1D5 0. Thus the scalar t can be

FIGURE 7.10 A cylinder and trun-

cated cone within a sphere (YZ plane).
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found as

t52
AXo 1BYo 1CZo 1Dð Þ
AΩx 1BΩy 1CΩz

52
N ∙Ro 1D

N ∙Ω̂

as depicted in Fig. 7.13. If N ∙Ro 5 0, the ray and plane are parallel and there is no intersection; otherwise t is found

from

t52
N ∙Ro 1D

N ∙Ω̂
:

For t, 0, there is no intersection with the plane.

Exercise 7.3:

In Fig. 7.14, consider the ray at Ro 5 Xo; Yo; Zoð Þ � 2; 1; 3ð Þ in the direction Ω̂5Ωxî1Ωyĵ1Ωzk̂ where the orthogo-

nal angle is θ5 60
�
and the azimuthal angle is ϕ5 30

�
. Determine whether there is a point of intersection

Rd 5 Xd;Yd; Zdð Þ with the plane y2 25 0, and if there is, then find the distance to surface from Ro.

7.3.1 Geometries for illustration of Monte Carlo simulation

Some representative and practically important models considered in this chapter are fixed-source benchmarks, criticality

benchmarks, a PWR unit lattice cell model and fusion reactor neutronics.

FIGURE 7.11 A cylinder within

a sphere (XY plane).
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TABLE 7.5 Surface mnemonics for combinatorial geometry.

Mnemonic Type Description Equation Card entries

P Plane General Ax1By1Cz2D5 0 ABCD
PX Normal to X 2 axis x2D50 D
PY Normal to Y 2 axis y2D5 0 D
PZ Normal to Z 2 axis z2D50 D
SO Sphere Centered at Origin x2 1 y2 1 z2 2R2 5 0 R

S General x2xð Þ2 1 y2y
� �2

1 z2zð Þ2 2R2 5 0 x y zR

SX Centered on X 2 axis x2xð Þ2 1 y2 1 z2 2R2 5 0 xR

SY Centered on Y 2 axis x2 1 y2y
� �2

1 z2 2R2 5 0 yR

SZ Centered on Z 2 axis x2 1 y2 1 z2zð Þ2 2R2 5 0 zR

C/X Cylinder Parallel to X 2 axis y2y
� �2

1 z2zð Þ2 2R2 5 0 y zR

C/Y Parallel to Y 2 axis x2xð Þ2 1 z2zð Þ2 2R2 5 0 x zR

C/Z Parallel to Z 2 axis x2xð Þ2 1 y2y
� �2

2R2 5 0 x yR

CX on X 2 axis y2 1 z2 2R2 5 0 R

CY on Y 2 axis x2 1 z2 2R2 5 0 R

CZ on Z 2 axis x2 1 y2 2R2 5 0 R

K/X Cone Parallel to X 2 axis
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2y
� �2

1 z2zð Þ2
q

2 t x2 xð Þ50 x y z t2 61

Parallel to Y 2 axis
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2xð Þ2 1 z2zð Þ2

q
2 t y2 y

� �
50 x y z t2 61

K/Z Parallel to Z 2 axis
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2xð Þ2 1 y2y

� �2q
2 t z2 zð Þ50 x y z t2 61

KX on X 2 axis
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 1 z2

p
2 t x2 xð Þ5 0 x t2 61

KY on Y 2 axis
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1 z2

p
2 t y2 y

� �
5 0 y t2 6 1

KZ on Z 2 axis
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1 y2

p
2 t z2 zð Þ5 0 z t2 616 1 used only for

one-sheet cone
SQ Ellipsoid Hyperboloid

Paraboloid
Axis parallel to X-, Y-,
or Z-axis

A x2xð Þ2 1B y2y
� �2

1C z2zð Þ2 1 2D x2 xð Þ12E y2 y
� �

1 2F z2 zð Þ1G50 A B C D E F G x y z

GQ Cyl, Cone Ell, Hyp,
Par

Axis not parallel to X-,
Y-, or Z-axis

Ax2 1By2 1Cz2 1Dxy1 Eyz1 Fzx1Gx1Hy1 Jz1K 5 0 A B C D E F G H J K

TX Elliptical or circular
torus

Axis parallel to X-, Y-,
or Z-axis x2xð Þ2=B2 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2y
� �2

1 z2zð Þ2
q

2A

	 
2

=C2 51
x y z A B C

TY
y2y
� �2

=B2 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2xð Þ21 z2zð Þ2

q
2A

	 
2

=C2 51
x y z A B C

TZ
z2zð Þ2=B2 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2xð Þ21 y2y

� �2q
2A

	 
2

=C2 51
x y z A B C



FIGURE 7.12 Concentric spheres.

FIGURE 7.13 Flowchart for a ray-plane intersection.

FIGURE 7.14 Ray-plane intersection.
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Two simple fixed-source models, depicted in Fig. 7.15, considered are

1. a carbon bare sphere with a point isotropic source at its center, and

2. a carbon sphere reflected by a thin layer of beryllium.

The illustrative models for criticality benchmarks are bare spheres of the Godiva and Jezebel (Section 2.10,

Table 2.21 for uranium and plutonium bare and reflected critical systems and Table 2.22 for Bare critical

assemblies Godiva and Jezebel) assemblies. The MC simulation of critical assemblies is described in detail

in Chapter 9.

For nuclear power reactors (Section 3.2), nuclear propulsion reactors (Section 3.3), SMRs and space

reactors (Section 3.5), the overall design characteristics and core neutronics were described in Section 5.6 for neutron

diffusion models and in Section 6.4 for neutron transport models for the unit lattice cell, fuel assembly, and the reac-

tor core. The most basic unit for calculations in reactor core neutronics is the unit lattice cell for AP1000

(Section 3.2) shown in Fig. 7.16 represented by concentric cylinders in a bounding box with reflective surfaces.

The unit lattice cell is part of a fuel assembly and the reactor core as described for a PWR in Section 5.6. Its dimen-

sions are very small as shown in the figure; the cell shown above has dimensions of 1.26 3 1.26 3 2 cm. This repre-

sents a part of a typical PWR fuel assembly containing 17 3 17 such cells of dimensions 21.40202 3 21.40204 cm

with an active fuel height of 4.2 m.

For a Gen IV SMR (Section 3.5.3), Fig. 7.17 shows the core of the Toshiba 4S design (Koreshi & Hussain, 2014;

Ueda et al., 2005) with eighteen hexagonal fuel assemblies and a single central control rod. Note the dimensions of

the 4S core; the reflector outer radius is B 60 cm as compared to B3 m for the AP1000. These differences arise out

of different fuel enrichments and overall power requirements of both reactors.

FIGURE 7.15 Carbon-Beryllium

sphere (dimensions in cm).
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Fission neutronics give the following results

1. kN in a unit lattice cell and fuel assembly

2. keff for full-core

3. Neutron flux distribution (n/cm2/s)

4. Power density distribution (W/cm3)

5. Peak power (W)

6. Average power (W)

7. Control rod worth (pcm)

8. Equilibrium xenon worth (pcm)

9. Boron coefficient of reactivity with/without xenon (pcm/ppm)

10. Doppler coefficients with/without xenon (pcm/K),

11. Cold shutdown (coolant heat removal after a reactor has shut down) calculation.

Typical calculations for an AP1000 (de Stefani, Losada Moreira, Maiorino, & Russo Rossi, 2019) are shown in Table 7.6.

Power density distribution is illustrated in a plot showing the power density (W/cm3) in the fuel assemblies typically

in a one-fourth core model.

Boron concentration is shown as a function of burnup.

Coupled analyses are carried out by integrating neutronics, activation and thermal hydraulics as described in

Chapter 4 such as by combining MCNP (Werner, 2017), FISPACT (Sublet et al., 2017) and thermal hydraulics codes

(Yang, Liu, Xiong, Chai, & Cheng, 2018).

An example of a reactor smaller than the Toshiba 4S reactor is the micronuclear reactor (MNR) shown in Fig. 7.18

(Aziz, Koreshi, Sheikh, & Khan, 2020; Sun et al., 2018) with overall physical design characteristics described in

FIGURE 7.16 AP1000 unit lat-

tice cell (dimensions in cm).
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FIGURE 7.17 Core of the Gen

IV Toshiba 4S reactor (FA5 fuel

assembly, CR5 control rod,

dimensions in cm).

TABLE 7.6 Some quantities of interest in fission neutronics.

Quantity Result Comments

Analyses at cold zero power (CZP), hot
zero power (HZP), hot full power (HFP)

� These are distinct states of a power reactor

kN for unit cell and FA R1:58 1:2102960;00003,
R2:35 1:3286360;00004,
R3:20 1:4046260;00004,
R3:40 1:4169760;00004,
R4:45 1:4685860;00003,

Different fuel enrichments at CZP (defined Tf ; Tm
moderator specific mass and temperature in cross section
library)

Neutron flux (n/cm2/s) E $ 1:0MeV 1:373 1014 60:093 1014

5:53keV , E ,1:0MeV 1:933 1014 60:093 1014

0:625eV , E , 5:53keV 1:183 1014 60:133 1014

E # 0:625eV 5:013 1014 60:213 1014

Power density distribution Shown on a surface plot
Power peak factor 2.71
Peak power density 299.73 W/cm3

Average power density 110.6 W/cm3

Fuel depletion
Radioactive waste production Thermal output 2�20 kW/

m3

Note: Uranium consumption, and plutonium build-up are shown as functions of burnup; at B 1 MWd/gU, 1 GWd would consumeB 1 kgU.
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Section 3.8. Note again, the dimensions compared with the dimensions of the AP1000 and the 4S reactors. There are no

fuel assemblies in the MNR due to the higher fuel enrichments and lower power requirements.

The geometry models for fusion Tokamak systems (Section 3.6) can be more complicated than for fission systems.

ITER, for example is D-shaped torus with toroidal and poloidal field coils and considerable geometrical complexity of

its systems.

In a Tokamak, with high neutron flux B 1014 n/cm2/s causing high loadings and subsequent materials challenges,

some tallies of interest are

1. the FW loading (MW/m2) to determine the rate of energy transfer through the wall (flux tally),

2. neutron (fast, E. 0.1 MeV) fluence to toroidal field coils (TFC),

3. nuclear heating (W/m3); over 80% of the DT energy is carried by a 14 MeV neutron and is deposited in the breeder

blanket; the rest (B16%) in the FW, and tungsten armor, manifolds and surrounding structure,

4. the tritium breeding rate (flux multiplier tally)

01n1 36Li-24He1 13T 1 4:8MeV

01n1 37Li-24He1 13T1 01n2 2:5MeV

The TBR is calculated for candidate materials such as liquid metal, eutectics such as lithium leads, solids such

as lithium oxide and ternary oxides (e.g., LiAlO2, Li4SiO4) and ceramics such as lithium titanate; design calcula-

tions are performed to optimize the lithium enrichment, mix of neutron multiplier such as beryllium and lead, cool-

ant such as water, helium and molten salt, neutron reflector and structural material (steel),

5. helium production in steel structure and in reweldable zones; flux multiplier tally ðn;αÞ reaction; calculated in

ppm/FPY (atomic parts per million per FPY),

6. radiation damage (dpa) to copper (flux multiplier tally) and steel; since this degrades the material reducing its life;

MC simulations thus give the dpa/FPY (displacements per atom per FPY),

FIGURE 7.18 Core of a micronuc-

lear reactor (FR5 fuel rod, CD5

control drum, dimensions in cm).
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7. radiation streaming from plasma to superconducting magnet TFC,

8. radiation dose (Gy) to epoxy in the winding pack facing the central cell,

9. radiation dose with reactor shutdown to permit maintenance,

10. radiation across ducts and shielding, and

11. activation of steel (effect of low activation materials in steel such as Eurofer), coolants and components to mini-

mize activation and radioactive waste due to B1021 neutrons per second during a power pulses.

The pressure and temperature operating conditions of tokamaks are of the same order as in PWRs, that is,

15.5 MPa, B280�C; thus water density is significantly reduced.

Table 7.7 lists some estimates for an engineering study of the water-cooled lithium lead 1998 MW DEMO fusion

reactor with net electrical power 500 MW (Moro et al., 2020) with 16 TFCs and a minor and major radius of 2.883 and

8.938 m, respectively, using mainly tungsten armor as the FW, LiPb, H2O, and Eurofer steel as the breeder, and LiPb

and H2O manifolds.

Neutron studies lead to optimal designs, such as in the study quoted above (Moro et al., 2020), a coupled

neutronics-thermal hydraulics analysis showed that FW cooling ws achievable by reducing the number of water chan-

nels which subsequently led to an increase in the Eurofer steel content and a resulting TBR increase to 1.138. The rea-

son for such an increase is that water acts both as a moderator enhancing the Li6 reaction and as a shield reducing the

intensity of radiation.

Thus breeder design is an active optimization research area with the objective of enhancing tritium breeding from

the above reactions of lithium (Del Nevo et al., 2019; Hernández & Pereslavtsev, 2018; Moro et al., 2020).

A simplified 1-D representative geometrical representation of a breeder blanket (Colling, 2016; Shimwell et al.,

2016) of a spherical Tokamak reactor, is shown in Fig. 7.19.

A mockup experiment for tritium breeding in ITER is depicted in Fig. 7.20 (Jakhar et al., 2015; Mandal, Shenoi, &

Ghosh, 2010) consists of a central D-T fusion source surrounded by lead (Pb) multiplier and reflected by high density

polyethylene (HDPE) reflector.

When a geometrical model is made, the next step in MC simulation is the description of the physics of interactions,

the material descriptions, the neutron/gamma source, tallies and simulation parameters.

TABLE 7.7 Some quantities of interest in fusion neutronics.

Quantity Desired/limits Objective

Average wall loading 1.04 MW/m2

TBR (desired) .1.10 Highest TPR B 1.07 3 1012

tritium atoms/cm3/s
TBR (assessed) 1.119 With reduced water density

(ρ5 0:725g=cm3, TBR assessed is
1.118

Damage on vacuum vessel steel
over 6 FPR (lifetime)

, 2.75 dpa to ensure fracture toughness is
reduced by no more than 30%)

Assessed radiation damage (I/B) Eurofer FW B 8.1 dpa/FPY; SS316L VV inner
shellB8.67 3 1023 dpa/FPY

�

Assessed Radiation damage (O/B) Eurofer FW B 9.5 dpa/FPY; SS316L VV inner
shellB2.46 3 1023 dpa/FPY

�

He concentration , 1 ppm To permit welding in reweldable
zones

He concentration in FW I/B
(assessed)

Eurofer in breeder blanket 94 ppm/FPY, VV inner shell
8.08 3 1022 ppm/FPY, TFC 1.21 3 1026 dpa/FPY

over a period of 6 FPY, 0.48 ppm

He concentration in FW O/B
(assessed)

Eurofer in breeder blanket 114 ppm/FPY, VV inner shell
2.43 3 1022 ppm/FPY, TFC 1.21 3 1026 dpa/FPY

over a period of 6 FPY, 0.24 ppm

Fast neutron fluence on TFC , 109 n/cm2/s shielding capability should ensure
a fluence within the limits

Nuclear heating on winding pack , 50 W/m3 �
Total neutron (inboard) flux 5.13 3 1014 n/cm2/s �
Power deposition W armor: B 3%, FWB16%, Breeder zone B 75%,

ManifoldsB3%
�

Heat load (O/B) W armor B 28.4 W/cm3, FW EuroferB 9.59 W/cm3 �
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7.4 Demonstration

This section takes the reader through a fixed-source problem to introduce an input and output of a MC neutron transport

simulation. Multiplying systems for simple critical assemblies and reactor lattices and nuclear reactor core calculations

are described in chapters nine and eleven respectively.

Consider the carbon-beryllium sphere configuration shown in Fig. 7.15. There are three spheres in the model; the first

sphere of radius 0.02 cm contains a point isotropic source of energy 1 MeV located at the origin. For such an idealized prob-

lem, exact analytical diffusion and transport solutions were described in Chapters 4 and 5. It is a good practice to learn MC

simulation by first carrying out simulations for simple problems for which exact solutions are known. A time-of-flight

benchmark for a carbon sphere is a useful starting point for comparing MC simulation results with experimental results.

FIGURE 7.19 A simplified spherical model of a fusion reactor blanket for neutronics; vac-

uum, purple5 breeder, blue5 helium, yellow5 beryllium multiplier, green5EUROFER steel

structure.

FIGURE 7.20 TBR ITER Mockup

Experiment (dimensions in cm).
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Some benchmarks will be considered for critical systems in Chapter 9.

The MCNP input file (X-5 Monte Carlo Team, 2008) consists of three blocks separated by a blank line between

blocks at the end of the third block. The first line of MCNP describes the simulation. In Block 1, the cells (volume

regions) are defined in terms of their bounding surfaces and the material present in them.

In this example, Block 1 has four lines since there are four cells; source, carbon, beryllium, and the outside world.

The four lines, after the first description line, define the cell number followed by the material number, material den-

sity (negative sign meaning a gram density and positive meaning an atomic density) followed by the sense of the cell

with respect to the surface number(s) given.

There are three surfaces defined in the second block, each is a sphere with its center at the origin; surfaces 1, 2 and

3 represent spheres of radii 0.02, 4.187, and 5.187 cm, respectively.

The first cell is defined to be within the region bounded by surface 1, that is, every point in cell 1 has a negative

sense with respect to surface 1. Mathematically, this condition is stated as f x; yð Þ5 x2 1 y2 1 z2 2 0:01ð Þ2 , 0 for a point

x; y in cell 1 which contains material 1 with atomic density 0.001288 g/cm3; the material entry is given in Block 3 of

the input file. Similarly cells 2 and 3 are defined each between their two bounding surfaces. The last cell, cell 4, the

outside world is everything beyond surface 3. A particle is considered to have left the system when it enters into the

outside world and can not rerenter the system.

MCNP input file for a carbon-beryllium configuration
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The comment lines added to Block 3 describe the input lines for the mode of the simulation, the cell importance,

the material descriptions, the bin structures for energy and angular distributions, tallies, tally multipliers, source descrip-

tion and simulation parameters.

The tally multiplier

calculates quantities of the form described by Eq. (7.5). The FM24 follows a tally F24 which is a flux tally of type

4 (each succeeding tally is defined distinctly such as F4, F14, F24, F34,. . .). The form of this tally multiplier is

where the constant C is a multiplier, M is a material number and R1,. . .R4 are Reaction Numbers defined in the ENDF/B

files.

In the present case, C is the atomic density of carbon multiplied by the volume of the carbon region and the

Reaction Numbers are -1 (total cross section), -2 (absorption scattering cross section), -3 (elastic scattering cross sec-

tion) and 102 (radiative capture cross section). In this demonstration only four reaction rates were specified; this

depends on the user’s requirements (limits are given in the MCNP manual).

Following an overall summary of the interactions and gains and losses, the required tallies are listed as shown in

Table 7.8 for three simulations with 100, 104 and 106 histories.

The neutron current tally (F1) remains 0.99999 (0.0000) for all three simulations since the absorption is very small

as shown in Table 7.8. The current is only in the forward cosine bin, that is, in the range ð0;π=2Þ, in one energy bin

(1 eV�1 MeV). This tally tells us that all postcollision energies lie in the range 1 eV�1 MeV; this range could have

been made smaller to get finer detail.

Table 7.8 lists seven tallies per source neutron per second (surface flux, cell flux, point flux total and uncollided,

total reactions, absorptions, elastic scatterings and radiative captures).

The results show that

1. For each tally, the quality of the results gets progressively better with the number of histories; this is due to the large

number of collisions in the carbon sphere.
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2. Relative error decreases by an order of magnitude as the simulations increase by two orders of magnitude.

3. The variance of the variance (VoV) also decreases in the same way as the relative error.

4. The (total) point flux improves with the number of histories while the uncollided point flux has zero relative error

as it is a deterministic quantity.

5. Reactions are predominantly elastic scattering reactions; absorption is due to radiative capture alone. Since the absorptions

include the ðn; pÞ, ðn; tÞ, ðn; dÞ, ðn;He3Þ and ðn; γÞ reactions, it is observed that absorption is only to the ðn; γÞ reactions.
Finally, the energy-dependent neutron flux, shown in Fig. 7.21 for one million histories, indicates that there is very

little spectrum degradation due to the absence of any low-Z hydrogenous materials.

Such experiments, important as they are for an understanding of the simulation, will be left as exercises for the MC user.

TABLE 7.8 Tallies for a carbon sphere fixed-source Monte Carlo simulation.

Tally N 102 104 106

Surface flux (F2) 5:814073 1023 5:43343 1023 5:395253 1023

Relative error 0:0824 0:0055 0:0005
VoV 0:4931 0:0409 0:0004
Cell flux (F4) 1:747523 1022 1:808573 1022 1:805733 1022

Relative error 0:0329 0:0044 0:0004
VoV 0:0587 0:0018 0
Point flux (F5) 1:021273 1022 5:406713 1023 5:396183 1023

Relative error 0:3408 0:0428 0:0045
Point flux (F5) uncollided 1:817293 1023

1:817293 1023 1:817293 1023

Relative error 0 0 0
VoV 0:5535 0:1618 0:0028
Reactions/cm3

Total reactions 4:137573 1023 4:23195531023 4:308133 1023

Relative error 0:0414 0:0056 0:0006
VoV 0:0748 0:0026 0
Absorptions 1:805893 1029 1:859123 1029 1:857593 1029

Relative error 0:0271 0:0036 0:0004
VoV 0:0748 0:0026 0
Elastic 4:137563 1023 4:319553 1023 4:308133 1023

Relative error 0:0414 0:0056 0:0006
VoV 0:0748 0:0026 0
Radiative capture 1:805893 1029 1:859123 1029 1:857593 1029

Relative error 0:0271 0:0036 0:0004
VoV 0:0748 0:0026 0

FIGURE 7.21 Neutron flux in a carbon sphere.
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7.5 Variance reduction methods

In the previous section, a natural or straightforward MC simulation, called analog simulation, was carried out since it

was anticipated, and demonstrated by simulation, that a large number of collisions took place in the carbon sphere.

Subsequently, the results were both accurate and precise.

In nuclear fission reactor calculations, this is usually the case within the core where neutrons and gamma interac-

tions take place frequently. However, as we go far from the source of activity the flux falls by orders of magnitude.

By design, radiation shielding has to be thick enough to attenuate the radiation so that very few neutrons or gammas

are able to penetrate its thick layers. If, for example, one million neutrons are started as source neutrons and only two

neutrons get through the shield to contribute to the tally of interest, then it will be an unreliable tally.

The validity of the Law of Large Numbers or the Central Limit Theorem would then become questionable and it

would not make sense to compute a sample estimate or a variance.

As we saw in y7:1:5, there are two options for getting a better estimate; the first is to increase the histories to be simu-

lated. An increase of 100 would reduce the standard deviation by 10. But simulating 100 million histories instead of 1 mil-

lion would requires hours and hours of computer time, with no guarantees that a good enough tally would be possible. The

second option is to force things to happen (bias the simulation) in such a way that more histories contribute to the tally.

This approach, of modifying the simulation in an unrealistic way would not be correct unless the overall weight is con-

served. Thus in a small solid angle of interest, if there would have been 10 particles by geometrical considerations alone,

then we can force 50 particles to travel toward the detector but with a weight reduced by a factor of five. Such a strategy,

called a nonanalog simulation has several such variance reduction methods which help in obtaining reliable estimates.

Some methods are used in analog simulations to reduce the computational effort on particles which are likely to

have a small contribution to a tally. For example, when the weight of a particle, after several interactions, has reduced

below a small number such as 1.0e-6, then Russian Roulette is played to determine whether to let it continue, with

increased weight. Say if the weight falls below the prescribed cutoff and it is given a small probability of survival, then

a random number is generated to decide its fate. The probability that the random number would favor survival is also

very low so in most cases, the particle would be terminated. However, there is small chance that it survives, in that case

its weight is increased by the ratio of survival probability to nonsurvival probability and it continues. Conversely, if its

weight becomes too large, then it is split into many particles of reduced weight. This process ensures that particles

remain within a favorable weight window. Codes such as MCNP have a weight window generator which suggests best

weights to specify. This is an art as well as a science as weight can be intuitively assigned as well.

Such splitting techniques can be carried out on the basis of space, energy and angle. When some regions are more

important than others it is desirable to invest more time in simulating them as there is reason to believe that they will

contribute toward the quality of a tally.

Similarly, when a particle moves into an important region, it is split into more particles, while conserving the overall

weight. Conversely, when a particle moves into a region of less importance, a decision has to be made whether to let it

continue at the expense of computational effort and time, or to terminate its history. This decision is based on a statisti-

cal process known as Russian Roulette. A random number is generated and with the prescribed probability of termina-

tion, the appropriate decision is made.

Geometry importances are assigned in a data file at the beginning of a MC simulation. If region A has importance one

and region B has importance two, then the particle will be split into twice as many particles. In practice it is advisable to

manually input cell importance and inspect the results to see whether they were set properly; this remains an art more than a

science and is bound to rely heavily on intuition. A formal method is to run an adjoint problem but a code such as MCNP,

which is regarded as industry-standard now, does not have this option in the “continuous energy” simulation mode.

For shielding problems where variance reduction can be necessary and most useful, a step-wise approach can be

used with several runs, starting from an initial guess of cell importance and using generated weight windows progres-

sively in regions closer to the shield.

Some more nonanalog techniques are exponential transform, forced collisions and source biasing where a probability

distribution function is modified, and accounted for later, to give a large number of nonzero contributions from histories.

All these techniques can result in improved tallies, but judgment based mostly on intuition is the guide.

Importance biasing has mathematical foundations in the adjoint equation which is also called the backward equation

as it represents a detector-to-source formalism rather than one based on the conventional source-to-detector formalism.

The adjoint flux or “importance” function has then represents the importance of particles in phase space; these have

also been called contributions. This amounts to knowing the solution and biasing it in such a way that only those parti-

cles are simulated that contribute to the tally.
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A simple example of knowing the solution to carry out importance sampling is the integral evaluation deterministic

problem described in Chapter 4. An altered estimator is used so that

I5

ðb
a

f ðxÞ
gðxÞ g xð Þdx5 f=g

� � ðb
a

dx5 f=g
� �

b2 að Þ

estimates f ðxÞ=gðxÞ � hðx
�
while the PDF is gðxÞ. It can be shown that by a “suitable” choice of the “importance

function” gðxÞ this process leads to a “zero-variance” solution.

Consider the estimation of the integral I5
Ð 1
0
e2xdx, first with the estimator f xð Þ � e2x with sampling from the uni-

form PDF, and then with the estimator h xð Þ5 1, and of course the PDF normalization factor ð12 e21Þ outside the inte-

gral, with random number samped from the PDF

g xð Þ5 e2x

12 e21

Clearly, this leads to

I5

ð1
0

g xð Þdx

with a precise (zero-variance) answer of ð12 e21Þ.
While it was easy to demonstrate a “zero-variance” result for the simple problem considered above, it is not always

easy to “know” a priori the importance function gðxÞ since the “best” gðxÞ is the answer itself which we want to find.

Variance reduction based on intuition, or modified sampling or with the help of the adjoint equation has been found to

be necessary in nuclear engineering for shielding and streaming problems to determine, with reasonable accuracy, the

shutdown activation for example. In Chapter 9, variance reduction will be demonstrated for a representative problem.

7.6 Estimating perturbations with Monte Carlo simulation

In the design and operation of nuclear reactors and systems, it is often important to be able to estimate the effect of

small material density perturbations arising out of the burnup of fuel or the insertion of control rods. Additionally, it

may be important to estimate the effect of geometry perturbations due to moving components.

A drawback of MC methods is that the uncertainty of an estimate may be of the same order of magnitude as the per-

turbation itself and thus the effect of the design or operational change may become masked. This implies that the differ-

ence of two MC simulations may be inadequate to estimate perturbations. Thus other methods had been developed

initially along the traditional route of deterministic formulations based on the adjoint function, or Lagrange multiplier,

as a sensitivity coefficient. Such analyses have been used extensively to estimate perturbations from two MC runs viz a

forward run and an adjoint run from codes such as MCNP and MORSE. New developments in this area came with “cor-

related tracking” and “derivative sampling” techniques (Rief, 1984) and implemented in KENO and TIMOC codes. The

techniques were extended by Watkins for material perturbations in a research reactor and demonstrated for two-group

transport (Koreshi & Lewins, 1990) and later extended to fusion reactor neutronics optimization studies. The perturba-

tion feature is now part of several MC codes and is used extensively. Comparisons of the adjoint versus derivative

approach have been discussed by Kiedrowski & Brown (2011). Applications of MC perturbation theory are given in

Chapter 11 for estimating changes in keff due to material density pertrubations in a bare sphere such as Godiva. Such

studies have also been carried out to quantify the sensitivity of estimates to uncertainties in cross section data. With rea-

sonable confidence for small systems, perturbation can be carried out for design optimization in bigger simulations thus

saving computational effort.

7.7 Conclusions

In this chapter, the fundamentals of the Monte Carlo (MC) method used for particle transport were presented. The use

of random numbers, event probabilites, and probability distribution functions, given in Chapter 4, was described

for simulating a random walk and tallying quantities using the collision, absorption, and track length estimators.

The simulation for an elementary fixed-source problem was used to introduce the reader to prepare an input for carrying

out a neutron transport simulation giving basic tallies and interpreting the estimated quantities.
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Problems

1. Use the acceptance-rejection technique to sample from an exponential distribution and compare its efficiency by a

straightforward analytical inversion.

2. Use the same acceptance-rejection technique to braw a bounding box around a normal distribution to get samples.

3. For Exercise 7.2, write a program to estimate neutron flux in a carbon slab of thickness 3 mfp with thermal cross

sections.

4. Repeat the above for isotropic scattering.

5. Modify your program to use the collision estimator for flux rather than the TLE.

6. In the AP1000 unit lattice cell, using the models for alpha and beta transport (Chapter 1), what would be the signif-

icance of both radiations on the energy deposition and on the coolant activation?

7. Based on the topics covered in Chapter 4, how would the neutron fluxes calculated from a MC simulation be used

to calculate the source term for spent nuclear fuel from a nuclear reactor?

8. With reference to quantities of interest in fission neutronics, list a few activation reactions in constituent elements

of steel that could pose a long-term storage problem. How would these quantities be calculated using cross section

fields?

9. With reference to Table 7.7 comment on the effect of water reduction leading to an increase in TBR.

10. In Section 7.5, for I5
Ð 1
0
e2xdx, show that a zero-variance solution is obtained for an exponential PDF. Compare

the estimate with a PDF representing the first quadrant of a circle.

Nomenclature

Greek lower case
ρ density

θ orthogonal angle

μ cosine of orthogonal angle

μ mean value

ν k average number of fission neutrons emerging from a fission

σ standard deviation

σx standard deviation of x

τ time constant

ϕ azimuthal angle

φS surface-averaged scalar flux

φV volume-averaged scalar flux

χ collision density

Greek upper case
Σt macroscopic total cross section

Ω solid angle

English lower case
d distance

fk fraction of nuclide k

keff system multiplication

m mass

n atomic density

p resonance escape probability

p probability

s distance

ξ random number

w weight

English upper case
AE absorption estimator

Ĉ collision kernel
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Cf californium-252

Cm curium-244

HðEÞ heating value as a function of energy

J current

N number of histories

Q Q-value of a reaction

R relative error

S source

T̂ transport kernel

Tf fuel temperature

Tm moderator temperature

ppm atomic parts per million

dpa displacements per atom

pcm percent mille (1025)

Abbreviations and Acronyms
CE collision estimator

CZP cold zero power

FOM figure of merit

FPY full power years

FW first wall

HFP hot full power

HZP hot zero power

I/B inboard

ENDF evaluated nuclear data files

O/B out-board

TBR tritium breeding ratio

TFC toroidal field coil

TLE track-length estimator

TPR tritium production rate

VV vacuum vessel

MC Monte Carlo
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Chapter 8

Computer codes

Computer codes have become the mainstay of nuclear engineering and are abundantly used for the design and analyses

of nuclear systems. The use of codes, developed in universities, companies and government organizations, is indispens-

able as a first step in the design of a reactor and a requirement in regulatory processes. The USNRC has been using

computer codes since the development of early nuclear reactors. Similarly other international efforts include the

Institute de Radioprotection et de Surete Nucleaire (IRSN) in Europe and more recently, the Chinese nuclear regulatory

institution through the National Nuclear Safety Administration (NNSA).

With the progression followed in this book, earlier chapters have covered the radiation transport processes covered

charged-particle and gamma transport, neutron transport, a description of nuclear reactors, mathematical foundations,

neutron diffusion followed by neutron transport and Monte Carlo simulation and optimization in the later chapters. All

these are included in the computer codes used for the design and performance analyses of nuclear reactors and systems.

In Chapter 4, the mathematical treatment of coupled analyses, such as neutronics coupled with thermal hydraulics, was

introduced to demonstrate the interdisciplinary nature of nuclear engineering simulations. In these chapters, we saw that

reactor core analyses requires such modeling of phenomena that take place within, for example, a reactor core typically

consisting of several assemblies of fuel rods and control rods surrounded by moderator, coolant and protective structure.

Thus mathematical formulations are necessarily coupled and the required computer codes are not restricted to any one

field. The nuclear industry thus does not have a single code to handle all the requirements of nuclear systems analyses.

Therefore, we will look separately at codes in the following areas which are fairly representative of the broader picture

1. Neutron and radiation transport,

2. Time-dependent reactor kinetics,

3. Thermal hydraulics,

4. Radiological protection, and

5. Performance and Safety analyses.

Over time, there has been a shift toward the usage of these codes utilizing the power of supercomputing architecture.

The emphasis is thus on the development of algorithms and away from the basic mathematical rigor that was included

earlier.

The strength of a computer code lies in its capability to model the interaction physics as well as the three-

dimensional geometries of nuclear fission and fusion power reactors. The earlier codes, written for nuclear fission reac-

tors and being restricted to “regular” geometry, that is, slab, circular or cylindrical systems were capable only of idealiz-

ing complex geometry features intrinsic to core internals and radiation as well as biological shielding systems

surrounding the reactor. Over the years, with the development of better numerical schemes such as finite element meth-

ods in deterministic codes and combinatorial geometry in stochastic codes, it became possible to adequately describe

many physical complexities. The same applies to complexities in the collision data, which was used in multi-group

form rather than in continuous energy form, scattering models, fission spectra and so on.

With better capability in modeling real systems, the computational effort also increases and hence computer proces-

sing is a crucial requirement. Thus, computer codes have benefited from the processing speeds achievable by computer

systems as they evolved from mechanical and electrical computers in the 1940s to electronic computers, mainframes

such as IBM and CDC in the 1970s and 1980s, to workstations, RISC processors, Cray supercomputers with vector and

parallel architecture, to modern-day portable and efficient computers (Schober, 2018). Looking to the future, it is possi-

ble that optical data communication may replace the present electronic circuitry making large computational codes even

more attractive.
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The software and hardware features available in present-day computing permits simulation codes to cover complex

features to a level sufficient for reliable design. A computational challenge in reactor neutronics has been to estimate

“rare events” such as the transmission of radiation across the shielding.

Some of the widely used computer codes in nuclear systems are briefly described below.

8.1 Neutron and radiation transport codes

Early codes, which have been updated and are still used for reactor analysis including fuel depletion, include ANISN

(Engle, 1967), CITATION, WIMS, and ORIGEN. The diffusion theory code CITATION (Fowler, Vondy, &

Cunningham, 1971) released in 1972, solves the 3D neutron diffusion equation with the finite difference method and

has been used together with WIMS-D and ORIGEN for calculating neutronics coupled with burn-up and depletion of

fuel in nuclear systems. It is distributed by RSICC. WIMS (Winfrith Improved Multi-group Scheme) is a general code

for reactor physics lattice cell calculations for nuclear reactor systems and has been used for the calculation of group

constants (Section 6.1) for fuel assemblies such as for analysis of Loss of Flow transients (Noori-Kalkhoran,

Minuchehr, Shirani, & Rahgoshay, 2014), for core optimization simulation of a PWR (Hussain, Xinrong, & Ahmed,

2008) and a wide range of neutronics.

The cross section data library has a number of resonance groups for thermal neutron analysis. WIMSD is distributed

by the RSICC and it has been updated with several benchmarks (Lindley et al., 2017). ORIGEN (ORNL Isotope

Degeneration and Depletion Code), a fuel cycle depletion code developed by ORNL, performs nuclide transmutation

calculations based on neutron flux in a system (Bell, 1973; Yesilyurt, Clarno, Gauld, & Galloway, 2011). Other deter-

ministic codes are described below.

8.1.1 ANISN

One of the first codes used for neutron/photon transport, ANISN (Anisotropic SN method), is based on an advanced dis-

crete ordinates method proposed by Carlson in 1953 and developed by Wick and Carlson (Carlson & Lathrop, 1968) at

Los Alamos Scientific Laboratory.

ANISN calculates angular flux in sufficient detail to solve deep-penetration problems in addition to regular calcula-

tions of flux and reaction rates in regions of nuclear systems. Older versions of ANISN-ORNL, which were operable on

VAX and IBM mainframes, are now extended with improvements for Cray and IBM RISC versions as well as for

Pentium IV computers under Windows XP operating systems.

8.1.2 DOT

The DOT code (Rhoades & Mynatt, 1973), as version DOT-4, calculates multi-group angular flux by solving the

Boltzmann transport equation using the SN method, diffusion theory or a special P1 method, for two-dimensional geo-

metric systems. It can solve for criticality also, but the principal application is to the more difficult deep-penetration

transport of neutrons and photons for shielding problems. Cross sections are modeled using Legendre expansion to arbi-

trary order allowing for anisotropic scattering. A vectorized version, DOT-4/VE has increased computational efficiency.

The CPU time required by DOT depends on the Flux Work Units (FWUs) which are dependent on the number of space

mesh cells, energy groups, and the number of iterations per group. Typical of large deterministic codes, big problems

could take over an hour on modern platforms.

8.1.3 TORT

TORT (2D, 3D) and DORT (1D, 2D) are Discrete-Ordinate Neutron and Photon transport codes (Kirk, 2009) with

eigenvalue and deep-penetration calculation capabilities. TORT calculates the flux of particles due to particles incident

upon the system from extraneous sources or generated internally as a result of interaction with the system. The

Boltzmann transport equation is solved using the discrete ordinates method to treat the directional variable and the finite

difference methods to treat spatial variables. Energy dependence is treated using a multi-group formulation. Time

dependence is not treated.

338 Nuclear Engineering



8.1.4 PARTISN

PARallel Time-Dependent SN (Alcouffe, 2001), a successor of ONEDANT, TWODANT, and THREEDANT is a par-

allel time-dependent deterministic code that can solve three-dimensional problems in regular geometry using the dis-

crete ordinates method.

Some of the extensively used Monte Carlo codes are described below.

8.1.5 MCNP

Monte Carlo methods for Neutrons and Photons (Pelowitz et al., 2013) were developed at Los Alamos National Labs

(LANL) in the 1940s by the group that included von Neumann. Its’ name later implied Monte Carlo N-Particle transport

as it included charged particles. MCNP is used for a diverse range of problems involving neutron and radiation transport

in nuclear reactor engineering with the capability of carrying out “whole-core” analyses, as well as medical physics,

oil-well logging, and radiography. The first Monte Carlo code appeared as a Los Alamos report in 1963. By the early

1980s, MCNP begain to be widely distributed and used as MCNP3A and MCNP3B written in Fortran 77 with neutron

and photon transport. The next version, MCNP4 had improvements such as electron transport capability as well as new

tallies. It had parallel processing to speed up the computations. The perturbation capability was added in MCNP4B in

the late 1990s. This was followed by MCNP4C which had some better physics such as the treatment of nuclear reso-

nances. MCNP5 released in 2003 was re-written in Fortran 90 and had several improvements. The latest version,

MCNP6.2 (2017) can transport 36 different particles from neutrons, photons, electrons to muons, anti neutrons various

baryons, anti-particles, deuterons, tritons, alpha and heavy ions. The long list of improvements includes the modeling of

physics, sources, data, tallies, unstructured meshes as well as code enhancements. This has led to a greatly increased

versatility going far beyond the early neutron and photon transport to areas such as medical physics, accelerator-driven

energy source research, high-energy dosimetry and futuristic areas such as charged-particle propulsion. Stochastic

geometry has been incorporated to model the random arrangements in a geometry such as the high-temperature gas

cooled reactor (HTGR) with its spherical fuel pebbles.

New Monte Carlo codes such as OpenMC (Romano et al., 2015) have improved combinatorial geometry models

that have been demonstrated for photon simulation (Kargaran, Jafari, & Minuchehr, 2021) and are openly accessible.

MCNP benchmarks are available for neutron and problems (Whalen, Cardon, Uhle, & Hendricks, 1991), criticality

safety problems (Wagner, Sisolak, & McKinney, 1992) and LWR criticality. MCNP has been used extensively for core

neutronics; some representative latest work is the study on the performance analysis of thorium-based mixed oxide fuel

in a PWR (Tucker & Usman, 2018), a conceptual design of a micronuclear reactor using heat pipes (Aziz, Koreshi,

Sheikh, & Khan, 2020; Hao Sun et al., 2018) and the study of accident tolerant fuels in the upcoming NuScale SMR

(Yu, Cai, He, & Li, 2021).

8.1.6 TART

TART 2005 (Kirk, 2009) is a coupled neutron photon Monte Carlo particle transport code written in FORTRAN and

developed by Dermott E. Cullen (McKinley, Cullen, Latkowski, Procassini, & Skulina, 2006) and maintained by

Lawrence Livermore Laboratories (LLL). It is time-dependent and uses combinatorial geometry allowing the modeling

of large and complex problems. It is LLL’s equivalent of LANL’s MCNP and is said to be the fastest MC code.

8.1.7 MORSE

MORSE (Multi-group Oak Ridge Stochastic Experiment), succeeded by MONACO, is a Monte Carlo code developed

by Oak Ridge National Laboratories (ORNL) (Emmett, 2000). Initially, it was also based on regular geometry and

although it uses the same integral formulation of the transport equation as a continuous code such as MCNP, MORSE

uses a multi-group approach. A neutron thus collides with an atom of the homogenized mixture prepared from the mac-

roscopic cross sections rather than with individual atoms. Such a multi-group MC approach has served for quick com-

parisons with deterministic codes such as ANISN but for more elaborate computation, MCNP is preferred.

MORSE-SGC (Emmett, 1975) is run in stand-alone mode and is part of the SCALE licensing evaluation system. It

uses the MARS (Multiple Array System) geometry package. The MORSE code is distributed by RSICC. The multi-

group energy handling capability of MORSE has been useful for comparisons with ANISN and DOT computations.

MORSE has also been coupled with discrete ordinates codes with the DOMINO-II code.
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Dose rates from a cask array have been calculated with MAVRIC (MONACO with Automated Variance Reduction

using Importance Calculations) for the safety of workers.

8.1.8 KENO

The KENO multi-group Monte Carlo code for criticality computations (Goluoglu, Bowman, & Dunn, 2007) was devel-

oped in the 1960s at ORNL. It is now part of the SCALE system and its use is as widespread as that of other MC codes.

KENO is a distributed by the Nuclear Energy Agency (NEA) with generalized geometry capability allowing easy

description of systems composed of cylinders, spheres, and cuboids (rectangular parallelepipeds) arranged in any order.

8.1.9 Other Monte Carlo codes

MONK and MCBEND (Long et al., 2015; Richards et al., 2015) are UKAEA’s standard criticality and radiation shield-

ing codes (Richards et al., 2015).

TRIPOLI (Nimal & Vergnaud, 1990, 2001; Vergnaud & Nimal, 1990) is a Monte Carlo code that was written at

CEA, France, and used for “whole-core” neutronic reactor analyses, radiation shielding, and protection as well as for

criticality calculations.

Other neutron/photon transport codes are VIM, a Monte Carlo code developed by Argonne National Labs, and

SERPENT, a continuous energy MC code for neutron transport, criticality and reactor physics burn-up calculations

developed by VTT Technical Research Center, Finland. Charged-particle codes that handle electron/photon transport

include EGS5 and PENELOPE, while for high-energy transport codes include GEANT4, FLUKA and MCNPX.

8.2 Time-dependent reactor kinetics codes

PARCS (The Purdue Advanced Reactor Core Simulator), developed by the USNRC, solves for the transient neutron

flux distribution and is used for the analysis of possible reactivity-initiated accidents in light water reactors. It can also

be coupled to other USNRC thermal hydraulics codes such as RELAP.

8.3 Thermal hydraulics codes

Thermal hydraulics studies are carried out coupled with neutronics to study transients such as LOFA in WWER (Noori-

Kalkhoran et al., 2014), and reactivity insertion accidents in Gen IV Liquid Metal Cooled Fast Reactor with the

COBRA code (Yang, Liu, Xiong, Chai, & Cheng, 2018).

A thermal hydraulics code, such as RELAP, carries out a transient two-phase two-fluid hydrodynamic analysis for a

nuclear reactor modeled in sufficient detail to analyze transient conditions for safety studies. Detailed studies are carried

out in a suite such as the SCALE code system (Rearden & Jessee, 2016). A full-scale neutronic analysis for a sodium-

cooled fast reactor core carried out using the lattice code HELIOS-2 with the Monte Carlo code Serpent to generate

few-group constants used by the 3D deterministic code DYN3D was shown to give reliable results (Rachamin,

Wemple, & Fridman, 2013).

For the analysis of transients and large/small LOCAs in PWRs and BWRs, TRACE/RELAP (TRAC/RELAP
Advanced Computational Engine) is used. RELAP (The Reactor Excursion and Leakage Analysis Program) will be

replaced by TRACE in a few years. Some representative calculations for new reactor systems are: a LOCA analysis for

NuScale carried out to model an extremely severe accident caused by loss of decay heat removal (Skolik et al., 2021;

Skolik, Trivedi, Perez-Ferragut, & Allison, 2019), and a study on the graphite oxidation behavior for reliability studies

of a HTGR (Chai, Wu, & Okamoto, 2020).

Full 3D reactor core simulators, with the capability of neutronic-thermal hydraulics coupling are used to solve for

the reactor power and flow field for steady-state as well as transient calculations. Free open source codes such as

OpenMOC (Boyd, Shaner, Li, Forget, & Smith, 2014) and OpenMC (Romano et al., 2015) are available for carrying

out deterministic computations with the method of characteristics and Monte Carlo simulations for neutronics and

OpenFOAM (OpenFOAM, 2014) for computational fluid dynamics computations. Monte Carlo methods have been

combined with the method of characteristics and demonstrated that the hybrid model is better than each one alone (Lee,

Choi, & Lee, 2015). Coupling of neutronics with CFD has been carried out for Multiphysics simulations (Castagna

et al., 2020; Seubert et al., 2012; Tuominen, Valtavirta, & Lepp, 2018; Tuominen, Valtavirta, Peltola, & Leppänen,

2016) of 3D deterministic as well as Monte Carlo codes for core analysis.
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8.4 Radiological protection codes

For source term analysis (Section 3) and radionuclide releases under accident conditions, the USNRC codes

RADTRAD (RADionuclide Transport and Removal And Dose Estimation) and RASCAL (Radiological Assessment

Systems for Consequence AnaLysis) are used.

8.5 Performance and safety analyses

For the performance of a single fuel rod under near-normal reactor operating conditions, codes developed by the

USNRC are FRAPCON-3, for steady-state and mild transient analysis and FRAPTRAN for design basis accident analy-

sis. These codes are very useful for the design of new SMRs, as described in Chapter 3. Two such examples are the

work on a small modular 150 MWt PWR (Mirian & Ayoobian, 2020) and on studying aa accident tolerant fuel (He,

Shirvan, Wu, & Su, 2019). In the first case, using FRAPCON, the effect of varying fuel diameter and pitch on the

excess reactivity, neutron flux and burn-up were calculated by MCNP and coupled with FRAPCON to compute the fuel

centerline temperature, stresses and pressures with the objective of enhancing the fuel cycle lifetime. In the second,

using FRAPTRAN, a new silicon carbide (SiC) fuel was studied during a LOCA for its mechanical integrity.

For severe accident analysis the USNRC codes MELCOR for core meltdown analysis, such as for the modeling of

Fukushima Daiichi Unit 1 (Herranz & López, 2020) and for a study on the AP1000 (Malicki, Pieńkowski, Skolik, &

Trivedi, 2019) an integral severe accident analysis code, and SCDAP/RELAP5 are used.

To perform analyses on the possible atmospheric release of radionuclides with environmental consequences, the

MACCS (The MELCORE Accident Consequence Code) Code has been widely used.

Probabilistic Risk Assessment: SAPHIRE (Systems Analysis Programs for Hands-on Reliability) developed by the

USNRC

Typical simulation results from the codes described above include neutron and photon flux, criticality computations,

and reaction rates in regions of interest. Deep-penetration calculations are required for the design of radiation and bio-

logical shielding around areas of high radiation.

For ITER, for example, elementary one-dimensional calculations are useful before proceeding to two-dimensional

and full three-dimensional models. A simple 1D model of ITER in MCNP has been used to get energy-dependent neu-

tron flux and dose rates.

Such 1D results are often useful to draw important engineering design parameters and limits. For example, in this

1D analysis, the authors conclude that “the magnitude of the dose rate on the outside hall of bioshield during normal

ITER operation cannot be considered low in accordance with the result found in the simulation performed in this work,

that is, 1 μSv=h. It is important to remember that the contributions due to the presence of slits between blanket mod-

ules and also the various holes in the cryostat and bioshield were not considered in the calculation.”

These are the very important findings of such simulations. Consider these with the acceptable radiation levels of the

order of 0.05 Sv described in Chapter 1 and a preliminary estimate can be made to conclude that safety radiation levels

will be exceeded by about five years. In the expression that “. . . the presence of slits between blanket modules . . . were
not considered in this calculation,” it is clear that a 2D, or possibly a full 3D simulation is required.

To model geometrical complexity such as the ducts mentioned above, codes such as MCNP, KENO and DOT can

be used to carry out two- or three-dimensional calculations for the streaming analysis.

A typical ducting problem that must be addressed in nuclear reactors viz the streaming of radiation in ports and ducts

designed to place instrumentation at locations in the reactor. Results are found for levels of radiation that can subse-

quently be used to determine safety for workers and radiation damage to instrumentation.

