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Preface

The concepts of origami and science would seem to be about as far apart
as you can get within human fields of endeavor: the former, an art, a
craft, associated with a Japanese tradition hundreds of years old; the latter,
a strict, rationalist way of knowing. But remarkably, both fields extend
tendrils of influence into the other, exhibiting connections in manifold ways.
And, in fact, they have done so for decades.

For upon closer examination, they are not as far apart as you might
think, science and origami, or even science and art in general. While sci-
ence is generally perceived among the public as the province of white-coated
individuals following a rigid set of rules collectively known as “the scientific
method,” said scientific method is merely a discipline—a set of tools—that
bring order to what is still a very human practice. Aesthetic terms like
“elegance” pervade science; and while one may create and follow a double-
blind protocol to evaluate a hypothesis or use advanced computational
and mathematical tools to establish and explore a technology, the moment
of scientific inspiration—that moment of “Aha!”—is widely known, if not
widely advertised, as an art within the science. Many scientists, mathe-
maticians, and technologists are as motivated by the order, beauty, and
elegance within their field as any painter, writer, or sculptor. Scratch a
successful scientist, and you will find an artist not far under the surface.

Conversely, the art of origami—folding uncut sheets of paper into beau-
tiful objects—is deeply connected to the worlds of mathematics and science.
The laws of origami—folding without cutting—would seem on their surface
to be so restrictive as to prevent any significant variety of accomplishment.
It is a testimony to the ingenuity of hundreds of origami artists that the
opposite is true; there seems to be no limit on the range of artistic expres-
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x Preface

sion possible within origami. But there are absolute limits on the physical
structures foldable with origami. Those limits are defined by the under-
lying mathematics of origami. By exploring, elucidating, and describing
those mathematical laws, modern origami artists have found ways to push
the art to undreamed-of heights, and to begin to develop computational
tools that augment the capabilities of the human artist in order to more
fully realize their artistic visions.

At the same time, these mathematical explorations have allowed origami,
or more broadly, folded structures, to take on applications in the real
world and bring real benefits to the world. Folded structures based on
origami principles have found application in space flight, consumer elec-
tronics, health, and safety, to name just a few areas where origami has
made an unexpected appearance.

These rich connections make origami an ideal vehicle to bridge the sup-
posedly disparate worlds of math and science, and it should be no surprise
that origami has found repeated application in education to form connec-
tions, to make mathematics accessible, and to provide concrete demonstra-
tion of the fact that mathematics is everywhere around us.

The connections between origami, mathematics, science, technology,
and education have been a topic of considerable interest now for several
decades. While many individuals have happened upon discrete connec-
tions among these fields during the twentieth century, the field began to
take off when previously isolated individuals began to make further con-
nections with each other through a series of conferences exploring the links
between origami and “the outside world.” The first such conference, the
First International Meeting of Origami Science and Technology was held
in Ferrara, Italy, in 1989, and was organized by Professor Humiaki Huzita
at the University of Padova. This conference brought together researchers
from all over the world, many meeting each other for the first time, and
its published proceedings became almost immediately a standard reference
for mathematical origami. (And now they are an extremely hard-to-find
reference.)

This conference was so successful that a second conference, The Sec-
ond International Meeting of Origami Science and Scientific Origami, was
organized in Ohtsu, Japan, in 1994. It, too, produced a proceedings vol-
ume, which also became a key reference for this cross-disciplinary field. It
was followed in 2001 by the Third International Meeting on Origami in
Science, Mathematics, and Education, held in Monterey, California, whose
proceedings were published as a book, Origami3, edited by Thomas Hull,
and published by A K Peters, Ltd.

The success of these conferences—each year larger and with a more
extensive program than the last—and their proceedings led to the Fourth
International Meeting on Origami in Science, Mathematics, and Education
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(4OSME), held in September, 2006, at the California Institute of Technol-
ogy in Pasadena, California. The 4OSME brought together an unprece-
dented number of researchers presenting some 80 papers on fields ranging
from mathematics, to technology, to educational uses of origami, to com-
puter programs for the design of origami. Selected papers based on talks
presented at that conference make up the book you hold in your hands.

It should be clear now that this book, and the conference that gave rise
to it, owe their existence to those pioneering individuals who plumbed the
fields of origami, math, science, and education. The contributors to those
fields are innumerable, but I should like to acknowledge several people and
organizations whose support was absolutely critical. First and foremost,
the support of OrigamiUSA, which sponsored the conference, and of the
California Institute of Technology, which provided facilities as well as finan-
cial support, was invaluable. The program committee, consisting of Tom
Hull, Günter Rote, Ryda Rose, Koichi Tateishi, and Toshikazu Kawasaki,
performed heroic duties in reviewing (and in many cases, recommending
improvements to) both the conference papers and the works in this book.
Tom, in particular, played a critical role in bringing this book together
in many ways: advice, support, and through his extensive knowledge of
origami-math. I must also express my thanks to an anonymous reviewer
(you know who you are) who made extensive and helpful recommendations
for several of the papers. Last, this book would not exist at all if not for
the contributions of the authors, those who gave presentations at 4OSME,
and who contributed to this book. My thanks to you all.

Robert J. Lang
General Chair, 4OSME

Editor, Origami4

Alamo, California, 2008
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Paper Nautili:
A Model for Three-Dimensional

Planispiral Growth

Arle Lommel

The spiral forms of seashells have been of interest to many paper folders in
recent years, with models such as the elegant intertwined flaps of Tomoko
Fuse and Robert Lang’s nautilus. This article describes a novel method
for the construction of smoothly curved three-dimensional models of loga-
rithmic spiral shell-like forms that approximate the curves of natural spiral
shells.

This model differs from existing models in a number of regards. Rather
than intertwining flaps, it is produced by repetition of a relatively simple
folding sequence along the length of a tapered strip of folding medium in
which a straight line is folded to a curved line, thereby causing the folding
medium to buckle into three dimensions with a curve roughly catenary in
form.

It should be emphasized that this model was designed initially through
practical hands-on experimentation, not via the mathematical model pre-
sented herein, which is a post facto explanation of the results. As a result,
even if any details of the mathematical model remain underspecified, the
practical results demonstrate that the techniques described work well for
producing actual models.

The natural basis chosen for this model was the shell of the chambered
nautilus. Besides its traditional use as an image of mathematical perfection,

3
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4 I. Origami in Design and Art

Figure 1. Various spirals produced by rotating similar right triangles about a
radial axis.

the nautilus is planispiral (i.e., the spiral coils on a plane and is bilaterally
symmetrical) and has a relatively simple catenary-type cross section when
cut radially from the axis. It is thus a relatively simple shell form to model
when compared to many other whorled shells found in nature.

Contrary to numerous published accounts, the chambered nautilus is
not a so-called Golden Mean spiral; like the Golden Mean spiral it is a
logarithmic (constant-slope) spiral, but a simple visual examination of both
spirals shows that the nautilus has a much lower slope. The fact that so
many sources cite it as a Golden Mean spiral demonstrates how powerful
the belief in nature’s mathematical basis can be, even in the face of manifest
evidence to the contrary. One goal in producing this model was to generate
a spiral that approximated the actual spiral of the nautilus rather than the
idealized (but inaccurate) form that many scholars state that it has.

A useful starting point for designing this model is that any logarithmic
spiral can be approximated as a series of similar triangles in which the
hypotenuse of one triangle lies on (and is equal in length to) one leg of
the previous triangle (see Figure 1). Each triangle differs in size from its
neighbors by a fixed ratio. For purposes of this model, a series of right
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Paper Nautili: A Model for Three-Dimensional Planispiral Growth 5

Figure 2. The shadow of right-triangle spiral segments on the curved form of the
final model produces segment shapes that can cover the surface of the nautilus
model.

triangles is particularly useful, because when right triangles are utilized to
model a logarithmic spiral, a simple formula can be used to determine the
growth rate per revolution (g) for any number of triangular segments per
revolution (n):

g = cos(2π/n)−n.

This formula produces steeper slopes/growth rates for lower numbers of
segments, as shown in Figure 1. As it turns out, measurements of actual
nautilus shells yielded growth rates of roughly 3.5, for which the value g =
3.55 of a 16-segment spiral model is a good approximation (a Golden Mean
spiral, in contrast, has a g roughly equal to 6.9). Therefore, to simplify
folding and design, this model of the nautilus adopts the 16-segment model.
(It should be noted that any arbitrary logarithmic spiral can be produced
in this manner, and I have produced 12- and 32-segment models in addition
to the 16-segment model described here.)

Having established an appropriate two-dimensional model for the nau-
tilus spiral’s growth pattern, the problem of how to generate the three-
dimensional structure, which includes roughly catenary radial cross sec-
tions, remains. However, this problem can be solved in a simple manner:
the needed two-dimensional shapes can be conceived as the shadows of the
right-angle triangles on the surface of the desired three-dimensional shape,
as shown in Figure 2.

The shadows of the original right triangle sections show the same scaling
factor with regard to adjacent segments as in the original two-dimensional
model, allowing them to be arranged within an evenly tapered strip of
folding medium, as shown in Figure 3.

It is important to note in Figure 3 that the curved segment BC (the
shadow-distorted hypotenuse of an original ABC right triangle) is equal in
length to the leg of BDE (the curve onto which each segment was projected
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6 I. Origami in Design and Art

Figure 3. A sequence of distorted triangles that can cover the surface of a nautilus
model arranged in a series.

was the same curve), and the straight-line segment BC (shown with a
dotted line) is, consequently, shorter than CD. The ratio (r) of the length
of the edge of any distorted triangle to the corresponding edge of its larger
neighbor is defined as

r = g1/n.

In the case of the 16-segment model, this yields a scale factor of 1.082.
(This simple scaling factor aids in the production of templates for folding
the model on a computer since each segment can be copied and scaled to
yield the next segment.)

The fact that CD and CB are equal in length suggests a folding sequence
that will yield the three-dimensional shape sought in this model. Segment
CD is mountain folded and swung back to lie on CB, a process that is
repeated on each segment of the model to leave only the gray shaded areas
in Figure 3 visible. As the straight line CD is brought to lie on the curve
BC, a curved valley fold forms equidistant between CD and BC. As this new
fold is formed, the folding medium takes on the catenary-like shape onto
which the original triangle sections were projected in Figure 2. Through
the repetition of this process, the tips of the triangles (e.g., points B and
D in Figure 3) are all brought to lie on the axis of the spiral, causing the
overall spiral outline to form. One advantage of this model is that as points
C and D are brought together, the valley fold (line CF in the crease pattern
shown in Figure 4) automatically forms, similar to folding a straight angle
bisector in conventional origami. Although it looks difficult, the folding is
actually quite simple and automatic with a small amount of practice.

Figure 4 shows the resulting crease pattern, and Figure 5 shows a com-
pleted model made in this fashion from copper cloth.
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Figure 4. Crease pattern for a half nautilus shell. Gray areas will be visible from
the outside of the completed model. Twenty four segments (1.5 revolutions) are
shown.

Figure 5. Image of a completed half-shell model folded from copper cloth and
chemically treated to variegate the surface.

As a practical matter, shells made following this model can be con-
structed by using a computer-drawing program (the author uses Adobe
Illustrator) to generate a paper template used to place the mountain folds,
which are precreased. This crease pattern can produce a half shell (as
shown), or it can be reflected along its top edge to produce a bilaterally
symmetrical crease pattern that yields a model of a complete shell. Either
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8 I. Origami in Design and Art

model is aesthetically pleasing, although only the half shell model affords a
view of both the “inside” and the “outside” of the construction. In addition,
the crease pattern can be extended to produce as many spirals as desired,
although the folding is impractical below a certain size and adding extra
segments on the big end can take up a large amount of folding medium for
little additional spiral. If paper is used to fold these models, wet folding is
helpful if the final model is to retain its shape, but in the author’s experi-
ence, woven metal cloth is a superior folding medium for these models due
to its malleability and receptiveness to hard creases.

In conclusion, this article has described a folded model that closely
resembles an actual nautilus shell in its overall shape and spiral growth. It is
constructed using a minimal set of repeated folds (and is thus conceptually
elegant). The model is useful because it approximates the structure of an
actual shell, rather than just its appearance, and does so in a gracefully
curved form. In addition, the fold lines visible on the inside are evocative
of the septa within a real nautilus shell, an unintended aesthetic bonus of
the design. This novel technique for folding curves has proved capable of
accurately modeling a variety of natural planispiral shells in an elegant and
natural-seeming manner. To this point, the technique has been applied only
to planispiral shells. The author has attempted to apply the technique to
the more complex whorls of marine snails and other conically-spiral shells,
but the results have not met expectations. Further research may enable
the technique to be extended into these more complex shapes, but success
is not yet certain.
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Curves and Flats

Saadya Sternberg

1 Background: Raising a Pattern, Keeping
a Sheet Flat

What is the subject here? The aim is to gain control of this medium,
mostly so as to be able to make those faces, my main proving ground.
And the medium itself—is what? Clearly it involves folding curves (in,
as it happens, rectangles of brown wrapping paper spray-glued to thick
aluminum foil). Now curve folding, as is known, creates surfaces that
won’t lie flush to each other, that is, open folds; and open folds can be
made voluntarily with straight lines too. So maybe our subject is best
described as the manipulation of open folds, whether curved or not. And
gaining control of this subject, taming it, means, for me—as in certain
political theories—flattening it: being able to crush, squeeze, twist, bend
the thing to the right or left . . . . In short, I want to be able to restore
an average flatness to a surface deformed by curved or open folds, and
then see whether and how such a textured or raised surface can be further
manipulated.

But let’s start at the beginning. Suppose you put curved folds of any
kind in a flat sheet of paper. The paper will no longer lay flat. For that
matter, you can easily enough use straight folds to create a surface that
curves—a cone for example—by means of an angled crimp that originates
in the interior of a sheet. But with non-flat surfaces made only via straight-
line folds, you can always collapse the surface to a completely flat state
(while retaining the initial folds) by adding a finite number of new straight-

9
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10 I. Origami in Design and Art

(a) (b) (c)

Figure 1. (a) Sand Curves. (b) Fish Scales. (c) Triangle Spirals.

line folds. Curved surfaces made by curved folds cannot be collapsed flat
while retaining those folds by any finite means, neither by adding straight
folds nor by adding curved folds. (Both of these last conjectures seem to
me eminently provable.)

If real flatness is not to be had, there is still the next-best thing, average
flatness. Here the surface has a raised texture of essentially the same height
and depth throughout. The surface gives some of the appearance of flatness
and shares some of its properties. This article mainly addresses some of
the issues involved in making and manipulating surfaces of such a kind.

For a surface with a curved fold to be kept flat on average, a pattern
of curves of roughly similar shape must typically be drawn on it. This can
be done in one direction, with curves (for instance, waves) running parallel
to each other. Can it be done in two? Clearly it can, for one instinctively
flattens a cone shape (a surface created by a flat fold) by means of concentric
circles. But another, less explored possibility is to divide a flat surface into
a lattice of squares, triangles, or hexagons, and to place the identical curve
pattern in each. This has the nice effect of shrinking the paper by the same
amount in all places, so it is not forced to bend from the plane. And it not
only maintains average flatness, but also yields a surface that is similar in
outline to the one with which we started. (See the examples in Figure 1.)

However, this trick can’t be done with every pattern, only with those
that line up or tessellate—so that the left line in one tile’s pattern turns
into a right line in the tile next to it, and ditto for tops and bottoms.

2 Spiral Curvigami Tessellations
One ancient, well-studied pattern that tessellates very nicely is the vortex
or spiral, so I want to spend a little time on it.
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Curves and Flats 11

(a) (b)

Figure 2. (a) Regular square spirals. (b) Alternating spirals.

A vortex, whether in a bathtub or a galaxy, is nature’s way of pulling
material in a plane toward a center in the least objectionable manner, so
it’s an intuitive choice for shrinking a sheet of paper too. Liquid swirls
were considered observationally by Leonardo da Vinci and patterns of or-
namental spirals are to be found in the decorative art of many ancient
cultures.

In origami too, spirals and vortex-like twist-folds have a distinguished
pedigree, having been studied by, among others, S. Fujimoto, T. Kawasaki,
Alex Bateman, Tomoko Fuse, Jeremy Shafer, Chris Palmer—indeed it
sometimes seems by all the pioneers of the currently exploding field of
origami tessellations . The spiral tessellations I’m introducing here are
necessarily related to some of those more familiar ones in their underlying
geometry, and they have other points in common too. But one difference
is that the spirals here are drawn on the surface as curves and then folded
directly—causing the paper to condense—rather than being created from
straight folds of relatively free material in already condensed paper, folds
that are then twisted into spirals. These spiral patterns are, for all that,
one type of origami tessellation: they belong to the subset of tessellations
that can be formed continuously with a lateral, bidirectional compression
of a surface.

With a square and triangular grid, you can make spirals that curve in
the same direction (Figure 2(a)) or you can alternate the direction (Fig-
ure 2(b)); the pattern will still line up. (With a hexagonal grid more
thought is needed to achieve alternation.) Figure 1(c) is from a triangular
grid with a unidirectional spiral; Figures 3(c) and 4 use a square grid. In
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12 I. Origami in Design and Art

(a) (b) (c)

Figure 3. (a) Hexagon Spirals. (b) Squeezed Hair. (c) Molly.

these patterns the eye is naturally drawn to the shaded hollows between the
ridges, but if you look at the vertices you’ll see the pattern’s spiral basis.
Figure 5(a) is a fancy version of a spiral pattern based on a hexagonal grid;
Figure 3(a) and (b) use simple spirals, also from hexagons.

Interestingly, an alternating spiral pattern compresses inward from the
sides much less than a unidirectional pattern does. The degree of lateral
compressibility is an important issue for any open-fold pattern, although it
takes some practice to be able to recognize from a pattern drawing alone
how well it will compress. I won’t dwell on this subject here, but the
issue of tangents, touched on below, bears on compressibility. It should be
remembered that when a pattern contains curves it will not compress all
the way, in the nice way that a Miura fold does. So the applicability of
curving patterns for stents and such may be somewhat limited; but perhaps
other uses can be found for them.

Note, too, that a regular division of the plane is not necessary for shrink-
ing a sheet via spirals: any irregular polygonal lattice will do. Figure 6
shows a surface carved at random into irregular polygons, along with a
(semiregular) spiral crease pattern for it. It is trivial to prove that any
division into regular or irregular polygons will allow a spiral pattern to be
created for it, and that the pattern will fold. It is less trivial to prove that
a surface so divided and folded can always be made to lay flat—for the
possible reason that this may not be true. In my own experiments, since
the spiral within each polygon can be twisted with some independence from
its neighbors, one always has a certain control over how flat or curved the
overall surface will be. On the other hand, when the polygons are of a
different size and the spirals in them are of a different height, the concept
of average flatness loses some of its clarity.
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Curves and Flats 13

Figure 4. Ernestine.

(a) (b)

Figure 5. (a) Fancy Hexagon Spirals. (b) Ben Gurion.
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14 I. Origami in Design and Art

Figure 6. Spirals from an irregular grid.

As an autobiographical note, I came upon this subject of spiral tes-
sellations only when seeking an elegant solution to a sculptural problem
that was nagging at me: how to make from paper the dome of a person’s
head, which curves in two directions at once, as paper is loth to do. Many
curve-based tessellations, while they can be kept flat, also introduce some
bidirectional flexibility to a sheet of paper. Spiral ones happen fortuitously
(see Figure 4) to look like hair.

Finally, to put this discussion of spirals back into perspective: spiral
tessellations are just one kind of open-fold tessellation that will shrink a
surface while preserving average flatness. There are many others (e.g.,
Figure 1(b)). Surfaces can also be shrunk without any tessellation at all
using semiregular (Figure 1(a)) or random-crumple methods; and if edge
proportions are allowed to change a great many other options are available.
It seems that this field of compressive, flatness-preserving deformations of
a sheet is still wide open for exploration in origami.

3 Folding Patterned Sheets
Let’s move to our other main area of investigation. Once you have a surface
with a raised pattern on it, what can you do with it? Specifically, can
the usual origami manipulations done on smooth sheets be done on these
textured ones too?

The answer, I’m afraid, is usually “no”: most elaborate origami fold-
ing will typically be interfered with by the existence of a raised pattern. A
counterexample among top-rank models is Roman Diaz’ Tiger’s Head (Fig-
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Figure 7. Tiger’s Head, by Roman Diaz. (Folded by the author.)

ure 7: his design, my fold); but there the curves are put in at the final stage
on the free flat edges that remain at that stage. Starting from the outset
with a three-dimensional texture poses considerable difficulties for much
origami. Having said that, folding a raised and especially a curved pattern
around a corner line can create deep furrows and bulges that are visually
quite arresting—enough by itself to make a fine model, as the beautiful
1976 Tower form by David Huffman, the great pioneer of curved folding,
clearly demonstrates (Figure 8). Here, although the resultant shape has
struck many people as wondrously complex, a crease pattern that folds to a
similar form is actually quite simple (Figure 3; my reconstruction). I have
tried absorbing some of its design principles in my own work (Figure 10).

The Huffman Tower, by the way, prompts a question that comes up
more generally from various quarters when dealing with curved folds: is
there any difference in principle between a curved fold and a straight one?
Isn’t a sine curve just a zigzag with the corners rounded off? In the case
of the Huffman Tower, couldn’t all the curvy lines have been replaced
with straight segments, and the curving surfaces with flat ones? (And how
about with my spirals?) This is not an insignificant question, and while
the answer may be different in each separate instance it is always worth
asking. There are some real differences between curved and straight folding
(we await the full list . . . ) but the effect of curves can also be so hypnotic
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Figure 8. Mathematical paper folding, by David A. Huffman. (Courtesy of the
Huffman family. Photo by Tony Grant.)

Figure 9. Reconstructed crease pattern for the Huffman Tower.

as to make us forget to check whether straight-line analogues exist. But
let us leave that aside for now.

I want to consider what happens when a surface that is patterned in the
way I’ve been describing is folded along a line—folded gradually anywhere
from zero to 180 degrees. There are four different types of simple encounters
of open folds (for now: mountain-valley pairs) with a corner line, and I’d
like to show what happens in each.
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Figure 10. Jar of Muses.

Figure 11 is an open-fold crease pattern, in which you are to imagine
(or attempt) folding the more horizontal lines first into open mountain and
valley folds, and then bending the pattern successively at each of the four
vertical locations.

If you try bending the straight-line open-folds at A, the paper will resist.
Eventually it will buckle, that is, it will form new fold-lines at awkward
and unexpected locations. This is the corrugation effect, used for adding
stability to flimsy sheet materials. Note that since the lines that intersect
at A are all straight, there is nothing stopping you from folding them all
the way into closed folds; A can then be folded without complaint.

At B, the horizontal open-fold lines, which are shown to be straight
but may also be curved, meet line B from both sides at an angle. (Line
B in fact will already be formed by having made the angled open-folds.)
Bending the surface here can be done quite easily: the corrugation effect
has disappeared. However, the result of such bending is that the height
of the surface will compress along B, as the angles turn inward and trade
some of their verticality for depth. If the open folds meeting B are straight
lines, a 180◦ bend around B will close these folds completely.

At C, the horizontal lines are arcs ; a hard fold along C itself encounters
the same resistance as at A and for the same reasons. However, the region
of C taken as a whole behaves just as the single line of B does; in fact it
can be considered a stretched out version of B (one dimension stretching
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Figure 11. Encounters of curves with straight open folds.

into two!). Thus the entire region of C can be made into a corner that
curves gradually, and if the corner is sharpened (edges bent back more),
the furrows will deepen just as they did at B. The height will likewise
shrink. But because they are curved, the folds will never shut completely.
(On the other hand you are able to bend the surface back by more than
180◦, indeed by more than 360◦.)

At D, the open folds meet the line at a tangent : an angle of zero.
Consequently there are no angles to rotate inward, and a fold here is not
as disruptive to the vertical extension. It may be noted that this property
of being able to meet a line at a tangent is one that curves possess and
straight segments do not, so this is yet another answer to the question of
what differences there are for folding purposes between curves and straights.

