

What Every Engineer Should Know About Data- Driven Analytics provides a com-
prehensive introduction to the theoretical concepts and approaches of machine learn-
ing that are used in predictive data analytics. By introducing the theory and providing
practical applications, this text can be understood by students of every engineering
discipline. It offers a detailed and focused treatment of the important machine learn-
ing approaches and concepts that can be exploited to build models to enable decision
making in different domains.

 • Utilizes practical examples from different disciplines and sectors within
engineering and other related technical areas to demonstrate how to go from
data, to insight, and to decision making.

 • Introduces various approaches to building models that exploit different
algorithms.

 • Discusses predictive models that can be built through machine learning and
used to mine patterns from large datasets.

 • Explores the augmentation of technical and mathematical materials with
explanatory worked examples.

 • Includes a glossary, self- assessments, and worked- out practice exercises.

Written to be accessible to non- experts in the subject, this comprehensive introduc-
tory text is suitable for students, professionals, and researchers in engineering and
data science.

What Every Engineer
Should Know About

Data-Driven Analytics

What Every Engineer Should Know
Series Editor
Phillip A. Laplante
Pennsylvania State University

What Every Engineer Should Know about MATLAB® and Simulink ®
Adrian B. Biran

Green Entrepreneur Handbook: The Guide to Building and Growing a Green and
Clean Business
Eric Koester

What Every Engineer Should Know about Cyber Security and Digital Forensics
Joanna F. DeFranco

What Every Engineer Should Know about Modeling and Simulation
Raymond J. Madachy and Daniel Houston

What Every Engineer Should Know about Excel, Second Edition
J.P. Holman and Blake K. Holman

Technical Writing: A Practical Guide for Engineers, Scientists, and Nontechnical
Professionals, Second Edition
Phillip A. Laplante

What Every Engineer Should Know about the Internet of Things
Joanna F. DeFranco and Mohamad Kassab

What Every Engineer Should Know about Software Engineering
Phillip A. Laplante and Mohamad Kassab

What Every Engineer Should Cyber Security and Digital Forensics
Joanna F. DeFranco and Bob Maley

Ethical Engineering: A Practical Guide with Case Studies
Eugene Schlossberger

What Every Engineer Should Know About Data-Driven Analytics
Phillip A. Laplante and Satish Mahadevan Srinivasan

What Every Engineer Should Know About Reliability and Risk Analysis
Mohammad Modarres and Katrina Groth

For more information about this se ries, please visit: www.routledge.com/What-
Every-Engineer-Should-Know/book-series/CRCWEESK

https://www.routledge.com/What-Every-Engineer-Should-Know/book-series/CRCWEESK
https://www.routledge.com/What-Every-Engineer-Should-Know/book-series/CRCWEESK

What Every Engineer
Should Know About

Data-Driven Analytics

Phillip A. Laplante
Satish Mahadevan Srinivasan

Cover image: Shutterstock

First edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 Phillip A. Laplante and Satish Mahadevan Srinivasan

Reasonable efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The authors
and publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-
750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used
only for identification and explanation without intent to infringe.

ISBN: 978-1-032-23543-1 (hbk)
ISBN: 978-1-032-23540-0 (pbk)
ISBN: 978-1-003-27817-7 (ebk)

DOI: 10.1201/9781003278177

Typeset in Times
by SPi Technologies India Pvt Ltd (Straive)

https://www.copyright.com
http://dx.doi.org/10.1201/9781003278177

Dedication

Each author would like to thank his respective family members,
parents, grandparents, great-grandparents, and so on down the line.
Without these ancestors the authors and this book would never exist.

This book is dedicated to the memory of our dear colleague and
gentle friend Partha Mukherjee who sadly passed away before this

book was completed.

https://taylorandfrancis.com

vii

Contents
Preface ...xiii
Acknowledgments ..xv
About the Authors ..xvii

 Chapter 1 Data Collection and Cleaning...1

Data Collection Strategies ..3
Data Preprocessing Strategies ..4
Programming with R ..5

Data Types in R ...5
Data Structures in R ...6
Package Installation in R ...8
Reading and Writing Data in R ...8
Using the FOR Loop in R ..9
Using the WHILE Loop in R ...9
Using the IF-ELSE Statement in R ...9

Programming with Python ...10
Data Wrangling and Analytics in R and Python14
Structuring and Cleaning Data ...15

Missing Data ..19
Strategies for Dealing with Missing Data21

Data Deduplication ...22
Summary ..25
Exercise ..26
Notes ...28
References ..28

 Chapter 2 Mathematical Background for Predictive Analytics29

Basics of Linear Algebra ..29
Vectors and Matrices ...29
Determinant ...33

Simple Linear Regression (SLR) ...34
Principal Component Analysis (PCA) ..36
Singular Value Decomposition (SVD) ...42
Introduction to Neural Networks ..44
Summary ..46
Exercise ..46
References ..52

viii Contents

 Chapter 3 Introduction to Statistics, Probability, and Information Theory
for Analytics ...53

Normal Distribution and the Central Limit Theorem54
Pearson Correlation Coefficient and Covariance56
Basic Probability for Predictive Analytics ...58
Conditional Probability ..59
Bayes’ Theorem and Bayesian Classifiers ...60
Information Theory for Predictive Modeling66
Summary ..69
Exercise ..70
Notes ...71
References ..71

 Chapter 4 Introduction to Machine Learning ..73

Statistical versus Machine Learning Models74
Regression Techniques ...74
Multiple Linear Regression (MLR) Model ..74
Assumptions of MLR ...75
Introduction to Multinomial Logistic Regression (MLogR)79

Bias versus Variance Trade-off ..83
Overfitting and Underfitting ..84
Regularization ..85

Ridge Regression ..86
Lasso Regression ..90

Summary ..92
Exercise ..94
Notes ...96
References ..96

 Chapter 5 Unsupervised Learning...97

K-Means Clustering ..98
Hierarchical Clustering...103
Association Rule Mining ..107
K-Nearest Neighbors ..111
Summary ..113
Exercise ..116
References ..118

 Chapter 6 Supervised Learning ...119

Introduction to Artificial Neural Networks119
Forward and Backward Propagation Methods120

Architectural Types in ANN ..120
Hyperparameters for Tuning the ANN124

Contents ix

An Example of ANN Classification125
Introduction to Ensemble Learning Techniques126

Random Forest Ensemble Learning128
Introduction to AdaBoost Ensemble Learning129
Introduction to Extreme Gradient Boosting (XGB)130

Cross-Validation ...132
Summary ..137
Exercise ..141
References ..142

 Chapter 7 Natural Language Processing for Analyzing Unstructured Data143

Terminology for NLP ...144
Installing NLTK and Other Libraries ...145
Tokenization ...146
Stemming ...149
Stopwords ...150
Part of Speech Tagging ...151
Bag-of-Words (BOW) ..152
n-grams ...153
Sentiment and Emotion Classification ...154
Summary ..157
Exercise ..159
References ..162

 Chapter 8 Predictive Analytics Using Deep Neural Networks163

Introduction to Deep Learning ...163
The Deep Neural Networks and Its Architectural Variants163
Multilayer Perceptron (MLP) ...166
Convolutional Neural Networks (CNN) ...166
Recurrent Neural Networks (RNN) ..167
AlexNet ..167
VGGNet ..167
Inception ...168
ResNet and GoogLeNet..168
Hyperparameters of DNN and Strategies for Tuning Them168
Activation Function ..168
Regularization ..169
Number of Hidden Layers ..169
Number of Neurons Per Layer ...169
Learning Rate ...169
Optimizer ..170
Batch Size ...170
Epoch ..170
Weight and Biases Initialization ...170

x Contents

Grid Search ...170
Random Search...171
Deep Belief Networks (DBN) ..171
Analyzing the Boston Housing Dataset Using DNN172
Summary ..176
Exercise ..179
References ..179

 Chapter 9 Convolutional Neural Networks (CNN) for Predictive Analytics181

Convolution Layer ..182
Padding and Strides ..183
ReLU Layer ..183
Pooling Layer ...183
Fully Connected Layer ...186
Hyperparameters of CNNs ...186
Image Classification Using a CNN Model Based on LeNet

Architecture ...189
Summary ..192
Exercise ..195
References ..196

 Chapter 10 Recurrent Neural Networks (RNNs) for Predictive Analytics197

Recurrent Neural Networks ..197
Long Short-Term Memory...199
Forget Gate ..200
Input Gate ..200
Output Gate ...202
More Details of the LSTM ..202
Hyperparameters for RNNs ...203

Summary ..211
Exercise ..212
References ..213

 Chapter 11 Recommender Systems for Predictive Analytics215

Content-Based Filtering ...216
Cosine Similarity ..216
Collaborative Filtering ..218

User-Based Collaborative Filtering (UBCF)218
Item- Based Collaborative Filtering (IBCF)219

Hybrid Recommendation Systems ...220
Examples of Using Hybrid Recommendation Systems224

Summary ..226
Exercise ..228
References ..230

Contents xi

 Chapter 12 Architecting Big Data Analytical Pipeline231

Big Data Technology Landscape and Analytics Platform232
Data Pipeline Architecture..233
Lambda Architecture ..234
Twitter and Pinterest’s Data Pipeline Architecture235
Design Strategies for Building Customized Big Data Pipeline236
Design Patterns and Pattern Languages ...238
Summary ..242
Exercise ..243
References ..244

Glossary of Terms ...245

Index ...255

https://taylorandfrancis.com

xiii

Preface
INTRODUCTION

This book provides a comprehensive introduction to the machine learning theoretical
concepts and approaches that are used in predictive data analytics through practical
applications (case studies and examples). Using machine learning we can build pre-
dictive models that can be used to mine patterns from large datasets. Such models can
also be tailored to reason why it sees a particular pattern in the dataset.

Mining large datasets from different domains (healthcare, financial, sports, manu-
facturing, social media, advertisement, etc.) needs a different type of mindset and
skillset for predictive model building. This textbook will offer a detailed and focused
treatment of the important machine learning approaches and concepts that can be
exploited to build models to enable decision making in different domains. Whenever
required, technical and mathematical materials will be augmented with explanatory
worked examples to illustrate their importance in the given context.

Through case studies, this book demonstrates how to go from data, to insight, to
decision making. In each of the case studies, we have taken a unique approach to
building models that exploit different algorithms. In addition to that, the case studies
also highlight the techniques used for validating and evaluating predictive models.
The book, informed by the author’s many years of teaching machine learning, and
working on predictive data analytics projects, is suitable for use by graduates, profes-
sionals, and researchers in the area of data science.

AUDIENCE

This book is intended for professional data engineers, software engineers, systems
engineers, and senior and graduate students of analytics and artificial intelligence.
Much of the material is derived from the graduate- level “Data Analytics” course
taught at Penn State’s Great Valley School of Graduate and Professional Studies and
online through its World Campus, where the authors work. The typical student in that
course has five years of work experience in any of a variety of technical or business
roles and an undergraduate degree in engineering, science, or business. Typical read-
ers of this book will have one of the following or similar job titles:

Data analyst
Data scientist
IT analyst
Software engineer
Systems engineer
Sales engineer
Systems analyst
[XYZ] engineer (where “XYZ” is an adjective for most engineering disci-

plines, such as “electrical,” “computer,” or “mechanical”)

xiv Preface

Project manager
Business analyst
Technical architect
Lead architect
Product owner

Many others can benefit from this text including the users of complex systems and
other stakeholders.

COURSE ADOPTION

This text is suitable for use in the following courses as a primary reference: predic-
tive analytics, machine learning, data- driven decision making, and data science.

It can also be used as a secondary reference, typically in courses such as data min-
ing, statistics, natural language processing, and artificial intelligence.

ERRORS

The authors have tried to uphold the highest standards for accuracy in terms of fact
and quality of presentation. Despite these best efforts and those of the reviewers and
publisher, there are still likely a few errors to be found. Therefore, if you believe that
you have found an error—whether it is a referencing issue, factual error, or typo-
graphical error—please contact the authors at sus64@psu.edu or pal11@psu.edu.

xv

Acknowledgments
There are many who helped in the development and writing of this book, directly or
indirectly. In particular, we would like to express our gratitude to our Senior Publisher
and Sponsor at T&F, Allison Shatkin, for her support and constant encouragement
along the way. We would also like to thank the following students for assisting with
some of the code examples, figures, and tables.

Shahed Mahbub, Raghava Rao Sunkanapally, Nikhitha Kunduru, Junjun Tao,
Shichu Chen, Deeksha Joshi, Haruka George, Dinesh Kumar Chowdhary and Manish
Ranjan.

We would also like to thank the following colleagues for their encouragement and
ideas, and for reviewing portions of the draft manuscript.

Raghvinder S. Sangwan, Youakim Badr, Partha Mukherjee

There are surely others who have provided us with additional inspiration along the
way and the omission of their names is inadvertent, but we would like to thank them
all collectively.

https://taylorandfrancis.com

xvii

About the Authors
Phillip A. Laplante is Professor of Software and Systems Engineering and a mem-
ber of the graduate faculty at the Pennsylvania State University. His research, teach-
ing, and consulting focus on software quality, particularly with respect to artificial
intelligence and critical systems.

Prior to his academic career, Dr. Laplante spent nearly a decade as a software
engineer and project manager working on avionics (including the Space Shuttle),
CAD, and software test systems. He has authored or edited 39 books and more than
300 papers, articles, reviews, and editorials.

Dr. Laplante received his B.S., M.Eng., and Ph.D. in computer science, electrical
engineering, and computer science, respectively, from the Stevens Institute of
Technology and an M.B.A. from the University of Colorado at Colorado Springs. He
is a Licensed Professional Engineer in Pennsylvania and is a Certified Software
Development Professional. He is a fellow of the IEEE and SPIE and a member of
numerous professional societies and program committees.

Satish Mahadevan Srinivasan (Satish Srinivasan) is an Associate Professor of
Information Science and a member of the graduate faculty at the Pennsylvania State
University. His research, teaching, and consulting focus on predictive analytics par-
ticularly with respect to text preprocessing, building data pipelines, and artificial
intelligence systems.

Satish Srinivasan received his B.E. in Information Technology from Bharathidasan
University, India, and his M.S. in Industrial Engineering and Management from the
Indian Institute of Technology Kharagpur, India. He earned his Ph.D. in Information
Technology from the University of Nebraska at Omaha. Prior to joining Penn State
Great Valley, he worked as a postdoctoral research associate at the University of
Nebraska Medical Center, Omaha. Dr. Srinivasan teaches courses related to database
design, data mining, data collection and cleaning, computer, network and web securi-
ties, and business process management. He has authored or edited 2 book chapters
and more than 50 papers, articles, reviews, and editorials.

https://taylorandfrancis.com

1DOI: 10.1201/9781003278177-1

Data Collection
and Cleaning

1
In the 21st century, data are everywhere. Across different application areas, data are
being collected at an unprecedented rate. Decisions in past were purely made based
on guesswork, expert opinions, or by using constructed models; but these days deci-
sions are made solely based on the data available. Large amounts of data or so- called
“Big Data” has the potential to revolutionize different aspects of modern society.
Application areas of Big Data include scientific research, financial services, retail
manufacturing, biological and physical sciences, healthcare, transportation, environ-
mental modeling, energy saving, homeland security, social network analysis, and
much more [1].

So how should an engineer or data scientist approach the analysis of all this data?
Here is the general approach. After recording the data in the repositories, the next
step is to curate and analyze the data. The discussions in this book will focus on ana-
lyzing the data using the tools and techniques in the domain of machine learning,
data mining, and predictive analytics. The potential uses of Big Data are exciting. For
example, in the education sector, the collected data related to the academic perfor-
mance of every student can be used as a guide for delivering future instructions. In
the healthcare sector, Information Technology (IT) and data analytics can reduce the
cost of healthcare while improving its quality and outcomes by making preventive
care more personalized and affordable. In the United States alone, the advent of Big
Data technology can result in IT savings for the healthcare sector, which is estimated
to be close to 300 billion dollars [1, 2].

While the potential benefits are significant, there remain many technical chal-
lenges to be addressed for realizing the potential of Big Data. Challenges exist along
several different dimensions, namely: Volume, Variety, Velocity, Veracity, and Value
[1–3].

The dimension of volume represents the amount of data. The collected data can be
either structured (numeric, relational model) or unstructured (non- numeric, text type,
video, audio) which is represented by the dimension of variety. The velocity dimen-
sion represents the rate at which the data arrive over time (every second, every min-
ute, hourly, daily, etc.) and also accounts for the time within which the data have to
be acted upon. The dimension of veracity is all about the validity and the correctness
of data, i.e., how accurate and usable are the data? Finally, how valuable are the data
captured by the value dimension? [1–3]

A data analysis pipeline to deal with the different dimensions of Big Data is shown
in Figure 1.1. The data analysis pipeline includes multiple phases, namely the
data acquisition/recording phase, the extraction/cleaning/annotation phase, the
integration/aggregation/representation phase, the analysis/modeling phase, and the

http://dx.doi.org/10.1201/9781003278177-1

2 What Every Engineer Should Know About Data-Driven Analytics

interpretation phase. Each of these phases is crucial and has its own set of challenges
that needs to be addressed [1].

In the data acquisition phase, the challenge is to generate the right metadata to
describe what data needs to be recorded and measured. Data provenance1 is also an
issue in this phase. Any data not originating from its source would have gone through
several stages of transformation or edition. Therefore, an error in the data processing
can render subsequent analysis useless. Thus, in the data analysis pipeline, it is
important to carry both the provenance of data and metadata together [1].

The information extraction and cleaning phase is responsible for converting the
collected data in a format that is ready for analysis [1].

The data integration, aggregation, and representation phase is devoted to hiding
the heterogeneity of the data and making it available in the required format for analy-
sis and modeling [1].

The query processing, data modeling, and analysis phase is devoted to building
tools and techniques for the effective large- scale analysis of data in a completely
automated manner [1].

Finally, the interpretation phase provides the means for the decision makers to
interpret the results of the analysis and make Big Data more actionable [1].

Now let us focus our discussion on the challenges associated with the data analy-
sis pipeline. The challenges involved in the analysis pipeline can be classified as
heterogeneity, scale, timelines, privacy, and human collaboration [1].

FIGURE 1.1 The Big Data analysis pipeline. (Source: Figure adapted from Challenges
and Opportunities with Big Data, A community white paper developed by leading research-
ers across the United States, https://cra.org/ccc/wp- content/uploads/sites/2/2015/05/bigdata
whitepaper.pdf.)

Data Collection and Cleaning 3

The heterogeneity and incompleteness are challenges because the data represent-
ing the same entity in different sources lack a consistent format, are erroneous, and
incomplete. Again, managing large and rapidly increasing volumes of data chal-
lenges the limitation of the tools, techniques, and the algorithms that process them.
Often analyzing the large datasets takes a longer time, which is a challenge because
with time, the value of the data diminishes for a decision maker [1].

Privacy in Big Data is a major concern as still there is no established protocol that
allows the sharing of private data while limiting the disclosure and ensuring suffi-
cient data utility [1].

Finally, the advances in computing analysis have still left a gap in identifying
many patterns that are only detectable by humans. This is a challenge to the automa-
tion of the data analysis pipeline as human intervention and collaboration are of
paramount importance in the successful realization of the potentiality of the data [1].

DATA-COLLECTION STRATEGIES

Big Data collection is the methodical approach to collecting and analyzing mas-
sive amounts of information from a variety of sources. Earlier it was indicated that
Big Data collection entails collecting structured, semi- structured, and unstructured
data generated by sources such as people, computers, and sensors. The value of the
data does not depend on its quantity but on its quality. Structured data are highly
organized and exist in a predefined format. On the other hand, there is no predefined
format for unstructured data. Therefore, it exists in the format in which it was gener-
ated. Semi- structured data on the other hand is a mix of structured and unstructured
data. For example, data related to GPS2 coordinates is an example of structured data.
Data collected from social media sites is a good example of unstructured data. Data
like email addresses and their contents are good examples of semi- structured data.
Data can also be classified as quantitative and qualitative. Quantitative data have
numerical forms such as statistics and percentages, while qualitative data are more
descriptive in nature, like sex, religion, etc. The typical sources of data include [1–3]:

 • Operational systems producing transactional data,
 • IoT endpoint device,
 • Social media data from users and customers,
 • Location data and other vitals from the smartphone devices,
 • and more.

To provide access to accurate and consistent data, integration of data from several
sources into a data warehouse3 is very vital. Data warehouses require and provide
extensive support for data cleaning. Since data warehouses need to load and continu-
ously refresh huge amounts of data from a variety of sources, the probability of data
being dirty4 or inconsistent is very high. In order to provide effective and timely
responses to queries, data cleaning in data warehouses is important and is supported
by a so- called ETL process. The ETL process comprises of three phases namely the
extraction phase, the transformation phase, and the loading phase [1, 3].

4 What Every Engineer Should Know About Data-Driven Analytics

During the extraction phase data from several sources are collected. The source
systems files (data) can be in multiple file formats including flat files with delimiters
(CSV format), XML, non- relational database structures including IMS (Information
Management Systems), data structures such as VSAM (Virtual Storage Access
Method) or ISAM (Indexed Sequential Access Method) or data fetched through
screen- scraping or web spidering. A source for data could also be a legacy system in
which the files are in the arcane format. In this step, the schema (metadata) from dif-
ferent sources is extracted and translated. In addition to the schemas, instances are
also extracted from the data source and are moved/stored into intermediate data
sources before loading them into the data staging area [1, 3].

In the transformation stage, multiple data manipulation steps are performed such
as moving, splitting, translating, merging, sorting, and pivoting data, all in accor-
dance with the data quality rules. In this phase, the translated schema is matched and
integrated to create a unique schema for the data warehouse. In addition to the sche-
mas, the instances are also matched and integrated into the data staging area. A series
of rules or functions is applied on the data extracted from the data sources which
includes selective loading of the columns, translation of the coded values, encoding
of free- form values, deriving calculated values, sorting, joining data from multiple
sources, aggregation, transposing, etc. A large number of tools of varying functional-
ities are available to support these tasks, but often a significant portion of the cleaning
and transformation work has to be done manually or by a low- level program that is
difficult to write and maintain [1, 3].

Finally, in the loading stage, the translated and integrated schema from the trans-
formation is implemented on the target (data warehouse) system and the instances
from the data staging area are filtered, aggregated, and loaded into the data ware-
house. Depending on the organization requirements, the process of loading the
extracted data into the data warehouse is frequently done on a daily, weekly, or
monthly basis [1, 3].

DATA PREPROCESSING STRATEGIES

Data preprocessing is performed to transform the raw data into a useful and efficient
format. Major tasks involved in the data preprocessing stage are data cleaning, data
integration, data reduction, data transformation, and data discretization. Data collec-
tion results in accumulating noisy, missing, and inconsistent data which need to be
corrected for downstream analysis. Data preprocessing avoids any potential prob-
lems with accuracy, completeness, consistency, timeliness, believability, and inter-
pretability [1–5].

Data Cleaning: Data can have many irrelevant and missing parts. Therefore, it
is important to perform data cleaning to deal with missing and noisy data.
Missing data can be handled by either ignoring the entire tuple or by imput-
ing the missing values. On the other hand, noisy data can be handled by
using the binning method, regression, or clustering [1, 3–5].

Data Integration: In this step tasks such as entity identification, removal of
redundant data, and data deduplication are performed. Data fused from

Data Collection and Cleaning 5

different sources and single entities from two different sources can have
attributes that are referred to different naming conventions or might be
referring to the same characteristic. Redundant attributes can be detected
by correlation and covariance analysis. Duplicated data can be identified
by recognizing the repeated tuples or by performing descriptive statistics
[1, 3–5].

Data Reduction: Data reduction is the process to obtain a reduced representa-
tion of the dataset that is much smaller in volume but yet produces the same
analytical results. A database or a data warehouse may store terabytes of
data and analyzing this amount of data can take a very long time. Therefore,
it is important to perform data reduction. Data reduction strategies include
dimensionality reduction (attribute subset selection, attribute creation,
wavelet transformation, principal components analysis (PCA), etc.), numer-
osity reduction (regression and log- linear models, histograms, clustering,
sampling, data cube aggregation, etc.), data compression (string compres-
sion, audio/video compression, etc.), etc [1, 3–5].

Data Transformation: Data transformation is the process of converting
data from one type to another. The strategy here is to map the values of
a given attribute to a new set. The motivation behind the data transforma-
tion is to remove the skewness in the data to achieve symmetric distribu-
tion. Transforming data makes it easier to visualize, and to improve the
data interpretability. Data transformations involve different operations such
as smoothing to remove noise from the data, attribute/feature construction,
normalization i.e., to scale data to fall within a smaller and specified range,
discretization where raw values are replaced by intervals or conceptual
labels, min- max normalization, z- score normalization, normalization by
decimal scaling, concept hierarchy generation, etc [1, 3–5].

Data Discretization: Data discretization is a process of converting a large
number of data values into smaller ones. Data discretization is performed
in order to make data evaluation, visualization, and management easier
[1, 3–5].

A brief introduction to the basics of R and Python programming is provided here,
which will be very helpful for the readers to navigate through the other chapters in
this book [2].

PROGRAMMING WITH R

Data types in R

The basic data types in R are character, numeric, integer, and logical. The assignment
operator (←) can be used to assign any data to a variable.

For example
x <- 10
y <- 'This is a sample string'

6 What Every Engineer Should Know About Data-Driven Analytics

Let us now print the value of x & y
x
[1] 10
y
[1] "This is a sample string"

Data stRuctuRes in R

The commonly used data structures in R include vectors, matrices, dataframe, lists,
and factors.

Vectors—A vector is a sequence of data elements of the same basic type. A vector
can be defined as

a <- c(1,2,5.3,6,−2,4) # numeric vector
b <- c("one", "two", "three") # character vector
c <- c(TRUE, TRUE, TRUE, FALSE, TRUE, FALSE) #logical vector

Matrices—A matrix is a collection of data elements arranged in a two- dimensional
rectangular layout. For example, the matrix A of size 2 × 3 can be created as:

A = matrix(
c(2, 4, 3, 1, 5, 7), # the data elements
nrow=2, # number of rows
ncol=3, # number of columns
byrow = TRUE) # fill matrix by rows

The matrix A can then be viewed by just entering the matrix name

A
 [,1] [,2] [,3]
[1,] 2 4 3
[2,] 1 5 7

The elements of the matrix can be directly accessed by specifying the correspond-
ing row and column number as shown

A[2, 3] # element at 2nd row, 3rd column
[1] 7

Dataframe—Compared to matrices, in a dataframe, the different columns can
have different modes (numeric, character, factor, etc.). A dataframe in R can be cre-
ated as

d <- c(1,2,3,4)
e <- c("green", "blue", "green", NA)
f <- c(TRUE,TRUE,TRUE,FALSE)

Data Collection and Cleaning 7

mydata <- data.frame(d,e,f) # create a data frame called
mydata

names(mydata) <- c("ID","Color","Passed") # variable names

Now let us display the created dataframe mydata

mydata
 ID Color Passed
1 1 green TRUE
2 2 blue TRUE
3 3 green TRUE
4 4 <NA> FALSE

Lists—A list is defined as an ordered collection of objects. The objects can be of
different types and possibly unrelated. For example,

Example of a list with 4 components -
a string, a numeric vector, a matrix, and a scaler
w <- list(name="Sam", mynumbers=xyz, mymatrix=abc, age=5.3)
Example of a list containing two lists
v <- c(list1,list2) # where list1 and list2 are lists

Factors—Conceptually speaking factors are variables in R which take on a lim-
ited number of different values. These variables are often referred to as categorical
variables.

Define the variable gender with 20 "male" entries and 30
"female" entries

gender <- c(rep("male",20), rep("female", 30))
gender <- factor(gender)
The gender variable stores gender as 20 1s and 30 2s and

associates 1 to male and 2 to female

R now treats gender as a nominal variable
summary(gender)
female male
 30 20

An ordered factor is used to represent an ordinal variable.

A variable rating can be coded as "large", "medium", "small'
rating <- c("large", "medium", "small")
rating <- ordered(rating)
recodes the variable rating to 1,2,3 and associates
1=large, 2=medium, 3=small internally
R now treats rating as ordinal

8 What Every Engineer Should Know About Data-Driven Analytics

package installation in R

To install a package in R, use the following command:

install.packages('chron') # “chron” is the name of the package

Once the package is installed, the command to load the installed package is
library(). For example,

 library(chron)

ReaDing anD WRiting Data in R

R supports various packages that allow developers to read data from various file for-
mats and load them into objects or write data to various file formats. Here, we will
discuss about how to read data from the CSV file and write data into the CSV file.

To read data from a CSV file and assign it to a dataframe “df,” use the following
command:

df <- read.csv(“<file- name>”, header=TRUE, sep=”,”)

Note here that

df : Name of the dataframe
<file- name>: Name of the source file with complete path to its

location. If path is not specified, the file will be read
from the working directory.

Header: Setting this parameter to TRUE indicates that the
source file has the names of the columns to be read.

Sep: this parameter is used to indicate the delimiter in the
source file, traditionally the delimiter for a csv is a
comma (,)

To write the contents from the dataframe to a CSV file, use the following
command:

write.csv(df, file = “<file- name>”,row.names=FALSE)

Note:

df: the dataframe that you want to write to the CSV file.
<file- name>: target file name with complete path to its

location. If path is not specified, the file will be written
to the working directory.

row.names: this parameter will indicate whether you want to
write the row.names (the index number of each row) to the
target file.

Data Collection and Cleaning 9

Some commonly used functions that might come in handy in R programming are:

 • length(object) # number of elements or components
 • str(object) # structure of an object
 • class(object) # class or type of an object
 • names(object) # names
 • c(object,object,…) # Combine objects into a vector
 • cbind(object, object, …) # Combine objects as columns
 • rbind(object, object, …) # Combine objects as rows
 • rm(object) # delete an object
 • colnames(object) # retrieve the column names of a matrix like object

(matrix, dataframe, etc.)

Now consider some general programming examples.

using the FoR loop in R

The for loop in R can be implemented with the traditional syntax

Creating a vector and assigning values to it
new <- c(2010,2011,2012,2013,2014,2015)
for loop to display the values in the vector
for (year in new){ print(paste("The year is", year))}

using the While loop in R

We will be using the same vector “new” that was created for the previous example.

creating an increment counter
i <- 2010
while loop to display the values in the vector
while (i < 2016) {print(i); i = i+1}

using the iF-else statement in R

We will try to determine if the years mentioned in the vector “new” is a leap- year or
not. For this we first need to define a function which checks the same.

Function definition
is.leapyear=function(year){
 ret urn(((year %% 4 == 0) & (year %% 100 != 0)) | (year %%

400 == 0))
}
Using the for loop and the if- else statements to determine

the result
the paste0 function is used to print different types of data

together, both text and variable value

10 What Every Engineer Should Know About Data-Driven Analytics

 for (year in new){
 if (is.leapyear(year)==TRUE){
 print(paste0("The year ",year," is a leap year"))
 }
 else {
 print(paste0("The year ",year," is not a leap year"))
 }
 }

PROGRAMMING WITH PYTHON

Now let’s look at some basics of the Python programming. Readers are recommended
to execute the provided scripts here in the Python terminal or Jupyter Notebook.

First, we’ll display some text on the screen using the print command in Python.

print("Mary had a little lamb,")
print("its fleece was white as snow;")

Next, let’s declare a variable in Python to hold an integer value and perform basic
mathematic operation on the variable.

v = 2 # declare a variable in Python
print(v)
Perform some arithmetic operations on the Python variable
v = v * 5
print(" The value of the variable v is::", v)

Python variables can also be used to store strings. For example,

word1 = "Good" # Assign the word Good to the Python variable
word1

word2 = "morning"
word3 = "to you too!"

To combine the string variables and display them as sentence, in the screen type
the following commands.

print(word1, word2)

Note here that when word1 and word 2 are printed on the screen there is a white
space between word 1 and word 2. The output should be “Good morning.”

sentence = word1 + “ “ + word2 + “ “ + word3

Note here that when you assign the value of the string variable to another string
variable you need to add a white space. The string variables are concatenated using
the + sign.

print(sentence)

Data Collection and Cleaning 11

Now let’s see an example of WHILE loop implementation in Python

a = 0 # initialize the value of the loop variable
while a < 10: # loop till a reaches the value of 10
 a = a + 1 # Increment a to make sure that the loop

terminates
 pri nt(a) # print the value of the variable a in each

iteration.

Note that the two lines below the WHILE loop should be typed at a tab distance
(indentation) to indicate that those lines have to be executed within the WHILE loop

Next, consider another example of a WHILE loop in Python. Here, note that the
final print command is outside the while loop and is executed when the while loop
terminates.

v = 5
while v < 20:
 v = v + 5 # this line is part of while loop
 print(v) # this line is part of while loop
print("End of while loop")

Next, consider an example of a FOR loop in Python.

for cnt, value in enumerate([10,20,30]):
print (cnt,value)

Now consider an example of a FOR loop in combination with the if- else state-
ments. Note the indentations used here to represent the different blocks of the loop.

for n in range(2, 10):
 for x in range(2, n):
 if n % x == 0:
 print(n, 'equals', x, '*', n/x)
 break
 else:
 # n o factors were found hence control is transferred

to else block
 print(n, 'is a prime number')

Consider an example of the use of the break statement. Again, note the use of the
indentations here to represent the different blocks.

count = 0
while True:
 count += 1
 if count > 5:
 break
 print (count)
This block prints integers from zero to 5

12 What Every Engineer Should Know About Data-Driven Analytics

Now let’s use an example to illustrate the use of the continue statement. This
block prints only the odd numbers between 0 to 10.

count = 0
while count < 10:
 count += 1
 if count % 2 == 0:
 continue
 print (count)

Now let’s try to write a simple function to accept user inputs and print statements on
the screen based on the user inputs. If the user enters 1 then print Tea or print Coffee
if the user enters 2.

choice = int (input ("Enter 1 for Tea and 2 for Coffee:: "))

Now consider an example to illustrate a simple try- except block with a single argu-
ment. The try clause is used to raise a user- defined exception, and the except block
catches it and handles as per the user definition.

try:
 raise MyE('Sample error')
except MyE as e:
 print (e)

The del statement can be used to remove names from namespace or remove items
from collection as demonstrated below.

d = {'aa': 111, 'bb': 222, 'cc': 333}
print (d)

The output should be {‘aa’: 111, ‘cc’: 333, ‘bb’: 222}. Now let’s perform the follow-
ing operation.

del d['bb']
print (d)

The output should be {‘aa’: 111, ‘cc’: 333}.
Here’s an example to demonstrate how functions can be defined and called (refer-

enced) in Python. First, let’s define the familiar hello() function.

def hello(): # define the function using def
print("hello") # statement inside the function

The hello() function can be called as

hello() # call the function

Data Collection and Cleaning 13

Consider an example to illustrate the passing of parameters to the function that con-
catenates the words and prints it in the screen

def funny_function(first_word, second_word, third_word):
 pri nt ("The word created is: " + first_word + second_word

+ third_word)

The example provided below is a function that returns the concatenated string to the
main program.

def funny_function1(first_word, second_word, third_word):
 return first_word + second_word + third_word

Now get the user input for each word.

word1 = input(" Enter the first word")
word2 = input(" Enter the second word")
word3 = input(" Enter the third word")

Now let’s call the function with the parameters. Here, the returned concatenated
string is captured by the variable final_string.

funny_function(word1, word2, word3)
final_string = funny_function1(word1, word2, word3)
print(final_string)

Consider an example that demonstrates the creation of the class with a constructor
and object initialization.

class A(object):
 def __init__(self, name):
 self.name = name
 def show(self):
 print ('name: "%s"' % self.name)

a = A('dave')
a.show()

The output in this case should be the name dave.
Consider an example to read and write to files in Python. The following example

converts all the vowels in an input file to upper case and writes the converted lines to
an output file.

import string
def show_file(infilename, outfilename):
tran_table = string.maketrans('aeiou', 'AEIOU')
with open(infilename, 'r') as infile, open(outfilename, 'w')

as outfile:
for line in infile:

http://self.name
http://self.name

14 What Every Engineer Should Know About Data-Driven Analytics

 line = line.rstrip()
 outfile.write('%s\n' % line.translate(tran_table))

Finally, let us consider an example of creating DataFrame in Python.

import pandas as pd
import os
new_dataframe = pd.DataFrame)
 {
 “id_col”: [100,200,300,400]
 “string_col”: [‘this’, ’is’, ’a column of’, ’string’]
 “float_col”: [0.01, 0.99, 49.9, 51.1]
 “binary_col”: [True, False, False, True]
 }
)

To view the created dataframe simply type

new_dataframe

In this chapter, the objective is merely to provide an exposure to programming in
R and Python so that the readers can become familiar with the syntax used in R and
Python scripts. In the latter chapters, R and Python scripts will be used interchange-
ably to illustrate the concepts discussed.

DATA WRANGLING AND ANALYTICS IN R AND PYTHON

Several essential packages in R and Python that will be very helpful for perform-
ing data wrangling (structuring and cleaning data) and for performing analytics are
listed below. In the latter chapters several of these listed packages will be used to
demonstrate their potential for data wrangling and analytics.

First, the following packages in R are quite useful.

Dplyr—This package can be used for performing data wrangling and data anal-
ysis. This package includes various functions for manipulating dataframes.

ggplot2—This package is popular for visualization. ggplot2 facilitates declar-
ative creation of graphics. Using this package one can create aesthetically
pleasing and elegant plots and graphs.

Tidyr—This package is popular for tidying the data.
Shiny—This is an interactive web application that allows embedding visual-

izations like graphs, plots, and charts. The interfaces are directly written
in R and this package provides a customizable slider widget with built- in
support for animation.

Caret—This package is popular for modeling complex regression and
classification problems. This package has an extension well known as
CaretEnsemble, which is used for combining different models.

Data Collection and Cleaning 15

E1071—This package is widely used for implementing analytics technique
including clustering, Fourier Transform, Naive Bayes, SVM, etc.

Plotly—This package extends on the JavaScript library mainly focused for
building interactive quality graphs. The created graphs can then be embed-
ded on web applications quite easily using this package.

Popular packages in Python for Data Wrangling and Analytics include

Pandas—It is a popular open- source package that provides high- performance,
easy- to- use data structures and data analysis tools. Pandas is a perfect tool
for data wrangling. It is designed for quick and easy data manipulation,
reading, aggregation, and visualization.

NumPy—The NumPy is a general- purpose array- processing package. This
package provides high- performance multidimensional array objects and
tools to work with the arrays. NumPy is an efficient container of generic
multidimensional data.

SciPy—This package builds on the NumPy array object and is part of the stack
which includes tools like Matplotlib, Pandas, and SymPy with additional
tools. The SciPy library contains modules for efficient mathematical rou-
tines as linear algebra, interpolation, optimization, integration, and statistics.

Matplotlib—This library supports data visualization. Matplotlib is the plot-
ting library for Python that provides an object- oriented API for embedding
plots into applications.

Scikit Learn—This is a robust machine learning library. It features machine
learning algorithms including SVMs, random forests, k- means clustering,
dimensionality reduction, etc. The Scikit Learn package focuses only on
modeling data and not on data manipulation.

Statsmodels—This package provides easy computations for descriptive statis-
tics and estimation and inference for statistical models.

Plotly—is a graph plotting library. The Plotly graph library has a wide range of
graphs that can be plotted including basic charts: Line, Pie, Scatter, Bubble,
Dot, Gantt, Sunburst, Treemap, etc.

STRUCTURING AND CLEANING DATA

The structuring and cleaning of the structured data involve several steps including
checking for the normality distribution of the data, detecting and dealing with any
data having a bimodal distribution, and resolving issues related to outliers, missing
values, skewed data, and duplicate records. In this section, a brief overview is pro-
vided to detect and deal with the data irregularities mentioned above [1, 4].

First, we’ll discuss how to deal with a bimodal distribution and check for the nor-
mality distribution of the variables. A set of data has a bimodal distribution if the data
is distributed in two clusters. We use a simple example using R to visualize a variable
with a bimodal distribution and show how to transform this variable into having a
normal distribution [1, 4]. The R code follows.

16 What Every Engineer Should Know About Data-Driven Analytics

Create a variable with Bimodal distribution
x = rnorm(100, mean = 10, sd = 2)
y = rnorm(100, mean = 20, sd = 2)
bimodal = c(x,y) # bimodal is a variable with Bimodal

distribution
hist(bimodal)

Figure 1.2 shows the histogram of the variable bimodal, generated by the code,
which has a bimodal distribution.

Now let’s try a transformation step to convert a bimodal distribution into a normal
distribution or homoscedasticity5. Here, we take the absolute value of the original
variable after subtracting the mean value of the variable at each data point.

transformed <- abs(bimodal - mean(bimodal)) # This is the
transformation step

The variable transformed should have a unimodal or should be normally distrib-
uted which can be confirmed using the Shapiro–Wilk test for the normality.

shapiro.test(transformed)

 Shapiro- Wilk normality test
 data: transformed
 W = 0.98824, p- value = 0.09777

FIGURE 1.2 Variable bimodal with a bimodal distribution.

Data Collection and Cleaning 17

Note here that the Shapiro–Wilk normality test should result in a p- value > 0.05
after the transformation. Based on the p- value of 0.09777 we can infer that the trans-
formed variable is normally distributed. This can also be confirmed by plotting the
histogram of this variable (see Figure 1.3) [1, 4].

hist(transformed)

Now let’s focus our discussion on a data transformation technique to address
issues related to skewness. The skewness statistic can be used as a diagnostic. If the
distribution of the variable is roughly symmetric, the skewness value would be close
to zero. As the distribution becomes right skewed, the skewness statistic becomes
larger. Similarly, as the distribution becomes more left skewed, the value becomes
negative. In case the variable is right or left skewed then appropriate data transforma-
tion needs to be performed to remove the skewness [2].

There are several options for data transformation including replacing the data with
the log, square root, inverse, etc. Once a suitable transformation is done, it is expected
that the distribution of the predictor is entirely symmetric (normal distribution).
However, evaluating the different options of transformation functions is cumbersome
as each time a transformation is applied one needs to check for skewness. If the dis-
tribution is still skewed, then another transformation function needs to be applied [2].

In order to ease the steps, one can apply Box–Cox Transformation. Box and Cox
proposed a family of transformations that is indexed by a parameter, denoted as λ [2]:

FIGURE 1.3 Variable transformed having a normal distribution.

18 What Every Engineer Should Know About Data-Driven Analytics

x
x

if

x if

∗ =
− ≠

() =

λ

λ
λ

λ

1
0

0

,

log ,

In addition to the log transformation, this family can identify square transforma-
tion (λ = 2), square root (λ = 0.5), inverse (λ = −1), and others in- between. Once the
λ is estimated, the values (data points) of the variable x∗ can be estimated using the
above equation. Consider an example using the R to demonstrate the application of
the Box–Cox transformation on a variable [2]

install the “AppliedPredictiveModeling” package in R
Install.packages(“AppliedPredictiveModeling”)
Now load the package AppliedPredictiveModeling
library(AppliedPredictiveModeling)
In this package we will need access to the dataset

segmentationOriginal
 data("segmentationOriginal")
Partition the segmentationOriginal dataset to consider only

those instances that have been labeled as “training”.
segData <- subset(segmentationOriginal, Case == "Train")
Install and load the caret package
Install.packages(“caret”)
library(caret)
Now determine the skewness of the predictor variable

“AreaCh1”
skewness(segData$AreaCh1)
[1] 3.52510745

The variable AreaCh1 is heavily right skewed. Let us apply the Box–Cox transforma-
tion on the variable AreaCh1.

ChiAreaTrans <- BoxCoxTrans(segData$AreaCh1)
ChiAreaTrans

 Box- Cox Transformation
 1009 data points used to estimate Lambda

 Input data summary:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 150.0 194.0 256.0 325.1 376.0 2186.0

 Largest/Smallest: 14.6
 Sample Skewness: 3.53

 Estimated Lambda: −0.9

Let’s compare the original and the updated data points of the variable AreaCh1. The
original data points of the variable AreaCh1 are.

Data Collection and Cleaning 19

head(segData$AreaCh1)
[1] 819 431 298 256 258 358

The updated data points of the original variable AreaCh1 are

predict(ChiAreaTrans, head(segData$AreaCh1))
[1] 1.108458 1.106383 1.104520 1.103554 1.103607 1.105523

The skewness value of the transformed variable is

> skewness(predict(ChiAreaTrans, head(segData$AreaCh1)))
[1] 0.4990754

Note that the distribution of the transformed variable looks more symmetric now
indicating that the skewness of the variable has been treated to a greater extent [2].

missing Data

What does it mean when data have missing values? Missing values usually appear
as NULL values in a database or as empty cells in spreadsheet tables. Some flat- file
formats use various symbols for missing values—for example, ARFF files use “?”
symbol to represent missing values. These forms of missing values can be easily
detected. However missing values can also appear as outliers or wrong data (i.e., out
of boundaries) [6].

The primary task in dealing with missing values is to understand their character-
istics. Missing values can be of different types namely [6].

 • Missing Completely at Random (MCAR): data are missing completely at
random (MCAR) when the probability of a record having a missing value
for an attribute does not depend on either the observed data or the missing
data [6].

 • Missing at Random (MAR): data are considered missing at random
(MAR), when the probability of a record having a missing value for an attri-
bute could depend on the observed data, but not on the value of the missing
data itself. Data which are incomplete only due to structural reasons are
MAR [6].

 • Not Missing at Random (NMAR): missing data is considered as not miss-
ing at random (NMAR), when the probability of a record having a missing
value for an attribute could depend on the value of the attribute. Missing
data mechanism that is considered as NMAR is non- ignorable [6].

 • Structurally Missing: these are data that are missing for a logical reason.
In other words, they are data that are missing because they should not exist
[6].

Consider an example dataset to understand the characteristics of the Missing data
shown in Table 1.1 [6].

20 What Every Engineer Should Know About Data-Driven Analytics

Here we can see that cell row 1, column 3 is missing data. This data is missing
because the parents with ID = 1 do not have any children. So logically, the cell (row
1, column 3) should be empty or a missing value. This is a good example for structur-
ally missing data [6].

Now consider Table 1.2. Here, the entry for Income in row 4 and column 4 is
missing.

Let’s ask ourselves “what is the likely income of the fourth individual?” The sim-
plest approach to answering this question is to note that 50% of the other individuals
have high incomes and 50% have low incomes. We could assume, therefore, that
there is a 50% chance that the individual (she) has a high income and a 50% chance
that she has a low income. This assumption is based on the fact that the missing value
has an MCAR characteristic [6].

When we make this assumption, we are assuming that the missing data is com-
pletely unrelated to the other information such as gender and age. The MCAR
assumption is rarely a good assumption. On the other hand, in the case of the MAR,
we can assume that one can predict the value that is missing based on the other infor-
mation (gender and age) provided in the table. A simple predictive model is that
income can be predicted based on the variables gender and age. The missing value is
for a female aged 30 or more, and the other females aged 30 or more have a high
income. As a result, we can predict that the missing value should be High. Note that
the idea of prediction does not mean we can perfectly predict a relationship. All that
is required is a probabilistic relationship (i.e., we have a better- than- random proba-
bility of predicting the true value of the missing data) [6].

TABLE 1.1
Table with Structurally Missing Data

ID Children Age of youngest
child

Does the child
go to school?

1 No No
2 Yes 18 Yes
3 No No
4 Yes 13 No
5 Yes 8 Yes

TABLE 1.2
Table with Missing Data for the Income Column

ID Gender Age Income

1 Male Under 30 Low
2 Female Under 30 Low
3 Female 30 or more High
4 Female 30 or more
5 Female 30 or more High

Data Collection and Cleaning 21

When data is missing at random, it means that we need to either use an advanced
imputation method, such as multiple imputation, or an analysis method specifically
designed for MAR data. Also, remember that the MAR is always a safer assumption
than MCAR. This is because any analysis that is valid with the assumption that the
data is MCAR will also be valid under the assumption that the data is MAR, but the
opposite is not the case [6].

It may be the case that we cannot confidently make any conclusions about the
likely value of missing data. For example, it is possible that people with very low
incomes and very high incomes tend to refuse to answer. Or there could be some
other reason we just do not know. This is known as NMAR and also as nonignorable
missing data. It is common to include structural missing data as a special case of
data that are NMAR. However, this misses an important distinction. Structurally
missing data are easy to analyze, whereas other forms of NMAR data are highly
problematic. When data is NMAR, it means that we cannot use any of the standard
methods for dealing with missing data (e.g., imputation or algorithms specifically
designed for missing values). If the missing data are missing not at random, any
standard calculations would give the wrong answer [6].

stRategies FoR Dealing With missing Data

Let’s discuss some strategies for dealing with missing data. There are several mecha-
nisms that are helpful in dealing with missing values, and each procedure has its own
benefits and disadvantages. Popular strategies include [2, 6]:

Listwise deletion: simply omitting the cases (called listwise deletion) is the
most frequently used method in handling missing data. Some research-
ers insist that it may introduce bias in the estimation of the parameters.
However, if the assumption of MCAR is satisfied, a listwise deletion is
known to produce unbiased estimates and conservative results. When the
data do not fulfill the assumption of MCAR, listwise deletion may cause
bias in the estimates of the parameters. If there is a large enough sample and
the assumption of MCAR is satisfied, the listwise deletion may be a reason-
able strategy [2, 6].

Regression imputation: this is the process of replacing the missing data with
estimated values instead of deleting the cases with missing value. This
approach preserves all cases by replacing the missing data with a prob-
able value estimated by other available information. After all missing values
have been replaced by this approach, the dataset is analyzed using the stan-
dard techniques for a complete data. This approach has several advantages
because the imputation retains a great deal of data over the listwise or pair-
wise deletion and avoids significantly altering the standard deviation or the
shape of the distribution [2, 6].

Replacing the missing value of the variable with the mean or median of
that variable: This method replaces each missing value with mean of the
attribute. The mean is calculated based on all known values of the attri-
bute. Here, it is important to keep in mind that the mean is affected by

22 What Every Engineer Should Know About Data-Driven Analytics

the presence of outliers. So sometimes it seems natural to use the median
instead, just to assure robustness. Also, remember that this method is usable
only for replacing missing values for numeric attributes [2, 6].

Closest fit: In this technique, the missing value of an attribute, in an instance,
is imputed by the value of the attribute belonging to the closest neighbor-
ing instance or instances. The closest neighbor of an instance is an instance
that is at the closest proximity, which is determined by computing distances
such as the Manhattan or the Euclidian distance [2, 6].

DATA DEDUPLICATION

With any dataset, but especially large ones derived from merged databases, there is the
likelihood of duplicate data. It is usually very desirable to remove these duplications,
that is to dedup6 the data. Let’s briefly discuss the data deduplication process [7].

In R programming, there are two functions namely duplicated() and unique(). The
former function is used to identify duplicate records in the dataset and the latter is
used for extracting the unique elements. Consider the following example R script [7]:

First load the “tidyverse” package
library(tidyverse)

Now let us define a numeric vector containing elements namely 1,4,4,3,5,6,1

x <- c(1,4,4,3,5,6,1)

To find the position of the duplicate items in the vector use the duplicated() function

duplicated(x)
[1] FALSE FALSE TRUE FALSE FALSE FALSE TRUE

Duplicate items appear in the third and seventh location of the numeric vector x
To identify items that are duplicated, perform the following step

x[duplicated(x)]
[1] 4 1

To identify the unique items, perform the following steps

x[!duplicated(x)]
[1] 1 4 3 5 6

unique(x)
[1] 1 4 3 5 6

In many data analysis tasks, a large number of variables are being recorded or sam-
pled. One of the important steps toward obtaining a coherent analysis is the detection
of outlying observations. Outliers are generally considered an error or noise, but they
carry important information. Detecting outliers are candidates for aberrant data that

Data Collection and Cleaning 23

may otherwise adversely lead to model misspecification, biased parameter estima-
tion, and incorrect results. Therefore, it is important to identify the outliers prior to
performing any modeling and analysis. Here, we will discuss about two outlier detec-
tion techniques namely the Dixon’s Q test and the Grubbs test [8, 9].

Dixon’s Q test: The Dixon’s Q test or simply the Q test is used for the identification
and rejection of the outliers. This test should be used sparingly and never more than
once in a dataset. To apply the Q test for bad data we need to first arrange the data in
order of increasing values and then calculate Q as Q gap range= where gap is the
absolute difference between the outlier in question and the closest number to it. If
Q Qcalculated table> then we should reject the questionable point. The Dixon’s Q test is
more useful for small datasets with sample sizes less than 25 [8, 9].

Let’s use a simple example to illustrate the Q test. Consider the following observed
data points [8, 9]:

0.189, 0.167, 0.187, 0.183, 0.186, 0.182, 0.181, 0.184, 0.181,
0.177

Consider the R script provided below
First, install the outliers package and load it

install.packages("outliers")
library(outliers)

Now create a numeric vector data containing the observed data points

data <- c(0.189, 0.167, 0.187, 0.183, 0.186, 0.182, 0.181,
0.184, 0.181, 0.177)

Now call the dixon.test function in the outliers package

test <- dixon.test(data)
test

 Dixon test for outliers
 data: data
 Q = 0.5, p- value = 0.07653
 alternative hypothesis: lowest value 0.167 is an outlier

At α = 0 05. , we do not reject the null hypothesis (p- value = 0.0765 is greater than α)
and conclude that the lowest value of the dataset, i.e., 0.167 is not an outlier [8, 9].

Grubb’s test for outliers: this is a statistical test used for detecting outliers in a uni-
variate dataset. This method is also known as maximum normed residual test. This
test is based on the assumption of normality. That is, one should first verify that the
data can be reasonably approximated by a normal distribution before applying the
Grubb’s test [8, 9].

The Grubb’s test is an iterative process. This process detects one outlier at a time.
The detected outlier is then expunged from the dataset and the test is iterated until no

24 What Every Engineer Should Know About Data-Driven Analytics

outliers are detected. However, multiple iterations change the probabilities of the
detection, and the test should not be used for a small dataset, since it frequently tags
most of the points as outliers [8, 9].

Grubb’s test is defined for the hypothesis [8, 9]:

H0: There are no outliers in the dataset.
Ha: There is at least one outlier in the dataset.

The Grubb’s test statistic is defined as:

G
Y Y

s
i N

i

=
− ′

= …
max

, ,1

where Y ′ and s denote the sample mean and the standard deviation, respectively. This
test is the largest absolute deviation from the sample mean in units of the sample
standard deviation. This is the two- sided version of the test [8, 9].

The Grubb’s test can also be defined as a one- sided test. To test whether the mini-
mum value is an outlier, the test statistic is [8, 9]

G
Y Y

s
= ′ − min

where Ymin denotes the minimum value. On the other hand, to determine if the maxi-
mum value in the dataset is an outlier, the test statistic is [8, 9]

G
Y Y

s
= − ′max

where Ymax denotes the maximum value.
For the two- sided test, the hypothesis of no outliers is rejected at significant level

of if, α

G
N

N

t

N t
Grit

N
N

N
N

= −
− +

−

−

1
2
2

2

2

2
2

2

α

α

,

,

with t
N

N
α

2
2

2

, −
 denoting the upper critical value of the t- distribution with N − 2 degree

of freedom and a significant level of α 2N with α N. Here, N is the sample size [8, 9].

Let’s consider a simple example using the R script to illustrate the Grubb’s test for
outlier detection. Consider a reading of the heart rate of a person measured at six dif-
ferent intervals

 80, 67, 66, 76, 78, 120

Data Collection and Cleaning 25

Out of the measured values it needs to be determined if the extreme value 120 is an
outlier.

Now create a numeric vector data containing the observed data points

data <- c(80, 67, 66, 76, 78, 120)

Now call the grubbs.test function in the outliers package [8, 9]

test <- grubbs.test(data)
test

 Grubb’s test for one outlier
 data: data1
 G = 1.95301, U = 0.08458, p- value = 0.008286
 alternative hypothesis: highest value 120 is an outlier

At α = 0 05. , we reject the null hypothesis (p- value = 0.0083 is less than α) and
conclude that the extreme value 120 is an outlier.

SUMMARY

The focus of this chapter is to extensively discuss about the strategies for data collec-
tion, preprocessing, and cleaning. Data collection and cleaning is a prerequisite for
predictive analytics. Therefore, the topics discussed here serve as a foundation for
future chapters. Readers will have an opportunity to go through the basic program-
ming concepts in R and Python. In addition to that, this chapter will also provide
an inventory of all the packages that are available in R/Python for performing data
wrangling, visualization, and analytics. Data cleaning has been discussed in detail
highlighting a handful of strategies available for performing data transformation,
dealing with missing values, taking care of data deduplication, and for detecting and
removing outliers.

VIGNETTE Data Analytics and Developing Your Skill in Estimation

Nobel Prize winning Physicist Enrico Fermi (one of the fathers of atomic energy)
was a proponent of informal estimation techniques to validate analytical results.
Even though he was a world- class theoretical physicist and applied mathemati-
cian, he would use informal estimation to check his data analysis.

One famous example involves the testing of the atomic bomb. Fermi was pres-
ent at the first detonation (at a safe distance). Shortly after the blast, he dropped
some bits of paper in the air and observed how far they were blown by the blast
wave. From this, he estimated the bomb to be 10K tons of TNT. After months
of data analysis, it was found that the blast represented 18.6K tons. While Fermi
was off by 86%, he was correct within an order of magnitude, providing a form
of validation to the complex calculations.

Fermi used to challenge his classes with difficult problems for which there
was ample data, but no direct approach to the solution—only estimation would

26 What Every Engineer Should Know About Data-Driven Analytics

EXERCISE

1. Discuss the challenges and opportunities associated with the Big Data analysis
pipeline.

2. List the major tasks involved in the data preprocessing stage.

ID Gender Age Income

1 Male Under 30 Low
2 Female Under 30 Low
3 Female 30 or more Low
4 Female 30 or more
5 Female 30 or more High
6 Female 30 or more High

do. For example, he would ask “how many piano tuners are there in Chicago?”
Remember, this was long before there was the internet and the ability to search
for such data. So the answer could only be obtained by library research.

His estimation approach was as follows. Collect the following data from alma-
nacs and other library resources

 1. Chicago has a population of about 3 million people (at that time).
 2. Assume an average family has four members. Therefore, there are about

750,000 families in Chicago.
 3. Assume one in five families owns a piano. Therefore, there are about

150,000 pianos in Chicago.
 4. Suppose the average piano tuner could service four pianos every day of

the week for five days (50 weeks per year). Then, in one year, a tuner
could service 1,000 pianos.

So, 150,000/(4 × 5 × 50) = 150, implying that there are about 150 piano tuners
in Chicago.

This estimate is helpful to validate the results if we were to run a true data anal-
ysis, say by scrubbing web pages to get raw data on piano tuners in Chicago. For
example, if such an analysis tells us that there are 10 tuners or a million, we know
that the analysis is probably wrong, and we should revisit our approach [ref:
https://www.grc.nasa.gov/www/k- 12/Numbers/Math/Mathematical_Thinking/
fermis_piano_tuner.htm].

Throughout this book, you will be working on rigorous mathematical formulae
in data analytics. But sometimes there may be a mathematical truth behind some
phenomenon of data but no logical explanation. Use your intuition and informal
estimation techniques, where appropriate, to “check” the results to see if they
make sense and challenge your assumptions if necessary.

https://www.grc.nasa.gov
https://www.grc.nasa.gov

Data Collection and Cleaning 27

3. In the above table, the missing cell (Row 4, Column 4) according to MCAR
(“Missing Completely at Random”) should have the entry
 A. Medium
 B. High
 C. Low
 D. Low and High
 E. Low or High

4. In the above table, the missing cell (Row 4, Column 4) according to MAR
(“Missing at Random”) should have the entry
 A. Medium
 B. High
 C. Low
 D. Low and High
 E. Low or High; it is inconclusive

5. Using the Grubb’s test, determine if the value 146 of the univariate variable
containing the following values (86, 92, 79, 64, 101, 121, 134, 94, 112, 36, 54,
146), is an outlier. Show all the steps of your determination

6. Consider the following values for a variable
23, 45, 67, 78, 76, 65, 45, 32, 55, 66, 77, 110, 123, 456
Is this variable skewed right or left? What is the skewness value? Apply

the Box–Cox transformation on this dataset and write down the transformed
values of this variable.

7. Which one of the 5 Vs of Big Data focuses on the validity and the correctness of
the data?
 A. Velocity
 B. Variety
 C. Veracity
 D. Both A and B
 E. None

8. One of the following is not a phase of the Big Data analysis pipeline:
 A. Acquisition/Recording
 B. Ensuring data security
 C. Integration/Aggregation/Representation
 D. Analysis/Modeling
 E. Extraction/Cleaning/Annotation

9. Execute the following R script to create a bimodal variable (bimodal) and per-
form the Shapiro–Wilk normality test to confirm if the variable bimodal has a
bimodal distribution

 x = rnorm(60, mean = 10, sd = 5)
 y = rnorm(60, mean = 60, sd = 5)
 bimodal =c(x,y)

28 What Every Engineer Should Know About Data-Driven Analytics

10. What transformation steps will you employ to normalize the bimodal variable?
After transformation, how will you confirm if the bimodal variable has a normal
distribution?

