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About this Book

What Does This Book Cover?

This book’s purpose is to showcase Operations Research (OR) methodologies
to applications targeted to make this world a better place. This book also
provides skills and practical examples to model and solve OR problems with
both SAS and Python.

Each use case is a real-life application that has been implemented and
proven successful. We solve use cases with both SAS and Python, driving
students to learn both programming languages to solve OR problems and
giving professors flexibility to choose which technology to focus on in their
classes.

This book does not cover operations research theory or optimization algo-
rithms. Instead, it focuses on problem modeling and formulation.

Is This Book for You?

This book is for data scientists, analytics and operations research practitioners,
and graduate-level students interested in learning optimization modeling with
applied use cases.

What Are the Prerequisites for This Book?

Knowledge of linear algebra (specifically algebraic summation syntax) is
needed.
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xii About this Book

What Should You Know about the Examples?

All examples in the book are formulated with SAS and Python, providing
helpful coding syntax to the readers. All applications are based on real-life
Data4Good projects.

Software Used to Develop the Book’s Content

SAS OPTMODEL and Python/Pyomo.

Example Code and Data

You can access the example code and data for this book by linking to its
author page at https://support.sas.com/authors.

SAS OnDemand for Academics

This book is compatible with SAS OnDemand for Academics. If you are
using SAS OnDemand for Academics, then begin here: https://www.sas.com/
en us/software/on-demand-for-academics.html.

Where Are the Exercise Solutions?

Selected problem solutions can be found at the end of the book.

We Want to Hear from You

SAS Press books are written by SAS Users for SAS Users. We welcome your
participation in their development and your feedback on SAS Press books that
you are using. Please visit sas.com/books to do the following:

• Sign up to review a book
• Recommend a topic

https://support.sas.com/authors
https://www.sas.com/en_us/software/on-demand-for-academics.html
https://www.sas.com/en_us/software/on-demand-for-academics.html
http://support.sas.com/books
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• Request information on how to become a SAS Press author
• Provide feedback on a book

Learn more about these authors by visiting their author pages, where you
can download free book excerpts, access example code and data, read the
latest reviews, get updates, and more:

• https://support.sas.com/summerville
• https://support.sas.com/pratt

https://support.sas.com/summerville
https://support.sas.com/pratt
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Chapter 1

Introduction: Mathematical
Optimization and the
Data4Good Movement

Data4Good is a broad initiative, encompassing many types of analytics imple-
mentations for nonprofit organizations and/or organizations with missions
that focus on the greater good. Examples of Data4Good projects include
humanitarian logistics supporting disaster relief, cancer treatment innova-
tion, equitable access to children’s playgrounds, and deforestation forecasting,
among many others. Typically, these implementations are performed by data
scientists and analytics professionals on a pro bono/volunteer basis due to
limited budgets available for analytics within these organizations. Over the
last decade, the Data4Good movement has been significantly expanding, moti-
vating more and more analytics professionals to bring their skills to support
mission-driven organizations.

However, most of these applications focus on descriptive/diagnostic ana-
lytics, sometimes on predictive analytics, and rarely on prescriptive analyt-
ics. Traditionally, only analytically mature organizations built end-to-end pre-
scriptive analytics engines that included optimization models. This is mostly
due to the specific (and scarce) mathematical expertise required to prop-
erly formulate optimization models that often need PhD-level skills, available
data to support these formulations, and established processes to incorporate
new decision-making support systems that focus on user adoption and end
value. Despite the reduced number of optimization projects in Data4Good (as

1



2 Introduction: Mathematical Optimization

opposed to descriptive and predictive modeling projects), we are firm believ-
ers that optimization tools can be key to help these mission-driven organiza-
tions make better decisions and be more efficient in using their very limited
resources.

In this book, we introduce optimization modeling concepts that can help
any organization be more efficient but with Data4Good applications. All
applications discussed in this book come from proven real-life implementa-
tions, albeit often simplified for teaching purposes.

We hope that by studying this book, you will not only familiarize yourself
with optimization modeling and scripting (in both SAS and Python) but also
learn heartwarming applications where optimization can make this world a
better place.



Chapter 2

Mathematical Optimization
Landscape

Mathematical optimization provides organizations with actionable insights
and results that are fundamentally geared toward improving organizational
efficiency. This value-driven focus places optimization on top of Prescriptive
Analytics, a field that generates the highest competitive advantage to those
organizations who decide to use their data to build and implement optimiza-
tion tools. But before we dive into definitions and specific characteristics of
mathematical optimization, let’s review the three main Advanced Analytics
areas and how they relate to each other.

2.1 Areas of Advanced Analytics

Advanced Analytics is typically classified into three (or four, depending on
the source) categories based on their usage and competitive advantage for
the organization. These areas are Descriptive/Diagnostic (some authors split
these two into separate categories), Predictive, and Prescriptive, as shown in
Figure 2.1.

3
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2.1 Areas of Advanced Analytics 5

Descriptive/Diagnostic Analytics

Descriptive and/or Diagnostic Analytics focuses on using data analysis to
understand what has happened and why it has happened. Besides basic data
analysis techniques such as scatter plots and correlation analysis, the most
used Advanced Analytics models include:

• Clustering (Unsupervised Machine Learning) to understand groups of
observations and their similarities

• Network Analytics to describe patterns in interconnected data
• Regression Analysis (Supervised Machine Learning) to understand causal

relationships

For example, we might want to understand the differences between groups
of patients based on their molecular characteristics from lab tests using clus-
tering techniques. We might also be interested in identifying the most relevant
production settings that influence key quality metrics in wallboard manufac-
turing using regression models.

Predictive Analytics

Predictive Analytics uses statistical analysis to forecast future states. Besides
näıve forecasting techniques such as year-over-year and moving averages, some
typical forecasting models are:

• ARIMA models (Time Series Forecasting) to derive historical patterns
from past sequential data and predict future observations by using those
historical patterns

• Recurrent Neural Networks (Supervised Machine Learning) to predict
future states based on previous states and their interactions

For example, time series models would forecast weekly product sales for a
specific grocery store or expected daily arrivals for labor and delivery unit in
a hospital.

Prescriptive Analytics

Prescriptive Analytics focuses on providing the best possible future action to
achieve organizational goals. Besides techniques such as heuristic rule-based
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approaches and decision analysis, the most typically used Advanced Analytics
tools are:

• Optimization, which includes an algebraic representation of the business
problem, including relevant goals, key performance indicators (KPIs),
rules, and limitations, as well as mathematical algorithms that find the
best possible decisions that satisfy those rules while maximizing or min-
imizing those KPIs

• Simulation models to build a digital system representation, including
stochastic distributions of relevant parameters, and to run what-if anal-
ysis and evaluate decision options

• Markov Chains that model systems where there are transitions between
states according to probabilistic rules

For example, we might need to find the best possible schedule for retail
employees, aiming to cover shifts with highest demand while minimizing over-
time using mathematical optimization.

The three Advanced Analytics areas are closely related, and typically all
of them are required for a successful analytical implementation. For exam-
ple, very often within optimization models we need to incorporate forecasted
demand for a product, or relationships between manufacturing settings and
relevant KPIs, which in turn use time series and regression models, respec-
tively.

2.2 Process to Produce an Optimal Solution

To generate an optimal solution via mathematical optimization, four main
steps need to happen after thorough data exploration, validation, and predic-
tive model building (if required). These steps are highlighted in Figure 2.2.

Figure 2.2: Optimization Process



2.2 Process to Produce an Optimal Solution 7

We first need to assemble the problem into an optimization struc-
ture, which includes identifying the following components (also presented in
Table 2.1):

Table 2.1: Optimization Components

Optimization

Component

Definition Examples

Decision Variables Controllable actions Promotion discounts

Selection of investment funds

Classroom assignment to student groups

Constraints Rules and limitations Do not let profit be negative

Stay within available budget

Each group needs to have a classroom

Objective

Function(s)

Goals for key

performance indicators

Maximize revenue

Minimize final inventory

Maximize classroom utilization

• Decision variables are the controllable actions that users can take. For
example, a pricing analyst decides how much price promotion discount
to allocate to certain products and when.

• Constraints are all the rules and limitations that restrict those decisions.
For example, the promotion discounts must not lead to a negative profit
across all products.

• Objective functions are specific goals for the KPIs that the organization
wants to achieve in this decision-making process. For example, the user
might want to maximize revenue.

It is typically helpful to have those components written in a natural lan-
guage before moving to the next step. For example:

• I need to decide how to price my products (decision variables).
• I want to achieve highest revenue (objective function).
• Margin cannot be negative (constraint).
• Demand for each product is expected to be 100− 0.2∗Price (constraint).
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Please notice that the demand equation above (albeit simplified for this
example) requires a predictive model that explains the relationship between
price and demand.

Once there is clear understanding of the components described above, we
need to formulate this problem mathematically, using appropriate algebra.
For example:

maximize
∑
p

Demandp × Pricep

subject to
∑
p

(Pricep − Costp) ≥ 0

Demandp = 100− 0.2Pricep for all p ∈ PRODUCTS

Pricep ≥ 0 for all p ∈ PRODUCTS

The next step is expressing the algebraic formulation in a mathematical
programming language like SAS OPTMODEL or Python Pyomo that use an
intuitive coding syntax to facilitate an easy translation between the math and
the code.

The final step is to call an efficient algorithm (sometimes called a solver)
to produce an optimal solution. In the example above, the algorithm would
return an optimum price for each product that would generate the maximum
revenue while making sure profit is nonnegative.

2.3 Types of Optimization Models

Optimization models are classified based on the mathematical characteris-
tics of the algebraic representation of the problem such as linearity in con-
straints/objective functions and types of decision variables used. Some of the
most used optimization models include Linear Programming (LP), Integer
Programming (IP), Mixed Integer Linear Programming (MILP), Nonlinear
Programming (NLP), and Multicriteria Optimization. This list is not exhaus-
tive. Differences among these types of models are shown in Table 2.2.
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Table 2.2: Most Used Types of Optimization

Optimization

Component

Linear

Programming

Mixed Integer

Linear

Programming

Nonlinear

Programming

Multicriteria

Optimization

Decision

Variables

Continuous Continuous,

Integer, or

Binary

Continuous Continuous,

Integer, or

Binary

Constraints Linear Linear Nonlinear Linear or

Nonlinear

Objective

Function(s)

One One One More than one

Network optimization models deserve special mention. Many well-studied
formulations such as Shortest Path or Traveling Salesman have MILP models.
However, their specific structural characteristics enable specialized algorithms
to generate solutions much faster than a typical MILP algorithm such as
Branch-and-Bound would. Therefore, it is often desirable, when appropriate,
to reformulate MILP models as Network models to take advantage of their
specific structure and specialized algorithms.

2.4 Optimality and Algorithmic Performance

Some optimization problems can be very complex (in terms of number of
decision variables, number of constraints, nonlinearity, and integrality of vari-
ables, among others). This complexity translates into potentially long running
times for the solution algorithms and sometimes inability to achieve an opti-
mal solution. However, in practice, many times even if a feasible solution is
not globally optimal, it can still provide significant business value over the
status quo.
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2.5 Example Application – Medical Resource

Optimization

In March 2020, the COVID-19 global pandemic forced hospitals to reassign
most of their resources in order to maintain Emergency Rooms (ERs) and
Intensive Care Units (ICUs) ready to support the population’s growing need
for emergency COVID-19 care and put on hold many of the elective surg-
eries and procedures that clinics and hospitals offered. SAS and Cleveland
Clinic partnered to develop a mathematical model to support decision-making
regarding reopening these optional services, considering the capacity limita-
tions on manpower, equipment, and COVID-19 tests, among others.

This problem was formulated as a Multicriteria MILP mathematical model.
The components of the model are described as follows.

Decision Variables

Controllable decision variables in this model were defined as the selection of
subservices to reopen and the reopening dates.

Constraints

The reopening of subservices and number of patients accepted had to adhere
to many constraints, the most significant of which are:

• The capacity of each resource at a facility, their services, and their cor-
responding subservices cannot be exceeded.

• The utilization of ICU resources at a facility cannot exceed a specified
upper limit.

• The number of patients accepted at a facility will never exceed the max-
imum forecasted demand.

• The total number of daily emergency surgery and patients accepted across
all facilities should not exceed the number of daily rapid tests available.

• If a subservice is open at a facility/service-line on a day, it should remain
open for the remainder of the horizon (logical condition).
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Objective Functions

This model had two objective functions to reboot clinics’ cash flow, which in
turn enables further support for emergency care:

• Maximize the total revenue
• Maximize the total margin

Revenue and margin are functions of the number of patients accepted over
the planning horizon.

More detailed information, as well as the full code, can be found at
https://github.com/sassoftware/medical-resource-optimization.

Many other very useful optimization model examples and their SAS code
can be found at
https://support.sas.com/rnd/app/examples/ORexamples.html#MPE.

https://github.com/sassoftware/medical-resource-optimization
https://support.sas.com/rnd/app/examples/ORexamples.html#MPE




Chapter 3

Use Case Structure and Code
Initialization

We will now describe the structure of each chapter and use case as well as
the required code initialization to be able to run the code provided in this
book. This is relevant for a smooth progression through the use cases and
their associated sections.

3.1 Use Case Structure

Each chapter first describes a type of mathematical optimization model at a
high level, pointing to relevant bibliography in case the reader would like to
learn more of the theory behind the models and algorithms. Then the concepts
are discussed further through use cases, typically with increasing complexity.
Each use case is structured in the following way.

3.1.1 Introduction

The introduction section of each use case has a high-level overview of the opti-
mization application and its real-world impact. All use cases in this book come
from real-life applications, with some modifications to make the formulation
appropriate to introduce optimization modeling to the reader. This section
also gives due credit to original authors and provides links where the reader
can find more information on the original application.

13
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3.1.2 Problem Definition

This section formalizes the description of the application with optimization
elements: goals/objective functions, rules/constraints, and controls/decision
variables.

3.1.3 Data and Settings Inputs

We loosely differentiate between two types of inputs: data and settings (even
though both can be ingested from data tables).

• Data inputs are defined here as inputs that are typically provided from
databases and can be quite large, for example, cost of each food element,
product demand, and so on.

• Settings inputs are defined as single data points the application user can
modify to shape the problem further, for example, overall budget, maxi-
mum number of products to include in price promotion, and so on.

A detailed data dictionary is provided for each use case that includes all
data tables to be read within the code. The data dictionary contains the
names of the data tables, the variables, their types, and a description of each
variable. Finally, we include a small snapshot (typically just a couple records)
of each table to give further insight into the data structure. Please notice any
modifications to the data structure would require code modification as well.

All use case data are provided in the companion materials for this book as
CSV files.