None of the above is earth-shaking mathematics, but it does account
for many of the simpler cases of raised-pattern folding, so it needs to be
stated. Fancier permutations (nonparallel mountains and valleys, mountain
+ mountain + valley open folds, open folds that meet curves, etc.) are of
course possible too.

4 Concluding Thoughts
I think this is enough of a sketch to suggest some of the issues that come up
when forming and manipulating curve patterns. I want to conclude with
a few thoughts about method and the links and tensions here between art
and science.
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For experimental work, the ideal medium for curved folding is a foil-
backed paper (preferably stiff foil, 50–100 microns thick) rather than paper
on which the pattern has been plotted and scored. The reason is not
aesthetic—aesthetics may in fact favor plain paper—but rather that foil-
paper, which holds a curvy shape without springing, also allows you to
erase a line with a fingernail and shift your curve at will. This helps
avoid a trap one may fall into, especially if one takes an analytic rather
than experimental approach to this field: the assumption that if a curve
representing a particular function creates a nice effect, the effect is due to
the function and no other curve can accomplish approximately the same
thing. You can avoid such fixation by trying out other curves and straight-
line variants—but that requires a comfortable medium for doing so. (This
of course is not to say there are no specific curves that optimally solve well-
defined problems, or that mathematics is not useful for finding them. But
for most curved origami sculpture, at least in my experience, the details of
a curve are not very determinative. Direction of curvature matters a great
deal: degree and rate of curvature, usually less so.)

A similar fixation tends to happen with regular patterns, so these should
always be tested against the most irregular version of the same pattern to
see what in fact is doing the work.

Irregularity versus regularity, plotted and repeated patterns versus free-
form and varying curves—all this raises another issue, this time a purely
aesthetic one: the old, grand tension between mathematical optima and
repeatability on the one side, and romantic and individual expression on
the other. This is rather a large topic to broach just here: entire cultures
are defined by where and how they come out on this continuum. I will say
only this. Certainly in the animal world, the outline curve is a prime bearer
of information about a living form’s identity and emotional state; and in

Figure 12. Triptych of Leonardos.
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the handwriting and drawing of humans, the curve or the flourish is where
personality is looked for—and found. It would be a shame if origami’s
inherent tendency for pattern and repetition should give rise in this new
field to mainly a cold and crystalline form of model design, to the calculated
rather than the expressive. Curved folds leave a great deal of freedom for
the shaping of three-dimensional form: too much freedom, to many folders’
tastes. But where there is freedom, there can also be—individuality.
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The Celes Family of Modular Origami

Miyuki Kawamura

1 Genesis of Celes
Sometimes when square paper is cut from a larger sheet, long, slender
paper strips remain. I wanted to make origami works with these paper
strips and so I designed several models in 2001 and 2002. Celes [3], shown
in Figure 1, is one of my modular works that is made with paper strips.
The basic model is made with 30 strips in the proportions of 1 by 6, but
other proportions can be used; 1 by 5 or longer strips are required.

The name Celes came from the word celestial because the model has
12 stars on the surface. Celeste might be the name in English, but the
pronunciation of Celes is easier for me.

2 Variations of Symmetry
Polyhedral symmetry provides basic and important guidelines for the de-
sign and assembly of any modular work. There are basically three different
kinds of symmetry, which dictate, among other things, the number of units
needed for the structure. Phrases such as “assembled with 6, 12, or 30
modules” might be familiar to modular workers; these numbers, such as
6, 12, or 30, correspond to the number of edges in the underlying regular
polyhedron. We can make two different types of models with 12 modules—
those based on the cube and the octahedron. There is the same situation
for 30-module models too, in which either the dodecahedron or icosahe-

21
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Fold and unfold

The Celes
module

Tuck the flap into
the pocket.

Tuck the flap into
the pocket.

Flap

Flap

Pocket

Pocket

The Celes
30 modules

5 modules

Figure 1. The Celes module.

dron is the underlying polyhedron. So, five different models corresponding
to the five regular polyhedra can be made with one kind of module. It is
possible to make five different models with the basic Celes modules, too,
but one of the models made with 30 modules is not stable.

Generally, we can also make other, more complex models with larger
numbers of modules. For example, polyhedra are possible using 24 units,
60 units, 90 units, and so on. These models correspond to the semiregular
polyhedra; their symmetry is based, in turn, upon the symmetry of one of
the five regular polyhedra. The symmetry of a prism is also available. We
can design many variations of modular works by making use of different
types of polyhedral symmetry.

3 Variation of Inside Out
The basic Celes modules can be assembled as a model turned inside out as
well. It is very hard to complete this model because all of the connection
parts are inside; the reader is encouraged to try.

4 Changing Angles of Connections
More exciting arrangements can be made by changing the angle of connec-
tion of the Celes module. The form of the connection of the basic module
is a right triangle, as shown in Figure 2. The key angle inside the triangle
is denoted by θ in Figure 2 and in the following discussion. This angle
θ can be changed by redesigning the connection of module: specifically,
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Celes90

The shape of 5
modules vertex

The shape of 5
modules vertex

30 modules
model

30 modules
model

convexconcave

convexconcave

convexconcave

flat

Celes 120

Celes 180

Celes 240

Celes 30

Celes 45

Celes 60

Celes 72

Figure 2. The Celesθ family.

by varying the angle at which each end of the strip is folded over. This
defines a family of modules, parameterized by the angle θ, and so we call
this family Celesθ. Individual members are named by replacing θ with the
value of the angle; thus, the basic Celes module is called Celes90. Angle
θ can be changed continuously from 0 to 360 degrees, so there are infinite
variations of the Celes module.

To take just one example, in the complete model of the basic Celes90
model, the symmetry is the same as that of the icosahedron. Each star on
the surface is made from the ends of five modules. With this symmetry,
when the angle θ is smaller than 72 degrees, the curvature of a surface star
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is positive and we can make two different types of Celes. One has concave
stars and the other one has convex stars. When θ is bigger than 72 degrees
the star shape is wavy because the interior angles exceed 360 degrees, and
when it is just 72 degrees the star is flat. So 72 degrees is the boundary
between convex/concave and wavy stars.

When a star on the surface is made from four modules, the boundary
angle is 90 degrees, and when a star is made by three modules, the bound-
ary is 120 degrees. The relation between the shape of the star and the
connection angle θ is the same as the relation between the form of a curved
surface and its local curvature.

5 Bridge
Generally, many origami modules consist of two different and distinct func-
tional regions. One region forms the connections between modules, e.g.,
pockets, flaps, and other assembly structures. The other part is not used
in the connection between modules; instead, it extends from one connection
region to another. That part is called the bridge [1, 2]. If the connection
and the bridge are independent of one other, we can make the bridge any
shape without influencing the connection. So there is some level of freedom
in their arrangement.

In case of the basic Celes module, the two right triangles are the con-
nection and the middle part is the bridge (Figure 3). We can fold the bridge
into any shape: crane, flower, beetle, dragon, devil, etc., without affecting
the connection. Because of this, there are innumerable variations of the
bridge and it is difficult to describe all possible variations.

"Strap Bridge"

Connection

Connection

Bridge

Figure 3. Bridge.
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Inner Diagonal,
front

Inner Diagonal,
back

Outer Diagonal,
front

Outer Diagonal,
back

Inner Beam,
front

Inner Beam,
back

Outer Beam,
front

Outer Beam,
back

Figure 4. Diagonal and beam bridge.

However, we can begin with the simplest variations of the bridge. When
the bridge has no crease line, we call it a strap bridge. If it has one crease line
along the diagonal of the bridge, we call this the diagonal bridge (Figure 4).
There are four possibilities for this crease.

As a second example, let’s add further creases to the bridge. In this
case, the bridge has three creases (Figure 4). This structure is named
beam bridge. Fold along the diagonal line first, and then wrap each end
around the raw edge of paper. As with the diagonal bridge, there are
four variations; in each variation, all three creases are of the same type
(mountain or valley).

6 Second Bridge

Each connection of the Celes90 module is made by two small right tri-
angles. We redesign the module, split the two triangles and make a new
bridge between these two (Figure 5). The new bridge is called the sec-
ond bridge, and we rename the original bridge to be the main bridge. The
complete module is called the Celes spread module. We can make the same
treatments of the second bridge as on the main bridge, e.g., strap, diagonal,
beam, and so forth.

Several examples are shown in Figure 6. All of these models are made
from same length strips but the ratio of the lengths of the main bridge and
the second bridge is different. The main bridge is shaped as a beam bridge
(three diagonal creases) and the second bridges are shaped as strap bridges
(no diagonal creases).
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module of the
"Celes Spread"

2nd Bridge

Main
Bridge

2nd Bridge

Figure 5. Second bridge.

main bridge:
inter Beam,back

main bridge : 2nd bridge (width of the tape=1) Each models are made with 6 modules.

5.9 : 2.5

main bridge:
inter Beam,back
4.9 : 3

main bridge:
inter Beam,back
3.9 : 3.5

main bridge:
inter Beam,front
2.9 : 4

main bridge:
inter Beam,front
4.9 : 3

Figure 6. Main and second bridge.

7 Local Uniting Relation

The second bridge has a pocket or a flap on each end (Figure 7). There are
two different ways to lay out the flap and pocket. Type 1 is called basic and
Type 2 is called twist. The creases on the flap and the pocket can be inde-
pendently chosen to be mountain or valley, giving eight kinds of module.
One pocket has two slits, one on the front side and the other on the back
side. When we choose two modules arbitrarily from the eight possibilities,
the pattern to assemble is dictated by the choice of mountain or valley
creases on the pocket and the flap, and so only one way of assembling the
two is allowed. This property is called the local uniting relation of the mod-
ule. Generally, many kinds of modules have this property, which strongly
constrains the assembly and shapes of models made from the modules, and
therefore dictates important characteristics of the modular works.
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m. or v. m. or v.

Type 1

m. or v.

m. or v.

Type 2

Figure 7. Two types of layout.

Tuck the pocket into the pocket. Tuck the pocket into the flap.

Figure 8. Flap and pocket.

8 Crease Pattern Formula
Here we generalize the module of the basic Celes90 and provide a compact
notation for describing them. As noted earlier, the arrangement of the
positions of the pockets and the flaps can be freely chosen. A flap has the
same structure as a pocket, so we can tuck the pocket of one into the pocket
of the other, or we can tuck the pocket of one into the flap of the other
(Figure 8). Note that the number of pockets of the module need not be
two and the shape of a module does not need to be symmetrical. (For that
matter, a complete model does not need to be a closed polyhedral form.)

And so a model can be arbitrarily complex by repeatedly adding ele-
ments from the simple set of structures along the strip. Figure 9 shows
an example of a generalized Celes90 module constructed according to this
prescription. This module can, in fact, be assembled with copies of itself.
The lower diagram in Figure 9 shows the crease pattern of this module.

Here is how we describe the module structure concisely:

• Between each crease, we give an integer that gives the length of the
bridge as a multiple of the width of the strip. So, for example, in
Figure 9, the numbers 1, 2, 4, 3, 1 are the lengths of each bridge.

• We use brackets [. . .] to denote the two ends of the strip.
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3 modules
front back

m v

v

v

v

m

m

Figure 9. Crease pattern formula.

• We use the letters r and l to denote the slopes of the crease lines; r
for a line rising from left to right, l for a line descending from left to
right.

• We use the letters m and v to specify whether the fold is mountain
or valley.

In general, there are four possible combination of r, l with m, v in each
parenthetical pair, i.e., (rm), (rv), (lm), and (lv). Therefore, if a module
has N pockets/flaps, the upper limit of the number of the kinds of shapes
of the module is 4N . However, this formula includes duplicates. For the
example shown in Figure 9, there are four identical modules with different
formulas:

[rv)1(rv)2(rv)4(lm)3(lv)0(rm)1(rv] (original module),
[rv)1(rm)0(lv)3(lm)4(rv)2(rv)1(rv] (right-left reversal),

[lm)1(lm)2(lm)4(rv)3(rm)0(lv)1(lm] (r-l and v-m reversal), and
[lm)1(lv)0(rm)3(rv)4(lm)2(lm)1(lm] (right-left, r-l, and v-m reversal).

With no other forms of duplication, the lower limit of the number of the
kinds is 4N−1. But we must also consider the number of forms that does
not change with right-left reversal. This number changes with the parity
of the module. So, the total number of different kinds of module with N
pockets is as follows:

4N−1 if N is odd,

4N−1 − 2N−1 if N is even.

The m and v in the middle row of the three rows of symbols in Fig-
ure 9 indicate mountain or valley fold along the center line of each pocket.
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"Cookie Maker"
30 modules

[rv)1(lv)(lv)1(rv], vmmv
Strap : Strap : Strap

"Hole"
30 modules

"Whip"
30 modules

[rv)(lv)3(lv)(rv]
vmmv

m : outer Twist, back : m
"Beam 60"
12 modules

"Celes Beam"
6 modules

[lv)1(lv)7/3(lv)1(lv], mvvm,
inner Diagonal,back :
outer Beam, back :

inner Diagonal,back

"Celes Spread"
30 modules

[rv)1(lv)3.5(lv)1(rv]
vvvv

Strap : Strap : Strap

"Celes Beam 90"
30 modules

[rv)(lv)1.5(lv)(rv], vvvv
m : outer Beam,front : m

"Celes 30"
30 modules

Figure 10. Variations of modular.

When there is no crease through the center line, it is indicated with a “.”.
The words in the third row indicate the type of each bridge, e.g., strap,
diagonal, and beam. A shape of a module that belongs to the Celes family
is uniquely described by this three-line formula, which we call the crease
pattern formula for the module.

9 Variations of Modules and Assembly

One of the merits of using this formula is that it leads to automatic design of
a module directly from its symbol. Figure 10 shows some models from the
Celes family, along with the names that I have given them. The diagrams
of Whip are published [4].

Since the bridge of a Celes module has only one layer, it is easy to
change the form. A lot of interesting models that have beautiful curves are
designed with long bridge modules. Some of these are shown in Figure 11
as well.
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17 modules

6 modules 5 modules 6 modules

4 modules 6 modules 5+5 modules 30 modules

Figure 11. Variations of assembly.

10 Summary
The Celes module is very simple, and yet has great potential. In this
module, the connection and bridge are separated clearly, so it is easy to
construct arrangements of the module. The greatest feature of the Celes
module is the flexibility to create pockets in arbitrary places within a mod-
ule. Besides the work described here, many varieties have been made by
many people. For example, Dr. Toshikazu Kawasaki has designed some
kinds of the Celes family. Although the construction method of the Ce-
les module is not yet common, it lends itself to a systematic approach for
module design, and I expect that many new modular works will appear in
the future.
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Fractal Crease Patterns

Ushio Ikegami

1 Redesigning the Maekawa Pyramid
Maekawa’s pyramid model (Figure 1) is one of the infinite folding models
he presented in [4]. By infinite folding, we mean that in the limit of infinite
iterations, it produces an infinite number of branches in four directions
from a finite square. Its crease pattern for any nth iteration consists of two
kinds of generators. We can determine the foldability of infinite folding
models (not flat foldability but the possibility of infinite iteration) by the
existence of such finite generators and their relative arrangement within
the crease pattern.

Figure 1. Maekawa Pyramid.
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Figure 2. Sketch for the new design.

Figure 3. Pyramid curve. Figure 4. Overlap.

Now, in the Maekawa Pyramid , there are four main branches that, in
the limit, produce an infinite number of secondary branches. However, each
secondary branch doesn’t branch any further after it comes off of a main
branch. This raises the question: is it possible to fold an infinite number
of branches from each secondary branch and subsequent branches as well?
Figure 2 shows just such a branch pattern. It is much more complicated
than the original pattern and its accumulation points form a curve shown
in Figure 3. We will call this the Pyramid curve.

Let us use the Maekawa Pyramid itself for this new design. The ac-
cumulation points of the crease pattern form the same Pyramid curve as
the accumulation points of the branch pattern. Furthermore, the curve
overlaps the area that becomes the surface of the pyramid (Figure 4). The
infinitely folded limit region cannot be made from a smooth surface. Thus,
the Maekawa Pyramid itself cannot grow further; there is not enough pa-
per. The crease pattern must be modified.

Thus, the Pyramid curve and the smooth surface must be separated
within the crease pattern. And the individual contraction of generators
shown in Figure 5 separates the curve and the surface because the con-
traction keeps the accumulation point fixed while the generators become
smaller and smaller.
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Figure 5. Contraction.

Figure 6. New composition.
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Figure 7. New pyramid.

Figure 8. Crease pattern.
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Figure 9. Crease-pattern generators.

Our next task is to fill up the space that was created by the contraction
(and is colored gray in Figure 6) using a recursive crease pattern. I found
such a crease pattern and resolved it into a finite set of generators. By
combining all generators at the appropriate scales, the new pyramid may be
completed as shown in Figure 7. Small pyramids protrude on the bottom of
the folded structure; they follow the Pyramid curve. They can be folded flat
underneath but I left them pointing downward to keep the crease pattern
simple.

Figures 8 and 9 show the crease pattern at the fifth iteration and the
generators and their representative tiles. Figure 10 illustrates their tiling
pattern and thus establishes the foldability of this infinite folding model.
My trial and the result of the work described here is also discussed in [2]
and [3].

2 Hausdorff Dimension of the Pyramid Curve
The calculation of the Hausdorff dimension dimH is generally difficult. But
in this case, it is relatively easy and the Pyramid curve turns out to be a
fractal set. Let C be a Pyramid curve of base length and height 1. C is
self-similar, because there exist similarity transformations

f(x, y) =
(

1
2
x,

1
2
y

)
, g(x, y) =

(
1 − 1

2
x,

1
2
y

)
, h(x, y) =

(
1
2
x, 1 − 1

2
y

)
such that

C = f(C) ∪ g(C) ∪ h(C).

Take an open set A as shown in Figure 11.



�

�

�

�

�

�

�

�

36 I. Origami in Design and Art

Figure 10. Tiling pattern.

1

0 1

(0.5, 1)

(1, 0.5)

Figure 11. Set A.

Functions f , g, and h satisfy the open set conditions

f(A) ⊂ A, g(A) ⊂ A, h(A) ⊂ A,
f(A) ∩ g(A) = φ, f(A) ∩ h(A) = φ, g(A) ∩ h(A) = φ.

Hence, dimH(C) is equal to the similarity dimension of C dimS(C), which
is the solution of (1/2)s + (1/2)s + (1/2)s = 1.

Thus, dimH(C) = log 3/ log 2 = 1.58 · · · , which exceeds its topological
dimension of 1. Therefore the Pyramid curve is fractal.

3 The Koch Curve as a Mountain Crease
The famous Koch curve K is defined as the limiting figure of a polygonal
curve sequence {Kn}. Is it possible to use this curve as a flat-foldable
crease pattern? (See Figure 12.)

For any given n ∈ N , place one of the curves Kn in the interior of paper
as a set of mountain folds. It is obvious that this crease pattern by itself
is not foldable. First of all, the Koch curve crease has its end points in
the interior of paper. The real question is whether there is some additional
crease pattern Tn such that the combination Tn∪Kn is foldable. As it turns
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Figure 12. Is the Koch curve foldable?

Figure 13. Entire view of the additional crease pattern.

out, there is; I was able to find a concrete example of {Tn}n∈N , which is
shown in Figures 13–17.

Let T be limn→∞ Tn. It has a set of accumulation points that corre-
spond to K placed into the middle of it. Moreover, it is gained by open
sink-folding at the tip of a single-vertex fold. In other words, the paper
doesn’t have to be bounded.

However, there is a problem. As you may notice, the highlighted zigzag
crease in Figure 14 doesn’t appear on the generator that covers the crease.

Figure 14. Blow-up of the center part.
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Figure 15. Generators for the center part.

Figure 16. Tiling and Koch crease. Figure 17. Detail.

Figure 18. Starting point. Figure 19. Altered generators.
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This is because its location depends on n since its end point connects
with the point indicated in Figure 18. Because this part of the pattern
varies with the iteration order n, foldability at the limit T ∪ K is not yet
established; we need to fix this crease on the generator somehow. Figure 19
shows altered generators with the zigzag crease now fixed upon them. In
this case, a total of seven generators had to be converted. But by doing so,
the foldability of the limit T ∪ K now becomes evident.

4 Creating a Snowflake Curve by Folding
We close with an open problem: is it possible to create a snowflake curve
by folding? This was actually an earlier project for me than the two al-
ready described, but it is much more difficult—in fact, it is still open. So
far, the trial crease patterns I have tried, including the one in [1], have

Figure 20. Trial crease pattern that is locally not foldable.
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required irregular squash folding. This suggests that an infinite number of
different types of generator may be required. As an inspiration to future
investigators, I show one possible trial pattern in Figure 20.
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Constructing Regular n-gonal
Twist Boxes

sarah-marie belcastro and Tamara Veenstra

1 Introduction
Among her one-piece boxes, Tomoko Fuse has a number of polygonal twist
boxes [3, 4]. The crease patterns and folding sequences are structurally
similar: divide the paper into (n + 1)ths, fold across these (n + 1)ths at
some height h, fold some angle α emanating from each intersection of the
vertical/horizontal folds, overlap the two ends of the paper, and collapse
the twist.

Question. Can we generalize one of Fuse’s constructions to create an n-
gonal twist box for any n? That is, can we construct an n-gonal twist
box from a 1 × 1 (or 1 × m) piece of paper by dividing the paper into
vertical (n + 1)ths, marking a horizontal height h, folding diagonals d in
the resulting rectangles (formed by the height h fold line, the vertical folds,
and the raw edge of the paper), making some folds to form the body of the
box, overlapping the ends of the paper, and collapsing the twist? Better
yet, can we find a formula for h in terms of n, so that the entire box
construction is determined by n?

Answer. Yes! We will show how to construct this box for any n.
More precisely, we discuss the following mathematical considerations

involved in proving that such a construction will work for all n. In order

41
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n +1 rectangles

h
d

for side of box

α

Figure 1. Part of the crease pattern to produce an n-gonal twist box.

for the twist to collapse so that the bottom of the box lies flat and has
no hole in the center, the angle α formed by d and the vertical creases
must be exact. The height h is determined by the angle α, which is in
turn determined by n. We must also examine the paper between the twist
center and the raw edge of the paper, and compare the length of d with
the diameter of the box body to verify that the raw edges may always be
contained within the body of the box. In constructing a folding sequence,
we will need to determine a crease for either h or α; thus, we will consider
which we can more easily and accurately find. Finally, we will examine the
case of large n, give folding instructions for a 17-sided box, and look at the
limiting (circular) case.

2 Determining α and h as a Function of n
We will first examine conditions on α in order to construct a regular n-gon.
Each (interior) vertex of the rectangles in the crease pattern in Figure 1
has the same arrangement of angles. The sum of the angles around such a
vertex before folding is π = π

2 + (π
2 − α) + α, and after folding it must be

the interior angle of an n-gon, namely π(n − 2)/n. Recall that the vertical
creases h will be mountain folds and the diagonal creases d will be valley
folds. The act of folding changes the sign of the angle between the mountain
and valley folds, so we obtain

π(n − 2)
n

=
π

2
−

(
π

2
− α

)
+ α = 2α.

In other words, α = π(n − 2)/(2n). Since α is half of the interior angle,
the diagonal d bisects the interior polygon angle. This means it will cross
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Figure 2. Intermediate folds for the twist of a pentagonal box.

through the polygon center, and thus our completed box will have neither
holes nor paper intersections. A visual demonstration of this for n = 5
appears in Figure 2, where a sequence of theoretical partial-twist folds is
given.

In general, for any n, the cumulative folded angle (for all vertices) is
max(π

2
, 2α). If n ≥ 4 then α ≥ π

4
and the cumulative folded angle is 2α.

When n = 3, we have α = π
6

so that the cumulative folded angle is π
2
.

Figure 3 shows the shape that is formed as a result of using our folding
sequence in this case. While we can still construct a triangular box this
way, there is some extra paper that must be tucked away.

