

Oracle APEX 20 For Beginners
A platform to develop stunning, scalable data-centric

web apps fast

Riaz Ahmed

Oracle APEX 20 For Beginners
Copyright © 2020 Riaz Ahmed

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United
States Copyright Act, without the prior written permission of the
Author.

Limit of Liability/Disclaimer of Warranty: The author make no
representations or warranties with respect to the accuracy or
completeness of the contents of this work and specifically disclaim
all warranties, including without limitation warranties of fitness for
a particular purpose. No warranty may be created or extended by
sales or promotional materials. The advice and strategies contained
herein may not be suitable for every situation. This work is sold
with the understanding that the author is not engaged in rendering
legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional
person should be sought. The author shall not be liable for damages
arising here from. The fact that an organization or web site is
referred to in this work as a citation and/or a potential source of
further information does not mean that the author endorses the
information the organization or web site may provide or
recommendations it may make. Further, readers should be aware
that Internet web sites listed in this work may have changed or
disappeared between when this work was written and when it is
read.

Trademarks: Oracle is a registered trademark of Oracle
Corporation. All other trademarks are the property of their
respective owners. The author is not associated with any product or
vendor mentioned in this book.

ABOUT THIS BOOK
This is my eleventh book on Oracle Application Express (APEX) written for
the latest version. Just like my previous books that exposed the technology to
thousands around the globe, this book is also aimed at beginners who wish to
learn from self-paced professional guidance and need a solid foundation in
Oracle APEX.

Oracle APEX is an amazing low-code development platform in which you
can build robust web applications. Not only it provides an environment where
you can rapidly develop data-centric web applications, it also allows end-
users to interact with their data via tools like interactive report, interactive
grid, faceted search, different types of charts and more.

The most convincing way to explore a technology is to apply it to a real
world problem. Without involving the audience too much into the boring bits,
the book adopts an inspiring approach that helps beginners practically
evaluate almost every feature of Oracle APEX. In this book, you’ll develop
an application that demonstrates the use of those features to get hands-on
exposure to Oracle APEX anatomy. The sticky inspirational approach
adopted in this book not only exposes the technology, but also draws you in
and keeps your interest up till the last exercise.

The ultimate objective of this book is to introduce you to the art of building
web applications by iteratively developing the sample database application
(provided with Oracle APEX) from scratch. The application demonstrates
how to display summary information, use reports and forms for viewing,
updating, and adding information, include charts to visualize information,
and create dedicated mobile pages. This application has been chosen as an
example because you can learn most of the techniques from it for your own
future work. The primary purpose of this book is to teach you how to use
Oracle APEX to realize your own development goals. Each chapter in this
book explores a basic area of functionality and delivers the development
techniques to achieve that functionality. By the time you reach the end of the
examples in this book, you will have a clear understanding of Oracle APEX
and will be able to extend the application in almost any direction.

The short list below presents some main topics of Oracle APEX covered in
this book:

Browser-based online application development
Rapid web application development for desktops, laptops, tablets,
and latest smartphones
Create comprehensive applications declaratively without writing
tons of code
Tweak application pages using Page Designer
Create applications with the help of wizards
Create custom application pages by adding components manually
Use same interface and code to develop applications for a wide
array of devices
Present data using a variety of eye ‐ catching charts
Produce highly formatted PDF reports, including invoices, grouped
reports, and pivot tables
Implement APEX’s built-in security module

If you are looking for a concise and concrete Oracle APEX book written for
beginners, then I must say that this is the book that will return more than
what you have paid for it.

Special offer! For those who are new to SQL and PL/SQL or those who want
to refresh their knowledge in these areas, I’m providing a SQL/PLSQL
eBook for FREE! Please send the purchase proof of this book to
oratech@cyber.net.pk to get the free e-book.

URL to Download Book Code
https://tinyurl.com/oracleapex20
NOTE:

If you are not able to download the book code from this URL, please let me know via my email
to get the code.

The URL of the ERRATA page for this book is:

https://errataapex.blogspot.com/2020/07/errata-apex-20.html

- Riaz Ahmed
Author

oratech@cyber.net.pk

mailto:oratech@cyber.net.pk
mailto:oratech@cyber.net.pk

ABOUT THE AUTHOR
Riaz Ahmed is an IT professional with more than 25 years of experience. He
started his career in early 1990's as a programmer and has been employed in a
wide variety of information technology positions, including analyst
programmer, system analyst, project manager, data architect, database
designer and senior database administrator. Currently he is working as the
head of IT for a group of companies. His core areas of interest include web-
based development technologies, business intelligence, and databases. Riaz
possesses extensive experience in database design and development. Besides
all versions of Oracle, he has worked intensively in almost all the major
RDBMSs on the market today. During his career he designed and
implemented numerous databases for a wide range of applications, including
ERP. You can reach him via oratech@cyber.net.pk.

BOOKS AUTHORED BY RIAZ AHMED
Oracle APEX – for Absolute
Beginners
No-Code Oracle APEX For Thirteen
To Ninety
ISBN – 9798633930535

Oracle APEX – Beginners Guides
Version 19 – ISBN: 9781094779096
Version 18.1 – ISBN: 9781723335372
Version 5.1 – ISBN: 9781542452540
Version 5.0 – ISBN: 9781512003307
Version 4.2 – ISBN: 9781492314189
Version 4.0 – ISBN: 9781466350656

Oracle APEX – Pro Version
Oracle Application Express – Pro
Hacks (First Edition)
ISBN-9781698624761

Oracle Application Express – Pro
Hacks (Second Edition)
ISBN-9798663034210

Implement Oracle Business
Intelligence
Analyze the Past
Streamline the Present
Control the Future
ISBN-13: 9781475122015

SQL – The Shortest Route For
Beginners
A hands-on book that covers all
top DBMS and teaches SQL in
record time
ISBN-13: 9781514130971

Beginning Windows 10 With
Anniversary Update
A compact guide to explore the
latest operating system
ISBN-13: 9781532831065

Learning SAP Analytics Cloud
SAP all-in-one BI solution in the

mailto:realtech@cyber.net.pk

Cloud Computing Using Oracle
APEX
Rapidly develop internet facing
business applications accessible
anywhere and anytime
ISBN-13: 9781484242421

Business Intelligence in Oracle
APEX
Transition of BI from IT to End Users
ISBN-13: 9781720582489

cloud
ISBN-13: 9781788290883

The Web Book - Build Static
and Dynamic Websites
The ultimate resource to building
static and dynamic websites using
HTML5, CSS3, JavaScript, PHP,
and MySQL
ISBN-13: 9781483929279

Find latest editions of my books on Amazon
https://www.amazon.com/Riaz-Ahmed/e/B006V7K0Y2

CONTENTS
Chapter 1: The Learning Approach
Chapter 2: Oracle APEX Concepts
Chapter 3: Create Application Components
Chapter 4: Prepare Application Dashboard
Chapter 5: Managing Customers
Chapter 6: Set Up Products Catalog
Chapter 7: Taking Orders
Chapter 8: Graphical Reports & Mobile Integration
Chapter 9: Produce Advance Reports
Chapter 10: Managing Users and Application Access
Chapter 11: More Features
Chapter 12: Deploying APEX Applications

Chapter 1 - The Learning Approach
1.1 How are you going to learn Oracle APEX?
Oracle Application Express (APEX) is a browser-based rapid application
development (RAD) tool that helps you create rich interactive Oracle-based
web applications very quickly and with relatively little programming effort.
A web application is an application that is accessed by users over a network
such as the Internet or an intranet. It is a software coded in a browser-
supported programming language (such as JavaScript, combined with a
browser-rendered markup language like HTML) and dependent on a common
web browser to render the application. The popularity of web applications is
due to the ubiquity of web browsers, which is the only requirement to access
such applications. Another major reason behind the popularity of web
applications is the ability to update and maintain these applications without
distributing and installing software on potentially thousands of client devices.

Developing web applications can be a real challenge because it's a
multidisciplinary process. You have to be proficient in all the core
technologies involved such as HTML, CSS, JavaScript (on the client side)
and PHP or any other scripting language to interact with the database on the
server side. Also, you've to take into account the type-less nature of the web
environment and above all, the need to put it all together in a manner that will
allow the end users to execute their jobs efficiently and in a simplified
manner.

Oracle APEX is a hosted declarative development environment for
developing and deploying database-centric web applications. Oracle APEX
accelerates the application development process. Thanks to its built-in
features such as user interface themes, navigational controls, form handlers,
and flexible reports that off-loads the extra burden of proficiency acquisition
in the core technologies.
Declarative development is the most significant feature, which makes Oracle
APEX a good choice for rapid application development. Most of the tasks are
performed with the help of built-in wizards that help you create different
types of application pages. Each wizard walks you through the process of
defining what you are expecting to achieve. After getting the input, the
wizard data is stored as metadata in Oracle database tables. Later on, you can
call page definition to modify or enhance the metadata to give your page the

desired look. You can even add more functionality by putting your own
custom SQL and PL/SQL code. Once you’re comfortable with Oracle APEX,
you can ignore the wizards and generate your applications directly. The
Application Express engine renders applications in real time using the
metadata. When you create or extend an application, Oracle APEX creates or
modifies metadata stored in database tables. When the application is run, the
Application Express engine reads the metadata and then displays the
application.
When you create a new application in Oracle APEX, the Create Application
Wizard uses Universal Theme. It is an application user interface, which
enables developers to build modern web applications without requiring
extensive knowledge of HTML, CSS, or JavaScript. Universal Theme is an
example of a responsive user interface theme. Responsive design enables you
to design web pages so that the layout fits the available space regardless of
the device on which page displays (for example, a desktop computer, laptop
computer, tablet, or smartphone). By implementing a responsive design, the
user gets the same full experience as they would on larger screens. On smart
phones and tablets, the layout can adjust to the size of the specific device.
During this resizing process, elements shift position, resize, or become
hidden. The goal of responsive design is to present all essential content in a
user friendly way for all possible screen sizes.

1.2 Understanding the Application
The format of this book is to introduce you to the art of building web
applications by iteratively developing the sample sales application (provided
with Oracle APEX) from scratch. This application has been chosen as an
example because you can learn most of the techniques from it for your own
future work. The primary purpose of this book is to teach you how to use
Oracle APEX to realize your own development goals. Each chapter in this
book explores a basic area of functionality and delivers the development
techniques to achieve that functionality. By the time you reach the end of the
examples in this book, you will have a clear understanding of Oracle APEX
and will be able to extend the application in almost any direction. There are a
number of features that provide Oracle APEX a clear edge over other
available RAD development tools. Oracle APEX uses SQL and PL/SQL as
core languages for development and because of this ability people who have
been working with Oracle database can easily tread the path.

The application you will be creating in this book features an easy-to-use
interface for adding, updating, deleting and viewing order and related
products and customers information. Users can navigate among the pages
using a desktop navigation menu. The same application will be accessible
from a variety of mobile devices including latest smartphones and tablets.
Before we dig into details of the application, let’s first have a quick look at
some of the major areas of our sample Sales Web Application to know what
we’re going to create.

1.2.1 Chapter 4 - Prepare Application Dashboard

In Chapter 4, you’ll create the home page of the application. It is a dashboard
that users see when they successfully access the application after providing
valid credentials. Let’s first take a look at the tagged areas to acquaint
ourselves with different sections of this page:

A. Application name and logo
B. Navigation Bar
C. Main Navigation Menu icon
D. Buttons

E. Regions
F. Text Links
G. Developers Toolbar

The Home page contains six regions to display different summarized
information. It uses a 12 columns layout to place these regions accordingly.
Besides application name and logo (A), the page carries a main navigation
menu (C), which is used to move to other application segments. The
navigation bar (B) to the right side allows you to log out from the application.
By default, it displays the id of the currently logged-in user, along with a
Sign Out link. You can add more options (such as, user feedback) to this bar.
The body of a page can have multiple regions (E) that act as containers to
display information from database tables. You can place buttons (D) in
regions that allow you to drill into further details. In addition to buttons, the
page also contains text links (F) to dig details of the summarized information.
Using the options provided in the Developers Toolbar (G), you can switch to
the Page Designer instantly and perform various other development tasks.
You will use Oracle JET Charts on the Home page to present data graphically
using different types of charts.

What You’ll Learn

How to create dashboards in web applications
Adding multiple regions to a page to segregate content
Use of 12 columns grid layout to arrange multiple regions on a
page
Create links to drill-down into details
Badge List, Pie Chart, and Bar Chart to display data in different
graphical formats
Summarized text information
Using buttons to navigate to other application pages

1.2.2 Chapter 5 – Customers Profiling

The sales application to be created in this book comprises some setups,
including this one. Using this module you will create customers profiles.
Each customer will be provided a unique ID that will be generated
automatically through a database object called a Sequence. After creating
customers’ profiles, you will use this information in Chapter 7 (Taking
Orders), where you will select these customers to process orders. The setup
consists of two pages. The first page (Figure 1-2) is a report (based on an
Interactive Grid) that lists all customers. The first column in the interactive
grid (Name) acts as a link to call the details page (Figure 1-3), which is a
form where you can create, modify, or delete customer’s records individually.
The form page is a modal page that pops up on top of the report page to
display and receive customers information in page items (A). The page also
contains a bunch of auto-generated buttons (B) to perform DML actions.

What You’ll Learn

Create application pages using wizards
Using Interactive Grid to display information in tabular format
Web input form to insert, update, and delete data
Use of Modal Page
Change type of page items
Customizing wizard-generated pages to make them more
professional
Creating custom links to switch between the two module pages
Positioning form input elements using 12 columns layout
Marking mandatory fields
Enforce data validation
Understand how APEX transparently manages DML operations
(Insert, Update, and Delete) without writing a single line of code

1.2.3 Chapter 6 – Set Up Products Catalog

Since sales applications are developed to handle sales of products, a properly
designed product setup is an integral part of such applications. To fulfill this
requirement, you will create a comprehensive products setup for the sales
application to manage products information along with respective images.
The products you set up here will be selected in customers’ orders. Just like
the Customers setup, this segment also comprises two pages. The initial page
(Figure 1-4) is an interactive report that will be customized to create three
different views to browse product information. The second page (Figure 1-5)
of this module is an input form where you can add, modify, or delete a
product.

What You’ll Learn

Interactive Report
Image handling (upload, download, save, retrieve, and delete from
database)
Customize interactive report to get different views of data
Use of Cascading Style Sheet (CSS) to add custom styles to a page
Change item type and associate List of Values (LOVs)
Hiding report columns
Replacing wizard-generated links with customized links
Displaying data in an HTML table element
Styling HTML table element
Saving an Interactive Report as primary report
Set dimensions of a modal page
Making and marking page items as mandatory

1.2.4 Chapter 7 – Taking Orders

This is the most comprehensive chapter of the book. It will teach you lots of
techniques. In this chapter, you will create a module to take orders from
customers. Initially, you’ll create this segment with the help of wizards and
later you will customize it to record orders through a sequence of wizard
steps. The module will use two database tables (Order Master and Order
Details) to view, add, update, and delete customer orders. The initial page of
this module, as illustrated in Figure 1-6, is an interactive report that lists all
orders. The first order number column acts as a link. When you click an order
number, you see another page of this module, as illustrated in Figure 1-4.
This page will show details of the selected order. The upper pane (A) of this
page retrieves data from the master table, while the lower pane shows order

details in an interactive grid (B). The page also contains a couple of auto-
generated buttons (C) for record navigation. You can use these buttons to
move from one customer order to another.

What You’ll Learn

Implement master/detail forms
Sorting Interactive Report
Add Control Breaks to interactive report to group related data
Apply highlight rules to mark specific records
Using Aggregate functions
Using Chart and Group By views in an interactive report
Creating Primary, Public, and Alternative versions of an interactive
report
Utilizing Copy Page utility
APEX Collection
Adding custom processes and dynamic actions
Using HTML in PL/SQL code
Using CSS in APEX pages

1.2.5 Chapter 8 – Graphical Reports & Mobile Integration

After getting thorough knowledge of data manipulation techniques, you move
on to present graphical output of the sales data. In this chapter, you will be
taught the use of different types of charts, tree, and calendar to present data
from different perspectives.

Oracle APEX's Universal Theme is designed to work just as well on small
screen devices (such as smartphones and tablets) as it does on larger screen

devices (including laptops and desktops). The UI components in Universal
Theme work across varying screen resolutions while maintaining the same or
similar functionality. Although the Universal Theme is optimized to work
well on mobile devices, not all components are mobile friendly. When
creating reports for mobile devices, Oracle recommends use of List View,
Column Toggle Report, and Reflow Report that provide an optimal user
experience for small screens. You will also go through these mobile report
types in this chapter.

What You’ll Learn

How to display summarized information through Stacked Bar,
Donut, Range, Line with Area, Gantt, Box Plot, and Pyramid
charts
Display customer orders in a calendar
Hierarchical presentation of data using a tree component
Drill-down to details from charts
List View, Column Toggle Report, and Reflow Report for mobile
integration

1.2.6 Chapter 9 – Produce Advance Reports

By default, APEX has the ability to produce simple generic matrix reports
comprising rows and columns. This chapter will show you how to produce
advance report in APEX. Here, you will be provided with step-by-step
instructions to generate:

A highly formatted MIS report
Commercial Invoice
Pivot Table

What You’ll Learn

Create Report Query
Design report layout in Microsoft Word using XML data
Data grouping and sorting
Formatting reports using standard Microsoft Word tools

Add conditional formatting to display data differently in the same
report
Add calculations
Create parameterized report
Upload RTF layout to APEX
Attach custom report layout to the default report query
Add link in the application to run advance reports

1.2.7 Chapter 10 – Managing Users and Access Control
After creating all segments of an application, you apply security to these
segments. In this chapter you will utilize Oracle APEX’s built-in access
control feature. You will also be guided in this chapter to create users for
your application with different roles. The built-in access control feature auto-
generates some authorization schemes as well that are used to control access
to an application, individual pages, or page components.

What You’ll Learn

Make your application secure from unauthorized access
How to add users to an APEX application
Implement built-in roles and rights

1.2.9 Chapter 11 – More Features
This chapter will provide hands-on exposure to some miscellaneous but
significant features provided in Oracle APEX to help improve your
application development experience. You will learn about Faceted Search
that provides additional search capabilities and is useful to narrow down
search results. You will learn about Theme Roller which enables you to give
a new look to your application. Button styling is also covered in this chapter.
In the final section you will use Calendar component to manage events.

1.2.10 Chapter 12 – Deploy APEX Application
In this chapter, you will be guided to export an application from your
development PC to a production environment. For this purpose, you will
utilize APEX’s Export and Import utilities. To keep things simple, you will

deploy the application in the same workspace to understand the deployment
concept. First, you will export the application to a script file and then, using
the Import utility, the same script file will be imported to create the
application in the same workspace with a new ID. The same technique is
applicable to the production environment.

Summary
This chapter provided an overview about the essence of the book: a web-
based data-centric application. You’ll create this application using the
browser-based declarative development environment to get hands-on
exposure to the features provided by Oracle APEX. The next chapter is aimed
at providing some core concepts about Oracle APEX. Read the chapter
thoroughly because the terms used in that chapter are referenced throughout
the book.

Chapter 2 - Oracle APEX Concepts
2.1 Introduction to Oracle APEX
If you are interested in developing professional web applications rapidly, then
you have chosen the right track. Oracle APEX is a rapid application
development (RAD) tool that runs inside an Oracle database instance and
comes as a free option with Oracle database. Using this unique tool you can
develop and deploy fast and secure professional web applications. The only
requirements are a web browser and a little SQL and PL/SQL experience.

Oracle APEX provides a declarative programming environment, which
means that no code is generated nor compiled during development. You just
interact through wizards and property editor to build web applications on
existing database schemas. Reports and charts are defined with simple SQL
queries, so some knowledge of SQL is very helpful. If you want to create
more robust applications, then you can add procedural logic by writing
PL/SQL code. Oracle APEX is a declarative tool and has a vast collection of
pre-defined wizards, HTML objects, database handling utilities, page
rendering and submission processes, navigation and branching options, and
more. You can use all these options to build your database-centric web
applications comprising web pages carrying forms, reports, charts, and so on
with their layouts and business logic. The APEX engine translates it all into
an HTML code for the client side and SQL and PL/SQL code for the server
side. If you do not get a solution from built-in options, you are allowed by
Oracle APEX to create your own SQL and PL/SQL code for the server side
and HTML, CSS, and JavaScript code for the client side.

2.2 Why Use Oracle APEX?
Velocity in the demand for new applications and functionality rises as
businesses grow. As a developer, you are expected to rapidly respond to these
needs. Over the years, desktop database and spreadsheet tools have
enormously contributed to data management due to the ease and user
friendliness these applications extend to their users. Besides benefits, these
applications have scalability and functionality limitations that not only results
in dozens of different applications and data sources but also adds extra
overhead in their maintenance. Because of these issues, organizations are
unable to continue their standard practices, leaving mission-critical data at
risk. These fragmented systems may also cause loss of business

opportunities. Last but by no means least, significant amount of time and
resource is required to put these data blocks together to get the desired
information. Keeping in view these constraints, the following list provides
some advantages of using Oracle APEX:

Oracle APEX Advantages
Low-Code: A low-code platform in which enterprise apps are built 20x faster
with 100x less code.

Robust and Proven: Oracle APEX is capable to produce a wide variety of
apps for any industry – from the simplest app that is created from a
spreadsheet file, to mission-critical apps which are used daily by tens of
thousands of users. The elegant architecture of Oracle APEX has been used
to power thousands of applications around the globe for years. Oracle APEX
has a much lower barrier to entry for creating responsive and powerful
business applications.

Installation: No installation of software is required on client machines – the
only requirement is a supported browser.

Central Management: Being central, data and applications become a part of
regular backup procedure.

Secure: Data and application access control, empowered by audit trail.
Oracle APEX is designed to build web apps which are highly secure out of
the box. In a world of ever-changing web standards, evolving security
standards, and resourceful hackers, the focus on security means that your
applications stay protected and remain state-of-the-art.

Portable: You can run Oracle APEX everywhere – on the Oracle Cloud, on-
premises, or anywhere else there is an Oracle Database. And you can deploy
your Oracle APEX applications across any environment with ease.

Reporting: Oracle APEX includes powerful self-service reporting features.
You can easily add custom filters, sort, aggregate, pivot and chart your data,
and even create reports which get emailed to you on a periodic basis.

Apps for Enterprises: In an enterprise setting, Oracle APEX provides a
scalable and proven platform for applications which can scale across the
enterprise. Oracle APEX includes native functionality to integrate with REST

and SOAP Services in your organization and in the cloud.

2.3 Anatomy of Oracle APEX
I know you are curious to start the proceedings, but first you need to
understand some basic concepts before you dive into Oracle APEX’s pool.
This chapter will introduce some basic structures of Oracle APEX you must
be aware of prior to executing the exercises. As depicted in Figure 2-1,
Oracle APEX is an integral part of an Oracle database. It is a free rapid
application development tool that runs inside an Oracle database instance. In
Oracle APEX, you can create multiple workspaces to host different types of
applications. Each workspace can hold multiple applications. Database
applications created in Oracle APEX comprise two or more pages. Each page
can carry multiple regions to display and receive information. With dynamic
actions you can define complex client-side behavior declaratively without the
need for JavaScript. Processes are logic controls used to execute Data
Manipulation Language (DML) or PL/SQL. The data is fed and displayed
using page items such as Text field, Select List, Radio Group, and so on. Just
like desktop applications, you use buttons in Oracle APEX to submit
requests. The following sub-sections provide further details on these
structural elements.

2.3.1 Workspace
To access Oracle APEX development environment, users sign in to a shared

work area called a Workspace. A workspace is a virtual private container
allowing multiple users to work within the same Oracle APEX installation
while keeping their objects, data and applications private. You have to create
a workspace before you create an application. It is necessary because you
have to specify which workspace you want to connect to when you log in.
Without this piece of information, you are not allowed to enter Oracle APEX.

To use the exercises presented in this book, you have to select a development
option from the following:

Download and install Oracle APEX on your own PC or within
your private cloud.

Get your own free workspace from Oracle to execute the exercises
online on their servers. This is the most convenient way for
beginners. So, execute the following steps to request a free
workspace that will be provided to you in minutes.

Figure 2-2 - Workspace Home Page

Requesting a Free Workspace

Follow the instructions mentioned below to get your free workspace:

1. Open your internet browser and type https://apex.oracle.com/en/ in the address bar
to access Oracle APEX site. On the home page, click the Get Started for Free
button.

2. On the Get Started page, click the Request a Free Workspace button.

3. On the Identification wizard screen, enter your first and last names, e-mail
address, and the name of the workspace you intend to create – for example, MYWS.
If the workspace name already exists, try a different one. After providing this
information, click the Next button to proceed to the next wizard step.

4. On Survey screen, select Yes for 'Are you new to Oracle Application Express?'
and select appropriate option for the second query. Click Next to proceed.

5. On Justification screen provide a justification like, "I want to evaluate Oracle
APEX" and click Next.

6. On the next wizard screen read and accept the agreement terms.

7. Click the Submit Request button on the final Confirmation screen. A
confirmation box will pop up with the message "You will receive an email to
activate your workspace once this request has been approved."

8. Soon after submitting the request, you'll get an e-mail from Oracle carrying your
workspace credentials and a button labeled Create Workspace. Take a note of your
credentials because you need this information whenever you attempt to access your
online Oracle APEX workspace. Click the Create Workspace button to complete
the approval process. You will be taken to Oracle APEX's website, and after a little
while, your request will be approved with the message " Workspace Successfully
Created. "

9. Click the Continue to Sign In Screen button.

10. A screen appears requesting to change password. Enter and confirm your password
and click the Apply Changes button. Write down the password along with the
workspace credentials.

11. Here you go! Your Workspace Home Page comes up resembling Figure 2-2.

12. To leave the Oracle APEX environment, click your name (appearing at top-right) and
select Sign Out.

2.3.2 Applications
Applications in Oracle APEX are created using App Builder and each
application consists of one or more pages that are linked together via

navigation menu, buttons, or hypertext links. Usually, each page carries
items, buttons, and application logic. You can show forms, reports, charts,
and calendars on these pages and can perform different types of calculations
and validations. You can also control movement within an application using
conditional navigation. You do all this declaratively using built-in wizards or
through custom PL/SQL code.

Figure 2-3 – App Builder Interface

Developers use App Builder to create and manage applications and
application pages. The App Builder home page displays all installed
applications in the current Oracle APEX instance. When a developer selects
an application to edit, the Application home page appears. Use the
Application home page to create, modify, delete, run, import, or copy
applications.

The Create button and icon on the App Builder page launches the Create
Application wizard comprising the following options:

New Application

Create a fully functional database application based on tables you select
or by providing a valid SQL. You can add pages that include various
components including calendars, cards, charts, dashboards, simple input
forms, master detail, interactive grids, reports, and more. Add
application-level features such as an about page, role-based user
authentication, end user activity reports, configuration options to enable

or disable specific functionality, a feedback mechanism to gather end
users comment, and a Customize button to enable end users to choose
their own theme style. These applications interact with a backend
database to store and retrieve data. It is a collection of pages linked
together using menus, buttons, or hypertext links. Pages are created
declaratively through wizards. Each page can have multiple containers
called regions. Each region can contain text, reports, charts, web service
content, calendars, or forms. Web forms hold items such as text fields,
radio groups, checkboxes, date pickers, list of values, and more. In
addition to these built-in types, you can create your own item types
using plug-ins. When you build a database application, you can include
different types of navigation controls, such as navigation menu,
navigation bar entries, lists, breadcrumbs, and trees. Most of these
navigation controls are shared components, which mean you create
them at the application level and use them in any page within your
database application. All pages in a database application share a
common session state that is transparently managed by Oracle APEX.

From a File

As the name suggests, this option lets you create an application by
uploading data from a CSV, XLSX, XML, TXT or JSON file. When
you run the Create Application Wizard and select this option, the Load
Data Wizard appears where you load a CSV, XLSX, XML, TXT or
JSON file. Oracle APEX creates a new table based on the definitions of
the selected file and loads the data into it. You also have the option to
Copy and Paste column delimited data. After loading the data into the
database table, the wizard creates some application pages based on the
new table.

Productivity Apps

Productivity Apps include a set of business productivity and sample
applications which can be installed with just a few clicks. Productivity
apps are fully developed point-solutions designed to provide real
functionality, such as project management, surveys, shared calendars,
and tracking applications. Productivity apps can be installed, run, and
removed. By default they are 'locked' and are fully supported. Once

unlocked, the application is no longer supported but it can be updated to
meet specific requirements.

Websheet Applications: Besides professional developers, Oracle APEX also
cares for those who are not expert in the development field. It offers Websheet applications to such
users to manage structured and unstructured data. Websheet applications are interactive web pages
that combine text with data. These applications are highly dynamic and defined by their users.
Websheet applications include navigation controls, search capabilities, and the ability to add
annotations such as files, notes, and tags. Websheet applications can be secured using access control
lists and several built-in authentication models. Pages can contain sections, reports, and data grids
and everything can be linked together using navigation. All information is searchable and completely
controlled by the end-user.

2.3.3 Page
A page is the basic unit of an application – see Figures 1-1 to 1-7 in chapter
1. When you build an application using App Builder, you create pages
containing user interface elements, such as regions, items, navigation menu,
lists, buttons, and more. Each page is identified by a unique number. By
default, page creation wizards automatically add controls to a page based on
your selections. You can add more controls to a page after its creation by
using the Page Designer interface. Usually, the Create Page wizard is used to
add components such as report, chart, form, calendar, or tree to a page. In
addition to creating application pages through wizards, you have the option to
create a blank page and add components to it according to your own specific
needs. The Application Express engine dynamically renders and processes
pages based on data stored in Oracle database tables. To view a rendered
version of your application, you request it from the Application Express
engine with a URL. When you run an application, the Application Express
engine relies on two processes:

Show Page is the page rendering process. It assembles all the page
attributes (including regions, items, and buttons) into a viewable HTML
page. When you request a page using a URL, the engine is running Show
Page.

Accept Page performs page processing. It performs any computations,
validations, processes, and branching. When you submit a page, the
Application Express engine is running Accept Page or performing page
processing during which it saves the submitted values in the session cache
and then performs any computations, validations, or processes.

You can create the following types of pages for your application:

Blank Page Creates a page without any built-in functionality.

Report Used to present a SQL query in a formatted style, a report
has the following options:

Interactive Report. Creates an interactive report based on a custom
SQL SELECT statement you provide. Users can alter the layout of
report data by selecting specific columns, applying filters,
highlighting, and sorting. They can also contain breaks, aggregations,
different charts, and their own computations.

Interactive Grid. An interactive grid presents users a set of data in a
searchable, customizable report. Functionally, an interactive grid
includes most customization capabilities available in interactive
reports plus the ability to rearrange the report interactively using the
mouse. Users can lock, hide, filter, freeze, highlight, and sort
individual columns using the Actions menu. Advanced users can also
define breaks, aggregations, and computations against columns.
Users can also directly customize the appearance of an interactive
grid. Users can use the mouse to resize the width of a column and
drag and drop columns into different places in the grid.

Classic Report. Creates a report based on a custom SQL SELECT
statement or a PL/SQL function.

Form The following list provides different types of form pages
you can create in Oracle APEX.

Editable Interactive Grid. An interactive grid presents users a set of
data in a searchable, customizable report. In an editable interactive
grid, users can also add, modify, and refresh the data set directly on
the page. Functionally, an interactive grid includes most

customization capabilities available in interactive reports plus the
ability to rearrange the report interactively using the mouse. You
choose a table on which to build the interactive grid.

Report with Form. Creates two pages – Report and Form. The
developer selects the report type (that is, interactive grid, interactive
report, or classic report). Each row in the report includes a link to the
form page to enable users to update each record. You can select the
table on which to build the report and form.

Master Detail A master detail is a type of page, which reflects a
one-to-many relationship between two tables in a database. Master
detail pages enable users to insert, update, and delete values from
two tables or views. Typically, a master detail page type displays a
master row and multiple detail rows within a single HTML form.
Developers can create a single page or two page master detail.

You choose the tables on which to build the master and detail regions.
Master Detail page options include:

– Stacked - Creates a single page master detail with editable
interactive grids.

– Side by Side - Creates a single page (or Side by Side) master detail
with a master table and detail table. The left side contains a master
list to navigate to the master record. The right side contains the
selected master record and the associated detail report.

– Drill Down - Creates a two page (or Drill Down) master detail. The
first page contains an interactive report for the master table. The
second page features a standard form for the master and an
interactive grid for the detail.

Plug-ins Creates a new page based on a region type plug-in. Plug-
ins enable developers to declaratively extend, share, and reuse the
built-in types available with Oracle APEX.

Chart Enables you to create graphical charts. Chart support in
Oracle Application Express is based on the Oracle JET Data
Visualizations. Oracle JET empowers developers by providing a

modular open source toolkit based on modern JavaScript, CSS3,
and HTML5 design and development principles. The Oracle JET
data visualization components include customizable charts, gauges,
and other components that you can use to present flat or
hierarchical data in a graphical display for data analysis. Each
Oracle JET visualization supports animation, accessibility,
responsive layout, internationalization, test automation, and a range
of interactivity features. The charts provide dozens of different
ways to visualize a data set, including bar, line, area, range,
combination, scatter, bubble, polar, radar, pie, donut, funnel, and
stock charts.

Tree Creates a tree to graphically communicate hierarchical or
multiple level data.

Calendar Generates a calendar with monthly, weekly, and daily
views.

Data Loading Creates a new data loading wizard allowing the end
user to manage the loading of data into a table to all schemas for
which the user has privileges.

2.3.4 Region
You can add one or more regions to a single page in an Oracle APEX
application – see Figure 1-1 in chapter 1. It is an area on a page that serves as
a container for content. You control the appearance of a region through a
specific region template. The region template controls the look of the region,
its size, determines whether there is a border or a background color, and what
type of fonts to display. A region template also determines the standard
placement for any buttons placed in region positions. You can use regions to
group page elements (such as items or buttons). Oracle APEX supports many
different region types including Static Content, Classic Report, Interactive
Report, Interactive Grid, Chart, and more.

2.3.5 Items
After creating a region on a page, you add items to it – see Figure 1-3 in
chapter 1. An item can be a Text Field, Textarea, Password, Select List,
Checkbox, and so on. Each item has its own specific properties that affect the

display of items on a page. For example, these properties can impact where a
label displays, how large an item is, and if the item displays next to or below
the previous item. The name of a page item is preceded by the letter P
followed by the page number – for example, P7_CUSTOMER_ID represents
customer ID item on page 7.

2.3.6 Buttons
Just like desktop applications where you place buttons on your forms to
perform some actions, in web applications too, you can create buttons to
submit a page or to take users to another page (redirect) within the same site
or to a different site. In the former case where a user submits a page, the
Oracle APEX engine executes some processes associated with a particular
button and uploads the page’s item values to the server – see Figure 1-3 in
chapter 1. In case of a redirect, nothing is uploaded to the server. If you
change some items' values on a page and press a button created with a
redirect action, those changes will be lost. You have three button options that
you can add to a web page, these are: Icon, Text, and Text with Icon. You
can place buttons either in predefined region positions or with other items in
a form – see Figures 1-1, 1-3, and 1-7 in chapter 1.

Being an important component to control the flow of database applications,
buttons are created by right-clicking a region in which you want to place the
button and selecting Create Button from the context menu. By placing
buttons (such as Create, Delete, Cancel, Next, Previous , and more) on your
web page, you can post or process the provided information or you can direct
user to another page in the application or to another URL.

Buttons are used to:

Submit a page. For example, to save user input in a database table.
When a button on a page is clicked, the page is submitted with a
REQUEST value that carries the button name. You can reference
the value of REQUEST from within PL/SQL using the bind
variable :REQUEST. By using this bind variable, you can
conditionally process, validate, or branch based on which button
the user clicks. You can create processes that execute when the
user clicks a button. And you can use a more complex condition as
demonstrated in the following examples:

If :REQUEST in ('EDIT','DELETE') then ...
If :REQUEST != 'DELETE' then ...

These examples assume the existence of buttons named EDIT and
DELETE. You can also use this syntax in PL/SQL Expression
conditions. Be aware, however, that the button name capitalization
(case) is preserved. In other words, if you name a button LOGIN, then a
request looking for the name Login fails.

Take user to another page within the same application with
optional additional properties for resetting pagination, setting the
request value, clearing cache, and setting item values on the target
page.

Redirect to another URL.

Do nothing–for example, if the button's behavior is defined in a
Dynamic Action.

Download Printable Report Query. This creates a Submit Page
button and also a corresponding branch. When the button is
clicked, the output is downloaded from the Report Query.

2.4 Oracle APEX Development Environment
Oracle APEX has the web-based application development environment to
build web applications. You are not required to install any client software to
develop, deploy, or run Oracle APEX applications. Following are the primary
tools provided by Oracle APEX:

App Builder – to create dynamic database driven web
applications. This is the place where you create and modify
your applications and pages. It comprises the following:

Create: This is the option in the App Builder that is used
to create new applications. See section 2.3.2 for further
details.

Import: Used to import an entire Oracle APEX
application developed somewhere else, along with related
files.

Dashboard: Presents different metrics about applications
in your workspace including: Developer Activity, Page
Events, Page Count by Application, and Most Active
Pages.

Workspace Utilities: It contains various workspace
utilities. The most significant one is Export. Using this
utility, you can export application and component
metadata to SQL script file format that you can import on
the same or another compatible instance of Application
Express.

SQL Workshop – to browse your database objects and to
run ad-hoc SQL queries, SQL Workshop is designed to
allow Application Developers to maintain database objects
such as tables, packages, functions, views, and so on. It is
beneficial in hosted environments like apex.oracle.com
where direct access to underlying schemas is not provided. It
has five basic components:

Object Browser: to review and maintain database objects
(tables, views, functions, triggers, and so on).

SQL Commands: to run SQL queries.

SQL Scripts: to upload and execute script files.

Utilities: includes Query Builder, Data Workshop,
Generate DDL, Schema Comparison , and more.

RESTful Services: to define Web Services using SQL
and PL/SQL against the database.

Team Development – Team Development allows
development teams to better manage their Oracle APEX
projects by defining milestones, features, to-dos, and bugs.
Features, to-dos, and bugs can be associated with specific
applications and pages as necessary. Developers can readily
configure feedback to allow their end-users to provide
comments on applications. The feedback also captures

relevant session state details and can be readily converted to
a feature, to-do or bug.

App Gallery – Productivity apps are a suite of business
productivity applications, easily installed with only a few
clicks. These solutions can be readily used as production
applications to improve business processes and are fully
supported by Oracle.

The Oracle APEX environment has two broad categories:

Development Environment: Here you have complete control to
build and test your applications, as mentioned in this book.

Runtime Environment: After completing the development and
testing phase, you implement your applications in a production
environment where users can only run these applications and do
not have the right to modify them.

2.5 About Browser Requirements
Because Oracle APEX relies upon standards-compliant HTML5, CSS3, and
JavaScript, Oracle recommends that you use the latest web browser software
available for the best experience.

2.6 The Page Designer
The Page Designer is the main development interface where you manipulate
page components. You use the Page Designer to view, create, and edit the
controls and application logic that define a page. It was a feature incorporated
in Oracle APEX 5, which greatly improves developer’s productivity and
quickly enhances and maintains pages within Oracle APEX. It allows you to
undo and redo changes as necessary before saving the page. In the Layout
tab, it visually presents how your regions and items appear on the page.
Moreover, you can drag new components from component Gallery and move
or copy existing components within a page. Similarly, you can drag to move
multiple components at once in the Tree pane. It also has a new code editor
with new functionalities, such as: SQL and PL/SQL validation with inline
errors, auto completion, syntax highlighting, search and replace, and
undo/redo support.

Figure 2-4 – Page Designer Interface

2.6.1 Toolbar
The Page Designer toolbar (A) appears at the top of the page. It comprises
various tools to find a page, lock/unlock a page, undo/redo actions, save and
run page, and so on. When you pass your cursor over an active option, a
tooltip indicates what that particular toolbar option does. The Utilities menu
has an option that lets you delete the page being displayed in your browser. A
lock icon indicates whether a page is currently locked. If a page is unlocked,
the icon appears as an open padlock. If the page is locked, the icon appears as
a locked padlock. An indication (a locked padlock) for a locked page is
displayed in Page Designer as well as on the Application home page – as
illustrated in Figure 2-5. This feature enables you to prevent conflicts during
application development. By locking a page you prevent other developers
from editing it.

Figure 2-5 Page Lock Indicator

2.6.2 Tree Pane
The Tree pane is displayed on the left side in the Page Designer. It contains
regions, items, buttons, application logic (such as computations, processes,
and validations), dynamic actions, branches, and shared components as nodes
on a tree. It comprises four tabs:

Rendering (B) - Displays regions, page items, page buttons, and
application logic as nodes in a tree. The components defined in this
section appear when a page is rendered. These components can be viewed
as a tree, organized either by processing order (the default) or by
component type. The first two buttons to the right of the Rendering label
can be used to toggle between the rendering trees. Rendering is divided in
three stages. In the Pre-Rendering stage preliminary computations are
performed. The main rendering stage comprises regions and its
components, while the Post-Rendering stage also carries computations
that occur after rendering a page.

Dynamic Actions (C) - Displays dynamic actions defined on this page.
By creating a dynamic action, you can define complex client-side
behavior declaratively without the need for JavaScript. Refer to Dynamic
Actions entry in the book’s index to see its utilization in the project
application.

Processing (D) - Use this tab to specify application logic such as
computations, validations, processes, and branches. Computations are
Oracle APEX's declarative way of setting an item's values on the page.
These are units of logic used to assign session state to items and are
executed at the time the page is processed. Validation is a server-side
mechanism designed to check and validate the quality, accuracy, and
consistency of the page submitted data, prior to saving it into the database.
If a validation fails, further processing is aborted by the server and the
existing page is redisplayed with all inline validation errors. Processes are
logic controls used to execute Data Manipulation Language (DML) or
PL/SQL. Processes are executed after the page is submitted. A page is
typically submitted when a user clicks a button. Branches enable you to
create logic controls that determine how the user navigates through the
application. The left iconic button to the right of the Processing label
displays the components under this tab according to the server's
processing order. The middle button organizes these components
according to their type, while the third one provides a menu to create a
new component in the selected folder.

Page Shared Components (E) - Displays shared components associated
with this page. The list on this tab gets populated automatically when you
use shared components on a page.

2.6.3 Central Pane
The central pane in the Page Designer has two sections. The upper section
contains three tabs: Layout, Page Search, and Help. The lower pane is called
Gallery and it is associated with the Layout tab.

Layout (F) - Layout is a visual representation of the regions, items, and
buttons that define a page. You can add new regions, items and buttons to
a page by selecting them from the Gallery at the bottom of the page.

Page Search (G) - Use Page Search to search all page metadata including
regions, items, buttons, dynamic actions, columns, and so on.

Help (H) – The Help displays help text for properties in the Property
Editor. Click a property in the Property Editor and then click the Help tab
(in the Central pane) to see the purpose of the selected property. As you
move from one property to the next in the property editor, the Help tab

displays the help text for the currently selected property.

2.6.4 Property Editor
The Property Editor appears in the right pane and displays all the properties
and values for the current component. As you select different components in
either Tree View or Layout tab, the Property Editor automatically updates to
reflect the current selection. Properties are organized into functional groups
(Identification, Source, Layout, Appearance, and more) that describe their
purpose. When you modify or add a value to a property, a colored vertical bar
appears as a visual modification indicator before the property name.

2.7 Understanding Oracle APEX URL Syntax
Oracle APEX applications support two types of URL syntax: Friendly URL
Syntax and f?p Syntax. Each application has its own unique ID and is
referenced by this ID in URL. Similarly, you create pages in an application
with respective numbers that uniquely identify each page. The Application
Express engine assigns a session ID, which is used as a key to the user's
session state when an application is run. The f?p URL Syntax is a legacy
syntax that creates a unique URL structure that identifies the address of
Oracle Application Express, the application ID, page number, and session ID.

Here is the URL syntax example for the f?p type:

http://apex.abc.com/pls/apex/f?p=101:1:440323506685863558

This example indicates:

apex.abc.com is the URL of the server
pls is the indicator to use the mod_plsql cartridge
apex is the database access descriptor (DAD) name. The DAD
describes how HTTP server connects to the database server so that
it can fulfill an HTTP request. The default value is apex.
f?p= is a prefix used by Oracle APEX to route the request to the
correct engine process.
101 is the application being called. The application ID is a unique
number that identifies each application.
1 is the page within the application to be displayed
440323506685863558 is the session number to keep track of user’s
session state

It is important to understand how f?p syntax works. App Builder includes
many wizards that automatically create these references for you. However,
you may have to create the syntax yourself in some situations. For instance,
in section 6.3.1 (Chapter 6) you will create a manual link in a SQL statement
using this syntax, and in section 4.3.2, a link will be created on a column
using the Target property of that column.

2.7.1 Using f?p Syntax to Link Pages
Here is the syntax you can use to create links between pages in your
application.

f?
p=App:Page:Session:Request:Debug:ClearCache:itemNames:itemValues:PrinterFriendly

The following are the arguments you can pass when using f?p syntax:

App: Indicates an application ID or alphanumeric alias.

Page: Indicates a page number or alphanumeric alias.

Session: Identifies a session ID. Web applications use HTTP by which
browsers talk to Web servers. Since HTTP doesn't maintain state, it is
known as a stateless protocol. Here, your Web server reacts independently
to each individual request it receives and has no way to link requests
together even if it is logging requests. For example, a client browser
requests a page from a web server. After rendering the page, the server
closes the connection. When a subsequent request is forwarded from the
same client, the web server doesn't know how to associate the current
request with the previous one. To access values entered on one page on a
subsequent page, the values must be stored as session state. It is very
crucial to access and manage session state while designing an interactive,
data-driven web application. Fortunately, Oracle APEX transparently
manages session state behind the scenes for every page and provides
developers with the ability to get and set session state values from any
page in the application. When a user requests a page, the Application
Express engine uses session ID to get session state information from the
database. You can reference the session ID either using &SESSION.
substitution string or by using :APP_SESSION bind variable. See
substitution string and bind variables in section 2.8. Whenever you run an
Oracle APEX application page during development phase, you see a

horizontal bar at the bottom of the page. This is a Developer Toolbar.
Among other tools for developers it contains a Session option, which
shows you the current session state. Clicking it opens a window (called
Session Page, shown in Figure 2-6) carrying all items and their current
session values. It is useful for developers to debug pages. When you
change some item value on a page and submit it, the value in the session
window for that item changes to reflect the current state. Use the Page,
Find, and View parameters to view session state for the page. The drop-
down View menu comprises Page Items, Application Items, Session State,
Collections, and All options. Select an option from this list and click the
Set button to refresh the Session State report.

Figure 2-6 Session Page

Request: Here you place an HTML request. Each application button sets
the value of REQUEST to the name of the button, which enables the

called process to reference the name of the button when a user clicks it.
You can assess requests using the :REQUEST bind variable.

Debug: Displays application processing details. Valid values for the
DEBUG flag include: Yes or No. Setting this flag to YES you get details
about application processing. You can reference the Debug flag using
&DEBUG. substitution string.

ClearCache: You use Clear Cache to make item values null. To do so,
you provide a page number to clear items on that page. You can also clear
cached items on multiple pages by adding a list of page numbers separated
by comma. For example, typing 4,5,8 in the Clear Cache position in the
URL will clear the session state for all items on pages 4, 5, and 8.

itemNames: Comma-delimited list of item names used to set session state
with a URL.

itemValues: List of item values used to set session state within a URL.
See Chapter 4 Section 4.3.2 for the utilization of itemNames and
itemValues syntax parameters.

PrinterFriendly: Determines if the page is being rendered in printer
friendly mode. If PrinterFriendly is set to Yes, then the page is rendered in
printer friendly mode. The value of PrinterFriendly can be used in
rendering conditions to remove elements such as regions from the page to
optimize printed output.

2.7.2 Friendly URL Syntax
Friendly URL Syntax creates a URL structure that identifies the address of
Oracle Application Express, the application, the page, and uses a standard
URL hierarchy and passes parameters in a similar fashion. Applications
created using Oracle Application Express release 20 or later use Friendly
URL Syntax. You can change existing applications to use Friendly URLs by
editing the Friendly URLs attribute in the application definition – Shared
Components | Application Definition Attributes | Properties.

Friendly URL Syntax creates a URL with the following directory hierarchy
and syntax:
https://apex.oracle.com/pls/apex/myws/r/1989/home?session=16167973992554

Where:

myws is the path_prefix which is URI path prefix used to access
RESTful Services. When you create a workspace, this value
defaults to workspace name. You can customize the URI path
prefix by editing the Path Prefix attribute in Administration |
Manage Service | Set Workspace Preferences | SQL Workshop.
r is the router shortcut. This value is a constant and should never
be changed.
1989 is the application id.
home is the alias of the page being displayed. If no alias is defined,
the page number is displayed instead.
?session=16167973992554 identifies the session ID.

2.8 Substitution Strings and Bind Variables
To make your application more portable, Application Express provides many
features. On top of the list are the Substitution Strings that help you avoid
hard-coded references in your application. As mentioned earlier, every
application in Oracle APEX has its own unique ID and which is used to
identify the application and the corresponding metadata within the
Application Express repository. When you move these applications from
your development environment to the production environment, and if you've
hard-coded application references, you might be placed in an awkward
situation. For example, you hard-coded the application ID (101) like this: f?
p=101:1:&APP_SESSION.. If you take this application to the production
environment that already has an application with the same ID, you'll be
forced to use a different ID, which will point all your links within the
application to the wrong ID.

To avoid such situations, you should always use substitution strings. You can
avoid hard-coding the application ID by using the APP_ID substitution
string, which identifies the ID of the currently executing application. With the
substitution string, the URL looks like: f?
p=&APP_ID.:1:&APP_SESSION. . This approach makes your application
more portable.

The following table describes the supported syntax for referencing APP_ID.

Reference Type Syntax
Bind variable :APP_ID
Substitution string &APP_ID.

You need to know how to get a page to access the value of a session state
variable. There are two ways. If you want to reference the variable from
within SQL or PL/SQL code, use bind variable, in other words, precede the
item name with a colon. If you want to reference an item from within an
HTML expression, then make use of substitution string. In substitution string
you prefix an ampersand to the item name and append a period at its end. For
example, consider an item named P7_CUSTOMER_ID on a page. To refer to
it as a substitution string, write “&P7_CUSTOMER_ID.”. To refer to it as a
bind variable, write “:P7_CUSTOMER_ID”.

About Using Substitution Strings
You can use substitution strings in the following ways:

Include a substitution string within a template to reference
component values
Reference page or application items using &ITEM. syntax
Use built-in substitution strings

Substitution Strings within Templates
Special substitution strings available within a template are denoted by the
number symbol (#). For example: #PRODUCT_ID# - see Chapter 4 Section
4.3.2, 4.3.5, and 4.3.6.

Substitution Strings for Page or Application Items
To reference page or application items using substitution variables:

1. Reference the page or application item in all capital letters.
2. Precede the item name with an ampersand (&).
3. Append a period (.) to the item name.

For example, you would refer to a page item named P7_CUSTOMER_ID in
a region, a region title, an item label, or in any of numerous other contexts in
which static text is used, like this: &CUSTOMER_ID..

Notice the required trailing period. When the page is rendered, Application

Express engine replaces the value of the substitution string with the value of
item P7_CUSTOMER_ID.

Using Built-in Substitution Strings
Oracle APEX supports many built-in substitution strings. You can reference
these substitution strings to achieve specific types of functionality. APP_ID,
APP_IMAGES, APP_PAGE_ID, APP_SESSION, APP_USER,
LOGIN_URL, and LOGOUT_URL are some of the built-in substitution
strings you will use in this book.

2.9 Start Building the Application
Now that you have gone through the necessary basic concepts about Oracle
APEX, let’s start the thrill! Follow the instructions mentioned in this section
to create the barebones of your application.

1. If you have logged out, sign back in to Oracle APEX development
environment by typing the URL
https://apex.oracle.com/pls/apex/f?p=4550 in your browser’s
address bar.

2. Enter the credential comprising your Workspace, Username (your
e-mail address) and Password (you provided in Section 2.3.1) in
the Sign In form and hit the Sign In button.

Figure 2-7 Workspace Login Page

3. Click the App Builder icon. You as a developer will use App
Builder to create and manage applications and application pages.
The App Builder home page displays all installed applications in
the current Oracle Application Express instance. When you select
an application to edit, the Application home page appears. Use the
Application home page to run, edit, import, export, copy, or delete
applications.

Figure 2-8 App Builder

4. On the App Builder page, click the Create icon (or click the Create

button - A) to create a new application.

5. Select the first New Application option. This option will create a
new database application containing multiple pages based on
database tables. A database application is a collection of pages
linked together using navigation menus, tabs, buttons, or hypertext
links. Application pages share a common session state and
authentication. To create a database application, you run wizards to
declaratively assemble pages and navigation. Once created, you
can modify an application by editing application attributes and add
new pages using the Create Page Wizard. When you click the New
Application option, the Create an Application page is displayed.