3.1.4 Mathematical Formulation

Before defining the equations for the constraints and objective function(s)
for the use case, we introduce all nomenclature and its detailed descriptions,
including dimensions (or sets), data parameters (from input data), user set-
tings (either hard-coded or read from input settings tables), and decision vari-
ables.

Then we mathematically formulate all constraints (using the nomenclature
as detailed before) and describe each constraint. Finally, we mathematically
formulate and describe the objective function(s).
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3.1.5 Mathematical Formulation and SAS Model

In this section, we present the SAS OPTMODEL code required to formu-
late the use case. For the reader’s convenience, we match each piece of the
code with the associated mathematical formulation to promote code syntax
intuition in the reader. An example is shown in Table 3.1.

Table 3.1: SAS Code Example

MATHEMATICS SAS CODE

t ∈ TIMES set TIMES;

capacity num capacity = 40;

NumStartt var NumStart {TIMES} >= 0 integer;

∑
t NumStartt ≤ capacity con CapacityCon:

sum {t in TIMES} NumStart[t] <= capacity;

3.1.6 SAS Output

This section shares a screenshot of the summary output provided by SAS
OPTMODEL after running the code. An example is provided in Figure 3.1.
This output contains some relevant information such as the name of the solver
and algorithm used, the solution status (optimal, infeasible, etc.), the optimum
value of the objective function (if found), and more information related to the
algorithmic progression. Any extra values that we requested to be printed will
appear as well.

3.1.7 Mathematical Formulation and Python Model

Similarly to the SAS OPTMODEL section, here we provide detailed syntax
using Python’s Pyomo package and associate this syntax with each piece of
the mathematical formulation. An example is shown in Table 3.2.
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Figure 3.1: SAS Output

Table 3.2: Python Code Example

MATHEMATICS PYTHON CODE

capacity m.capacity = Param()

t ∈ TIMES m.times = Set()

NumStartt m.NumStart = Var(m.times, domain=NonNegativeIntegers)

∑
t NumStartt ≤
capacity

def Capacity_Rule(m):

return (sum(m.NumStart[t] for t in m.times) <= m.capacity)

m.Capacity = Constraint(rule=Capacity_Rule)
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3.1.8 Python Output

This section shares a screenshot of the summary output provided by Pyomo
after running the code. An example is provided in Figure 3.2. This output
contains some relevant information such as the status, the termination
condition, some statistics on algorithmic progression, and any extra values
that we requested to be printed.

Figure 3.2: Python Output

3.1.9 Output Results

Finally, we provide a snapshot (a couple records) of the output results gener-
ated by the code and explain their interpretation. These results refer specifi-
cally to the optimum values of the decision variables.

3.2 Code Initialization

It is common in optimization applications to use two types of software: a
modeling language that algebraically expresses the mathematical model and a
solver that solves the problem. This book’s focus is the art of modeling opti-
mization applications, so we strongly rely on the modeling language software,
specifically OPTMODEL for SAS and Pyomo for Python. We then make calls
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to the appropriate solvers to produce a solution. This is the typical pipeline
followed by optimization practitioners, unless the size of the problem exceeds
the capacity of the existing solvers and the user needs to design specific algo-
rithms (sometimes heuristics) to generate solutions for the problem.

To be able to run the mathematical formulation code shown in the use
cases’ SAS/Python sections, we encourage the reader to open the accompa-
nying .sas and .ipynb files. Those files contain relevant setup lines of code
such as:

• Importing CSV files into the appropriate form: SAS data set or pandas
DataFrame

• Calling the appropriate procedure/packages
• Reading the SAS data set or pandas DataFrame into defined optimization

parameters

These three steps are not detailed in the use case sections, and the reader
needs to obtain the right syntax imported directly from the code files.

We will now describe the required installations for each software.

3.2.1 SAS Code Initialization

This book uses SAS Optimization in SAS Viya and the following relevant
products:

• Modeling language: OPTMODEL
• Solvers: LP, MILP, NLP, network
• Code editor: SAS Studio

Detailed documentation is provided in [SAS23]. We strongly encourage
readers to refer to this documentation when needed to better understand syn-
tax and/or when code debugging is necessary.

At the time of this book publication, SAS provides two free trial options,
and the code provided in this book can be run in any of these:

• SAS Viya for Learners.
https://www.sas.com/en us/software/viya-for-learners.html
The reader needs to have an academic email to be able to request
access. This version contains the latest SAS platform called SAS Viya
and includes SAS OPTMODEL. Depending on your academic institution,
personal data uploads might not be allowed.

https://www.sas.com/en_us/software/viya-for-learners.html
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• SAS OnDemand for Academics
https://support.sas.com/en/software/ondemand-for-academics-
support.html
The reader does not need to have a specific type of email to request
access. This trial is built on the SAS 9 platform and might have more
limited features than SAS Viya. The only data limitations in this option
are size-related.

It is also relevant to mention that SAS does offer an alterna-
tive formulation language (sasoptpy) that supports writing the model in
Python while calling SAS solvers. Documentation can be found here:
https://sassoftware.github.io/sasoptpy

3.2.2 Python Code Initialization

This book uses Python 3.10.4 [dt22f] and the following packages:

• Modeling language: Pyomo 6.4.2.
Software documentation can be found in [dt22e] and accompanying
research in [BHH+21] and [HWW11].

• Solvers: GLPK version 5.0 and IPOPT version 3.14.9.
Software documentation can be found in [dt12] and [dt22a] and accom-
panying research in [WB06].

• Code editor: Jupyter Notebook 6.4.12.
Documentation can be found in [dt22b].

• Support: pandas 1.4.3 and NumPy 1.23.3.
Documentation can be found in [dt22d] and [dt22c] and accompanying
research in [dt20], [WM10], and [HMvdW+20].

https://support.sas.com/en/software/ondemand-for-academics-support.html
https://support.sas.com/en/software/ondemand-for-academics-support.html
https://sassoftware.github.io/sasoptpy




Chapter 4

Linear Programming

Linear Programming (LP) is a fundamental optimization methodology and
forms the basis of several other areas in Operations Research. This chap-
ter first reviews LP concepts and then presents two use cases based on real
applications, followed by practice problems related to these use cases.

4.1 Concepts Review

A Linear Programming (LP) problem is an optimization problem with all
variables continuous, a linear objective function, and all constraints linear. In
mathematical notation, the problem is to maximize or minimize a linear func-
tion

∑n
j=1 cjxj subject to linear constraints

∑n
j=1 ai,jxj = bi for i ∈ {1, . . . ,m}

and ℓj ≤ xj ≤ uj for j ∈ {1, . . . , n}. Here, the cj values are called objective
coefficients, the ai,j values are called constraint coefficients, bi is the right-hand
side, and ℓj and uj are lower and upper bounds, respectively, for the decision
variable xj. Commonly, the decision variables represent physical quantities
for which ℓj = 0 and uj = ∞, but either bound can be finite or infinite.
Because everything is linear, an LP problem can alternatively be represented
in matrix-vector form as follows: maximize or minimize c⊤x subject to Ax = b
and ℓ ≤ x ≤ u. For simplicity, the notation used here expresses each constraint
as an equality, but most LP solvers accept any combination of =, ≤, and ≥
constraints.

21



22 Linear Programming

To solve an LP problem, several alternative algorithms are common:

• The primal simplex method, devised by George Dantzig in 1947, proceeds
in two phases. The first phase (“Phase I”) finds a feasible solution that
satisfies all constraints, and the second phase (“Phase II”) improves the
feasible solution to an optimal solution that both satisfies all constraints
and optimizes the objective function. This algorithm is especially useful
when you want to solve a sequence of LPs in which every feasible solu-
tion of one LP is feasible to the subsequent LP, as often happens when
new decision variables are added to an existing problem. A warm start
procedure can exploit this structure to skip Phase I instead of starting
from scratch.

• The sifting algorithm is a column-generation variant of the primal simplex
method that considers only a small subset of the variables at a time and
introduces others as needed based on reduced costs. This algorithm tends
to perform better when the number of variables is much larger than the
number of constraints.

• The dual simplex method similarly proceeds in two phases but is more
efficient for warm starting when new constraints are added to a problem,
as happens during the branch-and-bound algorithm for mixed integer
linear programming, to be discussed in Chapter 5.

• The network simplex algorithm is efficient for problems that consist
mostly of a network structure, such as in the minimum-cost network flow
problem.

• The interior point algorithm can be efficient for large LPs with millions of
decision variables, in part because it can naturally use parallel processing.

• Dantzig-Wolfe decomposition can perform well for problems where the
constraint matrix has block-angular structure, that is, where the prob-
lem decomposes into multiple subproblems that are linked together by
only a small percentage of the overall number of constraints. For more
information about the automated Dantzig-Wolfe implementation in SAS,
see the decomposition algorithm chapter in [SAS23].

SAS provides all of these LP algorithms, and the default choice is based on
the problem structure. A concurrent option can run multiple LP algorithms
simultaneously on multiple threads, returning an optimal solution whenever
the first algorithm finishes. For more information about the LP solver in SAS,
see the linear programming solver chapter in [SAS23].
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In Python, different linear programming solvers can be called, for example
the open source solver GLPK [dt12].

For in-depth information about linear models and solution algorithms,
please refer to [BT97].

4.2 Use Case: The Nutritious Supply Chain:

A Food Basket Optimization

The United Nations World Food Programme (WFP) is the largest humanitar-
ian agency fighting hunger worldwide, reaching around 80 million people with
food assistance in 75 countries each year. A comprehensive model was devel-
oped by Peters et al. [PSG+21] to support WFP by simultaneously optimizing
the food basket, sourcing plan, and routing plan of a recovery operation. In
this section, we will focus on a simplified food basket optimization, addressed
in the comprehensive research mentioned above. This research won the 2021
Franz Edelman Award for Achievement in Advanced Analytics, Operations
Research, and Management Science from INFORMS.

4.2.1 Problem Definition

The food basket optimization problem focuses on finding the optimum food
commodities to be included in the package, such that required nutrition levels
are achieved at minimum cost.

4.2.2 Data and Settings Inputs

This application requires data on the nutrient levels for each food commodity
to be considered (data input), as well as the cost per commodity (data input)
and the minimum required level for each nutrient (data input).

The data dictionary in Table 4.1 contains more detailed information about
the tables and the variables.
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Table 4.1: Data Dictionary
Data Table Variable

Name

Variable

Type

Variable Description

INPUT FOOD Food Char Name of the food commodity (e.g.,

Eggs Raw)

INPUT FOOD Cost Num Cost of the food commodity per ration

(e.g., 3.5)

INPUT FOOD NUTR Food Char Name of the food commodity (e.g.,

Eggs Raw)

INPUT FOOD NUTR Nutr Char Name of the nutrient (e.g., Fiber)

INPUT FOOD NUTR Value Num Amount of the nutrient in the food

commodity ration (e.g., 42)

INPUT MIN INTAKE Nutr Char Name of the nutrient (e.g., Fiber)

INPUT MIN INTAKE Req Num Minimum amount of nutrient required

in a healthy diet (e.g., 1800)

Tables 4.2, 4.3, and 4.4 show snapshots of the input data.

Table 4.2: INPUT FOOD Data Snapshot

Food Cost
Beef 6

Cheese 0.5
Corn Meal 0.5

Table 4.3: INPUT FOOD NUTR Data Snapshot

Food Nutr Value
Corn Meal Calories 360
Corn Meal Protein 9
Corn Meal Fiber 1

Table 4.4: INPUT MIN INTAKE Data Snapshot

Nutr Req
Calories 1800
Protein 45
Fiber 26
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4.2.3 Mathematical Formulation

Dimensions

The dimensions relevant in this use case are the sets of food commodities and
nutrients, as shown in Table 4.5.

Table 4.5: Dimensions
Dimension Name Dimension Description

f ∈ FOOD Set of food commodities

n ∈ NUTR Set of nutrients

Data Parameters

Table 4.6 shows the input parameters read from the INPUT FOOD,
INPUT FOOD NUTR, and INPUT MIN INTAKE tables.

Table 4.6: Data Parameters
Parameter Name Parameter Description

foodCostf Cost of food commodity f

nutrValn,f Amount of nutrient n in food commodity f

nutrReqn Minimum requirement for nutrient n

Decision Variables

The key decision variable is the amount of food commodity to include in the
food basket, as shown in Table 4.7.

Table 4.7: Decision Variables
Variable Name Variable Description

FoodAmtf Amount of food commodity f to include in the food basket
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Constraints

This use case imposes the following constraints:∑
f

nutrValn,f × FoodAmtf ≥ nutrReqn for all n (4.1)

Constraint (4.1) assures required levels of all nutrients are achieved with
the food basket.

Objective Function

The objective in this use case is to minimize the total cost of the food basket:

min TotalCost =
∑
f

foodCostf × FoodAmtf

4.2.4 Mathematical Formulation and SAS Model

Tables 4.8 and 4.9 show the mathematical formulation and the corresponding
SAS code. The full code can be found in the supporting materials.

Table 4.8: SAS Code for Sets, Parameters, and Variables

MATHEMATICS SAS CODE

f ∈ FOOD set <str> FOOD;

n ∈ NUTR set <str> NUTR;

foodCostf num foodCost {FOOD};

nutrReqn num nutrReq {NUTR};

nutrValn,f num nutrVal {NUTR, FOOD};

FoodAmtf var FoodAmt {FOOD} >= 0;
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Table 4.9: SAS Code for Constraints and Objective Function∑
f nutrValn,f × FoodAmtf ≥

nutrReqn for all n

con Nutrition {n in NUTR}:

sum {f in FOOD} nutrVal[n,f] * FoodAmt[f]

>= nutrReq[n];

min TotalCost =∑
f foodCostf × FoodAmtf

min TotalCost =

sum {f in FOOD} foodCost[f] * FoodAmt[f];

4.2.5 SAS Output

Figure 4.1 shows the Solution Summary produced by the SAS code, including
the optimum value for the objective function.

Figure 4.1: SAS Output
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4.2.6 Mathematical Formulation and Python Model

Tables 4.10 and 4.11 show the mathematical formulation and the correspond-
ing Python code. The full code can be found in the supporting materials.