Now that we have determined α in terms of n, we can construct h. We
examine a triangle from the crease pattern for the twist as in Figure 4. The
angle α is part of a right triangle with opposite side length h, adjacent side
length s, and hypotenuse length d.

This shows that h = s tan(α), and, given 1 × m paper, s = 1/(n + 1).
Thus, the formula for h in terms of n is

h =
1

n + 1
tan

(
π(n − 2)

2n

)
.

The height h is not particularly easy to approximate in general. In Section 4
we will discuss methods for constructing α and h.

Figure 3. The twisted box when n = 3.

d
h

s

α

Figure 4. The basic triangle.
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.5s

s

h

r

α

a

α r

r

α

α

Figure 5. Pentagonal and hexagonal folds.

3 Differences for Even and Odd n
When folding the crease pattern from Figure 1, one sees that for n ≥ 4
the raw edge of the twist will be a regular n-gon either coincident with
the bottom of the box or rotated by π

n . Examples of the two cases are
shown in Figure 5. To determine when each of these two cases will happen,
we need to examine the placement of the diagonal d after completing the
twist. Because d bisects the interior n-gon angle, the point where the
diagonal intersects the raw edge of the paper lies at an opposing vertex of
the polygon when n is even, and at the midpoint of an opposing edge when
n is odd. We would like to compare the length d to the diameter of the
n-gon, to see when the paper between the twist center and the raw edge
will be contained within the boundary of the n-gon.

Let us consider our n-gon as inscribed in a circle. Radii of the circle
partition the n-gon into n isosceles triangles with side lengths r and s =
1/(n + 1). Each isosceles triangle has altitude a. When n is even, we
compare the length of d to 2r, and when n is odd, we compare the length
of d to r + a.

To calculate d we will use two similar right triangles, both with an-
gle α, as in Figure 6. The larger triangle is part of the crease pattern
and the smaller triangle is contained in an isosceles triangle of the n-gon.
Comparing the hypotenuse and the side adjacent to the angle α, we have

d

s
=

r

s/2
,

so d = 2r. This computation may also be done using trigonometry, but the
similar-triangles calculations are simpler.

We can now compare d to the length of the diameter of the n-gon. As
d = 2r is exactly the diameter of an even n-gon, we see that for even n
the raw edge of the twist lines up perfectly with the bottom of the box.
For odd n, the diameter of an n-gon is r + a. As r is the hypotenuse of
the triangle and a is a leg of the triangle, r + a < 2r. Thus, the diagonal
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d
h

s

r
a

s/2
αα

Figure 6. Similar triangles.

does not fit inside the diameter of the n-gon for any odd n. To determine
how much excess paper we must fold under (and to ensure that we will
always be able to do this), we examine by how much d exceeds r + a, i.e.
we compute d − (r + a) = 2r − (r + a) = r − a. To find a in terms of r we
use the triangle in Figure 6 to obtain sin(α) = a

r , so a = r sin(α). Thus,

r − a = r − r sin(α) = r(1 − sin(α)).

From computing values we see that r − a gets smaller as n gets larger. To
verify this, recall that to construct a regular n-gon we have α = π

2
((n −

2)/n). As n gets bigger, α gets closer to π
2

since (n−2)/n goes to 1. Thus,

lim
n→∞(1 − sin(α)) = 1 − lim

n→∞ sin
(

π

2

(
n − 2

n

))
= 1 − sin(

π

2
) = 0

and the extra paper that we must fold under does, in fact, become much
less noticeable for large values of n.

To see that we can tuck away the excess paper toward the center of the
box for any odd n, we verify that r−a < a. Using the formulas a = r sin(α)
and r − a = r(1 − sin(α)) combined with the fact that 0 ≤ α ≤ π

4 , we see
that r − a < a for all α ≥ π

6 . Since α = π
2 ((n − 2)/n), this will hold for

all n ≥ 3. In some cases there are fancier ways to remove the excess, for
example, by forming a smaller n-gon with the extra paper. However, these
only work for small values of n. Interestingly, Fuse avoids having excess
paper in the interior of the box bottom for odd n by shortening h but
leaving α the same, thus causing the diagonal creases to miss the corner of
the rectangle along the raw edge of the paper.

4 Constructing the Crease Pattern
We have shown that if we are given a crease pattern as in Figure 1, we
can use it to make an n-gonal twist box. We now address the question
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n tan α h
4 1 .2
5 1.38 .229
6 1.73 .247
7 2.08 .260
8 2.41 .268
9 2.75 .274
10 3.08 .279
11 3.41 .284

n tanα h
12 3.73 .287
13 4.06 .290
14 4.38 .292
15 4.70 .294
16 5.02 .296
17 5.35 .297
18 5.67 .299
19 5.99 .300

Table 1. Values for computing h.

of how to actually construct this crease pattern. To construct the side s,
we divide the paper into (n + 1)ths. This can be done using the Fujimoto
approximation technique (see [2], [1]). Then, we must either construct the
angle α or the length h. Constructing α = π

2
((n − 2)/n) is easy for a

few values of n such as n = 3, 4, 6, but is generally hard. We can adapt
the Fujimoto approximation technique to divide angles into nths (see [1])
and use this to divide the angle π

2 into nths. From this we can construct
π
2 ((n−2)/n), so finding the necessary α can always be done, but in general
it is rather complicated. It is often easier to compute

h = s tan(α) =
1

n + 1
tan

(
π(n − 2)

2n

)
.

The values of h and tan(α) in Table 1 will enable us to examine some
special cases.

The nicest cases correspond to easy-to-construct values of either tan(α)
or h. For example, when n = 5, tanα = 1.38 ≈ 1 3

8
. Thus h ≈ 1 3

8
s, which

is relatively easy to construct as we can fold a π
4 angle to mark s, then 2s

on the side and divide into 8ths. Another simple case is when n = 7 as
h ≈ 2s. For an example of easy-to-find h, we see that when n = 6, h ≈ 1

4 .
Another result seen in the table is that for n ∈ {16, 17, 18, 19}, h is

approximately 3
10

ths of the paper length. In particular, when n = 17,
h ≈ .297195973, which is quite close to 3

10
. (Approximations of 5

17
, 3

13
, and

7
23 are less close.) This suggests that for a 17-sided box, we could use paper
of size 1 × 1

2
for the lid, so that h will be at the 3

5
mark. For the body of

the box, we might use 1 × 3
5 paper so that h will be at the 1

2 mark. This
inspired us to create a 17-sided box, for which diagrams appear in Figures
7 and 8.

The other interesting result we see in this table is that h appears to be
approaching a limit—in fact, it is approaching 1

π
. To verify this curious

result, we compute

lim
n→∞ h = lim

n→∞
tan(α)
n + 1

.
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Seventeen-Sided Twist Box not for the faint of heart 
(Warning!  Do not attempt unless you have made twist boxes before!)

Box Bottom: use 1 x 3/5 paper (start with 12")

Crease into 18ths.  Suggestion: Do 
thirds, then thirds again, then halves.

Fold in half and unfold.

Crease the diagonals of the lower rectangles.
Fold the top half down to just above the 1/2 
crease. Fold over again, on the 1/2 crease.

1

Re-crease the vertical folds so that they are 
all mountain creases. (The parity changes 
occur in the twist-to-be.)

Pre-collapse the twist, so that the paper 
will have some memory when you try to 
actually do the twist.

Overlap the 1st and 18th segments by tuck-
ing the right-hand segment into the left-hand 
segment s pocket.  Paperclip the outside.

Twist.  (good luck!)

2

3 4

5

6

7

8

Figure 7. The bottom of a 17-sided box. Even experts find the twist difficult.

In order to more easily apply L’Hôpital to evaluate the limit, we will convert
from n to α. Since α = π

2
((n − 2)/n) we have

1
n + 1

=
π − 2α

3π − 2α
.

Thus,

lim
n→∞ h = lim

α→π/2

(π − 2α) tan(α)
(3π − 2α)

= lim
α→π/2

(π − 2α) sin(α)
(3π − 2α) cos(α)

.
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Seventeen-Sided Twist Box Top not for the faint of heart 
(Warning!  Do not attempt unless you have made twist boxes before!)

Box Top: use 1 x 1/2 paper (start with 12")

Crease into 18ths.  Suggestion: Do thirds, 
then thirds again, then halves. Next, crease 
along the 3/5 line. Turn over.

Crease the diagonals of the lower rectangles. 
Turn over again.

Fold the top half down to just above the 3/5 
crease. 

1

Re-crease the vertical folds so that they are 
all mountain creases. (The parity changes 
occur in the rim of the box top.)

Pre-collapse the twist, so that the paper 
will have some memory when you try to 
actually do the twist.

With the colored side of the paper facing 
outward, overlap the 1st and 18th segments 
by tucking the right-hand segment into the 
left-hand segment s pocket.  Paperclip the 
outside.

Twist.  (good luck!)

2

3 4

5

6

7

8

Mark 3/5 along the edge of the paper.

Crease each side of the box 
top at the halfway point. Then 
fold adjacent pairs of sides, 
pinch the mountain fold 
between them, and flatten to 
the right.  This will create a 
spiral.  (Of course, you could 
also do many of Fuse s deco-
rative tops with this box...)

9 Now it s time to decora-
tively finish the top.

Figure 8. The top of a 17-sided box. Beware the difficulty of the twist.

Both top and bottom of this fraction tend toward 0 as α tends toward π
2 ,

so we may use L’Hôpital’s method from calculus to determine this limit.
Thus,

lim
n→∞h = lim

α→π/2

−2 sin(α) + (π − 2α) cos(α)
−2 cos(α) − (3π − 2α) sin(α)

=
1
π

.
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5 Conclusion
In this paper we have shown that for any n, we can construct the crease
pattern in Figure 1 and use it to build an n-gonal twist box. Many origami
enthusiasts have doubtless wished for easier ways to construct twist boxes
with odd numbers of sides. We hope that we have provided one such way,
though it is clear from our work that the construction is still far from easy.
Some odd values of n are quite challenging, and all require extra folding
to account for excess at the raw edge of the twist. However, it is quite
interesting that as the value of n increases this becomes less and less of
a problem and even more interesting that as n gets larger and larger h
approaches a constant value. This means that for large enough n we can
use a constant h and the only difference in the crease pattern will be in the
number of subdivisions needed for the twist.

As a final note, we mention that our method can be used to create
domed box tops. Design details are left to the reader, but the general
idea is to make h (and thus α) slightly larger than usual; this could make
construction easier for some n, by rounding up to the easiest-approximable
rational number for h. Because α is larger, the raw edge of the twist will
be rotated an amount other than 0 or π

n . A master at closed sinks might
be able to make the twist flatten against the dome, but mere mortals will
want to blintz the raw edge as they close the twist.
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A Brief History of Oribotics

Matthew Gardiner

1 Definition of Oribotics

Oribotics is a hybrid field of research, joining two complex fields of study;
origami and technology, specifically bot technology, such as robots, or in-
telligent computer agents, known as bots. The name is broken into two
parts: ori, which comes from the Japanese verb oru, literally means “to
fold,” and bot is the shortened form of the word robot. Oribotics is origami
that is controlled by robot technology; it is paper or foldable material that
will fold and unfold on command.

An oribot by definition is a folding robot, therefore any robot that
folds, or any device that uses technology and folded actuators together,
is an oribot. The definition blurs at the boundaries where origami mod-
els, by themselves, exhibit mechanical characteristics. While there may
be no robotic component, paper can possesses a programmed memory for
movement. Oribotics research looks for rigid and nonrigid crease patterns
that have a natural folding motion. Natural folding is found in crease
patterns that posses the ability to undergo repetitive shape transforma-
tion by mechanical means without compromising their folded form. Forms
like the Miura Ori , flapping bird, and the oribot Atom Flower (see Fig-
ure 1) possess this natural folding motion. The idea of natural folding is
inspired from the unfolding found in nature, especially that found in leaves
and flowers.
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Figure 1. The oribot Atom Flower. (Image from the art exhibition Oribotics
[Laboratory]; photograph by Yatzek.)

2 The Origin of Oribotics

The origins of oribotics, are not found in fragments of paper, but rather
fragments of code. Small snippets of ideas emerged in 2002 when I began
making origami animations using Macromedia Flash. I was using Action-
script to make them interactive. Root 2 was my first interactive work using
this theme (see Figure 2). It has two modes, divide and fold. It begins
with a set of isosceles triangles (half squares). When divide is active, the
mouse recursively makes root 2 divisions of the existing triangles. When
fold is active, the mouse makes the triangle animate a fold hinging on one
of the shorter edges.

Orimattic takes a step along the same path, adding a tiny bit of artificial
intelligence to the mix (see Figure 3). Orimattic was a work commissioned
in 2002 for the Bed Supper Club in Bangkok, designed to be projected
alongside an origami installation that took over the entire club. As such the
work needed to change autonomously, creating an ever-changing origami
wallpaper. The core of the programming was the bot that controlled the
animation. The bot is an origami snake of equilateral triangles, that can
only walk on a triangular grid. The work used six base images and six
colors that combine randomly at startup. As each bot takes a step, it
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Figure 2. Root 2 interactive Macromedia Flash animation.

Figure 3. Orimattic generative Macromedia Flash animation.

leaves a footprint, and each subsequent step rubs the footprint down in
opacity, gradually revealing the image below.

2.1 Tetrabot

Later in 2002, I was granted a residency at the Latrobe Regional Gallery,
and during the weeks prior to starting, I was having visions in the morn-
ing of Orimattic being made as a three-dimensional robot, or as walking
tetrahedrons moving on the floor with projected animation. Once my res-
idency began and I started work, I found that it was actually quite tricky
to make a folding, walking tetrabot with Legos. In 2005 I read in a New
Scientist magazine that NASA actually built a successful Tetrabot [2] that
walked beautifully. This original idea sparked several others ideas including
a mechanized flapping bird.

2.2 Robotic Tato

One of the most promising was a robotic Tato, an idea inspired by Chris
Palmer’s extensions to the Japanese Tato. My first attempts at pure me-
chanical construction were conceptually solid, but the practical results were
not especially interesting. My mechanical design intended to move in the
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Figure 4. Tato rubber band theory.

same path as the folding paper, however, when I attached the paper, the
Lego proved too inaccurate, and just crushed the paper. So instead of using
mechanics to push the paper in and out of shape, I began experimenting
with pulling the paper. Figure 4 illustrates the low tech, rubber-band-and-
cardboard-box approach that I chose to successfully prove this theory.

Figure 5. Oribotics 2004, Next Wave Festival, Melbourne.
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3 Oribotics 2004
The rubber band proof was enough to inspire me to write an application
for a youth arts festival, and led me to dub the work Oribotics. And what
followed was a period of prototyping pentagonal designs. Which, with the
robotic programming by my father, Ray Gardiner, resulted in the global
premiere of Oribotics in 2004 (Figure 5). Many design changes occurred,
the most significant being the design of the pentagonal crease pattern,
used because of the pentagon’s mathematical perfection, its beauty, and
its regular occurrence in nature, as signified by the Fibonacci sequence.

3.1 Design Problems with Oribotics 2004

There were several fascinating design problems with Oribotics 2004. It
was beautiful, but in terms of design, it was a flawed project. The audi-
ence found these problems endearing, as they summed up the fragility and
fallibility of technology. The sense of natural entropy was maintained, the
flowers bloomed and required some “gardening,” and some eventually died.
The problems were plentiful, both in the choice of materials and crease pat-
tern design. Most of all, the mechanical design produced considerable stress
and therefore required a lot of energy.

3.2 The Corruption and Breakdown of the Crease Pattern

The life of the flowers was initially counted in days. So I worked through
a number of paper stocks and plastic sheet reinforcement designs, and I
improved the count to weeks, if all was perfect. But any corruption in the
crease pattern would cause eventual breakdown of the origami mechanism.
My final solution was to use a plastic/fabric lamination, wherein I would
cut up plastic sheets, with gaps for folds, and then, using heat, laminate
the plastic between the fabric (see Figure 6).

4 Oribotics 2005 [Atom Generation]
In late 2004, I was awarded an Artists Residency in Tokyo 2005 by the
Australia Council for the Arts. When I arrived in Tokyo in May 2005,
it was my aim to solve these problems and make a better, stronger Ori-
bot. I was full of optimism, high from the energy of a series of talks and
exhibitions in Belgium. Mr. Jun Maekawa was a guest of ours at Fold-
ing Australia earlier in the year, and he suggested that he could introduce
me to a number of people with whom I could speak about oribotics re-
search. Kindly, Mr. Maekawa took me to meet them, and on our travels
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Figure 6. Lamination—the dark gray shows the shape of the plastic parts cut
out, and the light gray shows the fabric area. The right-hand image shows the
sandwich of materials.

we met with Mr. Shunsuke Ito, the chief robotics engineer at Denso, and
Mr. Ohara, an engineer at Kuramae Industries.

At Denso in Nagoya, Aichi, I was introduced to Mr. Ito’s masterwork
titled Karakuri Maiginu featuring two mechanically folding origami cranes.
To my surprise he was not using computers, but elegant mechanical design,
with superbly crafted brass hinges, and fabric. A feature of his design for
the cranes was the areas of rigidity and flexibility in the crease pattern. I
was very inspired to see a work of this caliber.

Mr. Ohara was the head engineer of the origami paper cup project as
introduced in 3OSME by Tomoko Fuse et al. [1]. I had many questions
for Mr. Ohara regarding his research into industrial folding techniques. I
was made aware that the project was still in development, and that the
research was still “top secret.” So I am unable to share any details, ex-
cept to state that even by hand it is quite difficult to fold a paper cup,
but the result is very strong, and I use a folded cup on my desk as a
pen holder.

4.1 Crease Patterns

While looking at the crease pattern for Ito’s Karakuri, a few ideas came
to me. I realized that the original crease pattern demanded far too much
stress on the paper as the folds moved through 180◦. So I redesigned the
model and introduced a pyramid shape in the middle of the closed flower.
(See Figure 7.) The redesign provided faces with more leverage, and less of
an angle of movement, thus reducing the stress in the model. After many
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Figure 7. The 2004 crease patternand profile (left), and the 2005 crease pattern
and profile (right).

trips to the Japanese craft store Tokyu Hands, and many experiments with
paper stocks and mechanical designs, I found the most elegant way to
actuate this new crease pattern.

The new crease pattern and mechanical design were taken back from
Japan and prototyped in Australia before evolving into the atom generation
of oribots.

5 Prototyping

The prototyping process was rather direct, and not as well documented.
It focused almost solely on the mechanical and electrical design. The pro-
cess was to design three-dimensional models, and translate them into two-
dimensional planes that could be cut from flat sheets of 3 mm plastic, and
assembled back into physical three-dimensional models. (See examples in
Figure 8.) The key elements of design were as follows.

5.1 Base

Inside the base are the following main components: the custom-designed
printed circuit board with a PIC microprocessor; an LED or two; and a
high-quality Servo motor, like the kind used in radio control models. The
electronic system was designed and programmed to specification by Ray
Gardiner.

5.2 Hand Actuator

The hand actuator constitutes the parts that touch, and are fastened to,
the paper. All of the parts are laser cut from 3mm acrylic. When choosing
the material, I wanted something that would seem light, and not bulky.
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Figure 8. A range of prototype models for Oribotics [Laboratory].

Figure 9. A profile of the hand actuator in motion from closed, to open, and back
to closed.

With one single degree of motion, this relatively complex set of folds is
actuated, capable of thousands of repetitions. This particular design has
shown great resilience, thriving for over nine months of day-in and day-out
operation in exhibitions (see Figure 9).
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Figure 10. Oribotics [Laboratory], Asialink Centre, Melbourne. (Photograph by
Yatzek.)

5.3 Flower

The exhibition flowers use a pearlescent paper to reflect as much light as
possible. The paper was carefully scored, folded, punched with holes, and
bolted to the hand. Over a period of three years, the only degradation I
have seen is wear at the corners, as all of us find when we fold on the same
fold over and over again. The commercial versions use a plastic paper and
have shown no sign of wear.

5.4 Light Sensor

The only eye of the oribot is a light dependent resistor. A PIC microcon-
troller brain in the base receives light levels as changes in voltage from the
sensor. It has a calibration range, so that in exhibition it opens with a
particular level of light and closes at another. Brightness opens the flower
and darkness closes it, and so the audience likens it to a real flower.

6 Oribotics [Laboratory]
The final work was premiered at the Asialink Centre at the University of
Melbourne, over two nights with four performances. Figure 10 shows a view
of the final installation. The installation used digital animation from data
projectors to animate light on each of the oribots. During the exhibition
there were percussive performances. In the exhibition space there were
fifteen oribots, eight speakers, four computers, and two projectors. For the
performance there was one projection screen for the score composed by
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David Young, and instruments by Rosemary Joy, played by percussionist
Eugene Ughetti.

The oribots, sensitive to light, were networked via animation beaming
from the data projectors above them. For the audience, the literal con-
nection was that the weather was being projected onto the oribots, and
that was making them move. Actually, the arrangement was a little more
complex; the animation changed according to the city that the robot was
linked to, showing the city’s current weather condition as read from a live
XML data source. Each weather condition had a corresponding pattern as
influenced by origami paper designs.

7 Conclusion
As a field of study, oribotics is a hybrid of science and art that has grown in
complexity over the past four years. To date the project has been supported
with funding from the New Media Board of the Australia Council for the
Arts, Arts Victoria, the City of Melbourne, Aphids, and Ray Gardiner.
The next generation of oribots, with the working title Oribotics [Network]
was supported by Arts Victoria’s Arts Innovation Board and held its pre-
miere in 2007 at Federation Square in Melbourne as part of the Melbourne
International Arts Festival.

For more information, and video, see www.oribotics.net.

Acknowledgment. This paper was made possible with the support of ANAT,
the Australian Network of Art and Technology Professional Development
Fund.
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Graphics Transformation
of Origami Models

L. I. Zamiatina

1 Introduction
As an artistic form, every origami model is designed to express an object,
idea, or emotion, and is always a product of creative imagination. On the
other hand, an origami model is a nontrivial mathematical entity, and often
becomes a delightful source of geometric, topological, or algebraic problems.
A piece can be appreciated on both levels at once: origami converges the
artistic quality of elegance with a measurable mathematical quantity, the
efficiency with which the folding process turns paper into form [2].

An origami model is a work of art in and of itself. When used as the
“seed-image” for a digital artwork, the model acquires new life and a vast
array of possible new artistic meanings. Every origami model is intrinsi-
cally a collection of simple geometric shapes, and lends itself naturally to
computer modeling as a structured set of polygons, and further transforma-
tion into novel images using formal mathematical operations and derived
techniques.

2 From Art to Math
Perceiving as well as representing a thing means finding form in
its structure. . . . In art as well as in representation in general,
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Figure 1. Folding the butterfly model.

form is an indispensable prerequisite for the perceptual char-
acterization of the content. . . . In a work of art, composition
has the task of conveying, in structurally most straightforward
manner, such form characteristics as carry the desired expres-
sion. . . . Form interprets environment. [3]

The prerequisite to creating origami-based digital art is modeling the origami
in a way computers can work with. To avoid getting bogged down in the
potential complexity of this process, the methodology is illustrated below
using a simple origami model—a butterfly created from a business card
using only three folds, rendered in Mathematica. The graphics sequence in
Figure 1 illustrates the steps of folding the model.