NOTES

 1 Data provenance means—where did the data come from? Do you trust it?
 2 Global Positioning System
 3 A data warehouse is a centralized repository of integrated data from one or more different

sources.
 4 With respect to data “dirty” refers to corrupt, inconsistent, or uncertain data.
 5 Homoscedasticity means assuming that the underlying data of the transformed variable has

equal or similar variance to the one being transformed.
 6 Also sometimes spelled “dedupe.”

REFERENCES

 1. Agrawal, D., et. al. (2012). “Challenges and Opportunities with Big Data”, A Community
White Paper Developed by Leading Researchers Across the United States, retrieved
from https://cra.org/ccc/wp- content/uploads/sites/2/2015/05/bigdatawhitepaper.pdf

 2. Kuhn, M., Johnson, K. (2016). Applied Predictive Modeling. Springer.
 3. Pratt, M. K. (2022). “How big data collection works: Process, Challenges, techniques”,

retrieved from https://www.techtarget.com/searchdatamanagement/feature/Big- data-
collection- processes- challenges- and- best- practices, retrieved on March 9, 2022.

 4. Rahm, E., Do, H.H., (2000). “Data Cleaning: Problems and Current Approaches”, IEEE
Bulletin on Data Engineering, 23(4), retrieved from http://dbs.uni- leipzing.de

 5. “Data Preprocessing in Data Mining”, retrieved from https://www.geeksforgeeks.org/
data- preprocessing- in- data- mining/, retrieved on March 9, 2022.

 6. Bock, T. (n.d.). “What are different types of missing data”, retrieved from https://www.
displayr.com/different- types- of- missing- data/, retrieved on December 16, 2019.

 7. “Identify and Remove Duplicate Data in R”, retrieved from https://www.datanovia.com/
en/lessons/identify- and- remove- duplicate- data- in- r/, retrieved on March 9, 2022.

 8. Barnett, V., Lewis, T. (1994). Outliers in Statistical Data. 3rd ed, Wiley.
 9. Chawla, S., Sun, P., “Outlier Detection: Principles, Techniques and Applications”,

retrieved from http://www3.ntu.edu.sg/sce/pakdd2006/tutorial/chawla_tutorial_
pakddslides.pdf, retrieved on November 1, 2015.

https://cra.org
https://www.techtarget.com
https://www.techtarget.com
http://dbs.uni-leipzing.de
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.displayr.com
https://www.displayr.com
https://www.datanovia.com
https://www.datanovia.com
http://www3.ntu.edu.sg
http://www3.ntu.edu.sg

29DOI: 10.1201/9781003278177-2

Mathematical
Background for
Predictive Analytics

2

In this chapter, we present the mathematical foundations required by data scientists
to perform predictive analytics. The topics include basics concepts of linear algebra
such as introduction to vectors; matrices, determinants, and equations for simple
linear regression (SLR); dimensionality reduction techniques including Principal
Component Analysis (PCA) and Singular Value Decomposition (SVD); and math-
ematical foundations for neural networks that will lay the foundations for the deep
learning architectures discussed in the latter chapters.

BASICS OF LINEAR ALGEBRA

Linear algebra is a field of mathematics that is a prerequisite for understanding
machine learning algorithms. Although linear algebra is a vast field with many com-
plex theories, the fundamental notations and tools within the field are essential for
machine learning practitioners. To fully understand how algorithms in predictive
analytics work, it is important to master the foundations of linear algebra.

We will begin this chapter by introducing vectors, matrices, operations on matri-
ces, determinants, and related concepts and then discuss one of the most basic, yet
important concepts in data analysis, simple linear regression (SLR).

Vectors and Matrices

A vector can be defined as a list of numbers (also known as scalars). For example,
consider a vector

a � �� ��2 1, . Graphically, you can think of this vector as an arrow
in the x- y plane, pointing from the origin to the point at x = 2, y = 1, i.e., this vec-
tor extends 2 units in the x- axis and 1 unit in the y- axis. More generally, a vector

X x x xn� ��� ��1 2, , , can be imagined as a point in an n dimensional space. The vector

a
noted above is just a point on an infinite- sized sheet of paper. Single component vec-
tor

b � �� ��6 is just the number 6 on the infinite number line. The vector

c � ��� ��1 2 7, ,
is a point in 3- dimensional space. When the number of dimensions exceeds 3, how-
ever, it becomes difficult to actually visualize the vector, so it is usually not produc-
tive to try.

A vector has both magnitude and direction. You might recall from physics that the
velocity vector of a moving object includes the speed (magnitude) it is moving at and

http://dx.doi.org/10.1201/9781003278177-2

30 What Every Engineer Should Know About Data-Driven Analytics

the direction in which the object is moving. In any case, the magnitude of the vector

X is given as

X x x xn� � ���1
2

2
2 2 .

The direction of a vector is denoted using a vector whose magnitude is 1 (known
as a unit vector). To calculate the unit vector associated with a particular vector, we
take the original vector and divide it by its magnitude. In mathematical terms, the

unit vector associated with a vector

X is denoted as X̂
X

X
=

 . Again consider the vec-

tor

a � �� ��2 1, . The magnitude of this vector is 2 1 4 1 52 2� � � � . Therefore, the

unit vector associated with vector

X is given as ˆ ,X �
�

�
�

�

�
�

2

5

1

5
.

Vectors can be added and subtracted. In a graphical sense, we can think of adding
two vectors together as placing two- line segments end- to- end, maintaining distance
and direction. Let us consider an example of two vectors namely

a � �� ��2 1, and

b � �� ��3 2, . The addition of these two vectors results in a third vector

c a b� � � � �� � � � � �� � � � �2 1 3 2 2 3 1 2 5 3, , , , . Similarly, in a vector subtraction

c a b� � � � ��� � � � �� � � � �� �2 1 3 2 2 3 1 2 1 1, , , , .
Now we wish to define the term linearly independent, which is a relationship

between a set of vectors. A set of vectors is linearly independent if none of the vec-
tors in the set can be created by any linear combination (or weighted sum) of the
other vectors in the set.

For example, if two vectors point in different directions, even if they are not very
different directions, then the two vectors are linearly independent. That is

c is lin-
early independent of

a and

b if and only if it is impossible to find scalar values of α
and β such that

c a b� �� � .
The dot product of the two vectors

a and

b is given as d a b� �

. The dot product

can also be geometrically represented as d a b a b� � � �

cos� where the θ repre-
sents the angle between the two vectors. For example, the dot product of the two
vectors

a � �� ��2 1, and

b � �� ��3 2, is d a b� � � � ��� � � � �� � � � �

2 1 3 2 2 3 1 2 6 2, , , , .
Based on the understanding of the dot product we define the orthogonality of vec-

tors. Two vectors are orthogonal to one another if the dot product of those two vectors
is equal to zero. This happens when the angle between the vector is 90 degrees, i.e.,
� � 90o resulting in cos()90 0= .

A matrix, similar to vector, is a collection of numbers. The difference is that the
matrix is a table of numbers rather than a list. Mathematically, we can define a matrix
as an array of numbers made up of rows and columns. An m n∗ matrix is character-
ized by the number of rows, m, and the number of columns, n. For example, a 2 × 2
matrix A and matrix B can be denoted as

A
a a

a a
�
�

�
�

�

�
�

11 12

21 22

Mathematical Background for Predictive Analytics 31

B
b b

b b
�
�

�
�

�

�
�

11 12

21 22

Matrices can be added, subtracted, and multiplied on an element- by- element
basis, as we did for the vectors. Let us consider the addition and subtraction of two
matrices A and B resulting in matrices C and D, respectively, as shown below

C A B
a a

a a

b b

b b

a b a b
� � �

�

�
�

�

�
� �

�

�
�

�

�
� �

� �11 12

21 22

11 12

21 22

11 11 12 12

aa b a b21 21 22 22� �
�

�
�

�

�
�

D A B
a a

a a

b b

b b

a b a b
� � �

�

�
�

�

�
� �

�

�
�

�

�
� �

� �11 12

21 22

11 12

21 22

11 11 12 12

aa b a b21 21 22 22� �
�

�
�

�

�
�

Matrix multiplication is more complicated since multiple elements in the first
matrix interact with multiple elements in the second to generate each element in the
product matrix. For example, let us consider the multiplication of two matrices A and
B resulting in matrix E as shown below

E A B
a a

a a

b b

b b

a b a b a
� � �

�

�
�

�

�
� �
�

�
�

�

�
� �

�11 12

21 22

11 12

21 22

11 11 12 21 111 12 12 22

21 11 22 21 21 12 22 22

b a b

a b a b a b a b

�
� �

�

�
�

�

�
�

Solved Example
Consider the following two 2 * 2 matrices

A �
�

�
�

�

�
�

2 3

4 5

B �
�

�
�

�

�
�

1 6

5 5

Let’s perform addition, subtraction, and multiplication on the above matrices

C A B� � �
�

�
�

�

�
� �

�

�
�

�

�
� �

� �
� �

�

�
�

�

�
� �

�

�
�

�

�
�

2 3

4 5

1 6

5 5

2 1 3 6

4 5 5 5

3 9

9 10

D A B� � �
�

�
�

�

�
� �

�

�
�

�

�
� �

� �
� �

�

�
�

�

�
� �

� �
�
�

�
�

�2 3

4 5

1 6

5 5

2 1 3 6

4 5 5 5

1 3

1 0 ��
�

E A B� � �
�

�
�

�

�
� �
�

�
�

�

�
� �

� � � � � �
� � � � � �

�

�

2 3

4 5

1 6

5 5

2 1 3 5 2 6 3 5

4 1 5 5 4 6 5 5��
�

�
� �

�

�
�

�

�
�

17 27

29 49

If r is a scalar, then the scalar multiple of the matrix A is r A∗ , which is the matrix
whose columns are r times the corresponding columns in A. For example,

32 What Every Engineer Should Know About Data-Driven Analytics

5
2 5 3 5

4 5 5 5

10 15

20 25
� �

� �
� �

�

�
�

�

�
� �

�

�
�

�

�
�A

Remember that a matrix with only a single column (or row) is a vector. For exam-
ple, every column of the matrix A is a vector. Both the columns of the matrix A can
be represented as vectors v1 and v2.

A v v�
�

�
�

�

�
� �

�

�
�
�

�
� �

�

�
�
�

�
�

2 3

4 5
1

2

4
2

3

5
contains and

Now consider the multiplication of the matrix with a vector. If the matrix G is of
size m × n, and u is a vector of size n, then the product of G and u, denoted by Gu, is
the linear combination of the columns of G using the corresponding entries in u as
weights.

Let us assume G is a 2 * 2 matrix and the vector u is of dimension 2 * 1

G u Gu� � �
� � �
� � �

�

�
�

�

�
� �

��

�
�

�

�
�

�

�
�
�

�
�

1 2

3 4

2

4

1 2 2 4

3 2 4 4

10

22
and then

��
�

�

�
�

Note that the product Gu is defined only if the number of columns of the matrix G
equals the number of entries in the vector u.

Important Properties: If A, B, and C are all m n∗ matrixes, u and v are vectors
of size n∗1 and r is a scalar, then:

A u v Au Av

A ru r Au

A B C AB AC

B C A BA CA

r AB A rB

�� � � �

� � � � �
�� � � �

�� � � �

� � � � � �� � �
� � � � �

rA B

AB C A BC

If A is an n n∗ matrix and k is a positive integer, then Ak (A to the power k) is the
product of k copies of A, i.e., A AA Ak

k times

� ���� ��

Suppose we have a matrix F of size m∗n , then the transpose of F (denoted by FT)
is a n n∗ matrix whose columns are formed from the corresponding rows of F.

If FTF then�
�

�
�

�

�
� �

�

�

�
�
�

�

�

�
�
�

1 2 3

4 5 6

1 4

2 5

3 6

Important Properties: If A and B are both m∗n matrixes, and r is a scalar, then:

Mathematical Background for Predictive Analytics 33

A A

A B A B

rA rA

AB B A

T T

T T T

T T

T T T

� � �

�� � � �

� � �

� � �

An n∗n matrix A also known as a square matrix is said to be invertible if there is
an n∗n matrix C such that CA = I and AC = I where I is an n∗n identity matrix.
An identity matrix is a square matrix containing 1’s on the diagonal and 0’s every-
where. If the matrix A is invertible then the matrix C can also be represented as A−1,
i.e., the matrix C is the inverse of matrix A.

Important Properties: If A and B are both n∗n invertible matrix, then:

A AT T� � � � �� �1 1

A A� �� � �1 1

AB B A� � �
� � �1 1 1

An orthogonal matrix is a square matrix whose columns and rows are orthogonal
unit vectors. That is, an orthogonal matrix is an invertible matrix. For an n∗n matrix
A, AA A A IT T= = . It can be implied here that for an orthogonal matrix A, A AT � �1.

deterMinant

The determinant of a square matrix can be viewed as a function whose input is a
square matrix and whose output is a number. For example, given a 2 * 2 square matrix
A, we can define the determinant of A as det(A) as:

det
a b

c d
ad bc A

a b

c d
� � �

�

�
�

�

�
�where

Now given a 3 * 3 square matrix, the determinant can be computed as

det det det det

a b c

d e f

g h i

a
e f

h i
b

d f

g i
c

d e

g h

a ei fh b di fg

� � �

� �� � � �� � � cc dh eg

aei bfg cdh afh bdi ceg

�� �
� � � � � �

In a similar manner, the determinants for the higher orders of the square matrix
can be determined.

34 What Every Engineer Should Know About Data-Driven Analytics

SIMPLE LINEAR REGRESSION (SLR)

Linear regressions are performed to model the relationship between two variables by
fitting a linear equation to the observed data. A linear equation can be expressed as
Y X� � �� �1 0 where Y is the dependent variable, or the response variable and X is
an independent variable also known as predictors. Both the variables, i.e., Y and X
should be continuous. The slope of the line is β1, and β0 is the intercept (the value of
Y when X = 0). For example, if β1 is 2 and β0 is 1.5, the equation of the straight line
is given by Y X� � �2 1 5. .

A real- world application of SLR would be if a physician used a linear regression
model to find a relationship between the weights of individuals and their heights. In
any case it is very important to first determine whether or not there is a relationship
between the variable of interest before fitting the linear model. Generally, a scatter-
plot can be used to determine if there is a relationship between the variables of inter-
est and the strength of their relationship. Alternatively, a numerical measure of
association between two variables also known as correlation coefficient can also be
used. This measure indicates the strength of association by a value that ranges
between −1 and 1 where 1 indicates the strongest possible association [1, 2].

The most common method for fitting a regression line is the method of least- squares.
This method calculates the best- fitting line for the observed data by minimizing the sum
of the squares of the vertical deviations from each data point to the line (if a point lies
on the fitted line exactly, then its vertical deviation is 0). However, in the real world, the
data between the input variable (X) and the response variable (Y) never follows a straight
line. Thus, we need to find a way to estimate the value of β1 and β0 using the given input
data to fit a regression line. The approach that is used to estimate the value of β1 and β0
is called Ordinary Least Squares (OLS). The objective of the OLS is to obtain the mini-
mum value for the Sum of Squared Errors (SSE) which is given by [1, 2]

SSE Y X
i

N

i i� � �� �� ��
�

�
�

�
�

1

1 0

2
� �

where N is the size of the learning dataset, Yi is an actual value, Ŷ Xi i� �� �� �1 0 is the
predicted value, and, Y Yi i− ˆ is a residual error.

When the SSE = 0, the straight regression line fits the data points perfectly imply-
ing that the correlation coefficient between X and Y is either +1 or −1. If SSE > 0, the
line does not go through each data point implying that the correlation coefficient
between X and Y ranges between +1 and −1 [1, 2].

Note here that the β1 is the covariance of X and Y and β0 is the variance of X. β1
and β0 can be determined as

�1
1

1

2
�

�� � �� �� �
�� �

�

�

�
�

i

N

i i

i

N

i

X X Y Y

X X

� �0 1� � �� �Y X

Mathematical Background for Predictive Analytics 35

Here, Y is the mean value of Y variable and X is the mean value of X variable.

Example

Table 2.1 depicts the height (inches) and weight (pounds) measurements for 5 indi-
viduals. Based on this dataset, determine if there is a linear relationship between
the weight of the individuals and their height using a simple linear regression
model.

Using the R programming language script shown in Figure 2.1, let’s create a
scatterplot to see if there is a relationship between the height and weight of all 5
individuals. Here, we will consider height as the input variable (X) and weight as
the response variable (Y).

You should be able to visualize the scatterplot as shown in Figure 2.2. The black
line is the regression line.

The correlation coefficient between the height and weight is 0.558 indicating a
moderate level of relationship between the input and the response variable.

Now let us compute the regression line using the R code shown in Figure 2.3.
Executing the R code should result in b1 0 078= . and b0 132 47= . .

Therefore, the equation of the simple regression line can be expressed as
weight height� � �0 078 132 47. . .

Now that you have a good understanding of the basics of linear algebra let’s dis-
cuss the Principal Component Analysis technique for dimensionality reduction.

TABLE 2.1
Height and Weight Measurements for 5 Individuals
Index Height (Inches) Weight (Pounds)

1 65.78 112.99
2 71.52 136.49
3 69.40 153.0
4 68.22 142.34
5 67.79 144.30

height <- c(65.78, 71.52, 69.40, 68.22, 67.79)
weight <- c(112.99, 136.49, 153.03, 142.34, 144.30)

Let’s plot the scatterplot
plot(height, weight, main = "Height-Weight relationship",

xlab = "Height", ylab = "Weight",
pch = 19, frame = FALSE)

Add a regression line
abline(lm(weight ~ height), col = "blue")

find the correlation coefficient
cor(height, weight)

FIGURE 2.1 R script for producing scatterplot of height–weight relationship.

36 What Every Engineer Should Know About Data-Driven Analytics

PRINCIPAL COMPONENT ANALYSIS (PCA)

Real- world datasets often have many variables, i.e., many dimensions. It is advan-
tageous to reduce these to smaller sets of variables. For instance, in a consumer
survey, there are many variables (questions) that are used to determine a small num-
ber of underlying concepts such as customer satisfaction with a service, category
leadership for a brand, luxury for a product, etc. If we can reduce the data to its
underlying dimensions, we can more clearly identify the relationships among con-
cepts. Specifically, when there are data for many numeric variables, there is some
redundancy among those variables. Redundancy means that some of the numeric
variables are highly correlated with one another because they are measuring the same
perspective. Therefore, it should be possible to reduce some of those original input
numeric variables based upon a smaller number of principal components (PCs) that
will account for most of the variance in the data of all the original input numeric

FIGURE 2.2 Scatterplot of height and weight relationship for 5 individuals.

height_mean = mean(height)
weight_mean = mean(weight)
height_var = sum((height - height_mean)**2)
height_var = sum((weight - weight_mean)**2)
covariance = sum((height-height_mean)*(weight-weight_mean))
b1 = covariance/height_var
b0 = weight_mean - b1*height_mean

FIGURE 2.3 R script to plot the regression line.

Mathematical Background for Predictive Analytics 37

variables. Principal component analysis (PCA) is an unsupervised technique that
attempts to find uncorrelated linear dimensions that capture maximal variance in
the data. Unsupervised means that there is no human interaction with the algorithm.
PCA is a variable reduction procedure. The basic idea is to apply a linear transforma-
tion that defines a new space where the main axes are called the PCs [1, 2].

In short, PCA is used to [1, 2]:

 1. Transform the original set of input numeric variables into a new set of vari-
ables, i.e., PCs, which explain the variance in the data of the original set of
input numeric variables.

 2. Each PC is a linear combination of all the original set of input numeric
variables.

 3. Total Number of PCs = Total Number of Original Input Numeric Variables.

If the original input numeric variables are x x xn1 2, , ,… then PC w x w xi i i� � ���1 1 2 2

w xin n, where wij is a component loading between PCi and x j for 1≤ ≤i j n, . Any input
numeric variable with a relatively large magnitude of a component loading wii� �
value (negative or positive) in any of the first few PCs is generally an input numeric
variable that needs to be considered for modeling. The component loadings are anal-
ogous to correlation coefficients where squaring them gives the amount of explained
variation. Therefore, the component loadings tell us how much of the variation in an
input numeric variable is explained by this component[1, 2].

The principal components are extracted sequentially from the original set of input
numeric variables as follows [1, 2].

 • The 1st PC that explains the 1st most variance in the data.
 • The 2nd PC that explains the 2nd most variance in the data and must be

independent (i.e., zero correlation) of the 1st PC.
 • The 3rd PC that explains the 3rd most variance in the data and must be

independent of both 1st PC and 2nd PC.
 • And so, on to additional PCs.

A scree plot usually displays the eigenvalues (Variances or Standard Deviation) asso-
ciated with a principal component in descending order. Using the scree plots it is
easier to visually assess which components explain most of the variability in the
data, from which the PCs can be selected. An eigenvalue is the amount of variances
explained by a PC. The highest eigenvalue indicates the highest variance in the data
was observed in the direction of its principal component. From the scree plot, there
are two ways that we can use to select the PCs, including Eigenvalue- one Criterion
and Proportion of Variance[1, 2].

To summarize [1, 2]

 • PCA tries to find uncorrelated linear dimensions that capture the maximal
variance in the data.

 • PCA recomputes a set of variables in terms of linear equations known as
components that capture linear relationships in the data.

38 What Every Engineer Should Know About Data-Driven Analytics

 • The first component captures as much of the variance as possible from all
variables as a single linear function.

 • The second component captures as much variance as possible that remains
after the first component.

 • This procedure continues until there are as many components as there are
variables.

 • The objective is to retain a subset of components that can explain a large
proportion of the variation in the data.

Let’s explore PCA intuitively by looking at an example. We will use the program-
ming language R to simulate data that is highly correlated. To do so we execute the
following R code shown in Figure 2.4.

Here one can easily infer that xvar, yvar, and zvar are all correlated with each
other. Let’s visualize a bivariate plot and correlation matrix between xvar and yvar by
adding the following code [1].

plot(yvar ∼ xvar, data=jitter(my.vars))
cor(my.vars)

The result generates the scree plot shown in Figure 2.5.
From Figure 2.5, we can infer that xvar and yvar are both correlated (as indicated

by the ellipse approximating a line). You can see that many points in this ellipse are
clustered about this diagonal approximation line.

Now consider the correlation matrix shown in Table 2.2.
From the correlation matrix we can infer that xvar is highly correlated with yvar

and less with zvar and also yvar is highly correlated with zvar. Now let’s perform
PCA and obtain the principal components using the following R code.

my.pca <- prcomp(my.vars)
summary(my.pca)

Set the seed to create reproducible experiments
set.seed(10000)
Create a sample of 50 values for xvar. Each value of xvar will range between 1 and 10.
xvar <- sample(1:10, 50, replace=TRUE)
Copy the 50 values of xvar in to yvar
yvar <- xvar
Let us replace 25 values of yvar
yvar[sample(1:length(yvar), 25)] <- sample(1:10, 25, replace=TRUE)
Copy the 50 values of yvar in to zvar
zvar <- yvar
Let us replace 25 values of zvar
zvar[sample(1:length(zvar), 25)] <- sample(1:10, 25, replace=TRUE)
Bind xvar, yvar and zvar together
my.vars <- cbind(xvar, yvar, zvar)

FIGURE 2.4 R code to simulate highly correlated data.

Mathematical Background for Predictive Analytics 39

The results, shown in Table 2.3, show three PCs, their standard deviation, propor-
tion of variance, and cumulative proportion.

The results indicate that PC1 explains 63.3% variance, and PC2 together with
PC1 explains 89.5% (63.3% + 26.2%) variance in the dataset. Now let’s print the
rotation matrix using the following R code:

my.pca

FIGURE 2.5 A bivariate plot between xvar and yvar.

TABLE 2.2
Correlation Matrix for xvar, yvar, and zvar

xvar yvar zvar
xvar 1.000000 0.4825020 0.2191340
yvar 0.482502 1.0000000 0.6070264
zvar 0.219134 0.6070264 1.0000000

TABLE 2.3
PCA Results for Dataset
Importance of components:

PC1 PC2 PC3
Standard deviation 4.121 2.6503 1.6798
Proportion of variance 0.633 0.2618 0.1052
Cumulative Proportion 0.633 0.8948 1.0000

40 What Every Engineer Should Know About Data-Driven Analytics

The resulting rotation matrix is show in Table 2.4.
From the rotation matrix we can infer the following [1]

 • In PC1 all the three variables are loaded.
 • In PC2, xvar and zvar are loaded in the opposite direction (omit the negative

sign (if any)).
 • In PC3, yvar and zvar are loaded in the opposite direction (omit the negative

sign (if any)).

Now let’s see if the components are uncorrelated. We’ll use the R code:

cor(my.pca$x)

in determining the correlation between principal components. The result is shown
in Table 2.5.

Notice that the off- diagonal values are close to zero, indicating that the compo-
nents are uncorrelated.

Next, we obtain the scree plot for the eigenvalues of the PCAs by installing the
factoextra package as follows:

install.packages("devtools")
library("devtools")
install_github("kassambara/factoextra")
library(“factoextra”)
fviz_eig(my.pca, geom="line")

The resultant plot is shown in Figure 2.6.
In the scree plot we see that the slope of the line is not very steep when we move

from 2 to 3 dimensions. Therefore, we can conclude that only PC1 and PC2 are
enough to explain a majority (~ 89%) of the variance in the data [1].

TABLE 2.4
Rotation Matrix for Dataset
Rotation (n × k) = (3 × 3):

PC1 PC2 PC3
xvar 0.5591099 −0.7740077 −0.2971670
yvar 0.6734679 0.2149367 0.7072788
zvar 0.4835671 0.5955790 −0.6414425

TABLE 2.5
Correlation Values for Principal Components

PC1 PC2 PC3
PC1 1.000000e+00 −6.192641e- 17 8.416176e- 17
PC2 −6.192641e- 17 1.000000e+00 −2.472020e- 16
PC3 8.416176e- 17 −2.472020e- 16 1.000000e+00

Mathematical Background for Predictive Analytics 41

VIGNETTE The Karhunen-Loève Transform

The Karhunen- Loève Transform (KLT) is a data transformation and analysis
method often used for data compression and dimensionality reduction that is
closely related to PCA. KLT is also referred to as Karhunen- Loève Decomposition
(or Expansion), Principal (or Principle) Factor Analysis (PFA), SVD, Proper
Orthogonal Decomposition (POD), Hotelling Transform, etc. KLT takes a given
collection of data and creates an orthogonal basis for the data. KLT performs an
orthogonal transformation Y X�� on the vector X containing real values, where
the resultant vector Y is free from any data correlation. The orthogonal matrix θ
is composed of the eigenvectors of X satisfying the condition � �T � 1 [3].

KLT has applications in almost any scientific field including image process-
ing, data compression, studies of turbulence, thermal/chemical reactions, feed-
forward and feedback control design applications, data analysis or compression
(characterization of human faces, map generation by robots, and freight traffic
prediction). Despite the favorable theoretical properties of the KLT, its usage for
practical purposes is challenged by the fact that its basic functions are dependent
on the covariance matrix. For image processing–related applications, the depen-
dence of KLT on the covariance matrix requires that every image is recomputed
and transmitted. In addition to that, the perfect decorrelation of KLT is not pos-
sible and there are no fast computation algorithms for its implementation [3].

FIGURE 2.6 Scree plot of eigenvalues for PCAs.

42 What Every Engineer Should Know About Data-Driven Analytics

SINGULAR VALUE DECOMPOSITION (SVD)

Singular Value Decomposition (SVD) is a method for matrix factorization. Similar to
PCA, SVD is also a dimensionality reduction technique. It can help transform a set of
correlated features to a set of uncorrelated features. Mathematically, a m∗n utility
matrix A where m n> , can be factored into three matrices: UD, and VT where U is an
m r∗ orthogonal left singular matrix, D is a r ∗r non- negative, diagonal matrix, and
VT is a transpose of an r ∗n orthogonal matrix. Note here that V is an n∗r diagonal
right singular matrix. SVD is given by the following equation A UDV T= [2].

If the matrix A is, for example, a user- item rating matrix in a recommendation
system then the matrix U represents the relationship between the users and the latent
factors, the matrix D describes the strength of each latent factor, and the matrix V
indicates the similarity between the items and the latent factors. It should be noted
that in a user- item dataset the number of users and items can range in the millions.
Therefore, it is beneficial to reduce the dimensionality of the dataset by creating a
smaller (lower- rank) matrix that captures most of the information in the higher-
dimension matrix. This reduction may potentially allow one to capture important
latent factors and their corresponding weights in the data. The issue with large data-
sets is the presence of the missing values. SVD does not particularly work well on
datasets with missing values. Therefore, there is a need to impute the missing values
in the dataset before performing SVD [2].

Let’s look at an example of the application of SVD in a user- item dataset. Consider
the user- item dataset containing the user rating on 4 different films given by 6 differ-
ent users shown in Table 2.6.

Applying SVD on the user- item dataset we can obtain the matrix U which shows
the individual’s (rows) loading on the 4 factors (columns) shown in Table 2.7.

TABLE 2.6
User Rating Data for 4 Films

Film 1 Film 2 Film 3 Film 4
User 1 3 5 3 4
User 2 5 2 5 3
User 3 5 5 1 4
User 4 5 1 5 2
User 5 1 1 4 1
User 6 1 5 2 4

TABLE 2.7
Individual Rating Data for Four Factors

[,1] [,2] [,3] [,4]
[1,] −0.4630576 0.2731330 0.2010738 −0.27437700
[2,] −0.4678975 −0.3986762 −0.0789907 0.53908884
[3,] −0.4697552 0.3760415 −0.6172940 −0.31895450
[4,] −0.4075589 −0.5547074 −0.1547602 −0.04159102
[5,] −0.2142482 −0.3017006 0.5619506 −0.57340176
[6,] −0.3660235 0.4757362 0.4822227 0.44927622

Mathematical Background for Predictive Analytics 43

The matrix D highlights the variance explained by each of the four factors
(Table 2.8).

The total variance explained by the first two factors is given by

16 1204848 6 1300650
16 1204848 6 1300650 3 3664409 0 46834

. .
. . . .

�
� � � 445

85 29� . %

and the matrix V in Table 2.9 shows the loading of each movie on a factor, i.e., the
loading of film 4 on factor 1 is −0.1164526.

The R code in Figure 2.7 can be used to replicate these results [2].
You can tweak the code in Figure 2.7 to perform a similar analysis for other kinds

of data.

TABLE 2.8
User Rating Variance (User 1) of the Four Factors
[1] 16.1204848 6.1300650 3.3664409 0.4683445

TABLE 2.9
The Loading Factors between Films 1, 2, 3, and 4

[,1] [,2] [,3] [,4]
[1,] −0.5394070 −0.3088509 −0.77465479 −0.1164526
[2,] −0.4994752 0.6477571 0.17205756 −0.5489367
[3,] −0.4854227 −0.6242687 0.60283871 −0.1060138
[4,] −0.4732118 0.3087241 0.08301592 0.8208949

specify the user-item rating as
ratings <- c(3, 5, 5, 5, 1, 1, 5, 2, 5, 1, 1, 5, 3, 5, 1, 5, 4,2, 4, 3, 4, 2, 1, 4)
Create a matrix of 6 rows and 4 columns
ratingMat <- matrix(ratings, nrow = 6)
specify the row names which are users
rownames(ratingMat) <- c("User 1", "User 2", "User 3", "User 4", "User 5", "User 6")
specify the column names which are the name of the films
colnames(ratingMat) <- c(“Film 1”, “Film 2”, “Film 3”, “Film 4”)
Display the matrix
ratingMat
Perform SVD
svd <- svd(ratingMat)
Display the matrix U, D and V
svd$u
svd$d
svd$v
How much variance is explained by using just two factors
var1 <- sum(svd$d[1:2])
var2 <- sum(svd$d)
var1/var2

FIGURE 2.7 R code to replicate the results for the film rating example.

44 What Every Engineer Should Know About Data-Driven Analytics

INTRODUCTION TO NEURAL NETWORKS

Neural networks are mathematical models that store information with the use of
learning algorithms. The objective behind the use of the neural networks is to auto-
matically learn and recognize complex patterns and make intelligent decisions based
on the data. Neural networks are a popular framework to perform machine learning
inspired by the brain biology of humans and other advanced organisms[2].

Neural networks model the relationship between a set of input signals and output
signals using interconnected artificial neurons (or nodes) to solve complex pattern
identification type problems [2].

Each neuron in the network has a set of inputs, each of which is associated with a
specific weight (Figure 2.8).

The neuron computes a function on these weighted inputs. The neurons take a
linear combination of weighted inputs and applies an activation function such as
sigmoid, tanh, relu, etc. (which we will define shortly) on the aggregated sum. In this
introductory section to neural networks, we will discuss about the single neuron
which is also referred to as perceptron [2].

Very briefly, a perceptron is the most fundamental unit or a building block of a
neural network. In a perceptron, the input signals are combined after multiplying
them with different weights and are fed into the perceptron along with a bias ele-
ment. Within the perceptron, the net sum is calculated as sum of weights and input
signal and a bias element, then, the net sum is fed into a non- linear activation func-
tion [2].

The simplest neural network or perceptron shown in Figure 2.8 consists of n input
signal. The process of passing the data through the perceptron is also known as for-
ward propagation. Across a neuron each input signals xi is multiplied by its respec-
tive weights wi. These weights represent the strength of each signal that is given as an
input to the neuron and decide how much influence the given input signal has on the
neuron’s output. The weighted input signals are then summed as [2]:

�� � � � � � � � ��� � � � � �� �w x w x w x w x w xn n n n1 1 2 2 3 3 1 1

If we assume x x x x x xn n� ��� ���1 2 3 1, , , , , and w w w w w wn n� ��� ���1 2 3 1, , , , , both as
row vectors, then the above expression can be expressed as a dot product of the row
vectors given as [2]

w x w x w x w x w x w xn n n n. � �� � � � � � � � ��� � � � � �� �1 1 2 2 3 3 1 1

FIGURE 2.8 Model of an artificial neuron.

Mathematical Background for Predictive Analytics 45

A bias b is then added to the above expression which is also referred to as an offset
necessary to move the entire activation function to the left or right to generate the
required output values [2].

w x b w x w x w x w x w x bn n n n. � � �� � � � � � � � ��� � � � � � �� �1 1 2 2 3 3 1 1

After the application of the non- linear activation function the output of the percep-
tron can be expressed as

Y f w x w x w x w x w x bn n n n� �� � � � � � � � ��� � � � � � �� �� �1 1 2 2 3 3 1 1

More specifically, the output of the perceptron is given as [2]

Y f w x b
i

n

i i� �
�

�
�
�

�

�
�
�

�
�

1

Now let’s discuss the different types of non- linear activation functions used in
neural networks.

Activation functions are the mechanisms by which a neuron processes informa-
tion and passes it throughout the network. The activation function takes a single
number and performs a certain fixed mathematical functional mapping on it. There
are many different types of activation functions. The non- linear activation functions
are more preferred for neural networks as the non- linearity aspect of the function
makes it easy for the model to generalize or adapt with a variety of data and to dif-
ferentiate between the outputs [2].

Sigmoid or logistic activation function takes a real number and converts it
into a number in the range of 0 to 1. It is especially used for models where
we have to predict the probability as an output. The sigmoid function curve
looks like a S- shape curve and has a mathematical form

� x
e x� � �

� �
1

1

The sigmoid function is differentiable and we can find the slope of the sig-
moid curve at any two points. At the same time the sigmoid function is
monotonic (non- increasing or non- decreasing) [2].

Tanh or hyperbolic tangent activation function is also like a sigmoid func-
tion with an s- shaped curve, but it converts a real- value number into the
range of −1 to +1. The output is zero- centered, and its non- linearity is
always preferred when compared to the non- linearity of the sigmoid func-
tion. Tanh function has a mathematical form given as

tanh x x� � � � � �2 2 1�

46 What Every Engineer Should Know About Data-Driven Analytics

Tanh is a scaled sigmoid neuron. The tanh function is differentiable and is
monotonic (continuously non- decreasing or non- decreasing) similar to the
sigmoid function. Both the tanh and sigmoid activation function are popular
with the feed forward neural networks [2].

Rectified Linear Unit (ReLU) is the most used activation function for neural
networks and for deep learning. It computes the function f x x� � � � �max ,0 .
The ReLU is rectified from the bottom which means that if the input is less
than zero then f x� � � 0. It converts a real- value number into the range of 0
to ∞. The ReLU function is monotonic. For all the negative values the f x� �
become zero immediately which decreases the ability of the model to fit or
train from the data properly [2].

Softmax activation function is a function that converts a vector of K real val-
ues into a vector of K real values that sum to 1. The input values can be posi-
tive, negative, zero, or greater than one, but the softmax function transforms
them into values between 0 and 1, so that they can be interpreted as proba-
bilities. The softmax function is sometimes called as multi- class logistic
regression. This is because the softmax is a generalization of logistic regres-
sion that can be used for multi- class classification, and its formula is very
similar to the sigmoid activation function. Mathematically the softmax acti-
vation function is given by the expression

�

z
e

e
i

z

j

k
z

i

i

� � �
�� 1

where,

z is the input vector to the softmax function made up of k elements
z z zk0 1, , ,�� �, zi is the element of the input vector, and k is the number of

classes in the multi- class classifier [2].

SUMMARY

This chapter focuses on laying the mathematical foundations for performing predic-
tive analytics. Various topics including the basic concepts of linear algebra such as
introduction to vectors, matrices, determinants, and SLR are discussed here in detail.
These mathematical foundations are very important to understand the theoretical
concepts behind the dimensionality reduction techniques. The feature reduction tech-
niques including the PCA and SVD which are vital preprocessing steps to perform
predictive analytics were also discussed in detail. Finally, this chapter also lays the
mathematical foundations for neural networks that are critical to the understanding
of the deep learning architectures which will be discussed in the latter chapters.

EXERCISE

1. A company manufactures an electronic device to be used in a very wide tem-
perature range. The company knows that increased temperature shortens the

Mathematical Background for Predictive Analytics 47

lifetime of the device, and a study is therefore performed in which the lifetime is
determined as a function of temperature. The following data are found:

Temperature in Celsius (t) Lifetime in hours (y)
10 420
20 365
30 285
40 220
50 176
60 117
70 69

Perform a simple linear regression to determine the relationship between the
change in the temperature and the lifetime of the device. Is there a positive
correlation indicating that the increase in temperature shortens the lifetime
of the device?

2. Based on the scatterplot what can you infer

 A. Xvar and Yvar are not at all correlated
 B. Xvar and Yvar are correlated
 C. Xvar and Yvar both have skewness
 D. B and C
 E. A, B, and C

48 What Every Engineer Should Know About Data-Driven Analytics

3. Based on the table shown above, we can say that PC1 captures ________________
variance and PC2 together with PC1 captures ________________ variance in
the dataset.
 A. 65.05, 89.23
 B. 65.05, 24.18
 C. 24.18, 65.05
 D. 10.77, 24.18
 E. 89.23, 100.00

4. Based on the biplot shown below one of the following statements is TRUE

 A. Yvar strongly influences PC2
 B. Xvar and Yvar strongly influences PC2
 C. Xvar is highly correlated with Yvar and Zvar is highly correlated to Yvar
 D. Xvar and Zvar are both highly correlated
 E. Both C and D are TRUE

Mathematical Background for Predictive Analytics 49

Based on the scree plot shown below answer the question 5

5. How many principal components (PC) should I choose?
 A. 1
 B. 9
 C. 7
 D. 3
 E. 4
Consider the Brand rating dataset for different brands (10 brands namely a, b,
c, d, e, f, g, h, i, j) based on 9 perceptual adjectives namely perform, leader, lat-
est, fun, serious, bargain, value, trendy, and rebuy. Thousand customers were
provided with a survey instrument to rate each brand across 9 perceptual adjec-
tives using a 10- point Likert scale where 1 is least and 10 is most. Once the sur-
vey result was obtained, PCA was performed on the responses of the survey.

50 What Every Engineer Should Know About Data-Driven Analytics

Based on the information provided above please respond to questions 6 and 7

6. The eigenvalues of PC1, PC2, and PC3 are
 A. 3, 4, 5
 B. 2.979, 2.096, 1.079
 C. 2.979, 4, 5
 D. 4, 2.096, 5
 E. 3, 4, 1.079

Mathematical Background for Predictive Analytics 51

7. One of the following adjectives are positively correlated
 A. Perform, Fun
 B. Perform, Latest
 C. Perform, Serious, Leader
 D. Value, Bargain, Serious
 E. Value, Bargain, Perform, Serious

Consider the ratings of the user 1 to user 5 for 5 movies on a rating scale of 1
(worst)−5 (best) as shown below

Movie 1 Movie 2 Movie 3 Movie 4 Movie 5

User 1 3 1 3 4 1
User 2 5 2 5 3 y
User 3 5 5 x 4 5
User 4 5 5 1 2 2
User 5 1 1 5 1 3

Upon performing SVD on the above user ratings I derived the following V
matrix

[,1] [,2] [,3] [,4] [,5]
[1,] −0.5795873 −0.18456971 0.43911532 −0.3304055 0.5727325
[2,] −0.4391825 −0.48864133 −0.22834662 −0.3488639 −0.6280925
[3,] −0.3872198 0.85048790 −0.09874297 −0.2763658 −0.2015017
[4,] −0.4124423 0.03147568 0.42637702 0.7445140 −0.3046345
[5,] −0.3887794 −0.05332250 −0.75065839 0.3720848 0.3795683

Upon performing SVD on the above user ratings I derived the following D
matrix

[1] 15.5472320 5.7871396 3.1360088 2.3311685 0.7236673

8. Based on the matrix above the Movie 4 is loaded on factor 1 by a magnitude of
 A. −0.38877
 B. −0.41244
 C. −0.33040
 D. 0.43911
 E. 0.57273

9. Using just the three factors the total variance explained is
 A. 0.55
 B. 0.44
 C. 0.775
 D. 1
 E. 0.889

52 What Every Engineer Should Know About Data-Driven Analytics

10. SVD cannot be performed on the user rating matrix if it contains
 A. Lot of correlated variables
 B. Lot of outliers
 C. Lot of correlated variables and outliers
 D. Duplicated rows or columns
 E. Lot of missing values

REFERENCES

 1. Chapman, C., Feit, E. (2015). R for Marketing Research and Analytics. Springer, ISBN
978- 3- 319- 14436- 8.

 2. Dangeti, P. (2017). Statistics for Machine Learning. Packt Publishing Ltd., ISBN
978- 1- 78829- 575- 8.

 3. Stathaki, T. (2014). “Digital Image Processing the Karhunen- Loeve Transform (KLT)
in Image Processing”, retrieved from https://www.commsp.ee.ic.ac.uk/~tania/teaching/
DIP 2014/KLT.pdf, retrieved on February 16, 2022.

https://www.commsp.ee.ic.ac.uk
https://www.commsp.ee.ic.ac.uk

53DOI: 10.1201/9781003278177-3

Introduction to
Statistics, Probability,
and Information
Theory for Analytics

3

Statistics is an important and a necessary subject to gain a better understanding of
the predictive analytics. However, it is so vast that it itself can be a complete book.
Some of you may have studied probability and/or statistics in another course. Here,
the attempt is to review and focus on the key concepts that are most necessary to
understand the concepts of predictive analytics.

First, we introduce some basic terms [1].

Population—a complete list of all the observations in a study.
Sample—a subset of a population. It is usually a small portion of the popula-

tion that is being analyzed.
Parameter—a measure that is calculated on the population.
Statistic—some measure that is calculated on a sample.
Mean—the arithmetic average of some collection of data, which is computed

by taking the aggregated sum of all the data points divided by the number of
data points. The mean is sensitive to outliers in the data.

Median—the midpoint of the data points. The mean is calculated by either
arranging it in an ascending or descending order. If there are an odd number
of data points, the median value is the number that is in the middle, with
the same amount of data points below and above. If there is an even number
of data points, the middle pair must be determined, added together, and
divided by two to find the median value.

Mode—the most repeated data point in a set of data.
Measure of variation—describes the inconsistency or dispersion which is the

spread of the values of a variable.
Range—the difference between the maximum and minimum value of the data

points.
Variance—a measure of how far a set of data points is dispersed out from

their mean or average value. For the set X x x xN� �� �1 2, , , containing N data

http://dx.doi.org/10.1201/9781003278177-3

54 What Every Engineer Should Know About Data-Driven Analytics

points with µ denoting the mean of the set X, the variance for the population
and sample are given as

population variance and sample variance� �� � �
�

�
�1 1

1
1

2

N
x

N
i

N

i

i

�
��
� �� �

1

2
N

ix �

Standard deviation—the square root of variance. It measures the spread of
the statistical data.

population standard deviation ()� �� �� �
�
�1

1

2

N
x

i

N

i

sample standard deviation s() �
�

�� �
�
�1

1
1

2

N
x

i

N

i �

Quantiles—identical fragments of the data. After arranging the data points in
the ascending order, we can describe percentiles, deciles, quartiles, and so
on.

Percentile—the percentage of data points below the value of the original
whole data. The median is the 50th percentile.

Decile—the 10th percentile. The number of data points below the decile is
10% of the whole data.

Quartile—one- fourth of the data, and also is the 25th percentile.
Interquartile range—the difference between the third quartile and the first

quartile. This measure is effective in identifying the outliers.

Let’s consider a simple example to illustrate the basic concepts of statistics discussed
above.

Consider a set S consisting of the following 10 data points

S � � �4 2 3 6 7 4 12 4 26 56, , , , , , , , ,

We can execute the R code shown in Figure 3.1 to provide examples of these sta-
tistical measures.

NORMAL DISTRIBUTION AND THE CENTRAL LIMIT THEOREM

The normal distribution is a probability distribution that is symmetric about the mean
(µ = 0, σ = 1), demonstrating that data near the mean are more frequent in occur-
rence than the data far from the mean [1].

The normal distribution formula is given as

f x e
x

� � �
�

��
�
�

�
�
�1

2

1

2

2

� �

�
�

Statistics, Probability, and Information Theory for Analytics 55

The normal distribution curve appears as a bell curve. The normal distribution
curve has a skewness of zero and the kurtosis1 is 3.

The normal distribution is one of the most important concepts of predictive ana-
lytics and is the basis for many other important concepts. One of these follows.

The central limit theorem states that if you have a population with mean μ and
standard deviation σ and take a sufficiently large random sample from the population
with replacement, then the distribution of the sample means will be an approximate
normal distribution [1].

Defining the normal distribution and introducing the central limit theorem allow
us to continue our definitions and introduce other, slightly more sophisticated con-
cepts of probability and statistics [1].

Hypothesis testing—is the process of making inferences about the population
by conducting statistical tests on a sample. There are two types of hypoth-
eses namely the null and the alternate hypotheses to validate whether an
assumption is statistically significant or not.

p- value—the value used when we have to decide either to accept or reject the
null hypothesis. The p- value is the probability of obtaining a test statistic
result is at least as extreme as the one that was actually observed. The p-
value less than 0.05 is considered significant which means we have strong
evidence to reject the null hypothesis.

Type I and II error—when performing inferences about the population from
the samples there is possibility of making type I and II errors. Type I error
occurs when we reject the null hypothesis when it is true and type II error

datapoint <- c(4,2,3,6,7,4,12,4,26,56)
data_mean = mean(datapoint); print(round(data_mean,2))
Mean: 12.4

data_median = median (datapoint); print (data_median)
Median: 5

func_mode <- function (inputdata) {
uniq <- unique(inputdata)
uniq[which.max(tabulate(match(inputdata,uniq)))]
}
datamode = func_mode (datapoint); print (datamode)
Mode: 4

datavar = var(datapoint); print(round(datavar,2))
Variance: 284.93
datastd = sd(datapoint); print(round(datastd,2))
Standard deviation: 16.88
rangevalue<-function(x) return(diff(range(x)))
datarange = rangevalue(datapoint); print(datarange)
Range: 54
dataquantile = quantile(datapoint,probs = c(0.25,0.1,0.5));
print(dataquantile)

Quartile Decile Median
25% 10% 50%
4.0 2.9 5.0

dataiqr = IQR(datapoint); print(dataiqr)
Interquartile range: 6.75

FIGURE 3.1 R script and results illustrating various basic statistical measures.

56 What Every Engineer Should Know About Data-Driven Analytics

occurs when we accept the null hypothesis when it is false. Larger sample size
can reduce the probability of the occurrence of the type I and type II errors.

Chi- square—This is a test of independence between two categorical vari-
ables. Given two categorical variables X and Y , the chi- square test of inde-
pendence determines whether or not there exists a statistical dependence
between them. The test is usually performed by calculating χ 2from the data.
This statistic is a number that tells how much difference exists between the
observed counts and the counts that would be expected if there were no
relationship at all in the population [1].

� 2

2

� �
�� �Observed Expected

Expected

Let’s use a simple example to illustrate the Chi- square test. In Table 3.1, all the
species in the Iris dataset have been classified as either small or big in size based on
whether the length of the petal is smaller or bigger than the median of all flowers.

The objective here is to determine if there is a relationship between the species
and the size.

The null (H0) and the alternate (Ha) hypothesis are:

H0 = There is no relationship between the size and the species.
Ha = There is a relationship between the size and the species.

The R code for performing the Chi- square test is given in Figure 3.2.
The p- value = 2.2e- 16 is lesser than 0.05. Hence, we have sufficient evidence to

reject the null hypothesis and conclude that there is a relationship between the size
and the type of species.

PEARSON CORRELATION COEFFICIENT AND COVARIANCE

The Pearson Correlation Coefficient or the Pearson’s product moment coefficient is
given as [1]

r
a A b B

n
A B

i

n

i i

A B
, �

�� � �� �
�� �

�� 1

1 � �

TABLE 3.1
Iris Flower Species Data

Size Species Small Large

Setosa 1 49
Versicolor 29 21
Virginica 47 3

Statistics, Probability, and Information Theory for Analytics 57

where n is the number of tuples and A and B are the respective means of A and B, σ A
and σ B are the respective standard deviations of A and B.

 • If rA B, > 0 then A and B are positively correlated. The higher the value, the
stronger the correlation.

 • If rA B, = 0 then A and B are independent of each other.
 • If rA B, < 0 then A and B are negatively correlated.

Covariance is similar to correlation. The covariance is given as

cov(,)
()()

(()()) (.)A B
a A b B

n
E A A B B E A B ABi

n

i i

�
� �

� � � � ��� 1

r
A B

A B
A B

,
(,)� cov

� �

where n is the number of tuples and A and B are the respective means or expected
values of A and B, σ A and σ B are the respective standard deviation of A and B.

 • Positive covariance: If cov ,A B� � � 0, then if A is larger than its expected
value, B is also likely to be larger than its expected value.

 • Negative covariance: If cov ,A B� � � 0, then if A is larger than its expected
value, B is likely to be smaller than its expected value.

 • Independence: cov ,A B� � � 0 but the converse is not true:

Some pairs of random variables may have a covariance of 0 but are not independent.
Only under some additional assumptions (e.g., the data follow multivariate normal
distributions) does a covariance of 0 imply independence.

Let us consider an example to illustrate the concepts related to Pearson Correlation
Coefficient and Covariance.

Create a vector d and then convert the vector into the matrix
d <- c(1, 29, 47, 49, 21, 3)
mat <- matrix(d, 3, 2)

Now perform the Chi-Square test on the matrix
chisq.test(mat)

The obtained output is

Pearson's Chi-squared test

data: mat
X-squared = 86.035, df = 2, p-value < 2.2e-16

FIGURE 3.2 R code to confirm hypothesis for Iris to size correlation.

58 What Every Engineer Should Know About Data-Driven Analytics

Suppose there are two stocks A and B having the following values in one week:
(2, 5), (3, 8), (5, 10), (4, 11), (6, 14). If the stocks are affected by the same industry
trends, will their prices rise or fall together?

E A()
()� � � � � � �2 3 5 4 6

5
20
5

4

E B()
()

.�
� � � � � �5 8 10 11 14

5
48
5

9 6

cov(,)
()

(.)A B � � � � � � � � � � � � �2 5 3 8 5 10 4 11 6 14
5

4 9 6 4

Thus, A and B rise together since cov A B,� � � 0.

BASIC PROBABILITY FOR PREDICTIVE ANALYTICS

Earlier we laid the foundations for the statistical concepts needed for performing
analytics. Now, we’ll look at the basic concepts in probability that are essential for
performing analytics.

Probability is the branch of mathematics that describes how likely an event is to
occur. The probability of any event is a real number between 0 and 1 (inclusive),
where 0 means that the event would never occur and 1 means the event will certainly
occur. Terms that are commonly used in connection to probability are experiment,
sample space, and outcome. An experiment is a measurement process that produces
quantifiable output. The outcome is a single result from an experiment and the sam-
ple space is the set of all possible outcomes from an experiment [1]. For example,
consider throwing a die. Throwing a die (once) is an experiment. When a die is
thrown, we could get any number that ranges from 1 to 6, i.e., the number 1, 2, 3, 4,
5, or 6. This is the sample space. Obtaining one number out of the six possible num-
bers is an outcome of the experiment. For example, when some die is thrown, we get
the number 3.

The number of all possible outcomes may be finite, countably infinite, or consti-
tute a continuum. Here, we will discuss only discrete, mainly finite, sample spaces.
In discussing discrete sample spaces, it is useful to use basic set theory. Here, we
recap some of the basic concepts in set theory using simple examples.

Let us assume the universal set U consists of nine elements given as
U � � �2 3 4 8 9 10 14 23 27, , , , , , , , and the sets A and B consists of three and four elements
respectively given as A �� �2 4 8, , and B �� �3 4 8 27, , , then we can define the
following

A B�� � � � �3 9 10 14 23 27 2 9 10 14 23, , , , , , , , ,and

A B A B� � � � � � � �2 3 4 8 27 4 8, , , , ,and

A B B A� � � � � � � �2 3 27and ,

Statistics, Probability, and Information Theory for Analytics 59

A probability is a number that reflects the chance or likelihood that a particular
event will occur. Probabilities can be expressed as proportions that range from 0 to 1,
and they can also be expressed as percentages ranging from 0% to 100%. A probabil-
ity of 0 indicates that there is no chance that a particular event will occur, whereas a
probability of 1 indicates that an event is certain to occur. The definition of probabil-
ity states that if there are m outcomes in a sample space and are all equally likely of
being the result of an experimental measurement, then the probability of observing
an event (a subset) that contains S outcomes is given by S m.

Consider the probability of drawing an ace from a standard deck of 52 playing
cards. The sample space consists of 52 outcomes (i.e., each of the unique cards). The
desired event (ace) is a set of 4 outcomes (ace of spades, clubs, hearts, and dia-
monds). Therefore, the probability of getting an ace is 4 52 7 69= 0.0769 or . %.

Now let’s discuss some axioms or rules of probability. Let S be a finite sample
space, A an event in S. We define P A� �, the probability of A, to be the value of an
additive set function P() that satisfies the following three conditions [1]

 • 0 1� � � �P A for any event A in S (probabilities are real numbers on the
interval 0 1,�� ��).

 • P S� � �1 (probability of some event occurring from S is unity).
 • If A and B are mutually exclusive events in S, then P A B P A P B�� � � � � � � �

(The probability function is an additive set function).

CONDITIONAL PROBABILITY

The probability of an event is always defined with respect to the sample space S

under consideration. Therefore, P A P
A

S
� � � �

�
�

�
�
�, the conditional probability of event

A relative to the sample space S [1, 2].
If A and B are any events in S and P B� � � 0, the conditional probability of A rela-

tive to B is

P
A

B

P A B

P B
�
�
�

�
�
� �

�� �
� �

In a similar way we can define P
B

A

P A B

P A
�
�
�

�
�
� �

�� �
� �

Let’s consider a simple example to illustrate the concept of conditional probabil-
ity. In a small company a proposal is made to change the color of the uniform from
blue to brown. The proposal is submitted to the 20 uniform wearing workers for a
vote. Upon polling the workers it is found that 12 are for and 8 are against. Suppose
management wishes to discuss the vote with a small sample of two workers. What is
the probability of randomly picking 2 workers that are against the proposal?

To answer this question, first we define:

Set A: all outcomes where the first worker is against
Set B: all outcomes where the second worker is against

60 What Every Engineer Should Know About Data-Driven Analytics

Then P A P
B

A
� � � �

�
�

�
�
� �

8
20

7
19

and (Here we have to pick any 1 of the 7 left over work-

ers who are against out of the remaining 19 workers)
Therefore,

P A B P A P
B

A
() ()� � �

�
�

�
�
� � � �

8
20

7
19

14
95

So, the probability of picking two workers who are against the proposal is 14/19
≈ 0 147.

BAYES’ THEOREM AND BAYESIAN CLASSIFIERS

Now let’s discuss a very important theorem related to the concept of conditional
probability, Bayes’ theorem [2]. We’ll introduce it by example.

Suppose an analyst for an auto dealer is asked to set up a model to predict the
likelihood that certain individuals will buy a car based on age, income, and credit
rating. That is, the auto dealer would like to be able to answer questions like the
following:

Let X = 35- year- old customer, Jack, earning $75,000 per annum with a fair credit
rating and H = Hypothesis that Jack will buy a computer today.

Bayes theorem states that P
H

X

P
X

H
P H

P X
�
�
�

�
�
� �

�
�
�

�
�
� � �
� �

Here [2],

P
H

X
�
�
�

�
�
� = The conditional probability that Jack will buy a computer given the

fact that the manager knows his age, income, and credit rating. This is also
known as posterior probability of H.

P H� � = Probability that Jack will buy a computer regardless of knowing his
age, income, and credit rating. This is also known as prior probability of H.

P
X

H
�
�
�

�
�
� = Probability that Jack is 35 years old, earns $75,000 per annum, and

has a fair credit rating given that he has already brought a computer from the
store. This is also known as posterior probability of X or likelihood.

P X� � = Probability that Jack is 35 years old, earns $75,000 per annum, and has
a fair credit rating. This is also known as prior probability of X or evidence.

Therefore, in plain English we can say that posterior
prior liklihood

evidence
� �

So, in order to answer the posterior probability question for a specific individual,
such as Jack, we would have to have data for the prior probability, the likelihood, and

Statistics, Probability, and Information Theory for Analytics 61

the evidence. Such a problem is one of Bayesian inference and Bayes theorem is the
main tool in Bayesian inference [2].

Next, we will briefly discuss Bayesian classifiers. Bayesian classifiers are used to
calculate the set of probabilities by counting the frequency and combination of val-
ues in a given dataset.

The probability model for the Bayesian classifier can be described as a condi-
tional model as follows [2].

Assume a dataset D contains a set of tuples X where each tuple is an n dimen-
sional attribute vector, i.e., X x x x xn: , , , ,1 2 3 �� � where xi is the value of attribute Ai.
Let there be m classes each denoted as C C C Cm1 2 3, , , ,… . The Bayesian classifier pre-

dicts that the tuple X belongs to a class Ci if and only if P
C

X
P

C

X
i j�

�
�

�
�
� �

�

�
�

�

�
� for

i j m j i� � �and .
From the above, it is evident that the objective of the classifier is to maximize the

product P
X

C
P C

i
i

�

�
�

�

�
�� � � as P X� � (denominator) is a constant.

The numerator part P
X

C
P C

i
i

�

�
�

�

�
�� � � is actually

x x x x

C
P Cn

i
i

1 2 3, , , ,��

�
�

�

�
�� � �.