Table 4.10: Python Code for Sets, Parameters, and Variables

MATHEMATICS PYTHON CODE

f ∈ FOOD m.food = Set()

n ∈ NUTR m.nutr = Set()

foodCostf m.foodCost = Param(m.food)

nutrReqn m.nutrReq = Param(m.nutr)

nutrValn,f m.nutrVal = Param(m.nutr,m.food)

FoodAmtf m.FoodAmt = Var(m.food, domain=NonNegativeReals)

Table 4.11: Python Code for Constraints and Objective
Function∑

f nutrValn,f × FoodAmtf ≥
nutrReqn for all n

def Nutr_Rule(m,n):

return (sum(m.nutrVal[n,f]*m.FoodAmt[f]

for f in m.food) >= m.nutrReq[n])

m.Nutr = Constraint(m.nutr,rule=Nutr_Rule)

min TotalCost =∑
f foodCostf × FoodAmtf

def Cost_Rule(m):

return (sum(m.foodCost[f]*m.FoodAmt[f]

for f in m.food))

m.Cost = Objective(rule=Cost_Rule, sense=minimize)
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4.2.7 Python Output

Figure 4.2 shows the output produced by the Python code, including the
optimum value for the objective function.

Figure 4.2: Python Output

4.2.8 Output Results

Table 4.12 shows a snapshot of the optimal results. This is the optimum
amount (weight) for each food commodity to be included in the food basket.

Table 4.12: Optimal Results Data Snapshot

Food Amt
Flour 0.93

Corn Meal 0
Oatmeal 5.87

4.3 Use Case: The Nutritious Supply Chain:

Food Basket and Delivery Optimization

As mentioned in the previous use case, the United Nations World Food Pro-
gramme (WFP) is the largest humanitarian agency fighting hunger worldwide,
reaching around 80 million people with food assistance in 75 countries each
year. In this section, we will expand the food basket optimization model to
include optimum distribution decisions because different suppliers need to be
considered.
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4.3.1 Problem Definition

In addition to optimizing the food commodities to be included, we also deter-
mine the optimum suppliers for each food. Each food commodity can be
shipped from different suppliers at different costs. Suppliers might also have
different availability for each food commodity.

4.3.2 Data and Settings Inputs

This application requires data on the nutrient levels for each food commodity
to be considered (data input) and the minimum required level for each nutrient
(data input). We now also include supplier food commodity availability and
cost (data input). In this use case, the availability and cost depend on the
supplier.

The data dictionary in Table 4.13 contains more detailed information about
the tables and the variables.

Table 4.13: Data Dictionary
Data Table Variable

Name

Variable

Type

Variable Description

INPUT FOOD Food Char Name of the food commodity (e.g.,

Eggs Raw)

INPUT FOOD Cost Num Cost of the food commodity per ration

(e.g., 3.5)

INPUT FOOD NUTR Food Char Name of the food commodity (e.g.,

Eggs Raw)

INPUT FOOD NUTR Nutr Char Name of the nutrient (e.g., Fiber)

INPUT FOOD NUTR Value Num Amount of the nutrient in the food

commodity ration (e.g., 42)

INPUT MIN INTAKE Nutr Char Name of the nutrient (e.g., Fiber)

INPUT MIN INTAKE Req Num Minimum amount of nutrient required

in a healthy diet (e.g., 1800)

INPUT SUPPLIERS Food Char Name of the food commodity (e.g.,

Eggs Raw)

INPUT SUPPLIERS Supplier ID Num Identification number of the supplier

(e.g., 1)

INPUT SUPPLIERS Tcost Char Transportation cost of the food item

provided by supplier (e.g., 2.5)

INPUT SUPPLIERS Avail Char Availability of the food item provided

by supplier per measurement (e.g.,

100)
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Table 4.14 shows a snapshot of additional supplier input data, used
together with Tables 4.2, 4.3, and 4.4.

Table 4.14: INPUT SUPPLIERS Data Snapshot

Food Supplier ID Tcost Avail
Beef 1 0.1642 170
Beef 2 0.20 98
Beef 3 0.35 120

4.3.3 Mathematical Formulation

User-defined Settings

Table 4.15 shows an additional user-defined setting that is required in this
formulation.

Table 4.15: User-defined Settings
Setting Name Setting Description

numBaskets Total number of baskets that need to be shipped

Dimensions

The dimensions relevant in this use case are the sets of food commodities,
nutrients, and suppliers, as shown in Table 4.16.

Table 4.16: Dimensions
Dimension Name Dimension Description

f ∈ FOOD Set of food commodities

n ∈ NUTR Set of nutrients

s ∈ SUPP Set of suppliers

Data Parameters

Table 4.17 shows the input parameters read from the INPUT FOOD,
INPUT FOOD NUTR, INPUT MIN INTAKE, and INPUT SUPPLIERS
tables.
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Table 4.17: Data Parameters
Parameter Name Parameter Description

foodCostf Cost of food commodity, independent of supplier f

foodTcostf,s Transportation cost of food commodity f from supplier s

foodAvailf,s Availability of food commodity f from supplier s

nutrReqn Minimum requirement for nutrient n

nutrValn,f Amount of nutrient n in food commodity f

Decision Variables

The key decision variable is the amount of each food commodity to ship from
each supplier, as shown in Table 4.18.

Table 4.18: Decision Variables
Variable Name Variable Description

FoodAmtf,s Amount of commodity f to include in the food basket from

supplier s

Constraints

This use case imposes the following constraints:∑
f,s

nutrValn,f × FoodAmtf,s ≥ numBaskets× nutrReqn for all n (4.2)

FoodAmtf,s ≤ foodAvailf,s for all f, s (4.3)

Constraint (4.2) assures required levels of all nutrients are achieved for all
the baskets to be shipped, and constraint (4.3) prohibits exceeding the given
availability of food commodities.

Objective Function

The objective in this use case is to minimize the total cost of all food baskets,
including transportation cost:

min TotalCost =
∑
f,s

(foodCostf + foodTcostf,s)FoodAmtf,s
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4.3.4 Mathematical Formulation and SAS Model

Tables 4.19 and 4.20 show the mathematical formulation and the correspond-
ing SAS code. The full code can be found in the supporting materials.

Table 4.19: SAS Code for Sets, Parameters, and Variables

MATHEMATICS SAS CODE

numBaskets num numBaskets = 85;

f ∈ FOOD set <str> FOOD;

n ∈ NUTR set <str> NUTR;

s ∈ SUPP set SUPP;

foodCostf num foodCost {FOOD};

foodTcostf,s num foodTcost {FOOD, SUPP};

foodAvailf,s num foodAvail {FOOD, SUPP};

nutrReqn num nutrReq {NUTR};

nutrValn,f num nutrVal {NUTR, FOOD};

FoodAmtf,s var FoodAmt {FOOD, SUPP} >= 0;
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4.3.5 SAS Output

Figure 4.3 shows the Solution Summary produced by the SAS code, including
the optimum value for the objective function.

Figure 4.3: SAS Output

4.3.6 Mathematical Formulation and Python Model

Tables 4.21 and 4.22 show the mathematical formulation and the correspond-
ing Python code. The full code can be found in the supporting materials.
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Table 4.21: Python Code for Sets, Parameters, and Variables

MATHEMATICS PYTHON CODE

numBaskets m.numBaskets = 85

f ∈ FOOD m.food = Set()

n ∈ NUTR m.nutr = Set()

s ∈ SUPP m.supp = Set()

foodCostf m.foodCost = Param(m.food)

foodTcostf,s m.foodTcost = Param(m.food,m.supp)

foodAvailf,s m.foodAvail = Param(m.food,m.supp)

nutrReqn m.nutrReq = Param(m.nutr)

nutrValn,f m.nutrVal = Param(m.nutr,m.food)

FoodAmtf,s m.FoodAmt = Var(m.food, m.supp, domain=NonNegativeReals)

4.3.7 Python Output

Figure 4.4 shows the output produced by the Python code, including the
optimum value for the objective function.

4.3.8 Output Results

Table 4.23 shows a snapshot of optimal results. These are the optimum
amounts (weight) of each food commodity to request from each supplier.
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Figure 4.4: Python Output

Table 4.23: Optimal Results Data Snapshot

Food Supplier Amt
Corn Meal 1 50
Corn Meal 2 33

Flour 1 30

4.4 Practice Problems

1. A no-kill animal shelter believes that it will need the following number of
volunteers during each one of the next three years: 60 in year 1; 70 in year
2; 50 in year 3. At the beginning of each year, they must decide how many
new volunteers to bring on-board and how many to release. It costs $400 to
bring aboard a new volunteer. The shelter expects to pay $1000 per hired
volunteer per year for transportation reimbursement. At the beginning of
year 1, the company has 50 volunteers. Determine how to minimize the
shelter’s cost over the next three years. How is your solution different if
the cost to bring aboard a new volunteer increases to $1200?

2. For the Food Basket Optimization use case, disallow Oatmeal and investi-
gate the resulting optimal solution. You can do this by removing a row from
the food input table, removing ‘Oatmeal’ from the food index set, changing
the upper bound on FoodAmt[‘Oatmeal’] to 0, or fixing FoodAmt[‘Oatmeal’]
to 0.
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3. For the Food Basket and Delivery Optimization use case, omit the explicit
constraint (4.3) and instead impose an upper bound on the FoodAmtf,s
variable. In SAS, you can do this in the VAR statement or by modifying
the .ub variable suffix. In Python, you can also add an upper bound when
defining the variable. Compare the presolved problem statistics from the
log before and after this change.





Chapter 5

Mixed Integer Linear
Programming

Mixed Integer Linear Programming (MILP) is one of the most widely applied
operations research techniques in industry. Most real-world optimization
projects require both continuous and discrete decisions. This chapter first
reviews MILP concepts and then presents two use cases based on real appli-
cations, followed by several practice problems related to these use cases.

5.1 Concepts Review

In Linear Programming (LP) problems, discussed in Chapter 4, the objec-
tive function and constraints are required to be linear, and the variables are
required to be continuous. If the decision variables instead represent discrete
quantities, such as the number of airplanes to produce, the optimization model
requires integer variables, which must take integer values. An important spe-
cial case is when a decision variable represents a yes-no decision with possible
values 1 and 0, such as whether to build a facility at a candidate location.
In this case, the integer variable is called a binary variable. An optimization
problem that has a linear objective function, all constraints linear, and all
variables integer is called an Integer Linear Programming (ILP) problem. If
the problem instead has both continuous and integer variables, it is called a
Mixed Integer Linear Programming (MILP) problem. In practice, both ILP

41
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and MILP are often referred to collectively as MILP, whether or not any of
the variables are continuous.

To solve a MILP problem, the most common algorithm is branch-and-
bound, introduced by Land and Doig [LD60]. This algorithm implements a
dynamic tree search, where the root node of the tree corresponds to the lin-
ear programming relaxation obtained by temporarily treating all variables as
continuous. An LP solver first solves the root node LP. If all integer variables
take integer values, we are done, and the algorithm terminates with an opti-
mal solution. Otherwise, a fractional variable (integer variable that takes a
fractional value in the LP solution) is chosen, and two child nodes are created
according to the fractional value. For example, suppose integer variable x3

takes value 4.2 in the LP solution and is selected as the fractional variable.
Then the two child nodes correspond to x3 ≤ ⌊4.2⌋ = 4 and x3 ≥ ⌈4.2⌉ = 5.
This process, called branching on x3, partitions the feasible region into two
non-overlapping regions that together contain all integer feasible solutions.
Each child node is solved with the additional bound on the branching vari-
able, and the process repeats recursively. For a problem with n variables, all
of which are binary, this divide-and-conquer approach could create a tree with
2n+1 − 1 nodes. In practice, a much smaller tree is needed to find and prove
an optimal solution, because a node can be pruned in three possible ways:

• If there are no fractional variables in the LP solution at the current node,
no branching occurs, and the node is pruned by integrality.

• If the LP is infeasible at the current node, no branching occurs, and the
node is pruned by infeasibility.

• If the optimal objective value of the LP at the current node is no better
than the incumbent solution (best integer feasible solution found so far),
no branching occurs, and the node is pruned by bound.

The algorithm just described is a simple approach that is sometimes called
vanilla branch-and-bound. Commercial solvers implement several techniques
to improve the overall solve time:

• A presolver, invoked before solving the root LP, attempts to reduce the
problem size by removing variables and constraints that can be deter-
mined to be unnecessary.

• Cutting planes (or cuts) are constraints that are valid in the sense that
every integer feasible solution satisfies them. A cut generator attempts to
find cuts that are violated by the current fractional solution. Adding these
cuts to the problem, especially at the root node, can reduce the amount of



5.2 Use Case: Optimizing K-5 Student Schedules 43

branching needed. The branch-and-bound algorithm with cutting planes
is often called branch-and-cut.

• Primal heuristics attempt to construct good integer feasible solutions,
sometimes from scratch and sometimes by modifying existing solutions.
Finding solutions early in the search increases the opportunities for prun-
ing by bound.

• Symmetry detection avoids performing redundant work when two nodes
correspond to essentially the same problem.

For more information about the branch-and-cut algorithm implemented in
SAS, see the mixed integer linear programming solver chapter in [SAS23].

An alternative algorithm called Dantzig-Wolfe decomposition can some-
times exploit additional problem structures to dramatically improve solve
times, and SAS has an automated implementation of this powerful algorithm.
For more details, see the decomposition algorithm chapter in [SAS23].

Similar to linear programming problems, in Python, GLPK can also solve
mixed integer linear problems [dt12].

For in-depth information about mixed integer linear models and solution
algorithms, please refer to [BW05] or [Wol20].

5.2 Use Case: Optimizing K-5 Student

Schedules During COVID-19

During the COVID-19 pandemic that began in Spring 2020, public and pri-
vate schools struggled to design how to best bring students back for face-to-
face instruction (if bringing them back at all). Health risks to students and
teachers, working parents struggling (i.e., losing their cool) with child-care
options, school capacities, and budget limitations, among many others, made
this problem a logistical nightmare. Even without the emotional and political
implications, timetabling (this type of scheduling problem) is a concept that
would instill fear in the bravest operations research practitioner. Given this
complexity, most schools began classes virtually. However, for many students,
particularly the youngest ones, being in a face-to-face environment and having
direct teacher-led instruction best fit their learning style and academic needs.
The goal of this formulation was to recommend a schedule that maximized
the amount of face-to-face instruction while respecting state and federal guide-
lines, school capacities, and logistical constraints.
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The following problem definition is a simplified version of the original prob-
lem that the SAS Analytics Center of Excellence (Subramanian Pazhani, Matt
Fletcher, Lee Ellen Harmer, and Natalia Summerville) developed in partner-
ship with Durham Public Schools (Matthew Palmer) in 2020. More details
can be found in [Sum20] and [Paz20].

5.2.1 Problem Definition

We must decide how many students to allocate to each classroom (decision
variables) such that the total amount of face-to-face instruction time is maxi-
mized (objective function). Maximum classroom capacity as recommended by
CDC cannot be exceeded (constraint), students across grades must have the
same number of instructional hours (constraint), and students across grades
cannot be mixed in the same classroom at the same time (constraint).