Figure 2-10

6. On the next screen, as illustrated in the following figure, enter
Sales Web Application in the Name box (A). In the Name attribute
you provide a short descriptive name for the application to
distinguish it from other applications in your development
environment. In the Appearance section, click the Set Appearance
icon (B).

7. On the Appearance page, select a Theme Style, or accept the default
Vita option. In Oracle APEX, you can alter a database application's
user interface and page layout through themes and theme styles.
Themes are collections of templates that enable developers to
define the layout and style of an entire application. In the
Navigation section, select the Mega Menu option (D). The Mega
Menu (new to Oracle APEX) renders application navigation as a
collapsible floating panel that displays all navigation items at once.
Users can expand or collapse a Mega Menu by clicking on the
menu icon from the header. Mega menus are especially useful
when you want to display all navigation items at once to your user.

You can switch to the two options any time through Shared
Components | Edit Application Definition | User Interface |
Navigation Menu. Click the Choose New Icon button (E), and
select an icon (F) and its color (G) for your application from the
Choose Application Icon page. After making your selection, click
the Set Application Icon button (H) to move back. Click Save
Changes (I) on the Appearance page to switch back to the Create
an Application page.

The Pages section lets you add pages to include in your initial
application. By default, the App Builder process creates a Home page

(J) for your application along with a couple of pages (Login and Global
– note visible in this list). Since you will create other pages for your
application in subsequent chapters, you do not need to add any page at
the moment.

8. In the Features section, click the Check All link (K) to select all
features for this application. The Features section provides
application-level functionality and can only be added once per
application. Available features include an Application About page,
role-based user authentication, end user activity reports,
configuration options to enable or disable specific functionality, a
feedback mechanism to gather end users comment, and a
Customize button to enable end users to choose their own theme
style. The most significant among these features is Access Control
that you will use in Chapter 10. Adding the Access Control feature
to an application creates multiple pages (including an
Administration page and a corresponding menu entry), access
roles, and authorization schemes.

In the Settings section, accept all the default values. Here, the
Application ID (K) is a unique, numeric identifier, which is generated

automatically to identify your application. If required, you can provide
another non-existent number for your application. The Schema drop-
down list (L) contains the name of the schema you are connected to.
Your schema is where the database objects (tables, sequences, triggers
etc.) of your application are stored. Oracle APEX provides a number of
predefined authentication mechanisms, including a built-in
authentication framework and an extensible custom framework. In the
default Application Express Accounts authentication scheme (M) users
are managed and maintained in the Oracle APEX repository.

9. Click the Create Application button (N) to complete the process.
A progress bar will appear on your screen and the application will
be created within seconds.

The application will be created with some default pages, including Page 1
Home, Page 9999 Login Page and Page 0 Global Page (A). Using the two
buttons (View Icons and View Report – B), you can get different views of this
interface. The following screen shot presents the iconic view. You can see the
ID and the name of your application (C) in this interface. At this stage, if you
want to modify properties of your application (for example, application name
or menu position), then click the Edit Application Properties button (D). In
the Edit Application Definition interface you will see a small question mark
icon next to each property. Click this icon when a property is unfamiliar and
you want to learn about it. To delete an application click the Delete this
Application link (E), or make a copy of your current application using the
Copy this Application link (F). The link makes an exact copy of the
application under a different ID. You will use the Create Page button (G) in
subsequent chapters to create new application pages. The Run Application

icon (H), as the name implies, will run the application.

NOTE: To access the Create Page button form anywhere in the APEX
interface, click App Builder in the main Oracle APEX menu followed by
Database Applications. On the Database Applications page, click the Edit
icon for the Sales Web Application, as shown in the following figure. The
application's main page (as illustrated in Figure 2-12) will be rendered
carrying the Create Page button. The Run icon (in the following figure) can
also be used to invoke an application.

NOTE: To delete an application page, open that page in Page Designer, and
select the Delete Page option form the Utilities menu.

10. Click Run Application (H). The application login page (A),
created by the App Builder, will come up. Type the same username
(your e-mail ID) and the password you entered earlier to access the
development environment and click the Sign In button. The new
browser window will show the Home page (B) of your application.
This page is also created by the App Builder. At the bottom of this
page, you will see a horizontal strip (C) displaying different
options. This strip is called the Developer Toolbar and it appears
whenever you run a page during the development phase. The
Application option (D) takes you to the App Builder page, where
you can select a different page to work on. The Edit Page option
(E) in this toolbar takes you to the Page Designer to edit the current
page. The Session option brings up a page (see Figure 2-6) that
displays the current state of the application so that you can verify
its behavior. The Sign Out option (F) under your id helps you exit
the application.

Recall that while creating the application you selected all admin features in
step 8. When you click the Administration menu option (G) in your
application, you see an Administration page that lists all the features you
selected in step 8. The following table provides some details of these
features.

Feature Description

Configuration Options

Enables application administrators to enable or disable specific
functionality within the application. This feature is useful if you
select features that need additional development effort before they
can be used by end users. This feature can also be expanded to
application-specific features. If developers define additional build
options and associate them with specific functionality throughout the
application, then they can be added to the configuration settings for
administrators.

Theme Style Selection

Enables administrators to select a default color scheme (theme style)
for the application. Administrators determine whether end users can
choose their own theme style by enabling and disabling Allow End
Users to choose Theme Style is enabled. If enabled, end users simply
click on the Customize link at the bottom of the home page and select
from the available theme styles. For example, users with visual
impairment may prefer to utilize the Vista theme style which has a
much higher color contrast

Activity Reports

Include numerous reports on end user activity for your application.
Determine the most active users, the most used pages, the
performance of pages, and errors raised, to better understand how
your application is being utilized and areas for improvement.

- Top Users report
- Application Error Log report
- Page Performance, activity and performance by page
- Application activity by page report
- Page Views detail report

Access Control

Incorporate role based user authentication within your application.
Users can be defined as Administrators, Contributors, or Readers.
You can then readily define different access to different roles for
various components throughout your application, such as pages,
menu entries, regions, columns, items, buttons and so forth. For
further details, see Chapter 10.

User Feedback

Feedback provides a mechanism for end users to post general
comments for application administrators and developers. The posts
include useful session state information to help developers determine
where the end user sent the feedback from.

- Creates a Navigation bar icon which users can click to
leave feedback (see H in Figure2-13).
- Creates a report for viewing and updating feedback.
- Captures the application and page ID, feedback comments,
date and time, and user information.

2.10 Create Database Objects
We interact with many databases in our daily lives to get some information.
For example, a phone book is a database of names and phone numbers, and
an email list is a database of customer names and email addresses. A database
can simply be defined as a collection of individual named objects (such as
tables) to organize data. In APEX you create data-centric web applications
that are powered by Oracle database. In this section, I will walk you through
to create database objects interactively for the sales application you just
created. The application will use five tables to store information:
DEMO_STATES, DEMO_CUSTOMERS, DEMO_PRODUCT_INFO,
DEMO_ORDER, and DEMO_ORDER_ITEMS. These tables will be
generated interactively (that is, without writing any SQL code) with the help
of built-in wizard. In addition to these tables, some other database objects
will be generated automatically to handle data in these tables.

TIP: If you are new to database or want to strengthen you knowledge about
database and its objects, then drop me a line (along with the purchase proof
of this book) at my email address (oratech@cyber.net.pk) to get my free
SQL/PLSQL eBook.

Execute the following steps to create the first table named
DEMO_CUSTOMERS for the sales web application. This table will be used
to store profiles of customers.

1. Click the SQL Workshop menu (A).
2. Select the Object Browser option (B) from the menu, which is

used to review and maintain database objects (such as, tables,
sequences, views, functions, triggers, and so on).

3. In the Object Browser page, select the Tables option (C) from the
select list. This action will show a list of existing tables in the left
pane, if there are any.

4. Click the Create menu (D) , and select Table (E) from the menu
list to create a new table. This will invoke a wizard named Create
Table, discussed next.

5. On the first wizard page you provide a name for the new table and
information about its columns – name, type, precision, scale, and
not null. Enter DEMO_CUSTOMERS for the table name (A).
Enter CUSTOMER_ID in the first Column Name (B). Select
NUMBER (C) for the Type of this column. Place a check mark for
Not Null (D). This information specifies that the first column in the
table named CUSTOMER_ID is a numeric column that will hold
ids of customers. By placing a check mark in the Not Null option,
we specified that it is a mandatory column and must have some
value. Input information of other table columns as indicated in the
screenshot below. The values in the Scale column specify the
number of characters each column will hold. Use the Add Column
button (E) to add more rows to the form. After providing the
column information, click Next (F) to proceed to the next wizard
step.

6. The next wizard screen titled Primary Key collects information
about the primary key of this table, which is a column in a table
that uniquely identifies each record and prevents duplicates. The
primary keys in the customers table will be populated automatically
with the help of a database object named Sequence. From the
Primary Key options, select Populated from a new sequence (A).
As you click this option, three additional fields pop up on your
screen. Accept DEMO_CUSTOMERS_PK (B) for the Primary
Key Constraint Name. You can specify any other name if you wish
to. This is the name of your primary key constraint to uniquely
identify each row/record in the customers table. For Primary Key,

select CUSTOMER_ID (C) from the adjacent list. This is the
column that will act as the primary key to uniquely identify each
record in the table. Accept the name of the default Sequence Name
or enter any other name. A Sequence is a database object which
generates unique integer values automatically. Here, it will
generate unique primary keys for each customer’s record, and these
values will be stored in the CUSTOMER_ID column. Press the
Next button thrice skipping Foreign Key and Constraints wizard
screens. On the final Confirm screen, click the Create Table
button. The table will be created and its definitions will appear on
your screen. Click the SQL tab to see the auto-generated SQL
statements for this table. The trigger (BI_DEMO_CUSTOMERS)
created for this table will be responsible to auto-generate ids of
customers with the help of DEMO_CUSTOMERS_SEQ sequence
object. You can view both these objects using the drop down list in
the left pane (under Object Browser label).

7. Repeat steps 4 to create another table named

DEMO_PRODUCT_INFO (A). As the name suggests, this table
will store information about products that will be sold to customers.
Enter columns definitions for this table as depicted in the following
screenshot. Besides number and varchar2 column types, this table
is using the BLOB (Binary Large Objects) type (B), which is an
Oracle data type that can hold up to 4 GB of data. BLOBs are
handy for storing digitized information, such as images, audio, and
video. This type can also be used to store document files like PDF,
MS Word, MS Excel, MS PowerPoint and CSV to name a few. We
are also using a TIMESTAMP type (C) to store the date when a
product image is updated. Click Next to proceed.

8. Once again select Populated from a new sequence (A) on the
Primary Key screen. Accept the default values for Primary Key
Constraint Name and Sequence Name. Select the PRODUCT_ID

column (B) for Primary Key. This is the column that will uniquely
identify each product in the table. Click Next. Skip the Foreign
Key and Constraints wizard screens by clicking the Next button.
On the final screen, click the Create Table button.

9. After creating the parent tables, let’s create two more tables
(DEMO_ORDERS and DEMO_ORDER_ITEMS) to store
customers’ order information. These two tables will have a
master/detail relationship. The DEMO_ORDERS table will act as
the master table to store master information, like order id, customer
id, order date and more. The DEMO_ORDER_ITEMS will be the
child table for the DEMO_ORDERS table and it will store line
item information, such as product id, unit price, and quantity. So,
let’s first create the master table. Again, execute steps 1 to initiate
the Create Table wizard. Fill in the information for this table as
indicated in the following screenshot, and click Next.

Figure 2-19

10. As usual, select the Populated from a new sequence option to
automatically populate the primary keys for this table as well.
Accept the default values for Primary Key Constraint Name and
Sequence Name. Select the ORDER_ID column (A) for Primary
Key. Click Next to proceed to the Foreign Key screen, where you
will create a relationship between DEMO_CUSTOMERS and
DEMO_ORDERS table.

11. The following wizard screen collects information about Foreign
Key. A foreign key establishes a relationship between a column or
columns in one table and a primary or unique key in another table.
Here, you are establishing a relationship between the
DEMO_ORDERS and DEMO_CUSTOMERS tables. Accept the
default name (DEMO_ORDERS_FK - A) for the foreign key
constraint name. The default Disallow Delete option (B) will block
deletion of rows from the customers table when they are utilized in
the orders master table. From the left pane in the Select Key
Column(s) section, move the CUSTOMER_ID column to the right
pane (C) using the single right-arrow icon (>). This action specifies
that the CUSTOMER_ID column in this table is a foreign key and
has a reference in some other table. Click the icon next to the
References Table (D), and pick the DEMO_CUSTOMERS table.
All columns from this table will appear in the Referenced
Column(s) left pane. In the Referenced Column(s) section, move
the CUSTOMER_ID column to the right pane (E). Here you are
telling APEX that this is the column in the customers table that will
be referenced by the CUSTOMER_ID column in the orders master

table. Now the two tables have a relationship based on the
CUSTOMER_ID column. Click the Add button (F). The details of
the FK constraint will appear on the page. Press the Next button
twice, and then click the Create Table button on the Confirm
screen to create the orders master table.

12. Create the orders child table (DEMO_ORDER_ITEMS) of your
application, as illustrated in the following figure. This table will be
used to store line item information of each order placed by
customers. Click the Next button, after providing the column
information.

Figure 2-22

13. Select the ORDER_ITEM_ID column as the Primary Key column
for this table, and click Next.

Figure 2-23

14. The DEMO_ORDER_ITEMS has two foreign key references:
ORDER_ID and PRODUCT_ID. So, you will create two foreign
key constraints on the Foreign Key page. The first one is illustrated
in the following figure in which you relate this table to its parent
(DEMO_ORDERS). For this relationship you selected the Cascade
Delete option (A), which simultaneously removes both parent and
child records from the two tables when you delete an order. After

selecting the ORDER_ID columns from the two tables, click the
Add button (B) to create the foreign key constraint. The next step
will be executed on the same page to create another foreign key
reference.

15. In this foreign key constraint you are creating a relationship
between DEMO_ORDER_ITEMS table and
DEMO_PRODUCT_INFO table using the PRODUCT_ID column,
which exists in both tables. Enter
DEMO_ORDER_ITEMS_PRODUCT_ID_FK (A) for the name
of this foreign key. Select Disallow Delete for delete option, and
select tables and columns as depicted in the following figure. After

that, click the Add button (B). A new foreign key constraint will be
added just under the previous one (C). This constraint will prevent
deletion of those products that are utilized in customers’ orders.
Click Next twice to skip the Constraint wizard screen. Click the
Create Table button on the final screen.

16. Create the final table (DEMO_STATES), as illustrated in the
following figure. This table will store states information and it will
be associated to the customers module to store each customer's
state. Click the Next button, after providing the column
information.

Figure 2-26

17. On the Primary Key screen, select the default No Primary Key
option, because this table is not going to have any primary key.
Click Next.

18. Skip the remaining two wizard screens by clicking Next twice and
create the table.

Here is the summary of the whole exercise you just carried out.

2.11 Add Data to Database Tables
After creating the database tables our next move is to interactively add some
seed data to these tables. This task will also be performed via wizards and
built-in features of Oracle APEX.

Execute the following steps to first upload data to the DEMO_CUSTOMERS
table.

1. From the main Oracle APEX menu, select SQL Workshop |
Utilities | Data Workshop.

2. On the Get Started page, click the Load Data button.

Figure 2-28

3. On the next screen, click the Choose File button. In the Open
dialog box, select DEMO_CUSTOMERS csv file and open it. The
csv file is available in BookCode\Chapter2 folder.

Figure 2-29

4. The Load Data page will appear on your screen. Select options on
this screen as illustrated in the following figure. By selecting the
Existing Table option you are informing that you want to upload
the csv file data to the existing DEMO_CUSTOMERS table that
you need to select from the provided Table list. Once you select the
database table, Oracle APEX will automatically map the columns.
Click the Load Data button on this page. A message " Data in
table DEMO_CUSTOMERS appended with 7 new rows! " should
appear on your screen. Click the View Table button to browse the
data.

Figure 2-30

5. Repeat steps 1 through 4 to upload data to the remaining tables in
the following sequence using their appropriate csv files:
DEMO_STATES, DEMO_PRODUCT_INFO, DEMO_ORDERS,
and DEMO_ORDER_ITEMS.

Summary
This chapter introduced some of the important basic concepts of Oracle
APEX. Besides the theoretical stuff, you were guided on how to request a
free workspace. You also created the basic structure of your application with
some default pages (you will work in detail on the Home page in Chapter 4 to
convert it into a dashboard). You also learned how to interactively create
backend database objects and populate tables with some seed data.

In the next chapter, you will create the building blocks (shared components)
of your application. The Shared Components wizards allow us to define a
variety of components we can use and re-use throughout our application. In
the coming chapters, our main focus will be on the practical aspect of this
robust technology. Once you get familiar with Oracle APEX, you can explore
other areas on your own to become a master. The rest of the book will guide
you to build professional looking web-based data-centric application that will
provide you the techniques in building your own.

Chapter 3 - Create Application Components
3.1 The Shared Components
Shared components are application structures used in application pages.
These structures are called shared components because you create them once
and utilize them across all the pages in the application. For example, in this
chapter you will create a list comprising application menu options that will
appear on every application page. The Page Shared Components tab in the
Page Designer displays a list of common elements applied to that particular
page. Note that shared components are only displayed in this section after
you add them to a page.

The following sub-sections provide details about shared component elements.
The Shared Components page in Oracle APEX can be accessed through the
Shared Components icon (A).

3.1.1 Application Definition Attributes
This link (which appears under Application Logic section on the Shared
Components page) will take you to the Edit Application Definition page
where you can modify your application attributes, including its name,
version, and availability options. This is the place where you can turn on the
new Friendly URLs option.

3.1.2 Application Processes
Application Processes run PL/SQL logic at a specific point from multiple
pages of an application. You can apply conditions to control when the
process executes. Currently there are eight different types of process that you
can include in your application. One significant one among these processes is
On Demand Application Process. It is a special type of application process
which executes when called from a page-level On Demand process or from
an Ajax call from the browser. On Demand processes are useful when you
have PL/SQL logic that you would like to run from different execution points
across multiple pages. For example, assessing a customer’s outstanding
balance and using that figure on customer invoice, age analysis report,

customer balances report and so on.

3.1.3 Authentication Schemes
The significance of security cannot be ignored when building web
applications, as it enables us to prevent unauthorized access and activity in
our applications. Not all applications require security; a public website
doesn’t, for example. However, for many applications, we need to be able to
control who can run and gain access to them. Once users are logged into our
application, we also need to further control what functionality they have
permission to access. In Application Express, these security features are
implemented through the use of Authentication and Authorization Schemes.
These schemes enable us to declaratively define the security for our
applications quickly and easily. Authentication is the process of establishing
the identity of every user of your application. The most common type of
authentication process requires a user to provide some type of credentials
such as a username and password. These credentials are then evaluated either
through the built-in Application Express Authentication scheme or using a
custom scheme with more control. Authentication could involve the use of
digital certificates or a secure key, too. If the credentials pass, the user is
allowed to access the application. Otherwise, access is denied. Once a user
has been identified, the Application Express engine keeps track of each user
by setting the value of the built-in substitution string APP_USER.

As you create your application, you must determine whether to include
authentication. You can:

Choose to not require authentication. Oracle APEX does not
check any user credentials. All pages of your application are
accessible to all users. A public informational application website
is a good candidate, which doesn’t require authentication.

Select a built-in authentication scheme. Create an authentication
method based on available preconfigured authentication schemes.
Here are the preconfigured authentication schemes available in
Oracle APEX. Each scheme follows a standard behavior for
authentication and session management.

– Application Express Accounts. These are user accounts created
within and managed in Oracle APEX user repository. When you use

this method, your application is authenticated against these accounts.

– Database Account Credentials. It utilizes database schema
accounts. This authentication scheme requires that a database user
(schema) exist in the local database. When using this method, the
username and password of the database account is used to authenticate
the user. Choose Database Account Credentials if having one database
account for each named user of your application is feasible and
account maintenance using database tools meets your needs.

– HTTP Header Variable. It supports the use of header variables to
identify a user and to create an Application Express user session. Use
this authentication scheme if your company employs a centralized web
authentication solution like Oracle Access Manager, which provides
single sign-on across applications and technologies.

– LDAP Directory Verification. You can configure any
authentication scheme that uses a login page to use Lightweight
Directory Access Protocol (LDAP) to verify the username and
password submitted on the login page. App Builder includes wizards
and pages that explain how to configure this option. These wizards
assume that an LDAP directory accessible to your application for this
purpose already exists and that it can respond to a SIMPLE_BIND_S
call for credentials verification.

– Application Server Single Sign-On Server. This one delegates
authentication to the Oracle AS Single Sign-On (SSO) Server. To use
this authentication scheme, your site must have been registered as a
partner application with the SSO server.

Create custom authentication scheme. Using this method you
can have complete control over the authentication interface. To
implement this approach you must provide a PL/SQL function the
Application Express engine executes before processing each page
request. The Boolean return value of this function determines
whether the Application Express engine processes the page
normally or displays a failure page. This is the best approach for
applications when any of the following is true:

Database authentication or other methods are not adequate
You want to develop your own login form and associated
methods
You want to control security aspects of session management
You want to record or audit activity at the user or session level
You want to enforce session activity or expiry limits
Your application consists of multiple applications that operate
seamlessly (for example, more than one application ID)

3.1.4 Authorization Schemes
By defining authorization schemes, you control users' access to specific
components of your application. It is an important security measure
implemented to augment the application's authentication scheme. An
authorization scheme can be specified for an entire application, page, or
specific page components such as a region, button, or item. For instance, you
can apply an authorization scheme to determine which menu options a user
can see, or whether he is allowed to create a new order (using the Create
button).

3.1.5 List of Values
List of values (abbreviated as LOVs) are defined by running the LOV wizard.
Once created, LOVs are stored in the List of Values repository and are
utilized by page items. You can create two types of LOVs: static and
dynamic. A static LOV displays and returns predefined values such as Yes
and No, while a dynamic list is populated using a SQL query that fetches
values from database tables. After creating an LOV you associate it to page
items such as select list, radio group, checkbox, and so on. By creating a list
of values at the application-level, you have the advantage to add it to any
page within an application, and since all LOV definitions are stored in one
location, it makes them easy to locate and update.

3.1.6 Plug-Ins
With the increase in Application Express usage the demand for specific
features also surfaced. To meet these demands, the plug-ins framework was
introduced in Oracle APEX 4.0, which allows developers to create their own
plug-ins to add additional functionality in a supported and declarative way.

Usually, a tool like Ajax is used to add custom functionality. The con of this

approach is to place the code in different locations such as within the
database, in external JavaScript files, and so on. On the other hand, turning
that code into a plug-in is more convenient to use and manage because the
code resides in one object. With the help of open source jQuery components
you can create plug-ins without generating huge amount of code manually.

Plug-ins are shared component objects that allow you to extend the
functionality of item types, region types, dynamic actions, and process types.
The plug-in architecture includes a declarative development environment that
lets you create custom versions of these built-in objects. For example, you
can create your own star rating item that allows your user to provide feedback
using a one-to-five star graphic. This new item type can then be used across
all your applications. The main part of a plug-in consists of PL/SQL code and
can be supplemented with JavaScript and CSS code. A plug-in consists of
one or more PL/SQL functions. These functions can either reside in the
database (in a package or a set of functions) or be included within the plug-in.

NOTE: The Plug-in OTN page
(https://www.oracle.com/tools/technologies/apex-plug-ins.html) has several
different plug-ins developed by the APEX community.

3.1.7 Shortcuts
By using shortcuts you can avoid repetitive coding of HTML or PL/SQL
functions. You can use a shortcut to define a page control such as a button,
HTML text, or a PL/SQL procedure. Once defined, you can invoke a shortcut
using specific syntax unique to the location in which the shortcut is used.
Shortcuts can be referenced many times, thus reducing code redundancy.

When you create a shortcut, you must specify the type of shortcut you want
to create. Oracle APEX supports the following shortcut types:

PL/SQL Function Body
HTML Text
HTML Text with Escaped Special Characters
Image
Text with JavaScript Escaped Single Quotes
Message
Message with JavaScript Escaped Special Quotes

3.1.8 Lists
A list is a collection of links. For each list entry, you specify display text, a
target URL, and other attributes to control when and how the list entry
displays. Once created, you can add a list to any number of pages within an
application by creating a region and specifying the region type as List. You
control the display of the list and the appearance of all list entries by linking
the list to a template. Lists are of two types:

Static Lists – When you create a static list you define a list entry
label and a target (either a page or a URL). You can add list entries
when you create the list (from scratch), by copying existing entries
or by adding the list entries. You can control when list entries
display by defining display conditions.

Dynamic Lists – Dynamic lists are based on a SQL query or a
PL/SQL function executed at runtime.

3.1.9 Navigation Menu
You might have seen a horizontal bar at the top of a website. The options
provided on this bar help you navigate to different pages within that site.
Application Express provides you with a similar component called
Navigation Menu. It is an effective way to navigate users between pages of
an application. A navigation menu is basically a list with hierarchical entries.
When you create an application, the Create Application Wizard automatically
creates a navigation menu for you and populates it with one or more list
entries. Types of navigation menus include Side Menu, Top Menu, or Mega
Menu. By default, the navigation menu is displayed as a left sidebar. Users
can expand or collapse the Side Navigation Menu by clicking on the menu
icon from the header. This navigation menu renders the navigation items
using a tree component that enables users to expand or collapse sub items. A
Top Navigation Menu displays at the top of the application. You can change
how and where a navigation menu displays by editing the application User
Interface Details. The Top Navigation Mega Menu template renders your
application navigation in a pop-up panel that can be opened or closed from
the header menu button. Users can expand or collapse a Mega Menu by
clicking on the menu icon from the header. Mega menus are especially useful
when you want to display all navigation items at once to your user.

3.1.10 Breadcrumb
A breadcrumb (A) is a hierarchical list of links rendered using a template. For
example, you can display breadcrumbs as a list of links or as a breadcrumb
path. A breadcrumb trail indicates where you are within the application from
a hierarchical perspective. In addition, you can click a specific breadcrumb
link to instantly view the page. For example, in the screen shot below you can
access the application home page by clicking its breadcrumb entry (B). You
use breadcrumbs as a second level of navigation at the top of each page,
complementing other navigation options such as Navigation Menu and
Navigation Bar.

3.1.11 Navigation Bar List
Just like menus, lists, and breadcrumb, a navigation bar is also created to link
users to various pages within an application. Typically, a navigation bar
carries links such as user id, logout, feedback, help, and so on. It appears on
top-right of every application page. While creating a navigation bar, you can
specify an image name, label, display sequence, and target location.

3.1.12 User Interface Attributes
The application user interface determines default characteristics of the
application and optimizes the display for the target environment. This is the
place where you define your application logo.

3.1.13 Themes and Templates
Instead of telling the App Builder how to design and style your pages using
HTML, CSS, and JavaScript code that you may not be familiar with, you
only apply theme and templates you want to use and the Oracle APEX engine
does the rest of the job for you.

A theme is a named collection of templates that defines the look and feel of
application user interface. Each theme contains templates for every type of
application component and page control, including individual pages, regions,

reports, lists, labels, menus, buttons, and list of values.

The Application Express engine constructs the appearance of each page in a
application using Templates . Templates define how pages, page controls,
and page components display. Templates control the look and feel of the
pages in your application using snippets of HTML, CSS, JavaScript and
image icons. As you create your application, you specify templates for pages,
regions, reports, lists, labels, menus, buttons, and pop-up lists of values.
Groups of templates are organized into named collections called themes.

The App Builder also allows you to access the themes and template
mechanism so you can create new ones according to your own requirements
or amend existing ones. Oracle APEX ships with an extensive theme
repository. Administrators can add themes to the theme repository, as
follows:

Workspace administrators can create themes that are available to
all developers within the workspace. Such themes are called
workspace themes.

Instance administrators can create public themes by adding them to
the Oracle APEX Administration Services. Once added, these
public themes are available to all developers across all workspaces
in an instance.

Applications you create with the Create Application Wizard use
the Universal Theme. Universal Theme - 42 features a responsive
design, versatile UI components and enables developers to create
web applications without extensive knowledge of HTML, CSS, or
JavaScript. Responsive design enables you to design web pages so
that the layout fits the available space regardless of the device on
which page displays (for example, a desktop computer, laptop
computer, tablet, or smartphone).

3.1.14 Static Application/Workspace Files
Use these two links to upload, edit, and delete static files including images
and custom style sheets and JavaScript files. An application file can be
referenced from a specific application only, whereas a workspace file can be
accessed by any application in the workspace. In this book, you will use the

Static Application Files option to upload your application logo.

3.1.15 Report Queries
A report query is a printable document, which can be integrated with an
application using buttons, list items, branches, or any other navigational
components that allow for using URLs as targets. A report query is based on
a standard SQL query. It can be downloaded as a PDF document, a Word
document (RTF based), an Excel Spreadsheet (HTML based), or as an
HTML file. The layout of a report query is customizable using RTF
templates.

3.1.16 Report Layouts
Use Report Layouts in conjunction with a report region or report query to
render data in a printer-friendly format, such as PDF, Word, or Excel. A
report layout can be designed using the Template Builder Word plug-in and
uploaded as a file of type RTF or XSL-FO. Report regions use a generic
XSL-FO layout, which is customizable.

3.1.17 Globalization Attributes
If you want to develop applications that can run concurrently in different
languages, then Application Express is the right platform for this. In the
Globalization interface, you can specify options such as the application
Primary Language, Date/Time format, and some other options related to
application globalization.

3.1.18 Translate Application
A single Oracle database and Oracle APEX instance can support an
application in multiple languages. Translating an application involves
multiple steps. To translate an application developed in App Builder, you
must map the primary and target language, seed and export text to a
translation file, translate the text, apply the translation file, and publish the
translated application.

Having gone through the conceptual sections, the following are some of the
Shared Components you will create for the Sales Web Application:

Lists
List of Values (LOV)
Application Logo

If you are logged off, log back in to the application development environment
to create some shared components. Execute the following three steps to
access the Shared Components page.

1. Select Database Applications from the App Builder menu.

2. Click the Edit icon (A) under Sales Web Application.

3. On the next screen, use either of the two Shared Components
icons.

3.2 Create Lists
First, we are going to play with the Lists shared component. A list is a
collection of links rendered using a template. For each list entry, you specify
display text, a target URL, and other properties to control when and how the
list entry displays. You control the display of the list and the appearance of
all list entries by linking the list to a template.

3.2.1 Modify Desktop Navigation Menu List
Oracle APEX creates a default navigation list named Desktop Navigation
Menu (under Navigation | Navigation Menu) as a shared component for each
new application. It is a hierarchical list of navigation, which appears either as
a responsive side bar or at the top of the window. Based on the available
space, the navigation bar either displays a full menu or collapses to a narrow
icon bar. The default menu list (Desktop Navigation Menu) carries two item
labeled: Home & Administration. In this exercise, you'll modify this list to
add more application menu entries, as illustrated in Figure 3-5.

Figure 3-5

1. In Shared Components, click the Navigation Menu option in the
Navigation section.

2. On the Lists page, click the Desktop Navigation Menu option,
which carries two entries (Home and Administration, as illustrated
in the following figure) created by the App Builder wizard to
access the application Home & Administration pages.

3. On the List Details page, click the Create Entry button (A) to
create a new menu item named Setup. This menu entry will have
sub-entries that will allow you to access Products and Customers
modules. Fill in the values for this menu entry as highlighted in the
following screenshot. Do not select anything in the first attribute
(Parent List Entry), because initially you will create level one
entries that do not have parent entries. Click the pop-up LOV icon
representing Image/Class attribute. From the Show list, select Font

APEX, and from Category, select Web Application. Click the Go
button to refresh the view. Scroll down to the middle of the icons
list and select fa-database icon. This image will be displayed for
the Setup menu at run time. Note that you can select any image
from the list or input its name directly in the Image/Class attribute
if you do not want to bother selecting it from the image list. Type
Setup in the List Entry Label field. This label will appear in the
application menu. In the Target Type attribute you specify a page
in the current application or any valid URL. Since the Setup menu
entry itself is not associated to any application page, its Target
Type is set to No Target.

Figure 3-7

4. Using the button labeled Create and Create Another, create two
more level-1 entries as follows. After adding the last entry
(Reports), click the Create List Entry button. The Target Type and
Page properties inform Oracle APEX where to land when a menu
item is clicked – for example, the Orders entry will take you to
page 4.

Parent List
Entry

Image/Class List Entry Label Target Type

No Parent List
Item

Choose any image Orders Page in this
Application

No Parent List
Item

Choose any image Reports Page in this
Application

These entries along with the Setup entry (created in step 3) will form the
main menu of our application and because of this reason we set No
Parent List Item for all three entries. Note that the Setup entry has no
target because it is not directly linked to any application page. In the
next step, you will create submenus under this main entry to call

respective pages.

5. Using the same process you executed in the previous step, create
the following level-2 menu entries:

Parent List
Entry

Image/Class List Entry Label Target Type Page

Setup Select an
image

Manage
Customers

Page in this
Application

Setup Select an
image

Manage Products Page in this
Application

Reports Select an
image

Graphical Reports Page in this
Application

26

Reports Select an
image

Advance Reports Page in this
Application

26

The first two entries will come under the main Setup menu item, while
the Reports menu will contain two child entries (Graphical Reports and
Advance Reports).

TIP: If you make a mistake while creating these menu entries, you can easily
rectify it. After creating the last entry, click the Create List Entry button on
Create/Edit page to move back to the List Details page. On this page, click
the menu entry you want to modify (under the Name column) to call its
definition in Create/Edit page. Rectify the error and click the Apply Changes
button.

6. Now create level 3 entries. Note that the Page attribute for Monthly
Review Report entry is set to zero, because it will be invoked
through a print request that will be configured in Chapter 9.

Parent List Entry List Entry Label Target Type

Graphical Reports Customer Orders Page in this Application

Graphical Reports Sales By Category/Products Page in this Application

Graphical Reports Sales by Category/Month Page in this Application

Graphical Reports Order Calendar Page in this Application

Graphical Reports Product Order Tree Page in this Application

Advance Reports Monthly Review Report Page in this Application

Advance Reports Customer Invoice Page in this Application

The first six entries will appear as submenu choices under Graphical Reports
menu. Similarly, Monthly Review Report and Customer Invoice will be
placed under Advance Reports. All the previous settings will set up a
hierarchical navigation for your application, as shown in Figure 3-5.

TIP: After making any modification in your application you can test it
immediately. For example, after creating the navigation menu, hit the Run
Page button (at top-right) to see the application menu.

3.2.2 Reports List
In this section you will create a list named Reports List. The list will have
several links that will lead to different reports in your application. Note that
you created the same links in the navigation menu in the previous section to
call some of these reports from the application menu. The Reports List being
created here will be used on a dedicated report page to call respective reports
– see Chapter 8 section 8.2.

1. Go to Shared Components | Navigation | Lists. Click the Create
button to create a new list.

2. Select From Scratch on the Source wizard screen and click Next.
On the next screen, enter Reports List for Name, select Static as
the list Type, and click Next. When you create a static list you
define a list entry label and a target (either a page or URL).

3. Enter the following values in Query or Static Values screen.
Initially, the wizard allows you to create five entries. The
remaining entries and Image/Class properties are created and set
after saving the first five.

List Entry Label Target Page ID Image/Class

Customer Orders 17 Choose any image

Sales by Category and Product 16 Choose any image

Sales by Category / Month 5 Choose any image

Order Calendar 10 Choose any image

Product Order Tree 19 Choose any image

Gantt Chart 20 Choose any image

Box Plot 21 Choose any image

Pyramid Chart 22 Choose any image

List View (Mobile) 23 Choose any image

Column Toggle Report (Mobile) 24 Choose any image

Reflow Report (Mobile) 25 Choose any image

Monthly Review Report 0 Choose any image

Customer Invoice 50 Choose any image

4. After entering the first five list entries click Next, accept the
default values in the next screen, and click the Create List button.
You will be taken back to the Lists page, where you will see this
new list.

5. Modify the list by clicking the Reports List link in the Name
column.

6. Click the Create Entry button to add the sixth entry. Enter
Product Order Tree in List Entry Label. Set Target Type to Page
in this Application and enter 19 in the Page attribute. Click the
Create and Create Another button to add the remaining entries,
as shown in the table.

7. Modify each entry by clicking its name in the List Details interface
and add image references. Click the Apply Changes button after
adding the image reference.

3.2.3 Order Wizard List
This is another utilization of lists. Rather than associating list items to pages
in the application, you’ll use it for visual representation. It will be used while
creating orders in Chapter 7. In our application, we will create an order using
a set of wizard steps in the following sequence:

a) Identify Customer
b) Select Items
c) Order Summary

Figure 3-8

1. Go to Shared Components | Navigation | Lists and click the Create
button.

2. Select the first From Scratch option and click Next.

3. Type Order Wizard in the Name box, set Type to Static, and click
Next.

4. On the Query or Static Values screen, enter the following values
and click Next.

Figure 3-9

5. Click the Create List button on the Confirm screen.

6. Modify the newly created Order Wizard list.

7. Edit each list item and set Target Type attribute to No Target for
all three list items. The No Target value is set because this list is
intended to display the current order wizard step where the user is
within the order processing module, and not to call a page in the
application. In the Current List Entry section, set List Entry
Current for Pages Type to Comma Delimited Page List for the
three list items, and set the List Entry Current for Condition
attribute individually, as shown in the following table and
screenshot. Click the Apply Changes button to save the
modifications.

Property Identify Customer Select Items Order Summary

List Entry Current for
Condition

11 12 14

Figure 3-10

The List Entry Current for Pages Type attribute specifies when this list entry
should be current. Based on the value of this attribute, you define a condition
to evaluate. When this condition is true then the list item becomes current.

The template associated with list item gives users a visual indication about
the active list item. The following figure illustrates the use of Order Wizard
list. Being the first step in the order wizard, the Identify Customer list item is
marked as current (when Page 11 is called to enter a new order), while the
remaining two are displayed as non-current. After selecting a customer,
when you move on to the next step to select ordered items, the Select Items
entry becomes current and the first and last entries become inactive.

Figure 3-11

3.3 Desktop Navigation Bar
A navigation bar is also used to link various pages within an application.
Typically, a navigation bar is used to access Help pages and also carries a
Sign Out link. The location of a navigation bar depends upon the associated
page template. When you create a navigation bar, you specify an image
name, label, display sequence, and target location (a URL or a page). The
navigation bar used in our application will show feedback page icon, Page
Help entry, About Page entry, the id of the currently logged in user and a
Sign Out link. All these entries are created automatically when you create a
new application.

Figure 3-12

3.4 List of Values (LOV)
List of values is used to control input values and limits the user’s selection.
You can define two types of lists: Static and Dynamic. A static list of values
is based on predefined display and return values. A dynamic list of values is
based on a SQL query, and it is executed at runtime. In the following
exercise, you will create both types of LOVs.

3.4.1 CATEGORIES LOV
In our application will have a Products setup module. The module will make
use of three product categories. Each product in the application will fall under
one of these categories. This LOV is created with the intention to provide the
three categories to the user (while creating a product record) to associate each
product with one of these categories. The LOV will be utilized in Chapter 6
section 6.4.2.

1. In Shared Components, click Lists of Values under the Other
Components section.

2. Click the Create button.

3. Select the From Scratch option and click Next.

4. Enter Categories for the LOV Name, select Static as the LOV
type, and click Next.

5. Fill in the values as shown in the following figure and click the
Create List of Values button.

Figure 3-13

In the last step you entered a pair of static Display and Return values. At
runtime these entries will display in the order they are entered. Return Value
does not display, but is the value that is returned as a user selection to the
Application Express engine.

3.4.2 PRODUCTS WITH PRICE LOV
Similar to the categories list of value, this one also limits user’s selection by
displaying product names with prices during order creation. Here you’ll
generate the list dynamically with the help of a SQL statement. The first
column in the query, which concatenates product name and price, is used to
display product information to the user, while the second column (product id)
is returned for backend processing. You will utilize this LOV in Chapter 7
section 7.4.2.

1. Once again, click the Create button in Lists of Values.

2. Select From Scratch and click Next.

3. Enter Products with Price in the Name box. This time, select the
Dynamic Type and click Next.

4. On the List of Values Source screen, select SQL Query for the
Source Type, and enter the following query in the Enter a SQL
SELECT statement box. The SQL query is available in
BookCode\Chapter3 folder. If you are new to SQL, read Chapter 3
- Fetch Data From Database in my free SQL eBook.

select apex_escape.html(product_name) || ' [$' || list_price || ']' d,
product_id r
from demo_product_info

where product_avail = 'Y'
order by 1

5. On the final Column Mappings screen, select R for Return Column,
D for Display Column and click the Create button to finish the
wizard.

APEX_ESCAPE.HTML
The function APEX_ESCAPE.HTML is used to protect against XSS (Cross
Site Scripting) attacks. It replaces characters that have special meaning in
HTML with their escape sequence.
 It converts occurrence of & to &
 It converts occurrence of “ to "
 It converts occurrence of < to <
 It converts occurrence of > to >

3.4.3 STATES LOV
This is a dynamic LOV and is based on a SQL SELECT query to fetch State
names from the DEMO_STATES table. The query fetches both columns
from the table. The LOV will be used in Chapter 5 section 5.4.2, where it will
be attached to an input form page item.

1. In Lists of Values, click the Create button.

2. Select the From Scratch option and click Next.

3. Enter States in the Name box, select Dynamic for its type, and
click Next.

4. On the List of Values Source screen, select SQL Query for the
Source Type, and enter the following query in the Enter a SQL
SELECT statement box. Click Next.

select state_name display_value, state_id return_value
from demo_states order by 1

5. On the final Column Mappings screen, select RETURN_VALUE
for Return Column, DISPLAY_VALUE for Display Column and
click the Create button to create the LOV.

3.4.4 NEW OR EXISTING CUSTOMER LOV
This static list will be incorporated in the initial Order Wizard step (Chapter 7
Section 7.5.4) to select an existing customer for a new order or to create a
new one.

1. In Lists of Values, click Create.

2. Select From Scratch and click Next.

3. Enter NEW OR EXISTING CUSTOMER in the Name box,
select Static as its Type and click Next.

4. Fill in the display and return values as shown in the following
figure and click the Create List of Values button.

Figure 3-14

3.5 Images
You can reference images within your application by uploading them to the
Images Repository. When you upload an image, you can specify whether it is
available to all applications or a specific application. Images uploaded as
shared components can be referenced throughout an application. They may
include images for application menus or buttons or may represent icons that,
when clicked, allow users to modify or delete data. One important point to
remember here is that the images uploaded to the images repository should
not be directly related to the application’s data such as images of products
and employees. Such images must be stored in the application’s schema
alongside the data to which the image is related. You’ll follow this approach
in Chapter 6 to save each product’s image along with other information in a
database table.

Application Express images are divided into two categories:

Workspace images are available to all applications for a given

workspace
Application images are available for only one application

In the following set of steps, you’ll add your application’s logo to the images
repository. The logo appears at the top of every page in the application.

1. In Shared Components, click Static Application Files under the
Files section.

2. Click the Upload File button.

3. Click the Choose Files button and select logo.ico file, which is
available in the book code.

Figure 3-15

4. Click the upload button. After uploading the image, you need to
tell Oracle APEX to use this file as your application logo. To pass
this information, execute the following steps.

5. In Shared Components click User Interface Attributes under User
Interface section.

6. In the Logo section, select Image and Text for Logo.

7. Enter #APP_IMAGES#logo.ico in Image URL box, and enter
Sales Web Application in the Text box. An application logo can
be an image, text, image and text, or based on custom markup.
When you select a type for your application logo, additional
attributes appear depending upon your selection. With this
selection, your application logo and application name both will be
displayed on each application page. The built-in substitution string
(APP_IMAGES) is used to reference uploaded images, JavaScript,
and cascading style sheets that are specific to a given application
and are not shared over many applications. You must use this
substitution string if you upload a file and make it specific to an

application. Note that you must use the correct case for the image
file name and extension, else the logo will not be displayed at
runtime. Click the Apply Changes button.

Run the application. The application logo and text should resemble the
following figure.

Figure 3-16

Summary
In this chapter, you created all the components with relevant references
required by the application. These shared components were created
declaratively with the help of Oracle APEX wizards to demonstrate the log-
code nature of this technology and tackling redundancy. From the next
chapter, you will create pages of your web application (starting with the
Home page) and will see all these shared components in action. After
creating an application page, you can see a list of all Shared Components
utilized on that page by accessing its Shared Components tab in the Page
Designer.

Chapter 4 - Prepare Application Dashboard
4.1 About the Home Page
Every website on the Internet has a home page. Technically referred to as the
default page, it is the page that comes up when you call a website without
mentioning a specific page. For example, if you call Oracle’s official website
using the URL www.oracle.com, the first page you see is the default or home
page of the website. It is the page that represents the objective of a website.
Similar to a website, a web application also carries this page. In Oracle
APEX this page is created by default. The desktop login page, which you
used to access the application in a previous chapter, doesn’t require any
modification or enhancement. It comes with out-of-the-box functionalities
and utilizes current authentication scheme to process login requests. The
Home page, on the other hand, is created as a blank slate and needs to be
populated with content relevant to your application’s theme. For instance, the
Home page of your Sales Web Application, as illustrated in the following
figure, will show stuff related to sales.

Figure 4-1 – The Application Home

Let’s experience the Oracle APEX declarative development environment by
completing this page of our web application, which is a dashboard and holds
six regions to present different views of sales data.

4.2 Modify the Home Page
Before you start the proceedings, I’d recommend to first take a look at
Chapter 2 section 2.6 and 2.9 to acquaint yourself with the Page Designer
interface and how to access your workspace. Once you’re comfortable with
that, execute the following steps to modify properties of the Home page.

1. Sign in to your workspace. Click the App Builder option in the
main menu and then click the Edit icon under the Sales Web
Application - see Figure 3-3 in chapter 3.

2. Click the Home page icon (if you’re browsing the page in Icon
view). This action will open the definitions of the Home page in the
Page Designer interface.

4.2.1 Modify Page Attributes
Modify Name and Title properties of the Home page with meaningful labels.
The Name property gives the page a meaningful name for recognition, while
the Application Express engine uses the title you specify here in place of the
#TITLE# substitution string used in the page template. This title is inserted
between the HTML tags <TITLE> and </TITLE>.

On the Rendering tab to your left, click the root node to
refresh the Property Editor (on the right side) with the main page properties.
Set the properties mentioned in the following table and click the Save button
(at the top-right corner). These are the properties that are usually enough to
set for the main page. However, there are some more you must be curious to
know about. Click a property in the Property Editor and then click the Help
tab (in the Central pane) to see the purpose of that attribute. Each page in an
application is recognized by a unique number, which is used for internal
processing – for example, in a URL. By providing a unique name, you
visually differentiate it from other application pages.

Property Value
Name Sales Web Application

Title Sales Web Application

 4.3 Create Regions
You put items (Text Field, Select List, Radio Group, and so on) on a page

under a specific region. A region is an area on a page that serves as a
container for content. You can create multiple regions to visually segregate
different sections on a page and to group page elements. A region may carry
a report, chart, static HTML content, items, buttons, and some other types of
page items. Each region can have its own template applied, which controls its
appearance. The following sub-sections demonstrate how you can create
multiple regions to present different information on a single page. Some of
these regions will use Oracle JET Charts. Charts in Oracle APEX have been
completely revamped. Now Oracle APEX has integrated charting based on
Oracle JavaScript Extension Toolkit (JET) charting library. Oracle JET
Charts is a component of the Oracle JavaScript Extension Toolkit (JET), an
open source toolkit based on modern JavaScript, CSS3, and HTML5 design
and development principles. These charts are fully HTML5 capable and work
on any modern browser regardless of platform, screen size, or features.

NOTE: To remove a component (such as a region or an item) from a page,
right-click the desired component in the Rendering section, and select Delete
from the context menu. If you just created the component, simply click Undo
(A) on the Toolbar to remove it from the page.

4.3.1 Top Orders by Date
Let’s create the first region on the Home page. This region will display top
five orders by date from the database using a bar chart. The chart is populated
using a SQL SELECT statement, which fetches summarized sales figures for

each date from the Orders table.

On the Rendering tab, right-click Regions, and select Create Region from
the context menu to create a new region. This action will place a new region
</> New under Content Body.

Figure 4-2 Create a New Region

The region will also have a child node (named Attributes) of its own. The
New region contains the properties common to all regions, whereas the
Attributes component contains region-specific properties. For example, the
properties of a Static Content type region are different from a Chart region.
Click the </> New node and set the following properties in the Property
Editor on the right side. After setting the second attribute (Type), you will be
informed through the Messages tab that there are some errors on the page.
These messages relate to some mandatory properties you will set accordingly
in subsequent sections.

Property Value

1 Title Top Orders by Date

2 Type Chart

Location Local Database

Type SQL Query

select to_char(o.order_timestamp,'Mon DD, YYYY')
order_day,

3

SQL Query
SUM(o.order_total) sales

from demo_orders o
group by to_char(o.order_timestamp,'Mon DD, YYYY'),
order_timestamp
order by 2 desc nulls last
fetch first 5 rows only

4 Start New Row On (default)

5 Column Automatic (default)

6 Column Span 4

7

Show Region Icon (under
Template Options)

Place a check mark to select this option

Body Height (under Template
Options)

240px (Click OK to close the dialog screen)

Icon fa-lg fa-apex

Click the Attributes node under the new region and set the following properties:

8 Type Bar

9 Orientation Horizontal

Click the New sub-node under Series and set the following properties:

10 Location (under Source) Region Source

11 Label ORDER_DAY

12 Value SALES

13 Type (under Link) Redirect to Page in this application

Click No Link Defined under Target and set the following properties in the Link Builder dialog
box:

14 Type Page in this application

15 Page 4 (Click OK to close the dialog screen)

The first property provides a meaningful title to the region – see Figure 4-1. It
is a good practice to always provide a unique title to every region on a page.
The title not only describes the purpose of a region, but also distinguishes it
from others in the Page Designer. If you are familiar with HTML and CSS,
then you can also style this property by adding some HTML & CSS
elements, like this:

<i>Top Orders by Date</i>

In the second attribute, we set the Type of this region to Chart, because we
want to display sales data graphically. By default, a new region is assigned

the type Static Content with an empty source text, which is often used to
explain the purpose of a page or a page component. For example, the About
section on the right side of the App Builder interface is a static content region
whose source is the displayed text. In the third attribute, we specified the
location of the data, which is sourced from the local database in the current
scenario. The two other available sources are Remote Database and Web
Source. In Remote Database data is sourced from a remote database, where
the connection is defined using REST Enabled SQL, while in Web Source
data is sourced from a RESTful web service defined using Web Source
Modules. The Type attribute specifies how the data is queried. We set it to
SQL Query to retrieve the data using a SQL Query, which fetches
summarized sales data from the DEMO_ORDERS table.

The database applications created in Oracle APEX use a layout (comprising
12 columns) to position page elements. The fourth attribute (Start New Row)
used in this region is set to Yes (which is the default) to put the region on a
new row. Compare this value with the next region (Sales for This Month),
where it is set to No to place that region adjacent to this one. The value
Automatic in the Column attribute (5) automatically finds a column position
for the region. Since there exists no elements on the current row, column
number 1 will be used as the starting place to position this region. As you can
see in Figure 4-3, there are three regions on a single row. Equally divided in a
12 columns layout, each region spans 4 columns and this is the value we will
set for all the six regions on the Home page. The first region will span from
column number 1 to 4, the second one from 5 to 8, and the third one from 9
to 12 – see Figure 4-3.

We also defined the height of this region in attribute 7, which you can set by
clicking the Template Options. If the Template property is set to the default
Standard value for a region, you can place an icon in the region header. First,
select the Show Region Icon option (under the Template Options) to display
the region icon in the region header beside the region title. Then, click the
LOV for the Icon property (under Appearance), select a Style (for example,
Large), and choose and icon from the provided list.

In the Attributes node (8 and 9) you set the Type of this chart to horizontal
bar.

When you set the region type to Chart (2), a Series node is placed under

Attributes with a New sub-node under it. In this node you specify Location
(10) for the Series. Since an SQL Query has already been defined, we set it to
Region Source, which points to the region’s SQL Query defined in the third
attribute. By default, a chart is created with one series (named New), but you
can add more (see Chapter 8 section 8.3 steps 5 and 6). The chart's Label
attribute (11) is set to ORDER_DAY column to display values from this
column as labels. The Value property (12) is set to SALES to show sales
figures.

You can also define links on charts (as done in properties 13-15) that let you
call another application page for browsing details. When you click No Link
Defined under Target, a small window titled Link Builder comes up, where
you specify details of the target page. Once you set the link type to "Redirect
to Page in this Application", a property named Target appears, where you
provide the ID of the target application page you want to link with the chart
(properties 14 and 15). The Template property (not indicated in the previous
table) is set to Standard by default, which forms a border around the region
and displays the region's title across the top.

Figure 4-3 – Oracle APEX Page Grid Layout

Oracle APEX enables you to test your work from time to time. For example,
after completing this region you can save and run the page (by clicking the
Save and Run Page button appearing at the top-right corner) to check

how the region appears on it. At this stage, your Home page will show just
one region (Top Orders by Date) containing a bar chart. If you click any bar
in the chart, the application tries to open Page 4 and throws an error, because
the page doesn’t exist. After completing Page 4 (Orders) in Chapter 7, when
you run the Home page and click any of these links, Page 4 will be rendered
carrying a list of orders.