�
�

�
�

�

�
��

��

�
�

�

�
�� � �

�
�

�
�

�

�
��

P
x

c
P

x x x

C x
P C

P
x

c
P

x

c

i

n

i
i

i

1 2 3

1

1 2

, , ,
,

ii

n

i
i

i i

x
P

x x

C x x
P C

P
x

c
P

x

c

,
, ,
, ,1

3

1 2

1 2

�

�
�

�

�
��

��

�
�

�

�
�� � �

�
�

�
�

�

�
�� ,, , ,

, ,
, , ,x

P
x

c x x
P

x x

C x x x
P C

i

n

i
i

1

3

1 2

4

1 2 3

�

�
�

�

�
��

�

�
�

�

�
��

��

�
�

�

�
�� �� �

�

�
�

�
�

�

�
��

�

�
�

�

�
��

�

�
�

�

�
����P

x

c
P

x

c x
P

x

c x x
P

x

Ci i i

n

i

1 2

1

3

1 2, , , , xx x x x
P C

n
i

1 2 3 1, , , ,�
�

�
�

�

�
�� � �

�

This is where the “naïve” conditional independence assumptions come into play.
Each feature xi is independent of every other feature x j for all j i≠ which means that

P
x

c x
P

x

c
i

i j

i

i,

�

�
�

�

�
� �

�

�
�

�

�
�

Therefore,

P
C

x x x x
P

x

c
P

x

c
P

x

c
i

n i i i1 2 3

1 2 3

, , , ,�
�

�
�

�

�
� �

�

�
�

�

�
��

�

�
�

�

�
��

�

�
�

�

�
�����

�

�
�

�

�
�� � �

� � � �

�
�

�

�
� � �

� �
� �

P
x

c
P C

P C P
x

c z
P C

n

i
i

i

j

n
j

i
i

j

n

1 1

1
or, PP

x

c
j

i

�

�
�

�

�
�

where Z (the evidence) is a scaling factor dependent only on x x x xn1 2 3, , , , ,… i.e.,
a constant if the values of the feature variables are known. Remember that this is
because of the independence2 assumptions [2].

62 What Every Engineer Should Know About Data-Driven Analytics

The values of the attributes (A) can be either categorical or continuous. To com-

pute P
x

C
k

i

�

�
�

�

�
� when the attribute values are categorical

P
x

C

C Dk

i

i�

�
�

�

�
� �

the number of tuples of class in having the vaalues for
the number of tuples of class in

x A

C D
k k

i

We will discuss the computation of the P
x

C
k

i

�

�
�

�

�
�, where the attribute values are

continuous, later.

Example

Consider the dataset D in Table 3.2 with the following tuples obtained from the
customer database of a large consumer electronics retailer, such as Best Buy.

Based on this dataset we can compute the following probabilities:
There are two classes C Buys computer Yes1 = = and C Buys computer No2 = =

The P C1
9

14
0 642� � � � . and P C2

5
14

0 357� � � � .

Let’s assume here that age ≤ 30 is coded as youth in the dataset.
Therefore,

P
age

Buys computer YES

number of tuples with buys

�
�

�

�
�

�

�
�

�

30

ccomputer yes ANDage
number of tuples with buys computer

� �
�

30
yyes

� �
2
9

0 222.

TABLE 3.2
Dataset for Customers of a Large Consumer Electronics Company

Rid Age Income Student Credit Rating
Buys Computer

or Not?

1 Youth High No Fair No
2 Youth High No Excellent No
3 Middle- aged High No Fair Yes
4 Senior Medium No Fair Yes
5 Senior Low Yes Fair Yes
6 Senior Low Yes Excellent No
7 Middle- aged Low Yes Excellent Yes
8 Youth Medium No Fair No
9 Youth Low Yes Fair Yes
10 Senior Medium Yes Fair Yes
11 Youth Medium Yes Excellent Yes
12 Middle- aged Medium No Excellent Yes
13 Middle- aged High Yes Fair Yes
14 Senior Medium No Excellent No

Statistics, Probability, and Information Theory for Analytics 63

In the similar way we can derive the following probabilities

P
age

Buys computer NO
�

�
�

�
�

�

�
� � �

30 3
5

0 600.

P
Income medium

Buys computer NO
�

�
�

�
�

�

�
� � �

2
5

0 400.

P
Income medium

Buys computer YES
�

�
�

�
�

�

�
� � �

4
9

0 444.

P
Student YES

Buys computer YES
�

�
�

�
�

�

�
� � �

6
9

0 667.

P
Student YES

Buys computer NO
�

�
�

�
�

�

�
� � �

1
5

0 200.

P
Credit rating fair

Buys computer YES
�
�

�

�
�

�

�
� � �

6
9

0 667.

P
Credit rating fair

Buys computer NO
�
�

�

�
�

�

�
� � �

2
5

0 400.

Now let’s determine if the customer Jack who is 30 years old, a university
student, earning $40,000 (medium salary range) and with a fair credit history will
buy a computer or not. In order to determine this, we will have to compute the
conditional probability

P P

P

X
Buys computer YES

age
Buys computer YES�

�

�
�

�

�
� �

�
�

�

�
�

�

�
�

�

30

SStudent YES
Buys computer YES

Income medium
Buys com

�
�

�

�
�

�

�
�

�
�

P
pputer YES

Credit rating fair
Buys computer YES

�
�

�
�

�

�
�

�
�
�

�

�
�

�

�
P ��

� � � � �
2
9

6
9

4
9

6
9

0 044.

64 What Every Engineer Should Know About Data-Driven Analytics

As indicated before it is possible for the values of the attribute to be continuous.
For example, consider the salary of the employees in an organization. This attribute
takes numeric values which are continuous in nature. There are two ways to deal with
the continuous values of the attributes. The attribute can be discretized. For example,
the salary of the employee can be discretized as low (salary ≤ $30,000), medium
($31,000 to $75,000), and high (salary ≥ $100,000). The alternative way to deal with
continuous data is to assume that the continuous values associated with each class are
distributed according to a Gaussian distribution. Usually, a normal distribution is

assumed, i.e., to estimate P
X x

C
i k

j

��

�
�

�

�
� for a value of the attribute Xi and for each class

C j [2]

P
X x

C
g x g x ei k

j
k ij ij

x
��

�
�

�

�
� � � � � � �

�
�� �

; , , ; ,� � � �
� �

�

�where
1

2

2

22

The mean µij and the standard deviation σ ij are estimated from the given dataset.

Similarly, we can compute

P P

P

X
Buys computer NO

age
Buys computer NO

St

�
�

�
�

�

�
� �

�
�

�

�
�

�

�
�

�

30

uudent YES
Buys computer NO

Income medium
Buys comput

�
�

�

�
�

�

�
�

�
�

P
eer NO

Credit rating fair
Buys computer NO

�
�

�
�

�

�
�

�
�
�

�

�
�

�

�
�

� �

P

3
5

11
5

2
5

2
5

0 019� � � .

The objective is to find the class Ci that maximizes P
X
C

P C
i

i
�

�
�

�

�
� � � �

P P
X

Buys computer YES
Buys computer YES

�
�

�
�

�

�
� � �� � � �0 044 0 642. . �� 0 028.

P P
X

Buys computer NO
Buys computer NO

�
�

�
�

�

�
� � �� � � � �0 019 0 357 0. . ..007

Since P P
Buys computer YES

X
Buys computer NO

X
��

�
�

�
�
� �

��
�
�

�
�
� we can deter-

mine that John is a potential customer who will buy a computer.

Statistics, Probability, and Information Theory for Analytics 65

When there is a small number of samples in the training set or if the precise dis-
tribution of the data in the dataset is unknown then it is better to use the distribution
method. Alternatively, when there is a large amount of training data the discretization
method is the best choice.

Consider a simple dataset D shown in Table 3.3 to illustrate these concepts.
From this dataset, we can derive the following conditional probabilities:

 1. Estimate P C j� � for each class C j . P C � �� � � 3
5

 and P C � �� � � 2
5

Estimate P
X x

C
j k

j

��

�
�

�

�
� for each value of X j and each class C j .

P
X A

C
1 2

3
�
� �

�
�
�

�
�
� �

P
X B

C
1 1

3
�
� �

�
�
�

�
�
� �

P
X A

C
1 0

2
�
� �

�
�
�

�
�
� �

P
X B

C
1 2

2
�
� �

�
�
�

�
�
� �

Since X2 is continuous the following conditional probabilities can be defined
on X2

P
X x

C
g x2

2 21 73 1 10 1 73 1 10
�
� �

�
�
�

�
�
� � � � � �� �; . , . , . .where and� �

P
X x

C
g x2

2 24 45 0 07 4 45 0 07
�
�

�
�
�

�
�
� � � � � �� �

–
; . , . , . .where and� �

Consider the following dataset for an insurance company as shown in Table 3.4.

TABLE 3.3
Simple Dataset

Class X1 X2

+ A 1.0
+ B 1.2
+ A 3.0
− B 4.4
− B 4.5

66 What Every Engineer Should Know About Data-Driven Analytics

To determine the conditional probability P
KIncome

Evade NO
�
�

�
�
�

�
�
�

120
we need to first

determine the mean and standard deviation of the samples or tuples highlighted in the
above table. The mean and standard deviation, i.e., µIncome NO, = 110

125 100 70 120 60 220 75

7
110

� � � � � �� ��

�
��

�

�
�� �) and � Income NO, .� 54 54.

Based on the computed mean and standard deviation we can determine

P
K

e
Income

Evade
�
�

�
�
�

�
�
� � �

�
�

�� �
� �120 1

54 54 2

120 110

2 54 54

2

2

NO .
.

�
00 0072.

Similarly, the conditional probability
Income
Evade YES

�
�

�
�
�

�
�
� � �120

1 21517 9
K

e.

Next, we will discuss about the concepts in information theory for predictive
analytics.

INFORMATION THEORY FOR PREDICTIVE MODELING

The quantification of information in signals is an interesting field in Information
theory. In the context of predictive analytics, some of these concepts are used to
characterize or compare probability distributions. The ability to quantify information
is used in the decision tree types classifier, to select the variables associated with the
maximum information gain. In addition to that the concepts of entropy and cross-
entropy are also important in predictive analytics as they lead to a widely used loss
function in classification tasks [1].

TABLE 3.4
Dataset from an Insurance Company

Tid Refund
Marital
Status

Taxable
Income Evade

1 YES Single 125K NO
2 NO Married 100K NO
3 NO Single 70K NO
4 YES Married 120K NO
5 NO Divorced 95K YES
6 NO Married 60K NO
7 YES Divorced 220K NO
8 NO Single 85K YES
9 NO Married 75K NO
10 NO Single 90K YES

Statistics, Probability, and Information Theory for Analytics 67

The basic intuition behind the information theory is the learning that an unlikely
event has occurred is more informative than learning that a likely event has occurred.
We define the following concepts in information theory.

Entropy—the measure of impurity in data. If the sample data is completely
homogeneous, the entropy is zero, and if the sample is equally divided, it
has entropy of one. In a classification task, a variable with a low value for
entropy is desired to better segregate the classes. For n classes the entropy
is defined as [1]

Entropy � � � � � ��� � � �
�
�p p p p p p p pn n

i

n

i i1 2 1 2 2 2 2

1

2log log log log

Information Gain—the expected reduction in entropy caused by partitioning
the instances according to a given attribute. In the context of the decision
tree classifier, the information gain is the measure of how much information
a feature provides about a class. This measure helps to determine the order
of attributes in the nodes of a decision tree [1].

information gain Entropy sum weighted Entropyparent chld� � �� �%

Weighted
Number of observations in particular child

sum obs
% �

eervations in all child node� �

Gini impurity—The measure or the probability of misclassifying the instance
or an observation [1].

Gini � �
�
�1

1

2

i

n

ip

where pi is the probability of an object being classified into a particular class. The
degree of Gini index varies from 0 to 1 [1],

 • where 0 depicts that all the elements be assigned to a certain class, or only
one class exists there.

 • the Gini index of value 1 signifies that all the elements are randomly distrib-
uted across various classes, and

 • a value of 0.5 denotes that the elements are uniformly distributed into some
classes.

Consider a simple example to illustrate the concept of entropy and information gain.
Let’s consider a simple dataset (or sample) that has 1 blue, 2 green, and 3 red balls,
stored in a single basket that we cannot see into. Suppose we conduct experiments
that consist of randomly drawing one or more balls from the basket.

68 What Every Engineer Should Know About Data-Driven Analytics

In this dataset, the entropy is given as

Entropy � � � � � � �p p p p p pb b g g r rlog log log2 2 2

Where pb =
1
6

 is the probability of the blue ball in the dataset, pg =
2
6

 is the prob-

ability of the green ball in the dataset, and pr =
3
6

 is the probability of the red ball in
the dataset

Entropy � � � � � � � �1
6

1
6

2
6

2
6

3
6

3
6

1 462 2 2log log log .

Now let us consider a scenario where we have 5 blue and 5 green balls, and we
have divided them into two baskets where basket 1 consists of 4 blue balls and basket
2 consists of 1 blue ball and 5 green balls.

Before the split, there are 5 blue and 5 green balls. Therefore, the entropy before
the split is

Entropybefore split � � � � � �5
10

5
10

5
10

5
10

12 2log log

After the split, we have two baskets. In basket 1 with 4 blue balls, the entropy is

Entropybasket1 2
4
4

4
4

0� � � �log

In basket 2 with 1 blue ball and 5 green balls, the entropy is

Entropybasket2 2 2
1
6

1
6

5
6

5
6

0 65� � � � � �log log .

Since basket 1 and basket 2 have 4 and 6 elements, respectively, we will assign a
weight of 0.4 to basket 1 and 0.6 to basket 2.

Therefore,

Entropyafter split � � � � �04 0 0 6 0 65 0 39. . .

The information gain can be computed as 1 0 39 0 61� �. . . The high value for the
information gain indicates that the split of the blue and green balls in this scenario
resulted in much of the entropy removed.

VIGNETTE The Monty Hall Problem, A Study in Conditional
Probability

You may have heard of a television game show called “Let’s Make A Deal.” In
the United States, it started in 1963 and continues to run at this time of writing. It
was originally hosted by entertainer Monty Hall, who lends his name to a famous
problem in conditional probability based on the show.

Statistics, Probability, and Information Theory for Analytics 69

SUMMARY

This chapter lays the foundations of statistics and probability that are the driving
forces behind predictive analytics. Sufficient examples are also provided here to
illustrate the major concepts of statistics and probability. It is very essential for the
data scientists to master the concepts discussed here, as it will make it much easier
for them to follow the materials covered in the future chapters. In addition to that this

At the end of the show, the two top winners get to play the final game for the
grand prize. In the game there are three stages blocked by curtains (or doors).
Behind one door, there is the grand prize, often a new car. Behind another door,
there is a nice prize, but it is not nearly as valuable as the grand prize. Behind a
third door, there is a joke prize that is worthless. The contestants do not know
what is behind each door, but Monty does know. This is an important fact to
remember in the problem formulation.

The game then proceeds along the following lines. The first player (contestant
A) is asked to select a door. Then the second player (contestant B) is asked to
select from among the remaining two doors. Now Monty prepares to reveal what
is behind the doors and also to “Make a deal.”

Suppose Monty reveals that contestant B selected the nice (but not the grand
prize). After wishing contestant B good luck he now turns to contestant A. Monty
offers to let contestant A trade their door choice for the other, unrevealed door.
Should contestant A make the deal? What are their odds of winning the grand
prize if they pick the other door?

The answer may surprise you. You might say that since the odds of the grand
prize being behind any one door was 1/3, that these odds are the same for the
door Contestant A already picked and the other door. So their odds of winning
the prize if they pick the other door is just 1/2 or 50%. Either the prize is behind
there or not. But this reasoning is incorrect.

Contestant A should make the deal because at the outset they had a 1/3 chance
of winning the grand prize, but in making the deal and picking the other door
they would have a 2/3 chance of winning the grand prize. Why? Because there
was always a 1/3 chance of the prize being behind the door Contestant A picked,
the door Contestant B picked, and the door no one picked. The odds of the grand
prize being behind the door that Contestant A picked is still 1/3. Since we know
the grand prize was not behind the door Contestant B picked, there must be a
1 − 1/3 = 2/3 probability that the grand prize is behind the door not picked. So
we make the deal.

If you got the problem wrong, don’t be embarrassed. The Monty Hall problem
famously fooled a large number of mathematicians at one time. In the September
1990 issue of Parade Magazine, a famous advice columnist wrote about the prob-
lem. Many professors sent nasty letters to the magazine chastising the author,
who was later vindicated, much to the embarrassment of these professors [3].

You can model the Monty Hall problem using Bayes’ rule to come to the same
conclusion as we did above. Try it!

70 What Every Engineer Should Know About Data-Driven Analytics

chapter also discusses about the basics of Naïve Bayes and the information theory
that are applicable in designing multiple supervised classifiers.

EXERCISE

Let A be a set of non- negative continuous numeric data
A = {10.1, 12.6, 23.6, 56.7, 67.8, 11.0, 12.45, 16.8, 14.57, 10.1}

1. The Mean, Median, and Mode of set A represented in the format <Mean, Median,
Mode> is
 A. <10.1, 12.6, 23.45>
 B. <2.57, 1, 10.1>
 C. <237, 1385, 10>
 D. <23.57, 13.585, 10.1>
 E. <0,0,0>
Let A be a set of non- negative continuous numeric data
A = {10.5, 12.8, 23.3, 56.5, 67.4, 11.3, 12.34, 16.78, 14.23, 10.11, 6.78,
14.34}

2. The variance and standard deviation of the subset of A containing the last 5 ele-
ments represented in the form of <variance, standard deviation> is
 A. <1, 1>
 B. <15.78, 3.97>
 C. <381.12, 19.52>
 D. <11, 2>
 E. <2.72, 7.4>

3. Is there any linear relationship between the sepal length and sepal width in the
Iris dataset? (Clue: Check for the covariance). You can use R or Python script to
complete this task. Clearly show the results and provide justification.

4. In the table below, all the species in the Iris dataset have been classified as either
small or big (size) based on whether the length of the petal is smaller or bigger
than the median of all flowers

Size Species Small Big

Setosa 1 39
Versicolor 19 11
Virginica 37 3

Determine if there is a relationship between the species and the size. Show all
the calculations and provide justification for your conclusion.

Consider the dataset D shown below with the following tuples obtained
from the customer database of a large consumer electronics retailer

Statistics, Probability, and Information Theory for Analytics 71

Rid Age Income Student Credit Rating
Buys Computer

or Not?

1 Youth High No Fair No
2 Youth High No Excellent No
3 Middle- aged High No Fair Yes
4 Senior Medium No Fair Yes
5 Senior Low Yes Fair Yes
6 Senior Low Yes Excellent No
7 Middle- aged Low Yes Excellent Yes
8 Youth Medium No Fair No
9 Youth Low Yes Fair Yes
10 Senior Medium Yes Fair Yes
11 Youth Medium Yes Excellent Yes
12 Middle- aged Medium No Excellent Yes
13 Middle- aged High Yes Fair Yes
14 Senior Medium No Excellent No

Based on this dataset, determine if:

5. The customer Jack who is 50 years old, not a university student, earning $140,000
(medium salary range) and with a fair credit history, will buy a computer or not?

6. The customer Simon who is 25 years old, a university student, earning $10,000
(medium salary range) and with an excellent credit history, will buy a computer
or not?

7. Compute the entropy of the experiment where one or more balls are drawn ran-
domly from a basket containing 2 green, 5 red, and 6 blue balls?

8. Consider a scenario where 7 blue and 4 green balls have been divided into two
bags where bag 1 consists of 4 blue balls and 3 green balls and bag 2 consists
of 3 blue balls and 1 green ball. Now compute the following parameters: (a)
Entropy before the split, (b) Entropy of bag 1, (c) Entropy of bag 2, and (d)
Information gain assuming a weightage of 0.5 for each bags.

NOTES

 1 Kurtosis refers to the left and right tails of the distribution curve.
 2 Informally, independence of two random variables means that the outcome of one does not

influence the outcome of another. For example, the outcomes of rolling a die and flipping
a coin are independent, regardless of order in which they are done. Conversely, taking the
amount of sleep you get on given night and the score you achieve on an exam as random
variables, you can argue that one is dependent on another, regardless of which happens first.

REFERENCES

 1. Dangeti, P. (2017). Statistics for Machine Learning. Packt Publishing Ltd., ISBN
978- 1- 78829- 575- 8.

72 What Every Engineer Should Know About Data-Driven Analytics

 2. Uddin, A., Singh, S., Singh, C.P. “Presentation on Naïve Bayesian Classification”,
retrieved from http://www.slideshare.net/ashrafmath/naive- bayes- 15644818, retrieved
on March 4, 2022.

 3. Crockett, Z. “The Time Everyone “Corrected” the World’s Smartest Woman”,
Priceonomics, retrieved from https://priceonomics.com/the- time- everyone- corrected-
the- worlds- smartest/, retrieved on April 2, 2016.

http://www.slideshare.net
https://priceonomics.com
https://priceonomics.com

73DOI: 10.1201/9781003278177-4

Introduction to
Machine Learning

4
The previous chapters focused on providing the necessary background for data ana-
lytics. Here, we will discuss some basic machine learning techniques including linear
and logistic regression. In addition to that we will also talk about the issues related to
bias and variance which plague the machine learning models leading them to overfit.
Finally, we will discuss strategies for regularization to address overfitting issues in
machine learning model.

VIGNETTE What Is Machine Learning?

Machine learning (ML) is a subset of AI and is the science of training devices or
software to perform a task and improve its capabilities by giving it data so it can
“learn” over time. The term “machine learning” was coined by artificial intel-
ligence pioneer Arthur Samuel in 1959, while working at IBM. Deep learning
(DL) is a subset of machine learning that is designed to function like the human
brain using artificial neural networks. We interact daily now with all kinds of
ML applications including virtual personal assistants (such as Siri, Alexa, and
Bixby), traffic prediction algorithms, purchasing recommenders, credit card
fraud detection and much more [1, 2].

Machine learning produces predictive and evolving models based on the data
presented. Therefore, conducting assurance of the models is really about verify-
ing and validating the quality of predictions and models. There are two important
aspects assurance for both ML and AI in general—explanability and bias [1, 2].

EXPLAINABLE ML/AI –

In AI and ML, explainability means that the systems designers can rationalize the
system decision making, characterize their strengths and weaknesses, and con-
vey an understanding of how the system will behave in the future. With explain-
ability comes increased trust by an end user to believe and adopt the outcome of
the system [1, 2].

BIAS

In ML bias means that the predictive model is somehow producing a result that is
unfair to some groups. There are many possible sources bias, including, the use
of datasets that are inherently biased; lack of testing; and deployment of technol-
ogy too soon. Bias can also be caused by statistical anomalies such as overfitting
or underfitting or due to skewing or incomplete data in the environment [1, 2].

http://dx.doi.org/10.1201/9781003278177-4

74 What Every Engineer Should Know About Data-Driven Analytics

STATISTICAL VERSUS MACHINE LEARNING MODELS

Statistical and Machine Learning models are not so distinct from each other.
Statistical models are parametric in nature, which means models have parameters
on which diagnostics are performed to check the validity of the model. Conversely,
the machine learning models are non- parametric in nature, i.e., they do not have
any parameters or assumptions. These models can learn by themselves based on the
data provided and can produce complex functional models rather than fitting to pre-
defined functions. While statistical models are required to undergo checks for mul-
ticollinearity, in machine learning models, the weights of the variables are adjusted
automatically to address the multicollinearity problem [1, 2].

Let’s start our exploration of ML by discussing certain regression techniques.

REGRESSION TECHNIQUES

Simple linear regression was introduced in Chapter 2. Now we will focus our dis-
cussion on Multiple Linear Regression and Multivariate Logistic Regression. First,
to recap the regression technique attempts to model the relationship between two
types of variables namely the dependent and independent variables, by fitting a lin-
ear equation. The most common method for fitting a regression line is the method
of least- squares. This method calculates the best- fitting line for the observed data by
minimizing the sum of the squares of the vertical deviations from each data point to
the line [1, 2].

MULTIPLE LINEAR REGRESSION (MLR) MODEL

A MLR Model describes how a target variable Y relates to two or more X variables.
[1, 2]

Y X X X Xn n� � � ��� �� � � � �1 1 2 2 3 3 0

Using the concept of OLS discussed in Chapter 2 we can determine Sum of
Squared Errors (SSE) as:

i

N

i i i i n niY X X X X
�
� � � � ��� �� �� ��

�
�
�

1

1 1 2 2 3 3 0

2
� � � � �

where
 • Yi is an actual value.

 • Ŷ X X X Xi i i i n ni� � � ��� �� �� � � � �1 1 2 2 3 3 0 is a predicted value.

 • Y Yi i− ˆ is a residual error.

Bias can be identified and mitigated through a number of means including data
collection best practices, analysis of contextual awareness, statistical measures,
analysis of variance, outlier detection, causal inference, and many other tech-
niques [1, 2].

Introduction to Machine Learning 75

Next let’s discuss the assumptions for the multiple linear regression.

ASSUMPTIONS OF MLR

MLR has the following assumptions, failing which, the model does not hold true [3]:

 1. The dependent variable should be a linear combination of independent
variables.

 2. There should be no autocorrelation in error terms.
 3. The errors (residuals) should have zero mean and should be normally

distributed.
 4. There should be no or little multi- collinearity.
 5. The error terms should be homoscedastic.

Let’s present the assumptions of the model in detail and also provide an inventory of
tests that are available to test the assumptions [1–3].

The first assumption states that the dependent variable Y should be a linear com-
bination of all the Xs. The presence of the linearity pattern (almost straight red line)
in the Residuals vs. Fitted plot confirms that this assumption is satisfied (see top left
plot in Figure 4.2) [1–3].

To confirm the second assumption, i.e., no autocorrelation in error terms is satis-
fied, one should perform the Durbin–Watson test (see Sidebar 2). The Durbin–
Watson’s d tests the null hypothesis that the residuals are not linearly autocorrelated.
While d can lie between 0 and 4, if d ≈ 2 it indicates no autocorrelation, 0 2< <d
implies positive autocorrelation, and 2 4< <d indicates negative autocorrelation
[1–3].

For confirming the third assumption, i.e., residual errors should have a zero mean
and should be normally distributed; the Q- Q plot and also tests such as the
Kolmogorov–Smirnov test (see Sidebar 1) will be helpful. For the model to create an
unbiased estimate the residual errors should have zero or close to zero mean. On the
other hand, if the error terms are not normally distributed, this implies that the confi-
dence intervals will become too wide or narrow, leading to difficulty in estimating
the coefficients based on minimization of least squares. In the Q- Q plot if the residu-
als do not seem to be deviating much compared with the diagonal- like line then it is
evident that the errors are normally distributed [1–3].

For confirming the fourth assumption, i.e., the residual errors should be homosce-
dastic the Residuals vs. Fitted plot is observed to make sure that there is no pattern of
convergence or divergence. The residual errors should have constant variance with
respect to the independent variable. If this assumption is not satisfied, then the per-
formance of the model will degrade. Inconstant variance mostly leads to impracti-
cally wide or narrow confidence intervals for the estimates. One reason for not
holding homoscedasticity is due to the presence of outliers in the data, which drags
the model fit toward them with higher weights [1–3].

Now that we have discussed the assumptions for the fit of the model, we will use
an example to illustrate the MLR.

76 What Every Engineer Should Know About Data-Driven Analytics

For performing the MLR we will use the mtcars dataset available in R. This data-
set contains measurement on 11 different attributes for 32 different cars. In this data-
set we are interested in exploring the relationship between a set of variables
(independent) and the miles per gallon or MPG as target(dependent) variable. The
null and alternate hypothesis are [1, 2]

H0: No linear relationship exists between any of the predictor and the target
variable

Ha : There exists at least one linear relationship between the predictor and the
target variable

Now consider the R code given in Table 4.1.
Upon fitting the MLR on the mtcars dataset we get the output show in Figure 4.1.
From Figure 4.1 it is evident that none of the p- values is significant for the predic-

tors. However, the p- value of the model p � �� �3 79 07. e suggest rejecting the null
hypothesis and concluding that there exists at least one linear relationship between
the target and the predictor variables. The adjusted R- squared of 0.8066 also suggest
that there is a strong relationship between the predictors and target variable. Now
let’s check to see if the assumptions of MLR are met for this model [2, 3].

To check if the mean of the residuals is zero the following R code can be used

mean(fit_all$residuals)

This code results in a mean value of 7 45 17. ,e − which is approximately zero.
Therefore, it is confirmed that the mean of the residuals (the residual error) is zero.

To check for the evidence of homoscedasticity plot the Residual vs. Fitted plot
(see Figure 4.2) using the following command

par(mfrow=c(2,2)) # set 2 rows and 2 column plot layout
plot(fit_all)

Since the red line in the top left plot (see Figure 4.2) is not a flat or a straight line,
there is no evidence of homoscedasticity. The residuals are first decreasing and then
increasing. Now see the Normal Q- Q plot, the points lie exactly on the line. Therefore,
the residuals are normally distributed. However, it is okay to expect some deviation
of the points particularly near the ends (see Normal Q- Q plot in Figure 4.2).

Now let’s check for the autocorrelation of the residual errors. In order to perform
the Durbin–Watson test (see sidebar 2) execute the R code shown in Figure 4.3.

lmtest::dwtest(fit_all)

TABLE 4.1
A MLR Fitted on the mtcars Dataset
input<-mtcars
head(input)
fit_all<-lm(mpg~.,data=input)
summary(fit_all)

Introduction to Machine Learning 77

The Durbin- Watson test suggests that there is a positive autocorrelation as d < 2.
Therefore, the second assumption of no autocorrelation in the residual errors is not
satisfied.

Finally, to check for the assumption of no multicollinearity among predictors, the
Variance Inflation Factor (VIF) value is obtained for each predictor. For a good fit of
the model, it is desired to have the VIF value of all the predictors to be under 4. The
VIF value for the predictors can be obtained using the R code shown in Figure 4.4.

library(car)
vif(fit_all)

Here, we see that several predictors have VIF value greater than 4. If the VIF of
the predictors is greater than 4, then remove those predictor attributes and fit the
MLR again with the remaining predictor attributes. To begin, start by removing the
predictor attribute that has the highest VIF value. Each time a new MLR model is
fitted, check for the VIF of each predictor. This step has to be continued until all the
remaining predictors of the MLR model have a VIF value less than 4.

To fit an MLR model on a dataset you can start with two predictors in the begin-
ning and then keep on adding more predictors to the model. This process is known as
forward selection. Alternatively, one can start with all the predictors and then keep on
excluding predictors one at a time from the model. This process is known as back-
ward selection. Both together are collectively known as stepwise regression. However,

FIGURE 4.1 MLR model fitted on the mtcars dataset.

78
W

h
at Every En

gin
eer Sh

o
u

ld
 K

n
o

w
 A

b
o

u
t D

ata-D
riven

 A
n

alyticsFIGURE 4.2 Plots for the MLR model fitted on the mtcars dataset.

Introduction to Machine Learning 79

each time a model is fitted the assumptions have to be to be verified to make sure that
they are all satisfied [2].

Next let’s look at the Multivariate Logistic Regression (MLogR) model.

INTRODUCTION TO MULTINOMIAL LOGISTIC REGRESSION
(MLOGR)

Before we discuss the Multinomial Logistic Regression (MLogR), let’s consider
Logistic Regression (LogR) in general. In simple terms, LogR’s are linear models
for binary outcomes. There are several events for which we often observe a yes/no
outcome. For example, did the customer like the product? Did they take a test drive
of the latest model of electric vehicle? Did the customer renew the subscription?
And so on. All these kinds of questions have outcomes that are binary in nature, i.e.,
either a “yes” or “no.”1 Though it is possible to fit such a model with a typical linear
regression model, however the most efficient and useful way to fit such outcomes is
with a LogR model also known as a logit model [1, 2, 4].

The core concept behind the LogR model is that it relates the probability of an
outcome to an exponential function of a predictor variable. By modeling the proba-
bility of an outcome, a LogR model accomplishes two things. First, it directly models
the probability or the likelihood that an event will occur and secondly, it limits the
model to the appropriate range for the proportion, which is [0,1] [1, 2, 4].

The equation for the LogR function is [1]

LogR: p y
e

e

v

v

x

x
� � �

�1

Here the outcome of interest is y��� ��0 1, (target variable) and we compute the
likelihood p y� � as a function of vx. vx can take any real value, so we are able to treat
it as a continuous function in a linear model. In that case vx indicates the importance
of the corresponding predictor variable. The likelihood of y or the logistic value is

FIGURE 4.3 Output of the Durbin–Watson test on the MLR model.

FIGURE 4.4 Variance inflation factor test for multicollinearity on the MLR model.

80 What Every Engineer Should Know About Data-Driven Analytics

less than 50% when vx is negative, is 50% when vx = 0, and is above 50% when vx is
positive.

Let’s consider some examples to illustrate the logistic value y� � or the plogis().
The following commands are in R [1]

exp(0) / (exp(0) + 1) # equivalent to plogis()
0.5
plogis(-Inf) # infinite dispreference = likelihood 0
0
plogis(2) # moderate preference = 88% chance (e.g., of

purchase)
0.8807971
plogis(−0.2) # weak dispreference
0.450166

On the other hand, a logit model determines the value of vx from the logarithm of
the relative probability of occurrence of y[1]:

logit : logv
p y

p y
x �

� �
� � �

�

�
��

�

�
��1

To compute the logit value vx� �, R has an in- built function qlogis() as shown
below

log(0.5/(1−0.5)) # indifference = 50% likelihood = 0 utility
0
log(0.88/(1−0.88)) # moderate high likelihood
1.99243
qlogis(0.88) # equivalent to hand computation
1.99243

Now let’s discuss about the MLogR. MLogR is used to model the nominal outcome
(target) variable as a linear combination of the predictor variables. The predictor
variables can be either dichotomous (i.e., binary) or continuous (i.e., interval or
ratio in scale) in nature. It is a simple extension of LR that allows for more than two
categories of the dependent variable. The MLogR uses the maximum likelihood
estimation to determine the probability of the target variable. Before performing
the MLogR, it is important to carefully consider the sample size (a minimum of
10 cases per predictor variable) requirements and the examination of the outlying
cases in addition to performing the univariate, bivariate, and multivariate assess-
ment [1]. More importantly, multicollinearity should be evaluated with simple
correlations among the predictors. Multivariate diagnostics can be used to access
the multivariate outliers and for exclusion of outliers. MLogR does not assume
normality, linearity, or homoscedasticity. The following are the assumptions of the
MLogR [1, 4]

 • The target variable should be measured at the nominal level with more than
or equal to three values.

Introduction to Machine Learning 81

 • One or more predictors are continuous, ordinal, or nominal (including
dichotomous variables). However, ordinal predictors must be treated as
being either continuous or categorical.

 • The observations are independent, and the target variable should have mutu-
ally exclusive and exhaustive categories.

 • There should be no multicollinearity. Multicollinearity occurs when two or
more predictors are highly correlated with each other.

 • There needs to be a linear relationship between any continuous predictors
and the logit transformation of the target variables.

 • There should be no outliers, high leverage values, or highly influential
points for the scale/continuous variables.

Now let’s fit a MLogR model to a dataset. In R, MLogR model is fit using the gen-
eralized linear model (GLM) using the glm() function, which can handle target vari-
ables even if they are not normally distributed. GLM models can also relate normally
or non- normally distributed predictors to a non- normal outcome using a function
known as a link. This means that GLM is a single, consistent framework that can fit
models for many different distributions. The glm function takes an argument family
= binomial that specifies the distribution for the target variable. The default link func-
tion for a binomial model is the logit function [1, 2].

To demonstrate the MLogR model fit we consider the amusement park dataset. In
this dataset we have data on the sales of season tickets to the park. The target variable
is the season ticket pass sales (with values of yes or no), based on two predictors
namely the channel used to extend the offer (email, postal mail, or in- person at the
park) and promotion criteria, i.e., whether the seasonal tickets were sold as bundles
with promotional offers (free parking) or not. The MLogR model can be used to
address queries such as: Are customers more likely to purchase the season pass when
it is offered in the bundle (with free parking), or not?

The R code for fitting the MLogR model is given in Figure 4.5. The amusement
park dataset can be obtained from the link http://goo.gl/J8MH6A [1]

Retrieve the amusement park dataset
data <- read.csv("http://goo.gl/J8MH6A")
data$Pass <- as.factor(data$Pass)
data$Channel <- as.factor(data$Channel)
data$Promo <- as.factor(data$Promo)
summary(data)

Figure 4.5 describes the composition of the amusement park dataset. The channel
or the mode of selling the seasonal passes are either through email, mail or park.

FIGURE 4.5 Composition of the amusement park dataset.

http://goo.gl
http://goo.gl

82 What Every Engineer Should Know About Data-Driven Analytics

The promotion is either through bundle or nobundle. This dataset has a total of 3156
rows and 3 columns. The channel that was most successful in selling seasonal passes
was the park, regardless of whether the promotion was offered or not (see Figure 4.6).
A good way to visualize this data is with mosaic plots. Using the vcd package a dou-
bledecker plot can be constructed as shown in Figure 4.6.

Install.packages(“vcd”)
library(vcd)
doubledecker(table(data))

The sales of seasonal passes are very successful at the park and are very unsuccess-
ful by email. Therefore, we have to consider both the channel and the promotion as
predictors for determining the outcome of the sale of pass.

mod <- glm(Pass ~ Promo + Channel + Promo:Channel, data=data,
family=binomial)

summary(mod)
exp(confint(mod))

Here it is important to remember that we also need to consider the interaction effect
of the predictors channel and promotion. This interaction effect is considered as a
third predictor in the model indicated as (Promo:Channel). Except for the predictor

FIGURE 4.6 Mosaic plot demonstrating the sales of seasonal passes through different chan-
nels. (Source: Figure adapted from Chapman, C., and Feit, E. McDonnell, “R for Marketing
Research and Analytics,” Springer, ISBN 978- 3- 319- 14436- 8, 2015.)

Introduction to Machine Learning 83

ChannelMail all the predictors have a p- value that is significant (see Figure 4.7). Also
note here that the interaction of promotion with channel is statistically significant for
the mail and in- park channels, as opposed to the email channel. In the odds ratios,
we see that the promotion without a bundle is 10–35% as effective through the mail
and is 8%–31% as effective through in- park channels as it is in email. Therefore, we
can now conclude that the promotion without the bundle to be effective depends on
the promotion channel. There is good reason to continue the promotion campaign by
email, but its success there does not necessarily imply success at the park or through
a regular mail campaign (see Figure 4.7) [1].

Next, we will discuss the bias, variance, and the trade- off between the promotion
options. Finally, we’ll explore issues related to overfitting in linear regression models
and how the regularization techniques can be used to obtain an optimal model.

Bias versus variance Trade-off

Every analytical (predictive) model has both bias and variance error components in
addition to white noise.2 Bias and variance are inversely related to each other. This

FIGURE 4.7 MLogR model on the amusement park dataset.

84 What Every Engineer Should Know About Data-Driven Analytics

means that in an effort to reduce one error component in the model, the other error
component of the model will increase. The true art lies in creating a good fit by bal-
ancing both the errors. The ideal model should have both low bias and low variance.
This is where the trade- off becomes necessary [2].

The errors from the bias component come from erroneous assumptions in the
underlying learning algorithm. Actually, high bias can cause an algorithm to miss the
relevant relationship between the predictors and the target variable resulting in
underfitting. On the other hand, the errors from the variance component come from
the sensitivity to change in the fit of the model, i.e., even a small change in the train-
ing data can result in high variance, also well- known as an overfitting problem [2].

Both the LR/MLR and MLogR are good examples of a high bias model. In both
modeling techniques, the fit of the model is merely a straight line and may have a
high error component. This is because a linear model cannot approximate the under-
lying data well. On the other hand, an example of a high variance model is a decision
tree in which the model may create too much wiggly curve as a fit. Models created
using the decision tree would result in drastic changes in the fit of the curve which a
small change takes place in the training data [2].

In order to address the trade- off between bias and variance, the state- of- the- art
models use high variance models such as decision trees and performing ensemble on
top of them. This results in reducing the errors caused by high variance without com-
promising the increase in errors due to the bias component [2]. The best example of
learning algorithm or classifier in this category is Random Forest, in which many
decision trees are grown independently, and ensemble is performed to come up with
the best fit model. The decision tree and the Random Forest classifier will be dis-
cussed in detail in Chapter 6.

overfiTTing and underfiTTing

Earlier we mentioned overfitting and underfitting. Generally, overfitting occurs
when a very complex statistical model or learning algorithm suits the observed data
because it has too many predictors compared to the number of observations. The
problem with overfitting is that an incorrect model can perfectly fit data, just because
it is quite complex compared to the amount of data available. Again, it is also possi-
ble for overfitting to occur when the amount of data is adequate. As a result, when the
obtained model is used to predict new observations, mispredictions occur, because it
is not able to generalize [1, 2].

Now we’ll discuss overfitting and underfitting of the model in the context of the
regression. The concept of overfitting is very important in regression analysis.
Usually, a learning algorithm is trained using a set of examples (the training set), the
output of which is already known. It is assumed here that the learning algorithm that
is generalized will reach a state in which it will be able to predict new instances that
it has not yet seen. On the contrary, underfitting occurs when a regression algorithm
cannot capture the underlying trend within the data. Underfitting would occur, for
example, when fitting a linear model to some nonlinear data. Both the overfitting and
underfitting models would suffer from poor predictive performance [1, 2].

Now let’s turn our discussion to the topic of regularization.

Introduction to Machine Learning 85

regularizaTion

To select relevant features for the model it is possible to adopt methods that use all
the predictors but adjust the coefficients of the predictors by bringing them to a very
small close to zero or exact zero values also referred to as shrinkage. These methods
are also referred to as automatic feature selection methods, as they tend to improve
generalization. They are called regularization methods [2]. When there are many
variables available, the least square estimate of a linear model often results in low
bias but high variance with respect to models with fewer variables. Under these con-
ditions there is an overfitting problem. To improve precision prediction with small
variance but with greater bias we can use variable selection methods and dimen-
sionality reduction techniques. However, these methods may be unattractive due to
computational burdens in the first case or provide a difficult interpretation in the
other case [2, 5].

Another way to address the problem of overfitting is to modify the estimation
method by neglecting the requirement of an unbiased parameter estimator and con-
sider using a biased estimator, which may have smaller variance. There are several
biased estimators mostly based on regularization namely Ridge, Lasso, and ElasticNet
regressors. Regularization is a technique where the regression coefficients are shrunk
by introducing some type of penalty. In this chapter, we will discuss about the Ridge
and Lasso regression [2, 5].

There are two types of regularization, L1 and L2. In L1 regularization or Lasso
or L1 norm we shrink the parameter to zero. Sparse L1 norm are created when input
features have weights closer to zero. In sparse solution majority of the features have
zero weights and a very few numbers of features have non- zero weight. Thus, L1
regularization results in feature selection. The undesirable input features are
assigned a weight of zero and useful features are assigned a non- zero weight. In L1
regularization, the absolute value of the weights is penalized. Therefore, Lasso pro-
duces a model that is simple, interpretable, and contains a subset of the total input
features [2, 5].

Conversely, L2 regularization or Ridge regression the regularization term is the
sum of square of all the feature weights. L2 regularization forces the weights of the
predictors to be small but not zero. Thus, the solution is non- sparse. L2 is not
robust to outliers. This is because the square terms blow up the error differences of
the outliers. However, the regularization term tries to fix this by penalizing the
weights. Ridge regression performs better when all the input features are instru-
mental to the target variable. The weights of the predictors are roughly of equal
size. Elastic net regularization on the other hand is a combination of both L1 and
L2 regularization [2, 5].

Let’s summarize the differences between the L1 and L2 regularization techniques
[2, 5]:

 1. L1 penalizes the sum of absolute value of weights and L2 penalizes the sum
of square weights.

 2. L1 has a sparse solution and L2 has a non- sparse solution.
 3. L1 has multiple solutions but L2 has one solution.

86 What Every Engineer Should Know About Data-Driven Analytics

 4. L1 has built in feature selection and L2 has no feature selection.
 5. L1 is robust to outliers but L2 is not robust to outliers.
 6. L1 generates models that are simple and interpretable but cannot learn com-

plex patterns. On the other- hand L2 gives better prediction when the target
variable is a function of all the predictors.

 7. L2 can learn complex data patterns from the data but L1 is not so good at it.

First, we’ll discuss about the L2 norm or the Ridge regression.

Ridge Regression
Consider a scenario where there is an issue with multicollinearity. When multicol-
linearity occurs, the least square estimates are unbiased, but their variances are too
large, so they may be far from the true value. By adding a degree of bias to the regres-
sion estimates the Ridge regression reduces the standard errors. Ridge regression is
very similar to least squares. The Ridge regression coefficients β are the values that
minimize the following expression [2, 5]:

i

n

i iy x RSS
�
� � �� � � � � � �

1

1 0
2

1
2

1
2� � � � � �

Here, � � 0 is a tuning parameter which needs to be determined. The term � �� 1
2

is a shrinkage penalty that decreases when the β parameters shrink towards zero.
Parameter λ controls the relative impact of the two components: RSS and the penalty
term. If � � 0, the Ridge regression coincides with the least square’s method. When
� ��, all estimated coefficients tend to zero [5].

Ridge regression produces different estimates for different values of λ . Therefore,
determining the optimal choice of λ is crucial and is usually done with a technique
called cross- validation. Note that the shrinkage penalty is not applied to β0, as it
would not make sense. Ridge regression addresses the problem by estimating regres-
sion coefficients using the following equation [2, 5]

� �� � � �� � � �
�

X X I X YT T1

Here, λ is the Ridge parameter and I is the identity matrix.3 Small positive values
of λ are desirable to reduce the variance of the estimates. While biased, the reduced
variance of Ridge estimates often result in a smaller mean square error. The matrix

X X IT � � �� ���
1
 is not singular. In the Ridge regression it is advisable to standardize

all predictors before estimating the model. To standardize the predictors, the proce-
dure to be followed is to subtract their means and divide by their standard deviations
[2, 5].

Here we show using a R code how Ridge regression can handle the multicollinear-
ity issue in the Seatbelts dataset. First we need to install the glmnet package [5] to
explore the dataset. From Figure 4.8 it is evident that several variables are highly
correlated.

Introduction to Machine Learning 87

library (car) # Load the “car” library. This library will help
to compute the VIF

#Install and load the glmnet package
install.packages("glmnet")
library (glmnet)
Lod the dataset “Seatbelts”
data(Seatbelts, package="datasets") # initialize data
inputData <- data.frame (Seatbelts) # Duplicate the dataset
colnames(inputData)[1] <- "response" # rename “Driverskilled”

to response
XVars <- inputData[, -1] # Obtain all the predictors
round(cor(XVars), 2) # Correlation Test

To begin, the dataset is split into train and test dataset in the ratio of 80% and 20%,
respectively.

set.seed(100) # set seed to replicate results
Construct the training and test dataset
trainingIndex <- sample(1:nrow(inputData),

0.8*nrow(inputData)) # indices for 80% training data
trainingData <- inputData[trainingIndex,] # training data
testData <- inputData[-trainingIndex,] # test data

Now we’ll perform Ridge regression by executing the R code below. Note the values
assigned to the hyperparameters namely the nlambda and lambda.min.ratio in the
glmnet function. The hyperparameter alpha in the glmnet function is set to 0 (zero)
for performing the Ridge regression [5].

x <- model.matrix(response~., trainingData)[,-c(1,9)]
y <- trainingData$response
The term [,-c(1,9)] is used to remove the intercept. If

alpha=0, then Ridge regression is used
nlambda=100: Set the number of lambda values (the default is

100)
lambda.min.ratio=0.0001: Set the smallest value for lambda,

as a fraction of lambda.max, the # entry value (that is, the
smallest value for which all coefficients are zero)

RidgeMod <- glmnet(x,y, alpha=0, nlambda=100, lambda.min.
ratio=0.0001)

FIGURE 4.8 Correlation between predictors in the Seatbelts dataset.

88 What Every Engineer Should Know About Data-Driven Analytics

plot(RidgeMod,xvar="lambda",label=TRUE)
CvRidgeMod <- cv.glmnet(x, y, alpha=0, nlambda=100,lambda.min.

ratio=0.0001)
plot(CvRidgeMod)

From Figure 4.9, it is evident that when lambda is very large (e.g., the log of lambda
is ten), the regularization effect dominates the squared loss function, and the coef-
ficients tend to zero. At the beginning of the path, as lambda tends toward zero and
the solution tends toward the Ordinary Least Square (OLS) the coefficients exhibit
big oscillations (because they are unregularized). In practice, it is necessary to tune
lambda in such a way that a balance is maintained between both [5].

Figure 4.10 shows the cross- validation curve and the upper and lower standard
deviation curves. In the beginning the Mean Squared Error (MSE) is very high and
then at some point it kind of levels off. This seems to indicate that the model is doing
well. There are two vertical lines: one is at the minimum, and the other vertical line is
within one standard error of the minimum. The second line is a slightly more restricted
model that does almost as well as the minimum. The two lambda values indicate [5]:

 • lambda.min is the value of λ that gives the minimum mean cross- validated
error

 • lambda.1se, gives the most regularized model such that the error is within
one standard error of the minimum

FIGURE 4.9 Coefficients of the predictors with respect to Log Lambda. (Source: Figure
adapted from Hastie, T., Qian, J., Tay, K. (2021). An Introduction to glmnet. Retrieved from
https://glmnet.stanford.edu/articles/glmnet.html, retrieved on April 11, 2022.)

Introduction to Machine Learning 89

There are all seven variables (see top of the plot indicating the number of nonzero
variables) in the model (six variables, plus the intercept), and no coefficient is zero [5].

Now we’ll extract the value of best lambda.

best.lambda <- CvRidgeMod$lambda.min
best.lambda # print the best lambda value
Now determine the coefficient of the nonzero predictors
predict(RidgeMod, s=best.lambda, type="coefficients")[1:7,]

The best value of the lambda should be ~ .2 4. Figure 4.11 lists the coefficients of
the nonzero predictors. It can be observed that all the six predictors have very small
coefficients but are not zero [5].

Next, we’ll discuss the L1 norm or Lasso regression.

FIGURE 4.10 MSE with respect to Log Lambda. (Source: Figure adapted from Hastie, T.,
Qian, J., Tay, K. (2021). An Introduction to glmnet. Retrieved from https://glmnet.stanford.
edu/articles/glmnet.html, retrieved on April 11, 2022.)

FIGURE 4.11 Coefficients of the nonzero predictors of the model.

90 What Every Engineer Should Know About Data-Driven Analytics

Lasso Regression
Lasso regression is a shrinkage method similar to Ridge and is defined using the fol-
lowing equation [2, 5]:

i

n

i iy x RSS
�
� � �� � � � � � �

1

1 0
2

1 1� � � � � �

Here, the term � �� 1 is a shrinkage penalty for the Lasso regression. Ridge and
Lasso regression use two different penalty functions. In Lasso the penalty is the sum
of the absolute values of the coefficients. The shrinkage penalty is toward zero using
an absolute value (L1- norm) rather than a sum of squares (L2- norm) [5].

Earlier it was indicated that Ridge regression produces a model with all the vari-
ables having coefficients closer to zero. Increase in λ forces more coefficients to be
close to zero, but not exactly equal to zero, unless � � �. The Lasso regression pen-
alty term forces some coefficients to be exactly equal to zero, if λ is large enough.
Remember that Lasso automatically performs a real selection of variables [5].

To demonstrate, we’ll perform a Lasso regression on the Seatbelts dataset. In the
glmnet() function we have to set alpha = 1 for performing Lasso regression with the
following R code.

LassoMod <- glmnet(x,y, alpha=1, nlambda=100, lambda.min.
ratio=0.0001)

plot(LassoMod,xvar="norm",label=TRUE)
CvLassoMod <- cv.glmnet(x, y, alpha=1, nlambda=100,lambda.min.

ratio=0.0001)
plot(CvLassoMod)

In resulting plot, shown in Figure 4.12, each curve corresponds to a variable.
This plot shows the path of its coefficient against the L1- norm of the coefficient

when λ is varying. The axis indicates the number of nonzero coefficients at the cur-
rent λ, which is the effective degrees of freedom for the Lasso [5].

Figure 4.13 includes the cross- validation curve (red dotted line), and upper and
lower standard deviation curves along the λ sequence (error bars). In the beginning
the MSE is very high, and the coefficients are restricted to be too small, and then at
some point, it levels off. This seems to indicate that the model is doing well. The
lambda.1se (second line to the left) is the one which is the largest λ value, within one
standard error of λ min. The second line is slightly more restricted indicating that the
model is almost as well as the minimum [5].

Now let’s extract the value of best lambda with the following code [5].

best.lambda <- CvLassoMod$lambda.min
best.lambda
coef(CvLassoMod, s = "lambda.min")

The best value of the lambda should be ~ .0 27. Figure 4.14 lists the coefficients of
the nonzero predictors. We can see that the Lasso method is able to select variables.

Introduction to Machine Learning 91

FIGURE 4.12 Coefficients of the predictors with respect to L1 norm.

(Source: Figure adapted from Hastie, T., Qian, J., Tay, K. (2021). An Introduction to glmnet.
Retrieved from https://glmnet.stanford.edu/articles/glmnet.html, retrieved on April 11, 2022.)

FIGURE 4.13 MSE with respect to Log Lambda.

(Source: Figure adapted from Hastie, T., Qian, J., Tay, K. (2021). An Introduction to glmnet.
Retrieved from https://glmnet.stanford.edu/articles/glmnet.html, retrieved on April 11, 2022.)

92 What Every Engineer Should Know About Data-Driven Analytics

Ultimately, we can say that both Lasso and Ridge balance the trade- off bias- variance
with the choice of λ . Lasso implicitly assumes that few of the coefficients are zero,
or at least not significant. For example, the predictor front is deemed insignificant by
Lasso. Lasso tends to have a higher performance than Ridge in cases where many
predictors are not actually tied to the response variables [5].

SUMMARY

In this chapter, we have learned about multiple liner regression, logistic regression,
and regularization techniques. In addition to that we have learnt how to achieve gen-
eralization for our models. Both the Ridge and Lasso techniques were explored here
to understand how to avoid overfitting and for creating models with low bias and
variance.

Overfitting occurs when a very complex statistical model suits the observed data
because it has too many parameters compared to the number of observations. The
outcome is risky as an incorrect model can perfectly fit the data just because it is
quite complex in logic when compared to the amount of data that is available.

Consequently, when the model is used to predict new observations, it fails to gen-
eralize. Such a model would have poor predictive performance in the real world. In
order to resolve the overfitting, the regularization techniques were explored. These
methods involve modifying the performance function, normally selected as the sum
of the square of regression errors on the training set.

SIDEBAR 1 KOLMOGOROV–SMIRNOV TEST
The Kolmogorov–Smirnov Goodness of Fit test compares a given set of data
with a known distribution and determines if they have the same distribution.
This is a nonparametric test, which means that it does not assume any par-
ticular underlying distribution. More commonly, this test is used as a test for
normality to see if the given data is normally distributed. This test is also used
to check the assumptions of normality in Analysis of Variance (ANOVA) [1, 2].

The hypotheses of the test are:

H0: The data comes from the specified distribution
Ha : At least one value does not match the specified distribution

FIGURE 4.14 Coefficients of the nonzero predictors of the model.

Introduction to Machine Learning 93

SIDEBAR 2 DURBIN–WAT SON TEST
The Durbin–Watson test is a measure of autocorrelation in residuals from
regression analysis. Autocorrelation is described as the similarity of a time
series over successive time intervals. It can lead to underestimates of the stan-
dard error and can lead to believing that the predictors are significant when
they are not [1, 2].

The hypothesis for the Durbin–Watson test is [1, 2]:

H0 : There is no first order autocorrelation of the error terms
Ha : First order autocorrelation of the error terms exists

The assumptions here are that the error terms are normally distributed with
a zero mean and the errors are stationary.

The test statistic for Durbin–Watson is calculated as [1, 2]

DW
e e

e

t

T

t t

t

T

t

�
�� �

�
�

�

�
�
2

1
2

1

2

where et are residuals from an ordinary least squares regression.
The Durbin–Watson test reports a score for DW that ranges from 0 to 4

where [1, 2],

DW = 2 indicates no autocorrelation
0 2< <DW indicates a positive autocorrelation
2 4< <DW indicates a negative autocorrelation

If the null hypothesis is not rejected, then it can be confirmed that both the
data have the same distribution.

The Kolmogorov–Smirnov test statistic measures the largest distance
between the empirical distribution function F Xdata � � and the theoretical func-
tion F X0 � �, given as [1, 2]

D F X F XX� � � � � �sup 0 data

where (for a two- tailed test)
F X0 � � is the cumulative distribution function of the hypothesized

distribution
F Xdata � � is the empirical distribution function of the observed data

If D is greater than the critical value, the null hypothesis is rejected which
means the distributions are not the same [1, 2].

94 What Every Engineer Should Know About Data-Driven Analytics

EXERCISE

1. Identify a dataset of your choice to perform Multiple Linear Regression (MLR)
analysis. On this dataset perform the following task:
 A. Perform a MLR analyis and report all the performance measures. Discuss

about the fit and residuals of the model.
 B. Does your model overfit? If so, what are your options? (Tips: Perform

Lasso or Ridge or Elastic Net regression)
Do not forget to define your objectives/research goals, issues in the da-
taset, any cleaning performed on the dataset (scaling, transformation, re-
moving outliers, imputing missing values, removal of duplicate records,
normalization, etc.), document all the steps performed and clearly high-
light what inferences you can make or business solutions you can provide
based on the analysis strategies and outcomes.

2. If � �0 1 6� � �x. then what is p(y)?
 A. 0
 B. −6
 C. 0.0066928
 D. 0.002472
 E. 0.006737

3. What is the value of � �0 1� x. when p(y) = 0.95?
 A. 4.885324
 B. 2.9444
 C. 0.95
 D. −4.885324
 E. 1
See the plots below:

Introduction to Machine Learning 95

4. Based on the above plots what can you infer about the homoscedasticity of the
residuals?
 A. The residuals have equal variance
 B. The residuals have a constant variance
 C. There is no evidence of residuals being homoscedasticity
 D. Both A and B.
 E. All the above.

5. Based on the above plots what can you infer about the distribution of the
residuals?
 A. Residuals have bimodal distribution
 B. Residue distribution follows a pareto distribution
 C. Residuals are normally distributed
 D. Residuals are not normally distributed
 E. Residuals are normally distributed but also exhibit a bimodal distribution

6. For the regression model “mod_1” see the VIF’s provided above. Based on
the VIF values of the predictors which attribute will you first remove from the
model?
 A. Cyl
 B. Hp
 C. Draft
 D. disp
 E. Cyl and wt

7. For a regression model with a Durbin–Watson’s d tests, where 2 4< <d suggests
 A. The model has no autocorrelation

 B. The model suffers from high multicollinearity
 C. The residuals have a constant variance
 D. The model is non- linear
 E. The model has negative autocorrelation

8. In an MLR model the presence of too many predictors can result in
 A. The model exhibiting characteristics for overfitting.
 B. Modeling and accounting for the random noise and the variation in the

variable data
 C. Misleading R- squared value
 D. Both A, B and C
 E. Both B and C

9. Download the amusement park dataset (discussed in lesson 4) and extract a ran-
dom sample containing only 75% of the instances across all the different types
of channels. On this dataset determine if customers are more likely to purchase
the season pass when it is offered as bundle?

96 What Every Engineer Should Know About Data-Driven Analytics

10. One of the techniques listed below is a dimensionality reduction (feature selec-
tion) technique
 A. Ridge Regression
 B. Linear Regression
 C. Both Linear and Ridge Regression
 D. Both Ridge and ElasticNet Regression
 E. Lasso Regression

NOTES

 1 We disallow the possibility of an “I don’t know” or “I don’t remember answer” in the ques-
tionnaire or survey instrument forcing the respondent to choose either possible response or
no answer at all. In the latter case, we would exclude that “data” from the analysis.

 2 In statistics white noise refers to a sequence of random variable samples with no mean and
limited variance.

 3 The square matrix with all ones along the diagonal and zeroes everywhere else.

REFERENCES

 1. Chapman, C., Feit, E. M. (2015). R for Marketing Research and Analytics, Springer,
ISBN 978- 3- 319- 14436- 8.

 2. Dangeti, P. (2017). Statistics for Machine Learning. Packt Publishing Ltd., ISBN
978- 1- 78829- 575- 8.

 3. Korstanje, J. (2021). “Assumptions of Linear Regression with Implementations in R and
Python”, retried from https://towardsdatascience.com/assumptions- of- linear- regression-
fdb71ebeaa8b, retrieved on April 11, 2022.

 4. El- Habil, A. M. (2012). An Application on Multinomial Logistic Regression Model.
Pakistan Journal of Statistics and Operation Research, VIII(2), 271–291.

 5. Hastie, T., Qian, J., Tay, K. (2021). “An Introduction to Glmnet”, retrieved from https://
glmnet.stanford.edu/articles/glmnet.html, retrieved on April 11, 2022.

https://towardsdatascience.com
https://towardsdatascience.com
https://glmnet.stanford.edu
https://glmnet.stanford.edu

97DOI: 10.1201/9781003278177-5

Unsupervised Learning5
Unsupervised learning involves discovering the hidden patterns or structures from
a dataset without reference to known or labeled outcomes. These learning meth-
ods are often more challenging to implement. Here the outcomes are subjective and
there is no simple goal for the analysis. Unsupervised learning is part of exploratory
data analysis. It can be hard to assess the results obtained from these methods, since
there is no universally accepted way for validating the results. Unsupervised learn-
ing methods cannot be applied to regression or classification problem because we
have no idea about the values of the output variable which makes it impossible to
train the algorithm the way we do with supervised learning. To put in simple terms
unsupervised learning methods can be employed to discover the underlying structure
of the data [1, 2].