5.2.2 Data and Settings Inputs

The required data include student population per grade (data input) and
physical capacity of each room (data input). The user also needs to spec-
ify parameters such as time block granularity or number of hours per time
block (settings input), daily start and end times (settings input), and allowed
percent capacity (settings input). This use case uses data for Lakewood Ele-
mentary School.

The data dictionary in Table 5.1 contains more detailed information about
the tables and the variables.

Table 5.1: Data Dictionary
Data Table Variable Name Variable Type Variable Description

INPUT GRADES Grade ID Char Unique ID for school grade

INPUT GRADES Population Num Total grade population (number of stu-

dents)

INPUT ROOMS Room ID Char Unique ID for classroom

INPUT ROOMS Capacity Num Total classroom capacity (number of

students)

INPUT SETTINGS Setting Name Char Name of the configuration setting

(e.g., MAX ROOM CAPACITY,

START TIME)

INPUT SETTINGS Setting Value Num Value of the configuration setting (e.g.,

50%, 8am)

INPUT SETTINGS Setting Desc Char Description of the configuration setting
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Tables 5.2 and 5.3 show snapshots of the input data.

Table 5.2: INPUT GRADES Data Snapshot

Grade ID Population
PreK 36

Kindergarden 60
First 59

Table 5.3: INPUT ROOMS Data Snapshot

Room ID Capacity
A121 30
A120 26
A123 30

5.2.3 Mathematical Formulation

User-defined Settings

Table 5.4 shows the user-defined settings that come from the
INPUT SETTINGS tables and are considered constants in the mathe-
matical model.

Table 5.4: User-defined Settings
Setting Name Setting Description

maxPctCapacity Maximum percentage of capacity allowed

hrsBlock Number of hours in each time block

startTime Daily start time

endTime Daily end time

Calculated Setting

Table 5.5 shows the setting that is calculated from other input settings and
is considered constant in the mathematical model.
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Table 5.5: Calculated Setting
Setting Name and Formula Setting Description

numBlocks =
endTime− startTime

hrsBlock

Number of time blocks per day

Dimensions

The dimensions relevant in this use case are the grades, rooms, and time
blocks, as shown in Table 5.6.

Table 5.6: Dimensions
Dimension Name Dimension Description

g ∈ GRADES Set of grades

r ∈ ROOMS Set of rooms

b ∈ BLOCKS Set of time blocks

Data Parameters

The capacity per room and population per grade are the main data inputs
from the INPUT GRADES and INPUT ROOMS tables, as shown in
Table 5.7.

Table 5.7: Data Parameters
Parameter Name Parameter Description

capacityr Physical capacity of each room r

populationg Number of students in grade g

Decision Variables

The key decision variables are the number of students to allocate to each
grade, room, and time block, and a binary variable to indicate whether that
allocation is positive, as shown in Table 5.8.
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Table 5.8: Decision Variables
Variable Name Variable Description

NumStudentsg,r,b Number of students from grade g in room r in block b

Assigng,r,b Binary variable to indicate assignment of grade g to room

r in block b

Constraints

This use case imposes the following constraints:

NumStudentsg,r,b ≤ maxPctCapacity× capacityr for all g, r, b (5.1)

Assigng,r,b ≤ NumStudentsg,r,b for all g, r, b (5.2)

populationg × Assigng,r,b ≥ NumStudentsg,r,b for all g, r, b (5.3)∑
g

Assigng,r,b ≤ 1 for all r, b (5.4)

∑
r,b

Assigng,r,b ≤
∑

g1,r,b
Assigng1,r,b

|GRADES|
+ 1 for all g (5.5)

Constraint (5.1) is to not exceed the reduced room capacity in terms of
number of students.

To guarantee that students from different grades are not mixed in one
classroom at the same time, we introduced an auxiliary binary variable to
indicate whether a grade is assigned to a room in a time block. To make sure
that this auxiliary variable takes the value of 0 if no students from that grade
are assigned, and the value of 1 if any students from that grade are assigned,
we use a big-M value (the population for grade g) and impose constraints (5.2)
and (5.3). More recommendations on the big-M formulation are detailed in
the Tips and Tricks section later in this chapter.

Constraint (5.4) makes sure that only one grade is assigned per room per
time block.

In this use case, we also want to balance the student assignments to blocks
and rooms (as a proxy for total face-to-face time) across grades, making sure
the face-to-face time is not disproportional for one grade versus another. Con-
straint (5.5) enforces this balance across grades, allowing for at most one time
block difference between grades.
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Objective Function

The objective in this use case is to maximize student face-to-face instruction
time:

max TotalStudentHours = hrsBlock×
∑
g,r,b

NumStudentsg,r,b

5.2.4 Mathematical Formulation and SAS Model

Tables 5.9 and 5.10 show the mathematical formulation and the corresponding
SAS code. The full code can be found in the supporting materials.

Table 5.9: SAS Code for Sets, Parameters, and Variables

MATHEMATICS SAS CODE

maxPctCapacity num maxPctCapacity;

hrsBlock num hrsBlock;

startTime num startTime;

endTime num endTime;

numBlocks =
endTime− startTime

hrsBlock

num numBlocks = (endTime - startTime) / hrsBlock;

g ∈ GRADES set <str> GRADES;

r ∈ ROOMS set <str> ROOMS;

b ∈ BLOCKS set BLOCKS = 1..numBlocks;

capacityr num capacity {ROOMS};

populationg num population {GRADES};

NumStudentsg,r,b var NumStudents {GRADES, ROOMS, BLOCKS} >= 0 integer;

Assigng,r,b var Assign {GRADES, ROOMS, BLOCKS} binary;
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5.2.5 SAS Output

Figure 5.1 shows the Solution Summary produced by the SAS code, including
the optimum value for the objective function.

Figure 5.1: SAS Output

5.2.6 Mathematical Formulation and Python Model

Tables 5.11 and 5.12 show the mathematical formulation and the correspond-
ing Python code. The full code can be found in the supporting materials.
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Table 5.11: Python Code for Sets, Parameters, and Variables

MATHEMATICS PYTHON CODE

maxPctCapacity m.maxPctCapacity=Param()

hrsBlock m.hrsBlock=Param()

startTime m.startTime=Param()

endTime m.endTime=Param()

numBlocks =
endTime− startTime

hrsBlock

m.numBlocks=

Param(initialize=(m.endTime-m.startTime)/(m.hrsBlock))

g ∈ GRADES m.grades = Set()

r ∈ ROOMS m.rooms = Set()

b ∈ BLOCKS m.blocks = RangeSet(1,m.numBlocks)

capacityr m.capacity=Param(m.rooms)

populationg m.population=Param(m.grades)

NumStudentsg,r,b m.NumStudents=

Var(m.grades,m.rooms,m.blocks,domain=NonNegativeIntegers)

Assigng,r,b m.Assign=Var(m.grades,m.rooms,m.blocks,domain=Binary)
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5.2.7 Python Output

Figure 5.2 shows the output produced by the Python code, including the
optimum value for the objective function.

Figure 5.2: Python Output

5.2.8 Output Results

Table 5.13 shows a snapshot of the optimal results. This is the number of
students in each cohort that is defined by grade, room, and time block.

Table 5.13: Optimal Results Data Snapshot

Grade Room Time Block NumStudents
PreK A120 4 13
PreK A137 1 12
PreK A137 4 12
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5.3 Use Case: Optimizing Breast Milk

Donation Collection Sites

Mothers’ Milk Bank, a milk bank partnered with WakeMed, is part of the
Human Milk Banking Association of North America (HMBANA). Mothers’
Milk Bank screens donors before accepting milk donations. When donations
are received, further processing is completed through milk pooling, pasteur-
izing, and bacterial testing before dispensing the milk to clients. They serve
Newborn Intensive Care Units (NICUs) and birthing centers in 44 hospitals
throughout 8 states. Mothers’ Milk Bank sources milk donations from various
states in the country with a higher concentration of donations originating in
North Carolina.

The following problem definition is a simplified version of the original prob-
lem that NCSU Industrial Engineering students (Jenny Breese, Diego Her-
nandez, Sean Murray, John Schell, and Conner Walker), under the advising of
NCSU Lecturer Natalia Summerville, developed in partnership with Mothers’
Milk Bank (Montana Wagner-Gillespie) in 2018. More information can be
found in [Alb20] and [Las19].

5.3.1 Problem Definition

The Milk Bank in Cary, NC, has one depot site where donors can drop off their
milk. If donors do not have a drop-off location nearby, Mothers’ Milk Bank will
pay for overnight breast milk shipping for the donor, therefore incurring high
shipping costs. Mothers’ Milk Bank believed introducing additional collection
sites would increase its reach and potentially reduce cost. These added depot
sites might be open year-round or seasonally.

To support Mothers’ Milk Bank, an optimization model was built to decide
where and how many collection sites to place (decision variables), minimizing
the overall shipping distance multiplied by the total shipped weight as a proxy
for shipping cost (objective function) for donors who do not have a location
close by. We assume that donors will decide to ship instead of driving to
the collection site if the driving distance is more than a predefined number of
miles (constraint), and no more than a certain number of sites can be opened
(constraint). Because the bank will accept and accommodate all breast milk
donations as long as the donor is screened and approved, we do not consider
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capacity constraints. We also do not consider collection sites building costs
since it typically only requires a freezer and is operated by volunteers.

5.3.2 Data and Settings Inputs

The required data include the donor locations as a ZIP code (data input),
their typical (historical) number of shipments (data input), and typical
shipment weight (data input). We also need to obtain the locations of the
potential drop-off collection sites (data input), which are mostly clinics and
hospitals that are willing to put a collection site in their locations. The
distance between each donor and each potential collection site (data input) is
also provided. Finally, the user also needs to provide the maximum number
of sites that can be placed (settings input) as well as the maximum distance
a donor is willing to travel for the drop-off (settings input). A detailed data
dictionary is shown in Table 5.14.

Table 5.14: Data Dictionary
Data Table Variable Name Variable Type Variable Description

INPUT DONORZIP DonorZip Num Donor ZIP code

INPUT DONORZIP donorShip Num Typical number of shipments in

a time period

INPUT DONORZIP weight Num Typical weight for a shipment in

a time period

INPUT DROPOFFZIP dropoff Num ZIP code for a possible collection

site

INPUT DISTANCES donor Num Donor ZIP code

INPUT DISTANCES dropoff Num ZIP code for a possible collection

site

INPUT DISTANCES distance Num Distance between the donor and

the possible collection site

INPUT SETTINGS Setting Name Char Name of the configuration set-

ting (i.e., MAX DISTANCE)

INPUT SETTINGS Setting Value Num Value of the configuration set-

ting (e.g., 20)

INPUT SETTINGS Setting Desc Char Description of the configuration

setting



56 Mixed Integer Linear Programming

Tables 5.15, 5.16, and 5.17 show snapshots of the input data.

Table 5.15: INPUT DONORZIP Data Snapshot

DonorZip Weight DonorShip
27007 35.125 6
27054 25.125 2
27103 68.0625 10

Table 5.16: INPUT DROPOFFZIP Data Snapshot

DropOff
27103
27312
27405

Table 5.17: INPUT DISTANCES Data Snapshot

Donor DropOff Distance
27007 27103 43.6009
27007 27312 106.3164
27007 27405 67.594

5.3.3 Mathematical Formulation

User-defined Settings

Table 5.18 shows the user-defined settings that come from the
INPUT SETTINGS table and are considered constants in the mathe-
matical model.

Table 5.18: User-defined Settings
Setting Name Setting Description

maxDistance Maximum distance a donor is willing to travel for a drop-off

location

maxNumSites Maximum number of drop-off sites the Milk Bank can add
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Dimensions

The dimensions relevant in this use case are the donor locations and drop-off
sites, as shown in Table 5.19.

Table 5.19: Dimensions
Dimension Name Dimension Description

d ∈ DONORS Set of donor locations

s ∈ SITES Set of drop-off sites

Data Parameters

The capacity per room and population per grade are the main data inputs
from the INPUT GRADES and INPUT ROOMS tables, as shown in Table
5.20.

Table 5.20: Data Parameters
Parameter Name Parameter Description

distanced,s Distance from donor d to site s

weightd Average monthly weight typically shipped from donor loca-

tion d

amountd Average amount typically shipped from donor location d

Decision Variables

The key decision variables are a binary variable indicating whether a partic-
ular drop-off location is to be open and an auxiliary binary variable to keep
track of which donor locations are assigned to the drop-off locations to be
open, as shown in Table 5.21.

Table 5.21: Decision Variables
Variable Name Variable Description

Opens Binary variable to indicate whether site s is open

Assignd,s Binary variable to indicate whether donor location d is

assigned to site location s
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Constraints

This use case imposes the following constraints:

∑
s

Assignd,s ≤ 1 for all d (5.6)

∑
d

Assignd,s ≥ Opens for all s (5.7)

∑
d

Assignd,s ≤ |DONORS| ×Opens for all s (5.8)

∑
s

distanced,s × Assignd,s ≤ maxDistance for all d (5.9)

∑
s

Opens ≤ maxNumSites for all d (5.10)

Constraint (5.6) is to assign at most one drop-off site to each donor.

To guarantee that we open only sites that have donors assigned to them,
we introduced an auxiliary binary variable to indicate whether a donor is
assigned to a site. To make sure that this auxiliary variable takes the value of
0 if no donors are assigned, and the value of 1 if any donors are assigned, we
use a big-M value (the total number of donors) and impose constraints (5.7)
and (5.8). More recommendations on the big-M formulation are detailed in
the Tips and Tricks section.

Constraint (5.9) assigns donors only to sites that are within the maximum
travel distance.

Constraint (5.10) makes sure that no more than the maximum allowed
number of sites are open.

Objective Function

The objective in this use case is to minimize the total shipments-distance
(weight times amount times distance) for donors not assigned to a new drop-off
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location:

min TotalWeightedDistance

=
∑
d

distanced,27609 × weightd × amountd ×

(
1−

∑
s

Assignd,s

)

5.3.4 Mathematical Formulation and SAS Model

Tables 5.22 and 5.23 show the mathematical formulation and the correspond-
ing SAS code. The full code can be found in the supporting materials.

Table 5.22: SAS Code for Sets, Parameters, and Variables

MATHEMATICS SAS CODE

maxDistance num maxDistance;

maxNumSites num maxNumSites;

d ∈ DONORS set DONORS;

s ∈ SITES set SITES;

distanced,s num distance {DONORS, SITES};

weightd num weight {DONORS};

amountd num amount {DONORS};

Opens var Open {SITES} binary;

Assignd,s var Assign {DONORS, SITES} binary;
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5.3.5 SAS Output

Figure 5.3 shows the Solution Summary produced by the SAS code, including
the optimum value for the objective function.