4.3.2 Sales For This Month
As the name implies, this region will present sales figures in graphical format
(using a Badge List) along with number of orders placed for the current
month. The list is dynamically rendered based on a SQL Statement each time
the page is viewed.

On the Rendering tab to your left, right-click Regions, and select Create
Region from the context menu. Again, a new region will be created just
under the previous one. Set the following properties for this region in the
Property Editor.

Property Value

1 Title Sales for This Month

2 Type Classic Report

3

Location Local Database

Type SQL Query

SQL Query

select sum(o.order_total) total_sales,
count(distinct

o.order_id) total_orders,
count(distinct

o.customer_id) total_customers
from demo_orders o
where order_timestamp
>= to_date(to_char(sysdate,'YYYYMM')||'01','YYYYMMDD')

4 Start New
Row

Off

5 Column 5

6 Column Span 4

7

Body Height
(under

Template
Options)

240px

TIP: If a region is not created in the desired location, drag and drop it to the
appropriate location in the rendering tree.

A Classic Report is a simple Oracle APEX report, which is based on a
custom SQL SELECT statement or a PL/SQL function. In this exercise, we
used it to fetch the desired data set. Later on, we will transform it to present
the fetched data in graphical format. When you specify a SQL Query for a
region, all columns you define in the query appear in a separate node
(Columns) under that region.

Next, create a hidden page item by right-clicking the Sales for this Month
region and selecting Create Page Item from the context menu. A new node
named Items will be created with a new item . Click the new item
and set the following properties:

Property Value

Name P1_THIS_MONTH

Type Hidden

Value Protected On (default)

Type (under Source) PL/SQL Expression

PL/SQL Expression to_char(sysdate ,'MM')||'01'||to_char(sysdate ,'YYYY')

The page item P1_THIS_MONTH is a hidden item and is used in the next
section. It is added to store first day of the current month. You create hidden
items on a page to store some values for behind-the-scene processing. This
one evaluates current month using the sysdate function. Hidden items can be
seen in the Page Designer, but they do not appear on the page at run time.
Note that whenever you refer to a page item in links, you present it as a
substitution string, which is preceded with an & and terminated with a period
– see the Value property in serial 6 in the following table.

The Value Protected property specifies whether the item is protected. The Yes
value prevents the value stored in the item from being manipulated when the
page is posted. Note that if the Order Date column on Page 4 is rendered as
09-JAN-2017, then you will have to change the PL/SQL Expression like this:
'01-'||to_char(sysdate ,'MON')||'-'||to_char(sysdate ,'YYYY')

In the Rendering section, expand the Columns node under the Sales for This
Month region, and click the TOTAL_SALES column.

Figure 4-4

This will refresh the Properties pane to show properties of the currently
selected column. Set the following properties for TOTAL_SALES to
transform it into a link.

Property Value

1 Type Link

2 Format Mask 5,234

Click No Link Defined under Target and set the following properties:

3 Type Page in this application

4 Page 4

5 Name (under Set
Items)

IRGTE_ORDER_DATE

6 Value (under Set
Items)

&P1_THIS_MONTH. (do not forget to add the trailing period)

7 Clear Cache RIR,4

8 Action Reset Pagination

Click OK to close the Link Builder - Target dialog box

9
Link Text #TOTAL_SALES# (select this value using the Quick Pick

button)

In the first attribute (Type), you specify that the column is to be displayed as
a link. The Format Mask property (2) is actually a list of values that shows
some common currency and date/time formats when you click the up-arrow.

When you select a format from this list, its mask appears in the property's text
box. In the current scenario, you selected 5,234.10 as the format mask for
TOTAL_SALES column, which produces the mask
999G999G999G999G990D00. In this mask, 9 denotes an optional digit, 0 a
required digit, G stands for thousand separator, and D is for decimal point.
Here, the sales value will be displayed with thousand separators and two
decimal places.

The remaining properties actually define the link. First, you specify that the
link should call a page in the current application (property 3) followed by the
target page number (property 4). To call another application page, it is suffice
to transform a column into a link by setting these three values (Link, Page in
this application, and Page Number). Recall that in the previous region you
formed a similar kind of link. In the Set Items section in the Link Builder
dialog, you select a Name and Value to specify session state for an item.
Using this section you configure the values to be passed from the current
page to the target page. In the current scenario, the Name (5) and Value (6)
properties form a filter argument to display current month’s order on the
target page (Page 4 – Orders, to be created in Chapter 7). The values for these
properties are usually picked from the adjacent LOVs using the Page
attribute, but due to absence of Page 4 of our application, we entered them
manually.

In the current scenario, we used just one name/value pair to filter the
interactive report on the target page. However, this section allows you to set
as many filters as you want. Each time you provide a value, another row is
appended, thus allowing you to enter another pair of name/value. You can
use this section to also specify target page's items in the Name column and
can set their values using the Value box. For example, to set a customer's
credit limit item's value on the target page, enter the name of that item
(P7_CREDIT_LIMIT) in the Name box and type the corresponding value
(5000) in the Value box. This way, when you call the target page, the value
(5000) appears in the credit limit item.

The Clear Cache attribute (7) resets the interactive report on Page 4. The
eighth attribute resets pagination of the target page. The Link Text attribute
(9) is set to Total Sales, which specifies the column to be displayed as a link.
Note that column names are enclosed in # symbol when you specify them in

Link Text attribute. This is a mandatory attribute whose value can be selected
using the Quick Pick button appearing next to it.

At run-time the link is formed like this (if the application’s Friendly URL
attribute is turned off):
f?p=145615:4:8824748217892::NO:RP,RIR,4:IRGTE_ORDER_DATE:01012018

using the following syntax:
f?p=&APP_ID.:Page:Sessionid::NO:RP,RIR,4:IRGTE_(itemname):itemvalue (stored in
&P1_THIS_MONTH item)

The following table defines the parameters used in the URL:
Argument Explanation
&APP_ID. The first argument in the URL is reserved for

application ID (18132). The expression used
here is called a substitution string that holds
the application ID. Instead of hard-coding
application IDs, Oracle APEX uses this
substitution string to make an application
more portable. Note that substitution strings
are always preceded with an “&” and
postfixed with a period.

: The colon special character is used in the
APEX URL as an argument separator. Since
the URL contains no REQUEST argument, the
position of this argument is left empty–see the
additional colon before the debug argument
(NO).

4 This is the target page (Page 4 – Orders) we
are calling in the URL.

Sessionid The number (8824748217892) appearing in
the URL is the session ID of our application
and is used to create links between application
pages by maintaining the same session state
among them. Note that session ids are
managed automatically by Oracle APEX.

NO References the debug flag, which is used to
display application processing details. The
value NO says do not enter the debug mode.

RP,RIR,4 Placed in the URL’s ClearCache position, this
argument resets pagination for the interactive
report on Page 4. RP stands for Reset
Pagination and RIR for Reset Interactive
Report. Pagination provides the end user with
information about the number of rows and the
current position within the result set. You
control how pagination displays by making
selections from Pagination Type attribute in
the Property Editor. The clear cache section
can have RIR or CIR or RP to reset, clear, or
reset the pagination of the primary default
reports of all interactive report regions on the
target page.

IRGTE_ORDER_DATE This argument is used in the itemNames
position. The IR (Interactive Report) string is
used along with the greater than and equal to
operator (GTE), followed by an item name
(ORDER_DATE - an item on Page 4). This
argument acts as a filter and is used in
conjunction with the itemValue
(&P1_THIS_MONTH. mentioned underneath)
to only display current month’s orders. In
simple words it says: The order date of the
interactive report is greater than or equal to
the item value.

&P1_THIS_MONTH. Used in the itemValue position, the value
stored in this hidden item is forwarded to the
target page. To create a filter on an interactive
report in a link, use the string

IR<operator>_<target column alias> in the
ItemNames section of the URL and pass the
filter value in the corresponding location in the
ItemValues section of the URL. See section
2.7 in Chapter 2 for further details on Oracle
APEX f?p syntax. Other operators you can use
to filter an interactive report include:

EQ = Equals (the default operator)
LT = Less than
GT = Greater than
LTE = Less than or equal to
GTE = Greater than or equal to
LIKE = SQL LIKE operator
N = Null

To apply the filter, you must use correct date
format mask in the SQL query for
order_timestamp column. For example, if the
Order Date column on Page 4 appears as 01-
JAN-2017, then you must use
'DD/MON/YYYY' format mask.

Select the TOTAL_CUSTOMERS column and set the Type attribute of this
column to Hidden Column. By setting a column’s Type property to Hidden,
you make it invisible at run-time. Click the Attributes node under Sales for
This Month region. Switch its Template from Standard to Badge List, click
the Template Options and set Badge Size to 128px, Layout to Span
Horizontally, and click OK. By setting these region properties, the derived
one row summarized report will be presented as a badge list, spanned
horizontally. Also set Pagination Type to No Pagination (Show All Rows).
Often only a certain number of rows of a report display on a page. To include
additional rows, the application user needs to navigate to the next page of the
report. Pagination provides the user with information about the number of
rows and the current position within the result set. Pagination also defines the
style of links or buttons used to navigate to the next or previous page.

Click Save and Run Page button to see this region with two badges on it
displaying current month's sales and number of orders placed. The first badge
acts as a link and leads you to Page 4 to display details of the summarized
data. Since Page 4 will be created in Chapter 7, once again you will get Page
Not Found message if you click this badge.
4.3.3 Sales by Product
This region is intended to show sale figures for individual products using a
pie chart. You see those figures when you move the mouse pointer over the
pie slices. Create another region as mentioned in the previous exercises, and
set the following properties.

If you are creating a multi-series chart, then you can use legend (9) to identify
each series on the chart. Using the legend properties you can specify whether
to display it, and if so, where it should be placed on the chart. You will use
these properties in Chapter 8.

Property Value

1 Title Sales by Product

2 Type Chart

3

Location Local Database

Type SQL Query

SQL Query

SELECT p.product_name||' [$'||p.list_price||']' product,
SUM(oi.quantity *

oi.unit_price) sales
FROM demo_order_items oi, demo_product_info p
WHERE oi.product_id = p.product_id
GROUP BY p.product_id, p.product_name,
p.list_price
ORDER BY p.product_name desc

4 Start New Row Off

5 Column 9

6 Column Span 4

7 Body Height (under Template
Options)

240px

Click the Attributes sub-node under the new region and set the following properties:

8 Type Pie

9 Show (under Legend) Off

Click the New sub-node under Series and set the following properties:

10 Location (under Source) Region Source

11 Label PRODUCT

12 Value SALES

13 Show (under Label) On (Specifies whether the label(s) should be rendered
on the chart.)

4.3.4 Sales by Category
This region will present sale figures for each product category. Note that
there are three categories in the products table: Men, Women, and
Accessories. Each product in the DEMO_PRODUCT_INFO table belongs to
one of these categories. This time, we will add a region using the drag and
drop feature provided in Oracle APEX. Following the figure illustrated
below, drag the Chart icon from the Regions gallery and drop it just under
the Top Orders by Date region. A chart region will appear with relevant
properties. After placing the chart region at its proper location, set the
properties presented in the table provided on the next page.

Figure 4-5 – Drag Item in Page Designer

Here are the modified region properties. Note that I changed the default chart
color (13) using the Color Picker tool.

Property Value

1 Title Sales by Category

2 Type Chart (this time it is set by default)

3

Location Local Database

Type SQL Query

SQL Query

SELECT p.category Category, sum(o.order_total)
Sales
FROM demo_orders o, demo_order_items oi,

demo_product_info p
WHERE o.order_id = oi.order_id AND

oi.product_id = p.product_id
GROUP BY category
ORDER BY 2 desc

4 Start New Row On

5 Column 1

6 Column Span 4

7 Body Height (under Template
Options)

240px

Click the Attributes sub-node under the new region and set the following properties:

8 Type Bar

9 Show (under Legend) Off

Click the New sub-node under Series and set the following properties:

10 Location (under Source) Region Source

11 Label CATEGORY

12 Value SALES

13 Color (under Appearance) #18A0C2

4.3.5 Top Customers Region
This region will display top six customers with highest orders and will
present the information in text format. Create a new region by dragging the
Classic Report icon from the gallery and dropping it under the Sales by
Category region. The source of a Classic Report is a SQL query. Each time
the page is rendered, Oracle APEX evaluates the query and displays the result
within the region. Once you specify row and column properties using the
following table, the region will appear next to the Sales by Category region.

Property Value

1 Title Top Customers

2 Type Classic Report (should be already set)

3

Location Local Database

Type SQL Query

SQL Query

SELECT b.cust_last_name || ', ' || b.cust_first_name
|| ' - '|| count(a.order_id) ||'

Order(s)' customer_name,
SUM(a.ORDER_TOTAL)

order_total, b.customer_id id
FROM demo_orders a, DEMO_CUSTOMERS b
WHERE a.customer_id = b.customer_id
GROUP BY b.customer_id, b.cust_last_name || ', ' ||

b.cust_first_name
ORDER BY NVL(SUM(a.ORDER_TOTAL),0) DESC

4 Start New Row Off

5 Column 5

6 Column Span 4

7 Body Height (under
Template Options)

240px

On the Rendering tab, expand the Columns node under the Top Customers
region, and click the CUSTOMER_NAME column. Set the following
properties to transform this column into a link. The #ID# substitution string
references the third column in the above SELECT query. Just like you use
substitution strings to reference a page item, the standard procedure in Oracle
APEX to refer to a column value is to enclose it between the # symbols.

Property Value

8 Type Link

Click No Link Defined under Target and set the following properties:

9 Type Page in this application

10 Page 7

11 Name P7_CUSTOMER_ID

12 Value #ID#

13 Clear Cache 7

In this table, we specified properties about a link we want to create. The
purpose of setting these properties is to place hyperlinks on customer name
column to provide drill-down capability. We specified the
CUSTOMER_NAME column in the Link Text attribute. When you run this
page, each customer's name appears as a hyperlink, clicking which calls

customer's profile page (Page 7). We set Page attribute to 7, which is the
page we want to navigate to. We also forwarded the customer’s ID (#ID#) to
Page 7. The value P7_CUSTOMER_ID refers to an item on Page 7 that will
be populated with the value held in #ID#. It is forwarded to Page 7 from the
Home page to display profile of the selected customer.

Click the ORDER_TOTAL column and set Format Mask to $5,234.10.
Select the ID column and set the Type property (under Identification) to
Hidden Column to hide this column at run-time.

Click the Attributes node under this region to set the following properties:
Property Value

Pagination Type No Pagination (Show All Rows)
Maximum Row to Process (under

Performance)
6

Type (under Heading) None

Pagination is suppressed since we want to see only six records in the region.
We also set Heading Type to None to suppress column headings.

Click Save and Run Page button to test the progress.

4.3.6 Top Products Region
This region is similar to the Top Customers region and displays six top
selling products. Due to similarity between the two regions, you will create
this region by copying the Top Customers region. Right-click the Top
Customers region, and select Duplicate from the context menu. A copy of
the source region will be appended just under it. Set the following attributes
for the new region.

Property Value

1 Title Top Products

2 Type Classic Report

3

Location Local Database

Type SQL Query

SELECT p.product_name||' - '||SUM(oi.quantity)||' x'
||to_char(p.list_price,'L999G99')||''

product,
SUM(oi.quantity *

oi.unit_price) sales,

SQL Query p.product_id
FROM demo_order_items oi, demo_product_info p
WHERE oi.product_id = p.product_id
GROUP BY p.Product_id, p.product_name, p.list_price
ORDER BY 2 desc

4 Start New Row Off

5 Column 9

6 Column Span 4

7 Body Height (under
Template Options)

240px

Expand the Columns node and click the PRODUCT column to set the
following properties:

Property Value

8 Type Link

Click No Link Defined under Target and set the following properties:

9 Type Page in this application

10 Page 6

11 Name P6_PRODUCT_ID

12 Value #PRODUCT_ID#

13 Clear Cache 6

Click the SALES column and set its Format Mask to $5,234.10. Select the
PRODUCT_ID column and set its Type property to Hidden Column.

Click the Attributes node for this region to set the following properties:
Property Value

Pagination Type No Pagination (Show All Rows)
Maximum Row to Process (under

Performance)
6

Type (under Heading) None

Click the Save and Run Page button to see how all the six regions appear on
the Home page.

4.4 Create Buttons
After creating all the regions, your next task is to create buttons on top of
each region. These buttons provide drill-down functionality and take user to

relevant pages to dig further details for the provided summarized information.
Some of these regions will have a pair of buttons (add and view) to create a
new record and to browse further details of the provided information. For
instance, if you click the Add Order button in the Top Order by Date region,
you will be redirected to Page 11 to add a new order.

4.4.1 View Orders Button
This button is used to view a list of all customer orders. To create this button,
right-click the Top Orders by Date region and select Create Button from
the context menu. This way, the button will be created in the selected region.
A new node Region Buttons will be added with a button.

Figure 4-6 – Create Button

Set the following properties for the new button. Among these properties is
Button Position, which provides you with over a dozen values. The best way
to understand the other options is to try each one to see its effect.

Property Value

Button Name VIEW_ORDERS

Label View Orders (appears as a tooltip when you move over the button at
run-time)

Region Top Orders by Date (the region where the button will appear)

Button Position Edit (try other options as well to observe different positions)

Button Template Icon (the button will be displayed as an icon)

Icon fa-chevron-right (the name of an icon from the APEX’s repository)

Action Redirect to Page in this Application

Target Type = Page in this application
Page = 4

4.4.2 Add Order Button
This one calls Order Wizard (to be created in Chapter 7) to place a new order.
Right-click Region Buttons under the Top Orders by Date region and select
Create Button. A new button will be added just under the previous one. Set
the following properties for this new button:

Property Value

Button Name ADD_ORDER

Label Enter New Order

Region Top Orders by Date

Button Position Edit

Button Template Icon

Icon fa-plus

Action Redirect to Page in this Application

Target
Type = Page in this application
Page = 11
Clear Cache=11

4.4.3 View Orders For This Month Button
This button will drill-down into current month’s order details. As illustrated
in the following figure, drag an icon button from the Buttons gallery and drop
it in the EDIT position under the Sales for this Month region. A new button
will be added to this region. Select it and set the properties mentioned just
after the illustration. The link properties set here are similar to those set
earlier in section 4.3.2.

Figure 4-7

Property Value

Button Name VIEW_MONTH_ORDERS

Label View Orders for This Month

Region Sales for This Month

Button Position Edit (already set)

Button Template Icon (already set)

Icon fa-chevron-right

Action Redirect to Page in this Application

Target
Type = Page in this Application
Page = 4
Name = IRGTE_ORDER_DATE
Value = &P1_THIS_MONTH.
Clear Cache = RIR,4

4.4.4 View Customers Button
You’ll place two buttons in the Top Customers region. Create these buttons
using either of the two methods applied above and set respective properties as
mentioned below. The first button will be used to view a list of customers on
Page 2 of the application.

Property Value

Button Name VIEW_CUSTOMERS

Label View Customers

Region Top Customers

Button Position Edit

Button Template Icon

Icon fa-chevron-right

Action Redirect to Page in this Application

Target Type = Page in this Application
Page = 2

4.4.5 Add Customer Button
This button is used to add a new customer record. When clicked, it will call
Page 7 (Customers – to be created in the next chapter). The target page will
appear on top of the Home page (as a modal dialog) carrying a blank form to
enter new customer’s credentials. Right-click the VIEW_CUSTOMERS
button and select Create Button from the context menu. Set the following
properties for the new button.

Property Value

Button Name ADD_CUSTOMER

Label Add Customer

Region Top Customers

Button Position Edit

Button Template Icon

Icon fa-plus

Action Redirect to Page in this Application

Target
Type = Page in this application
Page = 7
Clear Cache = 7

4.4.6 View Products Button
Create the following two buttons in the Top Products region. The first one
leads you to the main products page to display a list of all products.

Property Value

Button Name VIEW_PRODUCTS

Label View Products

Region Top Products

Button Position Edit

Button Template Icon

Icon fa-chevron-right

Action Redirect to Page in this Application

Target Type = Page in this Application
Page = 3

4.4.7 Add Product Button
This one calls Page 6 to add a new product.

Property Value

Button Name ADD_PRODUCT

Label Add Product

Region Top Products

Button Position Edit

Button Template Icon

Icon fa-plus

Action Redirect to Page in this Application

Target
Type = Page in this Application
Page = 6
Clear Cache = 6

At this stage, all the seven buttons are placed at their proper locations with
the expected functionalities and are ready for partial test. To remind you
again, these buttons will be productive only after creating all relevant pages
indicated in their respective Target properties.

4.5 Styling Page Elements
A cascading style sheet (CSS) provides a way to control the style of a web
page without changing its structure. When used properly, a CSS separates
visual properties such as color, margins, and fonts from the structure of the
HTML document. Oracle APEX includes themes containing templates to
reference their own CSS. The style rules defined in each CSS for a particular
theme also determine the way reports and regions display. CSS can be added
to APEX applications inline, as CSS file(s) or through ThemeRoller.

Depending on your requirements, you can add CSS to your application at the:

Page Level
Page Template Level
Theme Style Level
Theme Level
User Interface Level

In this exercise, I’ll demonstrate how to apply CSS at user interface level.
Here you’ll upload a custom CSS file carrying just one rule to style all six
regions of the home page. The file named AppCss.css available in the source
code contains the following rule, which creates a rounded border and places
inset shadow around the regions. For more details on CSS, see Chapter 7
section 7.6.1.

.region {background:white;border-radius:10px 10px 10px 10px;box-shadow: inset 0px 0px 30px
#dfdbdf}

Execute the following steps to apply CSS at user interface level:

1. Go to Shared Components page and click Static Application
Files in the Files section

2. Click the Upload File button

3. In the Upload Static Application File(s) dialog, click Choose Files,
select AppCss.css file from the source code and click Upload. The
css file will be added to the static application files listing. Copy the
Reference entry appearing on this page to your clipboard by
selecting the text (#APP_IMAGES#AppCss.css) and pressing
Ctrl+C. The APP_IMAGES substitution string is used to reference

uploaded images, JavaScript, and cascading style sheets that are
specific to a given application and are not shared over many
applications. Recall that you used this substitution string earlier in
chapter 3 to reference the application logo.

4. Next, add the CSS file to User Interface. In Shared Components’
User Interface section, click User Interface Attributes.

5. On the User Interface tab, click the Cascading Style Sheets sub-tab
and press Ctrl+V to append the reference text in the File URLs box
under the existing URL.

Figure 4-8

6. Click Apply Changes.

7. Finally, you have to apply the CSS rule to your region. Here’s how
it is done. Open the home page (Page1) of your application and
select the first region - Top Orders by Date. In the properties pane,
scroll down to the Appearance section and enter region (a class
defined in the AppCss.css file) in CSS Classes attribute. CSS allows
you to specify your own selectors called "id" and "class". The id
selector is used to specify a style for a single, unique element. It
uses the id attribute of the HTML element, and is defined with a "#"
identifier. The class selector, on the other hand, is used to specify a
style for a group of elements. This means you can set a particular
style for many HTML elements with the same class. It uses the
HTML class attribute, and is defined with a "." identifier. Add the
region class to the CSS Classes property of the remaining five
regions.

Test Your Work
Click the Save and Run Page button to see the Home page, which should

now look similar to the one illustrated in Figure 4-1 at the beginning of this
chapter.

Summary
Congratulations! You’ve created your first professional looking page in
Oracle APEX. In this chapter, you were provided with the flavor of
declarative development where you added contents to a blank page using
simple interactive procedures. You also learned how to modify properties to
customize the look and feel of this page. This is the uniqueness and beauty of
Oracle APEX that allows you to create pages rapidly without writing tons of
code. The following list reminds you of Oracle APEX features you learned in
this chapter:

Region – You added six regions to the Home page to display
different types of contents. You used different types of charts,
badge list, and classic reports to populate these regions via simple
SQL statements.

Grid Layout – You learned how to arrange multiple regions on a
page using Oracle APEX’s 12 columns grid layout.

URL & Links – Oracle APEX makes it fairly easy to link
application pages together by setting a handful of properties. You
also got an idea about how Oracle APEX formulates a URL and
passes values to the target page using a handful of link properties.

Buttons – A button can also be used to link application pages. You
created a few buttons to access different application pages.

Apply Styles – You learned how to add custom styles to page
elements through user interface level.

In the next chapter, you will learn about Interactive Grid and how to create
web forms to receive user input.

Chapter 5 - Managing Customers
5.1 About Customer Management
Whenever you create a sales application you add a mandatory customer
management module to it. In this setup, you maintain profiles of customers
including their ids, names, and addresses. This information is then used in
other application segments – for example, customer orders and invoices.
Every new customer is provided with a unique id, either manually or
automatically, by a built-in process. In this book these ids will be generated
automatically through a database object called a Sequence. Using the
information from this module you can analyze a business from the
perspective of customers. For example, you can evaluate how much business
you have done with your customers either by location or by product, as you
did in the previous chapter where you created the Top Customers region. In
this chapter, you will create a setup to manage customers’ profiles that will
allow you to:

Browse and search customer records
Modify customers profiles
Add record of a new customer to the database
Remove a customer from the database

This module is based on the DEMO_CUSTOMERS table, which was created
in chapter 2. In this chapter, you’ll create two pages with the help of Oracle
APEX wizard to view and edit customers’ information. The first one (Page 2
Figure 5-1) is an interactive grid, which displays a list of all customers from
the aforementioned database table using a SQL SELECT query. The second
one (Page 7 Figure 5-6) is an input form to receive details of a new customer,
modify the record of an existing customer, and delete one from the database.
To keep data integrity, those customers who have some existing orders
cannot be removed from the database – see chapter 2 section 2.10 step 11.
Each customer’s name appears as a link in the interactive grid. When you
click the name of a customer, the form page appears with complete profile of
the selected customer. Let’s get our hands dirty with some practical work to
learn more exciting declarative development features offered by Oracle
APEX.

Figure 5-1 – Customers Interactive Grid Page

5.2 Create Pages to Manage Customers
The Home page of our application was created by the App Builder wizard at
the time when the application was created. The rest of the pages in this
application will be created manually with the help of wizards and copy
utility. In this chapter, you will make use of Oracle APEX wizard to create
pages for this setup by answering simple questions on different wizard
screens. You can always move back to a previous wizard step by clicking the
Previous button provided at the bottom of each screen. The following
instructions step you through to create the two module pages via a built-in
wizard.

1. In the main App Builder interface, click the Sales Web
Application’s Edit icon (A), and on the next page click the Create
Page button (B). You’ll use this button throughout this book to
create new application pages.

TIP: If you want to delete an application page, open the page in Page
Designer by clicking its name. Then, select Delete from the Utilities menu ,
which appear at the top-right.

2. On the first wizard screen, select the Report option . The
initial wizard screen allows you to select a single option from a
collection of multiple choices. We selected the Report option
because the first page of this module will display a report of
customers in an interactive grid.

3. On the next wizard screen, click Interactive Grid . This screen
presents sub-categories of reports and requires a single selection
the report will base on. The option you selected here means an
interactive grid will act as a report to display all customers from the
database.

INTERACTIVE GRID
Up to version 5.0 APEX used the Interactive Report feature to present data in a tabular form. Since
version 5.1, you are provided with a new feature called an Interactive Grid, which is similar to the
Interactive Report but allows you to manipulate data simply by clicking on a cell and editing its
value. This functionality is the major difference between the two. The Interactive Grid includes
every feature that the IR used to deliver. It introduces fixed headers, frozen columns, scroll
pagination, multiple filters, sorting, aggregates, computations, and more. It is designed to support all
item types and item type plug-ins. One more important thing about the Interactive Grid is that you
can create mater-detail relationships to any number of levels deep and across. See section 5.6 in this
chapter for further details.

4. On the next wizard screen, set the following properties for the
interactive grid page and click Next.

Property Value

Page Number 2

Page Name Customers

Page Mode Normal

Breadcrumb Breadcrumb

Parent Entry Home (Page 1)

Entry Name Customers

In Application Express each page is identified with a unique number.
The main page of this module (which will carry an interactive grid) will
be recognized by number 2, whereas the form page (to be created next)
will have number 7. Just like numbers, a page is provided with a unique
name for visual recognition. You can recognize a page by its name in
the App Builder interface.

The Page Mode property specifies how you want to see a page. It has
two options: Normal and Modal Dialog. New pages created in Oracle
APEX default to Normal. When you call a normal page, it simply
replaces an existing page appearing in your browser. A Modal Dialog
page, on the other hand, is a stand-alone page, which appears on top of
its calling page and doesn't allow users to do anything else unless it is
closed. A modal page can be displayed only on top of another page.

A breadcrumb shared component was created by the App Builder when
you created this application earlier (see Shared Components >
Navigation > Breadcrumbs). In this step, you selected the same

breadcrumb component (fourth property value in the above table) and
added an entry name (Customers) to it. Take a look at Figure 5-1 and
see where the provided entry name appears in the breadcrumb region. A
breadcrumb is a hierarchical list of links. It indicates where the user is
within the application from a hierarchical perspective. Users can click a
specific breadcrumb link to instantly switch back to any level. You use
breadcrumbs as a second level of navigation at the top of each page. To
create a hierarchy in this application, you selected the Home menu entry
as the Parent Entry for this page.

5. On the Navigation Menu wizard screen, set Navigation Preference
to Identify an existing navigation menu entry for this page, set
Existing Navigation Menu Entry to Setup, and click Next. This
step will make the Setup entry active in the main navigation menu
(created in Chapter 3, section 3.2.1) when this page is accessed.

6. On the Report Source screen, set the following properties.

Property Value

Editing Enabled Off

Source Type Table

Table/View Owner accept the displayed value that displays your
Oracle schema

Table/View Name DEMO_CUSTOMERS (table)

We disabled the most significant editing feature of the interactive grid
because we will use a separate form to modify customers’ records. You
will see an example of editing records in an interactive grid later in this
chapter.

In the Source Type attribute we specified to use a database table data to
populate this interactive grid. Next, you selected the default value
appearing in Table/View Owner attribute. This is usually the database
schema to which you are connected. Once you select a schema, all
tables within that schema are populated in the Table/View Name drop-
down list from where you select a table – DEMO_CUSTOMERS in the
current scenario whose data will be displayed in the interactive grid.
Note that in the current scenario you can select only one table from the
provided list.

If not visible, click the arrow icon next to the Column section to see the
table columns. When you choose a table, all the columns from that table
are selected (moved to the right pane in the Columns section). For this
exercise, leave the following columns in the right pane and exclude
others by moving them to the left pane using Ctrl+click and the left
arrow icon. Here are the columns we want to show in the interactive
grid.
Cust_First_Name, Cust_Last_Name, Cust_Street_Address1,
Cust_Street_Address2, Cust_City, Cust_State, and
Cust_Postal_Code

Figure 5-3

7. Click the Create button to finish the report page creation process.

The page is created and its structure is presented in the Page Designer. The
only significant aspect of this page is the Customers Interactive Grid region
under the Rendering > Regions > Content Body node to your left. The wizard
created this region with all the columns you specified in step 6 – see the SQL

Query box in the Page Designer. All these columns appear under the
Columns node.

The properties in the Interactive grid's Attributes node control how an
interactive grid works. For example, developers use these properties to
determine if end-users can edit the underlying data, configure report
pagination, create error messages, configure the toolbar and use download
options, control if and how users can save an interactive grid, and add Icon
and Detail Views to the toolbar. You will go through these properties later in
this chapter. For now, walk around the Page Designer to observe page
components and relevant properties.

Click the Application 145615 breadcrumb at top-left to leave the Page
Designer interface. Note that the ID of my application is 145615, so I will use
it throughout this book to reference my application. In the next set of steps
you will create a new page. This page will carry a form to add, modify, and
delete customers and will be called from Page 2 – Customers. It will be
created as a modal dialog. A modal dialog page is a stand-alone page, which
appears on top of the calling page. An Oracle APEX page can be created as a
dialog, which supports for all the functionality of a normal page, including
computations, validations, processes, and branches.

1. Click the Create Page button. This time select the Form option

 followed by the another Form option on the next wizard
screen. The second option creates a form page based on a database
table. After selecting the initial options, set the following properties
on the next wizard screen.

Property Value

Page Number 7

Page Name Customer Details

Page Mode Modal Dialog

Breadcrumb Breadcrumb

Parent Entry Customers (Page 2)

Entry Name Customer Details

2. On the Navigation Menu screen, set Navigation Preference to
Identify an existing navigation menu entry for this page, set

Existing Navigation Menu Entry to Setup, and click Next.

3. On the Source screen, set the following properties and click Next.

Property Value

Data Source Local Database

Source Type Table

Table/View Owner accept the displayed value

Table/View Name DEMO_CUSTOMERS

4. This time, select all columns from the DEMO_CUSTOMERS table
to display all of them in the input form (Page 7) to populate the
backend database table. For Primary Key Type, select the second
option Select Primary Key Column(s). Then, set the first Primary
Key Column attribute to CUSTOMER_ID. Click the Create
button to complete the form page creation process. In this step, you
specified the primary key column. A primary key is a column or set
of columns that uniquely identify a record in a table. Note that in
the current scenario the primary key column for the customers table
will be populated using DEMO_CUSTOMERS_SEQ Sequence
object through BI_DEMO_CUSTOMERS trigger. The trigger fires
when you insert a new customer. To browse this trigger, select
SQL Workshop > Object Browser > Tables > click on
DEMO_CUSTOMERS table and then click the SQL tab. A
sequence is a database object that automatically generates primary
key values for every new customer record. Forms perform insert,
update, and delete operations on table rows in the database. The
rows are identified using either a primary key defined on the table,
or the ROWID pseudo column, which uniquely identifies a row in
a table. Forms support up to two columns in the primary key. For
tables using primary keys with more than two columns, the
ROWID option should be used. For further details, see Chapter 2.

5. Access the main App Builder interface by clicking the application
ID breadcrumb to see the two new pages (Customers and Customer
Details) with their respective page numbers. Click the Customer
Details page (Page 7) to open its definitions in Page Designer.

Expand the Pre-Rendering node and rename the process Initialize
form Customer Details as Initialize Customer Details. Click the
Processing tab and rename the process Process form Customer
Details to Process Customer Data.

NOTE: If you see a different process name, then there is nothing to worry
about as it sometimes happens due to change in APEX version.

Oracle APEX is a low-code application development platform. The two
pages you just created have everything you need to view and manipulate data.
The Customers page (Page 2) contains an Interactive Grid in which you can
view all customers' data. Click the Customer Details page (Page 7) to open it
in Page Designer. On the Rendering tab, expand the Pre-Rendering node.
Here, you will see an auto-generated process named Initialize Customer
Details of Form Initialization type. This Process is responsible to initialize
form region items. Initialization can either be fetching data from the region
source, using the primary key value(s) or simple initialization of the form
region items. The process fetches and displays data in page items when you
select a customer by clicking the corresponding edit icon on the reports page
and it initializes the page items when you create a new customer record. The
Customer Details region is a Form type region, which connects to the local
database and fetches data from DEMO_CUSTOMERS table into relevant
page items listed under the Items node. The same page items are used to
receive user input when a new customer record is created. In the Buttons
section, you will see a bunch of auto-generated buttons (Cancel, Delete, Save,
and Create). The Database Action property of these buttons specify the
function each button performs. When you click a button (for example,
CREATE), the corresponding database action is submitted to a process
named Process Customer Data, which resides under the Processing tab. This
process is of Automatic Row Processing (DML) type and performs insert,
update, or delete action on a form region – Customer Details region in the
current scenario.

5.3 Modify Customers Page - Page 2
The main page of this module (Page 2) holds an interactive grid, which is
generated by the wizard with some default data source values. In the
following steps, you will learn how to change these values and produce a
custom output using a SQL query.

5.3.1 Modify Region Properties

1. In the App Builder interface, click the Customers page (Page 2) to
open it in the Page Designer for modification.

2. Click the Customers region under the Content Body
node. The standard method to modify properties of a page
component is to click the corresponding node. This action refreshes
the Properties section (located to your right) with the properties of
the selected page component for alteration.

3. For Type (under the Source section), select SQL Query to see the
default query generated for the interactive grid. Enter the
following SQL statement in SQL Query text area, replacing the
existing one. Here, the auto-generated SELECT SQL statement is
replaced with a custom statement that uses the concatenation
operator || to join columns. The new statement joins last and first
name of customers into a single column. The new concatenated
column is recognized by customer_name. Similarly, the two
address columns are combined to form a single address.

SELECT customer_id,
cust_last_name || ', ' || cust_first_name customer_name,
CUST_STREET_ADDRESS1

||decode(CUST_STREET_ADDRESS2, null, null, ', ' ||
CUST_STREET_ADDRESS2) customer_address,
cust_city, cust_state, cust_postal_code

FROM demo_customers

DECODE FUNCTION
In the SELECT statement
we used a DECODE
function, which has the
functionality of an IF-
THEN-ELSE statement. It
compares expression to
each search value one by

Decode Syntax:
decode(expression , search , result [,
search , result]... [, default])

Example of Decode Function:
SELECT customer_name,
DECODE(customer_id, 1, 'A', 2, 'B', 3, 'C’, 'D’)
result

one. If expression is equal
to a search, Oracle
Database returns the
corresponding result. If no
match is found, Oracle
returns default. If default is
omitted, Oracle returns
null. In this statement, the
Decode function assesses
if the returned value of the
second street address is
null, it stores null to the
result; otherwise,
concatenates the second
address to the first address.
The syntax and example of
the Decode function
provided in the right pane
elaborates this concept
further.

FROM customers;

The equivalent IF-THEN-ELSE statement for the
previous Decode function would be:
IF customer_id = 1 THEN

result := 'A';
ELSIF customer_id = 2 THEN

result := 'B';
ELSIF customer_id = 3 THEN

result := 'C';
ELSE

result := 'D';
END IF;

4. Expand the Customers region and then expand the Columns node.
Click a column (for example, CUSTOMER_NAME) and change
its heading (under the Heading section in the Properties pane) to
Name. Change the headings of other columns as follows:

Address, City, State, and Postal Code

5. In the Columns node, click the CUSTOMER_ID column, and
change it Type property from Number Field to Hidden. This action
will hide the column at runtime. Primary Key columns are added to
database tables to enforce data integrity and are not displayed in
applications. This is why such columns’ Type property is set to
hidden to make them invisible at runtime.

6. Run the page. Click the Actions menu (A). From the Action
menu’s list, select Columns. In the Columns window, make sure
all the columns are selected – that is, they all have a checkmark (C)

in the Displayed column. If you remove a checkmark from a
column, it disappears from the interactive grid report. When you
click a column in the left pane, the right pane (D) shows its name
and width. You can input a numeric value to change the width of a
column. Using the arrow icons (E), arrange the selected columns in
the following order: Name, Address, City, State, and Postal
Code

7. Click the Save button in the Columns window to apply the
changes.

8. Click the Actions menu again, and select Save from the Report
option. After you modify an interactive grid save it using this
option, otherwise you’ll lose the applied settings when you access
it later.

9. Click Edit Page2 (F) in the Developer Toolbar at the bottom of
your screen to access the Page Designer.

10. Click the CUSTOMER_NAME column to set the following
properties. In these properties, you are transforming the customer

name column into link that will lead to Page 7. When you click a
customer’s name in the interactive grid report at runtime, the ID of
that customer is stored in a substitution string (&CUSTOMER_ID.)
(G) and is forwarded to the corresponding page item
(P7_CUSTOMER_ID) (H) on Page 7, which displays the profile of
the selected customer using this ID. You created similar kind of
link in Chapter 4 for a region named Sales for this Month. Scroll
down to the Link section and click No Link Defined under Target
to bring up the Link Builder dialog box. In the Link Builder dialog
box, set the link properties as shown in the following figure. Use
LOVs (I) in the Set Items section to select the item name and the
value.

11. After setting these properties, close the Link Builder dialog box
using the OK button.

12. Save and run the page. The Customer Name column will now
appear as a link. Click any customer name to see the details on
Page 7, which pops up on top of Page 2.

5.3.2 Create Button
In the previous section, you created a link on the customer name column that

helped you browse, modify, or delete an existing customer’s record. To
create a new customer, however, you need to create a button to call Page 7
with a blank form. Execute the following steps to create this button on Page 2
- Customers.

1. On the Rendering tab to your left, click the Customers interactive
grid region and set its Template property to Standard. The selected
template will place a title and a border for the interactive grid
region. Right-click the Customers region and select Create Button
from the context menu. A button named New will be added. Set the
following properties for the new button.

Property Value

Name CREATE

Label Create Customer

Button Position Copy

Hot On

Action (under Behavior) Redirect to Page in this Application

Target
Type = Page in this Application
Page = 7
Clear Cache =7

The Label of this button is set to Create Customer (A – Figure 5-1) and
the button is placed in the Copy position. The Button Position property
provides you with over a dozen values. The best way to understand the
other options is to try each one to see its effect. The Hot attribute
renders the button in a dark color. The remaining properties create a link
to call Page 7. The Clear Cache property makes all the items on the
target page (Page 7) blank.

2. Save and run Page 2, which should look similar to Figure 5-1.

3. Click the Create Customer button. This will call the Customer
Details page (Page 7) on top of the calling page as a modal dialog.

5.4 Modify Customer Details Page - Page 7
With Page 7 being displayed in your browser, click Edit Page 7 in the
Developer Toolbar at the bottom of your screen to call this page in the Page

Designer for modifications.

5.4.1 Modify Page Items Properties
Click each item under the Items node and apply the following properties. Just
like region placement in a 12 columns grid layout, which you performed for
the six Home page regions, the page items can also be placed accordingly
using Oracle APEX’s grid layout, as follows. The Width property sets items’
width on the page. In the following table, some values for the Value Required
property are set to Yes. If Value Required is set to Yes and the page item is
visible, Oracle APEX automatically performs a NOT NULL validation when
the page is submitted and you are asked to input a value for the field. If you
set it to No, no validation is performed and a NULL value is accepted. This
attribute works in conjunction with Template = Required to signify
mandatory items visually.

Page Item Property and Value

P7_CUST_FIRST_NAME Label=First Name
Sequence=20
Start New Row=On
Column=Automatic
Column Span=Automatic
Template=Required
Label Column Span=2 (becomes visible in the
Layout section only after setting the Template property)
Width=50
Value Required=On

P7_CUST_LAST_NAME Label=Last Name
Sequence=30
Start New Row=Off
Column=Automatic
New Column=On
Column Span=Automatic
Template=Required
Label Column Span=2
Width=50
Value Required=On

P7_CUST_STREET_ADDRESS1 Label=Street Address
Sequence=40
Start New Row=On
Column=Automatic
Column Span=Automatic
Template=Optional

Label Column Span=2
Width=50
Value Required=Off

P7_CUST_STREET_ADDRESS2 Label=Line 2
Sequence=50
Start New Row=Off
Column=Automatic
New Column=On
Column Span=Automatic
Template=Optional
Label Column Span=2
Width=50
Value Required=Off

Page Item Property and Value

P7_CUST_CITY Label=City
Sequence=60
Start New Row=On
Column=Automatic
Column Span=6
Template=Optional
Label Column Span=2
Width=50
Value Required=Off

P7_CUST_STATE Label=State
Sequence=70
Start New Row=Off
Column=Automatic
New Column=On
Column Span=Automatic
Template=Required
Label Column Span=2
Width=make it null (this item will be transformed into a
select list)
Value Required=On

P7_CUST_POSTAL_CODE Label=Zip Code
Sequence=80
Start New Row=On
Column=Automatic
Column Span=6
Template=Required

Label Column Span=2
Width=8
Value Required=On

P7_CREDIT_LIMIT Label=Credit Limit
Sequence=90
Start New Row=Off
Column=Automatic
New Column=On
Column Span=Automatic
Template=Required
Label Column Span=2
Width=8
Value Required=On

P7_PHONE_NUMBER1 Label=Phone Number
Sequence=100
Start New Row=On
Column=Automatic
Column Span=Automatic
Template=Optional
Label Column Span=2
Width=12
Value Required=Off

P7_PHONE_NUMBER2 Label=Alternate No.
Sequence=110
Start New Row=Off
Column=Automatic
New Column=On
Column Span=Automatic
Template=Optional
Label Column Span=2
Width=12
Value Required=Off

Page Item Property and Value

P7_CUST_EMAIL Label=Email
Sequence=120
Start New Row=On
Column=Automatic
Column Span=Automatic
Template=Required
Label Column Span=2
Width=50
Value Required=On

P7_URL Type=Text Field
Label=URL
Sequence=130
Start New Row=Off
Column=Automatic
New Column=On
Column Span=Automatic
Template=Optional
Label Column Span=2
Width=50
Value Required=Off

P7_TAGS Type=Textarea
Label=Tags
Sequence=140
Start New Row=On
Column=Automatic
Column Span=Automatic
Template=Optional
Label Column Span=2
Width=100
Value Required=Off

Save your changes and call this page by clicking any customer’s name on
Page 2. It should come up with the profile of the selected customer, as
illustrated in the following figure. Note that all the fields that were marked as
Required are preceded with a red asterisk (*).

Figure 5-6 Customer Details Page

5.4.2 Change Item Type and Attach LOV
In the following set of steps, you’ll work on the State column. First, you will
alter its type from Text Field to a Select List and then you will attach a LOV
to it. Oracle APEX allows you to change an item’s type from its default state
to another desirable type. For example, the P7_CUST_STATE item was
generated as a text type by the wizard. Now, we want to change this item to a
Select List to hold a predefined States list. To display this list, you’ll attach
the STATES LOV to this item. The LOV was created in Chapter 3 section
3.4.3 and will be tied to this field so that the user can save a valid State value
for each customer.

1. In the Page Designer interface, click the P7_CUST_STATE item.

2. Change its Type property from Text Field to Select List.

3. Set Type (under List of Values) to Shared Components and select
STATES for List of Values. This step attaches the States LOV to

the page item.

4. Turn off Display Extra Values property. An item may have a
session state value, which does not occur in its list of values
definition. Select whether this list of values should display this
extra session state value. If you choose not to display this extra
session state value and there is no matching value in the list of
values definition, the first value will be the selected value. For
instance, while creating a new customer record you will see -
Choose a State- as the first value in the list. This value is added to
the list in the following steps.

5. Turn on Display Null Value property, which is the default. The
Display Null Value property makes it possible for a user to choose
a null value instead of one of the list items. If you set this property
to Yes, additional properties appear on the screen for you to specify
the display value for this new entry. For example, - Choose State -.

6. Enter - Choose State - in Null Display Value. This step, along with
the previous one, generates a placeholder that appears on top of the
LOV asking for a selection whenever you call this page to create a
new customer record.

7. Save your work.

5.4.3 Apply Input Mask to Items
Modify the two phone number items and set their Value Placeholder property
(under Appearance) to 999-999-9999. When a new customer record is added,
this placeholder is shown in the two phone number items to receive input in
the specified format. As you type in values, the placeholders will be replaced
by the numbers entered.

5.4.4 Create Validation - Check Customer Credit Limit
Validations enable you to create logic controls to verify whether user input is
valid. In this part, you’ll create a validation to check customer’s credit limit.
The customer form contains a field named Credit Limit, which is used to
assign a credit cap to each customer with a figure of $5,000. If you enter a
value more than the assigned cap, you’ll be prevented by presenting an

appropriate message.

In the left pane of Page 7, click the Processing tab , right-click the
Validating node, and select Create Validation from the context menu. This
action will add a new validation.

Figure 5-7 – Create Validation

NOTE: If a validation passes the equality test, or evaluates to TRUE, then
the validation error message does not display. Validation error messages
display when the validation fails the equality test, or evaluates to FALSE, or
a non-empty text string is returned.

Set the following properties for this new validation. After providing a
meaningful name to the validation, you set its Type to PL/SQL Expression.
The selected type specifies an expression in valid PL/SQL syntax that
evaluates to true or false. In the current scenario, if the value of the
:P7_CREDIT_LIMIT page item is less than or equal to 5000, then the
validation evaluates as true and the customer record is saved to the database.
If the value of this item is more than 5000, then the validation evaluates as
false and the message specified in the Error Message property is fired. Note
that you use bind variables (the item name preceded with a colon) when you
reference the value of a session state variable from within PL/SQL code.

Property Value

Name Check Credit Limit

Type PL/SQL Expression

PL/SQL Expression :P7_CREDIT_LIMIT <= 5000

Error Message Customer's Credit Limit must be less than or equal to $5,000

5.4.5 Create Validation - Can’t Delete Customer with Orders
This is the second validation to prevent the deletion of those customers who
have placed orders. This check is performed to retain database integrity from
the front-end. The validation is performed using a custom PL/SQL function,
which returns either a true or false value. The return value is based on a
SELECT query, which returns false if records exist for the selected customer.
If the returned value is false, the error message is displayed and the record
deletion process is aborted. The validation is associated to the DELETE
button in the last attribute, which means that the validation will be performed
only when the Delete button is pressed.

Once again, right-click the Validating node and select the Create Validation
option to add a new validation under the previous one. Set the following
properties for this new validation. You can control when and if a validation
(or process) is performed by configuring When Button Pressed and Condition
Type attributes of the validation. If you want a validation to execute only
when the specified button is clicked, select a button from the list–see the last
attribute in the following table. Setting a condition type involves selecting a
condition from the list that must be met in order for a validation to be
processed.

Property Value

Name Can't Delete Customer with Orders

Type PL/SQL Function Body (Returning Boolean)

PL/SQL Function
Body

(Returning Boolean)

begin
for c1 in (select 'x' from demo_orders

where customer_id =
:P7_CUSTOMER_ID) loop

RETURN FALSE;
end loop;

RETURN TRUE;
end;

Error Message Can't delete customer with existing orders

When Button Pressed DELETE

Before running the customer module, let’s take a look at the definitions of the
Customer Details page – Page 7. If you see the definitions of this page, you'll

observe some auto-generated buttons (Cancel, Delete, Save, and Create) with
default functionalities. For example, when you fill in the form with a new
customer’s record and click the Create button, the record is added to the
database table using a built-in process – discussed in a while.

Just like buttons, Oracle APEX performs many other tasks transparently
without us having to write a single line of code. For instance, expand the Pre-
Rendering node (under the root node - Page 7: Customer Details). Here, you
will see a process of Form Initialization type created by the wizard. The
purpose of this process is to fetch the record from the database using a
specified key value, and put values of that record into relevant items on the
page. For example, when you click a customer name in the Interactive Grid
on Page 2, the ID of that customer is used by this process to fetch and display
details of the selected customer on this page.

The wizard also created individual input items (under the Customer Details
region) for each column in the table. The Source Type property of these
columns is set to Database Column and Database Column property is set to
the column name in the table. For example, the two properties set for the
P7_CUST_FIRST_NAME page item tells the ARF process to set the item
with the value retrieved from the CUST_FIRST_NAME table column.

Click the root node (Page 7: Customer Details) and scroll down to the
Function and Global Variable Declaration section in the Property Editor,
you'll see a global variable defined as var htmldb_delete_message. This
variable was generated automatically along with a corresponding shortcut
named DELETE CONFIRM MSG (in Shared Components > Other
Components > Shortcuts) to control the record deletion process by presenting
a confirmation dialog box before deleting a customer’s record. Since this
shortcut is created in Shared Components, other application pages will also
utilize it to present the same confirmation.

Note that the Delete button was created by the wizard with a SQL DELETE
database action. Similarly, INSERT and UPDATE database actions were set
automatically for Create and Save buttons, respectively – see the Database
Action attribute under Behavior. When clicked, these buttons perform the
selected SQL operations to trigger the specified database action within the
built-in Automatic Row Processing (DML) type process, also created
automatically by the wizard on the Processing tab. This process is located

under the Processing > Processes node and it is responsible to insert, update,
or delete records into the backend database table. This process is used to
process form items with a source of type Database Column. This process has
three advantages. First, you are not required to provide any SQL coding.
Second, Oracle APEX performs DML processing for you. Third, this process
automatically performs lost update detection. Lost update detection ensures
data integrity in applications where data can be accessed concurrently.

In addition, the wizard created a Dynamic Action (Cancel Dialog) to close
this form when the Cancel button is clicked. These are some of the beauties
of declarative development that not only generates basic functionalities of an
application, but on the same time doesn't limit our abilities to manually enter
specific and tailored code (demonstrated in subsequent chapters), both on the
client and server sides to answer our specific needs.

Test Your Work
Save and run the application. Access this module by clicking the Manage
Customers menu item (under Setup). You’ll see Page 2 – Customers, as
shown in Figure 5-1, carrying an interactive grid. The grid has a search bar
comprising a magnifying glass, a text area, and a Go button. The bar allows
you to search a string in the report appearing underneath. The magnifying
glass is a drop down list. You can use this list to limit your search to a
specific column. Type albert in the text area and click the Go button. You'll
see a row displaying record of Albert Lambert. Click the remove filter icon

 to reinstate the grid to its previous state. Alternatively, you can click the
Reset button appearing on the top-right of the grid.