8.6 Nuclear data

Computer codes come with nuclear data libraries which may need to be processed before they can be used. There are

several nuclear data libraries such as ENDF/B (Evaluated Nuclear Data File, Brookhaven National laboratory) (Brown

et al., 2018), ENDL (Evaluated Nuclear and Atomic Reaction Data Library, Lawrence Livermore Laboratory, USA),

JEFF (European Joint Evaluated Fission and Fusion (JEFF) Library, OECD Nuclear Energy Agency), JENDL (Japanese

Evaluated Nuclear Data Library), CENDL (Chinese Evaluated Nuclear Data Library) etc. which contain data obtained

from experiments (Ge, Wu, Chen, & Xu, 2017; Herman & Trkov, 2010; Shibata et al., 2011).
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These cross sections are available in the “old” formats with tabulations described below. The ENDF data is retrieved

by specifying material numbers containing the atomic number Z and the atomic mass number A, the reaction of interest,

the energy of interest, the version of the evaluation and several other details.

ENDF/B evaluations have a MAT number for all materials, an MF number for files, and a MT number for reaction

type. For U238, for example, the information file has the info: U-238 MAT5 9237 MF5 1 MT5 451 Library: ENDF/

B-VII.0

Thus U238 evaluations have 10 information files viz MF5 1, 2, 3, 4, 5,6, 12, 13, 14 and 15, each of which carry

information on the MT data available, for example, MT1 is the total neutron microscopic cross section σtot and MT16

is the ðn; 2nÞ data. A glance over the MF files is useful to appreciate the data “pointers”, that is, the MT reaction data in

each file.

MF5 1 General Information

MT5 452: total average neutron multiplicity per fission (total nubar)

MT5 455: average delayed neutron multiplicity per fission

MT5 456: average prompt neutron multiplicity per fission

MT5 458: energy release from fission

MF5 2 Resonance Parameters

MT5 151 resolved and unresolved resonance parameters

MF5 3 Neutron Cross sections

MT5 1: total cross section

MT5 2: elastic scattering cross section

MT5 3: nonelastic cross section

MT5 4: inelastic cross section

MT5 16: (n,2n) cross section

MT5 17: (n,3n) cross section

MT5 18: fission neutron cross section

MT5 19,20,21,38: multi-chance fission cross sections

MT5 37: (n,4n) cross section

MT5 51�71 discrete inelastic level cross sections

MT5 72�90: discrete inelastic level cross sections (direct reactions to groups of states) MT5 91: inelastic contin-

uum neutron cross section

MT5 102: neutron radiative capture cross section

MF5 4 Angular Distributions of Secondary Particles

MT5 2: neutron elastic scattering angular distributions

MT5 51�53: discrete inelastic neutron angular distributions for the ground-state rotational band

MT5 54�71: discrete inelastic neutron angular distributions

MT5 72�90: discrete inelastic neutron angular distributions for direct reactions

MF5 5 Energy Distributions of Secondary Particles

MT5 18: prompt fission neutron spectrum matrix

MT5 455: delayed neutron emission spectra from fission

MF5 6 Product Energy-Angular Distributions

MT5 16,17,37: (n, xn) continuum distributions

MT5 91: (n, n0) continuum distributions

MF5 12 Photon Prod Multiplicities & Transition Probabilities

MT5 18,102: photon multiplicities from inelastic scattering, fission, and radiative capture

MF5 13 Photon Production Cross Sections

MT5 3: photon production cross sections from nonelastic reactions

MF5 14 Photon Angular Distributions

MT5 3,18,102: photon angular distributions from nonelastic, fission, and radiative capture reactions

MF5 15 Continuous Photon Energy Spectra

MT5 3,18,102: photon energy spectra from nonelastic reactions, fission and radiative capture

Reactions are also available with MT numbers in MF files.

In the table above, for MF5 1, the information in this file holds only five reaction types, that is, MT451, 452, 455,

456, and 458. MT451 is the INFO associated with the data, while MT452 holds ν t, the average total number of neutrons
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(prompt plus delayed) neutrons released per fission event. More details are in the ENDF-6 Formats Manual on the BNL

website. The first ten lines in this data file are

This section is reproduced from the “Formats Manual”: To read the data, the position of the “records” has to be

known. All records are one of six types: TEXT, CONT (has six special cases called DIR, HEAD, SEND, FEND,

MEND, and TEND), LIST, TAB1, TAB2, and INTG. For example, SEND indicates a section end, FEND indicates a

file end, MEND indicates a material end, and TEND indicates a “tape end.” The counter NS is reset for every section

in the file; the last is SEND which has NS5 99,999.

Every line toward the end has 92,237 which is the MAT number, followed by a one which is the file number, then

451 which is the MT (reaction) number, then the record number NS.

From the ENDF/B data, it can be verified that the first file has the first section (MT451) with 796 lines; the second

section (MT452) has 07 lines; the third section (MT455) has 07 lines; the fourth section (MT456) has 07 lines; the fifth

section (MT458) has 05 lines; then file 2 begins with MT151.

For specific applications where temperature-dependent data, for example, is required, nuclear data processing codes,

such as NJOY, are used to process the cross sections in data libraries such as ENDF/B to prepare multi-group and mix-

ture cross sections. Needless to state, data handling is itself a large field and professionals involved in the compilation,

maintenance and processing of nuclear data most often stay within this domain.

As mentioned earlier, in the two step process, the first step is to use a lattice physics codes with a cross section gen-

eration code to provide the cross sections input to a neutronics code which computes the fluxes to get the power distri-

bution. This power distribution is input to a thermal hydraulics code

One such system uses the GENPMAXS (Porhemmat, Hadad, & Faghihi, 2015) for the Generation of the Purdue

Macroscopic XS set code module for the 3D Purdue Advanced Reactor Core Simulator PARCS. The generation code uses lat-

tice codes such as HELIOS-2 (Wemple & Villarino, 2008), CASMO (Rhodes, Smith, & Lee, 2006), and TRITON (DeHart,

2006).

The use of codes, developed in universities, companies, and government organizations, is indispensable as a first

step in the design of a reactor and a requirement in regulatory processes. The USNRC has been using computer codes

since the development of early nuclear reactors. Similarly other international efforts include the Institute de

Radioprotection et de Surete Nucleaire (IRSN) in Europe and more recently the Chinese nuclear regulatory institution

through the National Nuclear Safety Administration (NNSA).
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8.6.1. MCNP

The first Monte Carlo code appeared as a Los Alamos report in 1963. By the early 1980s, MCNP began to be widely

distributed and used as MCNP3A and MCNP3B written in Fortran 77 with neutron and photon transport. The next ver-

sion, MCNP4, had improvements such as electron transport capability as well as new tallies. It had parallel processing

to speed up the computations. The perturbation capability was added in MCNP4B in the late 1990s. This was followed

by MCNP4C which had some better physics such as the treatment of nuclear resonances. MCNP5 released in 2003 was

rewritten in Fortran 90 and had several improvements. The latest version, MCNP6.2 (2017), can transport 36 different

particles from neutrons, photons, electrons to muons, antineutrons various baryons, antiparticles, deuterons, tritons,

alpha, and heavy ions. The long list of improvements includes the modeling of physics, sources, data, tallies, unstruc-

tured meshes, as well as code enhancements. This has led to a greatly increased versatility going far beyond the early

neutron and photon transport to areas such as medical physics, accelerator-driven energy source research, high-energy

dosimetry, and futuristic areas such as charged particle propulsion. Stochastic geometry has been incorporated to model

the random arrangements in a geometry such as the high-temperature gas-cooled reactor with its spherical fuel pebbles.

8.7 Conclusion

Many of the computer codes used during the various stages of a nuclear reactor lifecycle are discussed in this chapter,

from the concept and design stage to licensing, performance, regulatory, safety and accident analysis, to the decommis-

sioning of a reactor. With advancements in computer hardware as well as the development of powerful algorithms,

computer simulations and codes are most likely to play an increasingly important role in the nuclear industry leading to

better, safer, and more competitive designs giving greater eminence to nuclear energy in the future.

Problems

1. Describe briefly how the ANISN code computes neutron flux in a cylinder. (a) What would be the difference in a

computational strategy in ANISN for radiation shielding compared with a boron concentration criticality search? (b)

How are neutron and photon dose rates obtained in ANISN?

2. For a discrete ordinates ANISN-S4 computation, what angular bins would be specified in a MCNP tally to com-

pare results from both?

3. What is the fundamental difference between MORSE and MCNP (both Monte Carlo codes) in modeling neu-

tron�nuclei interactions?

4. What is common between the deterministic code ANISN and the Monte Carlo code MORSE?

5. For a situation in which a pipe failure in the Spent Fuel Pool (SFP causes a loss of coolant accident (LOCA)

describe what useful results the FRAPTRAN code could give. From the FRAPTRAN model, answer the following

questions: (a) Why would the spent fuel rods stored in the SFP remain hot even though they have been removed from

the reactor? (b) What model is used for thermal conductivity of uranium oxide fuel and how does it relate to the expres-

sion given in Chapter 4? (c) In the finite-difference scheme for the time-dependent conduction equation what quantities

are obtained? (d) How is the stored energy (in a fuel rod) modeled in the code? (e) Which model for convection would

be most appropriate to apply in SPF conditions? (f) What mechanical response does the code model? (g) What makes

the modeling in the code multidisciplinary (as mentioned in Chapter 4)? (h) What would occur in the reactor building if

the cladding were to burst?

6. How could the perturbation feature in MCNP be used for carrying out a boron criticality search in an LWR?

7. What makes the MC method particularly suitable for parallel computation? How would you carry out an MC sim-

ulation of particle histories using the parallel computing feature in Matlab and what computational speedup would you

expect?

8. In an optimization study of a fusion reactor blanket design what factors could favor the use of a deterministic

code such as ANISN over a Monte Code such as MORSE?

9. With reference to Chapter 4 and the description of the MCNP and ORIGEN codes given above, if the two codes

are coupled for a burnup calculation in an LWR, (a) how will MCNP and ORIGEN be coupled, that is, what quantity

will be given from MCNP to ORIGEN and which input data of MCNP will be modified for the next run in the loop, (b)

which nuclide compositions will be of interest, and (c) when will a MCNP-ORIGEN coupling be favored over a

ANISN-ORIGEN coupling?
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10. In the MCNP�ORIGEN coupling discussed in 8.9, how would the reactor power be used in data transfer from

MCNP to ORIGEN?

Nomenclature

Abbreviations and acronyms
ANISN anisotropic SN method

CENDL Chinese evaluated nuclear data library

DORT discrete-ordinate neutron and photon transport

ENDF/B evaluated nuclear data file, Brookhaven National Laboratory

ENDL evaluated nuclear and atomic reaction data library

FORTRAN formula translation

FRAPTRAN fuel rod analysis program transient

GEANT geometry and tracking

HTGR high temperature gas cooled reactor

IBM International Business Machines

ITER International Thermonuclear Experimental Reactor

JEFF European Joint Evaluated Fission and Fusion (JEFF) Library, OECD Nuclear Energy Agency

JENDL Japanese evaluated nuclear data library

IRSN Institute de Radioprotection et de Surete Nucleaire

LOCA loss of coolant accident

LWR light water reactor

MARS multiple array system

MC Monte Carlo

MCNP Monte Carlo N-particle

MACCS The MELCORE Accident Consequence Code

MF material file

MORSE Multigroup Oak Ridge Stochastic Experiment

MT material type

NEA Nucear Energy Agency

NNSA National Nuclear Safety Administration

ORIGEN ORNL Isotope Degeneration and Depletion Code

RELAP The Reactor Excursion and Leakage Analysis Program

RADTRAD RADionuclide Transport and Removal And Dose Estimation

RASCAL Radiological Assessment Systems for Consequence AnaLysis

RISC reduced instruction set computer

RSICC radiation safety information computational center

SAPHIRE systems analysis programs for hands-on reliability

TORT a three-dimensional discrete ordinates neutron/photon transport code

USNRC United States Nuclear Regulatory Commission

WIMS Winfrith improved multigroup scheme

WWER water-water energetic reactor
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Chapter 9

Optimization and variational methods

9.1 Introduction

In engineering design three very important goals are safety, design optimization, and economic optimization.

This is true for nuclear technologies as nuclear power reactors are designed to operate safely, designed and built on

the best knowledge of the day, and provide economically competitive energy. These features have been the hallmark of

nuclear energy over the last 60 years of providing safe reliable and competitive energy (Section 3.1).

This last requirement will be most severely tested in the decades to come. Nuclear energy will have to compete with

fossils and renewables to make a renaissance possible. The competitiveness will most likely come from the Gen IV

reactor designs which have some very attractive features described in Chapter 3 (Section 3.5.3).

The present challenge for nuclear technology is optimization in proposed designs to win the licensing formalities

and gain public acceptance to provide energy for the decades to come.

The main difference between design optimization in nuclear engineering and in other power systems is the high

nuclear energy density that minimizes the tolerances. Both fission and fusion power systems contain some of the most

sophisticated concepts about the way nature works as well as some of the most advanced technologies developed in the

scientific community; and with it have come derivative benefits in the development of mathematical models and com-

puting platforms.

Today, optimization in nuclear engineering is performed mostly with heuristic and meta-heuristic (meaning more

efficient search techniques) methods with artificial intelligence expert knowledge-based systems to make a machine

learn while it calculates, to mimic the workings of the human brain by neural networks rendering a machine towards a

human way of thinking. It has thus become possible, for example, to optimize the fuel loading in 121 assemblies of a

pressurized water reactor (PWR) core (Section 3.2.1) with the fuel of the right enrichment and the right burnup to be

placed at the right place in the core at the right time of its power producing several-year schedule. A great achievement

considering that the factorial of 121 is B 10200 which means that out of so many possible solutions, the best must be

found. How does one do that!

Reactor core fueling optimization is a huge search space even by modern computational capabilities, so a reduction in

complexity is achieved by using a 1/8 core symmetric model to search from an optimal configuration from 15! B 1012

permutations and combinations, which becomes possible.

In nuclear engineering, optimization is applied in areas including overall reactor core design (Bae, Betzler,

Chandler, & Ilas, 2021; Betzler, Chandler, Cook, Davidson, & Ilas, 2019), reactor operations (Kumar & Tsvetkov,

2015; Mousakazemi, 2021), safety-related management strategies, in-core fuel management (Chham et al., 2021), the

design of criticality experiments, centrifuge cascade optimal configurations, radiation shielding design (Ahmad, Chang,

Li, Yang, & Liu, 2021; Cai, Hu, Lu, & Jia, 2018), controller design (Mousakazemi, 2021; Mousakazemi, Ayoobian, &

Ansarifar, 2018; Wan & Zhao, 2017), and many more.

Most of the present-day optimization is multi-objective and multi-modal and, in many cases, requires combinatorial

optimizations made efficient by the use of machine learning algorithms and expert-based systems.

This chapter focuses on the applicable mathematics of optimization followed by a cursory review of some application areas.

Historically, this field has its origins in the works of Euler (1707�83) and Lagrange (1736�1813), following

Newton’s (1642�1726) optimization, and was further demonstrated by Bernoulli (1667�1748) in the classical brachis-

tochrone problem. Two centuries later, Pontryagin (1908�88) developed what is now known and widely applied as the

“bang-bang” control based on Pontryagin’s Maximum Principle. Such variational methods were mainly focused on

mechanics with considerable contributions by mathematicians including Hamilton (1805�65). The bedrock of optimiza-

tion and optimal methods is thus considered to be Newton’s optimization followed by Hamiltonian and Lagrangian
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formulations and the Euler-Lagrange equations as equivalent forms for the stationarity of a functional (Lewis, Vrabie,

& Syrmos, 2012; Rao, 2009).

At the simplest level, one or many maxima or minima of a function are found by setting its first derivative to zero

and then using the second derivative, or the Hessian matrix, to determine the nature of an extremum.

In the next step, with a quest to seek the best function a new calculus was developed by considering an independent

function as a variable and variational calculus gave, in the simplest Euler-Lagrange equation, the capability to find the

best function which minimized or maximized some functional. One common-sense illustration is that of a straight line

corresponding to the shortest distance between two points on a flat surface (Section 9.2.2). Any other function would

give a longer distance. Similarly, the function that gives the shortest distance between two points is a geodesic which

lies on the larger circle on the surface of that sphere. The terminologies commonly used for the best value or function

from calculus and variational calculus are optimization and optimal analysis.

Continuing the sequel in this book, with Chapter 4 covering the essential mathematics for a nuclear engineering

basic degree curriculum, and Chapters 5�7 covering formulations in the diffusion and transport equations and the math-

ematics and tools for Monte Carlo simulation, the simple understanding is that nuclear, and in a wider sense, radiation

transport is by no means easy to solve for realistic designs. Thus in Chapter 8, some illustrative and extensively used

codes and databases were described.

With all the learning from Chapters 4 to 8, optimization would require several computations based on intuition and

some learning. That would, of course, be a very inefficient way, maybe an impossible way, to obtain a nuclear reactor

design. One can therefore imagine the large amount of experimentation that must have gone into the design of the first

generation nuclear reactors described in Chapter 3.

Fortunately, strong and powerful computers were made in the 1960s and 1970s, notably the Control Data

Corporation (CDC), International Business Machines (IBM), and Cray computers. With the hardware came vector and

parallel processing capabilities and with all that the capability of performing huge computations became so simple. And

that opened the door for stochastic and heuristic optimization techniques which are so widespread these days.

Traditional optimization methods are based on the adjoint function with a variational formulation and deterministic

methods such as Dynamic Programming (DP) developed by Richard Bellman in the 1950s and widely used in optimal

control as the Hamilton-Jacobi-Bellman equation (Bellman, 1952; Bertsekas, 2010). A major thrust however is on heu-

ristic optimization methods using artificial intelligence, expert systems, neural networks, genetic algorithms (GAs), and

several other methods (Lee & El-Sharkawi, 2007; Nissan, 2019; Pardalos & Resende, 2002). The optimization field is

so vast and developed that it is not possible to consider more than just a few methods in this chapter, but the content

here is sufficient to give a reasonable insight into the methods and applications in nuclear engineering.

9.2 Deterministic optimization

9.2.1 Deterministic optimization without constraints

The simplest method of finding the minima or maxima of a continuous function is from its first and second derivatives.

As an example, for a two-variable function

f x1; x2ð Þ5 1

2
x21 1 x1x2 1 x22 1 x2 (9.1)

the partial derivatives are

@f

@x1
5 x1 1 x2;

@f

@x2
5 x1 1 2x2 1 1; and

@2f

@x1@x2
5

@2f

@x2@x1
5 1: (9.2)

Setting both first partial derivatives equal to zero and solving for the extremum x�, gives x�1; x
�
2

� �
5 1; 2 1ð Þ. The

Hessian matrix is

H5

@2f

@x21

@2f

@x1@x2

@2f

@x2@x1

@2f

@x22

2
66664

3
77775 (9.3)
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with a determinant

Hj j� 5 @2f

@x21

@2f

@x22
2

@2f

@x1@x2

@2f

@x2@x1

����
����
�
5 1ð Þ 2ð Þ2 1ð Þ 1ð Þ5 1 (9.4)

so that the extremum is a local minima. For a function of two independent variables, it is possible to plot the functions

as shown in Fig. 9.1 for the surface f ðxÞ and in Fig. 9.2 for the contours illustrating that at the minima f x�ð Þ5 0.

From Fig. 9.2, the minima is seen at x� 5 ð1; 2 1Þ for which f x�ð Þ52 0:5.

9.2.2 Deterministic optimization with algebraic constraints

For optimizing a function f ðxÞ with N constraints gi xð Þ5 0; we write a Lagrangian

L f ; g; x;λð Þ5 f ðxÞ1
XN
i51

λigi xð Þði5 1; 2; 3?;NÞ: (9.5)

As an example of a two-variable function with a single algebraic constraint, consider the optimization problem:

maxVðR;HÞ subject to the constraint of available surface area As for a cylinder of radius R and height H. The volume is

VðR;HÞ5πR2H subject to a constraint of given surface area

As R;Hð Þ5 2πR2 1 2πRH5K: (9.6)

An elementary consideration leads to a reduction of the two-variable problem to a single variable problem by substi-

tuting for the height of the cylinder

H Rð Þ5 K

2πR
2R (9.7)

when the volume can be written as

V Rð Þ5 1

2
KR2πR3: (9.8)

The extremum can be found by differentiating the above to get the optimum for which the optimal radius and height

are R� 5
ffiffiffiffiffiffiffiffiffiffiffiffi
K=6π

p
, and H� 5 2Ro, respectively, and the volume is

V� 5 2πR3 5 2π
K

6π

� �3=2

:

FIGURE 9.1 Surface plot of f xð Þ5 1
2
x21 1 x1x2 1 x22 1 x2 showing

x1; x2 contours.
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With the Lagrangian (Eq. 9.5), L, expressed as the function to maximize (or minimize) V , and the constraint condi-

tion As 2K5 0, multiplied by a Lagrange multiplier λ (Lewis et al., 2012)

rLj� 5rVj� 1λrAsj� 5 0 (9.9)

since, at the extremum, rLj� 5 0, so that the equations are

@V

@R
j� 1λ

@As

@R
j� 5 0

and

@V

@H
j� 1λ

@As

@H
j� 5 0:

This gives H� 5 2R�, and the Lagrange multiplier

λ52
rV

rAs

j� 52
R�

2
: (9.10)

Fig. 9.3 shows the permissible R2H contours for surface constraints (almost straight lines) and the volume curves.

In Fig. 9.2, there were no constraints but here the maximization or minimization must be performed within the specified

constraints. The lines and curves move towards the right as values are increased.

Table 9.1 shows the optimum volumes V� for values of As 5K5 10; 20; 30; 40; and 50 cm2.

The optimal values R�;H� are indicated with crosses. Clearly, as the surface area increases, the optimal volume

increases from 2.43 to 27.14 cm3.

The area constraint, shown in Fig. 9.4, along with the volume contours athey move upwards for varying K show

that the curves become tangential, that is, the normal vectors on both coincide with each other at the optimal point

R� 5 1:0301 cm, H� 5 2:0601 cm with volume V� 5 6:8671 cm3 which is a maxima as shown in Fig. 9.5.

It is seen that the volume contours shift towards the right touching each other tangentially at the optimal value for

the height for which the difference in the two values HV 2HA goes to zero at the optimal radius. This represents the

geometrical interpretation of the Lagrange multiplier as the point where volume and surface area contours are tangential

to each other.

9.2.3 Optimal solution with a system of first-order ordinary differential equation constraints

In the previous section, the best values of independent variables were found to maximize a function subject to an alge-

braic constraint.

FIGURE 9.2 Contour plot of 1
2
x21 1 x1x2 1 x22 1 x2 5C.
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Consider now the problem of finding a best function which maximizes an objective function

ε5
ðb
a

F x; yðxÞ; y0 xð Þð Þdx (9.11)

An example is to find a function that minimizes the distance between two points Aðxa; yaÞ and Bðxb; ybÞ on a flat sur-

face. Clearly there are an infinite number of functions g xð Þ that pass through these two points and satisfy the boundary

TABLE 9.1 Constrained maximization of the volume of a cylinder.

K (cm2) 10 20 30 40 50

R� (cm) 0.7284 1.0301 1.2616 1.4567 1.6287
H� (cm) 1.4567 2.0601 2.5231 2.9135 3.2574

V � (cm3) 2.4279 6.8671 12.6157 19.4231 27.1446

FIGURE 9.4 Surface area constraint for As 5 20 cm2 and a family of

objective function (volume) curves.

FIGURE 9.3 Objective function (volume) and constraint (area) curves.
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conditions at A and B. One such example is the function g xð Þ5 p1 qx1 rx2 where p; q; r are constants found by satisfy-

ing the boundary conditions. For an arc on gðxÞ the objective function is

F x; y xð Þ; y0 xð Þð Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 y0ð Þ2

q
: (9.12)

Since the distance along the curve, using Pythagoras’ Theorem for a right angle triangle relating the arc length ds to

the other two sides of the triangle dx and dy, is

s5

ðb
a

F x; yðxÞ; y0 xð Þð Þdx5
ðb
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 y0ð Þ2

q
dx (9.13)

Just like Newton’s calculus for varying the independent variable to find the extremum of a function, here the func-

tion yðxÞ is varied so that a new function considered is g xð Þ5 y xð Þ1 εhðxÞ; then Eq. (9.11) is written as

ε5
ðb
a

F x; gðxÞ; g0 xð Þð Þdx (9.14)

In terms of the small parameter ε, differentiating ε with respect to ε gives

dε
dε

5

ðb
a

dF

dε
dx (9.15)

which is

dε
dε

5

ðb
a

@F

@x

dx

dε
1

@F

@g

dg

dε
1

@F

@g0
dg0

dε

� �
dx (9.16)

Note that for F x; gðxÞ; g0 xð Þð Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 g0ð Þ2

p
, the first two partial derivatives are zero while

@F

@g0
5

g0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 g0ð Þ2

p
and Eq. (9.16) becomes

dε
dε

5

ðb
a

g0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 g0ð Þ2

p h0 xð Þ
 !

dx (9.17)

FIGURE 9.5 Objective function V versus radius R for a surface area

constraint.
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Integrating by parts and setting the derivative ε0 5 0,

dε
dε

5

ðb
a

g0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 g

0ð Þ2
q

0
B@

1
CA dh xð Þ5 g0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11 g
0ð Þ2

q
0
B@

1
CAh xð Þjba 2

ðb
a

h xð Þd g0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 g

0ð Þ2
q

0
B@

1
CA5 0 (9.18)

The first part of Eq. (9.18) can be made zero by choosing hðxÞ such that h að Þ5 h bð Þ5 0 while the second term says

that

d

dx

g0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 g

0ð Þ2
q

0
B@

1
CA5 0 (9.19)

which means that the term in the brackets is a constant in x. Thus g
0 ðxÞ is also a constant and a function that has a con-

stant slope is a straight line. Therefore our assumption that g xð Þ5 p1 qx1 rx2 was a trial function could only be true if

the constant r5 0:
The purpose of doing this exercise from Eq. (9.16) onwards for g xð Þ considered as a second-order polynomial was

to make the understanding easy. In general, a functional F can be written as in Eq. (9.11); for that case, Eq. (9.16)

leads to the general form of Eq. (9.18) which is known as the Euler-Lagrange equation:

@F

@y
2

d

dx

@F

@y0 5 0 (9.20)

To conclude: the Euler-Lagrange equation is the stationarity condition in variational calculus for an unconstrained

optimization similar to the first derivative being zero in Newton’s calculus.

9.2.4 Optimal solution with a system of first-order ordinary differential equation constraints

Now consider the next step in which the aim is to find a best function u of one or several variables to maximize a func-

tional JðuÞ subject to N first-order ordinary differential equation (ODE) constraints _xi tð Þ5 fiðx; u; tÞ for i5 1; 2; 3;?;N.
This optimization of a functional rather than a function requires variational calculus and is classified as an optimal con-

trol problem.

A system is described by the equation of state

_x5 f ðx; u; tÞ (9.21)

with a performance index (PI)

ε5
ðt
0

F x; u; tð Þdt: (9.22)

A control u is implemented causing the system to move to a state u; subsequently, a small change is made in the

control δu; such that δuj j# ε is made over the time domain ð0; tÞ. This causes a change in x and _x since the time rate of

x changes from dx=dt to dðx1 δxÞ=dt with a change δ _x which is related to the change in

δ _x5 δf 5
@f

@x
δx1

@f

@u
δu1O εð Þ (9.23)

causing a change in the PI

δε5
ðt
0

@F

@x
δx1

@F

@u
δu

� 	
dt1Fðx; tÞjt5tδt1O εð Þ (9.24)

Multiplying Eq. (9.12) by λðtÞ integrating over t and adding to Eq. (9.13) gives

δε5
ðt
0

@F

@x
1λ

@f

@x

� �
δx2λδ _x1

@F

@u
1λ

@f

@u

� �
δu

� 	
dt1Fjt5tδt1O εð Þ (9.25)
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Integrating λδ _x by parts,

δε5
ðt
0

@F

@x
1λ

@f

@x
1 _λ

� �
δx1

@F

@u
1λ

@f

@u

� �
δu

� 	
dt1Fjt5tδt2λ tð Þδx tð Þ1λ 0ð Þδx 0ð Þ1O εð Þ (9.26)

Therefore λ should satisfy the differential equation

@F

@x
1λ

@f

@x
1 _λ5

@H

@x
1 _λ5 0: (9.27)

Then, the change in the PI is

δε5
ðt
0

@F

@u
1λ

@f

@u

� �
δudt1Fjt5tδt2λ tð Þδx tð Þ1λ 0ð Þδx 0ð Þ1O εð Þ: (9.28)

Consider now the boundary conditions.

When time t is specified then there is no uncertainty in the end points and δt5 0, so that the coefficient of δt does
not need to be zero. In that case

δε52λ tð Þδx tð Þ1λ 0ð Þδx 0ð Þ1OðεÞ (9.29)

Further if the end-point is given, then δx tð Þ5 0 and λ tð Þ is not known. In case the end-point is free, then δx tð Þ 6¼ 0

so that λ tð Þ5 0.

When time t is not specified then x t1 δtð Þ5 x tð Þ1 δx tð Þ1OðεÞ. If x is free then
Fjt5tδt2λ tð Þδx tð Þ can be simplified using the state equation _x5 f which can be understood to be δx5 f δt, so that

Fjt5tδt2λ tð Þδx tð Þ5 Fjt5t 2λ tð Þf� �
δt. Free and fixed boundary conditions are applied as specified in the problem

(Table 9.2).

Eq. (9.18) becomes

δε5
ðt
0

@F

@u
1λ

@f

@u

� �
δudt1O εð Þ (9.30)

For δε$ 0, the value of δu can be chosen to be such that

δu52 ε
@F

@u
1λ

@f

@u

� �
: (9.31)

With a positive definite square term in the integral

δε52 ε
ðt
0

@F

@u
1λ

@f

@u

� �2

dt$ 0: (9.32)

The above condition is written as a minimum

δε5 ε
ðt
0

@F

@u
1λ

@f

@u

� �2

dt# 0 (9.33)

TABLE 9.2 Adjoint boundary conditions at initial and final time ð0; tÞ.
x Condition Time

Specified Unspecified

xðtÞ Free λ tð Þ5 0 λ tð Þ5 0
xðtÞ Fixed λ tð Þ unspecified Fjt5t 2λ t

� �
f

xð0Þ Free λ 0ð Þ5 0 Initial time specified
xð0Þ Fixed λ 0ð Þ unspecified Initial time specified
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and since δε cannot be negative, therefore the Hamiltonian function written as

H5F1λf (9.34)

where the stationarity conditions are the state equation

@H

@λ
5 f (9.35)

the adjoint, or co-state, equation

@H

@x
52 _λ (9.36)

and the optimal control equation

@H

@u
5 0: (9.37)

In nuclear engineering, an optimization problem could be the maximization of power for a given amount of fuel in

some configuration. This would be as formulated as: maximize P5
Ð
Σf ðxÞφðxÞdx subject to No 5

Ð
N xð Þdx and

_xi tð Þ5 fiðx; u; tÞ for i5 1; 2:
The Lagrange multiplier is a sensitivity coefficient and represents a powerful method to estimate the change in an

optimal cost function per unit change in the constraint. It has thus been used for design sensitivity studies leading to

optimization in nuclear reactor design.

The second-order neutron diffusion equation could be expressed as two first-order equations with state variables

x1 5φ; x2 5 _φ giving two first-order ODEs.

L φ;λ; xð Þ5 Σf ;φ

 �

1
X
i

λifi: (9.38)

Consider a system described by the coupled first-order ODEs

_x1 tð Þ5 x2 tð Þ � f1ðx; u; tÞ (9.39)

_x2 tð Þ52x2 tð Þ1 uðtÞ � f2ðx; u; tÞ (9.40)

with boundary conditions x 0ð Þ5 0; x 2ð Þ5 5 2½ �T , Find a function uðtÞ such that the objective function, or PI,

J uð Þ5 1

2

ðtf
0

u2 tð Þdt (9.41)

is maximized. The optimality analysis consists of the following steps:

1. Write the Lagrangian in terms of the objective function, the Lagrange multiplier(s), and the constraint(s),

2. Apply the stationarity conditions, and

3. Solve the equations to obtain the optimal control.

In this problem, the Lagrangian is

L x; u; tð Þ5 1

2
u2 tð Þ1λ1f1 1λ2f2 (9.42)

with the stationarity conditions (state equations) giving the constraints

_x1 tð Þ5 @L

@λ1

5 f1 (9.43)

_x2 tð Þ5 @L

@λ2

5 f2 (9.44)

and the adjoint (Lagrange multipliers) or co-state equations

2 _λ1 tð Þ5 @L

@x1
5 0 (9.45)

Optimization and variational methods Chapter | 9 357



2 _λ2 tð Þ5 @L

@x2
5λ1 tð Þ2λ2 tð Þ: (9.46)

The above are solved to give

λ1ðtÞ5C1 (9.47)

λ2 tð Þ5C1 1C2e
t (9.48)

and the optimal control u�

@L

@u
5 u� 1λ2 tð Þ5 0: (9.49)

Therefore, the optimal control is

u� 52λ2 tð Þ52 C1 1C2e
t

� �
: (9.50)

All that is required now is to find the constants C1 and C2. The optimal “trajectories” are then

x�1 tð Þ52C1t2
C2

2
et 2C3e

2t 1C4 (9.51)

and

x�2 tð Þ52C1 2
C2

2
et 1C3e

2t: (9.52)

From the boundary conditions, the constants are:

C1 52 7:2918;C2 5 1:1870;C3 52 6:6983; and C4 52 6:1048:

Then, the PI is found as

J u�ð Þ5 1

2

ðtf
0

u� tð Þ½ �2dt5 1

2
C2
1tf 1

1

2
C2
2 e2tf 2 1
� �

1 2C1C2 etf 2 1
� �� 	

5 16:7507: (9.53)

The optimal functions are plotted in Fig. 9.6; this represents the optimal solution.

FIGURE 9.6 Optimal control u�ðtÞ, trajectories x�1 tð Þ; x�2ðtÞ and adjoint

function λ2ðtÞ.
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The same analysis is carried out using symbolic computing in MATLABs using the dsolve function (Wang, 2007)

with the steps below:

% step 1 declare the symbolic variables
syms x1 x2 p1 p2 u; % two equations so two Lagrange multipliers p1 p2% step 2 give the state equations
Dx15x2;
Dx25-x21 u;
% step 3 write the cost function (inside the integral)
syms g;
g50.5*u^2;
% step 4 write the Hamiltonian
syms p1 p2 H;
H5g1p1*Dx11p2*Dx2;
% step 5 Adjoint (Co-state) equations
Dp15-diff(H,x1);
Dp25-diff(H,x2);
% step 6 solve for control u
du5diff(H,u);
sol_u5solve(du, 0u0);
The solution has the following variables
sol_a5

x2: [1x1 sym]
x1: [1x1 sym]
p1: [1x1 sym]
p2: [1x1 sym]

and the optimal control u�is found as: sol_u5-p2
% Substitute u in the state equations
Dx25subs(Dx2, u, sol_u);
% convert symbolic objects to strings for using 0dsolve0

eq15strcat(0Dx15 0,char(Dx1));
eq25strcat(0Dx25 0,char(Dx2));
eq35strcat(0Dp15 0,char(Dp1));
eq45strcat(0Dp25 0,char(Dp2));
sol_h5dsolve(eq1,eq2,eq3,eq4);
% BC x1(0)5x2(0)50; x1(2)55; x2(2)52;
conA15 0x1(0)500;
conA25 0x2(0)500;
conA35 0x1(2)550;
conA45 0x2(2)520;
sol_a5dsolve(eq1,eq2,eq3,eq4,conA1,conA2,conA3,conA4)
x1sol5sol_a.x1;
x2sol5sol_a.x2;
p2sol5sol_a.p2;
g15matlabFunction(x1sol);
g25matlabFunction(x2sol);
p25matlabFunction(p2sol);
%u5-p2;
x50:0.1:2;
xx15feval(g1,x); xx25feval(g2,x); pp25feval(p2,x); u5-pp2;
plot(x,xx1,0g0,0LineWidth0,2);
hold on
plot(x,xx2,0b0,0LineWidth0,2)
hold on
plot(x,u,0k0,0LineWidth0,2)
legend(0x10,0x20,0u0)
grid on

The above program gives the functions x�1; x
�
2; u

� of Fig. 9.6.
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Exercise 9.1: A first-order system is described as

dθðtÞ
dt

52 a θ tð Þ2 θað Þ1 bu tð Þ

where a and b are constants. Find the optimal control uðtÞ which minimizes J

J5
1

2

ðT
0

u2 tð Þdt

θ t5 0ð Þ5 θa 5 25�C, and the final state is required to be θ t5 Tð Þ5 20�C.

1. Sketch the optimal control u�ðtÞ and the temperature θ� tð Þ, for a5 0:25; b5 0:5 and T 5 4 s and calculate the opti-

mal value J�.
2. Sketch the Lagrange λðtÞ and explain how it can be used to find another optimal for different conditions.

Exercise 9.2: Maximize J5
Ð 1
0
x tð Þ1 u tð Þ½ �dt subject to _x tð Þ5 12 u tð Þ2; x 0ð Þ5 1 by writing the Hamiltonian and apply-

ing the stationarity conditions. Sketch u tð Þ;λ tð Þ; xðtÞ for the optimal solution and obtain the value of J.

9.2.5 Optimal discrete control (Pontryagin maximum principle)

In the previous section, the optimal control was a continuous function of the independent variable. When the control is

discrete, the best control u� is that which gives the maximum value of the Hamiltonian.

Given that the functional to be maximized is

J5

ð3
0

x2 uð Þdt (9.54)

for a system described by

_x5 x1 u; (9.55)

with initial and final conditions x 0ð Þ5 2, xð3Þ free, with admissible controls (minimum and maximum)

u5 um uM½ �5 0 2½ �
the Hamiltonian is written in the same way as before:

H5 x2 uð Þ1λ x1 uð Þ: (9.56)

It is rearranged as H5 11λð Þx1 12λð Þu to show that a sign change takes place for λ. 1. Thus in order to maximize

H, um should be used for λ. 1. Note that the stationarity condition, Eq. (9.37), cannot be applied since the control is

not continuous now.

Applying the stationarity condition for the adjoint equation

@H

@x
52 _λ (9.57)

gives the adjoint equation 11λ52 _λ, which is easily solved to give λ tð Þ5Ce2t 2 1; applying the boundary condition

λ 3ð Þ5 0, C5 exp 3ð Þ: This gives λ 0ð Þ5 19:0855, λ 3ð Þ52 1; at the switching point, the time T is found from λ Tð Þ5 1;
which gives T 5 2:3069:

In the range 0# t# T , the control u5 uM 5 2 and in T # t# 3, u5 um 5 0 would maximize J: This discrete optimal

control solution is referred to as the bang-bang solution since one value is applied for some time and then the control is

abruptly switched to another value.

Exercise 9.3: Show that the solutions for Eq. (9.44) _x5 x1 u for u5 0 and u5 2 are x tð Þ5 0:1991et and x tð Þ5 2 and

calculate J:

An application of bang-bang control is in the placement of fuels of different enrichments in various spatial domains.
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9.3 Controller design and optimization

Nuclear reactor control, achieved by the movement of control rods or by burnable poison distributed in the core, can be

modeled by the point kinetic equations (PKE) introduced in Section2.1 which is a set of two non-linear first-order equa-

tions that can be combined into one second-order ODE. The reactor can be controlled by implementing reactivity

changes which alter the neutron density nðtÞ and bring the reactor back to the critical state. The manner in which a reac-

tor is controlled has to ensure that no unsafe conditions are attained. Another situation is where a reactor is producing

power according to some required load which may vary with time. In that case the reactor must be operated in a load-

following mode. In both the situations, a controller must be designed and implemented accordingly.

In engineering systems, a control system would typically have some overshoot η and a finite (non-zero) response

(settling) time τs, and will not therefore respond instantly. While an ideal controller cannot be designed, an optimized

controller can be designed to give a response within acceptable safety limits.

In this section, the mass-spring-damper (MSD) equation, a second-order ODE, is considered to represent the PKE

and the response is obtained for a given step (reactivity) input. The response is analyzed in terms of η and τs.
The solution of the MSD

m
d2x

dt2
1 b

dx

dt
1 kx5 f tð Þ (9.58)

for a step response u tð Þ5 1; t$ 0, is found by taking the Laplace transform, so that Eq. (9.58) becomes

ms2 1 bs1 k
� �

X sð Þ5 1

s
: (9.59)

Now defining the natural frequency ωn, the critical damping coefficient Cc and the damping coefficient ζ as

ωn 5

ffiffiffiffi
k

m

r
; Cc 5

ffiffiffiffiffiffiffiffiffi
4km

p
; ζ5

b

Cc

Eq. (9.59) is written in terms of partial fractions and the coefficients in the numerator are then determined to get a

useful form for inversion:

X sð Þ5 1

k

1

s
2

s

s1ζωnð Þ2 1ω2
n 12 ζ2
� � 1 b

mω2
n 12 ζ2
� � ω2

n 12 ζ2
� �

s1ζωnð Þ2 1ω2
n 12 ζ2
� �

" #
: (9.60)

XðsÞ is readily inverted to give the compact time-dependent displacement (after some algebraic simplifications)

x tð Þ5 1

k
12 e2ζωnt cosωn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ζ2

q
t1

ζffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ζ2

p sinωn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ζ2

q
t

( )" #
: (9.61)

To understand this solution, consider some special cases. First, for a mass-spring system without any damping 5 0,

x tð Þ5 1

k
12 cosωntf g½ � (9.62)

which means that a unit step force would set the system into an oscillatory never ending motion as shown in the peri-

odic function of constant amplitude in Fig. 9.7. For ζ, 1, the displacement oscillates with an overshoot until it settles

down to a steady gain as shown for the solutions for ζ5 0:2; 0:4; 0:8; 1:0 in Fig. 9.7. Each of these cases has an over-

shoot η which decreases in magnitude as the damping ratio increases. Similarly, the settling time τs decreases with an

increasing damping ratio. For higher damping when ζ. 1 the square roots in Eq. (9.61) are complex and since

siniθand cosiθ are real numbers, there is no oscillatory motion. All these cases are shown in Fig. 9.7 for normalized

spring constant k:

Exercise 9.4: A system is described by the state equations

_n5
ρ2β

l
n tð Þ1λC tð Þ
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_C 5
β
l
n tð Þ2λC tð Þ

where n5 n tð Þ; c5 cðtÞ β, l and λ are constants given below. The system is in equilibrium for t# 0 when c tð Þ5βn0=λl.
A step input ρ tð Þ5 ρ0 . 0; is applied at t5 0; ρ tð Þ5 0; t# 0 and causing a jump in nðtÞ. Solve for the system response

to compute nðtÞ for 0, t, 200 s for ρ0ðρ0=β5 0:1; 0:2; 0:5Þ and plot your results. The data for this exercise is:

β5 0:0079, l5 0:0001 s, and λ5 0:0767 s21.

Now consider one of the simplest controllers, a proportional (P), integral (I), derivative (D), or proportional integral

derivative (PID), controller which provides corrective action from the feedback of the plant (nuclear reactor) to take a

feedback from the output signal yðtÞ, compare it with a desired signal r tð Þ to produce an error signal eðtÞ which is fed

into the controller which subsequently produces a control signal uðtÞ to drive the plant as desired, as depicted in

Fig. 9.8. The plant output y tð Þ is then optimized with respect to the control parameters.

The PID control signal

u tð Þ5KPe tð Þ1KI

ð
e tð Þdt1KD

de

dt
(9.63)

has a transfer function (TF)

U sð Þ5 KDs
2 1KPs1KI

s2

which modifies the TF (Eq. 9.59) to

XðsÞ
RðsÞ 5

KDs
2 1KPs1KI

s3 1 b1KDð Þs2 1 k1KPð Þs1KI

: (9.64)

The open-loop system response for m5 1; b5 3; k5 46:5; ζ5 0:2ð Þ is shown in Fig. 9.9.

The objective is now to reduce the overshoot η, decrease the settling time τs, and increase the steady gain of the

reactor (plant).

FIGURE 9.8 A proportional-integral-derivative

controller.

FIGURE 9.7 Response xðtÞ versus ωnt of a second-order system due to

a unit step function.
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For a preliminary analysis, the closed-loop parameters (Eq. 9.64) KP;KI and KD are taken randomly. As KP is

increased, the overshoot increases and the steady value also increases; this is followed by increasing KD which reduces

τs. Finally, KI is increased to improve the steady gain. For KP 5 500;KI 5 100 and KD 5 200, the rise time τr, the
time at which the response first crosses the amplitude-one line, is 0.0111 s: All these cases namely, the open-loop

response, TF and the responses for P, PD, and PID are shown in Fig. 9.10.

The PD response rises sharply to a response of B1.0 then falls and stabilizes to a steady value of 1.0 by B2 s:
Even the PID response has not been able to rise to a steady value of 1.

There are several methods of tuning a PID controller, the oldest being the Nichols-Ziegler Method (Burns, 2001)

which can readily give reasonably good response parameters. Here, the MATLAB tuning command is used to remove

the overshoot and give the response shown in Fig. 9.11 with tuned parameters listed in Table 9.3.

The tuned response for the baseline parameters gave KP 5 178:0441, rise time ðτrÞ 0.0735 s, settling time ðτsÞ 2.51
s, overshoot ðηÞ 73.4%, and peak amplitude 1.32. The final improvement gives the parameters listed in Table 9.3 with a

steady peak amplitude 1.099 and rise and settling times τr 5 0:944s, settling time τs 2.27 s, and no overshoot.

FIGURE 9.9 Open-loop system response for a unit step

function.

FIGURE 9.10 Unit step responses: open-loop response TF, P, PD, and

PID responses.
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Exercise 9.5: The closed-loop system for a PI controller based on an error signal yðtÞ and input gðtÞ is given by

d2y

dt2
1 0:021 kp
� � dy

dt
1 kiy5 10

dg

dt
:

When compared with a MSD

M
d2x

dt2
1D

dx

dt
1Kx5 0

for which the characteristic polynomial is s2 1 2ξω0s1ω2
0 where ξ and ω0 denote relative damping and the undamped

natural frequency

1. draw a block diagram of the system,

2. determine the controller parameters kp; ki for critical damping ξ5 1 with assumed values of ω0Að0; 1Þ, and
3. sketch the response and comment on the dynamic response of the system.

Another set of optimal tools is the linear quadratic controller (LQR) for optimizing the control when the plant model

is linear and the PI is a quadratic function of the state variables and control. The plant can then can follow a reference

trajectory (Burns, 2001; Lewis et al., 2012) as applied to a PWR with an optimal linear quadratic Gaussian (LQG)

FIGURE 9.11 PID-tuned response compared with the baseline response.

TABLE 9.3 Proportional integral derivative controller tuning parameters.

Parameter Tuned Baseline

KP 35.4172 500
KI 129.7872 100
KD 2.4162 200
τr (s) 0.944 0.0111
τs (s) 2.27 —
η (%) 0 0
Peak 1.099 NaN
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control with the robust integral sliding mode technique (Vajpayee et al., 2021a, 2021b) to track a reference trajectory

with external disturbances and parametric uncertainties.

With optimized techniques on a PID, LQR, LQG a nuclear reactor can adjust itself to efficiently follow the load

requirement.

9.4 Dynamic programming

DP is used in this chapter as a deterministic optimization method in which an optimal problem is structured into a num-

ber of multiple stages and considered as smaller sub-optimal problems. It is a powerful method used for deterministic

problems, such as the Traveling Salesman Problem, to find an optimal policy and has been applied to decision-making

under uncertainty as well.

In nuclear reactor refueling, the objective is to find the optimal refueling pattern at the end of each cycle when

once- or twice- burnt fuel is replaced and the remaining is shuffled. This has a bearing on the revenue requirement for

producing energy in a cycle.

This section considers a simple example to illustrate DP; a more detailed description with relevance to fuel reload-

ing in nuclear reactors is discussed in Section 13.2.

The reloading optimization problem can thus be expressed as

minTc 5min
XN
i51

C xi; ei; fi½ �5min
XN
i51

Ci (9.65)

where Ci is the total discounted revenue requirement for producing energy Ei in the ith cycle, xi ei, and fi are the state

of the reactor, the reload enrichment and batch fraction at the beginning of the ith cycle.

In refueling optimization, a stage would represent a cycle at the end of which several possible states, defined by the

fuel types (in the sense of enrichment and burnup) are available and a decision has to be made on the reloading pattern.

The essence of DP is that

1. A problem is configured into N stages consisting of various states Pi;k where i can denote the fuel types available

and k represents the stage number.

2. At each stage, a decision is made on which state Pi;k11 to move to in the k11ð Þth stage; this decision will influence

the power distribution, criticality control (possibly by way of poison distribution), burnup behavior and cycle length

in the next cycle. Of course, this decision will be based on several detailed coupled neutronics-depletion simula-

tions, and hence will be computation-intensive.

3. An optimal path is found by starting at the end (the Nth stage), in an adjoint or backward manner with defined goals,

moving to find the sub-optimal solution at the ðN21Þth stage, and proceeding to the initial state.

The DP computation is thus expressed as a recursive algorithm; a simple example being to calculate the factorial of

an integer or Fibonacci numbers.

function x5fact(n)
if n, 51

x51;
else

x5n.* fact(n-1);
end

end

Consider the five-stage optimization problem, with the starting node as Stage 1 and the terminal node as Stage 5,

with three intermediate stages as depicted in Fig. 9.12.

In this shortest path problem, the objective is to find the path from start to end which minimizes the total distance

traveled. Such problems have been solved by Djikstra’s algorithm by generating a minimum path tree by scanning all

neighboring nodes from a starting node.

In this section, consider the recursive algorithm

fs ið Þ5min ci;j 1 fs11ðjÞ
� 

(9.66)
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where fs ið Þ is the cost associated with a transition from state i to the end state node N in the stage s and ci;j is the cost

associated in taking the system from state i to state j, listed in Table 9.4. In this problem, the assumption is that only

forward transitions are allowed.