Figure 5.3: SAS Output
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5.3.6 Mathematical Formulation and Python Model

Tables 5.24 and 5.25 show the mathematical formulation and the correspond-
ing Python code. The full code can be found in the supporting materials.

Table 5.24: Python Code for Sets, Parameters, and Variables

MATHEMATICS PYTHON CODE

maxDistance m.maxDistance = Param()

maxNumSites m.maxNumSites = Param()

d ∈ DONORS m.donors = Set()

s ∈ SITES m.sites = Set()

distanced,s m.distance = Param(m.donors,m.sites)

weightd m.weight = Param(m.donors)

amountd m.amount = Param(m.donors)

Opens m.Open = Var(m.sites, domain = Binary)

Assignd,s m.Assign = Var(m.donors, m.sites, domain = Binary)
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5.3.7 Python Output

Figure 5.4 shows the output produced by the Python code, including the
optimum value for the objective function.

Figure 5.4: Python Output

5.3.8 Output Results

Table 5.26 shows a snapshot of the optimal results., which is the assignment
of donor ZIP codes to donation sites that are suggested to be built.

Table 5.26: Optimal Results Data Snapshot

Donor Zipcode DropOff Zipcode
27502 27518
27510 27707
27511 27518

5.4 Tips and Tricks

5.4.1 Big-M Formulation and Auxiliary Binary
Variables

Often in MILP applications we need to add auxiliary binary decision variables
to represent the business problem accurately, and those auxiliary variables



5.4 Tips and Tricks 65

sometimes require a big-M formulation. Suppose you have a binary variable
y and want to enforce a logical implication

f(x) > b =⇒ y = 1,

equivalently, its contrapositive,

y = 0 =⇒ f(x) ≤ b.

Some optimization modeling languages, including OPTMODEL in SAS, sup-
port the use of indicator constraints to express the logical implication directly.
Otherwise, you can introduce a constant big-M value M and impose a linear
constraint

f(x)− b ≤ My.

Then y = 0 would imply that f(x) − b ≤ 0, as desired, and y = 1 would
imply f(x) − b ≤ M , where you choose M so that this latter constraint is
redundant. Occasionally, optimization practitioners use an arbitrarily large
value like M = 99999, but a best practice is to use a data-dependent value
instead. A value that is too large will introduce numerical difficulties, and a
value that is too small will cut off feasible solutions. An ideal choice for M is
a tight upper bound on the left-hand side f(x)− b when y = 1.

In our School Optimization use case, we generated a binary variable called
Assigng,r,b that was required to guarantee that students from different class-
rooms were not assigned to the same room and time block. To have this
variable take the value of 1 when any students from grade g were assigned to
the corresponding room r and block b, we introduced a big-M type of formu-
lation, setting the big-M value to populationg. An alternative value of big-M
could be

∑
g populationg, but this value would not be as tight as the original

definition, which will potentially translate into longer run-times (and we, OR
practitioners, don’t like long run-times!).

5.4.2 Logical Implication Between Two Binary
Variables

An implication that often arises when binary variables represent yes-no deci-
sions is

x = 1 =⇒ y = 1.

That is, if the decision represented by x is yes, then the decision represented
by y is also yes. For example, if you assign a customer to a facility, you must



66 Mixed Integer Linear Programming

open the facility. You can enforce this relation via an indicator constraint or
by explicitly imposing a linear constraint

x ≤ y.

If x = 1, this constraint forces 1 ≤ y, equivalently, y = 1. If x = 0, then y can
take either value (0 or 1), as desired. Note that this formulation is a special
case of the previous section that arises by taking f(x) = x, b = 0, and M = 1.

5.5 Practice Problems

1. In treating a brain tumor with radiation, physicians want the maximum
amount of radiation possible to bombard the tissue containing the tumors.
The constraint is, however, that there is a maximum amount of radiation
that normal tissue can handle without suffering tissue damage. Physicians
must therefore decide how to aim the radiation to maximize the radiation
that hits the tumor tissue while not damaging the normal tissue. As a
simple example of this situation, suppose there are three types of radiation
beams (beams differ in where they are aimed and their intensity) that can
be aimed at a tumor. The region containing the tumor has been divided
into four regions: two regions contain normal tissue (regions 1 and 2), and
two contain tumors (regions 3 and 4). The amount of radiation delivered
to each region by each type of beam is shown in Table 5.27. If each region
of normal tissue can handle at most 40 units of radiation, which beams
should be used to maximize the total amount of radiation received by the
tumors? (Adapted from Business Analytics: Data Analysis & Decision
Making, Sixth Edition, by S. Christian Albright and Wayne L. Winston.)

Table 5.27: Data for problem 1

Beam Region 1 Region 2 Region 3 Region 4
1 24 18 12 30
2 18 15 9 27
3 14 12 20 20

2. USP Media needs to decide how many spots (30-second commercials)
to schedule in each one of the four available TV shows during a two-
day planning period for its main customer, Tesma. USP does not allow
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more than three spots in the same TV show/same day for a given cus-
tomer. Tesma has requested to reach at least 50 million male users
30–50 years old with the overall advertisement plan. Tesma’s budget is
$1,000,000. The available TV shows, their cost (thousands of dollars per
one spot), and expected audience (millions per one spot) are provided in
MILP P2 media cost audience.csv data.

(a) Build an advertisement plan that minimizes the deviation from the
available budget.

(b) What is the expected audience reach with this plan?
(c) What is the deviation from budget with this plan?

3. For the K-5 Student Schedule use case, how much would the total face-to-
face instruction time increase if we allowed up to one hour of difference in
the face-to-face time each grade has? That is, if Grade 1 has two face-to-
face hours then Grade 2 could have between one and three hours.

4. For the Mothers’ Milk use case, update the objective function to minimize
the number of new sites (instead of minimizing distance×weight×amount),
but do not allow the total distance×weight× amount to exceed 8 million.

5. For the Mothers’ Milk use case, evaluate the improvement in run time
by reducing the number of variables, removing the combinations of
donor/drop-off that exceed the allowed distance.

6. For the Mothers’ Milk use case, evaluate the difference in run time by
disaggregating the big-M constraint (5.8) as Assignd,s ≤ Opens for all d
and s.





Chapter 6

Nonlinear Programming

Some real-world optimization problems naturally involve nonlinear relation-
ships among decision variables. For example, revenue maximization can
involve the product of two decision variables, one representing price and one
representing the expected sales as a decreasing function of price. This chapter
first reviews nonlinear programming (NLP) concepts and then presents two
use cases based on real applications, followed by several practice problems
related to these use cases.

6.1 Concepts Review

A Nonlinear Programming (NLP) problem is an optimization problem where
all the variables are continuous, and where the objective function and/or some
constraint(s) are not linear. It should be highlighted that if not all variables
are continuous, the problem would be Mixed Integer Nonlinear Programming
(MINLP) and you are in for a big headache. This chapter discusses NLP only.
In mathematical notation, the problem is to maximize or minimize a function
f(x1, . . . , xn) subject to constraints gi(x1, . . . , xn) = bi for i ∈ {1, . . . ,m}
and ℓj ≤ xj ≤ uj for j ∈ {1, . . . , n}. Here, f is the objective function,
the gi functions are constraint functions, bi is the right-hand side, and ℓj
and uj are lower and upper bounds, respectively, for the decision variable
xj. Commonly, the decision variables represent physical quantities for which
ℓj = 0 and uj = ∞, but either bound can be finite or infinite. For simplicity,

69
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the notation used here expresses each constraint as an equality, but most NLP
solvers accept any combination of =, ≤, and ≥ constraints.

To solve an NLP problem, two alternative algorithms are common:

• The active-set algorithm considers all equality constraints and a subset
of inequality constraints in each iteration. This approach can be help-
ful since by temporarily ignoring some of the inequality constraints, the
overall computational time can be reduced.

• The interior point algorithm can be efficient for large-scale NLPs, in part
because it can naturally use parallel processing.

SAS provides both of these NLP algorithms, and interior point is the default.
A concurrent option can run the active-set and interior point algorithms simul-
taneously on multiple threads, returning an optimal solution whenever the first
algorithm finishes. Both algorithms return a locally optimal solution that is
feasible and has a better objective value than any nearby solution. In con-
trast, a globally optimal solution is feasible and has the best possible objective
value among all solutions, nearby or not. A multistart option can improve the
likelihood of finding a globally optimal solution for problems that have many
locally optimal solutions. For more information about the NLP solver in SAS,
see the nonlinear programming solver chapter in [SAS23].

In Python, one of the most used nonlinear programming solvers is IPOPT
[dt22a].

For in-depth information about nonlinear models and solution algorithms,
please refer to [BSS13].

6.2 Use Case: Optimizing Seed Placement

in Prostate Brachytherapy

Radiation therapy for prostate cancer can be delivered by brachytherapy (per-
manent implantation of radioactive seeds or high dose rate treatment). In
brachytherapy, radioactive sources (Iodine-125 or Palladium-103) are perma-
nently implanted in the prostate in a pattern designed to maximize the dose to
the tumor while avoiding overexposure of the surrounding normal tissues. A
major limitation of radioactive-seed implants has been the difficulty of accu-
rately placing 60–150 seeds within the prostate in a specified geometric pat-
tern. If a seed is placed in a specific location, then it contributes a certain
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amount of radiation dosage to each point in the area to be treated. Lower and
upper bounds for dose to all structures are predefined.

The following use case is a simplified application based on the extended
research performed for the Memorial Sloan Kettering Cancer Center [LZ08],
which won the 2007 Franz Edelman Award for Achievement in Advanced
Analytics, Operations Research, and Management Science from INFORMS.

We would also like to mention that Memorial Sloan Kettering Cancer Cen-
ter researchers were again Franz Edelman Award finalists in 2021 for their
work in Medical Physics, this time improving radiotherapy with high-energy
photon beams placement optimization [ZHZ+22].

6.2.1 Problem Definition

In optimization terms, we need to decide where to place the seeds, such that
the exposure of the healthy tissues is minimized while achieving the target
exposure for tumor tissue. We solve this problem by minimizing the maximum
exposure across all points subject to a lower bound on exposure for tumorous
points. The contribution equation is a nonlinear function of the distance from
the seed to the point, effectively making this a nonlinear optimization problem.

The radiation exposure is typically inversely proportional to the square
root of the distance [BFG+01]. However, for illustration and simplicity pur-
poses of this example, we define it as inversely proportional to the distance
and represent it as follows:

Exposure =
1

Distance

6.2.2 Data and Settings Inputs

The required data include all the predefined points where the exposure is
going to be measured, their x and y coordinates, and classification as healthy
or tumorous tissue (data input). We also need to specify parameters such as
the number of seeds to be placed (user input) and target radiation exposure
(user input).

The data dictionary in Table 6.1 contains more detailed information about
the tables and the variables.



72 Nonlinear Programming

Table 6.1: Data Dictionary
Data Table Variable Name Variable Type Variable Description

INPUT POINTS Point ID Num Unique ID for each point

INPUT POINTS X Coord Num X coordinate

INPUT POINTS Y Coord Num Y coordinate

INPUT POINTS Tumor Flg Num 1 if this point has tumorous tissue, 0 oth-

erwise

INPUT SETTINGS Setting Name Char Name of the configuration setting (e.g.,

Num Seeds)

INPUT SETTINGS Setting Value Num Value of the configuration setting

(e.g., 4)

Tables 6.2 and 6.3 show snapshots of the input data. Figure 6.1 shows a
heat map of the tumorous tissue, red zones representing tumor tissue and blue
zones healthy tissue.

Table 6.2: INPUT POINTS Data Snapshot

Point ID X Coord Y Coord Tumor Flg
1 1 1 0
2 1 2 1
3 1 3 0

Table 6.3: INPUT SETTINGS Data Snapshot

Setting Name Setting Value
NumSeeds 3

TargetTumorExp 3

Figure 6.1: Heat Map of Tumorous Tissue
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6.2.3 Mathematical Formulation

User-defined Settings

Table 6.4 shows the user-defined settings that come from the
INPUT SETTINGS table and are considered constants in the mathe-
matical model.

Table 6.4: User-defined Settings
Setting Name Setting Description

numSeeds Number of seeds that will be placed in the treatment area

targetTumorExp Target radiation exposure for tumorous points in the treat-

ment area

Dimensions

The dimensions relevant in this use case are the predefined points and the
seeds to be placed in the treatment area, as shown in Table 6.5.

Table 6.5: Dimensions
Dimension Name Dimension Description

p ∈ POINTS Set of target points in the treatment area

s ∈ SEEDS Set of seeds to be placed in the treatment area

Data Parameters

Table 6.6 shows the coordinates for the predefined target points read from
the INPUT POINTS table.

Table 6.6: Data Parameters
Parameter Name Parameter Description

pointXp X coordinate for target point p

pointYp Y coordinate for target point p

tumorFlgp Flag indicating if point p has tumorous tissue
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Decision Variables

The key decision variables are the exact locations (coordinates) for each seed,
and an auxiliary variable that denotes the exposure for each point, as shown
in Table 6.7.

Table 6.7: Decision Variables
Variable Name Variable Description

SeedXs X coordinate for seed s

SeedYs Y coordinate for seed s

Exposurep Radiation exposure at point p

MaxExposure Maximum exposure across all p

Constraints

This use case imposes the following constraints:

min
p

pointXp ≤ SeedXs ≤ max
p

pointXp for all s (6.1)

min
p

pointYp ≤ SeedYs ≤ max
p

pointYp for all s (6.2)

Exposurep =∑
s

1√
(SeedXs − pointXp)

2 + (SeedYs − pointYp)
2 + 0.01

for all p (6.3)

Exposurep ≥ targetTumorExp for all

p|tumorFlgp = 1

(6.4)

MaxExposure ≥ Exposurep for all p (6.5)

Constraints (6.1) and (6.2) limit the placement of the seeds only to the
treatment area as defined by the target points. Constraint (6.3) defines the
total exposure at each point by calculating the Euclidean distance between
each seed and each point and then applying the exposure equation we intro-
duced earlier. We add a small perturbation value in the denominator to avoid
division by zero. Constraint (6.4) requires the exposure on the tumorous tis-
sue to be at least the target value. Finally, constraint (6.5), when modeled
together with the objective function that minimizes the maximum exposure,
sets the value of the MaxExposure decision variable to the largest Exposurep.
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Objective Function

The objective in this use case is to minimize the maximum exposure for all
target points:

min MinMaxExposure = MaxExposure

6.2.4 Mathematical Formulation and SAS Model

Tables 6.8 and 6.9 show the mathematical formulation and the corresponding
SAS code. The full code can be found in the supporting materials.