The Actions menu carries some more options that we'll explore in Chapter 7.
Among other useful options, this menu has a couple of save options under
Report. The first one (Save) is used when you customize the report by
applying filters or moving columns. After modifying a report you must save
it using this option, otherwise you’ll lose the applied settings when you
subsequently view the same report. Clicking the second option (Save As)
presents a window with a Type drop-down list and a Name text box.
Developers can save four types of reports: Primary, Alternative, Private, and
Public. The initial interactive grid report rendered in your browser is called a
Primary report. The default Primary report (you are looking at) is the initial
report created by the application developer. It cannot be renamed or deleted.

An Alternative report enables developers to create multiple report layouts.
Only developers can save, rename, or delete an Alternative Report. An
alternative report is based on the default primary report and is rendered in a
different layout (see Section 7.3.3 in Chapter 7). A Private report is a report
that can be viewed, saved, renamed, or deleted by the user who created it. In
contrast, when you save a report as public, all users can view it. By default,
end-users cannot save Public reports. To enable support for Public reports,
developers edit the report attribute and enables users to save it as public
report – see step 7 Section 7.3.1 in Chapter 7. After saving, all these reports
display on the Saved Reports list on the toolbar. The Primary report is
displayed under the heading, Default.

The Create Customer button calls the second page of this module (Page 7),
where you enter profile of a new customer. As you can see, the customer
name column appears as a link. If you want to modify a specific record, click
the corresponding link. Again, the same form page comes up where all the
fields are populated with relevant information from the database. Click the
name of any customer to see the information, as presented in Figure 5-6. You
are free to test your work. Try by adding, modifying, and deleting a new
customer. Try to delete Eugene Bradley’s record. You won’t be able to do
that because there are some orders placed by this customer and the validation
you created in section 5.4.5 will prevent the deletion process. Also, check the
credit limit validation by entering a value more than 5000 in the Credit Limit
box.

NOTE: You might encounter a primary key violation message while creating
first customer record. This is because the Sequence object for this table is
created with an initial value of 1. When you try to save the first customer
record, 1 is assigned as its primary key, which already exists in the table. To
cope with this situation, developers drop and re-create auto-generated
sequence objects with a higher START WITH value. To keep things simple,
I'd suggest beginners to click the Create button on the form page several
times. After a few clicks the record will be save.

5.5 Add Dynamic Action
After adding a new customer record or editing an existing one, you might
observe that the interactive grid on the Customers page doesn’t reflect those
changes. This is because the page doesn’t get refreshed to show what you

have added or amended. One way to see these modifications is to manually
refresh your browser window, which in turn, retrieves fresh data from the
database. But, a more professional approach would be to refresh the page
automatically using a dynamic action. In this section, you will create a
dynamic action to refresh the interactive grid region (Customers) when the
modal dialog page (Page 7) is closed.

1. Open Page 2 (Customers) in Page Designer and click the Dynamic
Actions tab appearing in the left pane.

2. Right-click the Dialog Closed node and select Create Dynamic
Action from the context menu.

Figure 5-8 – Create Dynamic Action

Set the following properties for this dynamic action.
Property Value

Name Refresh Interactive Grid

Selection Type Region

Region Customers

3. Click the Refresh sub-node and set Region to Customers. Refresh
is an action, which executes when the condition evaluates to true –

in other words, when the modal dialog page is closed. All is set!
Save the page and run it. Now you will see immediate reflection of
your modifications in the interactive grid.

5.6 Explore Interactive Grid
Interactive Grid is a page component, which is used to display data in
row/column matrix. In appearance, it looks similar to an Interactive Report
(used in the next chapter) and delivers all features of an Interactive Report,
but it also allows you to manipulate data simply by clicking on a cell and
editing its value, which is not available in Interactive Reports. In many ways
this grid looks and acts like an Interactive Report. Here are some new
features and differences:

Rows are fixed height and columns have a specific width that can
be adjusted by dragging the border between column headers (G) or
with Ctrl+Left/Right keys when the column header has keyboard
focus.

Columns can be reordered with drag and drop (dragging the handle
(E) at the start of a column heading) or with Shift+Left/Right keys
when the column header has keyboard focus.

Columns can be sorted using the buttons (F) in the column heading
or by using Alt+Up/Down key combination. Use the Shift key to
add additional sort columns.

Columns can be frozen using the Freeze button (D) in the column
heading pop-up menu. For example, to freeze the customers’ name
column (on Page 2), click the Name column heading. A pop-up
menu will appear with four options: Hide (A), Control Break (B),
Aggregate (C), and Freeze (D). Select Freeze. Drag the border
between the Name and Address columns (F) toward right to expand
the Name column.

By default the toolbar and column headings stick to the top of the
page and the footer sticks to the bottom when scrolling.

By default pagination uses a "Load More" button.

The grid is keyboard navigable with a focused cell and current
selected row (single selection by default).

The toolbar includes a Reset button by default, which restores all
the report settings to their defaults.

Let’s put off the development process of our Sales Web Application till the
next chapter and explore features of Interactive Grid. To get hands-on
exposure, you need a couple of tables that come with a sample application.
Execute the following steps to install the sample application to get the
required tables.

1. Select Sample Apps from the App Gallery menu.

Figure 5-10

2. Click the icon representing Sample Interactive Grids application.

3. On the App Details page, click the Install App button.

4. On the Install App wizard screen, accept the default Authentication
scheme (Application Express Accounts) and click Next.

5. On the next wizard screen, click the Install App button. After a
while, you will see the message Application installed.

6. Click the Object Browser option in the SQL Workshop main
menu and see the two required tables (EBA_DEMO_IG_EMP and
EBA_DEMO_IG_PEOPLE) in the left pane under the Tables
category.

5.6.1 Column Groups

Groups are used to associate columns together in the grid and Single Row
View. Groups are added by expanding the Attributes node within the

Rendering tree, and right-clicking on Column Groups. Let’s try this feature
by executing the following steps:

1. Create a new page in your Sales app by clicking the Create Page
button. Select the Report option in the first wizard screen,
followed by the Interactive Grid option on the next screen.

2. Enter 100 for Page Number, Column Groups for Page Name, set
Page Mode to Normal, Breadcrumb to Breadcrumb, Parent Entry
to No Parent Entry, Entry Name to Column Groups, and click
Next.

3. Select the default Navigation Preference Do not associate this
page with a navigation menu entry, because this page is not
associated with our sales application. Click Next.

4. On the Report Source screen, keep the default Off value of Editing
Enabled, set Source Type to SQL Query, and enter the following
SQL Statement in Enter a SQL SELECT Statement text area.

SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno, onleave, notes, flex4 as
tags
FROM EBA_DEMO_IG_EMP

5. Click the Create button to complete the page creation process.

6. In the Page Designer, under the Column Groups region (in the
Rendering tree), right-click the Attributes node, and select Create
Column Group (A) from the context menu. In the Properties
pane, set the Heading attribute for this new group to Identity.

7. Repeat step 6 to create two more groups. Enter Compensation and
Notes for their headings. The three column groups should look like
(B).

8. Under the Columns Group region, expand the Columns node. Click
the EMPNO column and set its Type to Hidden.

9. Set the appropriate column headings, as shown in Figure 5-11.

10. Use the following table to associate each column with a group
created in steps 6 & 7. To establish this association, click any
column (ENAME, for example), scroll down to the Layout section,
and set the Group property as follows:

Column Group Property

ENAME Identity

JOB Identity

MGR Identity

HIREDATE Identity

SAL Compensation

COMM Compensation

DEPTNO Identity

ONLEAVE Notes

NOTES Notes

TAGS Notes

11. Save your work and run the page. Column group headings can be
used to reorder columns just like column headings. Play around
with column reordering (using drag and drop – see E in Figure 5-9)
to see how group headings are split and joined.

5.6.2 Editing Data in Interactive Grid

Interactive Grid allows you to manipulate data simply by clicking on a cell.
When you add an Interactive Grid to a page, you specify (on Report Source
wizard screen) whether it is editable–see step 4 in the previous section. If you
initially turn this attribute off, you can always reverse it to make the
Interactive Grid editable. Here are some points to know about editing:

Normally the grid is in navigation mode where arrow keys move
from cell to cell. To enter edit mode, press the Edit button (A).
Alternatively, double-click a cell or press either the Enter key or F2
key in a cell.

To exit edit mode, press the Edit button (A) again or press the
Escape key in a cell.

Use the Delete key on your keyboard to delete the selected rows.
Use the Insert key to add a row.

The second column (B) is a menu. It allows you to perform actions
on the selected row such as Delete or Duplicate. Use the Revert
Changes option from this menu to revert a record marked for
deletion.

Editing is also supported in Single Row View.

All edits are stored locally until you press the Save button (C). If
you try to leave the page while there are unsaved changes you will
be notified.

Any action that causes refreshing the data such as changing a filter
or sorting will warn if there are unsaved changes. Pagination does
not affect changes.

Execute the following steps to enable editing in the Interactive Grid you
added to Page 100 in the previous section.

1. Click the Attributes node (A) under the Column Group region and
turn on the Enabled attribute (B). Make sure all three operations
(C) are also enabled.

Figure 5-14

2. Scroll down to the Toolbar section to ensure that the Show property
is turned on and the two toolbar buttons (Reset and Save) are also
enabled. Reset removes any customizations, such as filters, column
width, ordering, and so forth, and reloads the report definition from
the server. Save will only save changes made to this interactive
grid, without needing to save the whole page. The save button will
be displayed only when the interactive grid is editable and the end
user has the authorization to add, update, or delete records.

3. After making these changes, save and run the page. Notice that the
row selector (D) and the Selection Actions menu (B) columns (in
Figure 5-13) are added automatically. A process named Save
Interactive Grid Data is also added to the Processing tab with an
Interactive Grid - Automatic Row Processing (DML) type process
to perform DML processing for you without writing any SQL code.
This process is added by default when an Interactive Grid is made
editable. Play around with the interactive grid by adding,
modifying, and deleting rows.

5.6.3 Changing Column Type

By default, the type of a column in an Interactive Grid is inherited from the
base table. For example, the names of employees are displayed in a Text
Field column type, while their salaries are shown in Number Field column
type. In this exercise, you will change the default types of some columns to
some other types, as follows:

A. The Job column will be presented as a Radio Group to select
one from a list of distinct jobs

B. The value for the Manager column will be selected from a pop-
up LOV

C. The Hire Date will use a Date Picker that opens on focus
D. Display Yes/No in On Leave column
E. The Tags column will use a Shuttle type to select multiple

values

1. With Page 100 being displayed in the Page Designer, expand the
Columns node and click the JOB column. Set its Type attribute to
Radio Group. When you select the radio group type, you are asked
to associate a list of values to populate the item. For the List of
Values Type attribute, select SQL Query and enter SELECT
DISTINCT job a, job b FROM EBA_DEMO_IG_EMP in SQL
Query box. Also turn off set Display Extra Values and Display
Null Values properties – see section 5.4.2 for details. The SQL
Query fetches distinct job IDs from the table and shows them in the
JOB column using the radio group type.

2. Next, click the MGR column and change its Type to Popup LOV.
Then, select SQL Query for List of Values Type and enter the
following statement in SQL Query box.

SELECT ENAME as d, EMPNO as r
FROM EBA_DEMO_IG_EMP
WHERE JOB = 'MANAGER' or JOB = 'PRESIDENT' order by 1

3. Click the HIREDATE column. The Type attribute of this column is
already set to Date Picker and this is what we want. The only
attribute of this column that needs to be changed is Show (under
Settings). Change it from on icon click to On focus to display the
date picker when the focus is on this column.

4. Click the ONLEAVE column and set its Type to Switch. This will
display either On or Off state for this column.

5. Finally, click the TAGS column. Change its Type from Textarea to
Shuttle. Set List of Values Type to Static Values and enter static
values (by clicking Display1, Display2 text next to the Static
Values property) as shown in the following screenshot. Recall that
you created a Static LOV through Shared Components interface in

Chapter 3 - Section 3.4.1. There you specified a pair of static
Display and Return values. Here, you didn’t use the Return value,
because the Return value is optional. If a Return value is not
included, the return value equals the display value. Click the OK
button to close the Static Values screen.

Figure 5-16

6. Save and run the page. Click different cells under the JOB column
and press F2 to see values in a radio group (A). Similarly, press F2
in the Manager column. This will display a drop down list (B) in
the selected cell carrying names of president and managers. Double
click the column prior to the Hire Date column, and press the Tab
key. The cursor’s focus will move on to the Hire Date column and
immediately the Date Picker window (C) will pop up. Keep
pressing the Tab key to access the On Leave column, which will
show a Yes and No switch (D). Access the Tags column, which
should come up with a shuttle (E) carrying the five values defined
in step 5. Using the arrow key in the shuttle, move all these values
to the right pane and click the cross icon to close the shuttle. Click
the Save button to write your changes to the database.

5.6.4 Protecting Rows in Interactive Grid

In this example, you will see how to protect rows in an Interactive Grid. For
this purpose, you need to add a column named CTRL to implement a simple
rule that Managers and Presidents cannot be edited or deleted. This column is
then selected in the Allowed Row Operations Column property in the
Attributes node.

1. With Page 100 being displayed in the Page Designer, click the
Column Groups region and amend the SELECT statement as
follows (the amendment is shown in bold):

SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno,
onleave,
notes, flex4 as tags,
case when JOB = 'MANAGER' or JOB = 'PRESIDENT' then ''
else 'UD' end as CTRL
FROM EBA_DEMO_IG_EMP

2. After amending the SQL query you will see the CTRL column
under the Columns node. Click this column and set its Type to
Hidden. Also turn on the Query Only property (under Source).
For explanation, see Chapter 7 section 7.4.2.

3. Click the Attributes node under the Column Groups region and set
Allowed Row Operations Column (in the Edit section) to the
CTRL column.

4. Save the page and run it. Click the Edit button. Rows that cannot
be edited or deleted are grayed out (A) in the edit mode.

NOTE: If you encounter the error Interactive Grid 'Column Groups' doesn't
have a primary key column defined which is required for editing or in a
master detail relationship, then click the EMPNO column in the Page
Designer, and turn on the Primary Key property in the Source section. Save
and run the page.

5.6.5 Scroll Paging
Another exciting feature of Interactive Grids is scroll paging (also known as
infinite scrolling or virtual paging). It is enabled by setting Pagination
attribute to Scroll. After enabling this attribute, the region appears to carry the
entire result set but rows are rendered on demand as you scroll. When you
scroll down in the Interactive Grid, the model fetches data from the server as
it is needed by the view. You can even drag the scroll bar handle all the way
to the bottom and then scroll up. You need a database table with lots of
records to assess this feature. In this exercise, you will use
EBA_DEMO_IG_PEOPLE table, which carries over 4000 records.

1. Create a new page using the instructions mentioned earlier in
Section 5.6.1. Set Page Number to 111, set Page Name to Scroll
Paging, and enter the following SELECT statement. Rest of the
page properties will remain the same.

SELECT name, country, rating FROM
EBA_DEMO_IG_PEOPLE

2. In the Page Designer, click the Attributes node under the Scroll
Paging region. Set Type under the Pagination section to Scroll and
turn on the Show Total Row Count.

3. Save and run the page and scroll down using your mouse wheel to
test this amazing feature. You will see total number of records at
the bottom of the Interactive Grid.

5.6.6 Master Detail. And Detail. And Detail.
Interactive Grid makes it effortless to create master-detail relationships and
go any number of levels deep and across. You can create all types of master-

detail-detail screens with ease. In this section, I’ll demonstrate this feature.

1. From the SQL Workshop menu, select SQL Scripts and click the
Upload button. In the Upload Script screen, click the Choose File
button. In the Open dialog box, select master_detail_detail.sql file
from Chapter 5 folder in the book’s source code and click Upload.
In the SQL Scripts interface click the Run button appearing in the
last column. On the Run Script screen, click the Run Now button.
The script will execute to create four tables (MD_continent,
MD_country, MD_city, and MD_population) along with relevant
data to demonstrate the master detail detail feature. You can view
these tables from the SQL Workshop > Object Browser interface.

2. Create a new page by clicking the Create Page button in the App
Builder interface. This time, select the first Blank Page option and
click Next. Set Page Number to 112, Name to Master Detail
Detail, Page Mode to Normal, and click Next. On the Navigation
Menu screen, select the first Navigation Preference to not associate
this page with any sales app navigation menu entry. On the final
wizard screen, click Finish.

3. In the Page Designer, right-click the Regions node on the
Rendering tab and select Create Region. Set the following
properties for the new region. This region will display data from
the MD_continent table.

Property Value

Title Continents

Type (under Identification) Interactive Grid

Type (under Source) SQL Query

SQL Query SELECT * FROM MD_continent

After entering the SQL query, click anywhere outside the query box.
Expand the Columns node under this region. Click the
CONTINENT_ID column. Set its Type to Hidden and turn on the
Primary Key property (under Source). You must define a primary key
column for an interactive grid region, which is required to establish a
master detail relationship.

4. Create another region under the Continents region by right-clicking
the main Regions node. This region will act as the detail for the
Continents region. At run-time when you select a continent, this
region will display a list of countries in the selected continent. Set
the following properties for this new region.

Property Value

Title Countries

Type (under Identification) Interactive Grid

Type (under Source) SQL Query

SQL Query SELECT * FROM MD_country

Expand the Columns node under the Countries region. Click the
COUNTRY_ID column. Set its Type to Hidden and turn on the
Primary Key property (under Source). You set the Primary Key
property to Yes, because this region will act as a master for the Cities
region created in the next step. Now, associate this detail region to its
master (Continents). Click the Countries region and set the Master
Region property (under Master Detail) to Continents. This should be
set when this region is the detail region in a master-detail relationship
with another region on the page. For the master-detail relationship to
work correctly, you must also select the column(s) in the detail region,
which are foreign keys to the master region, by setting the Master
Column property. Click the CONTINENT_ID column (a foreign key)
in the Countries region. Set its Type property to Hidden and Master
Column (under Master Detail) to CONTINENT_ID, which references
the same column in the master region.

5. Create another region and place it under the Countries region. This
region will show a list of cities when you select a country from its
master region. Set the following properties for this region:

Property Value

Title Cities

Type (under Identification) Interactive Grid

Type (under Source) SQL Query

SQL Query SELECT * FROM MD_city

Master Region Countries

Expand the Columns node under the Cities region. Click the CITY_ID
column. Set its Type to Hidden and turn on the Primary Key property
(under Source). Click the COUNTRY_ID column in this region. Set the
Type of this column to Hidden and Master Column to COUNTRY_ID
to point to the same column in the Countries region.

6. Create the last region to display population of a city.

Property Value

Title Population

Type (under Identification) Interactive Grid

Type (under Source) SQL Query

SQL Query SELECT * FROM MD_population

Master Region Cities

Expand the Columns node under the Population region. Click the
POPULATION_ID column. Set its Type to Hidden. Since this is the last
region, you do not need to specify this column as a primary key. However,
you have to set a couple of properties for the CITY_ID column in this region
to associate it with its master. Click the CITY_ID column, set its Type
property to Hidden and Master Column to CITY_ID. That’s it!

Save and run the page. Click the row representing Europe (A) in the first
region. As you click this row, the second region will display countries in the
Europe continent. Click Germany (B) in the second region. This will refresh
the third region with a list of cities in Germany. Click the Berlin city (C) to
see its population (D) in the forth region.

Figure 5-18

Summary
Here is the summary of this chapter to see what we grasped in it. We learned
the following techniques while performing various exercises in this chapter:

Declaratively created report and form pages and linked them
together
Placed form input items using 12 columns grid layout
Changed the default type of an item and used list of values
Created validations to prevent customer record deletion with

existing orders and to check customers’ credit limits.

Used a dynamic action to automatically refresh a page
Used various features of the new Interactive Grid
Learned how to change types of columns

Got hands-on exposure to Master Detail Detail feature.

Let’s get back to our sales application. The next chapter discusses how to
manage products in a database application with some more useful techniques
to explore the exciting world of Oracle APEX.

Chapter 6 - Set Up Products Catalog
6.1 About Products Setup
Just like the Customers module, you’ll create a Products setup to manage
products information. This module will also have two pages: Products and
Product Details. The main Products page (Page 3 – Figure 6-1) will have
three different views: Icon, Report, and Details. Initially, the wizard will
create the Report View version that you’ll modify with a custom SQL
statement. The remaining two views (Detail and Icon) are placed on the page
by enabling respective properties found under the main Products region.
Once you enable these views, their respective icons appear on the main
Search bar. Using these icons you can switch among different views to
browse products information. The Product Details page (Page 6) will be
created to add, modify, and delete a product. To create these two pages you’ll
follow the same approach as you did in the previous chapter. Since most of
the steps are similar to those already briefed in the Customers setup chapter,
I’ll elaborate the features new to this module.

Figure 6-1 Products Interactive Report Page

The new stuff added to this module includes image handling and styling. This
module is based on the DEMO_PRODUCT_INFO table in the database.

Among conventional columns exists the following four special columns to
handle images in the database. Normally, specialized processing is required
to handle images in a database. The Oracle APEX environment has
eliminated the need to perform all that specialized processing with these
additional columns. Your Oracle APEX application will use these columns to
properly process images in the BLOB column.

PRODUCT_IMAGE: This column uses BLOB data type. A BLOB (Binary
Large Object) is an Oracle data type that can hold up to 4 GB of data. BLOBs
are handy for storing digitized information, such as images, audio, and video.
You can also store your document files like PDF, MS Word, MS Excel, MS
PowerPoint and CSV to name a few.

MIMETYPE: A Multipurpose Internet Mail Extension (MIME) type
identifies the format of a file. The MIME type enables applications to read
the file. Applications such as Internet browsers and e-mail applications use
the MIME type to handle files of different types. For example, an e-mail
application can use the MIME type to detect what type of file is in a file
attached to an e-mail. Many systems use MIME types to identify the format
of arbitrary files on the file system. MIME types are composed of a top-level
media type followed by a subtype identifier, separated by a forward slash
character (/). An example of a MIME type is image/jpeg. The media type in
this example is image and the subtype identifier is jpeg. The top-level media
type is a general categorization about the content of the file, while the
subtype identifier specifically identifies the format of the file. The following
list contains some file types and the corresponding MIME types that you can
view via Object Browser in SQL Workshop after uploading such file types to
the BLOB column in your table.

File Type MIMETYPE Metadata
JPEG image/jpeg
PNG image/png
PDF application/pdf
WORD application/vnd.openxmlformats-

officedocument.wordprocessingml.document
EXCEL application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
POWERPOINT application/vnd.openxmlformats-officedocument.presentationml.presentation
CSV application/vnd.ms-excel

FILENAME: A case-sensitive column name used to store the filename of

the BLOB, such as bag.jpg or CV.pdf.

IMAGE_LAST_UPDATE: A case-sensitive column name used to store the
last update date of the BLOB.

Besides image handling, you’ll also learn the technique to incorporate style
sheet in an Oracle APEX page. Web browsers refer to Cascading Style Sheets
(CSS) to define the appearance and layout of text and other material.

6.2 Create Pages for Products Setup
The following set of steps use the same approach you followed in the
previous chapter to create a report along with an input form. Note that this
time you will be creating an interactive report to display a list of products
instead of an interactive grid – see Chapter 2 Section 2.3.3 for further details
on the interactive report.

1. Click the Create Page button in the App Builder
interface.

2. Click the Form option, followed by Report with Form
option. These two selections will create a report page (Figure 6-1)
to display all product records from the table (selected in step 5) and
a form page (Figure 6-6) to add, modify, and delete products.

3. On the Page Attributes wizard screen, set the following properties
and click Next. The form page (Page 6) is named Product Details
and it will be linked to the report page (Products - Page 3).

Property Value

Report Type Interactive Report

Report Page Number 3

Report Page Name Products

Form Page Number 6

Form Page Name Product Details

Form Page Mode Modal Dialog

Breadcrumb Breadcrumb

Parent Entry Home (Page 1)

Entry Name Products

4. On the Navigation Menu screen, set Navigation Preference to
Identify an existing navigation menu entry for this page, set
Existing Navigation Menu Entry to Setup, and click Next. This
step will highlight the Setup entry in the main navigation menu
when you access the products setup.

5. On Data Source screen, select Table for Source Type, accept the
default schema in Table/View Owner, and select
DEMO_PRODUCT_INFO (table) for Table/View Name. The
columns from the selected table to be shown in the interactive
report will appear in the right pane. In the next section, you will
add a custom SQL query for the report page. For now, accept all
the table columns and click Next.

6. On the Form Page screen, add all columns (A) from the
DEMO_PRODUCT_INFO table to Page 6, except MIMETYPE,
FILENAME, and IMAGE_LAST_UPDATE (B). These three
columns are used in the background to handle images of products.
For Primary Key Type, choose Select Primary Key Column(s)
(C). Set Primary Key Column 1 attribute to PRODUCT_ID
(Number) (D). PRODUCT_ID is a primary key column, which
uniquely identifies a product and is populated behind the scene
using a database sequence object
(DEMO_PRODUCT_INFO_SEQ) via
BI_DEMO_PRODUCT_INFO trigger when you add a new product
– see the two objects by accessing Object Browser. Click the
Create button to complete the wizard.

This time, the wizard creates two pages (3 and 6) as an initial structure for
this module. In the upcoming exercises you will undergo some new
techniques to transform these wizard-generated pages to give them a
professional touch.

6.3 Modify Products Page - Page 3
Execute the instructions provided in the following sub-sections to first
modify the Products (interactive report) page in Page Designer.

6.3.1 Modify Region Properties
Execute the following steps to modify the Products page (Page 3).

1. Click the region named Report 1 and set its Title to Products.

2. In SQL Query, replace the existing SELECT statement with the
following:

select p.product_id,
p.product_name,

p.product_description,
p.category,

decode(p.product_avail, 'Y','Yes','N','No') product_avail,
p.list_price,

 (select sum(quantity) from demo_order_items where product_id = p.product_id) units,
(select sum(quantity * p.list_price) from demo_order_items where product_id =

p.product_id) sales,
 (select count(o.customer_id) from demo_orders o, demo_order_items t
 where o.order_id = t.order_id and t.product_id = p.product_id group by p.product_id)
customers,

(select max(o.order_timestamp) od from demo_orders o, demo_order_items i where
o.order_id =

i.order_id and i.product_id = p.product_id) last_date_sold, p.product_id img,
apex_util.prepare_url(p_url=>'f?p='||:app_id||':6:'||:app_session||
'::::P6_PRODUCT_ID:'||p.product_id) icon_link,

 decode(nvl(dbms_lob.getlength(p.product_image),0),0,null,
 '<img alt=" '||p.product_name||' " title=" '||p.product_name||' " style="border: 4px solid
#CCC;
 -moz-border-radius: 4px; -webkit-border-radius: 4px;" '||
 'src=" '||apex_util.get_blob_file_src('P6_PRODUCT_IMAGE',p.product_id)||' "
height="75"
 width="75" />') detail_img,

decode(nvl(dbms_lob.getlength(p.product_image),0),0,null,
apex_util.get_blob_file_src('P6_PRODUCT_IMAGE',p.product_id))

detail_img_no_style
from demo_product_info p

The icon_link column in this query is formed using the
PREPARE_URL function, which is a part of the APEX_UTIL package.
It returns the f?p URL. The P_URL is a VARCHAR2 parameter passed
on to this function. You will use this function throughout this book to
form links. The link is formed to call the Product Details page – Page 6.
The detail_img column holds images of products. The HTML
tag is used to display the images of products in conjunction with a built-
in function named APEX_UTIL.GET_BLOB_FILE_SRC. This is an Oracle
APEX function and it provides the ability to more specifically format
the display of the image with height and width properties. The image is
styled using CSS inline styling method. The getlength function of the
dbms_lob package (dbms_lob.getlength) is used to estimate the size of a
BLOB column in the table. The selection of the BLOB size is made to
facilitate the inclusion of a download link in a report. If the length is 0,
the BLOB is NULL and no download link is displayed.

3. Expand the Columns node (under Content Body | Products region)

and set meaningful column headings as follows:

Product, Description, Category, Available, Price, Units, Sales,
Customers, Last Sold, Image, Icon Link, Image Detail, and Detail
Image No Style

4. Modify the following columns using the specified properties. These
columns are marked as hidden to make them invisible at runtime.
However, they will be visible to your application for handling
images. These columns were also derived through the SQL
SELECT statement defined in step 2. Note that you can use
Ctrl+click or Shift+click keys combination to select multiple
columns to change the Type properties at once. Each report column
has the property Escape special characters. By default, this
property is set to Yes. Selecting Yes for this property prevents
Cross-Site Scripting (XSS) attacks and selecting No renders HTML
tags stored in the page item or in the entries of a list of value.

Column Property Value

PRODUCT_ID Type Hidden Column

IMG Type Hidden Column

ICON_LINK Type Hidden Column

DETAIL_IMG Escape special characters
(under Security)

Off (otherwise image
will not appear)

DETAIL_IMG_NO_STYLE Type Hidden Column

5. Click the PRODUCT_NAME column to transform it into a link.
By selecting the Product Name column in the Link Text attribute
you specify this report column to appear as a link. You created a
similar kind of link in the previous chapter to call the Customer
Details page. In Interactive Reports, you forward a value to the
target page using special substitution strings (enclosed in #
symbols) as compared to &Item. notation (for example,
&CUSTOMER_ID.), which you use in the Interactive Grid – see
Chapter 5 Section 5.3.1 Step 10.

Property Value

Type Link

Target (under Link)

Type = Page In this application
Page = 6
Name = P6_PRODUCT_ID
Value = #PRODUCT_ID#

Link Text #PRODUCT_NAME#

6. If you save and run the report page at this stage, you will see an
EDIT column (represented with a pencil icon), which leads to the
details page. Since we have already created a link (on the Product
Name column), we will eliminate this column. Under the Products
region, click its Attributes node, and set Link Column to Exclude
Link Column in the Properties pane.

Figure 6-3

7. In the same Attributes node, scroll down to the Icon View section
and set the following properties. By default, most interactive
reports display as a report. You can optionally display columns as
icons. When configured, an icon (View Icons) appears on the
Search bar. To use this view, you must specify the columns to
identify the icon, the label, and the target (that is, the link). As a
best practice the Type attribute of these columns is set to hidden (as

you did in step 4), because they are typically not useful for end
users. The Image Attributes property will style height and width of
images.

Property Value

Show On

Columns Per Row 5 (to display 5 images on a single row in View Icons
interface)

Link Column ICON_LINK

Image Source Column DETAIL_IMG_NO_STYLE

Label Column PRODUCT_NAME

Image Attributes width="75" height="75"

8. Just under the Icon View section, there is another section named
Detail View. In the Detail View section, turn on the Show
property. When configured, a View Details icon appears on the
Search bar.

9. In Before Rows, enter the following code. This attribute of the
Detail View enables you to enter HTML code to be displayed
before report rows. For example, you can use the <TABLE>
element to put the database content in row/column format. Besides
adding HTML code, styling information can also be incorporated
using this attribute. The <style> tag is used to define style
information for an HTML document. Inside the <style> element
you specify how HTML elements should render in a browser. The
code below uses custom CSS rules to override the default Oracle
APEX Interactive Report (apexir) styles.

<style>
table.apexir_WORKSHEET_CUSTOM {

border: none !important;
box-shadow: none;
-moz-box-shadow: none;
-webkit-box-shadow: none;}

.apexir_WORKSHEET_DATA td {
border-bottom: none !important;}

table.reportDetail td {

padding: 2px 4px !important;
border: none !important;
font: 11px/16px Arial, sans-serif;}

table.reportDetail td.separator {
background: #F0F0F0 !important;
padding: 0 !important;
height: 1px !important;
padding: 0;
line-height: 2px !important;
overflow: hidden;}

table.reportDetail td h1 {margin: 0 !important}

table.reportDetail td img {
margin-top: 8px;
border: 4px solid #CCC;
-moz-border-radius: 4px;
-webkit-border-radius: 4px;}

</style>
<table class="reportDetail">

NOTE: Remember that all APEX pages are HTML pages controlled by
HTML properties and cascading style sheet (CSS) settings. When you create
an interactive report, Oracle APEX renders it based on CSS classes
associated with the current theme. Each APEX interactive report component
has a CSS style definition that may be changed by applying standard CSS
techniques to override the defaults. Such changes may be applied to a single
interactive report, to a page template to effect changes across several
interactive reports, or to all page templates of a theme to enforce a common
look and feel for all reports in an application. In the current step, you are
changing the appearance of the report by overriding built-in styles for the
table and subordinate elements.

10. In For Each Row, enter the following code. The code is applied to
each record. In every <td> element you are referencing interactive
report columns and labels with the help of a special substitution
string (#) and are styling each record using inline CSS method. You
used the substitution string to reference table column names and
labels of page items as #PRODUCT_NAME# and
#CATEGORY_LABEL#, respectively.

<tr>

<td rowspan="5" valign="top"><img width="75" height="75"
src="#DETAIL_IMG_NO_STYLE#"></td>

<td colspan="6"><h1>#PRODUCT_NAME#
</h1></td>
</tr>
<tr>

<td>#CATEGORY_LABEL#:</td><td>#CATEGORY#</td>
<td>#PRODUCT_AVAIL_LABEL#:</td><td>#PRODUCT_AVAIL#

</td>
<td>#LAST_DATE_SOLD_LABEL#:</td><td>#LAST_DATE_SOLD#

</td>
</tr>
<tr>

<td align="left">#PRODUCT_DESCRIPTION_LABEL#:</td>
<td colspan="5">#PRODUCT_DESCRIPTION#</td>

</tr>
<tr>

<td style="padding-bottom: 0px;">#LIST_PRICE_LABEL#</td>
<td style="padding-bottom: 0px;">#UNITS_LABEL#</td>
<td style="padding-bottom: 0px;">#SALES_LABEL#</td>
<td style="padding-bottom: 0px;">#CUSTOMERS_LABEL#</td>

</tr>
<tr>

<td style="padding-top: 0px;">#LIST_PRICE#</td>
<td style="padding-top: 0px;">#UNITS#</td>
<td style="padding-top: 0px;">#SALES#</td>
<td style="padding-top: 0px;">#CUSTOMERS#</td>

</tr>
<tr>

<td colspan="7" class="separator"></td>
</tr>

11. In After Rows, enter </table> to complete the HTML code. In this
attribute you enter the HTML to be displayed after report rows. It is
the closing table tag </TABLE> to end the table.

12. Save and run the page from the Manage Products option in the
Setup menu. Click the View Reports icon . Note that the Image
Detail column is blank at the moment, because we do not have any
product image in the table. This is the column which will hold
images of products. Click Air Max 2090 link in the Product
column to add the image of this product. On the Product Details
page, click the folder icon representing the Product Image field at

the bottom of the page. This will bring up the Open dialog box. Go
to BookCode\Chapter6 folder and select 1_AirMax2090.png file,
and click Open. The image name will be displayed in the Product
Image field. Click the Apply Changes button on the Product
Details form to save the image. The image will appear on the
interactive report page. Repeat this step to add images of the
remaining products. Click the View Icons and View Details options
on the interactive report toolbar and see the output, as illustrated in
the following figure.

13. Click the View Reports icon. Click the Actions menu in the
interactive report and select Columns. Make sure all columns
(except Description and Last Sold) appear in Display in Report
section. You can use the arrow icons to arrange columns in a
desired order and click the Apply button. Only the columns you
selected will appear in the interactive report.

14. Click the Actions menu again and select Save Report (under
Report). From the Save drop-down list, select As Default Report
Settings. Set Default Report Type to Primary and click Apply.

After modifying an interactive report you must save it using this
procedure, otherwise you’ll lose the applied settings when you
subsequently view this report. Developers can save two types of
default interactive report: primary and alternative. Both reports
display on the Report list on the Search bar. The primary default
report (you just saved) cannot be renamed or deleted.

6.4 Modify Product Details Page - Page 6
The Page Designer toolbar carries a section called Page Selector. The Page
Selector displays the current page. Click the down arrow (labeled Page
Finder) to search for pages. Alternatively, enter a page number in the field
and click Go. To navigate to the previous or next page, click Navigate to Next
Page (up arrow) and Navigate to Previous Page (down arrow).

Figure 6-5

Using the Page Selector call Page 6 in the Page Designer. Click the root node
 and set the following properties to adjust the dimension of

the Product Details page. The img rule provided in the inline CSS property
will make products’ images responsive. The ::before selector (used in the
second rule) will insert the word Nike before images of products – see Figure
6-6.

Property Value

Title Product Details

Width (under Dialog) 900

Height 620

Maximum Width 1000

Inline (under CSS)

img {
width: 100%;
max-width: 100%;
height: auto;

}

.imgItem::before
{

content: 'Nike';
position: absolute;
top: 30px;
left: 20px;

color: #000;
opacity: 0.1;
font-size: 8em;
font-weight: 800;

}

6.4.1 Making Page Item Mandatory

1. Make the product name item (P6_PRODUCT_NAME) mandatory
using the following properties:

Property Value

Template (under Appearance) Required

Value Required (under Validation) On

2. Also set the above two properties for P6_CATEGORY,
P6_PRODUCT_AVAIL, and P6_LIST_PRICE page items.
Click on P6_CATEGORY item, press and hold the Ctrl key on
your keyboard, and then click the other two items to select them
all. This way you can set properties for multiple items at once.

3. Set the Template property of P6_PRODUCT_DESCRIPTION and
P6_PRODUCT_IMAGE page items to Optional.

6.4.2 Attach Categories LOV
We created a list of values (CATEGORIES) in Chapter 3 section 3.4.1. Here
we’re going to use that list to display predefined values of categories in a
Select List. First, you will change the Category item from Text to a Select
List, and then you’ll define the list of values (LOV) to which the item will
bound. Recall that you used this process in the Manage Customers module to
display STATES LOV. In the Items node under the Product Details region,
click the P6_CATEGORY item and amend the following properties in the
Property Editor:

Property Value

Type (under Identification) Select List

Type (under List of Values) Shared Component

List of Values CATEGORIES

Display Extra Values Off

Display Null Value Off

6.4.3 Attach LOV to Product Available Column
Next, you will change the Product Available field to a Switch comprising two
options: On and Off. Just like the previous steps, here as well, you’re
changing the item type from Text to Switch. At runtime, this item will show
two options to specify whether the selected product is available or not. If you
ignore this exercise and leave the item to its default type, users can enter
whatever value they like, resulting in compromising application’s integrity.
This is a good example to restrict users to select valid values. Select the
P6_PRODUCT_AVAIL item and set the following properties. Note that the
last two properties in the table sets Y (which stands for On) as the default
value for this item.

Property Value

Type (under Identification) Switch

Label Product Available

Type (under Default) Static

Static Value Y

6.4.4 Handling Image (Handle Image Exercise A)
Modify the following properties (in the Settings section) for the
P6_PRODUCT_IMAGE item to map table columns. This mapping is
necessary to display product images on the details form.

Property Value

MIME Type Column MIMETYPE

Filename Column FILENAME

BLOB Last Update Column IMAGE_LAST_UPDATE

In the Settings section, the Storage Type attribute is set to BLOB column
specified in item Source attribute by default. The Storage Type attribute
specifies where the uploaded file should be stored at. It has two values:

BLOB column specified in item source attribute. Stores the
uploaded file in the table used by the "Automatic Row Processing
(DML)" process and the column specified in the item source

attribute. The column has to be of data type BLOB.

Table APEX_APPLICATION_TEMP_FILE. Stores the uploaded
file in a table named APEX_APPLICATION_TEMP_FILE.

6.4.5 Create Region – Product Image (Handle Image Exercise B)
To show the images of selected products on Product Details page, we will
create a Static Content sub-region. Note that this section will only create a
blank region to hold an image. The image will be added to this region in a
subsequent section. Right-click the Regions node and select Create Region
from the context menu. Select the new region and modify the following
properties. The region will have a blue background and it will be displayed
only when there exists an image for a product and this evaluation is made
using a condition based on a PL/SQL function.

Property Value

Title Product Image

Type Static Content

Sequence 5 (to place this region before the Product Details region)

Custom Attributes style="background: #006bdc;"

Type (under Server-
side Condition)

PL/SQL Function Body

PL/SQL Function
Body

1
2
3
4
5
6
7
8
9
10
11
12
13
14

declare
begin

if :P6_PRODUCT_ID is not null then
for c1 in (select nvl(dbms_lob.getlength(product_image),0) A

from demo_product_info
where product_id = :P6_PRODUCT_ID)

loop
if c1.A > 0 then

return true;
end if;

end loop;
end if;
return false;

end;

Click the Product Details region and turn off the Start New Row property to
place this region beside the Product Image region you just added.

NOTE: Page items are referenced in a PL/SQL block using bind variables in

which a colon(:) is prefixed to the item name – :P6_PRODUCT_ID, for
example.

Code Explained
In Oracle APEX you make use of conditions to control the appearance of page components. The
ability to dynamically show or hide a page component is referred to as conditional rendering. You
define conditional rendering for regions, items, and buttons. These page components have a
Condition section in the property editor, where you select a condition type from a list. In the current
scenario, you set a condition based on a PL/SQL function, which returns a single Boolean value:
True or False. If the code returns True, the region is displayed carrying the image of the selected
product.

After selecting a condition type, you inform Oracle APEX to execute the defined PL/SQL code. The
code first executes an IF condition (line 3) to check whether the product ID is not null by evaluating
the value of the page item P6_PRODUCT_ID. If the value is null, the flow of the code is transferred
to line 13, where a false value is returned and the function is terminated. If there exists a value for
the product ID, then line 4 is executed, which creates a FOR loop to loop through all records in the
DEMO_PRODUCT_INFO table to find the record (and consequently the image) of the selected
product (line 4-11). On line 8, another IF condition is used to assess whether the image exists. If so,
a true value is returned on line 9 and the function is terminated.

6.4.6 Create Item (Handle Image Exercise C)
In this section, you will create a new item named P6_IMAGE to display the
product image in the Product Image region. Right-click the Product Image
region and select Create Page Item from the context menu. Set the following
properties for the new item. The code defined in the PL/SQL Function Body
fetches image of the selected product using a function
(apex_util.get_blob_file_src). By setting the Rows Returned condition and
using a SQL query we ensured the existence of an image in the table. The
imgItem class defined for this page item was referenced in section 6.4 to
show some content before product images.

Property Value

Name P6_IMAGE

Type Display Only

Label Clear the Label box to make it empty

Region Product Image

Template No template (Set it to -Select- placeholder)

CSS
Classes

imgItem

Type
(under

PL/SQL Function Body

Source)

PL/SQL
Function

Body

return '<img
src="'||apex_util.get_blob_file_src('P6_PRODUCT_IMAGE',:P6_PRODUCT_ID)||'"
/>';

Type
(under

Server-
side

Condition)

Rows Returned

SQL
Query

SELECT mimetype from demo_product_info
WHERE product_id = :P6_PRODUCT_ID AND mimetype like 'image%'

Escape
special

characters
Off (Otherwise the image won’t appear)

6.4.7 Create Button to Remove Image (Handle Image Exercise D)
An image can be removed from the Product Details page and consequently
from the underlying table by clicking this button. It is attached to a process
(Delete Image) defined in the next section. Right-click the Product Image
region and select Create Button. Set the following properties for the new
button. The button will appear on top of the region. The Target value calls a
confirmation box. This call is made using an Oracle APEX function
(apex.confirm) by passing a message and the name of the Delete button. If
you click Yes in the confirmation box, the process associated with the Delete
button removes image references from the products table.

Property Value

Name DELETE_IMAGE

Label Remove Image

Region Product Image

Button Position Copy

Button Template Icon

Hot On

Icon fa-image

Action (under
Behavior)

Redirect to URL

URL (under Target)
javascript:apex.confirm('Are you sure you want to delete this image? It
will no longer be available for others to see if you
continue.','DELETE_IMAGE');

6.5 Create a Process Under Processing to Delete Image (Handle Image Exercise E)
This is the process I mentioned in the previous section. It is associated with
the Delete button to remove a product image. To remove an image stored in a
database table, you are required to just replace the content of the relevant
columns with a null. Click the Processing tab and then right-click the
Processing node. From the context menu select Create Process. Set the
following properties for the new process:

Property Value

Name Delete Image

Type PL/SQL Code

PL/SQL Code

UPDATE demo_product_info
SET product_image=null,

mimetype=null,
filename=null,
image_last_update=null

WHERE product_id = :P6_PRODUCT_ID;

Sequence 15 (to place it before the Close Dialog process)

Success Message Product image deleted

When Button Pressed DELETE_IMAGE

NOTE: The Processing node contains two processes (Process form Product
Details and Close Dialog) that were created by the page creation wizard. The
first one is created to handle DML operations, while the second one closes
Page 6 when you click Create, Save, or Delete button. The values of these
buttons are mentioned in Server-side Condition of the process, which
specifies that the dialog is to be closed only when any of the three buttons are
clicked. Clicking the DELETE_IMAGE button won't close the page, because
the name of this button is not in the Value list. Similarly, the Delete Image
process will only be executed when the DELETE_IMAGE button is pressed.

Test Your Work
Save your work and run the application. From the main navigation menu,
select Manage Products from the Setup menu. On the main interactive report
page (Figure 6-1), click the three report icons individually to see
different views of products information. Clicking View Icons will present
small icons of products. Each product is presented as a linked icon. If you
click any icon, you'll be taken to the form page (Page 6 - Figure 6-6) where
you'll see details of the selected product. Click the Report View icon. The

Report View presents data in a table. Here, you can access the details page by
clicking products’ names. Click the Detail View icon. This View presents
products information from a different perspective. You can access details of a
product by clicking its name. This is the view that was styled in section 6.3.1
steps 8-11.

Click any product's name to call its details page (as illustrated in Figure 6-6).
The form region (Product Details) was created by the wizard incorporating
all relevant fields. The Product Image region was created in section 6.4.5.
Also, note that the Remove Image button (you created in section 6.4.7)
appears within this region.

Figure 6-6 Product Details Page

Create a new product record using the Add Product button on the Products
report page. Click the Browse button and select any small image file to test
image upload. You can use an existing product image by right-clicking the
image and selecting Save Image As from the context menu. Or, use the
Download link provided on the Product Details form page to get one for
testing.

Once you have an image in place, fill in all the fields except List Price. Try to
save this record by clicking the Create button. A message “Please fill out this
field” will appear informing you to provide some value for the List Price.
Now, provide some alpha-numeric value like abc123 in the List Price. Again,
a message will come up reminding you to put a numeric value.

Finally, input a numeric value in the List Price field and save the record.
You'll see the new product appears on the Products page among others with
the image you uploaded. Edit this record and see the image. Change the
category of this product, switch availability to the other option and apply
changes. Call the product again and observe the changes you just made to it.
Click the Remove Image button and see what happens. Click the Delete
button followed by OK in the confirmation box. The product will vanish from
the list.

NOTE: You might encounter a primary key violation message (ORA-00001:
unique constraint (DEMO_PRODUCT_INFO_PK) violated) while creating
first product record. This is because the Sequence object for this table is
created with an initial value of 1. When you try to save the first product
record, 1 is assigned as the first primary key value, which already exists in
the table. To cope with this situation, just click the Create button on the form
page several times. After ten clicks the record will be save.

6.6 Uploading and Viewing PDF and Other Types of Files
As mentioned earlier in this chapter, you can store different types of files
(upto 4 GB), such as images, audio, video, PDF, CSV, XLSX, DOC and
more, in the BLOB column of your table. In this exercise, I’ll demonstrate
how to save and view a PDF. As far as the uploading is concerned, you are
not required to perform any special steps to handle PDF or any other file
type. You have already set the stage in the previous sections where you
handled JPEG images. Here, you will just create two new pages that will be
apart from your application.

1. Click the Create Page button in the App Builder interface.

2. Click the Report option.

3. Select Interactive Report.

4. On Page Attributes wizard screen, enter 303 for Page Number and
Products Catalog for Page Name. Click Next.

5. On the Navigation Menu screen, set Navigation Preference to Do
not associate this page with a navigation menu entry and click
Next.

6. On Report Source screen, select SQL Query for Source Type and
enter the following statement in the Enter a SQL SELECT
statement area.

select p.product_id, p.product_name,
dbms_lob.getlength(p.product_image) document
from demo_product_info p

7. Click the Create button to complete the page creation process.

6.6.1 Modify the BLOB Column
Execute the following steps to modify the BLOB column attributes.

1. In the Page Designer, expand the Columns node (under the
Products Catalog interactive report region), click the Document
column and set the following attributes for this column. In the
Download Text property you set a string used for the download
link. If nothing is provided, Download is used. The Content
Disposition specifies how the browser handles the content when
downloading. If a MIME type is provided and the file is a type that
can be displayed, the file is displayed. If MIME type is not
provided, or the file cannot be displayed inline, the user is
prompted to download.

Property Value

Type Download BLOB

Table Name (under BLOB Attributes) DEMO_PRODUCT_INFO

BLOB Column PRODUCT_IMAGE

Primary Key Column 1 PRODUCT_ID

Mime Type Column MIMETYPE

Filename Column FILENAME

Last Updated Column IMAGE_LAST_UPDATE

Download Text (under Appearance) View

Content Disposition Inline

6.6.2 Upload and View PDF
As just mentioned the product setup module created earlier in this chapter is
ready to upload any type of file, so to save some precious time we are going
to use that module to upload a PDF.

1. Run the application and select Setup | Manage Products.

2. Click the Create button on the main Products interactive report
page.

3. Fill in the mandatory fields. Click the Choose File button, select
product_catalog.pdf file, which is available in the source code,
and click Create. The pdf will be uploaded to the
DEMO_PRODUCT_INFO table. Take some time to verify the
upload from SQL Workshop | Object Browser.

4. Switch back to Page Designer. With Page 303 appearing on your
screen click the Save and Run page button. The Product Catalog
page will appear displaying data from the corresponding table.
Click the View link for the Product Catalog PDF document. The
PDF will be opened in your browser.

Figure 6-7

Summary
In this chapter, you were equipped with some more skills that will assist you
in developing your own applications. Most importantly, you knew the
techniques to handle, store, and retrieve images to and from database tables.
Play around with this module by tweaking the saved properties to see
resulting effects on the two pages. This way, you will learn some new things
not covered in this chapter. Of course, you can always restore the properties
to their original values by referencing the exercises provided in the chapter.
An important point to consider here is that a module of this caliber would
have taken plenty of time and effort to develop using conventional tools.
With Oracle APEX declarative development, you can create it in a couple of
hours.

Chapter 7 - Taking Orders
7.1 About Sale Orders
This chapter will teach you how to create professional looking order forms.
Orders from customers will be taken through a sequence of wizard steps. The
first wizard step will allow you to select an existing customer or create a new
one. In the second step, you will select ordered products. After placing the
order, the last step will show summary of the placed order. Once an order is
created, you can view, modify, or delete it through Order Details page using a
link in orders main page. The list presented below displays the application
pages you will create in this chapter:

Page
No.

Page Name Purpose

4 Orders The main page to display all existing orders

29 Order Details Display a complete order with details for modification

11 Identify Customer (Wizard
Step 1)

Select an existing customer or create a new one

12 Select Order Items (Wizard
Step 2)

Add products to an order

14 Order Summary (Wizard Step
3)

Show summary of the placed order

You’ll build this module sequentially in the sequence specified above. The
first two pages (Page 4 and 29) will be created initially using a new wizard
option: Master Detail. Both these pages are not part of the Order Wizard and
will be utilized for order modification and deletion after recording an order.
Page 4 is similar to the pages you created in Customer and Product modules
and lists all placed orders, while Page 29 will be used to manipulate order
details. For example, you can call an order in the usual way using the
provided link in the master page. The called order will appear in the details
page where you can:

Add/Remove products to and from an order
Delete the order itself

The purpose of each chapter in this book is to teach you some new features.
Here as well, you’ll get some new stuff. This chapter will walk you through
to get detailed practical exposure to the techniques this module contains.
After completing the two main pages, you will work on actual order wizard

steps to create other pages of the module. Recall that in the previous chapter
you modified the main interactive report (Page 3) to create a couple of views
(Icon and Detail) and used the Actions menu to select and sort table columns.
In this chapter, many other utilities provided under the Actions menu will be
exposed. But first, let’s create the two main pages using the conventional
route.

7.2 Create Order Master and Order Detail Pages

1. Click the Create Page button in the App Builder.

2. On the first wizard screen, click the Master Detail option. A
master detail page reflects a one-to-many relationship between two
tables in a database. Typically, a master detail page displays a
master row and multiple detail rows within a single HTML form.
With this form, users can insert, update, and delete values from two
tables or views. On the Master Detail page, the master record
displays as a standard form and the detail records appear in an
interactive grid region under the master section.

3. On the next wizard screen, select the Drill Down option, which
opens input form in a separate page.

4. Fill in the next screen (Page Attributes) as illustrated below, and
click Next.

Figure 7-1

5. On the Navigation Menu screen, set Navigation Preference to
Identify an existing navigation menu entry for this page, set
Existing Navigation Menu Entry to Orders, and click Next.

6. Select the values in the Master Source screen (as shown in the
following figure), and click Next. In this step, you select the parent
table, which contains the master information for each order. You
also specify the primary key column, which will be populated
automatically behind the scene using a trigger named
BI_DEMO_ORDERS via a sequence named
DEMO_ORDERS_SEQ. You can view both these database objects
from SQL Workshop > Object Browser interface. The ORDER_ID
column selected in the Form Navigation Order list is the
navigation order column used by the previous and next buttons on
the Order Details page to navigate to a different master record.