Stage s5 4

f4 8ð Þ5 3

f4 9ð Þ5 4

Moving back another stage:

Stage s5 3

f3 5ð Þ5min
c5;8 1 f4 8ð Þ5 11 35 4

c5;9 1 f4 9ð Þ5 41 45 8

�

f3 6ð Þ5min
c6;8 1 f4 8ð Þ5 61 35 9

c6;9 1 f4 9ð Þ5 31 45 7

�

and

f3 7ð Þ5min
c7;8 1 f4 8ð Þ5 31 35 6
c7;9 1 f4 9ð Þ5 31 45 7

�

At Stage 3, the minimum cost paths from states 5, 6 and 7 are: 5�8�10, 6�9�10, and 7�8�10, respectively.

Moving now to Stage 2, the calculations are as follows:

TABLE 9.4 Distances cij between nodes i and j in a network.

Node 1 2 3 4 5 6 7 8 9 10

1 0 2 5 6 — — — — — —
2 — 0 — — 3 4 6 — — —
3 — — 0 — 3 2 4 — — —
4 — — — 0 4 3 5 — — —
5 — — — — 0 — — 1 4 —
6 — — — — — 0 — 6 3 —
7 — — — — — — 0 3 3 —
8 — — — — — — — 0 — 3
9 — — — — — — — — 0 4
10 — — — — — — — — — 0

Starting from the last stage N, the algorithm Eq. (9.64) gives the distances as.

FIGURE 9.12 A five-stage forward network for finding the shortest route.
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For stage s5 2

f2 2ð Þ5min

c2;5 1 f3ð5Þ5 31 45 7

c2;6 1 f3 6ð Þ5 41 75 11

c2;7 1 f3 7ð Þ5 61 65 12

8<
:

At this stage, the minimum node is thus found to be 2�5 and 2�6 and 2�7 are rejected.

f2 3ð Þ5min

c3;5 1 f3ð5Þ5 31 45 7

c3;6 1 f3 6ð Þ5 21 75 11

c3;7 1 f3 7ð Þ5 41 65 10

8<
:

Similarly the route 3�5 is the best out of 3�5, 3�6, and 3�7.

f2 4ð Þ5min

c4;5 1 f3ð5Þ5 41 45 8

c4;6 1 f3 6ð Þ5 31 75 10

c4;7 1 f3 7ð Þ5 51 65 11

8<
:

This calculation again shows that the intermediate node (node 5) is the best from node 2.

Stage s5 1

f1 1ð Þ5min

c1;2 1 f2ð2Þ5 21 75 9

c1;3 1 f2 3ð Þ5 51 75 12

c1;4 1 f2 4ð Þ5 61 115 17

8<
:

This stage calculation says that the rout 1�2 is the best of all options. The optimal path is thus found to be

1�2�5�8�10 with a minimum cost of 9 units.

9.5 Stochastic optimization

Stochastic methods, equipped with the elaborate mathematical and physical foundations of transport phenomena, and

capability of modeling realistic 3D configurations, have powerful techniques which efficiently search for an optimal

solution from a very large search space. This section illustrates GAs for constrained optimization of a simple two-

variable function (Section9.1) and describes some other methods and applications.

9.5.1 Genetic algorithms

The GA method is used as an optimization method for large problems where better computational efficiency, in com-

parison with deterministic methods, can be achieved.

The GA method (Haupt & Haupt, 2004; Holland, 1975) is based on the “survival of the fittest” biological evolution-

ary processes and has been adapted in computational algorithms that carry out a random-search for the best values of

one or several variables that maximize (or minimize) an “objective” function. A typically large search space is scanned

with the help of algorithms incorporating concepts such as genes (bits), chromosomes (bytes), fitness function (objec-

tive function), and “selection” tests of genetic crossover and mutation. Thus, “fitter” successive generations are obained

to ultimately “converge” to an optimal as shown.

The cylinder volume optimization is repeated with the GA method using the MATLAB program given in Haupt and

Haupt (2004).

It is useful to go through the calculation details for the first two iterations given below. The simulation parameters

are listed in Table 9.5. Note that simulations will have a much larger number of variables, population size, number of

iterations, and length of a chromosome.

After the simulation parameters are fixed, as shown in Fig. 9.13, the initial population of chromosomes is generated

and evaluated.

The maximization problem (Section 9.2.2, Eq. 9.8) is converted to a minimization problem with a sign change and

each chromosome is evaluated for its fitness. The chromosomes in binary form with 4 bits, are converted into real num-

bers in the search space for radius RAð0; 2Þ; thus a chromosome 1111 with a value 15 would correspond to the real

number 2:0. Thus for a chromosome in the range 0�15, the linear mapping in the range 0�2 would give the required
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transformation giving a four digit accuracy. A 16-bit chromosome would give 216�15 65,535 mapping with R5 2 to

give an accuracy 1025.

i chromosome number cost fn
1 1 0 1 0 1.3333 25.8866e100
2 1 1 0 1 1.7333 29.7285e-01
3 1 0 1 0 1.3333 25.8866e100
4 1 1 1 1 2.0000 25.1327e100
5 0 1 0 1 0.6667 25.7358e100

FIGURE 9.13 Flowchart of the genetic algorithms

optimization method.

TABLE 9.5 Simulation parameters for genetic algorithm optimization.

Parameter Value/description

Population size (no. of chromosomes) 10
No. of iterations 10
Length of a chromosome (bits) 4
Selection fraction 0.50
Crossover strategy Single bit
Mutation rate μ 0.15
Objective function (Eq. 9.8) 2 1

2KR2πR3
� �

Search range for radius R RAð0; 2Þ
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6 0 1 1 1 0.9333 26.7791e100
7 1 0 0 0 1.0667 26.8539e100
8 1 0 1 1 1.4667 24.7551e100
9 1 1 1 1 2.0000 5.1327e100
10 0 1 0 1 0.6667 25.7358e100

The fitness of the chromosomes is sorted with the best being ranked first out of 10 chromosomes.

Sorted Cost (lowest obj. fn. first)
i number obj. fn.
1 1.0667 26.8539e100
2 0.9333 26.7791e100
3 1.3333 25.8866e100
4 1.3333 25.8866e100
5 0.6667 25.7358e100
6 0.6667 25.7358e100
7 1.4667 24.7551e100
8 1.7333 29.7285e-01
9 2.0000 5.1327e100
10 2.0000 5.1327e100

The chromosomes generated above give a minimum, or best value, 26.8539 and a mean value 23.2340.

The next step in the optimization is to improve upon the initial population by selected the best and creating the next

generation by crossover and mutation. In this computation the number of matings is 3 obtained from ceil (popsize-

keep)/2 where the ceiling of the difference between the population size and the chromosomes to keep (fraction 0.5 as

set in Table 9.5). The probability density function (PDF), f ið Þ for chromosome i is calculated by its value of the objec-

tive function divided by the sum of all values. From the PDF, the cumulative distributive function (FðiÞ )is calculated
(Section 4.9) as shown below. For 10 chromosomes, 5 were kept and used to calculate PDF and cumulative distribution

function (CDF) values.

i f(i) F(i)
1 0.3333 0.3333
2 0.2667 0.6000
3 0.2000 0.8000
4 0.1333 0.9333
5 0.0667 1.0000

Note, as stated before, that the CDF is a monotonically increasing function rising to the value one.

The mates are selected by three uniform random numbers ξ1; ξ2 generated in the range (0,1):

i ξ1 ξ2
1 0.9941 0.6520
2 0.3977 0.9061
3 0.6533 0.1331

A mate is selected from the random numbers compared with the CDF values, for example, for the first value

ξ1 5 0.9941, the last bin of the CDF (chromosome 5) is selected.

i Mate1 Mate2
1 5 3
2 2 4
3 3 1

The next generation of chromosomes are obtained from crossover and mutation:

Mating using single-point crossover

i chromosome
1 0 0 0
0 1 1 1
1 0 1 0
1 0 1 0
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0 1 0 1

Mutation using mutrate ðμÞ
i chromosome

1 0 0 0
0 0 1 0
1 0 1 0
1 0 1 0
0 1 0 1

The new chromosomes are re-evaluated for their fitness:

i chromosome number obj. fn.
1 1 0 0 0 1.0667 26.8539e100
2 1 0 0 0 1.0667 26.8539e100
3 1 0 0 1 1.2000 26.5713e100
4 0 1 1 0 0.8000 26.3915e100
5 1 0 1 0 1.3333 25.8866e100
6 1 0 1 0 1.3333 25.8866e100
7 1 0 1 0 1.3333 25.8866e100
8 0 1 0 1 0.6667 25.7358e100
9 1 0 1 1 1.4667 24.7551e100
10 0 0 1 0 0.2667 22.6071e100

Sorted Cost (lowest cost first)

i number obj. fn.
1 1.0667 26.8539e100
2 1.0667 26.8539e100
3 1.2000 26.5713e100
4 0.8000 26.3915e100
5 1.3333 25.8866e100
6 1.3333 25.8866e100
7 1.3333 25.8866e100
8 0.6667 25.7358e100
9 1.4667 24.7551e100
10 0.2667 22.6071e100
minimum cost of population minc(1)5 26.8539
mean cost of population meanc(1)5 25.7428

This process continues until the maximum number of iterations specified in the simulation parameters.

Each iteration ends with a minimum cost and a mean cost (plotted in Figs. 9.14�16):

minimum cost of population minc(1)5-6.8539
mean cost of population meanc(1)5-5.3445

Table 9.5 shows GA results for As5 20 cm2 for which the deterministic results (Table 9.1) are R*5 1.0301 cm,

H*5 2.0601 cm, V*5 6.8671 cm3. For all the GA runs, the selection fraction was 0.5, mutation rate was 0.15 and each

“chromosome” was of length 8 bits. The search space specified for the radius was (0, 2). The GA results for the optimal

R and H are in good agreement with the ‘exact’ result and convergence is seen in the fourth generation while the mean

fluctuates randomly. For the fourth row of results listed in Table 9.6, the GA result for optimum volume (6.8670)

matches the deterministic exact result (6.8671) to three decimal places.

The “quality” of results from a GA simulation is dependent on the specified simulation parameters for which there

is no formal method and the selection remains an “art” rather than a science.

Such random methods are feasible when the number of variables is large. In principle, GA is efficient in a “parallel”

computing environment with benefits of computational speed-up.
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FIGURE 9.15 Genetic algorithm results for minimization (N5 100,

M5 100, Nbits 5 4).

FIGURE 9.16 Genetic algorithm results for minimization (N5 100,

M5 100, Nbits 5 8).

FIGURE 9.14 Genetic algorithm results for minimization (N5 10,

M5 100, Nbits 5 4).
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9.5.2 Particle swarm optimization

Particle swarm optimization (PSO), first introduced by Kennedy and Eberhart (Kennedy & Eberhart, 1995) in 1995 is a

swarm intelligence (meta-heuristic) algorithm inspired by the movement of a flock of birds with an objective to survive

by looking for a safe place to land with the availability of food. Since the time PSO was introduced, several variants of

the method have been developed. In nuclear engineering the method has been extensively applied in-core design optimi-

zation, controller design optimization (Domingos, Schirru, & Pereira, 2006; Mousakazemi, 2021; Mousakazemi et al.,

2018) and several other areas

The PSO algorithm, in the standard form, is a simple two step procedure; in the first, the position x and velocity v
of particles in a swarm are initialized and evaluated using the objective function. The best values pbt for each particle in

the tth generation and the best values for all particles in the tth and previous generations, pg, are obtained. With this

information and a set of weighting factors wi; c1; c2 with randomness modeled by random numbers ξ, the velocity is

updated for the next iteration as:

vt11 5wivt 1 c1ξ1 pbt 2 xt
� �

1 c2ξ2 pg 2 xtð Þ: (9.67)

It is worth mentioning that this is not truly a velocity in the sense of distance divided by time; it is given this name

most probably since it is a parameter that travels to the next iteration where the position of each particle is updated as

follows:

xt11 5 xt 1 vt11: (9.68)

The iteration continues until the objective function converges to some prescribed tolerance ε. The variables in

Eq. (9.67) and Eq. (9.68) are formally defined as

c1;2 correction factors

pg global best (combination of values)

pbt particle best position at the tth iteration

vt velocity at iteration step t

vt11 velocity at iteration step t1 1

wi inertia weight

ξ1;2 uniform random number Eð0; 1Þ.
The PSO method is simple in its standard form and is best illustrated by an exercise.

Exercise 9.6: Consider a minimization problem for the objective function given as Eq. (9.1) with

f x1; x2ð Þ5 1
2
x21 1 x1x2 1 x22 1 x2 for a search space 24# x1; x2 # 4. For a hand calculation of two iterations, use the

following values: Population size (Pop)5 5, c1 5 c2 5 1:5, No. of iterations 5 10, w5 0:8 and fill Table 9.7.

Steps for the first iteration

Step 1. Generate 5 random numbers ξ in the range ð0; 1Þ first for v1 then for v2
Step 2. Generate 5 random numbers ξ in the range ð0; 2Þ first for x1 andx2.

Step 3. For each pair x1x2 calculate f ðx1; x2Þ
Step 4. For the first iteration of each pair x1:x2 is the best value since there are no values from the previous

iteration.

Step 5. Find the global best pair, that is, the x1x2 pair with the lowest f value

TABLE 9.6 Genetic algorithm results for optimized cylinder volume (V�K5 20) cm2.

Population size No. of bits Iterations ðR�;H�;V�Þ
10 4 100 1.0667, 2.1334, 6.8539
100 4 100 Same as above
100 8 100 1.0275, 2.0350, 6.8670
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This completes the first iteration.

Pb
g 5
� �

Steps for the second iteration

Step 1: update v1, then v2 from Eq. (9.2).

Step 2: update R from Eq. (9.3), then update H from Eq. (9.3).

Step 3: find the particle best value pb1 from this and previous iteration, then find pb2
Step 4: find the best global value Pb

g 5
� �

from this and the previous iteration.

The calculated values can be filled in a Table similar to Table 9.7.

The procedure in the PSO method is simpler than that in the GA method since there are no chromosomes, cross-

overs, or mutations.

Other optimization methods used are Simulated Annealing and the algorithms based on the observation of ants,

birds, fish and animals as they behave for survival: Ant Colony Optimization, Grey Wolf Optimization, and Cuckoo

optimization.

9.6 Applications of optimization in reactors

In nuclear engineering, the refinement of mathematical models and the development of powerful algorithms enabling

efficient computer simulation toward the design and operations of present and future nuclear power reactors makes it

possible to optimize designs and strategies to a high level of accuracy.

This section, building upon the introduction given in Section 9.1 provides further insight into the areas where opti-

mization methods are being applied and indeed, have considerable scope for refinement.

9.6.1 Multi-objective core optimization

Optimization for reactor design optimization is an extensive and challenging multi-discipline process involving coupled

phenomena (Section 4.4, Section 4.8) and several interdependent parameters mostly requiring multi-objective optimiza-

tion for a wide spectrum (Section 3.2) covering the primary system (core and associated systems), Balance of Plant,

back-end fuel cycle, and safety analyses.

The optimization methods require a search for the optimal design parameters for which a very basic and elegant the-

ory is provided by variational calculus especially Pontryagin’s bang-bang control (Section 9.2.5) while large problems

can be efficiently simulated by stochastic heuristic methods (Section 9.5) such as GA, PSO, and simulating annealing.

Optimization broadly falls into two categories namely design and operations. The design optimization process

begins from the conceptual and feasibility studies as for vSMR’s (Section 3.2.5) and Gen IV reactors (Section 3.5.3)

going through the licensing procedures and freezing of a final design. This is followed by the operational phase from

startup to normal operations, maintenance and unplanned shutdowns and periodic refueling.

For large operating baseload reactors mainly in the .700 MWe category (Section 3.1), optimization is performed

for better understanding operating parameters such as Doppler broadening due to temperature (Section 2.8) improving

operating parameters and to carry out safety-related simulations including source-term calculations (Section 3.5.4) such

as for the Fukushima Boiling Water Reactors (BWRs). The most suitable techniques are stochastic heuristic coupled

TABLE 9.7 Optimization by the particle swarm optimization method (first iteration).

Particle Velocity Position Obj. Fn. Particle best

v1 v2 R H f ðR;HÞ pb
1 pb

2

1
2
3
4
5
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with numerical solutions such as nodal methods and the method of characteristics of the diffusion or transport equations

(Section 5.4.1, Section 5.6).

Typical illustrations of operational areas for optimization are prediction of the critical heat flux (CHF) and moisture

carryover (MCO) in a BWR. For both CHF and MCO prediction, the attractive optimization tools include arificial intel-

ligence (AI) data-driven models, Support Vector Regression, and Gaussian Process Regression for producing lookup

tables and AI-based predictive models in the face of non-linearity and uncertainty.

Several present-day optimization challenges need to be addressed for design changes in nuclear submarine reactors

(Section 3.3), basic design configurations of micronuclear reactors and space propulsion reactors (Section 3.7) and

nuclear fusion reactors (Section 3.6, Section 10.6). Some of these challenges for submarine reactors (Section 3.3.6)

could be itemized as follows:

1. minimize the overall reactor size and weight,

2. design long “lifetime cores” without refueling for B50 years,

3. design better, lighter and more effective neutron and gamma shielding,

4. increase the operating temperatures B600�F�700�F for better thermodynamic efficiency,

5. explore the use of advanced high burnup fuels such as U-Zr, U-Al and ceramics,

6. optimize the power conversion system,

7. plan for overcoming dead time from xenon 54135Xe (half life 9.2 hours) poisoning, and

8. simulate off-normal operating conditions with a potential for accident scenarios.

9.6.2 Pressurized water reactor core pattern optimization

A fuel reloading strategy is necessary to remove spent fuel, add new fuel, and shuffle the remaining fuel within the

core at the end of a cycle. This requires placement of fuels of differing enrichment as well as distributing the poison to

ensure criticality with changing nuclide concentrations. Load Pattern Optimization (LPO) is best achieved by stochastic

heuristic, and AI-driven meta-heuristic, optimization (Section 9.5) with GA (Section 9.4), PSO, Ant Colony

Optimization, Evolutionary Algorithms, Differential Evolutionary Algorithms (DEA) and DP (Section 9.5.1).

AI-driven meta-heuristics for LPO have shown significant speedups for the first core of the 1000 MWe PWR with

optimization to manage the radial power peaking factor (RPPF) under Xe equilibrium conditions. The maximum RPPF

of the obtained loading pattern (LP) is decreased more than that of the LP by the designer.

By similar methods, automated and optimized control rod pattern design in a BWR has been demonstrated to calcu-

late the axial power distribution to calculate keff and the shutdown margin.

9.6.3 Controller proportional integral derivative

An optimized controller design for nuclear power reactors is used to optimize the power output and follow a load pat-

tern in the presence of external disturbances and statistical uncertainties. Some designs are based on the PID (Section

9.3), LQR, and LQG controllers.

9.6.4 Radiation shielding

Radiation shielding design (Section 10.4.2) optimization requires that the best combination and configuration of materi-

als is found providing shielding from both neutron and gamma radiation. Thus, stochastic heuristic methods are again

an attractive choice and have been used to give optimal designs.

Extensive work in shield design optimization has been carried out using GAs (Cai, Hu, Pan, Hu, & Zhang, 2018;

Cai, Hu, Pan, Sun, & Yan, 2018) while multi-grid algorithms with better computational efficiency have been used by

Asbury (Asbury, Holloway, Fleming, Gallimore, & Martin, 2012).

GA combined with diffusion theory has been used for shielding design optimization (Abdul Rahman, Lee, &

Franceschini, 2018; Israeli & Gilad, 2018).

Simulation with the Monte Carlo N-Particle code has also been carried out in the area of detector shielding design,

Boron Neutron Capture Therapy and neutron source imaging (Cai, Hu, Pan, Hu, et al., 2018; Hegazy, Skoy, & Hossny,

2018; Li et al., 2016; Williamson, 2010).

In other studies (Yadollahi, Nazemi, Zolfaghari, & Ajorloo, 2016), the effect of boron in concrete has been studied

to find that the optimal mixture of concrete, used for neutron shielding, has a water�cement composition of 38%,

cement content of 400 kg/m3, 50% aggregate with Colemanite and 15% silica fume�cement. Similarly, the effect of
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another strong absorber, gadolinium, has been studied (Park, Kim, & Yi, 2017) to find that in concrete Gd content up to

10 at.% concrete composite (10 cm3 5 cm thick) shielding efficiency of around 86%. For multi-layered iron-water

shields (Fuse, Yamaji, & Miura, 1970), it was found that the optimum arrangement was a composite iron-water-iron

configuration, rather than a homogeneous mixture.

9.6.5 Some other applications of optimization

Other areas in nuclear engineering where optimization is applied is in gas centrifuge configurations, in the design of

criticality, in condenser control, and in the optimal placement of instrumentation and sensors in a reactor core.

In a centrifuge hall, for example, the design of an optimal cascade which gives the minimum specific cost of

enriched uranium, is a problem in the domain of combinatorial optimization.

As a final remark, optimization in nuclear engineering is an area of significant research output with emphasis

towards AI-based meta-heuristic stochastic methods and machine learning based on classification and regression.

Problems

1. A recursive algorithm for the minimum value, in this case the distance traveled to node j after n intermediate points

is Vn jð Þ5min cij 1Vn21ðiÞ
� �

; i5 1; 2; 3;?;N. Evaluate V1(4)5 shortest distance from node 1 to node 4 with at most

1 intermediate point, the algorithm will use V1 j5 4ð Þ5min cij 1V0ðiÞ
� �

; j5 1; 2; 3;?;N.
2. Consider the well-known Bounded Knapsack problem where the weight wi and value vi of N items is given and the objec-

tive is to fill a bag with the maximum value of items while not going beyond a permissible weight W . It is also allowed to

fill xi copies of each item but not exceeding c copies This optimization problem can be written as max
PM

i51 vixi subject toPM
i51

wixi #W and 0# xi # c. Comment on the classification of this problem in terms of computational complexity as a

NP�complete or as a NP�hard problem. How does it compare with the use of DP for solving a NP�hard problem.

3. How would the shortest route problem be solved by the GA method described in Section 9.5.1? Would the results

be the same if DP follows a backwards calculation while GA follows a forward calculation?

4. In Section 9.3 (Controller design and optimization) comment on the objective function and its relevance to tracking

a given load requirement.

5. With the PSO method described in Section 9.5.2, maximize the two-variable function f R;Hð Þ5 2πR2 1 2πRH sub-

ject to the constraint condition Eq. (9.6). The search space is 0#R;H# 2. Compare your results with the results of

Section 9.5.1 obtained with the GA method.

Nomenclature

English lower case
b damping coefficient

k spring constant

l neutron generation time

n neutron density

English upper case
C precursor concentration

Cc critical damping coefficient

KD derivative gain

KI integral gain

KP proportional gain

Greek lower case
β delay fraction

ε error

ζ damping ratio

η overshoot

λ decay constant

φ neutron flux
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ρ reactivity

τr rise time

τs settling time

ω frequency

Greek upper case
F objective function

Σf (macroscopic) fission cross section

H Hamiltonian

J integral performance index

L Lagrangian

Letter-like symbols
E integral performance index

H Hessian matrix

Abbreviations and acronyms
CDC Control Data Corporation

IBM International Business Machines

LQR linear quadratic control

PID proportional integral derivative
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Chapter 10

Monte Carlo simulation in nuclear
systems

10.1 Introduction

Criticality is central to all nuclear designs from the first critical assemblies, Godiva and Jezebel, and the first reactor

core calculations for nuclear power reactors (Section 3.1). Criticality calculations are relevant to the nuclear industry

where fissile material is transported, processed, and stored in the form of gases, liquids and solids, and for the design of

nuclear reactors and systems to determine the materials required, their amounts, and configurations.

This chapter takes the reader through representative and illustrative situations in the following areas:

1. criticality of bare fissile assemblies (Section 10.2),

2. criticality safety in the front-end of the fuel cycle (Section 10.3),

3. radiation moderation and shielding (Section 10.4),

4. fission neutronics (Section 10.5), and

5. fusion neutronics (Section 10.6).

A detailed simulation of the legacy Godiva bare assembly is demonstrated to give physical insight into its neutro-

nics; the energy- and space dependence of the flux and associated reaction rates.

In the front-end of the nuclear fuel cycle, the ore is processed using uranyl nitrate solution UO2(NO3)2 to produce

hexafluoride (UF6). In the back-end of the fuel cycle, decladded spent fuel is stored and processed in which it is dis-

solved in nitric acid to form uranyl nitrate used for reprocessing. MC simulations are carried out to determine the safety

of storage configurations,

Nuclear thermal power reactors (Section 3.1) require uranium enriched to typically 2�5 weight % while fast reac-

tors (Section 3.2) require higher enrichments and naval propulsion reactors could require highly enriched uranium

(HEU) (B90% enriched) just as in weapons grade uranium (WPG). Uranium enrichment is therefore a central part of

the nuclear fuel cycle for all applications of nuclear technology. From several demonstrated enrichment technologies,

commercial processes use gaseous diffusion (mechanical flow through a porous membrane) and gas centrifuge (gas sep-

aration by centripetal force in a rotating cylinder). In an enrichment plant, uranium hexafluoride (UF6) is transported

and stored at various stages in its processing from gas with composition varying from that of natural uranium composi-

tion to possible HEU. In the front-end of the nuclear fuel cycle, uranium ore mining and milling takes place, followed

by conversion from uranium oxide in the form of U3O8, commonly known as yellow cake to UF6 in a form (solid, liq-

uid, or gas) depending on the process conditions, followed by enrichment and fabrication.

UF6 gas is used in an enrichment plant to separate U235F6 from U238F6 by a process such as gas diffusion or a gas centri-

fuge. In gaseous diffusion, the gas is heated and passed through a porous membrane in which U235F6 passes faster than U238F6
due to their weight difference. Similarly in a fast-spinning centrifuge, typically 1150 Hz, the heavier gas flows to the sides

while the lighter gas stays closer. Each stage thus gives a small separation which, accumulated over a cascade with thousands

of stages, results in significant enrichment. At room temperature, UF6 is in the form of white crystalline material (density

5.09 g/cm3); its triple point is at a pressure of about 1.5 times atmospheric pressure, that is, 22 psia and at 64.05�C. Thus at
room temperature with normal atmospheric pressure, UF6 is in solid phase and sublimes to the gas phase (directly). Its liquid

phase occurs above the triple point so that in an enrichment plant, just the solid and gas phases are typically observed.

UF6 is transported to a cascade facility in large steel containers with about 12 tons of material stored as liquid but

cooled to solid form during transport. At the cascade facility, it is heated to the liquid phase and transferred through

pipes to the enrichment site. Since UF6 is corrosive, it is generally transported in nickel or stainless steel pipes. In cylin-

ders during storage, it forms a layer which inhibits corrosion. In enriched form, the UF6 is shipped out of the cascade

379
Nuclear Engineering. DOI: https://doi.org/10.1016/B978-0-323-90618-0.00010-7

© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-323-90618-0.00010-7


facility in cylinders of varying capacity depending on the amount of enrichment. For a reactor fuel grade gas, the cylin-

ders contain typically about two and half tons material.

Depleted UF6 (waste stream from an enrichment process) is stored in large cylindrical tanks containing typically up

to 14 tons of material, filled as a liquid which cools and solidifies, occupying about 65% of the cylinder volume. At the

bottom of the cylinder, there is solid crystals and above it is the gas. When small cylinders are moved, the noise made

by the crystals can be heard just like that of table salt.

During its transportation and storage, the issues of criticality safety and impact to environment are of vital

importance.

Very large amounts of UF6 are transported and stored in enrichment plants. For example, the amount of UF6
required to produce 1 kg product gas to 4.4% U235 with feed assay 0.711% (natural uranium) and tails assay 0.23% is

about 8.7 kg U as UF6 requiring about 6.7 SWU. Thus a 100-ton production would require about 870 tons of reactor-

grade enriched material to be transported and at 6700 SWU/t, a total of 670,000 SWU. Compare this with the total

world enrichment capacity of 66,700,000 SWU/y which is sufficient for the fuel of 100 such reactors every year. To

produce 1 kg 90% U (WGU) in UF6 would require about 187 kg UF6 at 0.711% feed and 0.23% tails, with about 215

SWU. Thus 20 kg WGU/y would require 4300 SWU/y; thus is each centrifuge gives 5 SWU, then about 1000 centri-

fuges are required, and the material flow for 20 kg HEU/y is about 3.7 t/y. The largest enrichment facilities in the world

are Rosatom (27,654 SWU/y), Urenco (18,320 SWU/y), Orano (7500 SWU/y) and CNNC (6,750 SWU/y). All these

facilities require criticality analyses.

The quantities of interest are the keff of a single cylinder or hundreds or thousands of cylinders in their storage facility,

and the radiation dose. The system multiplication is a criticality calculation carried out in much the same way as for fissile

materials; standard analytical and computational tools are based on the diffusion, transport and Monte Carlo methods.

MC simulations are carried out for the design of detection systems, for example, in Prompt Neutron Activation

Analysis (PNAA) or in Thermal Neutron Activation Analysis (TNAA). A PNAA detection system is described in

Section 10.4 for determining the best moderator resulting in an optimal energy spectrum and a best physical configura-

tion to get a good signal and to protect the detector from radiation.

In radiation shielding, MC simulation is used for the design of shields from α, β, γ and neutron radiation.

Alpha emitters such as U-238 and Pu-239 may contain trace impurities which could possibly emit other radiations.

However, the range of α radiation is small and shielding is possible with a thin sheet of paper. Similarly the pene-

trating power of β radiation is not strong, typically just a few millimeters in tissue and hence they can be shielded

with a few mm thickness of a low-Z material such as plastic. Gamma radiation pose a serious radiation risk due to

their penetration power. Typical radiation shield materials in the nuclear industry are water, concrete, and iron.

The half value layer (HVL), the thickness of a material that reduces the intensity of a radiation by half, is typically

in the range 0.5�2 cm for a lead shield for 0.5�2 MeV gamma radiation. The next best shield is iron, followed by

concrete and water. As described in Section 1.3, gamma radiation follows an exponential attenuation in a shield

and a 1=R2 intensity reduction at a distance R. However, simple theoretical models use a buildup factor to account

for multiple scattering which is best estimated by Monte Carlo simulation. Neutron radiation also poses a serious

problem in the design of shields due to the penetration power of neutrons and the several possible reactions. A typ-

ical strategy used for the design of neutron shields is to first slow the fast neutrons with a hydrogenous material

and then absorb the neutrons. This can produce gamma rays which then need to be shielded by lead, iron or con-

crete as discussed. In nuclear reactors, openings are kept for piping, ducts and instrumentation; this provides chan-

nels for radiation steaming which is a challenge for MC simulation as discussed in Section 7.5 (variance

reduction).

In fission neutronics, MC simulations are very effective for core neutronics starting from the basic unit of a lattice

cell to a fuel assembly followed by a full-core analysis.

In this chapter, the three core designs considered are

1. Westinghouse AP-1000

2. Toshiba Gen-IV 4S, and the

3. Micronuclear heat pipe reactor (MNR).

Section 10.4 describes unit lattice cell MC simulations, extended to infinite assembly simulations and whole-core

simulations for these designs.

Finally, in Section 10.6, fusion neutronics are described with particular reference to the ITER design for which MC

simulations are useful in determining several engineering design parameters, for example, the First Wall (FW) loading,

the tritium breeding rate (TBR), and the displacements per atom (dpa) in the superconducting coils.
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10.2 Bare critical assemblies

10.2.1 Godiva

A detailed Monte Carlo simulation for Godiva, as a follow-up to Section 2.10 and Section 6.3, is of great educational

value as it gives physical insight into the flux and associated reaction rates. A problem generally associated with large

simulations is that one can easily lose track of the physical significance of voluminous results.

The physical model of Godiva is a bare sphere of radius 8.741 cm with a composition of 1.02 wt.% U-234, 93.7 wt.

% U-235, and 5.27 wt.%U-238, density 18.74 g/cm3, mass 52.4254 kg, atomic density5 4.798383 1022/cm3. The total

volume (2.79513 103 cm3) is divided into 50 zones of equal volume.

The input file BK10Gdva is listed in Annex A. The weight fractions and atomic fractions of uranium nuclides are

given in Table 10.1.

The nuclear data used is from endf66c, 92234.66c for uranium nuclides at temperature 293.6K. Simulation para-

meters are given in Table 10.2.

With 3000 particles per history, a total of 150 cycles out of which 60 cycles are skipped, and an initial guess

keff 5 1 for the purpose of estimating keff and the prompt removal lifetime τp. As described in Section 7.2, M is the

number of source points generated in each simulation cycle, shown in Fig. 10.1.

Each cycle gives an estimate of the prompt removal lifetime τðaÞp (abs) and the source points generated:

τðaÞp 5 0.967664 shakes (1 shake5 1028 s), τðcÞp 5 0.969156 shakes, and keff shown in Table 10.3.

TABLE 10.1 Material composition of Godiva.

Composition/nuclide U-234 U-235 U-238

Weight fraction 1.020103 1022 9.370943 1021 5.270533 1022

Atomic fraction 1.025113 1022 9.376773 1021 5.207193 1022

TABLE 10.2 MC simulation parameters.

M N K Ks keff

Varies (Fig. 10.1) 3000 150 60 1.0

FIGURE 10.1 Fission points simulated in each cycle.
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k
ðcÞ
eff 5 system multiplication (collision estimate), k

ðaÞ
eff 5 system multiplication (absorption estimate), k

ðTÞ
eff 5 system

multiplication (track length estimate), and , k
ðCATÞ
eff . 5 average system multiplication (collision, absorption, track

length estimate).

The above results compare with keff 5 0.9976 (0.0011) by Whalen et al. (Whalen, Cardon, Uhle, & Hendricks,

1991). Some important observations from the simulation results are:

1. The average neutron energy is 2.0621 MeV

2. Particles created per particle due to weight cutoff was 0.032885 at an energy 1.1819 3 1022 MeV

3. The number of neutron collisions per source particle is 4.063

4. The random numbers generated are 43,579,980 (B44 million)

5. The source tracks were 269,862 each with a weight 1

6. Total source tracks 272,187 with weight 1.0383 energy 2.0776 MeV

7. Source multiplication (n, xn) was 2325 tracks weight per source particle 5.4134 3 1023 and energy 3.7340 3 1023 MeV.

The number of collisions in each zone is fairly large, varying from 8369 in the outermost cell to 43,082 in the inner-

most cell. About 93.6% of the collisions are with the U-235 nuclide; this is also the atomic abundance of U-235. Since

the number of collisions is high in every cell, there is no need for variance reduction except for implementing a low

weight cutoff to avoid “wasting” time on low weight particles.

The average track mean free path varies between 2.6251 cm in the innermost cell increasing to 2.6676 cm in the out-

ermost cell. These numbers tell us that this is a simulation where we can expect good results due to the large number of

nonzero histories.

To get an idea of the gains and losses in the system, Table 10.4 gives two contributions, namely the source itself

and the small contribution from weight cutoffs. The total weight of 1.0383 must be balanced in the losses table.

Table 10.5 illustrates where the losses are taking place: the escapes, the weight cutoffs, captures, multiplication and

fission treated as a loss mechanism.

The convergence of keff is seen in Fig. 10.2; for 150 cycles, we can see that it is a good idea to skip a few cycles at

the beginning of a simulation.

After the first B ten cycles, Fig. 10.2 gives a satisfactory result. Of course, the number of skip cycles is more or

less a guess given at the beginning of a simulation.

Deciding which estimator to rely on for the keff estimate, Fig. 10.3 shows that the absorption and collision estimators

underestimate the tally; the collision estimator is above the absorption estimate and hence closer to the track length esti-

mate. It would be fair to conclude that since this is not a strongly absorbing medium, the TLE and collision estimators

would be expected to give more reliable results.

In the tallies, the standard and nonstandard ENDF/B reaction numbers for the reactions tallied in the simulation are

listed below

standard ENDF/B reaction numbers
1 total cross-section

2 elastic scattering cross-section

16 n,2n reaction

17 n,3n

18 n,f

102 (n,γ)
103 (n,p)

104 (n,d)

TABLE 10.3 Estimates of keff with collision-, absorption and track length-estimators.

Estimate Average of 90 cycles

k ðcÞ
eff 0.994040 (0.0014)

k ðaÞ
eff 0.993941 (0.0014)

k ðT Þ
eff 0.994835 (0.0012)

, k ðCAT Þ
eff . 0.994272 (0.0012)
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105 (n,t)

106 (n,He3)

107 (n,α)
nonstandard ENDF/B reaction numbers

2 2 absorption cross-section

2 6 total fission cross-section

2 7 fission nu

The tallies specified in the input file are the neutron current (F1), the neutron flux (F4), the energy deposition (F6),

the fission energy deposition (F7) and the reaction rates (FMn); the tally multipliers are the product of the atomic num-

ber density and the volume. The units of the tally multipliers are thus reactions/s.

The simulation gives the number of neutrons escaping as (F1:N5 ) 5.75122 3 1021 0.0011, energy deposition

(F6:N5 ) 1.23121 3 1023 0.0011 MeV/g and fission energy deposition (F7:N5 ) 1.32154 3 1023 0.0011 MeV/g

(includes gamma ray heating; it is assumed that fission photons deposit energy locally).

TABLE 10.5 Losses per source particle.

Mechanism Tracks Weight Energy (MeV)

Escape 231,765 0.574920 0.925520

Weight cutoff 39,260 0.033177 0.011845

Capture 0 0.044765 0.027477

Down scattering 0 0 0.525060

(n,xn) 1162 0.0027056 0.021057

(n,f) 0 0.382730 0.566660

Total 272,187 1.038300 2.077600

FIGURE 10.2 System multiplication keff (TLE).

TABLE 10.4 Gains per source particle.

Mechanism Tracks Weight Energy (MeV)

source 269862 1.00000 2.06210

weight cutoff � 0.032885 0.011819

Total 272187 1.03830 2.07760
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The tallies in Table 10.6, for the thermal, intermediate, and fast neutron energy groups clearly show that most of the

activity is in the fast group.

The flux falls off with radius as shown in Fig. 10.4, as a classic one-group flux.

The center of the sphere has the highest flux as shown in Fig. 10.5.

The same picture of flux is shown in Fig. 10.6 with the central values about five times higher than the peripheral

values.

The value of the flux, normalized to the power P, is

φ5
1

3:17243 10211

νPφF4

keff

where the energy from fission is 3:17243 10211J and φF4 is the F4 scalar flux tally of MCNP.

The energy-dependent flux, shown in Fig. 10.7, exhibits high values at near source energies and is therefore a hard

spectrum. There is no Maxwellian at lower energies due to the absence of any hydrogenous medium.

TABLE 10.6 Tallies for Godiva.

Group/Tally Thermal Intermediate Fast Total

E, 0:625 eV 0:625eV2 100keV E. 100keV

Total reactions 0 1.549313 1021 0.0094 2.49234
0.0012

2.64727
0.0012

Elastic scattering 0 0.126275
0.0094

1.53455
0.0014

1.66082
0.0014

Absorption(22) 0 6.504783 1023

0.0096
3.823743 1022

0.0019
4.474223 1022

0.0021

Radiative capture (102) 0 6.504783 1023

0.0096
3.823743 1022

0.0019
4.474223 1022

0.0021

Fission reactions (26) 0 2.041063 1022

0.0095
3.625983 1021

0.0012
3.830083 1021

0.0011

Fission neutrons (26) (27) 0 4.95293 1022

0.0095
9.451853 1021

0.0012
9.947143 1021

0.0011

(n,2n)1 (n,3n) 0 0 2.597713 1023

0.0139
2.597713 1023

0.0139

FIGURE 10.3 System multiplication (average) keff after 60 skip cycles.
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FIGURE 10.4 Neutron flux φðrÞ versus radius r.

FIGURE 10.5 Neutron flux φðrÞ versus xand y.

FIGURE 10.6 Neutron flux ðrÞ.
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The quality of the simulation results is illustrated in Fig. 10.8; the standard deviation of the collision-absorption-

TLE averaged keff decreases by a factor B10 by the 90th active cycle.

In this simulation, the relative error was found to decrease as 1=
ffiffiffiffi
N

p
, the variance of the variance was found to

decrease as 1=N, and the FOM is constant as seen in Fig. 10.9.

The Godiva simulation of this section is meant to understand the qualitative aspect of the results as much as the

quantitative aspects. In any nuclear system, it is most important to have an idea of the overall space- and energy-

dependence of the flux. In a fast reactor, for example, the spectrum is similar to the Godiva spectrum while in a water

reactor, two Maxwellian peaks will be found; one for the source neutrons and the other for thermal neutrons. There rela-

tive magnitudes will indicate the reaction rates when the cross-section behavior of the predominant nuclides is also

understood.

10.2.2 Jezebel

The input file for the Jezebel (Chapter 2, Section 6.3) assembly (Rowlands et al., 1999) is listed in Annex B. The bare

assembly is modeled as a plutonium sphere (95.5 wt.% Pu-239 and 4.5 wt.% Pu-240) with a radius5 6.385 cm,

density5 15.61 g/cm3 and atomic fractions shown in Table 10.7.

Table 10.8 shows the tallies for Jezebel for the same MC simulation parameters and energy bins as for Godiva indi-

cating the same overall behavior, that is, hard spectrum and predominance of the fast neutrons.

FIGURE 10.7 Neutron flux φðEÞ versus energy E.

FIGURE 10.8 Standard deviation versus cycle number.
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The tallies are: neutrons escaping from sphere (F1:N5 ) 6.73781 3 1021 0.0008, energy deposition (F6:N5 )

3.26504 3 1023 0.0011 MeV/g, fission energy deposition (F7:N5 ) 3.54458 3 1023 0.0011 MeV/g (includes gamma

ray heating; it is assumed that fission photons deposit energy locally).

FIGURE 10.9 Figure of merit versus cycle number.

TABLE 10.7 Material composition of Jezebel.

Composition/nuclide Pu-239 Pu-240

Weight fraction 0.955 0.045

Atomic fraction 0.955179 0.0448206

TABLE 10.8 Tallies for Jezebel.

Group/Tally Thermal Intermediate Fast Total

E, 0:625 eV 0:625eV2 100keV E. 100keV

Total reactions 0 5.907743 1022

0.0143
1.41514
0.0012

1.47422
0.0013

Elastic scattering 0 4.833113 1022

0.0143
8.223033 1021

0.0014
8.706343 1021

0.0014

Absorption (22) 0 1.764973 1023

0.0165
8.767003 1023

0.0032
1.053203 1022

0.0037

Radiative capture (102) 0 1.764973 1023

0.0165
8.767003 1023

0.0012
1.053203 1022

0.0037

Fission reactions (26) 0 6.787383 1023

0.0143
3.118153 1021

0.0011
3.186023 1021

0.0011

Fission neutrons (26) (27) 0 1.968063 1022

0.0143
9.864003 1021

0.0012
1.00608
0.0011

(n,2n)1 (n,3n) 0 0 1.125023 1023

0.0140
1.125023 1023

0.0140
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The results of the simulation are: keff 5 1.006261 0.0012 (combined average col/abs/tle), removal lifetime5 0.37120

0.0023 (combined average col/abs/tle).

10.3 Criticality safety

10.3.1 Storage of interacting units

Typical benchmarks for critical assemblies (Whalen et al., 1991) and their storage as interacting units are as follows:

1. Enriched uranium metal (93.2% enriched) cylinders 23 23 2 unreflected array critical experiment (Wagner,

Sisolak, & McKinney, 1992) with cylinders 10.765 cm in height and 11.496 cm in diameter. These cylinders are

contained in cuboids referred to as a 2C8 unit. The spacing between the units is 2.244 cm in the x and y directions

and 2.245 cm in the z direction. The TLE keff of this system was found to converge to 1.0000 with MCNP version

4.2 with 3000 particles per cycle in 200 cycles and 20 skip cycles.

2. In the second experiment, the 2C8 unit with increased separation of approximately 11.98 cm, is reflected on six

sides of the cube by 15.24 cm of paraffin and gives a MC simulation result converged to 1.0000.

3. SP12: A composite array of four HEU (93.2%) cylinders and four cylindrical plexiglass containers filled with HEU

(92.6%) uranyl nitrate solution UO2(NO3)2 are critical.

4. SP16: an infinite number of slabs of uranyl fluoride solution UO2F2 contained in Pyrex glass and separated by

borated UO2F2.

10.3.2 Storage of uranium hexafluoride cylinders

All uranium hexafluoride operations in nuclear facilities are carried out within the regulations of the International

Atomic Energy Agency (IAEA), International Standards Organization (ISO), and United States Nuclear Regulatory

Commission (USNRC). In the United States, operations are conducted under the Nuclear Regulatory Commission

(Code of Federal Regulations, Section 10), American National Standards Institute (ANSI), Department of

Transportation and the Department of Energy.

During the handling, transportation and storage of fissile material, subcriticality within margins of safety is main-

tained. These safety limits are derived on the basis of one of two types of criteria: criteria based on the value of keff for

the system under analysis and criteria based on the critical value of one or more control parameters, such as mass, vol-

ume, concentration, geometry, moderation, reflection, interaction, isotopic composition and density, and with account

taken of neutron production, leakage, scattering and absorption (IAEA, 2014).

Cylinder sizes vary (USEC (United States Enrichment Corporation), 1995) from the 1S Model with a diameter of

1.5 inches (minimum volume 0.15 L) for 100 w/o U-235 enrichment and a maximum shipping limit of 0.45 kg, to the

48 H Model with a diameter of 48 inches and minimum volume 3964 L for maximum 1 w/o enriched U-235 in UF6
and maximum shipping limit 12,261 kg.

For radiation dose calculations, the source term is calculated from the modeling and simulation of transmutation of

nuclides for both neutron and gamma sources. The direct neutron source depends on the enrichment and is assumed

independent of the decay chain while the photon source depends on the decay (Su, 2015); the UF6 neutron source term

for a 48Y cylinder (12501 kg UF6) with 0.711 weight percent U-235 is 4.978 3 105 n/s with B62% in the range 0.4

MeV- 1.42 MeV. The neutron source term decreases with decreasing tails U-235 enrichment. The photon source term is

due to Th-231, Th-234, Pa-234, and Pa-234m in addition to the uranium nuclides. It is a factor B105 times greater than

the neutron source but the spectrum is towards lower energies B10 keV � 0.2 MeV increasing steadily over a two-year

time period. Dose calculations were carried out using MCNP5 and ENDF/B-VII.0 with ANSI/ANS-6.1.1�1977 flux-to-

dose conversion factors.

For a filled cylinder, with 0.711 wt. % U-235 the dose rate from both neutrons and photons is 5.317 mrem/h inside

(B94% photon dose) while outside the cylinder it is 1.739 mrem/h (B88% photons). With distance, the dose rate falls

off by about four orders of magnitude at 100 m and another two orders by the next 100 m. At the boundaries of such

storage sites, the dose rates, are below the limits prescribed in 10 CFR Section 20.1301 (Dose Limits for individual

members of the public). When such filled feed (natural uranium in UF6) cylinders are stacked one or two layers up and

thousands of cylinders are placed on the ground in a storage yard, their combined effect, calculated from MC simula-

tions, is summarized as follows:

In a 103 10 array, the single, double and triple stack MC neutron (and photon) dose rates are 0.165, 0.183 and

0.191 (and 1.13, 1.19 and 1.21) mrem/h falling off in the radial direction to 2.583 1023, 4.013 1023 and
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4.963 1023 mrem/h (and 8.193 1023, 1.393 1022 and 1.853 1022) mrem/h by 50 m and to 1.763 1025, 2.173 1025

and 2.703 1025 (and 3.703 1025, 5.143 1025 and 7.543 1025) mrem/h by 395 m. These MC estimates, with no cell

source have relative error within 1%, 1%�4% and 5%�8% for neutrons and within 1%�2%, 1%�3%, 3%�4% for

photons at 0, 50, and 395 m respectively.

In a 1003 100 array, the single, double and triple stack MC neutron (and photon) dose rates are 0.209, 0.248, and

0.258 (1.16, 1.25 and 1.27) mrem/h falling off in the radial direction to 4.023 1022, 5.073 1022 and 5.563 1022

(6.193 1022, 7.583 1022 and 8.893 1022) mrem/h by 50 m and to 8.133 1024, 9.963 1024 and 1.043 1023

(1.223 1023, 1.453 1023 and 1.553 1023) mrem/h by 395 m.

These MC estimates, with no cell source have relative error within 1%�2%, 1%�3% and 2%�4% for neutrons and

within 1%, 3%�5%, 3%�5% for photons at 0, 50, and 395 m, respectively.

The effect of ground scattering is also considered for calculating radial and axial dose rates. This reduces the dose

rate.

The above results show that the photon dose forms the major component of the total dose; its relative importance

decreases with distance due to increased neutron skyshine (emitted radiation reaching a facility by scattering from the

atmosphere).

These calculations can be used to design storage facilities in terms of arrays and stacking for estimating the distance

to the boundary for safe and compliant radiation dose. A 103 10 array size with triple stacking, for example, would

require a site boundary of 80 m while a 1003 100 array size with the same triple stacking would require 270 m to the

boundary.

Criticality calculations carried out for a 21/2 ton UF6 steel cylinder with 5% enrichment UF6 (material composition

listed in Table 10.9) at Oak Ridge National Laboratory using the SCALE system with ENDF/B-IV cross sections

(Broadhead, 1991) give a single unit keff 5 0.4536 0.003 with an effectively infinite water reflector (SG5 1).

The keff varies with the specific gravity of water; from 0.72 at zero SG increasing to a maximum of B0.82 for SG

0.02 then falling off to B0.445 at 0.5 SG and slightly increasing to B0.453 at SG 1.0.

For single 10- and 14-ton UF6 cylinders in an infinite water-reflected array (SG5 1), keff 5 0.5266 0.002 and

keff 5 0.5336 0.003.

Sensitivity studies are carried out to investigate the effect of temperature due to density and resonance-capture varia-

tions and fuel location patterns. It is reported that keff is insensitive to temperature.

These studies seek optimization to get the best separation distance and to estimate the density and temperature

effects.

10.4 Radiation moderation and shielding

10.4.1 Radiation moderation for a neutron generator

In Prompt Gamma Neutron Activation Analysis (PGNAA), a sample is activated with a neutron source, characteristic

gamma rays are subsequently emitted, and measurement is performed simultaneously (IAEA, 2012). In some applica-

tions, such as the detection of explosives, thermal neutron activation analysis (TNAA) is used to enhance radiative cap-

ture reactions.