Unsupervised learning methods are becoming popular because, for many applica-
tions, a training dataset for many different scenarios may be unavailable. However,
even though the purpose of unsupervised learning is to uncover previously unknown
patterns in data, the obtained patterns are often very poor approximations of what
supervised learning method can achieve. Also, without having the knowledge about
the outcome it is hard to determine how accurate these results are and so its applica-
bility to solve real- world problems are not as promising as supervised learning.
However, unsupervised methods provide better explainability of patterns compared
to supervised techniques. Eventually, patterns obtained through unsupervised learn-
ing methods can be used to train supervised learning techniques [1, 2].

Applications of unsupervised learning include [1, 2]:

 1. Clustering: Allows automatic splitting of the dataset into groups according
to similarity.

 2. Anomaly detection: To identify unusual data points in the dataset such as a
fraudulent transaction, discovering faulty piece of hardware/software mod-
ule, identifying an outlier caused by human error.

 3. Association mining: Identifying set of items that frequently occur in the
dataset such as basket analysis in which the objective is to determine which
items are being purchased together for developing effective marketing and
merchandising strategies.

 4. Dimensionality reduction: Commonly used for data preprocessing tech-
nique such as reducing the number of features or decomposing the dataset
into multiple subsets.

 5. Genomics: To understand the genomic- wide biological insights from DNA
to better understand diseases and people.

 6. Knowledge extraction: To extract taxonomies of concepts from raw text to
generate knowledge graphs.

http://dx.doi.org/10.1201/9781003278177-5

98 What Every Engineer Should Know About Data-Driven Analytics

 7. Segmentation of customers: In the marketing or banking domain to group
similar customers to develop strategies for advertising different products
tailored to their needs.

In this chapter, the following topics will be covered to illustrate the potential of unsu-
pervised learning techniques:

 • K- means clustering.
 • Hierarchical clustering.
 • Association rule mining.
 • K- Nearest Neighbor (KNN).

Later in this chapter, we will show how the K- Nearest Neighbor (KNN) algorithm,
which is a clustering algorithm, can be tailored for its application in supervised
learning.

K-MEANS CLUSTERING

K- means is an unsupervised classification technique. It is an iterative process of
moving the centers of clusters or centroids to the mean position of their constituent
points, and reassigning instances to their closest clusters in an iterative manner until
there is no significant change in the number of cluster centers possible or the number
of iterations reached [1–3].

The Euclidean distance (square- norm) is the cost function for the k- means cluster-
ing. It is determined by computing the Euclidean distance (see Sidebar 1) between
the observations belonging to that cluster with its respective centroid value [1–3].

For example, if there is only one cluster (k = 1), then the distances between all
the observations are compared with its single mean. Now, if the number of clusters
is 2 (k = 2), then two means are calculated and a few of the observations are
assigned to one cluster (if they are close to this cluster’s centroid value) and the
remaining observations are assigned to the second cluster based on the proximity
computed using the Euclidean distance. Distances are calculated in cost functions
by applying the same distance measure, but separately to their cluster centers and
is given as [1–3]

k

k

i c

i k

k

x
� �
�� �

1

2�

K- means is an iterative process of clustering which means that we have to figure
out when to stop. There are essentially three stopping criteria that can be adopted.
The criteria to stop are if any of the following are satisfied [1–3]:

 1. When the centroids of the newly formed clusters do not change.
 2. If all the instances (data points) remain in the same cluster.
 3. A predetermined number of iterations has reached.

Unsupervised Learning 99

Even after multiple iterations, if the centroids for all the clusters remain the same and
the instances remain in the same cluster, we can say that the algorithm is not learning
any new pattern and it has converged [1–3].

To illustrate the k- means algorithm we will explore segmentation in a customer
dataset that can be obtained from this link http://goo.gl/qw303p. The goal of segmen-
tation here is to identify groups of customers that differ from each other in important
ways such as with respect to product interest, market participation, and so forth. By
understanding the differences among these groups, a strategist can make plans to
engage with the groups for effective promotion. The segmentation efforts involve
discovering groups in data in order to derive new insights and understand the needs
of the particular groups of customers. Therefore, the segmentation can be viewed as
a clustering problem [1].

Before we begin clustering let’s look at the dataset. The variables in this dataset
are the respondent’s age, gender, household income, number of kids, home owner-
ship, subscription status, and the assigned segment memberships. Now, let’s perform
clustering on this dataset using R [1].

Let us explore the segmentation data using R
Read the segmentation data
data_seg <- read.csv("http://goo.gl/qw303p")
Keep a copy of the raw data
raw_seg <- data_seg
Now remove the segmentation information
data_seg <- data_seg[,-7]
Convert all the categorical variables to factor
data_seg$gender <- as.factor(data_seg$gender)
data_seg$ownHome <- as.factor(data_seg$ownHome)
data_seg$subscribe <- as.factor(data_seg$subscribe)
Generate data summary
summary(data_seg)

Upon executing the code, you should see the summary of the dataset similar to
Figure 5.1. The segmentation information (segment) in this dataset has been removed,
since we don’t need it for determining the segments of the customers. In fact, the
variable segment is a response variable that is categorical in nature and is what we
are interested in determining. Segment has four categories namely “Moving up,”
“Suburb mix,” “Travelers,” and “Urban hip” (see geodemographic groups Sidebar 3).
Therefore, here we have a rough idea that there are four different groups of custom-
ers, and so we need to cluster the entire dataset into four clusters.

FIGURE 5.1 Summary of the segmentation dataset.

http://goo.gl
http://goo.gl

100 What Every Engineer Should Know About Data-Driven Analytics

The categorical predictor variables including the gender, ownHome, and Subscribe
have been converted to factors for further analysis [1].

Since the k- means clustering uses the Euclidean distance as the cost function and
works only on numeric data, we need to convert the categorical variables into binary
factors, as they can be further coerced to numeric with no alteration of meaning [1].

Now let’s duplicate the dataset and convert all the
categorical (binary) variables to numeric # variables

First duplicate the dataset
data_seg_num <- data_seg
use the ifelse to coerced binary to numeric
data_seg_num$gender <- ifelse(data_seg_num$gender=="Male",

0, 1)
data_seg_num$ownHome <- ifelse(data_seg_num$ownHome=="ownNo",

0, 1)
data_seg_num$subscribe <- ifelse(data_seg_

num$subscribe=="subNo", 0, 1)
show the summary
summary(data_seg_num)

Upon executing the code, you should be able to see the summary of the transformed
dataset as shown in Figure 5.2.

Now we’ll perform the k- means clustering to generate 4 (k = 4) clusters. When we
don’t know how many clusters to obtain on a dataset, then methods discussed in
Sidebar 2 should be employed to determine the optimal number of clusters.

set seed for repeatability
set.seed(90000)
Now perform k- means with k=4
seg_k <- kmeans(data_seg_num, centers=4)
Obtain the summary of the segmented group
seg.summ <- function(data, groups) {
 aggregate(data, list(groups), function(x) mean(as.

numeric(x)))
 }
now visualize the groups
seg.summ(data_seg_num, seg_k$cluster)
Create a boxplot to see how the income of the clustered

groups vary against each other
boxplot(data_seg_num$income ~ Seg_k$cluster, ylab="Income",

xlab="Cluster")

FIGURE 5.2 Updated summary of the segmentation dataset.

Unsupervised Learning 101

Based on the predictors age and income we can say that the customers in group 4
are relatively young and earn less compared to customers in group 2 who are rela-
tively older and earn more compared to customers in group 1 and group 3. Also, there
is a significant difference in the income of customers in group 4 when compared to
the other groups (see Figure 5.3 and Figure 5.4) [1]. From the boxplot in Figure 5.4
one can clearly infer that there is a substantial difference in income by segment.

Now we’ll compare the characteristics of the clustered group against the charac-
teristics of the original segmentation in the dataset to determine how similar they are.
In the original dataset we note that the Travelers group has a mean age of 57.87, the
Moving up and the Suburb mix groups both have the mean age in the upper 30s and
the Urban hip group has the mean age of 23.88. Also, note that there is a significant
difference in the mean income of the Travelers group and the Urban hip group, i.e.,
~62,000 vs. ~21,000. In addition to that, we can also infer that the Travelers group
has no kids. Thus, we can say that there is a significant difference between the differ-
ent groups in the original segmentation dataset (see Figure 5.5). From Figure 5.3, it
is highly evident that the cluster 2 is the Travelers group and the cluster 4 is the
Urban hip group. This leaves clusters 3 and 1. Upon matching the characteristics

FIGURE 5.3 Summary of the k-means clustered group with k = 4.

FIGURE 5.4 Boxplot demonstrating the variation in income of the clustered group.

102 What Every Engineer Should Know About Data-Driven Analytics

displayed in Figures 5.3 and 5.5, it can be easily guessed that the cluster 3 is the
Suburb mix group which means that the cluster 1 is the Moving up group [1].

Now let’s perform a clusterplot to determine how much variability in this dataset
is being explained by the clustering method and how different are the characteristics
of the clustered group. A clusterplot is used to perform dimensionality reduction
with principal components or multidimensional scaling and plot the observations
with cluster membership that has been identified [1].

Construct the clusterplot() after loading the cluster package
library(cluster)
clusplot(data_seg_num, seg_k$cluster, color=TRUE, shade=TRUE,

labels=4, lines=0, main="K- means cluster plot")

From the clusterplot (see Figure 5.6), we note that the first two principal components
can explain only about 48.5% of the variability in the dataset. Cluster 3 (Suburb
mix) and cluster 4 (Urban hip) are largely overlapping. Cluster 1 (Moving up) and 2
(Travelers) are modestly differentiated [1].

FIGURE 5.5 Characteristics of the segmented groups in the original dataset.

FIGURE 5.6 Clusterplot explaining the characteristics of the clustered groups.

Unsupervised Learning 103

Therefore, the following inferences can be made from this k- means clustering
exercise [1, 2]:

 1. The Travelers segment is modestly well differentiated and has the highest
average income. That might make it a good target for potential campaign.

 2. A limitation of the k- means analysis is that it requires specifying the num-
ber of clusters which can be very difficult to specify unless the information
is known ahead of time.

 3. If we were to use k- means for the present problem, we would repeat the
analysis for k = 3, 4, 5, and so forth, and determine which solution gives the
most useful result for the business goals. However, there are ways to deter-
mine the optimal number of clusters for a given dataset which is further
discussed in Sidebar 2.

HIERARCHICAL CLUSTERING

Now let’s explore the customer segmentation dataset using another well- known clus-
tering technique called hierarchical clustering. A hierarchical clustering algorithm
works via grouping data into a tree of clusters. This method begins by treating every
data point as a separate cluster. Then the algorithm repeatedly performs the follow-
ing steps [1]:

 1. identify any two clusters that are closer to each other, and
 2. merge them in to one cluster.

Both these steps need to be continued until all the clusters have been merged together [1].
Hierarchal clustering or hclust is a distance- based algorithm that operates on a

dissimilarity matrix. The dissimilarity matrix has a N N× dimension that reports the
distance between each pair of observations [1]. Here the metric used for determining
the distance between the pair of observations is the Euclidian distance discussed in
Sidebar 1.

In hierarchical clustering the goal is to produce a hierarchical tree of clusters
nested together. This tree is also called a dendrogram. A dendrogram has the poten-
tial to describe the order in which the clusters were merged or spliced. This process
of repeatedly joining observations and grouping them is known as an agglomerative
method. The agglomerative hierarchical clustering works as follows [1]:

 1. First calculate the similarity of one cluster with all the other clusters.
Remember here that each observation (data point) in the dataset is a cluster
by itself to begin with.

 2. Merge the clusters that are highly similar or close to each other.
 3. Recalculate the proximity matrix for each cluster.
 4. Repeat steps 2 and 3 until only a single cluster remains.

There is also a divisive hierarchical clustering method, which is precisely the opposite
of the agglomerative hierarchical clustering. In the divisive hierarchical clustering,

104 What Every Engineer Should Know About Data-Driven Analytics

all the observations are considered as part of a single cluster and in each iteration, the
observations are separated from the cluster which aren’t comparable. This is repeated
until all the observations taken together become a cluster [1, 2].

Here, we will perform an agglomerative hierarchical clustering on the previously
introduced segmentation dataset. A limitation of the hierarchical clustering technique
is that the metric Euclidean distance is only defined when the observations are
numeric. So, we need to deal with the categorical variables in the segmentation data-
set. Remember that there is no way to determine if the predictor is relevant or not for
the purpose of clustering. Therefore, we will have to use all the predictors for cluster-
ing purposes [1].

In order to perform hierarchical clustering, execute the following R script [1]

Load the cluster library
library(cluster)
Use the daisy function to rescale the values of all the

attributes
seg_dist <- daisy(data_seg)
Now perform hclust() on the dataset using the complete

linkage method
seg_hc <- hclust(seg_dist, method="complete")
plot the hierarchical tree or the cluster dendrogram
plot(seg_hc)

The daisy() function within the cluster package is used to work with mixed data types
by rescaling their values. The hclust() function from the cluster package can be used
in R to perform hierarchical clustering. While performing clustering the complete
linkage method is adopted which evaluates the distance between every member when
combining observations and groups [1]. This is an alternative of the Euclidean dis-
tance method. The obtained dendrogram is shown in Figure 5.7.

A dendrogram is interpreted primarily by its height and where the observations
are joined. The height represents the dissimilarity between observations that were
joined. At the lowest level of the dendrogram tree we see that there are about 2–10
relatively similar observations that are combined, and then those small clusters are
successively combined with less similar clusters moving up the tree. It is important
here to note that the horizontal ordering of branches is not that important; branches
could exchange places with no change in the interpretation [1].

Let’s cut the dendrogram tree to clearly visualize how observations have been
combined to form clusters using the following R code [1]:

Let us take a closer look – Cut the tree at the height of 0.5
plot(cut(as.dendrogram(seg_hc), h=0.5)$lower[[1]])
Similar instances – Instance 101 and 107 looks very similar
data_seg[c(101, 107),]

Upon executing the code, we obtain the tree shown in Figure 5.8. Here we can see
closer detail of the clustering, for example, we can see that customer 101 and 107
have been clustered together [1].

Unsupervised Learning 105

FIGURE 5.7 Dendrogram obtained on the segmentation dataset.

FIGURE 5.8 Dendrogram tree cut at height of 0.5.

106 What Every Engineer Should Know About Data-Driven Analytics

Why where they clustered? To see why let’s look at the data for these two custom-
ers (Figure 5.9).

Here we can see that both the customers are male, are close in age (about 24), have
similar incomes (about 18K), have one child, and do not own a home. Thus, with
respect to these attributes, both the customers are almost the same [1].

The cophenetic correlation is a statistic that measures how closely a dendrogram
preserves the pairwise distances between the original unmodeled data points. A
cophenetic correlation of higher than 0.768 suggests that the clustering output is good.
Cophenetic correlation value of models close to 1 are considered better (see Sidebar
4) [1]. R provides a function to calculate it and we set that up in the following code:

Check the goodness of fit
cor(cophenetic(seg_hc), seg_dist)

Infer the groups in the segmentation data
A dendrogram can be cut into clusters at any height desired,

resulting in different groups.
plot(seg_hc)
rect.hclust(seg_hc, k=4, border="red")

Determine the characteristics of the Group membership
seg_hc_segment <- cutree(seg_hc, k=4) # membership vector for

4 groups
table(seg_hc_segment)

See the summary of each group
seg.summ(data_seg, seg_hc_segment)

Figure 5.10 shows the 4 clusters that have been obtained by cutting the dendro-
gram at a desirable height.

From the summary of the four clusters, we can derive the following observations
(see Figure 5.11)

 1. Clusters 1 and 2 are distinct from clusters 3 and 4 due to the subscription status.
 2. Among those who do not subscribe, cluster 1 is all male (gender = 2) while

cluster 2 is all female.
 3. Subscribers are differentiated into those who own a home (cluster 3) or not

(cluster 4).

Next, we will discuss about another well- known unsupervised learning technique.

FIGURE 5.9 Characteristics of the customers 101 and 107.

Unsupervised Learning 107

ASSOCIATION RULE MINING

Association rule mining is a data mining technique that has the purpose of find-
ing the optimal combination of products or services that allows service providers to
exploit this knowledge to provide recommendations, optimize product placement, or
develop programs that take advantage of cross- selling. In short, the idea is to identify
which products pair well. Association rule making is among the first “classical” data
mining techniques introduced in the early 1990s. Many tools to implement these
techniques were soon introduced, revolutionizing the marketing techniques used by
product manufacturers, stores, and service providers [1, 2, 4].

Consider the following example, suppose an analysis of traveler behavior deter-
mines that if a customer buys an airplane ticket, then there is a 50% probability that
they will also book a hotel room, and if they go on to book a hotel room, then there
is a 30% probability that they will rent a car. From these statistics it would be natural

FIGURE 5.10 Dendrogram tree cut at a height in order to create 4 clusters.

FIGURE 5.11 Characteristics of the segmented groups as determined by hierarchical clus-
tering [1].

108 What Every Engineer Should Know About Data-Driven Analytics

to conclude that the booking of hotel room and renting of car goes together with
purchasing an airline ticket much of the time. But how were the behavioral probabili-
ties determined? Before we discuss the association rule mining we’ll introduce some
terms that are used frequently in this context [1, 2, 4].

 • Itemset: This is a collection of one or more items in the dataset.
 • Support: This is the proportion of the transactions in the data that contains

an itemset of interest. Mathematically, for a rule of type X Y→ , the support

is given as
P X Y

N

�� �
 where N is the total number of transactions in the

dataset.
 • Confidence: This is the conditional probability that if a person purchases

or does x, they will purchase or do y; the act of doing x is referred to as the
antecedent or Left- Hand Side (LHS), and y is the consequence or Right-
Hand Side (RHS). Mathematically, for a rule of type X Y→ , the confidence

is given as
P X Y

N

N

P X

P X Y

P X

�� �
�

� �
�

�� �
� �

 • Lift: This is the ratio of the support of x occurring together with y divided by
the probability that x and y occur if they are independent. It is the probabil-
ity of x intersection y divided by the probability of x times the probability
of y; for example, say that we have the probability of x and y occurring
together as 10% and the probability of x is 20% and y is 30%, then the lift
would be 1.67. Mathematically, for a rule of type X Y→ , the lift is given as

�
�� �

� �� � �
P X Y

P X P Y

Let’s consider an example to illustrate these concepts. In Figure 5.12 we see 5 shop-
ping carts each containing 3 out of 5 items, namely A B C D E, , , ,and [4].

Let us consider few rules and determine the support, confidence, and lift of the
respective rules (see Table 5.1) [4].

Now let’s discuss the apriori algorithm, which we will be using to perform asso-
ciation rule mining on the grocery cart dataset. With apriori, the principle is that, if
an itemset is frequent, then all its subsets must also be frequent. A minimum fre-
quency (support) is determined prior to executing the algorithm, and once estab-
lished, the algorithm will run as described in Table 5.2 [1, 2, 4].

FIGURE 5.12 5 shopping carts each containing 3 items. (Source: Figure adapted from Li, S.
(2017). “A gentle introduction on Market Basket Analysis - Association Rules,” retrieved from
https://towardsdatascience.com/a- gentle- introduction- on- market- basket- analysis- association-
rules- fa4b986a40ce, retrieved on September 15, 2022.)

Unsupervised Learning 109

Once the ordered summary of most frequent itemsets has been obtained, the anal-
ysis process can continue by examining the confidence and lift in order to identify the
associations of interest [1, 2, 4].

Here we will explore the grocery dataset using the apriori algorithm. This dataset
consists of transactions over a 30- day period from a real- world grocery store and
consists of 9,835 different purchases with items aggregated to 169 categories [1].

In R, the arules package has an implementation of the apriori algorithm. The
arules package can be used for mining association rules and discovering frequent
itemset. Before performing the association rule mining, though, the packages namely
arules and arulesViz should be installed. We use the following R code [1]:

Install the required packages

install.packages("arules")
install.packages("arulesViz")
Load the Groceries dataset
library(arules)
library(arulesViz)
data(Groceries)
Get the first 5 transactions from the dataset
inspect(Groceries[1:5])

After running the code the first 5 transactions from the groceries dataset are shown
in Figure 5.13.

TABLE 5.1
Support, Confidence, and Lift of the Given Rules

Rule Support Confidence Lift

A D→ P A D

N

�� �
�

2
5

P A D

P A

�� �
� � �

2
3

P A D

P A P D

�� �
� �� � � �

10
9

C A→ P C A

N

�� �
�

2
5

P C A

P C

�� �
� � �

2
4

P C A

P C P A

�� �
� �� � � �

5
6

A C→ P A C

N

�� �
�

2
5

P A C

P A

�� �
� � �

2
3

P A C

P A P C

�� �
� �� � � �

5
6

B C D, → P B C D

N

, �� �
�

1
5

P B C D

P B C

,

,

�� �
� � �

1
3

P B C D

P B C P D

.

,

�� �
� �� � � �

5
9

TABLE 5.2
Apriori Algorithm

Let k = 1 (the number of items)
Generate itemset of a length that are equal to or greater than the specified support
Iterate k + (1…n), pruning those that are infrequent (less than the support)
Stop the iteration when no new frequent itemset are identified

110 What Every Engineer Should Know About Data-Driven Analytics

Now let’s execute the apriori algorithm with a support of 0.001 and a confidence
of 0.9 using the following R code [1].

Now model the dataset
rules <- apriori(Groceries, parameter = list(supp = 0.001,

conf = 0.9, maxlen=4))
#How many rules do I have?
rules
show values up to 2 decimal places
options(digits = 2)
Sort rules by lift
rules <- sort(rules, by = "lift", decreasing = TRUE)
inspect(rules[1:5])

Upon execution we obtain a total of 67 rules have with a max length of 4, i.e., the
total number of items in a rule is 4. Figure 5.14 lists the first 5 rules after sorting all
the 67 rules by the decreasing order of the lift [1].

We can see that customers who buy liquor and red/blush wine also buy bottled
beer (see the first rule in Figure 5.13). This rule has a high lift (11.23) and also high
confidence (90.4%). A lift greater than 1 means that there is a strong association
between X (LHS) and Y (RHS) for the given rule X Y→ . All the rules in Figure 5.13
have a strong association between the LHS and RHS [1].

Next, we will focus our discussion on the KNN algorithm and its application.

FIGURE 5.13 Transactions of items in the groceries dataset.

FIGURE 5.14 Top 5 Apriori rules sorted by the decreasing order of lift.

Unsupervised Learning 111

K-NEAREST NEIGHBORS

The K- nearest neighbors (KNN) is considered both an unsupervised and a supervised
learning algorithm. KNN can be used for performing both regression and classifi-
cation. The KNN tries to predict the class (classification) for the test instances by
calculating the distance between the test instance and all the training instances. Once
the distance is computed it selects the K number of points which is close to the test
instance [2, 5–7].

The KNN algorithm calculates the probability of the test instance belonging to the
classes of “K” training instances and the class that holds the highest probability will
be selected. In the case of regression, the value is the mean of the “K” selected train-
ing points [2, 5–7].

Implementation of KNN can be explained using the following steps [2, 5–7]:

 1. Select the number of neighbors, i.e., the number k.
 2. Calculate the Euclidean distance of k number of neighbors from the test

instance that needs to be classified.
 3. Take the k nearest neighbors as per the calculated Euclidean distance.
 4. Among these k neighbors, count the number of the data instances in each

category.
 5. Assign the new data instance to that category for which the number of the

neighbors is maximum.

The performance of the KNN algorithm depends on the chosen value of k. A small
value of k should be avoided when using the KNN for classification purpose. One
way of determining an optimal value of k is considering k N= where N is the total
number of instances in the sample [2, 5–7].

Let’s consider a simple example to illustrate the KNN algorithm. A tissue paper is
classified either as good or bad based on two attributes namely the acid durability
and strength as shown in Table 5.3 [6].

In this dataset we would like to determine the classification (class) of the tissue
paper with the acid durability = 3 and strength = 7. Here we will consider K = 3 [6].

Using the Euclidean distance, we compute the distance of the test data point (acid
durability = 3 and strength = 7) from the other data points described in Table 5.3 (see
Table 5.4) [6].

Now let’s determine the 3- nearest neighbors of the test data point (see Table 5.5).

TABLE 5.3
Example Dataset to Demonstrate the KNN Algorithm

Acid Durability Strength Class

7 7 Bad
7 4 Bad
3 4 Good
1 4 Good
3 7 ?

112 What Every Engineer Should Know About Data-Driven Analytics

From Table 5.5 it can be inferred that the test data point is closest to data points
(acid durability = 7 and strength = 4), (acid durability = 3 and strength = 4), and
(acid durability = 1 and strength = 4) which are classified as bad, good, and good,
respectively, since the majority of the closest neighbors of the test data points are
classified as good. The tissue paper with acid durability = 3 and strength = 7 (the test
data point) can be classified as good quality paper [6].

Now that we have a good understanding of the KNN algorithm let’s classify the
instances of the Iris dataset using the KNN algorithm.

The steps listed below (including the R script) can be followed to perform the
KNN clustering. In order to perform KNN we will use the implementation of
KNN in the class library of R. To begin, obtain the Iris dataset. Iris is the best-
known dataset to be found in the pattern recognition literature. This dataset con-
tains 3 classes of 50 instances each for types of plants namely the Iris Setosa, the
Iris Versicolour, and the Iris Virginica. The predictors in this dataset are the sepal
length, sepal width, petal length, and petal width. In total, this dataset has 150
instances [2, 7].

TABLE 5.4
Euclidean Distance of Data Points from the Test Data Point

Acid Durability Strength Class Distance

7 7 Bad 7 3 7 7
2 2

�� � � �� � = 4

7 4 Bad 7 3 4 7
2 2

�� � � �� � = 3

3 4 Good 3 3 4 7
2 2

�� � � �� � = 3

1 4 Good 1 3 4 7
2 2

�� � � �� � = 3 60.

3 7 ?

TABLE 5.5
3-Nearest Neighbors of the Test Data Point

Acid Durability Strength Class Distance 3- Nearest Neighbor

7 7 Bad 7 3 7 7
2 2

�� � � �� � = 4 NO

7 4 Bad 7 3 4 7
2 2

�� � � �� � = 3 YES

3 4 Good 3 3 4 7
2 2

�� � � �� � = 3 YES

1 4 Good 1 3 4 7
2 2

�� � � �� � = 3 60. YES

3 7 ?

Unsupervised Learning 113

Import the library class
library(class)
Obtain the Iris dataset
data(iris)

normalize the dataset
normalize <- function(x){
 return ((x- min(x))/(max(x)-min(x)))
}
iris.new<- as.data.frame(lapply(iris[,c(1,2,3,4)],normalize))
head(iris.new)

subset the dataset
iris.train<- iris.new[1:130,]
iris.train.target<- iris[1:130,5]
iris.test<- iris.new[131:150,]
iris.test.target<- iris[131:150,5]

The next step is to normalize or scale all the four predictors in the Iris dataset. After
normalization the dataset is split in to train and test dataset. The first 130 instances in the
dataset are used to train the KNN classifier and the remaining 20 instances are considered
as test instances which will be classified using the KNN classifier. All the 20 instances
belong to the Iris Virginica class. With this knowledge it will be interesting to see how
many instances are correctly classified by the KNN algorithm [2, 7]. To perform KNN
we will have to construct a model called model1 as shown in the following R code [2, 7]:

model1<- knn(train=iris.train, test=iris.test, cl=iris.train.
target, k=10)

Now let us see how many instances are correctly predicted
table(iris.test.target, model1)

From Figure 5.15 it can be inferred that 18 out of 20 instances were correctly pre-
dicted as Iris Virginica.

SUMMARY

The focus of this chapter was to introduce the readers to the concept of unsupervised
learning. This chapter introduces different unsupervised learning techniques includ-
ing the k- means clustering, hierarchical clustering, association rule mining, and the
k Nearest Neighbors. Through simulated and real- world examples, it has been dem-
onstrated how these machine learning techniques can discover the hidden patterns or
structures from a dataset without any reference. However, it should be remembered
that the outcomes are subjective and there is no way to validate the results. In the next
chapter we will discuss about the supervised learning techniques.

FIGURE 5.15 Classification output of the KNN algorithm on the Iris test dataset.

114 What Every Engineer Should Know About Data-Driven Analytics

SIDEBAR 1 CLUSTERING DISTANCE MEASURES
To classify the observations into groups there is a need for computing the
distance or the (dis)similarity between each pair of observations. There are
many methods to calculate this distance information. Therefore, the choice of
distance measures is a critical step in clustering.

The classical methods for measuring distances are Euclidean and
Manhattan distances, which are defined as follow [2]:

Euclidean distance:

d x y x y
i

n

i ieuc ,� � � �� �
�
�

1

2

Manhattan distance:

d x y x y
i

n

i iman ,� � � �� �
�
�

1

SIDEBAR 2 ELBOW CURVE METHOD AND SILHOUETTE
ANALYSIS
To determine the optimal number of clusters the following techniques are be
exploited [1, 2].
Elbow Curve Method—First perform K- means clustering with different values
of K. Second, for each of the K values, one should calculate the average dis-
tance of all data points to the centroid. Finally, plot all these points and find
the point where the average distance from the centroid falls suddenly.

Silhouette Analysis—This is a measure of how similar a data point is within-
cluster (cohesion) compared to other clusters (separation). The equation for
calculating the silhouette coefficient for a particular data point is given as

S i
b i a i

a i b i
� � � � � � � �

� � � �� �max ,

where,
S i� � is the silhouette coefficient of the data point i.
a i� � is the average distance between i and all the other data points in the

cluster to which i belongs.
b i� � is the average distance from i to all clusters to which i does not belong.
The average silhouette is then calculated as mean S i� �� �.

Unsupervised Learning 115

SIDEBAR 3 GEODEMOGRAPHIC SEGMENTATION
Geodemographic Segmentation refers to certain techniques for characterizing
neighborhoods based on the assumption that people who live close by have
similar demographic, socioeconomic, and lifestyle traits. Census data along
with other public record information such as property values and taxes, voting
results, and court records are also used. K- means and other clustering algo-
rithms (such as fuzzy clustering) are typically used to create the segments The
created segments are often given colorful and evocative names. For example,
from the previously discussed market clustering case, “Moving up,” might
describe upwardly mobile younger people, “Suburb mix,” a heterogeneous
community of various ages and professions, “Travelers,” persons who tend
not to stay in the same place for long and “Urban hip,” younger city dwellers.
Obviously these groups all have very different needs and desires, spending
ability, and so on.

Geodemographic segmentation revolutionized marketing when it was
introduced in the early 1980s. Aside from marketing geodemographic seg-
mentation is used for political campaigning, public health planning and trac-
ing, policing, and more.

To see geodemographic segmentation up close try typing a zip
code into the following mapping tool https://claritas360.claritas.com/
mybestsegments/#zipLookup. Try your own zip code and consider if this tool
is accurate in your case. There are many such commercial implementations of
geodemographic segmentation used by marketing professionals, urban plan-
ners, public health officials, and more, all over the world.

SIDEBAR 4 COPHENETIC CORRELATION COEFFICIENT
It is a measure of how accurately and reliably a dendrogram preserves the
pairwise distance between the original unmodeled data points. Let us sup-
pose that the original data points Xi� � have been modeled using a clustering
method to produce a dendrogram Ti� �, i.e., a simplified model in which data
that are close have been grouped into a hierarchical tree. Now let us define
the following distance measures [1, 2, 8].

The Euclidean distance between the ith and jth observations given as
x i j x xi j,� � � �

The dendrogrammatic distance between the model points Ti and Tj , i.e., the
distance or the height of the node at which these two points are first joined
together given as t i j,� �

https://claritas360.claritas.com
https://claritas360.claritas.com

116 What Every Engineer Should Know About Data-Driven Analytics

EXERCISE

1. Download the segmentation dataset (discussed in lesson 5) and extract a random
sample containing 80% of the instances from this dataset. First, summarize this
dataset. Second, on this dataset use any ONE unsupervised (clustering) tech-
nique and discuss about the outcome of the analysis. Clearly define your objec-
tives/research goals, issues in the dataset, any cleaning performed on the dataset
(scaling, transformation, removing outliers, imputing missing values, removal
of duplicate records, normalization, etc.), document all the steps performed, and
clearly highlight what inferences you can make or business solutions can be
provided based on your strategies and outcomes.

2. Cluster the following five points (with (x, y) representing locations in a 2D
plane) into two clusters:
A1(5, 8), A2(7, 5), A3(6, 4), A4(1,2), A5(4, 9)
Note: Use the Euclidian distance as the distance measure

3. Using the k- means clustering algorithm perform multivariate outlier detection
on the 50% of the instances randomly chosen from the Iris dataset. Clearly list
all the identified outliers. Provide the R/Python script used for performing the
multivariate outlier detection and clearly state all your assumptions.

4. What is the difference between the Euclidean distance and the Manhattan distance
measurement? By using an example clearly show when you would use one type of
distance measurement technique versus another. For calculation purpose you can
use the calculator. Consider a small dataset (5 data points) for illustration purposes.

5. Consider the Market basket transactions provided below.

Transaction ID Items Bought

1 {Milk, Beer, Diapers}
2 {Bread, Butter, Milk}
3 {Milk, Diapers, Cookies}
4 {Bread, Butter, Cookies}

If x is the average of the x i j,� � and if t is the average of the t i j,� � then the
cophenetic correlation coefficient c is given as

c
x i j x t i j t

x i j x t i j

i j

i j i j

�
� � ��� �� � � ��� ��

� � ��� �� � � �
�

� �

�
� �

, ,

, ,
2

tt�� ��
2

If c = 1 then it implies that the dendrogram accurately preserves the pairwise
distance between the original data points [1, 2, 8].

Unsupervised Learning 117

Transaction ID Items Bought

5 {Beer, Cookies, Diapers}
6 {Milk, Diapers, Bread, Butter}
7 {Bread, Butter, Diapers}
8 {Beer, Diapers}
9 {Milk, Diapers, Bread, Butter}
10 {Beer, Cookies}

Using the Apriori algorithm provide your solutions for the following
 A. What is the maximum number of size- 3 itemset that can be derived from

this data set?
 B. Find an itemset (of size 2 or larger) that has the largest support
 C. Find a pair of items, a and b, such that the rules {a} −→ {b} and {b} −→

{a} have the same confidence
 D. Find an itemset (of size 2 or larger) that has the largest lift

6. Using the hierarchical clustering algorithm perform multivariate outlier detec-
tion on the mtcars dataset. Clearly list all the identified (car types) outliers.
Provide the R/Python script used for performing the multivariate outlier detec-
tion and clearly state all your assumptions.

7. Using the KNN algorithm perform multivariate outlier detection on the mtcars
dataset and compare the results with the outliers detected using the hierarchical
clustering algorithm in question 6. Do you see any difference in the output of the
two algorithms?

8. You have built an algorithm that is used to separate data into two groups. During
the analysis, you have discovered that, actually, data needs to be separated in to
four groups. Which of the following algorithms can be used without modifica-
tion to support for the change in the specification of the problem? (Only one of
the following options is correct)
 A. Associative classification
 B. Hierarchical cluster analysis
 C. Sequence analysis
 D. K- means cluster analysis
 E. K- medoids cluster analysis

9. Which of the following is true about agglomerative hierarchical clustering
algorithms?
 A. They can be applied only to numerical data
 B. Always merge the pair of clusters that are the closest to each other
 C. They will revisit data points which have been assigned to clusters
 D. They are a special case of the k- means clustering algorithms

118 What Every Engineer Should Know About Data-Driven Analytics

10. Which of the following is true about the k- means algorithm? Please choose all
the options that apply.
 A. Is typically done in Excel or similar software
 B. Can converge to different final clusterings, depending on initial choice of

representatives
 C. It is difficult to implement due to multiple special cases
 D. It always converges to a clustering that minimizes the mean- square vector-

representative distance

REFERENCES

 1. Chapman, C., Feit, E. M. (2015). R for Marketing Research and Analytics, Springer,
ISBN 978- 3- 319- 14436- 8.

 2. Dangeti, P. (2017). Statistics for Machine Learning. Packt Publishing Ltd., ISBN
978- 1- 78829- 575- 8.

 3. Boehmke, B. (n.d.). “K- means Clustering Analysis”, retrieved from https://uc- r.github.
io/kmeans_clustering, retrieved on May 1, 2022.

 4. Li, S. (2017). “A Gentle Introduction on Market Basket Analysis- Association Rules”,
retrieved from https://towardsdatascience.com/a- gentle- introduction- on- market- basket-
analysis- association- rules- fa4b986a40ce, retrieved on September 15, 2022.

 5. Christopher, A. (2021). “K- Nearest Neighbor”, retrieved from https://medium.com/
swlh/k- nearest- neighbor- ca2593d7a3c4, retrieved on May 1, 2022.

 6. Teknomo, K. (n.d.). “K- Nearest Neighbors Tutorial”, retrieved from https://people.
revoledu.com/kardi/tutorial/KNN/KNN_Numerical- example.html, retrieved on May 1,
2022.

 7. Nitika. (2017). “KNN Classification Demo”, retrieved from https://rpubs.com/Nitika/
kNN_Iris, retrieved on May 1, 2022.

 8. “Cophenetic correlation.” Wikipedia, Wikimedia Foundation, 10 September 2021,
retrieved from https://en.wikipedia.org/wiki/Cophenetic_correlation.

https://uc-r.github.io
https://uc-r.github.io
https://towardsdatascience.com
https://towardsdatascience.com
https://medium.com
https://medium.com
https://people.revoledu.com
https://people.revoledu.com
https://rpubs.com
https://rpubs.com
https://en.wikipedia.org

119DOI: 10.1201/9781003278177-6

Supervised Learning6
The previous chapter discussed unsupervised learning. This chapter is a formal intro-
duction to supervised learning. Supervised learning or supervised machine learn-
ing is a subcategory of machine learning (ML) and artificial intelligence (AI). In
supervised learning a labeled dataset is used to train the algorithms to classify and to
predict the outcomes of unlabeled instances. Based on the input data the parameters
of the model get adjusted until the fit is appropriate, which occurs as part of the cross-
validation process.

Supervised learning helps organization to solve a variety of real- world problems
that require classification. In this chapter, we will discuss four important classifica-
tion algorithms, namely, Artificial Neural Networks, Random Forest, AdaBoost, and
eXtreme Gradient Boosting.

INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS

The Artificial Neural Network (ANN) classifier models the relationship between a
set of input and output signals using an interconnected network of artificial neurons
(or nodes). The structure and functionality of the artificial neurons were discussed
in Chapter 2. In short, each neuron of the ANN has a set of inputs, each of which is
given a specific weight. These neurons compute a function on the weighted inputs.
Based upon the function type (sigmoid, tanh, ReLU, etc.) the neurons determine an
output signal which is the function of a combination of the weighted inputs [1, 2].

A neuron with n inputs, i.e., x x x xn1 2 3, , , ,… with the weights for each input given as
w w w wn1 2 3, , , ,… , contributes a greater or lesser amount to the sum of input signals
given as � �i

n
i iw x1 . Therefore, the output signal y x� � when passed through the activa-

tion function f is given as y x f w xi
n

i i� � � �� ��1 [1, 2]. For a further discussion of the
history of artificial neural network, the precursor to all neural networks, see Sidebar 1.

Now let’s discuss the parameters required for building the ANN model. These
parameters are [1–3]:

Activation function: This function plays a major role in aggregating the input
signals into an output signal that is propagated to the other neurons in the
network. Activation functions were discussed in detail in Chapter 2.

Network architecture: The network architecture deals with the number of
layers and the number of neurons in each layer. The greater the number of
layers and neurons in the network, the larger the non- linear decision bound-
ary. On the other hand, the fewer the number of layers and neurons, the less
flexible but more robust is the model.

Optimization algorithm for training: The optimization algorithm plays a
critical role in determining how quickly and accurately the convergence will
take place to the best optimal solutions.

http://dx.doi.org/10.1201/9781003278177-6

120 What Every Engineer Should Know About Data-Driven Analytics

Here, we’ll discuss about the forward and back propagation method of calculating
the gradient of neural network parameters for a two hidden layer neural networks,
i.e., a Multi- Layer Perceptron (MLP) thus laying the foundation for deep neural net-
works (DNN) that will be discussed in detail in Chapter 8.

FORWARD AND BACKWARD PROPAGATION METHODS

In an ANN the number of neurons in the input layer is based on the number of
independent or input variables, whereas the number of neurons in the output layer
depends on the number of classes that the model needs to predict. In the MLP, we
assume that there are three neurons in both the hidden layers. The weights and biases
of the MLP are initialized with random numbers so that in both the forward and back-
ward passes these weights and biases can be updated in order to minimize the total
error. Now let’s look at forward and backward propagation methods [1, 2].

During forward propagation, the features that are input to the network are fed
through the layers to produce the output activation. In the first hidden layer, the activa-
tion is obtained as the combination of the bias weights and the weighted combination
of the input values. If the activation exceeds the threshold, it will trigger to the next
layer, otherwise the output signal will be a zero input to the next layer. The bias is used
here to control the triggering points. Whenever the weighted combination of the signal
is low, the bias will compensate by adjusting the aggregated value thus serving as a
trigger for the next level. Once the neurons are determined in the first hidden layer, then
the neurons in the next layer will need to be determined in a similar fashion, i.e., using
the activation output of the hidden neurons from the first layer plus the bias [1, 2].

In the output layer the outputs are calculated in the same way, i.e., by using the
outputs obtained from the second hidden layer (taking the weighted combination of
weights). Once the output from the model is obtained, a comparison is performed
with the actual value to determine the errors. This error is then backpropagated across
the network in order to correct the weights of the entire neural network [1, 2].

To start, the derivative of the output value is taken and multiplied by the error
component that was obtained from differencing the actual value with the model out-
put: In a similar manner the error is backpropagated from the second hidden layer as
well. The errors are then computed for the neurons in the second hidden layer [1, 2].

Finally, the errors are calculated for the neurons in the first hidden layer based on
the errors obtained from the neurons in the second hidden layer. Once all the neurons
in the first hidden layer are updated, weights between the inputs and the first hidden
layer also need to be updated. In a similar way, all the weights get updated until the
convergence takes place, or the number of iterations specified is reached [1, 2].

Now that we have described how the forward and backward propagation methods
work to stabilize the weights and bias of the network, we can explore the different
architectures of ANN.

ArchitecturAl types in Ann

One of the most important aspects of the ANN architecture is the interconnections.
Interconnections are the arrangements of the processing elements in ANN. In all

Supervised Learning 121

network architectures the input and the output layers are common. The third layer,
also referred to as the hidden layer, is the distinguishing feature between different
architectures. The hidden layer acts as a black box to the users as the neurons in
these layers are hidden from them. Increasing the number of hidden layers boosts the
system’s computational and processing power along with the system’s complexity
[1, 2]. You will learn more about it in Chapters 8–10 where the deep learning–based
classifiers will be discussed in detail.

There are five basic types of neuron interconnection architectures, namely, the
single- layer feed- forward network, the multilayer feed- forward network, the single
node with its own feedback, the single- layer recurrent network, and the multilayer
recurrent network. Let’s briefly discuss each of these [1–3].

In the single- layer feed- forward network there are only two layers, i.e., the input
layer and the output layer. In the neurons (nodes) of the input layer, different weights
are applied and cumulative effect per node is taken into consideration to form the
output layer. The neurons in the output layer collectively compute the output signal
[1–3] (see Figure 6.1).

In the multilayer feed- forward network there are one or more hidden layers that
have no direct contact with the external layers. These networks strengthen the com-
putational capability of the network (see Figure 6.2) [1–3].

In a feedback network if the output is directed back to the same layer or preceding
layer nodes as input, then the feedback loop is created (see Figure 6.3). Recurrent
networks are feedback networks with closed loops [1–3].

FIGURE 6.1 Single-layer feed-forward network. (Source: Figure adapted from Rajput, A.
(2022). “Introduction to ANN,”retrieved from https://www.geeksforgeeks.org/introduction- to-
ann- set- 4- network- architectures/, retrieved on September 15, 2022.)

122 What Every Engineer Should Know About Data-Driven Analytics

A single- layer recurrent network (see Figure 6.4) is a network having a single
layer where the signals are fed back to a neuron or layer that has already received and
processed that signal [1–3].

To address problems in the domain of time series analysis or pattern recognition
the single- layer recurrent networks are used to produce dynamic behavior. Here, the
learning process is reinforced by using an internal memory.

The multilayer recurrent network has multiple recurrent layers that are applied on
top of each other [1–3] (see Figure 6.5).

FIGURE 6.2 Multilayer feed-forward network. (Source: Figure adapted from Rajput, A.
(2022). “Introduction to ANN”, retrieved from https://www.geeksforgeeks.org/introduction-
to- ann- set- 4- network- architectures/, retrieved on September 15, 2022.)

FIGURE 6.3 Single node with its own feedback. (Source: Figure adapted from Rajput, A.
(2022). “Introduction to ANN”, retrieved from https://www.geeksforgeeks.org/introduction- to-
ann- set- 4- network- architectures/, retrieved on September 15, 2022.)

Supervised Learning 123

In this network, the same task is implemented on every element of the sequence

FIGURE 6.4 Single-layer recurrent network. (Source: Figure adapted from Rajput, A.
(2022). “Introduction to ANN,” retrieved from https://www.geeksforgeeks.org/introduction-
to- ann- set- 4- network- architectures/, retrieved on September 15, 2022.)

FIGURE 6.5 Multilayer recurrent network. (Source: Figure adapted from Rajput, A. (2022).
“Introduction to ANN,”retrieved from https://www.geeksforgeeks.org/introduction- to- ann-
set- 4- network- architectures/, retrieved on September 15, 2022.)

124 What Every Engineer Should Know About Data-Driven Analytics

and the output is dependent on the previous computations. The hidden state, an
important feature in the network, captures information about a sequence. The net-
work is capable of computing complex representation and finds its application widely
in text processing. This network is also known as a feedback network [1–3].

hyperpArAmeters for tuning the Ann

Hyperparameters are generally used to determine the structure of the network and are
set before the learning process begins. The hyperparameters are determined mostly
by learning. Some of the hyperparameters are dependent on other hyperparameters.

For example, the number of neurons in each layer can depend on the number of
layers in the network. Below are the hyperparameters that are used to tune the ANN
model [1, 2, 4]:

 • Number of hidden layers and neurons in each layer: The number of hidden
layers as well as the number of neurons in each layer are decided as per the
complexity of the problem.

 • Dropout: The dropout regularization technique is used to prevent the model
from overfitting.

 • Network weight initialization: It is better to use different network weight
initialization techniques depending on the use of the activation function in
different layers.

 • Activation function: The activation function decides how to perform compu-
tation on the input signal to get a desired type of output signal.

 • Learning rate: It defines how quickly a network can update its parameters.
 • Number of epochs: It is the number of times the whole training data is

shown to the network while training.
 • Batch size: It is the number of sub samples given to the network after which

the parameter update takes place. The default batch size is 32.

There are several different ways to tune the hyperparameters of the ANN model [4].

Manual Search: This is an ad hoc method for determining the optimal hyper-
parameter values. The objective of manual search is to first make large
jumps in values, then resort to minor jumps for concentrating on a single
value that performed better.

Grid Search: Grid search uses brute force to find all possible combinations of
values. The Grid search method is a simpler algorithm to use, but it suffers
from the curse of dimensionality (or combinatorial explosion)—i.e., the
computational effort grows exponentially as the number of values increases.

Random Search: Random search, unlike grid search, uses a statistical distri-
bution for each hyperparameter from which the values are randomly sam-
pled. The model’s hyperparameter values will be set for each iteration by
sampling the stated distributions above. The optimization will be faster but
less accurate.

Supervised Learning 125

An exAmple of Ann clAssificAtion

Let’s use the IRIS dataset to demonstrate the modeling of an ANN classifier. The Iris
Dataset contains four features (predictors) of certain flower images, i.e., the length
and width of the sepals and petals across 150 samples (instances) [5]. In this dataset
there are three species namely the Setosa, the Virginica, and the Versicolor. The
measures of the features across each specie were used to create an ANN model that
can learn the characteristics of each species and to classify them. This dataset is often
used in data mining, classification, and clustering examples to test the algorithms.

Let’s use the R scripting language to demonstrate the ANN model built to classify
instances in the IRIS dataset. First let us load the IRIS dataset executing the follow-
ing R script [5]

data(iris)
iris$setosa <- iris$Species == "setosa"
iris$virginica <- iris$Species == "virginica"
iris$versicolor <- iris$Species == "versicolor"

Now we split the Iris dataset into a training and validation dataset with 70% of the
instances used for training the ANN model and 30% of the instances used for validat-
ing the ANN model [5]

iris.train.idx <- sample(x = nrow(iris), size =
nrow(iris)*0.7)

iris.train <- iris[iris.train.idx,]
iris.valid <- iris[-iris.train.idx,]

To build the ANN model install the neuralnet package and load the package in R
using the following commands [5]

Install.packages(“neuralnet”)
library(neuralnet)

Now let’s create an ANN model with the species as the response variable. The sepal
(length and width) and petal (length and width) both will be used as the predictors.
The ANN model, i.e., MLP has two hidden layers with 10 neurons in each [5].

iris.net <- neuralnet(setosa+versicolor+virginica ~
 Sep al.Length + Sepal.Width + Petal.Length +

Petal.Width,
 dat a = iris.train, hidden = c(10,10), rep = 5,

err.fct = "ce",
 lin ear.output = F, lifesign = "minimal",

stepmax = 1000000,
 threshold = 0.001)

Finally, we display the results using the following R command [5]

plot(iris.net, rep="best")

http://iris.net
http://iris.net

126 What Every Engineer Should Know About Data-Driven Analytics

The resultant ANN model fitted on the training dataset output is shown in Figure 6.6.
Now that the ANN model has been trained let’s classify the instances in the vali-

dation dataset. We execute the following R scripts to obtain the confusion matrix on
the validation dataset [5].

iris.prediction <- compute(iris.net, iris.valid[-5:-8])
idx <- apply(iris.prediction$net.result, 1, which.max)
predicted <- c('setosa', 'versicolor', 'virginica')[idx]
table(predicted, iris.valid$Species)

The resultant confusion matrix is shown in Figure 6.7.
From Figure 6.7 it is evident that only 2 instances from the virginica class have

been misclassified into the versicolor class. Therefore, we can compute the overall

accuracy of prediction in the validation dataset as
16 12 15
16 12 17

95 5
� �
� �

� . % [5].

See Sidebar 2 for more discussion of the interpretation of the confusion matrix.
Next, we will focus our discussion on ensemble learning–based classifiers.

INTRODUCTION TO ENSEMBLE LEARNING TECHNIQUES

Ensemble learning distinguishes the strong learners from the weak learners. A strong
learner is a classifier or a regressor, which has the capability to reach to the highest
potential accuracy thus minimizing both the bias and the variance. This means that a
strong learner is theoretically able to achieve a non- null probability of misclassifica-
tion with a probability of equal or more than 50%. Generally, most of the machine
learning tasks are normally strong learners even if their domains are very limited. For
example, a logistic regression cannot solve non- linear problems [2].

Conversely, a weak learner is a model that is able to achieve an accuracy slightly
higher than a random guess. These types of learners have low complexity, but they
can be trained very quickly. However, such learners can never be used alone to solve
complex problems. In some very particular and small regions of the training space, a
weak learner could reach a low probability of misclassification, but in the wide space
its performance is just about superior then a random guess [2].

Now that we have seen the distinction between the strong and weak learners, let’s
formally define the ensemble. An ensemble is a set of weak learners that are trained
together (or in a sequence) to make up a team. Both in classification and regression
type problems, the final result is obtained by averaging the predictions or by employ-
ing a majority vote of all the classifiers (weak learners) [1, 2].

The most common approaches to ensemble learning are as follows 1, 2, 6]:

Bagging or bootstrap aggregating: This approach trains n weak learners
(decision trees) using n training sets created by randomly sampling the orig-
inal dataset D. The sampling process is known as bootstrap sampling. This
process is normally performed with replacement, so as to determine differ-
ent data distributions. In addition, the weak learners are also initialized and
trained using some degree of randomness. This ensures that the probability
of having clones becomes very small and, at the same time, it’s possible to

http://iris.net

Su
p

ervised
 Learn

in
g

127

FIGURE 6.6 MLP containing 10 neurons in each of the hidden layer.

128 What Every Engineer Should Know About Data-Driven Analytics

increase the accuracy by keeping the variance under a tolerable threshold.
Therefore, by bootstrapping it is possible to avoid overfitting.

Boosting: This is an alternative approach to bagging where the ensembles are
built incrementally starting with single weak learner and then the new ones
are added at each iteration. The goal here is to reweight the dataset, so as to
force the new learner to focus on the samples in the dataset that were previ-
ously misclassified. This strategy yields a very high accuracy because the
new learners are trained with a positively biased dataset that allows them to
adapt to the most difficult internal conditions. However, over the period of
time the control over the variance is weakened and the ensemble can more
easily overfit the training set.

Stacking: Unlike the bagging and the boosting, this approach can be imple-
mented in different ways. The idea here is to use different algorithms for
strong learners and have them trained on the same dataset. Once trained, the
final result is filtered using another classifier, averaging the predictions or
by using a majority vote. This strategy is very powerful if the dataset has a
structure that can be partially managed with different approaches.

Ensemble algorithms particularly utilize the decision trees as weak learners. These algo-
rithms have multiple advantages compared to the other ML algorithms namely [1, 2, 6]

 • Their algorithms are easy to understand and visualize.
 • They are non- parametric in nature and don’t assume or require the data to

follow a particular type of distribution.
 • They can handle mixed data types.
 • The presence of the multi- collinearity of features does not affect the accu-

racy and prediction performance of the model.
 • They are robust against overfitting.
 • They are relatively robust against the outliers and noise in the dataset.
 • The inputs do not need to be scaled, preprocessed, and transformed.
 • They perform better than the weak learners.

Now that we have seen the general approaches for the ensemble learning, we’ll dis-
cuss some specific techniques.

rAndom forest ensemble leArning

A Random Forest (RF) is a “bragging” ensemble model, which is, essentially, a col-
lection of unpruned decision trees. This ensemble method tends to produce accurate

FIGURE 6.7 Confusion matrix describing the predictions in the validation dataset.

Supervised Learning 129

models by reducing the instability found in single decision trees. In addition, the RFs
are robust to changes in the training data and to noise in general. This feature is desir-
able when the dataset contains many outliers. Another advantage of the RF is that it
has a built- in attribute selection technique, and its salient features demand very little
preprocessing of the raw dataset [1, 2, 7].

We can summarize how the RF algorithm works as follows. RF builds many deci-
sion trees. Each tree is built from a random subset of data (from the training dataset)
using the replacement strategy known as bagging and from a random subset of
selected predictor variables. Each tree is built independently from one another receiv-
ing a vote and the majority rule applies here to determine the winner [1, 2, 7].

The RF produces a set of rules for classification, like that of any decision tree–
based methods [7]. For RF several hyperparameters, including the number of trees
(ntree), criterion of slitting (Gini, Information Gain), the maximum number of termi-
nal nodes each tree in the forest can have (maxnodes), minimum size of terminal
nodes (nodesize), and the number of variables randomly sampled as candidates at
each split (mtry) can all be tuned either through random or through grid search to
construct an optimal model. In a grid search, each axis of the grid is a parameter of an
algorithm, and the points in the grid are specific combinations of hyperparameters.

Mathematically, the RF algorithm can be described as follows. Assume the data
points of a sample D x y x yn n� � � � � �� �1 1, , , , are drawn randomly from a (possibly
unknown) probability distribution x y X Yi i, ~ ,� � � �. The goal is to build a classifier
that can predict y from X based on the dataset of sample D. We are given the ensem-
ble of weak classifiers h h X h Xk� � � � � �� �1 , , . If each h Xk � � is a decision tree, then
the ensemble is a RF. Let’s define the parameters of the decision tree for the classifier
h Xk � � to be � � �� �k k kp� �1, , . Thus, a decision tree k is a classifier h X h Xk k� � � � �� .

The RF classifier can be defined as a family of classifiers h X h X k� �1� � � � �, , based
on a classification tree with parameters θk randomly chosen from a model random
vector ϴ [7].

introduction to AdAboost ensemble leArning

Unlike the Random Forest, the AdaBoost (ADB) classifier is based on the princi-
ple of boosting. We have already discussed about the boosting approach. In sum-
mary, boosting is a general approach that can be applied to many statistical models.
Boosting works in a sequential manner and does not involve bootstrap sampling. In
ADB, each tree is fitted on a modified version of an original dataset. Finally, all the
trees are added up to create a strong classifier. The working principle of the ADB
classifier is summarized in Table 6.1 [1].

In step I the algorithm starts by fitting a simple classifier on the data. This so-
called a decision stump splits the data into two regions. In step I, classes that are
correctly classified are given less weight and the classes that are misclassified are
given higher weight. In this iteration a new decision stump/weak classifier is fitted to
the data and the weights are updated again in the subsequent iterations as discussed
before. Once all the iterations are finished (step III), the results of the classification
from each iteration are combined with their weights to produce a strong classifier,
that predicts the classes [1].

130 What Every Engineer Should Know About Data-Driven Analytics

The relevant hyperparameters for tuning the ABD are limited to the maximum
depth of the weak learners/decision trees, the learning rate, and the number of itera-
tions/rounds. The learning rate balances the influence of each decision tree on the
overall algorithm, while the maximum depth ensures that samples are not memo-
rized, but that the model will generalize well with the new data [6].

introduction to extreme grAdient boosting (xgb)

The Extreme Gradient Boosting (XGB) algorithm is an ensemble learning method
that is based on the gradient boosting principle. Gradient boosting works on the prin-
ciple that the weak learners iteratively shift their focus toward problematic observa-
tions that were difficult to predict in the previous iterations. These ensembles of
weak learners are typically decision trees. It builds the model in a stage- wise fashion
like other boosting methods do, but it generalizes them by allowing optimization of
an arbitrary differentiable loss function [8]. Table 6.2 discusses about the working
principle of the gradient boosting learning method [1, 2, 8].

There are three elements involved in gradient boosting [1, 2, 8]

 • The loss function, which depends on the type of problem being solved. In
cases where classification problems are solved, the logarithmic loss is used.
In boosting, at each stage, unexplained loss from prior iterations would be
optimized rather than starting from scratch.

 • Decision trees are used as a weak learner in gradient boosting.
 • Trees are added one at a time and the existing trees in the model are not

changed. The gradient descent procedure is used to minimize the loss while
adding the trees.

TABLE 6.1
Working Principle of the ADB Algorithm

The algorithm for ADB consists of the following steps:

 I. Initialize the observation weights w
N

i Ni � � �
1

1 2, , , , , where N = Number of observations.
 II. For m M=1to :

Fit a classifier GM x� � to the training data using weights wi

Compute err
w I y G x

w
m

i

N

i i m i

i

N

i

�
� � �� �

�

�

�
�

1

1

Compute �m
m

m

err

err
�

��

�
�

�

�
�log

1

Set w w I y G x i Ni i m i m i� � � � � �� ��
�

�
� � �exp , , , ,� 1 2 .

 III. Now output: G x sign G x
m

M

m m� � � � �
�

�
�
�

�

�
�
��

�
1

� .

Supervised Learning 131

The hyperparameters that are available to tune the XGB classifier are learning rate,
column subsampling, regularization, subsample (which is bootstrapping the train-
ing sample), maximum depth of trees, minimum weights in child nodes for splitting
and the number of estimators (trees). These hyperparameters are frequently used to
address the bias- variance- trade- off. While higher values for the number of estima-
tors, regularization, and weights for the child nodes are associated with decreased
overfitting, the learning rate, maximum depth, subsampling, and column subsam-
pling all need to have lower values to reduce overfitting [1, 2, 6, 8].