The computer model is represented internally using a set of Mathemat-
ica graphics primitives, specified by aggregating vertices in Cartesian space
into polygons and the polygons into a single three-dimensional shape [5]:

butterfly3D =
{Polygon[{{-2.55,-2.55,0.},{-1.33111,1.64908,-2.62526},
{-0.3825,0.3825,0.}}],
Polygon[{{-2.55,-2.55,0.},{-3.76797,-2.9802,-1.25359},
{-2.54908,1.21889,-3.87885},{-1.33111,1.64908,-2.62526},
{-0.3825,0.3825,0.}}],
Polygon[{{-2.55,-2.55,0.},{-2.70587,-4.04229,0.994366},
{1.14791,-2.47811,3.94592},{1.30379,-0.985816,2.95155},
{-0.146376,0.146376,0.49976}}],
Polygon[{{-2.55,-2.55,0.},{1.30379,-0.985816,2.95155},
{-0.146376,0.146376,0.49976}}],
Polygon[{{-2.55,-2.55,0},{0,0,0},{-0.3825,0.3825,0}}],
Polygon[{{-2.55,-2.55,0},{0,0,0},
{0.146376,0.146376,0.49976}}]}

Taking an orthogonal projection of this structure onto a certain plane,
and giving each polygon a distinct color results in
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butterfly2D =
{{Hue[1.875],Polygon[{{-0.815695,12.6035},

{-5.57857,12.9485},{-2.83232,13.9319}}]},
...
{Hue[6.25],Polygon[{{-0.815695,12.6035},{-2.39093,13.7993},
{-2.37061,14.3053}}]}}

Conformal transformations can be used to quickly create a novel incar-
nation of the butterfly form. First, treat each coordinate of the orthogonal
projection as a complex number. Then, apply the following complex vari-
able functions to the flattened model:

f[z]=z^2+Log[z]/(z^3)

and

f[z]=z^2 E^z

Before applying the transformations, the function’s base projection (the
leftmost image in Figure 2) is shifted by a certain vector in order to avoid
the singularities of f [z].

Although Mathematica is a high-level programming language that en-
ables the formulation and visualization of problems with programmable
graphics primitives [4], the following example illustrates why a transition
in the tools used for transformation is desirable at this point in the pro-
cess. To programmatically specify a simple transformation, even using
the specialized Graphics‘Shapes‘ package, takes the following code at
a minimum.

Show[
Table[
TranslateShape[
WireFrame[Join[{Thickness[0.001],GrayLevel[0.95]},
AffineShape[Map[# z&, butterfly3D,
{-1}],{9z,10z,11z}]]],

{100 Sin[Pi z],100 Cos[Pi z],0}],
{z, 2, 8,.1}],

PlotRange->All, Boxed->False,
ViewPoint->{-4.000, -0.050, 1.240},
AspectRatio->Automatic, Background->GrayLevel[0]]

This expression results in the image shown on the left-hand side of Fig-
ure 3. For the artistic part of the process, a considerable amount of trial
and error is required. To speed up the experimental cycle, the transforma-
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Figure 2. Conformal transformations.

Figure 3. Composition with hummingbird.

tions available in Adobe Illustrator are used. To this end, the next step is
to export the model as SVG to bridge the gap between the tools.

Export["butterfly3D.svg", butterfly3D, "SVG"]

The image in the right half of Figure 3 was created using Adobe Illus-
trator and Photoshop commands. Although these commands are powered
by mathematical algorithms, the nature of these algorithms is less trans-
parent.

Mathematica and Illustrator are thus complementary tools in the artis-
tic process.
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Figure 4. Creating the body for the hummingbird.

Figure 5. Creating the wings, the hummingbird, and the grass.

3 Math Back to Art
When the butterfly.svg file was opened in Illustrator, the polygons consti-
tuting the model structure were triangulated automatically, and this im-
mediately feeds into subsequent transformations performed to create the
right-hand “hummingbird” image in Figure 3. The diversity of forms in this
image is achieved by a sequence of steps in Illustrator shown in Figures 4
and 5.

In Figure 3, both parts are composed of transformations of the same
origami model, but the image in the left is a still recognizable “crystal
butterfly” while the images on the right—the “hummingbird” and the
“grass”—are entirely different visual shapes. To create the “humming-
bird,” the butterfly’s triangles were grouped and transformed as a single
unit, whereas for the “grass,” the triangles were ungrouped and therefore
transformed independently.

4 Methodology
To generalize the process thus described: there are four major steps in
creating the artwork by transformation of the folded model.
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Figure 6. Different views on the model.

4.1 Digital Model Generation

To start a composition we need a digital three-dimensional model of an
origami design represented as a structured collection of polygons. It is
not very important where such a model would come from. The two things
that are important: the model should be easily manipulated in a three-
dimensional graphics client and various views of it can be exported to
vector graphics formats.

Each of the butterfly views (see Figure 6) can become a basis for future
transformations.

The image in Figure 7 is unusual because one butterfly appears in its un-
altered form, while three others are almost unrecognizable. The unaltered
initial butterfly is just a particular viewpoint of Mathematica’s butterfly
model, and is used in the picture as a laptop computer that symbolizes cy-
berspace. The other three butterfly transformations constitute sky, ocean,
and a dolphin.

4.2 Import into Graphics Software

The use of vector graphics is essential because it saves the geometric struc-
ture of the model so that its topology is preserved throughout all further
transformations. Notably, there are two kinds of transformations: those
that keep history of the original shape, and those that do not. Adobe
Illustrator calls them effects and filters, respectively. It is preferable to
use effects because the parameters of an effect can be altered even after
other effects have been applied. The changes propagate to the final result
without needing to repeat the subsequent transformations.

Whereas the application of several effects can be treated as a compo-
sition of functions on the original image, the use of filters is equivalent to
the application of numerical methods to the problem, where the precision,
or resolution, of subsequent steps is bounded by the error introduced as a
result of using the filter.
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Figure 7. The dolphin’s way of searching the Internet.

4.3 Model Fragmentation

The crease pattern defines the semantics of the model and can be used
as a source of geometric shapes for further artistic interpretation. The
leftmost image in Figure 8 shows a digital model; in the next one, eight
disjoint polygons comprise the model—these polygons are defined by the
intrinsic crease pattern of the origami model; in the third image, further
triangulation of the polygons yields 12 separate triangles.
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Figure 8. Fragmentation of the butterfly model.

Figure 9. Don Quixote of La Mancha.
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The rightmost image is an example of reuniting the polygons in a new
way to create a novel pattern as the basis for transformation.

4.4 Transformation of the Structure’s Polygons

Creating an origami-based artistic image inevitably involves a trial-and-
error process of applying transformations to generate the desired effect.
The following are some principles that produce images that are aesthetically
pleasing in addition to being mathematically interesting.

Be diverse. Ungroup and regroup polygons while applying different
transformations to different collections of these elements.

Break symmetry. Perfect symmetry as a rule is not necessarily beautiful—
if a picture is too symmetric, consider dropping one or two underlying
triangulation elements at random.

In more general terms—randomize. Beauty is to be found in the no-
man’s land between symmetry and chaos, between the structured and ran-
dom.

While the geometry of a polygon structure is fragile, its topology is
almost indestructible.

For example, Figure 9 contains three polygons distorted into highly ec-
centric shapes. The image is suggestive of the noble but scattered mind
of the ingenious hidalgo Don Quixote of La Mancha. The windmill im-
age comes from the half of same triangulated structure with a relatively
moderate warp applied.

5 Case Studies
Figure 10 is an abstract nonrepresentational piece based on the butterfly
motif.

Everything in this picture comes from transformations of same simple
origami model—the butterfly. Looking at the shapes constituting the pic-
ture, the link to their origins may be hard to see. Let us step through the
key stages in the transformation. Keep in mind that all the elements of this
composition are generated algorithmically—the artist’s role in the process
is to decide the order and parameterization of the algorithms applied.

The image is a superposition of four layers, all derived from butterflies:
background, two intermediate layers, and foreground. The background is
made using Illustrator’s “Envelope Distortion,” with the “Make with Top
Object” parameter enabled. The effect basically inscribes a copy of the
entire image into each of its triangles. (See Figure 11.) This image is then
superimposed onto the original, a “Radiant Blur” effect is applied, and the
result is cropped to retain only the center portion.
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Figure 10. An abstract composition.

Figure 11. Model transformations for the background.

The foreground layer requires only two transformations—Illustrator’s
“Bloat” followed by “Pucker.” To achieve intermediate layers that are less
busy than the other layers, the butterfly’s six inner triangles are first re-
moved before any transformations are applied. Next the “Shear Tool”
is used, and the “Bloat” and “Pucker” transformations are applied in
succession—this time with a very different parameterization than for the
foreground layer. Different color schemes are used for the two layers, and
one retains only the outlines of its shapes. (See Figure 12.)

Now on to pieces that are not based on the butterfly. Figure 13 is
created from two of my original origami teddy bears. The models them-
selves use an efficient folding process, and the form of each is a reciprocal
of the other, with minor modifications. The final ornamental composition
is designed to create the illusion that the bears are dancing. The trans-
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Figure 12. Model transformations for the foreground and intermediate layers.

Figure 13. Composition with teddy bears.

formations used to accomplish this are nowhere as extreme as in previous
pieces, and differ from each other only in parameterization, which gives the
components of the piece a rhythm akin to frames of an animation.

The Cranes’ Cradle origami design in Figure 14 was created specifically
for the composition shown in Figure 15. While a scanned image limits
artistic options, in this case it was fruitful because the piece is more directly
symbolic than the abstract art depicted in Figure 10.

The process described in the Methodology section is also effective in
creating directly symbolic compositions. The “olive branch” piece shown
in Figure 16 was created using the methods already described from the dig-
itally rendered butterfly motif. “Indeed the artistic symbol is characterized
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Figure 14. The Cranes’ Cradle design.

Figure 15. The Cranes’ Cradle composition.
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Figure 16. An olive branch.

by certain distinctive properties, generally labeled aesthetic, which pertain
to the unity and internal integrity of its parts” [3].

6 Conclusion
Origami-based digital compositions epitomize a closed-circle relationship
between art and mathematics. The expression of an art form, an origami
figurine, is brought into the realm of pure mathematics by simulating it
with a computer to a degree of perfection that cannot be achieved with a
physical medium. A human artist then guides its transformation by apply-
ing transformations with a strong mathematical basis, but in a direction
that only artistic vision can generate. The circle is completed, and the
composition returns fully to the artistic realm when the artist deliberately
introduces imperfection, imbalance, and entropy to achieve the desired vi-
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sual effect. However, provided this last step is not taken to an extreme,
the harmony and symmetry of its intermediate geometrically perfect state
remain visible to the viewer.

The relationship between mathematical truth and its visual form has
been well documented, most notably by the great contemporary mathe-
matician Anatolij Fomenko:

It happens rather frequently that the proof of one or another
mathematical fact can at first be ‘seen,’ and only after that (and
following this visual idea) can we present a logically consistent
formulation, which is something a very difficult task requiring
serious intellectual efforts. . . . Thus, the criterion of beauty of
one or another geometric image often serves as a compass for
choosing an optimal way of a further formal logical proof. [1]

Hopefully, the methodology I have outlined above will allow mathematical
truth to be harnessed for the benefit of visual art.

Acknowledgment. I would like to thank Alexei and John Bocharov for con-
stant inspiration and support during my work on this project and paper.
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One-Dimensional Origami:
Polyhedral Skeletons in Dance

Karl Schaffer

Recent advances in genetic engineering have included constructions of poly-
hedra from single strands of DNA, a process sometimes labeled DNA origami
[5,12], and have generated interest in what might be called one-dimensional
origami . The author has investigated similar—but simpler—constructions
in dances that he and colleagues have choreographed [6,11], in which poly-
hedral skeletons are formed by dancers carrying identical linked sections of
PVC pipe. For example, in one dance four sets of pipes linked by a short
length of string at their ends (Figure 1) are used to create a rotating cube,
an octahedron, and a pair of tetrahedra.

These might be considered as four identical line segments, each “folded”
at two points. This paper will focus on constructions of polyhedral skeletons
and other structures by this one-dimensional modular origami, including
some mathematical constructions that are too large to be implemented in
actual dances under normal circumstances.

The dance company codirected by the author has also utilized loops
of rope, string, and bungee cords, as well as “finger geometry” and the
dancers’ bodies for polyhedral constructions in our dances [7, 8]. If we
think of origami as folding a section of a two-dimensional surface such as
a square along specific crease lines, then one-dimensional origami could be
the imparting of folds at specified points to a one-dimensional line seg-
ment. Demaine and Demaine [1] have used the terms hinges and bars in
their discussion of polygonal folding that stays within a plane, and this
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Figure 1. PVC pipe linkages used in dances.

terminology emphasizes that the fold points do not shift, and the segments
remain rigid. Rope is continuously deformable, but PVC pipe and fin-
gers may be “folded” in a manner analogous to paper, in that the “fold
points” do not shift along the segment. Perhaps a better medium for one-
dimensional origami would be pipe cleaners, since they hold the fold with
a certain amount of tension, but we have not utilized anything like that
in our dances. We will also not be concerned in this paper with polyhe-
dral constructions with loops of rope. Some of these constructions have
been presented from the point of view of classroom activities in Schaf-
fer, Stern, and Kim [10], and in a more extended manner in the show,
Through the Loop: In Search of the Perfect Square [7]. The Secret Life of
Squares [9] uses a more “normal” origami construction, a tetraflexatube [3]
large enough for two dancers to hide in.

Modular origami usually utilizes several sheets of paper folded in an
identical manner, often to form the surface of a polyhedron, so modular
one-dimensional origami might fold several line segments identically to form
a polyhedral “skeleton.” Paper modular origami constructions are held to-
gether by friction along the paper surface, by the tension at the folds, or
by linkages that are part of the design. One-dimensional origami construc-
tions that create three-dimensional forms might maintain their structure
by wrapping or hooking the segments around or to each other. However,
in our dances, it is the dancers who actively maintain the shape as long as
necessary, and then segue to new shapes. The “ligatures” holding the con-
structions together are thus the dancers’ hands, whereas in DNA origami
the ligatures are “helper strands” of DNA. We will not be concerned with
linkages between modular units in what follows.

The mathematical problems involved in creating dances that include
polyhedral constructions include not only deciding what geometric shapes
can be made effectively, but also exactly how to construct them, how to
create transitions between shapes, and when to establish sequences that
might be interesting to the audience. Shapes that involve theatrical or
emotive metaphors are as enjoyable as those that are purely geometric,
so there is often a give and take between the geometric and nongeometric
imagery. The performance problems for the dancers are also significant,
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Figure 2. Platonic solids formed during dances from length two and three paths.

Figure 3. Shapes formed by flexing the cube.

and include deciding how best to hold, manipulate, move with, and link
the PVC pipes or other props. Mathematically, we might consider the
polyhedra construction problem to be that of determining decompositions
of the skeletons of the polyhedra of interest into a uniform set of smaller
subgraphs that will coincide at the vertices.

Figure 2 shows PVC pipe constructions utilizing what the dancers call
“twosies” and “threesies,” or paths of length two and three, to create tetra-
hedra, an octahedron, and a cube [6].

Notice that the first tetrahedron, the octahedron, and the cube are
constructed with a three-, two-, and four-fold rotational symmetry, allowing
the dancers to move in unison with those symmetries while forming the
shapes. Figure 3 shows how the dancers flex the cube, once formed, into
a four-pointed star and a hexagonal wheel. We have noticed that the full-
three-dimensionality of these forms are more visible to the audience if they
are in motion, so the dancers move in a large circle while forming the various
polyhedra. The PVC pipe segments are 40 inches in length and 1.25 inches
in diameter, and in one of the dances we have painted the segments with
fluorescent paint and utilize black light in the polyhedral section of the
dance to focus attention on the pipes rather than the dancers.

The dance “Pipe Dreams,” in which the cube and octahedron are con-
structed, requires four dancers. Because maintaining a performance involv-
ing four dancers, who are wont to move off to New York or become real
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Figure 4. The hexastar folds into the cube, octahedron, or two tetrahedra.

Figure 5. Decompositions of the icosahedron and dodecahedron.

estate agents, is much more difficult than a performance for three dancers,
I have lately been recreating the show that includes that dance, for three
dancers. Figure 4 shows a winged hexagon or hexastar , which itself decom-
poses into six segments of length two, which can be folded into a cube, an
octahedron, or two linked tetrahedra (the black vertices are the vertices of
the central hexagon.) The hexastar has recently been used to make these
polyhedra in a three-person dance [2].

Similar decompositions of the icosahedron and the dodecahedron ex-
hibit five-fold symmetries (Figure 5) but would involve ten dancers each
wielding a length three path, and so have not been tried (In the icosahe-
dron the vertices labeled x are actually “identified” as a single vertex). In
one trio we have used three threesies to form a 9-gon, which we then fold
into a tetrahedron briefly (Figure 6, [11]). Decompositions of the Platonic
solids into paths of length two that have nice symmetries are also possible
(the cube and octahedron are shown in Figure 6—there are many possi-
bilities for the dodecahedron and icosahedron). The “twosie” tetrahedron
shown in Figure 2 has been used in a dance [6], and this and the cube and



�

�

�

�

�

�

�

�

One-Dimensional Origami: Polyhedral Skeletons in Dance 79

Figure 6. Tetrahedron made with a 9-gon, cube, and octahedron made with six
length 2 paths.

Figure 7. Graphs that are candidates for decomposing the Platonic solids.

octahedron in Figure 6 make entertaining classroom activities in which the
length two paths are created by the pointer and middle finger of each hand
(right hands labeled R, left L in the cube). There is a transition between
the cube and the octahedron, and another from the cube to the wheel
shown in Figure 3 and then to another cube in which the right index fin-
gers are on the bottom instead of the top, but these take some practice! A
construction devised by Scott Kim uses four hands to form a tetrahedron,
with the thumb, pointer, and middle fingers of each hand forming half an
edge; this and other similar constructions are shown in Schaffer, Stern, and
Kim [10].

These constructions suggest interesting mathematical questions. For
example, what is the largest graph that can be used in multiple copies to
fold the skeletons of the five Platonic solids? Such a graph would necessarily
have a number of edges that is a divisor of the 6, 12, and 30 edges of
these five polyhedra, and also cannot have vertices of degree greater than
three, since the tetrahedron, cube, and dodecahedron only have degree
three vertices. The cube and dodecahedron rule out the use of a three-
cycle or six-cycle, since those polyhedra have vertices of odd degree, and
each vertex of such a cycle would add two degrees to any of their vertices.
Also, any such decomposing graph cannot contain a cycle of length less
than five, since that is the smallest cycle in the dodecahedron. This limits
the possibilities to the five graphs shown in Figure 7.

For convenience, these graphs have been labeled either as paths P (n)
with n edges, or as S(a, b, c, d), where a, b, c, and d indicate the lengths
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Figure 8. Decompositions by S(1, 2, 3).

of the appendages from degree three vertices. Two copies of the “3-star”
S(1, 1, 1) do not fold into the tetrahedron, though this graph does decom-
pose the cube, octahedron, and icosahedron. The decompositions of the
cube and octahedron can be nicely modeled using the thumb and the first
and second fingers of four hands [10]. The dodecahedron cannot be decom-
posed into 3-stars, since each pair of adjacent edges must include central
vertices from at least two 3-stars, and any pentagon can contain only two
3-stars that do not overlap. We have already mentioned decompositions
using P (2) and P (3). P (6) cannot fold into the tetrahedron since it has
only two odd degree vertices, and the tetrahedron has four. Similarly, five
copies of P (6) provide only 10 odd degree vertices, not enough for either
the 12 or 20 odd degree vertices in the dodecahedron and icosahedron.
The proofs that S(2, 2, 2), S(1, 1, 4), S(1, 1, 1, 2), and S(1, 1, 1, 1) do not
decompose the dodecahedron are too lengthy to include here. S(1, 2, 3)
does decompose all five, however. The smaller three decompositions are
shown in Figure 8; to decompose the dodecahedron and icosahedron using
S(1, 2, 3), in Figure 5 we join each path of type B by its end vertex to
the adjacent path of type A. If used in a dance, each of the S(1, 2, 3)’s
would probably have to be manipulated by two dancers, but we have not
yet experimented with it.

The hexastar shown in Figure 4 does not decompose the dodecahedron
or icosahedron, since it has 12 edges. However two copies do fold into two
other interesting polyhedra, the rhombic dodecahedron and the cubocta-
hedron (Figure 9).

The hexastar also folds up to tile the plane in a variety of patterns
(Figure 10).

Other dancers have explored polyhedra in a number of ways. Rudolf
Laban (1879–1958) visualized the moving body within a variety of poly-
hedra, and developed a series of exercises in which the dancer moves the
limbs so as to trace a sequence of edges. His diagrams show, for example,
a 12-gon that folds into the edges of the octahedron in the order in which
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Figure 9. The rhombic dodecahedron (x’s identified) and the cuboctahedron,
decomposed by hexastars.

Figure 10. The hexastar tiles the plane in a variety of ways.

Figure 11. Laban’s folding of 12-gon into an octahedron (left) and 36-gon into an
icosahedron (right) [4, pp. 116, 117].
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Figure 12. Six dancers “folded” into the Platonic solids.

the dancer moves, and a 36-gon that similarly folds into the icosahedron
(Figure 11, [4]).

Finally, we might fold the entire dancer’s body in such a way as to
create the Platonic solids. Figure 12 shows a series of these polyhedra for
six dancers. Note that there is a simple transition from the dodecahedron to
the icosahedron, in which each dancer slides feet and hands to the shoulders
and hips of the next dancer. We have not attempted these yet either; they
would probably need to be performed as an aerial dance with the dancers
suspended from ropes, underwater, or in the weightlessness of space!
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The Science of Miura-Ori:
A Review

Koryo Miura

1 Introduction
The concave polyhedral surface that is now known as the Miura-ori1 first
appeared in a scientific paper of the shell structures society [4]. Since then,
its unique geometric structure has become a source of interest to many peo-
ple. Miura-ori—or rather, its surface, depending on one’s viewpoint—may
be viewed in several ways: as the simplest origami, an origami unchanged
by inversion, a symmetry-rich tessellation (tiling), an infinite concave poly-
hedron, a wrinkle, a deployable structure, and an art piece.

However, the physical properties of this fold have not received much
interest until recently. In point of fact, it was discovered as the solution of
a physical problem of the behavior of thin elastic plates. In other words, it
is not an artificially formed free shape but it is a natural surface fulfilling
the principle of minimum potential energy. Therefore, it must inevitably
relate to physical principles as well as principles of the geometric essence
of folds.

In this paper, I review several studies done from 1970 to 1990, which is
when the basic science of this surface was explored. I will then close with
some recent relevant studies.

1This surface was initially called the developable double corrugation (DDC) surface.
The nickname became popular after its application to map design [9] was introduced by
the British Origami Society [1].
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a perfectly flat, infinite plane

Figure 1. Conceptual drawing of the proposed problem.

2 Problem and Hypothesis
In 1970, the author proposed a problem schematically represented by Fig-
ure 1. The problem was to determine the deformation of a perfectly flat,
infinite, elastic plate subject to uniform terminal compression or shorten-
ing. Necessarily, the plate should be treated as infinitesimally thin due to
its infinite extent.

This problem seems to be absurdly simple on the surface, but is in fact
quite deep in its essence. The background of this subject is as follows.
There is an interesting but dangerous phenomenon that arises in the axial
buckling of a thin cylindrical shell. It can happen anywhere: on a soda can,
or on a launcher of space shuttles. If you carefully examine a buckled soda
can, you can observe diamond patterns here and there on the surface. This
is called the Yoshimura-pattern in memory of Yoshimura’s pioneering work
on the subject [11]. The exciting fact he discovered was that the buckled
shape is exactly an origami—by which we mean that the transformation
from the original cylindrical shell to the polyhedral (origami) shell is imple-
mented purely via bending, i.e., without in-plane (stretching) deformation.
Since such deformation can occur with relatively little energy (and therefore
unexpectedly), the phenomenon can be dangerous when it occurs.

If the Yoshimura-pattern is the buckling phenomenon characteristic of
thin cylindrical structures, then an analogous phenomenon should be ob-
served for thin plate structures that are also two-dimensional (negligible
thickness) media. And, most likely, the result of this buckling should
emerge as an origami model. The scenario illustrated in Figure 1 is, in
a sense, looking for an origami model that satisfies all of the imposed con-
ditions.