The placement of the sample, between the source and the detector determines the quality of the signal. MC simula-

tions are carried out to select the best moderator and to determine the minimum size and optimal configuration.

Powerful neutron sources are used such as californium-252 with a mixed energy spectrum and D-D fusion monoenergetic

source of energy 2.5 MeV emitting 1011 n/s. In such cases, an important consideration is the protection of a detector since

efficiency is degraded due to the effect of fast neutron bombardment on scintillators and germanium detectors.

When there is no medium in between a source and detector, the dose can be calculated by the geometrical attenua-

tion of the neutron flux, for example, a 14 MeV flux of 1.73 108 n/cm2/h gives a dose of 1 Sv/h (100 rem/h); compared

with the highest permissible dose of 10 μSv/h (1 mrem/h).

TABLE 10.9 Atom density of UF6 (atoms/b-cm).

Density (g/cc) U-235 U-238 F H

5.1 4.4168E-4 8.2860E-3 5.31340E-2 7.6800E-4
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For attenuation of fast neutrons in the range 1�2.5 MeV, MC simulations show that the best shielding is by a hydroge-

nous material such as polyethylene and the worst would be by a high scattering material such as graphite. Table 10.10 shows

results for three moderators to produce the lowest thermal flux on a detector with minimum thickness.

MC simulations have been used for the design optimization of a neutron source generator for PNAA (Ref) by

repeated simulations to show that an optimal design with lowest fast neutron and photon fluence at a detector for a

1011 n/s D-D generator heavy water is more effective than light water, polyethylene, beryllium, and graphite and that

the optimal radius of moderator of about 86 cm with a minimum lead thickness of 25 cm. This optimal design reduces

the thermal neutron flux to 2.93 107 n/cm2/s.

10.4.2 Radiation shielding

For neutrons, as mentioned above, the best shield will be a hydrogenous material such as water, followed by lead, then

low Z and high Z (water-lead) materials. Fast neutrons slowed down by water, for example, will produce

2.2 MeV gamma rays from the radiative capture reactions in hydrogen. These energetic gammas will require shielding

by a high-Z material such as iron or lead.

The HVL for 0.5, 1.0, 1.5 and 2.0 MeV photons is 0.51, 0.76, 1.27, and 1.52 cm for lead, and 3.30, 4.57, 5.84, and

6.60 cm for concrete, respectively.

A simple and practical demonstration of shielding illustrated in Fig. 10.10 shows a concrete shell, labeled cell “2,”

located 10 ft. (304.8 cm) from a 14 MeV point isotropic D-D source at the center of the sphere labeled “S” emitting 109

neutrons per second. In a neutron transport MC simulation, MCNP input file BK10Shld (Annex C), the neutron current,

surface flux, and radiation dose are estimated.

Results of the simulation for 400,000 histories and a lower energy cutoff 1 MeV are listed in Table 10.11.

For a void, the surface flux 5.374283 1027 n/cm2/s from simulation is equal to the exact value at the surface labeled

“1” in Fig. 10.10.

φ Rð Þ5 1

4πR2

at R5 304:8 cm which gives a dose of 2.794623 10216 Sv for one source neutron. The neutron flux-to-dose coeffi-

cients are used from the ICRP conversion factors (ICRP, 1996). For 1011 n/s, the dose is 100.6063 mrem/h. With a con-

crete shell, this dose is reduced to 1.2008 and 0.5117 mrem/h for shield thickness 70 and 80 cm, respectively. The

relative errors of the estimates are within 2.4%.

The calculation is done as follows:

1 rem5 0.01 Sv, D-D fusion source 14 MeV 109 n/s

Dose5 109 n=s 3 2.794623 10216 Sv
n=s3 3600 s

h
3 105 mrem

Sv
5 100.6063 mrem/h.

10.5 Nuclear fission applications

In this section, MC simulations are demonstrated for unit lattice cells and reactor core models of the AP1000, Toshiba

4S and the micronuclear heat pipe cooled reactor (MNR).

10.5.1 Unit lattice cell and fuel assembly of the AP1000 reactor

The AP1000 unit lattice cell (Fig. 7.16) has fuel of three enrichments as shown in Table 10.12.

TABLE 10.10 Comparison of moderators for obtaining maximum flux at a detector.

Moderator Min. R (cm) Max. φth 108 n/cm2/s

Light water 78 8.3

Polyethylene 63 12

Heavy water 85 4.08

Graphite 130 1.8
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The atomic densities and volume occupied by water (at 300K), fuel, helium gap and the cladding are listed in

Table 10.13. The quantity NV is used in the MCNP tally multiplier to convert the product of microscopic cross-section

and flux into a reaction rate.

In a PWR such as the AP1000, the water density at 600K decreases appreciably to B70% of its value at 300K so

that atomic densities used in a MC simulation are as given in Table 10.14.

The integral fuel burnable absorber (IFBA) consists of a mixture of zirconium and boron with atomic densities listed

in Table 10.15 (Laranjo de Stefani, Losada Moreira, Maiorino, & Russo Rossi, 2019).

The MCNP input file for the unit lattice cell, BK10AP10 is listed in Annex D. The simulation is carried out for

5000 histories per cycle for 150 cycles with 5 skip cycles and an initial guess keff 5 1. The neutron flux is fairly steady

as seen in Fig. 10.11. This is due to the small dimensions of the lattice cell; otherwise the flux would have the same

shape as for Godiva.

FIGURE 10.10 Concrete shell with surface and cell numbers.
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Fig. 10.12 shows the energy spectrum in the lattice cell; this is very different from the Godiva hard spectrum. In this

case, thermalization occurs due to neutrons scattering with water, and two peaks of comparable magnitudes are

observed. These correspond to thermal neutrons due to moderation and the fission spectrum due to source neutrons.

TABLE 10.11 Radiation dose across a concrete shield.

Tally Units Void Concrete

70 cm 80 cm

Neutron current Neutrons 1.0 9.732931023

0.0122
4.228923 1023

0.0180

Surface flux n/cm2/s 5.374283 1027 8.084963 1029

0.0148
3.504633 1029

0.0244

Radiation dose Sv 2.794623 10216 3.335623 10218

0.0146
1.421293 10218

0.0239

mrem/h 100.6063 1.2008 0.5117

TABLE 10.12 AP1000 fuel atomic densities.

Enrichment w/o 2.35 3.4 4.45

Density (g/cm3) 10.47635 10.47635 10.47635

Mass fraction

U-235 0.0207146 0.0299696 0.0392243

U-238 0.8607574 0.8514884 0.8422196

O-16 0.1185280 0.1185421 0.1185561

Total 1.0000000 1.0000000 1.0000000

MCNP input N

U-235 5.56014e-04 8.04432e-04 1.05284e-03

U-238 2.28120e-02 2.25663e-02 2.23207e-02

O-16 4.67360e-02 4.67416e-02 4.67471e-02

Total 7.01040e-02 7.01123e-02 7.01206e-02

AP1000 atomic densities, are obtained from the MATLAB program % \Elsevier\Programs\Ch7_AP1000_MCNPinput.m.

TABLE 10.13 Atomic densities and volumes of cells in AP1000 unit lattice cell.

Region Atomic density ðNÞ atom/b Volume ðVÞ NV (atoms cm2/b)

Water 1.003673 1021 3.51510 0.35280

Fuel as in Table 10.12 2.10829 0.1478

Gap 1.000003 1024 8.525883 1022 8.5259e-6

Clad 4.344183 1022 6.417413 1024 0.0279
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In the subsequent analysis, the following tallies listed in Table 10.16, are obtained in the fuel and water regions

1. Total reaction rate

2. Elastic scattering rate

TABLE 10.14 AP1000 water atomic densities.

Water temp (K) 300 600

Density (g/cm3) 1 0.7

Mass fraction

H 0.1111111 0.1111111

O-16 0.8988889 0.8988889

Total 1.0000000 1.0000000

MCNP input N

H 6.69111e-02 4.68378e-02

O-16 3.34556e-02 2.34189e-02

Total 1.00367e-01 7.02567e-02

TABLE 10.15 AP1000 IFBA (zirconium diboride) atomic densities. Material density 5.42 g.cm3.

Isotope Weight fraction Atomic density (atoms/cm3)

B-10 0.0187 5010

B-11 0.1713 5011

Zr-90 0.416745 40090

Zr-91 0.090882 40091

Zr-92 0.138915 40092

Zr-94 0.140778 40094

Zr-96 0.02268 40096

FIGURE 10.11 Neutron flux φðrÞ versus x and y.
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3. Absorption rate (in water and fuel regions)

4. Radiative capture

and the fission reaction rate and number of fission neutrons emitted in the fuel. Results are binned in three energy

groups corresponding to thermal E, 0:625 eV, intermediate 0:625eV2 100keV and fast E. 100keV energies.

Neutrons undergo about nine times more collisions in water than in fuel regions, with the energy distribution shown

in Table 10.17. Elastic and absorption reactions are predominantly in the thermal and intermediate energy groups. In

fact, radiative capture is the absorption mechanism in these two lower groups.

Table 10.17 shows that fissions are predominantly in the thermal group, as expected (since the fission cross-section

is orders of magnitude higher at thermal energies). Subsequently, the number of fission neutrons emitted is also mainly

in the thermal group. We see that the number of neutrons emitted per fission, obtained as

ν 5
νΣfφ
� �

Σfφ
� �

is 2.4367, 2.4342, and 2.7579 for the thermal, intermediate, and fast groups, respectively. The cell energy deposition

tallies give 1.57493 (0.0012) MeV/g in water and 9.86552 (0.0011) MeV/g, in fuel. The fission energy deposition is

6.11183 (0.0011) MeV/g in the fuel region.

The unit lattice cell is part of a fuel assembly as shown in Fig. 10.13.

A detailed MCNP simulation for the AP1000 by Stefani et al. (Laranjo de Stefani et al., 2019) estimates kN for the

Beginning of Life (BOL) and End of Life of the core, and reactivity coefficients.

For a lattice with fuel rod including gap, Zirlo cladding and pitch, for various enrichments kN is 1.210296 0.00003

(1.58%), 1.328636 0.00004 (2.35%), 1.404626 0.00004 (3.20%), 1.416976 0.00004 (3.40%) and 1.210296 0.00003

(4.45%).

For the AP1000 assembly kN is reported for a number of configurations; for 4.45% enriched fuel with 24 Pyrex and

72 IFBA burnable absorbers, kN 5 1.265246 0:00008.

10.5.2 The Toshiba 4S reactor

The 4S Gen-IV design (Section 3.5) is based on the idea of a small low-power high temperature metal-cooled fast reac-

tor with no moving parts.

To realize such a design, enriched U-10Zr fuel is placed in hexagonal fuel assemblies in a liquid sodium pool mod-

erator with a single central absorber rod and a beryllium reflector (Koreshi & Hussain, 2014; Tsuboi, Arie, Ueda, &

Grenci, 2012).

In this thirty-year two-phase operation, with minimal hands-on maintenance, the first phase of fifteen years of opera-

tion is achieved by the gradual withdrawal of the central rod. Thus the beginning of cycle (BOC) reactivity should be

high enough such that the reactor is subcritical with the rod fully inserted and sufficiently critical to produce power.

FIGURE 10.12 Neutron flux φðEÞ versus E.
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TABLE 10.16 Reaction rates in an AP1000 unit cell.

Water Fuel

Thermal Intermediate Fast Thermal Intermediate Fast

E, 0:625 eV 0:625eV2 100keV E. 100 keV E, 0:625 eV 0:625eV2 100keV E. 100 keV

Total 3.75361E1 01 0.0012 3.91317E1 01 0.0005 1.40565E1 01 0.0008 2.89720E1 00 0.0012 4.29777E1 00 0.0007 3.45535E1 00 0.0009

Elastic 3.73608E1 01 0.0012 3.91139E1 01 0.0005 1.40468E1 01 0.0008 1.51791E1 00 0.0012 3.77071E1 00 0.0007 2.81159E1 00 0.0009

Abs 1.75349E-01 0.0013 1.77668E-02 0.0010 7.21758E-03 0.0053 3.06725E-01 0.0013 3.73804E-01 0.0019 2.48070E-02 0.0012

ðn; γÞ 1.75349E-01 0.0013 1.77668E-02 0.0010 9.11486E-05 0.0009 3.06725E-01 0.0013 3.73804E-01 0.0019 2.05502E-02 0.0009



FIGURE 10.13 An AP1000 fuel assembly with 25 Pyrex burnable absorbers.

TABLE 10.17 Fissions and multiplication in an AP1000 unit cell.

Thermal Intermediate Fast

E, 0:625 eV 0:625eV2 100keV E. 100 keV

Fission Σfφ
� �

1.07256E100 0.0013 1.47861E-01
0.0013

6.54692E-02 0.0016

Fission neutrons νΣf φ
� �

2.61351E100 0.0013 3.59921E-01
0.0013

1.80569E-01 0.0017

n;2nð Þ1 ðn;3nÞ 0 0 2.58042E-03 0.0137
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In the second phase, the gradual upward movement of the external beryllium reflector keeps the reactor critical. The

movement is upwards, against gravity to ensure passive safety. In the event of power failure, the reflector would fall

downwards and the reactor would return to a subcritical safe state.

The neutronic design challenge is thu s the BOC excess reactivity, the worth of the central absorber and the capacity

of the beryllium reflector.

MC simulation is the perfect tool for carrying out such an analysis. Compared with the AP1000 in the previous sec-

tion, the 4S is smaller and has fewer assemblies. Its electrical output is 10 MW in the uranium-fueled design and

50 MW in the plutonium-fueled design.

The movement of the liquid sodium metal is also upwards, by stationary electromagnetic pumps. This movement of

the coolant is another passive safety design feature. Again, a failure of the electrical power in the plant will lead to

subcriticality.

The issue in that case would be the heat removal from the core to prevent it from achieving melt-down conditions.

The 4S core model for a Monte Carlo code MCNP simulation, shown in Fig. 10.14 from the top and in Fig. 10.15

from the side, fits into a reflector cylinder with outer radius 60 cm and height 260 cm.

A standard MC simulation would thus carry out a preliminary pin-cell simulation to obtain the neutron spectrum,

the infinite multiplication kN and the effect of temperature and moderator density followed by a full-core simulation

for the effective multiplication factor keff with a central absorber control rod.

FIGURE 10.14 Top view of the 4S reactor core model.
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The 4S 10 MW(e) design, Table 10.18, consists of a cylindrical core with active core height 2.5 m, and diameter

1.16 m. The fuel (diameter 10.50 mm, length 2.50 m) is metallic U/10% Zr 17%�19% enrichment, density 15.6425 g/

cm3 with 169 (133 13) fuel rods in a triangular fuel pin arrangement (hexagonal array) fuel assembly with pitch

1.5 cm, and 18 assemblies, with pitch 20.2073 cm, comprising a heavy metal (U) inventory of 9.2708 t and a fissile

U235 inventory of 1.6996 t. The moderator/coolant is sodium metal (8t) operating in the temperature range 355�510 C.

FIGURE 10.15 Side view of the 4S

reactor core model (R5Reflector,

F5 Fuel, A5Absorber).

TABLE 10.18 Physical parameters of the 4S reactor core.

Core U-10Zr

17% 19%

No. of assemblies 6 12

Mass of uranium (t) 3.0903 6.1805

Mass of uranium-235 (t) 0.5253 1.1743

Atomic density (1024 atoms/cm3)

U-235 6.13293 1023 6.85453 1023

U-238 2.95653 1022 2.88523 1022

Zr 1.03283 1022 1.03283 1022
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Three unit-cells in the core configuration are:

1. the central cell with the control rod,

2. the 169-fuel pin 17% enriched fuel cell, and

3. the 169-fuel pin 19% enriched fuel cell.

Each lattice fuel cell has a hexagonal structure with fuel surrounded by liquid sodium moderator.

The source is sampled using the KSRC card at the center of each assembly. The KCODE card is used with 2000 his-

tories and 510 cycles with 10 skip cycles. The MCNP cross-section files used were: for sodium, endf66a (ENDF-6.1);

for zirconium, endf66b (ENDF-6.1); for natural hafnium endf60 (ENDF-6); for U235 and U238, endf66c (ENDF-6.5).

All evaluations used are at a temperature of 293.6K.

A preliminary pin-cell simulation for the 1693-fuel pin 17% enriched fuel cell gave kN 5 1:49739ð0:00067Þ for a
fairly “hard” spectrum in the range 10222 10 MeV. For a change in temperature from 300K to 3000K, kN reduces to

1.48583.

Similarly as moderator density varies from 0.93�0.83 g/cm3 in the range 97.80�C�500�C, the change in kN was

from 1.50010 to 1.49415 (Table 10.19).

In a full-core simulation for the effective multiplication factor keff , two absorber materials are considered viz boron

carbide (B4C) and hafnium (Hf) to determine the corresponding fuel inventory to balance the BOC excess reactivity.

For the given fuel rod, keff decreases from 0.98208 (0.00186) without rod, to 0.89988(0.00150) with a fully inserted

rod of 8 cm radius. Thus the core can not attain criticality even with the rod fully removed. The worth of a control rod

is found from keff with and without the rod; when keff is 0.98274 (0.00061) without a control rod, a 1 cm radius fully

inserted hafnium reduces keff to 0.98179 (0.00058) while for a similar B4C control rod the change is to 0.98057

(0.00056).

It is found that for a single central absorber rod of radius 9 cm, the maximum fuel rod radius permissible is 6 mm

for hafnium and 6.2 mm for B4C control rods.

Without a reflector and 10000 histories, 210 cycles, 10 skip cycles, keff 5 1:00783ð0:00043Þ for the same B4C

(21.89% B10) rod of radius 6 cm.

The flux is generally flat as shown in Fig. 10.16.

TABLE 10.19 Atomic densities of boron carbide.

AvNo (at./gm-atom) 0.6022 E24

Density (g/cc) 2.54

At. Wt. B10 10.01

At. Wt. B11 11.01

AtFrB10 0.199 0.2189 0.2587

AtFrB11 0.801 0.7811 0.7413

Abar B (g/g-atom) 10.811 10.7911 10.7513

At. Wt. C-12 (g/g-atom) 12

Abar B4C [g/(g-mol)] 55.244 55.1644 55.0052

N B4C (atom/b-cm) 0.0276879 0.0277278 0.0278081

B10 enrich (%) 19.9 21.89 25.87

N B 0.1107514 0.1109112 0.1112322

N B10 2.2040E-02 2.4278E-02 2.8776E-02

N B11 8.8712E-02 8.6633E-02 8.2456E-02

N C 2.7688E-02 2.7728E-02 2.7808E-02

N total (atom/b-cm) 1.3844E-01 1.3864E-01 1.3904E-01
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10.5.3 Micronuclear reactor

With renewed interest in space applications, micronuclear reactors (Section 3.8, Section 7.3) with ,100 kWe genera-

tion based on HEU (60%�70% enriched U-235) and heat pipes with liquid metals for high temperature operation are

being considered (Aziz, Koreshi, Sheikh, & Khan, 2020; Chenglong, Sun, Simiao, Wenxi, & Suixheng, 2020; Hao Sun,

Pan Ma, Wenxi Tian, & Suizheng Qiu, 2018).

The MNR described in shown in Figs. 3.18 and 7.18 with a compact core within a cylinder of radius of radius

35 cm and height 40 cm, listed in Table 3.20, is much smaller than the 4S reactor discussed in the previous section.

This portable core with mass B503 kg has 90 fuel rods and 37 heat pipes in a monolithic Nb-1Zr matrix. As described

in Section 3.8, the total uranium fuel is B149 kg containing B104 kg U-235.

Monte Carlo whole-core simulations for such advanced compact fast reactors have been carried out, with materials

and atomic densities listed in Table 10.20, to determine neutronic parameters such as fuel design, power distribution

and control rod worth.

MC simulations with 1000 histories per cycle and 5000 cycles give keff 5 0.955739 0.0003 and 1.026546 0.0003 for

absorbers in the front and back positions respectively. The source was sampled uniformly in each of the 90 fuel rods

with a Watt fission spectrum. The delay fraction β from two simulations (with and without delayed neutrons)

β5 12
kp

keff

was found to be 0.006951. The maximum excess reactivity is thus $ 3.66 (dollars), and the shutdown margin is $ 5.445

(dollars); one dollar being the reactivity normalized with the delayed neutron fraction.

The fluxes in the core and water radial shield are shown in Fig. 10.17. The fluxes can be seen to be dominated by

the higher energy range in the fuel and matrix in contrast to the fluxes in the water shield. Thus power in the core is

expected to have more contribution from high energies.

With the 1/6th symmetry in the core, as shown in Fig. 10.18, the power distribution was estimated using the fission

reaction tally.

Fig. 10.19 show the power distribution with absorber rods facing the core. The radial power peaking (RPP) is pre-

dominantly in the inner fuel cells showing a maximum of 11% with respect to the average power distribution. These

decrease gradually towards the periphery and show the trend, as anticipated, of lowest RPP (0.86) in the fuel cells

directly facing the absorber and 1.09 each in cells influenced by the reflector.

For rods facing the core and away from the core the power variations can be up to B20% which requires appropri-

ate heat removal from the heat pipes with sodium, potassium or lithium as heat transfer fluids. In this design, a heat

pipe has the capacity to remove power in 14�17 kW range. Thus if the reactor operates at a thermal power of

2�3 MW, each fuel rod will be producing B20�30 kWt which would exceed the capabilities of sodium and potassium.

Even lithium with a maximum envisaged of B18 kWt would be working at its maximum capacity. For a power

FIGURE 10.16 Neutron flux in the 4S reactor core.
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conversion system, a thermo electric generator (TEG) operating at 5%�10% conversion efficiency would be able to

generate typically B150 kWe.

10.6 Nuclear fusion applications

Following a basic introduction to nuclear fusion and its confinement schemes given in Section 3.6 introducing the

ITER design, and the introduction to the Monte Carlo method in Chapter 7, an overview of the parameters of interest in

fission and fusion neutronics was given in Section 7.3 and Table 7.7. In this section, the geometrical complexity of the

Tokamak design and requirements and challenges for MC applications are reviewed.

We first take a look at the overall ITER design in Fig. 10.20. The size and geometrical complexity are far more dif-

ficult to model than in fission power reactors.

TABLE 10.20 Material data for micronuclear reactor simulation.

Material Temp (K) Density (g/cm3) Atoms/cm3/atom fraction*

Fuel: UN (70%) 2000 K 13.6 U235 0.023025, U238 0.009743, N14 0.032768

Helium � 3.7 3 1025 He 1

Lithium 1200 0.4 Li6 0.01 Li7 0.99

Lithium Vapor � 0.001 Li6 0.01 Li7 0.99

Mo-14Re � 12 Mo 0.064777 Re 0.0054332

Reflector BeO 900 3.01 Be9 20.360320, O16 20.639680

Absorber B4C � 2.52 B10 20.782610, C12 20.217390

Matrix Nb-1Zr 1200K 6.55 Nb93 4.2031e-2 Zr 4.3239e-4

Water � 1.00 H1 2, O16 1

Tungsten � 19.3 W74 1

when not specified, T52.5300E-8 MeV; negative fractions indicate weight fractions.

FIGURE 10.17 Core and shield fluxes.
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FIGURE 10.19 Power distribution for absorber rods facing core.

FIGURE 10.20 A view of international thermonuclear experimental

reactor. Courtesy http://www.iter.org.

FIGURE 10.18 Micronuclear reactor core 1/6th model.
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The ITER experiment has a fusion power of 500 MW and its main purpose is to demonstrate significant energy gain

with pulses of the order of B400 s which are called long pulses due to its promise for the production of steady power

in the next design. Presently, the low coolant temperature is not meant to produce electrical power. It is evident that

special techniques would be required for accurate modeling of the complex geometry of ITER; for this purpose, the

fusion community has combined the MCNP code with CAD software (Juarez et al., 2021; López-Revelles et al., 2018).

In Fig. 10.21, the Toroidal Field Coils represent a superstructure within ITER; they are huge, complex and provide

the high magnetic field (5.3 T) necessary for plasma confinement.

There are 18 D-shaped superconducting toroidal field coils, and six poloidal field coils, operating at cryogenic tem-

peratures cooled by supercritical helium; a TFC has coil height 16.5 m, width 9 m and weighs 310 t. Each TFC has 134

turns with B4 miles of conductor constructed from 40 tons of niobium-tin superconducting strands. The material

niobium-tin (Nb3Sn) in the magnets becomes superconducting at low temperatures down to 4K while the boiling point

of liquid helium is 4.2K at atmospheric pressure. The TFCs weigh B6000 tons which is over one-fourth of the total

weight of the Tokamak and have a total magnetic energy of 41 GJ.

The performance of TFCs is thus dependent on parameters such as heat deposition and radiation damage which a

MC simulation should be capable of providing with confidence.

In addition to the TFCs, some other critical components are the FW, the divertor the blanket, the shielding and the

various ducts and openings for cables and instrumentation. Another feature of the ITER Tokamak is its modularity

which present added technical challenges for modeling and ensuring protection of equipment.

With these design features, some parameters needed from an elaborate MC simulation are:

1. FW loading (BMW/m2) is calculated mainly by the fast fluence (E. 0.1 MeV). The FW receives very high neu-

tron fluxes as well as the bombardment of energetic ions. MC simulations need to assess the performance of high

melting point high-strength metals such as W, Re, Ta, Mo, Nb, V.

2. Total nuclear heating to the inboard leg of TFC; about 70% of the total heating is due to neutrons and photons.

Heating causes thermal and mechanical stresses.

3. The prompt dose outside the biological shield needs to be estimated to ensure safety limits of occupational dose

compliant with regulatory standards such as the CFR 10 Part 20; this is an enormous modeling challenge for MC

simulations due to the large size and the strong shielding material. Since analog simulation would yield unreliable

results, variance reduction (source biasing and WWG, automated procedures for variance reduction) and hybrid

MC/deterministic techniques such as the Consistent Adjoint Driven Importance Sampling (CADIS) are used to

optimize particle population for reliable tallies. This has shown attractive enhancement in the quality of the results

with more precision and higher FOM (Ibrahim et al., 2011, 2015).

4. Radiation dose to materials due to neutrons and photons. The integrity of components is threatened by fast neutron

radiation damage due to radiation displacing atoms from there sites. The dislocation of a Primary Knock-on Atom

FIGURE 10.21 Toroidal field coils of the international thermonuclear

experimental reactor machine. Courtesy http://www.iter.org.
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(PKA) creates a vacancy; the PKA moves about until it becomes an interstitial stationary atom at some location

creating a Frenkel pair. The pair leads to embrittlement of structural materials such as iron and steel. MC simula-

tions give the displacement reactions RDPA 5N
Ð EM

Em
σDφ Eð ÞdE where the displacement per atom (DPA) is an

important quantity to estimate the degradation of mechanical and electrical properties of materials such as copper

in the electrical wiring (Mascitti & Madariaga, 2011; Rajput, Subhash, & Srinivasan, 2020; Valentine, Colling,

Worrall, & Leppänen, 2021).

5. Tritium production in the blanket models. The TBR is required as an essential performance parameter.

6. Hydrogen and helium production. As described earlier, the presence of these gases makes welding difficult if the

gas concentrations exceed ppm levels

7. Shutdown dose due to neutron and photons. A regulatory compliance and an ITER safety limit of 100μSv/
h5 10 mrem/h twelve days after shutdown is a requirement for the shielding around ITER. The biological dose is

calculated at the position of the person standing in Fig. 10.21.

8. The effectiveness of beryllium, lead or any other multiplier for enhancing the TBR.

9. The effectiveness of beryllium as a plasma-facing material being a low-Z material with low radiation losses and

enhanced oxygen removal from the plasma.

10. Neutrons produce activation in coolants such as water by the reaction O16 n; pð ÞN16:
11. High-strength materials such as molybdenum and niobium are high activation elements and are thus replaced by

vanadium and tungsten.

12. Nb-93 (n,2n), Au-197 ðn; γÞ, Al (n,α), Ni(n,p) foil.
13. Neutron/photon streaming through ducts.

14. Radiation damage to the tungsten tiles in the divertor assemblies at the bottom of the vacuum vessel.

The displacement cross-section for stainless steel decreases from 100 b to B0.015 b from 13 10210 to

B1023 MeV then increases to B 104 b till 14 MeV; thus fast neutrons produce the highest displacements in the

spectrum.

Elementary 1-D models have been extensively used in early fusion design studies. A typical 1-D slab, cylindrical or

spherical geometry simulation has two main parts of the configuration, the inboard and the outboard regions to model

the TF Coils, FW, vacuum vessel, breeder blanket units shown in Fig. 10.22 (Section 7.3), and shielding.

Inboard side: TFC with layers of structural material (e.g.,316SS), coolant (e.g., H2O), multiplier (Pb, Be, etc.) insu-

lator, gaps and experimental ports.

In the simulation, the 14.1 MeV source neutrons are generated in the vacuum vessel.

FIGURE 10.22 International thermonuclear experimental reactor blanket modules. Courtesy ITER: https://www.iter.org/mach/blanket.
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Better 3-D MC simulations model millions of cells and may require several hours of run-time on fast super-

computing platforms. MC simulation is carried out with codes including MCNP, OpenMC, KENO, TRIPOLI, Serpent

and FLUKA for elaborate physical and geometrical modeling. Fusion-specific cross-section library such as the Fusion

Evaluated Nuclear Data Library (FENDL) with continuous energy pointwise data with MCNP or with multigroup 46-

neutron/21-gamma data which includes data from ENDF/B-VIII for neutrons; for photons the MC library MCPLIB is

used.

In terms of neutronics the main difference in fission and fusion systems lies in the neutron spectrum; in nuclear fis-

sion the average neutron energy is B 1 MeV while in fusion the DT reaction gives a 14.1 MeV neutron.

In terms of operating temperature, PWRs and ITER have lower temperatures than metal salt reactors (MSR) and

Gas-Cooled Fast Reactors (GFR) and of course much lower than the Very High Temperature Reactors or the MNR

using liquid metals win heat pipes.

Due to the very high plasma temperature in the central chamber of the Tokamak, special materials with compatible

thermo-mechanical properties, such as niobium and tungsten (melting point 3414�c), are used in fusion reactors.

The radiation damage in fusion reactors will generally be higher than that in fission power rectors due to the harder

spectrum in the former.

Due to the difference in neutron energies in fission and fusion, the primary knock-on atom (PKA) has an energy up

to a few keV while in fusion the energy is up to B 1 MeV. The radiation damage in fusion reactors due to the higher

fluence is also expected to be significantly larger than in fission reactors.

Special problems in fusion reactors are the high flux environment in the FW and divertor giving rise to much higher

mechanical and thermal stresses.

The radiation waste, handling and storage from fusion reactors will be much less of a challenge than that from fis-

sion reactors. MC simulations are capable of giving good estimates of activation to determine the levels of radiation in

the waste and spent fuel in fission reactors.

Overall, the technical challenges in fusion are arguably much steeper than those for fission reactors.

Once, MC simulations are carried out and reliable estimates are obtained with all the computational effort described

above, the greater challenge of optimization will remain.

Such studies are in progress as developments continue with proposed designs for better materials utilization and con-

figurations. Parametric studies will require efficient tools for estimating the design sensitivity of replacing structural

materials as in the case of low activation EUROFER structural steel, and tungsten and its alloys such as W-Re for

divertor surfaces, compounds of lithium such as ceramic titanates for enhancing the TBR and optimized shielding

designs for minimizing the biological dose.

Problems

10.1 In Sec. (10.2) for the Godiva simulation results briefly describe how the mean free path can be estimated from

the total number of collisions.10.2 For the Godiva spectrum shown in Fig. 10.7 can you justify the use of a one-group

diffusion model for estimating its critical radius? What advantages would one-speed transport have over a one-speed

diffusion model?10.3 How would you model the simulation when the Godiva assembly is surrounded by people?

What effects would you anticipate regarding the safety of such a configuration?10.4 For a uranium hexafluoride stor-

age facility, how would you estimate the relative effects of the neutron and photon skyshine some distance away?10.5

In Sec. (10.4) how would you design a multi-layered low-Z high-Z shield for best attenuation? How would you expect

this to compare with a composite shield of varying composition?10.6 In Sec. (10.5) what effect does the reduced den-

sity at high temperature have on the criticality?10.7 Compare the neutron flux spectra of Godiva (Fig. 10.7) and

AP1000 (Fig. 10.12) to comment on the radiation dose from both systems.10.8 For the 4S reactor core in Sec. (10.5)

what would be effect on criticality and power distribution if the positions of the low enriched (17%) and higher

enriched (19%) fuel rods are interchanged?

Nomenclature

d grain size/sphere diameter

g acceleration due to gravity

h wick thickness

keff effective multiplication factor

kp multiplication factor with prompt neutrons
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le evaporator length

lc condenser length

la adiabatic region length

lt total length of heat pipe

ri inner heat pipe radius

Greek letters

Ψ tilt angle from vertical axis

ε porosity

φ flux

σDPA microscopic cross-section for displacements per atom

τp prompt removal lifetime

Abbreviations and acronyms

BOC beginning of cycle

DPA displacement per atom

FOM figure of merit

HEU highly enriched uranium

HVL half value layer

IAEA International Atomic Energy Agency

ISO International Standards Organization

ITER International Thermonuclear Experimental Reactor

Gen-IV Generation IV

MNR Micronuclear reactor

PFC Poloidal field coil

PGNAA Prompt gamma neutron activation analysis

RPP Radial power peaking

SWU Separative work units

TEG Thermo electric generator

TFC Toroidal field coil

TVL Tenth value layer

USEC United States Enrichment Corporation

WGU Weapons grade uranium
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Annex A MCNP listing for Godiva (Section 10.2.1)

BK10Gdva Godiva with 50 equi-volume regions
c     this gives f(r)
1  1 -18.74   -1       imp:n=1
2  1 -18.74    1    -2 imp:n=1 
…
… lines removed for space
…
48  1 -18.74   47   -48 imp:n=1 
49  1 -18.74   48   -49 imp:n=1 
50  1 -18.74   49   -50 imp:n=1 
51  0 50 imp:n=0

1   SO    2.37267244
2   SO    2.98937995
3   SO    3.42198581
…
… lines removed for space
46   SO    8.50139893
47   SO    8.56256218
48   SO    8.62286390
49   SO    8.68233380
50   SO    8.74100000

kcode 3000 1.0 60 150 $ criticality calculation
c       in kcode fission is treated as an absorption
ksrc  0 0 0
m1   92234 -1.02

92235 -93.7
92238 -5.27

m2   92234 -1.02 92235 -93.7 92238 -5.27
m3   92234 1
m4   92235 1
m5   92238 1
f1:n 1
fc4     tallies in bare sphere
f4:n  1  2  3  4  5  6  7  8  9 10

11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

fmesh24:n GEOM=xyz ORIGIN = -8.741 -8.841 -0.5
IMESH=8.741 IINTS=40 JMESH=8.741 JINTS=40 KMESH=0.5 KINTS=1

c
E34     0.625e-6 0.1 14
c       fc34     tallies in bare sphere (N=0.0479838,R=8.741,
c       V=2.7975e3, NV=134.2353)
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fm44   (134.2353 4 (102))
c
c
FC54:N   Energy dependent scalar flux to plot f(E)
F54:N    1
e54   3.77e-9 4.05e-9 4.36e-9 4.69e-9 5.04e-9 5.42e-9 5.83e-9 6.27e-9

6.74e-9 7.25e-9 7.79e-9 8.38e-9 9.01e-9 9.69e-9 1.04e-8 1.12e-8
…….. lines removed for space

3.01e-2 3.24e-2 3.48e-2 3.74e-2 4.02e-2 4.33e-2 4.65e-2
5.e-2   5.38e-2 5.78e-2 6.22e-2 6.69e-2 7.19e-2 7.73e-2
8.32e-2 8.94e-2 9.61e-2 1.03e-1 1.11e-1 1.20e-1 1.29e-1 
1.38e-1 1.49e-1 1.60e-1 1.72e-1 1.85e-1 1.99e-1 2.14e-1
2.30e-1 2.47e-1 2.66e-1 2.86e-1 3.07e-1 3.30e-1 3.55e-1
3.82e-1 4.10e-1 4.41e-1 4.75e-1 5.10e-1 5.49e-1 5.90e-1
6.34e-1 6.82e-1 7.33e-1 7.89e-1 8.48e-1 9.12e-1 9.81e-1
1.05    1.13    1.22    1.31    1.41    1.52    1.63
1.75    1.88    2.03    2.18    2.34    2.52    2.71
2.91    3.13    3.37    3.62    3.89    4.19    4.50
4.84    5.20    5.60    6.02    6.47    6.96    7.48
8.04    8.65    9.30    10

Print

f34:n  1  2  3  4  5  6  7  8  9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

fc34      NV          nu f     n,xn    a    f    n,g
fm34   (134.2353 2  (-6 -7)  (16:17) (-2) (-6)  (102) )
c
c        fc44     tallies in bare sphere
f44:n 1
fc44      NV     m  n,g
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Annex B MCNP input listing (Jezebel, Section 10.2.2)

BK10Jzbl Jezebel concentration
1  1 -15.61   -1       imp:n=1
2  0 1 imp:n=0

1   so 6.385

kcode 3000 1.0 60 150
ksrc  0 0 0
m1   94240 -4.5 94239 -95.5
m3   94239 1
m4   94240 1
m5   94240 1
f1:n 1
fc4     tallies in bare sphere
f4:n  1
fmesh24:n GEOM=xyz ORIGIN = -6.385 -6.385 -0.5

IMESH=6.385 IINTS=40 JMESH=6.385 JINTS=40 KMESH=0.5 KINTS=1
c
E34     0.625e-6 0.1 14
c       fc34     tallies in bare sphere (N=0.0393163,R=6.385,
c       V=1.0904e3, NV=42.8691)
f34:n  1
fc34 NV         tot el  nu f     n,xn    a    f    n,g
fm34   (42.8691 2  (1) (2)(-6 -7)  (16:17) (-2) (-6)  (102) )
c        fc44     tallies in bare sphere
f44:n 1
fc44      NV     m  n,g
fm44   (42.8691 3 (102))
c
FC54:N   Energy dependent scalar flux to plot f(E)
F54:N    1
e54   3.77e-9 4.05e-9 4.36e-9 4.69e-9 5.04e-9 5.42e-9 5.83e-9 6.27e-9

6.74e-9 7.25e-9 7.79e-9 8.38e-9 9.01e-9 9.69e-9 1.04e-8 1.12e-8
1.20e-8 1.29e-8 1.39e-8 1.50e-8 1.61e-8 1.73e-8 1.86e-8
2.e-8   2.15e-8 2.31e-8 2.49e-8 2.68e-8 2.88e-8 3.09e-8
3.33e-8 3.58e-8 3.85e-8 4.13e-8 4.45e-8 4.78e-8 5.14e-8
5.53e-8 5.94e-8 6.39e-8 6.87e-8 7.39e-8 7.95e-8 8.54e-8
9.19e-8 9.88e-8 1.06e-7 1.14e-7 1.23e-7 1.32e-7 1.42e-7
1.53e-7 1.64e-7 1.77e-7 1.90e-7 2.04e-7 2.19e-7 2.36e-7
2.54e-7 2.73e-7 2.93e-7 3.15e-7 3.39e-7 3.65e-7 3.92e-7
4.22e-7 4.53e-7 4.88e-7 5.24e-7 5.64e-7 6.06e-7 6.52e-7
7.01e-7 7.54e-7 8.10e-7 8.71e-7 9.37e-7 1.01e-6 1.08e-6
1.16e-6 1.25e-6 1.35e-6 1.45e-6 1.56e-6 1.67e-6 1.80e-6
1.94e-6 2.08e-6 2.24e-6 2.41e-6 2.59e-6 2.78e-6 2.99e-6
3.22e-6 3.46e-6 3.72e-6 4.e-6   4.30e-6 4.62e-6 4.97e-6 
5.35e-6 5.75e-6 6.18e-6 6.65e-6 7.15e-6 7.69e-6 8.26e-6
8.89e-6 9.56e-6 1.03e-5 1.10e-5 1.19e-5 1.28e-5 1.37e-5
1.48e-5 1.59e-5 1.71e-5 1.84e-5 1.97e-5 2.12e-5 2.28e-5
2.45e-5 2.64e-5 2.84e-5 3.05e-5 3.28e-5 3.53e-5 3.79e-5
4.08e-5 4.39e-5 4.72e-5 5.07e-5 5.45e-5 5.86e-5 6.31e-5
6.78e-5 7.29e-5 7.84e-5 8.43e-5 9.06e-5 9.75e-5 1.05e-4
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8.32e-2 8.94e-2 9.61e-2 1.03e-1 1.11e-1 1.20e-1 1.29e-1 
1.38e-1 1.49e-1 1.60e-1 1.72e-1 1.85e-1 1.99e-1 2.14e-1
2.30e-1 2.47e-1 2.66e-1 2.86e-1 3.07e-1 3.30e-1 3.55e-1
3.82e-1 4.10e-1 4.41e-1 4.75e-1 5.10e-1 5.49e-1 5.90e-1
6.34e-1 6.82e-1 7.33e-1 7.89e-1 8.48e-1 9.12e-1 9.81e-1
1.05    1.13    1.22    1.31    1.41    1.52    1.63
1.75    1.88 2.03    2.18    2.34    2.52    2.71
2.91    3.13    3.37    3.62    3.89    4.19    4.50
4.84    5.20    5.60    6.02    6.47    6.96    7.48
8.04    8.65    9.30    10

FC6    Energy deposition averaged over cell (MeV/g)
F6:N   1
FC7 Fission energy deposition averaged over cell (MeV/g)
F7:N   1
Print

1.13e-4 1.21e-4 1.30e-4 1.40e-4 1.51e-4 1.62e-4 1.74e-4
1.87e-4 2.01e-4 2.17e-4 2.33e-4 2.50e-4 2.69e-4 2.89e-4
3.11e-4 3.35e-4 3.60e-4 3.87e-4 4.16e-4 4.47e-4 4.81e-4
5.17e-4 5.56e-4 5.98e-4 6.43e-4 6.91e-4 7.43e-4 7.99e-4 
8.60e-4 9.24e-4 9.94e-4 1.07e-3 1.15e-3 1.24e-3 1.33e-3
1.43e-3 1.54e-3 1.65e-3 1.78e-3 1.91e-3 2.05e-3 2.21e-3
2.37e-3 2.55e-3 2.75e-3 2.95e-3 3.17e-3 3.41e-3 3.67e-3
3.95e-3 4.24e-3 4.56e-3 4.91e-3 5.28e-3 5.67e-3 6.10e-3
6.56e-3 7.05e-3 7.58e-3 8.15e-3 8.77e-3 9.43e-3 1.01e-2
1.09e-2 1.17e-2 1.26e-2 1.36e-2 1.46e-2 1.57e-2 1.68e-2
1.81e-2 1.95e-2 2.09e-2 2.25e-2 2.42e-2 2.60e-2 2.80e-2
3.01e-2 3.24e-2 3.48e-2 3.74e-2 4.02e-2 4.33e-2 4.65e-2
5.e-2   5.38e-2 5.78e-2 6.22e-2 6.69e-2 7.19e-2 7.73e-2
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Annex C MCNP input listing (BK10Shld, Section 10.5.1)

BK10Shld Concrete shell 30 cm thick
c Shield neutron 2 june 2021
c cell cards

1      0 -1        imp:n=1
2      1 -2.3 1 -2 imp:n=1  $ concrete shield
3      0  2        imp:n=0

c surface cards
1      so 304.8
2      so 374.8

c geometry cards 
mode   n
c     concrete (rho = 2.3 g/cm^3)
m1    1001  1.68765e-1

8016  5.62493e-1
11023  1.18366e-2
12000  1.39951e-3
13027  2.14316e-2
14000  2.04076e-1
19000  5.65495e-3
20000  1.86720e-2
26054  2.47295e-4
26056  3.91067e-3
26057  9.38014e-5
26058  1.19384e-5
6012  1.41730e-3

sdef   erg=14
f1:n   1 2
f2:n   1 2
E0     1 12i 14.0
f45:n   0   374.8 0 0
cut:n   j 1.0 $ cut neutrons at 1 MeV
f12:n   2
c ambient neutron dose equiv. H*(10mm) ICRP Sv cm2

de12      2.500E-08 1.000E-07 1.000E-06 1.000E-05 1.000E-04 1.000E-03
1.000E-02 2.000E-02 5.000E-02 1.000E-01 2.000E-01 5.000E-01
1.000E+00 1.500E+00 2.000E+00 3.000E+00 4.000E+00 5.000E+00
6.000E+00 7.000E+00 8.000E+00 1.000E+01 1.400E+01 1.700E+01
2.000E+01

df12      8.000E-12 1.040E-11 1.120E-11 9.200E-12 7.100E-12 6.200E-12
8.600E-12 1.460E-11 3.500E-11 6.900E-11 1.260E-10 2.580E-10
3.400E-10 3.620E-10 3.520E-10 3.800E-10 4.090E-10 3.780E-10
3.830E-10 4.030E-10 4.170E-10 4.460E-10 5.200E-10 6.100E-10
6.500E-10

nps       400000
dd    0.1  1e100
print
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Annex D MCNP input listing (BK10AP10, Section 10.5.1)

BK10AP10 Unit Lattice Cell AP1000  23 MAY 2021
c
1    1 -1.0 (1 -2 3 -4 5 -6) (7) imp:n=1 tmp=2.5300e-8 $ water
2    2 -10.47635 (-7 5 -6)       imp:n=1 tmp=2.5300e-8 $ fuel pin
3    3  1.0e-4 (7 -8 5 -6)       imp:n=1 tmp=2.5300e-8 $ gap
4    4  4.295e-2 (8 -9 5 -6)   imp:n=1 tmp=2.5300e-8 $ clad
5    0  (-1:2:-3:4:-5:6)         imp:n=1 tmp=2.5300e-8 $ outside world

C   surface cards
*1  PX  -0.63
*2  PX   0.63
*3  PY  -0.63
*4  PY   0.63
*5  PZ   -2
*6  PZ    2
7  CZ  0.4096
8  CZ  0.4178
9  CZ  0.4750

mode   n
c  ---------WATER (den 1 g/cm3)
M1   8016.50C 1    $ rmccs 2.53e-8

1001.50C 2    $ rmccs 2.53e-8
MT1  lwtr.01t      $ tmccs 2.53e-8
c --------- Fuel (den 10.4 g/cm3 4.5%)  endf66a 2.53e-8
c m2   8016.66c 4.64149e-2 92234.66c 8.49269e-6 92235.66c 1.05705e-3
c      92238.66c 2.21413e-2
c --------- Fuel (den 10.4 g/cm3 4.45%)  endf66a 2.53e-8
m2   8016.66c 4.67471e-2 92235.66c 1.05284e-3 92238.66c 2.23207e-2
c ---------- Helium4 Gap (den 0.1785e-3 g/cm3)
m3   2004.50c 1 $ rmccs  2.53e-8
c --------clad(6.506 g/cm^3) at den=4.295e-2  PNNL ----------
m4      40000.66c 1 $ endf66b
c
c tallies
m5   92235.66c 1
m6   92238.66c 1
c
FC4  neutron flux in cells 1 2 3 4
F4:N   1 2 3 4
c       sd4
E4     0.625e-6 0.1 14
VOL    1 1 1 1
c       ----------------
FC14    TALLIES IN WATER
C       ----------------
E14     0.625e-6 0.1 14
F14:N   1
C       NV         tot el     a     n,g
fm14   (0.3526 1  (1) (2)   (-2)   (102) )
C  fM14  (1 5 (-6))(1 6 (102))
C       ---------------
FC24    TALLIES IN FUEL
C       ---------------
E24     0.625e-6 0.1 14
F24:N   2



C        NV         tot el     a     n,g
fm34   (8.5259e-6 3 (1) (2)  (-2)   (102) )
C
C       ---------------
FC44    TALLIES IN CLAD
C       ---------------
E44     0.625e-6 0.1 14
F44:N   4
C        NV         tot el  nu f     n,xn    a    f    n,g
FM44 (0.0279 4   (1) (2)(-6 -7)  (16:17) (-2) (-6)  (102) )
fmesh54:n GEOM=xyz ORIGIN = -0.63 -0.63 -0.5

IMESH=0.63 IINTS=40 JMESH=0.63 JINTS=40 KMESH=0.5 KINTS=1
FC64:N   Energy dependent scalar flux to plot f(E) in water (1) and fuel (2)
F64:N   1 2
e64   3.77e-9 4.05e-9 4.36e-9 4.69e-9 5.04e-9 5.42e-9 5.83e-9 6.27e-9

6.74e-9 7.25e-9 7.79e-9 8.38e-9 9.01e-9 9.69e-9 1.04e-8 1.12e-8
1.20e-8 1.29e-8 1.39e-8 1.50e-8 1.61e-8 1.73e-8 1.86e-8
2.e-8   2.15e-8 2.31e-8 2.49e-8 2.68e-8 2.88e-8 3.09e-8
3.33e-8 3.58e-8 3.85e-8 4.13e-8 4.45e-8 4.78e-8 5.14e-8
5.53e-8 5.94e-8 6.39e-8 6.87e-8 7.39e-8 7.95e-8 8.54e-8
9.19e-8 9.88e-8 1.06e-7 1.14e-7 1.23e-7 1.32e-7 1.42e-7
1.53e-7 1.64e-7 1.77e-7 1.90e-7 2.04e-7 2.19e-7 2.36e-7
2.54e-7 2.73e-7 2.93e-7 3.15e-7 3.39e-7 3.65e-7 3.92e-7
4.22e-7 4.53e-7 4.88e-7 5.24e-7 5.64e-7 6.06e-7 6.52e-7
7.01e-7 7.54e-7 8.10e-7 8.71e-7 9.37e-7 1.01e-6 1.08e-6
1.16e-6 1.25e-6 1.35e-6 1.45e-6 1.56e-6 1.67e-6 1.80e-6
1.94e-6 2.08e-6 2.24e-6 2.41e-6 2.59e-6 2.78e-6 2.99e-6
3.22e-6 3.46e-6 3.72e-6 4.e-6   4.30e-6 4.62e-6 4.97e-6 
5.35e-6 5.75e-6 6.18e-6 6.65e-6 7.15e-6 7.69e-6 8.26e-6
8.89e-6 9.56e-6 1.03e-5 1.10e-5 1.19e-5 1.28e-5 1.37e-5

C         NV        tot el  nu f     n,xn    a    f    n,g
fm24   (0.1478 2  (1) (2)(-6 -7)  (16:17) (-2) (-6)  (102) )
C
C       ---------------------
FC34    TALLIES IN HELIUM GAP
C       ---------------------
E34     0.625e-6 0.1 14
F34:N   3

1.48e-5 1.59e-5 1.71e-5 1.84e-5 1.97e-5 2.12e-5 2.28e-5
2.45e-5 2.64e-5 2.84e-5 3.05e-5 3.28e-5 3.53e-5 3.79e-5
4.08e-5 4.39e-5 4.72e-5 5.07e-5 5.45e-5 5.86e-5 6.31e-5
6.78e-5 7.29e-5 7.84e-5 8.43e-5 9.06e-5 9.75e-5 1.05e-4
1.13e-4 1.21e-4 1.30e-4 1.40e-4 1.51e-4 1.62e-4 1.74e-4
1.87e-4 2.01e-4 2.17e-4 2.33e-4 2.50e-4 2.69e-4 2.89e-4
3.11e-4 3.35e-4 3.60e-4 3.87e-4 4.16e-4 4.47e-4 4.81e-4
5.17e-4 5.56e-4 5.98e-4 6.43e-4 6.91e-4 7.43e-4 7.99e-4 
8.60e-4 9.24e-4 9.94e-4 1.07e-3 1.15e-3 1.24e-3 1.33e-3
1.43e-3 1.54e-3 1.65e-3 1.78e-3 1.91e-3 2.05e-3 2.21e-3
2.37e-3 2.55e-3 2.75e-3 2.95e-3 3.17e-3 3.41e-3 3.67e-3
3.95e-3 4.24e-3 4.56e-3 4.91e-3 5.28e-3 5.67e-3 6.10e-3
6.56e-3 7.05e-3 7.58e-3 8.15e-3 8.77e-3 9.43e-3 1.01e-2
1.09e-2 1.17e-2 1.26e-2 1.36e-2 1.46e-2 1.57e-2 1.68e-2
1.81e-2 1.95e-2 2.09e-2 2.25e-2 2.42e-2 2.60e-2 2.80e-2
3.01e-2 3.24e-2 3.48e-2 3.74e-2 4.02e-2 4.33e-2 4.65e-2
5.e-2   5.38e-2 5.78e-2 6.22e-2 6.69e-2 7.19e-2 7.73e-2
8.32e-2 8.94e-2 9.61e-2 1.03e-1 1.11e-1 1.20e-1 1.29e-1 
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1.38e-1 1.49e-1 1.60e-1 1.72e-1 1.85e-1 1.99e-1 2.14e-1
2.30e-1 2.47e-1 2.66e-1 2.86e-1 3.07e-1 3.30e-1 3.55e-1
3.82e-1 4.10e-1 4.41e-1 4.75e-1 5.10e-1 5.49e-1 5.90e-1
6.34e-1 6.82e-1 7.33e-1 7.89e-1 8.48e-1 9.12e-1 9.81e-1
1.05    1.13    1.22    1.31    1.41    1.52    1.63
1.75    1.88    2.03    2.18    2.34    2.52    2.71
2.91    3.13    3.37    3.62    3.89    4.19    4.50
4.84    5.20    5.60    6.02    6.47    6.96    7.48
8.04    8.65    9.30    10

FC6    Energy deposition averaged over cell (MeV/g)
F6:N   1 2 3 4 T
FC7    Fission energy deposition averaged over cell (MeV/g)
F7:N   1 2 3 4 T
kcode 5000 1 5 150
prdmp 150 150 150
ksrc  0 0 -1

0 0  0
0 0  1

print
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Chapter 11

Comparisons: Monte Carlo, diffusion, and
transport

11.1 Introduction

A university nuclear engineering curriculum typically places neutron diffusion in the early to middle part of undergraduate

studies while transport theory is delayed to the final year. It is not uncommon for students to feel uncomfortable with the

neutron transport equation and usually one does not muster the courage to go deeper and explore whether these two for-

mulations have common ground.