Table 6.8: SAS Code for Sets, Parameters, and Variables

MATHEMATICS SAS CODE

numSeeds num numSeeds;

targetTumorExp num targetTumorExp;

p ∈ POINTS set POINTS;

s ∈ SEEDS set SEEDS = 1..numSeeds;

pointXp num pointX {POINTS};

pointYp num pointY {POINTS};

tumorFlgp num tumorFlg {POINTS};

SeedXs var SeedX {SEEDS};

SeedYs var SeedY {SEEDS};

Exposurep var Exposure {POINTS} >= 0;

MaxExposure var MaxExposure >= 0;
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6.2.5 SAS Output

Figure 6.2 shows the Solution Summary produced by the SAS code, including
the optimum value for the objective function.

Figure 6.2: SAS Output
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6.2.6 Mathematical Formulation and Python Model

Tables 6.10 and 6.11 show the mathematical formulation and the correspond-
ing Python code. The full code can be found in the supporting materials.

Table 6.10: Python Code for Sets, Parameters, and Variables

MATHEMATICS PYTHON CODE

numSeeds m.numSeeds=Param()

targetTumorExp m.targetTumorExp=Param()

p ∈ POINTS m.points = Set()

s ∈ SEEDS m.seeds = RangeSet(1,m.numSeeds,1)

pointXp m.pointX = Param(m.points)

pointYp m.pointY = Param(m.points)

tumorFlgp m.tumorFlg = Param(m.points)

SeedXs m.SeedX = Var(m.seeds, domain=Reals)

SeedYs m.SeedY = Var(m.seeds, domain=Reals)

Exposurep m.Exposure = Var(m.points,domain=NonNegativeReals)

MaxExposure m.MaxExposure = Var(domain=NonNegativeReals)
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6.2.7 Python Output

Figure 6.3 shows the output produced by the Python code, including the
optimum value for the objective function.

Figure 6.3: Python Output

6.2.8 Output Results

Table 6.12 shows a snapshot of the optimal results, representing the exact
location (coordinates) where each seed should be placed. Figure 6.4 shows a
heat map of the solution, with each of the three seed locations indicated by ∗
and the color representing the exposure. For example, the more red, the more
the exposure for all seeds combined.

Table 6.12: Optimal Results Data Snapshot

Seed ID X Coord Y Coord
1 2.5728 2.7079
2 3.6943 1.3182
3 1.3530 2.3167
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Figure 6.4: Heat Map of Optimal Exposure

6.3 Use Case: Optimizing Dike Heights

for Flood Prevention

Flood prevention policies are relevant worldwide but even more critical in
countries below sea level and high water levels, such as the Netherlands. The
probability of a flood occurring can be extremely high, and consequences for
human life can be disastrous. Several models have been proposed to select
an optimum investment policy that specifies dikes, structures, and dunes
construction characteristics while balancing investment and expected disas-
ter management costs.

The following use case is derived and simplified from Brekelmans et
al. [BHRE12], which won the 2013 Franz Edelman Award for Achievement
in Advanced Analytics, Operations Research, and Management Science from
INFORMS. The values of the parameters are extracted from a related publi-
cation by Eijgenraam et al. [EBdHR17].
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6.3.1 Problem Definition

To address flood prevention, authorities need to decide how much to increment
the height of existing dikes across a planning horizon. To balance investment
and damage costs, nonlinear functions for estimating flood probability, con-
struction cost, and investment cost are provided, all dependent on the height
increase planned for each period, as well as several parameters estimated from
historical data and provided in this problem.

6.3.2 Data and Settings Inputs

This application does not require explicit data but does require several param-
eters (or user-defined settings) that shape the nonlinear equations that define
the flood probability, the investment costs, and the damage costs (user input).
For code simplification, we will set these parameters directly in the formulation
and code syntax instead of from a data input table as in previous applications.

6.3.3 Mathematical Formulation

User-defined Settings

Table 6.13 shows the user-defined settings that are considered constants in
the mathematical model.

Table 6.13: User-defined Settings
Setting Name Setting Description

prob0 Initial flood probability

damageCost0 Initial damage cost

α A shape parameter for the flood probability function

η A shape parameter for the flood probability function

γ Economic growth rate parameter

ζ A shape parameter for the damage cost function

λ A shape parameter for the investment cost function

c A shape parameter for the investment cost function

b A shape parameter for the investment cost function

timeHorizon Number of periods in the planning horizon
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Dimensions

The dimensions relevant in this use case are the periods in the planning horizon
when decisions can be made, as shown in Table 6.14.

Table 6.14: Dimensions
Dimension Name Dimension Description

p ∈ PERIODS Set of periods in planning horizon

Decision Variables

The key decision variable is the height increment established for each period.
Additional decision variables that support the formulation include the total
height in each period, the flood probability associated with that height, and
damage and investment costs, as shown in Table 6.15.

Table 6.15: Decision Variables
Variable Name Variable Description

PeriodHeightIncp Height increment for period p

TotalHeightIncp Cumulative height increment for period p

FloodProbp Probability of flood in period p

DamageCostp Damage cost due to flood in period p

InvCostp Investment cost for dike height increase in period p

Constraints

This use case imposes the following constraints:

TotalHeightIncp =

p∑
p1=1

PeriodHeightIncp1 for all p (6.6)

FloodProbp = prob0× eα(ηp−TotalHeightIncp) for all p (6.7)

DamageCostp = damageCost0× eγp+ζTotalHeightIncp for all p (6.8)

InvCostp = (c+ bPeriodHeightIncp)× eλTotalHeightIncp for all p (6.9)

Constraint (6.6) calculates the cumulative height increase by aggregat-
ing individual period increases. Constraint (6.7) defines the probability of a
flood happening in period p, as a function of TotalHeightIncp and the given
shape parameters. Similarly, constraints (6.8) and (6.9) define the damage
and investment costs, respectively.
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Objective Function

The objective in this use case is to minimize the total expected cost across all
time periods:

min TotalCost =
∑
p

(FloodProbp × DamageCostp + InvCostp)

6.3.4 Mathematical Formulation and SAS Model

Tables 6.16 and 6.17 show the mathematical formulation and the correspond-
ing SAS code. The full code can be found in the supporting materials.

Table 6.16: SAS Code for Sets, Parameters, and Variables

MATHEMATICS SAS CODE

prob0 num prob0 = 0.00044;

damageCost0 num damageCost0 = 1565;

α num alpha = 0.0330;

η num eta = 0.320;

γ num gamma = 0.0196;

ζ num zeta = 0.00377;

λ num lambda = 0.0014;

c num c = 16.69;

b num b = 0.63;

timeHorizon num timeHorizon = 100;

p ∈ PERIODS set PERIODS = 1..timeHorizon;

PeriodHeightIncp var PeriodHeightInc {PERIODS} >= 0;

TotalHeightIncp var TotalHeightInc {PERIODS} >= 0;

FloodProbp var FloodProb {PERIODS} >= 0;

DamageCostp var DamageCost {PERIODS} >= 0;

InvCostp var InvCost {PERIODS} >= 0;
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6.3.5 SAS Output

Figure 6.5 shows the Solution Summary produced by the SAS code, including
the optimum value for the objective function.

Figure 6.5: SAS Output
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6.3.6 Mathematical Formulation and Python Model

Tables 6.18 and 6.19 show the mathematical formulation and the correspond-
ing Python code. The full code can be found in the supporting materials.

Table 6.18: Python Code for Sets, Parameters, and Variables

MATHEMATICS PYTHON CODE

prob0 m.prob0 = 0.00044

damageCost0 m.damageCost0 = 1565

α m.alpha = 0.0330

η m.eta = 0.320

γ m.gamma = 0.0196

ζ m.zeta = 0.00377

λ m.lambda1 = 0.0014

c m.c = 16.69;

b m.b = 0.63;

timeHorizon m.timeHorizon = 100

p ∈ PERIODS m.periods = RangeSet(1,m.timeHorizon,1)

PeriodHeightIncp m.PeriodHeightInc = Var(m.periods, domain=NonNegativeReals)

TotalHeightIncp m.TotalHeightInc = Var(m.periods, domain=NonNegativeReals)

FloodProbp m.FloodProb = Var(m.periods, domain=NonNegativeReals)

DamageCostp m.DamageCost = Var(m.periods, domain=NonNegativeReals)

InvCostp m.InvCost = Var(m.periods, domain=NonNegativeReals)
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6.3.7 Python Output

Figure 6.6 shows the output produced by the Python code, including the
optimum value for the objective function.

Figure 6.6: Python Output

6.3.8 Output Results

Table 6.20 shows a snapshot of the optimal results that represent the height
increase to be added during each period.

Table 6.20: Optimal Results Data Snapshot

Period Height Increase
1 0.00004
2 0.00005
3 0.00009
4 0.00068
5 0.44299
6 0.75764

Figure 6.7 shows a plot of the optimal solution, together with the resulting
flood probabilities. As expected, flood probabilities decrease with the increase
in height.
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Figure 6.7: Optimal Solution and Flood Probabilities

6.4 Practice Problems

1. A thrift store needs to create a markdown plan for ten items to make space
for newer seasonal items that they expect to be donated over the next two
weeks. The current price of each item (dollars per pound) and current
inventory (in pounds) are provided in NLP P2 item base prices.csv. The
store cannot hold more than 15 pounds of these items by the end of the
planning horizon. Any inventory left at the end of the horizon will need to
be disposed at the store’s expense of $1.2 per pound. Assume the following
simplified price-demand relationship for each product p:

Demandp =
BasePricep −MarkedPricep

BasePricep
× Inventoryp

Build an optimum pricing plan for each item to maximize the store’s rev-
enue (accounting for the items’ disposal). What is the optimum revenue
by the end of the planning horizon?
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2. For the Seed Placement use case, omit constraints (6.1) and (6.2), and
instead impose lower and upper bounds on the SeedXs and SeedYs variables.
In SAS, you can do this in the VAR statement or by modifying the .lb

and .ub variable suffixes. Compare the presolved problem statistics from
the log before and after this change.

3. For the Seed Placement use case, solve the problem with the number of
seeds changed to 1, 2, and 4, and compare the resulting solutions.

4. For the Seed Placement use case, modify the code to instead minimize the
total exposure

∑
p Exposurep subject to Exposurep ≥ targetTumorExp for

all tumorous p.

5. For the Flood Prevention use case, modify the code to disallow height
increases for the first 50, 75, and 100 years and investigate the resulting
optimal solutions.

6. For the Flood Prevention use case, modify the input parameters to increase
damage cost and/or decrease investment cost and describe the effect on the
optimal solution.





Chapter 7

Network Optimization

Networks are often used to model optimization problems that involve relation-
ships between pairs of entities. This chapter first reviews network optimization
concepts and then presents two use cases based on real applications, followed
by several practice problems related to these use cases.

7.1 Concepts Review

A network consists of a set of objects called nodes and a set of links, which
represent relationships between pairs of nodes. For example, in a road network,
the nodes correspond to intersections, a link between two nodes corresponds
to a road that joins them, and a common optimization problem is to find
a shortest path between two specified nodes in the network. One approach
to solve a network optimization problem is to explicitly introduce decision
variables, a linear objective, and linear constraints and then call either a linear
programming solver or a mixed integer linear programming solver. SAS also
provides a network solver that invokes specialized algorithms to solve several
classes of network problems, including:

• biconnected components
• clique enumeration
• connected components
• cycle enumeration
• linear assignment
• maximum flow
• minimum-cost network flow

93
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• minimum cut
• minimum spanning tree
• path enumeration
• shortest paths
• topological sort
• transitive closure
• traveling salesman problem
• vehicle routing problem

For these problems, you need only specify the nodes, links, and any relevant
numeric attributes (such as link weights), rather than explicitly defining vari-
ables, objective, and constraints. For more information about the network
solver in SAS, see the network solver chapter in [SAS23].

The use cases in this chapter correspond to the traveling salesman problem
(TSP) and the vehicle routing problem (VRP). In the TSP, you are given a
set of nodes and a set of links, and each link has a weight that represents the
distance between those two nodes. The problem is to find an optimal tour
that visits each node exactly once and minimizes the total distance traveled
as measured by the sum of the link weights. The idea for the colorful name
of this problem is that the nodes represent cities and the tour represents the
travel itinerary of a salesman who leaves his home city, visits each other city,
and returns home. Figure 7.1 shows an optimal TSP solution for a complete
network with 200 nodes, where each link weight is the Euclidean distance
between the two nodes.

Figure 7.1: TSP Solution
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In the VRP, one node represents a depot, and the other nodes represent
customers, each with a demand that must be satisfied. Each link weight again
corresponds to travel distance (or cost). You are also given a set of vehicles,
each of which has a capacity that limits the total demand it can serve. The
problem is to find an optimal set of subtours (one per vehicle) that start
and end at the depot and together visit each customer exactly once, while
respecting the vehicle capacities and minimizing the total cost as measured
by the sum of the link weights across all vehicles. Figure 7.2 shows an optimal
VRP solution for a complete network with 21 customers (22 nodes), where the
node labels are the customer demands, each vehicle has a capacity of 3000,
and the link weights are Euclidean distances.

Figure 7.2: VRP Solution

For in-depth information about network models and solution algorithms,
please refer to [Ber91].

7.2 Use Case: Optimizing Clinical Samples

Routing in Malawi—TSP

Access to diagnostic testing services is a critical element of public health sys-
tems in countries with high prevalence of communicable diseases such as HIV
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and tuberculosis. These testing services require daily logistics collecting and
transporting clinical samples for their processing. Efficient routes are key to
a timely delivery of samples and patient diagnosis.

In this section we will review a simplified version of daily route optimization
work performed by Gibson et al. [GDJ+23] that won the “Doing Good with
Good OR” prize from INFORMS in 2020. This simplification is modeled as
a Traveling Salesman Problem (TSP) to find a route where a set of locations
has to be visited exactly once, minimizing the overall travel distance. See
[ABCC06] for a comprehensive description of state-of-the-art approaches to
solving the TSP. We will use a simple (but less efficient) compact formulation
that was proposed by Miller, Tucker, and Zemlin in [MTZ60].

7.2.1 Problem Definition

Several locations have lab samples that need to be picked up and delivered to
the lab for processing. We assume there is only one vehicle that leaves the lab
and comes back to the lab after visiting all the locations.

7.2.2 Data and Settings Inputs

This model requires distances between all locations (data input).
The data dictionary in Table 7.1 contains more detailed information about

the table and the variables.

Table 7.1: Data Dictionary
Data Table Variable

Name

Variable

Type

Variable Description

INPUT DIST From Num Facility from which vehicle is leaving

(e.g., 1)

INPUT DIST To Num Facility to which vehicle is traveling

(e.g., 2)

INPUT DIST Dist Num Distance (e.g., 4.3)
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Table 7.2 shows a snapshot of the input data.