Soon after starting the study, the author arrived at a unique periodic,
concave polyhedral surface. As shown in Figure 2, it consists of a “feather
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Figure 2. Developable double corrugation (DDC) surface (an exaggerated view).

(of an arrow) pattern” unit that consists of four identical rhomboids. The
surface was tentatively named the developable double corrugation (DDC)
surface. Though it is a simple form, it satisfies perfectly all of the require-
ments imposed in the original problem. Supported by these observations,
the present author made a hypothesis that the DDC surface is one of the
solutions of the compressed-thin-plate problem.

3 Hypothesis and Analysis
To prove this hypothesis was much more difficult than our expectation,
however. An experimental approach analogous to that used for thin cylin-
ders did not work in the case of plates. One of the reasons was that
providing a suitable experimental approximation of a perfect infinite flat
plate is much more difficult than approximating a perfect circular cylin-
der. In 1978, we had attacked the problem using an analytical method
similar to von Kármán-Tsien-Legget’s procedure, which they used for the
post-buckling analysis of axially loaded cylindrical shells [10].

Some of these results are shown in the following figures. Because we
assumed an infinite plate, only periodic solutions are expected. Figures 3–7
show the deflection of the plate for the fundamental unit (or its equivalent
area) using a normalized contour map format. By repeating each figure
along the x and y axes, one can construct a larger image of the deflection
pattern. Figure 3 shows the deflection occurring just after the first incre-
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Figure 3. Deflection pattern just after the first buckling.

ment of compression. This type of pattern of “hills and craters” can be
expressed as the product of simple sinusoidal functions.

By increasing the shortening or decreasing the thickness, the deflection
changes into quite different patterns, as shown in Figures 4–7. These so-
lutions are obtained for the same end-shortening and thickness value. As
a matter of fact, there are infinite numbers of solutions. The quantity
that distinguishes among these solutions is the total strain energy. The
normalized energy index of each solution is shown in the caption.

By inspecting the energy index, one can easily identify the type of de-
flection pattern that gives a lower strain energy. We found that those
configurations expressed by “herringbone” pattern exhibit lower strain en-
ergy without exception. Among them all, the pattern of Figure 7 gives the
least strain energy. It is clear that when this pattern is replicated period-
ically (Figure 8), it is exactly the same configuration for the DDC surface
shown in Figure 2.

Further important information is shown in Figure 9, which shows the
distribution of bending stress for the case of Figure 7. We observe that the
bending stress is concentrated along linear features that are the mountain
and valley lines of the DDC pattern.
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Figure 4. Deflection pattern in post-buckling domain, energy index 36.

Figure 5. Deflection pattern in post-buckling domain, energy index 37.



�

�

�

�

�

�

�

�

92 II. Origami and Technology

Figure 6. Deflection pattern in post-buckling domain, energy index 6.

Figure 7. Deflection pattern in post-buckling domain, energy index 5.
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Figure 8. Integration of four units of the pattern in Figure 7.

Figure 9. Bending stress distribution for the pattern in Figure 7.
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It should be noted that the above computation is based on equations
valid only for a finite deformation range. Therefore, the pattern shown in
Figure 8 is not as large as that of the three-dimensional image of Figure 2.
It is fortunate for the result that the model of that pattern satisfies the rules
of a flat origami. Therefore, the result of computation and the origami are
connected seamlessly, and the result can be extended to the maximum limit
of the flat origami. Conclusively, the hypothesis was verified numerically.
This correspondence was also verified by recent experiments [3].

4 Elastica and Miura-ori

In the Miura-ori surface, we are able to observe the essence of deforma-
tion of paper that represents a thin two-dimensional elastic media. In the
analogously slender one-dimensional elastic medium, the essence of defor-
mation is represented by the so-called elastic curve or Elastica, which was
first explored by Euler (Figure 10).

Now we may compare similarities and as differences of elastic curves
and the Miura-ori surface. For comparative purposes, Figure 2 has been
modified to Figure 11. We notice that, in spite of the similarity of two
problems of elastic media, the resultant configurations are quite different
from each other. While the former shows a smooth curve with curvature
evenly distributed, the latter shows a rugged surface consisting of flat facets
with all curvature concentrated at the straight ridges [7].

Figure 10. Curve for a slender one-dimensional elastic medium (Elastica).
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Figure 11. Surface for a thin two-dimensional elastic medium (Miura-ori).

5 Deployable Structures
The most unique behavior of the Miura-ori is its deployable property. Fig-
ure 12 shows a simulation of deployment and retraction of a Miura-ori. Its
primary features are the following:

• It is deployed simultaneously in orthogonal directions and is homo-
geneous in each direction.

• It possesses a single degree of freedom of motion no matter how large
the array.

• Its deployment and retraction follow the same path.

To demonstrate a practical use for the deployable property of the Miura-
ori, it was applied to a foldable map [5].

Figure 13 shows the “Map of Venezia” published as an appendix for
SPAZIO magazine [5]. To deploy the folded map, pull the map at opposite
corners along the diagonal of the rectangle. This will give an equal and
simultaneous deformation to all the units along the diagonal.Those folds
in their neighborhood expand to cover the main part of the map and the
desired deformation can therefore be propagated, without delay, to the rest
of the map. The same situation occurs for the case of the refolding process.

A number of future space missions will require ultra-low-mass, large
membrane structures. Thus, packaging and deployment of such membrane
structures will become more and more important. Many of the deployable
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Figure 12. Deployment of Miura-ori. (Provided by Tomohiro Tachi.)

Figure 13. Map of Venezia published in Miura-ori form. (Produced by Olivetti
Japan in 1978.)

properties of Miura-ori seemed to be favorable for such application. In
1980, the author proposed a paper entitled “Method of Packaging and
Deployment of Large Membranes in Space” [6].

The first opportunity to test the applicability of Miura-ori in space came
when Japan planned the Space Flyer Unit, a space platform, in the 1980s.
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Figure 14. Miura-ori solar cell array on Space Flyer Unit (Flight 1994-5).

The two-dimensional array system and experiment mission, which uses a
two-dimensionally deployable solar array, was proposed subsequently [8].
The experiment mission was carried out successfully in 1995. Figure 14
shows an illustration of the solar cell array in the deployed state.

6 Miura-ori and Biology
We have already seen that the Miura-ori surface is a kind of natural so-
lution obtained by an energy-optimization procedure. Therefore it is not
surprising that in recent studies, some relations of this surface to the de-
ployable mechanisms of tree leaves have been found. Kobayashi et al. [2]
carried out the simulation of deploying leaves using a corrugated model,
which is the fundamental structure of Miura-ori, as shown in Figure 15.

Most recently, Mahadevan and Rica [3] have also solved experimentally
the problem imposed on Figure 1. They produced a zigzag Miura-ori pat-
tern in a thin film atop a thick elastic substrate that is compressed biaxially
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Figure 15. Corrugation model (simple form of Miura-ori) for unfolding tree leaves.

manifest in a drying slab of gelatin with a thin skin that forms naturally.
This result also supports this author’s hypothesis, that the Miura-ori is a
natural minimum-energy folding pattern that arises in, and has applicabil-
ity to, many systems.
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Origami-Inspired Self-Assembly

Galen T. Pickett

1 Introduction

Origami-inspired structures and ideas are increasingly informing the de-
sign of state-of-the-art microscopic mechanical devices and molecular as-
semblies. Mico-electrical-mechanical-systems (MEMS) mirrors have been
constructed [13, 44] based on a complex layering of flexible and stiff lay-
ers to create specific upward and downward folds [47]. Complex three-
dimensional structures [2,4,19,20] have been induced by taking advantage
of a strain mismatch in a multilayer structure causing spontaneous cur-
vature and “rolling-up” of a structure into pinchers, enclosures, hinges,
nanoscopic capacitors, and other machines. Stress mismatch has been
identified, in the guise of a rigid membrane supported by a gently contract-
ing elastic substrate [30], as an explanation for the structure of unfolding
botanical leaves [23]. Here, a mechanism controlling the unpacking of an
embryonic leaf has been harnessed to engineer a patterned surface, one
with a characteristic “herringbone” relief pattern. Paper models guided
the understanding of the leaf-unfurling process by referring to patterns of
folds that had been discovered in the context of efficiently folding auto-
mobile maps [1, 31]. Thus, the origami-design process circulates between
folded structures known well to paper-folding artists, toward engineered
structures, and finally back to naturally appearing surfaces [49].

Another instance of such a design convergence involves the spontaneous
patterns of stress in compressed elastic membranes. These patterns appear
in crumpled sheets [29, 52], and in a rather more ordered pattern in the
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bucking of thin-walled cylinders [18,32]. A folding pattern inspired by these
sorts of self-organized creased sheets is the basis for the construction of a
novel arterial stent [25]. A similar effect is behind the discovery of hollow,
helical silica tubules, self-folded under specific interior interactions [53]. At
a smaller scale, complex, yet flexible molecules have been designed with
an origami-flavor, capable of flexibly bending in a number of directions
[28], and graphite sheets have been coaxed to behave as nanoscopic paper,
forming tubule “peapod” structures [46]. In the end, the packing of a
membrane into a specific volume, requiring outward and inward folds in
the right places, is a problem nature, artists, and engineers have solved in
turn, each for their own specific purposes.

Below, I consider two kinds of origami that I am personally inspired by
as a paperfolder, tessellations in Section 2 and modulars in Section 3, in
the context of two very different technological challenges.

2 Self-Folded Origami Tessellations
While complex geometries and three-dimensional mechanical functionality
are routinely achieved at the meso and macroscale (folded “by hand”),
there continues to be a lack of articulated detailed folds at the microscopic
and smaller scales. One problem standing in the way of origami methods
being more widely applied at smaller length scales is the lack of a reliable
method to coax an ordered, thin membrane into adopting a particular three
dimensional shape. Here, I offer a geometric method to force a controlled
collapse by manipulating self-interactions and gentle external influences. It
is my hope that these methods, culled from the origami artistic community,
will allow the construction of MEMS machines at unprecedented scales with
unprecedented functionalities.

Below, I look at the collapse of a precreased thin membrane. The
nature of the creasing is, in this respect, meant to model the actual pat-
tern of polygonal facets of a manufactured sheet, either through scoring
and precreasing (for macroscopic papers or metal foils), or through litho-
graphic means (for mesoscopic applications) [13,25,44,47]. The triangular
net of freely-bendable joints holding together a network of otherwise rigid
polygons has been used as an approximation in the collapse of smoothly
elastic sheets [10, 12, 14, 24, 29, 50, 52]. Through the application of local
weakly attractive forces, such a triangulated membrane can adopt many
interesting geometric phases, from roughly flat, to a fractal crumple, to
a compact, collapsed flat-folded state. As is well known, the pattern of
scores must obey several key properties to allow this flat-folded state to
exist. As each polygonal facet in the folded structure must either have its
normal parallel or anti-parallel to the same direction, it is natural to assign
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Ising-like variables to each cell [14]. Thus, the folded, flattened configu-
ration must be characterized by an anti-ferromagnetic state of these spin
variables. An up domain must be surrounded by down domains, or there
must be unfolded creases in the system. Thus, the folding pattern must
divide the plane into a two-colorable map. This is essentially a restating of
the Kawasaki Theorem of flat-folding origamis: each vertex in the folded,
collapsed state must assign 180◦ to the up segments at the vertex and 180◦

to the down segments arriving at the vertex, and the up/down domains
have to alternate [22]. Any target structure that is designed to fold flat
must obey minimally these restrictions in the crease-pattern design. The
problem of self-intersection during the collapse [3,34] introduces more inter-
esting, long-range constraints that enrich the underlying spin model, and
dramatically complicate the folding sequence and design.

What is needed for such an origami-inspired construction of useful
three-dimensional structures from folded flat sheets is a robust method
of driving a possibly disordered, frustrated process towards a robust, effi-
cient collapse. I will study exactly such a collapse in terms of the crease
pattern designed by Kuribayashi et al. [25] in response to weak internal
interactions, and then in the presence of an externally-applied curvature of
the sheet. This external curvature in an indentation experiment [5] gives
a depression with a very similar geometry to the indentations designed by
Kuribayashi et al. [25], inspired by an architectural application of paper art
and architecture [39]. Additionally, it is well known that an intrinsic cur-
vature (in this case enforced by using a toroidal sheet) guides a randomly
crumpled sheet into new phases [12]. The application of an external curva-
ture is indeed the method origami artists use to collapse paper sculptures
with the same folded structures.

I will describe the dynamic model I employ to investigate the system
first, and describe the features of collapse of a stent-like scored sheet in the
absence of an applied curvature, then demonstrate the dramatic effect an
external curvature can have during the collapse, and offer some conclusions
and speculations on the further applications of origami collapses to MEMS
technology.

2.1 Model

As I am less interested in the thermodynamic equilibrium of these mem-
branes than their dynamic collapse from an open state, I have implemented
a Brownian motion simulation for the sheet [9,36], rather than attempt to
locate the global minimum energy state of the sheet directly [10, 29, 52] or
through a Monte Carlo procedure [12,14,24,50]. As I restrict the discussion
to relatively weak forces driving the collapse, the sheet is essentially a two-
dimensional version of the freely jointed chain model of flexible polymers.
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Figure 1. Crease pattern. On the left is the basic shape with its two possible
states of collapse. In the middle, a square sheet with edge length of 16D has
been scored, so that the sheet can flex along any of the lines shown. Three of the
“central” vertices controlling the collapse have been indicated by circles. On the
right, the two sets of attractive intra-sheet interactions are displayed. Each bold
line is a spring with zero rest length.

As in Figure 1, the pattern of connections is composed of triangular do-
mains joined at flexible boundaries. To keep the triangular domains from
changing shape, it is sufficient to maintain the distances between all con-
nected vertices. Thus, the model I study below is a vertex model. Each
vertex obeys an equation of motion:

b
dri

dt
=

∑
j−conn.

Tij + Fi. (1)

Here, ri is the vector position of the ith vertex in the sheet, b is a drag
coefficient, and the Tij forces are tensile forces responsible for maintaining
the initial distance between vertices connected by a flexible joint:

Tij =

{
−kr̂ij(rij − lij) when i and j are connected,
0 otherwise.

Here, rij is the distance between vertices i and j, and lij is the distance
between the vertices in the unfolded sheet, and k is the spring constant for
fluctuations of the bond lengths. Thus, the in-sheet distances are allowed to
fluctuate harmonically around their given initial lengths. A more complex
method for ensuring the constant-length constraints exists [9, 36], but as
long as all other driving forces are small compared to the elastic restoring
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force above, the bond lengths will remain as in the initial sheet. The
force Fi contains all other interactions in the system:

Fi = ξi + attractions,

where ξi is a Gaussian random noise chosen so that thermally activated
extensions and contractions of the bond lengths do not exceed 1% of a
bond length during the simulation,

〈ξi(t)ξk(t′)〉 = 2bkBTD2δijδ(t − t′).

Here, D is the underlying lattice scale for the crease pattern (as in Figure 1),
and the effective temperature kBT is chosen so that

|ξ| ≈ 0.01kD,

thus choosing a dimensionless noise, |ξ| ≈ 0.01, and dimensionless spring
and lattice constants D = 1, k = 1, and the unit of simulation time to be
b/k.

The attraction term is a short-ranged restoring force shown schemati-
cally in Figure 1 as the bold lines. These lines link various pairs of vertices
with elastic attractive forces on the scale of the thermal noise for the flat-
tened sheet. I have modeled two kinds of elastic forces. The first, indicated
schematically by the bold lines in the upper-right panel of Figure 1, mod-
els the effect of supporting the entire crease pattern with a soft, elastic
substrate which is applying an isotropic compressive stress to the mem-
brane (see [30]). The second set of interactions impose weak interactions
between spots in the sheet directly opposite the intersection of six crease
lines. These vertices, when brought together, will force each square domain
of the crease pattern to collapse as in Figure 1 so that the “central ver-
tex” points either up or down. Thus, the substrate-mediated interaction
drives each of the central vertices to point in the same direction as their
neighbors giving an effective Ising interaction between the domains. On the
other hand, the purely compressive interaction (bottom panel in Figure 1)
gives no such bias, so whatever correlations exist between central vertices
are mediated solely by the crease-pattern tensions, Tij . These compressive
interactions could be engineered lithographically by decorating the scored
sheet with solvent-sensitive electroactive polymer domains.

The equation of motion for each vertex, Equation (1), is numerically
integrated over a total simulation time of 30 in dimensionless units. In each
case below, 200 runs starting from a flat sheet have been executed, over
independent realizations of the thermal noise.
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Figure 2. Typical configurations of the collapsed sheet. Two line defects in the
overall down configuration are clearly visible in the two left-most configurations.

2.2 Collapse

In Figure 2, I show typical configurations of the collapsed sheet under both
types of internal interactions. Large domains of vertices with common
alignments are visible, but defects are common. Interestingly, roughly 80
of the generated configurations were basically uncollapsed, as in the right-
most configuration in Figure 2. As the interactions themselves are up/down
symmetric, and the crease pattern itself has no intrinsic tendency favoring
the central vertices to point either up or down, we have a spontaneously
broken symmetry. Thus, even a very weak bias in the initial collapse will
lead to remarkably ordered behavior of the collapsed membrane. Thus, we
have a system that manifestly has a multitude of ground-state configura-
tions (each of the central vertices has a discrete degree of freedom in the
collapsed structure), and the disordered, flat state has a relatively long life.
In such a case, a quenched external field can serve to break the initial sym-
metry of the problem, and provide a sure guide to collapsing the membrane
in an a priori, designed state.

This is indeed the case. The biasing field in this case is geometric. In
Figure 3, I show the main results of this study. In each of the three cases
displayed, the initial state of the sheet has been biased by bending the
sheet in a particular manner. The upper row of figures show the sheets in
their initial configurations. The left figure has the sheet bent upwards in
a parabolic arc, the middle panel has a sinusoidal corrugated profile, and
the right panels have their initial state as

zij = ε sin
(

2πi

L

)
sin

(
2πj

L

)
,

where i and j index the position of each vertex and L is the side-length of
the sheet (in this case L = 17). In each case, the maximum deviation of
initial sheet from absolutely flat is small (ε = 1 for L = 17 in this study).
These final configurations are repeatable over 200 different realizations of
the thermal noise. In each case the central vertices point opposite to the
imposed initial local curvature of the sheet. The small initial bias guides
the self-folding of the sheet toward a unique final state among the myriad
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Figure 3. Initial and final configurations of the sheet subject to a bent initial state.
The initial profile of the sheet has been exaggerated in this plot by a factor of 10.

of equivalent energy ground states of the system. Thus, the linear response
of the system to an initial condition is enough to guide the entire future
behavior of the system. This property of collapsing origami sheets is well-
known to origami artists. A combination of gentle bending and crosswise
compression is often sufficient to gain the collapse of a structure in a desired
state. Here, I have taken that paper-artist strategy and validated it through
these small-scale simulations. Indeed, the buckle pattern for an axially
compressed thin-walled cylinder [18] shows the same tendency for inward
dimples to appear in an ordered manner.

3 Modular DNA Origami
Today, wonderful control is being exercised over the synthesis of com-
plex polymer molecules in anything from microscopic up to bulk quantity
[17]. Orderings of individual monomers on these chains including homo-
polymer, alternating copolymer, multiblock, multicomponent, branched,
grafted, and crosslinked, are all achievable. The investment in ordering
the sequences and architectures of single polymers allows the supramolec-
ular self-assembly of environment-sensitive patterns [11,42]. Generally, the
more complex the pattern, and the more complex the needed behavior of
the pattern (for instance, how and when will a particle expand or contract),
the more complex the needed constituent polymers are, with consequently
more stringent tolerances on errors in synthesis. For example, absolute
monodispersity is rarely a requirement when designing a material for a de-
sired bulk application, but monodispersity and low error rates are critical
to the proper function of naturally occurring enzymes.
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When the polymers involved are intended for use in high-precision mea-
surements on model systems, polymers with as closely defined properties
as possible are required. Here, I put forward a general method for achiev-
ing essentially biologically accurate model materials of various geometries,
architectures, and compositions.

The essential strategy is to take advantage of the specific DNA base-
pair reaction, where single strands of DNA combine to make the familiar
double-helix structure, to create a multitude of specific-interaction “sticker”
sites [51] that can be synthesized with relative ease and end-attached to
flexible polymers at modest prices. Taking advantage of the self-assembly
of complimentary single-strand DNA ligands is generally referred to as
the DNA-origami technique and has been used to construct self-assembled
DNA cubes [6], truncated octahedra [54], two-dimensional crystals [51],
designed patterns [40], scaffolds for computing devices [41], walking DNA
machines [43], and “dendrimer-like” buckyball encapsulations [27]. The
application I envision here is far simpler than that conceived in those works,
but uses the DNA-origami technique in polymer synthesis. The design
method for these structures resembles the long-sought-after “tinker toy”
approach to complex molecule synthesis, but in reality has much more
in common with so-called modular origami [15,16], where relatively simple
folded structures are designed with clever pocket and tab systems to allow a
skillful paper folder to assemble geometric sculptures of incredible subtlety
[21]. Here, the units are “folded”—that is synthesized—beforehand and
then self-assembled rather than assembled by hand. The basic two-stage
synthesis protocol I describe has the aim of doubling the chain molecular
weight at each stage. Then, a relatively simple variation on the protocol is
described, showing how to create specific copolymers with complex block
arrangements and branches. A particularly important example of such a
self-assembled, regularly branched molecule is the flexible-chain analogue
of the dendrimer molecule [45]. A significantly open question for small-
molecule dendrimers concerns whether they have voids or solidly filled cores
at their centers [8, 26]. The original prediction of the open-core dendrimer
was based upon a polymer physicist’s toy model in which monodisperse
chains are joined regularly at threefold junctions. While there are good
reasons to believe that this model in fact requires the cores to be filled [55],
experiments on these molecules are lacking. The method stated below could
answer definitely a long-standing controversy.

3.1 Monodisperse Homopolymers

Figure 4 shows schematically the basic two-cycle synthesis route that I
am proposing. The essential strategy is to use the specific DNA base-pair
reaction to drive short, well characterized chain segments to assemble into
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Figure 4. Schematic of the synthesis protocol on the left, and chain-length distri-
butions on the right.

pairs, and then these pairwise joined chains will be joined together to make
fourfold chains, and so on.

Let us begin with small-molecular-weight homopolymers, of a well de-
fined molecular weight, N , which have been end-decorated with two distinct
(although short) ligands of single-stranded DNA, a and b as in Figure 4.
The specific sequences to be chosen for a and for b are arbitrary, but the
a sequence of bases should be chosen to not bind well to the b sequence
of bases. That is, a and b should not only not be complimentary base-pair
sequences, they should be chosen so that partial base pairing of a and b
should cost free energy. The a sequence has a base-pair complement, ā,
likewise the b sequence complement has a structure b̄, so that the sponta-
neous reaction

a + ā → aā

goes to completion.
The system of a, b-end labeled chains is then divided up into two differ-

ent containers. To the first container, enough single-stranded DNA with
the structure āc is added to ensure that the reaction

aNb + āc → cāaNb (2)

goes to completion. The specific molecular weight N , and the energy of
the aā base-pair reaction, can easily be chosen to drive the equilibrium in
Equation (2) to as small a number as desired of unreacted polymer.

Likewise, the ligand b̄c̄ can be added to drive

aNb + b̄c̄ → aNbb̄c̄

to completion.



�

�

�

�

�

�

�

�

110 II. Origami and Technology

When the contents of the two containers are thoroughly mixed together,
the base-pair condensation of the c and c̄ ligands will produce

aNbb̄c̄ + cāaNb → aNbb̄c̄cāaNb ≡ aNNb.

Here, in the final product of the reaction, I have suppressed the internal
structure of the joint between the N -chains to emphasize the fact that two
and only two of the homopolymer chains N are in the final product.

The next step of the synthesis is to take the aNNb chains, divide them
into two containers, and add the required āc and b̄c̄ ligands, and finally
mix the results together to produce chains with a structure

aNNbb̄c̄ + cāaNNb → aNNbb̄c̄cāaNNb ≡ aNNNNb.