By the time the final year is about to end, one gets to hear of Monte Carlo (MC) simulation but since it is not cov-

ered in sufficient detail, one typically graduates without seeing the connection.

It is in a Master’s or PhD program that one takes a serious look at the transport equation and appreciates the power

of MC simulation for a thesis and beyond. That power is often comforting, especially to see voluminous results pre-

sented in colorful pictures.

In the 1970s and early 1980s, professors and students would spend a great amount of effort and time in getting the

mathematics right. The power of theory, its challenges, and elegance, were considered the power of academia. With the

demands of industry, that focus on theory probably weakened.

This chapter is meant to present a unified picture of neutron diffusion, transport, and MC plus the realization that it

comes under the more general scope of radiation transport. This picture comes towards the end of this book when the

reader has covered all three with a fair amount of depth and breadth.

Once a unified picture has been made in the mind, it should be natural to view things as one; whether deterministic

or stochastic, nuclear engineering as a profession will cherish both and see their strengths.

To present a unified picture, some elementary models are reviewed and solutions with diffusion, transport and MC

simulation are presented for each.

This chapter comes after diffusion theory (DT) (Chapter 5), transport theory (Chapter 6), and the basics of MC

method (Chapter 7) have been covered in a fair amount of detail.

A comparison must begin with benchmarks which are fortunately available in nuclear engineering to a good extent. In

the preceding chapters, these benchmarks have been cited and used on occasions; in criticality, diffusion, transport and MC.

The early work, nicely covered by Bell and Glasstone (1979), Clark and Hansen (1964), Ganapol (2008) begin from

the early work in radiative transfer and use powerful mathematics such as Fourier transforms, Laplace transforms,

and the Green’s functions. Pioneering work by Case and Zweifel, the Weiner-Hopf method, and Chandrasekhar’s

H-function are the solid bedrock upon which nuclear engineering stands firm.

The following four sections cover system multiplication in a bare sphere, 1D slab, and spherical systems and a com-

parison of fluxes for a one-group flux calculation.

11.2 Criticality in a bare sphere

11.2.1 One-group diffusion theory criticality

This section is based on Chapter 5 (The neutron diffusion equation). From Section 5.2.2, the one-group diffusion equa-

tion (Eq. 5.11) expressed as an eigenvalue equation is

Dr2φ2Σrφ1
1

k
νΣfφ5 0 (11.1)

gives the infinite medium equation, setting the leakage (r2φÞ term to zero, for which the infinite multiplication factor kN is
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kN 5
νΣf

Σr

(11.2)

and for the finite system

keff 5
kN

11 L2B2
: (11.3)

The corresponding neutron flux is

φ rð Þ5A
sinBr

r
(11.4)

where A is a constant depending on the power P. The Godiva data in Tables 11.1 gives the macroscopic quantities listed

in Table 11.2.

From the above, the diffusion coefficient is D5 1=3Σtr 5 1:0209 cm, the diffusion length (squared) is

L2 5D=Σa 5 13:6382 cm2, from which kN 5 νΣf =Σa 5 2:1932.
The criticality equation gives B2 5 0:0875 cm2, from which the extrapolated radius is R5 10.6213 cm. With

d5 2:133D5 2:1745 cm, the critical radius is R5R2 d5 8:4468 cm.

11.2.2 Two-group diffusion theory criticality

From Section 5.3.2, the two-group diffusion equations are

D1r2φ1 2Σ1rφ1 1
1

k
νΣf1φ1 1 νΣf2φ2

� �
5 0 (11.5)

and

D2r2φ2 2Σ2rφ2 1Σs1-2φ1 5 0 (11.6)

with the assumption that there is no fission contribution into group 2.

The two-group (core) fluxes are given by Eqs. (5.47) and (5.48) for functions X and Y and coupling coefficients.

For an infinite system, setting the leakage (r2::Þ terms to zero, gives kN as

kN 5
Σ2rνΣf1 1Σs1-2νΣf2

Σ1rΣ2r

(11.7)

and the finite mutiplication as

keff 5
νΣf1

D1B2 1Σ1r

1
Σs1-2νΣf2

D1B2 1Σ1rð Þ D2B2 1Σ2rð Þ : (11.8)

TABLE 11.1 One-group data for Godiva.

Nuclide ν σa (b) σf (b) σtr (b)

U235 2.60 1.65 1.40 6.80
U238 2.60 0.255 0.095 6.90

Source: Criticality Hand calculations LA14244-M p. 45/181.

TABLE 11.2 One-group macroscopic cross sections for Godiva.

Nuclide N atoms/b-cm Σa cm
21 Σf cm

21 Σtr cm
21

U-235 4.48931022 7.4073 1022 6.2853 1022 3.05303 1021

U-238 3.08131022 7.8573 1024 2.9273 1024 2.1303 1022
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The critical size, given the composition, is found from the 4X4 criticality determinant (Eq. 5.54) with the appropri-

ate two-group data as for the reflected spherical reactor in Section 5.3.2. A simpler expression, the six-factor formula,

was obtained in Section 2.10 for a single generation, as

keff 5 15
kN

11B2τð Þ 11 L2B2ð Þ : (11.9)

In Eq. (11.9), the effects of the fast and thermal groups appear through the leakage terms with neutron age and diffusion

length respectively.

11.2.3 One-speed transport theory criticality

To compare diffusion estimates with the transport result, consider the asymptotic flux (2.10, Section 6.3.8) in a sphere

of radius r

φas rð Þ5 A

r
sin

r

ν0j j (11.10)

where ν0 is a solution of the transcendental equation

15 cν0tanh21 1

ν0
5

cν0
2

ln
ν0 1 1

ν0 2 1
: (11.11)

Recall that c is the number of neutrons emerging from an interaction such that 0, c, 1 for non-multiplying media

and c. 1 for a multiplying medium such as Godiva. The sphere is approximately critical when the asymptotic flux is

zero at the extrapolated radius R; thus φas R
� �

5 0 at R5Rc 1 x0 5 πjν0 cð Þj.
The solutions of (Eq. 11.11) are real for c, 1 and complex for c. 1; an approximation for ν0 is

1

ν02
5

3ð12 cÞ
c

12
9

5

12 c

c
2?

� �
: (11.12)

For c near unity, another approximation is

ν0 5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð12 cÞ
p 11

2

5
12 cð Þ1?

� �
: (11.13)

To find the critical radius ν0 is determined from the transcendental equation and the critical radius is found from

Rc 5 π ν0j j2 x0, where the extrapolation distance x0 can be calculated from the Mark P1 boundary condition (Eq. 2.65).

In the spherical harmonics P1 “diffusion approximation,” the neutron flux is given by Eq. (2.54), re-written here for

quick reference:

φ xð Þ5 1

2

ffiffiffiffiffiffiffiffiffiffiffi
3

12 c

r
e2 xj j=L

where the diffusion length is

L5 ν0 5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 12 cð Þ
p : (11.14)

Values of ν0 for c, 1 are plotted in Fig. 6.2; others are reproduced from Bell and Glasstone (Bell & Glasstone,

1979) (Table 11.3).

For a one-group calculation, the data of Table 2.17(a) (Bell and Glasstone) is used for U-235 (density 18.8 g/cm3)

assuming isotropic scattering:

ν5 2.50, σf 5 1.3 b, σs 5 4.0 b. This gives c5 1.3679, for which Eq. (11.11) gives

jiν0j5 0:8359:

Note that the transcendental equation for c, 1 is straightforward as the roots are real numbers while for c. 1, with

complex roots, the MATLABs program listed below was written.

The extrapolation radius, from the Mark P1 boundary conditions is x0 5 0.5181 cm. The critical radius,

Rc 5 π ν0 cð Þ
�� ��2 x0 5 8.2558 cm which is to be compared with the computed value of the critical radius 8.710 cm

with keff 5 0.9912.
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The relaxation length in one-speed transport theory P1 diffusion approximation is ν0, and it determines the shape of

the flux just like the buckling in one group DT.

MATLAB program for computing the eigenvalue v0 from Eq. (11.11)

% calculate eigenvalue from transcendental equation
% Bell and Glasstone p.126 q.11
nu=2.5; sigF=1.3; 
sigC=0;sigS=4;sigT=sigF+sigC+sigS;A=235;mu0=2/(3*A);sigTR=sigS*(1-mu0);
c=(nu*sigF+sigS)/sigT; k_inf=nu*sigF/(sigT-sigS);
c=1.3679; % godiva
z= 0.8:0.0001:0.96; x=z*i; % convert to a complex number
f = @(x) (2./(c*x)) - log((x+1)./(x-1));  y=f(x);  yabs=abs(y); 
plot(z,yabs);

% find root
n=size(z);
ymin=10;
for j=1:n(2)

if(yabs(j)<ymin)
Nu0=z(j); ymin=yabs(j);

end
end

% extrapolated radius Rc
x0=(1/sqrt(3))*(1-(1/3)*(c-1)+(1/5)*(c-1)^2-(1/7)*(c-1)^3); % extrap dist
rho=18.8;AvNo=0.6022e24;M=235;N=rho*AvNo/M;

SIGT=N*sigT*1e-24; lambda=1/SIGT;

Rc=pi*Nu0-x0; % critical radius in mfp
Rc_cm=Rc*lambda; % critical radius in cm

TABLE 11.3 Relaxation lengths for isotropic scattering (in mean free paths).

c Exact (Eq. 11.11) Approximation (Eq. 11.13) Diffusion theory (Eq. 11.14)

c, 1

jν0j
0.99 5.797 5.797 5.774
0.90 4.116 4.115 4.083
0.80 1.408 1.394 1.291
0.50 1.044 0.979 0.816
0 1.000 0.808 0.577
c. 1

jiν0j
1.01 5.750 5.751 5.774
1.05 2.532 2.531 2.582
1.10 1.757 1.756 1.826
1.20 1.198 1.195 1.291
1.50 0.689 0.680 0.816
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Exercise 11.1: One-speed transport theory critical radius.

Use Eq. (11.14) (DT approximation) to calculate the eigenvalue and the critical radius of Godiva with the data given

in this section.

11.3 The classic albedo calculation

In the classic albedo calculation, the reflection is estimated at a surface due to an incident source as shown in Fig. 11.1.

In DT from the infinite slab one-group flux (Table 5.1), the albedo

β5
Jout

Jin
(11.15)

is given by

β5
12 2D=L

� �
cotha=L

11 2D=L
� �

cotha=L
: (11.16)

where a is the slab thickness.

Fig. 11.2 shows the albedos for light water (LW), beryllium (Be), aluminum (Al), graphite (C), and heavy water

(HW) using thermal data listed in the MATLAB program CH11_AlbedoSlabDiffTh.m (Annex A). The highest albedo

(0.7369) is for a water slab, saturated at a thickness B10 cm, with progressively lower values for Be, Al, C and the

lowest for heavy water.

In Section 6.2.1, the albedo from transport theory was given as

φ 0; 2μð Þ5 12
ffiffiffiffiffiffiffiffiffiffiffi
12 c

p
H μð Þ:

FIGURE 11.1 Reflection of an incident beam of neutrons.

FIGURE 11.2 Albedos for light water, beryllium (Be), aluminum (Al),

graphite (C), and heavy water (HW) due to an anisotropic source inci-

dent on the left face. [Annex A: CH11_AlbedoSlabDiffTh.m]
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The MC results for albedo were obtained from a MCNP simulation (input file ANNEX B: BK11albd) for 1 MeV

mono-energetic neutrons incident on the left face of a slab of water of thickness 10 cm. The number of neutrons simu-

lated was 400,000 giving a relative error of , 1%. The albedos obtained from a MCNP simulation are shown in

Fig. 11.3 as a function of the reflection angle (μ1 52 1;μ2 52 0:8;μ3 52 0:6;μ4 52 0:4, μ5 52 0:2, μ6 52 1).

The highest reflection in the range 21,μ, 2 0:8 is for low energy neutrons (E, 0:2 MeV) since higher energy neu-

trons penetrate deep into the medium.

The energy-integrated albedos in water are shown in Fig. 11.4; the large-angle reflection is most prominent falling

off with decreasing angle.

Exercise 11.2:

From the steady-state one-group diffusion equation (Eq. 5.3), show that for an incident source S n/s on the left side

of a slab of thickness a, and extrapolated distance d, the flux φ xð Þ and albedo β are:

φ xð Þ5A cosh
x

L
1Bsinh

x

L
(11.17)

where the constants A and B are

A52Btanh
a1 d

L

FIGURE 11.3 Albedo for 1 MeV neutrons incident on the left face of

a water slab of thickness 10 cm. (μ1 52 1;μ2 52 0:8;μ3 52 0:6;μ4 5

2 0:4, μ5 52 0:2, μ6 52 1).

FIGURE 11.4 Albedo for a water slab of thickness 10 cm for 1 MeV inci-

dent neutrons.
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and the albedo is

β5
Jout

Jin
5

p2 2D
L
coth a1 d

L

p1 2D
L
coth a1 d

L

;

where p5Σs=Σt.

Note: The incident and reflected currents are

Jin 0ð Þ5 Σs

4Σt

φ 0ð Þ2D

2

dφ
dx

jx50

and

Jout 0ð Þ5 Σs

4Σt

φ 0ð Þ1 D

2

dφ
dx

jx50

and the net current is J5 Jin 2 Jout.

The energy-integrated albedos are listed in Table 11.4; in water, the back-scattering is predominant for a mono-

energetic anisotropic source.

Comparing the diffusion values of albedo in Fig. 11.2 with MC simulation values in Fig. 11.4 for 1 MeV neutrons, a

large difference is observed. This is due to the energy of incident neutrons. For water, the albedo increases from

0.588636 (0.0040) to 0.74175 (0.0023) as the energy of the incident neutrons decreases from 1 MeV to 0.1 eV.

11.4 Flux in a slab

Three idealized and illustrative cases in slab geometry are infinite medium with an incident source, finite medium with

incident source on the left boundary, and finite medium with an isotropic source.

11.4.1 Diffusion theory

Analytical solutions for infinite media fixed source problems are typically in the form of decaying exponentials while

finite media have algebraic, trigonometric, or hyperbolic functions.

Some elementary cases for non-multiplying media in DT for slab geometry (Section 5.2.1; Table 5.1) are:

� infinite medium with an incident source S0 neutrons/s, for which the boundary conditions of limAx-0 J5 S0=2 and

x-N give the flux

φ5
So

2κD
expð2κ xj jÞ; x 6¼ 0 (11.18)

where κ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σa=D

p
the inverse of the diffusion length expressed in terms of the total cross-section

L5 3ΣtΣað Þ21=2 5 3 12cð Þ� 	21=2

which, is the same as the eigenvalue ν0 given by the transcendental equation (Eq. 11.11) in Table 11.3.

� finite slab xAð0;ΔÞ, with an impinging flux at the left surface of a slab Jð0Þ5FL and φ Δð Þ5 0

TABLE 11.4 Albedo for water and graphite slabs (MC simulations).

μ Water SS316

21:0; 2 0:8 0.246371 0.0086 0.207984 0.0031
20:8; 2 0:6 0.172610 0.0107 0.169504 0.0035
20:6; 2 0:4 0.104693 0.0144 0.130964 0.0040
20:4; 2 0:2 0.0529103 0.0208 0.086881 0.0051
20:2; 0 0.0120528 0.0446 0.026080 0.0096
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� finite slab with an isotropic source at the center, the boundary conditions are φ 0ð Þ5φ Δð Þ5 0 and

limx-0 J5 limx-0 2Ddφ=dx
� �

5 S0=2. For the point isotropic source, the flux

φ xð Þ5 SoL

2D
11e2Δ=L
h i21

e2jxj=L 2 eðjxj2ΔÞ=L

 �

(11.19)

which can also be expressed in the following forms:

φ xð Þ5 SoL

2D

sinh½ðΔ2 2jxjÞ=2L�
coshðΔ=2LÞ (11.20)

and

φðxÞ5 2So

ΔΣa

X
lodd

1

11B2
l L

2
cos

lπx
Δ

: (11.21)

The transport correction in the diffusion model is usually made by considering the slab to be of physical dimension

Δ2 2d where the extrapolation distance is d5 0:71λtr. The extension of the eigenfunction form of the solution is easily

made to the 3D case where the flux φðx; y; zÞ can be found as

φ5
8So

Δ3Σa

X
l;m; n;odd

1

11B2
l;m;nL

2
cos

lπx
Δ

cos
mπy
Δ

cos
nπz
Δ

: (11.22)

where

B2
l;m;n 5 l2 1m2 1 n2

� � π
a


 �2

:

11.4.2 Transport theory

In transport theory, some elementary cases (Section 6.2) for slab geometry are

� source-free infinite medium, when separation of variables is assumed with eigenfunctions ψυðμÞ and eigenvalues ν
(Table 11.3) to give an asymptotic solution

φ x;μð Þ5 e2x=νψν μð Þ (11.23)

based on the 1D transport equation with isotropic scattering.

μ
@

@x
1 1

� �
φ x;μð Þ5 c
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ð1
21

dμ
0
φ x;μ

0� �
(11.24)

� infinite medium spherical harmonics method in the P1 approximation

φ xð Þ5 1

2

ffiffiffiffiffiffiffiffiffiffiffi
3

12 c

r
e2

ffiffiffiffiffiffiffiffiffiffiffiffi
3 12cð Þx

p
(11.25)

� infinite medium with plane isotropic source has a transient behavior (in the sense of collisional equilibrium) in the

P3 approximation, for which a Fourier transform of Eq. (11.23) for a plane source δðxÞ is
φ xð Þ5 1

2π

ÐN
2N

eikx

12 cð Þ1 gðkÞwhere

g kð Þ5
9
7
k4 1 15k2

55
7
k2 1 15

:

Evaluating the residues at the simple poles, yields

φ xð Þ5 7

9

2 55
7
m2 1 15

2m n2 2m2ð Þ e
2mjxj 2

2 55
7
n2 1 15

2n n2 2m2ð Þ e
2njxj

� �
(11.26)
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where m and n, and the eigenvalues, which are the relaxation lengths, υ0 � 1=m and υi � 1=n, are given in Table 11.5.

Spatial attenuation is, as for the cases above, defined by eigenvalues that include ν0. Far from the source, the asymp-

totic part will dominate (Bell & Glasstone, 1979). Conversely, in strongly absorbing media, the transient part will domi-

nate as there will hardly be any collisional equilibrium. The source appears as a normalization factor for collisional

equilibrium while it dominates for weak equilibrium.

� finite 1D slab, Ganapol (2008) with the impinging (on left surface) and vacuum (on right surface) boundary condi-

tions for: and μ. 0;φ 0;μð Þ5FLðμÞ and φ Δ;μð Þ5 0: The exact FN solution, based on the integral equations, for

this case has been given as

φ xð Þ5
ð1
0

dμFL μð Þe2x=μ 1
XN21

α50

cα



xÞ
ð1
0

dμφαðμÞ (1)

where φαðμ) are basis functions and the functions cα xð Þ are determined from the procedure defined.

11.4.3 Monte Carlo simulation

The MC simulation uses the collision estimator (CE) to estimate the total number of collisions in a region, that is, the

weight participating in collisions in a region s ψ5Σtϕ5, pi . so that ϕCE 5, pi . =Σt, and the track-length estima-

tor (TLE) For the TLE, in which the flux is the mean weighted track-length expressed as

φTLE 5 nv5
N

V
� s
t
� 1

Vt
, pisi . :

11.4.4 Comparison

The simulation is carried out for strong absorbing materials, such as boron and gadolinium, to strong scattering materi-

als such as iron and aluminum using one-group data (Lamarsh & Baratta, 1955) listed in Table 11.6.

For a unit isotropic source located in the center of a cube of 5 m.f.p. the thermal flux, obtained from DT (ANNEX

C, MATLAB Program: ExactSolSlabJan03) is shown in Fig. 11.5.

It can be seen that the flux in a high scattering material such as aluminum will attenuate slower than that in a highly

absorbing material. Both gold (Au) and boron (B) are highly absorbing and hence the flux drops rapidly.

The leakage, per unit source neutron, computed for the slabs is as follows: Al: 7.8023 1022, Fe: 4.8323 1022, U:

5.0633 1023, Au: 5.1463 1024, B: 4.6483 1024, Gd: 3.5323 1024.

TABLE 11.5 Infinite medium eigenvalues from P3 transport theory.

c 0.5 0.6 0.8 0.9 0.95 0.99

υ0 1.0114 1.0838 1.4047 1.9029 2.6350 5.7971
υi 0.4094 0.4271 0.4660 0.4866 0.4969 0.5051

TABLE 11.6 Thermal cross-section data.

Element σa (b) σs (b) p5σs=σt

Aluminum 0.235 1.4 0.8563
Boron 759 4.0 0.0052
Iron 2.53 11.0 0.8130
Gold 98.8 9.3 0.0860
Gadolinium 46,000 4.0 8.6953 1025

Uranium 7.5 8.3 0.5253

Comparisons: Monte Carlo, diffusion, and transport Chapter | 11 425



A comparison of DT and spherical harmonics P1 approximation for U and Au is shown in Fig. 11.6. The significant

difference is near the boundaries where the validity of Fick’s law is doubtful.

Fig. 11.7. shows the scalar flux in a 1D slab of gadolinium with an isotropic source at the center. It is seen that for a strong

absorber, there is significant difference between the P3 result and the DT result near the source and near the boundaries. Thus,

for a strong absorber, the sharper rise due to lack of collisional equilibrium is better modeled by the P3 approximation.

For a slab with an incident source Jin on the left side of the surface (Fig. 11.8), the DT fluxes are plotted for light

water (LW), beryllium (Be), aluminum (Al), graphite (C), and heavy water (HW). The sharpest attenuation is for water

which is the most absorbing of the five materials considered; while heavy water has the slowest attenuation. Beyond a

slab thickness of B11 cm, the flux has become negligible due which the albedo in Fig. 11.2 saturates to a constant value.

To consider a more detailed flux behavior, a simulation carried out with MCNP (ANNEX B input file) for an aniso-

tropic 1 MeV mono-energetic source incident from the left face of water and steel (SS-316) slabs, shows a rapid drop

in Fig. 11.9. At the interface, the flux in both cases is high (B100 times higher than in the next 1 cm layer). The flux

in water falls off faster than that in SS-316 (higher c than that for water).

It is also important to visualize the energy spectrum of the flux in a hydrogenous medium such as water and a high

c material such as SS-316.

As shown in Fig. 11.10, the energy dependent flux in SS-316 has a hard spectrum while a Maxwellian is observed

in water at thermal energies (B0.025 eV).

Now consider the MC collision density in a 5 m.f.p thick aluminum slab with a point isotropic source at the center.

FIGURE 11.5 One-speed flux in a 1D slab.

FIGURE 11.6 One-speed flux in 1D slab (DT vs P1).
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FIGURE 11.7 One-speed flux in Gd: DT, P1;P3 comparisons.

FIGURE 11.8 Neutron flux for light water, beryllium (Be), aluminum

(Al), graphite (C), and heavy water (HW) due to an anisotropic source

incident on the left face. [Program CH11_AlbedoSlabDiffTh.m].

FIGURE 11.9 Neutron flux versus distance (x) in water and SS-316

slabs of thickness 10 cm due to a 1-MeV mono-energetic anisotropic

source incident from the left face. (ANNEX B input file).
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Fig. 11.11 shows the thermal flux computed with the collision density estimator (CDE) and the one-group diffusion

expression. It can be seen that DT over-estimates the flux, especially near the source. However, the difference is smaller

further from the source.

The difference between the CDE and TLE flux estimates for a sample size 10003 5 (1000 histories and 5 batches)

is ,2%. The transmission from the left (and right) surfaces is ,4% for aluminum. For iron and boron the transmission

was B3.5% and 0.6.% respectively.

11.5 Flux in a finite sphere with a point isotropic source

11.5.1 Diffusion theory

In Section 5.2.2, the neutron DT flux is given by

φ rð Þ5 S

4πDr
sinhκðR1 d2 rÞ
sinhκðR1 dÞ

FIGURE 11.10 Neutron flux versus energy E in water and SS-316

slabs of thickness 10 cm due to a 1-MeV mono-energetic anisotropic

source incident from the left face.

FIGURE 11.11 Comparison of collision density:

Monte Carlo versus diffusion theory.
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and the leakage from the sphere is given by

L5 4πR2J Rð Þ52 4πR2Drφ5
Sκ R1 dð Þ

sinhκ R1 dð Þ :

Consider an aluminum sphere of radius R5 25 cm, ρ5 2:70 g/cm3 (mass5 176.7 kg) with the data: σs 5 1:4 b,

σa 5 0:235 b, N5 0:06027 nuclei (b.cm)21, Σt 5 0:0985 cm21.

With this data, the mean free path is λ5 1=Σt 5 10:1478 cm, so that the sphere is of radius 2.4636 mean free paths.

From the data:μ0 5 2=3A5 0:0247, Σtr 5 0:0823cm21, d5 0:71=Σtr 5 8:6275 cm, d5 0:8502 fp, D5 4:0505 cm,

L5
ffiffiffiffiffiffiffiffiffiffiffiffi
D=Σa

p
5 16:9108 cm, L � L=λ5 1:6664, c � Σs=Σt 5 0:8563.

From the one-speed transport theory spherical harmonics P1 approximation, the quantity LT is equivalent to the

diffusion length (since 12 c is the macroscopic absorption cross-section) with the diffusion coefficient D5 1=3 in

units of mean free paths. For this data, LT 5 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð12 cÞ

p� 
5 1:5229. However, transport theory gives the (normal-

ized) relaxation length as ν0 5 1:6115. The DT flux shown in Fig. 11.12 becomes very large at r5 0 where the source

is located.

Fig. 11.13 is the thermal flux (DT) for a point isotropic source at the center of a sphere; compared with Fig. 11.8 it

has the same shape except that light water is at the top. This shows the effect of geometry on the attenuation of flux.

FIGURE 11.12 Diffusion Theory flux in an aluminum sphere.

FIGURE 11.13 Thermal flux (diffusion theory) for a point isotropic

source at the center of a sphere.
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11.5.2 Transport theory exact solution

In Section 6.2, the flux in a sphere with point isotropic source equations is obtained with a program written in

MATLAB using a Gaussian quadrature with N5 32. The expansion coefficients are obtained by solving the Fredholm

equations iteratively. For c5 0:8563 (the one-group data for aluminum) (Lamarsh & Baratta, 2001), gives ν0 5 1:6183,
N ν0ð Þ5 0:2669, H ν0ð Þ5 1:903, G ν0ð Þ5 1:1601, E ν0ð Þ5 1:1627, and the extrapolation distance, from Eq. (11.7),

z0 5 0:83024.
Table 11.7 lists the results, from DT and transport theory. Clearly, DT does not give good results near the source

and boundary. The ratio of the transport-to-diffusion flux is close to unity in the range 0.74�2.2 m.f.p. This will have

an important bearing when choosing a reference for the Kullback-Leibler estimates.

To better understand the fluxes in Fig. 11.13, a MCNP simulation was carried out to compare fluxes in water, ura-

nium and aluminum. The simulation used 50,000 histories with a point isotropic mono-energetic source of 1 MeV

located at the center of the sphere of radius 8.4710 cm (the same as for Godiva).

The neutron fluxes shown in Fig. 11.14 validate Fig. 11.13 with the scalar flux in water being higher than that for

aluminum and uranium.

Although, in Fig. 11.14, the neutron flux is higher in water, the emergent spectrum, given in Table 11.8, shows that

water moderates the high incident energy while aluminum and uranium do not result in comparable shielding of neutron

radiation.

TABLE 11.7 Diffusion theory flux compared with transport theory.

r=R r r φðrÞ 4πr2φðrÞ
cm m.f.p n/cm2/s DT TT

0.0 0.0 0.0 — — 1.0
0.1 2.5 0.2464 6.7341e-003 0.5289 1.1017
0.2 5.0 0.4927 2.8785e-003 0.9043 1.1823
0.3 7.5 0.7391 1.6353e-003 1.1559 1.2413
0.4 10.0 0.9854 1.0406e-003 1.3076 1.2788
0.5 12.5 1.2318 7.0198e-004 1.3783 1.2946
0.6 15.0 1.4782 4.8905e-004 1.3827 1.2882
0.7 17.5 1.7245 3.4613e-004 1.3321 1.2586
0.8 20.0 1.9709 2.4557e-004 1.2344 1.2032
0.9 22.5 2.2172 1.7214e-004 1.0951 1.1157
1.0 25.0 2.4636 1.1678e-004 0.9172 0.9643

FIGURE 11.14 Neutron flux versus cell number in a sphere of radius

8.7410 cm divided into 50 equal-volume cells.
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A brief discussion on Fig. 11.9 in which a very high flux appears at the interface where source neutrons are incident

is helpful to clarify this artefact. In both slab and spherical geometry, when equal volume regions are specified, the first

volume has a larger radius (difference) and the fluxes appear to take a shape illustrated in Fig. 11.15 which is the same

result as shown in Fig. 11.14. So, the magnitude of the flux is very high in a region adjacent to the source in both slab

and spherical geometries.

11.5.3 Monte Carlo simulation

Fig. 11.16 shows a comparison of the exact DT flux with the TLE flux in the 30 equal-volume regions of an aluminum

sphere of radius 25 cm (2.4636 m.f.p) with a mass of 176.7 kg. To comment on the accuracy of the results, we need to

consider two parameters viz the mean free path λ and the scattering probability ps. For this one-speed model,

λB10:15cm and psB0:86. We can thus expect that there will be a sufficient number of collisions for the CE flux esti-

mate to agree well with the TL estimate. For this case, the average number of collisions per source neutron is B1.88 in

the first region gradually decreasing to B0.17 in the last region which is about 2.4 m.f.p’s away from the source. For a

sample size NB10; 000 this means that we will have of the order of 19,000 collisions in the first region and B1700

collisions in the last region. Similarly, the relatively high scattering probability makes this material far from an

absorber. It is seen that these two factors contribute to the good agreement between DT and the MC estimate from the

mid-point of the first region which is half a mean free path away. Similarly, good agreement is observed for the leak-

age, which is 0.54319 from the MC simulation, compared with 0.5548 from the exact solution.

Comparisons of diffusion and transport flux show good agreement far from the boundaries. The convergence can be

verified using the Kullback-Leibler divergence indicating that NB10,000 is a sufficient sample size for simulation.

Consider now the individual cell balances shown in Table 11.9. The steady-state balance requires

J
ðcÞ
in 1 SðcÞ 5 JðcÞout 1AðcÞ

TABLE 11.8 Emerging current spectrum from a sphere of radius 8.471 cm.

Energy bin Water Aluminum Uranium

0�1 eV 1.654163 1021 0.0092 0 0
1 eV�1 keV 1.708413 1021 0.0098 0 0
1 keV�1 MeV 6.262643 1021 0.0035 9.994633 1021 0.0000 8.994603 1021 0.0008
Total 9.625223 1021 0.0005 9.994633 1021 0.0000 8.994603 1021 0.0008

FIGURE 11.15 Neutron flux versus radius in a sphere of radius

8.7410 cm divided into 50 equal-volume cells.
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The reaction rate R
ðcÞ
k for a reaction k in a cell c between radii rðcÞ and rðc11Þ RðcÞ

k 5
Ð
Σc

kφ rð ÞdV is

R
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k 5

SΣk

DsinhκðR1 dÞ 2
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κ
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2
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ðTÞ
k 5

S

Σa

Σk

sinhκ R1 dð Þ2 sinhκd2 κRcoshκd
sinhκðR1 dÞ

� �

where R
ðTÞ
k , obtained by setting rðcÞ 5 0; rðc11Þ 5R, is the total reaction rate of reaction type k in the sphere. With the

leakage given by

L5

ð
r ∙ J dV 52

ð
Dr2φ dV 52 4πD r2

dφ
dr

jr1dr
r

� �

5 4πr22J r2ð Þ2 4πr21J r1ð Þ5 J cð Þ
out 2 J

ðcÞ
in

where

J rð Þ52D
dφ
dr

5
S

4πr2
κrcosh κ R1 d2 rð Þ½ �1 sinh κ R1 d2 rð Þ½ �

sinhκ R1 dð Þ

� �
:

FIGURE 11.16 Monte Carlo compared with transport and diffusion

theory.

TABLE 11.9 Cell balances using diffusion theory flux.

Cell Sources Sinks Δ

SðcÞ JðcÞin
Total In AðcÞ JðcÞout

Total Out

1 1 0 1.0000 0.1467 0.8533 1.0000 0
2 0 0.8533 0.8533 0.0590 0.7943 0.8533 0
3 0 0.7943 0.7943 0.0411 0.7532 0.7943 0
4 0 0.7532 0.7532 0.0317 0.7215 0.7532 0
5 0 0.7215 0.7215 0.0256 0.6958 0.7215 0
6 0 0.6958 0.6958 0.0213 0.6745 0.6958 0
7 0 0.6745 0.6745 0.0181 0.6564 0.6745 0
8 0 0.6564 0.6564 0.0155 0.6409 0.6564 0
9 0 0.6409 0.6409 0.0134 0.6276 0.6409 0
10 0 0.6276 0.6276 0.0116 0.6160 0.6276 0
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Elementary solutions and simulations show that

1. DT, based on Fick’s law, is valid in the “interior” of a medium and not near a source or boundary;

2. the asymptotic relaxation length υ0 for a source-free infinite medium transport solution is identical to that from DT,

when it is called the diffusion length L, for a pure scattering medium (c5 1), and

3. the relaxation length, expressed by the eigenvalues, has a “transient” and an “asymptotic” part which is a function

of the medium properties (c).

Problems

1. In Section 11.1, the eigenvalues νo are defined by the transcendental equation (Eq. 11.11). Calculate νo for

c5 1:0; 1:2; 1:4 and compare with values in Table 11.3.

2. Repeat Q.1 using values of for c5 0:2; 0:4; 0:6; 0:8; 1:0 and comment on your results, especially in the limits of

low c and the case c5 1.

3. Explain how the Kullback-Leibler Divergence estimates can be used to comment on the quality of the results in

Fig. 11.16 (MC compared with transport and diffusion estimates).

4. For the slab and spherical geometry results, use a different material from aluminum with a lower c value, such as

boron, and again compare the results. Does MC sample size depend on the scattering power of the material?

5. Plot the relative errors for the above and again, comment on the trend you observe.

Nomenclature

English lower case
c number of neutrons emerging from an interaction

d extrapolation distance

keff effective multiplication

kN infinite multiplication

N atomic number density

English upper case
B buckling

D diffusion coefficient (xx)

D̂ derivative operator

H Chandrasekhar H-function

J neutron current

L diffusion length

Ni atomic density of the ith nuclide

Rc critical radius

R extrapolated radius

S source

Greek lower case
β albedo

μ cosine of angle of scattering

μ0 average cosine of scattering angle

ν0 eigenvalue

ν number of neutrons produced per fission

φ flux

φas asymptotic flux

σa microscopic absorption cross section

σf microscopic fission cross section

σr microscopic removal cross section

σs microscopic scattering cross section

σtr microscopic transport cross section
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σt microscopic total cross section

τ neutron age

χ fission spectrum

Greek upper caseP
a macroscopic absorption cross sectionP
f macroscopic fission cross sectionP
r macroscopic removal cross sectionP
s macroscopic scattering cross sectionP
tr macroscopic transport cross sectionP
t macroscopic total cross section

Abbreviations
m.f.p mean free path

CDE collision density estimate

DT diffusion theory

MC Monte Carlo

TLE track-length estimator

SS-316 Stainless Steel Type 316
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Annex A MATLAB Program AlbedoSlabDiffTh.m (Section 11.3)

% CH11_AlbedoSlabDiffTh.m
% Aluminum data Lamarsh (INE)
N=0.06027e23; siga=0.235e-24;Siga=N*siga; D=4.0505;
L=sqrt(D/Siga);kappa=1/L;a=80; % slab thickness
d=8.6275;den=2.70;S=1.0;
% Diffusion coefficient and thermal diffusion length (source L&B)
%    water heavy water        beryllium       graphite
Dw=0.16;Lw=2.85;    Dhw=0.87;Lhw=97;  Dbe=0.50;Lbe=21;  Dc=0.84;Lc=59;

% slab thickness a
% S=1 incident from left side (J+)
% phi(x) =B1 cosh x/L + B2 sinh (x/L)

B2Al =(-4*S*cosh(a/L))/( (2*D/L)*cosh(a/L) + sinh(a/L)); B1Al =4*(S+(D/  
(2*L))*  B2Al);
B2w  =(-4*S*cosh(a/Lw))/((2*Dw/Lw)*cosh(a/Lw) + sinh(a/Lw));B1w  =4*(S+(Dw/ 
(2*Lw))* B2w);
B2hw =(-4*S*cosh(a/Lhw))/((2*Dhw/Lhw)*cosh(a/Lhw) + 
sinh(a/Lhw));B1hw=4*(S+(Dhw/(2*Lhw))*B2hw);
B2be =(-4*S*cosh(a/Lbe))/((2*Dbe/Lbe)*cosh(a/Lbe) + 
sinh(a/Lbe));B1be=4*(S+(Dbe/(2*Lbe))*B2be);
B2c  =(-4*S*cosh(a/Lc))/( (2*Dc/Lc)*cosh(a/Lc) + sinh(a/Lc));B1c  
=4*(S+(Dc/ (2*Lc))* B2c);

Steps=1000;Del=a/Steps;Len=0;
for i=1:Steps

Len=Len+Del;    x(i)=Len;
phi(i)   = B1Al*cosh(x(i)/L) +   B2Al *sinh(x(i)/L);
phiw(i)  = B1w *cosh(x(i)/Lw) +  B2w  *sinh(x(i)/Lw);
phihw(i) = B1hw*cosh(x(i)/Lhw) + B2hw *sinh(x(i)/Lhw);
phibe(i) = B1be*cosh(x(i)/Lbe) + B2be *sinh(x(i)/Lbe);
phic(i)  = B1c *cosh(x(i)/Lc ) + B2c  *sinh(x(i)/Lc);

end

for j=1:8
SlabTh(j)=10*j+5;

ggAl=(2*D/L)*coth(SlabTh(j)/L);  albedoAl(j) = (1-ggAl)/(1+ggAl);
ggw =(2*D/L)*coth(SlabTh(j)/Lw); albedow(j)  = (1-ggw)/(1+ggw);
gghw=(2*D/L)*coth(SlabTh(j)/Lhw); albedohw(j) = (1-gghw)/(1+gghw);
ggbe=(2*D/L)*coth(SlabTh(j)/Lbe); albedobe(j) = (1-ggbe)/(1+ggbe);
ggc=(2*D/L)*coth(SlabTh(j)/Lc); albedoc(j) = (1-ggc)/(1+ggc);
end

figure(1)
set(gca,'FontSize',12)
plot(x,phiw,'r-','LineWidth',1.5)
hold on
plot(x,phibe,'b-','LineWidth',1.5)
hold on
plot(x,phi,'k-','LineWidth',1.5)
hold on
plot(x,phic,'m-','LineWidth',1.5)
hold on
plot(x,phihw,'g-','LineWidth',1.5)
hold on
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legend('LW','Be','Al','C','HW',12,'Location','NorthEast')
%text(0.1,0.7,'\bf Water','fontsize',12)
%xlim([1e-8 2])
ylim([0 4])
%hold on
grid off
xlabel('{\bf x} (cm)','fontsize',14)
ylabel('{\bf \phi(x)} (n cm^{-2} s^{-1})','fontsize',14)

figure(2)
set(gca,'FontSize',12)
plot(x,phiw,'k--','LineWidth',1.5)
hold on
plot(x,phibe,'k:','LineWidth',1.5)
hold on
plot(x,phi,'k-','LineWidth',1.5)
hold on
plot(x,phic,'k-.','LineWidth',1.5)
hold on
plot(x,phihw,'k--','LineWidth',1)

legend('LW','Be','Al','C','HW',12,'Location','NorthEast')
%text(0.1,0.7,'\bf Water','fontsize',12)
%xlim([1e-8 2])
ylim([0 4])
%hold on
grid off
xlabel('{\bf x} (cm)','fontsize',14)
ylabel('{\bf \phi(x)} (n cm^{-2} s^{-1})','fontsize',14)

figure(3)
set(gca,'FontSize',12)
plot(SlabTh,albedow,'r-','LineWidth',1.5)
hold on
plot(SlabTh,albedobe,'b-','LineWidth',1.5)
hold on
plot(SlabTh,albedoAl,'k-','LineWidth',1.5)
hold on
plot(SlabTh,albedoc,'m-','LineWidth',1.5)
hold on
plot(SlabTh,albedohw,'g-','LineWidth',1.5)
hold on

legend('LW','Be','Al','C','HW',12,'Location','SouthEast')
%text(0.1,0.7,'\bf Water','fontsize',12)
%xlim([1e-8 2])
%ylim([1e-3 2e-1])
%hold on
grid off
xlabel('{\bf Slab Thickness} (cm)','fontsize',14)
ylabel('{\bf Albedo} (n/s)','fontsize',14)
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figure(4)
set(gca,'FontSize',12)
plot(SlabTh,albedow,'k--','LineWidth',1.5)
hold on
plot(SlabTh,albedobe,'k:','LineWidth',1.5)
hold on
plot(SlabTh,albedoAl,'k-','LineWidth',1.5)
hold on
plot(SlabTh,albedoc,'k-.','LineWidth',1.5)
hold on
plot(SlabTh,albedohw,'k--','LineWidth',1)

legend('LW','Be','Al','C','HW',12,'Location','SouthEast')
%text(0.1,0.7,'\bf Water','fontsize',12)
%xlim([1e-8 2])
%ylim([1e-3 2e-1])
%hold on
grid off
xlabel('{\bf Slab Thickness} (cm)','fontsize',14)
ylabel('{\bf Albedo} (n/s)','fontsize',14)
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Annex B MCNP Input File BK11Albd (Section 11.2)

BK Ch11 Albedo comparison with H function
1 12 -1.0    1 -2 3 -4 5 -6 imp:n=1
2    0 (-1:2:-3:4:-5:6) imp:n=0

1    py  0
2    py  10
*3   px  -0.5
*4   px   0.5
*5   pz  -0.5
*6   pz   0.5

c       BLOCK 3   .............................................
SDEF POS=0 0 0 AXS=0 1 0 EXT=0 RAD=d1 PAR=1 ERG=1 VEC=0 1 0 DIR=1
SI1 0 0.05 $ radial sampling range: 0 to Rmax (=0.05cm)
SP1 -21 1 $ radial sampling weighting: r^1 for disk
c
mode    n
c STEEL(316)(7.92 g/cm3)
m3      14000 -0.010 24000 -0.170 25055 -0.020 26000 -0.655 

28000 -0.120 42000 -0.025 
c  Water (1.0 g/cm3)
m12     1001 2 8016 2
mt12    lwtr.02t
FC1    neutrons crossing surface 1, 2
F1:N    1 2
E1     0.2 0.4 0.6 0.8 1.0
C1     -0.8 -0.6 -0.4 -0.2 0 1.0 $ six bins
c ENERGY SPECTRUM OF FLUX IN SLAB
fc64 energy spectrum of flux in slab
f64:n 1
e64 3.77e-9 4.05e-9 4.36e-9 4.69e-9 5.04e-9 5.42e-9 5.83e-9 6.27e-9

6.74e-9 7.25e-9 7.79e-9 8.38e-9 9.01e-9 9.69e-9 1.04e-8 1.12e-8
1.20e-8 1.29e-8 1.39e-8 1.50e-8 1.61e-8 1.73e-8 1.86e-8
2.e-8   2.15e-8 2.31e-8 2.49e-8 2.68e-8 2.88e-8 3.09e-8
3.33e-8 3.58e-8 3.85e-8 4.13e-8 4.45e-8 4.78e-8 5.14e-8
5.53e-8 5.94e-8 6.39e-8 6.87e-8 7.39e-8 7.95e-8 8.54e-8
9.19e-8 9.88e-8 1.06e-7 1.14e-7 1.23e-7 1.32e-7 1.42e-7
1.53e-7 1.64e-7 1.77e-7 1.90e-7 2.04e-7 2.19e-7 2.36e-7
2.54e-7 2.73e-7 2.93e-7 3.15e-7 3.39e-7 3.65e-7 3.92e-7
4.22e-7 4.53e-7 4.88e-7 5.24e-7 5.64e-7 6.06e-7 6.52e-7
7.01e-7 7.54e-7 8.10e-7 8.71e-7 9.37e-7 1.01e-6 1.08e-6
1.16e-6 1.25e-6 1.35e-6 1.45e-6 1.56e-6 1.67e-6 1.80e-6
1.94e-6 2.08e-6 2.24e-6 2.41e-6 2.59e-6 2.78e-6 2.99e-6
3.22e-6 3.46e-6 3.72e-6 4.e-6   4.30e-6 4.62e-6 4.97e-6 
5.35e-6 5.75e-6 6.18e-6 6.65e-6 7.15e-6 7.69e-6 8.26e-6
8.89e-6 9.56e-6 1.03e-5 1.10e-5 1.19e-5 1.28e-5 1.37e-5
1.48e-5 1.59e-5 1.71e-5 1.84e-5 1.97e-5 2.12e-5 2.28e-5
2.45e-5 2.64e-5 2.84e-5 3.05e-5 3.28e-5 3.53e-5 3.79e-5
4.08e-5 4.39e-5 4.72e-5 5.07e-5 5.45e-5 5.86e-5 6.31e-5
6.78e-5 7.29e-5 7.84e-5 8.43e-5 9.06e-5 9.75e-5 1.05e-4
1.13e-4 1.21e-4 1.30e-4 1.40e-4 1.51e-4 1.62e-4 1.74e-4
1.87e-4 2.01e-4 2.17e-4 2.33e-4 2.50e-4 2.69e-4 2.89e-4
3.11e-4 3.35e-4 3.60e-4 3.87e-4 4.16e-4 4.47e-4 4.81e-4
5.17e-4 5.56e-4 5.98e-4 6.43e-4 6.91e-4 7.43e-4 7.99e-4 
8.60e-4 9.24e-4 9.94e-4 1.07e-3 1.15e-3 1.24e-3 1.33e-3
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1.43e-3 1.54e-3 1.65e-3 1.78e-3 1.91e-3 2.05e-3 2.21e-3
2.37e-3 2.55e-3 2.75e-3 2.95e-3 3.17e-3 3.41e-3 3.67e-3
3.95e-3 4.24e-3 4.56e-3 4.91e-3 5.28e-3 5.67e-3 6.10e-3
6.56e-3 7.05e-3 7.58e-3 8.15e-3 8.77e-3 9.43e-3 1.01e-2
1.09e-2 1.17e-2 1.26e-2 1.36e-2 1.46e-2 1.57e-2 1.68e-2
1.81e-2 1.95e-2 2.09e-2 2.25e-2 2.42e-2 2.60e-2 2.80e-2
3.01e-2 3.24e-2 3.48e-2 3.74e-2 4.02e-2 4.33e-2 4.65e-2
5.e-2   5.38e-2 5.78e-2 6.22e-2 6.69e-2 7.19e-2 7.73e-2
8.32e-2 8.94e-2 9.61e-2 1.03e-1 1.11e-1 1.20e-1 1.29e-1 
1.38e-1 1.49e-1 1.60e-1 1.72e-1 1.85e-1 1.99e-1 2.14e-1
2.30e-1 2.47e-1 2.66e-1 2.86e-1 3.07e-1 3.30e-1 3.55e-1
3.82e-1 4.10e-1 4.41e-1 4.75e-1 5.10e-1 5.49e-1 5.90e-1
6.34e-1 6.82e-1 7.33e-1 7.89e-1 8.48e-1 9.12e-1 9.81e-1
1.05    1.13    1.22    1.31    1.41    1.52    1.63
1.75    1.88    2.03    2.18    2.34    2.52    2.71
2.91    3.13    3.37    3.62    3.89    4.19    4.50
4.84 5.20    5.60    6.02    6.47    6.96    7.48
8.04    8.65    9.30    10

print
c cutoff the neutrons at 0 MeV
cut:n  j 0.0
nps    400000
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Annex C MATLAB Program CH11ExactSolSlabJan03.m (Section 11.4.4)
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Chapter 12

Exercises in Monte Carlo simulation

This chapter comprises hands-on exercises in:

1. random sampling from the Watt fission spectrum,

2. Monte Carlo (MC) simulation for the one-group neutron flux in a non-multiplying sphere,

3. search for a reflected spherical critical configuration,

4. reactor core modeling,

5. radiation shielding,

6. perturbation analysis, and

7. geometry modeling.