Table 7.2: INPUT DIST Data Snapshot

From To Dist
1 2 7.27
1 3 3.58
1 4 3.04

7.2.3 Mathematical Formulation

Dimensions

For standardization with the TSP literature, we will refer to locations as nodes
and connections between pairs of nodes as links. The dimensions relevant in
this use case are the sets of nodes and links, as shown in Table 7.3.

Table 7.3: Dimensions
Dimension Name Dimension Description

i ∈ NODES Set of locations

(i, j) ∈ LINKS Set of connections between a pair of nodes

Data Parameters

Table 7.4 shows the input parameters read from the INPUT DIST table.

Table 7.4: Data Parameters
Parameter Name Parameter Description

N Number of nodes to visit

disti,j Distance from node i to node j

Decision Variables

The key decision variables are whether link (i, j) is used and in what order
node i is visited, as shown in Table 7.5.
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Table 7.5: Decision Variables
Variable Name Variable Description

Usei,j Binary variable to indicate whether link (i, j) is used in the

vehicle route

Orderi Order of visiting nodes

Constraints

This use case imposes the following constraints:∑
i ̸=j

Usei,j = 1 for all j (7.1)∑
j ̸=i

Usei,j = 1 for all i (7.2)

Orderi −Orderj +N × Usei,j ≤ N − 1 for all (i, j) | j ̸= 1 (7.3)

Constraints (7.1) and (7.2) require that each node is visited and left exactly
once. Constraint (7.3) guarantees that there are no subtours; that is, the route
is one large tour. For simplicity, we assume that the lab is node 1. To see
that (7.3) eliminates subtours, suppose C is the set of links in a (nonempty)
subtour that does not contain node 1. Then adding up (7.3) along the subtour
would yield ∑

(i,j)∈C

(Orderi −Orderj +N × 1) ≤
∑

(i,j)∈C

(N − 1),

which simplifies to the false statement

N |C| ≤ (N − 1)|C|,

so any solution that contains such a subtour would violate the constraints.

Objective Function

The objective in this use case is to minimize travel distance:

min TotalCost =
∑
i,j

disti,j × Usei,j
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7.2.4 Mathematical Formulation and SAS Model

Tables 7.6 and 7.7 show the mathematical formulation and the corresponding
SAS code. The full code can be found in the supporting materials.

Table 7.6: SAS Code for Sets, Parameters, and Variables

MATHEMATICS SAS CODE

N num n = card(NODES);

(i, j) ∈ LINKS set <num,num> LINKS;

i ∈ NODES set NODES = union {<i,j> in LINKS} {i,j};

disti,j num dist {LINKS};

Usei,j var Use {LINKS} binary;

Orderi var Order {NODES} >= 0 <= n - 1 integer;

Table 7.7: SAS Code for Constraints and Objective Function

∑
i̸=j Usei,j = 1

for all j

con EnterNode {j in NODES}:

sum {<i,(j)> in LINKS} Use[i,j] = 1;

∑
j ̸=i Usei,j = 1

for all i

con LeaveNode {i in NODES}:

sum {<(i),j> in LINKS} Use[i,j] = 1;

Orderi −Orderj +N ×Usei,j ≤
N − 1 for all (i, j) | j ̸= 1

con NoSubtours {<i,j> in LINKS: j ne 1}:

Order[i] + 1 - Order[j] <= n * (1 - Use[i,j]);

min TotalCost =∑
i,j disti,j × Usei,j

min TotalCost =

sum {<i,j> in LINKS} dist[i,j] * Use[i,j];
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7.2.5 SAS Output

Figure 7.3 shows the Solution Summary produced by the SAS code, including
the optimum value for the objective function. A more detailed sample output
is presented in section 7.2.8.

Figure 7.3: SAS Output

7.2.6 Mathematical Formulation and Python Model

Tables 7.8 and 7.9 show the mathematical formulation and the corresponding
Python code. Please notice in this specific case, for the Python code to run
properly, the N parameter needs to be defined before the NODES set and
the dist parameter needs to be defined after the LINKS set. The full code
can be found in the supporting materials.
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Table 7.8: Python Code for Sets, Parameters, and Variables

MATHEMATICS PYTHON CODE

N m.N = len(pd.unique(input_dist[’From’]))

i ∈ NODES m.nodes = RangeSet(1,m.N)

(i, j) ∈ LINKS m.links = Set(initialize=[(i,j)

for i in m.nodes for j in m.nodes if i != j])

disti,j m.dist = Param(m.links)

Usei,j m.Use = Var(m.links, domain=Binary)

Orderi m.Order = Var(m.nodes, domain=NonNegativeIntegers,

bounds=(0,m.N-1))

Table 7.9: Python Code for Constraints and Objective
Function

∑
i ̸=j Usei,j = 1

for all j

def Enter_Once_Rule(m,j):

return (sum(m.Use[i,j] for i in m.nodes if i!=j) == 1)

m.Enter_All = Constraint(m.nodes,rule=Enter_Once_Rule)∑
j ̸=i Usei,j = 1

for all i

def Leave_Once_Rule(m,i):

return (sum(m.Use[i,j] for j in m.nodes if i!=j) == 1)

m.Leave_All = Constraint(m.nodes,rule=Leave_Once_Rule)

Orderi − Orderj +N ×
Usei,j ≤

N − 1 for all (i, j) | j ̸= 1

def NoSubT_Rule(m,i,j):

if j!=1: return (m.Order[i] - m.Order[j]

+ m.N * m.Use[i,j] <= m.N-1)

else: return Constraint.Skip

m.NoSubT = Constraint(m.links, rule=NoSubT_Rule)

min TotalCost =∑
i,j disti,j × Usei,j

def Min_Cost_Rule(m):

return (sum(m.dist[i,j]*m.Use[i,j] for i,j in m.links))

m.Min_Cost = Objective(rule=Min_Cost_Rule,

sense=minimize)
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7.2.7 Python Output

Figure 7.4 shows the output produced by the Python code, including the
optimum value for the objective function. A more detailed sample output is
presented in section 7.2.8.

Figure 7.4: Python Output

7.2.8 Output Results

Table 7.10 shows a snapshot of optimal results. This is the set of links that
are part of the optimal route.

Table 7.10: Optimal Results Data Snapshot

From To
1 4
4 5
5 8

7.3 Use Case: Optimizing Clinical Samples

Routing in Malawi—VRP

Building on the previous section’s use case, we are now going to expand the
Traveling Salesman Problem (TSP) to a Vehicle Routing Problem (VRP).
The main differentiation is the ability of a VRP to model several routes with
capacitated vehicles.
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7.3.1 Problem Definition

This expansion to VRP enables us to model this clinical samples routing
problem more realistically by introducing demand for each location as well
as a capacity for each vehicle.

7.3.2 Data and Settings Inputs

This application requires distances between all pairs of locations as well as
demand for each location (data input).

The data dictionary in Table 7.11 contains more detailed information
about the tables and the variables.

Table 7.11: Data Dictionary
Data Table Variable

Name

Variable

Type

Variable Description

INPUT DIST From Num Facility from which vehicle is leaving

(e.g., 1)

INPUT DIST To Num Facility to which vehicle is traveling

(e.g., 2)

INPUT DIST Dist Num Distance (e.g., 4.3)

INPUT DEMAND Location Num Facility numeric identification (e.g., 1)

INPUT DEMAND Demand Num Number of samples required to be

picked up (e.g., 5)

Tables 7.12 and 7.13 show a snapshot of the input data.

Table 7.12: INPUT DIST Data Snapshot

From To Dist
1 2 7.27
1 3 3.58
1 4 3.04

Table 7.13: INPUT DEMAND Data Snapshot

Location Demand
1 0
2 5
3 7
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7.3.3 Mathematical Formulation

User-defined Settings

Table 7.14 shows the user-defined settings. For simplicity, we assume that
each vehicle has the same capacity.

Table 7.14: User-defined Settings
Setting Name Setting Description

numVehicles Total number of available vehicles

cap Vehicle capacity (assuming that all vehicles have the same

capacity)

Dimensions

For standardization with the VRP literature, we will refer to locations as nodes
and connections between pairs of nodes as links. The dimensions relevant in
this use case are the sets of nodes and links, as shown in Table 7.15.

Table 7.15: Dimensions
Dimension Name Dimension Description

i ∈ NODES Set of locations

(i, j) ∈ LINKS Set of connections between a pair of nodes

Data Parameters

Table 7.16 shows the input parameters read from the INPUT DIST and
INPUT DEMAND tables.

Table 7.16: Data Parameters
Parameter Name Parameter Description

N Number of nodes to visit

disti,j Distance from node i to node j

demi Demand at node i
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Decision Variables

The key decision variables are whether link (i, j) is used and the cumulative
demand after visiting node i, as shown in Table 7.17.

Table 7.17: Decision Variables
Variable Name Variable Description

Usei,j Binary variable to indicate whether link (i, j) is used in the

vehicle route

CDemi Cumulative demand after visiting node i

Constraints

This use case imposes the following constraints:∑
i ̸=j

Usei,j = 1 for all j ̸= 1 (7.4)∑
j ̸=i

Usei,j = 1 for all i ̸= 1 (7.5)∑
i ̸=1

Usei,1 = numVehicles (7.6)∑
j ̸=1

Use1,j = numVehicles (7.7)

CDemi + demj − CDemj ≤ (cap+ demj)× (1− Usei,j) for all (i, j) | j ̸= 1
(7.8)

CDemj − CDemi − demj ≤ (cap− demj)× (1− Usei,j) for all (i, j) | j ̸= 1
(7.9)

Constraints (7.4) and (7.5) require that each node other than the lab is
visited and left exactly once. For simplicity, we assume that the lab is node
1. Constraints (7.6) and (7.7) require that the lab is visited and left exactly
numVehicles times (once per vehicle). Constraint (7.8) guarantees that each
vehicle’s route consists of a single subtour. Constraint (7.9) is not required but
yields more interpretable output by preventing CDemj from overestimating
the actual cumulative demand at node j.
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Objective Function

The objective in this use case is to minimize travel distance:

min TotalCost =
∑
i,j

disti,j × Usei,j

7.3.4 Mathematical Formulation and SAS Model

Tables 7.18 and 7.19 show the mathematical formulation and the correspond-
ing SAS code. The full code can be found in the supporting materials.

Table 7.18: SAS Code for Sets, Parameters, and Variables

MATHEMATICS SAS CODE

numVehicles num numVehicles = 3;

cap num cap = 100;

N num n = card(NODES);

(i, j) ∈ LINKS set <num,num> LINKS;

i ∈ NODES set NODES = union {<i,j> in LINKS} {i,j};

disti,j num dist {LINKS};

demi num dem {NODES};

Usei,j var Use {LINKS} binary;

CDemi var CDem {NODES} >= 0 <= cap;
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7.3.5 SAS Output

Figure 7.5 shows the Solution Summary produced by the SAS code, including
the optimum value for the objective function. A more detailed sample output
is presented in section 7.3.8.

Figure 7.5: SAS Output
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7.3.6 Mathematical Formulation and Python Model

Tables 7.20 and 7.21 show the mathematical formulation and the correspond-
ing Python code. Please notice in this specific case, for the Python code to
run properly, the N parameter needs to be defined before the NODES set
and the dist parameter needs to be defined after the LINKS set. The full
code can be found in the supporting materials.

Table 7.20: Python Code for Sets, Parameters, and Variables

MATHEMATICS PYTHON CODE

numVehicles m.numVehicles = 3

cap m.cap = 100

N m.N = len(pd.unique(input_dist[’From’]))

i ∈ NODES m.nodes = RangeSet(1,m.N)

(i, j) ∈ LINKS m.links = Set(initialize=[(i,j)

for i in m.nodes for j in m.nodes if i != j])

disti,j m.dist = Param(m.links)

demi m.dem = Param(m.nodes)

Usei,j m.Use = Var(m.links, domain=Binary)

CDemi m.CDem= Var(m.nodes, bounds=(0,m.cap))
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7.3.7 Python Output

Figure 7.6 shows the output produced by the Python code, including the
optimum value for the objective function. A more detailed sample output is
presented in section 7.3.8.

Figure 7.6: Python Output

7.3.8 Output Results

Table 7.22 shows a snapshot of optimal results. This is the set of links that
are part of the optimal route.

Table 7.22: Optimal Results Data Snapshot

From To
1 4
4 1
1 5
5 8

7.4 Practice Problems

1. A Food Bank organization needs to assign existing distribution depots to
three regions. The weekly fixed cost for transporting food from each depot
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to each region is provided in Table 7.23. Each region needs to have exactly
one depot assigned. What is the optimum assignment of depots to regions?

Table 7.23: Data for problem 1

From/To Region 1 Region 2 Region 3
NY 25 45 55
NJ 52 19 30
PA 29 38 21
CT 18 54 39

2. For the TSP use case, omit the subtour elimination constraint (7.3) and
investigate the resulting solution.

3. For the TSP use case, replace the subtour elimination constraint (7.3)
with an indicator constraint in SAS as follows:
con NoSubtours {<i,j> in LINKS: j ne 1}:

Use[i,j] = 1 implies Order[i] + 1 <= Order[j];

4. For the TSP use case, strengthen the subtour elimination constraint (7.3)
as follows:

Orderi −Orderj +N × Usei,j + (N − 2)× Usej,i ≤ N − 1

Compare the initial linear programming bound before and after this change.

5. For the TSP use case, call the network solver in SAS by executing the
following statements:
set <num,num> TOUR;

solve with network /

tsp direction=directed include=(weight=dist) out=(tour=TOUR);

put TOUR=;

6. For the VRP use case, investigate the effect of increasing and decreasing
the number of vehicles by 1.

7. For the VRP use case, omit constraint (7.9) and investigate the effect on
the resulting CDem values. Does the optimal objective value change?

8. For the VRP use case, replace constraints (7.8) and (7.9) with an indicator
constraint in SAS as follows:
con NoSubtours {<i,j> in LINKS: j ne 1}:

Use[i,j] = 1 implies CDem[i] + dem[j] = CDem[j];
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9. For the VRP use case, call the network solver in SAS by executing the
following statements:
set DEPOT = {1};

set <num,num,num,num> VRPLINKS; /* route, order, from, to */

solve with network /

vrp=(depot=DEPOT capacity=(cap) demand=dem

minRoutes=(numVehicles) maxRoutes=(numVehicles))

direction=directed include=(weight=dist)

out=(vrplinks=VRPLINKS);

put VRPLINKS=;





Chapter 8

Multicriteria Optimization

Optimization problems often involve multiple, sometimes competing, objec-
tives. This chapter first reviews multicriteria optimization concepts and then
presents a use case based on a real application, followed by several practice
problems related to this use case.