That is, each time the cycle is run, there are one half as many chains, each
of which has doubled its molecular weight, a process that can be continued
to a desired end-state monodisperse molecular weight.

The above protocol will indeed join chains from the first container to
chains of the second container, but the consequences of an incomplete re-
action would be to introduce, say, chain fragments with the structure aNb.
In fact, the master equation for this two-stage chain growing process is easy
enough to write down:

f0
n = δn,1

f i+1
n =

∑
j

f i
jf

i
n−jε +

∑
j

f i
nf i

j(1 − ε),

where ε is a measure of the efficiency of the reaction (where I have taken the
assumption that the efficiency of each stage of the reaction is exactly the
same), and f i

n is the volume fraction in the ith iteration of the species con-
sisting of n of the homopolymer units. As in Figure 4 (right panel), when
each reaction can be counted on to go to 99% completion, the distribution
of molecular weights in the finished sample is weighted heavily toward the
target molecular weight, but there is a long trail of lower molecular-weight
fragments contaminating the system. An interesting point, however, is
that molecular weight distribution is peaked at the largest possible molec-
ular weight under this scheme.

Here the efficiency of the reaction, ε, determines the overall molecular
weight distribution at the end of the synthesis. With ε = 0.5, there are
always plenty of unreacted chain fragments in the solution, and a typical
synthetic polymer molecular weight distribution results. When each stage
of the reaction is required to go to 99.9% completion, the distribution is
essentially monodisperse, with approximately one half of the total volume
fraction of chains in the system achieving the target molecular weight.
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Figure 5. Hexagonal-close-packed olympic membrane, and a paper model.

3.2 Olympic Gels and Membranes

Topological gels (so-called Olympic gels [7] because of their schematic re-
semblance to the entwined rings of the flag of the Olympic Games) should
prove to be interesting materials with unique mechanical properties [48].
Each chain in the gel has been end-reacted with itself to form a physical
loop encircling a number of its neighboring, also cyclic, chains.

Simply mixing up a melt of end-reacting polymer is not sufficient to
create the Gaussian Olympic gel, however [7]. The process of closing rings
competes with end-end reactions between different chains, so that the end
product of the reactions is a polydisperse mixture of chains of many molec-
ular weights with several isolated rings interspersed. Indeed, given that a
single ideal polymer will encompass N1/2 other chain-ends within its swept-
out volume, and only one of these will correspond to the ring-closing reac-
tion, we quickly come to the conclusion that some other, clever method will
have to be used to create the gel. The original suggestion was to complete
the cyclization reaction in solution in several stages [7], and elaborations
including a stepwise reaction of large and small rings [38], and slide-ring
chain-chain crosslinks [33] have been proposed. Here, I propose a method
to achieve an Olympic gel with a controlled n from the melt state in a
single-reaction step, taking advantage of the wonderfully specific reaction
of sequences of DNA bases. If, for instance, each chain in the melt were
decorated with unique DNA ligands and their complimentary ligands, then
each chain could only end-react with itself, forming loops without the com-
peting chain-growing reaction. While a detailed calculation is certainly
possible [35], for our purposes Figure 5 illustrates the idea. As each chain
is held closed by a particular pairing of DNA bases, free DNA chain frag-
ments are capable of reopening the rings, thus unraveling the tangled mess
of interlocked loops. Thus, in contact with the correct target DNA, an
Olympic microgel will disassociate, dumping its constituent polymers at a
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desired location. I envision this mechanism, which is in principle biologi-
cally specific, to be the basis of a selective, targeted drug delivery system.

4 Conclusion
Here, I have developed two scientific and technological applications of the
paper-folding art that I have spent countless hours pursuing. Applica-
tions ranging from microscopic machinery, pumps, and armatures, to even
smaller membranes and gels with a regular knitted structure, all the way
down to self-assembled “modular” molecules are all probable.

It would not have occurred to me to do any of this work, and I presume
any further work that I will pursue along these lines, had I not come across
a book by Tomoko Fuse [15]. As I continue exploring in my hands the
wonder and versatility of folded paper, it is natural for me to continue
to explore the connections that I see between beautiful paper objects and
scientific and technical questions.
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Expandable Tubes with Negative
Poisson’s Ratio and Their
Application in Medicine

Zhong You and Kaori Kuribayashi

1 Introduction

Specially designed materials can exhibit a transverse expansion when
stretched. This behavior can be described by a negative Poisson’s ratio,
commonly defined as the ratio between the negative transverse strain and
the longitudinal strain. Some polymers found by Lakes [4] have such prop-
erty. In a separate paper [5], Lakes showed a two-dimensional version of the
micro-structure of the materials consisting of a honeycomb with inverted
cells and the possible conversion to a three-dimensional structure with in-
wardly bulging cells. Here, we report that the same technique can be used
in origami to create expandable tubes with a negative Poisson’s ratio based
on folding patterns for flat paper and their application as deployable stents
in medicine.

Many folding patterns for flat paper could lead to an overall negative
Poisson’s ratio. Typical examples can be found in some of the map folding
patterns including the well-known Miura-ori in which the folded paper can
expand in two orthogonal directions simultaneously through out-of-plane
motion.

It has been reported that a number of folding patterns for flat sheets can
also be utilized for the folding of cylinders. Fujimoto and Nishiwaki first
explored this possibility. In their book published in 1982 [1], they presented
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numerous folding patterns for flat sheet and their transformation to tubes
by joining together two edges of the paper. Similar concepts have also been
reported by other authors [2]. The reported work focuses primarily on the
artistic aspect of the folding cylinders. Most of the patterns, including
the one based on Miura-ori , lead to cylinders which are completely rigid
or possess little expansion. Nevertheless, a few patterns do enable the
diameter of the tubes to alter. This property makes the compact packaging
of tubes possible. More importantly, some of the expandable tubes have an
overall negative Poisson’s ratio, i.e., both the length and diameter increase
during expansion.

Many potential applications involving expandable cylindrical structures
exist in medicine simply because the human body is composed of an ex-
tensive pipe network. With the advance of minimally invasive surgery, it
becomes possible to deliver these structures to the diseased sites to treat
certain illnesses, provided that they can be packaged into a very small
volume.

A few years ago, we started working on a kind of deployable stent
graft called the origami stent graft. A stent graft is a tubular medical
device made of biocompatible materials. Stent grafts are designed for two
purposes: to open up a blocked site in the human body caused, for instance,
by diseases such as stenosis, arteriosclerosis, or cancer; or to isolate an
aneurism caused by disease or weakening of the wall of a blood vessel.
Existing stent grafts are in general made of a metallic expandable scaffold
(also called stent) to which a membrane or fabric cover is attached. Most
manufacturers simply attach a soft cover around an existing stent with the
expectation that the expansion of the stent would automatically deploy
the cover into the desired shape. However, such approach often leads to
geometrical incompatibility between the stent and its cover. The cover has
to be attached to the stent at discrete points by bonding or stitches so that
the combined structure can be expanded. The cost of manufacturing tends
to be very high. Subsequently, the deployment of the stent graft involves
the cover sliding with respect to struts of the stent. It is not uncommon
that uneven distribution of stresses, rupture, or entanglement occur during
expansion of a stent graft.

The origami stent graft concept was developed to deal with the problem
of geometrical incompatibility. For the first time, a stent graft has been de-
signed without any reliance on an existing stent structure. The technique
of origami has been employed to generate a set of crease patterns enabling
the stent graft to be folded up into a small volume for delivery to locations
in human bodies in the same way as existing stent grafts. The origami
stent graft then expands to form the desired profile and the creases dis-
appear. The crease patterns are optimized to avoid any large geometrical
incompatibility between a stent and its cover.
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The layout of this paper is as follows. In Section 2, the most common
folding pattern for thin-walled cylinders is discussed. The distortion factor,
a parameter measuring geometrical incompatibility, is introduced. Through
optimization, a crease pattern associated with the minimum geometrical
distortion is presented. The concept is then extended by incorporation
of helical folds in Section 3, which leads to a synchronized expansion and
higher radial stiffness in the fully expanded state. Other possible designs
are given and briefly discussed in Section 4, which concludes the paper.

2 Basic Folding Pattern

Stent grafts generally have a tubular profile. For simplicity, consider first
of all a developable short thin-walled tube. The cylindrical surface of the
tube can be mapped onto a flat sheet. The sheet can consequently be
divided into a row of rectangular units; see Figure 1(a). Within each unit,
two inclined valley folds and a central mountain fold are introduced to
enable them to fold flat; see Figure 1(b). Take l as the length AB, α1 and
α2 as the angles that define the inclination of the valley folds. The two
edges of the sheet, a1 – a2 and b1 – b2, are then joined together to form a
deployable cylinder. A partially folded cylinder is shown in Figure 1(c). It
has rotational symmetry. The angle sustained by a single unit is 2δ, which
is a constant determined by the total number of units circumferentially.
Figure 1(d) is the projection of the cylinder with locations for the vertices
of the folds. It can be found that

δ =
360◦

2m
=

180◦

m
,

where m is the total number of units in a row.
Figure 2 shows the behavior of a single unit during the expansion of

the cylinder. Denote by θ = (∠ABC)/2 the deployment angle. When
the cylinder is fully folded, the central vertex of a unit, O, reaches the
projection position of the center of the cylinder O0. Hence,

θ0 = δ,

in which θ0 is the deployment angle when the cylinder is fully folded.
When θ reaches 90◦ the device opens up to form a polygon, as shown

in Figure 2(b). It is interesting to note that from then on the tube actually
shrinks a bit radially for the units to fit onto the cylindrical surface. If we
take the configuration shown in Figure 2(c) as the final expanded state,
then
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Valley folds Hill folds

a1

a2 b2

b1

m1 m2 m3

(a)

A B

O

D E F

C

2
1

(b)

B

C

A

δ
O0

(c)
A

C

B

δ O

O0

(d)

Figure 1. Folding of a short thin-walled cylinder by introduction of a single row
of identical rectangular units: (a) a row of units, (b) a single unit, (c) a partially
folded cylinder, and (d) projection of the cylinder .

θ1 = 90◦ +
δ

2
.

Obviously θ0 and θ1 vary with m.
For long cylinders, a single row of units often lead to very narrow rect-

angular units. It is therefore more practical to have more than one row
of units. However, a close inspection of Figure 1(c) reveals that it is not
possible to simply place one row after the other longitudinally because the
central vertices in the longitudinally adjacent units, i.e., B or E, move
apart when the cylinder is folded. This problem can be solved by rotating
one row by half a unit circumferentially; see Figure 3(a). On this occasion,
the corner of the unit at the top is connected with the midpoint of the unit
below, and vice versa. For example, E2 and F2 are connected to A1 and
B1, respectively. Figure 3(b) shows a partially folded cylinder with two
rows. By observation, this seems enough to solve the problem because the
second row of units is firmly slotted into the first row. But a more robust
proof is required.

Let d be the distortion factor,

d =
O0B − O0A

l
,

in which O0A and O0B are the radii of the corners and the midpoint of a
unit, respectively. Obviously no distortion exists if and only if d is zero.
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Figure 2. The expansion of a single unit from θ = θ0 till θ = θ1: folded unit (top)
and projection (bottom) for (a) θ < 90◦, (b) θ = 90◦, and (c) θ > 90◦.
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Figure 3. (a) Folding pattern consisting of two rows of units and (b) the folded
model.
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Figure 4. Distortion factor d versus deployment angle θ.

It can be found based on Figure 2(a) that for θ ≤ 90◦,

O0B =
l sin θ

tan δ
+ l cos θ

cos2 α1 − sin2 α1 cos2 θ

1 − sin2 θ sin2 α1

, (1)

and
O0A =

l sin θ

sin δ
. (2)

When θ ≥ 90◦, using Figure 2(c) we have

O0B =
l sin θ

tan δ
− l cos θ, (3)

and
O0A =

l sin θ

sin δ
. (4)

With Equations (1)–(4), the variation of distortion factor d with respect to
deployment angle θ can be determined.

Figure 4 shows a set of d versus θ curves for given α when m = 6.
It can be found that there is little or no distortion in the fully folded
and expanded states but the distortion is unavoidable during expansion.
Moreover, overall d becomes the smallest when angles α1 and α2 are equal.
Furthermore, when 90◦ ≤ θ ≤ θ1, the distortion remains the same no
matter what α1 and α2 are.
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Figure 5. Variation during expansion of (a) radii and (b) overall length. Note that
m = n = 6, α1 = α2 = 45◦, and L remains constant when θ ≥ 90◦.

For α1 = α2 = 45◦ and m = 6, the variation of the cylinder’s radii
during expansion is plotted in Figure 5(a).

For longer tubes, more rows of units can be arranged similarly. Assume
that there are a total of n row units. The overall length of the tube, L, can
be expressed as follows: for θ ≤ 90◦,

L = n
2l

tanα1
− (n − 1)l

1 − sin2 θ sin2 α1

(
sin 2α1 cos2 θ +

cos2 α1 − sin2 α1 cos2 θ

tan (α1 + α2)

)
and for θ ≥ 90◦,

L = n
2l

tanα1
− (n − 1)l

tan (α1 + α2)
.

Note that L is independent of θ in this case.
The overall length variation with respect to θ is given in Figure 5(b) in

which n = 6.
Reading the plots in Figure 5 indicates that the foldable tube exhibits

a negative Poisson’s ratio. This is further verified by a tube model shown
in Figure 6. The expanded shape is both larger in diameter and longer in
length than the folded one.

3 Helical Folding Pattern
The rotationally symmetric design of the foldable tube described in Sec-
tion 2 does provide compact folding. However, it has low radial stiffness
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Figure 6. A card model of a foldable tube with m = n = 6.

because the longitudinal folds coincide with the hinge lines of the collapse
mechanism when the tube is pressurized radially. Moreover, the folding
and expansion of the units are, in general, not synchronized. External in-
tervention is often required to keep all of the units expanding uniformly.
An approach to overcome these problems is to replace longitudinal folds
with helical ones.

Helical folds can be easily introduced by adjusting the joining positions
of the left and right edges of a developed cylindrical surface. Figure 7(a)
shows the surface of a foldable cylindrical tube with helical folds. It is based
on the same rectangular units where α1 = α2 = 45◦. To form a cylindrical
tube with helical folds the opposite edges of the sheet, i.e., sections a2–a3

and b1–b2, etc., are joined together. In this example there are six and one
half units in one turn of a helix. Always one half of a unit needs to be
added at the end of each full circumference to allow connection of the left
and right edges.

The main helical folds are denoted as HA and HB . They are orthog-
onal to one another as shown in Figure 7(a). Figures 7(b) and (c) show
perspective views of the cylindrical tube in the unfolded and folded states.
HA is a single long fold that spirals around the circumference of the tube,
whereas HB runs diagonally from one open end of the tube to the other.

The number of HA- and HB-type helices may vary. A foldable cylindri-
cal tube with more than one HA-type helix can be made by adjusting the
joining position of the left and right edges of the developed surface. For
instance, it is possible to have two helices, in which the opposite edges of
the sheet a3–a4 and b1–b2, etc., are joined together.

Helical folds bring several important advantages. Firstly, as shown in
Figure 7(b), HA-type helices connect all of the elements like ribbons, en-
abling the folding and expansion processes to be synchronized among the
units. Secondly, the helical folds provide far greater resistance to struc-
tural collapse in the expanded configuration of the tube because none of
the folds coincide with the collapsed hinge lines of the tube under external
radial pressure. The tube will be permitted to collapse only under torsion
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(a)
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Figure 7. Folding of a tube with helical pattern: (a) folding pattern, (b) unfolded
cylinder, and (c) folded cylinder.

at both ends. It will not do so easily in practice since torsional loadings
are rare.

Procedures identical to those introduced in Section 2 can be imple-
mented to calculate and minimize geometrical distortion during expansion.
Interested readers can refer to [3] for detailed analysis. It was discovered
that folding patterns with a single HA-type fold have more or less the same
amount of distortion as that in the rotationally symmetric patterns because
the variations of radii and length of the tube are highly comparable. How-
ever, the distortions increase dramatically with the introduction of more
HA-type folds.

Figure 8 shows the folding of a thin stainless steel tube. It demon-
strates how small the distortion can become considering the stiffness of the
material.

The folding with helical patterns exhibits overall negative Poisson’s ra-
tio, as well.
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Figure 8. Folding of a thin-walled stainless steel tube with a helical pattern.

4 Final Remarks
In this paper, a study on the geometrical characteristics of foldable cylin-
ders that exhibit negative Poisson’s ratio is presented. The basic folding
pattern, which was first introduced by Fujimoto and Nishiwaki, has been
extended by introduction of helical folds. Although the new folding scheme
does not alter the fundamental behavior of the tube, i.e., the overall neg-
ative Poisson’s ratio is preserved, it has greatly improved both the de-
ployment and mechanical properties of the structure. These improvements
make it an ideal concept for medical applications as deployable stent grafts.

The discussion so far has been confined to cylindrical profiles. In other
work of the authors, stent grafts with conical and funnel ends were also
investigated and suitable folding schemes were proposed accordingly [3].
For example, the pattern shown in Figure 9 can be used for a tube with a
conical profile. It can even be combined or mixed with those with cylin-
drical structure. Whether these hybrid patterns can lead to a reduction of

Figure 9. A folding pattern for a tube with a conical opening.
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geometrical distortions during expansion is a matter for further investiga-
tion.
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Airbag Folding Based on
Origami Mathematics

Christoffer Cromvik and Kenneth Eriksson

1 Introduction
Simulating a crash when the crash-test dummy hits the airbag while it is
still expanding remains a challenge to the industry. This situation is called
out-of-position (OOP), reflecting the fact that the airbag was not designed
for occupants that are sitting too close to the airbag or for some other
reason hit the airbag before it is fully inflated.

The difficulty with an OOP situation compared to an in-position situ-
ation is that the inflation of the folded airbag is much more important. It
has to be realistically computed, since it affects the impact of the dummy.
Attaining a realistic simulation means starting with a correct geometry of
the folded airbag and simulating the inflation with correct gas dynamics.
Several commercial software packages exist that can simulate the inflation
process of an airbag, e.g., the explicit Finite Element (FE) code LS-DYNA [5].

This work aims at developing an algorithm for computing an accurate
geometry of the flat folded airbag. Different airbags are folded by different
methods and with different numbers and types of foldings. The airbags are
often folded by both machines and humans according to a folding scheme.
Still, the creases are not entirely deterministically positioned. It is very
difficult to control the placement of smaller creases. The folding schemes
all assume that the airbag lies flat and stretched in some direction. In this
position, different foldings are executed until the dimension of the folded
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Figure 1. A CAD model of a passenger airbag.

airbag is small enough so that it fits into the airbag compartment. The
foldings can be a combination of simple folds, but also roll folds.

Some preprocessors to LS-DYNA, for example, EASi-FOLDER [4] and
OASYS-PRIMER [1], contain software for folding a (nearly) flat FE airbag
mesh. They are capable of executing the type of foldings that are normally
used in production on flat airbags, e.g., roll-fold, z-fold. However, they are
not as accurate when folding an airbag in its three-dimensional shape to a
flat airbag.

Some airbag models have a simple construction, e.g., the driver model,
which is made of two circular layers sewn together. It is essentially two-
dimensional. Passenger airbags are often more complicated. They are made
of several layers sewn together in a three dimensional shape, with no trivial
two-dimensional representation. See Figure 1 for an example.

In the present work, the computation of the geometry of the flat folded
airbag is organized into two steps. First, a crease pattern is computed on a
polyhedral approximation of the airbag. Second, a nonlinear optimization
problem is formed and solved for the purpose of finding the flat geometry.
The accuracy of the computed approximation is measured by comparing
its area to the area of the inflated model.

2 Crease Pattern
A crease pattern is first designed for a tetrahedron. We present a series of
proofs for different types of polyhedra. The proofs are constructive, and
their results can be used to design a crease pattern for our application.
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Flat foldability, meaning that the polyhedron can be flattened using a
fixed crease pattern, is achieved by cutting along the crease lines, folding
the resulting object, and then gluing the cut-up faces back according to
the correct connections.

Theorem 1. The tetrahedron can be folded flat.

Proof: The proof is organized in a sequence of figures shown in Figure 2,
each visualizing the cutting and folding. Consider the tetrahedron with
vertices A, B, C, D as in the figure. Cut up the triangle BCD of the
tetrahedron, with straight cuts from a point E on the face, to the three
vertices B, C, D, respectively, as in the figure.

Then open up the tetrahedron by rotating the triangular patches BDE,
BCE, and CDE around the axes BD, BC, and CD, respectively, until
these triangles become parts of the three planes through ABD, ABC, and
ACD, respectively, as in the figure.

Cut the quadrilateral surface with vertices A, B, E′, D along a straight
cut from E′ to A, and then rotate the resulting triangular faces ABE′ and
AE′D around the axes AB and AD, respectively, until these faces become
parts of the two planes ABC and ACD, respectively, as in the figure.

We choose the point E such that the edge BE′ after rotation coincides
with BE′′ and DE′ with DE′′′. The condition for this is that ∠ABD +
∠DBE = ∠ABC + ∠CBE and ∠ADB + ∠BDE = ∠ADC + ∠CDE.

Using this, we may now (partly) restore the surface of the tetrahedron
by joining the surfaces ABE′′ and ABE′′C along the edge BE′′, and the
surfaces ADE′′′ and ADE′′′C along the edge DE′′′.

Finally we rotate the (partly double-layered) surface ADE′′′C around
the axis AC until it coincides with the plane through A, B and C as in
the figure. To conclude the proof of the flat foldability of the tetrahedron
we now note that the point E′′′ after rotation coincides with E′′. We may
therefore now completely restore the topology of the original tetrahedron
by joining the edges AE′′ and AE′′′ (after rotation) and the edges CE′′

and CE′′′ (after rotation). �

Note that the proof is based on cutting and gluing. It does not reveal
if there is a continuous deformation to a flat shape.

Remark 1. Concerning the line AE′ we remark that the angles ∠BAE′ and
∠DAE′ satisfy ∠BAE′ + ∠DAE′ = ∠BAD and ∠BAC − ∠BAE′ =
∠CAD − ∠DAE′, as in the figure, and are thus independent of the plane
BCD. We further note that we may also consider rotating the triangles
BDE, BCE, and CDE in the opposite direction, again until they become
parts of the planes ABD, ABC, and ACD, respectively, as in the figure.
We now choose the point E so that ∠ABD − ∠DBE = ∠ABC − ∠CBE
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Figure 2. Supporting figure for the proof of Theorem 1. The proof follows the
figures from left to right beginning at the top.

and ∠ADB − ∠BDE = ∠ADC − ∠CDE. Continuing from the figure
we may then again make a straight cut from E′ to A (partly double lay-
ered). Again, when we now rotate around the axes AB and AD as be-
fore the (rotated) point E′ will coincide with E′′ and E′′′, respectively,
and we can partly restore the tetrahedron by joining along the edges. Fi-
nally, after rotation around AC we may completely restore the topology
of the surface of the tetrahedron by joining along the edges. Concerning
the crease line from A to E′′ we note that again the angles ∠BAE′ and
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Figure 3. A tetrahedron is cut, and in the cut, two additional interior triangular
faces are created. Identical crease patterns are created on both interior faces, and
the tetrahedron is separated into two parts: a smaller tetrahedron and a prism.
The flat foldability of the prism follows from the foldability of the tetrahedron.

∠DAE′ must satisfy the same equations ∠BAE′ + ∠DAE′ = ∠BAD and
∠BAC −∠BAE′ = ∠CAD −∠DAE′ as before and therefore must be the
same as above. We therefore conclude that this crease line is independent
of both direction of rotation of the triangles BCE, BDE, and CDE, and
of the position and orientation of the plane BCD (as long as the angles at
A are unchanged).

We now proceed by cutting the tetrahedron by a plane; see Figure 3.
We call the cut-off tetrahedron a prism-type polyhedron.