12.1 Sampling from a distribution function

In the MC simulation of a multiplying medium, the neutron source energy is sampled from a spectrum such as the Watt

fission spectrum (Section 2.9). As described in Chapter 4, random sampling is straightforward when the probability dis-

tribution function (PDF) is simple and analytic; in that case the cumulative distributive function (CDF) is readily

inverted. When the CDF is not easy to obtain, or when the PDF is tabulated, other methods, such as the acceptance-

rejection method, must be used.

For an exponential PDF

f Eð Þ5λe2λE (12.1)

the CDF is

F Eð Þ5 12 e2λE (12.2)

and the energy Ei can be sampled as

Ei 52
1

λ
ln 12 ξi
� �

: (12.3)

where ξi is a uniform random number.

In MATLABs, the commands for Eq. (12.3) are

and the mean energy can be found as

As an example, if λ5 1 MeV, with N5 1000 Ebar5E5 1:0398 MeV.
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12.1.1 Sampling from a normal distribution

For neutron energy E distributed normally with mean μ and standard deviation σ

f Eð Þ5 1ffiffiffiffiffiffi
2π

p
σ
e2

1
2

E2μ
σð Þ2 : (12.4)

Fig. 12.1 shows a plot of f Eð Þ for μ5 MeV and σ5 MeV. The total area of the curve is 1.0; in MATLAB this is

easily found with the example below

The MATLAB(R) function normpdf can also be used to plot the function

and the function normcdf(x,5,2) gives the CDF at x5 2.

The energy is sampled from

Ei 5σξðNÞi 1μ (12.5)

giving a sampled PDF f1ðEÞ and

Ei 5μ1σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2lnξi;1

q
cos2πξi;2 (12.6)

giving f2 Eð Þ, also shown in Fig. 12.1. The random numbers ξi;1 and ξi;2 are generated from a uniform distribution while

ξðNÞi are generated from a normal distribution.

The MATLAB program CH12_NormalSampling.m used for sampling from the normal PDF is listed in Annex A.

In Fig. 12.1, both sampled distributions f1ðEÞ and f2ðEÞ are for a sample size N5 10; 000 which show

acceptable agreement, except for at the ends, with the population distribution f Eð Þ.

Exercise 12.1: From the matlab program given above, compute the sample standard deviation from each sampling

scheme.

FIGURE 12.1 Sampling from a normal distribution with

μ5 5;σ5 12.
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Exercise 12.2: Show that the CDF of the normal distribution is

F Eð Þ5 1

2
11 erf

x2μ
σ

ffiffiffi
2

p
� �� �

(12.7)

12.1.2 Sampling from a Watt fission spectrum

The energy of the prompt neutron(s) emitted from fission, E, is found from the Watt Spectrum (Cullen, 2004; Froehner

& Spencer, 1980; Monte Carlo Team, 2005)

W a; b;Eð Þ5Ce2E=asinh
ffiffiffiffiffiffi
bE

p
(12.8)

where

C5
πa3b
4

� �21=2

e2ab=4:

and the constants a, b are weak functions of the energy. For neutron-induced fission in U-235 at thermal and 1 MeV

neutron energy a5 0.988 MeV and b5 2.249 MeV21.

At low energies E&1MeV

W a; b;Eð ÞBAE1=2 (12.9)

and at high energies E*1 MeV

W a; b;Eð Þ5Ce
ffiffiffiffi
bE

p
2E=a (12.10)

From Eq. (12.8), the Watt fission spectrum is shown, on a log-log scale, in Fig. 12.2. Figs. 12.2�12.4 are obtained

from the MATLAB Program CH12_WattSampling.m listed in Annex B.

Energy is sampled from (Everett, Turner, & Cashwell, 1973)

K5 11
ab

8
; L5 a K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 2 1

p	 

; M5

L

a
2 1

x52 lnξ1; y5 2 lnξ2 (12.11)

If y2M x11ð Þð Þ2 # bLx, then the numbers are accepted and the energy is E5 Lx; otherwise a new set of random

numbers is generated (program listed in Annex B).and from a Maxwellian in the center of mass system transformed to

the Lab system (Brown; Froehner & Spencer, 1980)

FIGURE 12.2 Watt fission spectrum for U-235 induced fission

(a5 0.988 MeV, b5 2.249 MeV21).
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FIGURE 12.4 PDF and CDF of the U-235 Watt spectrum.

FIGURE 12.3 Sampled Watt fission spectra probabilities f 3ðEÞ and

f 4ðEÞ.

w’a 2 lnξ1 2 lnξ2cos
2 π
2
ξ3

	 


E’w1
a2b

4
1 2ξ4 2 1
� � ffiffiffiffiffiffiffiffiffiffi

a2bw
p

(12.12)

The sampled spectrum using Eq. (12.11), f3ðEÞ, and Eq. (12.12), f4ðEÞ, are shown in Fig. 12.3. For 100,000 points

simulated, the sampled mean energies for f3ðEÞ and f4ðEÞ were 2.0343 and 2.0310 MeV respectively. The acceptance-

rejection sampling scheme had a 75.9% acceptance.

The PDF f ðEÞ and CDF FðEÞ are shown in Fig. 12.4. The CDF can be curve-fitted and used for indirect sampling.

Alternatively, the acceptance-rejection scheme can be used for sampling.

Exercise 12.3: Run the above program for sample size N varying from 100 to 1,000,000 and note the accuracy and

sampling time.

Exercise 12.4: For the low- and high-energy approximations given by Eqs. (12.2) and (12.3) find expressions for the

cumulative distribution function to cary out analytical sampling. Again, comment on the accuracy of using these

approximations.
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Exercise 12.5: Apply the acceptance-rejection scheme for sampling the Watt energy spectrum. Recall from Chapter 4,

the scheme for sampling from a difficult PDF f is based on considered a simple PDF g and choosing a constant c such

that f ðyÞ# cgðyÞ. For a random number ξ (uniform in 0; 1) the point is selected if

ξ#
f ðξÞ
cgðξÞ :

Exercise 12.6: Use Eqs. (12.9) and (12.10) to carry out direct sampling and compare the efficiencies.

12.2 Estimating the neutron flux in a non-multiplying sphere

This section considers a non-multiplying sphere of radius R with a point isotropic source located at the origin emitting

S neutrons/s. Recall that in Section 11.5 the neutron flux was calculated from diffusion theory, transport theory, and

MC simulations. Comparisons were also illustrated for diffusion theory and MC results obtained from a modest pro-

gram MCFSoneProg.m which is listed here as a hands-on exercise.

The main program has 162 lines and calls three functions:

Function and arguments returned Line called from
[RG, RS, Vol]5MCFSShells(Rad_sphere, NV); 6
IREG5MCFSregion(POS); 28, 34, 77
[Ncols, FLUX]5MCFSsameR(FREG, WGT, DTC, Ncols,
FLUX);

38

This program could have been written in fewer lines; the purpose here is to illustrate the philosophy of having many

subroutines and functions to do their bits separately rather than as one main program; this is the way large codes are

written.

12.2.1 The simulation process

Step 1: Enter the basic data

The data entered is:

� Avogadro’s number
� molecular weight
� density
� radius
� number of regions NREG
� nuclear data (σs:σa;σtÞ
� number of histories N to simulate.

Step 2: Initialize counters

The following counters are initialized

� scattering, absorption and collision counters
� weight participating in the collision WtPartCol
� collision estimator (CE) flux (CEflux)
� track-length estimator (TLE) flux (FLUX).

Step 3: Begin simulation

Source histories are simulated by generating source neutrons at the origin with a starting weight of one isotropically
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μ5 2ξ1 2 1; θ5 cos21μ; ϕ5 2πξ2

The distance to collision (DTC) is used to calculate the final position.

DTC5
1

Σt

ln 12 ξ3
� �

(12.13)

Exercise 12.7: What is the purpose of defining bounding surfaces in this program?

The function MCFSregion determines the regions IREG and FREG for the initial and final positions.
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There are two possibilities viz (1) where the final and initial regions are the same, (IREG5 FREG, then

MCFSsameR is called) and (2) where the regions are different.

Exercise 12.8: What is the purpose of updating Ncols, FLUX and FLUXsq in MCFSsameR?

In the former, a collision is tallied by updated the number of collisions in this region Ncols, the track-length flux

FLUX, and the weight participating in the collision WtPartCol (which will give the collision estimate of flux). The sec-

ond case, where the initial and final regions are different, has to determine the path of the neutron as it crosses interme-

diate regions to ultimately collide in the final region or when it escapes from the system.

A region number of 1000 is used to represent the region external to the sphere. To account for double precision, a

number Small5 1.0e�6 is used to avoid small numbers which may misrepresent a neutron as not lying on a surface

when it has been transported to a surface in its path. Note the distances DTC, DTS and Dleft which are used to update

the distance left Dleft from the distance to collision DTC when a distance to surface (DTS) is used to determine

whether the history continues or is ended in a final region. It is crucial to determine which of the bounding surfaces in

a region a neutron will be transported to. For this, the MATLAB function isreal is used to reject a complex root.

Similarly, a negative real root is not selected and thus only one real root for the parameter DTS is used to determine the

surface of interest. During a surface crossing, only the track-length estimator (TLE) is updated while in a final region

both the CE and TLE counters are updated. When a neutron escapes from the physical domain, that is, the sphere, the

counters Nescapes, WGT_escaping and TotalWGTlost are updated to later contribute to the leakage estimates. In a col-

lision occurring in the final region FREG, the weight is reduced in this non-analog simulation and the history is contin-

ued. The parameter key takes the value zero until a history is inside the domain, and one when it terminates due to an

escape from the domain.

Step 4: Calculate mean values

The mean values are obtained by dividing the estimates by the number of neutrons started to get the value for one

source neutron.
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Step 5: Calculate exact flux

The exact flux is calculated (line 118) with μ0 5 2=ð3AÞ, extrapolation distance d5 0:71λtr, Σtr 5Σsð12μ0Þ, diffu-
sion coefficient D5 1=ð3ΣtrÞ, diffusion length L5

ffiffiffiffiffiffiffiffiffiffiffiffi
D=Σa

p
(Table 12.1).

12.2.2 MATLAB program for point source in a finite non-multiplying sphere

A MATLAB program is given below for the steps described in the previous section. It is recommended that these lines

are “copied and pasted” into a MATLAB.m file and executed.

TABLE 12.1 Some of the variables used in the Monte Carlo program.

Quantity Variable

Avogadro’s number AvNo

Radius Rad_sphere

Nuclear data sigma_s, sigma, sigma_t

Distance left (remaining) Dleft

Distance to collision DTC

Distance to surface DTS

Number of histories N

Present region IREG

Final region FREG

Number of regions NREG

A small number (13 1026) Small

Weight participating in a collision WtPartCol

Collision estimator flux CEflux

Flux variable updated at each interaction Flux

Number of scatterings Nscats

Number of absorptions Nabs

Number of collisions Ncols

Number of escapes Nescapes

Update total (statistical) weight of neutron TotalWGT

Weight lost by escape TotalWGTlost

Position x; y; z XPOS, YPOS, ZPOS

Direction cosines Uu, vv, ww

Particle weight WGT
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12.2.3 Results

The MC TLE flux for N5 1000 histories is shown in Fig. 12.5. For each region, the TLE flux is estimated to be , x.
where

, x. � 1

N

XN
i51

wisi

It is also necessary to estimate the standard deviation of , x. , written as σ, x. . For a random variable x drawn

from a population with PDF f ðxÞ, the variance σ2 is

σ2 5

ð
x2, x.ð Þ2f xð Þdx

and subsequently, from the Central Limit Theorem, the variance of the estimated mean σ2
, x. is given by

σ2
, x. 5

σ2

N

An estimate of the variance of the estimated mean is thus

σ2
, x. 5

σ2

N
5

1

N
x2 2 x2

	 


Thus

σ, x. 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
x2 2 x2

	 
r

and another quantity, the relative standard deviation (RSD) R, x. of the estimated mean is

R, x. 5
σ, x.

, x.

Fig. 12.2 shows the neutron flux from MC with N5 1000 histories sampled (green box) compared with the exact

diffusion theory solution (dashed line). In this case, the comparison is seen to be acceptable. It is good practice to com-

pare a simulation result with an “exact” analytical result but this is not always possible, as has been stated in earlier

chapters.

The output of the program given above is summarized below:

FIGURE 12.5 Neutron flux (Monte Carlo and diffusion theory) in a

sphere.
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Consider now the estimate of the standard deviation of the estimated mean σ, x. and the relative estimated mean

R, x. � σ, x. =, x. shown in Table 8.5.

The additions to the code are then an estimate of the square of the estimator FLUXsq at every event in the region,

that is,
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and the standard deviation (STD) σ, x. is obtained for each region:

from which the RSD R, x. is obtained for each region:

It is important to note that R, x. reduces an order of magnitude when N increases by two orders of magnitude in

accordance with the variation of the variance following the central limit theorem: σ2B1=N. It can be concluded that

with a sample size N5 100; 000 the flux have “converged” since the RSD is less than 0:5% for the “least precise” TLE

flux estimate in region 10, farthest from the source (Table 12.2).

12.3 Reflected assemblies

In Section 10.1, MC simulation of the Highly Enriched Uranium (HEU) Godiva sphere with radius 8.741 cm and mass

52.4254 kg respectively gave , k
ðCATÞ
eff . 5 0:994272 (0.0012) with the Monte Carlo N-Particle code (MCNP5) which

close to the Los Alamos value of keff 5 0:9976 (0.0011) (Whalen, Cardon, Uhle, & Hendricks, 1991).

An important exercise in nuclear engineering is to carry out simulations for reduction of fissile material to achieve

criticality by the use of a reflector such as beryllium, graphite or water, as was demonstrated in Section 5.3.2 for a

spherical solution of U-235 in water surrounded by a water reflector using two-group diffusion theory.

With MC simulations, much better designs in the sense of smaller size and efficient performance can be achieved.

In this section, simulations are demonstrated for reflected neutron systems with 93.5% U-235 surrounded by graph-

ite and 97.6% U-235 surrounded by water (Whalen et al., 1991). There are several references for critical systems

(Bowen & Busch, 2005; DeVolpi, 1982; Snood, Forster, & Parsons, 2003; Wagner, Sisolak, & McKinney, 1992) which

can be used to test simulation results.

TABLE 12.2 Mean , x. and relative standard deviation R, x. of the Monte Carlo TLE flux.

Region N5 100 N5 10; 000 N5 100; 000

, x. R, x. , x. R, x. , x. R, x.

1 15.128 0.0000 14.853 0.0000 14.8950 0.0000

2 4.0574 0.0000 4.3861 0.0000 4.4056 0.0000

3 3.2868 0.0660 2.9959 0.0050 3.0262 0.0015

4 2.2036 0.0542 2.2855 0.0069 2.3241 0.0023

5 1.5420 0.0951 1.8662 0.0091 1.8830 0.0028

6 1.3609 0.0747 1.5436 0.0103 1.5610 0.0033

7 1.1447 0.0892 1.3125 0.0122 1.3298 0.0037

8 0.9845 0.1190 1.1435 0.0135 1.1466 0.0042

9 0.8948 0.1193 0.9924 0.0147 0.9814 0.0045

10 0.7337 0.1011 0.8526 0.0154 0.8582 0.0049
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The search for a critical configuration begins with a bare sphere of radius 8.74 cm for which MC simulation (3000

histories for 50 cycles with 10 skip cycles) gives keff 5 0:98513 0.00180 listed in Table 12.3; this is not critical due to

the slightly decreased density compared with that for the Godiva sphere in Section 10.1. The mass of the HEU core is

52.0159 kg. To reduce the core size, a surrounding graphite layer of thickness 5.0 cm gives keff 5 01:10789 0.00170

which is encouraging as it offers the possibility of reducing the core. In the next simulation, the core radius is decreased

to 8.50 cm keeping the reflector thickness the same. The result shows that the system is supercritical with a reduction

of about 4.2 kg in the core. A further reduction to a core radius of 8 cm is found to be slightly supercritical and another

simulation is carried out with a core radius of 7.5 cm (HEU mass reduced by about 19 kg which is a B37% mass reduc-

tion) with a 5 cm thick graphite reflector which gives keff 5 1:00058 0.00160. Decreasing the core radius to 7.20 cm

with the same reflector thickness results in a sub-critical system.

Based on the above results, it is possible to conclude on an approximate critical design that has a core radius in the

range 7.20�7.50 cm with a 5.0 cm graphite reflector. Compare this with the experimental result of 7.39840 cm with a

5.1 cm graphite reflector (Whalen et al., 1991) for which keff 5 0:9981 0.0010 for a sphere of radius 7.39840 cm.

Another design exercise is the selection of a “best” reflector. Table 12.4 shows MC simulation results for the critical

HEU sphere of radius 7.39840 cm (31.5511 kg) described above with three reflectors-graphite, beryllium and light

water showing beryllium to be the best.

Thus maximum core savings are possible with beryllium and the least effective of the three is graphite.

The effectiveness of a reflector is dependent on its atomic mass number and scattering and absorption cross-

sections. Hydrogen has the lowest atomic number but it also has a high absorption cross-section and thus beryllium

emerges as the most effective out of the three materials considered.

The critical masses for plutonium (density 19.5 g/cc α and 15.9 g/cc δ phase) are 11 and 15 kg respectively; for ura-

nium (U233, U235 density 18.9 g/cc) 16g and 48 kg respectively. For the Godiva and Jezebel criticality experiments, see

TABLE 12.3 Random search for criticality of a graphite-reflected spherical core.

Core Reflector Total mass keff

Radius (cm) Mass (kg) Thickness (cm) Mass (kg) (kg)

8.74 52.0159 Nil nil 52.0159 0.98513 0.00180

8.74 52.0159 5.0 9.79459 61.8105 1.10789 0.00172

8.50 47.8474 5.0 12.9150 60.7624 1.10315 0.00168

8.00 39.8907 5.0 11.787 51.6777 1.04749 0.00166

7.50 32.8689 5.0 10.7115 43.5804 1.00058 0.00171

7.20 29.0803 5.0 10.0914 39.1717 0.96719 0.00195

7.20 29.0803 6.0 13.4779 42.5583 0.97962 0.00203

7.20 29.0803 7.0 17.4185 46.4988 0.99462 0.00197

TABLE 12.4 System multiplication keff for a reflected core.

Reflector keff

Material Density (g/cm) Thickness (cm) Mass (kg)

Graphite 1.67 5.0 10.8246 0.9920 0.00229

Beryllium 1.85 5.0 11.9913 1.09337 0.00221

Light Water 1.0 5.0 6.48179 1.01864 0.00219
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problem no. 4 at the end of this chapter. The reduction in critical masses with a 10 cm natural uranium reflector is

shown in Table 12.5 (DeVolpi, 1982).

The search for criticality is an exercise in which the critical dimensions are calculated for a specified core composi-

tion or the critical core composition is determined for a specified size.

One drawback in MC simulations has been the requirement of performing simulations for each separate design; this

has been addressed to some extent by the perturbation algorithms which give the design sensitivities due to independent

parametric changes. With this feature, the search for a critical design can be simplified.

Exercise 12.9: With the one-group effective multiplication given by

keff 5
νΣf

DB2 1Σa

(12.14)

1. How would a decrease in the core radius affect keff?
2. How would the change in keff be estimated due to a 10% increase in the atomic number density of U-238 in

Godiva?

12.4 Reactor core modeling

In this section, MCNP5B is used to model a Pressurized Water Reactor (PWR) fuel assembly starting from an input file

by Hideki Matsumoto. Changes were made to obtain the assembly which this neutronic analysis is meant for.

12.4.1 Input file

Details of the input file can be found in the MCNP Documentation (Werner, 2017) (Volume I, Chapters 3 and 4). Here,

parts of the input with reference to the PWR fuel assembly only will be described. The same geometry can be described

(MCNP Vol II, Example 8, pp. 4�37) using LIKE m BUT and TRCL cards. The procedure is to define universes, fill a

lattice cell, and then define the bounding window in which as many lattices will fit in as the bounding region would

permit.

12.4.1.1 Defining the bounding window

The window, in which the lattice cell (universe 1) is to be filled, is defined as cell 1 with a void bounded by the sur-

faces 21 and 22 in the x direction (210.7525, 10.7525, length 21.5050 cm), 23 and 24 in the y direction (same as in the

x direction, i.e., 21.5050 cm), and surfaces 5 and 6 in the z direction (length 1 cm). The input line is:

1 0 21 222 23 �24 5 �6 fill5 1

12.4.1.2 Defining the universe(s)

The universes are defined which will fill the lattice

Here, we have 3 universes, u5 1, u5 2, and u5 4

Universe 1 will be defined in the following section.

Universe 2 has cells 3, 4, and 5 with materials 1 (UO2), 2 (zirconium), and 3 (water)

TABLE 12.5 Critical spherical systems reflected with 10 cm U.

Material Density (g/cc) Radius (cm) Core mass (kg) Total Mass (kg)

U233 18.9 4.2 5.7 227

U235 18.9 5.8 15.7 316

Pu239 α 15.9 3.8 4.5 209

Pu239 δ 19.5 4.7 7.0 250
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Exercise 12.10: Universes 2 and 4 are described radially. Where in the input would they be bounded axially?

12.4.1.3 Defining the lattice

Lattice 1 is defined, as cell 2 filled with universe 1 containing material 3 (water) and filled by itself with 193 193 1

elements in the x-y-z directions. In the x direction, it is bounded by the surfaces 11 and 12 and is of length 1.2650 cm;

in the y direction by surfaces 13 and 14 also of length 1.2650 cm, and in the z direction by surfaces 5 and 6 and is of

length 1 cm.

The input lines, describing cell 2 as the lattice 1 and filled with universe 1 defined itself with universes 1, 2, and 4,

(with 193 19 elements) are:

12.4.2 Surrounding cells

Cell 10 surrounds cell 1 (PWR fuel assembly) and is filled with material 3 (water), while cell 9 is the outside universe

surrounding the entire assembly and water; defined as everything in the universe that excludes cells 1 and 10.

The input lines are:
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12.4.2.1 Surface cards

12.4.3 Source description

The source description in MCNP can be done in one of three ways (MCNP Vol II, pp. 3�52) viz and explicit value, a

distribution, or a distribution of a dependent variable. Here, the SDEF card is used to describe source location in a cell

whose spatial distribution is represented by d1, and energy (erg) represented by Distribution 2.

For Distribution 1, the source information card SI1 is used with the l option indicating discrete source variable values.

The source cell path is described as the location of the cell from the highest level to the lowest level. Here the lattice has 8

cells which have material 1 (fuel) so we need to locate cell 3 wherever it needs to be specified. So, since cell 3 is inside cell

2 which is inside cell 1, the “address” of this cell is through cell 1, and since cell 2 is a lattice, each position needs a location

identifier such as (21 21 0) indicating the cell in the lowest row and most left column of the 33 3 lattice.

The energy Distribution 3 in MCNP represents the Watt fission spectrum described in Section 12.1.

The input parameters for source definition cards (SDEF), source information (SI) and source probability (SP) define

the phase space parameters of the source. In the following lines, SDEF defines a source located in CEL5D1 with a

space location defined by a probability Distribution 1, and with an energy distribution given by Distribution 2; SI is the

source information card which gives the location of the source as Distribution 1 in the repeated geometry structure.

There are eight cells in which the source appears and it will have equal probability as given in the SP1 card. Similarly,

SP2 samples from the Watt fission spectrum with default parameters as stated above.

Exercise 12.11: Is the cell sampling of the source adequate or can it be improved? What will be the effect of the

cel5 d1 specification on the quality of tallies?
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12.4.4 Plotting the geometry

With the above surfaces, let’s first calculate the length of the lattice cell which is bounded by surfaces 11 and 12 in the

x direction, of length 0.63252 (20.6325)5 1.2650 cm. Cell 2 has 19 such-sized units in the x direction since it goes

from 29:9 in the x direction, and 19 units in the y direction. They are numbered as

Thus, all 193 19 cells are of length 24.035 cm and extend from 212.0175 to 112.0175, but the bounding surfaces

on cell 1 are 210.7525 to 110.7525. Similarly 183 18 cells are of length 22.77 cm extending from 211.385 to

111.385, and 173 17 cells are of length 24.035 cm extending from 212.0175 to 112.0175. Thus, the above input

should show only 173 17 of the 193 19 defined cells.

The geometry is obtained by running mcnp5 in the ip (input and plot) mode; Fig. 12.6 below.

To obtain 33 3 cells from the above, the bounding window surfaces (21, 22, 23, 24) would be changed and the total

length would now be: 21.8975 to 11.89755 3.7955 33 23 0.6325.

FIGURE 12.6 A typical PWR fuel assembly.

(ZK1pwrA).
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The 33 3 assembly is shown in Fig. 12.7 plotted with the commands

with the input file ZKpwr33 3 listed below the figure.
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Exercise 12.12: How would you modify the water density to account for the temperature changes in the reactor from

cold to hot states?

12.4.5 Tally cards

MCNP gives information “demanded” by the user; thus tallies need to be specified. In most cases, the tallies required

are volume averaged flux, current, surface flux, energy deposition, and neutron heating. These are obtained from stan-

dard MCNP tallies F1, F2, F4, F5, F6 and associate energy values *F1, *F2, *F4, *F4, *F5, and *F6, as described

below.

The flux tally is TALLY F14:N in the cells defined below:

Tallies available (for neutrons) include F1:N (particle current integrated over a surface, that is, no. of particles), F2:

N (surface flux particles cm22), F4:N (flux at point or ring detector particles cm22), F6:n (energy deposition averaged

over a cell MeV/g), F7:N (fission energy deposition averaged over a cell MeV/g). Together with these tallies, *F1 gives

energy (MeV) integrated over a surface, *F2, *F4 and *F5 are energy quantities (MeV cm22), while *F6 and *F7 give

jerks/g (1 jerk � 1028sÞ. In MCNP, adding 10 to a tally gives the same tally quantity; for example, F4, F14, F24, F34,

. . . are all flux quantities. Each tally can be obtained in bins of time, energy and direction.

12.4.6 Reaction rates

Any quantity of the form C
Ð
φ Eð ÞRm Eð ÞdE, where φ Eð Þ is the energy-dependent fluence (units particles cm22) and the

(microscopic) reaction of interest Rm for material m is taken from the cross-section file. The material m needs to be

specified on a separate Mm card and is not required to be present in any cell defined in the geometry. The reaction num-

bers R are taken from the Evaluated Nuclear Data File (ENDF/B) manual (where it is called the material type (MT)

number), some commonly used MT numbers are
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For MT18 the condition is: if and only if MT5 18 is used for fission in the original evaluation

Total fission cross-section; equal to MT5 18 if MT5 18 exists (otherwise sum of MTs 19,20,21 and 38).

12.4.7 Plotting tallies

For plotting tallies and cross-sections, see MCNP5 Vol II Appendix B.III. The command mcnp5 z options invokes

MCPLOT. Fig. 12.8 was plotted with the commands kcode 1 and file which gave a postscript file plotm.ps which was

then converted to the pdf file shown below. The average of the collision, absorption, and track-length estimates is

keff 5 1:44256ð0:00062Þ. The standard deviation 0.00062, is good; it can be further improved as described in Chapter 4.

Fig. 12.9 shows the Figure of Merit for the average CE/absorption estimator (AE)/TLE of keff , which appears to

have reasonably converged beyond 400 cycles.

FIGURE 12.7 A 33 3 assembly (scales shown

are centimeters).
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The energy-integrated neutron flux, plotted in Fig. 12.10 as a surface and in Fig. 12.11 on a xy plane, show a dip at

the center of the 33 3 assembly.

These were obtained by using the fine mesh (FMESH) input “card” (Vol II, pp. 3�112) which gives an output in

file MESHTAL processed in MATLAB.

FIGURE 12.8 Collision estimate of keff versus

Cycle number.

FIGURE 12.9 FOM of average keff versus

Cycle number.
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12.5 Radiation safety and shielding

The basics of radiation and radiation shielding to protect people working in radiation environments, were highlighted in

Chapter 1. The design of such shields is readily carried out by MC codes since detailed interaction models are used by

sampling histories in a considered sample.

Nuclear criticality safety analysis, described in Chapter 10, is required at various stages in the fuel cycle from pro-

cessing of uranium ore to the handling of process gases such as uranium hexafluoride (UF6) as it is enriched, for exam-

ple in a centrifuge plant Section 10.3.2, to its final stages when it takes the shape of enriched fissile fuel with reactor

grade.

For analysis of nuclear criticality safety, simple cylinders containing solutions of uranium and plutonium to repeated

structures in hexahedral (square) and hexagonal (triangular) lattices are easily modeled in MCNP.

In this section, MCNP simulations are carried out for a 20 cm thick slab of water in the x-direction, and 10 cm thick

in the y, z-directions and with front, back, top, and bottom surfaces taken as reflecting surfaces. A point anisotropic neu-

tron source of unit strength and energy 1 MeV is incident on the left face of the slab.

FIGURE 12.11 Neutron flux in a 33 3 PWR cell (xy plane).

FIGURE 12.10 Neutron flux in a 33 3 PWR cell.
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Exercise 12.13: A person is standing in front of a Cf252 source which has an activity of 532 Curies/g with a neutron

dose B22 Sv m2/g/h and a gamma dose 1.6 Sv m2/g/h.

If the maximum permissible dose allowed is 5 rem/y (0.05 Sv/y), how much would have been accumulated more

than the annual limit in 1 hour from 1 g of material at a distance of 1 m? [Answer:B400 times]

Consider a 1 MeV neutron source for which a water and an iron (Fe) slab are compared, each of thickness 20 cm.

Results from the MCNP simulation, listed below, show that the total neutron dose across the iron shield

7.683203 10213 Sv/(n/s) is about 100 times higher while the total photon dose 4.742963 10216 Sv/(n/s) is about 3%

less than that from a comparable water shield. MCNP mixed mode (N/P) simulations for 20 cm3 10 cm3 10 cm slabs

of water (2 kg) and iron (15.720 kg) are given in Table 12.6.

So, it can be concluded that water is a much more effective neutron shield while iron is a much better gamma shield.

The total dose for both is given below

Material Neutron (Sv/(n-s)) Gamma (Sv/(n-s)) Total (Sv/(n-s))

Water 7.82087E�15 0.0477 1.74176E�14 0.0124 2.5239E�14
Iron 7.68320E�13 0.0100 4.74296E�16 0.0920 7.6879E�13

The total dose across the iron shield is thus about 30 times more. To estimate the effect of radiation, neutron and

gamma radiation must be considered separately due to the different nature of both radiations.

For an annual limit of 0.05 Sv/y (B1.6 nSv/s), the maximum permissible neutron source would thus be B2000 n/s.

Comparing this with the neutron emission of B1012 n/g from Cf252, even a microgram would be far too dangerous for

short durations

Exercise 12.14: Compare the half value layer thickness (HVL), at 1 MeV for iron and water to estimate the attenuation

from 20 cm for both shields.

A detailed simulation shows (F1 current tally) gives a leakage of 5.85004E�03 gammas/(n, g) gamma compared to

0.1721 from water. The (n, γ) reactions are about ten times greater in water than in iron, thus requiring an effective

iron shield to stop secondary gammas.

Relaxation length (width of material for intensity reduction to 1/e B37%) and HVL for 1 MeV photons is given in

Table 12.7.

12.6 Perturbation calculations

One of the weaknesses of MC methods has been considered to be their inability to estimate the effect of small changes

in independent parameters such as enrichment, material density or material composition (Section 6.6). This is due to the

magnitude of the perturbation in the independent parameter which may be of the order of uncertainty in a stochastic

estimate and hence the estimated change may be masked in the error itself.

As discussed in a previous chapter, perturbation computations can be carried out in schemes such as derivative sam-

pling, correlated sampling or adjoint weighting in a Lagrangian variational formulation. This section considers the per-

turbation capability of MC simulation to estimate such design changes.

In Fig. 12.12 MCNP Godiva simulations (10003 130 with 30 skip cycles) show the increase in keff and decrease in

J (particles crossing surface) as the relative density ρr � ρ=ρo increases (reference density ρo 5 18:75g=cm3). Each run

is an independent estimate.

Consider now an elementary “one-group” diffusion estimate of the change in keff due to a material density change.

The one-group diffusion equation gives
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TABLE 12.6 Current, flux and dose for water and iron slabs.

Tally*/Mat/

reaction

Surface/

cell

Description 0�5 eV 5 eV�14 MeV Total

F1:N 2 Current (n) 2.31323E�02
0.0146

3.26898E�03
0.0552

2.64013E�02
0.0144

4.18566E�05
0.2921

2.34209E�01
0.0056

2.34251E�01
0.0056

F4:N 1 Cell flux (n) 1.14378E�02
0.0033

5.81316E�03
0.0020

1.72509E�02
0.0026

6.73521E�06
0.1129

1.67608E�02
0.0037

1.67676E�02
0.0037

F2:N 2 Dose (n) Sv 3.57166E�15
0.0190

4.24921E�15
0.0864

7.82087E�15
0.0477

6.64665E�18
0.3187

7.68314E�13
0.0100

7.68320E�13
0.0100

FM14:N 1 21 90 102 3.15975E�04
0.0034

1.12125E�06
0.0034

3.17097E�04
0.0034

21 190 102 1.68707E�07
0.1265

9.18275E�06
0.0094

9.35145E�06
0.0101

FM24 1 1 90 102 3.15003E�03
0.0034

1.11780E�05
0.0034

3.16121E�03
0.0034

1 190 102 1.99052E�06
0.1265

1.08344E�04
0.0094

1.10334E�04
0.0101

FM34 1 1 92 102 2.10062E�03
0.0034

7.45418E�06
0.0034

2.10808E�03
0.0034

— — — —

F11:P 2 Current (p) 0 1.72100E�01
0.0084

1.72100E�01
0.0084

0 5.85004E�03
0.0420

5.85004E�03
0.0420

F12:P 2 Dose (p), Sv 0 1.74176E�14
0.0124

1.74176E�14
0.0124

0 4.74296E�16
0.0920

4.74296E�16
0.0920

Upper and lower rows for each tally are for water and iron slabs respectively.

TABLE 12.7 Half value layer thickness for some shielding materials.

Material Density ðg=cm3Þ μ=ρ ðcm2=gÞ 1=μρ (cm) HVT (cm)

Air 1.2253 1023 0.0636 1.28353104 1.28353 104

Water 1 0.0707 14.1443 9.8020

Concrete 2.4 0.0637 6.5411 4.5330

Iron 7.874 0.0599 2.1202 1.4693

Lead 11.34 0.0680 1.2968 0.8987
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keff 5
νΣf

DB2 1Σa

(12.15)

which can be used to estimate the perturbations, with respect to material density ρ for example, from the derivatives in

a Taylor series of the form

k�eff 5 keff 1
@keff
@ρ

δρ1
1

2!

@2keff
@ρ2

δρð Þ2 1 . . . (12.16)

The first and second derivatives are obtained as:

1

keff

@keff
@ρ

5
2β
ρ

1

β1 γρ2
(12.17)

and

1

keff

@2keff
@ρ2

5
2β
ρ2

β2 3γρ2

β1γρ2ð Þ2
(12.18)

where β � B2

3σtr
and γ � Nav

M

� �2σa.For Godiva, consider a pure U235 sphere of radius 8.37 cm of density

ρ5 18:75 g=cm3 (m5 46.054 kg) and use the fast spectrum data from Wirtz (1982): νσf 5 5:297 atom b21,

σa 5 2:844 atom b21 and σa 5 8:246 atom b21. The first and second derivatives are: 0:0494 and 20:0030 respectively.

The above values are used to estimate keff for full re-runs (solid curve) compared with second order perturbation

estimate from derivative sampling with MCNP, and with one-group exact analysis. Relative errors are shown for both

sets of (MCNP) estimates.

Fig. 12.13 shows estimates for keff for full re-runs (solid curve) compared with second order perturbation estimate

from derivative sampling and the elementary model. Relative errors are shown for both sets of estimates. It can be seen

that the predicted derivative sampling estimates are good for up to a 60% decrease, and 40% increase, in the relative

density. The lack of symmetry is due to the neutron histories simulated; as the density increases the mean free path

decreases and more collisions take place, thus the sampling size has to be appropriately modified for statistical accuracy

of an estimate. The elementary diffusion estimates have a larger error but indicate the trend very well.

Similar estimates, with similar conclusions, are shown for the surface current in Fig. 12.14.

12.7 MCNP geometry plotting in core neutronics

One of the strengths of MC simulations, particularly of MCNP, is the ability to represent realistic geometry of the con-

figurations considered for systems such as the 4S reactor, the micronuclear reactor and the International Thermonuclear

Reactor (ITER) tokamak.

In Fig. 12.15 a 4S-type configuration is shown; this has hexagonal cells with fuel elements and a central control rod.

FIGURE 12.12 Effect of perturbation in material density on keff .
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Exercise 12.15: The configuration given in Fig. 12.15 is of the 4S Gen-IV type reactor with metallic uranium fuel, sodium

coolant and a beryllium reflector. Model the geometry with MCNP and carry out a simulation for the keff and flux tallies.

Consider a reactor core and reflector as shown below red being the fuel rods, blue the heat pipes, yellow the matrix,

green the reflector and the dark strips in the six surrounding control drums representing the absorber material.

Exercise 12.16: Model the absorber regions in the control rod to face toward or away from the core.

This Exercise is thus to model the control drums with the absorbers spanning an angle 45 degrees to face the core or

to be on the “opposite” side.

The first step is to generate the equations of the planes for the absorber regions. These are shown below; equations

are mx2 y1 c5 0 in the MCNP format Ax1By1Cz2D5 0. The drums are labeled P to U with centers at (x, y). The

FIGURE 12.13 Perturbation estimates using

one-group derivative sampling.

FIGURE 12.14 Effect of perturbation in mate-

rial density on current J.
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angles ϕ are relative to the horizontal axis, and the slope m and intercept c are calculated for each plane. The surface

numbers are given in the “right-most column” below (Table 12.8).

The second step is to write the above in MCNP input format. Here, material 8 (density 3.01 g/cc) and material 9

(density 2.52 g/cc) are the reflector and absorber material, respectively. Cells are numbered 404�436.

FIGURE 12.15 Reactor 4S-type core arrange-

ment. (MCNP inp5ZK4Sfil).

TABLE 12.8 Surface coefficients.

x y ϕ m c surface

P Top Right a b 302 θ 0.131652497587396 10.881235923901318 40

301 θ 1.303225372841206 217.721544252545193 41

Q Top 0 28.1908 902 θ 2.414213562373095 28.190799999999999 48

901 θ 22.414213562373095 28.190799999999999 49

R Top Left -a b 1502 θ 21.303225372841206 217.721544252545193 45

1501 θ 20.131652497587396 10.881235923901318 44

S Bottom Left 2 a 2 b 301 θ 1.303225372841206 17.721544252545193 47

302 θ 0.131652497587396 210.881235923901318 46

T Bottom 0 2 28.1908 901 θ 22.414213562373095 228.190799999999999 50

902 θ 2.414213562373095 228.190799999999999 51

U Bottom Right a 2 b 1501 θ 20.131652497587396 210.881235923901318 43

1502 θ 21.303225372841206 17.721544252545193 42

a5 24.4140, b5 28.1908, θ5 (45/2) degrees, numbers obtained with format “long” in MATLAB.
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The third step is to run MCNP in the ip mode with the commands:
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mcnp5 ip inp5 inpfile plot. pz 0 plot. extent 35 35 plot. label 0 0 plot. scales 1plot. color on plot. color by

mat plot. shade 1 red plot. shade 4 blue plot. shade 7 yellow plot. shade 8 green plot. shade 9 black

plot. file

This gives a plotm.ps (or appropriately named file) which must be converted to pdf format.

Figs. 12.16�12.18 show the geometry with absorbers as required for the simulation.

Problems

1. Carry out a MC simulation for a graphite sphere of specified radius to determine the escape probability and compare

with the diffusion theory estimate.

2. It was shown that the neutron flux in a sphere of radius R with a point isotropic source at r5 0 emitting S neutrons

s21 is given by

φ rð Þ5 S

4πDsinh R1 d
L

� � sinhκðR1 d2 rÞ
r

Carry out a MC simulation and determine the shape of the neutron flux and

the leakage probability from the surface of a beryllium sphere of radius 2 m.f.p. with a

1 Ci 226Ra-Be point source at its center emitting 107 neutrons s21.

3. Carry out a simulation to determine the albedo of a graphite slab of thickness 3 m.f.p and compare with previous

estimates from diffusion theory and transport theory.

4. Compare MC simulation values for the keff values of some fast critical assemblies (Bell and Glasstone, 1979) given

below (Table 12.9).

FIGURE 12.16 Absorbers on control drums in

core barrel.
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FIGURE 12.17 Absorbers on control drums fac-

ing toward the core.

FIGURE 12.18 Absorbers on control drums fac-

ing away from core.
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Conclusions

This chapter gives the necessary skills to apply the concepts learnt in the fundamentals covered in the earlier chapters

of this book. Each section forms part of the underlying foundations of a Monte Carlo simulation. Though random sam-

pling is done in a “black box” mode within a code, and quantities such as the average source energy and sampled ener-

gies of the first 50 particles appears in the output file, it gives confidence to the user to appreciate how these values

were generated inside the code. The section on a fixed-source MC simulation was intended to show the easy steps of

the simulation process; in eigenvalue problems, a source distribution is written at the end of each generation simulated

and subsequently used in the next generation. In many cases, a large number of generations and source particles are

specified in the input file assuming that convergence will take place. The statistics to determine stationarity are gener-

ally not well understood by a beginner. Thus, convergence is illustrated in these exercises. Other areas include geometry

modeling, which typically takes a substantial part of the effort in setting up an input file, and the perturbation feature

which is a very useful capability of MC codes such as MCNP5 and can help in carrying out design sensitivity studies

leading to optimization. There is much more versatility in present MC codes to handle a far wider range of problems in

terms of the number of particles that can be simulated, the detailed modeling and interfaces than earlier versions. The

basics covered here are at the core foundation level.

Nomenclature

English lower case
d extrapolation distance

f probability distribution function (PDF)

keff effective multiplication

kN infinite multiplication

s distance

w statistical weight

English upper case
B buckling

D diffusion coefficient

F cumulative distributive function (CDF)

J neutron current

L diffusion length

Ni atomic density of the ith nuclide

Rc critical radius

~R extrapolated radius

R relative standard deviation

TABLE 12.9 Criticality estimates.

Assembly Core radius (cm) Calculated k

Core Reflector

Uranium-233 None 5.965 1.0115

Uranium-235 (Godiva) None 8.710 0.9912

Plutonium-239 (Jezebel) None 6.285 1.0039

Uranium-235 (16.7%) 7.6 cm uranium 20.32 0.9893

Uranium-235 8.9 cm uranium 6.391 0.9939

Uranium-235 1.6 cm thorium 7.80 0.9905

Uranium-235 (Topsy) Thick uranium 6.045 0.9907
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S source

Greek lower case
λtr transport mean free path

μ cosine of angle of scattering

μ mean value

μ0 average cosine of scattering angle

ν0 eigenvalue

ν number of neutrons produced per fission

ξ random number

ρ density

σ standard deviation

σa microscopic absorption cross-section

σf microscopic fission cross-section

σr microscopic removal cross-section

σs microscopic scattering cross-section

σtr microscopic transport cross-section

σt microscopic total cross-section

τ neutron age

ϕ azimuthal angle

φ neutron (photon) flux

χ fission spectrum

Greek upper caseP
a macroscopic absorption cross-sectionP
f macroscopic fission cross-sectionP
r macroscopic removal cross-sectionP
s macroscopic scattering cross-sectionP
tr macroscopic transport cross-sectionP
t macroscopic total cross-section

Abbreviations
HVL half value layer

MC Monte Carlo

m.f.p mean free path

Sv sievert

TLE track-length estimator
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Annex A: MATLAB Program CH12_NormalSampling.m
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Annex B MATLAB Program CH12_Watt Sampling.m
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Chapter 13

Optimization in nuclear systems

13.1 Introduction

The canvas of optimization in nuclear engineering is vast, diverse, and interconnected. It is by no means possible for an

author to convey more than a glimpse to a reader in a book chapter, but it is hoped that the few descriptions and exam-

ples given here will give some insight into the work over the last few years and the emerging methods.

In nuclear fission and fusion system design optimization, the overall objective is to design the best systems which

meet the requirements. This is more aptly described as multi-objective, multi-module, multi-constraints optimization in

which the modules are inter-dependent (Rozin, Rubin, & Soboĺ, 1990; Stewart, Palmer, & DuPont, 2021). Thus, it is a

fairly big challenge from the perspective of mathematical modeling and computing (Sections 9.1 and 9.6). The domains

covered in it include fission and fusion neutronics, fusion reactor blanket design, thermal hydraulics (TH), control sys-

tems, and radiation shielding and since the constraints cannot be expressed in algebraic forms, the deterministic optimi-

zation techniques of Section 9.2.2 (differentiable functions in the Lagrangian) and Section 9.2.3 (Euler-Lagrange

equation) cannot be applied to obtain analytical derivative expressions. The optimal formulation in the form of

Pontryagin’s Maximum (or Minimum) Principle (Section 9.2.5) can be applied as shown in this chapter. The

suitable models are Dynamic Programming (Section 9.4) but more suitable are the stochastic meta-heuristic methods

(Section 9.5) such as Genetic Algorithms (Section 9.5.1) and Particle Swarm Optimization (Section 9.5.2).

The analysis and particularly the engineering design results will be the focus for optimization calculations in reactor

core design, fusion neutronics, radiation shielding, fuel loading pattern (LP), a thermal neutron activation analysis

(TNAA)-based explosives detection system.

13.2 Reactor core design optimization

Important parameters related to core design are materials, dimensions and operating parameters. In a preliminary analy-

sis, the overall design is achieved by carrying out a neutronic simulation coupled with thermal hydraulics (TH); this

gives the basic initial design.

In a neutronic simulation depicted in Fig. 13.1, the materials and dimensions are input on the basis of some past

experience and knowledge of a similar system to obtain the overall system multiplication keff . A number of runs are typ-

ically required to adjust the materials and dimensions to get keff 5 1. This would be a starting design for a coupled

neutronic-TH simulation leading to more detailed and elaborate design parameters in a full optimization calculation.

In a preliminary model, the materials and geometry of the fuel rods, fuel assemblies and the whole core are specified

as shown in Fig. 13.1 on the basis of a comparison with other similar designs and a neutronics solver, such as Monte

Carlo N-Particle (MCNP), can be used to estimate keff and vary the parameters until a feasible design is obtained.

An example of a first-step neutronic calculation of a homogeneous model of the Korean KORI-1 nuclear reactor

(Kim, 2019; Lee, 1973) can be carried out with a basic two-group model with cylindrical geometry in a neutronic code

such as ANISN or DOT (Section 8.1).

A simulation carried out with MCNP5, with the input listed below, considers a homogeneous water-fuel mixture in

a cylinder of radius 122.6 cm and height 365.8 cm.

MCNP input file: KORI-1 homogeneous reactor model

1 1 0.079394 �1 3 �4

2 1 0.079393 1 �2 3 �4

3 0 2:�3:4

1 cz 86.69

2 cz 122.6
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3 pz �182.9

4 pz 182.9

mode n

imp:n 1 1 0

c ------- enrich5 1.1% total 0.079394

m1 92235.66c 7.6934e-05 92238.66c 6.9171e-03 8016.66c 3.3460e-02 1001.66c 3.894e-2

kcode 500 1.0 10 500

ksrc 0 0 0

A number of such simulations have been carried out for fuel enrichment in the range 0.9%�1.2% and given the

results shown in Table 13.1. The bare system with atomic densities given is critical at an enrichment of 1.09%. This

matches the one-zone criticality result from the determinant (Section 5.3.2).