Figure 7-2

7. Set properties on the Detail Source screen as illustrated below and
click Create to finish the wizard. On this screen, you specify the
relational child table, which carries line item information for each
order. The primary key column of this table will be populated
automatically via a trigger named BI_DEMO_ORDER_ITEMS,
which gets the next primary key values from a sequence named
DEMO_ORDER_ITEMS_SEQ. In the Master Detail Foreign Key
list you select the sole auto-generated foreign key, which creates a
relationship between the master and detail tables.

Figure 7-3

Before running these pages, let’s see what the wizard has done for us. The
master page (Page 4) is created with an Interactive Report to display a list of
all order from the Orders Mater table. The details page (Page 29), on the
other hand, has many things to reveal. The following table lists all those
components created automatically by the wizard with complete
functionalities to manage this module.

Component: Pre-Rendering Process
Name: Initialize form Form on DEMO_ORDERS
Description: Fetches master row from DEMO_ORDERS table. This
process was briefed in Chapter 5 Section 5.4.5. If you see a different
process name, then there is nothing to worry about as it sometimes
happens due to change in APEX version.

Component: Region
Name: Form on DEMO_ORDERS

Description: The page has two regions. The Form on DEMO_ORDERS
region, which is a Static Content region, displays master information like
customer ID, order date, and so on. The lower region shows product
details along with quantity and price in an Interactive Grid.

Component: Buttons
Names: GET_PREVIOUS_ORDER_ID and GET_NEXT_ORDER_ID

Description: These buttons are added to the master region to fetch
previous and next orders, respectively. For example, when you click the
Next button , the page is submitted to get the next order record from
the server by triggering the Initialize form Form on DEMO_ORDERS
process using the value set for Next Primary Key Item(s) property in this
process. The Next Primary Key Item(s) and Previous Primary Key Item(s)
properties in this process are associated with respective hidden page items
to fetch next and previous order ids. Based on the currently fetched order
number, which is held in the page item P29_ORDER_ID, the process
dynamically obtains the next and previous order numbers and stores them
in two hidden page items: P29_ORDER_ID_NEXT and
P29_ORDER_ID_PREV. The visibility of the Next and Previous buttons
is controlled by a Server-side Condition (Item is NOT NULL), which says
that these buttons will be visible only when their corresponding hidden
items have some values. If you make any modification to an order on
Page 29 and navigate to another order record using any of these buttons,
the changes are saved to the two database tables. This is because the
Action property of the two buttons is set to Submit Page. When the page is
submitted, two processes (Process form Form on DEMO_ORDERS and
Order Details - Save Interactive Grid Data defined later in this section)
are executed to make the changes permanent.

Component: Button
Name: Cancel
Description: The Cancel button closes Page 29 and takes you back to
Page 4 without saving an order. For this, a redirect action is generated in
the Behavior section with Page 4 set as the target.

Component: Button

Name: Delete
Description: The Delete button removes a complete order. When this
button is clicked, a confirmation dialog pops up using its Target property,
which is set to:
javascript:apex.confirm(htmldb_delete_message,'DELETE');
When you confirm the deletion, a SQL DELETE action (specified in
Database Action property for this button) is executed within the built-in
Automatic Row Processing (DML) processes–Process form Form on
DEMO_ORDERS and Order Details - Save Interactive Grid Data.

Component: Button
Name: Save
Description: The Save button records updates to an existing order in the
corresponding database table. This button is visible when you call an
order for modification, in other words, P29_ORDER_ID is NOT NULL.
The process behind this button is controlled by a SQL UPDATE action
within the two built-in Automatic Row Processing (DML) processes.

Component: Button
Name: Create
Description: The Create button is used for new orders to handle the
INSERT operation. This button is visible when you are creating a new
order – that is, the page item P29_ORDER_ID is NULL. It uses the SQL
INSERT action within the two built-in Automatic Row Processing (DML)
processes.

Component: Region
Name: Order Details
Description: This is an Interactive Grid region, which is generated to
view, add, modify, and delete line items using the parameters set in step 7.
The information you provided in this interactive grid is saved to the
DEMO_ORDER_ITEMS table through a process named Order Details -
Save Interactive Grid Data – discussed next.

Component: Process
Name: Process form Form on DEMO_ORDERS

Description: This Automatic Row Processing (DML) type process is
generated by the wizard to handle DML operations performed on the
master row of an order, which gets into the DEMO_ORDERS table. It
comes into action when you click Delete, Save, or Create buttons. The
three buttons and their associated actions are depicted in the following
figure.

Component: Process
Name: Order Details – Save Interactive Grid Data
Description: The Save Interactive Grid Data process is responsible to
handle DML operations on the details table (DEMO_ORDER_ITEMS).
This process is associated with the details section (Interactive Grid) to
insert, update, or delete Interactive Grid rows.

Component: Branches
Name: Go To Page 29, Go To Page 29, and Go To Page 4
When you submit a page, the Oracle APEX server receives a submit
request and performs the processes and validations associated with that
request. After this, it evaluates where to land in the application via these
branches. By default, it selects the current page as the target page. For
example, when you click the Next or Previous buttons on Page 29, you
stay on the same page. If you want to land users to some other page, you

can do this as well by creating branches. In the current scenario, you are
moved back to Page 4 when you click any other button on Page 29. A
branch has two important properties: Behavior and Server-side Condition.
In the Behavior section you specify the page (or URL) to redirect to, and
in Condition you specify when the branch is to be fired. Here, the first
two branches are created to keep you on Page 29. These branches are
associated with Next and Previous buttons–see When Button Pressed
properties of these branches. The third one takes you back to Page 4 when
you click any other button on this page – see the Behavior section that
specifies the redirect.

Run this module from the Orders navigation menu entry. The first page
(Page 4) you see is an interactive report. It is similar to the one you created in
Chapter 6. It has a Create button, which is used to create a new order. Click
the edit link (represented with a pencil icon) in front of any record to call the
Order Details page (Page 29).

The Order Details page has two regions. The upper region, which is called
the master region, displays information from the DEMO_ORDERS table,
while the lower interactive grid region shows relevant line item information
from the DEMO_ORDER_ITEMS table. Besides usual buttons, the master
region has two navigational buttons at the top. These buttons help you move
forward and backward to browse orders. The Order Timestamp field is
supplemented with a Date Picker control. You can add more products to the
details section by clicking the Add Row button.

From a professional viewpoint this page is not user friendly. If you try to add
a new product, you have to enter its ID manually. Moreover, if you try to
create a new order, you won’t see the interactive grid. By default, this grid is
visible only when you modify an existing order and it hides when you try to
create a new order. This behavior is controlled by a server side condition
(Item is NOT NULL) set for the Interactive Grid region (Order Details). With
this condition set, the region is rendered only when the page item
P29_ORDER_ID has some value. Choosing the – Select – placeholder for the
Server-side Condition Type property removes this condition and makes the
interactive grid visible every time you access Page 29. Even after this
adjustment, you will face some constraint issues related to a backend table.
To avoid all such problems, execute the instructions provided in subsequent

sections to make the module user-friendly.

7.3 Modify Orders Page - Page 4
Execute the instructions provided in the following sub-sections to modify the
Orders page.

7.3.1 Modify the Orders Interactive Report Region on Page 4
The Orders interactive report region on Page 4 fetches orders information
from the DEMO_ORDERS table. Let’s replace the existing auto-generated
data fetching mechanism with a custom SQL query, which incorporates
customers information from the DEMO_CUSTOMERS table.

1. Open Page 4 in the Page Designer, and click the Orders region.
Modify the region using the values set in the following table:

Property Value

Location Local Database

Type SQL Query

SQL Query

select lpad(to_char(o.order_id),4,'0000') order_number, o.order_id,
to_char(o.order_timestamp,'Month YYYY') order_month,
trunc(o.order_timestamp) order_date,
o.user_name sales_rep, o.order_total,
c.cust_last_name||', '||c.cust_first_name customer_name,
(select count(*) from demo_order_items oi

where oi.order_id = o.order_id and oi.quantity != 0) order_items,
o.tags tags

from demo_orders o, demo_customers c
where o.customer_id = c.customer_id

2. Expand the Columns node under the Orders region and set the Type
property for the ORDER_ID column to Hidden Column.

3. Set meaningful headings for all interactive report columns as
follows.

Order #, Order Month, Order Date, Customer, Sales Rep, Order
Items, Order Total, and Tags

4. Edit the ORDER_TOTAL column and select the value $5,234.10
for its Format Mask property.

5. Select the Order Number column (not Order ID) and turn it into a
link using the following properties:

Property Value

Type Link

Target (in Link section)

Type = Page in this application
Page = 29
Name = P29_ORDER_ID
Value = #ORDER_ID#
Clear Cache = 29

Link Text #ORDER_NUMBER#

6. Click the Attributes node under the Orders interactive report
region. Select Exclude Link Column for Link Column property in
the Property Editor. This action will exclude the default link
column (denoted with a pencil icon) from the report as we have a
custom link created in the previous step.

7. In the Attribute node, scroll down to the Actions Menu section,
and turn on the Save Public Report option, to include this option in
the Actions menu at runtime. By enabling this option you can
create a public report – see section 7.3.4.

8. Click the Create button and set the following properties for this
button. New customer orders in this module will be recorded via
some wizards steps, and Page 11 (to be created in a subsequent
section) will be the first order wizard step.

Property Value

Label Enter New Order

Target (in Behavior section)
Type = Page in this application
Page = 11
Clear Cache = 11

9. Save your modifications.

7.3.2 Modify Interactive Report
Perform the following steps to change the look and feel of the default
interactive report. After performing these steps, the interactive report will be

saved as the Default Primary Report, which cannot be renamed or deleted.
Note that these modifications are made using the Actions menu at runtime.

1. Click the Save and Run Page button to run Page 4.

2. Click the Actions menu, select the Columns option, arrange the
report columns as depicted in the following screen shot, and click
Apply. This action will arrange the report columns in the specified
order.

Figure 7-4

3. Click the Actions menu again, and select Data followed by the
Sort option.

4. In the Sort grid, select the Order # column in the first row, set the
corresponding Direction to Descending, and click Apply. This
action will display most current orders on top.

Figure 7-5

4. Click Actions | Report | Save Report. In the Save Report dialog
box, select As Default Report Settings from the Save list, select
Primary for Default Report Type, and click Apply.

NOTE: Always save a report via the Actions menu whenever you make
changes to it; otherwise, your modifications will not be reflected the next
time you log in to the application. In Interactive Reports, you can apply a
number of filters, highlights, and other customizations. Rather than having to
re-enter these customizations each time you run the report, you tell Oracle
APEX to remember them so that they are applied automatically on every next
run. The application users can save multiple reports based on the default
primary report, as discussed in the next couple of sections.

7.3.3 Create Alternative Report
Alternative report enables developers to create multiple report layouts. Only
developers can save, rename, or delete an Alternative Report. This report
(named Monthly Review) is based on the default primary report and will be
rendered in a different layout using the Control Break utility on Order Month
column. Execute the following steps on the primary interactive report on
Page 4 to create three different views of the report.

A. Report View

1. From the Actions menu, select Save Report (under Report). In the
Save Report dialog box, select As Default Report Settings from
the Save list. This time, select the Alternative option for Default
Report Type, enter Monthly Review in the Name box, and click
Apply. You will see a drop down list between the Search bar and

the Actions menu carrying two reports: Primary Report and
Monthly Review.

2. From the list, select the Monthly Review alternative report.

3. Click Actions | Format | Control Break. Under Column, select
Order Month in the first row (A), set Status to Enabled (B), and
click Apply. The Control Break feature enables grouping to be
added to your report on one or more columns. The Column
attribute defines which column to group on and the Status attribute
determines whether the control break is active. When you click the
Apply button, you will see the report results are grouped by the
Order Month column and the Control Break column rule (C) is
listed under the toolbar. A checkbox (D) is displayed next to the
Control Break column and it is used to turn the control break rule
on or off. The control break can be deleted from the report by
clicking the small cross icon (E).

4. Click Actions | Format | Highlight. Type Display Orders >

$1000 (A) in the Name box, set Highlight Type to Cell (B), select
green (C) for Background Color, and click red (D) for Text Color.
In the Highlight Condition section, set Column to Order Total (E),
Operator to > greater than (F), Expression to 1000 (G), and click
Apply. To distinguish important data from the rest, Oracle APEX
provides you with conditional highlighting feature in interactive
reports. The highlight feature in the Actions menu enables users to
display data in different colors based on a condition. You can
define multiple highlight conditions for a report. In this step, you're
instructing to highlight the Order Total column in the report with
green background and red text color where the value of this column
is greater than 1000. Since you set the Highlight Type to Cell, the
condition will apply only to the Order Total column. To modify an
existing highlight rule, click its entry under the interactive report
toolbar.

5. Click Actions | Format | Highlight. Type Display Orders <=
$999 in the Name field, set Highlight Type to Row, click yellow for
Background Color, click Red for Text Color, in Highlight

Condition set Column to Order Total, Operator to <= (less than or
equal to), Expression to 999 and click Apply. This step is similar to
the previous one with different parameters. In contrast to the
previous action, where only a single cell was highlighted, this one
highlights a complete row with yellow background and red text
color and applies it to all rows in the report that have Order Total
equaling $999 or less.

The resulting output should resemble the following figure.

Figure 7-8 Monthly Order Review Report

B. Chart View

You can generate charts in Interactive Reports based on the results of a
report. You can specify the type of chart together with the data in the report
you want to chart. In the following exercise, you will create a horizontal bar
chart to present monthly sales figures using the Order Month column for the
chart labels and a sum of the Order Total column for the chart values.

Figure 7-9

1. Click Actions | Chart.

2. Select the first option (Bar) for the Chart Type.

3. Select Order Month for Label.

4. Enter Month in Axis Title for Label.

5. Select Order Total for Value.

6. Enter Sales in Axis Title for Value.

7. Select Sum for Function.

8. Set Orientation to Horizontal.

9. Select Label-Ascending for Sort.

10. Click Apply.

The chart should resemble the following figure. Note that the toolbar now has
two icons: View Report and View Chart. If the chart doesn’t appear, click the
View Chart icon in the toolbar. Move your mouse over each bar to see
total amount for the month.

Figure 7-10 Chart View

C. Group By View

Group By enables users to group the result set by one or more columns and
perform mathematical computations against the columns. Once users define
the group by, a corresponding icon is placed in the toolbar, which they can
use to switch among the three report views.

1. Click the View Report icon in the interactive report toolbar to
switch back to the report view interface.

2. Click Actions | Group By.

3. Set the properties as show in the following figure and click Apply.
Use the Add Function button to add the second function (Count).
The first function calculates the monthly average of orders, while
the second function counts the number of orders placed in each
month.

Figure 7-11

4. Click Actions | Report | Save Report. Select As Default Report
Setting from the Save list. Select Alternative for the Default
Report Type. The Name box should display Monthly Review.
Click Apply.

The output of this view is illustrated in the following figure. Note that a third
icon (View Group By) is also added to the toolbar.

Figure 7-12 Group By View

7.3.4 Create Public Report
This type of report can be saved, renamed, or deleted by end users who
created it. Other users can view and save the layout as another report.
Execute the following instructions to create the three views Report, Chart,
and Group by of a public report. The Alternative report created in the
previous section focused on orders, while this one is created from customers
perspective.

A. Report View

1. Select the default 1. Primary Report from the Reports drop-down
list in the toolbar.

2. From the Actions menu, select Save Report (under Report).

3. From the Save drop-down list select As Named Report. For report
Name, enter Customer Review, put a check on Public and click
the Apply button. A new report group (Public) will be added to the
reports list in the toolbar, carrying a new report named Customer
Review. Users can create multiple variations of a report and save
them as named reports for either public or private viewing. When
you click the Apply button, the report is displayed on your screen.

4. With the Customer Review report being displayed on your screen,
click Actions | Format | Control Break. Select Customer in the
first row under Column, set Status to Enabled, and click Apply to
see the following output.

Figure 7-13

B. Chart View

Figure 7-14

1. Click Actions | Chart.

2. Set parameters for the chart as illustrated in the figure 7-14.

3. Click the Apply button. The output is illustrated in figure 7-15.

NOTE: The chart uses the Average function (as compared to the Sum
function used in the previous exercise). William Hartsfield has placed two
orders amounting to $2,370. The average for this customer comes to $1,185
(2,370/2) and this is what you see when you move your mouse over the bar
representing this customer.

Figure 7-15 Chart View

C. Group By View

1. Click the View Report icon to switch back.

2. Click Actions | Group By.

3. Set parameters for this view as show in the following illustration.
Turn on the Sum switch for all three functions to display grand
totals.

Figure 7-16

4. Click Apply.

5. Save your work using the Actions menu. Select As Named Report
from the Save list. The Name box should be displaying Customer
Review. Click Apply.

Select Customer Review from the report list in the toolbar, and click the
View Group By icon. The following figure displays the output for the
selections you just made. In this view, you utilized Sum and Count functions
on two columns: Order Total and Order Items. This view displays total
amount of orders placed by each customer with number of orders and the
total number of items ordered.

Figure 7-17 Group By View

D. Pivot View

The Pivot option is the Actions menu is used to create a cross tab view based
on the data in the report. Let's see an instance of this option as well.

1. Click the View Report icon to switch back.

2. Click Actions | Pivot.

3. Set parameters as show in the following illustration. Don’t forget to
turn on the Sum switch to produce grand totals on the page.

Figure 7-18

4. Click Apply.

5. Save your work using the Actions menu.

The following figure illustrates the output of these actions.

Figure 7-19 Pivot View

In the previous few sections you used some options from the Actions menu to
customize the interactive report. However, the menu contains a few more, as
listed below:

Filter focuses the report by adding or modifying the WHERE
clause on the query.

Rows Per Page determines how many rows display in the current
report.

Data contains the following submenu:

Sort - Changes the columns to sort on and determines whether to
sort in ascending
or descending order.
Compute - Enables users to add computed columns to a report.

Flashback enables you to view the data as it existed at a previous
point in time by specifying number of minutes. To use this option,
the Oracle database FLASHBACK feature must be turned on.

Reset is used to reorganize the report back to the default report
settings.

Help provides descriptions of how to customize interactive reports.

Download enables users to download a report. Available download
formats depend upon your installation and report definition. To see
these formats, click a region's Attribute node and check the
Download section in the Property Editor.

7.4 Modify Order Details Page - Page 29
Execute the instructions provided in the following sub-sections to modify the
Order Details Page.

7.4.1 Modify Master Region Properties
Page 29 contains two regions. The master region (Form on
DEMO_ORDERS) is of Form type and carries order header information,
while the second region (Order Details) is an interactive grid, which contains

line item details. Modify the master region using the following steps:

1. Open Page 29 in the Page Designer, click the root node (Page 29:
Order Details) and set the Page Mode property to Modal Dialog
to open it on top of Page 4. Set Width, Height, and Maximum Width
properties to 900, 700, and 1200, respectively. Also, set Dialog
Template (in the Appearance section) to Wizard Modal Dialog.
Dialog templates are defined in the application theme. When a
dialog page is created, the template is automatically set to Theme
Default, which will render the page using the default page template
defined in the current theme. The Wizard Modal Dialog provides a
streamlined user interface suitable for input forms. When you
switch to this template, the name of Content Body changes to
Wizard Body and a new node named Wizard Buttons is added. We
will use this node to place all our page buttons to make them
visible all the time.

2. Click the Form on DEMO_ORDERS region and enter Order
#&P29_ORDER_ID. (including the terminating period) for its
Title. The expression consists of two parts. The first one (Order #)
is a string concatenated to a page item (P29_ORDER_ID), which
carries the order number. The string, when combined, would be
presented as: Order # 1. Make sure that region’s Template attribute
(under Appearance) is set to Standard to show this title.

3. Create a new page item in the Items node under the master region
and set the following properties. This item will present customer
information on each order as display-only text. Display Only items
are shown as non-enterable text item. Note that you may get an
error message (ORA-20999) when you enter the SQL query
specified in the table below. Save the page by clicking the Save
button to get rid of this message. Moreover, if you keep the default
value (On) for Escape Special Characters property, the customer
information appears on a single line with
 tags

Property Value
Name P29_CUSTOMER_INFO
Type Display Only

Label Customer
Template Optional

Type (under Source) SQL Query (return single value)

SQL Query

select apex_escape.html(cust_first_name) || ' ' ||
apex_escape.html(cust_last_name) || '
' ||
apex_escape.html(cust_street_address1) ||
decode(cust_street_address2, null, null, '
' ||
apex_escape.html(cust_street_address2)) || '</br>' ||
apex_escape.html(cust_city) || ', ' ||
apex_escape.html(cust_state) || ' ' ||
apex_escape.html(cust_postal_code)

from demo_customers
where customer_id = :P29_CUSTOMER_ID

Escape Special Characters Off

NOTE: If you see an error message after providing the SQL query, ignore it
and click the Save button to save the page. The error will vanish.

1. Using drag and drop arrange page items in the master region as
illustrated in the following screenshot.

Figure 7-20

2. Edit the following items individually and set the corresponding
properties shown under each item.

a. P29_ORDER_TIMESTAMP

Property Value

Type Display Only

Label Order Date

Template Optional

Format Mask DD-MON-YYYY HH:MIPM

b. P29_ORDER_TOTAL

Property Value

Type Display Only

Template Optional

Format Mask $5,234.10

c. P29_USER_NAME

Property Value

Type Select List

Label Sales Rep

Template Optional

Type (List of Values) SQL Query

SQL Query

select distinct user_name d, user_name r
from demo_orders
union
select upper(:APP_USER) d, upper(:APP_USER) r
from dual
order by 1

Display Extra Values Off

Display Null Value Off

Help Text Use this list to change the Sales Rep associated with the order.

In the Help Text attribute you specify help text for an item.
The help text may be used to provide field level, context
sensitive help. At run-time you will see a small help icon
in-front of this item. When you click this icon, a window pops
up to show the help text.

d. P29_TAGS

Property Value

Template Optional

e. P29_CUSTOMER_ID

Property Value

Type Hidden

Value Protected Off

f. P29_ORDER_ID

Property Value

Type Hidden

Value Protected Off

6. In the Region Buttons node, set Button Position property to Edit
for GET_PREVIOUS_ORDER_ID and GET_NEXT_ORDER_ID
buttons to place them on top of the region.

7.4.2 Modify Details Region’s Properties
After setting the master region, let’s modify the details region to give it a
desirable look.

1. Click the Order Details interactive grid region and set its Title to
Items for Order #&P29_ORDER_ID. – including the terminating
period.

2. Replace the auto-generated source attributes of the region with the
followings:

Property Value

Location Location Database

Type SQL Query

SQL Query select oi.order_item_id, oi.order_id, oi.product_id, oi.unit_price,
oi.quantity,

(oi.unit_price * oi.quantity) extended_price
from DEMO_ORDER_ITEMS oi, DEMO_PRODUCT_INFO pi

where oi.ORDER_ID = :P29_ORDER_ID
and oi.product_id = pi.product_id (+)

3. Save the page.

4. Under the Columns node, edit the following columns using the
specified properties.

Column Property Value

ORDER_ITEM_ID
Type

Value Protected
Primary Key

Hidden
On
On

ORDER_ID Type
Value Protected

Hidden
On

PRODUCT_ID

Type
Heading

Alignment
Type (LOV)

List of Values
Display Null Value

Select List
Product
Select the left icon
Shared Components
Products With Price
Off

UNIT_PRICE
Alignment

Column Alignment
Format Mask

Select the right icon
Select the right icon
$5,234.10

QUANTITY
Width (under Appearance)

Type (under Default)
PL/SQL Expression

5
PL/SQL Expression
1 (sets 1 as the default quantity)

EXTENDED_PRICE

Type
Heading

Alignment
Column Alignment

Format Mask
Query Only (under Source)

Display Only
Price
Select the right icon
Select the right icon
$5,234.10
On

After modifying an interactive grid query you must specify a primary
column, which is required for editing and to specify master detail
relationship. If not defined, you will encounter " Interactive Grid doesn't have a
primary key column defined which is required for editing or in a master detail relationship "
message . By setting the ORDER_ITEM_ID column as the primary key
you eliminate this error.

The Alignment property sets the heading alignment, while the Column

Alignment specifies the column display alignment. For product ID
column, we changed two properties. First, we set its Type property to
Select List. Secondly, we associated an LOV (Products with Price) to it.
This LOV was created in Chapter 3 section 3.4.2 to display a list of
products along with respective prices.

The Query Only property (under Source section) set for the Extended
Price column specifies whether to exclude the column from DML
operations. If set to On, Application Express will not utilize the column
when executing the Interactive Grid - Automatic Row Processing
(DML) process. In the current scenario, you excluded the Extended
Price column, because it is not a physical table column and is calculated
in the SELECT query stated above. If you keep the default value of this
property for the Extended Price column, you will get “Virtual column
not allowed here” error message when you try to save an existing order.
All columns whose definitions include concatenations, inner selects,
functions call, or a column in an updateable view that is based on an
expression should be excluded. All columns that need to be included in
any INSERT or UPDATE statements must have this option set to Off.
Note that columns of type Display Only are also included in the
Automatic Row Processing unless this option is turned on.

5. Using drag and drop arrange the five visible columns in the
following order:

PRODUCT_ID, UNIT_PRICE, QUANTITY, and
EXTENDED_PRICE

6. Right-click the Wizard Buttons node and select Create Region. Set
Title of the new region to Buttons and Template to Buttons
Container. In the Region Buttons node, click the Cancel button,
and set its Region property to Buttons. Set the same Buttons region
for Delete, Save, and Create buttons, too. This action will place
the four buttons under the Buttons region in the interactive grid.

7. On the Processing tab, make sure that the process “Process form
Form on DEMO_ORDERS” sits before the Order Details – Save
Interactive Grid Data process. If not, drag and place it before the
Order Details – Save Interactive Grid Data process or set its

Sequence property to a number lower than that of the Save
Interactive Grid Data process. Note that this process must precede
the Save Interactive Grid Data process; otherwise, you will get the
error “Current version of data in database has changed since user
initiated update process” when you try to manipulate data in the
interactive grid.

8. Save the changes.

NOTE: If you see a different process name, then there is nothing to worry
about as it sometimes happens due to change in APEX version.

Test Your Work
Run the application and click the Orders option in the main navigation menu.
The page that comes up should look like Figure 7-21. Click any order number
to call the Order Details page (Figure 7-22). Try to navigate forward and
backward using the Next and Previous buttons. At the moment, you can
only use these two pages to manipulate existing orders. In the next sections,
you will create some more pages to enter new orders.

Call order number 0002 and click the Add Row button appearing in the
Interactive Grid's toolbar. A new row will be added to the grid just under the
first row with the Product column appearing as a list of values carrying all
products with their respective prices. Select Air Max 2090 (A) from this list,
enter 1500 (B) in the Unit Price column, and put some value in the Quantity
column (or accept the default quantity 1). Now, remove the checkmark
appearing in the first column of the new record and put a check on the
previous Air Max 2090 record (C). From the Row Actions menu (D), select
Delete Row (E). The previous record will be marked as deleted (F). Click the
Apply Changes button (G). Call the order again. The new record will be
added to the table with the correct price of the product and the previous
record will be removed.

Figure 7-21 – Orders Interactive Report Page

Figure 7-22 – Order Details Page

7.5 Create a Page to Enter a New Order - Page 11
As mentioned earlier, you will go through a series of steps to enter a new
order. You identified and created these steps in Order Wizard list in Chapter
3 section 3.2.3. The top section (A) in Figure 7-23 reflects these steps. Each
step will be associated to an application page. The rest of this chapter will
guide you to create the three pages individually. In this exercise, you will
create Page 11 - Enter New Order.

The order recording process initiates when you click the button Enter New
Order on the Orders page (Page 4). The button calls Page 11, where you
select a customer who placed the order. Besides selecting an existing
customer, you can also create record of a new customer on this page. The
Customer LOV button (B) calls a list of existing customers from which you
can select one for the order. If you select the New Customer option (C), a
region (New Customer Details) will be shown under the existing region. By
default, this region is hidden and becomes visible when you click the New
Customer option. This functionality is controlled by a dynamic action (Hide /
Show Customer), which will also be created for this page.

In addition to various techniques taught in this part, you’ll create this page
from an existing page - Customer Details (Page 7) - to generate a new
customer record. Here, you’ll make a copy of that page and will tweak it for
the current scenario. Let’s see how it is done.

Figure 7-23 Identify Customer Page

1. In the App Builder interface, click the Customer Details - Page 7
to open its definitions in Page Designer.

2. Click the Create menu at top-right in the toolbar and select
Page as copy.

3. On the first wizard screen, select the option Page in this
application for Create a page as a copy of and click Next.

4. Fill in the following values on Page To Copy screen and click
Next.

Figure 7-24

5. On the Navigation Menu screen select Identify an existing
navigation menu entry for this page, select Orders for Existing
Navigation Menu, and click Next.

6. Accept the names of existing page buttons and items on the New
Names screen and click the Copy button to finish the wizard.

Look at the Page Designer. All the elements from Page 7 appear on the new
page, especially the items section, which carries all input elements (with P11
prefix) to create a new customer record. This is the section we needed on our
new page to spare some time.

7.5.1 Modify Page Properties

1. In Page 11, click the root node (Page 11: Identify Customer). In
the Properties pane, set Dialog Template (under Appearance) to

Wizard Modal Dialog. The template creates a region (Wizard
Progress Bar) to hold the order progress list (A), as shown in
Figure 7-23, and alters the name of the main region from Content
Body to Wizard Body.

2. Set Width and Height properties to 700 and 500, respectively.

3. Remove htmldb_delete_message variable from Function and
Global Variable Declaration property. Save the page after
removing the variable. This is an auto-generated variable
associated with the customer record deletion process handled
transparently by Oracle APEX. It is removed because the customer
record deletion process is not required here.

4. Change Maintain Session State property (in Source section) of
P11_CUST_FIRST_NAME, P11_CUST_LAST_NAME,
P11_CUST_STREET_ADDRESS1,
P11_CUST_STREET_ADDRESS2, P11_CUST_CITY, and
P11_CUST_STATE,P11_CUST_POSTAL_CODE,
P11_CREDIT_LIMIT, P11_PHONE_NUMBER1,
P11_PHONE_NUMBER2, P11_CUST_EMAIL, P11_URL, and
P11_TAGS page items to Per Session (Disk). Switching to this
value maintains the item value to access it across requests. See
PL/SQL code line 22-30 in section 7.6.3 and Place Order process
in section 7.6.8 later in this chapter where these items are
referenced. If you keep the default Per Request (Memory Only)
value for this property, none of the page item values can be
referenced on other module pages and will not be inserted in the
database table.

7.5.2 Create Region – Order Progress
Right-click the Wizard Progress Bar node (under Regions) and select Create
Region. Set the following properties for the new region. The Order Wizard
list used here was created in Chapter 3 - section 3.2.3. The Wizard Progress
value specified for the List Template property displays a progress train based
on the list items and is well suited for wizards and multi-step flows.

Property Value

Title Order Progress

Type List

List Order Wizard

Template Blank with Attributes

List Template (under Attributes node) Wizard Progress

Label Display (under Attributes |Template
Options)

All Steps (displays labels of all wizard steps)

7.5.3 Create Region – Identify Customer
Right-click the Wizard Body node and select Create Region. Drag the new
region and place it above the Customer Details region. Set the following
properties for it. This region is created to act as a main container to hold a
radio group item and a couple of sub-regions.

Property Value

Title Identify Customer

Type Static Content

Template Standard

7.5.4 Create Item
Right-click the new Identify Customer region and select Create Page Item.
Set the following properties for the new item, which is a Radio Group. The
list of values attached to this radio group item (NEW OR EXISTING
CUSTOMER) was created in Chapter 3 - section 3.4.4 with two static values
to create a new customer or select an existing one for a new order. The value
set for the Number of Columns property displays these values in two separate
columns. The first Type and Static Value properties (under Source) specify
the source type the value of this item will based on when you access this
page, whereas the second pair sets the EXISTING value as the default choice.

Property Value

Name P11_CUSTOMER_OPTIONS

Type Radio Group

Label Create Order for:

Number of Columns 2

Template Required

Label Column Span 3

Type (under List of Values) Shared Component

List of Values NEW OR EXISTING CUSTOMER

Display Null Value Off

Type (under Source) Static Value

Static Value (under Source) EXISTING

Type (under Default) Static

Static Value (under Default) EXISTING

7.5.5 Create a Sub Region – Existing Customer
Right-click the Identify Customer region and select Create Sub Region. This
will add a sub region under the page item P11_CUSTOMER_OPTIONS. Set
the following properties from the sub region.

Property Value
Title Existing Customer
Type Static Content

Template Blank with Attributes

7.5.6 Modify Item – P11_CUSTOMER_ID
In the Items section, click P11_CUSTOMER_ID. Set the Name property of
this hidden item to P11_CUSTOMER_ID_XYZ. Set Server-side Condition
Type to Never (last in the list). This item is renamed and suppressed from
being rendered because a new item (of Popup LOV type) with the same name
is created in the next section to display a list of customers, instead. By
selecting the Never value for the Server-side Condition Type property, you
permanently disable a page component. That is, the component is never
rendered.

7.5.7 Add LOV
Right-click the Existing Customer sub-region and select Create Page Item.
Set the following properties for this item. The Type value (under Source) is
set to Null, because the IDs and names of customers are retreived using a
SQL query and displayed in a Popup LOV.

Property Value

Name P11_CUSTOMER_ID

Type Popup LOV

Label Customer

Template Required

Width 70

Value Required Off

Type (under List of Values) SQL Query

SQL Query
select cust_last_name || ', ' || cust_first_name d, customer_id r
from demo_customers
order by cust_last_name

Display Extra Values Off

Display Null Value Off

Type (under Source) Null

Help Text Choose a customer using the pop-up selector, or to create a new
customer, select the New customer option.

7.5.8 Modify Customer Details Region
Click the Customer Details region and set the following properties for this
region. When you specify a parent region you make a region child of a parent
region.

Property Value
Title New Customer Details

Parent Region Identify Customer

7.5.9 Delete Validation, Processes, and Buttons

1. On the Processing tab, right-click the entry Can’t Delete
Customer with Orders under Validations, and select Delete from
the context menu. Similarly, delete the process Process Customer
Data.

2. Also, remove Delete, Save, and Create buttons from the Buttons
region on the Rendering tab.

7.5.10 Delete Process
On the Rendering tab, expand the Pre-Rendering | Before Header | Processes
node and delete the process named Initialize Customer Details. This is a
default process created in the Customers module and is not required in the
current scenario.

7.5.11 Create Button
Create a new button in the Buttons region and set the following properties for
it. After identifying a customer, you click this button to advance to the second

order wizard step. This button will appear under the Cancel button in the
Page Designer. When this button is clicked, the Action property submits the
page and a branch (created in section 7.5.18) takes control of the application
flow and moves you on to the next wizard step.

Property Value

Button Name NEXT

Label Next

Button Position Next

Button Template Text with Icon

Hot On

Icon fa-chevron-right

Action Submit Page (default)

7.5.12 Create Process - Create or Truncate Order Collection
When developing web applications in Oracle APEX, you often need a
mechanism to store an unknown number of items in a temporary location.
The most common example of this is an online shopping cart where a user
can add a large number of items. To cope with this situation in Oracle APEX,
you use Collections to store variable information. Before using a collection, it
is necessary to initialize it in the context of the current application session.
After clicking the Enter New Order button, you’re brought to this page (Page
11) and this is where your collection (named ORDER) is initialized using a
PL/SQL process that fires Before Header when the user enters into the
interface of Page 11. See sections 7.6.7 and 7.6.8 for relevant details on
collections.

On the Rendering tab, expand the Pre-Rendering node. Right-click the
Before Header node and select Create Process. Set the following properties
for the new process.

Property Value

Name Create or Truncate ORDER Collection

Type PL/SQL Code

PL/SQL Code apex_collection.create_or_truncate_collection (p_collection_name =>
'ORDER');

Figure 7-25

7.5.13 Create Dynamic Action (Hide / Show Customer)
Click the Dynamic Actions tab. Right-click the Change node and select
Create Dynamic Action. Click the New node and set the following
properties. The following settings inform Oracle APEX to fire the dynamic
action when user changes (Event) the radio group item (Selection Type)
P11_CUSTOMER_OPTIONS (Item) from New Customer to Existing.

Property Value

Name Hide / Show Customer

Event Change

Selection Type Item(s)

Item(s) P11_CUSTOMER_OPTIONS

Type (under Client-side
Condition)

Item = value

Item (under Client-side
Condition)

P11_CUSTOMER_OPTIONS

Value EXISTING

Click the Show node to set the following properties. The values for these
properties are set to show the Existing Customer region when the EXISTING
option is selected from the radio group. The On value set for the Fire on
Initialization property specifies to fire the action when the page loads.

Property Value

Action Show

Selection Type Region

Region ..Existing Customer

Fire When Event Result is True

Fire on Initialization On

Right-click the Show node and select Create Action. Another Show node
will be added just under the previous one. Set the following properties for it.
This action is also assoicated with the previous two and is added to hide New
Customer Details region when the EXISTING option is selected.

Property Value

Action Hide

Selection Type Region

Region ..New Customer Details

Fire When Event Result is True

Fire on Initialization On

Right-click the Show node again and select Create Opposite Action. This
will add an opposite Hide action under the False node (with all properties set)
to hide the Existing Customer region.

Right-click the Hide node under the True node and select Create Opposite
Action. This will add a Show action under the False node to show the New
Customer Details region.

If you run the page at this stage (by clicking the Enter New Order button on
Page 4), you'll see the P11_CUSTOMER_ID item (in the Existing Customer
region) is shown on the page. Now, select the New Customer option. The
item P11_CUSTOMER_ID disappears from the page and the New Customer
Details region becomes visible. Select the Existing Customer option again,
the item becomes visible and the New Customer Details region hides.

7.5.14 Modify Validation – Check Credit Limit
On the Processing tab, click the Check Credit Limit validation. Set its
Sequence to 100 and save the change to place this validation in a proper
sequence after the following validations. Note that the Sequence property
determines the order of evaluation.

7.5.15 Create Validation – Customer ID Not Null
Right-click the Validations node and select Create Validation. Set the
following properties for the new validation. You can control when a
validation is performed by configuring its Server-side Condition property.
Select a condition type from the list that must meet in order for a validation to
process. In the current scenario, the condition (item=value) is formed like

this: P11_CUSTOMER_OPTIONS = EXISTING . The validation fires when you select
the Existing Customer option on the application page, and do not select a
customer from the provided list. In case of an error at runtime, the #LABEL#
substitution string specified in the Error Message property is replaced with
the label of the associated item P11_CUSTOMER_ID – that is, Customer.

Property Value

Name Customer ID Not Null

Sequence 10

Type (Validation) Item is NOT NULL

Item P11_CUSTOMER_ID

Error Message Select a #LABEL# from the provided list.

Associated Item P11_CUSTOMER_ID

Type (Server-side Condition) Item = Value

Item P11_CUSTOMER_OPTIONS

Value EXISTING

7.5.16 Create Validation – First Name Not Null
Create another validation. This validation will check whether the first name
of a new customer is provided. It is fired only when the New Customer option
is selected.

Property Value

Name First Name is Not Null

Sequence 20

Type (Validation) Item is NOT NULL

Item P11_CUST_FIRST_NAME

Error Message #LABEL# must have some value.

Associated Item P11_CUST_FIRST_NAME

Type (Server-side Condition) Item = Value

Item P11_CUSTOMER_OPTIONS

Value NEW

Using the previous table, create NOT NULL validations for Last Name,
State, Postal Code, and Credit Limit items.

7.5.17 Create Validation – Phone Number
Create the following validation to check input of proper phone numbers.

Regular Expressions enable you to search for patterns in string data by using
standardized syntax conventions, rather than just a straight character
comparisons. The validation passes if the phone numbers matches the regular
expression attribute and fails if the item value does not match the regular
expression. The last three properties inform Oracle APEX to execute the
validation only when a new customer is created.

Property Value

Name Phone Number Format

Type (Validation) Item matches Regular Expression

Item P11_PHONE_NUMBER1

Regular Expression ^\(?[[:digit:]]{3}\)?[-.][[:digit:]]{3}[-.][[:digit:]]{4}$

Error Message Phone number format not recognized

Associated Item P11_PHONE_NUMBER1

Type (Server-side Condition) Item = Value

Item P11_CUSTOMER_OPTIONS

Value NEW

Create a similar validation for P11_PHONE_NUMBER2 item.

Next, you have to turn off the Value Required attribute for P11_CUSTOMER_ID

(in Existing Customer region) , and P11_CUST_FIRST_NAME, P11_CUST_LAST_NAME,

P11_CUST_STATE, P11_CUST_POSTAL_CODE, P11_CREDIT_LIMIT and
P11_CUST_EMAIL (in New Customer Details region). The Value Required
properties for these items were inherited from Page 7 where they were set to
On, to mark them as mandatory. In the previous two sections, you used an
alternate method to manually control the validation process for these items. If
you don’t reverse the Value Required status, then the application will throw
NOT NULL errors for these items, even if you select an existing customer.

7.5.18 Create Branch
When the Next button is clicked, the defined button action (Submit Page)
triggers after performing all validations. The submit page process executes
instructions specified in this branch and moves the user to the next order
wizard step. On the Processing tab, right-click the After Processing node and
select Create Branch. Set the following properties for the new branch.

Property Value

Name Go To Page 12
Type (under Behavior) Page or URL (Redirect)

Target
Type = Page in this Application
Page = 12
Clear Cache = 12

When Button Pressed NEXT

Test Your Work
From the main menu, select Orders and click the Enter New Order button.
Your page should look like Figure 7-23. Select Existing Customer and click
the LOV button to call list of customers. Click the name of a customer
from the list. The name of the selected customer appears in the Customer
box. This is how an existing customer is selected for an order. Now, click the
New Customer option, the Dynamic Action created in section 7.5.13 invokes
and performs two actions. First, it hides the Customer box and the LOV.
Second, it shows a form similar to the one you created in Chapter 5 to add a
new customer record. Click the Next button without putting any value in the
provided form. An inline message box will appear with six errors. This is the
procedure you handled in the validation sections. After correcting all the form
errors if you click Next, the message “Sorry, this page isn't available“ pops
up indicating that Page 12 doesn’t exist. Your next task is to create Page 12
where you’ll select products for an order.

7.6 Create Select Items Page - Pages 12
Having identified the customer, the second step in the order wizard is to add
products to the order. In this exercise, you will create Page 12 of the
application to select ordered items and input the required quantities.

1. Click the Create Page button in the App Builder interface.

2. This time, select the Blank Page option. This option is selected to
create an application page from scratch. Using this option you can
create and customize a page according to your own specific needs.

3. Complete the first Page Attributes screen as show in the following
figure and click Next.

Figure 7-26

4. On the Navigation Menu screen, set Navigation Preference to
Identify an existing navigation menu entry for this page,
Existing Navigation Menu Entry to Orders, and click Next.

5. Click Finish to end the wizard.

7.6.1 Modify Page Properties
You styled the Detail View of an interactive report in the previous chapter to
customize its look. Here as well, you will apply some styling rules to give the
page a professional touch. Previously, you added rules to a single page
element: HTML table. In the following exercise you’ll apply rules to the
whole page. Before getting your feet wet, go through the following topic to
understand Cascading Style Sheets (CSS).

Cascading Style Sheets
A cascading style sheet (CSS) provides a way to control the style of a web
page without changing its structure. When used properly, a CSS separates
visual properties such as color, margins, and fonts from the structure of the
HTML document.

In this chapter, you will use CSS to style Page 12 (Select Items - Figure 7-
27). On this page you will add class properties to PL/SQL code and will
reference them in CSS in the HTML Head section. Before moving on to
understand the actual functionality, let’s first take a look at a simple example
on how to use class attribute in an HTML document. The class attribute is
mostly used to point to a class in a style sheet. The syntax is <element
class="classname">.

<html>

<head>
<style type="text/css">

h1.header {color:blue;}
p.styledpara {color:red;}

</style>
</head>
<body>

<h1 class="header">Class Referenced in CSS</h1>
<p>A normal paragraph.</p>
<p class="styledpara">Note that this is an important paragraph.</p>

</body>
</html>

The body of this web page contains three sections:

<h1 class="header">Class Referenced in CSS</h1> – The text
“Class Referenced in CSS” is enclosed in h1 html tag. It is called
level 1 heading and is the most important heading in a document. It
is usually used to indicate the title of the document. The text is
preceded by a class named “header”.

Considering the class syntax, h1 is the element and header is the
classname. This class is referenced in the style section using a CSS
rule – h1.header {color:blue;} – to present the heading in blue
color. A CSS rule has two main parts: a selector and one or more
declarations. The selector is normally the HTML element you want
to style. Each declaration consists of a property and a value. The
property is the style attribute you want to change. Each property
has a value. In the h1.header {color:blue;} rule, h1 is the selector,
header is the classname, and {color:blue;} is the declaration.

<p>A normal paragraph.</p> – It is a plain paragraph without
any style applied to it. HTML documents are divided into
paragraphs and paragraphs are defined with the <p> tag. The <p>
tag is called the start tag or opening tag, while </p> is called the
end or closing tag.

<p class="styledpara">Note that this is an important

paragraph.</p> – It is a paragraph with a class named
“styledpara”. In the style section, the selector “p” followed by the
classname “styledpara” with the declaration{color:red;} is
referencing this section to present the paragraph text in red color.

Now that you have understood how CSS is used in web pages, let’s figure out
how it is used in Oracle APEX.

1. Click the root node – Page 12: Order Items.

2. Set Dialog Template to Wizard Modal Dialog.

3. Set Width and Height to 500 and 600, respectively.

4. Enter the following code for inline property under CSS section and
save your work. You can find this code in
BookCode\Chapter7\7.6.1.txt file. CSS rules entered in this box
will be applied to all the referenced elements on the current page,
as illustrated in Figure 7-27.

Rule
#

Rule PL/SQL

1
2

3

4
5
6

7

8
9

10
11
12
13

14
15

16

A - CustomerInfo
div.CustomerInfo{margin: 10px 10px 0;}
div.CustomerInfo strong{font:bold 12px/16px Arial,sans-
serif;display:block;width:120px;}
div.CustomerInfo p{display:block;margin:0; font: normal 12px/16px Arial,
sans-serif;}

B - Products
div.Products{clear:both;margin:16px 0 0 0;padding:0 8px 0 0;}
div.Products table{border:1px solid #CCC;border-bottom:none;}
div.Products table th{background-color:#DDD;color:#000;font:bold
12px/16px Arial,sans-serif;padding:4px 10px;text-align:right;border-
bottom:1px solid #CCC;}
div.Products table td{border-bottom:1px solid #CCC;font:normal 12px/16px
Arial,sans-serif; padding:4px 10px;text-align:right;}
div.Products table td a{color:#000;}
div.Products .left{text-align:left;}

C - CartItem
div.CartItem{padding:8px 8px 0 8px;font:normal 11px/14px Arial,sans-serif;}
div.CartItem a{color:#000;}
div.CartItem span{display:block;text-align:right;padding:8px 0 0 0;}
div.CartItem span.subtotal{font-weight:bold;}

37,39,47

17
18
19

D - CartTotal
div.CartTotal{margin-top:8px;padding:8px;border-top:1px dotted #AAA;}
div.CartTotal span{display:block;text-align:right;font:normal 11px/14px
Arial,sans-serif;padding:0 0 4px 0;}
div.CartTotal p{padding:0;margin:0;font:normal 11px/14px Arial,sans-
serif;position:relative;}
div.CartTotal p.CartTotal{font:bold 12px/14px Arial,sans-serif;padding:8px 0
0 0;}
div.CartTotal p.CartTotal span{font:bold 12px/14px Arial,sans-
serif;padding:8px 0 0 0;}
div.CartTotal p span{padding:0;position:absolute;right:0;top:0;}

Figure 7-27 – CSS Rules Applied to Select Items Page

7.6.2 Create Region – Order Progress
Right-click the Wizard Progress Bar node and select Create Region. Set the
following properties for the new region. A similar region was added
previously to Page 11 to display the Order Progress bar.

Property Value

Title Order Progress

Type List

List Order Wizard

Template Blank with Attributes

List Template (under Attributes node) Wizard Progress

7.6.3 Create Region – Select Items
The region being created in this section is based on a custom PL/SQL code.
The code references CSS rules (defined in the previous section) to design the
Select Items page, as illustrated in Figure 7-27.

What is PL/SQL?
PL/SQL stands for Procedural Language/Structured Query Language. It is a
programming language that uses detailed sequential instructions to process
data. A PL/SQL program combines SQL command (such as Select and
Update) with procedural commands for tasks, such as manipulating variable
values, evaluating IF/THEN logic structure, and creating loop structures that
repeat instructions multiple times until the condition satisfies the defined
criteria. PL/SQL was expressly designed for this purpose.

The structure of a PL/SQL program block is:

Declare
Variable declaration

Begin
Program statements

Exception
Error-handling statements

End;

PL/SQL program variables are declared in the program’s declaration section.
The beginning of the declaration section is marked with the reserved word
DECLARE . You can declare multiple variables in the declaration section. The
body of a PL/SQL block consists of program statements, which can be
assigned statements, conditional statements, loop statements, and so on. The
body lies between the BEGIN and EXCEPTION statements. The exception
section contains program statements for error handling. Finally, PL/SQL
programs end with the END; statement. Comments in PL/SQL code are added
by prefixing them with double hyphens.

In a PL/SQL program block, the DECLARE and EXCEPTION sections are
optional. If there are no variables to declare, you can omit the DECLARE
section and start the program with the BEGIN command.

1. Right-click the Order Progress region and select Create Sub
Region from the context menu.

2. Enter Select Items for its Title and set its Type to PL/SQL
Dynamic Content to display the page content using PL/SQL code.
PL/SQL Dynamic Content displays the HTML output from the
PL/SQL code.

3. Add the code defined in the PL/SQL Code column (Table 7-1) in
the PL/SQL Code property (in the Source section). You can find
this code in BookCode\Chapter7\7.6.3.txt file. The first column
(CSS Rule) in the following table references the rules defined in
the previous section. These rules are applied to the injected HTML
elements in the PL/SQL code. The second table column is
populated with a serial number assigned to each PL/SQL code.
These numbers are referenced in the explanation section
underneath.

4. Do not set any option for the Template property (in other words,
change it from the default Standard value to the -Select-
placeholder).

CSS
Rule

Line
No.