TABLE 6.2
Working Principle of the Gradient Boosting Classifier

Initially, a model is fit on observations producing a certain accuracy F x� �� � and the remaining unexplained
variance is captured in the error term as shown below:

Y F x� � � � error

Then another model is fit on the error term to pull the extra explanatory component and add it to the
original model (see the equation below), which should improve the overall accuracy:

Y F x G x� � � � � � � error2, where error error� � � �G x 2

We can continue in this manner, i.e., fit a model on the error2 component to extract a further explanatory
component as :

error error2 3� � � �H x

Now, model accuracy is further improved, and the final model equation is:

Y F x G x H x� � � � � � � � � � error3

Here, if we use weighted average (higher importance given to better models that predict results with
greater accuracy than others) rather than simple addition, it will improve the results further. Therefore,
the final model equation is:

Y F x G x H x� � � � � � � � � � � � �� � � error3

The steps involved in gradient boosting are

 1. Initialize f x L y
i

N

i0

1

� � � � �
�
�argmin� �,

 2. For m M=1to do the following

For i N� �1 2 3, , , , r
L y f x

f x
im

i i

i
f fm

� �
� � �� �

� � �
�

�

�
�

�

�

�
�

� �

,

1

Fit a regression tree to the targets rim giving terminal regions Rim, where j jm� �1 2 3, , , ,

For j jm� �1 2 3, , , , compute y L y f xjm

x R

i m i

j jm

� � � �� �� �argmin� �

, 1

Update f x f x I x Rm m

j

j

jm jm

m

� � � � � � � ��

�
�1

1

�

 3. Output f x f xM�� � � � �

132 What Every Engineer Should Know About Data-Driven Analytics

CROSS-VALIDATION

Cross- validation is a popular technique that is used to determine the true perfor-
mance of a classifier. Cross- validation also ensures robustness in the model. Cross-
validation, however, carries a significant computational expense [1, 2].

Earlier it was mentioned that in the modeling methodology, a model is developed
on the training dataset and evaluated on the test dataset. However, there are cases in
which the train and the test dataset have not been selected homogeneously. In such
cases there may be some unseen extreme cases appearing in the test dataset but not
in the training dataset. This situation would result in degrading the performance of
the model. To avoid this effect cross- validation should be performed [1, 2].

In cross- validation the dataset is divided into equal parts and the training of the
model is performed on all the other parts of the dataset except for one in which the
performance of the model is evaluated. This process is then repeated again and again
until the model has been trained on the entire dataset [1, 2].

Let’s consider an example. The 10- fold cross- validation technique is the most
popular technique used for measuring the true performance of a classifier. In 10- fold
cross- validation, the dataset is divided into ten parts, subsequently trained on nine
parts, and tested on the remaining one part. This process is performed ten times, in
order to cover all the parts of the data. Finally, the error calculated is averaged over
all the errors.

Consider the German Credit dataset to illustrate the difference in the performance
of the ensemble classifiers namely RF and XGB [9]. The German Credit data con-
tains data on 20 variables and the classification of whether an applicant is considered
a good or a bad credit risk for 1000 loan applicants. The predictors in this dataset can
be mainly classified under the categories for the applicant’s demographic and socio-
economic profiles.

First let’s install the appropriate packages in R using the following commands [9]

install.packages("randomForest", "ROCR", “gbm”)
library(randomForest)
library(ROCR)
library(gbm)

The randomForest package provides access to build the RF classifier and the gbm
package provides access to build the XGB classifier. The package ROCR provides
functionality to measure the performance of the classifier [9].

Now let’s access the German Credit dataset, preprocess it (convert variables of
type characters to factors, and redefine the range of the response variable), and split
the dataset into train and test sets in the ratio of 70% and 30%, respectively, using the
following script [9]:

set.seed(5000)
#Reading Data
german_credit = read.table("http://archive.ics.uci.edu/ml/

machine- learning- databases/statlog/german/german.data")
#Assigning variable names

http://archive.ics.uci.edu
http://archive.ics.uci.edu

Supervised Learning 133

colnames(german_credit)=c("chk_acct","duration","credit_
his","purpose","amount","saving_acct","present_
emp","installment_rate","sex","other_debtor","present_
resid","property","age","other_install","housing","n_
credits","job","n_people","telephone","foreign","respo
nse")

#Response is in 1,2 - we need to change it to 0,1
german_credit$response = german_credit$response - 1

#Dividing into training and testing dataset
index <- sample(nrow(german_credit),size =

nrow(german_credit)*0.70)
german_credit_train <- german_credit[index,]
german_credit_test <- german_credit[-index,]

german_credit_train[sapply(german_credit_train, is.character)]
<- lapply(german_credit_train[sapply(german_credit_train,
is.character)],as.factor)

german_credit_test[sapply(german_credit_test, is.character)]
<- lapply(german_credit_test[sapply(german_credit_test,
is.character)],as.factor)

Now we’ll fit the RF classifier on the training dataset. The R command to fit the RF
classifier is provided below (note the use of the hyperparameters here) [9].

credit.rf <- randomForest(as.factor(response)~., data =
german_credit_train,mtry=sqrt(ncol(german_credit_train)-1),
ntree=1000)

credit.rf

Figure 6.8 summarizes the output, i.e., the fitted RF model on the training dataset.
Now we’ll plot the error versus tree graph to see how the errors vary with respect

to the number of trees in the training dataset using the following script [9]:

plot(credit.rf, lwd=rep(2, 3))
legend("right", legend = c("OOB Error", "FPR", "FNR"),

lwd=rep(2, 3), lty = c(1,2,3), col = c("black", "red",
"green"))

FIGURE 6.8 Fitted RF model on the training dataset.

134 What Every Engineer Should Know About Data-Driven Analytics

The results are shown in Figure 6.9.
Now we’ll determine the result of the prediction on the test dataset. First we deter-

mine the confusion matrix (see Sidebar 2) using the script:

confusion matrix
credit.rf.pred_test<- predict(credit.rf,newdata=german_credit_

test, type = "prob")[,2]
optimal.pcut= .16#our assumption
credit.rf.pred.class.test<- (credit.rf.pred_test>optimal.

pcut)*1
table(german_credit_test$response, credit.rf.pred.class.test,

dnn = c("True", "Pred"))

The results are shown in Figure 6.10.
Here it is evident that there is a significant amount (141) of false negatives, i.e.,

good applicants being mis- predicted as bad applicants. Complete details of the per-
formance metrics for the confusion matrix are provided in Sidebar 2.

FIGURE 6.9 Comparison of the OOB, FPR, and FNR error. (Source: Figure adapted
from Rathod, V. (2020). “German Credit Scoring Data.” Retrieved from https://rpubs.com/
vidhividhi/GermanCreditData, retrieved on August 6, 2022.)

FIGURE 6.10 Confusion matrix demonstrating the performance of the RF classifier on the
test dataset.

Supervised Learning 135

The receiver operating characteristic (ROC) is an important measure of predictor
performance (see Sidebar 2 for more details). The R script for obtaining the ROC
curve for the German Credit dataset is:

#roc
pred <- prediction(credit.rf.pred_test,

german_credit_test$response)
perf <- performance(pred, "tpr", "fpr")
plot(perf, colorize=TRUE)

The results of executing the script are giving in Figure 6.11.
This ROC curve suggests that the performance of the classifier is significantly

better than random guessing.
Another important measure of predictor performance is the Area Under the Curve

(AUC). Again, see Sidebar 2 for more details. Here, the AUC is 0.81 which can be
obtained by executing the following R command [9]

unlist(slot(performance(pred, "auc"), "y.values"))

An AUC = .81 indicates a reasonably good separation of classes (discrimination) by
the predictor.

Next, let’s compare the performance of the RF classifier against the XGB classi-
fier. Upon executing the R script provided below the XGB model is fitted on the
training dataset [9].

credit.bo= gbm(response~., data = german_credit_train,
distribution = "bernoulli",n.trees = 100, shrinkage = 0.01,
interaction.depth = 8)

summary(credit.bo)

FIGURE 6.11 ROC curve demonstrating the performance of the RF classifier. (Source:
Figure adapted from Rathod, V. (2020). “German Credit Scoring Data.” Retrieved from https://
rpubs.com/vidhividhi/GermanCreditData, retrieved on August 6, 2022.)

136 What Every Engineer Should Know About Data-Driven Analytics

The resulting parameters of the fitted XGB model are shown in Figure 6.12.
Now we’ll determine the result of the predictions on the test dataset.
Execute the R script below to obtain the ROC curve [9].

pred.credit.bo.out<- predict(credit.bo, newdata = german_
credit_test,type ="response" ,n.trees =100)

optimal.pcut= .16 #our assumption
credit.bo.pred.class<- (pred.credit.bo.out>optimal.pcut)*1
table(german_credit_test$response, credit.bo.pred.class, dnn =

c("True", "Pred"))
pred <- prediction(pred.credit.bo.out,

german_credit_test$response)
perf <- performance(pred, "tpr", "fpr")
plot(perf, colorize=TRUE)

Figure 6.13 shows the resulting ROC curve for the XGB classifier.
The AUC is 0.82 which can be obtained by executing the following R command [9]

unlist(slot(performance(pred, "auc"), "y.values"))

FIGURE 6.12 Fitted XGB model on the training dataset. (Source: Figure adapted from
Rathod, V. (2020). “German Credit Scoring Data.” Retrieved from https://rpubs.com/
vidhividhi/GermanCreditData, retrieved on August 6, 2022.)

Supervised Learning 137

Both the classifiers have a very similar performance. Although XGB performs
slightly better than the RF (AUC = 0.82 versus 0.81).

Note: In order to perform 10- fold cross- validation during the training phase the
script needs to add the parameter fold = 10. For example, if we want to fit the RF
model on the training dataset with 10- fold cross- validation then the updated R script
should be:

credit.rf <- randomForest(as.factor(response)~., data =
german_credit_train, fold=10, mtry=sqrt(ncol(german_credit_
train)-1), ntree=1000)

credit.rf

SUMMARY

The focus of this chapter was to introduce the concept of supervised learning. The
ANN architecture discussed in this chapter lays the foundation for discussing about
the deep learning techniques in latter chapters. This chapter also lays the foundation
for the ensemble techniques that have proven to prevent the models from overfitting
when compared to the traditional ML classifiers. Also note that the potential of the
ensemble classifiers for classification purposes is best obtained by careful selection
of the various hyperparameters.

FIGURE 6.13 ROC curve demonstrating the performance of the XGB classifier. (Source:
Figure adapted from Rathod, V. (2020). “German Credit Scoring Data.” Retrieved from https://
rpubs.com/vidhividhi/GermanCreditData, retrieved on August 6, 2022.)

138 What Every Engineer Should Know About Data-Driven Analytics

SIDEBAR 1 HISTORY OF NEURAL NETWORKS
The neural networks of today can trace their history to the work of several
pioneers starting with the invention of the artificial neuron by McCulloch and
Pitts in 1943 [10]. The artificial neuron is type of information processing struc-
ture intended to imitate the structure of the biological neuron in an animal
brain (Figure 6.14).

Imagine billions of these neurons interconnected in a mesh configuration.
The dendrites or input terminals receive signals from other neurons (or sen-
sory organs) in the “network.” The soma of each neuron processes this infor-
mation and transmits the output through the axon terminals to the synapses.
The synapses are the points of connection to other neurons in the network.

McCulloch and Pitts hypothesized that if a neuron takes an input signal
and processes it like the CPU of a single element of some massively intercon-
nected supercomputer, couldn’t such a computer be simulated? Based on
this conjecture, they proposed a computer processing element—an artificial
neuron—similar to the one shown in Figure 6.15.

Here the xi takes the place of a dendrite and the summation operation
simulates the soma and all wi=1. f(x), the decision function, is typically the
sigmoid, hyperbolic tangent or heavyside step function, i.e., essentially a
threshold detector.

In 1958, Frank Rosenblatt proposed a more general artificial neuron model
called the perceptron, which improved on the McCulloch–Pitts neuron in that
weights and thresholds can change over time, i.e., the system can learn [11].

The work of McCulloch, Pitts, Rosenblatt, and others spurred a frenzy of
activity into massively scaled computing models based on simple process-
ing elements. These included systolic and wavefront processors, transputers,
and dataflow machines. But in 1969 Minsky and Papert published a book

FIGURE 6.14 Model of an animal brain neuron.

Supervised Learning 139

SIDEBAR 2 CONFUSION MATRIX AND PERFORMANCE
MEASURES
A confusion matrix (Table 6.3) is a matrix of the actual versus the predicted
outcome [1].

True positives (TP): True positives are cases when both the true and the
prediction conditions are positive.

True negatives (TN): True negatives are cases when both the true and the
prediction conditions are negative.

False positives (FP): When we predict the condition as positive given
that it is actually negative. FPs are also considered to be type I errors.

False negatives (FN): When we predict the condition as negative given
that it is actually positive. FNs are also considered to be type II errors.

Now let’s define some metrics based upon the four quadrants of the confusion
matrix [1].

criticizing the limitations of the perceptron. In addition, overhype of AI’s
potential, government research funding cutbacks, reduced interest in hard-
wired connected computing and market factors led to a so- called “AI winter
of the late 1970 and 1980s.” During this time interest in neural networks (and
other forms of AI) and massively parallel computing, was greatly reduced.
Advances in computing processing power and the discovery of multilayer
learning in the 1990s through the early 2000s led to an AI resurgence, high-
lighted by many of the theories and techniques discussed in this book.

FIGURE 6.15 McCulloch and Pitts’ artificial neuron (1943) [10].

140 What Every Engineer Should Know About Data-Driven Analytics

Accuracy is defined as TP TN
TP FN FP TN

+
+ + +

Precision is defined as TP
TP FP+

Recall is defined as TP
TP FN+

Specificity is defined as TN
TN FP+

F1 score (F1): It is the harmonic mean of the precision and recall and is

given as 2� �
�

Precision Recall
Precision Recall

Sensitivity or the True Positive Rate (TPR) is given as TP
TP FN+

False Positive Rate (FPR) is given as FP
FP TN+

Receiver operating characteristic (ROC) curve is used to plot between
the TPR and FPR. See Figure 6.16.

TABLE 6.3
Confusion Matrix and Definitions

True Condition Prediction Condition

Positive Negative

Positive TP FN
Negative FP TN

Worst performance

Be�er performance

FIGURE 6.16 Receiver Operating Curve (ROC).

Supervised Learning 141

EXERCISE

1. Download the Iris dataset (discussed in lesson 6) and extract a random sample
containing 80% of the instances from this dataset. First, summarize this dataset.
Second, use the ANN classifier to classify the different species using all the
predictors. For validation testing, split the dataset into a ratio of 80:20. Clearly
highlight the choices for the hyperparameters used in ANN modeling and sum-
marize the performance of the classifier. To report the performance of the clas-
sifier show the confusion matrix, determine both the class- wise and overall
accuracy, plot the ROC curve, and determine the AUC.

2. Using the Random Forest classifier, classify the species on the Iris dataset con-
taining only 80% of the instances as obtained in the previous question. Discuss
your choices for the use of hyperparameters. List the predictors used for the
classification purpose. Does the model overfit? For validation testing, split the
dataset into a ratio of 80:20. To report the performance of the classifier show the
confusion matrix, determine both the class- wise and overall accuracy, plot the
ROC curve, and determine the AUC.

3. Using the AdaBoost classifier, classify the species on the Iris dataset containing
only 80% of the instances. Use the same dataset that you used for the questions 1
and 2. Discuss your choices for the use of hyperparameters. Compare the perfor-
mance of the AdaBoost classifier against the Random Forest classifier. For vali-
dation testing, split the dataset into a ratio of 80:20. To report the performance
of the classifier show the confusion matrix, determine both the class- wise and
overall accuracy, plot the ROC curve, and determine the AUC.

4. Using the XGBoost classifier, classify the species on the Iris dataset containing
only 80% of the instances. Use the same dataset that you used for the questions
1, 2, and 3. Discuss your choices for the use of hyperparameters. Compare
the performance of the XGBoost classifier against the Random Forest and the
AdaBoost classifier. For validation testing, split the dataset into a ratio of 80:20.
To report the performance of the classifier show the confusion matrix, deter-
mine both the class- wise and overall accuracy, plot the ROC curve, and deter-
mine the AUC.

Note the bold line. The area below the dashed line suggests that the perfor-
mance of the classifier is worse than a random guess. Conversely, the area
above the dashed line suggests that the performance of the classifier is much
better than a random guess. Ideals the best classifier is the one for which the
TPR is always 1 across all the values of the FPR. The Area Under the Curve
(AUC) metric indicates how successful a model is at separating positive and
negative classes. AUC is obtained from the ROC curve. The higher the AUC
the better the separation of classes [1].

142 What Every Engineer Should Know About Data-Driven Analytics

5. Repeat every instruction provided in questions 1 to 4. This time use the 10- fold
cross- validation technique to report the performance of the classifier on the train-
ing dataset. Use the entire Iris dataset with 80% of the dataset as the training set.

6. What are the merits of using the ensemble learning algorithms compared to
using the traditional machine learning classifiers for classification purposes?

REFERENCES

 1. Dangeti, P. (2017). Statistics for Machine Learning. Packt Publishing, ISBN 978- 1-
78829- 575- 8.

 2. Bonaccorso, C. (2018). Mastering Machine Learning Algorithms. Packt Publishing,
ISBN 978- 1- 78862- 111- 3.

 3. Rajput, A. (2022). “Introduction to ANN”, retrieved from https://www.geeksforgeeks.
org/introduction- to- ann- set- 4- network- architectures/, retrieved on September 15, 2022.

 4. Jordan, J. (2017). “Hyperparameter Tuning for Machine Learning Models”, retrieved
from https://www.jeremyjordan.me/hyperparameter- tuning/, retrieved on August 6, 2022.

 5. Milton, V. (2017). “Iris- Neural Network”, retrieved from https://rpubs.com/vitorhs/iris,
retrieved on August 6, 2022.

 6. Nikulski, J. (2020). “The Ultimate Guide to AdaBoost, Random Forestsand XGBoost”,
retrieved from https://towardsdatascience.com/the- ultimate- guide- to- adaboost- random-
forests- and- xgboost- 7f9327061c4f, retrieved on August 6, 2022.

 7. Biau, G. (2012). Analysis of a Random Forests model. Journal of Machine Learning
Research, 13, 1063–1095.

 8. Chen, T., Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings
of the KDD, 16, 1–10.

 9. Rathod, V. (2020). “German Credit Scoring Data”, retieved from https://rpubs.com/
vidhividhi/GermanCreditData, retrieved on August 6, 2022.

 10. McCulloch, W. S., and Pitts, W. (1943). A Logical Calculus of the Ideas immanent in
Nervous Activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.

 11. Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain. Psychological Review, 65(6), 386. Since the decision
function depends linearly on the inputs xi, the perceptron is a linear classifier.

https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.jeremyjordan.me
https://rpubs.com
https://towardsdatascience.com
https://towardsdatascience.com
https://rpubs.com
https://rpubs.com

143DOI: 10.1201/9781003278177-7

Natural Language
Processing for Analyzing
Unstructured Data

7

Before discussing Natural Language Processing (NLP) tasks and techniques, it is
important to understand its need for analytical purposes. The data available to us
for any research or analysis endeavor can be either in a structured or unstructured
format. Earlier chapters have focused on analyzing structured (i.e., tabular) data and
in that process, we have learned how to uncover hidden information in the data by
utilizing different analytical techniques.

In a similar manner, unstructured data (e.g., text, image, and audio) also contain
hidden information that can be mined. For example, the social media site Twitter
contains a corpus of tweets, each about 280 character long. A collection of these
tweets from any individual holds a wealth of information on how that person com-
municates their thoughts, emotions (happiness, anxiety, depression, etc.), and feel-
ings (positive and negative sentiments) within their social network. By performing
sentiment and/or emotion classification on tweets, we can infer the thoughts and
feelings of the individuals on any given topics. Intuitively, unstructured data are
equally as valuable as structured data. For both preprocessing is needed before min-
ing information and is perhaps more important with unstructured data. The types of
analyses that can be performed on unstructured data, however, are very different
from the techniques that are employed to mine structured data [1–6].

NLP is a subfield of Artificial Intelligence (AI) that assists computers in under-
standing the meaning of human language. By utilizing NLP, AI- based machines can
help process information from data, which can help humans in gaining significant
insights. As technology advances and massive amounts of text data are generated
every day, the need to access and process it becomes increasingly more significant
[1, 6].

Human language, also called natural languages, are diverse and rich in their
beauty and expressive powers. Natural languages can consist of words and a set of
rules for organizing those rules to form meaning. We call the rules set for any particu-
lar natural language as grammar. Using the structure of grammar to analyze human
speech or writing is possible to an extent and forms the basis for any text or verbal
chatbot. But the science here is inexact. Humans never completely follow grammati-
cal or syntactic rules in conversation, and not even the stodgiest professor follows
these rules in formal writing. Moreover, human speakers and writers use local dia-
lects or slang and may have accents, which further complicates any kind of structured
analysis of language [1, 6].

http://dx.doi.org/10.1201/9781003278177-7

144 What Every Engineer Should Know About Data-Driven Analytics

We use NLP techniques to perform analysis and process massive volumes of text
data across the digital world including social media, search engines, online reviews,
news reports, blogs, etc. Examples of NLP applications include [1, 6]:

 • Building spam filter classifiers.
 • Web- based search engines that provide information retrieval services

(e.g., Google search).
 • Machine translation from one natural language to another (e.g., Google translate).
 • Q&A: automatic response to emails or chats.
 • Summarizing documents.
 • Sentiment analysis and emotion classification.
 • Speech processing: options on phone helplines.
 • Optical character recognition to scan cheques at ATMs.
 • Spell check, autocomplete facilities in Google search, etc.

In any case, the study of analysis of conversation (or writing) for the purpose of
human/computer interaction is beyond the scope of this text. Rather, we will focus
on analyzing speech and writing for the purposes of extracting insight from that
information. We’ll begin with some terminology used in NLP.

TERMINOLOGY FOR NLP

The language data that all NLP tasks depend upon is called the text corpus. A corpus
(from the Latin for “body”) is a large collection of text data that can be in any natural
language. The corpus can consist of a single document or a set of documents. The
source of the text corpus can be social network sites such as Twitter, Facebook, blog
sites, open discussion forums, etc. In audio data, words, phonemes, or other sounds
of interest form the corpus used in NLP. The forgoing discussion, however, is focused
on textual data only [1, 6].

A paragraph is the largest unit of text handled by an NLP task. Paragraphs can be
further broken down into sentences. Sentences are composed of words which are
formed using letters or alphabets in a given language. Tokenizers can be used to split
a document into paragraphs, paragraphs into sentences, sentences into words, and
words into characters.

Sentences are the next level of lexical unit in a language data. A sentence encap-
sulates a complete meaning or thought and context. It is usually extracted from a
paragraph based on boundaries determined by punctuations such as the period or
question mark. The sentence also conveys opinion or sentiment and emotions
expressed in it. It is important to note that sentences consist of parts of speech (POS)
entities like nouns, verbs, adjectives, and so on. Tokenizers are available to split para-
graphs to sentences based on punctuations.

Phrases are a group of consecutive words within a sentence that can convey a
specific meaning. Some of the NLP tasks extract key phrases from sentences for
search and retrieval applications.

The next smallest unit of text is the word. The common tokenizers split sentences
into words based on punctuations like spaces and comma [1, 6]. One of the problems
with NLP is the ambiguity in the meaning of same words used in different contexts.

Natural Language Processing for Analyzing Unstructured Data 145

Finally, the smallest unit of text are the characters. Tokenizers are available or can
be designed to split words into characters which when combined together form the
word. While the single character data is not usually interesting, the frequency of two-
letter combinations (e.g., aa, ab, ac, …., zy, zz) in writing samples can represent an
authorship “fingerprint.” That is, each writer tends to have a unique statistical distri-
bution of use of these two- letter combinations. Two- letter combination analysis has
been used in plagiarism detection and in the identification of authorship for anony-
mous writing [1, 6]. For example, two- word analysis has been used with great suc-
cess to help identify the anonymous authors of the Federalist Papers.

There are two commonly used language data on which NLP tasks are performed.
They are n- grams and bag- of- words (BOW). A sequence of characters or words
forms an n- gram. For example, a character unigram consists of a single character, a
bigram consists of a sequence of two characters, and so on. Similarly, word n- grams
consists of a sequence of n words. In NLP, n- grams are used as features for text clas-
sification [1, 6].

BOW in contrast to n- grams does not consider word order or sequence. It captures
the word occurrence frequencies in the text corpus. BOW is also used as features in
tasks like sentiment analysis, emotion classification, and topic identification. Later in
this chapter, we will discuss the BOW and n- grams in detail.

In order to demonstrate the NLP tasks, we will have to first install the NLTK and
its associated modules in Python.

INSTALLING NLTK AND OTHER LIBRARIES

The basic concepts and tasks of NLP will be demonstrated using the appropriate
packages in Python. Before we can install these packages, you have to make sure that
the latest version of PIP is installed in your system. To install PIP in your computer,
refer to this link https://pip.pypa.io/en/stable/installation/.

Next, we’ll explore NLP in Python starting with the NLTK (natural language
toolkit) and NUMPY (numerical Python) packages. To install NLTK and NUMPY
type the following commands at the command prompt [1, 6]

pip install -U nltk
pip install -U numpy

The output of executing the NLTK installation commands are shown in Figure 7.1.
The output for NUMPY will be similar.

After installing the NLTK and NUMPY navigate to the Python prompt and type
the following commands [1, 6]

import nltk
nltk.download()

You should be able to see the NLTK Downloader GUI navigator window from
Githubusercontent.com (Figure 7.2).

Now click on the tab “All Packages” and double click on the packages that needs
to be installed. The output is shown in Figure 7.3.

https://pip.pypa.io
http://Githubusercontent.com

146 What Every Engineer Should Know About Data-Driven Analytics

The packages listed in Table 7.1 should be installed for the purpose of completing
the exercises discussed in this chapter. Now let us discuss some basic NLP tasks.

TOKENIZATION

Tokenization refers to the identification of words and special characters and symbols
from text. Tokenization of text is one of the basic NLP tasks [1, 6]. Let’s perform
tokenization on the following tweet.

@B0MBSKARE the anti- Scottish feeling is largely a product of Tory press scare-
mongering. In practice most people won’t give a toss!

FIGURE 7.1 Installing NLTK package in Python.

FIGURE 7.2 NLTK downloader GUI navigator.

Natural Language Processing for Analyzing Unstructured Data 147

To do the tokenization, execute the following Python code [1, 6]:

Perform tokenization on the sample tweets
first import the nltk package
import nltk

FIGURE 7.3 Downloading packages from the NLTK downloader GUI navigator. (Note: At
the bottom of the NLTK downloader GUI navigator you should see a message that will indi-
cate the status of the installation of the packages. The status bar on the bottom right will show
you how much of the task has been completed at any given time.)

TABLE 7.1
List of Packages to be Installed

Identifier Description

Brown Brown Text Corpus

Gutenberg Gutenberg Text Corpus

Twitter_samples Twitter messages sample

Universal_tagset Universal POS tag mapping

Webtext Web text corpus

stopwords Stopwords Corpus

148 What Every Engineer Should Know About Data-Driven Analytics

from the nltk corpus import twitter_samples and rename it as
ts

from nltk.corpus import twitter_samples as ts
show the contents of the corpus
ts.fileids()
Now let us get a sample of tweets from the corpus in the

json format
samples_tw = ts.strings('tweets.20150430- 223406.json’)
let us consider a sample tweet
samples_tw[20]
Now let us tokenize a sample tweet
import the in- built word tokenizer and rename it as wtoken
from nltk.tokenize import word_tokenize as wtoken
wtoken(samples_tw[20])

Upon executing the above script, the tokens obtained from the tweet are

['@', 'B0MBSKARE', 'the', 'anti- Scottish', 'feeling',
'is', 'largely', 'a', 'product', 'of', 'Tory', 'press',
'scaremongering', '.', 'In', 'practice', 'most', 'people',
'wo', "n't", 'give', 'a', 'toss', '!']

Note here that there are few special characters including @ and !. Later we will
see an example of tokenization that will demonstrate how to remove unwanted spe-
cial characters [1, 6].

In order to split the tweet based on punctuation the NLTK package provides a
wordpunct tokentzer [1, 6].

from nltk import wordpunct_tokenize
wordpunct_tokenize(samples_tw[20])

Upon executing the script on the tweet text as before, the tokens obtained are

['@', 'B0MBSKARE', 'the', 'anti', '-', 'Scottish', 'feeling',
'is', 'largely', 'a', 'product', 'of', 'Tory', 'press',
'scaremongering', '.', 'In', 'practice', 'most', 'people',
'won', "'", 't', 'give', 'a', 'toss', '!']

Note here that the word “anti- scottish” is separated into three tokens namely anti, -,
and Scottish [1, 6].

A regular expression is a simplified way to represent character strings that can be
used to match qualifying text. The Unix/Linux operating systems support regular
expressions representation for use in commands such as grep, sed, awk, and so on.
NLTK also provides a regular expression feature called RegEx pattern. It is very easy
to build customized tokenizers using the RegEx pattern. For example, consider the
following commands [1, 6]:

from nltk import regexp_tokenize
patn = '\w+’
regexp_tokenize(samples_tw[20],patn)

Natural Language Processing for Analyzing Unstructured Data 149

Here the specified RegEx pattern is ‘\w+’, which removes special characters. Upon
executing the above script, the tokens obtained from the tweet are

['B0MBSKARE', 'the', 'anti', 'Scottish', 'feeling', 'is',
'largely', 'a', 'product', 'of', 'Tory', 'press',
'scaremongering', 'In', 'practice', 'most', 'people', 'won',
't', 'give', 'a', 'toss']

This is the most desirable tokenized output [6].
Now let’s try a different RegEx pattern, namely the pattern ‘\w+|[!,\-,]’ using the

command script [1, 6]:

patn = '\w+|[!,\-,]'
regexp_tokenize(samples_tw[20],patn)

Upon executing the above script, the tokens obtained from the tweet are

['B0MBSKARE', 'the', 'anti', '-', 'Scottish', 'feeling',
'is', 'largely', 'a', 'product', 'of', 'Tory', 'press',
'scaremongering', 'In', 'practice', 'most', 'people', 'won',
't', 'give', 'a', 'toss', '!']

Comparing the above output to the output obtained from the previous use of the
RegEx pattern, it can be noted that the punctuation characters have reappeared (but
not the special character @). There are many other kinds of RegEx patterns that can
be used to preprocess text in useful ways [1, 6].

STEMMING

Stemming is a text preprocessing task for transforming related or similar variants of
a word (such as talking) to its base form (to talk). Stemming is important because
with many words more than one variant can share the same meaning (e.g., talking
and talk; walk and walking) [1, 6].

The most basic stemming action is to reduce a plural word to its singular form. For
example, apples can be reduced to apple. The stemmer utilizes the Porter algorithm
which is basically a collection of language- specific rules (in this case, English) to
derive the stem words. For example, a language- specific rule can be to remove suf-
fixes such as “ing” from the word [1, 6].

Using the Python script shown below let’s perform a few stemming actions [6]

Import the NLTK package and the PorterStemmer package for
stemming

import nltk
from nltk.stem import PorterStemmer
Create a stemming instance
stemming = PorterStemmer()
Now let us perform stemming
stemming.stem("talking")
stemming.stem("talks")

150 What Every Engineer Should Know About Data-Driven Analytics

Upon executing the last two lines of the script, you will see the same output, i.e., talk.
Custom stemmers can be created using regular expressions as shown below [6]:

#Create a RegEx stemmer that removes ‘able’ or ‘ing’ with 4 as
the minimum length of string to stem

from nltk.stem import RegexpStemmer
regexp_stemmer = RegexpStemmer("ing$|s$|e$|able"ing$|s$|e$|abl

e$"#x0022;,min=4)
regexp_stemmer.stem("flyable")
regexp_stemmer.stem("flying")

Upon executing the last two lines of the script, you will see the same output, i.e.,
fly. Any substrings that match the regular expression will be removed. The variable
min = 4 specifies the minimum length of the string to stem [6].

STOPWORDS

More commonly used words in English such as the, is, he, and so on, are generally
called stopwords. Removing the stopwords is a common preprocessing step in an
NLP application. Generally, words that do not signify any importance to the docu-
ment, such as the articles (e.g., the, a, an) and pronouns (e.g., he, she, they) are
removed during this preprocessing step [1, 6].

Using the Python script provided below let’s see how the preprocessing step of
stopwords removal is performed [6].

Import the stopwords package from nltk.corpus
from nltk.corpus import stopwords
Use the English stopwords
sw_l = stopwords.words('english')
show the stopwords from the “English” language
sw_l[20:40]

The above script will result in an output showing a subset of the stopwords in the
English language.

 ['himself', 'she', "she's", 'her', 'hers', 'herself', 'it',
"it's", 'its', 'itself', 'they', 'them', 'their', 'theirs',
'themselves', 'what', 'which', 'who', 'whom', 'this']

Let’s see a simple example to illustrate the stopwords removal step in NLP.
Consider the following Python script [6]:

Remove stopwords from an example sentence
example_text = "This is an example sentence to test stopwords"
example_text_without_stopwords=[word for word in example_text.

split()
if word not in sw_l]
Display the resulting text after the removal of the stop words
example_text_without_stopwords

Natural Language Processing for Analyzing Unstructured Data 151

The script above outputs the resulting tokens that are not part of the stopwords list,
which is

['This', 'example', 'sentence', 'test', 'stopwords']

Note that the token or word “This” was not removed in this case because character
T is in uppercase. Therefore, it is important to first convert the entire text to lower-
case characters and then perform the preprocessing step of stopwords removal. It
should also be noted that the NLTK package provides stopwords corpora for 21 dif-
ferent languages [1, 6].

PART OF SPEECH TAGGING

Part of speech (POS) tagging is another important preprocessing step used for cat-
egorizing the words in a sentence into specific syntactic or grammatical functions.
In the English language, the main parts of speech are nouns, pronouns, adjectives,
verbs, adverbs, prepositions, determiners, and conjunctions [1, 6].

In the POS tagging task the objective is to first tokenize each word in a sentence,
and then assign them to one of the main parts of speech categories. The NLTK pro-
vides both a set of tagged text corpus and a set of POS trainers for creating custom
taggers. The most common tagged datasets in NLTK are the Penn Treebank and the
Brown Corpus [1, 6]. Let’s consider an example to illustrate how the POS tagging
works.

Import the nltk package and perform tokenization
import nltk
text1 = nltk.word_tokenize("I left the room")
text2 = nltk.word_tokenize("Left of the room")
Now let us perform universal POS tagging
nltk.pos_tag(text1,tagset='universal')
nltk.pos_tag(text2, tagset='universal’)

Upon executing the above Python script the output corresponding to text1 and text2
are

[('I', 'PRON'), ('left', 'VERB'), ('the', 'DET'), ('room',
'NOUN')]

[('Left', 'NOUN'), ('of', 'ADP'), ('the', 'DET'), ('room',
'NOUN')]

Here it is important to note that the token left in text1 is tagged or categorized as a
verb and in text2 it is categorized as a noun. This is because in text1 the word left
specifies an action taken and in text2 the word left refers to the location [6].

Now that we have learned the basic NLP tasks, let’s explore a specific text corpus
to see how the basic NLP tasks can be combined together to create an application.
The objective of the application here is to determine the percentage of stopwords in
a given text corpus [6].

152 What Every Engineer Should Know About Data-Driven Analytics

Let’s compute the percentage of stopwords in Shakespeare’s play Hamlet obtained
from the Gutenberg package in NLTK, using the following Python script [6]:

import the gutenburg corpus and extract all the words
from nltk.corpus import gutenberg
words_in_hamlet = gutenberg.words('shakespeare- hamlet.txt')
Now get all the stopwords for the English language
from nltk.corpus import stopwords
sw = stopwords.words('english')
Retrieve all the words from the gutenburg corpus after

removing the stopwords
words_in_hamlet_without_sw = [word for word in words_in_hamlet

if word
not in sw]
Now compute the percentage of actual words in the gutenburg

corpus
len(words_in_hamlet_without_sw)*100.0/len(words_in_hamlet)

Upon executing this script, you should be able to see that 69.26% of the words in
Hamlet corpus are not stop words which means that 30.74% (100−69.26) of the
words in this corpus are stop words.

Now let’s look at BOW and n- grams, both of which have the potential to features
for NLP analysis techniques such as text mining and classification.

BAG-OF-WORDS (BOW)

BOW is a method of extracting features from text. It is a representation of text
describing the occurrence of words within a document. Using the BOW concept one
can convert variable- length texts into fixed- length vectors by counting the frequency
of occurrences of each word. In this method, any information about the order in
which the word appears within the document is ignored [1, 6].

In order to obtain the BOW for a corpus, the steps are to first to obtain all the
unique words from each sentence in the corpus, then create a vocabulary and, finally,
construct the fixed length vectors for each unit of text (i.e., sentence) within the cor-
pus [1, 6]. The BOW method has many applications (see Sidebar 3).

Here’s a simple example to illustrate the concept of BOW. Consider the corpus
containing the first few lines of text from the Charles Dicken’s book A Tale of Two
Cities shown below

It was the best of times,

it was the worst of times,

it was the age of wisdom,

it was the age of foolishness,

The vocabulary for the above lines can be described as (see Table 7.2).
Now the BOW of the corpus can be seen in Table 7.3.

Natural Language Processing for Analyzing Unstructured Data 153

n-GRAMS

n- grams are simply a sequence of n words. Here, each word or token is called a gram.
Let’s consider a simple example to illustrate the concept of n- grams. For the sentence
within the corpus

It was the best of times

The 1- grams are It, was, the, best, of, and times. Here, note that the vocabulary of
the 1- gram and the BOW are the same. On the other hand, a 2- gram (bigram) is a
two- word sequence of words such as “It was,” “was the,” “the best,” “best of,” and
“of times.” In a similar manner, a 3- gram (trigram) is a three- word sequence of words
such as “It was the,” “was the best,” “the best of,” and “best of times.” Unlike BOW,
the order of the appearance of the words in a sentence of the document (corpus) is
tracked in the case of n- gram [1, 6].

Now that we have introduced the basic tasks and the features for NLP, let’s discuss
the important applications of NLP, namely sentiment and emotion classification.

TABLE 7.2
Vocabulary of the Corpus

Vocabulary Frequency

It 4

Was 4

The 4

Best 1

Of 4

Times 2

Worst 1

Age 2

Wisdom 1

Foolishness 1

TABLE 7.3
BOW Representation of the Corpus

Corpus BOW Fixed- Length Vectors

[It, Was, The, Best, Of, Times, Worst, Age, Wisdom, Foolishness]

It was the best of times [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]

it was the worst of times [1, 1, 1, 0, 1, 1, 1, 0, 0, 0]

it was the age of wisdom [1, 1, 1, 0, 1, 0, 0, 1, 1, 0]

it was the age of foolishness [1, 1, 1, 0, 1, 0, 0, 1, 0, 1]

154 What Every Engineer Should Know About Data-Driven Analytics

SENTIMENT AND EMOTION CLASSIFICATION

The advent of social media and microblogging sites has allowed individuals and
communities to freely express their opinions, feelings, and thoughts on a variety of
topics using short and limited size texts. Twitter is a well- known social media site
that allows individuals to post short messages (a.k.a. tweets) with a 280- character
limitation. In aggregate, these tweets hold a wealth of information on how an indi-
vidual communicates their thoughts, emotions (happiness, anger, disgust, anxiety,
depression, etc.) and sentiments (positive, negative) within their social network. By
analyzing the tweets not only the emotion of an individual but the emotions of a
larger group can be identified. The more commonly expressed state of emotions/sen-
timents and feelings include anger, disgust, fear, joy, love, sadness, surprise, tensed,
positive, negative, etc. Table 7.4 provides examples of tweets that express different
types of emotions and sentiments [2, 3, 7].

However, Emotion and Sentiment classification, i.e., determining the emotions
and sentiments within a statement (sentence), document or a corpus is a very chal-
lenging task [2, 3].

There are four major challenges associated with emotion/sentiment classification
of social media data [2, 3]:

 1. Peculiar structure and size,
 2. Large amount of data,
 3. Labeling needed for classification, and
 4. Discrimination between emotions.

Let’s briefly elaborate these challenges.
First, unlike conventional texts, tweets are peculiar in terms of their structure and

size, i.e., they are restricted to a length of 280 characters. In addition, the language used
by people in tweets to express their emotions and sentiments is very different from the
language used in other digitized documents like blogs, articles, and news [2, 3].

Second, the availability of features in the tweets is very large. Each tweet, when
presented as a vector of features, exponentially increases the size of the available
features. Refer back to the discussion on the BOW concept. The corpus would con-
tain millions of features for a given topic. This exponential increase in the number of
features would severely challenge the computational capabilities of the algorithms
used for emotion and sentiment classification [2, 3].

The third major challenge is inherent to the characteristics of the algorithm or the
classifier. For example, supervised techniques need labeled data for training the

TABLE 7.4
Examples of Emotional and Sentimental Tweets

Emotion Sentiment Tweet

Happy Positive Woot I finally got an iPod that I have been planning to buy forever

Sadness Negative It certainly is a sin and a shame…

Anger Negative My sister and I have had several vicious scarring fights this summer

Joy Positive I was pleased as punch to see my old friend

Natural Language Processing for Analyzing Unstructured Data 155

classifier. Due to the large volume of Twitter messages, it would be time- consuming
and tedious to manually annotate them with emotion and sentiment classes and later
use them for training the classifiers [1–3, 6].

The fourth challenge is that the inherent nature of the different types of emotions
makes it very difficult to differentiate between them. According to the Circumplex
model, there are 28 affect words or emotions. Few emotions are clustered so close to
each other that it becomes very hard to differentiate between them (see Sidebar 1)
[8]. For example, emotions such as anger, tense, and alarmed or excited, delighted,
and aroused are very similar to each other [8].

For performing emotion and sentiment classification we will explore a well-
known lexicon- based classifier, popularly known as NRC, so named because it is
based on the National Research Council of Canada’s affect lexicon and the NLTK
library’s WordNet synonym sets. Using NRC, Mohammad and Turney have put
together emotion annotations for about 14,182 words (lexicons) by crowdsourcing
to Amazon’s Mechanical Turk. This lexicon is commonly referred to as the “NRC
emotion association lexicon” or EmoLex. EmoLex has annotations for eight emo-
tions: anger, anticipation, disgust, fear, joy, sadness, surprise, trust and two senti-
ments: negative and positive. This lexicon corpus was constructed based on the
measures of Strength of Association (SOA) and Pointwise Mutual Information
(PMI) (see Sidebar 2) [2–5].

Let’s take some tweets as examples and try to determine the emotion and senti-
ment within it using the NRC classifier. Here, we will exploit the implementation of
the NRC classifier in the syuzhet package using the R scripting language [5].

First install and load the syuzhet package in R
install.packages(“syuzhet”)
library(syuzhet)
Let us consider several tweets to perform sentiment and

emotion classification
example_text <- "This was the best summer I have ever

experienced.
I had a blast in california hanging out with my family and

friends.
So many lies about who you're talking to, where you're going,

what you're doing.
I miss you so much and can't wait to see Ginny, Sister friend

and my mom in a couple months!!!
They are amazing.
I get a jolt of something REAL loud and it makes me jump.
She is afraid to.
This smile made me more scared.
He first tore up the toy car.
Markets do not measure everything accurately, and I find this

assumption to be disgusting."
Create a character object to get the NRC sentiments
S_E_C <- get_sentences(example_text)
Now let us get the sentiments and emotions
nrc_output <- get_nrc_sentiment(S_E_C)
nrc_output

156 What Every Engineer Should Know About Data-Driven Analytics

Upon executing the above R script, you should be able to see an output similar to
Figure 7.4. Note that the 4th tweet here “I miss you so much and can’t wait to see
Ginny” expresses the emotions of joy, anticipation, trust, and a positive sentiment.
Here, it is important to note that there can be more than one emotion expressed
within a tweet.

Also note the values indicated for each emotion class across different rows. If an
emotion type is more intensely expressed within the sentence, then the cell corre-
sponding to that column (emotion class) will hold a higher value. The following
scripts can be used to determine which tweets express the anger or the joy emotion
(see Figure 7.5 and 7.6) [5].

Now let us pick those sentences that expresses the anger
emotion

angry_items <- which(nrc_output$anger > 0)
S_E_C[angry_items]

Now let us pick those sentences that expresses the joy
emotion

joy_items <- which(nrc_output$joy > 0)
S_E_C[joy_items]

While NRC is an important emotion classifier, a major drawback is that it fails to
determine the emotions and sentiments expressed in a sentence if none of its con-
stituent words matches a known lexicon [5]. For more information about the NRC
classifier and its implementation in R visit the link https://cran.r- project.org/web/
packages/syuzhet/vignettes/syuzhet- vignette.html.

FIGURE 7.5 Tweets that express the anger emotion.

FIGURE 7.6 Tweets that express the joy emotion.

FIGURE 7.4 Emotion and sentiment expressed within tweets.

https://cran.r-project.org
https://cran.r-project.org

Natural Language Processing for Analyzing Unstructured Data 157

SUMMARY

In this chapter, we introduced the terminology associated with modern natural lan-
guage processing. We then discussed natural language processing techniques for text
(and images) including BOW and n- grams and discussed many important applications
such as spam filtering and in artificial intelligence, such as sentiment analysis. We then
explored the use of the NRC for emotion classification. These applications are only
a small subset of the many uses of these simple but powerful techniques discussed.

SIDEBAR 1 CIRCUMPLEX MODEL AND 28 DIFFERENT
EMOTIONS
The Circumplex model is a very popular model of human emotions, which
characterizes emotions through two dimensions: valence and arousal [3, 8].
The Circumplex model suggests that emotions can be distributed in a two-
dimensional circular space with the vertical axis representing the arousal
and the horizontal axis representing the valence. In the circular space, the
center of the circle represents a neutral valence and arousal. All the emotional
states can be represented with any level of the valence and arousal [8]. The
Figure 7.7 pictorially represents the two- dimensional circular space of the

FIGURE 7.7 Two-dimensional Circumplex model for 28 affect words. (Source: Figure
adapted from Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and
Social Psychology, 39(6), 1161–1178. https://doi.org/10.1037/h0077714.)

158 What Every Engineer Should Know About Data-Driven Analytics

SIDEBAR 3 BAG-OF-WORDS: A VERSATILE TOOL
As one of the simplest and most important natural language processing tech-
niques, the BOW has been used since the early 1980s in many text and image
processing applications. Important textual analysis applications include its use
in spam filtering and authorship attribution (for emails or any text document).

For example, suppose you wished to identify the author of some anony-
mous email or document from among a set of likely suspects. We would
create a BOW corpus from writing samples for each of the suspects. Then we
would compare the frequency of occurrence of words in the corpus of each
suspect to that of the text with an unknown author, for example, computing
a least- squares fit for each suspect’s corpus against the unknown text. Then
the suspect with the closest fit could be considered the unknown author, or at
least, motivate further investigation.

The popular visualization technique of word clouds is also done using
the BOW approach. Here, the size of the word in the cloud is a function
of the relative number of occurrences of the word in the corpus. Words
appearing less than some minimum number of times are sometimes omitted
as certain words such as infinitives. Colors are often used for certain word

SIDEBAR 2 PMI AND SOA
For each word a PMI determines the association of a word with a category
(class). At the same time a secondary PMI, i.e., PMI’ is computed for each
word that determines the association of a word with the other or remaining
class labels. Finally, for each word the SOA is computed across each class
which is the difference of PMI and PMI’. If a word has a stronger tendency to
occur in a sentence with a class X, than in a sentence that does not belong
to class X, then that word will have a SOA score greater than zero for class
X. Such words are associated with the class X. These words are considered as
potential lexicons for class X. The PMI measure on the other hand is well-
known to be the poor estimator of the association for low- frequency events.
Therefore, the PMI values for the words that have a very low frequency of
occurrence in the dataset are not robust. Generally, words that are not so
frequent in the dataset should be removed from the dataset [2].

Circumplex model in which the positions of the 28 affect words or emotions
are indicated. In Figure 7.7, the happy emotion is at an angle of 7.8o from the
positive x- axis and represents a slight increase in arousal. Exactly at 90o is the
emotion surprise which represents zero valence. Beyond 90o is a situation that
is best characterized as involving negative valence and decrease in arousal,
i.e., by the emotion anger. Beyond 180o is a state of negative arousal and
negative valence which represents sadness [8].

Natural Language Processing for Analyzing Unstructured Data 159

EXERCISE

1. One of the following is a TRUE statement
 A. N- grams does not consider word order or sequence
 B. The smallest unit of text is a sentence.
 C. Tokenization is one of the basic NLP tasks
 D. Both A and B are TRUE
 E. None are TRUE

2. A text preprocessing task that transforms related or similar variants of a word to
its base form is coined as
 A. Tokenization
 B. Stop words removal
 C. POS Tagging

relationships or types. As an example, a wordcloud for the U.S. Declaration of
Independence is shown in Figure 7.8.

In that document the word “people” appears 10 times, “powers” 5 times,
and “alter” 2 times. Words appearing 1 time only are omitted.

The BOW approach has also been used for at least 30 years in image anal-
ysis by treating certain image features as “words” and building an associated
corpus. The statistical properties of the corpus can then be used in applica-
tions ranging from image classification, texture analysis, and the identification
of objects in moving models.

The simplicity and relative computational efficiency of BOW analysis
means that it is likely to be used for a long time and will see many new appli-
cations in the future.

FIGURE 7.8 Word cloud for the U.S. Declaration of Independence, generated with Free
Wordcloud Generator https://www.freewordcloudgenerator.com/

160 What Every Engineer Should Know About Data-Driven Analytics

 D. Stemming
 E. Tokenization and POS Tagging

Based on the output shown for the Tokenization set T1:

 T1: ['suttonnick', 'Friday, 's', 'Times', 'front', 'page',
'Miliband', 'savaged', 'for', 'lies', 'over', 'spending',
'tomorrowspaperstoday', 'bbcpapers', 'http', 't', 'co',
'ts9ZnULDwr']

3. The regex pattern used on a sentence to obtain T1 could be
 A. ‘\w+’
 B. ‘\w+|[!,\-,]’
 C. Both A and B together
 D. A or B
 E. None

4. From the set T1 we can infer that
 A. Stemming was performed before tokenization
 B. When POST tagged all the items will be Noun
 C. Before tokenization stop words were not removed
 D. Stemming was not performed before tokenization
 E. Both C and D
Based on the sentiment and emotion classification by NRC provided below

Code:

Install.packages(“syuzhet”)
 library(syuzhet)
 my_example_text <- "Further complicating the issue is

Trump’s warning that, if a bipartisan panel doesn’t come
up with a workable solution by February 15, he’ll either
shut down the government again—something Mitch McConnell
and other Republicans on Capitol Hill have suggested they
could overrule—or declare a national emergency to fund the
wall without Congress. Putting the nuclear option on the
table, as Trump apparently did against Kushner’s wishes,
may already have doomed a potential compromise. After all,
what motivation does Trump’s base have to go along with a
middle ground when they’re convinced, he can easily avoid
compromising altogether?"

 s_v <- get_sentences(my_example_text)
 class(s_v)
 nrc_data <- get_nrc_sentiment(s_v)
 nrc_data
 fear_items <- which(nrc_data$fear > 0)
 s_v[fear_items]
 trust_items <- which(nrc_data$trust > 0)
 s_v[trust_items]

Natural Language Processing for Analyzing Unstructured Data 161

Output:

5. The sum of all the valence, i.e., the sum of the difference between the sum of
positive sentiment and sum of negative sentiment, in “my_example_text” is
 A. −2
 B. −1
 C. 0
 D. 6
 E. −6

6. The s_v[fear_items] will print
 A. The 1st sentence
 B. The 1st and 2nd sentence
 C. All the sentences
 D. Only the 3rd sentence
 E. NULL

7. The variable “s_v[trust_items]” will result in one of the following outputs
 A. After all, what motivation does Trump’s base have to go along with a

middle ground when they’re convinced, he can easily avoid compromis-
ing altogether?

 B. Putting the nuclear option on the table, as Trump apparently did against
Kushner’s wishes, may already have doomed a potential compromise.

 C. After all, what motivation does Trump’s base have to go along with a
middle ground when they’re convinced, he can easily avoid compromis-
ing altogether? Putting the nuclear option on the table, as Trump appar-
ently did against Kushner’s wishes, may already have doomed a potential
compromise.

 D. Putting the nuclear option on the table, as Trump apparently did against
Kushner’s wishes, may already have doomed a potential compromise. Af-
ter all, what motivation does Trump’s base have to go along with a middle
ground when they’re convinced, he can easily avoid compromising alto-
gether?

 E. NULL

8. The lexicon corpus for NRC was constructed based on the measures of
 A. SOA
 B. PMI
 C. SOA and PMI
 D. N- grams
 E. Bag- of- words

162 What Every Engineer Should Know About Data-Driven Analytics

9. Read the article “How emergency powers could be used to build Trump’s wall”
from the link https://www.bbc.com/news/world- us- canada- 46784315. Your
task is to collect textual instances (from any one or more sources, for example,
Twitter, blogs, news articles, etc.) and discuss about the sentiment and emo-
tions expressed by the US citizens toward Trump’s plan to declare a state of
emergency.

10. NRC is a
 A. Supervised classifier
 B. Unsupervised classifier
 C. Tokenizer
 D. Parser
 E. Lexicon- based classifier

REFERENCES

 1. Arumugam R., Shanmugamani, R., (2018). Hands- On Natural Language Processing
with Python, Packt Publishing, ISBN 978- 1- 78913- 949- 5.

 2. Mohammad, S., Turney, P. (2011). Emotions Evoked by Common Words and Phrases:
Using Mechanical Turk to Create an Emotion Lexicon. Proceedings of the NAACL- HLT
2010 Workshop on Computational Approaches to Analysis and Generation of Emotion
in Text.

 3. Hasan, M., Rundensteiner, E., Agu, E. (2014). EMOTEX: Detecting Emotions in Twitter
Messages. Academy of Science and Engineering, Bigdata/Socialcom/Cybersecurity
Conference, 27–31.

 4. “NRC Word- Emotion Association Lexicon”, retrieved from https://saifmohammad.
com/WebPages/NRC- Emotion- Lexicon.htm, retrieved on May 23, 2022.

 5. “Introduction to Syuzhet package”, retrieved from https://cran.r- project.org/web/
packages/syuzhet/vignettes/syuzhet- vignette.html, retrieved on May 23, 2022.

 6. Dangeti, P. (2017). Statistics for Machine Learning. Packt Publishing Ltd., ISBN
978- 1- 78829- 575- 8.

 7. Chapman, C., Feit, E. M. (2015). R for Marketing Research and Analytics, Springer,
ISBN 978- 3- 319- 14436- 8.

 8. Russell, J.A. (1980). A Circumplex Model of Affect. Journal of Personality and Social
Psychology, 39, 1161–1178.

https://www.bbc.com
https://saifmohammad.com
https://saifmohammad.com
https://cran.r-project.org
https://cran.r-project.org

163DOI: 10.1201/9781003278177-8

Predictive Analytics
Using Deep Neural
Networks

8

INTRODUCTION TO DEEP LEARNING

Deep Learning (DL) is a subfield of Machine Learning (ML), which, in turn, is a
subfield of Artificial Intelligence (AI) [1–4] (Figure 8.1).

Before discussing DL, let us first more formally define AI and ML. AI is basically
the art of enabling machines to perform tasks that require intelligence when performed
by humans. AI encompasses many aspects including computer vision, knowledge rea-
soning, language processing, artificial agents, etc., and supporting mathematics, such
as fuzzy logic for dealing with uncertain information (Sidebar 1). ML, on the other
hand, comprises the collection of algorithms that learns patterns from the data. Finally,
DL is the subset of ML that uses ANN to mimic how the brain works [1–4].

Let’s consider a simple example to illustrate the concepts of AI, ML, and DL.
Self- driving cars are an application of AI. One of the critical features of the self-
driving cars is to recognize the boundaries of the road and other vehicles that may be
obstacles, and to look out for pedestrians, cyclists, and so on. These functions require
ML because it is not possible for machines to learn the necessary patterns (for a car,
person, siderail, etc.) until the data (in most cases, images) is adequately provided.
Finally, DL may be chosen as the method to implement this ML task which is to
enable machines to learn the patterns (obstacles, road boundaries, etc.) [2, 3].

DL uses multiple layers to map the relationship between the input and the output.
As previously discussed, each layer is a collection of neurons that perform a mathe-
matical operation on its input. In DL, the “deep” architecture means that the model is
large enough to handle multiple variables to approximate the patterns in the data. DL
can also identify selective features that are crucial for the overall learning process,
thus serving as a technique for dimensionality reduction. DL has proven particularly
effective in the fields of image recognition, speech recognition, and NLP [2, 3]. It has
completely transformed the ways in which images, text, and speech data can be used
for learning patterns. The next section will introduce deep neural networks (DNN)
and its architectural variants in detail.

THE DEEP NEURAL NETWORKS AND ITS ARCHITECTURAL
VARIANTS

A deep neural network can be defined as a neural network with multiple hidden
layers. To improve the prediction results using an ANN it is not enough just to keep
on adding more nodes with a fixed (small) number of layers. Therefore, a DNN is

http://dx.doi.org/10.1201/9781003278177-8

164 What Every Engineer Should Know About Data-Driven Analytics

needed because it can better fit the data more accurately using fewer parameters
when compared to ANNs (Figure 8.2) [1–3, 5, 6].

The trick here is to keep increasing the number of layers but keeping the number
of neurons per layer constant. This will enable the classifier to identify patterns effi-
ciently and accurately.

The disadvantage of a DNN, however, is that the models are harder to train, and
they are prone to overfitting. One of the challenges in training DNN is how to effi-
ciently learn the weights of the neurons within each layer. Furthermore, DNN models
are complex with a huge number of parameters to train [1–3, 5, 6].

For example, let’s consider trying to recognize handwritten text within an image
using a DNN classifier. Here, the raw data is the pixel value from an image. The
first hidden layer of the DNN captures simple shapes in the image such as the lines
and curves. The next hidden layer uses the inputs obtained from the first hidden
layer and recognizes higher abstractions, such as corners and circles. Here, the
second layer does not have to directly learn from the pixels, which are generally
noisy and complex. Therefore, a shallow architecture such as an ANN may require
far more parameters because each neuron in a single hidden layer would have lim-
ited capabilities to learn about the target variable directly from the pixels of the
image [1–3, 5, 6].

DNNs can model complex non- linear relationships and are typically Feed-
Forward Neural Networks (FFNNs) in which the data flows from the input layer to
the output layer, i.e., only in the forward direction. As mentioned before, the extra
layers in the DNN enables the composition of features from lower layers to higher

FIGURE 8.1 The relationship between AI, ML, and DL. (Source: Figure adapted from
Moolayil, J. (2018). “Learn Keras for Deep Neural Networks: A Fast- Track Approach to
Modern Deep Learning with Python.” 1st Edition, Apress, ISBN 978- 1484242391.)

Predictive Analytics Using Deep Neural Networks 165

layers making it potential for modeling complex data with fewer neurons than a simi-
larly performing ANN network [1–3].

The building block of a DNN is the artificial neuron as shown in Figure 8.3. The
concept of artificial neurons was discussed in Chapters 2 and 6. But we will revisit
the concept of neurons very briefly for illustrative purposes.

Each of the artificial neuron units receives one or more input signals and outputs
a value to the neurons of the following layer and so forth. Then it computes a simple
function called the activation function. The activation function sends the processed
signal to the next connected neurons. For instance, if the incoming neurons deter-
mine a value greater than a threshold (i.e., the activation function is “input > X”), then
the output is passed as it is, otherwise it is ignored [1–3].

In a DNN each layer can have one or many neurons. The basic architecture of a
2- layered DNN is shown in Figure 8.4. Here, the first layer is the input layer and
layer H1 and H2 are the hidden layers. The last layer is called the output layer
[1–3, 7].

The connection between two neurons of successive layers has an associated
weight. The weights define the influence of the input on the output for the next neu-
ron and eventually for the overall final output. To begin with the initial weights for
each neuron in the DNN model would be a small random number but during the
training process, the weights are updated iteratively which enables the DNN model
to correctly predict the output.

FIGURE 8.3 Artificial neurons as the building blocks of DNN.

FIGURE 8.2 DNN (left image) and ANN (right image). (Source: Figure adapted from
Mostafa, B.M., El- Attar, N., Abd- Elhafeez, S., and Awad, W.A. (2020). “Machine and Deep
Learning Approaches in Genome: Review Article,” in the Alfarama Journal of Basic and
Applied Sciences, doi: 10.21608/ajbas.2020.34160.1023.)

166 What Every Engineer Should Know About Data-Driven Analytics

Now that you have good understanding of the DNN model, let’s explore the dif-
ferent architectures of DNN [5, 8, 9].

MULTILAYER PERCEPTRON (MLP)

A multilayer perceptron (MLP) is a fully connected, feed- forward ANN model that
maps a set of input data to a set of appropriate outputs. An MLP consists of multiple
layers of nodes in a directed graph with each layer fully connected to the next layer.
Except for the input nodes, each node is a neuron with a nonlinear activation func-
tion. The MLP generally utilizes a supervised learning technique, often referred to
as backpropagation for training the network. In backpropagation a gradient descent
function is computed for the feed- forward output and then fed back into the previous
layer iteratively. The weights of the previous layer are adjusted at each iteration to
minimize the forward error. The MLP is a modification of the standard linear percep-
tron and has the capability to distinguish data that are not linearly separable.