Theorem 2. The prism-type polyhedron can be folded flat.

Proof: Consider a tetrahedron ABCD with the crease pattern from the
proof of Theorem 1. Cut the tetrahedron with a plane; see Figure 3. In the
cut, insert two additional triangular surfaces, such that the two cutoff parts
are closed, but not separated. The “smaller” cutoff part is a tetrahedron,
and the “bigger” part is a prism type polyhedron. Let the vertices of the
smaller tetrahedron be a, b, c, d, where A = a, b lies on the edge AB, c on
AC and d on AD.

Remark 1 shows that the crease line from A to E′ (see Figure 2) is
independent of how the inserted triangular face of the smaller tetrahedron
is folded. Let it be folded to the interior of the smaller tetrahedron. This
means that a crease pattern can be constructed that will coincide with
the crease pattern of the original tetrahedron, i.e., the crease line that is
constructed by drawing a straight line from a to e′ will coincide with the
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Figure 4. The prism from Figure 3 is cut, and in the cut, an additional interior
quadrilateral surface is created. The flat foldability of the box-type polyhedron
follows from the foldability of the prism and the tetrahedron.

crease line that was created from the line segment from A to E′ in the
proof of Theorem 1.

Now, make an identical copy of the crease pattern on the inserted trian-
gular face belonging to the prism. Folding the original tetrahedron with its
inserted triangular faces is possible by the construction of the crease pat-
tern. Let the two polyhedra be separated by moving the tetrahedron in the
plane. By the foldability of the tetrahedron, both the smaller tetrahedron
and the prism can be folded flat. �

Next, we cut the prism-type polyhedron by a plane; see Figure 4. We
call the cut-off prism a box-type polyhedron.

Theorem 3. The box-type polyhedron can be folded flat.

Proof: Let the prism from the cut-off tetrahedron, with its crease pattern,
be cut by a plane; see Figure 4. In the cut, insert one additional quadrilat-
eral surface that is only connected to the prism by its four vertices. Along
the inserted surface put a crease line γ. Its position is only determined by
the positions of the upper and lower faces of the prism. When the prism
(with its cut) and the additional inserted surface are folded, there will be
a gap along the sides of the prism; see Figure 5. Let the crease line on the
side of the original prism be called ξ. Also, let the point where the crease
γ meets ξ unfolded be called p1; see Figure 5. The gap can be closed by
forming two triangles: from a point p (see Figure 5) somewhere along ξ, to
the intersection where ξ meets the inserted surface p2, to B respectively C.

Note that the lengths Cp1 and Cp2 are the same, as well as the lengths
Bp1 and Bp2, and the length Cp is shared by both the gap and the new
triangles. Let C1 and C2 be positioned according to Figure 5. If the
point p is chosen such that ∠C1Cp1 + ∠p2Cp = ∠C1CC2 + ∠C2Cp, then
the new triangles are an identical match to the gap. By Theorem 2, the
prism is foldable, so the full construction is foldable, and since the cut does
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Figure 5. The left figure shows the gap around the inserted additional surface
from the cut. The right figure shows the same object from above.

not influence its foldability, and its gap is filled, therefore the box-type
polyhedron is flat foldable. �

In the proof of Theorem 3, a prism was cut off the polyhedron. The
process of cutting off a prism can be repeated to create other types of
polyhedra.

Definition 1. A quasi-cylindrical polyhedron is a closed cut-off cylinder with
a polygonal cross-section.

Theorem 4. Convex quasi-cylindrical polyhedra are flat foldable.

Proof: This follows by the proof of Theorem 3. In each step, cut off a prism
from the polyhedron, until the result forms the given shape. �

Airbags are usually quasi-cylindrical. There are cases, e.g., nonconvex
polyhedra, for which the technique for generating a crease pattern does not
work. These situations might be avoided by slicing the polyhedron, and
computing a crease pattern for each part.

Theorem 4 provides an algorithm for designing a crease pattern. Given
a quasi-cylindrical polyhedron, we can extend it gradually using prisms
until it reaches the shape of a tetrahedron. In each step, we apply the
theory for flat foldability, creating a working crease pattern.
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3 Folding
For airbags, there are various alternatives for simulating the folding process.
This is due to the fact that the problem is artificial in the sense that the
folding need not be realistic, e.g., there is no need to introduce the concept
of time. The objective is to create a flat geometry that is physically correct,
not to fold it in a realistic way.

Our algorithm for folding the polyhedron is based on solving an opti-
mization problem. A program is formulated such that the optimal solution
represents a flat geometry. The target function, to be minimized, is a
sum of rotational spring potentials, one spring over each crease. The min-
imal value of a spring potential is found when a fold is completed. The
constraints are formulated in order to conserve a physically correct repre-
sentation of the polyhedron, which means conserving the area and avoiding
any self-intersections of the faces of the polyhedron.

The crease pattern over a polyhedron induces a subdivision of polygons
called patches . In addition, the patches are triangulated, and the interior
of the polyhedron is meshed with tetrahedra. Let the nodes of the mesh be
{xi}n

i=1, and let the indices of the surface nodes be IS . Let the tetrahedra
be {Ki}nK

i=1 and set IK = {1, . . . , nK}. Let the four indices of the nodes
of tetrahedron k be Vk(i), i = 1, . . . , 4. The edges of the triangular faces
are denoted {Ei}nE

i=1, and the indices of the two nodes of edge e are We(i),
i = 1, 2.

Denote the creases {Ci}nC

i=1. The spring potential over each crease Ci

is computed using the scalar product of the normals, n1
i ,n

2
i , of the two

neighboring patches. The normals point outward from the polyhedron,
and the scalar product is 1 when the two patches are parallel, and −1
when the fold is completed.

The folding process of a polyhedron with n nodes (surface and interior
mesh nodes) is formulated as the following nonlinear program with f :
R3n → R,

min
x

f(x),

f(x) = f1(x) + f2(x) + f3(x)

= km

nK∑
k=1

⎛⎝ 4∑
i=1

4∑
j=i+1

‖xVk(i) − xVk(j)‖ − dVk(i),Vk(j)

⎞⎠2

+
nC∑
i=1

n1
i · n2

i + kp

nE∑
i=1

(
‖xWi(1) − xWi(2)‖ − lWi

)2

,
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subject to
vol(Ki) ≥ ε1, i = 1, . . . , nK ,

dist(xi, Kj) ≥ ε2, i ∈ IS , j ∈ IK \ pi,

where dij is the original distance between node xi and xj , li is the original
length of edge i, and km, kp are penalty parameters. The first constraint
function is vol(Ki), which is the signed volume of the tetrahedron Ki. The
second constraint is dist(xi, Kj), which is the distance from a surface node
xi to a tetrahedron Kj, and pi are the tetrahedron indices connected to
node xi. Finally, ε1 and ε2 are small positive constants.

The target function f is composed of three parts. The first part, f1, is
a penalty function that strives to keep the tetrahedral mesh uniform. The
second part, f2, is the virtual spring potential that drives the folding. The
third part, f3, is a penalty function that keeps the edges of the triangles
stiff. This is used to maintain the shape and surface area of the patches.

4 Numerical Example
In Section 2, a theory for computing a crease pattern was discussed. To
demonstrate its practical use, and also to demonstrate the folding algo-
rithm, a numerical experiment is presented here. From a CAD drawing,
an airbag-shaped polyhedron was constructed. The surface area of the
approximation differs about 0.5% from the original area. An in-house op-
timization solver was used to solve the optimization problem described in

Figure 6. Polyhedral approximation of an airbag model together with a computed
crease pattern.
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Figure 7. The figures show iteration snapshots from the folding of the polyhedron
approximation from Figure 6. The upper left shows the unfolded polyhedron, the
upper right: 40 iterations, the lower left: 60 iterations, and the lower right: 200
iterations.

Section 3. It is a Fortran 90 implementation of a low-storage Quasi-Newton
SQP method [2, 3, 6], that can handle a few thousand variables and con-
straints.

The crease pattern was generated by slicing off two upper “bumps”
(see Figure 6) from the airbag approximation. The crease patterns for
these parts were computed separately from the rest of the polyhedron, and
the complete crease pattern was formed by joining the parts.

The polyhedron approximation with its crease pattern was meshed us-
ing TetGen [7]. The visual result (solution) from the optimization progress
is shown in Figure 7 for different iteration snapshots.

It was found that the surface area of the flat folded polyhedron was
within 0.5% of the surface area of the unfolded polyhedron.

Acknowledgment. The authors would like to thank Professor S. Larsson and
Dr. B. Pipkorn for valuable advice. This work was funded by Autoliv
Development AB.
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Surface Transitions in
Curved Origami

Jeannine Mosely

1 Introduction
Most folded paper designs exclusively use straight creases to divide the pa-
per into a collection of planar polygons, giving the result a characteristic
“origami” look. More and more artists, however, are designing with curves,
either bending a flap of the paper into a curved surface, as in van Gouber-
gen’s Curler model, or introducing curved creases to create curved surfaces
on either side of the fold, as in Jackson’s family of one-fold designs [6, 8].
It has long been the practice to add small curved creases in the final stages
of shaping a model, to add expression or provide a more three-dimensional
appearance. Such curves, however, tend to be ad hoc, placed at random
without a true understanding of what is happening to the paper. Such
understanding is hard to come by.

It can be shown that for a curved surface to be unfolded or developed it
must have Gaussian curvature equal to 0 everywhere [3]. Such a surface is
called developable and its mapping into the plane is its development. Every
point on a developable surface has a straight line through it that lies in the
surface. These lines are called the generators of the surface. There are four
kinds of developable surfaces: planes, cylinders, cones, and tangent surfaces
(see Figure 1). The cones or cylinders are understood to be generalized:
their cross sections are smooth but not necessarily circular. A tangent
surface is derived from an arbitrary smooth space curve. It contains the
curve and the tangent lines to the curve form the generators of the surface.
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Figure 1. Four kinds of developable surfaces.

Developable surfaces have been studied extensively by automotive, aero-
nautical, and nautical engineers [1,2,4]. They have important applications
in the manufacture of auto bodies, airplane wings and fuselages, and ships’
hulls. But most of these studies have limited value to the origamist who
wishes to design curved models, because the typical manufacturing applica-
tion involves the design of a single developable surface, or possibly multiple
surfaces that are assembled from separate sheets of material, whereas the
paper folder usually desires to create multiple different developable surfaces
from a single sheet of paper. Results involving creased developable surfaces
are less common [5, 7, 9].

In designing curved origami models I use two distinct approaches that
I call analysis and synthesis. In analysis you make specific creases (e.g.,
circular arcs) in a sheet of paper and fold along them, usually subjecting
them to additional symmetry constraints. You then analyze the result to
discover its shape. In synthesis you decide what shape you would like to
fold and then derive the equations for the creases that create your shape.
In some cases the approach may be hybrid: you begin with some known
creases and constraints, and then analyze the shape that a portion of the
paper will form. This shape determines where the rest of the paper must
go and you derive the additional creases from that.

The Orb model (Figure 2, left) is an example of the first approach
and was analyzed in an earlier paper [10]. Arcturus (Figure 2, right) is
an example of synthesis and its derivation will be sketched below. The
Bud (Figure 3) is a hybrid model, which I designed by starting with four
overlapping half circles forming the four gores of an egg-shaped object.
I calculated the equations governing its shape in space and used that to
determine where the additional curves must go to allow the rest of the
paper to be folded aside.

These models suggest the following problem: given two developable
surfaces, how can you fold both of them from a single sheet of paper?
If you take their developments and embed them in the same plane with
enough space between them, you should be able to fold the excess paper
“out of the way” somehow to create the desired surfaces, as in the Bud .
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6 units 30 units

Figure 2. The Orb (left) and Arcturus (right) and their crease patterns.

??

?

?

Figure 3. Designing the Bud.

But sometimes you want to make the transition directly from one surface to
another. For this to work the two surfaces must share a common boundary
not only in space, but also when they are developed in the plane. This
rarely happens.

It is not hard to see, however, that a given developable surface may be
folded along a curved edge to create a surface on the other side that meets
certain desired criteria. For example, a cylinder can be folded so that a
second cylinder is formed opposite the crease, subject to the constraint
that its generators are all parallel to a given vector. In fact, the solution
is not even unique, and additional constraints may be imposed. Likewise,
a cone may be folded to form a cylinder on the other side of the crease,
subject to a similar constraint. A cylinder may be folded to create a cone
subject to its containing a particular generator or having a specified apex.
(See Figure 4.) In this paper, I do not enumerate all such transitions and
the constraints upon them; I merely provide an example of how a typical
problem, involving a cone and a cylinder, can be solved.

Suppose that you have a cone defined by its apex P = (h, 0, 0) and
a parametric curve c(u) lying in the xy-plane, where c(u) is defined for
0 ≤ u ≤ 1. The surface is given by

s(u, v) = vc(u) + (1 − v)P for 0 ≤ u, v ≤ 1.
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Figure 4. Some cone and cylinder surface transitions.

Further suppose that c(u) has been chosen such that when s(u, v) is flat-
tened, the angle subtended by the edges that meet at the apex is π/4.
Now consider a subset of s such that its development is the right isosceles
triangle shown in Figure 5.

We want to find a curve c1 in the cone s such that, if we crease along
it, the surface formed on the other side is a cylinder with the constraint
that its generators are parallel to the y-axis, as shown in Figure 6. The
goal here is to be able to fold two mirror image cones back to back from
a single sheet of paper, with the cylinder section making the transition
between them. For this to work, we additionally require that the line d2

is the development of c2, the projection of c1 onto the xz-plane. Our fold
will be along the curve d1, the development of c1. Because we are dealing
with a cone, it is easiest to express d1(u) in polar coordinates (r(u), θ(u)).

First we find the function θ(u). Note that, for each u0, the generator
s(u0, v) = vc(u0) + (1 − v)P maps to the line θ = θ(u0). Let n(u) =
(c(u)−P)/‖c(u)−P‖. This curve lies in the cone and has the property that
every point on it is at distance 1 from the apex P. Thus, the development
of n is the circular arc of radius 1, as shown in Figure 7, and the angle
θ(u0) is the arc length of n(u) from u = 0 to u = u0. Hence,

θ(u0) =
∫ u0

0

√
n′(u) · n′(u)du.

Earlier we supposed that c(u) was chosen so that its development sub-
tended the angle π/4 at the cone’s apex, without giving any hint as to how
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Figure 5. A subset of a cone (left) and its development in the plane (right).

Figure 6. The cone folded through a curved crease (left) and its development in
the plane (right).

this might be achieved. That angle is just θ(1), so if c(u) is chosen from a
known family of curves, then some parameters defining the curve (e.g., the
coefficients of a polynomial) can be adjusted to produce the desired result.

Consulting Figure 7 again we see that

r(u)
y

=
‖c(u) − P‖

cy(u)
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θ

θ

Figure 7. Calculating the crease in polar coordinates.

by similarity of triangles. Furthermore,

y = 1 − r(u) cos(θ(u)).

Solving for r we get

r(u) =
1

cy(u)/‖c(u) − P‖ + cos(θ(u))
,

which concludes the derivation of our curved crease d1.
The Arcturus model is derived in much the same way, with some mi-

nor differences. The thirty units are arranged with icosahedral symmetry
and each is composed of three developable surfaces: two mirror symmet-
ric cone sections connected by a cylinder section. The cone sections must
be chosen so that the two edges that meet at the apex subtend the angle
2 tan−1(φ−2), where φ is the golden ratio, and the dihedral angle between
the tangent planes of the two cones at their shared edges is less than or
equal to π/5. These constraints determine our choice of the curve c. Many
such curves can be found—any one will do. We see from the crease pattern
in Figure 8 that the unit’s development is an isosceles triangle, as in our
example, but the curved crease lies along the base of the triangle, rather
than along one of its legs. Hence, the equations defining d1 will be a little
different.
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Figure 8. Half of an Arcturus unit (left) and its crease pattern (right).

2 Conclusions
At first glance, the task of designing curved origami to produce a desired
shape, as opposed to simply making some curved creases and seeing what
shape they form, may seem daunting. But as we have seen, some basic
techniques from multivariable calculus can be used to solve some interesting
design problems. More work needs to be done to determine the range of
problems solvable by these methods.
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Folding Curves

Robert Geretschläger

1 Introduction
In this paper, I would like to present some basic results pertaining to the
“folding” of curves in origami. Whereas most practical origami consists of
linear folding—all creases created by folding are line segments—creating
a curved crease is certainly not unheard of. Under most normal circum-
stances, creating such a curved crease is a mistake, an accidental slip of the
hand or paper. It is, however, quite possible to “fold” paper while moving
it continuously during the process, creating a planned curved crease.

For the purpose of this paper, I will assume that the folding medium is
always finite (generally limited by a square, as is most commonly the case
in practical origami) and that both the curve on the flat paper that is to
be folded (which I will refer to as the fold) as well as the resulting spatial
curve (referred to as the crease) are continuously differentiable. Folding
such curves is, in fact, not at all difficult.

An initial attempt at such a maneuver immediately shows us the first
big difference from “normal” linear folding: the paper does not remain flat.
In fact, neither part of the paper delineated by the crease can remain flat
if a curve is folded. (This intuitively obvious fact follows from Theorem 1
in the next section.) Taking a closer look at such a creased piece of paper
immediately suggests several questions. Which curves can be folded and
what types of surfaces are created by the paper? What is the relationship
between the two curved surfaces delineated by the resulting crease? If a
specific plane curve is given as the fold, which surfaces can result? Which
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spatial curve (crease) will the fold twist into? As it turns out, the answer
to the first question is: most everything, within reason. (Only developable
surfaces can result, for instance, but this is obvious.) In fact, much of
the theory needed can be readily derived from standard results in differen-
tial geometry, as we shall see. Some very nice pictures of certain curved
folds can be created using mathematical software. (For this paper, I use
Mathematica 3.0 for all three-dimensional graphics.)

2 Simple Sine Curves and Cylinders of Rotation
Example 1. I would like to begin with a folding experiment. Assume a unit
folding square as our folding medium and a system of cartesian coordinates
(u, v) as shown in Figure 1(a) with origin in the midpoint of one side and the
u-axis on the side. We wish to fold the curve represented by the equation

f(u) =
1
π
· cosπu,

such that the section of the folding square between the curve and the u-axis
is transformed into part of a cylinder of rotation as shown in Figure 1(b).

The bottom line AB of the folding square is transformed into a semi-
circle in the yz-plane with radius 1

π
, and the maps of the points A

(− 1
2
, 0

)
,

M(0, 0), and B
(

1
2
, 0

)
are A′ (0,− 1

π
, 0

)
, M ′ (0, 0, 1

π

)
, and B′ (0, 1

π
, 0

)
, re-

spectively. The point H
(
0, 1

π

)
, in which the fold intersects the v-axis, maps

to H ′ (− 1
π , 0, 1

π

)
on the crease, since M ′H ′ is a generator (ruling) of the

resulting cylinder.
A point P

(
u, 1

π cosπu
)

on the fold is mapped to the point P ′ (− 1
π cosπu ,

1
π sin πu, 1

π cosπu
)

on the crease. All such points P ′ lie in the plane A′B′H ′ :
x + z = 0, and we see that the resulting crease c is a plane curve.

Folding the paper in this way yields a shape as shown from two distinct
viewpoints in Figure 2.

Taking a closer look at this result, it appears that the larger section of
the paper has also been transformed into part of a cylinder. In fact, this
must be the case. Since the plane x + z = 0 containing the crease c bisects
the angle between the coordinate planes xy and yz, we can also obtain
this shape by cutting the original curved paper as shown in Figure 1(b),
flipping the rear section, and pasting it to the front as shown in Figure 2.
The half ellipse we obtain as a result of the plane section will certainly lie
on both cylindrical sections because of the 45◦ angles between the plane of
c and the coordinate planes.

Obviously, this is a very special case. The type of spatial symmetry
we have here will not exist for very many folds. Fortunately, we can also
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(a) (b)

Figure 1. The cosine curve (a) in the plane and (b) on a half cylinder.

Figure 2. Two views of the folded half cylinder.

consider the result of our experiment in the light of some well-established
results of differential geometry. This will give us ideas on how to proceed
for other curves and surfaces.

The most important result in the background for all computations to
follow is the following:

Theorem 1. In all points of a crease curve c with parameter t in a devel-
opable surface, the osculating plane of c in the point c(t) is a bisector plane
of the two tangent planes of the surface in the point c(t).

A complete proof of this theorem can be found in [2, p. 418].
It is clear that the situation described in Theorem 1 is the result of some

curved folding of a plane surface, since a developable surface is precisely



�

�

�

�

�

�

�

�

154 III. Computational Origami

the result of the “bending” of a plane. The spatial curve c is the result
of some mapping of a plane curve cp, which is used as a template for the
crease.

An immediate consequence is the following:

Lemma 1. If a continuously differentiable finite crease curve c divides a de-
velopable surface S into two sections S1 and S2, one of which is part of a
plane π, c is a line segment.

Proof: If c is not a line segment, the osculating plane in every point of c
is identical to π. Let S1 be part of the plane π. By Theorem 1, this means
that the tangent planes of S2 are all symmetric to the tangent plane π of
S1 with respect to the osculating plane of c = cp with respect to π, and
therefore equal to π. Any such surface must be identical to π. If there is
to be a crease at all, S1 and S2 must overlap somewhat. If c has positive
curvature in some point of S1, it must simultaneously have equal negative
curvature, since it also lies in S2. This is impossible, and the curvature of
c must therefore be equal to 0 everywhere, contradicting the assumption
that it is not a line segment. �

As a direct consequence of Theorem 1, we see that any curved fold that
results in a plane crease c yields a surface divided into two symmetric sec-
tions by the plane in which c lies, whereby the plane of c is the plane of
symmetry. This follows from the fact that the tangent planes are all sym-
metric with respect to this plane, and the surface determined as envelope
of its tangent planes is unique.

Looking at our experiment once more, we see that the two cylindrical
sections determined by folding the curve in question are each sections of
cylinders of rotation symmetrical with respect to the plane x + z = 0 of c.
As soon as one section is bent to form part of such a cylinder, the other
part must follow suit.

We can also show this in a much more convoluted way, that will, how-
ever, have the advantage of showing us the way to calculate the results of
more general curved folds. We assume that one section of our folding paper
P as delineated by cp (we name this section P1) can be bent to a specific
section S1 of a specific developable surface S. This process maps cp onto
the spatial curve c on S, and the tangent planes of the developable surface
S2 that results from the section P2 := P\P1 of the paper can be derived
by applying Theorem 1. If c(t) is a point on c, we can determine both the
tangent plane τ(t) of S in c(t) and the osculating plane ωt of c in c(t).
The tangent plane τ2(t) of S2 in c(t) is then the plane symmetric to the
tangent plane of S in c(t) with respect to the osculating plane of c in c(t).

Letting t vary over the appropriate interval, we obtain S2 as (a section
of) the envelope of all resulting planes τ2(t).
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Figure 3. Projection in the direction of the tangent of c.

In this specific case, the osculating plane is always the plane of c, of
course. S1 is the front section of the cylindrical paper. By Theorem 1, the
section of the folding square above the curve

f(u) =
1
π
· cosπu

is transformed into part of the envelope of all planes symmetric to the
tangent planes of the cylinder with respect to the plane containing c, and
we can calculate S2 by applying this property.

The tangent plane τp of the cylinder in P ′ is perpendicular to the vector
(0, sinπu, cosπu), and is therefore represented by the equation

τp : (sin πu) · y + (cosπu) · z =
1
π

.

We now note that reflecting a point A(xA, yA, zA) with respect to the plane
x + z = 0 yields the point A(−zA, yA,−xA) as shown in Figure 3.

Since reflection of a vector
−→
OA with respect to this plane yields

−→
OA,

and P ′ lies in both τp and the plane τp symmetric to τp, we have

τp : −(cosπu) · x + (sinπu) · y =
1
π

.