PL/SQL Code

1

2

1
2
3
4
5
6
7
8
9
10
11
12
13

declare
l_customer_id varchar2(30) := :P11_CUSTOMER_ID;

begin
--
-- display customer information
--
sys.htp.p('<div class="CustomerInfo">');
if :P11_CUSTOMER_OPTIONS = 'EXISTING' then

for x in (select * from demo_customers where customer_id = l_customer_id) loop
sys.htp.p('<div class="CustomerInfo">');
sys.htp.p('Customer:');
sys.htp.p('<p>');
sys.htp.p(sys.htf.escape_sc(x.cust_first_name) || ' ' ||
sys.htf.escape_sc(x.cust_last_name) || '
');

3

2

3

14
15
16
17
18

19
20
21
22
23
24

25
26
27
28
29

30
31
32

sys.htp.p(sys.htf.escape_sc(x.cust_street_address1) || '
');
if x.cust_street_address2 is not null then

sys.htp.p(sys.htf.escape_sc(x.cust_street_address2) || '
');
end if;
sys.htp.p(sys.htf.escape_sc(x.cust_city) || ', ' ||
sys.htf.escape_sc(x.cust_state) || ' ' ||
sys.htf.escape_sc(x.cust_postal_code));
sys.htp.p('</p>');

end loop;
else

sys.htp.p('Customer:');
sys.htp.p('<p>');
sys.htp.p(sys.htf.escape_sc(:P11_CUST_FIRST_NAME) || ' ' ||

sys.htf.escape_sc(:P11_CUST_LAST_NAME) || '
');
sys.htp.p(sys.htf.escape_sc(:P11_CUST_STREET_ADDRESS1) || '
');
if :P11_CUST_STREET_ADDRESS2 is not null then

sys.htp.p(sys.htf.escape_sc(:P11_CUST_STREET_ADDRESS2) || '
');
end if;
sys.htp.p(sys.htf.escape_sc(:P11_CUST_CITY) || ', ' ||
sys.htf.escape_sc(:P11_CUST_STATE) || ' ' ||
sys.htf.escape_sc(:P11_CUST_POSTAL_CODE));
sys.htp.p('</p>');

end if;
sys.htp.p('
</div>');

CSS
Rule

Line PL/SQL Code

4
5

6,9

7,
8,
9

33
34
35
36
37

38

39

40
41
42

--
-- display products
--
sys.htp.p('<div class="Products" >');
sys.htp.p('<table width="100%" cellspacing="0" cellpadding="0" border="0">
<thead>
<tr><th class="left">Product</th><th>Price</th><th></th></tr>
</thead>
<tbody>');
for c1 in (select product_id, product_name, list_price, 'Add to Cart' add_to_order
from demo_product_info
where product_avail = 'Y'
order by product_name) loop
sys.htp.p('<tr><td class="left">' ||sys.htf.escape_sc(c1.product_name)||'</td>
<td>'||trim(to_char(c1.list_price,'999G999G990D00')) || '</td>
<td><a href="'||apex_util.prepare_url('f?
p=&APP_ID.:12:'||:app_session||':ADD:::P12_PRODUCT_ID:'|| c1.product_id)||'"
class="t-Button t-Button--simple t-Button--hot">Add<i class="iR"></i>
</td>
</tr>');
end loop;
sys.htp.p('</tbody></table>');
sys.htp.p('</div>');

CSS
Rule

Line PL/SQL Code

4
5

9

5

10
11

11

12

13

43
44
45
46
47

48
49
50
51
52

53
54

55
56
57
58
59
60
61
62
63

--
-- display current order
--
sys.htp.p('<div class="Products" >');
sys.htp.p('<table width="100%" cellspacing="0" cellpadding="0" border="0">
<thead>
<tr><th class="left">Current Order</th></tr>
</thead>
</table>
<table width="100%" cellspacing="0" cellpadding="0" border="0">
<tbody>');
declare

c number := 0; t number := 0;
begin
-- loop over cart values
for c1 in (select c001 pid, c002 i, to_number(c003) p, count(c002) q, sum(c003) ep, 'Remove'
remove
from apex_collections
where collection_name = 'ORDER'
group by c001, c002, c003
order by c002)
loop
sys.htp.p('<div class="CartItem">
<a href="'|| apex_util.prepare_url('f?
p=&APP_ID.:12:&SESSION.:REMOVE:::P12_PRODUCT_ID:'||sys.htf.escape_sc(c1.pid))||'">

'||sys.htf.escape_sc(c1.i)||'
'||trim(to_char(c1.p,'$999G999G999D00'))||'
Quantity: '||c1.q||'
Subtotal: '||trim(to_char(c1.ep,'$999G999G999D00'))||'
</div>');
c := c + 1;
t := t + c1.ep;
end loop;
sys.htp.p('</tbody></table>');

CSS
Rule

Line PL/SQL Code

14,15
16,17
18,19

64
65
66
67
68
69
70
71

if c > 0 then
sys.htp.p('<div class="CartTotal">
<p>Items: '||c||'</p>
<p class="CartTotal">Total:

'||trim(to_char(t,'$999G999G999D00'))||'</p>
</div>');

else
sys.htp.p('<div class="alertMessage info" style="margin-top: 8px;">');

72
73
74
75
76
77
78
79
80

sys.htp.p('');
sys.htp.p('<div class="innerMessage">');

sys.htp.p('<h3>Note</h3>');
sys.htp.p('<p>You have no items in your current order.</p>');

sys.htp.p('</div>');
sys.htp.p('</div>');

end if;
end;
sys.htp.p('</div>');
end;

Table 7-1 – PL/SQL Code

NOTE: The ELSE block (lines 70-76) executes when the user tries to move
on without selecting a product in the current order. The block uses a built-in
class (alertMessage info) that carries an image (f_spacer.gif) followed by the
message specified on lines 73-74.

In this PL/SQL code you merged some HTML elements to deliver the page in
your browser. Before getting into the code details, let’s first acquaint
ourselves with some specific terms and objects used in the PL/SQL code.

Using HTML in PL/SQL Code
Oracle APEX installs with your Oracle database and is comprised of data in
tables and PL/SQL code. Whether you are running the Oracle APEX
development environment or an application you built using Oracle APEX, the
process is the same. Your browser sends a URL request, which is translated
into an appropriate Oracle APEX PL/SQL call. After the database processes
the PL/SQL, the results are relayed back to your browser as HTML. This
cycle happens each time you either request or submit a page.

Specific HTML content not handled by Oracle APEX (forms, reports, and
charts) are generated using the PL/SQL region type. You can use PL/SQL to
have more control over dynamically generated HTML within a region, as you
do here. Let’s see how these two core technologies are used together.

htp and htf Packages:
htp (hypertext procedures) and htf (hypertext functions) are part of PL/SQL
Web Toolkit package to generate HTML tags. These packages translate
PL/SQL into HTML understood by a web browser. For instance, the
htp.anchor procedure generates the HTML anchor tag <a>. The following
PL/SQL block generate a simple HTML document:

CREATE OR REPLACE PROCEDURE hello AS
BEGIN

htp.htmlopen; -- generates <HTML>
htp.headopen; -- generates <HEAD>
htp.title('Hello'); -- generates <TITLE>Hello</TITLE>
htp.headclose; -- generates </HEAD>
htp.bodyopen; -- generates <BODY>
htp.header(1, 'Hello'); -- generates <H1>Hello</H1>
htp.bodyclose; -- generates </BODY>
htp.htmlclose; -- generates </HTML>

END;

Oracle provided the htp.p tag to allow you to override any PL/SQL-HTML
procedure or even a tag that did not exist. If a developer wishes to use a new
HTML tag or simply is unaware of the PL/SQL analog to the html tag, s/he
can use the htp.p procedure.

For every htp procedure that generates HTML tags, there is a corresponding
htf function with identical parameters. The function versions do not directly
generate output in your web page. Instead, they pass their output as return
values to the statements that invoked them.

htp.p / htp.print:
Generates the specified parameter as a string

htp.p(‘<p>’):
Indicates that the text coming after the tag is to be formatted as a paragraph

Customer::
Renders the text they surround in bold

htf.escape_sc:
Escape_sc is a function, which replaces characters that have special meaning
in HTML with their escape sequence.

converts occurrence of & to &
converts occurrence of “ to "
converts occurrence of < to <
converts occurrence of > to >

To prevent XSS (Cross Site Scripting) attacks, you must call
SYS.HTF.ESCAPE_SC to prevent embedded JavaScript code from being
executed when you inject the string into an HTML page. The SYS prefix is

used to signify Oracle’s SYS schema. The HTP and HTF packages normally
exist in the SYS schema and Oracle APEX relies on them.

Cursor FOR LOOP Statement
The cursor FOR LOOP statement implicitly declares its loop index as a
record variable of the row type that a specified cursor returns and then opens
a cursor. With each iteration, the cursor FOR LOOP statement fetches a row
from the result set into the record. When there are no more rows to fetch, the
cursor FOR LOOP statement closes the cursor. The cursor also closes if a
statement inside the loop transfers control outside the loop or raises an
exception.

The cursor FOR LOOP statement lets you run a SELECT statement and then
immediately loop through the rows of the result set. This statement can use
either an implicit or explicit cursor.

If you use the SELECT statement only in the cursor FOR LOOP statement,
then specify the SELECT statement inside the cursor FOR LOOP statement,
as in Example A. This form of the cursor FOR LOOP statement uses an
implicit cursor and is called an implicit cursor FOR LOOP statement.
Because the implicit cursor is internal to the statement, you cannot reference
it with the name SQL.

Example A - Implicit Cursor FOR LOOP Statement

BEGIN
FOR item IN (

SELECT last_name, job_id
FROM employees
WHERE job_id LIKE '%CLERK%' AND manager_id > 120
ORDER BY last_name

)
LOOP

DBMS_OUTPUT.PUT_LINE ('Name = ' || item.last_name || ', Job = ' || item.job_id);
END LOOP;

END;
/

If you use the SELECT statement multiple times in the same PL/SQL unit,
define an explicit cursor for it and specify that cursor in the cursor FOR
LOOP statement, as shown in Example B. This form of the cursor FOR
LOOP statement is called an explicit cursor FOR LOOP statement. You can
use the same explicit cursor elsewhere in the same PL/SQL unit.

Example B - Explicit Cursor FOR LOOP Statement
DECLARE

CURSOR c1 IS
SELECT last_name, job_id FROM employees
WHERE job_id LIKE '%CLERK%' AND manager_id > 120
ORDER BY last_name;

BEGIN
FOR item IN c1
LOOP

DBMS_OUTPUT.PUT_LINE ('Name = ' || item.last_name || ', Job = ' || item.job_id);
END LOOP;

END;
/

TABLE 7-1 PL/SQL CODE EXPLAINED

Display Customer Information (Lines 7-32)
This procedure fetches information of the selected customer and presents it in
a desirable format (as shown in Figure 7-27) using the CSS rules defined
under the class CustomerInfo.

Declare (Line: 1)
This is the parent PL/SQL block. A nested block is also used under the
Display Current Order section on line:48.

l_customer_id varchar2(30) := :P11_CUSTOMER_ID; (Line: 2)
Assigns customer ID, which is retrieved from the previous order wizard step
(Page 11), to the variable l_customer_id. This variable is used in a SQL
statement (on Line No. 9) to fetch details of the selected customer. In
PL/SQL, the symbol := is called the assignment operator. The variable, which
is being assigned the new value, is placed on the left side of the assignment
operator and the value is placed on the right side of the operator.

:P11_CUSTOMER_ID is called a bind variable. Bind variables are
substituion variables that are used in place of literals. You can use bind
variables syntax anywhere in Oracle APEX where you are using SQL or
PL/SQL to reference session state of a specified item. For example:

SELECT * FROM employees WHERE last_name like '%' || :P99_SEARCH_STRING || '%'

In this example, the search string is a page item. If the region type is defined
as SQL Query, then you can reference the value using standard SQL bind
variable syntax. Using bind variables ensures that parsed representations of
SQL queries are reused by the database, optimizing memory usage by the
server.

The use of bind variables is encouraged in Oracle APEX. Bind variables help
you protect your Oracle APEX application from SQL injection attacks. Bind
variables work in much the same way as passing data to a stored procedure.
Bind variables automatically treat all input data as “flat” data and never
mistake it for SQL code. Besides the prevention of SQL injection attacks,
there are other performance-related benefits to its use.

You declare a page item as a bind variable by prefixing a colon character (:)
like this:
:P11_CUSTOMER_OPTIONS.

When using bind variable syntax, remember the following rules:

Bind variable names must correspond to an item name
Bind variable names are not case-sensitive
Bind variable names cannot be longer than 30 characters

Although page item and application item names can be up to 255 characters,
if you intend to use an application item within SQL using bind variable

syntax, the item name must be 30 characters or less.

Begin (Line: 3)
Read What is PL/SQL at the beginning of this section.
The code block from line number 7 to 32 creates the first section on the page
(marked as A in Figure 7-27) using the <div> HTML element and styles it
using Rule 1 and 2. The code between lines 9-20 is executed when the user
selects an existing customer from the previous wizard step.

sys.htp.p('<div class="CustomerInfo">'); (Line: 7)
The <div> tag defines a division or a section in an HTML document. This is
the opening tag, which references the CustomerInfo class in CSS rules to
format the following elements. The ending tag is defined on Line 32.

for x in (select * from demo_customers where customer_id =
l_customer_id) loop (Line: 9)
Initiates the FOR loop to locate and fetch record of the selected customer
from the demo_customers table.

sys.htp.p('Customer:'); (Line: 11)
Displays the label “Customer:” in bold.

sys.htp.p('<p>'); (Line: 12)
The paragraph opening tag. It ends on Line 19.

sys.htp.p(sys.htf.escape_sc(x.cust_first_name) || ' '
||sys.htf.escape_sc(x.cust_last_name) || '
'); (Line: 13)
Concatenates customer’s first and last names using the concatenation
characters (||). The
 tag inserts a single line break.

sys.htp.p(sys.htf.escape_sc(x.cust_street_address1) || '
'); (Line: 14)
Show customer’s first address on a new line.
if x.cust_street_address2 is not null then (Lines: 15-17)

sys.htp.p(sys.htf.escape_sc(x.cust_street_address2) || '
');
end if;
It’s a condition to check whether the customer’s second address is not null. If
it’s not, print it on a new line.

sys.htp.p(sys.htf.escape_sc(x.cust_city) || ', ' ||
sys.htf.escapte_sc(x.cust_state) || ' ' ||

sys.htf.escape_sc(x.cust_postal_code)); (Line: 18)
Displays city, state, and postal code data on the same row separating each
other with a comma and a blank space.

sys.htp.p('</p>'); (Line: 19)
The paragraph end tag.

end loop; (Line: 20)
The loop terminates here after fetching details of an existing customer from
the database table.

sys.htp.p('</div>'); (Line: 32)
The div tag terminates here. The output of this section is illustrated in Figure
7-27: A - CustomerInfo. The ELSE block (line 22-30) is executed when a
new customer is added to the database from the order interface. In that
situation, all values on the current page are fetched from the previous wizard
step (Page 11).

Display Products (Lines: 36-42)
Here you create a section on your web page to display all products along with
their prices and include an option, which allows users to add products to their
cart.

sys.htp.p('<div class="Products" >'); (Line: 36)
Creates a division based on the Products class. HTML elements under this
division are styled using rules 4-9.

sys.htp.p('<table width="100%" cellspacing="0" cellpadding="0"
border="0"> (Line: 37)
Here you are initiating to draw an HTML table. The <table> tag defines an
HTML table. An HTML table consists of the <table> element and one or
more <tr>, <th>, and <td> elements. The <tr> element defines a table row,
the <th> element defines a table header, and the <td> element defines a table
cell. The Width attribute specifies the width of the table. Setting 100% width
instructs the browser to consume the full screen width to display the table
element.

<thead> (Line: 37)
<tr><th class="left">Product</th><th>Price</th><th></th></tr>

</thead>

The <thead> tag is used to group header content in an HTML table. The
<thead> element is used in conjunction with the <tbody> and <tfoot>
elements to specify each part of a table (header, body, footer). The <tr> tag
creates a row for column heading. The three <th> tags specify the headings.
The first two columns are labeled Product and Price, respectively. The third
column heading is left blank. A specific declaration (class=”left”) is included
that points toward the CSS rule (9) div.Products .left{text-align:left;} to align
the title of the first column (Product) to the left. The second column (Price) is
styled using a general rule (6).

<tbody>’); (Line: 37)
The <tbody> tag is used to group the body content in an HTML table. This
section spans up to line 41 and is marked as B in Figure 7-27.

for c1 in (select product_id, product_name, list_price, 'Add to Cart'
add_to_order
from demo_product_info
where product_avail = 'Y'
order by product_name) loop (Line: 38)
The FOR loop fetches Product ID, Product Name, and List Price columns
from the products table. To display a button (Add) in the table, we appended
a column aliased add_to_order and populated all rows with a constant value
'Add to Cart'. For further information on FOR LOOP, see the Cursor FOR
LOOP Statement section earlier in this section.

sys.htp.p('<tr><td class="left">'
||sys.htf.escape_sc(c1.product_name)||'</td>

<td>'||trim(to_char(c1.list_price,'999G999G990D00'))
|| '</td>

<td><a href=" '||apex_util.prepare_url('f?
p=&APP_ID.:12:'||:app_session||'

:ADD:::P12_PRODUCT_ID:'||
c1.product_id)||' "

class="t-Button t-Button--simple
t-Button--hot">

Add<i class="iR"></i>

</td>
</tr>'); (Line: 39)

This line displays product names with respective prices in two separate
columns. The product column is styled using Rule 9, while the price column
is styled using Rule 6. There is an Add button in the third column of the table,
which is presented as a link using the HTML anchor tag <a> and is styled
using a built-in class (t-Button). An anchor can be used in two ways:

1. To create a link to another document by using the href attribute.
2. To create a bookmark inside a document by using the name

attribute.

It is usually referred to as a link or a hyperlink. The most important attribute
of the <a> element is the href attribute, which specifies the URL of the page
to which the link goes. When this button is clicked, the product it represents
is moved to the Current Order section with the help of a process (Add
Product to the Order Collection) defined in section 7.6.7.

The c1 prefix in front of column names, points to the FOR LOOP cursor. The
TRIM function in the expression,
trim(to_char(c1.list_price,'999G999G990D00')), takes a character expression
and returns that expression with leading and/or trailing pad characters
removed. This expression initially formats the list price column to add
thousand separators and decimal place. Next, it converts the numeric price
value to text expression using the TO_CHAR function and finally applies the
TRIM function. The TO_CHAR function converts a DATETIME, number, or
NTEXT expression to a TEXT expression in a specified format. The table
that follows lists the elements of a number format model with some
examples.

Element Example Description
0 0999 Returns leading zeros.

9990 Returns trailing zeros.
9 9999 Returns value with the specified number of digits with a leading space if

positive or with a leading minus if negative. Leading zeros are blank,
except for a zero value, which returns a zero for the integer part of the
fixed-point number.

D 99D99 Returns in the specified position the decimal character, which is the
current value of the NLS_NUMERIC_CHARACTER parameter. The
default is a period (.).

G 9G999 Returns the group separator (which is usually comma) in the specified
position. You can specify multiple group separators in a number format
model. Use the following SQL statement to check the current value for
decimal and group separator characters:
SELECT value FROM v$nls_parameters
WHERE parameter='NLS_NUMERIC_CHARACTERS';

The code,
<a href="'||apex_util.prepare_url('f?p=&APP_ID.:12:'||:app_session||':ADD:::P12_PRODUCT_ID:'||
c1.product_id)||'" class="t-Button t-Button--simple t-Button--hot"> Add<iclass="iR"></i>
,
creates a link with an ADD request. The value of REQUEST is the name of
the button the user clicks. For example, suppose you have a button with a
name of CHANGE and a label Apply Changes. When a user clicks the button,
the value of REQUEST is CHANGE. In section 7.6.7, you will create the
following process named Add Product to the order collection.
for x in (select p.rowid, p.* from demo_product_info p where product_id=:P12_PRODUCT_ID)
loop

select count(*)
into l_count
from wwv_flow_collections
where collection_name = 'ORDER'
and c001 = x.product_id;
if l_count >= 10 then

exit;
end if;
apex_collection.add_member(p_collection_name => 'ORDER',

p_c001 => x.product_id,
p_c002 => x.product_name,
p_c003 => x.list_price,
p_c004 => 1,
p_c010 => x.rowid);

end loop;

During the process creation, you’ll select Request=Value in Condition Type
and will enter ADD for Value. The ADD request in the <a> tag is referencing
the same expression. When a user clicks the ADD button on the web page,
the URL sends the ADD request to the process along with the selected
product ID using a hidden item named P12_PRODUCT_ID to be created in
section 7.6.4. In turn, the process adds the product to the Current Order
section. The URL generated from this code looks something like this at
runtime:
f?p=18132:12:13238397476902:ADD:::P12_PRODUCT_ID:10

end loop; (Line: 40)
End of FOR loop.

sys.htp.p('</tbody></table>'); (Line: 41)
Table and body closing tags.

sys.htp.p('</div>'); (Line: 42)
The closing div tag.

Display Current Order (Lines: 46-79)
This section acts as a shopping cart. The products selected by a user are
placed in this section.

sys.htp.p('<div class="Products" >'); (Line: 46)
Defines the <div> tag and utilizes the Products class referenced in rules 4-9.

sys.htp.p('<table width="100%" cellspacing="0" cellpadding="0"
border="0">

<thead>
<tr><th class="left">Current Order</th></tr>

</thead>
</table> (Line: 47)
Displays section heading as follows in the first row of a separate table.

Declare (Line: 48)
This is a nested or child block. To nest a block means to embed one or more
PL/SQL block inside another PL/SQL block to have better control over
program’s execution.

c number := 0; t number := 0; (Line: 49)
Declared two numeric counter variables and initialized them with zero. The
variable c is used to evaluate whether any product is selected in the current
order, while the variable t stores total value for the order.

Begin (Line: 50)

for c1 in (select c001 pid, c002 i, to_number(c003) p, count(c002) q,
sum(c003) ep, 'Remove' remove

from apex_collections
where collection_name = 'ORDER'

group by c001, c002, c003
order by c001)

loop (Line: 52)
APEX Collection enables you to temporarily capture one or more non-scalar
values. You can use collections to store rows and columns currently in
session state so they can be accessed, manipulated, or processed during a
user’s specific session. You can think of a collection as a bucket in which you
temporarily store and name rows of information.

Every collection contains a named list of data elements (or members), which
can have up to 50 character properties (varchar2 (4000)), 5 number, 5 date, 1
XML type, 1 BLOB, and 1 CLOB attribute. You insert, update, and delete
collection information using the PL/SQL API APEX_COLLECTION.

When you create a new collection, you must give it a name that cannot
exceed 255 characters. Note that collection names are not case-sensitive and
will be converted to uppercase. Once the collection is named, you can access
the values (members of a collection) in the collection by running a SQL
query against the database view APEX_COLLECTIONS.

The APEX_COLLECTIONS view has the following definition:

COLLECTION_NAME NOT NULL VARCHAR2(255)
SEQ_ID NOT NULL NUMBER
C001 VARCHAR2(4000)
C002 VARCHAR2(4000)
C003 VARCHAR2(4000)
C004 VARCHAR2(4000)
C005 VARCHAR2(4000)
...
C050 VARCHAR2(4000)
N001 NUMBER
N002 NUMBER
N003 NUMBER
N004 NUMBER
N005 NUMBER
CLOB001 CLOB
BLOB001 BLOB
XMLTYPE001 XMLTYPE

MD5_ORIGINAL VARCHAR2(4000)

Use the APEX_COLLECTIONS view in an application just as you would use
any other table or view in an application, for example:

SELECT c001, c002, c003, n001, clob001
FROM APEX_collections
WHERE collection_name = 'DEPARTMENTS'

The CREATE_OR_TRUNCATE_COLLECTION method creates a new
collection if the named collection does not exist. If the named collection
already exists, this method truncates it. Truncating a collection empties it, but
leaves it in place.

In section 7.5.12, we created a process named Create or Truncate Order
Collection under the page rendering section and used the following statement
to create a collection named ORDER:

apex_collection.create_or_truncate_collection (p_collection_name => 'ORDER');

In the “For C1 in” loop, we’re selecting records from the same ORDER
collection. Columns from apex_collections in the SELECT statement
correspond to:

Column Corresponds To
C001 – pid Product ID (9)
C002 – i Product Name (Men Shoes)
C003 – p List Price (110)
C002 - q Quantity (1)
C003 - ep Extended Price (110) This value will increase with each Add button click to

accumulate total cost of a product.

sys.htp.p('<div class="CartItem"> (Line: 53)
This line references another class (CartItem) to style the actual Current Order
section.

<a href="'||apex_util.prepare_url('f?
p=&APP_ID.:12:&SESSION.:REMOVE:::P12_PRODUCT_ID:'||sys.htf.escape_sc(c1.pid))||'
<img src="#IMAGE_PREFIX#delete.gif" alt="Remove from cart"
title="Remove from cart" />
 (Line: 54)
The <a> tag creates a link with a REMOVE request. This time, it uses

product ID from the collection. In section 7.6.7 (B), there is a process named
Remove product from the Order Collection (as shown below) where the
request expression is set to REMOVE.

for x in
(select seq_id, c001 from apex_collections

where collection_name = 'ORDER' and c001 = :P12_PRODUCT_ID)
loop
apex_collection.delete_member(p_collection_name => 'ORDER', p_seq => x.seq_id);
end loop;

In HTML, images are defined with the tag. The tag has no
closing tag. To display an image on a page, you need to use the src attribute.
Src stands for "source". The value of the src attribute is the URL of the image
you want to display.

Syntax for defining an image:

The URL points to the location where the image is stored. The value of
IMAGE_PREFIX determines the virtual path the web server uses to point to
the images directory distributed with Oracle APEX. We used “delete.gif” that
is displayed in front of the product name. The required alt attribute specifies
an alternate text for an image, if the image cannot be displayed.

When a user clicks the remove link [X] in the Current Order section, the URL
sends a REMOVE request to the process along with the product ID. The
DELETE_MEMBER procedure deletes a specified member from a given
named collection using the p_seq => x.seq_id parameter, which is the
sequence ID of the collection member to be deleted.

'||sys.htf.escape_sc(c1.i)||' (Line: 55)
Displays name of the selected product in the Current Order section.

'||trim(to_char(c1.p,'$999G999G999D00'))||' (Line: 56)
Quantity: '||c1.q||' (Line: 57)
Subtotal:
'||trim(to_char(c1.ep,'$999G999G999D00'))||' (Line: 58)
The three lines display price, quantity, and sub-total of the selected product in
the Current Order section, as shown below:

</div>'); (Line: 59)
The ending div tag.

c := c + 1; (Line: 60)
This counter increments the value of c with 1 at the end of each loop. The
variable c is used to calculate number of items selected in the current order.

t := t + c1.ep; (Line: 61)
Similar to the variable c, t is also incremented to sum up extended price
(c1.ep) to calculate total order value.

if c > 0 then
sys.htp.p('<div class="CartTotal">

<p>Items: '||c||'</p>
<p class="CartTotal">Total:

'||trim(to_char(t,'$999G999G999D00'))||'</p>
</div>');

else

 sys.htp.p('<div class="alertMessage
info" style="margin-top: 8px;">');

sys.htp.p('');

 sys.htp.p('<div class="innerMessage">');
sys.htp.p('<h3>Note</h3>');
sys.htp.p('<p>You have no items in your current order.</p>');

 sys.htp.p('</div>');
 sys.htp.p('</div>');
end if; (Line: 64-77)

The condition (IF c > 0) evaluates whether a product is selected in the current
order. A value other than zero in this variable indicates addition of
product(s). If the current order has some items added, the label Total: along
with the value is displayed, which is stored in the variable t. If no items are
selected, the message defined in the else block is shown using a couple of
built-in classes.

7.6.4 Create Hidden Item
Create a hidden item in the Select Items region. When you click the Add
button on Page 12 to add a product to an order, the ID of that product is
stored in this hidden item using a URL specified in the PL/SQL code on line
39.

Property Value

Name P12_PRODUCT_ID

Type Hidden

7.6.5 Create Region to hold Buttons
Right-click the Wizard Buttons node and select Create Region. Enter
Buttons for the Title of this region and set its Template to Buttons
Container. The region will hold three buttons: Cancel, Previous, and Next.
These buttons are created in the next section.

7.6.6 Create Buttons
All the three buttons created in this section have one thing in common, the
Action property, which is set to Submit Page. When you click any of these
three buttons, the page is submitted and a corresponding branch (to be created
in section 7.6.9) is fired to take you to the specified location. For example, if
you click the Cancel button, the corresponding branch takes you back to the
main Orders page (Page 4). Right-click the new Buttons region and select
Create Button. Set the following properties for the new button:

Property Value

Button Name CANCEL

Label Cancel

Button Position Close

Action Submit Page

Create another button under the Cancel button and set the following
properties:

Property Value

Button Name PREVIOUS

Label Previous

Button Position Previous

Button Template Icon

Icon fa-chevron-left

Action Submit Page

Create the final button under the Previous button and set the following
properties:

Property Value

Button Name NEXT

Label Place Order

Button Position Next

Button Template Text with Icon

Hot On

Icon fa-chevron-right

Action Submit Page

7.6.7 Create Processes
The two processes created in this section handle the routine to either add a
product to the Current Order section or remove one from it. The
add_member function references the collection (ORDER created in section
7.5.12) to populate the collection with a new product. In Table 7-1, the link
defined on line 39 in the PL/SQL code forwards an ADD request, which is
entertained here after evaluating the request in step 4 below.

A. Add Product to the Order Collection

1. On Page 12, expand the Pre-Rendering node (on the Rendering
tab) and create a process under Before Header node.

2. Enter Add Product to the ORDER Collection for the name of this
new process and set its Type to PL/SQL Code.

Figure 7-28

3. Enter the following code in the PL/SQL Code box. Locate this code
under BookCode\Chapter7\7.6.7A.txt file.

declare
l_count number := 0;

begin
for x in (select p.rowid, p.* from demo_product_info p

where product_id = :P12_PRODUCT_ID)
loop

select count(*)
into l_count
from wwv_flow_collections
where collection_name = 'ORDER'
and c001 = x.product_id;
if l_count >= 10 then

exit;
end if;
apex_collection.add_member(p_collection_name => 'ORDER',

p_c001 => x.product_id,
p_c002 => x.product_name,
p_c003 => x.list_price,
p_c004 => 1,
p_c010 => x.rowid);

end loop;
end;

4. In Server-side Condition section, set Type to Request=Value, and
enter ADD in the Value property box.

B. Remove Product from the Order Collection

The delete_member function is just opposite to the add_member function. It
is called by a link (Table 7-1 line 54), which carries a REMOVE request. The

request is evaluated by a condition set in Step 3 below. If the request
matches, the selected product is deleted from the ORDER collection.

1. Create another process under the previous one. Name it Remove
Product from the ORDER Collection and set its Type to PL/SQL
Code.

2. Enter the following code in the PL/SQL Code property box. Get
this code from BookCode\Chapter7\7.6.7B.txt file.

for x in
(select seq_id, c001 from apex_collections

where collection_name = 'ORDER' and c001 = :P12_PRODUCT_ID)
loop

apex_collection.delete_member(p_collection_name => 'ORDER', p_seq =>
x.seq_id);
end loop;

3. In Server-side Condition section, set Type to Request=Value, and
enter REMOVE in the Value property box.

7.6.8 Create Process – Place Order
After selecting products for an order, you click the Next button. The process
defined in this section is associated with this button. The PL/SQL code
specified in this process adds new customer and order information in relevant
database tables using a few SQL INSERT statements. After committing the
DML statement, the process truncates the ORDER collection.

1. On the Processing tab, create a new process under the Processing
node.

Figure 7-29

2. Enter Place Order for the name of this new process and set its
Type to PL/SQL Code. Enter the following code in the PL/SQL
Code box. Also, select NEXT for When Button Pressed property.
The code is stored under BookCode\Chapter7\7.6.8.txt file.

declare
 l_order_id number;
 l_customer_id varchar2(30) := :P11_CUSTOMER_ID;
begin
-- Create New Customer
 if :P11_CUSTOMER_OPTIONS = 'NEW' then
 insert into DEMO_CUSTOMERS (
 CUST_FIRST_NAME, CUST_LAST_NAME, CUST_STREET_ADDRESS1,
 CUST_STREET_ADDRESS2, CUST_CITY, CUST_STATE,
CUST_POSTAL_CODE,
 CUST_EMAIL, PHONE_NUMBER1, PHONE_NUMBER2, URL, CREDIT_LIMIT,
TAGS)
 values (
 :P11_CUST_FIRST_NAME, :P11_CUST_LAST_NAME,
:P11_CUST_STREET_ADDRESS1,
 :P11_CUST_STREET_ADDRESS2, :P11_CUST_CITY, :P11_CUST_STATE,
 :P11_CUST_POSTAL_CODE, :P11_CUST_EMAIL, :P11_PHONE_NUMBER1,
 :P11_PHONE_NUMBER2, :P11_URL, :P11_CREDIT_LIMIT, :P11_TAGS)
 returning customer_id into l_customer_id;
 :P11_CUSTOMER_ID := l_customer_id;
 end if;
-- Insert a row into the Order Header table
-- The statement returning order_id into l_order_id stores the primary key value for
 the order_id column (generated by the DEMO_ORD_SEQ sequence) into the local

variable l_order_id. This value is used in the INSERT statements to
 populate the order_id column in DEMO_ORDER_ITEMS table.

insert into demo_orders(customer_id, order_total, order_timestamp, user_name)
values (l_customer_id, null, systimestamp, upper(:APP_USER))

 returning order_id into l_order_id;
 commit;
-- Loop through the ORDER collection and insert rows into the Order Line Item table

for x in (select c001, c003, sum(c004) c004 from apex_collections
 where collection_name = 'ORDER' group by c001, c003) loop
 insert into demo_order_items(order_item_id, order_id, product_id, unit_price, quantity)
 values (null, l_order_id, to_number(x.c001), to_number(x.c003),to_number(x.c004));
 end loop;
 commit;
-- Set the item P14_ORDER_ID to the order which was just placed
 :P14_ORDER_ID := l_order_id;
-- Truncate the collection after the order has been placed

 apex_collection.truncate_collection(p_collection_name => 'ORDER');
end;

7.6.9 Create Branches
Create the following three branches under the After Processing node on the
Processing tab. The buttons referenced in these branches were created in
section 7.6.6.

Property Value

Name Go To Page 14

Type (under Behavior) Page or URL (Redirect)

Target Type = Page in this Application
Page = 14

When Button Pressed NEXT

Property Value

Name Go To Page 4

Type (under Behavior) Page or URL (Redirect)

Target Type = Page in this Application
Page = 4

When Button Pressed CANCEL

Property Value

Name Go To Page 11

Type (under Behavior) Page or URL (Redirect)

Target Type = Page in this Application
Page = 11

When Button Pressed PREVIOUS

Test Your Work
Navigate to the Orders page using the main menu route and click the Enter
New Order button. Select a customer using the Existing Customer option
and click Next. Click the Add button next to Air Jordan 6 shoes to add this
product to the Current Order pane. Click the Add button again for this
product and see increase in Quantity and Total. Add some more products and
observe the change in the Current Order section. Click the cross sign to
remove a product from the Current Order section. Click Cancel to return to
Page 4 without saving the order.

7.7 Create Order Summary Page - Page 14
After adding products to the Order form, you click the Place Order button.
The next page, Order Summary, comes up to show details of the placed
order. In this section, you will create this page. It is the last step in the order
creation wizard.

1. Create one more Blank Page.

2. Complete the first wizard step as show in the following figure and
click Next.

3. On the Navigation Menu screen, set Navigation Preference to
Identify an existing navigation menu entry for this page, and set
Existing Navigation Menu Entry to Orders. Click Next.

4. Click Finish to end the wizard.

5. Click the root node (Page 14: Order Summary) and set Dialog
Template to Wizard Modal Dialog.

7.7.1 Create Region – Order Progress
Right-click the Wizard Progress Bar node and select Create Region. Set the
following properties for the new region.

Property Value

Title Order Progress

Type List

List Order Wizard

Template Blank with Attributes

List Template (under Attributes node) Wizard Progress

7.7.2 Create Region – Order Header
Right-click the Wizard Body node and select Create Region. Set the
following properties for this region. Just like section 7.6.3, you define the
region as PL/SQL Dynamic Content, which is based on PL/SQL that enables
you to render any HTML or text.

Property Value

Title Order Header

Type PL/SQL Dynamic Content

PL/SQL
Code

begin
for x in (select c.cust_first_name, c.cust_last_name, cust_street_address1,
cust_street_address2, cust_city, cust_state, cust_postal_code from demo_customers c,
demo_orders o
where c.customer_id = o.customer_id and o.order_id = :P14_ORDER_ID)
loop

htp.p('ORDER #' ||
sys.htf.escape_sc(:P14_ORDER_ID) || '
');

htp.p(sys.htf.escape_sc(x.cust_first_name) || ' ' ||
sys.htf.escape_sc(x.cust_last_name) || '
');

htp.p(sys.htf.escape_sc(x.cust_street_address1) || '
');
if x.cust_street_address2 is not null then

htp.p(sys.htf.escape_sc(x.cust_street_address2) || '
');
end if;
htp.p(sys.htf.escape_sc(x.cust_city) || ', ' || sys.htf.escape_sc(x.cust_state) || ' ' ||

sys.htf.escape_sc(x.cust_postal_code) || '

');
end loop;
end;

7.7.3 Create Region – Order Lines
Add another region under the Wizard Body node and set the following
properties for this region. After creating this region expand its Columns node
and set suitable heading for each column. This region will carry line item
information.

Property Value

Title Order Lines

Type Classic Report

Location Local Database

Type SQL Query

SQL Query

select p.product_name, oi.unit_price, oi.quantity, (oi.unit_price * oi.quantity)
extended_price
from demo_order_items oi, demo_product_info p
where oi.product_id = p.product_id and oi.order_id = :P14_ORDER_ID

7.7.4 Create Item
Right-click the Order Lines region and select Create Page Item. Set the
following properties for the new item. The value for this item was set in the
PL/SQL code defined in section 7.6.8 and was utilized in the codes defined in
section 7.7.2 and in section 7.7.3 to fetch order information.

Property Value

Name P14_ORDER_ID

Type Hidden

7.7.5 Create Region – Buttons
Right-click the Wizard Buttons node and select Create Region. Enter
Buttons for its Name and set its Template to Buttons Container. The region
will hold the following button.

7.7.6 Create Button
Right-click the new Buttons region node and select Create Button. Set the
following properties for the new button:

Property Value

Button Name BACK

Label Back To Orders

Button Position Next

Hot On

Action Redirect to Page in this Application

Target Type = Page in this application
Page = 4

7.7.7 Create Trigger
As the final step of this module, add the following trigger to your schema.
The trigger will fire to write order total to the DEMO_ORDERS table when
any order item is changed.

1. From the main Oracle APEX menu, select SQL Workshop | SQL
Commands.

Figure 7-31

2. In the SQL Commands interface, enter the code for the new trigger
named DEMO_ORDER_ITEMS_AIUD_TOTAL, as illustrated in
the following figure, and hit the Run button. The trigger will be
created and you will see a confirmation on the Results tab. The
code for this trigger is available in BookCode\Chapter7\7.7.7.txt
file.

Figure 7-32

Complete Testing
Congratulation! You have completed the most tiresome but interesting
chapter of the book in which you learned numerous techniques. Now you are
in a position to test the whole work you performed in this chapter.

1. Select Orders from the main navigation menu and then click the
Enter New Order button.

2. Select New Customer.

3. Fill in the New Customer form using your own name, address,
and so on. Click Next to proceed.

4. On the Select Items page add some products to the Current Order
pane.

5. Click the Place Order button to see the Order Summary page, as
illustrated in figure 7-33.

Figure 7-33 Order Summary Page

NOTE: You might encounter a primary key violation message (ORA-00001:
unique constraint (DEMO_ORDERS_PK) violated) while creating first
product record. This is because the Sequence object for this table is created
with an initial value of 1. Keep clicking the Place Order button unless the
record is saved.

6. Click the Back To Orders button in the Order Summary page to
return to the orders main page. The newly created order will appear
in the orders list.

7. Click the number of the new order to modify it in Order Details
page (Page 29). Try to add or remove products on this page and
save your modifications.

8. Also, try the delete operation by deleting this new order.

7.8 Sending Email from Oracle APEX Application
You can use the APEX_MAIL package to send an email from an Oracle
Application Express application. This package is built on top of the Oracle
supplied UTL_SMTP package. Because of this dependence, the UTL_SMTP
package must be installed and functioning to use APEX_MAIL. Since we are
using the online APEX version, this package is already configured and we
can give it a test run. In this section we are going to send an order
confirmation email to customers, whose emails exists in the
DEMO_CUSTOMERS table. The email will contain a link to access the
placed order.

1. Open Page 12 (Order Items) and create a new process
under the Place Order process. Set the attributes for this
new process as shown on the next page. The PL/SQL code
for this process is provided in BookCode\Chapter7\7.8.txt
file.

The PL/SQL code starts with the declaration of some variables. You can
use VARCHAR type for Vbody and Vbody_html variables. Passing
values to these variables yield a multi-part message that includes both
plain text and HTML content. The settings and capabilities of the
recipient's email client determine what displays. Although most modern
email clients can read an HTML formatted email, remember that some
users disable this functionality to address security issues. On line 7 we
fetch email address of the ordering customer, and on line 8 we store
customer name in a variable. The CSS code defined on line 10 formats
different parts of the email. Line 11 creates the greeting line, while line
12 forms a paragraph containing a link to the customer order. The order
is displayed on Page 30 of the application. Remember, you must include
a carriage return or line feed (CRLF) every 1000 characters because the
SMTP/MIME specification dictates that no single line shall exceed
1000 characters. We used utl_tcp.crlf for the same purpose. Finally, the
APEX_MAIL.SEND procedure sends an outbound email message. The
following table describes the parameters used in this SEND procedure.

Parameter Description

p_to (required) Valid email address to which the email is sent. For multiple email
addresses, use a comma-separated list.

p_from
(required)

Email address from which the email is sent. This email address must
be a valid address. Otherwise, the message is not sent.

p_body
(required)

Body of the email in plain text. If a value is passed to p_body_html,
then this is the only text the recipient sees. If a value is not passed to
p_body_html, then this text only displays for email clients that do
not support HTML or have HTML disabled. A carriage return or line
feed (CRLF) must be included every 1000 characters.

p_body_html Body of the email in HTML format.

p_subj Subject of the email.

Property Value

Name Send Confirmation Email

Type PL/SQL Code

PL/SQL Code

1
2
3
4
5
6
7

8

9

10

11
12

13
14
15

DECLARE
Vbody CLOB;
Vbody_html CLOB;
Vcust_email varchar2(100);
Vcust_name varchar2(100);

BEGIN
select cust_email into Vcust_email from DEMO_CUSTOMERS
where customer_id = :P11_CUSTOMER_ID;
select CUST_FIRST_NAME into Vcust_name from

DEMO_CUSTOMERS
where customer_id = :P11_CUSTOMER_ID;
Vbody := 'To view the content of this message, please use an HTML

enabled mail
client.'||utl_tcp.crlf;

Vbody_html := '<html>
<head>

<style type="text/css">
body{font-family: Arial, Helvetica, sans-serif; font-

size:10pt;margin:30px;
background-color:#ffffff;}

span.sig{font-size: 20px; font-weight:bold; color:#811919;}
</style>

</head>
<body>'||utl_tcp.crlf;

Vbody_html := Vbody_html || 'Hi '|| Vcust_name
||','||utl_tcp.crlf||utl_tcp.crlf;

Vbody_html := Vbody_html ||'<p> Your order has been confirmed
which you

can access by clicking <a
href="'||APEX_UTIL.HOST_URL('SCRIPT')||

'f?p='||:APP_ID||
':30'||':0::::P30_ORDER_ID:'||:P14_ORDER_ID ||'">

here. </p>' ||utl_tcp.crlf;

Vbody_html := Vbody_html ||'<p> Regards,</p>'||utl_tcp.crlf;
Vbody_html := Vbody_html ||' Sales

Team
'||utl_tcp.crlf;
apex_mail.send(
p_to => Vcust_email,
p_from => 'sales@abc.com',
p_body => Vbody,
p_body_html => Vbody_html,
p_subj => 'Order Confirmation');

END;

Success
Message

Order confirmation email sent to customer

Error Message There was some problem in sending email

When Button
Pressed

NEXT

When a customer clicks the link in the email, he is routed to Page 30 (after
providing his credentials on the sign in page) to see his order. This page will
be created by making a copy of Page 29. There are a couple of default
security setting on this page that we need to change as well to allow access to
the order.

2. Open Page 29 in Page Designer. From the Create menu, select
Page as Copy – see section 7.5. Enter 30 for New Page Number
and Customer Order for New Page Name. On the Navigation
Menu screen, select Identify an existing navigation menu entry
for this page, and select Orders for Existing Navigation Menu
Entry.

3. Open Page 29 (Order Details) and click the root node. Scroll down
to the Security section, and set Page Access Protection attribute to
Unrestricted. This value is set for a page that is requested using a
URL, with or without session state arguments, and having no

checksum.

4. Delete all six buttons and their regions from Page 30.

5. Next, click the P30_ORDER_ID page item located under Wizard
Body | Order #&P30_ORDER_ID. region. Set Session State
Protection under Security to Unrestricted. By setting this value the
item's value can be set by passing the item in a URL or in a form
and no checksum is required in the URL.

All is set. Modify a customer record by entering your email account. Create a
new order for this customer. After clicking the Place Order button on the
second wizard screen, you will see the message “ Order confirmation email sent to
customer. ” Log out from the application. After a while, you will receive an
order confirmation email in your email account. Click the “ here ” link in the
email that will take you to the application login page. Immediately after
providing your credentials, the copied order details page (Page 30) will
appear on your screen displaying the order you just entered.

NOTE: If you get “Your session has expired. Please close this dialog and
press your browser's reload button to obtain a new session.” message, then
open Page 30, click its root node, and set Page Mode to Normal.

7.9 A More Simple Approach
I know as a beginner you might be confused with the stuff described in
section 7.5 onward. I added this stuff purposely to present something that
would be helpful to you in your future endeavors. However, in this section
I’ll demonstrate a simpler approach to add, modify, and delete orders using
just one interface.

1. Execute all the steps mentioned in section 7.2 to create the two
master and details pages. In step 4, set number of the Master Page
to 404, and number of the Details Page to 429.

NOTE: Make the Interactive Grid visible on the Order Details page (Page
429), as instructed at the end of section 7.2.

2. Open Page 404 and execute the instructions provided in section
7.3.1. In step 5 of section 7.3.1, set Page and Clear Cache

properties to 429 to point to the correct page number and set the
Name property to P429_ORDER_ID. Skip the optional report
sections (spanning from 7.3.2 to 7.3.4) at this stage to preserve
some time.

3. Set the following attributes for the CREATE button. Note that
previously this buttons was used to initiate the order wizard by
calling Page 11. Here, we are calling Page 429 to directly enter a
new order.

Property Value

Button Name CREATE

Label Enter New Order

Button Template Text with Icon

Hot On

Icon fa-chevron-right

Action Redirect to Page in this Application

Target
Type = Page in this Application
Page = 429
Clear Cache = 429

4. Save Page 404.

5. In the Page Finder box, enter 429 and press the Enter key to call
Page 429 in the Page Designer.

6. Click the root node (Page 429: Order Details) and set the Page
Mode property to Modal Dialog. Set Width, Height, and Maximum
Width properties to 900, 800, and 1200, respectively. Also, set
Dialog Template (in the Appearance section) to Wizard Modal
Dialog.

7. Edit the following items individually and set the corresponding
properties shown under each item. The customer ID item, which
was displayed as Display Only item in the previous method, will
now be rendered as a Select List carrying the names of all
customers. The SQL query defined for the Select List automatically
shows the correct customer name when you navigate from one

order to another.

P429_CUSTOMER_ID
Property Value

Type Select List

Label Customer

Type (List of Values) SQL Query

SQL Query select cust_first_name ||' '|| cust_last_name d, customer_id r
from demo_customers

P429_USER_NAME
Property Value

Type Select List

Label Sales Rep

Type (List of Values) SQL Query

SQL Query

select distinct user_name d, user_name r
from demo_orders
union
select upper(:APP_USER) d, upper(:APP_USER) r
from dual
order by 1

Display Extra Values Off

Display Null Value Off

Help Text Use this list to change the Sales Rep associated with the order.

8. In the Region Buttons node, set Button Position property to Edit
for GET_PREVIOUS_ORDER_ID and GET_NEXT_ORDER_ID
buttons to place them on top of the region.

9. Click the Order Details interactive grid region. Set its Source Type
to SQL Query, and replace the default query with the one that
follows:

select oi.order_item_id, oi.order_id, oi.product_id,
pi.product_name, oi.unit_price,
oi.quantity, (oi.unit_price * oi.quantity) extended_price
from DEMO_ORDER_ITEMS oi, DEMO_PRODUCT_INFO pi

where oi.ORDER_ID = :P429_ORDER_ID
and oi.product_id = pi.product_id (+)

10. Under the Columns node, edit the following columns using the
specified properties and values.

Column Property Value

PRODUCT_ID

Type
Heading
Alignment
Type (LOV)
List of Values
Display Null Value

Select List
Product
left
Shared Components
Products With Price
Off

PRODUCT_NAME Type Hidden

QUANTITY
Width (Appearance)
Type (Default)
PL/SQL Expression

5
PL/SQL Expression
1 (sets 1 as the default quantity)

EXTENDED_PRICE

Type
Heading
Alignment
Column Alignment
Format Mask
Query Only (Source)

Display Only
Price
right
right
$5,234.10
On

11. Right-click the Wizard Buttons node and select Create Region. Set
Title of the new region to Buttons and Template to Buttons
Container. In Regions Buttons node, click the Cancel button and
set its Region property (under Layout) to Buttons. Set this region
for Delete, Save, and Create buttons, too. This action will place all
the four buttons under the Buttons region.

12. Open Page 429 in the Page Designer. On the Processing tab make
sure that the Process form Form on DEMO_ORDERS sits before
the Order Details - Save Interactive Grid Data process.

13. Click the Save Interactive Grid Data process and switch its Type
from Interactive Grid - Automatic Row Processing (DML) to
PL/SQL Code. Enter the following code in the PL/SQL Code box.
In this code, you specify SQL Insert, Update, and Delete statements
to manually handle the three operations for the Interactive Grid

data. The :APEX$ROW_STATUS is a built-in substitution string,
which is used to refer to the row status in an Interactive Grid. This
placeholder returns the status of C if created, U if updated, or D if
deleted for the currently processed interactive grid row. Enter "The
DML operation performed successfully" in the Success Message
box. Similarly, enter "Could not perform the DML operation" in
the Error Message box, and save your work.

begin
case :APEX$ROW_STATUS
when 'C' then

insert into DEMO_ORDER_ITEMS
(order_item_id, order_id, product_id, unit_price, quantity)

values (null, :P429_ORDER_ID, :PRODUCT_ID, :UNIT_PRICE,
:QUANTITY);

when 'U' then
update DEMO_ORDER_ITEMS

set product_id = :PRODUCT_ID,
unit_price = :UNIT_PRICE,
quantity = :QUANTITY
where order_item_id = :ORDER_ITEM_ID and order_id =

:ORDER_ID;
when 'D' then

delete DEMO_ORDER_ITEMS
where order_item_id = :ORDER_ITEM_ID and order_id =

:P429_ORDER_ID;
end case;

end;

NOTE: All four input items in the Order Master section on Page 429 are
rendered as floating elements (see Template property under Appearance
section) in which the label is displayed inside of the input item, and it
automatically shrinks once the input field has a value.

Test Your Work
Click the Enter New Order button (A) on Page 404. Select a customer (B)
and pick an order date (C). Click the Edit button (D) in the Order Details
region. With a product appearing in the first row (E) along with its default
quantity (G), enter some value in the Unit Price column (F), and click the
Create button (H). The order will be saved and you will see the success
message. On the Order Master page, click the order number you just saved,
and then click Add Row (I) to add some more products. Just select a

product, enter some value in the Quantity column, and click Save. The
modified order will be saved as well. Try to remove a product from this order
using the Delete Rows option in the Row Actions menu. Finally, click the
Delete button on the Order Details page to test order deletion. You’re done!

Figure 7-34 Order Master and Detail Pages

7.10 Looping Through Interactive Grid
If you are an absolute beginner, I would recommend you to skip this section
for the time being. Once you get a firm grip on APEX, revert to this section
to learn some beyond stuff. In this section, you learn how to loop through
each record in an interactive grid to perform some kind of validation. For
example, here you will prevent addition of duplicate products in a single
order. Of course, you can add a composite unique key constraint on the
corresponding table to prevent duplication. But, there are some scenarios
where this solution doesn’t fit. For example, if you provide some free
samples of a product in an invoice, you need to create two line item entries in
your order screen for the same product – one with a price tag and another
free. Execute the following steps to prevent product duplication in an order.

1. Open Page 429 in page designer. Click the Form on
DEMO_ORDERS static content region (under Wizard Body) and
set it Title to Order Master.

2. Click the Order Details interactive grid region and enter ORDER
for its Static ID attribute (under Advanced). The ORDER static id
will be used as the ID for the interactive grid region, which is
useful in developing custom JavaScript behavior for the region, as
you will see later in this exercise.

3. Right-click the Items node under the Order Master static content
region (under Wizard Body) and select Create Page Item. Set the
following attributes for this new item. It is a hidden item that will
store 0 (as default) or 1 behind the scene. The value 1 in this item
means that there are some duplicate products in the order. This
evaluation will be done by a validation – Check Duplicate Product.

Property Value

Name P429_PRODDUP

Type Hidden

Value Protected Off

Type (under Source) Null

Type (under Default) Static

Static Value 0

4. Expand the Columns node (under the Order Details region), and
set the following attributes for PRODUCT_NAME column:

Property Value

Type Text Field

Heading Product Name

5. Switch to the Dynamic Actions tab. Right-click the main Events
node and select Create Dynamic Action. Set the following
attributes for this dynamic action. The dynamic action will execute
a JavaScript code that will be fired before submitting the page. The
JavaScript code is defined as a custom function – chkDUP() in step

7.

Property Value

Name Check Duplicate Product

Event Before Page Submit

Click the Show node (under True) to set the following attributes:

Action Execute JavaScript Code

Code chkDUP()

6. Create another dynamic action. This time right-click the Change
node and select Create Dynamic Action from the context menu.
Set the following attributes for this dynamic action, which is being
created to fetch product name when a user selects a different
product in the Order Details interactive grid.