8.1 Concepts Review

Pareto Frontier

For an optimization problem with a single objective, comparing two feasible
solutions is often straightforward: the solution with the better objective value
is preferred. For an optimization problem with multiple objectives, however,
the situation is more complicated. For example, suppose there are two objec-
tives. If solution A has better values than solution B for both objectives, then
solution A is preferred, and solution B is said to be dominated by solution A.
But if solution A is better than solution B for one objective and worse than
solution B for the other objective, the decision maker needs to evaluate the
trade-off to decide between these two solutions. These two solutions are then
called nondominated, and the set of all nondominated solutions is called the
Pareto frontier.

Some solvers, including the black-box optimization solver in SAS, naturally
handle multiple objectives and return a set of nondominated solutions that
approximate the Pareto frontier. The decision maker can then select one
of these solutions, perhaps based on additional considerations that are not

115
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captured in the optimization model. For more information about the black-
box optimization solver in SAS, see the black-box optimization solver chapter
in [SAS23].

Blended Objective

Many optimization solvers optimize only one objective function at a time.
A common way to handle multiple objectives is to blend them into a sin-
gle objective with nonnegative weights that reflect the relative importance of
each objective. Explicitly, if there are k objective functions f1, . . . , fk to be
minimized, you would specify nonnegative weights αi for i ∈ {1, . . . , k} and
minimize the blended objective function

∑k
i=1 αifi. With this approach, it

is important to consider the magnitudes of the various objective functions,
especially if they are measured in different units, so that one objective does
not completely drown out the effect of the others.

Sequential Algorithm

The most commonly used algorithm in practice for multicriteria optimization
is the sequential (also called lexicographic) approach. It does require two addi-
tional but typically intuitive inputs: prioritization of the objective functions
and a tolerance associated with each objective function. This algorithm then
optimizes one objective function at a time in order of the given prioritization,
adding a cut after each solve, not allowing previous objective function(s) to
degrade more than the associated tolerance.

For in-depth information about multicriteria optimization models and solu-
tion algorithms, please refer to [Ehr05].

8.2 Use Case: Optimizing the San Francisco

Police Patrol Schedule

In 1988, the San Francisco Police Department (SFPD) performed a first-of-
its-kind approach to police officer patrol scheduling [TH89], which earned
them the 1988 Franz Edelman Award for Achievement in Advanced Analytics,
Operations Research, and Management Science from INFORMS.

Like most police departments, SFPD needs to build daily schedules for
police patrols, accounting for several relevant metrics such as citizen safety,
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cost of operations, and officers call time, among others. Police departments
build estimates of the required number of police officers for different locations
at different times of day and days of the week. Efficient schedules require
balancing the workload by minimizing shortages (not enough police officers)
as well as surpluses (too many police officers).

8.2.1 Problem Definition

To formulate this scheduling problem with an optimization model, we define
decision variables as the number of patrol officers scheduled to begin their
shifts at each time of day. This is a widely used approach that enables a
more compact formulation than deciding how many officers are patrolling at
each time of day. To produce a reasonable schedule, we need to minimize
shortages while not scheduling more officers than are available. However, there
are several meaningful ways to measure shortage, each measure translating
into a different citizen safety concern. The total shortage (calculated as a
sum of all unmet needs across all time windows) measures the overall safety
concern, whereas the maximum shortage (calculated as the maximum unmet
need across all time windows) measures the largest safety concern over time.

8.2.2 Data and Settings Inputs

This application requires an estimate of the required number of officers for
each time window (data input).

The data dictionary in Table 8.1 contains more detailed information about
the table and the variables.

Table 8.1: Data Dictionary
Data Table Variable

Name

Variable

Type

Variable Description

INPUT DEMAND Time Num Beginning hour of the time window (e.g., 2)

INPUT DEMAND Demand Num Estimate of required number of officers

patrolling (e.g., 2)

INPUT SETTINGS Setting Name Char Name of the configuration setting (e.g.,

CAPACITY)

INPUT SETTINGS Setting Value Num Value of the configuration setting (e.g., 40)

INPUT SETTINGS Setting Desc Char Description of the configuration setting
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Table 8.2 shows a snapshot of the input data.

Table 8.2: INPUT DEMAND Data Snapshot

Time Demand
0 19
1 7
2 6

8.2.3 Mathematical Formulation

User-defined Settings

Table 8.3 shows the user-defined settings that are considered constant in the
mathematical model. Please notice that tolerance is also provided as part of
the required inputs to use the Sequential Algorithm.

Table 8.3: User-defined Settings
Setting Name Setting Description

capacity Total number of available patrol officers

duration Number of hours in a work shift

tolerance Amount by which to relax primary objective when optimizing secondary objective

Dimensions

The dimensions relevant in this use case are the overall set of times and the
times in a given shift, as shown in Table 8.4.

Table 8.4: Dimensions
Dimension Name Dimension Description

t ∈ TIMES Set of times (one per hour)

t ∈ TIMESs Set of times in shift s

Data Parameters

Table 8.5 shows the input parameter read from the INPUT DEMAND table.

Table 8.5: Data Parameter
Parameter Name Parameter Description

demandt Demand for patrolling officers at time t
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Decision Variables

The key decision variable is the number of officers who start their shifts at
time t, as shown in Table 8.6. The other decision variables depend on this.

Table 8.6: Decision Variables
Variable Name Variable Description

NumStartt Number of officers who start their shifts at time t

NumPatrolt Number of officers who are patrolling at time t

Shortaget Unmet demand at time t

MaxShortage Maximum shortage across all times

Constraints

This use case imposes the following constraints:∑
t

NumStartt ≤ capacity (8.1)

NumPatrolt =
∑

s:t∈TIMESs

NumStarts for all t (8.2)

Shortaget ≥ demandt − NumPatrolt for all t (8.3)

MaxShortage ≥ Shortaget for all t (8.4)

Constraint (8.1) enforces that at most the available number of officers are
used. Constraint (8.2) defines the number of officers patrolling according to the
number of officers who already started their shifts. Constraint (8.3) defines
the shortage at time t. Constraint (8.4) defines the maximum shortage in
terms of the shortage at time t.

Objective Functions

The primary objective in this use case is to minimize the total shortage:

min TotalShortage =
∑
t

Shortaget

The secondary objective in this use case is to minimize the maximum shortage:

min MaxShortage = max
t

Shortaget
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subject to an additional (“objective cut”) constraint on total shortage (fol-
lowing the Sequential Algorithm mentioned in first section of this chapter)

TotalShortage ≤ tolerance× TotalShortage∗ (8.5)

where TotalShortage∗ is the minimum total shortage.

8.2.4 Mathematical Formulation and SAS Model

Tables 8.7 and 8.8 show the mathematical formulation and the corresponding
SAS code. Table 8.9 shows the SAS code for the sequential algorithm. The
full code can be found in the supporting materials.

Table 8.7: SAS Code for Sets, Parameters, and Variables

MATHEMATICS SAS CODE

capacity num capacity = 40;

duration num duration = 8;

tolerance num tolerance = 1.1;

t ∈ TIMES set TIMES;

demandt num demand {TIMES};

maxTotalShortageBound num maxTotalShortageBound init 0;

NumStartt var NumStart {TIMES} >= 0 integer;

NumPatrolt var NumPatrol {TIMES} >= 0 integer;

Shortaget var Shortage {TIMES} >= 0 integer;

MaxShortage var MaxShortage >= 0 integer;
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Table 8.9: SAS Code for Sequential Optimization

DESCRIPTION SAS CODE

Run first solve solve obj MinTotalShortage;

Record optimum

TotalShortage to be used in

Bound constraint

maxTotalShortageBound = TotalShortage;

Declare Bound constraint con BoundCon:

TotalShortage <= tolerance * maxTotalShortageBound;

Run second solve solve obj MinMaxShortage;

8.2.5 SAS Output

Figure 8.1 shows the Solution Summary produced by the SAS code after the
first solve that minimizes Total Shortage. The optimum value for Total Short-
age is 46, and the value for Maximum Shortage is 8. A more detailed sample
output is presented in section 8.2.8.

Figure 8.2 shows the Solution Summary produced by the SAS code after
the second solve that minimizes the Maximum Shortage, while not allowing
the Total Shortage to go above the optimum value from the previous solve
adjusted by a tolerance. After this solve, the optimum value for Maximum
Shortage decreased from 8 to 3, and the value for Total Shortage increased
from 46 to 50.
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Figure 8.1: SAS Output
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Figure 8.2: SAS Output
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8.2.6 Mathematical Formulation and Python Model

Tables 8.10 and 8.11 show the mathematical formulation and the corre-
sponding Python code. Table 8.12 shows the Python code for the sequential
algorithm. The full code can be found in the supporting materials.

Table 8.10: Python Code for Sets, Parameters, and Variables

MATHEMATICS PYTHON CODE

capacity m.capacity = Param()

duration m.duration = Param()

tolerance m.tolerance = Param()

t ∈ TIMES m.times = Set()

demandt m.demand = Param(m.times)

maxTotalShortageBound m.maxTotalShortageBound = Param(initialize=0, mutable=True)

NumStartt m.NumStart = Var(m.times, domain=NonNegativeIntegers)

NumPatrolt m.NumPatrol = Var(m.times, domain=NonNegativeIntegers)

Shortaget m.Shortage = Var(m.times, domain=NonNegativeIntegers)

MaxShortage m.MaxShortage = Var(domain=NonNegativeIntegers)
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Table 8.12: Python Code for Sequential Optimization

DESCRIPTION PYTHON CODE (To be run after building instance data)

Deactivate Bound constraint

and Min Max Shortage

objective

m.Bound.deactivate()

m.Min_Max_Shortage.deactivate()

Create instance instance = m.create_instance(InstanceData)

Choose solver and run first

solve

solver = SolverFactory("glpk")

solution=solver.solve(instance)

Use optimum TotalShortage in

Bound constraint and activate

constraint

maxTotalShortageBound=value(instance.TotalShortage)

m.Bound.activate()

Deactivate

Min Total Shortage and

activate Min Max Shortage

objectives

m.Min_Total_Shortage.deactivate()

m.Min_Max_Shortage.activate()

Create instance instance = m.create_instance(InstanceData)

Choose solver and run second

solve

solver = SolverFactory("glpk")

solution=solver.solve(instance)

8.2.7 Python Output

Figure 8.3 shows the output produced by the Python code after the first solve
that minimizes Total Shortage. The optimum value for Total Shortage is 46,
and the value for Maximum Shortage is 7. A more detailed sample output is
presented in section 8.2.8.

Figure 8.4 shows the output produced by the Python code after the second
solve that minimizes the Maximum Shortage, while not allowing the Total
Shortage to go above the optimum value from the previous solve adjusted
by a tolerance. After this solve, the optimum value for Maximum Shortage
decreased from 7 to 3, and the value for Total Shortage increased from 46 to 47.
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Figure 8.3: Python Output

Figure 8.4: Python Output

8.2.8 Output Results

Table 8.13 shows a snapshot of an optimal number of officers who should start
their shifts at each hour. Figure 8.5 shows a plot of an optimal solution for the
primary objective of minimizing the total shortage. Figure 8.6 shows a plot of
an optimal solution for the secondary objective of minimizing the maximum
shortage.
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Table 8.13: Optimal Results Data Snapshot

Time NumStart
15 4
16 9
17 0

Figure 8.5: Optimal Solution for Primary Objective

Figure 8.6: Optimal Solution for Secondary Objective
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8.3 Practice Problems

1. The North Carolina Tourism State Agency is required to coordinate all
efforts to attract tourism industry to the state. The agency received five
proposals for projects, such as destinations marketing and infrastructure
improvements, and must attempt to schedule these projects in the
following two weeks. Assume that each project duration is one week and
each project can be launched in only one of the two weeks. Each project’s
cost depends on which week the project is going to be scheduled and is
provided in the MC P1 project costs.csv data. In addition, projects with
IDs 2 and 5 cannot be scheduled together in the same week, each project
can be scheduled only once, and not every project has to be scheduled.
The agency has a total budget of $100,000 for the entire planning period.

Pro Bono Analytics volunteers came up with a regression-based model that
estimates the impact of these projects in tourism affluence (in number of
tourists) as well as expenditure per tourist (in dollars). This information
is provided in the MC P2 project master.csv data.

(a) Find the project scheduling solution that maximizes the total expen-
diture (total dollars all visiting tourists will spend).

(b) Find the project scheduling solution that maximizes the total number
of visitors (tourists).

(c) Assume that priority one for the agency is to maximize the total
expenditure. However, they also want to maximize number of tourists
as priority two while guaranteeing that total expenditure is within 10%
of the optimum value.

2. For the police patrol schedule use case, use the MOD function to rewrite
the index set for the sum in the NumOfficersPatrollingCon constraint as
follows.
set TIMES_shift {s in TIMES} =

setof {t in s..s+duration-1} mod(t,maxTime+1);

3. For the police patrol schedule use case, use the LINEARIZE option in SAS
to automatically linearize the MAX operator as follows. Omit the Shortage
and MaxShortage variables, omit the ShortageCon and MaxShortageCon
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constraints, declare Shortage as an implicit variable, and declare the two
objectives:
impvar Shortage {t in TIMES} =

max(demand[t] - NumPatrol[t], 0);

min MinTotalShortage = sum {t in TIMES} Shortage[t];

min MinMaxShortage = max {t in TIMES} Shortage[t];

Then use the LINEARIZE option in each solve statement. For example,
the first one becomes:
solve obj MinTotalShortage linearize;
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Practice Problem Solutions

9.1 Linear Programming (Chapter 4)

Problem 1: Hire 10 in years 1 and 2 and let go 20 in year 3.

9.2 Mixed Integer Linear Programming

(Chapter 5)

Problem 1: Select beams 1 and 3.

Problem 2.a: Schedule 3 spots in show 1/day 2, 2 spots in show 2/day
2, 1 spot in show 3/day 2, and 3 spots in show 4/day 2.

Problem 2.b: 50 million.

Problem 2.c: $250,000.

9.3 Nonlinear Optimization (Chapter 6)

Problem 1: Optimum revenue (accounting for disposal costs) is $518.86.

133
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9.4 Network Optimization (Chapter 7)

Problem 1: Assign CT to region 1, NJ to region 2, and PA to region 3.

9.5 Multicriteria Optimization (Chapter 8)

Problem 1.a: Schedule project 2 in week 2 and project 3 in week 2.

Problem 1.b: Schedule project 1 in week 1, project 5 in week 1, project 3 in
week 2, and project 4 in week 2.

Problem 1.c: Schedule project 2 in week 2 and project 4 in week 2.
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