CONVOLUTIONAL NEURAL NETWORKS (CNN)

A CNN is a type of FFNN in which the connectivity pattern between the neurons
within and across the layers are arranged in such a way that they can respond to

FIGURE 8.4 A typical 2-layer DNN architecture. (Source: Figure adapted from Koutsoukas,
A., Monaghan, K. J., Li, X., and Huan, J. (2017). “Deep- learning: investigating deep neural
networks hyper- parameters and comparison of performance to shallow methods for modeling
bioactivity data,” In the Journal of Cheminformatics, Vol 9, No. 42, pp. 1–13.)

Predictive Analytics Using Deep Neural Networks 167

overlapping regions tiling the visual field. CNNs are inspired by biological processes
and are variations of MLP designed to use minimal amounts of preprocessing. CNN’s
are widely applicable in the area of image and video recognition, recommender sys-
tems, and NLP. We will discuss CNNs further in Chapter 9.

RECURRENT NEURAL NETWORKS (RNN)

RNNs are a class of ANNs where connections between the nodes (neurons) form a
directed cycle. These directed cycles create an internal state of the network allowing
them to exhibit dynamic temporal behavior. Unlike the FFNN, RNN can use their
internal memory to process any arbitrary input sequences. Therefore, RNNs find
themselves useful for applications such as handwriting and speech recognition. We
will discuss more about RNNs in Chapter 10.

AlexNet

AlexNet is one of the earliest and most well- known DNN architecture. In 2012,
AlexNet won the difficult ImageNet competition by a large margin. AlexNet scaled
the insights of LeNet into a much larger neural network that could be used to learn
more complex objects and object hierarchies. The contributions of this architecture
include: the use of ReLU as non- linearities, the use of the dropout technique to
selectively ignore single neurons during the training process, and to avoid over-
fitting of the model, overlapping the max pooling layer, avoiding the averaging
effects of average pooling, and the use of GPUs NVIDIA GTX 580 to reduce the
training time.

VGGNet

VGGNet is a classical CNN architecture with more depth, i.e., with multiple layers
to increase the model performance. For example, the VGG- 16 or VGG- 19 consists of
16 or 19 convolutional layers, respectively. The VGGNet architecture is well- known
for its application in object recognition. The insights of this architecture are:

 • Input: The VGGNet takes an image of input size 224×224.
 • Convolutional Layers: VGGNet’s convolutional layers leverage a minimal

receptive field, i.e., 3×3, the smallest possible size that can still capture up/
down and left/right motion. Moreover, there are also 1×1 convolution filters
acting as a linear transformation of the input. This is followed by a ReLU
unit, which is a huge innovation compared to AlexNet which aids in reduc-
ing the training time.

 • Hidden Layers: All the hidden layers in the VGGNet network use the
ReLU activation function.

 • Fully Connected Layers: The VGGNet has three fully connected layers.
Out of the three layers, the first two layers have 4096 channels each, and the
third layer has 1000 channels, 1 for each class.

168 What Every Engineer Should Know About Data-Driven Analytics

INCEPTION

The Inception V3 is an image recognition model that has proven to achieve higher
than 78.1 percent accuracy on the ImageNet dataset. This model includes the fol-
lowing symmetric and asymmetric building components which are convolutions,
average pooling, max pooling, concatenations, dropouts, and fully linked layers.
The batch normalization is performed on the activation inputs and is used exten-
sively throughout the model. Finally, to calculate the loss Softmax function is
preferred.

ResNet AND GoogLeNet

In the ResNet model the first two layers are identical to that of the GoogLeNet.
The ResNet model includes a 7 7× convolutional layer with 64 output channels,
and a stride of 2 which is followed by a 3 3× maximum pooling layer with a stride
of 2. After each convolutional layer there is a batch normalization layer. This is
the only difference between the ResNet and the GoogLeNet. On the other hand,
the GoogLeNet is made up of four modules, each of which is built up of incep-
tion blocks. ResNet uses four modules made up of residual blocks, each of which
has the same number of output channels. The first module has the same number
of channels as the input channel count. It is not essential to reduce the height and
width of the residual blocks because a maximum pooling layer with a stride of 2
has already been applied. The number of channels is doubled in the first residual
block of each consecutive module relative to the previous module, while the height
and breadth are halved. See the Sidebar 2 for more details about the terms related to
DNN architecture.

Now let us discuss about the different hyperparameters used in designing the
DNN models.

HYPERPARAMETERS OF DNN AND STRATEGIES FOR TUNING
THEM

Some of the important hyperparameters to model DNNs are as follows [1, 10]:

ACTIVATION FUNCTION

In DNN, activation function plays an important role in determining the output of
the neuron. In most cases, ReLU is preferred as an activation function for the hid-
den layers. It (ReLU) is a bit faster to compute than any other activation functions.
ReLU also ensures that the gradient descent does not get stuck on plateaus as much
compared to the logistic function or the hyperbolic tangent function that usually
saturates at 1. For the output layer, the softmax activation function is generally
a good choice for classification tasks. For regression tasks, no activation func-
tions are preferred. Other commonly used activation functions include Sigmoid
and Tanh.

Predictive Analytics Using Deep Neural Networks 169

REGULARIZATION

There are several techniques for controlling the training of DNNs in order to prevent
overfitting. For example, L2/L1 regularization, max norm constraints, and dropouts.
Let’s discuss each of the regularization techniques

L2 regularization: This is the most commonly used form of regularization. By
updating the gradient descent parameter, the L2 regularization signifies that
all weights will eventually decay linearly toward zero.

L1 regularization: In the L1 regularization the absolute value of the weight is
penalized. Unlike in L2, the weights may be reduced to zero here.

Max- norm constraints: This constraint is issued to enforce an absolute upper
boundary on the magnitude of the weight vector for each neuron in the hid-
den layer. The projected gradient descent is then used to further enforce the
constraint.

Dropout: This hyperparameter is tuned while training the model. It is imple-
mented by keeping a neuron active with some probability. For example,
the neuron is active when the probability p < 0 5. , and is zero otherwise. In
short, the dropout is a regularization technique which is used to avoid the
model to overfit during the training process by randomly dropping few of
the nodes in each hidden layer.

NUMBER OF HIDDEN LAYERS

This hyperparameter refers to the number of hidden layers present in the DNN. Upon
increasing the number of hidden layers and neurons within each of them, combined
with the application of regularization, has a profound effect on the performance of
DNN.

NUMBER OF NEURONS PER LAYER

This hyperparameter refers to the number of neurons in each hidden layer of the
DNN. Upon increasing the number of hidden layers and neurons within each of
them, combined with the application of regularization, has a profound effect on the
performance of DNN.

LEARNING RATE

This hyperparameter controls how much change the model should undergo to
respond to the estimated error, whenever the model weights are updated. Choosing
a value for this hyperparameter is very challenging. If the learning rate is too small
it may result in a long training process that could get stuck, whereas a large value
for this hyperparameter may result in sub- optimal learning or an unstable training
process.

170 What Every Engineer Should Know About Data-Driven Analytics

OPTIMIZER

The optimizer is responsible for changing the learning rate and the weights of the
neurons in the neural network with an objective to achieve minimal loss. This hyper-
parameter is very important to achieve the possible highest accuracy or the minimum
possible loss.

BATCH SIZE

This hyperparameter is used to speed up the training process. Instead of using the
entire dataset for training, this hyperparameter is used for the model to train on the
subset of the data. More precisely, the batch size is the number of training data sub-
samples that is given as an input to the model. The learning process is accelerated by
reducing the batch size.

EPOCH

This hyperparameter determines the number of times a dataset is run through the
neural network model. In each epoch, the training dataset is transmitted forward and
backward through the neural network once. Underfitting can occur when the number
of epochs is too small. This is because the neural network has not learned enough.
Several to many passes of the training dataset can avoid underfitting. This means that
the value for the number of epochs should be high. However, using too many epochs
will result in overfitting, where the model can accurately predict the data in the train-
ing dataset but not on the test dataset. To achieve the best outcome, the number of
epochs must be adjusted or tuned with utmost care.

WEIGHT AND BIASES INITIALIZATION

Initializing the weight and biases of the neurons in the hidden layers is an impor-
tant hyperparameter to be taken care of. It is recommended not to set all the initial
weights to zero. This is because if every neuron in the network computes the same
output then there will be no source of asymmetry between the neurons. Therefore,
the options would be to initialize the weights of the neurons to a small random num-
ber which is not zero. These small numbers can also be drawn from a uniform distri-
bution. In terms of initializing the biases, it is possible and common to initialize the
biases to zero since the asymmetry is already taken care of by introducing a small
random number for the weights. Setting the biases to a small constant value ensures
that all the ReLU units can propagate some gradient.

Now let’s look at some strategies for hyperparameter tuning in DNN models.

GRID SEARCH

Grid Search is performed to determine the optimal values of the hyperparameters
for a given model. This function helps to loop through the predefined values for the
hyperparameters and fit the model on the training dataset. Eventually, this function
determines the best values for the listed hyperparameters.

Predictive Analytics Using Deep Neural Networks 171

RANDOM SEARCH

The Random Search method replaces the exhaustive search nature of the Grid Search
with a random combination of values for the hyperparameters. Since the values are
chosen at random, there can be a great deal of variation in the results. However, there
is a reduction in the time complexity. Random search is capable of evaluating a large
range of values and, in most cases, quickly arrives at a very optimal set of values for
the hyperparameters. But the burden of specifying the boundaries for the search area
lies on the knowledge worker.

In the next section we will briefly discuss Deep Belief Networks (DBN).

DEEP BELIEF NETWORKS (DBN)

A Deep Belief Network (DBN) is a type of DNN with multiple hidden layers and
connections between (but not within) layers. This means that a neuron in layer 1
may be connected to a neuron in layer 2 but not with a neuron in layer 1 (Figure 8.5)
[1–3, 11].

This restriction of no connections within a layer allows DBN to train much faster
using algorithms such as the contrastive divergence algorithm. Essentially, the DBN
can be trained layer by layer. To begin with the first hidden layer is trained. During
training, the first hidden layer transforms the raw data into a new set of input for the

FIGURE 8.5 A typical DBN architecture. (Source: Figure adapted from Kalita, D. (2022).
“An Overview of Deep Belief Network (DBN) in Deep Learning,” retrieved from https://
www.analyticsvidhya.com/blog/2022/03/an- overview- of- deep- belief- network- dbn- in- deep-
learning/, retrieved on July 27, 2022.)

172 What Every Engineer Should Know About Data-Driven Analytics

next hidden layer. This process is repeated until all the layers have been trained. The
benefit of the DBN architecture is that each time a single layer can be trained inde-
pendent of the other layers. DBNs are sometimes used as a pre- training stage for a
DNN [1, 11].

A Restricted Boltzmann Machine (RBM) is a type of generative stochastic ANN
that can learn a probability distribution from its inputs. DNNs can also be created
using the RBM. DBN, in particular, can be created by “stacking” RBMs and by fine-
tuning the resulting deep network via gradient descent and backpropagation. A series
of constrained Boltzmann machines connected in a specific order makes a DBN (see
Sidebar 3 for more details about RBM) [1–3, 11].

It’s necessary to remember that constructing a DBN necessitates training each
RBM layer. To train a complete DBN, the greedy learning technique can be employed.
The greedy learning algorithm trains one RBM at a time until all of the RBMs are
trained. This section provided a very gentle introduction to the DBN. Extensive dis-
cussion of the DBN is beyond the scope of this book [1, 11].

In the next section we will go through a case study that will discuss constructing
DNNs and tuning its hyperparameters. The case study will be illustrated using R
script.

ANALYZING THE BOSTON HOUSING DATASET USING DNN

In this section, we will design a simple DNN to predict a target variable in the Boston
Housing dataset which is the median value of owner- occupied homes. This dataset
consists of 506 observations across 14 variables. The remaining 13 variables will be
used as predictors. Before we further analyze this dataset, it has to be ensured that all
the variables in this dataset are numerical in nature as DNN handles only numerical
data [12].

To begin with we need to load the following libraries, namely keras, mlbench,
dplyr, magrittr, and neuralnet. Execute the following R scripts to load these libraries
[9, 12].

library(keras)
library(mlbench)
library(dplyr)
library(magrittr)
library(neuralnet)

Now that we have loaded all the libraries we can access the BostonHousing dataset
in R by executing the following script [9, 12].

data("BostonHousing")
data <- BostonHousing

Upon executing the R command, the summary of the dataset can be obtained as
shown in Figure 8.6 [9, 12].

str(data)

Predictive Analytics Using Deep Neural Networks 173

The next step is to convert the factor variables into numeric variables using the R
command. This function automatically detects all the factor variables and converts
them to numerical variables [12].

data %<>% mutate_if(is.factor, as.numeric)

Now let’s create a simple DNN. In this model we will create three hidden layers
containing 12, 7, and 5 neurons, respectively.

n <- neuralnet(medv ~ crim+zn+indus+chas+nox+rm+age+dis+rad+ta
x+ptratio+b+lstat,

 data = data,
 hidden = c(12,7,5),
 linear.output = F,
 lifesign = 'full',
 rep=1)

Let’s view the DNN using the Plot command. Note the highlighted area indicating
the region containing three hidden layers.

plot(n,col.hidden = 'darkgreen',
 col.hidden.synapse = 'darkgreen',
 show.weights = F,
 information = F,
 fill = 'lightblue')

The constructed model is shown in Figure 8.7.
Here each predictor variable has one neuron, the first layer has 12 neurons, the

second layer has 7 neurons, and the output variable has one neuron.
Next, convert the data frame into matrix for further analysis using the R com-

mands [9, 12]

data <- as.matrix(data)
dimnames(data) <- NULL

FIGURE 8.6 Summary of the Boston Housing dataset.

174 What Every Engineer Should Know About Data-Driven Analytics

Before the DNN model is trained, we need to partition the dataset into training and
test dataset. The partition of the dataset is done in the ratio of 70:30, i.e., 70% of the
dataset is used for training and the 30% of the dataset is used for testing

set.seed(123)
ind <- sample(2, nrow(data), replace = T, prob = c(.7, .3))
training <- data[ind==1,1:13]
test <- data[ind==2, 1:13]
trainingtarget <- data[ind==1, 14]
testtarget <- data[ind==2, 14]
str(trainingtarget)
str(testtarget)

Now that the dataset has been portioned, the variables have to be normalized for bet-
ter prediction. This can be achieved using the following R commands [9, 12]

m <- colMeans(training)
s <- apply(training, 2, sd)
training <- scale(training, center = m, scale = s)
test <- scale(test, center = m, scale = s)

After completing the preprocessing steps we now look at model building, compiling,
and fitting. For building the model, ReLU is used as the activation function, and the
hidden layer with 5 neurons is being tested using the 13 predictor variables and 1
output neuron. See the R script below [9, 12].

FIGURE 8.7 Simple DNN with three hidden layers consisting of 12, 7, and 5 number of
neurons.

Predictive Analytics Using Deep Neural Networks 175

model <- keras_model_sequential()
model %>%
 layer_dense(units = 5, activation = 'relu', input_shape =

c(13)) %>%
 layer_dense(units = 1)

For model compiling, the rmsprop is used as an optimizer and the mae is used as a
metric to measure the performance of the classifier (see the R script below) [9, 12].

model %>% compile(loss = 'mse',
 optimizer = 'rmsprop',
 metrics = 'mae')

To fit the model the hyperparameters epochs, batch size, and the validation split have
been set to 100, 32, and 0.2, respectively, using the following R script [9, 12].

mymodel <- model %>%
 fit(training,trainingtarget,
 epochs = 100,
 batch_size = 32,
 validation_split = 0.2)

From the graph shown in Figure 8.8, we can see that initially the error is high, but it
minimizes toward the end. Over a period of time the output loss is decreasing. After
60 epochs, we note that the testing mae is higher than the validation mae but the dif-
ferences are small.

FIGURE 8.8 Testing and validation mae across different epochs.

176 What Every Engineer Should Know About Data-Driven Analytics

Now let’s determine the performance of the prediction on the test dataset by exe-
cuting the R script [9, 12].

model %>% evaluate(test, testtarget)
pred <- model %>% predict(test)
mean((testtarget- pred)^2)

Based on the constructed DNN model, the loss (error) is still large around approxi-
mately 145. This indicates that by consistently tuning the hyperparameters it is pos-
sible to further reduce the error.

SUMMARY

This focus of this chapter was to introduce the concepts of deep learning, the DNN
architecture, and the different hyperparameters that can be tuned to effectively per-
form classification and regression tasks. This is also the first chapter in which we
introduce the deep learning concept. Understanding the concepts of this chapter is
very important as they lay the basic foundations for the Chapters 9 and 10 where we
will discuss the very important Convolutional and Recurrent Neural Networks.

SIDEBAR 1 FUZZY LOGIC AND UNCERTAINTY
Uncertainty has always been a difficult problem for mathematicians, engi-
neers, and scientists. While neural networks and expert systems can be used
to deal with uncertain information, there are other useful mathematical frame-
works. Let’s briefly discuss one of these—fuzzy logic.

Fuzzy logic provides a mechanism for dealing with uncertainty through clas-
sification of some property that is not crisply defined as having or not having
that property. For example: Is a certain window open or closed? By fuzzy logic,
the property of open can be viewed on a continuum from completely open to
completely closed, with all levels of openness in between (with the number 1
meaning having the property completely and 0 not having the property at all).
For example, when the window is completely open, the valuation function for
open would have a fuzzy value of 1 and when completely closed, would have
a fuzzy value of 0. A half- open window would have a fuzzy value of 0.5.

Other fuzzy properties of things might include large or not large (small)
for some organism, fast or not fast (slow) for some process, and clear and not
clear (opaque) for some object. All of these properties (and their complement)
are well modeled with fuzzy values. So, for example, the largest dog would
have a fuzzy size value of 1 and the smallest dog a fuzzy value of 0. Some
medium- sized dog might have a fuzzy size value of 0.5 or 0.6. These fuzzy
valuations are determined by judgment, for example, by surveying experts,
or through statistical means, for example, by collecting data on the sizes of a
statistically significant sample of dogs. Of course, different dog breeds would
have different size valuation functions, for example, the largest chihuahua is
much smaller than the smallest mastiff.

Predictive Analytics Using Deep Neural Networks 177

SIDEBAR 2 TERMS USED IN THE CONTEXT OF DNN
ARCHITECTURE
Here we illuminate a few terms related to the DNN architecture, which you
will frequently encounter while reading this chapter [1–3, 7, 10].

Activation function: These are the functions that help us to decide if we
need to activate the node/neuron or not. These functions are used to
introduce non- linearity in the networks.

Convolutional layer: The convolutional layers have a moving filter,
which is also referred to as the weight matrix. This filter slides over the
input image to produce a feature map which is known as the convo-
lution operation. The weight matrix and the input image are mul-
tiplied, i.e., the dot product is computed, and summed to produce
a feature map. The convolution using another filter over the same
image will result in a different feature map.

Dropout: The dropout refers to the process of dropping some neurons
during the training phase. Neurons that are dropped are not consid-
ered in both the forward and backward pass.

Fully connected layer: In a fully connected layer all the neurons are
connected to all the neurons of the previous layer. It is also called the
dense layer.

Max pooling layer: The window is moved across a 2D input space and
the maximum value within that window is considered as the output.
It is also called as down sampling layer because it reduces the num-
ber of parameters within the model.

Padding: Padding is the process of adding extra zeros to the edges of the
input matrix. This is done because the contribution of the edge pixels
in the input matrix are less than the inside pixels/number.

Strides: The stride parameter is used to decide how the weight matrix
should move in the input, i.e., jumping one step or two steps at a time.

Softmax layer: The softmax layer returns the probabilities of each class
and the class with higher probability, i.e., the target class. This func-
tion calculates the probabilities of each target class over the possibili-
ties of all the target classes.

Boolean operations on fuzzy values need to be redefined as do those on
fuzzy sets. For example, for fuzzy values A and B the Boolean AND equiva-
lent is min(A,B) and the OR equivalent is max (A,B). And the Boolean not
operation equivalent for A is 1- A.

Fuzzy logic is useful for decision making, in pattern recognition, image
processing, and vision problems, and in designing expert systems when the
patterns are ill- defined or the input data does not have complete, precise, or
reliable information. Many of the data analytics techniques presented in this
book can be extended to incorporate fuzzy values.

178 What Every Engineer Should Know About Data-Driven Analytics

SIDEBAR 3 RESTRICTED BOLTZMANN MACHINE (RBM)
The Boltzmann machine is a network of neurons in which all the neurons are
connected to all other neurons. If there are n neurons then connecting each

one to every other yields
n n �� �1

2
 connections. In this machine, there are two

layers, namely, the visible layer or the input layer and the hidden layer. In the
Boltzmann machine, there is no output layer. Boltmann machines are random
and generative neural networks capable of learning the internal representations
and are able to represent and solve tough combinatoric problems [1–3, 11].

In a Restricted Boltzmann Machine (RBM) the restriction is that the same type
of layer is not connected to each other. This means that any two neurons of the
input layer or the hidden layer cannot be connected to each other, although the
hidden layer and the input layer itself can be connected to each other [1–3, 11].

Remember that the RBM does not have any output layer. Therefore, the
question arises, how are we going to identify, adjust the weights, and deter-
mine that our prediction is accurate or not? The RBM algorithm learns the
probability distribution over its sample training data inputs. The RBM similar
to PCA discovers latent factors that can explain the variability in the input
data. In short, RBM describes the variability among correlated variables of
input dataset in terms of a potentially lower number of unobserved variables.
RBMs are widely applicable in the areas of supervised/unsupervised machine
learning such as feature learning, dimensionality reduction, classification, col-
laborative filtering, and topic modeling [1–3, 11].

RBM works in two phases. In the first phase, the input layer is taken and
using the concept of weights and biases the hidden layer is activated. This
process is termed as the Feed- Forward Pass (FFP). In FFP the positive and
the negative association between the visible and hidden unit is determined.
Since there is no output layer, in the second phase the attempt is made to
reconstruct the input layer through the activated hidden states. This process is
termed as Feed- Backward Pass (FBP). Here, in FBP, we are just backtracking
the input layer through the activated hidden neurons. After performing FBP
the input is reconstructed through the activated hidden state. For this back-
tracking effort we can then calculate the error and adjust the weights of the
neurons in the hidden layer in such a way that the reconstructed input and the
original input are close to each other [1–3, 11].

In summary, the DBN is a kind of DNN, which is composed of stacked
layers of RBM. It is a random and generative model. Here, the output of each
RBM layer acts as the input for the next RBM layer. DBNs can be used to
solve unsupervised learning tasks to reduce the dimensionality of features
and can also be used to solve supervised learning tasks, i.e., to build clas-
sification models or regression models. To train a DBN, there are two steps,
layer- by- layer training and fine- tuning. Layer- by- layer training refers to unsu-
pervised training of each RBM, and the fine- tuning refers to the use of error
back- propagation algorithms to fine- tune the parameters of the DBN after the
unsupervised training is finished [1–3, 11].

Predictive Analytics Using Deep Neural Networks 179

EXERCISE

1. The following is TRUE about DNNs
 A. It is easier to train.
 B. The model is simple.
 C. It is prone to overfitting.
 D. The number of neurons per layer cannot vary.
 E. The number of layers is constant in a DNN model.

2. Download the Boston Housing dataset (discussed in lesson 8) and extract a ran-
dom sample containing 75% of the instances from this dataset. First, summarize
this dataset. Second, use the DNN classifier to determine the median value of
owner- occupied homes using all the 13 predictors. For validation testing, split
the dataset into a ratio of 70:30. Clearly highlight the choices for the hyper-
parameters used in the DNN modeling and summarize the performance of the
classifier.

3. Repeat all the instructions provided in question 2. This time vary the number
of layers of the DNN and the number of neurons in each layer in an increasing
order. Do you notice an improvement over the performance of the DNN classi-
fier with an increase in the number of layers and the number of neurons per layer.

4. Discuss the strategies you will employ to choose an appropriate value for the
hyperparameters, batch size, and the number of epochs, while training the DNN.

5. An _________________ consists of multiple layers of nodes in a directed graph
with each layer fully connected to the next layer
 A. Both ResNet and GoogLeNet
 B. Multilayer Perceptron
 C. ResNet
 D. GoogLeNet
 E. None of the above

6. A DNN with multiple hidden layers where the neuron in layer 1 is connected to
a neuron in layer 2 but not with a neuron in layer 1 is
 A. DBN
 B. Multilayer Perceptron
 C. CNN
 D. RNN
 E. All the above

REFERENCES

 1. Dangeti, P. (2017). Statistics for Machine Learning. Packt Publishing Ltd., ISBN
978- 1- 78829- 575- 8.

 2. Prakash, P. K. S., Achyutuni, S. K. R. (2017). R Deep Learning Cookbook. Packt
Publishing Ltd., ISBN 978- 1- 78712- 108- 9.

180 What Every Engineer Should Know About Data-Driven Analytics

 3. Hodnett, M., Wiley, JF. (2018). R Deep Learning Essentials. 2nd Edition, Packt
Publishing Ltd., ISBN 978- 1- 78899- 289- 3.

 4. Moolayil, J. (2018). Learn Keras for Deep Neural Networks: A Fast- Track Approach to
Modern Deep Learning with Python. 1st Edition, Apress, ISBN 978- 1484242391.

 5. Culurciello, E. (2017). “Neural Network Architectures”, retrieved from https://towards
datascience.com/neural- network- architectures- 156e5bad51ba, retrieved on July 27, 2022.

 6. Mostafa, B. M., El- Attar, N., Abd- Elhafeez, S., Awad, W. A. (2020). Machine and
Deep Learning Approaches in Genome: Review Article. Alfarama Journal of Basic and
Applied Sciences. doi: 10.21608/ajbas.2020.34160.1023.

 7. Koutsoukas, A., Monaghan, K. J., Li, X., Huan, J. (2017). Deep- Learning: Investigating
Deep Neural Networks Hyper- Parameters and Comparison of Performance to Shallow
Methods for Modeling Bioactivity Data. Journal of cheminformatics, 9(42), 1–13.

 8. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z. (2016). Rethinking the
Inception Architecture for Computer Vision. IEEE conference on Computer Vision and
Pattern Recognition (CVPR), 2818–2826. doi: 10.1109/CVPR.2016.308.

 9. LeDell, E. (2018). “user! Machine Learning Tutorial”, retrieved from https://koalaverse.
github.io/machine- learning- in- R/, retrieved on July 27, 2022.

 10. Rendyk. (2021). “Tuning the Hyperparameters and Layers of Neural Network Deep
Learning”, retrieved from https://www.analyticsvidhya.com/blog/2021/05/tuning- the-
hyperparameters- and- layers- of- neural- network- deep- learning/, retrieved on July 27,
2022.

 11. Kalita, D. (2022). “An Overview of Deep Belief Network (DBN) in Deep Learning”,
retrieved from https://www.analyticsvidhya.com/blog/2022/03/an- overview- of- deep-
belief- network- dbn- in- deep- learning/, retrieved on July 27, 2022.

 12. n.d. (2021). “Deep Neural Network in R”, retrievedfrom https://www.r- bloggers.
com/2021/04/deep- neural- network- in- r/, retrieved on July 27, 2022.

https://towardsdatascience.com
https://towardsdatascience.com
http://dx.doi.org/10.21608/ajbas.2020.34160.1023
http://dx.doi.org/10.1109/CVPR.2016.308
https://koalaverse.github.io
https://koalaverse.github.io
https://www.analyticsvidhya.com
https://www.analyticsvidhya.com
https://www.analyticsvidhya.com
https://www.analyticsvidhya.com
https://www.r-bloggers.com
https://www.r-bloggers.com

181DOI: 10.1201/9781003278177-9

Convolutional Neural
Networks (CNN) for
Predictive Analytics

9

We have already discussed the basics of neural networks and deep neural networks. In
this chapter, we will discuss the Convolutional Neural Network (CNN). A CNN also
referred to as a ConvNet is a deep learning algorithm used for classifying images and
recognizing objects within images. CNN has provided many successful results both
in the area of computer vision and in NLP. For example, Facebook uses CNN as an
integral part of their algorithm that automatically tags images, Google uses CNN for
searching images, Amazon uses CNN as an integral part of their product recommen-
dation systems, and Instagram uses CNN for image search and recommendations. But
CNN can be used for applications beyond just image processing because many prob-
lems can be “visualized” as images. For example, the popular genealogical research
tool, Ancestry.com, uses CNNs to make inferences about relationships in family trees.

CNNs are inspired by the signal processing capabilities of neurons in the visual
cortexes of people and animals. A CNN takes an input image, assigns an importance
factor, i.e., learnable weights to various aspects and objects within the image, and
then attempts to differentiate one image from another. With most images one can
safely assume that all the neighboring pixels are closely related, and that their collec-
tive information is more relevant than any individual pixel. This means that each
pixel itself does not convey any information about other pixels. For example, in order
to recognize letters or digits, we need to analyze the dependency among the neigh-
boring pixels to determine the shape and size of the element. Generally, a pixel in an
image is organized in a two- dimensional (2D) grid in grayscale. Grayscale means
that each pixel can be either black or white (on or off) but the collective effect of a
small group of pixels can appear as varying shades of gray. If the image isn’t gray-
scale, it has a third dimension incorporating the pixel color [1, 2].

Now let’s consider the motivation behind the use of CNNs for image classifica-
tion. When feeding an image to a neural network we have to reshape it from 2D to a
one- dimensional (1D) array. In this process there can be a significant loss of informa-
tion. Since we are interested in the information pertaining to those neurons that are
closer to the neuron in the question, closely clustered neurons provide more relevant
information than the neurons that are further apart [1, 2].

Unlike neural networks, CNNs have the ability to consume information in one,
two, or three dimensions and produce an output of the same dimensionality. In addi-
tion, CNNs have several benefits when analyzing or classifying images. For example,
CNNs connect only those neurons that correspond to the neighboring pixels of the
image. Therefore, the neurons take input from only those neurons that are spatially

http://dx.doi.org/10.1201/9781003278177-9
http://Ancestry.com

182 What Every Engineer Should Know About Data-Driven Analytics

closed. This has a significant affect in reducing the number of weights since all neu-
rons are not interconnected; whereas in a neural network every neuron is connected
to every other neuron in the hidden layer. This aspect results in network not being
able to take advantage of the spatial proximity of the pixels in the image. In this case
there is no way for the neural networks to determine which pixels are close to each
other [1, 2].

Another salient feature of the CNN is parameter sharing, i.e., a limited number of
weights are shared among all neurons in a layer. This characteristic further reduces
the number of weights and helps fight the overfitting issue. Also, whenever the input
contains the same information, then the weights are shared and are neurons are
trained jointly.

In summary one of the main disadvantages of fully connected neural net-
works (FNN) is that it ignores the structure of the input data. All data feed to
the network must be first converted into a 1D numerical array. However, for
higher- dimensional arrays such as an image, it gets difficult to deal with such
conversion. Therefore, it is essential to preserve the structure of images, as there
is substantial hidden information stored inside them. This is where a CNN excels
as it considers the original structure of the images while processing them [1, 2].

A CNN’s primary function is to compress an image into a format that is easier to
process while preserving elements that are important for obtaining a good prediction.
The convolutional layer is the most important component of CNN. Convolution is an
important mathematical operation on two functions that produces a third function,
which expresses how the shape of one is modified by the other. In simple words two
matrices are multiplied to provide an output that is used to extract features from the
image. For example, the convolution between an image (let’s say function f) with a
filter function, g, will produce a new version of the image. See Sidebar 3 for a more
formal description of convolution [1, 2, 3].

CNNs use filters to identify image features, such as edges, straight lines, or arcs.
They can also search for certain important patterns or features in an image, for exam-
ple, a corner. CNNs also exhibit superior performance with image, speech and audio
inputs when compared to neural networks.

CNNs are composed of multiple filters or layers containing neurons which per-
form mathematical functions, i.e., calculate the weighted sum of multiple inputs, and
output an activation value of the resultant value. Filters of CNNs are designed to
search for certain characteristics in an image and detect whether or not the image
contains those characteristics. A filter is applied at different positions in an image,
until it covers the entire image. Thus, filters form a very critical element in a convolu-
tion layer, which itself is an important operator in a CNN.

There are mainly four different types of layers in a CNN namely [1, 2].

CONVOLUTION LAYER

The convolution layer is the first stage in a CNN. This is the layer where the convo-
lution operation takes place between the input image and the filters. Convolution is

Convolutional Neural Networks (CNN) for Predictive Analytics 183

carried out to reduce the overall size of the image, so that it is easier to process the
image in the following layers.

In order to classify an image, it is important to first identify all the important fea-
tures. For example, to identify a particular animal it is important to recognize the
features, such as eyes, ears, tail, etc. This recognition is what is done in a convolution
layer. In this layer, the filter is moved across the image to detect the essential features
and the rest are all ignored. Each stage of the image moving through the filters is
called a stride and the process of moving the image is called striding (see Figure 9.1)
[1, 2].

The results of the convolution layer are then passed through to the next stage,
which is mostly consumed by a non- linear activation function, such as the ReLU
function. Figure 9.2 shows an example of a convolution operation on an image [1, 2].

Now let’s discuss the parameters used for controlling the convolution operation.

PADDING AND STRIDES

Two parameters, i.e., padding and the strides are used to control the movement of the
convolution operation. When a convolution of size C C1 2× is applied to data of size
n m× the output will be n C m C− +()× − +()1 21 1 . If we want the output to be of the
same size as the input, then we can pad the input by adding zeros to the borders of
the images. This is how the first 3 3× convolution would be applied to the image with
padding (see Figure 9.3) [1, 2].

The second parameter that is applied to convolutions are the strides, which control
the movement of the convolution. The default value is 1, which means the convolu-
tion moves by one step each time, first to the right starting from the left, and then
down.

ReLU LAYER

In order to apply non- linearity to the convoluted layer the ReLU function is used,
which results in the creation of the convoluted feature map. We learned about the
ReLU function in Chapter 2. Images generally have patterns with some level of
non- linearity. When convolution is applied on the image there is a risk of losing the
non- linear patterns. This is because the convolution operations of multiplication and
addition are linear operators. So, a non- linear activation function, such as ReLU, is
used to preserve the non- linearity in the images [1, 2].

POOLING LAYER

The pooling layer is used to further reduce the size of the feature representation by
applying a function called a pooling function. There are different kinds of pooling
functions, such as average, max, min etc. Max pooling is widely used as it tends to
keep the maximum values of a feature map for each stride [1, 2].

The pooling layer is similar to the convolution layer where a sliding window is
used and the window slides over the feature map to find the max value within each
stride (see Figure 9.4).

184
W

h
at Every En

gin
eer Sh

o
u

ld
 K

n
o

w
 A

b
o

u
t D

ata-D
riven

 A
n

alytics

FIGURE 9.1 Striding of the filter over the image one step at a time. (Source: Figure adapted from Hodnett, M., and Wiley, J.F. (2018). “R Deep
Learning Essentials.” Packt Publishing Ltd., ISBN 978- 1- 78899- 289- 3.)

C
o

n
vo

lu
tio

n
al N

eu
ral N

etw
o

rks (C
N

N
) fo

r Pred
ictive A

n
alytics

185

FIGURE 9.2 An example of a convolution operation on the input image. (Source: Figure adapted from Hodnett, M., and Wiley, J.F. (2018).
“R Deep Learning Essentials”. Packt Publishing Ltd., ISBN 978- 1- 78899- 289- 3.)

186 What Every Engineer Should Know About Data-Driven Analytics

The window size in a pooling layer is typically less than that used in the convolu-
tion layer. The pooled feature map is then flattened to a 1D representation to be used
in a fully connected layer [1, 2].

Pooling layers are used in CNNs to reduce the number of parameters in the model
and therefore they contribute toward reducing overfitting. They can be thought of as
a type of dimensionality reduction. Please refer to Figure 9.4 for the following dis-
cussion of max pooling using a 2 x 2 block. The first block has the values 7, 0, 6, 6
and the maximum value of these is 7, so the output is 7. Note that padding is not
normally used with max- pooling and that it usually applies a stride parameter to
move the block. Here, the stride value is 2, so once we get the max of the first block,
we move across, 2 cells to the right [1, 2].

FULLY CONNECTED LAYER

In a CNN there can be multiple convolutions, ReLU, and pooling operations but
there is only a single last stage which is a fully connected layer. The fully connected
layer is the feed- forward of the neural network. The purpose of this step is to make
different predictions on the image dataset, such as classifying images [1, 2].

In the next section we will discuss the different hyperparameters that can be used
to tune the CNN model.

HYPERPARAMETERS OF CNNS

Let’s first understand the importance of tuning hyperparameters in a CNN. In a
CNN there can be many convolutional layers which are responsible for sequentially
extracting feature maps using the convolution kernels. Each convolutional layer can

FIGURE 9.4 Application of pooling operation (Max pooling) on the input image. (Source:
Figure adapted from Hodnett, M., and Wiley, J.F. (2018). “R Deep Learning Essentials.” Packt
Publishing Ltd., ISBN 978- 1- 78899- 289- 3.)

FIGURE 9.3 Padding and strides as part of the convolution operation. (Source: Figure
adapted from Hodnett, M., and Wiley, J.F. (2018). “R Deep Learning Essentials.” Packt
Publishing Ltd., ISBN 978- 1- 78899- 289- 3.)

Convolutional Neural Networks (CNN) for Predictive Analytics 187

contain several kernels which can convolve the input data from the previous layer to
generate the exact amount of scale invariant feature maps. The CNNs have the capa-
bility of extracting abstract information that are reserved deeply in raw image (data).
Therefore, the number of convolutional layers used in CNN is very much relevant to
its feature extraction capability.

The use of the number of kernels in each convolution layer and its size are very
relevant to the detail of the information that can be extracted from the image.
Application of the non- linear activation function transforms the extracted feature
maps elementwise potentially enabling the extraction of more complex features.
Therefore, the type of activation function used in each convolutional layer is very
much relevant to the convergence speed and to the gradient maintenance during the
learning process [4]. These arguments suggest that it is very important to carefully
tune the hyperparameters of the CNN model before training it. Table 9.1 lists the key
hyperparameters that can be tuned to build efficient CNN models [1, 2, 4].

TABLE 9.1
List of Key Hyperparameters to Tune CNN Models

Hyperparameters Description
Default
Value Data Type

Number of convolutional
layers

Used to specify the number of convolution
layers to be used in the CNN model

2 INT

Number of kernels in
each convolutional layer

Used to specify the number of kernels in
each convolution layer

64 INT

Kernel size in each
convolutional layer

Determines the length of the convolution
window

3 INT

Activation function in
each convolutional layer

Determines whether a neuron should be
activated or not by calculating the weighted
sum. It introduces non- linearity to the
output of a neuron.

ReLU STRING

Pooling size (if any) after
each convolutional layer

Specifies the pooling size of the polling
layer after each convolution layer.

2 INT

Number of dense layers The number of layers between the input
layer and the output layer. Usually good to
add more layers until the error no longer
improves.

2 INT

Connectivity pattern of
each dense layer

Specifies the connectivity pattern for the
fully connected layer.

Forward STRING

Number of neurons in
each dense layer

Specifies the number of neurons in the fully
connected layer.

128 INT

Weight regularization in
each dense layer

Specifies the connectivity pattern of each
dense layer which involves either L1
(lasso) or L2 (ridge regression) norms that
can be introduced to the loss function to
regularize each layer’s weights to prevent
overfitting.

L1 STRING

Dropout rate Drops out some units of the neural network
according to the desired probability to
address overfitting (see Sidebar 1)

0.5 FLOAT

(Continued)

188 What Every Engineer Should Know About Data-Driven Analytics

In addition to the hyperparameters listed in Table 9.1 there are several general
purpose hyperparameters that are used to build CNN models. These additional hyper-
parameters are [1, 2, 4]:

 1. Learning rules—these include stochastic gradient descent (SGD), adag-
rad, adadelta, rmsprop, etc. These rules use the value of a loss function
computed over the output of the network, and the expected output, to mod-
ify the weights of the neural network in a certain direction (gradient). This
effort is performed to reduce the value of the loss function.

 2. Number of filters—records the depth of the output of convolution, i.e., the
dimensionality of the output space in the convolution layer.

 3. Stride—is the distance on the input matrix that the kernel moves over. A
value greater than two is rare. This is an important parameter used in the
convolution layer.

 4. Zero- padding used in the convolution layer. When the filters do not fit the
input image, then all the elements that fall outside the input matrix are set to
zero. There are 3 types of padding:

 a. Valid padding—means no padding.
 b. Same padding—means the output is of the same size as the input.
 c. Full padding—increases the size of the output by adding zeros.

 5. Weight initialization—is the process of setting the weights of a neural net-
work to a small random value. For a neural network model, this is the start-
ing point for learning.

In order to determine the appropriate values for the hyperparameters the following
search patterns can be followed:

 1. Manual search—is mostly an ad hoc search pattern.
 2. Random search—a search space is defined as a bounded domain of values.

From this domain a random set of points are then sampled for search purposes.

TABLE 9.1 (CONTINUED)

List of Key Hyperparameters to Tune CNN Models

Hyperparameters Description
Default
Value Data Type

Batch size Defines the number of samples that will
be propagated through the network. The
weight is updated after every propagation.

50 INT

Epochs Defines the number of times the training set
passes through the neural network, or the
number of times the entire training data is
shown to the network while training.

10 INT

Learning rate Specifies how much to change the model in
response to the estimated error each time
the model weights are updated or how
quickly a network updates its parameters.

0.002 FLOAT

Convolutional Neural Networks (CNN) for Predictive Analytics 189

 3. Grid search—a search space is defined as a grid of hyperparameter values
and every position in the grid is evaluated.

In the next section we will perform image classification using a CNN model based
on the LeNet architecture (see Sidebar 2). This exercise will also highlight the tuning
of the hyperparameters discussed in the previous section.

IMAGE CLASSIFICATION USING A CNN MODEL BASED ON LENET
ARCHITECTURE

The MXNet package will be used here to realize the CNN model. To install and load
the MXNet package execute the following R code
install.packages("mxnet")
library(mxnet)

In addition to the MXNet package the following packages should also be installed
and loaded in R

install.packages("ggplot2",”reshape2”)
library(ggplot2)
library(reshape2)

For classification purpose, we will use the MNIST dataset that can be obtained
from this link https://apache- mxnet.s3- accelerate.dualstack.amazonaws.com/R/data/
mnist_csv.zip. After downloading the zip file from the link provided above, unzip the
folder. The downloaded folder will have two files namely train.csv and test.csv. Now
execute the following R script obtained from [2] to read data from the training dataset
and perform image classification using a CNN model.

dfFMnist <- read.csv("Location in your hard disk\\mnist_csv\\
train.csv", header=TRUE)

yvars <- dfFMnist$label
dfFMnist$label <- NULL

The training dataset contains images of handwritten digits 0 9−(), and all of the
images are of size 28 28× . The dataset contains of a total of 785 columns with the
first column containing the data label and the remaining 784 columns containing the
pixel values. The training dataset is then split into training and test set to get an unbi-
ased estimate of the accuracy of classification. The split is in the ratio of 90 10: where
90% of the data is used for training the model and 10% of the data is used for testing
the model. Earlier it was indicated that each image is represented as row of 784-pixel
values. The value of each pixel is in the range 0 to 255 which is linearly transformed
into the range of 0 to 1 by dividing each of the pixel values with 255. The input matrix
is then transformed to the column major format. The R script is provided below

set.seed(42)
train <- sample(nrow(dfFMnist),0.9*nrow(dfFMnist))
test <- setdiff(seq_len(nrow(dfFMnist)),train)
train.y <- yvars[train]
test.y <- yvars[test]

https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com
https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com

190 What Every Engineer Should Know About Data-Driven Analytics

train <- data.matrix(dfFMnist[train,])
test <- data.matrix(dfFMnist[test,])
rm(dfFMnist,yvars)
train <- t(train / 255.0)
test <- t(test / 255.0)

Both the training and the test datasets are reshaped here so that they are compatible
with the data format requirement in the MXNet package.

train.array <- train
dim(train.array) <- c(28, 28, 1, ncol(train))
test.array <- test
dim(test.array) <- c(28, 28, 1, ncol(test))
rm(train,test)

Now let’s output the number of instances for each digit (image) to make sure that the
dataset is balanced. Use the following R code:

table(train.y)

The dataset output looks almost balanced (see Figure 9.5).
The following R script is an implementation of the CNN model based on the

LeNet architecture. In this CNN model there are two sets of convolutional and pool-
ing layers and then a flat layer, and finally two dense layers with activation and
dropout.

act_type1="relu"
devices <- mx.cpu()
mx.set.seed(0)
data <- mx.symbol.Variable('data')

The First convolution layer
convolution1 <- mx.symbol.Convolution(data=data,

kernel=c(5,5),
num_filter=64)
activation1 <- mx.symbol.Activation(data=convolution1,

act_type="tanh")
pool1 <- mx.symbol.Pooling(data=activation1, pool_type="max",
kernel=c(2,2), stride=c(2,2))

The Second convolution layer
convolution2 <- mx.symbol.Convolution(data=pool1,

kernel=c(5,5),
num_filter=32)
activation2 <- mx.symbol.Activation(data=convolution2,

act_type="relu")
pool2 <- mx.symbol.Pooling(data=activation2, pool_type="max",
kernel=c(2,2), stride=c(2,2))

Convolutional Neural Networks (CNN) for Predictive Analytics 191

The flatten layer and then fully connected layers
flatten <- mx.symbol.Flatten(data=pool2)
fullconnect1 <- mx.symbol.FullyConnected(data=flatten,

num_hidden=512)
activation3 <- mx.symbol.Activation(data=fullconnect1,

act_type="relu")
fullconnect2 <- mx.symbol.FullyConnected(data=activation3,

num_hidden=10)
final softmax layer
softmax <- mx.symbol.SoftmaxOutput(data=fullconnect2)

Please refer to Sidebar 2 for more discussions on the LeNet and other architectural
options for building CNN models.

Now let’s run the model. The R script for running the model is as follows:

devices <- mx.gpu()
mx.set.seed(0)
model2 <- mx.model.FeedForward.create(softmax, X=train.array,

y=train.y,
ctx=devices,array.batch.size=128,
num.round=10,
learning.rate=0.05, momentum=0.9,
wd=0.00001,
eval.metric=mx.metric.accuracy,
epoch.end.callback=mx.callback.log.train.metric(1))

Now we’ll evaluate the model by obtaining the confusion matrix and the perfor-
mance measure, accuracy, which are both shown in Figures 9.6 and 9.7, respectively.

The R script for evaluating the performance of the CNN model based on the
LeNet architecture is as follows:

evaluate model
preds2 <- predict(model2, test.array)
pred.label2 <- max.col(t(preds2)) - 1
res2 <- data.frame(cbind(test.y,pred.label2))
table(res2)
accuracy2 <- sum(res2$test.y == res2$pred.label2) / nrow(res2)
accuracy2

We note here that the classification accuracy is around 98%.
Let’s quickly examine the details of the CNN model built in this exercise. The

architecture of LeNet has been programmed using the MXNet package. Here, the
LeNet architecture has two convolutional groups and two fully connected layers.

FIGURE 9.5 Number of instances for each digit (image) in the training dataset.

192 What Every Engineer Should Know About Data-Driven Analytics

The convolutional groups in- turn have a convolutional layer, followed by an activa-
tion function and then a pooling layer. This combination of layers is very common
for image classification tasks. The first convolution layer has 64 blocks of 5 5× size
with no padding. The pooling layers have been configured with the Max pooling
capability. The stride is configured to 2. The fully connected layer has two layers, one
with 512 nodes and the other with 10 nodes. Finally, the softmax activation function
is used to convert the numeric quantities in this layer into a set of probabilities for
each category [1, 2].

SUMMARY

This focus of this chapter was to introduce to the CNN architecture and the differ-
ent hyperparameters which can be tuned to effectively perform image classification.
To this end only the LeNet architecture was discussed here in detail in addition to
explaining the general components of the CNN architecture. CNNs are best suited for
the image classification but recent advances in the CNN architecture designs includ-
ing the GoogLeNet and ResNet have found many applications in the area of NLP.

SIDEBAR 1 DROPOUT
It is a form of regularization which aims at preventing the model from overfit-
ting. Overfitting occurs when the model attempts to memorize parts of the
training dataset but is not as accurate on unseen test data. Overfitting can
be checked by determining the gap between the accuracy on the training
set against the accuracy on the test set. If performance is much better on the
training dataset compared to the test dataset, then the model is overfitting.
Dropout refers to removing nodes randomly (based on random distribution)

FIGURE 9.6 Confusion matrix demonstrating the performance of the CNN model based on
the LeNet architecture.

FIGURE 9.7 Classification accuracy of the CNN model based on the LeNet architecture.

Convolutional Neural Networks (CNN) for Predictive Analytics 193

from a network temporarily during the training process. It is usually only
applied to hidden layers, and not on the input layers. During each forward
pass, a different set of nodes is removed, thus the network is different each
time. Another way to look at dropout is that each node in a layer must learn to
work with all the nodes in that layer. Dropouts also result in preventing one or
more number of nodes in a layer from getting large weights and dominating
the outputs from that layer [1, 2].

SIDEBAR 2 CNN ARCHITECTURES [1, 2, 3]
There are four different types of CNN architectures namely LeNet, AlexNet,
GoogLeNet, and ResNet. Here, we will briefly discuss about each of the
above- mentioned architectures.

LeNet: In the LeNet architecture the network has 5 layers with learnable
parameters and hence is named as LeNet. LeNet consists of an input
layer, 3 sets of convolutional layers with 2 average pooling layers in
between them. After the convolutional and pooling layer, there are 2
fully connected layers. One of the two is an output layer.

AlexNet: The AlexNet architecture is very similar to the LeNet archi-
tecture. However, AlexNet is much larger and deeper, and it stacks
convolutional layers directly on top of each other instead of stacking
a pooling layer on top of each convolutional layer. AlexNet has 8 lay-
ers with learnable parameters. The architecture of AlexNet consists of
an input layer, 2 sets of combination of convolution and max pooling
layers, 3 convolutional layers, a max pool layer, 2 sets of combina-
tion of dropout and fully connected layer followed by an output fully
connected layer.

GoogLeNet: GoogLeNet is the CNN architecture used by Google to win
ILSVRC (ImageNet Large Scale Visual Recognition Challenge) 2014
classification task. The architecture consists of a 22- layer deep CNN
with small convolutions, called “inceptions,” batch normalization,
and other techniques to reduce the number of parameters from 60
million in previous architectures to four million. GoogLeNet CNN
architecture is computationally expensive. To reduce the parameters
that must be learned, it uses heavy unpooling layers on top of CNNs
to remove spatial redundancy during training and also incorporates
shortcut connections between the first two convolutional layers
before adding new filters in later CNN layers.

ResNet: ResNet is a CNN architecture that was developed by Kaiming
et al. to win the ILSVRC 2015 classification task. There are 152 layers
in the network, with over one million parameters. Like GoogLeNet,
it uses a lot of batch normalization. ResNet employs an innova-
tive design which allows it to run many more convolutional layers
without increasing the complexity. CNNs are mostly used for image

194 What Every Engineer Should Know About Data-Driven Analytics

classification tasks with 1000 classes, but ResNet shows that CNNs
can also be used successfully to solve NLP problems like sentence
completion or machine comprehension, where it was used by the
Microsoft Research Asia team in 2016 and 2017, respectively. The
CNN architecture ResNet is computationally efficient and can be
scaled up or down to match computational power of GPUs.

SIDEBAR 3 CNN AND VOLTERRA SERIES
The convolution operation is one of the most important tools in signal and
image processing and many other engineering applications. It has important
theoretical properties and practical applications. Let’s formalize the notion of
convolution and relate it to an important multidimensional system concept
that has important applications, including in data analytics [5, 6].

Let u be a discrete time input function that is bounded and time limited.
Also consider a system represented by h, which is another discrete time,
bounded and time- limited function. While h, which is often called a kernel,
could represent any kind of system, it could be some kind of filter. In any
case, the one- dimensional discrete convolution of u with h, denoted ()()h u k∗ is
given by an infinite sum [5, 6]:

y k h u k h j u k j
j

() ()() () ()= ∗ = −
=−∞

∞

∑

where the output y is called the response of the system (or kernel) h to input
u. This is the standard one- dimensional convolution form. There are also
continuous versions of this convolution, but we are interested in the discrete
form only.

Higher- order convolutions can be obtained as well. Consider, for example,
the discrete two- dimensional input function u(k1,k2) and the discrete two-
dimensional kernel h. Then the two- dimensional convolution of u with h, is
denoted

y k k h u k k h j j u k j k j
j j

(,) ()(,) (,) (,, ,1 2 1 2 1 2 1 1 2

1 2

= ∗ = − −
=−∞ =−∞

∞ ∞

∑∑ 22)

For our purposes, both u and h are bounded and time- limited functions.
This form is convenient for two- dimensional digital images. In a similar way
3- , 4- , and higher- order convolutions can be expressed [5, 6].

Now consider a system described by an infinite sum of homogeneous
terms and multidimensional convolution operations:

y k h j j u k j u k j
n

N

j j

n n n

n

() (, ,) () ()= … … − … −
= =−∞

∞

=−∞

∞

∑∑ ∑
1

1 1

1

Convolutional Neural Networks (CNN) for Predictive Analytics 195

EXERCISE

1. Unlike neural networks, ____________ has the ability to consume infor-
mation in one- ,two- , or three- dimensions and produce an output of the same
dimensionality
 A. ANN
 B. RNN
 C. DNN
 D. CNN
 E. CNN and RNN

2. Download the MNIST dataset (discussed in Chapter 9). First, summarize this
dataset. Second, use the CNN model based on the AlexNet architecture to deter-
mine the label of the images using all the predictors. For validation testing, split
the dataset into a ratio of 80:20. Clearly highlight the choices for the hyperpa-
rameters used in the AlexNet- based CNN modeling and summarize the perfor-
mance of the classifier.

3. Repeat all the instructions provided in question 2. This time build the CNN
model based on the ResNet architecture to determine the label of the images

is called a discrete Volterra system of order N . Here, y(k) is also known
as a Volterra series. The hi are called kernel functions and the u() form a class
of degree- n input functions. To ensure convergence, assume all functions are
bounded and have compact support. There is also a continuous formulation of
Volterra systems [5, 6].

The Volterra series was discovered in the early 1880s but were only a
mathematical curiosity until the 1940s when Norbert Weiner began to use
them to model control systems. Since then, they have been used in signal
and image processing and systems analysis. One of this text’s authors was
studying the relationship of Volterra series to morphological (set based) image
processing and massive parallel computers in the late 1980s as part of his
doctoral research [5, 6]. This work largely lay dormant due to the previously
noted AI winter. More recently, however, Volterra series have been used to
model perceptrons [Marmarelis, Vasilis Z., and Xiao Zhao. “Volterra mod-
els and three- layer perceptrons.” IEEE Transactions on Neural Networks 8.6
(1997): 1421– 1433]. Li et al. recently showed that convolutional neural net-
works can be approximated by a finite Volterra series, whose order increases
exponentially with the number of layers and kernel size increases exponen-
tially. [Li, Tenghui, et al. “Understanding Convolutional Neural Networks
from Theoretical Perspective via Volterra Convolution.” arXiv preprint
arXiv:2110.09902 (2021).]

Perhaps Volterra series will play a further role in data analytics and AI,
clearly showing that some theoretical concepts can take centuries or more to
find real- worsld applications.

196 What Every Engineer Should Know About Data-Driven Analytics

on the MNIST dataset using all the predictors. Compare the performance of the
ResNet architecture and the AlexNet architecture–based CNN models.

4. Compare the different architectures of CNN for image processing applications?

5. One of the listed hyperparameters is used to drop units of neural networks
according to the desired probability to address overfitting
 A. Epochs
 B. Dropout rate
 C. Learning rate
 D. Batch size
 E. None of the above

6. Discuss the importance of the pooling layer? What are the different types of
pooling functions that are available?

REFERENCES

 1. Dutta, S. (2018). Reinforcement Learning with TensorFlow. Packt Publishing Ltd.,
ISBN 978- 1- 78883- 572- 5.

 2. Hodnett, M., Wiley, J. F. (2018). R Deep Learning Essentials. Packt Publishing Ltd.,
ISBN 978- 1- 78899- 289- 3.

 3. Zhu, W., Yeh, W., Chen, J., Chen, D., Li, A., Lin, Y. (2019). “Evolutionary Convolutional
Neural Networks Using ABC,” Proceedings of the 11th International Conference on
Machine Learning and Computing, pp. 156–162.

 4. Liu, P., Zeng, Z., Wang, J. (2017). Multistability of Delayed Recurrent Neural Networks
with Mexican Hat Activation Functions. Neural Computation, 29(2), 423–457.

 5. He, K., Zhang, X., Ren, S., Sun, J. (2015). “Deep Residual Learning for Image
Recognition”. doi:10.48550/arXiv.1512.03385.

 6. Laplante, P, (1990). On Volterra series and morphological operations. PhD Dissertation,
Stevens Institute of Technology, Hoboken, NJ.

http://dx.doi.org/10.48550/arXiv.1512.03385

197DOI: 10.1201/9781003278177-10

Recurrent Neural
Networks (RNNs) for
Predictive Analytics

10

In earlier chapters we discussed the basics of Deep and Convolutional Neural
Networks. Our next frontier will be to explore another well- known deep neural net-
work architecture—Recurrent Neural Networks.

RECURRENT NEURAL NETWORKS

A Recurrent Neural Network (RNN) is a type of artificial neural network that uses
sequential or time series data as an input, output, or both. RNNs are very effective
because of their architecture, which aggregates the learning from the past datasets
and uses them along with the new data to enhance the learning process [1–4]. This
unique functionality helps them to capture the sequence of events, which wasn’t pos-
sible in other (feed forward) neural networks. For example, consider a time series
data related to audio, video, or the stock market where the sequence of events matters
a lot. Collective learning from these datasets can help the model to capture the under-
lying trend. The ability to perform sequence- based learning is what makes RNNs
highly effective.

Let’s discuss a problem related to sequence- based learning and see how RNNs
can provide the solution to the problem. Imagine a sequence of events at each point
in time on which we need to decide about the sequence of events. If the sequence is
stationary, then a classifier with similar weights for any time step can be enough to
predict the outcome. However, if the same classifier is used at different time step,
then the weights of the classifier will differ [4].

Conversely, when training is performed on the entire dataset containing data for
all time steps then the weights of the classifier will be the same, but the sequence-
based learning will be hampered. Therefore, our solution should be to share the
weights over different time steps and also use what we have learned in previous time
steps up to and including the last step.

It is well- known that neural networks should be able to consider learning from the
past. In order to remember further back, a deeper neural network would be required.
This neural network would need a single model that can summarize the past and
provide that information, along with the new information, to the classifier. Therefore,
in an RNN with input vector X and output vector Y, the following parameters are
computed at any time step t:

h W h X bt h t t h= +()−tanh ;1

http://dx.doi.org/10.1201/9781003278177-10

198
W

h
at Every En

gin
eer Sh

o
u

ld
 K

n
o

w
 A

b
o

u
t D

ata-D
riven

 A
n

alytics

FIGURE 10.1 Comparison of RNN (on the left) and feed-forward neural networks (on the right). (Source: Figure adapted from Eliasy, A., Przychodzen,
J. (2020). “The role of AI in capital structure to enhance corporate funding strategies.” Array 6, 100017, ISSN 2590- 0056, https://doi.org/10.1016/j.
array.2020.100017. 1–13.)

Recurrent Neural Networks (RNNs) for Predictive Analytics 199

where Wh and bh are the weights and biases shared over time, tanh is the activation
function, and h Xt t−1; refers to the concatenation of the two sets of information. Here,
the dimension of the Xt is n d× where n is the number of samples or rows in the
dataset and d is the number of dimensions or columns. The dimension ht−1 of is given
by n l× and the concatenation of the two sets of information will result in a matrix of
size n d l× +() [2].

Once the forward propagation task is completed, the next task would be to mini-
mize the overall loss by backpropagation. The total loss is the summation of loss
across all time steps. Therefore, given a sequence of X values and the corresponding
sequence of output Y values, the total loss is given as [2]:

()
1 1

ˆlog
t t

i
i

i i

L L yy
= =

 = = − ∑ ∑

where ŷ is the predicted output.
As noted, RNNs are commonly used for ordinal or temporal problems, such as

language translation, Natural Language Processing (NLP), speech recognition, and
image captioning. These applications can be found in popular applications such as
Apple’s Siri intelligent assistant, many voice searching apps, and Google Translate.