Property Value

Name Fetch Product Name

Event Change

Selection Type Column(s)

Region Order Details

Column PRODUCT_ID

Click the Show node (under True) to set the following attributes:

Action Execute PL/SQL Code

PL/SQL Code
select product_name into :PRODUCT_NAME
from DEMO_PRODUCT_INFO
where product_id = :PRODUCT_ID;

Items to submit PRODUCT_ID

Items to Return PRODUCT_NAME

7. On the Rendering tab, click the root node - Page 429: Order
Details. Scroll down to the Function and Global Variable
Declaration section and append the following JavaScript function
after the existing code:

function chkDUP() {
var record;
var prodDUP=0;

//Identify the particular interactive grid
var ig$ = apex.region("ORDER").widget();
var grid = ig$.interactiveGrid("getViews","grid");

//Fetch the model for the interactive grid
var model = grid.model;

//Select all rows
ig$.interactiveGrid("getViews").grid.view$.grid("selectAll");

//Fetch selected records
var selectedRecords = grid.view$.grid("getSelectedRecords");

for (idx1=0; idx1 < selectedRecords.length; idx1++) {
record = model.getRecord(selectedRecords[idx1][0]);
prodcode1 = model.getValue(record,"PRODUCT_NAME");
for (idx2=0; idx2 < selectedRecords.length; idx2++) {

record = model.getRecord(selectedRecords[idx2][0]);
prodcode2 = model.getValue(record,"PRODUCT_NAME");
if (prodcode1 == prodcode2 && idx1 != idx2) {

prodDUP=1;
break;

}
}
if (prodDUP == 1) {

break;
}

}
$s("P429_PRODDUP",prodDUP);
if (prodDUP == 1) {

alert("Duplication of product occurred - "+prodcode2);
}

}

The function is called from the Check Duplicate Product dynamic
action before the page is submitted. Initially the function identifies the
Order Details interactive grid through its static ID. Then, after fetching
the interactive grid's model, all rows in the interactive grid are selected.
The function then initiates a FOR loop, which loops through every
record in the interactive grid. In every loop, value from the Product
Name column is stored (in prodcode1 variable) and then compared with
another variable in an inner FOR loop. If a duplicate is found, the
duplicate switch is turned on – prodDUP=1. If the switch is turned on,
you see the client-side message specified in the alert function.

8. The JavaScript function in the previous step alerts you of duplicate

products. After the alert, the page is submitted and the order is
saved with duplication. A server-side validation must also be
created to prevent this situation. On the Processing tab, right-click
the Validations node and select Create Validation. Set the
following attributes for the new validation, which evaluates the
value of P429_PRODDUP hidden page item when either Save or
Create buttons are clicked. If the value of this item is zero, the
order is processed. If it is set as 1 by the chkDUP function, an error
message is fired. Note that if a validation passes the equality test,
or evaluates to TRUE, then the validation error message does not
display. Validation error messages display when the validation fails
the equality test, or evaluates to FALSE, or a non-empty text string
is returned. Subsequent processes and branches are not executed if
one or more validations fail evaluation.

Property Value

Name Check Duplicate Products

Type (under Validation) Item = Value

Item P429_PRODDUP

Value 0

Error Message Duplicated product found – cannot proceed
further

Display Location Inline in Notification

Server-side Condition section

Type Request is contained in Value

Value SAVE,CREATE

Save and run the module. Create a new order. Initially the Product
column in the interactive grid defaults to Air Jordan 6. Select a different
product to fire the dynamic action and fetch the product name in the
Product Name column. Add another row and select the same product on
the new row. Input unit price in both rows and click Create. First, you
will get the client-side product duplication message from the JavaScript
function followed by the error message defined in the validation.

7.11 Interactive Grid Native PDF Printing
Interactive Grid Downloads includes native PDF Printing which allows you

to print PDF files directly from Interactive Grids. This feature produces a
PDF file which retains Grid formatting such as highlighting, column
grouping, and column breaks. Let’s go through a simple demonstration to
explore this feature.

1. Open the Orders Interactive Report page (Page 4) in Page
Designer.

2. Right-click the Orders interactive report region, and select
Duplicate from the context menu. A copy of this region will be
created.

Figure 7-35

3. Click the new Orders region, and change its Type property in the
Identification section from Interactive Report to Interactive Grid.

4. Click the Attributes node under the new Orders region. In the
properties pane, scroll down to Download section and ensure that
PDF option (under Download | Formats) is checked. The checked

download formats can be utilized by users to download the
currently displayed columns in the interactive grid.

5. Save and run the page. The page should now have two regions.
Scroll down a bit to see the interactive grid region. From the
interactive grid’s Actions menu, select Format | Control Break.

6. On the Control Break dialog, select Order Month from the
Column list and click Save.

Figure 7-36

7. Next, select Actions | Format | Highlight. Set the following
parameters in the Highlight dialog. Once you hit Save in the
Highlight dialog, rows with 1000 or greater amount in the Order
Total column will be highlighted.

Figure 7-37

8. Click the Actions menu again and select Download. In the
Download dialog, select PDF and other options as illustrated in the
following figure and click the Download button. The output of the
interactive grid will be downloaded as a PDF to your device.

Figure 7-38

The following figure illustrates the downloaded PDF. As you can see both
highlight and control break formattings are preserved in the PDF.

Figure 7-39

Summary
Here are the highlights of this chapter:

Master Detail – You learned how to implement Master Detail page
feature to handle data in two relational tables and went through the

auto-generated page components added by the wizard to
transparently manage the order processing module.

Interactive Report – Created an interactive report and learned how
to alter the report layout by applying highlighting, sorting, and
using aggregate functions. You also applied Control Breaks to
group related data and added Chart and Group By Views.

Primary, Public, and Alternative Interactive Report – You created
three variants of the interactive report and went through the
concepts behind these variants.

Wizard Steps – Learned how to create wizard-like interfaces to
perform related tasks in a sequence.

Copy Page Utility – The chapter provided a shortcut to utilize an
existing page with all functionalities using a different number and
for a different scenario.

Oracle APEX Collection – You learned how to use collections to
store and retrieve rows and columns information in session state.

Custom Processes and Dynamic Actions – In addition to the auto-
generated components and processes, you learned how to manually
add your own processes and other components.

Using HTML in PL/SQL Code – You used PL/SQL to have more
control over dynamically generated HTML within a region.

Using CSS in Oracle APEX Pages – You applied styling rules to
give the page a more professional look.

Simple Approach – Besides the advance techniques, you also
learned how to create this module using a simple approach.

Looping through Interactive Grid – In the final section of this
chapter you learned how to loop through interactive grid records.
You usually execute this procedure when you need to perform

some sort of validation on the data in an interactive grid prior to
storing it in your database.

Chapter 8 - Graphical Reports & Mobile
Integration
8.1 About Graphical Reports
Presenting data in Oracle APEX, either graphically or in text format, is as
easy as creating the input forms. You have had a taste of this feature when
you designed the Home page of the application. In this chapter, you will take
a step forward and will use some more chart types to create graphical reports.
When creating reports for mobile devices, Oracle recommends some specific
report types (mentioned in the following list) that provide an optimal user
experience for small screens. Here’s a list of reports you will create in this
chapter.

Report Purpose Page
No.

Customer Orders Show total orders placed by each customer 17

Sales By Category and
Product

Display sales by category and products 16

Sales by Category /
Month

Total monthly sales for each category 5

Order Calendar Show orders in a calendar view 10

Product Order Tree Display sales data in a tree view 19

Gantt Chart Displays the overall progress of an IT project 20

Box Plot Chart Summarize large amounts of data 21

Pyramid Chart Show data that is organized in some kind of hierarchical
form

22

List View (Mobile) Create a responsive report for mobile devices 23

Column Toggle Report
(Mobile)

Lets you specify the most important columns to display on
smaller screens

24

Reflow Report (Mobile) It wraps each column or changes to displaying multiple lines
on small screens

25

8.2 Create Reports List Page
Prior to creating reports, you will create a page to list all the reports available
in the application. The page carrying the reports list (as illustrated in the
following figure) will appear when you click the Reports entry in the main
navigation menu.

Figure 8-1 Reports Page

1. Create a Blank Page and set the following properties for it:

Property Value

Page Number 26

Name Reports

Page Mode Normal

Breadcrumb don’t use breadcrumb on page

Navigation Preference Identify an existing navigation menu entry for this page

Existing Navigation Menu
Entry

Reports

2. Right-click the Content Body node and select Create Region. Set
the following properties for the new region. The region will display
the Reports List you created in Chapter 3 section 3.2.2.

Property Value

Title Reports

Type List

List Reports List

3. Click the Attributes node under the Reports region. Set List
Template to Cards and the Template Options according to the
following illustration. By choosing the Cards option, the images
you set for the Reports List in Chapter 3 section 3.2.2 will be
presented as cards – see Figure 8-1. Template Options allow for
selecting a number of CSS customization settings to be applied
directly against the component. Template options are defined as
CSS classes in the associated templates. The best way to
understand these attribute is to select, apply, and test the available
options.

Figure 8-2

8.3 Customer Orders Report - Page 17
This graphical report is based on Oracle JET bar chart to display amount of
orders by category placed by customers. Each bar in the chart has multiple
slices representing amounts of different orders. When you move your mouse
over these slices a tooltip (A) displays the corresponding amount. The chart
will be created with drill-down functionality. That is, when you click a bar,
you'll be taken to Page 7 where you will see profile of the selected customer.
You will also make provision to change the chart’s orientation (B) and will
provide options to present it as either stacked or un-stacked (C).

Figure 8-3 Customer Orders Report

1. Create a Blank Page and set the following properties for it:

Property Value

Page Number 17

Name Customer Orders

Page Mode Normal

Breadcrumb don’t use breadcrumb on page

Navigation Preference Identify an existing navigation menu entry for this page

Existing Navigation Menu Entry Reports

2. Right-click the Content Body node and select Create Region. Set
the following properties for the new region. Immediately after
switching the region’s Type, a new node named Series along with a
child node (New) is added under the region. Each product in this
app is associated with one of the three categories: Men, Women,

and Kids. The query below fetches summarized order figures by
customers for each category.

Property Value

Title Customer Orders

Type Chart

Location Local Database

Type SQL Query

SQL
Query

select c.customer_id, c.cust_last_name||', '||c.cust_first_name Customer_Name,
sum (decode(p.category,'Accessories',oi.quantity * oi.unit_price,0))

"Accessories",
sum (decode(p.category,'Mens',oi.quantity * oi.unit_price,0)) "Men",
sum (decode(p.category,'Womens',oi.quantity * oi.unit_price,0))

"Women"
from demo_customers c, demo_orders o, demo_order_items oi, demo_product_info p
where c.customer_id = o.customer_id and o.order_id = oi.order_id and

oi.product_id = p.product_id
group by c.customer_id, c.cust_last_name, c.cust_first_name
order by c.cust_last_name

3. Click the Attributes node under the Customer Orders chart region
and set the following properties. The Stack property specifies
whether the data items are stacked. We defined Automatic
animation setting for the chart, which applies the Oracle JET’s
default animation settings. It specifies whether animation is shown
when data is changed on the chart. A data change can occur if the
chart gets automatically refreshed. In the current scenario, the
animation takes place when you click one of the four buttons (B &
C): Horizontal, Vertical, Stack, or Unstack. These buttons will be
created in subsequent steps. The Hide and Show Behavior is
performed when you click a legend item (G). For example,
deselecting a legend item will hide its associated data series on the
chart. With the value set to Rescale for this property, the chart
rescales as you select or de-select a legend. This is useful for series
with largely varying values.

Property Value

Type Bar

Title Leave it blank

Orientation Vertical

Stack On

Maximum Width 800

Height 500

On Data Change (under Animation) Automatic

Show (under Legend) On

Position (under Legend) Top

Hide and Show Behavior (under Legend) Rescale

4. Click the New node (under Series) and set the following properties.
Each series you create for your chart appears in a unique color to
represent product category and displays sales figures for each
category (using the Value property) that is derived from the
SELECT statement specified in step 2. You set Source Location
(on row 2) to Region Source, which specifies that the data of this
series is to be extracted from the SQL query defined for the
Customer Orders region (in step 2). In the Label attribute you
select a column name that is used for defining the label(s) of the x-
axis (D) on the chart, while the Accessories column selected for the
Value property is used for defining the ordered value (E) on this
chart. When you click a chart bar (representing Accessories),
you’re drilled down to Page 7 to browse customer details.

Property Value

Name Kids

Location (under Source) Region Source

Label (under Column Mapping) CUSTOMER_NAME

Value Kids

Type (under Link) Redirect to Page in this Application

Target

Type = Page in this Application
Page = 7
Name = P7_CUSTOMER_ID
Value = &CUSTOMER_ID.
Clear Cache = 7

Show (under Label) On (to display sales figures)

Position (under Label) Center

NOTE: The above link will be active for the Kids category only.

5. Right-click the Series node and select Create Series from the
context menu to add another series. Set the following properties for
the new series. Use the same values as defined for the Type and
Target properties in Step 4 to transform this series into a link to
access Page 7.

Property Value

Name Men

Location (under Source) Region Source

Label (under Column Mapping) CUSTOMER_NAME

Value Men

Show (under Label) On (to display sales figures)

Position (under Label) Center

6. Create one more series and set the following properties. Create a
link as you did in the previous two steps.

Property Value

Name Women

Location (under Source) Region Source

Label (under Column Mapping) CUSTOMER_NAME

Value Women

Show (under Label) On (to display sales figures)

Position (under Label) Center

7. Click the x-axis node (under Axes) and enter Customers for the
Title attribute. The title will appear at the bottom of the chart (F).

8. Click the y-axis node and set the following properties. When you
format a number as currency, the Currency property is required to
be set to specify the currency that will be used when formatting the
number. You enter a currency that is used when formatting the
value on the chart. The value should be a ISO 4217 alphabetic
currency code. If the format type is set to Currency, it is required
that the Currency property also be specified. Visit

http://www.xe.com/iso4217.php to see a list of standard currency codes.

Property Value

Title Order Total

Format (under Value) Currency

Decimal Places 0

Currency USD

9. In this step, you will add two buttons (B) to the Customer Orders
region. When clicked, these buttons will change the chart’s
orientation using the default animation set in step 3. Right-click the
Customer Orders region and select Create Button from the
context menu. A new node named Region Buttons will be added
with a button labeled New. Set the following properties for this
button. The Action attribute says that this button is associated with
a dynamic action (step 10), which fires when the button is clicked.

Property Value

Button Name Horizontal

Label Horizontal

Button Position Previous

Button Template Icon

Icon fa-bars

Action Defined by Dynamic Action

Right-click Region Button and select Create Button to add a new
button. Set the following properties for the new button.

Property Value

Button Name Vertical

Label Vertical

Button Position Previous

Button Template Icon

Icon fa-bar-chart

Action Defined by Dynamic Action

10. Now add two dynamic actions for the two buttons. Click the

Dynamic Actions tab, right-click the Click node, and select Create
Dynamic Action. Click the New node and set the following
properties. This dynamic action is named Horizontal Orientation –
you are free to give it any other name you deem suitable. The next
three properties specify that this dynamic action should trigger
when the Horizontal button is clicked.

Property Value

Name Horizontal Orientation

Event Click

Selection Type Button

Button Horizontal

Click the Show node under the True node to set the following
properties. When the Horizontal button is clicked, the JavaScript code
(defined on row 2) is fired. In this code, dualChart is a static ID you
will set in step 12 for the Customer Orders region. You control chart’s
orientation through the ojChart class, which has two options
(Horizontal and Vertical), where Vertical is the default option. In this
step, you inform the Oracle APEX engine to display the chart
horizontally when the Horizontal button is clicked. Note that the chart
orientation only applies to bar, line, area, combo, and funnel charts.

Property Value

Action Execute JavaScript Code

Code $("#dualChart_jet").ojChart({orientation:
'horizontal'});

Selection Type Region

Region Customer Orders

Event Horizontal Orientation

Fire on Initialization Off

11. Right-click the Click node and select Create Dynamic Action to
add one more for vertical orientation, as follows. Click the New
node and set the following properties:

Property Value

Name Vertical Orientation

Event Click

Selection Type Button

Button Vertical

Click the Show node under the True node and set the following
properties:

Property Value

Action Execute JavaScript Code

Code $("#dualChart_jet").ojChart({orientation: 'vertical'

Selection Type Region

Region Customer Orders

Event Vertical Orientation

Fire on Initialization Off

12. If you run the pages at this stage, you will not see the orientation
effect if you click any of the two buttons. This is because of the
static ID (dualChart), which is mentioned in the JavaScript code to
reference the Customer Orders region but has not been assigned to
the region itself. Switch back to the Rendering tab, click the
Customer Orders region, and in the Advanced section enter
dualChart as the value for the Static ID property. Now the region
can be recognized by this static ID.

13. Add two more buttons to Region Buttons. These buttons will be
used to render the series data as stacked or unstacked (C). Set the
following properties for the two buttons:

Property Value (Button1) Value (Button2)

Button Name Stack Unstack

Label Stack Unstack

Button Position Next Next

14. Create two dynamic actions for the two buttons as follows. Set the
New nodes’ properties as defined in the first table below:

Property Value (New node) Value (New node)

Name Stack Chart Unstack Chart

Event Click Click

Selection Type Button Button

Button Stack Unstack

The Stack Chart dynamic event’s Show node properties:
Property Value

Action Execute JavaScript Code

Code $("#dualChart_jet").ojChart({stack: 'on'});

Selection Type Region

Region Customer Orders

Event Stack Chart

Fire on Initialization Off

The Unstack Chart dynamic event’s Show node properties:
Property Value

Action Execute JavaScript Code

Code $("#dualChart_jet").ojChart({stack: 'off'});

Selection Type Region

Region Customer Orders

Event Unstack Chart

Fire on Initialization Off

Save your work. Run the application and click Reports in the navigation
menu. You will see the Reports page created in section 8.2. Click the first
Customer Orders card to access Page 17. You will see a chart, as shown in
Figure 8-3. Move your cursor over the chart bars and different portions
within a particular bar. You will see a tooltip (A) showing order amount of
the corresponding customer. Click the Vertical and Horizontal buttons (B) to
change the chart’s orientation. Similarly, click the Stack and Unstack buttons
(C) to see respective animated effects.

8.4 Sales by Category and Products Report - Page 16
In this report, you’ll present Category and Products sales data in two separate
page regions using different charting options, as illustrated in the following
figure.

Figure 8-4 Sales by Category and Products Report

1. Create a Blank Page and set the following properties for it:

Property Value

Page Number 16

Name Sales by Category and Product

Page Mode Normal

Breadcrumb don't use breadcrumbs on page

Navigation Preference Identify an existing navigation menu entry for this page

Existing Navigation Menu
Entry

Reports

2. In the Page Designer, right-click the Content Body node and select
Create Region. Set the following properties for the new region.

Property Value

Title Sales by Category

Type Chart

3. Click the Attributes node under the Sales by Category region and
set the following properties. Selecting Yes for Dim on Hover dims
all data items when not currently hovered over and highlights only
the current data item hovered over with respective order figures in
US dollars. The Hide and Show Behavior is performed when you
click a legend item (A). For example, deselecting a legend item
will hide its associated data series on the chart. With the value set
to Rescale for this property, the chart rescales as you select or de-
select a legend. This is useful for series with largely varying values.

Property Value

Type Donut

Height 400

Dim on Hover On

Format Currency

Decimal Places 0

Currency USD

Show (under Legend) On

Title (under Legend) Categories

Hide and Show Behavior Rescale

4. Click the New node under Series and enter the following
properties.

Property Value

Name Donut Chart Series

Location Local Database

Type SQL Query

SQL Query

select p.category label,
sum(o.order_total) total_sales

from demo_orders o,
demo_order_items oi,
demo_product_info p

where o.order_id = oi.order_id and
oi.product_id = p.product_id

group by category order by 2 desc

Label (under Column Mapping) LABEL

Value TOTAL_SALES

Show (under Label) On

5. Right-click the Content Body node and select Create Region to
add another region. This region will carry a Range chart to display
maximum (B) and minimum (C) ordered quantities for each
product. Set the following properties for the new region:

Property Value

Title Maximum & Minimum Sales by Product

Type Chart

Location Local Database

Type SQL Query

SQL Query

select p.product_id, p.product_name, min(oi.quantity),
max(oi.quantity)
from demo_product_info p, demo_order_items oi
where p.product_id = oi.product_id
group by p.product_id, p.product_name
order by p.product_name asc

6. Click the Attributes node under the Maximum & Minimum Sales
by Product region and set the following properties:

Property Value

Type Range

Maximum Width 500

Height 500

7. Click the New node under Series to set the following properties.
The PRODUCT_NAME column will be used for defining the
label(s) of the x-axis on the chart. Then, you specify Low and High
column names to be used for defining the low and high values on
this chart. In the last six properties you create a link to access Page
6 to browse details of the selected product.

Property Value

Name Products

Location (under Source) Region Source

Label (under Column Mapping) PRODUCT_NAME

Low MIN(OI.QUANTITY)

High MAX(OI.QUANTITY)

Type (under Link) Redirect to Page in this Application

Target

Type = Page in this application
Page = 6
Name = P6_PRODUCT_ID
Value = &PRODUCT_ID.
Clear Cache = 6

Show (under Label) On

Save and access this page from Sales by Category and Product card on the
Reports page. You will see the two charts, as illustrated in Figure 8-4. The
page has two regions containing graphical data for category and product
sales. Move the mouse cursor over each chart and see respective sales
figures. Click the bar representing Jr Phantom Vision, the system will drill
you down to Page 6 to show the details of this product.

8.5 Sales by Category / Month Report - Page 5
This chart is added to present category sales in different months. In this
graphical report, you will make use of Region Display Selector (A) to display
two different views of category sales data. Region Display Selector region
enables you to include show and hide controls for each region on a page. This
page will have two regions containing two different chart types. After adding
the Region Display Selector and the two regions, you can switch the regions
using the selector appearing on top of the page, as shown in the following
figure. The page displays three tabs: Show All, Sales by Category (Line), and
Sales by Month (Bar). If you click the Show All tab, the page displays all the
regions. If you click any of the other two tabs, the page shows only the
chosen region.

Figure 8-5 Show Charts on Different Tabs

1. Create a Blank Page and set the following properties for it:

Property Value

Page Number 5

Name Sales by Category Per Month

Page Mode Normal

Breadcrumb don't use breadcrumbs on page

Navigation Preference Identify an existing navigation menu entry for this page

Existing Navigation Menu Entry Reports

2. Right-click the Content Body node and select Create Region. Set
the following properties for this region. As mentioned earlier, this
region will display other regions on the page as horizontal tabs (A).
By removing the Standard Template (in the third property), the
region looks as a part of existing regions.

Property Value

Title Region Display Selector

Type Region Display Selector

Template -Select- (that is, no template selected)

3. Create another region under Content Body and set the following
properties. This region will hold a Line with Area chart.

Property Value

Title Sales by Category (Line)

Type Chart

4. Click the Attributes node under the Sales by Category (Line) chart
region and set the following properties. The Time Axis Type
property automatically renders the chart data in chronological
order.

Property Value

Type Line with Area

Height 400

Time Axis Type (under Settings) Enabled

Show (under Legend) On

Position (under Legend) Top

Hide and Show Behavior Rescale

5. Click the New node under Series and set the following properties.
The last two properties will show markers in shape of circles (B).
The Show property (last in the table) specifies whether the label(s)
should be rendered on the chart. By turning it off, the visibility of
the sales figure is suppressed.

Property Value

Type (under Source) SQL Query

SQL Query

select p.category type,
trunc(o.order_timestamp) when,
sum (oi.quantity * oi.unit_price) sales

from demo_product_info p,
demo_order_items oi,

demo_orders o
where oi.product_id = p.product_id and

o.order_id = oi.order_id
group by p.category, trunc(o.order_timestamp),

to_char(o.order_timestamp, 'YYYYMM')
order by to_char(o.order_timestamp, 'YYYYMM')

Series Name TYPE

Label WHEN

Value SALES

Show (under Marker) Yes

Shape Circle

Show (under Label) Off

6. Click the x-axis node to set the following properties. In these
properties, we set a title (C) and date format (D) for X-axis.

Property Value

Title Date

Format (under Value) Date - Medium

Pattern dd MMM yyyy

7. Set the following properties for y-axis. The Sales title (E) appears
to the left of the chart. Sale values are displayed as currency in US
dollars. In the Step property we enter the increment (F) between
major tick marks.

Property Value

Title Sales

Format (under Value) Currency

Decimal Places 0

Currency USD

Step 400

8. Create another region under the Content Body node to hold a bar
chart. Set the following properties for this new region:

Property Value

Title Sales by Month (Bar)

Type Chart

9. Click the Attributes node under the Sales by Month chart region
and set the following properties. The Show Group Name specifies
whether the group name should be displayed in the tooltip rendered
on the chart. We turned it off to suppress the order_timestamp
group mentioned in the SQL Query in step 10.

Property Value

Type Bar

Stack On

Height 400

Show Group Name (under
Tooltip)

Off

10. Click the New node under Series and set the following properties:

Property Value

Source Type SQL Query

SQL Query

select p.category type ,
to_char(o.order_timestamp, 'MON RRRR')

month,
sum (oi.quantity * oi.unit_price) sales

from demo_product_info p,
demo_order_items oi,
demo_orders o

where oi.product_id = p.product_id and
o.order_id = oi.order_id

group by p.category, to_char(o.order_timestamp, 'MON
RRRR'),

to_char(o.order_timestamp, 'YYYYMM')
order by to_char(o.order_timestamp, 'YYYYMM')

Series Name TYPE

Label MONTH

Value SALES

Show (under Label) On

11. Set the following properties for y-axis:

Property Value

Format Currency

Decimal Places 0

Currency USD

Save and then run this page from the Reports page. The output of this report
should resemble Figure 8-5. The two charts display comparative sales figures
for each category during a month. Click all the three options (individually) in
the Region Selector Toolbar and observe the change.

8.6 Order Calendar Report - Page 10
In this report orders will be displayed in a calendar. Oracle APEX includes a
built-in wizard for generating a calendar, which offers two options to view
orders: month (C) and list (D). Using the two buttons provided at top left (A),
you can switch between months. The today button (B) brings you back to the
current date. The placed orders are displayed in respective date cells.
Clicking an order in a cell (E) takes you to Page 29 to see its detail.

Figure 8-6 – Order Calendar Report

Execute the following steps to create a calendar report.

1. Click the Create Page button to create a new page.

2. One the first wizard screen, click the Calendar icon .

3. Fill in the next couple of pages according to the following table and
click Next.

Property Value

Page Number 10

Name Order Calendar

Page Mode Normal

Breadcrumb do not use breadcrumbs on page

Navigation Preference Identify an existing navigation menu entry for this page

Existing Navigation Menu Entry Reports

4. On the Source wizard screen, set Data Source to Local Database,

and select the second option SQL Query. Put the following query
in the Enter Region Source box and move on. In this query, order
value is concatenated to each customer’s name and is presented in
$999,999,999,999.99 format. You can test this query in SQL
Commands to see its output.

select order_id,
(select cust_first_name||' '||cust_last_name

 from demo_customers c
 where c.customer_id = o.customer_id) ||' ['||
 to_char(order_total,'FML999G999G999G999G990D00')||']'
customer,
 order_timestamp
from demo_orders o

5. Set properties on the Settings screen as follows. The Display
Column specifies the column to be displayed on the calendar, while
the Start Date Column attribute specifies which column is to be
used as the date to place an entry on the calendar. If you want to
manage events through Calendar, then select the column that holds
the start date for events displayed on this calendar in the Start Date
Column. Next, select the column that holds the end date for events
displayed on this calendar in the End Date Column attribute. If this
attribute is specified, the calendar displays duration based events.
The Show Time attribute specifies whether the time portion of the
date should be displayed. The Week and Day views will be
displayed on the calendar only when Show Time is set to Yes. If the
start date or end date columns do not include time components,
they will be shown as 12:00 am. Click Create to finish the wizard.

Figure 8-7

6. Click the Attributes node under the Order Calendar region in the
Page Designer. In the Properties pane, click the View/Edit Link
attribute and set the following properties to create a link. The link
will drill-down to the Order Details page (Page 29) to show the
details when the user clicks an existing order.

Property Value

Target Type Page in this application

Page 29

Name P29_ORDER_ID

Value &ORDER_ID.

Clear Cache 29

7. In the Attributes node, click the Create Link property and set the
following properties to create another link. This property is used to
create a link to call Page 11 to enter a new order when the user
clicks an empty calendar cell.

Property Value

Target Type Page in this application

Page 11

Save and run this page from the Order Calendar card on the Reports page –
the page should look like Figure 8-6. If you don’t see orders in the calendar,
use the buttons available at top-left to switch back and forth. Click any name
link in the calendar report to drill-down and browse order details. Click any
blank date cell. This will start the Order Wizard to take new order entry. Note
that a new order is created in the current date, irrespective of the month in
view or the date cell you clicked.

8.7 Product Order Tree - Page 19
App Builder includes a built-in wizard for generating a tree. You can create a
tree from a query that specifies a hierarchical relationship by identifying an
ID and parent ID column in a table or view. The tree query utilizes a START
WITH .. CONNECT BY clause to generate the hierarchy.

In this exercise you’ll be guided to create a tree view of orders. The root node

will show the three product categories you’ve been dealing with throughout
this book. Level 1 node will be populated with individual categories and each
category will have corresponding products at Level 2. The final node (Level
3) will hold names of all customers who placed some orders for the selected
product along with quantity.

Figure 8-8 Order Tree

Here are the steps to create the tree view.

1. Create a new page.

2. Select the Tree option on the first wizard screen.

3. Complete the next couple of screens using the following table and
click Next.

Property Value

Page Number 19

Page Name Product Order Tree

Page Mode Normal

Region Template Standard

Region Name Product Order Tree

Breadcrumb do not use breadcrumbs on page

Navigation Preference Identify an existing navigation menu entry for this page

Existing Navigation Menu Entry Reports

4. On Table/View Owner and Name screen, select
DEMO_PRODUCT_INFO for Table Name, and click Next.

5. Click Next to accept default entries on the Query screen, as
illustrated below. A tree is based on a query and returns data that
can be represented in a hierarchy. A start with .. connect by clause
will be used to generate the hierarchy for your tree. On this screen
you identify the columns you want to use as the ID, the Parent ID,
and text that should appear on the nodes. The Start With column
will be used to specify the root of the hierarchical query and its
value can be based on an existing item, static value, or SQL query
returning a single value.

Figure 8-9

6. Click Next again to skip the Where Clause.

7. In the final screen, put checks on Collapse All and Expand All to
include these buttons on the page. Set Tooltip to Static
Assignment (value equals Tooltip Source attribute) and enter
View Details in Tooltip Source. The text “View Details” appears
when you move over a tree node. Click Next.

8. Click Create to finish the wizard.

9. In the Page Designer, click the Product Order Tree node under
Content Body.

10. Replace the existing SQL Query statement with the one shown
below, which comprises links. After replacing the query save the

page and run it from the Reports menu.

with data as
(
select 'R' as link_type,

null as parent,
'All Categories' as id,
'All Categories' as name,
null as sub_id

from demo_product_info
union
select distinct('C') as link_type, 'All Categories' as parent,
category as id,

category as name, null as sub_id
from demo_product_info
union
select 'P' as link_type,

category parent,
to_char(product_id) id,
product_name as name,
product_id as sub_id

from demo_product_info
union
select 'O' as link_type,

to_char(product_id) as parent,
null as id,
(select c.cust_first_name || ' ' || c.cust_last_name
from demo_customers c, demo_orders o
where c.customer_id = o.customer_id and

o.order_id = oi.order_id) || ', ordered '||
to_char(oi.quantity) as name,

order_id as sub_id
from demo_order_items oi
)
select case

when connect_by_isleaf = 1 then 0
when level = 1 then 1

else -1
end as status, level, name as title, null as icon, id as

value, 'View' as tooltip,
case

when link_type = 'R'
then apex_util.prepare_url('f?

p='||:APP_ID||':3:'||:APP_SESSION||'::NO:RIR')
when link_type = 'C'

then apex_util.prepare_url('f?
p='||:APP_ID||':3:'||:APP_SESSION||

'::NO:CIR:IR_CATEGORY:'
|| name)

when link_type = 'P'
then apex_util.prepare_url('f?

p='||:APP_ID||':6:'||:APP_SESSION||
'::NO::P6_PRODUCT_ID:'

|| sub_id)
when link_type = 'O'

then apex_util.prepare_url('f?
p='||:APP_ID||':29:'||:APP_SESSION||

'::NO::P29_ORDER_ID:'
|| sub_id)

else null
end as link

from data
start with parent is null
connect by prior id = parent

order siblings by name

This custom query is used to form the tree using the following syntax:

SELECT status, level, name, icon, id, tooltip, link
FROM
WHERE
START WITH
CONNECT BY PRIOR id = pid
ORDER SIBLINGS BY

Line
#

Tree Query Code

1
2
3
4

5
6

7
8

WITH data AS (
select 'R' as link_type, null as parent, 'All Categories' as id, 'All Categories' as name, null as
sub_id from demo_product_info
UNION
select distinct('C') as link_type, 'All Categories' as parent, category as id, category as name,
null as sub_id from demo_product_info
UNION
select 'P' as link_type, category parent, to_char(product_id) id, product_name as name,
product_id as sub_id from demo_product_info
UNION
select 'O' as link_type, to_char(product_id) as parent, null as id, (select c.cust_first_name || '
' || c.cust_last_name from demo_customers c, demo_orders o where c.customer_id =
o.customer_id and o.order_id = oi.order_id) || ', ordered '|| to_char(oi.quantity) as name,
order_id as sub_id
from demo_order_items oi
)

The WITH query_name AS clause lets you assign a name to a subquery block.
This statement creates the query name “data” with multiple SELECT
statements containing UNION set operators. UNION is used to combine the
result from multiple SELECT statements into a single result set.

Figure 8-10

Line
#

Tree Query Code

1
2
3

select case
when connect_by_isleaf = 1 then 0
when level = 1 then 1

4
5
6
7
8
9
10
11
12
13
14
15
16
17

else -1
end as status, level, name as title, null as icon, id as value, 'View' as tooltip,

case
when link_type = 'R'

then apex_util.prepare_url('f?p='||:APP_ID||':3:'||:APP_SESSION||'::NO:RIR')
when link_type = 'C'

then apex_util.prepare_url('f?p='||:APP_ID||':3:'||:APP_SESSION||
'::NO:CIR:IR_CATEGORY:' || name)

when link_type = 'P'
then apex_util.prepare_url('f?

p='||:APP_ID||':6:'||:APP_SESSION||'::NO::P6_PRODUCT_ID:'||sub_id)
when link_type = 'O'

then apex_util.prepare_url('f?
p='||:APP_ID||':29:'||:APP_SESSION||'::NO::P29_ORDER_ID:' || sub_id)

else null
end as link

from data

The CASE statement within the SQL statement is used to evaluate the four
link types (R=root, C=categories, P=products, and O=orders). It has the
functionality of an IF-THEN-ELSE statement. Lines 8, 10, 12, and 14 make
the node text a link. The R link type leads you to the main Products page
(Page 3). The C link type also leads to Page 3, but applies a filter on category
name. The P link type calls Product Details page (Page 6) to display details of
the selected product. The final O link type displays details of the selected
order on the Order Details page (Page 29).

The CONNECT_BY_ISLEAF pseudo column, in the first CASE statement,
returns 1 if the current row is a leaf of the tree. Otherwise, it returns 0. This
information indicates whether a given row can be further expanded to show
more of the hierarchy.

If no condition is found to be true, then the CASE statement will return the
null value defined in the ELSE clause on line 15.

Run all the reports you have created so far from the Graphical Reports
submenu under the Reports menu. When you click the Graphical Reports
option, a page (Page 26) comes up with a list of reports from where you can
give them a test-run.

8.8 Gantt Chart
A Gantt chart allows you to effectively plan your complex projects. It enables
you to plan all of your tasks in one place and helps you work out the

minimum delivery time for your project and schedule when the right people
are available to complete it. Gantt chart start by listing all the tasks you need
to complete to finish your project. You also need to specify the earliest date
you can start each activity, how long you think each will take and whether
any of them are dependent on the completion of other activities.

8.8.1 Data Workshop
To understand the functionality of this chart, you need to create a table and
populate it with relevant data. For this purpose, you will use Oracle APEX's
Data Workshop utility. The Data Workshop utility located under SQL
Workshop enables you to load and unload text, DDL, and spreadsheet data to
and from the database. You can load or unload XML files or delimited-field
text files (such as comma-delimited (.csv) or tab-delimited files). You can
also load data by copying and pasting from a spreadsheet. During loading and
unloading process you can skip columns you do not need in your table. The
utility allows you to load data into an existing table or create a new table
from the loaded data. When loading into a new table, column names can be
taken from the loaded data. Each time you load data from a file, file details
are saved in a Text Data Load Repository. You can access these files from
within the repository at any time.

NOTE: Note that the wizards load and unload table data only, they do not
load or unload other kinds of schema objects.

Execute the following steps to create a new table and load it with relevant
data from a csv file.

1. Create a table named Gantt_Table using Gantt_Table.sql script
provided in the book code. Open SQL Workshop | SQL
Commands (A). Copy and then paste the CREATE TABLE
statement from the script file (Gantt_Table.sql) into the command
area (B), and then click the Run button (C), as shown in the
following screen shot.

Figure 8-11

2. Click SQL Workshop | Utilities | Data Workshop to access the
Data Load/Unload page.

Figure 8-12

3. On the Data Workshop page, click the Load Data button.

4. On the Load Data page, select the Upload a File tab, and click the
Choose File button. In the Open dialog box, select Project.csv file
from BookCode\Chapter8 folder, and click Open.

5. On the next screen, click the Existing Table option (A), select the
GANTT_TABLE (B), and click the Load Data button (C). The
database column names and columns in the data can be viewed in
the Preview section.

Figure 8-13

If everything goes well, the next screen appears with the message "Data in
table GANTT_TABLE appended with 73 new rows!". Click the View Table
button at the bottom to complete the process.

8.8.2 Create Gantt Chart
Execute the following instructions to create a new page for the Gantt Chart:

1. Click Create Page in the main App Builder interface.

2. Click the Chart option.

3. On Chart Type screen, choose Gantt.

4. Fill in the next couple of screens as follows and then click Next.

Property Value

Page Number 20

Name Gantt Chart

Page Mode Normal

Breadcrumb do not use breadcrumbs on page

Navigation Preference Identify an existing navigation menu entry for this page

Existing Navigation Menu Entry Reports

5. On the Source screen, choose SQL Query for Source Type, and
enter the following query in the SQL Query box. Click Next to
proceed.

select task_name task_name, id task_id, parent_task
parent_task,

start_date task_start_date, end_date task_end_date,
decode(status,'Closed',1,'Open',0.6,'On-

Hold',0.1,'Pending',0) status,
sysdate-100 gantt_start_date,
sysdate+100 gantt_end_date

from gantt_table
start with parent_task is null
connect by prior id = parent_task
order siblings by task_name

6. Fill in the Column Mapping screen as illustrated in the following
figure:

Figure 8-14

The following table provides details of the parameters:

Start Date Column Select the column name to be used for defining the start date of the
Gantt chart.

End Date Column Select the column name to be used for defining the end date of the
Gantt chart.

Task ID Select the column name to be used for defining the task ID on the
Gantt chart.

Task Name Select the column name to be used for defining the task name on the
Gantt chart.

Task Start Date Select the column name to be used for defining the task start date on
the Gantt chart.

Task End Date Select the column name to be used for defining the task end date on
the Gantt chart.

7. Click Create to complete the page creation process.

8. In Page Designer, click on Series 1 and set Progress (under
Column Mapping) to Status. The Status column defines the task
progress on the Gantt chart.

9. Click Save and Run page button to test your work.

Keep clicking the Zoom Out icon (A) unless it is grayed out. The Gantt
Chart, as illustrated in the following screenshot, displays the overall progress
of an IT project. Same-day tasks are shown in diamond, completed tasks are
represented in dark blue, while remaining tasks are displayed in light blue

colors. Hovering the mouse over a bar shows details of that particular task.

Figure 8-15 Gantt Chart

8.9 Box Plot Chart
If you want to compare the annual sales figures of your products for the past
10 years, you would need a way to summarize all the data. A boxplot is an
efficient chart type to summarize large amounts of data. A boxplot displays
the range and distribution of data along a number line. The following
illustration will help you further in reading this chart.

8.9.1 Data Workshop
Execute the following steps to create a table for this exercise and populate it
with relevant data:

1. Access the Data Load/Unload page by clicking SQL Workshop |
Utilities | Data Workshop.

2. Click the Load Data button on the Data Workshop page.

3. On the Upload a File tab, click the Choose File button and select
School_Stats.csv file from the book code folder. Alternatively,
drag and drop the file in the marked area.

4. On the Load Data page, select New Table for Load To, and enter
BoxPlot_Table for Table Name. Click the Load Data button.
After a while you will see " Table BOXPLOT_TABLE created with 15 rows! "
message. Click the View Table button to browse the table.

NOTE: Note that when you create table and upload data in one go using this
approach, the process automatically generates the primary key for the table.

8.9.2 Create Single Series Box Plot Chart
Create a new page to hold two Box Plot Charts. The first one, which is a
single series chart, will be created using the wizard to show marks of school
A only.

1. Click Create Page in the main Application Builder interface.

2. Select the Chart option.

3. On Chart Type screen, choose Box Plot.

4. Enter the following details for the new page and then click Next.

Property Value

Page Number 21

Name Box Plot Chart

Page Mode Normal

Breadcrumb do not use breadcrumbs on page

Navigation Preference Identify an existing navigation menu entry for this page

Existing Navigation Menu Entry Reports

5. On the Source screen, choose SQL Query for Source Type, and
enter the following query in the SQL Query box. After entering the
query, click Next.

Select course, schoola from boxplot_table

6. On Column Mapping page, accept the Vertical Orientation, set
Label Column to COURSE, Value Column to SCHOOLA and
click Create.

Figure 8-17

7. In Page Designer, click the Box Plot Chart region, set its Title to
Single Series Box Plot Chart and change the default Series name
from Series 1 to School A.

8. Save the page and run it from the Reports menu. Hover your mouse
pointer over each box to see the values.

Figure 8-18 Single Series Box Plot Chart

8.9.3 Create Multi-Series Box Plot Chart
This box plot chart will compare the marks of all three schools using multiple
series.

1. In Page Designer, right click the Regions node and select Create
Region. Set the following parameters for the new region:

Property Value

Title Multi-Series Box Plot Chart

Type Chart

Location Local Database

Type SQL Query

SQL Query select * from boxplot_table

Type (under Attributes) Box Plot

Show (under Legend) On

2. Click on the New node under Series, and set the following
attributes:

Property Value

Name School A

Location (under Source) Region Source

Label COURSE

Value SCHOOLA

3. Right click the Series node and select Create Series to add another
series. Set the following attributes for this series:

Property Value

Name School B

Location (under Source) Region Source

Label COURSE

Value SCHOOLB

4. Create the final series for School C, as follows:

Property Value

Name School C

Location (under Source) Region Source

Label COURSE

Value SCHOOLC

Save and run the page to see the multi-series Box Plot chart, as illustrated in
the following figure.

Figure 8-19 Multi-Series Box Plot Chart

8.10 Pyramid Chart
A pyramid graph is a chart in the shape of a triangle or pyramid with lines
dividing it into sections. A related topic or idea is placed in each section.
Pyramid chart is best used for data that is organized in some kind of
hierarchical form. Each section in a pyramid chart is a different width, which
indicates a level of hierarchy among the topics. However, the width does not
represent quantity. Pyramid charts use the row member order from bottom to
top to form a pyramid chart.

1. Using the instructions provided in the previous section and the
following illustration, create a new table named Pyramid_Table
and upload data from Products.csv file provided with the source
code. The table will be created with five records.

Figure 8-20

2. Create a new page. On the first wizard screen, select the Chart
option.

3. Choose Pyramid for Chart Type.

4. Set the following attributes for the new page:

Property Value

Page Number 22

Name Pyramid Chart

Page Mode Normal

Breadcrumb do not use breadcrumbs on page

Navigation Preference Identify an existing navigation menu entry for this page

Existing Navigation Menu Entry Reports

5. On the Source screen, choose SQL Query for Source Type, and
enter following query in the SQL Query box. After entering the
query, click Next.

Select * From Pyramid_Table

6. Select the following columns in the Column Mapping screen and
click the Create button.

Figure 8-21

7. In the Page Designer, click the Attributes node to set the following
attributes. In the On Display attribute you specify the type of
animation used when initially displaying the chart, while the On
Data Change specifies whether animation is shown when data is
changed on the chart.

Property Value

Type Pyramid

Maximum Width 500

Height 400

On Display(under Animation) Alpha Fade

On Data Change Automatic

Show (under Legend) On

Hide and Show Behavior Rescale

Save and run the page. Turn a legend on or off to dynamically scale the chart.
As mentioned earlier, in a pyramid chart row member order from bottom to
top is used to form the chart. In this example, the first row member Apples
becomes the lowest member of the pyramid, the next row Bananas becomes
the next highest member, and so on. The bottom row member, Grapes, thus
appears on top of the pyramid.

Figure 8-22 Pyramid Chart

8.11 About Mobile Application Design
Mobile applications developed with Oracle APEX are browser-based
applications that run inside the browser on the mobile device. Therefore,
these applications must have a connection in order to communicate with the
Oracle Database and cannot operate in a disconnected environment. Mobile
devices that have HTML5 capabilities can utilize all of the capabilities that
can be built into the applications, including HTML5 date-pickers, sub-types
that display different keypads based on field definition, and so. Older devices
will still render the application but they will offer less advanced features. The
major advantage of developing browser-based applications is that you only
need to develop them once for desktop and mobile devices. However, one
major limitation is accessing on-device features such as contact lists. This
limitation can be alleviated by integrating with solutions such as PhoneGap
that support the creation of hybrid solutions, which use a native application

wrapper to display the web applications. Solutions such as Phonegap provide
various APIs to access many of the native phone features not currently
available using HTML5 or JavaScript. To learn more, see:
http://phonegap.com/

In previous APEX releases, developers selected the Mobile User Interface
(which was based on jQuery Mobile) to optimize applications for mobile
environments. Now, the Universal Theme - 42 is optimized to work equally
well in either a mobile or desktop environment. Desktop UI now supports all
mobile friendly components such as List View region, Column Toggle
Report region, and Reflow Report.

NOTE: jQuery Mobile and the jQuery Mobile User Interface used in
previous releases have been desupported. If you have an existing mobile
application that uses the jQuery Mobile User Interface, then you should
migrate your existing application to the Universal Theme. To learn more
about migrating existing applications to the Universal Theme, go to the
Universal Theme application at https://apex.oracle.com/ut and select
Migration Guide.

Universal Theme - 42 enables developers to build modern web applications
without requiring extensive knowledge of HTML, CSS, or JavaScript.
Responsive Design is the key of the Universal Theme. Responsive Design
works just as well on small screen devices (such as smartphones and tablets)
as it does on larger screen devices (including laptops and desktops). The UI
components in Universal Theme work across varying screen resolutions
while maintaining the same or similar functionality. In addition, Universal
Theme takes full advantage of ultra high screen resolutions by utilizing
vector graphics where possible, and relying upon CSS3 features for UI
styling.

8.11.1 Reports Optimized for Mobile Environments
Although the Universal Theme is optimized to work well on mobile devices,
not all components are mobile friendly. For example, interactive reports and
interactive grids do not work well in mobile environments. When creating
reports for mobile devices, Oracle recommends the following report types
that provide an optimal user experience for small screens.

List View

Features a responsive design to display data and provide easy navigation
on Smartphones. Creates a page that contains the formatted result of a
SQL query. You choose a table on which to build the List view and
select a database column to be used for the List view entry.

Column Toggle Report

Creates a responsive report designed for mobile applications and
Smartphones. By default, column toggle reports are created with all
columns set to the same priority. However, the developer can edit the
report column attributes and rank columns by importance. Columns
with a lesser priority (larger number) are hidden at narrower screen
widths. The report includes a Columns button which enables end users
to select which columns they want to view.

Reflow Report

Creates a responsive report designed for mobile applications and
Smartphones. When there is not enough space available to display the
report horizontally, the report responds by collapsing the table columns
into a vertical value pairs layout where each column displays on a
separate row.

List View
Execute the following steps to create a List View report that creates a
responsive report for mobile applications. The report works by collapsing the
table columns into a stacked presentation that looks like blocks of label and
data pairs for each row. This switch occurs when there is not enough space
available to display the report horizontally.

1. Create a new page by clicking the Create Page button.

2. Click the Report icon to move ahead.

3. On the subsequent wizard screen, select the List View option.

4. Type 23 for Page Number and List View Report (Mobile) for
Page Name. Leave Page Mode to Normal and move on by
clicking Next.

5. Set Navigation Preference to Identify an existing navigation
menu entry for this page, select Reports for Existing Navigation
Menu Entry, and click Next.

6. On the Source wizard screen, select Local Database for Data
Source, select SQL Query as Source Type, and enter the following
SQL statement in Region Source.

select a.ROWID as "PK_ROWID", a.*
from "#OWNER#"."DEMO_PRODUCT_INFO" a
order by a.product_name

7. Set properties on the Settings screen as illustrated in the following
figure and click the Create button.

Figure 8-23

When you click the option Show Image, some more relevant properties
appear on your screen. The same behavior applies to the Enable Search
option. The first option is checked because we need to display images of
products, while the second option is checked to add search functionality. If
lists are embedded in a page with other types of content, the Inset List option
packages the list into a block that sits inside the content area with a bit of
margin. The selected Text Column, PRODUCT_NAME, will appear next to
the image at runtime. The Image Type attribute specifies what kind of image
is displayed and where it is read from. The displayed image can be an icon
with a size of 16x16 or a thumbnail with a size of 80x80. The source for the
image can be a database BLOB column or a URL to a static file. After setting
the Image Type attribute, you're required to provide the Image BLOB
Column, which in our case is PRODUCT_IMAGE. The Image Primary Key
Column 1 attribute specifies the primary key or a unique database column
that is used to lookup the image. The value for this attribute (PK_ROWID) is
selected by the wizard. The Search Type attribute defines how a search will
be performed. The selected option, Server: Like & Ignore Case, will use
Oracle’s LIKE operator (LIKE %UPPER([search value])%) to query the
result.

8. After creating the page, click the Attributes node under the List
View Report region. Set Search Column to
PRODUCT_DESCRIPTION and enter Search by Product
Description in the Search Box Place holder property. The Search
Column specifies an alternative database column used for the
search. The text added to the Search Box Placeholder will appear
in the search box at runtime to inform users what to put in the
search box.

9. Right-click the List View Report region and select Create Button.
Set the following properties for this button, which is being added to
create a new product.

Property Value

Name CREATE

Label Create

Region List View Report (Mobile)

Button Position Copy

Hot On

Action Redirect to Page in this Application

Target
Type = Page in this application
Page = 6
Clear Cache = 6

Save the page and run it from the Reports option in the main menu. Enter air
max in the search box and hit the Enter key. Four shoe products (Air Max
2090, Air Max 270, Air Max 270 Gradient, and Air Max 720) should appear.
Enter air max 270 in the search box. The page will be refreshed with two
relevant records. Clear the search box to get the complete list of products.

Make this page more meaningful by performing the following steps. The
Advanced Formatting option enables you to style your list even further. The
mandatory option, Text Formatting, gives you the opportunity to show more
in the list than just the product name. In this example, you wrap product
name and description in a HTML <h3> heading element. You can add more
stuff to the list with the help of Supplemental Information. The Supplemental
Information appears on the right side of the list item to present product price.

1. Click the region’s Attributes node.

2. In the Property pane, put a check on Advanced Formatting
to make the corresponding formatting properties visible.

3. In Text Formatting, type: <h3>&PRODUCT_NAME.</h3>
<p>&PRODUCT_DESCRIPTION.</p>

4. In Supplemental Information, type the following text
including the terminating period: Price:
$&LIST_PRICE.

5. Enter <h1>&CATEGORY.</h1> in the List Divider
Formatting property to show the category of each product.

6. Save the changes and run the page to see an output similar to
figure 8-24. Click the Create button to see the Product
Details page (Page 6).

Figure 8-24

Column Toggle Report
For desktop version you used the Master Detail option to simultaneously
create Orders (Page 4) and Order Details (Page 29) pages. By setting a
region to the Column Toggle Report type, you build reports that display all
data on any mobile device. Column Toggle enables you to specify the most
important columns and those that will be hidden as necessary on smaller
screens.

1. Click the Create Page button. Select Report on the initial screen
followed by the Column Toggle Report option.

2. Enter 24 for Page Number and Column Toggle Report (Mobile)
for Page Name. Keeping the default Page Mode to Normal, click
Next.

3. Set Navigation Preference to Identify an existing navigation
menu entry for this page, select Reports for Existing Navigation
Menu Entry, and click Next to proceed.

4. After selecting SQL Query as the Source Type for this page, enter
the following SQL statement in Region Source and click the
Create button.

select o.rowid,
o.order_id,
to_date(to_char(o.order_timestamp,'mm yyyy'), 'mm

yyyy') order_month,
o.order_timestamp order_date,
o.user_name sales_rep,
o.order_total,
c.cust_last_name || ', ' || c.cust_first_name

customer_name,
(select count(*) from demo_order_items oi
where oi.order_id = o.order_id) order_items,

o.tags tags
from demo_orders o, demo_customers c
where o.customer_id = c.customer_id
order by order_timestamp desc

5. Right-click the Column Toggle Report region and select Create
Button. The button will be used to create a new order. Set the
following properties for this button:

Property Value

Name CREATE

Label Create

Region Column Toggle Report (Mobile)

Button Position Create

Hot On

Action Redirect to Page in this Application

Target
Type = Page in this application
Page = 11
Clear Cache = 11

6. Save and run the page from the Column Toggle Report (Mobile)
option on the Reports page. Initially, the page will display all the
columns defined in the SQL query. Click the Columns button (A).
In the ensuing columns list, remove checks from all columns,
except Order Id, Order Month, and Customer Name to show
these three columns in the main report, as illustrated in the
following figure. Click the Create button to launch the Order
Wizard.