The atomic densities and masses of uranium are listed in Table 13.2

For criticality, the atomic densities and mass ratio are: NH 5 3:89403 1022, NO 5 3:2363 1022 atoms cm23,

N5=NU 5 0:01099, M5=NU 5 0:01086. The H/U235 ratio for criticality is 506.15 with 1.1% enrichment,

keff 5 0:99974ð0:00052Þ with a total uranium mass B47.741 t out of which the fissile fuel U-235 is B519 kg.

Exercise 13.1: Two-group criticality for a bare cylindrical reactor.

For a bare homogeneous nuclear reactor core (Lee, 1973) with the two-group data in Table 13.3, solve the criticality

determinant to find the critical dimensions.

The atomic densities are:

NU 5N235 1N238 5 6:9943 1021 atoms cm23

NU
Oxygen 5 number of oxygen atoms in uranium5 1:3993 1022 atoms cm23

Nw 5 1:9473 1022 molecules cm23

TABLE 13.1 KORI-1 reactor homogeneous model with MCNP5.

Enrichment (%) keff

1.200 1.03204 (0.00109)
1.100 1.00168 (0.00109)
1.098 1.00446 (0.00105)
1.090 0.99965 (0.00106)
1.050 0.98414 (0.00110)
1.000 0.96907 (0.00107)
0.900 0.92754 (0.00098)

FIGURE 13.1 Basic geometry and materials feasibility for a neutronic

calculation.
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At the next level, a coupled neutronic-TH analysis, as depicted in Fig. 13.2, is carried out to obtain key parameters

of thermal and flow characteristics. Such analysis typically gives the following set of design parameters:

1. Core dimensions (e.g., cylindrical radius and height)

2. Fuel road diameter ðDÞ and length (L)

3. Fuel pitch to diameter ratio ðP=DÞ
4. Size and pitch of fuel assemblies

5. Total thermal power

6. Channel flow characteristics such as coolant velocity ðVcÞ
7. Convective heat transfer

8. Pressure drop in coolant flow

9. Temperature differences (radial and axial).

The neutronic and TH modules are solved until the constraints are satisfied and a feasible solution is obtained. In

case the initial parameters obtained from a preliminary neutronic analysis are not favorable for a feasible solution then

a new set of values is obtained, if possible.

Once the neutronic-TH coupled simulations are performed, an optimization is performed to obtain the optimal solu-

tion. In case of genetic algorithms (GA), the method described in Section 9.5.1 is followed iteratively. This implies that

a set of chromosomes, in a population, is used for each of the modules. Such a scheme can be prohibitively inefficient

due to the large computation effort for each of the modules. For example, a GA code calling MCNP 100 times and then

calling each other code the same number of times would be far too much to be realistic. Thus a more efficient scheme,

shown in Fig. 13.3, utilizes regression and machine learning. In such a scheme, several runs are made initially with trial

data to obtain output which trains a regression model which subsequently is able to produce predictive output.

The GA chromosomes are tested for fitness in the regression models rather than directly into the modules thus

reducing the effort. Such schemes have been successfully implemented to give reliable optimized parameters.

Consider two optimizations where GA has been used for multi-objective multi-module multi-constraint optimization

for a Gen-IV lead-cooled fast reactor (LFR) (Section 3.5.3) by Luo, Zhang, Wang, Jiang, and Chen (2021), a gas-

cooled fast breeder reactor core (Kumar & Tsvetkov, 2015).

The optimization for a 1000 MWt medium-power modular lead-cooled fast reactor M2LFR the optimization is:

min J yð Þ; s:t: x# x0; keff # keff;0; PFF# PFF0 (13.1)

where

J5
X4
i51

aiyi xð Þ; (13.2)

TABLE 13.2 Atomic density and mass of uranium in KORI-1 homogenous model.

Nuclide N (atoms/cm3) N (atoms) Mass (kg)

U-235 7:693431019 1:32893 1027 518.5958

U-238 6:917131021 1:19483 1029 47223.19

U 6:994031021 1:20813 1029 47741.79

TABLE 13.3 Two-group diffusion data.

Data Group 1 Group 2

D (cm) 1.367 0.2294

σ235
a (10224 cm2) — 600.62

Σs (cm
21) 0.03922 —

Σothers
a (cm21) — 0.028058
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x5 ðx1; x2; x3Þ and the objective functions yi are the system multiplication keff ; the peak power factor ðPPFÞ; the clad-
ding temperature Tc and the fuel pellet temperature Tp with weights ai, and x0 5 ðx1;0; x2;0; x3;0Þ are given maximum

values.

The fixed quantities are the number of fuel assemblies, control rods (CR) and safety rods (SR), fuel rod layers in an

assembly, the fuel enrichment, the linear power density and the materials; these are specified at the beginning of the

optimization.

In the first part of the neutronic optimization, the geometric design parameters are obtained for the fuel rods and

overall core design. Then, in a coupled neutronic-TH optimization, the core is modeled as consisting of six layers

namely the inner fuel zone, the SR zone with 12 safety rod assemblies, the outer fuel zone, the CR zone with 12 CR

assemblies, the reflector zone and the pure lead (Pb) zone. The layers are homogenized, and cross sections are prepared

for MCNP. The feasibility of the scheme is verified by comparing the maximum coolant velocity and fuel, cladding

and coolant temperatures with the design constraints, For optimization variables: D, P=D and Vc, the search space for

each independent variable is specified to obtain the optimum solution D� 5 10mm; P=D
� ��

5 1:3;V�
c 5 1:4ms21. Thus,

the optimized geometric design and overall thermal and flow parameters are found.

For a 100 MWt gas-cooled fast breeder reactor core optimization is carried out (Kumar & Tsvetkov, 2015) with the

GA method in a scheme with a strategy similar to that depicted in Fig. 13.3. The four modules used in the optimization

are for the fuel pin, the whole core, thermofluids and heat transfer, and Brayton cycle energy conversion. The multi-

objective function comprises ten objectives namely high breeding of U-233 and Pu-239, desired radial and axial PPF,

multiplication constants keff and kN within prescribed limits, high fast fission factor, high energy conversion, limited

pressure drop and high fuel burnup. The constraints and constants are prescribed similarly to the previous case.

FIGURE 13.2 Coupled neutronics and thermal hydraulics calculation.

492 Nuclear Engineering



The independent variables are the fuel radius ðrFÞ, the enrichment ðεÞ, the coolant inlet temperature Tinð Þ and the

mass flow rate _m.

The simulation parameters are: number of chromosomes in every generation5 40, number of bits per gene5 16,

number of generations5 100. Crossover probability5 0.4, mutation probability5 0.05 and 2 elite elements preserved.

The solutions seem to have converged within B70 iterations, giving the optimized solution: r�F 5 0:217cm,
ε� 5 18:467%, T�

in 5 63:476� and _m� 5 35:937 kg/s.

The two simulations just described are representative of current research in reactor core design optimization by GA;

the second uses multivariate regression for improved computational efficiency.

To optimize fuel pin burnable poison in UO2/Gd2O3 fuel placed in pressurized water reactor (PWR) fresh assem-

blies, Yilmaz, Ivanov, Levine, and Mahgerefteh (2006) have used GA to maximize the end of cycle (EOC) keff .

In several other works, core optimization has been successfully carried out with the particle swarm optimization

(PSO) method (Domingos, Schirru, & Pereira, 2006), for multi-objective sodium-cooled fast test reactors (Zeng, Stauff,

Hou, & Kim, 2020), for Small Modular Reactors (Akbari, Rezaei Ochbelagh, Gharib, Maiorino, & D’Auria, 2020), for

design optimization for a High Flux Isotope Reactor conversion project (Bae, Betzler, Chandler, & Ilas, 2021; Betzler,

Chandler, Cook, Davidson, & Ilas, 2019) and for a data-driven predictive model for predicting moisture carryover in a

boiling water reactor using Artificial Intelligence (AI) technique (Wang, Gruenwald, Tusar, & Vilim, 2021).

Considerable research effort is focused on the development of AI-based predictive models using data, look-up

tables and regression for addressing non-linearities and uncertainties.

13.3 Fusion neutronics design optimization

In a fusion reactor such as the International Thermonuclear Experumental Reactor (ITER, Section 10.6), the neutron

radiation from the plasma in the central cell produces secondary gamma rays during its interaction with structural and

blanket materials. Two important factors in fusion, distinct from fission reactors, are activation and the requirement of a

shield to ensure protection to the copper material in the surrounding superconducting coils which operate at cryogenic

temperatures (to be superconducting).

In a fusion reactor, the inboard (IB) and outboard (OB) blanket modules serve to produce tritium to sustain the

fusion reaction and to shield the superconducting coils. The blanket is exposed to intense radiation heating which is

FIGURE 13.3 Coupled genetic algorithm-regression with

multi-module optimization.
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removed by the flow of coolant. Some blanket designs under study for ITER and the Demonstration Fusion Power

Plant (DEMO) and the intermediate China Fusion Engineering Test Reactor are the helium-cooled solid breeding blan-

ket, the water-cooled lithium lead (WCLL) breeding blanket and the water-cooled ceramic breeding blanket. The objec-

tive of blanket optimization studies is to maximize the tritium production, with a tritium breeding ratio (TBR)

exceeding one, that is, more tritium produced than consumed and provide shielding for the blankets.

Some blanket/shield design optimization studies are:

1. optimization of the first wall armor, to maximize the TBR (Dai et al., 2021),

2. full 3D neutronic-TH coupled optimizations for TBR in IB and OB equatorial blankets, and the effect of beryllium

and tungsten armor on the shielding performance of the blanket (Cui et al., 2017),

3. tritium self-sufficiency and shielding effectiveness in the WCLL breeder blanket of the DEMO design (Moro et al.,

2020),

4. the design of an optimized WCLL mock-up experimental layout based on MCNP calculations (Flammini et al.,

2020), and

5. the development of a coupled neutronics-TH code with multi-objective optimization, Neutronics/Thermal-hydraulic

Coupling Optimization Code (NTCOC), for a radial build of the water-cooled ceramic breeder blanket (Li et al.,

2016).

13.4 Radiation shielding design optimization

The design of radiation shielding in large nuclear power reactors consists mostly of structural steel surrounding the core

and a large volume of concrete as a biological shield around the reactor. In swimming-pool type reactors, the water in

the pool acts as a shield.

For small compact and portable micronuclear reactors, particularly for space and underwater applications, the design

of a shield requires optimization of size, weight and cost. It is thus both desirable and necessary to find the optimal

materials and configurations.

Shielding is thus a multi-objective, multi-constraint optimization for which heuristic, meta-heuristic and AI-based

optimization methods are being applied and further developed for computational efficiency.

In the design of neutron and gamma radiation shielding, GA has also been used for design optimization with GA-

MCNP calculations (Cai, Hu, Pan, Hu, & Zhang, 2018) for multi-region and composite shields as illustrated by

Fig. 13.4.

In Fig. 13.4, the first material (labeled A) is typically iron (Fe) or tungsten (W) as a structural material and capable

of attenuating fast neutrons and gammas. This is followed by a hydrogenous material such as water (labeled A) which

further slows down the neutrons while producing gammas of B2 MeV which need a third layer of a material such as

lead (Pb) which is effective in attenuating energetic gammas. Optimization studies would thus typically give the dimen-

sions of each of the iron, water, and lead layers obtained by a calculation which searches for the optimal configuration.

Several other candidate materials and impurities include stainless steel SS316, tungsten, polyethylene, borated polyeth-

ylene, and B4C.

A detailed calculation would use energy-dependent cross sections for radiative capture ðn; γÞ and alpha production

ðn;αÞ reactions. For example, for removal through the capture ðn; γÞ reaction, iron has an order of magnitude higher at

low energies with prominent resonances at intermediate (. 10 keV) energies extending well toward the high

(B1 MeV) energies.

Optimization can also be carried out to determine the optimal compositions of a composite homogenized shield as

shown in Fig. 13.4. A number of innovative combinations, such as mixing nanomaterials in concrete, have been investi-

gated (Norhasri, Hamidah, & Fadzil, 2017) to make new and better radiation shielding materials. A lightweight and

compact sixteen-layer gradient composite shield (Hu et al., 2020) has been designed by a GA-MCNP coupled simula-

tion based on epoxy resin, B4C, lead and a small amount of graphene oxide. The densities of three materials for the

composite are 11.34 g/cm3 for Pb, 1.20 g/cm3 for epoxy resin and 2.52 g/cm3 for B4C. In the 30 cm composite shield

the optimal density is found to be a parabolic shape starting from B10 g/cm3 in the beginning falling gradually to

FIGURE 13.4 Radiation shield design optimization.
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slightly above B1 g/cm3 by about 20 cm and then gradually increasing to B10 g/cm3. This shield was developed and

tested and showed better performance than a uniform composite shield. In another GA-MCNP optimization for a shield

subject to a U-235 spectrum with mixed neutrons and gamma rays (Cai, Hu, Pan, Sun, & Yan, 2018), Cai et al. have

also shown that a composite multilayer shield optimized for volume and weight has the best performance. Extending

the study to volume, weight as well as minimum activation for a vehicle carrying a D-T neutron source, a model using

MCNP for neutronic calculations and a predictive model for mechanical and thermal properties a synergistic optimiza-

tion model based on evolutionary algorithms has been developed using two multi-objective methods (priori and poster-

iori) for the design of composite shields (Cai, Hao, Yu, Wang, & Hu, 2020).

For small and portable micronuclear reactors, the emphasis is on both safety and lightweight effective shields

(Ahmad, Chang, Li, Yang, & Liu, 2021; Kim & Moon, 2010). Coupling GA and neural network models (Song et al.,

2020) with improved efficiency over Monte Carlo (MC) simulations for multi-objective and multi-constrained radiation

shielding design optimization problem have been demonstrated it by the non-dominated sorting genetic algorithm

(NSGA-II) and mini-batch stochastic gradient descent. An adaptive mutation rate operator has been proposed to

improve the global searching capability. The optimization results show that the adaptive scheme can find the Pareto-

optimal front of reactor shielding designs precisely and its calculation speed is two orders of magnitude faster than the

pure MC method and similar computational accuracy.

Such an optimization based on GA has been used (Kim & Moon, 2010) for the search of an optimal shield subject

to a set of constraints. A number of innovative combinations, such as mixing nanomaterials in concrete, have been

investigated (Norhasri et al., 2017) to make new and better radiation shielding materials.

13.5 Fuel loading pattern optimization

A nuclear reactor begins with a fresh core with fuel that burns unevenly. Tin an ideal case, flux would have a more-or-

less cosine distribution in the radial and axial directions. The variation in fluxes gives rise to a peaking factor described

in the previous section in the context of optimization. With time, the fuel has burned unevenly and requires removal,

shuffling, or replacement. This is the area of fuel loading where the best strategy is desired for both technical and eco-

nomic reasons.

A utility that owns a nuclear reactor would typically have a planning horizon of a few years as shown in Fig. 13.5.

As an example, consider a 7-year horizon where it is desired to produce, in the first 5 years, a certain amount of (elec-

trical) energy Ei; within cycles of length τi ði5 1; 2; . . . 5Þ months, with each cycle having a beginning of cycle (BOC)

and an EOC as shown in Fig. 13.6.

FIGURE 13.5 Possible paths include A-B-D-C-D and B-A-

B-A-C.
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At every BOC, the utility has a choice of adding fresh fuel of enrichment ei for a fraction fi of the total fuel in the

core. As an example, a utility might decide to add 3.2% enriched fuel for one-third of the core.

A fuel cycle has a front-end (uranium ore to fuel fabrication), a middle part (reactor operation and refueling), and a

back-end (open-cycle long-term storage or closed-cycle reprocessing).

During fuel reloading, typically one-third to one-half of the fuel may be removed and new fuel loaded in a LP while

the remaining fuel is shuffled. A plant is shut down during the reloading period. It is desirable to have as long as possi-

ble operation between refueling. An outage may last several days or possibly up to a month.

The question then arises is how to best place it, how does this decision affect the burnup and cycle length, and how

much electricity is planned in the coming cycle.

The reactor core would thus operate in cycles of different time durations during the planning horizon. Any decision

would then require a consideration of the costs and benefits; this would be formulated as an optimization problem with

the following parameters:

1. the number of fuel assemblies to remove

2. the location of fuel assemblies to remove

3. the next-cycle length

4. the reload fuel enrichment and batch fraction

5. the poison distribution to manage criticality, and

6. the pattern of remaining fuel for shuffling.

The constraints in this optimization problem would be the core power density ratios and the fuel burnup.

In the five cycles shown in Fig. 13.5, the nodes A, B, C, and D represent fuel types which are classified by their

enrichment and burnup; finding the optimal path from the first stage to the terminal stage would thus constitute a

Dynamic Programming (shortest path) problem solved by a recursive algorithm in Section 9.4.

Fig. 13.6 shows a 3-batch fuel LP in a 1/4th core with fresh fuel, once- and twice-burned fuel loaded in the

assemblies.

Alternatively, a path such as. A-B-D-C-D or B-A-B-A-C could be considered a chromosome for a GA optimization

scheme and its fitness could be evaluated. Both Dynamic Programming (DP) are GA and variants and advancements of these

methods are applicable for performing optimization analyses to find the optimal path in a fuel loading strategy (Fig. 13.7).

A DP application of fuel loading (Kearney, 1973) is formulated in terms of minimizing the total cost TC which is

the sum over all cycles N of the revenue requirement in a refueling strategy

minTc 5min
XN
i51

C xi; ei; fi½ �5min
XN
i51

Ci (13.3)

subject to the constraints that the energy produced in cycle i is Ei, the power peaking in the ith cycle PPi #PPmax and

that the burnup at discharge Bi #Bmax.

In Eq. (13.3), Ci is the total discounted revenue requirement for producing energy Ei in the ith cycle, and xi, ei and fi
denote the state, reload enrichment and reload batch fraction of the reactor at the beginning of the ith cycle.

The energy production in the reactor is dependent on the mass of the fissile nuclides uranium-235, plutonium-239

and plutonium-241 in each cycle.

In a preliminary model, a single decision variable can be taken to be the batch fraction, and with possible values [A]

0.37, [B] 0.33, [C] 0.29 and [D] 0.25 and the fitness of a path selected as a GA chromosome can be evaluate. This

would of course require a coupled neutronic and depletion analysis for the burnup at the end of each cycle given a

BOC composition.

A sample optimization problem carried out for the Zion-I 1065 Mwe reactor (Kearney, 1973) for a 3-zone refueling

with a cycle energy production of 7363.2 GWHe and a discharge constraint of 50 GWD/T, gave C-A-D-D-C as the

optimal path for reload batch fraction.

FIGURE 13.6 A fuel cycle with enrichment ei and fuel loading fraction fi at beginning of cycle.
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In a more detailed model, for each cycle of the optimal path, the cycle energy production Ei, reload batch fraction

fi, reload enrichment ei and the discounted cycle cost Ci were calculated using the two-group code and the DP algorithm

for each stage beginning from the final stage.

Some of the results for the optimal path from stage 1 to 5 reproduced from Kearney are listed in Table 13.4. This is

a simple illustration from legacy calculations when computing power was modest, but the design was based on elegant

mathematics.

Maximum fuel utilization within the power demand requirement can be achieved by removing the fuel when it has

achieved a maximum burnup, that is, there is minimum amount of fuel left in it. De Klerk et al. (1997) have demon-

strated a nonlinear mixed integer formulation for calculating the reload optimization pattern with minimum discharge

burnup. In this model, the two parameters used are the power density vector and the kN values for fuel elements from n

batches. Within a cycle, a linear decreasing function for the burnup equations is assumed for kN obtaining values at

each BOC ðt5 0Þ and EOC ðt5 TÞ such that the EOC value of kN at a cycle becomes the BOC value of the fuel at the

next cycle.

The GA method has been used with MCNP coupled with the PARET code (a point kinetics and TH to predict transi-

ents and Departure from Nucleate Boiling (DNB)) to replace five most burned fuel elements in a Training Research

Reactor Idaho General Atomics research reactor (Chham et al., 2021) with reloaded fresh fuel on the basis of maximiz-

ing kN, minimizing the central fuel temperature (CFT) and maximizing the Departure from Nucleate Boiling Ratio

(DNBR) as a safety margin. In this scheme, the chromosomes are input into MCNP where the neutronics calculation

gives the excess reactivity and PPF. The PPF is input in to the PARET model to give the CFT; the fitness of the chro-

mosomes is subsequently evaluated and updated for obtaining the converged solution. A similar fuel LP optimization

for a materials test reactor with 29 fuel assemblies has been carried out using PSO (Section 9.5.2). The group constants

were generated from Winfrith Improved Multigroup Scheme/D4S coupled with a diffusion theory code with objectives

of maximizing keff while incorporating a penalty function to keep the PPF low (Ahmad & Ahmad, 2018).

In the present scenario, optimal strategies for fuel loading are obtained from stochastic heuristic and meta-heuristic

methods with the help of expert-based systems. AI and Artificial Neural Networks (ANN) are designed on rule-based

expert systems on the workings of the human brain. A strong feature in computer architecture favoring both AI and

FIGURE 13.7 A nuclear reactor core with a 3-batch fuel loading pattern.

TABLE 13.4 Optimal refueling policy.

Cycle Ei ðGWHe=cycleÞ fi ei w=o
� �

Cið106$Þ PN
i51

Cið$106Þ

1 7831.2 0.293 4.2145 12.420355 12.420355
2 9784.8 0.373 3.3637 14.446574 26.866923
3 7180.8 0.253 4.3932 9.472094 36.339008
4 6420.0 0.253 2.8467 7.428905 43.767904
5 6859.2 0.293 3.2650 7.537723 51.305616
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ANN is the speedup based on vector processing and parallel processing. In ANN, for example, the structure of the brain

is modeled in the form of layers of neutrons (decision points) connected by axons in which chemical ions carry signals

to connect neurons. The complexity of the brain is so vast that of the order of ten billion neurons are interconnected for

processing knowledge and information by which humans recognize, make decisions, and pass the command for action

through signals across the spinal cord. Automated LP search tools may be attractive to solve the huge combinatorial LP

optimization problem. Rules are developed based on the experience of people operating systems and are formulated in

the form of if this then do that. This is the way humans operate by separating knowledge from action. Thus, modules

such as neutronics, depletion models and TH are combined with heuristic rulesets on the placement of a particular type

of fuel in terms of enrichment and burnup at a certain location in the core. As an example, consider two rules (Nissan,

2019): an elimination rule which says Do not load a fresh assembly in such a position that it is adjacent to another

position where there is another assembly of the same kind, except when one of these two positions is in a corner posi-

tion, and a preference rule which says If it is a once-burned assembly that is currently being considered, then choose

for it—from among those positions that were not forbidden by Rules 1�6 (the elimination rules)—that position whose

distance from the center of the core is minimal.

Rules are coded into a program for neural processing to make a rule-based expert system or an intelligent system

based on GA.

Surrogate models encoding a set of heuristics have been proposed for use in quantum annealers, which can find

global minima by tunneling through a barrier (as in quantum physics), applied to PWR fuel loading (Whyte & Parks,

2021).

13.5.1 Optimal distribution: Pontryagin’s maximum principle

Pontryagin’s Maximum Principle (Section 9.2.5) was described in Chapter 9 to obtain an optimal control when the

admissible controls are discrete. Such a model can be used for the optimal placement of different enrichment fuels. A

simple and elegant application is given by Lee (1973) for optimal placement of fuel to minimize the mass in a reactor.

In a two-group diffusion formulation, fluxes and currents are the state variables x1 5φ1, x2 5 r _φ1, x3 5φ2 and

x4 5 r _φ2 expressed as ~x5 ðx1; x2; x3; x3Þ
dxi

dr
5 fi ~x; uð Þ (13.4)

ði5 1; 2; 3; 4Þ:
The independent control parameter u is the fuel enrichment. In this model, there are fuels of two enrichments

umin; umax and the objective is to place them in such a way that the functional

J5 2π
ðR
0

uðrÞrdr (13.5)

is minimized; J represents the mass of fissile material in a cylindrical reactor of radius R and unit height. Another state

variable x0 is defined as

x0 5 2π
ðR
0

uðrÞrdr (13.6)

A Hamiltonian is constructed as:

H
�
~Ψ;~x; uÞ5

Xn54

i50
Ψifið~x; uÞ (13.7)

where Ψi are the auxiliary functions defined as

dΨi

dr
52

Xn54

i50

@fið~x; uÞ
@xi

Ψi (13.8)

for ði5 0; 1; 2; 3; 4Þ. The above is equivalent to the system:

dxi

dr
5

@H

@Ψi

; (13.9)
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and

dΨi

dr
52

@H

@xi
(13.10)

i5 0; 1; 2; 3; 4ð Þ
The Hamiltonian is then arranged as H5 uϕ1ϑ so that the extremum on H can be determined by the sign change

and the appropriate control can be implemented. With the normalization condition 2πΨ0 52 1, gives

ϕðrÞ52 r½11αx3ðrÞΨ2ðrÞ2βx3ðrÞΨ4ðrÞ�; (13.11)

ϑ rð Þ5 1

r
x2Ψ1 1

1

τ1
r2x1Ψ2 1

1

r
x4Ψ3 2

r

τ2
x1Ψ4 (13.12)

where α5 kN=pD1, β5 1=D2, τ1 5D1=Σ1 and τ2 5D2=pΣ1.

The objective is to ensure that H remains maximum for all rAð0;RÞ; thus uðrÞ5 umin for ϕ, 0 and uðrÞ5 umax for

ϕ. 0.

Further, it is evident that φð0Þ5 0 and φðRÞ52R2 , 0, since x3, the thermal flux, vanishes at the extrapolated

boundary r5R. The fluxes (Section 5.3.2 for cylindrical geometry) are

x1 5AS1
sinμr
r

1BS2
cosμr
r

1CS3
sinhλr

r
1DS4

coshλr
r

(13.13)

and

x3 5A
sinμr
r

1B
cosμr
r

1C
sinhλr

r
1D

coshλr
r

(13.14)

and the auxiliary functions are

Ψ2 5 a
sinμr
r

1 b
cosμr
r

1 c
sinhλr

r
1 d

coshλr
r

(13.15)

and

Ψ4 5 aT1
sinμr
r

1 bT2
cosμr
r

1 cT3
sinhλr

r
1 dT4

coshλr
r

(13.16)

The above are sufficient to determine the minimum critical mass by using appropriate values for the control vari-

able, u depending on the sign of ϕ. This is a powerful tool, to determine the minimum critical mass but only after speci-

fying the number of zones in the core.

Based on the numerical results and the intuitive fuel shuffling of the previous section, now consider an optimal con-

trol method which will take us to the desired configuration. The state variables x1 (fast flux) and x3 (thermal flux) can

be used, with the boundary conditions (zero flux at the outer boundary r5R and zero current at r5 0) to yield the criti-

cal determinant. The transversality conditions are used to obtain the boundary conditions of the auxiliary functions

Ψ1 0ð Þ5Ψ3 0ð Þ5Ψ2 Rð Þ5Ψ4 Rð Þ5 0ð Þ.
The flux with appropriate constants A;B;C;D, and coupling coefficients S

ðjÞ
i , for a homogeneous system, given by

φðjÞ
1 5AðjÞSðjÞ1 X1 1BðjÞSðjÞ2 X2 1CðjÞSðjÞ3 Y1 1DðjÞSðjÞ4 Y2 (13.17)

and

φðjÞ
2 5AðjÞX1 1BðjÞX2 1CðjÞY1 1DðjÞY2 (13.18)

where

X1 5
sinμr
r

; X2 5
cosμr
r

; Y1 5
sinhλr

r
; Y2 5

coshλr
r

S1 5 S2 5 τ2½μ2 1βΣ2Mcð11 uÞ�
S3 5 S4 52 τ2½λ2 2βΣ2Mcð11 uÞ�
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and

μ2 5
1

2
a1 bð Þ; and λ2 5

1

μ2

αu
τ2

2
βΣ2Mcð11 uÞ

τ1

� �
;

a � βΣ2Mc 11uð Þ1 1

τ1

� �2
14

αu
τ2

2
βΣ2Mc 11uð Þ

τ1

� �( )1
2

; b � 2 βΣ2Mc 11 u½ �1 1

τ1

� �

Thus μ5μðuÞ;λ5λðuÞ, that is, both the variables are functions of the control variable, and the coupling coeffi-

cients have to be written separately for each physical zone in which an optimal control is sought.

In the one-zone arrangement and two-zone arrangements, the boundary conditions are insufficient to determine an

optimal condition. The three-zone arrangement has 24 unknown constants and 24 boundary conditions and can therefore

be considered an optimal arrangement. This gives a umin; umax; umin½ � optimal fuel placement arrangement shown in

Fig. 13.8.

The critical determinant, set equal to zero for the optimal condition (minimum critical mass) can have only one vari-

able for which the criticality search can be carried out. Thus, for a nuclear reactor, when one value is given for the fuel

enrichment, the other value can be determined from this analysis.

First consider that the enrichment is specified in Zone 2, and it is required to determine the enrichment in Zones 1

and 3. The control problem is then: “given u5 uM , r1 , r, r2, find u5 um for 0# r# r1 and r2 # r#R.” Alternately,

we can have the control variables all given and carry out a search for the critical radius of the core.

The control variable u is defined as

u � Σ2Fc

Σ2Mc

5
N5σ2;a5

Nwσ2;aw
5 u�γ

The optimization goal is to determine a Hamiltonian for which

Hðy�; u�; xÞ$Hðy�; u; xÞ

where umin # u# umax. As earlier stated, this discrete form readily yields “optimal” discrete values of u constant in sub-

domains of the problem. Thus where g is minimum (either sign), umax is applied for an extremum. The zeros of the

switching function will thus determine the controls applied.

The criticality determinant for the three-zone problem has ten simultaneous algebraic equations. As in Chapter 5,

since these equations are homogenous, they are solved by Cramer’s rule. The determinant is set equal to zero, the

dimensions are entered and for a maximum control umax in the central zone, the minimum control umin is found from

the determinant. These give pairs umin; umax½ � of feasible solutions for the Kori-1 data considered by Lee (1973).

umax 0.9 1.0 1.1 1.2 1.3 1.4 1.5
umin 0.89 0.80 0.71 0.65 0.61 0.58 0.56

The combination umin 5 0:65; umax 5 1:2½ � gives a minimum-mass combination.

The minimum-mass optimal placement PMP formulation was reviewed for its elegance and its capability to solve

optimal LPs also. A variational formulation based on the adjoint formulation for higher-order perturbation theory has

also been used for fusion design optimization (Graca et al., 1988). The preferred optimization schemes at present are

AI-based meta-heuristic schemes with comparatively less use of deterministic or stochastic perturbation for

optimization.

FIGURE 13.8 Optimal discrete (bang-bang) control.
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13.6 Radiation detection or optimization

Radiation detection (Section 1.4.6) is used extensively for radiation monitoring of people, vehicles, cargo, and at air-

ports to ensure security (Kouzes, Ely, Lintereur, Siciliano, & Woodring, 2009). Gamma radiation is monitored using

scintillators such as NaI(TI) and for better resolution, HPGe solid state detectors, while neutron radiation is measured

using gas proportional counters such as the He3 and BF3 detectors. Both gamma and neutron counting has to be done

efficiently to be able to accurately classify materials and to raise alarms only when necessary.

The efficiency of radiation counters depend on a number of factors such as the moderation needed for obtaining a

good signal from a gas proportional counter.

Consider, for example, an explosives detection system based on TNAA counting gammas with a NaI(TI) detector

and neutrons with a BF3 detector (Khan, Koreshi, & Yaqub, 2017).

Explosives such as TNT (trinitrotoluene) have carbon, oxygen, nitrogen, and hydrogen in varying fractions which

allows their identification by neutron bombardment and subsequent analysis of the scattered and emitted signal.

Fast (14 MeV) neutron bombardment of hydrogen, carbon, oxygen, and nitrogen atoms produce the following reac-

tions which produce neutrons and gammas:

612C1 01n 14MeVð Þ-612C1 01n1 γ ð4:4MeVÞ
714N1 01n 14MeVð Þ-714N1 01n1 γ ð5:1MeVÞ
816O1 01n 14MeVð Þ-816O1 01n1 γ ð6:1MeVÞ

while thermal neutron bombardment reactions are significant for H and N in comparison with reactions for C and O

producing characteristic gammas from hydrogen and nitrogen

11H1 01n thermalð Þ-12H1 γ ð2:2MeVÞ
714N1 01n thermalð Þ-715N1 γ 10:8MeVð Þ

For the ðn; γÞ reactions, the disappearance cross sections shown in Fig. 13.9 illustrate the extent to which thermal

neutrons are beneficial in comparison with fast neutrons (KAERI Nuclear Data Center, 2019). Thus, the H and N ther-

mal neutron ðn; γÞ reactions present an important method for the detection and characterization of explosives. Further,

as there are no portable thermal neutron sources, the fast neutrons from a source such as Am-Be or Califorium-252 will

be required to be thermalized before activating a sample under investigation. This non-destructive method of characteri-

zation is called thermal neutron activation (TNA).

FIGURE 13.9 Disappearance cross

sections.
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For a sufficient signal to be produced from TNA, a detector needs to be optimized with a moderator. The design of

the optimal moderator is obtained by optimization methods on GA, PSO, coupled GA-MCNP and AI methods described

in the previous sections.

The functionals to maximize are the radiative capture reaction rates in the explosive for both hydrogen and nitrogen

are JHðn;γÞ and JNðn;γÞ defined as

JHðn;γÞ 5
ððð
ΣH

n;γφ r;E;Ωð ÞdVdEdΩ

JNðn;γÞ 5
ððð
ΣN

n;γφ r;E;Ωð ÞdVdEdΩ:

The independent variables are the moderator material, its size and placement, the source energy spectrum, boron

enrichment and gas pressure in the detector.

The optimization effort for moderator optimization is considerably less than that for a shielding optimization since

one material is sufficient. Typical candidate moderators are low-Z materials such as wax, paraffin wax and

polyethylene

The B n;αð ÞLi reaction rate in a single BF3 (cylindrical) detector with a Cf-252 source is shown in Table 13.5 for a

wax moderator of thickness in the range 1�30 cm, showing an optimum thickness B4 cm. The first five MCNP results

have relative standard error within 2% while the last two are within 5% and 19%, respectively.

The energy spectrum of the neutron flux in the detector tube in shown in Fig. 13.10 for moderators of thickness 2, 4

and 6 cm together with the B10ðn;αÞ cross section. With an increase from a thickness of 2 to 4 cm, there is a slight

increase in the low energy flux due to which there is an increase in the reaction rate shown in Table 13.5 while an

TABLE 13.5 B n;αð ÞLi reactions for a wax-moderated BF3 detector.

ΔR (cm) 1 2 4 6 8 15 30

B n;αð ÞLi 3.20627 8.96149 12.4770 9.72714 8.23782 1.31617 0.07004

1026/cm3/s 0.0305 0.0204 0.0172 0.0200 0.0213 0.0489 0.1930

FIGURE 13.10 Neutron flux energy spectrum in the wax-

moderated BF3 detector.
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increase in moderator thickness to 6 cm there is a reduction in the flux due to over-moderation which results in

increased attenuation.

Simulations for polyethylene moderator shows an optimized thickness of 6 cm which is also reported as an experi-

mental result in the literature (Waheed et al., 2017).

MCNP5 simulations were carried out to estimate the ðn;αÞ reaction rate, at T5 300K as a function of pressure over

the range 0.5�3 atm in a BF3 tube and the isotopic enrichment of 10B. The results of Table 13.6 show that the reaction

rate is best for highest 10B enrichment as well as for highest gas pressure giving a fourfold increase. While high enrich-

ment is possible, there is limit on increasing gas pressure due to the high operating voltage that would be required at

increased pressure.

In an explosives detection system, a source such as Californium-252 can be used to scan an area for mines by firing

fast neutrons on the ground. Due to their penetrating power, the neutrons would undergo interactions with any subsur-

face material. In the case of concealed TNT, the back-scattered neutron and gamma radiation would be detected in the

BF3 and NaI (TI) detectors; from the resulting spectrum such as the pulse height of the gamma radiation shown in

Fig. 13.11, it would be possible to estimate characterize an explosive.

13.7 Controller design optimization

Nuclear reactors have traditionally operated as baseload power plants with some maneuvering capability. Looking

ahead, it is possible that a load-following capability might become necessary as renewables are added to electricity

grids. Thus, a load-following mode would likely improve the operational costs. The technical issues with a strong

TABLE 13.6 B n;αð Þ reaction rate as a function of pressure and 10B weight fraction.

10B in B Gas density ρ0 1023 g/cm3 1025 ðn;αÞ reactions cm23 per source neutron s21

P5 1 atm
ρ5ρ0

P5 2 atm
ρ5 2ρ0

P5 3 atm
ρ5 3ρ0

0.2 2:7527 3 1023 1.15580 1.89182 2.4132

0.5 2:7406 3 1023 2.16983 3.07464 3.5792

0.9 2:7243 3 1023 3.89159 5.51797 6.4283

FIGURE 13.11 Characteristic H;N gamma

peaks from trinitrotoluene.
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bearing on load-following would be the speed by which temperatures and pressures in the moderator and coolant and

the subsequent reactivity changes would be adequately controlled by the available mechanisms. This would mean that

CR and poison management would require a careful re-appraisal. As an example, the ratio of gray to black CR would

require re-adjustment. It is likely that with new modular reactors, load-following might not be as difficult as with a sin-

gle large unit.

At present, countries such as France, with B70% nuclear, and a few others have a significant nuclear share of elec-

tricity. For such countries, a load-following capability would become increasingly important.

One technical challenge for load-following would be an optimized controller which could respond in a good way.

That translates into an optimization problem that requires minimization of a cost function that incorporates the over-

shoot, settling time, and stabilization time. Several optimization methods, such as GA, PSO, AI and fuzzy logic, have

been designed and optimized. The Proportional Integral Derivative (PID) controller (Section 9.3) has been optimized

for a load-following PWR using PSO (Mousakazemi, 2021) to minimize the overshoot, settling time and stabilization

time. The agreement between the desired signal and the PID controller signal has been within a good range as con-

firmed by changes in the control rod movements, changes in precursor density, xenon concentration and coolant

temperature.

In another load-following mode simulation of a PWR (Abdulraheem & Korolev, 2021), the nonlinear Integral slid-

ing mode control has been used in combination with an optimal control Linear Quadratic Gaussian to show the robust-

ness of the controller against disturbances incorporating the point kinetics equations with xenon reactivity. In

simulation experiments the core is modeled with point kinetics with xenon reactivity feedbacks. The effectiveness of

the hybrid controller is demonstrated by successful load-following under parametric variations. The issue of chattering

disturbance, due to frequent switching of the controller, has been addressed by using a sliding mode controller for

robust load-following in the presence of disturbances and uncertainties (Hui & Yuan, 2021). The proposed controller

follows the load with a maximum power error of less than B104W, compared with B53 105 W for a PID controller

and 43 105 W for a conventional sliding mode controller.

There are several areas in nuclear engineering where optimization, particularly meta-heuristics are being applied and

developed. Some of these areas have earlier been mentioned in chapter none. As stated in the introduction, optimization

is indeed a vast area full of interesting ideas yet to be explored and developed.

Problems

1. Describe briefly how the micronuclear reactor described in Section 10.5.3 can be optimized in terms of weight and

volume.

2. Describe a possible application of MC perturbation theory (Section 12.6) for calculating sensitivity coefficients of

candidate materials in a shielding design optimization.

3. Considering the various breeder blankets for DEMO and the China Fusion Engineering Test Reactor (Section 13.3)

describe how a blanket could be optimized for maximizing the TBR with a GA-MCNP coupled scheme.

4. Consider the composite gradient shield (Section 13.4) and write down a two-group diffusion model with variable

atomic density (spatial dependence) for two candidate materials; iron and water to minimize the radiation dose

across the shield.

5. With the two-group diffusion equation criticality equation (Section 5.3.2), show that a one-zone model does not

have an optimal arrangement. Then consider the two-zone bare cylinder to find critical pairs for the fuel enrichment

in each zone with the criticality determinant

S11J0 μRð Þ S13I0 λRð Þ
J0 μRð Þ I0 λRð Þ

				
				5 0

2μ1S11J1 μ1r1
� �

μ2S21J1 μ2r1
� �

μ2S22Y1 μ2r1
� �

λ1S13I0 λ1r1ð Þ 2λ2S23I1 λ2r1ð Þ λ2S24K1 λ2r1ð Þ
2μ1J1 μ1r1

� �
μ2J1 μ2r1

� �
μ2Y1 μ2r1

� �
λ1I1 λ1r1ð Þ 2λ2I1 λ2r1ð Þ λ2K0 λ2r1ð Þ

S11J0 μ1r1
� �

2 S21J0 μ2r1
� �

2 S22Y0 μ1r1
� �

S13I0 λ1r1ð Þ 2 S23I0 λ2r1ð Þ 2 S24K0 λ2r1ð Þ
J0 μ1r1
� �

2 J0 μ2r1
� �

2 Y0 μ1r1
� �

I0 λ1r1ð Þ 2 I0 λ2r1ð Þ 2K0 λ2r1ð Þ
0 S21J0 μ2R

� �
S22Y0 μ2R

� �
0 S23I0 λ2Rð Þ S24K0 λ2Rð Þ

0 J0 μ2R
� �

Y0 μ2R
� �

0 I0 λ2Rð Þ K0 λ2Rð Þ
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where, Sij are the coupling coefficients for zone i and index j with

S11 5 τ2ðμ2 1 βuÞ5 S21 5 S22; S13 52 τ2ð λ2 2 βuÞ5 S23 5 S24

μ2 5
1

2τ1L2
2 τ1 1 L2
� �

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ11L2Þ2 1 4ðkN 2 1Þτ1L2

q� �

λ2 5
1

2τ1L2
τ1 1 L2
� �

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ11L2ð Þ2 1 4 kN 2 1ð Þτ1L2

q
:

�

Nomenclature

English Lower Case
e enrichment

f fraction

keff effective multiplication factor

kN infinite multiplication factor

n neutron density

r radius

u control parameter

English Upper Case
C precursor concentration

D diffusion coefficient

D diameter

E energy

J integral performance index

P pitch

P pressure

S coupling coefficient

T temperature

Tc total cost

Greek Lower Case
β delay fraction

ε enrichment

λ decay constant

φ neutron flux

ρ reactivity

σ microscopic cross section

τ cycle time

Greek Upper Case
F objective function

Σx macroscopic cross section (reaction x)

H Hamiltonian

Ψ auxiliary function

Abbreviations and acronyms
AI Artificial Intelligence

ANN Artificial Neural Networks

BOC beginning of cycle

CR control rod

EOC end of cycle

GA genetic algorithm
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LFR Lead-cooled fast reactor

LP loading pattern

PPF peak power factor

PSO particle swarm optimization

PWR pressurized water reactor

SR safety rod

TH thermal hydraulics

TNAA thermal neutron activation analysis

WCLL water-cooled lithium lead
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Chapter 14

Monte Carlo simulation in medical
physics

14.1 Introduction

In medical physics (MP), radiation plays a very important role for diagnostics, pathological investigations and therapy,

with Monte Carlo (MC) simulation appearing as a high-preference methodology just as it has become in nuclear engi-

neering (Section 7.2). One measure of the number of research journals, the Web of Science Master Journal List (2021)

lists 5,121 journals relevant to a search on “nuclear medicine”, 2,278 for “medical physics” and 1,404 for “biomedical

physics” out a total of 24,930 results. The growth in the number of papers in Physics in Medicine and Biology in the

initial years of computing was more than 20-fold in the years from 1970 to 2005 (Rogers, 2006) with electron-photon

transport as the foundation of the versatile Electron Gamma Shower (EGS) system of codes (Bielajew & Rogers, 1989;

Hirayama, 2005) just as the Monte Carlo N-Particle (MCNP) code was in the nuclear community for criticality and

nuclear reactor calculations. A search on “Monte Carlo Simulation” in the ScienceDirect database of 2021 lists 1,013

results for the number of research articles published in Medicine and Dentistry. In MC simulation, the MCNP code is

extensively used in medical physics as given in the primer on Medical Physics Calculations with MCNP (Lazarine &

Goorley, 2005; Reed, 2007) covering the modeling of tumors in tissue, phototherapy, and brachytherapy as well as an

elaborate description on the use of the Zubal phantom (a Computerized Tomography(CT)-based torso and a CT-based

head for use in MC simulations of realistic nuclear medicine (NM) imaging geometries).

For imaging, liquids containing radio-isotopes are injected in a patient and used as radiotracers giving images as

they collect in the vicinity of an organ or move in an available channel. The images are produced from the emitted

radiations and captured in a camera such as the Single-Photon Emission Computed Tomography (SPECT/CT) 3D scan.

Similarly, a positron emitter such as fluorine-18 is used as a radiotracer in a Positron Emission Tomograhy (PET)/CT

for imaging by the production of gamma rays formed by positron-electron annihilation.

Cancer cases globally are expected to grow from 14.1 million in 2012 to 24 million by 2035 with the top three: lung

(Yu, Lewis, Luisa Trejos, Patel, & Malthaner, 2011), prostate and colorectal cases accounting for over 47% of all can-

cers in men (Blanchard et al., 2018; Rice et al., 2019). The treatments for cancer, in order of general preference, are

chemotherapy, surgery, and radiation therapy. However, in the case of recurrent cancer, brachytherapy is the preferred

treatment due to the localized and non-invasive effects.

Another use of radiation is for the treatment of cancer by applying radiation from an external source placed some

distance away from a person or by placing seeds of a radio-isotope inside the body of a person close to the organ where

a tumor is to be destroyed. An example of the former, called tele-therapy is the cobalt knife where gamma rays from a

cobalt-60 source focus on an organ which is dangerous to be operated upon by surgery such as a tumor inside the brain.

The treatment by placing a source within the body is called brachytherapy from the Greek work brachus meaning

short.

In NM, radiation nuclide therapy is used for the imaging of the thyroid, bones, heart, liver and for the treatment of

cancer in organs such as the lungs, breast, colon and rectum, prostate, stomach, and liver etc. Nuclear radiation, in the

form of X-rays, gamma rays and charged particles, can damage the DNA (deoxyribonucleic acid) molecules of cancer

cells that carry the genetic information and pass it from one generation to the next, to stop their further division.

More than two hundred radio-isotopes are used in NM common radio-isotopes include technetium 99mTc, iodine
125I, palladium 103Pd, iridium 192Ir, cesium 137Cs, and cobalt 60Co. Important radionuclides for brachytherapy include

the conventional encapsulated (Perez-Calatayud et al., 2019) low dose rate (LDR) sources (,200 cGy per hour) Ir-192,

and high dose rate (HDR) sources (. 1200 cGy per hour). Permanent brachytherapy sources (Lechtman et al., 2013)
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with energy ,50 keV, such as 125I and 103Pd are commonly used LDR sources, with typical implants of 50�80 metallic

seeds encasing isotopes, used for the treatment of cancer.

There are several radiations which are used for radiotherapy according to the energy emitted (Section 1.2) and the

ways in which they interact with matter (Section 1.3), for example α, have a short range and high energy with a high

linear energy transfer (LET) which makes them favorable for short-range treatments. The β rays are, in contrast, longer

range radiation so they would not be expected to kill tumor cells at a short distance; the same would hold true for

gamma radiation.

14.1.1 The production of radio-isotopes

In nuclear power reactors, as fission takes place, there are several fission fragments such as in the case of fission from

Uranium-235, molybdenum is produced in about 6.1% of the nuclear fission reactions. Molydenum (Mo-99) is

unstable and decays with a half-life of 66 years which means that in 33 years its activity gets reduced to half of what it

was; so it is fairly stable. During its decay, it produces technetium-99m, a metastable state, with a half-life of six hours

which compared with Mo-99 is very short. If a patient had to undergo a procedure with technetium in the evening and

the radio-isotope was procured the previous day then by the time of the procedure it would have only a quarter of its

strength left. These are the typical problems associated with radio-isotopes; they are unstable.

The other places where radio-isotopes are produced are nuclear research reactors, cyclotrons and generators where a

particle is bombarded and after transmutation, it becomes the desirable radio-isotope.

Coming back to technetium-99m, a radio-isotope used in over 85% of all 30 million patient examinations every year

worldwide, is so useful because of the gamma radiation it gives off during its decay

Tc99m43 -Tc9943 1 γ 140:5keVð Þ:
Technetium-99m (Tc-99m) is used in NM for the diagnostic scans of the organs. In the United States alone, with

about 10 million procedures/year over half are cardiac-related. Together with Canada, Germany, France, Japan, Italy,

Spain, Belgium, and UK, these countries account for about 9% of the procedures for diagnostic scans of a broad range

of body parts and for the diagnoses of cancer, heart disease and neurological disorders including dementia and move-

ment disorders (OECD/NEA, 2019).

The gamma radiation coming out of a technetium radio-isotope as it stays placed near or in an organ, is captured in

a gamma camera such as the NM technologies SPECT/CT and PET/CT with little slits to differentiate parts of space

where the intensity is greater than that in other parts. This spatial distribution in slices is put together into a 3D image.

Some other imaging techniques are based on strong magnetic fields and radio waves in the Magnetic Resonance

Imaging (MRI) machine, and the X-ray based CT scans; these are fundamentally different from NM imaging technolo-

gies. The NM techniques are functional as they give information on an organ as well as on its activity while the non-

NM technologies give anatomical information without organ activity.

The objective in this chapter is to understand how MC simulations play such an important role in estimating the

effect of radiations so that a doctor may be able to plan a surgery for a patient according to the size and condition of

the tumor.

The calculation schemes for MC simulations of α;β and γ radiation transport (Section 1.6) are suitable for medical

physics because they can model a great number of relevant mechanisms. At the same time, it would be true to say that

while MC simulations for nuclear engineering calculations may be excellent for performing dosimetry calculations and

give very accurate estimates of the dose (Section 1.4) from a given amount of a radio-isotope, they may be insufficient

to model the interaction of radiation with biology particularly the DNA which has a biological structure that is still not

completely understood.

In spite of a remaining biology interface, MC simulation has been successfully applied for modeling ionizing radia-

tion (IR) useful for dosimetry and therapy (Chatzipapas et al., 2020) by codes such as MCNP (Pelowitz et al., 2013),

EGS, FLUKA (Fluctuating Kaskade), and PENELOPE (Penetration and ENErgy LOss of Positrons and Electrons

(Archambault & Mainegra-Hing, 2015) at the tissue and organ level.