It is important to understand the main difference between the RNN and feed-
forward CNNs. RNNs are distinguished from their counterparts because of their use
of memory. RNNs take information from prior inputs to influence the current input
and output. In Figure 10.1, we can see that the output of the RNN depends on the
prior elements within the sequence. This means that the future events could be help-
ful in influencing or determining the output of a given sequence. Unidirectional
RNNs don’t account for these events in their predictions [5].

Another distinguishing characteristic of RNNs is that they share parameters across
each layer of the network—feed- forward networks have different weights across
each node. However, in the RNN the weights of the parameters are still adjusted in
the process of backpropagation and gradient descent to facilitate reinforcement
learning.

Now let’s discuss one of the most prominent structures of the RNN, which is Long
Short- Term Memory.

Long Short-term memory

Generally, RNNs fail to handle dependencies on a long- term basis. When the dis-
tance between the output data point in the output sequence and the input data point in
the input sequence increases, the RNNs fail in connecting the relationship or infor-
mation between them. This phenomenon is common in text- based tasks where the
length of sequences is long. The Long Short- Term Memory (LSTM) architecture,
shown in Figure 10.2, is capable of handling these long- term dependencies [1, 3, 6].

The LSTM architecture has a chain structure that contains four neural networks
and different memory blocks called cells. The main idea of LSTM networks is the
cell state, which is the line that runs horizontally through the structure of LSTM in

200 What Every Engineer Should Know About Data-Driven Analytics

Figure 10.2. It can be seen that it works as a conveyor belt moving through the entire
chain with only limited minor linear interactions, so that the information flows
throughout without any change. The other arrows function as doors that interact with
the cell status observing what information is really relevant to allow its passage. In a
LSTM the information is retained by the cells and the memory manipulations are
done by the gates. There are three gates represented as σ (see Figure 10.2) namely:

Forget gate

The information that is no longer useful in the cell state of a LSTM is removed using
the forget gate. Figure 10.3 shows the cross- section view of the LSTM of Figure 10.2
highlighting the forget gate.

In Figure 10.3, two inputs xt (input at a particular time) and ht−1 (output from the
previous cell) are fed to the gate and multiplied using the weight matrices followed
by the addition of bias. The resultant value is passed through an activation function
which gives a binary output. Note here that based on the output of the cell state, either
the piece of information is forgotten or retained.

Input gate

The addition of useful information to the cell state of a LSTM is accomplished by
an input gate. Figure 10.4 shows the cross- section view of the LSTM of Figure 10.2
highlighting the input gate.

FIGURE 10.2 Internal structure of LSTM. (Source: Figure adapted from https://www.
tutorialexample.com/understand- the- effect- of- lstm- input- gate- forget- gate- and- output- gate-
lstm- network- tutorial/.)

Recurrent Neural Networks (RNNs) for Predictive Analytics 201

FIGURE 10.3 The forget gate. (Source: Figure adapted from https://www.tutorial
example.com/understand- the- effect- of- lstm- input- gate- forget- gate- and- output- gate- lstm-
network- tutorial/.)

FIGURE 10.4 The input gate. (Source: Figure adapted from https://www.tutorialexample.
com/understand- the- effect- of- lstm- input- gate- forget- gate- and- output- gate- lstm- network-
tutorial/.)

202 What Every Engineer Should Know About Data-Driven Analytics

First, the information is regulated using the sigmoid function and filtered to be
remembered, similar to the forget gate, using the inputs ht−1 and xt. Next, a vector is
created using the tanh function that gives an output ranging between −1 and +1,
which contains all the possible values from ht−1 and xt. Finally, the values of the vec-
tor and the regulated values are multiplied to obtain the useful information.

output gate

The task of extracting useful information from the current cell state of the LSTM and
presenting it as an output is done by the output gate. Figure 10.5 shows the cross-
section view of the LSTM of Figure 10.2 highlighting the output gate.

First, a vector is generated by applying tanh function on the cell. Then, the infor-
mation is regulated using the sigmoid function and filtered by the values to be
remembered using inputs ht−1 and xt. Finally, the values of the vector and the regu-
lated values are multiplied and sent to the output of the previous cell and as input for
the next cell.

more DetaILS oF the LStm

The key feature of the LSTM, the Ct helps the information to flow unchanged. Now
let’s discuss the forget gate layer, namely ft . The forget gate concatenates the last
hidden layer, i.e., ht−1 and the input layer xt and trains the neural network, resulting in
a number between 0 and 1 for each number in the last cell state Ct−1, where 1 means

FIGURE 10.5 The output gate. (Source: Figure adapted from https://www.tutorial
example.com/understand- the- effect- of- lstm- input- gate- forget- gate- and- output- gate- lstm-
network- tutorial/.)

Recurrent Neural Networks (RNNs) for Predictive Analytics 203

to keep the value and 0 means to forget the value. Therefore, the forget layer is used
to identify the information that needs to be retained and the information that needs to
be forgotten [2]. Mathematically,

f W h x bt f t t f= +()−σ 1;

Next, let’s look at the input gate layer it and the tanh layer ˆ ,Ct which identify what
new information needs to be added into one received from the past to update the
information, i.e., the cell state. The tanh layer results in a vector of values while the
input gate layer identifies which of those values to use for updating the information.
Therefore, the cell state Ct is the combination of the new information discussed above
and the information retained by the forget gate layer. Mathematically,

i W h x bt i t t i= +()−σ 1;

ˆ tanh ;C W h x bt C t t C= +()−1

Therefore,

C f C i Ct t t t t= × + ×−1
ˆ

The RNN is trained at the output gate layer ot which can be represented as [2]

o W h x b h o Ct o t t o t t t= +() = × ()−σ 1; tanhand

In summary, the LSTM cell incorporates the last cell state Ct−1, last hidden state
ht−1, and the current time step input xt, and outputs the updated cell state Ct and the
current hidden state ht .

In a way, LSTM is believed to be a modification to the RNN hidden layer, which
could overcome the vanishing gradient problem (see Side bar 1) that exists in RNNs
(see Figure 10.6) [4].

LSTMs work extremely well in a wide variety of problems. They are explicitly
designed to avoid problem of long- term dependency. This is accomplished by
remembering information for long periods of time as part of their basic behavior.

hyperparameterS For rnnS

In this section, we will discuss about the different hyperparameters of the RNN clas-
sifier. See Table 10.1 for the list of the hyperparameters used in architecting the RNN
classifier, their characteristics, and their descriptions [1–3, 6].

Let’s consider the task of text classification on the Reuters dataset to illustrate the
potential of the RNN (LSTM) classifier. The Reuters dataset can be accessed through
a function in the Keras library. This dataset consists of 11,228 records with 46
categories.

204
W

h
at Every En

gin
eer Sh

o
u

ld
 K

n
o

w
 A

b
o

u
t D

ata-D
riven

 A
n

alytics

FIGURE 10.6 Internal structure of the basic RNN and LSTM unit. (Source: Figure adapted from Jayawardhana, S. (2020). “Sequence Models
& Recurrent Neural Networks (RNNs),” Retrieved from https://towardsdatascience.com/sequence- models- and- recurrent- neural- networks- rnns-
62cadeb4f1e1, retrieved on June 18, 2022.)

R
ecu

rren
t N

eu
ral N

etw
o

rks (R
N

N
s) fo

r Pred
ictive A

n
alytics

205

TABLE 10.1
Hyperparameters of the RNN Classifier

Hyperparameters of
the RNN Classifier

Data
Type

Default
Values

Description

Size of RNN INT 256 This parameter records the size of the RNN hidden state. The rule of thumb for the RNN hidden state size is usually
between the size of the input and size of the output layers.

Number of Layers
for RNN

INT 1 This parameter records the number of layers in the RNN. One hidden layer is sufficient for the majority of the
problems. For improving the performance additional layers can be added but it is not guaranteed.

Model of RNN STRING lstm There are different RNN models such as Vanilla RNN (rnn), Gated Recurrent Unit (gru), Long Short- Term Memory
(lstm), etc.

Batch size INT 50 This parameter records the batch size. Let’s say there are 1050 training samples, and the batch size is set equal to
100. In this case the algorithm takes the first 100 samples (from 1st to 100th record) from the training dataset and
starts training the network. Next it takes the second 100 samples (from 101st to 200th record) and starts training the
network again. This procedure is repeated until all the records in the training sample have been used for training the
network.

Sequence Length INT 25 This parameter records the sequence length for the input data used for training the RNN. To find the optimal value
of the sequence length cross- validation can be performed either using the grid search or the Bayesian optimization.
Sequence length doesn’t really affect the model training performance.

Number of Epochs INT 25 One epoch is equal to one forward pass and one backward pass of all the training samples. To find the optimal number
of epochs, first calculate the RMSE of the training and test data for each epoch with different number of maximum
epochs. This prevents the model from overfitting and gives an approximated range of epochs to start with. This
method can be repeated by maintaining a constant epoch (previously selected) and testing the model with different
number of neurons.

Gradient Clipping
Value

FLOAT 5.0 When gradients are being propagated back in time, they can vanish as they are continuously multiplied by a number
less than one. This is called the vanishing gradient problem. On the other hand, gradients can also explode. Gradient
explodes when they get exponentially large from being multiplied by numbers larger than 1. Gradient clipping clips
the gradients between two numbers to prevent them from getting too small or too large.

(Continued)

206
W

h
at Every En

gin
eer Sh

o
u

ld
 K

n
o

w
 A

b
o

u
t D

ata-D
riven

 A
n

alytics

Hyperparameters of
the RNN Classifier

Data
Type

Default
Values

Description

Learning Rate FLOAT 0.002 This parameter records the RNN learning rate. If the learning rate is low, then training is more reliable, but to achieve
optimization it will take a lot of time because it takes more time to minimize the loss function. If the learning rate is
too high, then the training may not converge or even diverge. In this case the weight changes can be so huge that the
optimizer might overshoot the minimum and make the loss worse.

Decay Rate FLOAT 0.97 The decay rate is represented as rmsprop. After each iteration, the weights are multiplied by a factor slightly less than
1. This prevents the network weights from growing too large and can be seen as a gradient descent on a quadratic
regularization term. Weight decay specifies the regularization in the neural network.

GPU Memory FLOAT 0.666 This parameter records the percentage of GPU memory to be allocated to this process.
Dropout Rate FLOAT 0.02 The default interpretation of the dropout hyperparameter is the probability of training a given node in a layer, where

1.0 means no dropout, and 0.0 means no outputs from the layer. A good value for dropout in a hidden layer is
between 0.5 and 0.8. Input layers use a larger dropout rate, such as of 0.8.

TABLE 10.1 (CONTINUED)

Recurrent Neural Networks (RNNs) for Predictive Analytics 207

To begin with the following libraries need to be installed in R [6]

 • Keras
 • Tensorflow

See the R code below for installing the Keras and Tensorflow packages

install.packages("keras")
install.packages("tensorflow")

Now that the tensorflow package has been downloaded you will need to load the
library and install the tensorflow in your computer (see the R code below)

library(tensorflow)
install_tensorflow()

Now load the keras library

library(keras)

The next step is to load the Reuters dataset. The tokens (words) in the Reuters dataset
are ranked by how often they occur (in the training set) and the max_features parameter
controls how many distinct tokens (words) will be used in this modeling phase. In this
example, we will use all the tokens. The maxlen parameter is used to control the length of
the input sequences (input data) provided to the model. Here, we will choose to have the
same length for all the input sequences. If the sequences are longer than the maxlen vari-
able, then they are truncated; if they are shorter, then padding will be performed to make
the length equal to the value of the maxlen variable. Since the maxlen variable is set to 150
here the LSTM model expects 150 tokens as input per instance (see the R code below)

set.seed(42)
word_index <- dataset_reuters_word_index()
max_features <- length(word_index)
maxlen <- 150
skip_top = 0

reuters <- dataset_reuters(num_words = max_features,skip_top =
skip_top)

c(c(x_train, y_train), c(x_test, y_test)) %<-% reuters
x_train <- pad_sequences(x_train, maxlen = maxlen)
x_test <- pad_sequences(x_test, maxlen = maxlen)
x_train <- rbind(x_train,x_test)
y_train <- c(y_train,y_test)
table(y_train)

Finally, after merging the training and test sets, the distribution of the y variable
is visualized. The distribution of the number of instances (not shown here) across
46 classes suggests that the dataset is highly imbalanced. In the next step, we will con-
vert our text classification problem to a binary classification problem. The instances

208 What Every Engineer Should Know About Data-Driven Analytics

with the class label 3 will be re- labeled as 1 and the remaining instances with class
labels of 0,1,2,4,…,45 will be labeled as 0.

y_train[y_train!=3] <- 0
y_train[y_train==3] <- 1

To generate the training data, execute the following R code

table(y_train)

The resultant distribution of the dataset is shown in Figure 10.7.
Here, it can be seen that there are 7,256 instances of class 0 and 3,972 instances

of class 1.
The next section of the code builds the model. Note the use of the hyperparame-

ters here including the dropout rate, model of RNN, activation function, choice of the
optimizer, and the choice of the loss function. The batch size has been set to 32 and
the number of epochs is set to 10. The validation split should be a number between 0
and 1 and we have chosen it to be 0.9 here. The other important parameters for the
model are max length = 150, the size of the embedding layer = 32, and as mentioned
before the model is trained for 10 epochs (see the R code below). The summary of
the model is shown in Figure 10.8.

model <- keras_model_sequential() %>%
 layer_embedding(input_dim = max_features, output_dim =

32,input_length = maxlen) %>%
 layer_dropout(rate = 0.25) %>%
 layer_lstm(128,dropout=0.2) %>%
 layer_dense(units = 1, activation = "sigmoid")

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy",
 metrics = c("acc")
)
summary(model)
history <- model %>% fit(
 x_train, y_train,
 epochs = 10,
 batch_size = 32,
 validation_split = 0.9
)

The output for the model training is shown in Figure 10.9. Here, it can be seen that
the best validation accuracy was after epoch 5, which is 92.66%.

FIGURE 10.7 Distribution of training data for Reuters dataset.

R
ecu

rren
t N

eu
ral N

etw
o

rks (R
N

N
s) fo

r Pred
ictive A

n
alytics

209

FIGURE 10.8 LSTM model specifications.

210
W

h
at Every En

gin
eer Sh

o
u

ld
 K

n
o

w
 A

b
o

u
t D

ata-D
riven

 A
n

alytics

FIGURE 10.9 Model training output for different epochs.

Recurrent Neural Networks (RNNs) for Predictive Analytics 211

SUMMARY

The focus of this chapter was to introduce RNN architecture and the different hyper-
parameters that can be tuned to effectively perform text classification. To this end
only the LSTM architecture was discussed as a RNN structure. There are other RNN
structures such as the Gated Recurrent Units (GRU), Bidirectional LSTM, Stacked
Bidirectional LSTM, etc. The other RNN structures are not discussed here since they
are either similar to LSTM or use the LSTM as a building block.

The RNNs are best suited for the text classification as text is naturally sequential
and the RNN, particularly LSTM, takes a natural approach to remember the long-
term dependencies in the text sequences.

SIDEBAR 1 VANISHING GRADIENT PROBLEM
The vanishing gradient problem occurs when many layers using certain acti-
vation functions are added to the neural networks. In such a case the gradi-
ents of the loss function approach to zero which makes the network hard to
train [7].

For example, consider the sigmoid function s x
e x() =

+ −

1
1

. This function

compresses a large input space into a small input space, i.e., between 0 and
1. Therefore, a large change in the input of the sigmoid function will cause a
small change in the output. Hence, the derivative becomes small.

When the network is shallow with only a few layers, then it is not a signifi-
cant issue but when more layers are used, it can cause the gradient to be too
small for the training to work effectively. Generally, the gradients of neural
networks are found using backpropagation. During the backpropagation the
derivatives of the network are determined by moving through a single layer at
a time starting from the final layer to the initial layer.

According to the chain rule, the derivatives of each layer are multiplied
from the final layer to the initial layers. In this case when the hidden layers
use an activation like the sigmoid function the small derivatives get multiplied
together. Thus, the gradient decreases exponentially as we move from the final
layer to the initial layer. Here, a small gradient means that the weights and
biases of the initial layers will not be updated effectively when the training
session is iterated. Since the initial layers are most crucial for recognizing the
core elements of the input data, the overall accuracy of the entire network is
severely challenged [7].

SIDEBAR 2 THE GRADIENT DESCENT ALGORITHM
Gradient Descent is an optimization algorithm to find the minimum of a func-
tion (typically a cost function under constraints) using the first order derivative
where the objective is to minimize the cost function J w b,() with regards to
weights and bias, i.e., w and b. Here, the cost function J w b,() is the metric
also known as the loss function that determines how well or poorly a machine

212 What Every Engineer Should Know About Data-Driven Analytics

EXERCISE

1. One of the classifier listed below has the ability to perform sequence- based
learning
 A. ANN
 B. RNN
 C. DNN
 D. CNN
 E. CNN and RNN

learning algorithm performed with regards to the actual training output and
the predicted output. Mathematically, J w b,() is expressed as [2, 7]

() () () ()() ()()

=

−
= + − −∑

1

1 ˆ ˆ, log 1 log 1
m

i i i i

i

J w b y y y y
m

(10.1)

where m is the size of the training dataset, y i() ∈[]0 1, is the vector of outputs
and ˆ()y i is the vector of the predicted outputs. Here, it is important to note that
the classification task is non- convex and as a result we need to use the cross-
entropy loss such as the J w b,() as a cost function.

In an effort to minimize the J w b,() after numerous iterations, the following
steps are included

w
J w b
w

w− ×
∂ ()
∂

→α
,

b
J w b

b
b− ×

∂ ()
∂

→α
,

Here, α used in the above equations is referred to as the learning rate. The
learning rate is the rate at which the learning agent learns the new knowledge.
Thus α is the hyperparameter that needs to be assigned as a scalar value or as
a function of time. In each iteration the values of w and b are updated until
the value of the cost function reaches an acceptable minimum value [2, 7].

The Gradient Descent algorithm is all about moving down the slope of the curve
which is represented using the cost function J w b,() with regards to the parameters.
The gradient or the slope gives the direction of the increasing or decreasing slope if it
is positive or negative, respectively. The negative sign in Equation 10.1 is multiplied
with the slope to indicate that we need to move in the opposite direction. The descent
is controlled by choosing an optimal value for the learning rate α . If α is very small,
then the convergence will take more time and while it is very high it will overshoot
and miss the minimum and diverge leading to a large number of iterations [2, 7].

A well- known disadvantage of Gradient Descent is that it can get “trapped” in
local minima, forgoing the optimal solution. Combining Gradient Descent with some
form of randomization, however, can help avoid being trapped in local minima.

Recurrent Neural Networks (RNNs) for Predictive Analytics 213

2. Download the Reuters dataset (discussed in lesson 10). Choose instances from
this dataset pertaining to any 5 different categories (out of the 46 categories).
First, summarize this new dataset. Second, use the RNN model based on the
LSTM architecture to determine the 5 categories of text using all the tokens. Set
the maxlen variable to 150. For validation testing, split the dataset into a ratio of
80:20. Clearly highlight the choices for the hyperparameters used in the model-
ing of the LSTM and summarize the performance of the classifier.

3. Repeat all the instructions provided in question 2. This time set the maxlen vari-
able to 250. Does increasing the value of the maxlen variable improve the per-
formance of the classifier?

4. What is the vanishing gradient problem? How does LSTM mitigate the vanish-
ing gradient problem?

5. The LSTM architecture has a chain structure that contains four neural networks
and different memory blocks called ___________
 A. Input gate
 B. Forget gate
 C. Cells
 D. Output gate
 E. None of the above

6. Discuss the role and importance of the different gates within a LSTM cell?

REFERENCES

 1. Biswal, A. (2022). “Recurrent Neural Network (RNN) Tutorial: Types, Examples,
LSTM and More”, retrieved from Recurrent Neural Network (RNN) Tutorial: Types
and Examples [Updated] | Simplilearn, retrieved on June 18, 2022.

 2. Dutta, S. (2018). Reinforcement Learning with TensorFlow. Packt Publishing Ltd.,
ISBN 978- 1- 78883- 572- 5.

 3. Narwekar, A., Pampari, A. (2016). “Recurrent Neural Network Architectures”, retrieved
from Recurrent Neural Network Architectures (illinois.edu), retrieved on June 18, 2022.

 4. Jayawardhana, S. (2020). “Sequence Models & Recurrent Neural Networks (RNNs)”,
retrieved from https://towardsdatascience.com/sequence- models- and- recurrent- neural-
networks- rnns- 62cadeb4f1e1, retrieved on June 18, 2022.

 5. Eliasy, A., Przychodzen, J. (2020). The Role of AI in Capital Structure to Enhance
Corporate Funding Strategies. Array, 6, 100017, ISSN 2590- 0056, https://doi.
org/10.1016/j.array.2020.100017.1–13.

 6. Browniee, J. (2016). “Sequence Classification with LSTM Recurrent Neural Networks
in Python with Keras”, retrieved from Sequence Classification with LSTM Recurrent
Neural Networks in Python with Keras (machinelearningmastery.com), retrieved on
June 18, 2022.

 7. Wang, Chi- F. (2019). “The Vanishing Gradient Problem – The Problem, Its Causes,
Its Significance, and Its solution”, retrieved from https://towardsdatascience.com/the-
vanishing- gradient- problem- 69bf08b15484, retrieved on June 18, 2022.

https://towardsdatascience.com
https://towardsdatascience.com
https://doi.org/10.1016/j.array.2020.100017.1–13
https://doi.org/10.1016/j.array.2020.100017.1–13
https://towardsdatascience.com
https://towardsdatascience.com

https://taylorandfrancis.com

215DOI: 10.1201/9781003278177-11

Recommender Systems
for Predictive Analytics

11
In earlier chapters we discussed the basics of the neural and deep neural networks.
Here, we will discuss recommendation systems that are widely used in our day- to-
day online activities and many personal digital assistants. The rise in popularity of
YouTube, Amazon, Netflix, Facebook, and many other such web services has given
impetus for developing efficient recommender systems. A recommender system (RS)
or recommender engine (RE) is an algorithm designed to understand user behaviors
and suggest relevant items or actions to the users [1]. Recommender systems are
famously known for explaining user behavior and their buying patterns.

As an example, consider shopping on the Amazon website. How does Amazon
recommend books based on ones you have previously bought? This RE is an exam-
ple of a large- scale machine learning algorithm. It mines all the previously collected
and stored transaction data about book purchases and the characteristics of the buy-
ers, and looks for behavioral patterns. Once the patterns are identified, it is assigned
a weight, which is used to make recommendations. In Chapter 5 we discussed the
Market Basket technique and highlighted how the patterns are mined on transac-
tional data.

RE’s are used everywhere. In Facebook/LinkedIn, the RE recommends the most
probable people one may like to befriend or add them as professionals in their net-
work. Ancestry.com and other genealogical research sites use REs to suggest possi-
bly family matches. Therefore, both the RS and REs are a driving force for these
companies. RE can also be used in computer games (e.g., to suggest possible actions).
Sidebar 2 describes an application of a RE to the game “20 Questions.”

Generally, the concept of both RE and RS is to predict what people might like and
to uncover relationships between items/products to aid in the discovery process. In
that respect, they are both similar to a search engine. However, a search engine shows
results only when the user requests something while a RE/RS is more proactive in
nature. It presents users with relevant content that is not necessarily requested by the
user.

RS and RE are really critical in most of the industries as they can generate a huge
amount of income and profits. In this chapter, we will discuss the different paradigms
of RS/RE. For each of them, we will briefly show how they work, their theoretical
basis, and their strengths and weaknesses. In addition, a case study–based example
will be provided to compare the different RS/RE approaches using the R scripting
language.

http://dx.doi.org/10.1201/9781003278177-11
http://Ancestry.com

216 What Every Engineer Should Know About Data-Driven Analytics

CONTENT-BASED FILTERING

Content- based filtering uses the content or attributes of the item, together with a
notion of similarity between the two pieces of content, to generate similar items with
respect to the given item. For these types of approaches, the idea is to link the user
preferences with the item attributes [1].

For example, for a movie, attributes include genre, cast, storyline, and so on.
Recommendations to a user for a movie to watch would match these attributes, and
then select from the set of movies those with the highest user ratings from other
viewers (e.g., movies rated at least 4.5 out of 5 stars). The advantage of this approach
is that when a new item is added, it can be recommended to a user if it matches the
attribute preferences in their profile.

Content- based methods can suffer when limited content is available about the user
preferences or about the item in question. These approaches can result in non- unique
recommendations or poor recommendations. Cosine similarity is a well- known tech-
nique that can be used for recommending items to the user. Let’s look at this tech-
nique and illustrate this concept using an example.

COSINE SIMILARITY

Cosine similarity is a metric that is used to measure how similar things are irrespec-
tive of their size. In a mathematical sense it measures the cosine of the angle between
two vectors that is projected in a multidimensional space [1]. For an arbitrary thing,
each dimension represents a characteristic of that thing.

For example, suppose we are looking to determine the similarity between two
dogs along three dimensions: height, weight, and age. For simplicity let’s assume the
range of each dimension is a positive real number. Now consider dog 1, Arrow, whose
shoulder to ground height (in meters), weight (in kg) and age (in years) is represented
by the vector A = (0.2, 9.1,3.2). Now consider a second dog, Boomerang, who is
characterized by the vector B = (0.68, 27.2, 6.0).

The merit behind using this metric is that even if two similar things are separated
far apart in the Euclidean plane the chances are that they may still be oriented closer
together or be similar to each other. This metric measures the angle between the two
vectors and is interpreted as smaller the angle, higher the cosine similarity. Consider
the vectors →

A
 and →

B
 in a two- dimensional plane as shown in Figure 11.1. The

Cosine similarity is defined as

cosθ = =

= =

∑
∑ ∑

i

n

i i

i

n

i
i

n

i

A B

A B

1

1

2

1

2

where Ai and Bi are components of the vectors A and B.
As a quick example, let’s consider the cosine similarity for our dogs Arrow and

Boomerang:
A = (0.2, 9.1,3.2), B = (0.68, 27.2, 6.0).

Recommender Systems for Predictive Analytics 217

i

i iA B
=
∑ = ∗() + ∗() + ∗()() =

1

3

0 2 0 68 9 1 27 2 3 2 6 0 266 86.

i

iA
=
∑ = + + =

1

3
2 2 2 20 2 9 1 3 2 93 09. . . .

i

iB
=
∑ = + + =

1

3
2 2 2 20 68 27 2 6 0 776 30. . . .

Therefore, cos
.

. .
.θ =

∗
=266 856

93 09 776 302
0 307

A value of 0.307 indicates a low similarity between the two vectors, as the highest
possible value of cosine similarity is 1. This finding makes sense since clearly Arrow
is much smaller and younger than Boomerang.

For most applications, usually there are many more than three dimensions charac-
terizing the things. Let’s look at a higher dimensional example of cosine similarity.
Assume that in a 7- dimensional plane, there are two vectors →=

A
(, , , , , ,)2 2 1 0 2 3 4 and

→=
B

(, , , , , ,)1 2 3 0 5 8 4 and we would like to compute the cosine similarity between them.

i

i iA B
=
∑ = ∗ + ∗ + ∗ + ∗ + ∗ + ∗ + ∗ =

1

7

2 1 2 2 1 3 0 0 2 5 3 8 4 4 59(() () () () () () ())

i

iA
=
∑ = + + + + + + =

1

7
2 2 2 2 2 2 2 22 2 1 0 2 3 4 6 1644.

i

iB
=
∑ = + + + + + + =

1

7
2 2 2 2 2 2 2 21 2 3 0 5 8 4 10 908.

FIGURE 11.1 Vectors A and B in a multidimensional plane.

218 What Every Engineer Should Know About Data-Driven Analytics

Therefore,

cos
. .

.θ =
∗

=59
6 1644 10 908

0 877

A value of 0.877 indicates very high similarity between the two vectors. In this
case, if the vectors A and B were items then these items would be recommended to
the user given that either one of those two items was a previous preference indicated
by the user, i.e., if the user had already used or preferred A then B would be recom-
mended or vice- versa.

COLLABORATIVE FILTERING

The collaborative filtering approach is a form of wisdom- of- the- crowd. This
approach generates an estimated preferences of users for items based on the set of
preferences of many users for the item(s) in question. In short, this technique esti-
mates the preferences of users for the items which have not yet been rated/reviewed.
It works on the notion of similarity. This methodology determines similar users and
their ratings by mining similar preferences exhibited by other users. For example, If
the User A and User B have indicated similar rating for a movie X then they will give
a similar rating for the movie Y [1, 2].

Collaborative filtering provides many advantages over content- based filtering. In
collaborative filtering the content of the items does not necessarily tell the whole
story. Even when no information on an item is available, we can still predict the item
rating without waiting for a user to rate it. The collaborative technique also has the
capability to capture the change of user interests over the period of time. In addition
to that the collaborative filtering is also capable of capturing the inherent subtle char-
acteristics, i.e., if most users buy two unrelated items, then it is highly likely that
another user who shares similar interests with other users is also likely to buy that
unrelated item.

There are four collaborative- based filtering approaches [1]:

 1. User- based collaborative filtering (UBCF)
 2. Item- based collaborative filtering (IBCF)
 3. Singular value decomposition (SVD)
 4. Principal components analysis (PCA)

We discussed SVD and PCA in Chapter 2. Here, we’ll focus our discussion on UBCF
and IBCF.

User-Based CollaBorative Filtering (UBCF)

In the UBCF, the objective is to find the missing ratings for a user by first identify-
ing a neighborhood of similar users [1, 2]. Once the similar users have been identi-
fied, aggregation of their ratings is formed for prediction. The number of users in a

Recommender Systems for Predictive Analytics 219

neighborhood is determined by either using the KNN algorithm, i.e., by setting the
value of k, or by using a similarity measure with a minimum threshold. The two simi-
larity measures commonly used are the pearson correlation coefficient and cosine
similarity. The weakness of the UBCF algorithm is that the entire dataset has to be in
the memory, and it is very time consuming [1].

Let’s see an example to illustrate the UBCF algorithm. Consider the user- item
dataset containing the rating of four different films given by six different users (see
Figure 11.2).

Notice that the last entry, i.e., rating for the film 4 by user 6 is missing in Figure
11.2. The objective here is to use the UBCF algorithm to determine the missing value
of the rating. Using k =1, we can see that both “User 3” and “User 6” have provided
a rating of 5 for “Film 2.” Therefore, it is likely that the “User 6” would rate “Film 4”
as 4. In a similar manner, using k =1, we can see that both “User 5” and “User 6”
have provided a rating of 1 for “Film 1.” Therefore, it is likely that “User 6” would
rate “Film 4” as 1 or 4.

Higher values of k are not possible as there are no two users who have rated the
movies with same points. To summarize, the UBCF algorithm looks for two different
users who have provided similar ratings for k different items.

item-Based CollaBorative Filtering (iBCF)

The IBCF algorithm uses the similarity between the items and not the users to make
a recommendation. The assumption is that the user will prefer items that are similar
to the other items that they like. The strategy is to build a model by calculating a pair-
wise similarity matrix of all the items. The most commonly used similarity measures
are pearson correlation (see Chapter 3) and cosine similarity. The size of the similar-
ity matrix can be reduced by specifying the value of k, i.e., to retain only the k- most
similar items. However, limiting the size of the neighborhood significantly reduces
the accuracy thus resulting in poor performance of the algorithm [1, 2].

In Figure 11.3, Let’s assume that the last entry, i.e., rating for the film 4 by user 6
is missing. Using k =1, we can see that “User 5” has provided a rating of 1 for “Film
2” and “Film 4.”

Therefore, there is a high chance that “User 6” will rank “Film 4” as 5 because
“User 6” has already ranked “Film 2” as 5.

FIGURE 11.2 User-item dataset containing the ratings for films by users.

220 What Every Engineer Should Know About Data-Driven Analytics

HYBRID RECOMMENDATION SYSTEMS

A hybrid recommendation system (HRS) combines the content and collaborative
filtering method. The combination of the collaborative and content- based filtering
together can help in overcoming the shortcomings faced by each technique sepa-
rately and can prove to be more effective in some cases [3–5].

HRS approaches can be implemented in various ways. For example, one can com-
bine the content and collaborative- based methods to generate predictions separately
and then combine the prediction [3] (see Figure 11.4).

Alternatively, the capabilities of both the approaches can be added successively.
Several studies have advocated for the potentiality of this approach and suggest that
more accurate recommendations can be generated using the HRS.

There are 7 approaches to building the HRS [4, 5]. These are as follows.

Weighted: In the weighted recommendation system the outputs are taken from
each of the models and the results are combined using static weightings,
i.e., the weights do not change across the training and test sets. For example,
one can combine the content- based model and an IBCF model and assign a
50% weightage toward each model for the final prediction (see Figure 11.5).

FIGURE 11.3 User-item dataset containing the ratings for film with missing data.

FIGURE 11.4 Depiction of an HRS approach. (Source: Figure adapted from Verma, Y.
(2021). “A Guide to Building Hybrid Recommendation Systems for Beginners.” Retrieved
from https://analyticsindiamag.com/a- guide- to- building- hybrid- recommendation- systems-
for- beginners/, retrieved on July 9, 2022.)

Recommender Systems for Predictive Analytics 221

The benefit of using the weighted HRS is that one can consider multiple models
on the dataset to support the recommendation process in a linear way.

Switching: The switching HRS selects a single recommendation system based
on the given situation. The model is commonly used when the dataset is
sensitive at the item- level. A recommender selector criterion is set based on
the user profile or other features. The switching HRS approach introduces
an additional layer on top of the recommendation model, which select the
appropriate model to use (see Figure 11.6).

FIGURE 11.5 The Weighted HRS process. (Source: Figure adapted from Chiang, J. (2021).
“7 types of Hybrid Recommendation System” retrieved from https://medium.com/analytics-
vidhya/7- types- of- hybrid- recommendation- system- 3e4f78266ad8, retrieved on July 9, 2022.)

FIGURE 11.6 The switching HRS process. (Source: Figure adapted from Chiang, J. (2021).
“7 types of Hybrid Recommendation System” retrieved from https://medium.com/analytics-
vidhya/7- types- of- hybrid- recommendation- system- 3e4f78266ad8, retrieved on July 9, 2022.)

222 What Every Engineer Should Know About Data-Driven Analytics

This HRS is sensitive to the strengths and weakness of its constituent recommen-
dation model(s).

Mixed: The mixed hybrid approach first takes the user profile and the fea-
tures to generate different set of candidate datasets. These candidate data-
sets are then given as input to the recommendation model accordingly and
the predictions are combined to produce the recommendation result (see
Figure 11.7). The mixed HRS is able to make a large number of recom-
mendations simultaneously. The benefit of this approach is to fit the partial
dataset to the appropriate model in order to have better performance.

Feature combination: In feature combination HRS, a virtual contributing rec-
ommendation model is added to the system, which works as a feature engi-
neering mechanism on the original user profile dataset (see Figure 11.8).

FIGURE 11.7 Mixed HRS process. (Source: Figure adapted from Chiang, J. (2021). “7 types
of Hybrid Recommendation System,” retrieved from https://medium.com/analytics- vidhya/
7- types- of- hybrid- recommendation- system- 3e4f78266ad8, retrieved on July 9, 2022.)

FIGURE 11.8 Feature combination HRS process. (Source: Figure adapted from Chiang,
J. (2021). “7 types of Hybrid Recommendation System” retrieved from https://medium.com/
analytics- vidhya/7- types- of- hybrid- recommendation- system- 3e4f78266ad8, retrieved on July
9, 2022.)

Recommender Systems for Predictive Analytics 223

For example, the features of a collaborative recommendation model can be
injected into a content- based recommendation model. This HRS model is capable
enough to consider the collaborative data from the sub system while relying on one
model exclusively.

Feature augmentation: In this HRS a contributing recommendation model is
employed to generate a rating or classification of the user/item profile. This
is further used in the main recommendation system to produce the final
predicted result. The feature augmentation HRS improves the performance
of the core system without changing the main recommendation model. For
example, the user profile dataset can be enhanced with the determination of
the association rules (see Figure 11.9).

Here, the content- based recommendation model experiences improvement with
the addition of the augmented dataset.

Cascade: The Cascade HRS defines a strict hierarchical structure (see
Figure 11.10).

FIGURE 11.9 Feature augmentation HRS process. (Source: Figure adapted from Chiang,
J. (2021). “7 types of Hybrid Recommendation System” retrieved from https://medium.com/
analytics- vidhya/7- types- of- hybrid- recommendation- system- 3e4f78266ad8, retrieved on July
9, 2022.)

FIGURE 11.10 Cascade HRS process. (Source: Figure adapted from Chiang, J. (2021). “7
types of Hybrid Recommendation System,” retrieved from https://medium.com/analytics-
vidhya/7- types- of- hybrid- recommendation- system- 3e4f78266ad8, retrieved on July 9, 2022.)

224 What Every Engineer Should Know About Data-Driven Analytics

The main recommendation system produces the primary result, which is then used
by the secondary model to resolve minor issues in the primary result. For example,
breaking ties in the scoring.

Meta- level: The Meta- level HRS is similar to the feature augmentation HRS.
The contributing model in the meta- level HRS provides an augmented data-
set to the main recommendation model. However, unlike in the feature aug-
mentation HRS, the meta- level HRS replaces the original dataset with a
learned model from the contributing model, which then becomes the input
to the main recommendation model.

examples oF Using HyBrid reCommendation systems

Now that we have discussed the different RE and RS let’s explore their usage in the
Jester5k dataset obtained from the recommenderlab package. Here, we’ll use the R
language for scripting. The objective of this exercise will be to compare the perfor-
mance of the different RE and RS.

The Jester5k dataset consists of 5,000 ratings on 100 jokes which were sampled
from the Jester Online Joke Recommender System. This dataset was collected
between April 1999 and May 2003 and contains all user ratings on at least 36 jokes.
On the other hand, the package recommenderlab was developed by the Southern
Methodist University’s Lyle Engineering Lab. They have an excellent website with
supporting documentation which can be accessed using this link https://lyle.smu.
edu/IDA/recommenderlab/ [5, 6].

Execute the following R scripts to first install and load the recommenderlab pack-
age [7]

install.packages("recommenderlab")
library(recommenderlab)

The next step will be to load the Jester5k dataset in R

data(Jester5k)
Jester5k

Upon executing the above scripts, one should be able to see the output as shown in
Figure 11.11.

Now let’s focus on the modeling and evaluation part of the different RE algo-
rithms. We split the dataset into the ratio of 80::20 where 80% of the dataset will be
used for training and 20% of the dataset will be used for testing. Here, we’ll also
specify that, for the test set, the algorithm will be given 15 ratings. This means that
the other rating items will be used to compute the error. Additionally, we will also

FIGURE 11.11 Jester5k dataset summary.

https://lyle.smu.edu
https://lyle.smu.edu

Recommender Systems for Predictive Analytics 225

specify the threshold for a good rating which is set to be greater than or equal to 5.
To do so execute the following R scripts

set.seed(123)
e<- evaluationScheme(Jester5k, method="split",train=0.8,

given=15, goodRating=5)

Now that we have the training and test dataset, let’s begin to model and evaluate the
different REs namely the UBCF, IBCF, and SVD. In order to build and test the RE’s,
we will use the same function, Recommender() by merely changing the specification
for each technique. See the following R scripts below

ubcf <- Recommender(getData(e,"train"), "UBCF")
ibcf <- Recommender(getData(e,"train"), "IBCF")
svd <- Recommender(getData(e, "train"), "SVD")

Now, using the predict() function, we can obtain the predicted ratings for the 15
items in the test data across each of the algorithms. Execute the R script below

user_pred <- predict(ubcf, getData(e, "known"), type =
"ratings")

item_pred <- predict(ibcf, getData(e, "known"), type =
"ratings")

svd_pred <- predict(svd, getData(e, "known"), type =
"ratings")

In order to examine the error in the predictions on the test data the package pro-
vides the calcPredictionAccuracy() function. This function will output three metrics
namely RMSE, MSE, and MAE across all the REs (see Sidebar 1 for more details
about these metrics). Now execute the following R scripts.

P1 <- calcPredictionAccuracy(user_pred, getData(e,"unknown"))
P2 <- calcPredictionAccuracy(item_pred, getData(e, "unknown"))
P3 <- calcPredictionAccuracy(svd_pred, getData(e, "unknown"))

To examine the errors of the predictions for all the RE’s execute the R scripts pro-
vided below

error <- rbind(P1, P2, P3)
rownames(error) <- c("UBCF", "IBCF", "SVD")
error

From the output we can see that the SVD algorithm slightly outperforms the UBCF
and IBCF algorithm (see Figure 11.12). The RE algorithm that results in a lower
value for all the three metrics namely RMSE, MSE and MAE, is the best. This con-
clusion, as such, cannot be generalized because on a different partition of this dataset
the performance of the REs can differ. However, this exercise serves as a demonstra-
tion for how the different RE and RS can be compared against each other.

226 What Every Engineer Should Know About Data-Driven Analytics

SUMMARY

This chapter focuses on introducing the recommendation systems for predictive ana-
lytics. Here, we have discussed the algorithms for the content- based, collaborative
approaches for designing different hybrid recommendation systems. Despite being
robust the content- based filtering approaches suffer from making inaccurate recom-
mendations for new or inactive users. Even though collaborative approaches address
the limitations of content- based filtering it suffers from data sparsity for less popular
items with only few ratings. The hybrid- based filtering technique on the other hand
is essentially an ensemble approach that implements both the content- based and col-
laborative methods separately and combines their predictions. To illustrate the merits
of the hybrid approach, this chapter presents a case study on the Jester 5k dataset.

SIDEBAR 1 MAE AND RMSE
To evaluate a prediction, one should compute the deviation of the prediction
from the true value. This can be done using the metric Mean Average Error
(MAE) which is given as

()∈
= −∑

,

1 ˆMAE jl jl

j l

r r

where is the set of all user- item pairings j l,() for which we have predicted
ratings r̂jl and also known rating rjl which was not used for learning purpose by
a recommender model.

The Root Mean Square Error (RMSE) penalizes larger errors much stronger
than the MAE and thus is suitable for situations where small prediction errors
are not very important. The RMSE is given by the expression

()
()

∈
−

=
∑ 2

,
ˆ

RMSE
jl jl

j l
r r

Consider the confusion matrix provided below

Actual/Predicted Negative Positive
Negative a b
Positive c d

FIGURE 11.12 Performance metrics for all the REs.

Recommender Systems for Predictive Analytics 227

The error measure Mean Absolute Error (MAE) is given by the expression

MAE = =
+

+ + +
=
∑1

1
N

b c
a b c d

i

N

i

where N a b c d= + + + is the total number of items which can be recom-
mended and i is the absolute error of each item.

SIDEBAR 2 THE 20-QUESTION GAME
“20 Questions” (20Q) is a game that involves two players, the “subject” (usu-
ally a human) and the “interrogator” (another human or a computer program).
The role of the interrogator is to ask the subject a series of questions to deter-
mine a secret thing that the subject has chosen. The thing can be a physical
object, a plant, animal, or even a concept, though there are usually limita-
tions established. In its simplest form, the interrogator can ask up to 20 “yes”
or “no” questions before they must guess the secret thing, though they may
choose to guess before 20 questions have been asked.

Here’s an example of the gameplay. Suppose the subject has chosen as the
secret object a watermelon. The game proceeds with the interrogator’s ques-
tions followed by the subject’s answers:

It is something you can eat?
Yes

Does it have anything to do with salad?
No.

Does it roll?
Yes.

Is it shiny?
No.

Is it crunchy?
No.

Can it be used in a pie?
No.

Does it have a good smell?
Yes.

Is it striped?
Yes.

228 What Every Engineer Should Know About Data-Driven Analytics

EXERCISE

1. The following are the predicted output of a classifier on a labeled dataset con-
taining 12 instances. Construct (show) the confusion matrix and also compute

Does it weigh more than a duck?
Yes.

Does it burn?
No.

Is it smaller than a loaf of bread?
No.

Does it have leaves?
No.

Is it flexible?
No.

The interrogator now correctly guesses that the secret thing is a
watermelon.

It’s easy to see how this kind 20Q is a kind of recommender system. For
example, imagine the subject wishes to purchase a book, but does not know
which one. Using a series of questions (e.g., do you like fiction?) the recom-
mender system can guide the purchase.

While 20Q was first implemented through decision tree logic, this
approach is cumbersome and requires an extensive database of things.
Modern implementations of 20Q (as do recommender systems) use neu-
ral networks. Over time, as the weights are adjusted, the system learns and
improves its recommendations. These systems also support non- binary
answers such as “unknown,” “maybe,” or even allow the subject to answer
incorrectly.

20Q has an interesting history. It was a popular a parlor game in the mid-
19th century and may have existed earlier. A radio show based on the game
was broadcast in the 1940s and later appeared on television in the 1950s. In
the 1970s a computer program that could only guess animals was developed
and an electronic toy based on the game emerged shortly thereafter. A more
substantial version of a 20Q program was popular in the 1980s, but all of
the computer/electronic implementations of the game were essentially based
on decision trees. Once NN were discovered, the game was quickly imple-
mented there as a demonstration of AI’s potential.

You can play a NN- based version of the game at: http://www.20q.net/.
Some virtual assistants, such as Amazon’s Alexa, also provide this game. A
simple, electronic toy version of the game is also available, and it makes a
great gift for inquisitive children, teens, and adults.

http://www.20q.net

Recommender Systems for Predictive Analytics 229

the following metrics: Accuracy, Sensitivity, False Negative Rate, Precision, and
F1 score

 Source: Figure adapted from https://en.wikipedia.org/wiki/Confusion_matrix.

Consider the ratings of the user 1 to user 5 for 5 movies on a rating scale of 1–5 as
shown below

Movie 1 Movie 2 Movie 3 Movie 4 Movie 5

User 1 3 1 3 4 1
User 2 5 2 5 3 y
User 3 5 5 x 4 5
User 4 5 5 1 2 2
User 5 1 1 5 1 3

2. Using the UBCF and the k- NN algorithm where k = 2 the value of x should be
 A. 1
 B. 2
 C. 3
 D. 4
 E. 5

3. Using the IBCF and the k- NN algorithm where k = 2 the value of y should be
 A. 1
 B. 2
 C. 3
 D. 4
 E. 5

4. Determine the cosine similarity between two vectors X ={ }3 2 0 5, , , and
Y = { }0 5 2 3, , , .

5. What type of recommendation systems/recommendation engines will you pro-
pose for researches to identify articles in the area of predictive analytics? Discuss
the pros and cons of each recommendation system/engine.

6. Download the Jester 5k dataset (discussed in lesson 11) and extract a random
sample containing only 75% of the instances from the original dataset. On this
new dataset compare the performance of different recommendation systems
including SVD, UBCF, and IBCF. Perform validation tests after splitting the
new dataset in the ratio of 70:30 and report all the performance measures. Which
recommendation system has the best performance in the new dataset?

https://en.wikipedia.org

230 What Every Engineer Should Know About Data-Driven Analytics

REFERENCES

 1. Dangeti, P. (2017). Statistics for Machine Learning, Packt Publishing Ltd., ISBN
978- 1- 78829- 575- 8.

 2. Lesmeister, C. (2017). Mastering Machine Learning with R, Packt Publishing Ltd.,
ISBN 978- 1- 78728- 747- 1.

 3. Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. User Model
User- Adap Inter, 12, 331–370. doi:10.1023/A:1021240730564.

 4. Chiang, J. (2021). “7 types of Hybrid Recommendation System”, retrieved from
https://medium.com/analytics- vidhya/7- types- of- hybrid- recommendation- system-
3e4f78266ad8, retrieved on July 9, 2022.

 5. Verma, Y. (2021). “A Guide to Building Hybrid Recommendation Systems for
Beginners”, retrieved from https://analyticsindiamag.com/a- guide- to- building- hybrid-
recommendation- systems- for- beginners/, retrieved on July 9, 2022.

 6. Hahsler, M. (2022). “Recommenderlab: An R Framework for Developing and Testing
Recommendation Algorithms”, retrieved from https://cran.r- project.org/web/packages/
recommenderlab/vignettes/recommenderlab.pdf, retrieved on July 9, 2022.

 7. Chapman, C., Feit, E. M. (2015). R for Marketing Research and Analytics, Springer,
ISBN 978- 3- 319- 14436- 8.

http://dx.doi.org/10.1023/A:1021240730564.
https://medium.com
https://medium.com
https://analyticsindiamag.com
https://analyticsindiamag.com
https://cran.r-project.org
https://cran.r-project.org

231DOI: 10.1201/9781003278177-12

Architecting Big Data
Analytical Pipeline

12
In this chapter, we discuss the Big Data technology landscape and analytics platform,
introduce the lambda architecture, and discuss design strategies for building a cus-
tomized Big Data pipeline using design patterns, and the associated pattern language.

Modern technologies have the capability to store, process, and analyze data in a
scalable manner and thus are the core of any Big Data stack. The era of tables and
records, which took over from file- based sequential storage, has now revolutionized
to the era well- known as Big Data. In this era, we are able to harness the storage and
computation power very well to support the day- to- day operations of multinational
enterprises.

The era of relational database management systems (RDBMS) had survived for a
long time until the era of 5 Vs (discussed in Chapter 1) emerged making the technol-
ogy of previous era obsolete. The scaling of traditional RDBMS, at the computation
power expected to process a huge amount of data with low latency, comes at a very
high price. This reality led to the emergence of new technologies that have low cost,
low latency, and are highly scalable. Modern technology deals with clusters contain-
ing hundreds and thousands of nodes, hurling, and churning several petabytes of data
[1]. A few examples of key technologies include

Hadoop: Hadoop supports data storage and computations using a distributed
framework of commodity hardware in a highly reliable and scalable man-
ner. Hadoop distributes the data in chunks over different nodes in the cluster
and then processes them concurrently across the nodes. The key compo-
nents of Hadoop are mappers and reducers.

NoSQL: NoSQL is a tool that processes huge volume of multi- structured data
in a highly reliable and scalable manner. Well- known examples of NoSQL
are HBase and Cassandra.

Massively Parallel Processing (MPP) databases: MPPs are computational
platforms that are able to process data at a very fast rate working basically
on the concept of segmenting the data into chunks across different nodes
in the cluster, and then processing the data in parallel. However, unlike
Hadoop that operates at the disk level, MPP databases load the data into
memory and operate on them using the collective memory of all the nodes
in the cluster [1].

In the following sections we will see more examples of modern Big Data technologies.

http://dx.doi.org/10.1201/9781003278177-12

232 What Every Engineer Should Know About Data-Driven Analytics

BIG DATA TECHNOLOGY LANDSCAPE AND ANALYTICS PLATFORM

First let’s discuss the essential components of a Big Data system, namely, processing
frameworks and processing engines. A processing framework and engine together
performs computation over the data in the system, either by reading from non- volatile
storage or ingested directly into the system. More precisely, the processing engine is
a component that is responsible for operating on data and the processing framework
is a set of components designed to do the same. For instance, Hadoop is a process-
ing framework in which the MapReduce is the default processing engine. However,
in Big Data systems the engines and frameworks are often swapped out or used in
tandem. Another example of the processing framework is Apache Spark, which uses
the MapReduce as the processing engine.

Since we are exploring the processing of Big Data systems it is very important to
discuss batch processing. Batch processing involves operating over a large, static
dataset and returning the result later when the computation is complete. The charac-
teristics of a batch processing datasets are (I) It represents a finite collection of data,
(II) The data is almost always backed by some type of permanent storage for persis-
tence, and (III) batch operations are often used for processing extremely large sets of
data. It is important to remember that batch processing is well- suited for computa-
tions whenever the complete set of records is easily accessible. However, the tradeoff
is the long processing time. Batch processing is not well suited for situations where
the processing time is very significant [1].

The following components or layers work together to process batch data in
Hadoop [1].

MapReduce: a parallel programming model for writing distributed applica-
tions to efficiently process large amounts of data on large clusters of com-
modity hardware in a reliable and fault- tolerant manner. The MapReduce
program runs on Hadoop.

Hadoop Distributed File System (HDFS): provides a distributed file system
that is designed to run on commodity hardware. It is similar to existing
distributed file systems but is highly fault- tolerant and is designed to be
deployed on low- cost hardware. It provides high throughput access to appli-
cation data and supports applications having large datasets.

Hadoop Common: refers to Java libraries and utilities required by other
Hadoop modules.

Hadoop YARN: a framework that supports job scheduling and cluster resource
management.

Hbase: a column- based NoSQL database. It runs on top of HDFS and can
handle any type of data. It allows for real- time processing and also supports
random read/write operations to be performed in the data.

Pig: analyzes large datasets and overcomes the difficulty in writing the Map
and Reduce functions. It consists of two components: Pig Latin and Pig
Engine. Pig Latin is the scripting language similar to SQL. Pig Engine is the
execution engine on which the Pig Latin runs.

Architecting Big Data Analytical Pipeline 233

Hive: a distributed data warehouse system. It allows for easy reading, writ-
ing, and managing files on HDFS. It has its own querying language for the
purpose known as Hive Querying Language (HQL) which is very similar
to SQL.

Sqoop: plays a major role in bringing data from Relational Databases
into HDFS. The commands written in Sqoop internally convert it into
MapReduce tasks that are executed over HDFS. It works with almost all
relational databases such as MySQL, Postgres, SQLite, etc.

Zookeeper: used for the purpose of coordinating and synchronizing the nodes
in a Hadoop cluster. It is an open source, distributed, and centralized service
for maintaining configuration information, naming, providing distributed
synchronization, and providing group services across the cluster.

In addition to the above- mentioned components, there are two additional compo-
nents that are part of this ecosystem.

Kafka: Kafka a distributed message broker that sits between the applica-
tions generating data (Producers) and the applications consuming data
(Consumers). Kafka is distributed and has in- built partitioning, replication,
and fault- tolerance. It can handle streaming data and also allows businesses
to analyze data in real- time.

Spark: an alternative framework to Hadoop built using the Scala language
though it also supports varied applications written in Java, Python, R, etc.
As an alternative to Hadoop, it provides in- memory processing which
accounts for faster processing. In addition to batch processing, it can also
handle real- time (stream) processing. Spark has a number of functions built
within it to achieve specific Extraction, Transformation, and Loading (ETL)
operations. The Spark Core is the main execution engine for Spark and the
other APIs are built on top of it. For example, the Spark SQL API allows
for querying structured data stored in data frames or Hive tables. Another
API, the streaming API enables Spark to handle real- time data. It can easily
integrate with a variety of data sources like Kafka, and Twitter.

Now that we have explored the different components of the Big Data technology
landscape, we will discuss the data pipeline and its composition.

DATA PIPELINE ARCHITECTURE

A data pipeline is a series of tools for collecting the data, transforming it into insights,
training models, delivering insights, and applying the model whenever and wherever
the action needs to be taken to achieve the business goals. It essentially automates
the ETL processes. A data pipeline architecture on the other hand is a system that
captures, organizes, and routes data so that it can be used to gain insights. Raw data
contains too many data points that may not be relevant. Data pipeline architecture
organizes data events to make reporting, analysis, and using data easier. A customized

234 What Every Engineer Should Know About Data-Driven Analytics

combination of software technologies and protocols automate the management, visu-
alization, transformation, and movement of data from multiple resources according
to business goals [2].

At its core, any data pipeline will generally have five key components, namely, a
data collection module, data ingestion module, data transformation module, compu-
tation/machine learning (ML) module, and data presentation module. At each stage,
various applications can be used to perform the required operations to pass the data
to the next stage. Sources for data collection includes a wide variety of sources such
as cell phones, tablets, PCs, GPS sensors, etc. The data from the source has to be
received and ingested through HTTP/MQTT endpoints either in the form of blobs or
streams. Given the high volume and velocity of Big Data, a distributed messaging
service such as Kafka can queue messages and broadcast messages based on topics.
This simplifies the number of connections each client has to maintain with the vari-
ous data sources. The data is then passed onto a data lake or to the staging area.

A data lake contains all the data in its raw form as it is received from the source.
In the preparation stage, the data is transformed into structured data which can then
be passed on to a data warehouse for secure storage and access. At this stage ETL is
performed and structured/unstructured data is transformed into formats that can be
consumed by applications and ML pipelines [3]. The second- to- last stage involves
performing computations on the data to glean business intelligence and insights that
add value to the business. These findings are then forwarded to the presentation stage
where the results are delivered to the decision makers [4].

The Big Data pipeline is expansive with a wide array of data sources dealing with
structured and unstructured data, being stored in the clouds or in distributed storage
with multiple ETL pipelines feeding into various Business Intelligence (BI) and
other applications.

LAMBDA ARCHITECTURE

Now that we have a broad view of the Big Data landscape, we can discuss a popular
computing paradigm known as the Lambda architecture. The Lambda architecture
is a hybrid approach that supports both batch- and stream- processing methods. This
architecture has the capability to process massive quantities of data and can solve the
problem of computing arbitrary functions. The Lambda architecture is composed of
three layers, namely, batch, serving, and speed [5]. Let’s briefly discuss each of the
three layers.

In the batch layer the input data is fed continuously. This layer looks at all the data
and eventually corrects the data. Many ETL tasks are performed in this layer and the
data is stored on a data warehouse. This layer is built usually once or twice a day.

The serving layer has two very important functions namely: I) to manage the
master dataset and II) to pre- compute the batch views. The outputs from the batch
layer in the form of batch views are pushed to the speed layer in the form of near
real- time views and these get forwarded for serving. This layer indexes the batch
views so that they can be queried in an ad- hoc basis.

Finally, the speed layer, also known as the stream layer, handles the data that are
not already in the batch view due to the latency of the batch layer. This layer deals

Architecting Big Data Analytical Pipeline 235

only with recent data in order to provide a complete view of the data to the user by
creating real- time views [5].

There are several benefits of this architecture including little server management
as there is no need to install, maintain, or administer any software, automatically
scaling applications by adjusting capacity, serverless applications with built- in avail-
ability and fault tolerance, and being able to adjust to real- time changing conditions.
However, Lambda architecture is highly complex as there is a need for building two
separate code bases for maintaining both the batch and the streaming layers. This
arrangement makes the debugging process very complex [5].

Next, we will look at the lambda architecture–based data pipeline of two popular
enterprises namely Twitter and Pinterest.

TWITTER AND PINTEREST’S DATA PIPELINE ARCHITECTURE

Twitter processes several hundred billion tweets per day generating a petabyte of
daily data. The company’s pipeline based on the lambda architecture is built upon
a wide array of platforms including Hadoop, Kafka, BigQuery, PubSub, Vertica,
and Manhattan. Twitter currently employs Scalding for batch processing, Heron for
streaming data, and TimeSeries AggregatoR (TSAR) for both real- time and batch
processing. Figure 12.1 provides a block diagram view of the data pipeline architec-
ture of Twitter.

In Twitter’s data pipeline, the data is fed simultaneously to the speed layer (called
Heron) and to the batch layers. Within the batch layer, detailed ETL is performed,
and the processed data is passed to the Master dataset. The speed layer can hold data
until it is ready to be passed to the batch view layer. The batch component sources are
Hadoop logs, such as client events, timeline events, and Tweet events, stored on
HDFS [6]. Twitter employs several Scalding pipelines to preprocess the raw logs and
ingests them into the Summing bird platform as offline sources, and within the
Manhattan distributed storage systems. Within the stream processing, the real- time
data from Kafka is stored in Nighthawk distributed cache. The TSAR Query service
is then able to access both real- time and batch- stored data based on customer queries.
To ensure fault tolerance, the data is replicated into three data centers [6].

Pinterest serves over 10 billion pageviews per month by heavily relying on their
infrastructure consisting of Apache Kafka, Storm, Hadoop, HBase, and Redshift [7].

FIGURE 12.1 Block diagram of Twitter’s architecture [6].

236 What Every Engineer Should Know About Data-Driven Analytics

At Pinterest, there are two primary categories of datasets: (I) online service logs and
(II) database dumps. Service logs are continuous log streams generated by services
across thousands of hosts whereas the database dumps are the logical database back-
ups and are generated on hourly or daily basis.

Initially, Kafka is used as the central message transporter on the online service
side. The app servers write log messages directly to Kafka. Once that is done, a data
uploader on each Kafka uploads the Kafka log files to S3. A Hadoop streaming job
pulls data from the database and writes the results into S3 (see Figure 12.2) [7].

In the next section we will discuss design strategies for building customized Big
Data pipeline.

DESIGN STRATEGIES FOR BUILDING CUSTOMIZED BIG DATA
PIPELINE

In the previous section we discussed the Big Data technology landscape and the
Lambda architecture. In this section, the focus of discussion will be on the design
strategies for building a customized Big Data pipeline. Depending upon a business
use case, a Big Data pipeline can use a simple process, i.e., collect the data, load the
data into a repository, and perform computation on the data. The data collected from
diverse sources can be preprocessed and stored in the repositories that range from a
simple file storage or a relational database to a complex data warehouse, data lake,
or a data mart. The preprocessed data can then be channeled through ML algorithms
for extracting features relevant to the use case. Finally, using the ML algorithms the
model is built to extract motifs in the data.