Figure 8-25

Reflow Report
In this exercise, you will create a responsive report for mobile applications
using the Reflow Report feature. Reflow Report wraps each column or
changes to displaying multiple lines on very small screens. When there is not
enough space available to display the report horizontally, the report works by
collapsing the table columns into a stacked presentation that looks like blocks
of label and data pairs for each row.

1. As usual, click Create Page, and click the Report icon to move
ahead.

2. On the next screen, select the Reflow Report option.

3. Type 25 for Page Number and Reflow Report (Mobile) for Page
Name. Leave Page Mode to Normal and move on by clicking
Next.

4. Set Navigation Preference to Identify an existing navigation
menu entry for this page and select Reports for Existing
Navigation Menu Entry. Click Next.

5. For Source Type, select SQL Query and enter the following query
in Region Source:

select customer_id, cust_first_name||' '||cust_last_name
customer_name,
cust_street_address1, cust_city, cust_state, cust_postal_code,
cust_email,
phone_number1, url, credit_limit, tags
from DEMO_CUSTOMERS

6. Click Create to finish the wizard.

7. In the Page Designer, expand the Columns node and set suitable
headings for all the columns.

8. Click the CUSTOMER_ID column and turn off its Show
property. This specifies to hide the column at run time. Even if
hidden, columns can always be referenced using substitution
syntax(&COLUMN_NAME.) .

9. Click the CUSTOMER_NAME column to set the following
properties. The values set for these properties will transform the
customer name column into a link. When clicked, it calls a form
page where you can browse and manipulate customer information.
For Link Text, click the adjacent Quick Pick button and select

CUSTOMER_NAME from the list. The selected value will be
displayed as a substitution variable.

Property Value

Type Link

Target Type

Type = Page in this application
Page = 7
Name = P7_CUSTOMER_ID
Value = &CUSTOMER_ID.
Clear Cache = 7

Link Text &CUSTOMER_NAME.

10. Click the CREDIT_LIMIT column and set its Alignment and
Column Alignment properties to left. These two settings will left-
align the column’s heading and its value.

11. Save the page and run it from the Reflow Report (Mobile) option
on the Reports page. The report should look like figure 8-26. Click
any customer’s name to see the details of that customer.

Figure 8-26

Summary
Report is the most significant component of any application. It allows
digging information from the data mine for making decisions. The chapter
not only demonstrated the power of Oracle APEX to graphically present the
information, but also exhibited how to drill-down to a deeper level to obtain
detailed information using different types of charts, calendar, and tree. The
chapter highlighted some mandatory properties related to charts and other
features. There are many more and explaining each one of them is beyond the

scope of this book. The best way to understand these properties is to make the
Help tab active and experiment by changing the properties in various ways.
The chapter also demonstrated how to create reports for small screen devices.
The next chapter continues with this topic and reveals how to produce
advance PDF reports in Oracle APEX.

Chapter 9 - Produce Advance Reports
9.1 About Advanced Reporting
You have seen the use of interactive reporting feature in Oracle APEX to
create professional looking onscreen reports. Interactive reports also have the
ability to export reports to PDF, RTF, Microsoft Excel, and Comma
Separated Values (CSV) formats. However, it is not possible to define a
custom report layout in interactive reports. If you download PDF version of
these reports to print a hard copy, what you get is a generic report in simple
row-column format without any control breaks and conditional formatting.
For serious printing, you have to define an external reporting server to
present data in desired format. This chapter will teach you how to utilize
Oracle BI Publisher to enjoy high level formatting.
Oracle APEX provides the following three printing options:

Oracle REST Data Services - Select this option if you are using the
Oracle REST Data Services (formerly called Application Express
Listener) release 2.0 or later. It enables you to use the basic printing
functionality, which includes creating report queries and printing report
regions using the default templates provided in Application Express and
using your own customized XSL-FO templates. The Oracle REST Data
Services option does not require an external print server, instead the report
data and style sheet are downloaded to the listener, rendered into PDF
format by the listener and then sent to the client. The PDF documents in
this setup are not returned back into the database, thus the print APIs are
not supported when using the Oracle REST Data Services-based
configuration.
External (Apache FOP) - Select this option if you are using Apache
FOP on an external J2EE server. This one enables you to use the basic
printing functionality, which includes creating report queries and printing
report regions using the default templates provided in Application Express
and using your own customized XSL-FO templates.

Oracle BI Publisher - This option requires a valid license of Oracle BI
Publisher. With this option, you can take report query results and convert
them from XML to RTF format using Oracle BI Publisher. Select this
option to upload your own customized RTF or XSL-FO templates for
printing reports within Application Express. You have to configure Oracle

BI Publisher as your print server. Besides standard configuration, Oracle
BI Publisher has Word Template Plug-in to create RTF based report
layouts, which provides greater control over every aspect of your report
and allows you to add complex control breaks, logos, charts, and
pagination control. The following list contains some reports that can be
created using this advance option:

Tax and Government Forms
Invoices
Ledgers
Financial Statements
Bill of Lading, using tables and barcode fonts
Operational Reports with re-grouping, conditional highlighting,
summary calculations, and running totals
Management Reports having Chart with summary functions and
table with detail records
Check Print, using conditional formatting and MICR fonts
Dunning Letters

To print these professional reports, you have to pay for a valid Oracle BI
Publisher license that is worth the price considering the following
advantages:

Multiple Output Formats: In addition to PDF, the other supported
output formats include DOC, XLS, and HTML.
Included in Export/Import: Being part of the application, RTF
based layout are exported and imported along with the application.
Robust Report Layout: Add complex breaks, pagination control,
logos, header-footer, charts, and print data on pre-printed forms.
Report Scheduling: This unique feature enables you to set up a
schedule and deliver the report to the desired destinations including
e-mail, fax, and so on.

To explore the features provided by this robust reporting server, you can
download and install the limited license version to use the program only for
the development purpose. Once again, this book protects you from all the
hassle of downloading, installing and configuring BI Publisher Server in your

environment, because in the online development environment you can enjoy
this utility for free. The following list presents the steps you will perform to
produce advance reports for Oracle APEX.

Steps to Produce Advance Reports

Install BI Publisher Desktop
Create report query in Oracle APEX
Create report layout in Microsoft Word (I created my templates in
Word 2003)
Upload report layout to Oracle APEX
Add links to run the report

9.2 Download and Install BI Publisher Desktop
In this chapter, you will take hard copies of reports in Portable Document
Format (PDF). You will use Microsoft Word to create templates for these
reports. For this purpose, you need Oracle BIPublisher Desktop to prepare the
report templates. During BIPublisher Desktop installation, you might be
asked to install Java Runtime Edition (JRE) and Dot Net Framework–in my
scenario I executed jre-6u11-windows-i586-p-s.exe and NetFx20SP1_x86.exe files.

BI Publisher Desktop is a client-side tool to aid in the building and testing of
layout templates. This consists of a plug-in to Microsoft Word for building
RTF templates. You can downloaded this small piece of software from:
https://www.oracle.com/middleware/technologies/bi-publisher/downloads.html

After the download, install the software on your PC using the .exe file. Once
the installation completes, you’ll see the BI Publisher plug-in as a menu item
in Microsoft Word. In newer versions it is placed under the main Add-Ins
menu.

Figure 9-1

9.3 Create Monthly Order Review Report
In Chapter 7 section 7.3.3, you created an onscreen alternative report named
Monthly Review to view details of monthly orders. In the following exercise,

you will create a PDF version of that report.

9.3.1 Create Report Query
You can print a report by defining a report query in Shared Component. A
report query is a SQL statement that identifies the data to be extracted. You
can associate a report query with a report layout and download it as a
formatted document. If no report layout is selected, a generic layout is used.
To make these reports available to end users, you integrate these reports with
an application. For example, you can associate a report query with a button,
list item, branch, or other navigational component that enables you to use
URLs as targets. Selecting that item then initiates the printing process.

1. Go to Shared Components interface.

2. Click Report Queries in the Reports section.

3. Click the Create button to create a new report query.

4. Type Monthly_Review in the Report Query Name field, set Output
Format to PDF, set View File As to Attachment, and then click
Next. Enter the report query name as is or else you will encounter
Error occurred while painting error page: ORA-01403: no data found ORA-22275: invalid

LOB locator specified when you print this report.

5. Enter the following statement in SQL Query text area and click
Next:

select o.order_id,
to_char(o.order_timestamp,'Month yyyy')

order_month,
 o.order_timestamp order_date,

c.cust_last_name || ', ' || c.cust_first_name
customer_name,
 c.cust_state,

o.user_name sales_rep,
(select count(*) from demo_order_items oi

 where oi.order_id = o.order_id) order_items,
o.order_total

from demo_orders o, demo_customers c
where o.customer_id = c.customer_id

6. Select XML Data for Data Source for Report Layout, to export
your report definition as an XML file. The XML file contains
column definitions and the data (fetched using the SELECT
statement) to populate the report. Click the Download button. A
file named monthly_review.xml will be saved to your disk.
Double-click this file to see its contents.

7. Back in Oracle APEX, click the Create Report Query button.

8. On the Confirm screen, click the Create button to complete the
wizard.

9.3.2 Create Report Template in Microsoft Word
The later versions of Microsoft Word produced errors while designing and
testing report templates, so I created my templates in Microsoft Word 2003.
If you fall into a situation like this, skip to section 9.3.8 and use the template
provided in the book code.

1. In Microsoft Word, click Oracle BI Publisher (or BI Publisher)
in the main menu to make its ribbon visible.

2. From the Data ribbon, select Load XML Data (or Sample XML) to
load a data file. Select the monthly_review.xml file created in the
previous section. The message Data Loaded Successfully will be is
displayed.

3. Select Table Wizard from the Insert ribbon. Select Table for
Report Format and click Next.

4. Click Next to accept DOCUMENT/ROWSET/ROW for Data
Set.

5. Add all fields to the report by moving them to the right pane using
the double arrow button and click Next.

6. Select Order Month in the first drop down list under Group By

and click Next. This will group the report on the Order Month
column.

7. Select Order Date in the first Sort By list and select Order ID in
the first Then By list to sort the report first on the Order Date
column and then on the Order ID column. Click Next.

8. On the label form screen, enter State for Cust State to give this
column a meaningful name. Click Finish to complete the process.
An output similar to Figure 9-2 will be displayed.

Figure 9-2 Raw Report Template Created in Microsoft Word

9. Press Ctrl+S (or click the Save icon) to save the template. Enter
Monthly_Review in the File name box, select Rich Text Format
for its type, and click Save.

10. In the Preview ribbon, click the PDF option. The output as show in
Figure 9-3 will be displayed. Note that you can format and preview
this report offline if you have some data in the XML file.

11. Close the PDF and switch back to Microsoft Word.

Figure 9-3 Raw Report Template Output

9.3.3 Format Report

1. Place the cursor before the ORDER_MONTH field and type
Order Month: in front of it to act as a label. You can use

Microsoft Word’s standard tools to change font, color, and size of
the text. Also, drag field’s width to a desired size.

2. Click the ORDER_TOTAL field and right-align it. Double-click it
to call its properties. Select Number for its Type and #,##0.00 for
Format. Click OK.

3. Insert a blank line above group ROW by Order_Month text to
add a title for this report. Type ABC CORPORATION and press
Enter to add another line. Type Monthly Orders Review Report
on the new line. You can also add a logo, page number, and other
options using Microsoft Word’s standard tools.

9.3.4 Conditional Formatting
In these steps, you will change font and background color of orders for which
the amount is less than or equal to 900, as you did in the onscreen report
version in Chapter 7.

1. Select the Order Total field by clicking its name (not the heading)
in the column.

2. Select Conditional Format from the Insert ribbon.

3. Perform the following steps on the Properties tab:

a. Select the ORDER_TOTAL column for Data field.
b. Select Number in the adjacent list.
c. Put a check on Apply to Entire Table Row to apply the

condition to the whole report.
d. Select Less than or equal to in the Data field.
e. Enter 900 in the box next to the Data field.
f. Click the Format button.
g. Put a check on the Background Color option.
h. Click the Select button to choose different Font and

Background colors.
i. Click OK.

4. Preview your work and see the application of conditional

formatting to all the rows with Order Total less than or equal to
900.

Use the same procedure and change font and background color for orders
greater than 2000. Select Greater than for the condition and enter 2000 in the
value. This time, do not check the Apply to Entire Table Row option to
highlight specific cells only. After performing these steps, save your work
and preview the report.

9.3.5 Summary Calculation
In this section you will add a summary to reveal average orders for the
month.

1. Place your cursor on the blank line before the text end ROW by
ORDER_MONTH.

2. Click the Field option in the Insert ribbon.

3. In the Field dialog box, click the Order Total field, select average
for Calculation, select On Grouping, and click the Insert button.
A summary field, average ORDER_TOTAL will be added to the
report. Close the dialog box.

4. Type Monthly Average: before the field to act as field’s label.
Double-click the calculated field, set the Type property to Number,
and the Format property to #,##0.00. Align the whole expression to
the right under the Order Total field.

9.3.6 Add a Summary Chart

1. Insert a blank row above group ROW by ORDER_MONTH.

2. Select Chart from the Insert ribbon.

3. From the Data tree, drag the ORDER_TOTAL field to the Values
box, set Aggregation to Sum, drag ORDER_MONTH to Labels,
put a check on Group Data, select Bar Graph - Horizontal for
Type, and April in Style. The completed screen should look like
Figure 9-4. Click OK to close the dialog box.

4. Right-click the newly added chart in Microsoft Word and select
Insert Caption. Type Monthly Orders Review in Caption.

Figure 9-4 Add Chart to Report Template

9.3.7 Add a Pivot Table

1. In Microsoft Word, click the line just after the text end ROW by
ORDER_MONTH.

2. Select Pivot Table from the Insert ribbon.

3. Drag CUST_STATE, CUSTOMER_NAME,
ORDER_MONTH, and ORDER_TOTAL fields to the layout
section, as shown in Figure 9-5. Drag the CUST_STATE and
CUSTOMER_NAME fields and drop them in the left layout pane
one after the other. Click the Preview button to see the output
within the dialog box. Click the OK button to dismiss the Pivot
Table dialog box. Format the table using Microsoft Word’s toolbar
so that it matches the output shown in Figure 9-8. Browse the
report in PDF. Save the template and close Microsoft Word.

Figure 9-5 Pivot Table Settings

9.3.8 Upload Report Template to Oracle APEX
Report Layouts are used in conjunction with report queries to render data in a
printer-friendly format, such as PDF. A report layout has been designed using
Oracle BI Publisher’s plug-in for Microsoft Word and will now be uploaded
to Oracle APEX as an RTF file type.

1. In the Shared Components interface, click Report Layouts under
the Reports section.

2. Click the Create button.

3. Select the option Named Columns (RTF) and click Next. A
named column report layout is a query-specific report layout
designed to work with a defined list of columns in the query result
set. This type of layout is used for custom-designed layouts when
precise control of the positioning of page items and query columns
is required. This layout is uploaded as an RTF file.

4. In Layout Name enter monthly_review, click the Choose File
button, and select the Microsoft Word template file
Monthly_Review.rtf, which was created in the previous section.

5. Click the Create Layout button.

6. Move back to Shared Components.

7. Click the Report Queries link under the Reports section.

8. Click the Monthly_Review icon.

9. In Report Query Attributes section, change Report Layout from
Use Generic Report Layout to monthly_review to apply this layout
to the report query.

10. Write down or copy the URL appearing in the Print URL box,
which should be – f?
p=&APP_ID.:0:&SESSION.:PRINT_REPORT=Monthly_Review. Report queries
can be integrated with an application by using this URL as the
target for buttons, navigation list entries, list items, or any other
type of link. You will use this link in the next section to run the
report.

Figure 9-6 Report Query Attributes

11. Click Apply Changes.

You have created the Report Layout in Oracle APEX by uploading a
Microsoft Word template and linked it to your Report Query. In the next
section, you will create a link to run this report.

9.3.9 Run the Report

In this section, you will configure Monthly Review Report menu entry in the
main navigation menu to run this report.

1. Switch back to the Shared Components interface.

2. Click the Lists link under the Navigation section and then click
Desktop Navigation Menu.

3. Click the Monthly Review Report entry.

4. Set the Target Type property to URL and enter or paste the URL f?
p=&APP_ID.:0:&SESSION.:PRINT_REPORT=Monthly_Review
in the URL Target box.

5. Save your work by click the Apply Changes button.

6. Run the application. Expand Advance Reports under the Report
menu and click Monthly Review Report. The report will be
downloaded to your PC. Open the report with Adobe Acrobat
Reader, which should look something like Figure 9-7 and Figure 9-
8. I formatted the layout using standard Microsoft Word tools,
including header-footer, tables, page number, font, and so on.

7. The same report has a link on Page 26, which is associated with a
list. Go to Shared Components and call Reports List (in the Lists
option under Navigation). Modify the Monthly Review Report entry
by setting Target Type property to Page in this Application, Page
property to 0, and Request property to
PRINT_REPORT=Monthly_Review. This is an alternate method
to send the same print request used in step 4. Save these setting and
run the report through this link in the main Reports page (Page 26).

Congratulations! You have successfully created professional looking reports
that not only matches the onscreen report of Chapter 7, but also adds more
value to it by incorporating a pivot table, to display the same data from a
different perspective. Add a new order in the application and see its reflection
in the report.

Figure 9-7 Monthly Order Review Report

Figure 9-8 Pivot Table Report

9.4 Create a Commercial Invoice
In this exercise, you will generate commercial invoices for the placed Orders.
You will use the same techniques used in the previous section. This time, you
will create a parameters form to print specific orders by passing parameter
values to the underlying report query.
9.4.1 Create A List of Values
Create the following LOV from scratch in the Shared Components interface.
You will utilize it in the next section to print only those orders entered by the
user selected from this list.

Property Value

Name Users

Type Dynamic

Query SELECT DISTINCT user_name d, user_name r FROM demo_orders

Return Column R

Display Column D

9.4.2 Create Report Parameters Page

1. Create a Blank Page using the following parameters. The page will
receive parameters to print specific invoices.

Property Value

Page Number 50

Name Invoice Parameters

Page Mode Normal

Breadcrumb don't use breadcrumbs on page

Navigation Preference Identify an existing navigation menu entry for this page

Existing Navigation Menu Entry Reports

2. Create a region under Content Body. Enter Invoice Report for the
region’s Title.

3. Add two Page Items under the Invoice Report region and set the
following properties. Using these items you can print a single order
or a range of orders.

TIP: After creating the first item, right-click its name in the Rendering tree,
and select Duplicate from the context menu. This action will make a
duplicate of the first item. Select the duplicate item, and set the values
mentioned in the table’s second column.

Property Value Value

Name P50_INVOICEFROM P50_INVOICETO

Type Text Field Text Field

Label From Invoice Number: To Invoice Number:

Template Required Required

Value Required On On

Type (Default) Static Static

Static Value 1 9999999999

4. Add a Select List under the two text field items and set the
following properties. The select list will show the IDs of all users
from which you can select one ID to print the orders entered by that
particular user. The V('APP_USER') expression displays the ID of
the logged-in user as a default value for this select list. For PL/SQL
reference type, you use V('APP_USER') syntax of the built-in
substitution string to assess the current user running the
application.

Property Value

Name P50_USER

Type Select List

Label Entered by:

Template Optional

Type (List of Values) Shared Components

List of Values USERS

Type (Default) PL/SQL Expression

PL/SQL Expression V('APP_USER')

5. Right-click the Invoice Report region and select Create Button.
Set the following properties for the new button. When you click
this button, the page is submitted and an associated branch (created
in section 9.5) forwards a print request to the print server.

Property Value

Name PRINT

Label Print Invoice

Button Position Edit

Hot On

Action Submit Page

6. Save your work.

9.4.3 Create Query for the Invoice

1. Go to Shared Components.

2. Click Report Queries under the Reports Section.

3. Click the Create button to create a new report query.

4. Type Invoice for Report Query Name, set Output Format to PDF,
View File As to Attachment, and click Next.

5. Enter the following statement in SQL Query text area and click
Next. As you can see, the SQL query filters data using the three
parameters passed to it from Page 50. You use bind variables
(underlined in the WHERE clause) in SQL statements to reference
parameter values.

Select o.order_id, o.Order_timestamp, o.user_name,
c.cust_first_name || ' ' || c.cust_last_name as customer,

c.cust_street_address1, c.cust_street_address2, c.cust_city,
c.cust_state, c.cust_postal_code, oi.ORDER_ITEM_ID,
pi.PRODUCT_NAME, oi.UNIT_PRICE, oi.QUANTITY,
oi.Unit_Price * oi.Quantity as Amount

from DEMO_ORDERS o, DEMO_ORDER_ITEMS oi,
DEMO_PRODUCT_INFO pi, DEMO_CUSTOMERS c

where o.ORDER_id = oi.ORDER_id and pi.PRODUCT_ID =
oi.PRODUCT_ID and

o.customer_id = c.customer_id and

o.ORDER_id BETWEEN :P50_INVOICEFROM and
:P50_INVOICETO and o.user_name = :P50_USER

6. Select XML Data for Data Source for Report Layout to export
your report definition as an XML file. Click the Download button.
A file named invoice.xml will be saved to your disk.

7. Click the Create Report Query button followed by the Create
button on the Confirm page. Unlike the previous XML file, this one
doesn’t contain any data due to the involvement of parameters. So,
you cannot test the invoice report offline.

9.4.4 Create Invoice Template in Microsoft Word
Perform the following steps in Microsoft Word to create a template for the
invoice report. For your convenience, I have provided both XML and RTF
files with the book’s code.

1. In Microsoft Word, select the A4 size page and set the margins.

2. From the Data ribbon, select Load XML Data | invoice.xml, and
then click Open to load the XML file you downloaded in the
previous section.

3. From the Insert ribbon, choose Table Wizard to add a table. This
table will be used to output order details. Set Report Format to
Table and Data Set to DOCUMENT/ROWSET/ROW.

4. Move Order Id, Product Name, Unit Price, Quantity, and
Amount columns to the right pane.

5. Select Order Id in Group By to group the report according to order
numbers.

6. Do not select any field for Sort By.

7. Set labels (Product, Price, Quantity, and Amount) for the report
columns.

8. Click Finish.

9.4.5 Template Formatting
Follow these steps to format the template:

1. Double-click the group field titled group ROW by ORDER_ID.
On the Properties tab, set Break to Page. This will print each new
invoice on a separate page.

2. From the Insert ribbon select Field. Select the ORDER_ID field
and click the Insert button to add this field to the next row just
after the group titled group Row by ORDER_ID. Similarly, add
ORDER_TIMESTAMP, CUSTOMER,
CUST_STREET_ADDRESS1, CUST_STREET_ADDRESS2,
CUST_CITY, CUST_STATE, CUST_POSTAL_CODE, and
USER_NAME on subsequent lines. I inserted a table to place these
fields accordingly – see Figure 9-9.

3. Double-click the AMOUNT field. Set its Type to Number and
Format to #,##0.00. Right-align the field using Microsoft Word’s
alignment option.

4. Add a blank row to the details table. Select Field from the Insert
ribbon. In the Field dialog box, select AMOUNT. From
Calculation list, select sum, put a check on ‘On Grouping’, and
click Insert. Put a label Total and then format and align the field,
as shown in the template. This step will add a new row (just after
the last transaction) to display the sum of the Amount column.

5. Save the report to your hard drive as invoice and select Rich Text
Format (RTF) as its type.

6. Close Microsoft Word.

9.4.6 Upload Template to Oracle APEX

1. Call the Shared Components interface and click Report Layouts
under Reports.

2. Click the Create button.

3. Select the option Named Columns (RTF) and click Next.

4. In Layout Name enter invoice, click the Choose File button, select
the template file invoice.rtf, and then click the Create Layout
button.

5. Move back to Shared Components.

6. Under the Reports section, click the Report Queries link.

7. Click the Invoice icon.

8. In Report Query Attributes section, change Report Layout from
Use Generic Report Layout to invoice to apply this layout.

9. Click Apply Changes.

9.5 Create Branch
Call Page 50 to create the following branch. This branch is being added to
send a print request when the Print Invoice button is clicked. On the
Processing tab, right-click the After Submit node and select Create Branch.
Set the following properties for the new branch. Note that the letter I in the
word Invoice (in the Request attribute) should be in caps and the request
value (PRINT_REPORT=Invoice) should not contain any leading or trailing
space.

Property Value

Name Run Invoice Report

Point After Submit

Type (Behavior) Page or URL (Redirect)

Target Type
Page

Request (under Advance)

Type = Page in this Application
0
PRINT_REPORT=Invoice

When Button Pressed PRINT

Test Your Work
From the main navigation menu, select Customer Invoice under the Advance
Reports menu. This will bring up the parameters form page (Page 50). For the
time being, accept all the default values in the form, including the default

user, and hit the Print Invoice button. Open the report with Adobe Acrobat
Reader, which should resemble the one show in Figure 9-9. Also, try to get
this report using different parameters to test your work.

Figure 9-9 Commercial Invoice

NOTE: You may get the following error when you try to open the PDF:
Acrobat could not open 'invoice.pdf' because it is either not a supported file
type or because the file has been damaged (for example, it was sent as an
email attachment and wasn't correctly decoded). This error message is
displayed when there is no data for the given criteria. For example, the
default user appearing in the Entered by list might not have created any order.
So, change the user name and then hit the Print Invoice button. To cope with
this problem, you can add a validation to check for the existence of data prior
to calling the report. The error also emerges when Oracle APEX is not
configured to use BI Publisher as its print server.

Summary
The chapter revealed how to create advance reports and provided step-by-step
instructions on how to generate pixel-perfect PDF reports in Oracle APEX
using Oracle BI Publisher and MS Word. The same topic continues in the
next chapter, where you will learn how to produce such reports in
JasperReports.

Chapter 10 - Managing Users & Application Access
10.1 Administer Applications in Oracle APEX
Oracle APEX has two types of administrators: Workspace administrators and
Instance administrators. A workspace administrator, as the name suggests, is
responsible to manage administrative activities of a workspace, such as
manage user accounts, monitor workspace activities, and view log files. On
the other hand, instance administrators manage the entire instance of Oracle
APEX. In this book you will act as a workspace administrator because you
are working in a hosted environment, where the role of instance administrator
is not available and is performed by people on the Oracle APEX team.

Workspace administrators and developers can create user accounts for the
purpose of logging in to the Oracle Application Express development
environment and for end user authentication to applications developed within
their workspaces. They can also control access to an application, individual
pages, or page components via access control. Adding the Access Control
feature to an application creates multiple pages and the following
components:

Adds an Access Control region to the Administration page
Creates the access roles: Administrator, Contributor, and Reader
Creates the authorization schemes: Administration Rights,
Contribution Rights, and Reader Rights
Creates the build option, Feature: Access Control
Creates ACCESS_CONTROL_SCOPE Application Setting

Oracle APEX comes with three built-in privileges using which you can
control access to an application or its components. These privileges are:
administration, edit, and view. Each of these privileges correlates to an access
role:

Administration correlates to the Administrator role.
Edit correlates to the Contributor role.
View correlates to the Reader role.

When added to an application, the Access Control feature creates the
following authorization schemes:

Figure 10-1 Authorization Schemes

1. Administration Rights – This authorization scheme checks if the
current user in the application is assigned ADMINISTRATOR role.

2. Contribution Rights – This authorization scheme checks if the
current user in the application is assigned the ADMINISTRATOR
role or the CONTRIBUTOR role.

3. Reader Rights – This authorization scheme returns TRUE if the
access control is configured to allow any authenticated user access
the application. If this behavior is not allowed, it checks if the
current user in the application is assigned to any application role.

NOTE: You can add the access control feature to your application at the time
of creating the application (as you did in Chapter 2), or at a later stage using
the Create Page wizard.

After creating an application, you create users and allow access to the
application. This chapter will provide instructions whereby you will be able
to control the access of your application using the built-in roles, privileges,
and authorizations schemes just mentioned.

The following diagram depicts the security structure you will be
implementing for your application. The left pane depicts a scenario for the
user RIAZ, who has the Contributor role. When this user tries to access the
Customers report page (Page 2), the Contribution Rights authorization
scheme, which is associated with the Create button, is contacted. Since the
user has the Contributor role and the Create button is associated with the

Contribution Rights authorization scheme, the button appears on the page for
this user. In other words, administrators and contributors can create new
customers.

The second scenario (in the left pane), shows that the user AHMED has been
granted the Reader role. When he tries to access the same Customers report
page, the Create button is not displayed. This is because the button is
associated with the Contribution Rights authorization scheme.

Figure 10-2 Appliction Security Structure

10.2 Creating Users
Now that we are approaching the application deployed stage, lets first create
a couple of users to test the application access control scenarios displayed on
the previous page.

1. Click the Administration icon (A), and select Manage Users and
Groups (B).

Figure 10-3

2. The Manage Users and Groups page will appear on your screen,
displaying your existing workspace administrator user account (A).
Click the Create User button (B) on this page.

Figure 10-4

3. Set the following properties on the Create User page and click the
Create User button.

Property Value

Username RIAZ

Email Address riaz@abc.com

Password Set a password for this user

Confirm Password Confirm the above password

Require Change of Password on First
Use

Off

Run the application and try to log into it using the above credentials. You will

be denied with Access denied by Application security check message. This message is
displayed because the user has not been granted access to the application.
Execute the next steps to grant application access privilege to this user.

4. On the error page, click the OK button to access the login page
again. Enter your workspace administrator credentials to log in.
Click the Administration option in the application menu, and then
click the Users option in the Access Control pane to your right.

5. On the Manage User Access page, click the Add User button. In
the Manage User Access form, enter RIAZ for Username, and
grant him the Contributor role, as shown in the following figure.
Click the Add User button.

Figure 10-5

TIP: In my personal opinion, the Username field in the above form should be
a select list, displaying the user we created in step 3, instead of the input text
filed.

Log out and log back in using the new user’s credentials. This time you will
be granted access to the application. Note that the Administration menu will
not be displayed for this user, because he is not an administrator.

6. Add one more user (AHMED) using the instructions provided in
the previous steps, and grant him the Reader role.

10.3 Implement Authorization
In the following set of steps you will implement the Contribution Rights
authorization scheme to test access to page, page components, and
application menu. We now have three users – you (workspace administrator),
RIAZ (Contributor), and AHMED (Reader).

1. Open Page 2 (Customers) in Page Designer. On the Rendering tab
to your left, click the Create button to select it. In the Properties
pane, set Authorization Scheme (in the Security section) to
Contribution Rights, and save the change. The button is now
associated with the selected authorization scheme.

2. Run the application using RIAZ user’s credentials. Select Manage
Customers from the Setup menu. The Create button should be
visible for this user, because he possesses the contributor role.

3. Log out and log back in using AHMED’s credentials. Once again,
select the Manage Customers option from the Setup menu. On this
occasion, the Create button will not be rendered, because the user
has the Reader role – that is, he cannot create new customers.

4. After testing page component access control, let’s see how to
restrict user from accessing an application page. Switch back to the
designer interface. Click the root node - Page 2: Customers. In the
Properties pane, scroll down to the Security section, and set
Authorization Scheme to Contribution Rights. Save and run the
page. This time the page itself will not be rendered and you will see
a message " Insufficient privileges, user is not a Contributor " instead. Log in
as RIAZ and observe that both page and the Create button are
rendered for this user.

5. Finally, let’s check out the application menu access. Go to Shared
Components interface, and select Navigation Menu followed by
the Desktop Navigation Menu option. Click the Manage
Customers option. On the List Entry page, set Authorization
Scheme to Contribution Rights, and click the Apply Changes
button. Switch to the application tab in your browser, and refresh
the Customers report page. The application menu should still be

listing the Manage Customers entry for RIAZ. Sign out and log in
as AHMED. There you go! The Manage Customers entry from the
Setup menu has vanished. So, this step exhibited how you can
prevent users from accessing menu entries.

Summary
In this chapter you went through the built-in mechanism of Oracle APEX to
administer your applications. You learned how to add application users and
grant them built-in roles to control application access. In the final section,
you assessed the access control mechanism by applying the built-in roles and
authorization scheme to page, page components, and application menu. In my
next-level book, Oracle APEX Pro Hacks (second edition), I’ve demonstrated
how to create a robust custom security module for APEX applications.

Chapter 11 - More Features
11.1 Faceted Search
A faceted search page, as illustrated in the following figure, features a faceted
search region (A) and report (B). The faceted search region displays on the
left side of the page and enables users to narrow down the search result by
selecting facet values (C). A facet shows possible values together with the
occurrence count (D) within the result set.
Narrowing the search result makes it easier for users to find the data they
want. The right side of the results region is a classic report which displays in
report or card view. Both the Create Application Wizard and Create Page
Wizard support the creation of faceted search pages. After you change a
facet, results, dependent facets and occurrence counts refresh immediately.
Let's explore this exciting feature.

Figure 11-1

11.1.1 Create Faceted Search Page
Execute the following steps to create a faceted search page, as illustrated in

Figure 11-1.

1. Click the Create Page button, and select Report for the new page
type.

2. On the next wizard screen, select Faceted Search.

3. On Page Attributes screen, enter 400 for Page Number, Faceted
Search for Page Name, and click Next.

4. On the Navigation Menu screen, select Create a new navigation
menu entry for Navigation Preference. Enter Faceted Search for
New Navigation Menu Entry. Select Reports for Parent Navigation
Menu Entry. These selections will create a new menu entry named
Faceted Search in the existing hierarchy under the main Reports
menu. Click Next to move on. This is a direct method of creating
menu entry.

5. On Report Source screen, select Local Database for Data Source
and SQL Query for Source Type. Enter the following SQL
statement in the provided box and click the Create button to
complete the page creation process.

select to_char(o.order_timestamp,'Month YYYY') month,
o.order_total amount,
c.cust_last_name||', '||c.cust_first_name customer,
p.product_name product

from demo_orders o, demo_order_items oi, demo_customers c,
demo_product_info p
where o.order_id = oi.order_id and

p.product_id = oi.product_id and
o.customer_id = c.customer_id

order by o.order_id

The page will be created comprising a classic report region, to show
search results, and a region of the new Faceted Search type, which is
going to hold the facets. The Faceted Search region will be linked to the
Classic Report region, and each Facet will be linked to one of the
Classic Report result columns. The Search facet (P400_SEARCH)

allows the end user to perform some text based search on the result list.
Only one search facet is supported for a faceted search region. The
report columns to use for searching are configured in Database
Column(s) property in the Source section within the attributes of the
search facet.

6. Click Search facet (P400_SEARCH). Scroll down to the Source
section, and ensure that the Database Column(s) property has the
following columns:
MONTH,AMOUNT,CUSTOMER,PRODUCT. As just
mentioned, these column (defined in the SQL query) will be used
for searching.

7. Let's create some facets on the page. Right-click the Facets node
(under the Search region), and select Create Facet from the
context menu. Set the following properties for the new facet.

Property Value

Name P400_MONTH

Type Checkbox

Label Month

Type (under List of Values) Distinct Values

Database Column (under Source) MONTH

Data Type VARCHAR2

Facets can display as different UI types. Currently APEX provides the
following facet types: Checkbox, Radio Group, Select List, Range, and
Search. Checkboxes allow you to pick multiple values to filter report
results, whereas radio groups or select lists allow to pick only one value.
The Range option displays an item with a built-in list of values selector.
The facet supports single or multiple selection, and manual entry. For
single selection support, displays multiple values as radio group options,
enabling the end user to select a single value. For multiple selection
support, displays multiple values as check boxes, enabling the end user
to select multiple values. For manual entry support, text fields will
render below the facet, allowing the end user to manually enter the
range of values they wish to use for filtering the Filtered region. By

setting the Distinct Values for LOV type, the list of values will be based
on an automatically generated query that selects the distinct column
values. The source for this facet is set to the MONTH column and its
type is set to VARCHAR2. Save and run the page to see an output
similar to the following figure. The Month facet (A) will be displayed.
Click the checkbox representing April 2020 (B). The report on the right
side will be filtered to display orders for this month. Click the X icon
(C) or the Clear link (D) or the Reset button (E) to remove the filter.

Figure 11-2

8. Create three more facets for product, amount, and customer
columns using the following tables.

Facet 1:
Property Value

Name P400_PRODUCT

Type Checkbox

Label Product

Type (under List of Values) Distinct Values

Database Column (under Source) PRODUCT

Data Type VARCHAR2

Facet 2:
Property Value

Name P400_AMOUNT

Type Range

Label Amount

Select Multiple On

Manual Entry On
Type (under List of Values) Static Values

Static Values See the following figure

Database Column (under
Source)

AMOUNT

Data Type NUMBER

Figure 11-3

The Range Facet allows to filter the result list for values between a
lower and upper boundary. A range facet consists of an LOV with
predefined ranges to pick from, two text fields to manually enter the
lower and upper boundary, or both. For the predefined ranges, the
normal APEX LOV infrastructure is used: the LOV can thus be a static
LOV, defined in Page Designer, or a dynamic one, using a SQL Query.
In both cases, the LOV return value needs to use the pipe (|) character,
to separate upper and lower values.

Facet 3:
Property Value

Name P400_CUSTOMER

Type Select List

Label Customer

Type (under List of Values) Distinct Values

Database Column (under Source) CUSTOMER

Data Type VARCHAR2

9. Save and run the page and play around with the four facets.

11.2 Theme Roller – Style Your Application
Theme Roller (A) displays in the runtime Developer Toolbar, as shown in the
following screenshot. Using the Theme Roller utility, you can change the
appearance of an application. It is a live CSS editor that enables developers to
quickly change the colors, add rounded corners to regions and specify other
properties of their applications without touching a line of code. Theme Roller
can also be used to modify an existing theme’s CSS file.

Theme Roller has various options. Some most important options (B) are
listed in the following figure. These options are tagged in Figure 11-5. To
style a specific page component, expand its group, select the component, and
apply the style. For example, to apply a new color to your application header,
expand Global Colors (C), click the color swatch next to Header Accent (D)
and select a new color (E).

Figure 11-4

Figure 11-5

In the following set of steps I’ll show you how to create a new style for your
application using Theme Roller by changing header and body accent of a
page. In addition, you’ll also learn how to add border radius to form page
items.

Figure 11-6

1. Run the application, and select Manage Products from the Setup
menu.

2. On the Products page, click the name of a product to open its
details page.

3. In the Developers Toolbar, click Theme Roller.

4. In Theme Roller, expand Regions section (A), and click
Background (B).

5. Select a color from the color swatch (C). As you drag the small
circle in the swatch, the change is immediately reflected on the
application page.

6. Next, click Background representing the Body component (D),
and choose a light color (E) for the body.

7. Click the Forms group (F), and drag the small circle (G) to the
right side. This action will form a border radius around page items.

8. Click the Save As button (H). In the Save As dialog, accept the
default name or enter a name for the new style. Click Save. A
message Theme style created successfully! will be displayed in a
dialog box. Click OK to close this dialog. The name of this new
style will appear in Theme Roller's Style list (I). Click the Set as
Current button (J) to apply this style to the whole application.

11.3 Styling Buttons
Button has been an important component of every application and is basically
used to control the flow of applications. Buttons are created by right-clicking
a region in which you want to place the button and selecting Create Button
from the context menu. By placing buttons (such as Create, Delete, Cancel,
Next, Previous, and more) on your web page, you can post or process the
provided information or you can direct user to another page in the application
or to another URL. You can also configure buttons to display conditionally or
warn users of unsaved changes.

A button can:

Submit a page (for example to save changes)
Redirect to either a different page or a custom URL
Do nothing (for example if the button's behavior is defined in a
Dynamic Action)

Universal Theme provides several options for adding buttons to your
applications. This section introduces three button templates and the various
template options you can avail to style your application buttons.

Text Only: This is Universal Theme's default button.
Icon Only: The icon only button is useful for easily recognized
actions.
Text With Icon: This template enables you to display an icon next
to your button label. You can easily position the icon to the right or

left of the label using Template Options.

Figure 11-7

The following table contains samples of Text only buttons with relevant
properties. Text only is the standard button in Universal Theme and its
Button Template attribute is set to Text by default when you add a new
button to your application page. To apply these samples, just set the attributes
provided under Template Options.

Text only Buttons Attributes Value

Size Small

Size Small
Hot On

Size Default

Size Default
Hot On

Size Large

Size Large

Hot On

Button with Stateful Colors:
Stateful colors are used to convey additional meaning to a button. For
example, you may choose to color a warning alert with a yellow tint.
There are 6 stateful colors: normal, hot, primary, danger, warning, and
success. You may customize these colors by modifying them in Buttons
section within Theme Roller. In the following samples, I’ve used the
Warning type. The other available options are Normal, Primary, Danger,
and Success that render buttons in respective colors set within Theme
Roller.

Type Warning

Style Default

Type Warning

Style Simple

Type Warning
Style Display as Link

These symbolic buttons use Icon as Button Template. Other options available
for the Type attribute are: Normal, Primary, Danger, and Success.

Icon only Buttons Attributes Value
Type Warning
Style Default
Icon fa-warning
Type Warning
Style Simple
Icon fa-warning
Type Warning
Style Display as Link
Icon fa-warning

This template enables you to display an icon next to your button label. You
need to select Text with Icon for the Button Template.

Text with Icon Buttons Attributes Value
Label Default Warning
Type Warning
Style Default
Icon fa-warning
Label Simple Warning
Type Warning
Style Simple
Icon fa-warning
Label Link Warning
Type Warning
Style Display as Link
Icon fa-warning

Execute the following steps to get some hands-on exposure.

1. Open Page 2 (Customers) in Page Designer.

2. Click the CREATE button, and modify the following properties of
this button.

Property Value

Button Template Text with Icon

Hot Off

Icon fa-arrow-circle-o-right

Template Options

Type Success

Style Default

Icon Position Right

Icon Hover
Animation

Push

3. Save and run the page. The CREATE button should now be
rendered in green color. Hover the mouse pointer over the button to
see the push effect.

4. Switch back to the designer interface. Open the Template Options
dialog box, and change the Type property of the button to Danger.
Also set Style to Display as Link. Save and run the page. This time
the button will be rendered as a link in red color. Set other values
for the Type property and see respective effects.

11.4 Manage Events via Calendar
In chapter 8 section 8.6 you created a calendar report to display customer
orders in a calendar region. Let’s take a step forward to explore the actual
usage of this component – handling events. Oracle APEX allows you to add
calendars to your application with monthly, weekly, daily, and list views.
You can create a calendar based on a table or SQL query. During the creation
process, you are prompted to select date and display columns. Once you
specify the table on which the calendar is based, you can create drill-down
links to information stored in specific columns and enable drag and drop
capability.

Using the Calendar component you can:

Display calendar events on multiple views (Month, Week, Day, or
List).
Render duration (as shown in Figure 11-8) and non-duration based
events.
Render events from external sources using web service calls or
Google Calendar feeds.
Modify the start and end dates by dragging and dropping events on
different dates. Drag and drop is only supported for local data
sources, that is, database objects in the referenced database schema
and not on external data sources such as a Google calendar.
Edit or add new events on calendar using forms by clicking either
on events or empty calendar cell.
Use different CSS classes, developer can choose different styles for
different types of events.
Share events using multiple formats (iCal, CSV, XML).

Enable tooltip to make it easier for users to have a quick look at
details of each event.

To use the calendar, you need to prepare a SQL query with the following
columns:

Start Date – the start date for events displayed on a calendar. It can
include the starting time.

End Date – the column which holds the end date for events displayed on a
calendar. If this attribute is specified, then the calendar displays duration
based events.

Display – Holds the text displayed for events on a calendar.

CSS Class – the CSS class name to style the events displayed on a
calendar. This column is optional.

Primary Key – primary key for the event. The column becomes necessary
if you want to enable drag and drop feature.

Supplemental Information – additional information which is displayed in
the List View and Tooltip. Use &COLUMN. syntax to show column
values in HTML. Show Tooltip must be set to Yes in order for this
supplemental information to be displayed in the Month, Week and Day
views.

Figure 11-8

Execute the following set of steps to explore some more features of the
Calendar component.

1. From the SQL Workshop menu, select SQL Scripts and click the
Upload button. In the Upload Script screen, click the Choose File
button. In the Open dialog box, select DEMO_TASKS.txt file
from Chapter 11 folder in the book’s source code. For Script Name,
enter Demo Tasks Table and click the Upload button. In the SQL
Scripts interface click the Run button (A). On the Run Script
screen, click the Run Now button. Six statements in the script will
be successfully processed to create the table with 5 rows. You can
view these tables from the SQL Workshop > Object Browser
interface.

Figure 11-9

2. Create a new page. Select Calendar option on the first wizard
screen.

3. On Page Attributes screen, enter 401 for Page Number, Manage
Events for Page Name, and click Next.

4. On the Navigation Menu screen, select Create a new navigation
menu entry for Navigation Preference. Enter Manage Events for
New Navigation Menu Entry. Select Setup for Parent Navigation
Menu Entry. Click Next to move on.

5. On Source screen, select Local Database for Data Source and
SQL Query for Source Type. Enter the following SQL statement in
the provided box. Verify the SQL statement by clicking the
Validate icon (A). If the statement is correct, you get Validation
successful message (B). Click Next to proceed.

Figure 11-10

SELECT id, task_name, start_date, end_date, status,
username,

case status
when 'Open' then 'apex-cal-green'
when 'Pending' then 'apex-cal-yellow'
when 'Closed' then 'apex-cal-red'
when 'On-Hold' then 'apex-cal-black'

end as css_class
FROM demo_tasks

6. On the final Settings wizard screen, ensure that the TASK_NAME
column is set as Display Column, START_DATE column as Start
Date Column, and END_DATE as End Date Column. Selecting
the END_DATE column will display the duration of events, as
shown in Figure 11-8. If you want to also display the time portion
of the date, then select Yes for Show Time. The Week and Day
views will only be displayed when Show Time is set to Yes. If the
start date or end date columns do not include time components,
they will be shown as 12:00 am. Click the Create button.

7. After creating the page, click the Attributes node under the
Calendar region, and enter Assigned to &USERNAME. for
Supplemental Information to display the name of the user the task
is assigned to.

8. For CSS Class attribute, select the CSS_CLASS column (defined
in the SQL query) to style the events using different colors, as
shown in Figure 11-8.

9. Execute this step if you want to create a new task from within the
calendar. The step assumes that you have already created a form
where you create a new task. Click the Attributes node under the
Calendar region, and then click No Link Defined under Create
Link. In the Link Builder dialog box, you have to provide the
number of the target page to be called when the user clicks an
empty cell, or outside of an existing calendar entry. Enter that
number in both Page and Clear Cache attributes.

10. Execute this step if you want to access an existing task. Click the
No Link Defined text for View / Edit Link attribute, and enter a

target page to be called when the user clicks an existing entry. You
also need to set task ID for the target page, as shown in the
following screenshot.

Figure 11-11

Let's test the last important segment of the calendar component - Drag and
Drop.

11. Click the Calendar's Attributes node and select ID for Primary Key
Colum. This is the column which holds the primary key value for
our calendar events. If the table has a multi-part primary key, then
select ROWID. The value of this column is returned in the
APEX$PK_VALUE substitution variable, which is utilized in the
Drag and Drop Code attribute to identify the record to be updated.

12. When you select a primary key, a new attribute named Drag and
Drop is added under Calendar Views and Navigation attribute.
Turn on this attribute, and enter the following PL/SQL code for
Drag and Drop PL/SQL Code attribute. The
APEX$NEW_START_DATE substitution returns the revised start

date, APEX$NEW_END_DATE returns the revised end date for
duration based events, and APEX$PK_VALUE returns the value of
the column specified in the Primary Key Column.

begin
update demo_tasks

set start_date = to_date(:APEX$NEW_START_DATE,
'YYYYMMDDHH24MISS'),

end_date = to_date(:APEX$NEW_END_DATE,
'YYYYMMDDHH24MISS')

where id = :APEX$PK_VALUE;
end;

Save and run the page, which should appear as shown in Figure 11-8. Drag
and drop a task to some other date and observe the change in the
DEMO_TASKS table via Object Browser.

Summary
In this chapter you went through some miscellaneous but significant features
provided in Oracle APEX to help improve your application development
experience. You created a Faceted Search page that provides additional
search capabilities and is useful to narrow down search results. You also
learned the use of Theme Roller using which you can give a new look to your
application. You were also guided on how to add styled buttons to your
application. In the final section you saw another use of Calendar component
that lets you manage events.

Chapter 12 - Deploying APEX Applications
12.1 About Application Deployment
Oracle APEX application deployment consists of two steps. Export the
desired components to a script file and import the script file into your
production environment. Having completed the development phase, you
definitely want to run your application in a production environment. For this,
you have to decide where and how the application will run. The following
section provides you some deployment options to choose from.

No Deployment: The development environment becomes the production
environment and nothing is moved to another computer. In this option users
are provided with just the URL to access the application.

Application: You will use this option if the target computer is already
running a production Oracle database with all underlying objects. You only
need to export the application and import it into the target database.

Application and Table Structures: In this deployment option you have to
create two scripts, one for your application and another for the database table
structures using the Generate DDL utility in SQL Workshop.

Application and Database Objects with Data: In this option you deploy
your application along with all database objects and utilize oracle's data pump
utility to export data from the development environment to the production
environment.

Individual Components: With the development phase going on, you can
supplement your deployment plan by exporting only selected components.

12.2 Export Application
For simplicity, we will deploy the application in the same workspace to
understand the deployment concept. The same technique is applicable to the
production environment. This section will demonstrate how to export an
Oracle APEX application that you can import into a new or the same
workspace.

1. Sign in to Oracle APEX and edit the Sales Web Application.

2. Click the Export/Import icon, as show in Figure 12-1.

3. On the ensuing page, click the Export icon.

4. In the Choose Application section, set Application to Sales Web
Application, and click the Export button.

5. A file something like f145615.sql will be saved in the Download
folder under My Documents or in another folder specified in your
browser. Yours might be saved with a different name.

Figure 12-1 Import/Export Icon

12.3 Export/Import Data
If you want to also export the data from your test environment into your
production environment, then you have the option to utilize Oracle’s export

and import data pump utilities. Oracle Data Pump technology enables very
high-speed movement of data and metadata from one database to another. It
includes expdp and impdp utilities that enable the exporting and importing of
data and metadata for a complete database or subsets of a database.

12.4 Import Application
In this exercise, you will import the exported application (f145615.sql) into
the existing workspace you are connected to with a different ID.

1. Go to the App Builder interface and click the Import icon.

Figure 12-2 Import/Export Icon

2. On the Import screen, click the Choose File button and select the
exported file (f145615.sql). For File Type, select Database
Application, Page or Component Export and click Next.

3. After a while a message The export file has been imported
successfully will appear. The status bar at the bottom of your screen
will show progress during the upload process. Click Next to move
on.

4. On the Install screen, select the default value for Parsing Schema.

Set Build Status to Run and Build Application, Install As
Application to Auto Assign New Application ID, and click the
Install Application button. After a short while, the application will
be installed with a new ID for you to give it a test-run.

5. On the Install page, click the Run Application button. You will
encounter an error saying “ You are not authorized to view this
application, either because you have not been granted access, or
your account has been locked. Please contact the application
administrator. ” Application users are not exported as part of your
application. When you deploy your application you will need to
manually manage your user to role assignments. Roles are exported
as part of an application export and imported with application
imports. Execute the following step to cope with this error.

6. On the Install page, click the Edit Application button. Go to
Shared Components, and click Application Access Control in
the Security section. Using the Add User Role Assignment button
(A) add the three users as shown in the following figure.

Figure 12-3

7. In Shared Components, click Security Attributes. Click the
Authorization tab, and set Authorization Scheme to No
application authorization required (A). Apply the change. Now
you will be able to access the application.

Figure 12-4

12.5 Prevent Application Modification and Remove Developers Toolbar
The Developers Toolbar is used to access the application source. In this
exercise, we are going to prevent users from modifying the application by
suppressing the toolbar.

1. Open the new application you just imported in the designer
interface.

2. Click Shared Components.

3. Click the Globalization Attributes link (under Globalization).

4. Click the Definition tab.

5. Click the Availability tab, set Build Status to Run Application
Only, and click Apply Changes.

6. Go to the App Builder interface and see that the new application
doesn’t have the Edit link. Click the Run button and provide your

sign in credentials. Note that the Developer Toolbar has
disappeared as well.

7. To make the application editable again, select App Builder |
Workspace Utilities | All Workspace Utilities (A), as illustrated
in the following figure. On the Workspace Utilities page, select
Build and App Status (B) from the right sidebar. On Build Status
and Application Status page, click the application ID in the first
report column, change the Build Status to Run and Build
Application, and apply the change.

Figure 12-5

That’s it. You have successfully deployed your application in the same
workspace. You can apply the same procedure to deploy the application to
another environment.

Conclusion
Oracle APEX has come a long way from its simple beginning. With the
addition of new features in every release it provides so much possibilities and
promises for today and for the days to come. I hope this book has provided
you with a solid foundation of Oracle APEX and set a firm ground to develop
robust application systems to fulfill the information requirements of your
organization. The sky is the limit, you are limited by your imagination. Be
creative, and put the power of Oracle APEX to your work. Good luck!

	Beginning