Efforts in the modeling of IR-induced DNA Damage, DNA Damage Response (DDR) and the DNA Repair mechan-

isms referred to as computational radiobiology is still in the developing and emerging stage. For simulations in biologi-

cal matter at small scales (nm-μm), Monte Carlo Track Structure (MCTS) codes are used while the GEometry ANd

Tracking code (Geant4)-DNA incorporates radiobiological functionalities (Chatzipapas et al., 2019; Engels et al., 2020)

capable of modeling interactions of gold nanoparticles (GNPs) to quantify their dose enhancement. Inter-comparisons,

using seven well-known MC codes have been carried out to estimate dose enhancement effects (Li et al., 2020) by
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irradiation of single GNPs of 50 and 100 nm diameter by X-rays generated from 50 to 100 kilovolts. The results have

showed large variations and uncertainties in the electron energy spectra in the range 100�500 eV indicating that model-

ing effort is still required.

In this chapter, the discussion and use of MC will be largely connected with the calculation of the angular flux

φðr ; Ω̂;E; tÞ in an organ or a tissue of given composition. The appropriate reaction rate yielding the dose D in medically

relevant quantities as the gray, rad, or rem will be used to make the connection with the dosage for a medical treatment.

In MCNP, this is the F6 tally defined as

D5
ρ
m

ð
dE

ð
dt

ð
dV

ð
dΩ σt Eð ÞHðEÞφðr ; Ω̂;E; tÞMeV=g

where all quantities are defined in the preceding chapters of neutron diffusion, transport and MC simulation. Recall that

a specific energy in MeV/g is converted to yield the dose rate Gy/h with 1 Gy (1 gray)5 1 J/kg5 100 rad. Also recall

that the background radiation dose is of the order 2�3 mSv/year, or 0.2�0.3 rem/year (1 rem5 0.01 Sv5 10 mSv). A

typical NM treatment could expose a person to a few millisievert while to destroy a tumor more than a few hundred Gy

could be required. Regulators use the linear non-threshold dose model (LNT) according to which there is no safe level

of radiation as cancers and heredity affects are understood to be stochastic, rather than deterministic, events. Therefore,

there is no safe limit as regards the amount of radiation that can be considered safe. Technically, it is preferred that the

amount of radiation should satisfy the ALARA (As Low As Reasonably Achievable) approach which amounts to saying

that no amount of radiation is safe. Thus, a radiation of about 6 millisievert, though small, is still undesirable when

accumulated in a hospital treatment.

The following sections consider MC applications for alpha and gamma radiations in some MP treatments.

14.1.2 Alpha radiation therapy

As mentioned above, the use of α particles in MP is preferable for short-range (70�100 μm) target tumor cells due to

their high LET. The relative biological effectiveness (RBE) of α radiation is about 20 times higher than for photons,

electrons and protons; thus, a higher dose is delivered. Ra-223, for example, with the reaction

Ra22388 -Rn21986 1He42

emits a 5.77 MeV α and a 0.141 MeV gamma ray, has a half-life of 11.4 days and is therefore a suitable radio-isotope

for cancer treatment such as in boron neutron capture Bðn;αÞ therapy (Section 1.2.4). Some high energy alpha emitters

good for targeted radiotherapy are astatine At-211 (E5 6 MeV, t1/25 7.2 hours), bismuth Bi-213 (E5 6 MeV, t1/

25 46 minutes) and actinium Ac-225 (E5 5.9 MeV, t1/25 10 days) (Zalutsky & Pruszynski, 2012).

A boron neutron capture therapy (BNCT) would function as depicted in Fig. 14.1. Consider a group of tumor cells

in the vicinity of normal cells in the human brain with blood flowing and an intricate mechanism operating in the brain;

so intricate that no physical surgery would be considered free of a big risk.

With BNCT, an amount of boron, in whatever form, would be injected in the brain and neutrons would be fired

from outside initiating the nuclear reaction

B10
5 1 n10-He42 1 Li73

which would give off α (He42Þ radiation which would travel to the desired site and destroy the tumor. Of course, there

are still many mechanisms by which the IR could find its way to the tumor cells rather than to the normal cells; that is

FIGURE 14.1 Boron neutron capture therapy.
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another technology beyond the scope of this chapter but as a mention, it uses one of several schemes such as polymer

coated nanoparticles on which a magnetic field is applied to recognize some characteristic of a tumor cell and a drug is

released to penetrate the surface of the tumor cell.

BNCT has been assessed (Dymova, Taskaev, Richter, & Kuligina, 2020) in view of the development of new accel-

erators and has been found to be useful if performed alone or with chemotherapy or radiotherapy provided more selec-

tive boron delivery agents are developed to transport boron compounds into the brain, and an epithermal neutron beam

with definite characteristics can be developed. MC simulations have been used with the Particle and Heavy Ion

Transport Code System (Matsuya, Fukunaga, Omura, & Date, 2020; Sato et al., 2015) to show good agreement with

in vitro experimental data for BNCT with Boron-10 concentrations of 10 ppm. Several MC simulations have been car-

ried out for modeling the epithermal flux for BNCT treatment (Darda, Soliman, Aljohani, & Xoubi, 2020; Hassanein,

Hassan, Mohamed, & Abou Manoury, 2018; Kasesaz, Khalafi, & Rahmani, 2014; Monshizadeh, Kasesaz, Khalafi, &

Hamidi, 2015; Shaaban & Albarhoum, 2015) including the development of a head phantom for accurate calculations of

the dose requirement (Bavarnegin, Khalafi, Sadremomtaz, & Kasesaz, 2016). To determine the place for a patient to be

treated by BNCT, a MC simulation of the BAEC TRIGA reactor (Darda et al., 2020) using the OpenMC concludes that

the thermal column with an epithermal flux of B109 near the thermal column graphite is a suitable location. In another

study, with a miniature source neutron reactor (MNSR), using MCNP4C (Monshizadeh et al., 2015), the thermal and

epithermal neutron fluxes are reported as 1.393 109 n/cm2/s and 0.6353 109 n/cm2/s, respectively, with a treatment

time estimated to be about 70 minutes.

14.2 Brachytherapy

Consider now a brachytherapy procedure in which MC simulations are used to calculate the dose absorbed by a tissue

in an organ.

An MC simulation could give useful information in the size, composition and configuration of GNPs for example,

to maximize the dose since that is the ultimate goal of brachytherapy. The constraint is that there should be minimum

collateral damage to the surrounding normal tissue and hence this could be formulated as an optimization problem ame-

nable to the solutions described in Chapter 9, particularly the meta-heuristic applications discussed Chapter 13. In

brachytherapy, there is still no consensus on what the optimal size, shape and distribution of GNPs should be. There is

some experimental and pre-clinical evidence for mouse tumors showing a 1-year survival rate of 86% mice given a

dose of 26 Gy with 1.9 nm intravenously administered GNPs versus 20% for tumors not laden with GNPs (Jain, Hirst,

& O’Sullivan, 2012). This is the motivation for performing detailed MC simulations for brachytherapy to reduce the

human exposure with maximum benefit of whatever radiation is administered.

14.2.1 Monte Carlo simulation in brachytherapy

MC simulation has been used in several studies for brachytherapy (Jangjoo, Ghiasi, & Mesbahi, 2019; Khan, Aziz, &

Koreshi, 2019; Yu et al., 2017). For brachytherapy, radio-isotopes with energy ,50 keV, such as 125I and 103Pd sources

with typical implants of 50�80 metallic seeds encasing isotopes, are used as LDR therapies for the treatment of prostate

cancer, uveal melanomas and brain tumors.

The dose is estimated by a number of computer codes such as EGSnrc, GEANT, PENELOPE, and MCNP based on

MC methods.

In order to enhance the effectiveness of brachytherapy the injection of GNPs through fenestrations of cancer cells is

being considered. The requirements of particle size necessitate the range down to nanoscales (B1029 m) which com-

pares with the diameter of an atom (B10210 m). For MC simulations in brachytherapy, it has been demonstrated that

the dose enhancement factor (DEF) depends on the source energy and concentration of GNP solution, while the size of

GNPs, according to some research results, is not significant above the K-edge energy (Chatterjee et al., 2013; Jain

et al., 2012; Jangjoo et al., 2019; Lechtman et al., 2011; Mesbahi, Jamali, & Gharehaghaji, 2013; Sharabiani, Vaez-

zadeh, & Asadi, 2016).

Several studies have thus used a homogenous model with considerable savings on the computational effort required

for a full heterogeneous model, is used to extract crucial information on the DEF. Calculations are performed for the

dose resulting from the presence of gold in small concentration, MC codes such as MCNP come with a capability of

modeling very detailed heterogeneous configurations so this assumption is not a limitation of MC simulations.

The dose delivered to a prostate tumor. For example, by radio-isotopes 125I, 103Pd, and 131Cs are assessed particu-

larly in the context of dose enhancement in the presence of GNPs.
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The radio-isotope cesium-131 (131Cs) with ðE5 292 30:4keV; t1=2 5 9:7dÞ is found to yield the required dose in the

least less time compared with 125I ðE5 35:49keV; t1=2 5 59:4dÞ and 103Pd ðE5 20:8keV; t1=2 5 17dÞ due to its shorter

half-life and higher energy.

Typically, iodine 125I is used with a radiation dose of 145 Gy or more in accordance with the prescribed dose of

145 Gy suggested by the American Association of Physicists in Medicine Task Group 64 (Pons-Llanas et al., 2018; Yu

et al., 1999).

One of the main advantages of 131Cs is that it offers an initial dose rate of B32 cGy/h at the periphery which is 1.5

and 4 times higher than that from 103Pd and 125I, respectively. This initial dose rate advantage is a vital radiobiological

parameter for a tumor that is growing at a high speed in comparison with slow-growing tumors such as prostate

adenocarcinomas.

The MC code MCNP5 has been used (Khan et al., 2019) to estimate the rose distribution in a coupled photon-

electron simulation in the range 1 keV�100 MeV for prostate tumor brachytherapy. The radio-isotope sources consid-

ered are 125I, 103Pd, and 131Cs in the form of “seeds” modeled as point sources.

As shown in Fig. 14.2, 98 125I, seeds each of activity 0.31 mCi and 115 103Pd seeds each of activity1.4 mCi were

considered spatially distributed in tumor tissue. The placement of needles considers a number of factors including the

location of vital organs surrounding the prostate, such as the bladder, urethra and rectum. For simulating the effect of
131Cs, the 103Pd seeds were replaced by 131Cs seeds of the same initial activity and spatial distribution. The energy

deposition track length and the pulse height tallies are both used for estimating energy deposition to get reliable esti-

mates in case of a few interactions in a region of interest. The simulation is repeated with gold-tissue solution. The pho-

ton and electron data for both tissue and gold are based on Evaluated Nuclear Data File ENDF/B-VI (Release 8).

Several MC codes have been used and compared (Šı́dlová & Trojek, 2010) on the basis of calculating bremsstrah-

lung, energy deposition in matter, electron ranges and production of secondary electrons by gamma radiation.

The activity of a radio-isotope is A tð Þ5Aoe
2λt and the number of transformations in an interval τ5 t2 2 t1 gives an

estimate for the absorbed dose

Abs Dose5 1:6 3 10210 Ao

λ
NE

m
Gy

where Ao is the initial activity of a radio-isotope, N is the number of radio-isotope seeds, and E is the energy pulse

height tally in MeV for a tumor of mass m grams.

Thus, the absorbed dose varies directly with the energy deposition and source, which in turn depends on the number

of transformations, that is, the product of initial activity and half-life. The longer decay time for 125I while faster decay

rates of 103Pd and 131Cs give the number of transformations (integrated over time) of 2.743 1014, 7.843 1013, and

4.473 1013 for 125I, 103Pd, and 131Cs. Thus, iodine has a slower build-up, but a higher dose from 125I after B6 months

compared with the much faster effects of 103Pd and 131Cs. The absorbed dose calculated from a MC simulation is

shown in Fig. 14.3 showing the extent of dose enhancement resulting from GNPs. This makes it possible to achieve an

absorbed dose as high as about 300 Gy with a GNP assisted brachytherapy.

FIGURE 14.2 Placement of 29 needles of 115 seeds of 103Pd/131Cs in

the x-y plane.
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Iodine 125I starts with an activity 0.31 mCi, with a distribution shown in Fig. 14.2 while 103Pd and 131Cs both have

initial activity 1.4 mCi. The results indicate that 131Cs is clearly the best in terms of delivering the highest and fastest

dose to the tumor, reaching 50 Gy in the first 10 days and 100 Gy when GNPs in a solution of 25 mg/g tissue are

injected in the tumor while on a longer timescale, 125I gives the highest dose.

The initial dose 131Cs over the first B300 hours is the highest exceeding 5.7 times and 1.5 times that of 125I and
103Pd respectively in the initial period and falling gradually about 300 hours for 103Pd and about 400 hours for 125I.

In MCNP the “detailed physics” simulation incorporates coherent (Thomson) scattering and fluorescent photons pro-

duced from photoelectric absorption. Electrons produced from photon collisions are transported in a “condensed his-

tory” method that accumulates the effects of many individual collisions into single steps sampled probabilistically.

The effects of such artifacts for electron transport have been investigated by inter-comparisons (Section 14.2) with

other MC codes, such as EGSnrc, GEANT and PENELOPE codes.

In some cases “large discrepancies” (. 3%) have been found between MCNP5 dose distributions and the “reference

codes” concluding that MCNP5 electron transport calculations are not accurate at all energies and in every medium by

general clinical standards (Almansa, Guerrero, Al-Dweri, Anguiano, & Lallena, 2007; Archambault & Mainegra-Hing,

2015; Koivunoro et al., 2012). It can thus be anticipated that MCNP5 may differ due to its inadequate low-energy treat-

ment of electron transport. The differences with are reported to have been reduced with improved electron transport in

MCNP6.

These results are in line with the decay rates of the three isotopes which favor 125I in terms of energy but result in a

slow dose delivery. The dose enhancement with gold GNP-tissue found in these simulations is the effect of both source

energy of each radio-isotope and the solution concentration. The photoelectric effect plays a dominant for high-Z mate-

rials, such as gold, for which the cross-section varies as μPEBρZ3=E3 so that low energy and high-Z are desirable for

dose enhancement which is localized to the tumor due to the short range of photoelectrons and Auger electrons in the

surrounding medium which for electrons of energy 0.1 MeV is B100 microns in water and B15 microns in gold. Thus

GNPs are used in thin layers of , 100 nm thickness to utilize the energy of photoelectrons in water.

14.2.2 Monte Carlo simulation to calculate energy deposition and dose distribution for
brachytherapy

In continuation of the previous section, the dose distribution and the subsequent DEF by the use of gold, a high-Z bio-

compatible element, in solution are both estimated by MC codes as a function of source energy typical of brachytherapy

sources (40 keV�1 MeV), solution concentration (5�25 mg Au/g H2O) and solution placement (1�2 cm concentric

shells).

Results from the MC simulation code MCNP5 are compared with other widely used MC codes such as PENELOPE

and GEANT, to validate the dose estimates which may vary considerably due to artifacts and data libraries. MC pertur-

bation estimates for radiation oncology, are yet to be used extensively to carry out sensitivity studies which can be used

to obtain optimal experimental parameters such as radiation energy, concentration of gold in solution and the optimal

FIGURE 14.3 Absorbed dose (Gy) for 125I, 103Pd and 131Cs.

514 Nuclear Engineering



distribution of material for maximizing an objective function of interest. MC simulation, using MCNP5, has been car-

ried out for simulating coupled photon-electron radiation transport from X-rays emanating from a radiation source

implanted in a cancer cell, modeled by a spherical water phantom, to estimate the energy deposited and the subsequent

DEF using a water sphere of radius 15 cm to represent tissue.

Since the dose enhancement is mainly due to photoelectron production from gold, the use of water for soft tissue, as

defined by the International Committee for Radiological Protection (ICRP) is justifiable due to similar density and pho-

ton interaction cross-sections. For carrying out sensitivity studies, the MC perturbation feature, with material perturba-

tions, was used to sample derivatives in a single run which were used in a Taylor series to estimate subsequent dose

and enhancement.

From the validation studies, good agreement is found between MCNP5 yields dose estimates, distributions and

enhancements which values reported for the MC codes PENELOPE and GEANT with lower energy cutoffs for electron

transport as compared with MCNP5. While the dose increases with source energy, the DEF was found to increase

inversely with the source energy, for a given concentration, achieving a value as high as 1.8�2.5 for a source of

40 keV and concentration 5�10 mg Au/g H2O.

This enhancement was found to occur at energies near the K- and L-shell electrons of gold and no significant

enhancement was found at higher (MeV) energies. The validity of first- and second-order perturbation theory was con-

firmed for small changes (B2%) in the material density of gold-water solution enabling a single run to estimate the

DEF from concentrations in the range 5�25 mg Au/g H2O with a considerable computational speedup.

For calculations for dose distribution MC methods and general purpose codes, such as EGSnrc, GEANT,

PENELOPE, and MCNP have been extensively used for simulating the transport of radiation from radiation seeds in

the medium consisting of tissue, and material in the vicinity of the cancer. These codes have produced fast and accurate

results which have been experimentally validated and benchmarked.

At the small scales of nanotechnology, comparable with the atomic scale, the behavior of materials and subsequently

their electrical and thermal properties also depend on size and shape. Nanotechnology, driven largely by the opportu-

nities in electronics and semiconductors, has emerged as one of the frontiers of science capable of revolutionizing tech-

nology in areas including communications and computing, materials and medicine.

The source energy of interest is 40 keV�1 MeV typical of brachytherapy sources, while the gold particles in solu-

tion form with water were assumed to comprise a homogeneous mixture with concentrations ranging form 5�25 mg

Au/g H2O. While MCNP has the capability of modeling very detailed heterogeneous configurations, this paper consid-

ers a homogeneous model solely for the purpose of demonstrating (1) results from benchmarked problems and (2) for

obtaining MC sensitivity estimates for a “bulk” material to demonstrate validity of MC perturbation and quantifying

increased computational efficiency.

MC perturbation analysis has applications in brachytherapy for estimating dose perturbations when implements are

present in the vicinity of an organ receiving radiation from an implanted source (see e.g., Yu et al., 1999). However, it

is yet to be used to simulate brachytherapy studies and can provide great computational efficiency leading to optimal

designs based on “best” experimental parameters such as radiation energy, concentration of gold in solution and mate-

rial placement for maximizing an objective function of interest.

The MC code MCNP5 is used to carry out a coupled photon-electron simulation of radiation transport in the range

1 keV�100 MeV to estimate the dose distribution, from a point isotropic photon source typical of brachytherapy

sources (30 keV for 125I 21.25 MeV for 60Co) located at the origin of a sphere, in concentric shells of water of thick-

ness 0.5 mm up to a radius of 15 cm. A solution of gold and water is then considered in the shells located 1�2 cm from

the center and the F6 and *F8 tallies are used for phantom dosimetry. Photon and electron data for air, water and gold

are based on ENDF/B-VI (Release 8). In the MCNP “detailed physics” simulation, coherent (Thomson) scattering is

included and fluorescent photons produced from photoelectric absorption are included and electrons produced from

photon collisions are transported in a “condensed history” method that accumulates the effects of many individual colli-

sions into single steps sampled probabilistically.

Perturbation algorithms in MC simulation, developed extended the capability of MC methods to sensitivity studies

and optimization. The change in a response function such as dose D, due to a variation in an independent parameter,

such as material density ρ, such as the dose, expressed as a Taylor series

D ρð Þ5D ρo
� �

1D
0
ρo
� �

δρ1
1

2!
Dv δρð Þ2 1?

can be used with first- and second-order derivatives D
0
and Dv from a single run. Thus, when the change in a parameter

is small enough to be of the order of the statistical uncertainty of a MC estimate, then the difference from two
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independent runs may mask the actual difference. The energy deposition for a “perturbed” design Dnewð Þ can thus be

estimated from a Taylor series in terms of a “reference” design ðDref Þ.
The material used in this work is water which has density ρ5 1:04 g/cm3 very close to that of soft tissue ρ5 1:04 g/

cm3 (with a four-component simplified composition hydrogen (H), carbon (C), nitrogen (N) and oxygen (O) with

weight percentages: 10.454%, 22.663%, 2.49%, 63.525%, respectively) and the photon electric cross-sections for both

are almost indistinguishable so that conclusions drawn for energy deposition would hold for both materials to a reason-

ably acceptable order. While water phantoms are used for representing configurations similar to soft tissue, full anthro-

pomorphic phantoms are also used to carry out detailed simulation for the dose.

To compare MCNP5 results for energy deposition from a mono-energetic point isotropic source at the center of a

sphere of radius 15 cm, the F6 tally in 0.5 mm thick concentric shells gives the energy distribution. When normalized

to a reference dose from a 1 MeV source, it is seen that the lowest energy, 15 keV, has an energy deposition about 65%

of the reference which falls off rapidly to less than 10% in 1.5 cm of water. With a further increase in energy, the rela-

tive intensities drop but the deposition sustains to greater depths which is less important in brachytherapy than to give a

localized deposition from a low-energy source.

The DEF shown in Fig. 14.4 gives the extent and magnitude as a function of source energy and concentration for

E5 40 keV, 50 keV, 90 keV, 1 MeV for varying concentrations 5, 10, 25 mg Au/g H2O confirming the trend of direct

variation of DEF with concentration and inverse variation with source energy. The spatial effect of high energy photons

extends further in the medium as compared with low-energy photons as observed from results in Fig. 14.5 when the

1 MeV photons are able to persist to longer distances with a rising slope for GNP size.

MC simulations have also been used for ophthalmic brachytherapy with 125I with mean energy 35.49 keV with a

full three-dimensional heterogeneous model simulating 107�109 histories for 50 nm GNPs (Asadi et al., 2015) estimat-

ing the DEF for 7, 10, 18 and 30 mg GNP concentration/g as varying from 1.9, 2.2, 3.2 to 4.6 for the tumor phantom

compared with 1.9, 2.3, 3.3 and 4.8 in the water phantom, respectively, which indicates that the tumor and water phan-

toms are very similar.

Preliminary MC simulations with a homogenous mixture model for a water phantom with 106 simulations gives, for

40 keV and concentrations of 5, 10, 25 mg/g maximum DEFs of 1.8, 2.5. 4.6.

Mesbahi et al. (2013) report DEF from 1.4 to 3.7 with the highest DEF for 90 keV; they also concluded, as did

Lechtman et al. (2011), that the effect of GNP size was not considerable while concentration and energy were impor-

tant. Of their simulations carried out for 7 and 18 mg Au/g H2O for 30, 50, 100 nm GNPs and energies between 50 to

120 keV , they reported highest DEF of 3.5 at 90 keV followed by 3.0 at 50 keV both for 30 nm GNPs and 18 mg/g

concentration.

For high energy sources (Banoqitah & Djouider, 2016) a maximum DEF of 1.45 is found within the tumor when

implanted with 70 mg/g Gd for the lowest energy (192Ir). Thus MC simulations find that the DEF varies directly with

concentration and inversely with source energy, for example, for a concentration of 30 mg/g, it decreases from 1.24 to

1.09 when the photon energy increases from 0.380 MeV (192Ir) to 1.20 MeV (60Co).

FIGURE 14.4 Energy deposition for mono-energetic photons of

energy E: 15 keV�1 MeV.
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When full heterogeneities are modeled, MC sensitivity analysis can be useful for calculating sensitivity coefficients

for the design optimization of GNP size with varying concentration.

Nomenclature

English
m mass

t time

D dose

E energy

H heating number (MeV/collision)

N number of particles simulated

V volume

Z atomic number

Greek
μPE attenuation coefficient (photoelectric)

ρ density

σt microscopic total cross-section

φ scalar flux scored over volume (track length/volume) cm22

Ω solid angle

Abbreviations
BAEC Bangladesh Atomic Energy Commission

DEF dose enhancement factor

GNP gold nanoparticle

Gy gray

HDR high dose rate

LDR low dose rate

TRIGA Training Research Isotopes General Atomics
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Heat conduction in 2-D and 3-D, 159�164

Dirichlet, Neuman and mixed boundary

conditions, 160t

spherical geometry, 162�164

Heat deposition, 403

Heavy nucleus, 57�58

Heavy water (HW), 72�73, 103, 421, 426

HELIOS-2 (Lattice codes), 343

Hessian matrix, 350�351

Heterogeneity, 253

HEU. See Highly enriched uranium (HEU)

Heuristic optimization techniques, 350

Hexafluoride (UF6), 379

High Flux Isotope Reactor conversion project,

493

High-energy transport codes, 340

Highly enriched uranium (HEU), 120, 379

submarine reactors, 120

Hooke’s Law, 151�152

Hybrid methods, 297

Hydrogen (H), 3�4, 57, 463, 516

I
In-core design optimization, 372

Inboard (IB), 493�494

Independent fission yield, 84

Independent variables, 502

Inelastic reaction, 55

Inertial confinement fusion (ICF), 128, 130�132

Infinite medium

with plane isotropic source, 273�274

angular flux in, 275b, 281b

point source in, 215

1-group nonmultiplying media, 216t

solutions, 225�226

Infinite medium equation, 417�418

Inorganic scintillators, 30

Integral (I), 362

evaluation of, 201�206

Integral equation, 69, 165�170, 425

classification of, 165t

important integral equation for neutron

transport, 169

integral equations in neutron transport,

169�170

for neutron transport, 169�170

Integral form of transport equation, NTE,

266�268

Integral fuel burnable absorber (IFBA), 391

Integral transport equation, 253

multigroup form of, 268

Integrated flux, 53

Integro-differential equations, 170�174, 265

Integro-differential form, 260

of neutron transport equation, 260�265, 260f

Interaction

determining the nuclide of, 314

physics of, 306

Intercontinental ballistic missiles (ICBM), 117,

132

Intermediate node, 367

International Atomic Energy Agency (IAEA),

34, 388

International Business Machines (IBM), 350

International Commission on Radiological

Protection (ICRP), 28, 515

International Standards Organization (ISO),

388

International Thermonuclear Experimental

Reactor (ITER), 129, 310, 493

International Tokamak Experimental Reactor

(ITER), 5
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INTG record, 343

Iodine (125I), 11, 512�514

Iodine-135

atoms, 7

decay rate equation, 7

Ionizing radiation (IR), 510

Iridium (192Ir), 11

Iron (Fe), 403�404, 425, 474, 494

Isotropic scattering, 56, 424

J
Jacobi-Siedel methods, 238

Japanese Evaluated Nuclear Data Library

(JENDL), 341

Jezebel, 386�388

material composition of, 387t

tallies for, 387t

Joint European Torus (JET), 129

K
K shell, 3�4

KCODE card, 399

KENO codes, 340�341

“Kernel of the integral operator”, 165

Kilopower Reactor Using Stirling Technology

(KRUSTY), 141

Kinetic energy (KE), 4

Kinetic theory, 51�53

Klein-Nishina differential cross-section (K-N

differential cross-section), 23

Korean Atomic Energy Research Institute

(KAERI), 34

KORI-1 homogeneous reactor model, 489�490

Kullback�Leibler divergence for uniform

random numbers, 199

L
L’hopital’s rule, 214

Laboratory system, 314

Lagrange multiplier, 352, 357

Laplace equation, 153, 158�159

Laplace transform method, 166, 259, 270, 361,

417

Lattice cell, 464, 467

Lattice codes, 343

Lattice fuel cell, 399

Lattice physics codes, 343

Lawrence Livermore Laboratories (LLL), 339

Lead (Pb), 492, 494

Lead Cooled Fast Reactor, 120, 126

Lead fast reactor (LFR), 121

Lead-cooled fast reactor, 491

Legendre polynomials, 163, 184, 255

Legendre’s equation, 163

Lehmer RNG, 196

Leinnitz’s rule, 166

Light water (LW), 421, 426

Light water reactor (LWR), 103

Linear energy transfer (LET), 510

Linear integral equation, 166

Linear quadratic controller (LQR), 364�365

Linear quadratic Gaussian (LQG), 364�365,

504

Linear Transport Equation, 261�262

Liner attenuation coefficient, 24

Liquid drop model, 6

Liquid Metal Fast Breeder Reactor (LMFBR),

120

Liquid Oxygen (LOX), 134

Liquid sodium metal, 397

Liquids containing radio-isotopes, 509

LIST record, 343

Lithium, 3�4, 405

Load Pattern Optimization (LPO), 374

Loading pattern (LP), 374, 489

Los Alamos National Labs (LANL), 339

Loss of Coolant Accident (LOCA), 105, 340

Low dose rate (LDR), 509

Low enriched uranium (LEU), 120

submarine reactors, 120

M
Machine learning, 375

Macroscopic cross-section, 63�64, 64t, 221

Magnetic confinement fusion (MCF), 128�130

Magnetic Resonance Imaging (MRI), 510

Marine propulsion reactors, 116�120. See also

Space propulsion reactors

former soviet/Russian nuclear submarine

program, 117

HEU/LEU submarine reactors, 120

modern-day submarines, 117�118

submarine programs, 117

technical features, 118�119

US nuclear submarine program, 116

Mark I reactor, 111�112

Markov processes, 305

Markovian processes, 188

MARS. See Multiple Array System (MARS)

Marshak boundary conditions, 289�290

Mass attenuation coefficient, 24

Mass defect, 6

Mass-spring-damper equation (MSD equation),

361

solution of, 361

Material densities, 393t, 474

Mathematical and Numerical Integrator and

Computer (MANIAC), 305

Mathematical foundations in nuclear

engineering

adjoint function, 186�187

approximate methods, 185�186

evaluation of integrals, 201�206

integral equations, 165�170

integro-differential equations, 170�174

numerical methods, 174�185

ODEs, 150�156

PDEs, 156�165

random processes, probability, and statistics,

187�201

Mathematical modeling and simulation of atom

and radiation, 34�44

alpha particle transport simulation, 35

interaction of electrons with matter, 35�40

interaction of gamma radiation with matter,

40�41

radiation dose from Calfornium-252 gamma

source in water, 41�44

MATLAB program, 177, 195�196, 359,

419�421, 449�450

for point source in finite non-multiplying

sphere, 456�459

random number generation, 196t

Maxwellian distribution, 51

MC. See Monte Carlo (MC)

MCA. See Multichannel analyzers (MCA)

MCBEND, 340

MCF. See Magnetic confinement fusion (MCF)

MCO. See Moisture carryover (MCO)

MCTS. See Monte Carlo Track Structure

(MCTS)

Mean values, 455

Medical physics (MP), 509

Medical therapy, 11

MELCORE Accident Consequence Code

(MACCS), 341

Meta-heuristic methods, 489

Metal salt reactors (MSR), 405

Metastable isomers, 75�76

Method of characteristics (MOC), 259

Micronuclear heat pipe reactor, 380

Micronuclear reactor (MNR), 120, 139,

324�326, 374, 400�401, 476

material data for micronuclear reactor

simulation, 401t

Microscopic cross-section, 58�62

averaged cross sections of Pu-239, 64t

thermal neutron absorption cross sections,

63t

Miniature source neutron reactor (MNSR), 512

Minimum critical mass (MCM), 238

Minimum path tree, 365

MIRVs. See Multiple independently

targetable reentry vehicles (MIRVs)

Mixed oxide fuel (MOX), 121

“Mixture” cross-sections, 34

MOC. See Method of characteristics (MOC)

Moderator macroscopic absorption cross-

sections, 221

Modern-day submarines, 117�118

nuclear submarine reactors, 119t

Moisture carryover (MCO), 374

Molière distribution, 39

Molten Salt Reactor (MSR), 126

Molydenum (Mo-99), 510

MONACO (Monte Carlo code), 339

MONACO with Automated Variance

Reduction using Importance

Calculations (MAVRIC), 340

Monte Carlo (MC), 92

code, 339�340, 512, 514�515

exercises in Monte Carlo simulation

estimating neutron flux in non-multiplying

sphere, 453�462

MCNP geometry plotting in core

neutronics, 476�481

perturbation calculations, 474�476

radiation safety and shielding, 473�474

Index 525



Monte Carlo (MC) (Continued)

reactor core modeling, 464�472

reflected assemblies, 462�464

sampling from distribution function,

449�453

method, 34, 187, 203, 211, 305, 340, 401,

417

demonstration, 328�331

estimating perturbations with Monte Carlo

simulation, 333

modeling geometry, 316�327

for numerical integration, 203�206

simulation of random walk, 308�316

stochastic simulation, 305�308

variance reduction methods, 332�333

nuclear fission applications, 390�401

micronuclear reactor, 400�401

Toshiba 4S reactor, 394�399

unit lattice cell and fuel assembly of

AP1000 reactor, 390�394

nuclear fusion applications, 401�405

perturbation, 515

analysis, 515

simulation, 92�97, 260, 308�309, 337, 350,

381, 390, 397, 417, 495, 509

actinide physical properties, 97t

alpha radiation therapy, 511�512

bare critical assemblies, 98t

brachytherapy, 512�517

to calculate energy deposition and dose

distribution for brachytherapy, 514�517

critical solid spherical systems, 97t

estimating perturbations with, 333

flux in finite sphere with point isotropic

source, 431�433

flux in slab, 425

geometries for illustration of, 320�327

production of radio-isotopes, 510�511

quantities of interest in fission neutronics,

325t

simulation in nuclear systems

bare critical assemblies, 381�388

criticality safety, 388�389

radiation moderation and shielding,

389�390

Monte Carlo for Neutrons and Photons

(MCNP), 339

code, 339, 341, 510, 512, 515

documentation, 464

geometry plotting in core neutronics,

476�481

problems, 480�481

surface coefficients, 478t

Godiva simulations, 474

MCNP5 simulations, 503

simulation, 422, 473�474

tallies, 470

Monte Carlo N-Particle (MCNP), 339, 489

Monte Carlo Track Structure (MCTS),

510�511

Monte Carlo whole-core simulations, 400

Movement disorders, 510

MOX. See Mixed oxide fuel (MOX)

MRI. See Magnetic Resonance Imaging (MRI)

MSD equation. See Mass-spring-damper

equation (MSD equation)

MSR. See Metal salt reactors (MSR); Molten

Salt Reactor (MSR)

Multi-grid algorithms, 374

Multi-group Oak Ridge Stochastic Experiment

(MORSE), 339�340

MORSE code, 339

MORSE-SGC code, 339

Multi-objective core optimization, 373�374

pressurized water reactor core pattern

optimization, 374

Multichannel analyzers (MCA), 30

Multigroup diffusion equation of NDE,

234�238

multigroup cross-sections, 235t

numerical solution of, 235�238

Multigroup form of integral transport equation,

268

Multimission radioisotope thermoelectric

generator (MMRTG), 11

Multiple Array System (MARS), 339

Multiple independently targetable reentry

vehicles (MIRVs), 117

Multiplicative congruential generator, 196

Multiplying systems. See also Nonmultiplying

systems

one-group diffusion equation, 215�219

cylindrical reactor, 216�218

slab reactor, 215�216

spherical reactor, 218�219

two-group diffusion equation, 227�230

two-group core functions, 229t

two-group data, 230t

two-group reflector functions, 229t

N
Nanotechnology, 515

Narrow resonance (NR), 79�80

Narrow resonance infinite mass models (NRIM

models), 79�80

National Institute for Science and Technology

(NIST), 34

National Nuclear Data Services, 6

Natural boron, 30

NDT. See Nondestructive testing (NDT)

NDU. See Nuclear Demonstration

Unit (NDU)

NEA. See Nuclear Energy Agency (NEA)

NEM. See Nodal Expansion Method

(NEM)

NERVA. See Nuclear Engine for Rocket

Vehicle Application (NERVA)

“Neumann series”, 308

Neumann’s principle of stored program, 305

Neural network models, 495

Neurological disorders, 510

Neutron

age, 72

current, 260�261, 383

density, 173

Neutron A-1, 308�309

Neutron diffusion, 260, 337, 417

Neutron diffusion equation (NDE), 184, 211,

259

conservation equation, 211�213

Core neutronics with diffusion equations,

251�256

fuel concentration effect on critical mass,

238�248

multigroup diffusion equation, 234�238

one-group diffusion equation, 213�221

two-group adjoint diffusion equations,

248�250

two-group diffusion equation, 221�234

Neutron DT flux, 428�429

Neutron energy, 235, 450

Neutron flux, 53, 66, 92, 383, 418, 430, 460

estimation in non-multiplying sphere,

453�462

MATLAB program for point source

in finite non-multiplying sphere,

456�459

results, 460�462, 462t

simulation process, 453�456

temperature effects on, 227

thermal data, 227

Neutron generator, radiation moderation for,

389�390, 390t

Neutron interaction, 51, 306

criticality, 88�97

flux measurement, 64�66

kinetic theory, 51�53

macroscopic cross-section, 63�64

microscopic cross-section, 58�62

nuclear fission, 80�87

reaction rates, 66�67

resonance cross-section, 74�80

slowing down, diffusion and thermalization,

67�73

types of, 53�58

angular quantum number vs. kinetic

energy, 54f

neutron scattering in lab and center of

mass systems, 55�58

s-wave scattering, 54f

selected neutron interactions, 55f

Neutron transport equation (NTE), 259, 417

exact solutions of transport equation,

268�284

Chandrasekhar’s H function, 271b

classic albedo problem, 270�272

finite sphere with point isotropic source,

274�284

infinite medium with plane isotropic

source, 273�274

numerical methods for solving transport

equation, 285�298

structure of, 260�268

integral form of transport equation,

266�268

integro-differential form of, 260�265

multigroup form of integral transport

equation, 268

two-group transport equation, 265�266

transport theory for reactor calculations,

298�302
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Neutron(s), 2, 25, 30, 52�53, 58, 88, 265,

338�340, 390, 394, 404

colliding in hydrogen, 70

emerging, 86

neutron/photon transport codes, 340

population, 211

radiation, 380, 493

scattering in lab and center of mass systems,

55�58

shielding, 494

source imaging, 374

spectra, 68, 103

thermal cross sections, 62

transport, 260, 337

Neutronic[s], 405

code, 489

coupled with thermal hydraulics, 337

MCNP geometry plotting in core, 476�481

neutronic-TH coupled simulations, 491

optimization, 492

parameters, 400

simulation, 489

Neutronics/Thermal-hydraulic Coupling

Optimization Code (NTCOC), 494

Newton’s second law of motion, 3

Nichols-Ziegler Method, 363

Niobium, 405

Niobium-tin (Nb3Sn), 403

NIST. See National Institute for Science and

Technology (NIST)

Nitrogen (N), 516

NJOY (Nuclear data processing codes), 343

NM. See Nuclear medicine (NM)

Nodal Expansion Method (NEM), 211

Nodal method with transport theory, 296

Non-dominated sorting genetic algorithm

(NSGA-II), 495

Non-multiplying media, 419

Non-multiplying sphere, neutron flux

estimation in, 453�462

Nonanalog simulation, 332

Nondestructive testing (NDT), 12, 20

Nonleakage probability, 89

Nonlinear first-and second-order ODEs, 151

Nonlinear integral equations, 166

Nonmultiplying systems. See also Multiplying

systems

one-group diffusion equation, 213�215

finite cylinder, 215

finite slab, 213�214

point source in infinite medium, 215

two-group diffusion equation, 221�227

computer programming example,

225�227

temperature effects on neutron flux, 227

Nonsingular linear integral equations, 166

Nonstandard ENDF/B reaction numbers, 383

Nonuniform fuel distribution

slab model, 239�243

spherical model, 244�247

Normal distribution, sampling from, 449�451

NPD. See Nuclear Power Demonstration (NPD)

NPPs. See Nuclear power plants (NPPs)

NR. See Narrow resonance (NR)

NRIM models. See Narrow resonance infinite

mass models (NRIM models)

NTCOC. See Neutronics/Thermal-hydraulic

Coupling Optimization Code (NTCOC)

NTE. See Neutron transport equation (NTE)

NTP. See Nuclear thermal propulsion (NTP)

Nuclear criticality safety analysis, 473

Nuclear cross sections, 62

Nuclear data, 341�344, 381

processing

codes, 343

system, 60

Nuclear Demonstration Unit (NDU), 125

Nuclear energy, 105, 107, 349

Nuclear Energy Agency (NEA), 34, 126, 340

Nuclear Engine for Rocket Vehicle Application

(NERVA), 134

Nuclear engineering, 5, 53, 187, 337, 349, 357,

372�373, 509

optimization in, 489

Nuclear fission, 80�87, 128, 489

critical energy, 81�83

fissile and fertile materials, 85�86

fissile/fertile nuclides, 86t

fission spectrum, 86�87

fission yield, 84

number of neutrons emitted in fission,

84�85

process, 80�81

spontaneous fission rates, 81t

reaction, 84

reactors, 337

Nuclear fuel cycle, 379

Nuclear fusion, 5, 128�132

fusion reaction, 128

ICF, 130�132

MCF, 129�130

reactors, 374

Nuclear interaction data, 306

Nuclear medicine (NM), 509

Nuclear power

generations of, 103�106

nuclear reactor classifications, 104t

industry, 106�107

nuclear power industry, 106�107

reactor shut down, 106

status of, 103�107

systems in space, 138�141

RTGs, 138

SNAP systems, 138�141

Nuclear Power Demonstration (NPD), 112

Nuclear power plants (NPPs), 106

Nuclear power reactors, 11, 323, 349, 374, 510

Nuclear propulsion reactors, 323

Nuclear radiation, 509

Nuclear reaction, 6, 60

Nuclear reactor(s), 64, 103, 337, 380, 495,

503�504

control, 361

marine propulsion reactors, 116�120

nuclear fusion, 128�132

nuclear power systems in space, 138�141

plutonium production reactors, 120�121

refueling, 365

small modular reactors, 121�127

for space, 139�141

space propulsion, 132�137

status of nuclear power, 103�107

systems, 107�115, 338

boiling water reactor, 110�112

fast breeder reactor, 114�115

gas cooled reactor, 113�114

pressurized heavy water reactor,

112�113

pressurized water reactor, 108�110

theory, 184

Nuclear Regulatory Commission, 388

Nuclear rocket designs for deep space

exploration, 134�137

engine comparisons, 136t

heating values, 135t

Nuclear Shell Model, 10

Nuclear stability, 5, 5f

Nuclear submarines, 118, 120

reactors, 374

Nuclear system, 1, 64, 305�306, 337

Nuclear technologies, 349, 379

radioactive nuclides in, 11�12

Nuclear thermal power reactors, 379

Nuclear thermal propulsion (NTP), 134

Nuclear thermal rocket, 136

Nuclei, 5

Numerical methods, 174�185, 211, 259

FDM, 174�177

FEM, 178�185

for solving transport equation, 285�298

BN method, 295�296

criticality estimates, 297�298

discrete ordinates method, 285�287

DPN method, 293�294

finite element method, 296

hybrid methods, 297

nodal method with transport theory, 296

spherical harmonics method, 287�293

O
Oak Ridge National Laboratories (ORNL), 339,

389

One dimension (1D)

slab reactor equation, 216

time-dependent heat conduction, 157

transport equation, 424

One-group balance equation, 212

One-group critical equation, 234

One-group criticality, 219�221

One-group diffusion equation, 417�418,

474�476

of NDE, 213�221

multiplying systems, 215�219

nonmultiplying systems, 213�215

one-group criticality, 219�221

One-group diffusion theory criticality,

417�418

one-group data for Godiva, 418t

one-group macroscopic cross sections for

Godiva, 418t

One-speed transport equation, 91, 264
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One-speed transport theory criticality,

419�421, 420t

One-zone criticality, 490

ONEDANT (parallel time-dependent

deterministic code), 339

Open-loop system, 362

OpenMOC codes, 339�340

Ophthalmic brachytherapy, 516

Optical data communication, 337

Optical model of neutron interaction, 51

Optimal analysis, 350

Optimal control equation, 357

Optimal discrete control, 360

Optimal distribution, 498�500

Optimal energy spectrum, 380

Optimal path, 367

Optimal solution with system of first-order

ordinary differential equation

constraints, 352�360

Optimization method, 337, 350, 502, 504

applications of optimization in reactors,

373�375

controller design and optimization, 361�365

proportional integral derivative controller

tuning parameters, 364t

deterministic optimization, 350�360

with algebraic constraints, 351�352

without constraints, 350�351

optimal discrete control, 360

optimal solution with system of first-order

ordinary differential equation

constraints, 352�360

dynamic programming, 365�367

in nuclear engineering, 375

in nuclear systems

controller design optimization, 503�504

fuel loading pattern optimization,

495�500

fusion neutronics design optimization,

493�494

radiation detection or optimization,

501�503

radiation shielding design optimization,

494�495

reactor core design optimization, 489�493

stochastic optimization, 367�373

variables, 492

Optimized controller design, 374

“Optimum moderation”, 245�246

Ordinary differential equations (ODEs),

150�156, 355. See also Partial

differential equations (PDEs)

coupled first-order ODEs, 155�156

Poisson equation, 153�155

Organic coolants, 104

ORNL Isotope Degeneration and Depletion

Code (ORIGEN), 338

Outboard (OB), 493�494

Oxygen (O), 516

P
Palladium (103Pd), 11

Paraffin wax, 502

PARallel Time-Dependent SN (PARTISN),

339

PARET code, 497

Partial differential equations (PDEs), 156�165.

See also Ordinary differential equations

(ODEs)

equations of fluid dynamics, 156

flux formulation, 164�165

heat conduction in 2-D and 3-D, 159�164

Laplace equation, 158

Particle and Heavy Ion Transport Code System,

512

Particle swarm optimization (PSO), 372�373,

489, 493

optimization by, 373t

Pb-Bi-cooled Fast Reactor, 126

Peak power factor (PPF), 492

Penetration and ENErgy LOss of Positrons and

Electrons (PENELOPE) code, 510, 512,

514�515

Performance index (PI), 355

Perturbation

algorithms, 515�516

calculations, 474�476

Perturbations with Monte Carlo simulation, 333

PET. See Positron Emission Tomography

(PET)

PGNAA. See Prompt Gamma Neutron

Activation Analysis (PGNAA)

Photoelectric effect in photon, 20

Photon collisions, 514

Photoneutron reactions, 23

PHWR. See Pressurized heavy water reactor

(PHWR)

Physical model of Godiva, 381

PI. See Performance index (PI)

PID controller. See Proportional Integral

Derivative controller (PID controller)

Pin-cell simulation, 399

PKA. See Primary Knock-on atom (PKA)

PKE. See Point kinetics equations (PKE)

Placzek discontinuities, 69

Planck’s constant, 3

Plane isotropic source, 424

finite sphere with, 274�284

infinite medium with, 273�274

Plastic, 380

Plutonium, 30, 463�464

Plutonium-238, 11

Plutonium-239, 5, 60�61, 85

production reactors, 120�121

sphere, 386

PNAA. See Prompt Neutron Activation

Analysis (PNAA)

Point isotropic mono-energetic source, 430

Point isotropic source, flux in finite sphere

with, 428�433

Point isotropic source equations, 430

Point kinetics equations (PKE), 155�156, 361

Poisson’s equation, 153�155, 213, 298

Polyethylene, 390, 502

moderator, 503

Polymer coated nanoparticles, 511�512

Pontryagin’s maximum principle, 498�500

Positron Emission Tomography (PET), 11

Postcollision angles, 35

Power conversion system, 374

Power density distribution, 324

Power plants, 104

Power-producing nuclear reactor, 104

PPF. See Peak power factor (PPF)

Pressurized heavy water reactor (PHWR),

85�86, 103, 112�113, 349, 493

core pattern optimization, 374

physical design parameters of PHWR, 113t

Pressurized water reactor, 108�110

AP1000 and PWR300 MW, 110t

P-PWR and APR1400 nuclear reactors, 109t

Primary Knock-on atom (PKA), 403�405

Probabilistic Risk Assessment PRA techniques,

105

Probability distribution function (PDF), 14�16,

59, 187, 314, 369, 449

sampling from, 196�199

Prompt Gamma Neutron Activation Analysis

(PGNAA), 389

Prompt Neutron Activation Analysis (PNAA),

380

Proportional counter, 29

Proportional Integral Derivative controller (PID

controller), 362, 374

Prostate adenocarcinomas, 513

Protons, 2

Pseudo-random numbers, 195

PSO. See Particle swarm optimization (PSO)

Purdue Advanced Reactor Core Simulator

(PARCS), 340, 343

Pythagoras’ Theorem, 354

Q
Quality factor, 27

R
Radial power peaking (RPP), 400

Radial power peaking factor (RPPF), 374

Radiation, 509

damage, 403

detection, 501�503

B(n, α)Li reactions for wax-moderated

BF3 detector, 502t

dose, 67

energy, 514�515

with matter, interaction of, 12�24, 12f

interaction of alpha rays with matter,

12�16

interaction of beta radiation with matter,

16�19

interaction of gamma radiation with

matter, 19�24

mathematical modeling and simulation of,

34�44

alpha particle transport simulation, 35

interaction of electrons with matter,

35�40

interaction of gamma radiation with

matter, 40�41

528 Index



radiation dose from Calfornium-252

gamma source in water, 41�44

moderation, 389�390

for neutron generator, 389�390

nuclide therapy, 509

oncology, 514�515

optimization, 501�503

B(n, α) reaction rate as function of

pressure and 10B weight fraction, 503t

safety, 473�474

current, flux and dose for water and iron

slabs, 475t

half value layer thickness for some

shielding materials, 475t

limits, 28�29

source term, 127, 127t

sources and effects of, 24�30

absorbed dose, 26�27

Am-Be and Cf-252 neutron sources, 25t

effective dose, 28

equivalent dose, 27�28

neutron energy spectra, 25f

radiation detection, 29�30

radiation dose, 26

radiation safety limits, 28�29

therapy, 509

Radiation Safety Information Computational

Center (RSICC), 34

Radiation shielding, 374�375, 380, 389�390,

473�474, 489

design optimization, 494�495, 494f

radiation dose across concrete shield, 392t

Radiation transport, 305

codes, 338�340

process, 337

Radiative capture, 394

cross-section, 77

Radio-isotope cesium-131 (Radio-isotope
131Cs), 513

Radio-isotopes, 509, 512

production of, 510�511

Radioactive atoms, 7

Radioactive decay, 6�12

alpha decay, 8�9

beta decay, 9

gamma decay, 10�11
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