Designing Big Data systems using this simple approach makes its architecture
very rigid. Due to this rigidness, there are several challenges such as the heterogene-
ity of the data sources, errors, and inconsistencies in the data sources, untimely
arrival of data, data localized elsewhere, incorrect data formatting types, and poor
quality of the data, etc. The quality of the Big Data system is severely compromised
if the above- mentioned challenges remain unaddressed [8, 9]. However, recent
advances in architecting Big Data systems have emerged in the form of design pat-
terns that have made ingesting, modeling, enhancing, transforming, and delivering
data much more flexible while decoupling all these activities. These design patterns

FIGURE 12.2 Block diagram of Pinterest’s architecture [7].

Architecting Big Data Analytical Pipeline 237

can also help architect Big Data systems with desired quality attributes such as per-
formance, usability, maintainability, security, and reliability [9]. We’ll start the dis-
cussion with the architectural design of the Big Data system and then followed by
coverage of associated design patterns.

Yokoyama [10] described a widely used three- layer architecture mode for the Bid
Data pipeline in enterprise applications called Distinguish Business Logic from ML
Model. This architectural design aims at improving the operational stability of Big
Data system (see Figure 12.3).

The striking observation here is the decoupling of the business logic from ML and
a proposal for a three- layer architecture model. In his design the data has the poten-
tial to influence the business logic due to tight coupling with the ML module. This
architectural design also identifies data dependency as one of the main technical
debts in Big Data system.

Horizontally, this pattern decouples the Big Data system in to three layers namely
the presentation layer, logic layer, and the data layer. The presentation layer focuses
on designing user interfaces to facilitate user interaction and the data collection pro-
cess. The logic layer consists of modules that implement the business logic, inference
engines, and enables data preprocessing. Finally, the data layer focuses on designing
databases, data marts and data lakes for storing the raw and processed data.

Vertically, the architectural design decouples the business logic specifics of Big
Data system from its ML specifics. Business logic in the model encompasses the
dashboard elements, and rules on how the reports should be interpreted and commu-
nicated. The inference engine is focused on data interpretation and pattern detection.
Another key observation from Figure 12.3 is the decoupling of the inference engine

FIGURE 12.3 Architectural design of the Big Data pipeline [9, 10].

238 What Every Engineer Should Know About Data-Driven Analytics

from the business logic. In such an architectural design, the ML subsystem can be
easily updated and tested [9, 10].

This architectural design poses few challenges, however. For example, the ML
algorithms derive their own set of functions, weights, and biases based only on the
data that is available. This can be an inherent source of instability because the mod-
el’s efficacy is contingent on the quality and the currency of the data that is being fed.
Moreover, AI/ML, particularly in high value and high- profile systems implementa-
tions such as Twitter and Pinterest, are subject to adversarial attack (see Sidebar 1).

Therefore, in a tightly coupled system, the instability of the inference engine has
the tendency to destabilize the business logic [9]. Other factors that can lower the
efficacy of a Big Data system include changes in trends, data staleness, and lack of
data on new items or queries. On the other hand, the proposed decoupling in
Figure 12.3 makes the rollback process significantly easier as architects do not have
to modify the business logic.

In summary, the proposed pattern segregates business logic from ML hierarchi-
cally by introducing four additional elements within the ML subsystem, namely, data
collection, data processing, data lake, and inference engine. Another observation of
the decoupled architecture in Figure 12.3 is the separation of data collection from the
data storage. The data collection module continuously collects data from the sources
and passes them onto the data processing module. This in- turn stores the cleaned data
into the data lake, which ensures that the data collection is separate and independent
from the user interface and the database.

The use of Distinguish Business Logic from ML Model architectural design strat-
egy yields a structure with decoupled elements that can be deployed in a distributed
manner. Separation of data collection, processing, and storage elements can help
address some of the data quality issues and can be a good starting point for designing
a distributed Big Data system [9].

DESIGN PATTERNS AND PATTERN LANGUAGES

Now we want to introduce two important concepts from software and systems engi-
neering: design patterns and pattern languages. The objective here is to look at the
architectural design of Big Data systems (see Figure 12.3) through the lens of dif-
ferent design patterns and ultimately use one or more pattern languages to architect
Big Data systems.

A design pattern is a general, reusable solution to a commonly occurring problem
with a given context in system design. They do not represent a finished product that
can be directly transformed to production such as a code or a functioning system.
Rather, patterns are descriptions or templates that describe how to solve a problem of
ever- changing requirements in the system. The design patterns have the tendency to
speed up the development process by providing tested and proven development para-
digms. Building effective system designs requires considering issues that are not
visible until later in the implementation [9].

Each time a system is designed from scratch without following any template, it
can result in hidden subtle issues that take time for detection and repair. Such issues

Architecting Big Data Analytical Pipeline 239

can cause major problems late in the system development cycle when the efforts and
costs to repair are higher. Using design patterns, we can prevent such subtle issues
and also improve the reusability of these systems.

pattern languages are derived from a combination of different design patterns
that together provide a solution to complex problems [11]. They are a way of express-
ing complex solutions derived from experience which can help others to gain a better
understanding of the solution [9]. Here, it is important to understand that the
Distinguish Business Logic from ML Model architectural design strategy is itself a
design pattern. Let’s look at some more examples of design patterns that are available
for architecting Big Data Systems.

Table 12.1 highlights 17 different design patterns from which a subset of the
design patterns can be composed together to form a pattern language for implement-
ing fully functional distributed Big Data systems.

A handful of design patterns from Table 12.1 can be composed to create a pattern
language for establishing a design strategy for Big Data System.

Let’s take the example of an architectural design of the Big Data system shown in
Figure 12.3 and derive a pattern language for this architecture. As mentioned before
the Distinguished Business Logic from ML Model design pattern is clearly demon-
strated by this architectural design of the Big Data system. In addition, the following
design pattern is clearly demonstrated by this architectural design [9]:

 1. Workflow Pipeline: The components within the Big Data system are con-
tainerized and are independently deployable. In addition to that the ele-
ments within the ML subsystem have been segregated to enable independent
function.

 2. Real- Time Streaming: The ML subsystem within this architectural design
initiates real- time processing involving collection, transformation, and clas-
sification of data (tweets).

 3. Near- Real- Time: The ML subsystem can perform near real- time processing
of the unstructured data (tweets).

 4. Lightweight Stateless: The ML subsystem is accessible through a web-
based API.

 5. NoSQL: Tweets are stored in non- relational format so that they can be
quickly queried based on any of the predefined keys.

 6. Reproducibility: Tweets are stored in multiple different partitions; one parti-
tion that stores all the raw tweets (and potentially other unstructured data
such as images, audio and video) acting as a staging area for all raw data and
another secondary partition that stores all processed and classified tweets.

 7. Explainable Predictions: Explanations are provided for how and why the
DNN Classifier makes its predictions to both understand the model and
improve trust

 8. Checkpoints: The steady state of the DNN model is preserved before and
after each re- training phase. This ensures that the model employs the com-
bination of weights and biases that minimizes the cost function for classifi-
cation tasks.

240 What Every Engineer Should Know About Data-Driven Analytics

TABLE 12.1
List of Design Patterns for Building a Reliable and Scalable Distributed Big
Data System [9, 12–14]

Design Pattern Layer Specifics Role of the Pattern Importance

Rebalancing
design pattern

Logic layer ML specific Focuses on strategies to
deal with imbalanced
datasets.

Required

Reproducibility
design pattern

Logic layer ML specific Focuses on separating
the input data from the
features that encapsulate
the preprocessing steps
and include it into
the model to ensure
reproducibility.

Required

Checkpoints
design pattern

Logic layer ML specific A checkpoint is a snapshot
of the model’s internal
state so that training can
be resumed from this state
at any point in time. This
design pattern is focused
on providing resilience
and fault- tolerance to
architect scalable systems.

Required

Workflow
pipeline
design pattern

Presentation,
logic, and data
layer

Both Business
logic and ML
specifics

Isolates and containerizes
the individual steps of
a ML workflow into an
organized workflow to
ensure maintainability and
scalability.

Required

Explainable
design pattern

Logic layer ML specific A design pattern that can
explain the model behavior
aiding in diagnosing errors
and in identifying biases in
the model.

Optional

Multisource
extractor

Presentation
layer

Both business
logic and ML
specifics

An approach to ingest
multiple data types from
multiple data sources
in an efficient manner.
This pattern ensures
high availability and
distribution.

Required

Multi-
destination
design pattern

In between the
presentation
and the logic
layer and in
between the
logic and the
data layer

Business logic
specific

Ingesting of raw data (after
data collection) into
HDFS and traditional
data storage or other
analytics platforms. This
data pattern is highly
scalable, flexible, fast,
resilient to data failure,
and cost- effective.

Optional

(Continued)

Architecting Big Data Analytical Pipeline 241

Design Pattern Layer Specifics Role of the Pattern Importance

Protocol
converter

Logic and data
layer

Both Business
logic and ML
specific

A mediatory approach to
provide an abstraction for
the incoming data from
various systems. This
design pattern provides
an efficient way to ingest
a variety of unstructured
data from multiple data
sources and different
protocols.

Optional

Just- In- Time
design pattern

Logic layer Both business
logic and ML
specific

Used in situations where
data needs to be preloaded
in the data stores
before transformation
and preprocessing can
happen. This pattern runs
independently performing
cleaning, validating,
correlating, transforming,
and storing resultant data
in the data store.

Optional

Real- time
streaming
pattern

Presentation
and logic layer

ML specific Facilitates continuous and
real- time processing of
the unstructured data.
This pattern can minimize
latency, help build scalable
systems, facilitating
the parsing of real- time
information, etc.

Required

Workload
balancing
patterns

Logic layer ML specific
mostly

A set of 11 design patterns
constituted together as
a workload balancing
pattern. Primarily, these
patterns help to address
data workload challenges
associated with different
domains and business
cases efficiently.

Required

Façade pattern Data layer Business logic
specific

Facilitates communication
between the different
data sources in the
enterprise and the business
intelligence tools.

Optional

NoSQL pattern Data layer Business logic
specific

Offers NoSQL alternatives
in place of traditional
RDBMS to facilitate the
rapid access and querying
of Big Data.

Optional

(Continued)

TABLE 12.1 (CONTINUED)
List of Design Patterns for Building a Reliable and Scalable Distributed Big
Data System [9, 12–14]

242 What Every Engineer Should Know About Data-Driven Analytics

SUMMARY

In summary, we have discussed the Big Data technology landscape and the analytics
platform, introduced the concept of Lambda architecture, and have seen how patterns
and pattern languages can be used to architect customized Big Data pipeline that
exhibits various quality attributes such as reliability, maintainability, usability, and
enhanced performance, and security.

SIDEBAR 1 ADVERSARIAL MACHINE LEARNING TECHNIQUES
A significant concern for designers of machine learning algorithms is adver-
sarial attacks. Here, malicious individuals access the training data during
the training or testing phases, modifying model predictions, creating bias,
and ruining the application for the purpose of espionage, sabotage, or fraud.
Attackers can also inject corrupted samples after deployment, altering the
effectiveness of the algorithm as it learns incorrectly.

For example, consider an AI system that was designed to recognize people
in images. In a certain type of attack called data poisoning, introducing adver-
sarial samples that include a purposefully designed t- shirt pattern can fool the
AI into not identifying people. In another example, specially designed eye-
glass frames were able to deceive a state- of- the- art facial recognition system,
enabling the wearers to “disappear” or to appear as a different person, even
certain celebrities.

While financial losses can be incurred in an attacked ML system, if the
system is used in some sort of critical application, for example, disease diag-
nosis, the results could be catastrophic and cost human lives. Therefore, it is
important that the ML system designer prepare defenses against such attacks.

Design Pattern Layer Specifics Role of the Pattern Importance

Connector
pattern

Between data
and logic layer

Both business
logic and ML
specific

Provides a developer
API and SQL like query
language to access the data
and to gain significantly
reduced development time.

Optional

Lightweight
stateless
pattern

Between data
and logic layer

Both business
logic and ML
specific

Provides data access
through web services,
and it is independent of
platform or language
implementations.

Optional

Near- real- time
pattern

Between data
and logic layer

ML specific Implements solutions for
near real- time data access.

Optional

Stage transform
pattern

Between data
and logic layer

Business logic
specific

Reduces the data scanned
and fetched based upon
business needs.

Optional

TABLE 12.1 (CONTINUED)
List of Design Patterns for Building a Reliable and Scalable Distributed Big
Data System [9, 12–14]

Architecting Big Data Analytical Pipeline 243

EXERCISE

1. Discuss the merits and demerits of the Hadoop computing framework. Also
compare its processing capabilities against the spark computing framework.

2. Using suitable examples discuss the merits and demerits of the lambda
architecture.

3. Discuss the role of all the required design patterns for building a reliable and
scalable distributed Big Data pipeline.

4. The design pattern that isolates and containerizes the individual steps of a
Machine Learning workflow into an organized workflow to ensure maintain-
ability and scalability is
 A. Reproducibility design pattern
 B. Explainable design pattern
 C. Workflow pipeline design pattern
 D. Rebalancing design pattern
 E. Multi- destination design pattern

5. A ______________________ contains all the data in its raw form as it is received
from the source.
 A. Data Warehouse
 B. Data lake
 C. Data pipeline
 D. ML pipelines
 E. RDBMS

The U.S. National Standards Institute (NIST) created a taxonomy and clas-
sification of adversarial machine learning techniques. They also describe a
number of defenses against adversarial ML [NIST]. Defenses during training
and testing include data encryption, data sanitization and robust statistics, the
latter approach involving the use of constraints and regularization techniques
to reduce potential distortions of the learning model caused by poisoned data.
Defenses that can be used against training attacks, however, often can incur
performance overhead as well as have a detrimental effect on model accu-
racy. Defenses against attacks that corrupt learning in ML algorithms require
purposeful and robust design. Research is ongoing on the best approaches for
these types of designs.

[NIST] Elham Tabassi, Kevin J. Burns, Michael Hadjimichael, Andres D.
Molina- Markham and Julian T. Sexton, “Draft NISTIR 8269,” “A Taxonomy
and Terminology of Adversarial Machine Learning,” National Institute of
Standards and Technology, October, 2019, https://nvlpubs.nist.gov/nistpubs/
ir/2019/NIST.IR.8269- draft.pdf.

https://nvlpubs.nist.gov
https://nvlpubs.nist.gov

244 What Every Engineer Should Know About Data-Driven Analytics

6. _____________ is used for the purpose of coordinating and synchronizing the
nodes in a Hadoop cluster.
 A. Hadoop YARN
 B. Pig
 C. Hadoop
 D. Zookeeper
 E. Kafka

REFERENCES

 1. Gupta, S., Saxena, S. (2016). Real- Time Big Data Analytics, Packt Publishing Ltd.,
ISBN 978- 1- 78439- 140- 9.

 2. Snaplogic. “Data Pipeline Architecture”, retrieved from https://www.snaplogic.com/
glossary/data- pipeline- architecture, retrieved on July 19, 2022.

 3. John Snow Labs Inc. (2021). “Emotion Detection Classifier”, retrieved from https://nlp.
johnsnowlabs.com/2021/01/09/classifierdl_use_emotion_en.html.

 4. Gupta, S.C. “Architecture for High- Throughput Low- Latency Big Data Pipeline on
Cloud”, retrieved from https://towardsdatascience.com/scalable- efficient- big- data-
analytics- machine- learning- pipeline- architecture- on- cloud- 4d59efc092b5, retrieved on
July 19, 2022.

 5. Anonymous. “Lambda Architecture”, retrieved from https://databricks.com/glossary/
lambda- architecture, retrieved on July 19, 2022.

 6. Malife, C. “Processing Billions of Events in Real Time at Twitter”, retrieved from https://
blog.twitter.com/engineering/en_us/topics/infrastructure/2021/processing- billions- of-
events- in- real- time- at- twitter, retrieved on July 19, 2022.

 7. Yang, Y. “Scalable and Reliable Data Ingestion at Pinterest”, retrieved from https://
medium.com/pinterest- engineering/scalable- and- reliable- data- ingestion- at- pinterest-
b921c2ee8754, retrieved on July 19, 2022.

 8. Lakshmanan, V., Robinson, S., Munn, M. (2020). Machine Learning Design Patterns.
O’Reilly Media, Inc.

 9. Srinivasan, S. M., Mahbub, S., Sangwan, R. S., Badr, Y., Mukherjee, P. (2022). “Pattern
Language for Designing Distributed AI Systems”, published in the 2022 INFORMS
Conf. on Service Science, China.

 10. Yokoyama, H. (2019). Machine Learning System Architectural Pattern for Improving
Operational Stability. IEEE International Conference On Software Architecture
Companion, 267–274. doi:10.1109/ICSA- C.2019.00055.

 11. Buschmann, F., Henney, K., Schmidt, D. (2007). Pattern Oriented Software Architecture:
On Patterns and Pattern Languages. Wiley Software Patterns Series, John Wiley &
Sons, Inc.

 12. Washizaki, H. et al., (2022). Software- Engineering Design Patterns for Machine
Learning Applications. Computer, 55(3), 30–39. 10.1109/MC.2021.3137227.

 13. Raj, P., Raman, A., Subramanian, H. (2017). Architectural Patterns, Packt Publishing
Ltd., ISBN 978- 1- 78728- 749- 5.

 14. International Organization for Standardization. (2011, March). “Systems and Software
Engineering — Systems and Software Quality Requirements and Evaluation (SQuaRE)
— System and Software Quality Models”. retrieved from iso.org: https://www.iso.org/
obp/ui/#iso:std:iso- iec:25010:ed- 1:v1:en, retrieved on April 24, 2022.

https://www.snaplogic.com
https://www.snaplogic.com
https://nlp.johnsnowlabs.com
https://nlp.johnsnowlabs.com
https://towardsdatascience.com
https://towardsdatascience.com
https://databricks.com
https://databricks.com
https://blog.twitter.com
https://blog.twitter.com
https://blog.twitter.com
https://medium.com
https://medium.com
https://medium.com
http://dx.doi.org/10.1109/ICSA-C.2019.00055
http://dx.doi.org/10.1109/MC.2021.3137227.
http://iso.org
https://www.iso.org
https://www.iso.org

245

Glossary of Terms

activation function in ANN, the activation function of a node defines the output of
that node given an input or set of inputs.

AdaBoost an ensemble learning method that uses an iterative approach to learn
from the mistakes of weak classifiers and turn them into strong ones.

agglomerative hierarchical clustering a bottom-up approach in which each
observation starts as its own cluster, and pairs of clusters are merged as one
moves up the hierarchy.

analysis of variance (ANOVA) an analysis tool used in statistics that splits an
observed aggregate variability found inside a dataset into two parts: sys-
tematic factors and random factors.

Apache Spark a multilanguage engine for executing data engineering, data sci-
ence, and machine learning on single-node machines or clusters.

apriori algorithm refers to an algorithm that is used in mining frequent item sets
and relevant association rules.

artificial intelligence (AI) refers to systems or machines that mimic human intel-
ligence to perform tasks and can iteratively improve themselves based on the
information they collect.

artificial neural network (ANN) one of a subset of machine learning that is at the
heart of deep learning algorithms. The name and structure are inspired by the
human brain, mimicking the way biological neurons signal to one another.

association rule mining a machine learning model that identifies frequent if-then
associations, also known as association rules.

autocorrelation a statistical measure that in data analytics represents the degree of
similarity between a given time series and a lagged version of itself over succes-
sive time intervals.

backward propagation the process of moving from the output layer (right) to the
input layer (left) in a neural network.

bag of words (BOW) a model that is a simplifying representation used in natural
language processing and information retrieval where text is represented by the
words used, and the multiplicity of the time each word is used. Grammar and
word order are disregarded.

bagging a homogeneous weak learners’ model that learns from each other inde-
pendently in parallel and combines them for determining the model average.

batch layer in the lambda architecture a layer that looks at all the data and eventu-
ally corrects the data. Many ETL tasks are performed in this layer

batch processing when a computer processes a number of tasks that it has col-
lected in a group.

batch size defined as the number of training examples in one forward/backward
pass. The higher the batch size, the more the memory space consumed.

Bayesian classifier a probabilistic model where the classification is a latent vari-
able that is probabilistically related to the observed variables.

246 Glossary of Terms

bias a phenomenon that occurs when an algorithm produces results that are sys-
temically prejudiced due to erroneous assumptions in the machine learning
process.

Big Data refers to extremely large datasets that may be analyzed computationally
to discover patterns, trends, and associations, especially relating to human
behavior and interactions.

bimodal distribution when a set of data is distributed in two clusters.
boosting a model in which the weak learners learn sequentially and adaptively to

improve the model predictions of a learning algorithm.
Box–Cox transformation a transformation of non-normal dependent variables

into a normal shape.
boxplot a method for graphically demonstrating the locality, spread, and skewness

groups of numerical data through their quartiles. It is also known as box plot.
business intelligence (BI) a technology-driven process for analyzing data and

delivering actionable information that helps executives, managers, and
workers make informed business decisions.

central limit theorem states that if you have a population with mean µ and stan-
dard deviation σ and take sufficiently large random samples from the popula-
tion with replacement, then the distribution of the sample means will be
approximately normally distributed.

chi-square a statistical test used to examine the differences between categorical
variables from a random sample in order to judge goodness of fit between
expected and observed results.

clustering an unsupervised machine learning task that involves automatically dis-
covering natural grouping in data.

collaborative filtering a technique that can filter out items that a user might like on
the basis of reactions by similar users. It works by searching a large group of
people and finding a smaller set of users with tastes similar to a particular user.

complete linkage one of the agglomerative hierarchical clustering techniques. At
the beginning of the process, each element is in a cluster of its own. The clusters
are then sequentially combined into larger clusters until all elements end up
being in the same cluster.

conditional probability refers to the chances that some outcome occurs given that
another event has also occurred.

content-based filtering a type of recommender system that attempts to guess what
a user may like based on that user’s activity. Content-based filtering makes rec-
ommendations by using keywords and attributes assigned to objects in a data-
base and matching them to a user profile.

convolution layer a layer where filters are applied to the original image, or to other
feature maps in a deep CNN. Convolution layers are where most of the user-
specified parameters are in the network.

convolution a mathematical operation that allows the merging of two sets of infor-
mation. In the case of CNN, convolution is applied to the input data to filter the
information and produce a feature map.

convolutional neural network (CNN) a Deep Learning algorithm, which can take
in an input image, assign importance (learnable weights and biases) to various
aspects/objects in the image, and be able to differentiate one from the other.

Glossary of Terms 247

cophenetic correlation coefficient a measure of how accurately and reliably a
dendrogram preserves the pairwise distance between the original unmod-
eled data points.

corpus a large and unstructured set of texts used to do statistical analysis and
hypothesis testing, checking occurrences or validating linguistic rules
within a specific language.

correlation coefficient a statistical measure of the strength of the relationship
between the relative movements of two variables.

cosine similarity a measure of the similarity between two vectors of an inner prod-
uct space. It is measured by the cosine of the angle between two vectors and
determines whether two vectors are pointing in roughly the same direction.

covariance a measure of the joint variability of two random variables.
cross-validation technique a technique for evaluating machine learning models

by training them on subsets of the available input data and evaluating them on
the complementary subset of the data.

data acquisition phase a stage of analytics in which the metadata is generated to
describe what data needs to be recorded and measured.

data cleaning the process of fixing incorrect, incomplete, duplicate, or otherwise
erroneous data in a dataset. Also referred to as data cleaning or data scrubbing.

data deduplication in computing, a technique for eliminating duplicate copies of
repeating data.

data discretization a process of converting a large number of data values into
smaller ones.

data integration, aggregation, and representation phase a data analysis phase
that hides the heterogeneity of the data and makes it available in the required
format for analysis and modeling.

data integration the process of combining data from multiple source systems to
create unified sets of information for both operational and analytical uses.

data pipeline set of tools and processes used to automate the movement and trans-
formation of data between a source system and a target repository.

data provenance refers to the record trail that accounts for the origin of a datum
together with an explanation of how and why it got to the present place.

data reduction the process to obtain a reduced representation of the dataset that is
much smaller in volume but yet produces the same analytical results.

data transformation the process of converting data from one type to another.
data warehouse a central repository of information that is collected from transac-

tional systems, relational databases, and other sources, on a regular basis and is
analyzed to make more informed decisions.

dataframe a data structure that organizes data into a 2-dimensional table of rows
and columns, much like a spreadsheet.

date lake a centralized repository designed to store, process, and secure large
amounts of structured, semi-structured, and unstructured data.

deep belief network (DBN) a generative graphical model composed of multiple
layers of latent variables, with connections between the layers but not between
units within each layer.

deep learning (DL) a subset of machine learning that is designed to function like
the human brain using artificial neural networks.

248 Glossary of Terms

deep neural networks (DNN) a neural network with some level of complexity,
usually at least two layers in addition to the input and output layer.

dendrogram a diagram that shows the hierarchical relationship between objects.
design pattern a general, reusable solution to a commonly occurring problem with

a given context in system design. There are many design patterns. None repre-
sents a finished product. Each is a template that describes how to solve a prob-
lem of ever-changing requirements in the system.

determinant in mathematics, a scalar value that is a function of the entries of a
square matrix. It allows characterizing some properties of the matrix and the
linear map represented by the matrix.

dirty with respect to data, refers to corrupt, inconsistent, or uncertain data.
divisive hierarchical clustering a top-down approach in which all observations

start in one cluster, and splits are performed recursively as one moves down the
hierarchy.

doubledecker plot visualizes the dependence of one categorical (typically binary)
variable on further categorical variables.

dropout a technique where randomly selected neurons are ignored during the
training stage. They are “dropped out” randomly.

eigenvalue one of a special set of scalars associated with a linear system of equa-
tions (i.e., a matrix equation) that are sometimes also known as characteristic
roots, characteristic values, or latent roots.

ElasticNet regressors (L1/L2 norm) a form of linear regression that uses the pen-
alties from both the lasso and ridge techniques to regularize regression models.

ensemble method a technique that creates multiple models and then combines
them to produce improved results. Ensemble methods usually produce more
accurate solutions than a single model would.

entropy in information theory is the average amount of information conveyed by
an event, when considering all possible outcomes.

epoch a hyperparameter that defines the number of times that the learning algo-
rithm will work through the entire training dataset.

error term a value which represents how observed data differs from actual popula-
tion data.

ETL acronym for “extract, transform, and load.” This process is used by data engi-
neers to extract data from different sources, transform the data into a usable and
trusted resource, and load that data into the systems where end-users can access
and perform downstream analysis to solve business problems.

Euclidean distance the distance between two points in Euclidean space is the
length of a line segment between the two points.

experiment any procedure that can be infinitely repeated and has a well-defined
set of possible outcomes, known as the sample space. Also known as trial.

explainability In AI and ML, indicates that the systems designers can rationalize
the system decision making, characterize their strengths and weaknesses, and
convey an understanding of how the system will behave in the future.

feed forward neural network (FNN) an ANN where connections between the
nodes do not form a cycle. In this network, the information moves in only one

Glossary of Terms 249

direction—forward—from the input nodes, through the hidden nodes (if any),
and to the output nodes.

forward propagation the way to move from the Input layer (left) to the Output
layer (right) in the neural network.

Gini impurity used to predict the likelihood that a randomly selected example
would be incorrectly classified by a specific node. Pronounced “genie.”

gradient descent an optimization algorithm which is commonly used to train
machine learning models and neural networks.

Hadoop Distributed File System (HDFS) the primary storage system used by
Hadoop applications. This open-source framework works by rapidly transferring
data between nodes. It’s often used by companies who need to handle and store
Big Data.

Hadoop a collection of open-source software utilities that facilitates using a net-
work of many computers in a distributed environment to solve problems involv-
ing massive amounts of data and computation. Runs on the Apache HTTP
open-source server.

heterogeneity a challenge associated with data representing the same entity in dif-
ferent sources lacking a consistent format, being incomplete and erroneous.

hidden layer an intermediate layer between the input and the output layer contain-
ing neurons. It is a place where all the computation is done.

hierarchical clustering a method of cluster analysis which seeks to build a hierar-
chy of clusters.

homoscedastic for variances, is an assumption of equal or similar variances in dif-
ferent groups being compared. This is an important assumption of parametric
statistical tests. Also known as homogeneity of variances.

human intervention and collaboration a process that mitigates one of the chal-
lenges to the automation of the data analysis pipeline where humans and
machines work together to identify patterns that are only detectable by humans
and missed by machines.

hybrid recommendation system (HRS) a special type of recommendation system
which can be considered as the combination of the content and collaborative
filtering method.

identity matrix a square matrix whose diagonal entries are all equal to one and
whose off-diagonal entries are all equal to zero.

information extraction and cleaning phase in data analytics the process respon-
sible for converting the collected data into a format that is ready for analysis.

information gain measures the reduction in entropy or surprise by splitting a data-
set according to a given value of a random variable.

information technology the study or use of computers and telecommunications
for storing, retrieving, and sending information.

interpretation phase provides the means for the decision makers to interpret the
results of the analysis and make the Big Data more actionable.

item-based collaborative filtering (IBCF) a type of recommendation system that
is based on the similarity between items calculated using the rating users have
already given to the items.

250 Glossary of Terms

kurtosis a measure of the combined weight of a distribution’s tails relative to the
center of the distribution.

lambda architecture a data-processing architecture designed to handle massive
quantities of data by taking advantage of both batch and stream-processing
methods.

lasso regression (L1 norm) a method usually used in machine learning for the
selection of the subset of variables. It provides greater prediction accuracy as
compared to other regression models. Also called Penalized regression method.

learning rate a hyperparameter that controls how much to change the model in
response to the estimated error each time the model weights are updated.

likelihood the state or fact of some event being likely.
long short-term memory (LSTM) a type of RNN capable of learning order

dependence in sequence prediction problems. This is a behavior required in
complex problem domains like machine translation, speech recognition,
and more.

machine learning (ML) a subset of AI and is the science of training devices or
software to perform a task and improve its capabilities by giving it data so it can
“learn” over time.

Manhattan distance a distance metric between two points, and it is computed as
the sum of the lengths of the projections of the line segment between the points
onto the coordinate axes.

MapReduce a programming model and an associated implementation for process-
ing and generating big datasets with a parallel, distributed algorithm on a cluster.
A MapReduce program is composed of a map procedure, which performs filter-
ing and sorting, and a reduce method, which performs a summary operation.

matrix In mathematics, a rectangular array or table of numbers, symbols, or
expressions, arranged in rows and columns, which is used to represent a
mathematical object or a property of such an object.

mean absolute error (MAE) with respect to a test set of a model is the mean of
the absolute values of the individual prediction errors over all the instances in the
test set.

mean squared error (MSE) measures how close a regression line is to a set of
data points.

missing at random (MAR) when the probability of a record having a missing
value for an attribute could depend on the observed data, but not on the value of
the missing data itself. Data which is incomplete only due to structural reasons
are MAR.

missing completely at random (MCAR) when the probability of a record having
a missing value for an attribute does not depend on either the observed data or
the missing data.

multicollinearity a statistical concept where several independent variables in a
model are correlated.

multilayer perceptron (MLP) a fully connected class of feed-forward ANN.
multiple regression analysis a statistical technique that can be used to analyze the

relationship between a single dependent variable and several independent
variables.

Glossary of Terms 251

multivariate logistic regression (MLogR) analysis performed to predict the
relationships between dependent and independent variables. It calculates the
probability of something happening depending on multiple sets of variables.
This is a common classification algorithm used in data science and machine
learning.

natural language processing (NLP) a subfield of linguistics; computer science;
and AI concerned with programming computers to process and analyze large
amounts of natural language data.

neuron a connection point in an artificial neural network. Artificial neural net-
works, like the human body’s biological neural network, have a layered architec-
ture and each network node has the capability to process input and forward
output to other nodes in the network.

n-gram in computational linguistics a contiguous sequence of n items from a given
sample of text or speech.

normal distribution an arrangement of a dataset in which most values cluster in
the middle of the range and the rest taper off symmetrically toward both the
extremes.

not missing at random (NMAR) in a set of data when the probability of a record
having a missing value for an attribute could depend on the value of the attribute.
Missing data mechanism that is considered as NMAR is non-ignorable.

orthogonal matrix a square matrix with real numbers or elements where its trans-
pose is equal to its inverse matrix. When the product of a square matrix and its
transpose gives an identity matrix, then the square matrix is known as an orthog-
onal matrix.

outcome in probability theory, a possible result of an experiment or trial. Each pos-
sible outcome of a particular experiment is unique, and different outcomes are
mutually exclusive (only one outcome will occur on each trial of the
experiment).

outlier an observation that lies an abnormal distance from other values in a random
sample from a population.

overfitting a modeling error in statistics that occurs when a function is too closely
aligned to a limited set of data points. As a result, the model is useful in refer-
ence only to its initial dataset, and not to any other datasets.

padding a term relevant to CNN as it refers to the number of pixels added to an
image when it is being processed by the kernel of a CNN.

part-of-speech (POS) tagging a popular NLP process which refers to categorizing
words in a text (corpus) in correspondence with a particular part of speech,
depending on the definition of the word and its context.

pattern language a collection of different design patterns that together provide a
solution to complex problems.

Pearson correlation coefficient a single number that measures both the strength
and the direction of the linear relationship between two continuous variables.

perceptron a neural network unit that does certain computations to detect features
or business intelligence in the input data. It is a function that maps its input
which is multiplied by the learned weight coefficient and generates an output
value.

252 Glossary of Terms

pooling layer In CNN a pooling layer is used to reduce the dimensions of the fea-
ture maps. Thus, it reduces the number of parameters to learn, and the amount of
computation performed in the network.

posterior probability in Bayesian statistics, is the revised or updated probability
of an event occurring after taking into consideration new information.

principal component analysis (PCA) the process of computing the principal
components and using them to perform a change of basis on the data, sometimes
using only the first few principal components and ignoring the rest.

priori probability refers to the likelihood of an event occurring when there is a
finite number of outcomes, and each is equally likely to occur. The outcomes in
a priori probability are not influenced by the prior outcome.

privacy In Big Data, a major concern as there is no established protocol that allows
the sharing of private data while limiting the disclosure and ensuring sufficient
data utility.

probability distribution a mathematical function that describes the probability of
different possible values of a variable. They are often depicted using graphs or
probability tables.

processing engine in the data pipeline the entity responsible for processing data,
usually retrieved from storage devices, based on a predefined logic, in order to
produce a result.

processing framework allows users to process data in a Hadoop cluster using the
low-level API.

proportion of variance a generic term to mean a part of variance as a whole.
query processing, data modeling, and analysis phase The phase that deals with

building tools and techniques for effective large-scale analysis of data in a com-
pletely automated manner.

random forest an ensemble learning method for classification, regression, and
other tasks that operates by constructing a multitude of decision trees at the
training time. Also known as random decision forest.

random variable a variable whose value is unknown or a function that assigns
values to each of an experiment’s outcomes. A random variable can be either
discrete (having specific values) or continuous (any value in a continuous
range).

recommender engine software that analyzes available data to make suggestions
for something that a website user might be interested in.

recommender system a subclass of Information Filtering Systems that seeks to
predict the rating or the preference a user might give to an item.

recurrent neural network (RNN) a class of ANN where connections between
nodes can create a cycle, allowing output from some nodes to affect subsequent
input to the same nodes. This allows it to exhibit temporal dynamic behavior.

regularization refers to techniques that are used to calibrate machine learning
models in order to minimize the adjusted loss function and prevent overfitting or
underfitting.

residual In linear regression, defined as the difference between an observed value
of a response variable and the value of the response variable predicted from the
regression line.

Glossary of Terms 253

ridge regression (L2 norm) a model tuning method that is used to analyze any
data that suffers from multicollinearity. This method performs L2 regularization.
When the issue of multicollinearity occurs, least-squares are unbiased, and vari-
ances are large, this results in predicted values being far away from the actual
values.

root mean square error (RMSE) the standard deviation of the residuals.
sample space a random experiment is the collection of all possible outcomes.
scale a challenge associated with the management of large and rapidly increasing

volume of data given that the tools, techniques, and algorithms that process them
have severe limitations.

scree plot In multivariate statistics, a line plot of the eigenvalues of factors or prin-
cipal components in an analysis. The scree plot is used to determine the number
of principal components to keep in a PCA.

semi-structured data information that does not reside in a relational database but
has some organizational properties that make it easier to analyze.

sentiment classification the automated process of identifying opinions in text and
labeling them as positive, negative, or neutral, based on the emotions customers
express within them.

serving layer in the lambda architecture the layer that manages the master dataset
and pre-computes the batch views. This layer indexes the batch views so that
they can be queried in an ad hoc basis.

singular value decomposition (SVD) In linear algebra a factorization of a matrix
into three matrices. SD has some interesting algebraic properties and conveys
important geometrical and theoretical insights about linear transformations.

speed layer in the lambda architecture the layer that is used to handle the data that
are not already in the batch view due to the latency of the batch layer.

statistics the science of collecting, analyzing, presenting, and interpreting data.
stemming In NLP the process of reducing a word to its word stem that affixes to

suffixes and prefixes or to the roots of words known as a lemma.
stopword In NLP a word which is filtered out before or after processing the text

data because it is insignificant.
stream processing a data management technique that involves ingesting a continuous

data stream to quickly analyze, filter, transform, or enhance the data in real-time.
stride In CNN the number of pixels shifts over the input matrix.
structurally missing data that is missing for a logical reason. It is data that is miss-

ing because it should not exist.
structured data data whose elements are effectively organized into a formatted

repository that is typically a database.
supervised learning a subcategory of machine learning and AI. It uses labeled

datasets to train algorithms that can then classify data or predict outcomes
accurately.

timeliness the challenge of analyzing data in a timely manner. Often analyzing
large datasets takes a longer time, which is a challenge because over the period
of time the value of the data diminishes for a decision maker.

tokenization in NLP the process of splitting a phrase, sentence, paragraph, or an
entire text document into smaller units, such as individual words or terms.

254 Glossary of Terms

transformation in data analysis the replacement of a variable by a function of that
variable.

underfitting a situation when a data model is unable to capture the relationship
between the input and output variables accurately, generating a high error rate on
both the training set and unseen data.

unstructured data data which is not organized in a predefined manner or does not
have a predefined data model; thus, it is not a good fit for a mainstream relational
database.

unsupervised learning refers to the use of algorithms to identify patterns in data-
sets containing data points that are neither classified nor labeled.

user-based collaborative filtering (UBCF) a technique used to predict the items
that a user might like on the basis of ratings given to that item by the other
users who have similar taste with that of the target user.

value a dimension of Big Data that usually refers to the insight discovery and pat-
tern recognition that results in more effective operations, stronger customer rela-
tionships and other clear and quantifiable business benefits.

vanishing gradient problem when there are more layers in the network, the value
of the product of the derivative decreases until at some point the partial deriva-
tive of the loss function approaches a value close to zero, and the partial deriva-
tive vanishes.

variance inflation factor (VIF) a measure of the amount of multicollinearity in a
set of multiple regression variables.

variety a dimension of Big Data that refers to the diversity and range of different
data types, including unstructured data, semi-structured data, and raw data.

vector a quantity having direction as well as magnitude, especially as determining
the position of one point in space relative to another.

velocity a dimension of Big Data that refers to the speed at which an organization
receives, stores, and manages data.

veracity a dimension of Big Data that refers to the accuracy of data and informa-
tion assets, which often determines executive-level confidence.

volume a dimension of Big Data that refers to the size and amounts of Big Data
that companies manage and analyze.

weak learner refers to simple models that do only slightly better than random
chance.

white noise refers to residuals that are random and come from a single
distribution.

XGBoost a scalable, distributed gradient-boosted decision tree machine learning
library that provides parallel tree boosting and is the leading machine learning
library for regression, classification, and ranking problems.

yet another resource negotiator (YARN) allows the data stored in HDFS to be
processed and run by various data processing engines such as batch processing,
stream processing, etc. Runs on the Apache HTTP open-source server.

zookeeper a centralized service for maintaining configuration information, nam-
ing, providing distributed synchronization, and providing group services. All of
these kinds of services are used in some form or another by distributed applica-
tions. Runs on the Apache HTTP open-source server.

255

Index
Page numbers in bold indicate tables, page numbers in italic indicate figures and page numbers followed
by n indicate notes.

A

accuracy, 140
acquisition/recording phase, 1–2
activation function, 119, 165, 177, 245

in DNN, 168
AdaBoost, 129–130, 245

working principle, 130
adversarial attacks, 242–243
agglomerative hierarchical clustering, 103–104,

245
AlexNet, 167, 193
Amazon, 181, 215
analysis/modeling phase, 1–2
analysis of variance (ANOVA), 92, 245
Ancestry.com, 215
anomaly detection, 97
Apache Spark, 232, 245
apriori algorithm, 108–110, 109, 245
area under the curve (AUC), 135, 141
artificial intelligence (AI), 163, 245

relationship with ML and DL, 164
artificial neural networks (ANN), 119–120, 245

architectural types, 120–124
classification, example, 125–126
and DNN, 165
hyperparameters for tuning, 124

artificial neurons, 44, 119, 138–139, 139, 165
as building blocks of DNN, 165

association rule mining, 97, 107–110, 245
autocorrelation, 245
automatic feature selection, 85

B

backward propagation, 120, 245
bagging, 128–129, 245; see also bootstrap

aggregating
bag of words (BOW), 145, 152–153, 158–159,

245
batch layer, 245
batch processing, 232, 245
batch size, 170, 245
Bayesian classifiers, 61–66, 245
Bayes’ theorem, 60–61
bias, 73–74, 246

vs. variance, 83–84, 131
Big Data, 1–3, 246

analysis pipeline, 2

pipeline architecture, 233–236
design, 237
design patterns and pattern languages,

238–239
design strategies for building, 236–238

reliable and scalable system, design patterns
for building, 240–242

technology landscape, 232–233
bimodal distribution, 15–16, 16, 246
boosting, 128–131, 246
bootstrap aggregating, 126, 128
BOW see bag of words
Box–Cox transformation, 17–18, 246

C

Caret, 14
cascade HRS, 223–224, 223
central limit theorem, 55, 246
characters, 145
chi-square, 56, 246
Circumplex model, 28 emotions, 155, 157–158,

157
closest fit, 22
clustering, 97, 246

distance measures, 114; see also hierarchical
clustering

collaborative filtering, 218–220, 246
complete linkage, 246
conditional probability, 59–60, 68–69, 246
confidence, 108
confusion matrix, 128, 139–141

and definitions, 140
content-based filtering, 216, 246
ConvNet see convolutional neural networks

(CNN)
convolution, 182, 246

operation on input image, example, 185
convolutional layer, 177, 182–183, 246
convolutional neural networks (CNN), 166–167,

181–182, 246
architectures, 193–194
hyperparameters, 186–189

key, 187–188
image classification using, example, 189–192
and Volterra series, 194–195

cophenetic correlation coefficient, 106, 115–116,
247

corpus, 144, 247

256 Index

correlation coefficient, 247
cosine similarity, 216–219, 247
covariance, 57–58, 247
cross-validation technique, 132–137, 247

D

data
acquisition/recording phase, 247
cleaning, 4, 247
collection strategies, 3–4
deduplication, 22–25, 247
discretization, 5, 247
integration, 4–5, 247
integration, aggregation, and representation

phase, 247
lake, 234, 247
missing, 19–21

strategies for dealing with, 21–22
pipeline, 233, 247

architecture, 233–234
poisoning, 242
preprocessing strategies, 4–5
provenance, 2, 28n1, 247
reduction, 5, 247
semi-structured, 3, 253
structured, 3, 253
structuring and cleaning, 15–22
transformation, 5, 17–19, 247
unstructured, 3, 254
warehouses, 3, 28n3, 247
wrangling, in R and Python, 14–15; see also

Big Data
dataframes, 247

in Python, 14
in R, 6–7

deciles, 54
decision stumps, 129
decision trees, 129–130
deep belief networks (DBN), 171–172, 247

typical architecture, 171
deep learning (DL), 73, 163, 247

relationship with AI and ML, 164
deep neural networks (DNN), 163–165, 248

and ANN, 165
architectures, 166–168

typical 2-layer, 166
example analysis, 172–176
hyperparameters, 168–171
simple with 3 hidden layers, 174

dendrograms, 103–104, 105, 107, 248
design patterns, 238–239, 240–242, 248
determinants, 33, 248
dimensionality reduction, 97
“dirty” data, 3, 28n4, 248
dissimilarity matrix, 103
divisive hierarchical clustering, 103–104, 248
Dixon’s Q test, 23

doubledecker plot, 248
down sampling layer, 177
Dplyr, 14
dropout, 177, 192–193, 248

in DNN, 169
Durbin–Watson test, 75–77, 79, 93

E

E1071, 15
eigenvalues, 37, 41, 248
ElasticNet regressors, 85, 248
elbow curve method, 114
emotion classification see Circumplex model,

sentiment classification
ensemble method, 126–131, 248
entropy, 67–68, 248
epochs, 170, 248
error terms, 248
estimation, developing skill in, 25–26
ETL process, 3, 248
Euclidean distance, 103–104, 112, 114, 248
exercises, 26–28, 46–52, 70–71, 94–96, 116–118,

141–142, 159–162, 179, 195–196, 212,
228–229, 243–244

explainability, 73, 248
extraction/cleaning/annotation phase, 1–4
extreme gradient boosting (XGB) see XGBoost

F

Facebook, 181, 215
factors, in R, 7
false negatives (FN), 139
false positives (FP), 139
feature augmentation HRS, 223, 223
feature combination HRS, 222, 222
feature maps, 186
feedback network, 124
feed backward pass (FBP), 178
feed forward neural networks (FNN), 164,

248–249
compared with RNN, 198, 199

feed forward pass (FFP), 178
Fermi, Enrico, 25–26
F1 score, 140
forget gate, 200, 201
forward propagation, 44, 120, 249
fully connected layer, 177, 186
fully connected neural networks (FNN), 182
fuzzy logic, 176–177

G

generalized linear model (GLM), 81
genomics, 97
geodemographic segmentation, 115
ggplot2, 14

Index 257

Gini impurity, 67, 249
Google, 181
GoogLeNet, 168, 193
Google Translate, 199
gradient boosting, 130–131

working principle, 131
gradient descent algorithm, 211–212, 249
grammar, 143
grid search, 124

in CNN, 189
for hyperparameter tuning, in DNN models,

170
Grubb’s test for outliers, 23–25

H

Hadoop, 231–232, 249
Hadoop Common, 232
Hadoop Distributed File System (HDFS), 232,

249
Hadoop YARN, 232, 254
Hbase, 232
hclust see hierarchical clustering
heterogeneity, 2–3, 249
hidden layers, 121, 165, 249

in DNN, 169, 174
hierarchical clustering, 103–107, 249
Hive, 233
homoscedasticity, 16–17, 28n5, 249
human collaboration, 2–3, 249
hybrid recommendation systems (HRS), 220–224,

249
depiction, 220
examples of use, 224–226

hyperbolic tangent activation function see tanh
function

hyperparameters
for tuning AdaBoost, 130
for tuning ANN, 124
for tuning CNN, 186–189, 187–188
for tuning DNN, 168–171
for tuning RNN, 205–206
for tuning XGBoost, 131

hypothesis testing, 55

I

identity matrix, 249
Inception V3, 168
incompleteness, 3
information extraction and cleaning phase, 249
information gain, 67–68, 129, 249
information technology (IT), 249
information theory, for predictive modeling,

66–68
input gate, 200, 201
input layer, 121, 165

Instagram, 181
integration/aggregation/representation phase, 1–2
interpretation phase, 2, 249
interquartile range, 54
item-based collaborative filtering (IBCF), 219,

249
itemset, 108

K

Kafka, 233
Karhunen–Loève Transform (KLT), 41
k-means clustering, 98–103
k-nearest neighbors (KNN) algorithm, 98,

111–113, 113
example dataset, 111

knowledge extraction, 97
Kolmogorov–Smirnov test, 92–93
kurtosis, 250

L

lambda architecture, 234–235, 250
lasso regression, 85, 90–92, 250
learning rate, 250

in DNN, 169
learning rules, in CNN, 188
LeNet, 193

image classification using, example, 189–192
lift, 108
likelihood, 60, 250
linear algebra, 29–33
LinkedIn, 215
lists, in R, 7
listwise deletion, 21
loading phase, 3–4
logistic activation function see sigmoid function
logistic regression (LogR), 79–80
long short-term memory (LSTM), 199–203, 250

internal structure, 200
of basic unit, 204

loss function, 130

M

machine learning (ML), 73–96, 163, 250
relationship with AI and DL, 164
vs. statistical models, 74

Manhattan distance, 114, 250
manual search, 124

in CNN, 188
MapReduce, 232, 250
massively parallel processing (MPP) databases,

231
Matplotlib, 15
matrices, 30–33, 250

factorization, 42–43

258 Index

in R, 6; see also confusion matrix;
dissimilarity matrix; identity matrix;
orthogonal matrix

maxnodes, 129
max-norm constraints, in DNN, 169
McCulloch and Pitts, 138

artificial neuron, 139
mean, 53
mean absolute error (MAE), 227, 250
mean squared error (MSE), 88, 250
measure of variation, 53
median, 53
meta-level HRS, 224
Minsky and Papert, 138–139
missing at random (MAR), 19–21, 250
missing completely at random (MCAR), 19–21,

250
mixed HRS, 222, 222
mode, 53
Monty Hall problem, 68–69
multicollinearity, 80–81, 86, 250
multilayer feed-forward network, 121, 122
multilayer perceptrons (MLP), 120, 127, 166,

250
multilayer recurrent network, 122, 123
multinomial logistic regression (MLogR),

80–92
assumptions, 80–81

multiple linear regression (MLR), 74
assumptions, 75–79

multiple regression analysis, 250
multivariate logistic regression (MLogR), 251

N

natural language processing (NLP), 143, 251
applications, 144
packages in Python, 145–146, 147
terminology, 144–145

network architecture, 119
neural networks (NN), 44–46

history of, 138–139
neurons, 44, 251

animal brain model, 138
per layer in DNN, 169

n-grams, 145, 153, 251
NLTK (natural language toolkit), 145

installation, 146–147
nodesize, 129
nonignorable missing data see not missing at

random (NMAR)
normal distribution, 16–17, 17, 54–55, 64,

251
NoSQL, 231
not missing at random (NMAR), 19, 21, 251
NRC classifier, 155–156
number of filters, in CNN, 188
NumPy (numerical Python), 15, 145

O

optimization algorithm, 119
optimizer, in DNN, 170
ordinary least square (OLS), 88
orthogonal matrix, 251
outcome, 251
outliers, 22–25, 251
output gate, 202, 202
output layer, 121, 165
overfitting, 84–85, 92, 251

P

padding, 177, 183, 251
in CNN, 188
as part of convolution operation, 186

Pandas, 15
paragraphs, 144
parameters, 53
part-of-speech (POS) tagging, 151–152, 251
pattern languages, 239, 251
Pearson correlation coefficient, 56–58, 219, 251
percentiles, 54
perceptrons, 44–45, 138, 251; see also multilayer

perceptrons (MLP)
phrases, 144
Pig, 232
Pinterest

data pipeline architecture, 235–236
block diagram, 236

Plotly, 15
pointwise mutual information (PMI), 155, 158
pooling

function, 183
layer, 183, 252
max pooling, on input image, 186
max pooling layer, 177

population, 53
posterior probability, 60, 252
precision, 140
principal component analysis (PCA), 36–41,

252
prior probability, 60, 252
privacy, 2–3, 252
probability, 58–66
distribution, 252
processing engine, 232, 252
processing framework, 232, 252
programming

with Python, 10–14
with R, 5–10

proportion of variance, 252
provenance, 2
p-value, 55
Python

FOR loop, using, 11
packages, 15

Index 259

programming with, 10–14
WHILE loop, using, 11

Q

Q test see Dixon’s Q test
quantiles, 54
quartiles, 54
query processing phase, 2, 252

R

R
data structures, 6–7
data types, 5–6
IF-ELSE statement, using, 9–10
FOR loop, using, 9
packages, 14–15

installation, 8
reading and writing data, 8–9
WHILE loop, using, 9

random forest (RF), 128–129, 252
random search, 124

in CNN, 188
for hyperparameter tuning, in DNN models,

171
random variable, 252
range, 53
recall, 140
receiver operating characteristic (ROC) curve,

135, 135, 137, 140, 140
recitified linear unit (ReLU), 46, 167

in CNN, 183
in DNN, 168

recommender engines (RE), 215, 252
recommender systems (RS), 215, 252

collaborative filtering, 218–220
content-based filtering, 216
cosine similarity, 216–218
hybrid, 220–224

recurrent neural networks (RNN), 167, 197–203, 252
compared with FNN, 198, 199
hyperparameters, 205–206
internal structure of basic unit, 204
text classification, example, 203, 207–210

regression imputation, 21
regression techniques, 74
regular expressions (RegEx), 148–149
regularization, 85–92, 252

in DNN, 169
relational database management systems

(RDBMS), 231
ReLU see rectified linear unit
ResNet, 168, 193–194
restricted Boltzmann machines (RBM), 172, 178
ridge regression, 85–89, 92, 253
root mean squared error (RMSE), 226, 253
Rosenblatt, Frank, 138

S

sample, 53
sample space, 253
scale, 2, 253
Scikit Learn, 15
SciPy, 15
scree plots, 37, 41, 253
segmentation of customers, 98
sensitivity, 140
sentences, 144
sentiment classification, 154–158, 253
serving layer, 253
Shapiro–Wilk test, 16–17
Shiny, 14
sigmoid function, 45
silhouette analysis, 114
simple linear regression (SLR), 34–36
single-layer feed-forward network, 121, 121
single-layer recurrent network, 122, 123
single node with own feedback, 122
singular value decomposition (SVD), 42–43, 253
Siri, 199
skewness, 17
softmax

activation function, 46
layer, 177

Spark, 233
specificity, 140
speed layer, 253
Sqoop, 233
stacking, 128
standard deviation, 54
statistical models, vs. machine learning models, 74
statistics, 53, 253
Statsmodels, 15
stemming, 149–150, 253
stopwords, 150–151, 253
stream processing, 253
strength of association (SOA), 155
strides, 177, 183, 184, 253

in CNN, 188
as part of convolution operation, 186

strong learners, 126
structurally missing data, 19, 20, 21, 253
supervised learning, 119–142, 253
support, 108
switching HRS, 221–222, 221

T

tanh function, 45–46
Tidyr, 14
timelines, 2
timeliness, 253
tokenization, 146–149, 253
transformation, 254

phase, 3–4

260 Index

true negatives (TN), 139
true positive rate (TPR), 140
true positives (TP), 139
tweets

emotions and sentiments, 156
examples, emotional and sentimental, 154

20Q game, 227–228
Twitter, 143, 154–155

data pipeline architecture, 235
block diagram, 235

type I and II errors, 55–56

U

uncertainty, 176
underfitting, 84, 170, 254
unsupervised learning, 97–118, 254
user-based collaborative filtering (UBCF),

218–219, 254

V

value, 1, 254
vanishing gradient problem, 211, 254
variance, 53–54

vs. bias, 83–84, 131
variance inflation factor (VIF), 77, 254
variety, 1, 254
vectors, 29–33, 254

in R, 6

velocity, 1, 254
veracity, 254
VGGNet, 167
Volterra series, 195
volume, 1, 254

W

weak learners, 126, 254
weight initialization

in CNN, 188
in DNN, 170

weighted HRS, 220–221, 221
Weiner, Norbert, 195
white noise, 83, 96n2, 254
word clouds, 158–159

example, 159
words, 144

X

XGBoost, 130–131, 254

Y

yet another resource negotiator (YARN), 254

Z

Zookeeper, 233, 254

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Preface
	Introduction
	Audience
	Course Adoption
	Errors

	Acknowledgments
	About the Authors
	Chapter 1: Data Collection and Cleaning
	Data-Collection Strategies
	Data Preprocessing Strategies
	Programming with R
	Data Types in R
	Data Structures in R
	Package Installation in R
	Reading and Writing Data in R
	Using the FOR Loop in R
	Using the WHILE Loop in R
	Using the IF-ELSE Statement in R

	Programming with Python
	Data Wrangling and Analytics in R and Python
	Structuring and Cleaning Data
	Missing Data
	Strategies for Dealing with Missing Data

	Data Deduplication
	Summary
	Exercise
	Notes
	References

	Chapter 2: Mathematical Background for Predictive Analytics
	Basics of Linear Algebra
	Vectors and Matrices
	Determinant

	Simple Linear Regression (SLR)
	Principal Component Analysis (PCA)
	Singular Value Decomposition (SVD)
	Introduction to Neural Networks
	Summary
	Exercise
	References

	Chapter 3: Introduction to Statistics, Probability, and Information Theory for Analytics
	Normal Distribution and the Central Limit Theorem
	Pearson Correlation Coefficient and Covariance
	Basic Probability for Predictive Analytics
	Conditional Probability
	Bayes’ Theorem and Bayesian Classifiers
	Information Theory for Predictive Modeling
	Summary
	Exercise
	Notes
	References

	Chapter 4: Introduction to Machine Learning
	Statistical versus Machine Learning Models
	Regression Techniques
	Multiple Linear Regression (MLR) Model
	Assumptions of MLR
	Introduction to Multinomial Logistic Regression (MLogR)
	Bias versus Variance Trade-off
	Overfitting and Underfitting
	Regularization
	Ridge Regression
	Lasso Regression

	Summary
	Exercise
	Notes
	References

	Chapter 5: Unsupervised Learning
	K -means Clustering
	Hierarchical Clustering
	Association Rule Mining
	K -Nearest Neighbors
	Summary
	Exercise
	References

	Chapter 6: Supervised Learning
	Introduction to Artificial Neural Networks
	Forward and Backward Propagation Methods
	Architectural Types in ANN
	Hyperparameters for Tuning the ANN
	An Example of ANN Classification

	Introduction to Ensemble Learning Techniques
	Random Forest Ensemble Learning
	Introduction to AdaBoost Ensemble Learning
	Introduction to Extreme Gradient Boosting (XGB)

	Cross-Validation
	Summary
	Exercise
	References

	Chapter 7: Natural Language Processing for Analyzing Unstructured Data
	Terminology for NLP
	Installing NLTK and Other Libraries
	Tokenization
	Stemming
	Stopwords
	Part of Speech Tagging
	Bag-of-Words (BOW)
	n- grams
	Sentiment and Emotion Classification
	Summary
	Exercise
	References

	Chapter 8: Predictive Analytics Using Deep Neural Networks
	Introduction to Deep Learning
	The Deep Neural Networks and Its Architectural Variants
	Multilayer Perceptron (MLP)
	Convolutional Neural Networks (CNN)
	Recurrent Neural Networks (RNN)
	AlexNet
	VGGNet
	Inception
	ResNet and GoogLeNet
	Hyperparameters of DNN and Strategies for Tuning Them
	Activation Function
	Regularization
	Number of Hidden Layers
	Number of Neurons Per Layer
	Learning Rate
	Optimizer
	Batch Size
	Epoch
	Weight and Biases Initialization
	Grid Search
	Random Search
	Deep Belief Networks (DBN)
	Analyzing the Boston Housing Dataset Using DNN
	Summary
	Exercise
	References

	Chapter 9: Convolutional Neural Networks (CNN) for Predictive Analytics
	Convolution Layer
	Padding and Strides
	ReLU LAYER
	Pooling Layer
	Fully Connected Layer
	Hyperparameters of CNNs
	Image Classification Using a CNN Model Based on LeNet Architecture
	Summary
	Exercise
	References

	Chapter 10: Recurrent Neural Networks (RNNs) for Predictive Analytics
	Recurrent Neural Networks
	Long Short-Term Memory
	Forget Gate
	Input Gate
	Output Gate
	More Details of the LSTM
	Hyperparameters for RNNs

	Summary
	Exercise
	References

	Chapter 11: Recommender Systems for Predictive Analytics
	Content-Based Filtering
	Cosine Similarity
	Collaborative Filtering
	User-Based Collaborative Filtering (UBCF)
	Item-Based Collaborative Filtering (IBCF)

	Hybrid Recommendation Systems
	Examples of Using Hybrid Recommendation Systems

	Summary
	Exercise
	References

	Chapter 12: Architecting Big Data Analytical Pipeline
	Big Data Technology Landscape and Analytics Platform
	Data Pipeline Architecture
	Lambda Architecture
	Twitter and Pinterest’s Data Pipeline Architecture
	Design Strategies for Building Customized Big Data Pipeline
	Design Patterns and Pattern Languages
	Summary
	Exercise
	References

	Glossary of Terms
	Index