In order to determine the generators of the envelope of all such planes τp,
we first consider the fact that the generator contained in τp is perpendicu-
lar to the normal vector (− cosπu, sinπu, 0). Simultaneously, it is almost
perpendicular to the normal vector of the nearby plane

τp;ε : −(cosπ(u + ε)) · x + (sinπ(u + ε)) · y =
1
π

.

The vector can therefore be calculated as

lim
ε→0

(− cosπu, sin πu, 0) × (− cosπ(u + ε), sinπ(u + ε), 0) = k · (0, 0, 1) .
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(Note that we are ignoring the fact that k in fact tends to 0, as we are only
interested in the direction of the vector.) We see that, in this simple case,
all generators are vertical, and we have once again shown that the section
S2 of the paper is cylindrical, with vertical generators.

In order to calculate specific creases c and surfaces S2 if folds cp and
surfaces S1 are given, the following theorems are quite useful.

Theorem 2. Assume that we are given a plane curve cp and a space curve
c each parameterized with the arc-length parameter such that the absolute
value of the curvature of cp in every point cp(u) is less than that of c in
the corresponding point c(u). Then there exist exactly two extensions of
the function f mapping cp(u) to f(cp(u)) = c(u) to isometric embeddings
of a plane neighborhood of cp to space.

It is obvious that this means that essentially any reasonable plane fold can
become any crease in space, as long as the relevant curvatures increase for
every point of the curve.

A proof can be found in [1]. It is worth noting that the proof essentially
relies only on knowledge of the fact that the geodesic curvature κg in some
point P of a curve c on a surface S and its curvature κ in P are related by
κg = κ · cosα, whereby α is the angle between the tangent plane of S in
P and the osculating plane of c in P . (Recall that, since the curvature is
the reciprocal of the curvature radius ρ, this is equivalent to ρ = ρ · cosα,
whereby ρ is the curvature radius of c, and ρ can be thought of as either
the curvature radius of the curve resulting from c on the development of
the surface or the curvature radius of the orthogonal projection of c onto
the tangent plane of the surface in P .)

For practical calculations, we will also find the following quite useful:

Theorem 3. Let S be a developable surface and c = P (u) be a curve on S
with parameter u and points P (u) on S. Further assume that the tangent
planes of S in all points P (u) are given by �n(u) · �x = d(u), and that all
normal vectors �n(u) are known. Let

�n(u) = (f(u), g(u), h(u))

with f, g, h all continuously differentiable. Then the generator of S in the
point P (u) has the direction vector

(g′(u)h(u) − g(u)h′(u), h′(u)f(u) − h(u)f ′(u), f ′(u)g(u) − f(u)g′(u)).

Proof: This is, of course, a generalization of the idea presented at the end
of Example 1.
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Since �n(u) is perpendicular to the tangent plane in P (u), it is also
perpendicular to the generator of S in P (u). The same is true for �n(u + ε)
in the nearby point P (u + ε). Since these two generators are arbitrarily
close together (assuming that ε is sufficiently small), the direction of the
common perpendicular �n(u)×�n(u+ε) is already quite close to the direction
of the generator in P (u), and letting ε tend to zero will yield a vector in
the direction of the generator. Calculation yields

(f(u + ε), g(u + ε), h(u + ε)) × (f(u), g(u), h(u))
= (g(u + ε)h(u) − g(u)h(u + ε), h(u + ε)f(u) − h(u)f(u + ε),

f(u + ε)g(u) − f(u)g(u + ε))

= ε ·
(

g(u + ε)h(u) − g(u)h(u + ε)
ε

, . . . ,
f(u + ε)g(u) − f(u)g(u + ε)

ε

)
.

The factor ε is irrelevant to the direction of the vector and can therefore
be ignored. In the x-coordinate, we see that

2 lim
ε→0

g(u + ε)h(u) − g(u)h(u + ε)
ε

= h(u) · lim
ε→0

g(u + ε) − g(u)
ε

+ g(u) · lim
ε→0

h(u) − h(u + ε)
ε

= g′(u)h(u) − g(u)h′(u)

holds, and since the analogous results hold for the other two coordinates,
the claim follows. �

Example 2. We are now ready to generalize Example 1 somewhat. Let the
paper, the cylinder to which we transform the lower half, and the system
of coordinates be as before, with the sole exception that the function f on
the folding square is now given by the equation

f(u) = p · cosπu, with 0 < p < 1.

Of course, this makes Example 1 the special case for p = 1
π
. A, B,

and M (and thus A′, B′, and M ′) remain unchanged, since they are
not dependent on the parameter p. Since their coordinates do depend
on the value of p, we now have H(0, p), P (u, p cosπu), H ′ (−p, 0, 1

π

)
, and

P ′ (−p cosπu, 1
π sin πu, 1

π cosπu
)
. All points P ′ still lie in a common plane

εp, but now we have

εp :
x

p
+ πz = 0 or εp : x + pπz = 0.

Since c is still a plane curve, S2 must again be part of the cylinder sym-
metric to the cylinder on which S1 lies.



�

�

�

�

�

�

�

�

158 III. Computational Origami

Figure 4. Resulting surfaces for p = 0.5 (left) and p = 0.8 (right).

Figure 4 shows the resulting surfaces for p equal to 0.5 and 0.8.
Once again, we can also calculate S2 as the envelope of its tangent

planes.
The tangent plane of the cylinder in P ′ is still

τP : (sin πu) · y + (cosπu) · z =
1
π

,

but these planes must now be reflected with respect to εp in order to obtain
tangent planes of the upper section S2 of the folded paper.

In Example 1, we saw that reflecting a point A(xA, yA, zA) with respect
to the plane x + z = 0 yields the symmetric point A(−zA, yA,−xA). A
bit of calculation shows us that reflecting A with respect to a plane εp :
x + pπz = 0 yields the symmetric point

A

(
p2π2xA − xA − 2pπzA

p2π2 + 1
, yA,

−p2π2zA + zA − 2pπxA

p2π2 + 1

)
.

(Note that the special value p = 1
π

yields the simpler values of Example 1.)

As in Example 1, reflection of a vector
−→
OA with respect to this plane

yields
−→
OA, and since P ′ (−p cosπu, 1

π
sin πu, 1

π
cosπu

)
lies in both τP and

τP , the plane τP symmetric to τP with respect to εp is therefore

τP : −2pπ · (cos πu)
p2π2 + 1

· x + (sinπu) · y +
(1 − p2π2) · (cosπu)

p2π2 + 1
· z =

1
π

.

We are now ready to apply Theorem 2 in order to determine the direction
vectors of the generators of S2 through the points P ′, and some calculation
yields
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1 − p4π4,−1

2
pπ(1 − p2π2) sin 2πu, 2pπ(1 + p2π2)

)
as the direction vector of the generator in P (u).

With this in mind, we are ready to try a case in which the crease c is
not a plane curve.

3 General Curves and Cylinders of Rotation
What if we wish to consider a general function f(u) (with some reasonable
constraints concerning smoothness, i.e., continuous differentiability, con-
vexity, and so on) as the fold? A point P of the fold is then represented
by P (u, f(u)). If we once again wish to have S1 be part of a cylinder of
rotation as in Examples 1 and 2, we have

P ′
(
−f(u),

1
π
· sin πu,

1
π
· cosπu

)
,

and the tangent plane of the cylinder in P ′ is still

τP : (sin πu) · y + (cosπu) · z =
1
π

.

In general, the points P ′ will not all lie in a common plane, and we must
therefore determine the osculating plane of the spatial curve resulting from
the curve v = f(u) after bending to form S1.

This involves a straightforward application of standard methods of dif-
ferential geometry. Since the curve c(u) is given by P ′(u) = (−f(u),
1
π
· sin πu, 1

π
· cosπu), the vector d

du
P ′(u) points in the direction of the

tangent of c(u) in P ′(u) and the vector d2

du2 P ′(u) points in the direction
of the principle normal (first normal) of c(u) in P ′(u), i.e., its direction is
in the osculating plane of c(u) in P ′(u) and perpendicular to the tangent.
This means that the vector d

du
P ′(u) × d2

du2 P ′(u) is a normal vector of the
osculating plane of c(u) in P ′(u). Since

d

du
P ′(u) = (−f ′(u), cosπu,− sinπu)

and
d2

du2
P ′(u) = (−f ′′(u),−π sin πu,−π cosπu)

we obtain

d

du
P ′(u) × d2

du2
P ′(u) = (−π, f ′′(u) · sinπu − πf ′(u) · cosπu,

πf ′(u) · sin πu + f ′′(u) · cosπu) .
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Plugging in the coordinates of P ′ shows us that the equation of the oscu-
lating plane in each point P ′(u) is therefore

−π · x + (f ′′(u) · sin πu − πf ′(u) · cosπu) · y
+ (πf ′(u) · sin πu + f ′′(u) · cosπu) · z = πf(u) +

1
π

f ′′(u).

With this in mind, we are ready for the following.

Example 3. For this example, we once again let the paper, the cylinder to
which P1 is bent to form S1, and the systems of coordinates be as before,
but the function f is now given by

f(u) = −2u2 +
1
2
.

By choosing the function in this way, the fold passes through the two
bottom corners and the midpoint of the square as it did in Example 2
for p = 1

2
. A, B, M , A′, B′, and M ′ are still as before, but a point

P
(
u,−2u2 + 1

2

)
of the fold maps to P ′ (2u2 − 1

2
, 1

π
sinπu, 1

π
cosπu

)
, and

these points P ′ do not lie in a common plane for u ∈ [− 1
2 , 1

2

]
. We therefore

cannot apply any of the methods relating to symmetry with respect to
the planes of the crease as in the previous examples, but must use the
more general method of reflecting the tangent plane in each point in the
osculating plane of the crease in that point, and then determining the
envelope of the set of tangent planes of S2 determined in this way.

The tangent plane in P ′ is

τP : (sin πu) · y + (cosπu) · z =
1
π

,

as was stated above, and plugging into the formula for the osculating plane
yields the expression

−π · x + (4πu cosπu − 4 sinπu) · y
+ (−4 cosπu − 4πu sinπu) · z = −2πu2 +

π

2
− 4

π

as the equation of the osculating plane of the crease c in P ′. Some calcu-
lation (best left to the computer, since the expressions involved are quite
large) yields the equation of the tangent plane of S2 in P ′, and application
of Theorem 3 then yields the direction vector of the generator of S2 in P ′.

With these results in hand, we are able to generate a picture of the
result of the described fold, and we see such a picture in Figure 5.

Note that this picture is not limited to the part of the resulting surface
S2 that is actually obtained by folding a square. This would only be a
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Figure 5. Fold to a half cylinder for f(u) = −2u2 + 1/2.

part of the surface in the picture, but we can see in this picture that the
result of the described fold is very similar to that described in Example 2
for p = 1

2 , as we would expect.

4 An Example on a Cone
In the three previous examples, the bottom section P1 of the surface has
always been bent to fit part of a cylinder. For obvious reasons, a cylinder
seems to be the easiest type of developable surface for which to develop
the calculations in this context. Just as it would seem to be interesting
to have a look at bending to some type other than a cylinder of rotation
(a parabolic cylinder seems to be a reasonable candidate), it is now also
a natural next step to consider something similar for a cone or a tangent
surface.

In the following example, a special cone will be used in place of the
cylinders of the previous examples.

Example 4. The aim of this example is simply to produce a picture of the
result of folding part of a square to a section of a very specific cone with
methods as described so far. Assume that a unit square (i.e., the sides are of
length 1) is bent (without any folding, for now) to become part of a (finite)
right cone, such that two corners of the unit square (endpoints of a common
edge) meet and the other two corners come to lie on diametrically opposite
points of the base. The cone and bent square will then look something like
what we see in Figure 6.

Some relatively straightforward calculation shows us that the radius r

of the base is given by r = 1
6 ·

√
2 +

√
3, the slant height (i.e., the length

of the generators of the cone) s is s =
√

2 +
√

3, and the height h of the
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Figure 6. The cone (left) and bent square (right).

cone is therefore h =
√

35
6

·
√

2 +
√

3. Two other views of the resulting bent
square are shown in Figure 7.

Especially the right-hand view reminds us of a superhero’s cape, giving
us an image that might be easier for many to visualize than just a bent
square.

A reasonable candidate for a fold on the paper to be bent in this way
would now seem to be a curve whose crease would end up as the intersection
of the plane x+z = 0 with this cone, since we can then use simpler reflection
techniques to calculate the result. The algebraic expression for this curve
is incredibly complicated, but we can quickly check that the three points(

0,±1
6
·
√

2 +
√

3, 0
)

and
(
−1

7
·
√

2 +
√

3, 0,
1
7
·
√

2 +
√

3
)

all lie both in this plane and on the cone. The result of this fold is shown
in Figure 8. (Note that some sections of the paper are shown both in their
original position and in the position they go to after reflection, namely,
the part of the paper above the xy-coordinate plane before folding. These
parts are not actually part of the paper model.)

Figure 7. The bent square as a “superhero’s cape.”
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Figure 8. The final result of folding to the cone.

5 Conclusion
In order to fully appreciate these results, it is definitely necessary to do
the folds described and compare the paper with the pictures. It is quite
interesting to note how much computer power is needed to calculate these
graphics; the algebraic expressions involved are quite complex.

One thing that comes to mind from looking at the results of these
musings is the idea that curved folds such as those described here could be
used much more for the development of concrete origami models. Certainly
the “superhero’s cape” gives us the impression of an origami model, and
it is really just a bent piece of paper, not folded at all. Perhaps this type
of calculation could even eventually lead to a whole new class of practical
origami models.
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The Method for Judging
Rigid Foldability

Naohiko Watanabe and Ken-ichi Kawaguchi

1 Introduction
For engineers, the concept of rigid origami is useful in the study of flexible
structures. Rigid origami is defined as “origami in which each surface
surrounded with crease lines neither stretches nor bends,” that is, all flexure
takes place along well-defined lines. Tom Hull has compared rigid origami
to a model of metal plates having hinges instead of creases. The question
of rigid foldability is, “can we still fold a given crease pattern, even though
each polygon made by crease lines must remain rigid as we fold?”

To formulate and understand a rigid foldable condition, we will compare
it with the better-known concepts of flat foldability or, equivalently, the
flat foldable condition. The issue of flat foldability deals with the question
“when we can fold a paper flat along the lines of a given diagram, what
properties should this diagram have?” or “can we judge whether the crease
pattern can fold flat or not from a given diagram?” As two necessary
flat foldable conditions, the Kawasaki theorem and the Maekawa theorem
are well known. And, the research on flat foldability has expanded by
many other people, such as J. Justin, H. Azuma, T. Hull, M. Bern, and
B. Hayes [4–8]. Flat foldability deals with the final state of folding. On the
other hand, rigid foldability deals with the existence (or not) of a continuous
route between the first state and the final state.

165
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Figure 1. Examples of rigid foldability and flat foldability.

Figure 1 shows specific examples of flat foldable and rigid foldable crease
patterns. In many cases, a flat foldable crease pattern is rigid foldable.
However, there are several cases that satisfy flat foldable conditions but
do not satisfy rigid foldable conditions, for instance, the twisting fold . A
twisting fold can reach a flat state, but each surface has to be bent during
the transition in order to reach the final state. There are many other cases
that are rigid foldable but not flat foldable.

Properties of rigid origami have been researched by many as well—
D. Huffman [3], K. Miura [9,10], T. Hull, R. Lang [5], and others. Huffman
and Miura used Gaussian curvature to study the properties that paper
must have to fold in a rigid manner. Lang showed relationships between
folding angles in a single vertex of degree 4 using spherical trigonometry.

The rigidity of models made with balls and joints has also been studied
as structural rigidity. It can be seen as rigid origami in low dimension.
The Maxwell formula is well known as a property of rigid structures that
describes the relationship between a number of balls and joints. But the
Maxwell formula, while necessary, is not a sufficient condition for struc-
tural rigidity. H. Tanaka and H. Hangai have proposed the concepts of
infinitesimal rigidity and finite rigidity, and methods to judge structural
rigidity using the matrix constructed from the coordinates and connection
of points. They have also proposed a method to find the mode of feasible
finite deformations for flexible structures. In this method, Moore-Penrose’s
generalized inverse matrix is used [2].

R. Connely, E. Demaine, and G. Rote have also researched the question
of whether a one-dimensional piece of paper can be folded continuously
into a desired folded state without introducing new creases.

However, there is not a general method to judge rigid foldability from a
pattern of crease lines assigned mountain-valley status that is analogous to
the flat foldable conditions. This paper proposes two practical methods to



�

�

�

�

�

�

�

�

The Method for Judging Rigid Foldability 167

judge rigid foldability from an arbitrary pattern of given crease lines. They
are the diagram method and the numerical method and will be explained
in this work.

2 Diagram Method
First, we will consider the diagram method and apply it to examples of
single-vertex models. We will show how to identify which crease patterns
can fold rigidly from parts (a), (d), and (g) in Figure 2 by this diagram
method.

Here is the approach. First, replace mountain or valley crease lines
with vectors whose directions are, respectively, pointing toward or away
from the vertex, as in parts (b), (e), and (h).

Second, proceeding in anticlockwise order around the vertex, connect
each vector to the next, head-to-tail, adjusting the lengths of vectors as
necessary in order to (if possible) form a closed loop, as shown in parts (c),
(f), and (i).

As shown in Figure 2(c), a crease pattern whose vectors cannot make
a closed loop cannot fold rigidly. Even if it can form a closed loop, if its
oriented area is nonzero as in (i), the crease pattern also cannot fold rigidly.
Only when the vectors can make the closed loop, and the vectors’ oriented
area is zero as in case (f), is the crease pattern one that can fold rigidly.
So, in fact, only case (d) is rigid foldable among (a), (d), and (g). This is
the diagram method to judge rigid foldability.

3 The Validity of the Diagram Method
The validity of this method is explained with a matrix treatment. Let
us consider with an analysis of a single-vertex fold as shown in Figure 3.
Here, we suppose that the crease lines on the plane that can fold rigidly
are able to make an infinitesimal change of dihedral angle. The crease
lines l1, l2, .., ln are enumerated in counterclockwise order beginning from
the x-axis. We label each crease line li, with a pair of angles (θi, ρi) where
θi, ρi denotes the plane angle and the supplement of the dihedral angle,
respectively.

Let Ai be the matrix corresponding to a rotation in the xy-plane by the
plane angle θi. Let Ci be the matrix that rotates by the folding angle ρi.
Now, use χi = AiCiA

−1
i to denote the counterclockwise rotation of angle

ρi around the axis corresponding to the crease line li in the plane. If a
single-vertex crease pattern can fold rigidly, the product of all matrices χi
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Figure 2. Three examples of the diagram method: crease pattern ((a), (d), (g)),
first step ((b), (e), (h)), and second step ((c), (f), (i)).

Figure 3. Symbol li(θi, ρi)
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must be equal to the identity, I. This requirement has been discussed by
T. Kawasaki, T. Hull, and s-m. belcastro [1, 7].

Here, specific components of the matrix χi are described as follows:

χi =

⎡⎣ cos2 θi + cos ρi sin2 θi (1 − cos ρi) sin θi cos θi sinρi sin θi

(1 − cos ρi) sin θi cos θi sin2 θi + cos ρi cos2 θi − sin θi cos θi

− sinρi sin θi sin θi cos θi cos ρi

⎤⎦ .

Now, assume that folding angles ρ are infinitesimal, Δρi. Then, we can
approximate cosΔρi � 1 and sin Δρi � Δρi = εi, and so the matrix χi is
approximately given by

χi =

⎡⎣ 1 0 εi sin θi

0 1 −εi cos θi

−εi sin θi εi cos θi 1

⎤⎦ .

Now, we take the product of the χi for i = 1, 2, . . . , n, neglecting the
terms of more than second order of εi. The result of this product of the χi

can be described as follows:

χ1χ2 · · ·χn =⎡⎢⎢⎢⎣
1 − ∑n

i,j=1
i<j

δs
i δ

s
j

∑n
i,j=1
i<j

δs
i δ

c
j

∑n
i=1 δs

i∑n
i,j=1
i<j

δc
i δ

s
j 1 − ∑n

i,j=1
i<j

δc
i δ

c
j −∑n

i=1 δc
i

−∑n
i=1 δs

i

∑n
i=1 δc

i 1 − ∑n
i,j=1
i<j

δs
i δ

s
j − ∑n

i,j=1
i<j

δc
i δ

c
j

⎤⎥⎥⎥⎦ .

Here, δs
i and δc

i represent εi sin θi and εi cos θi, respectively. Considering
that this matrix is equal to the identity I, we will consider each component
of this matrix.

First, let’s note the component of (1,3)(2,3) that includes the term of
first order about εi.

Aε =
[

cos θ1 cos θ2 · · · cos θn

sin θ1 sin θ2 · · · sin θn

] ⎡⎢⎢⎢⎣
ε1
ε2
...

εn

⎤⎥⎥⎥⎦ = 0.

This formula corresponds to the requirement that “the vector can draw
a closed loop” in the diagram method. We can observe that the terms εi,
which represent infinitesimal folding angles, are vector lengths.

Second, picking out the component (1,1)(1,2)(2,1)(2,2), which includes
the terms of second order about εi, we can make the formula as follows:

εT Cε = 0,
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where C is the matrix⎡⎢⎣ 0 cos θ1 sin θ2 − sin θ1 cos θ2 cos θ1 sin θ3 − sin θ1 cos θ3 · · · cos θ1 sin θn − sin θ1 cos θn

0 cos θ2 sin θ3 − sin θ2 cos θ3 · · · cos θ2 sin θn − sin θ2 cos θn

.

.

.
sym. 0

⎤⎥⎦
This formula corresponds to the requirement that “the directed area drawn
by vector is zero.” These are necessary conditions for the εi mode to
exist.

4 Numerical Method
We now introduce the numerical method for judging rigid foldability. As
we have discussed earlier, if a crease pattern can be folded rigidly,

Aε = 0,

εT Cε = 0.

Here, A and C are determined by the values of θi. The question is whether
given values of θi and the signs of ε can satisfy these formulae. The signs
of ε’s mode represent combinations of mountain-valley folds. To solve this
question, we use the generalized inverse matrix and the Newton-Raphson
method of iteration.

First, the solution of the first formula can be proposed by orthonormal
base in zero-space as follows:

ε′ = [I − A+A]α.

Here, A+ is the Moore-Penrose generalized inverse matrix of A [2] and α
is the combination of mountain-valley given by ±1. However, this ε′ does
not, in general, satisfy the second formula. Therefore, using the Newton-
Raphson Method, we make ε converged. If ε cannot be converged on a
mode with an assumed sign of αi, this mode of α is not rigidly foldable.
On the contrary, if ε can be converged on the same mountain-valley mode
as assumed by α, this mode is rigid foldable and these components of ε
show the feasible mode of infinitesimal folding angles.

5 Multivertex Patterns
Next, let us consider the case of patterns of multiple vertices. In the case of
the diagram method, the rigid foldability can be judged from the compati-
bility of the lengths of vectors. Simple examples are considered in Figure 4;
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Figure 4. Rigid foldable pattern. Figure 5. Nonrigid foldable pattern.

in this figure the vector diagrams in each vertex are mutually compatible.
By contrast, for each vertex in Figure 5, the vector lengths can be chosen
such that each vector diagram can be drawn closed, but, when considering
all vertices simultaneously, the relationship of the lengths of vectors are
incompatible: we find that l1 < l4, l4 < l3, l3 < l2, and l2 < l1. In a
multivertex pattern, the vectors that represent the same crease line must
be the same length. Since this is not possible in Figure 5, this pattern in
fact cannot fold without its surface bent.

To apply the numerical method to multivertex patterns, we can judge by
considering the formula for each vertex and superposed matrix, as follows:

A1ε1 = 0, εT
1 C1ε1 = 0,

A2ε2 = 0, εT
2 C2ε2 = 0,

...
Anεn = 0, εT

nCnεn = 0,

[Atotal] {εall} = 0, {εall}T [Ctotal] {εall} = 0.

These formulas must have a simultaneous solution; if they do not, then
the pattern is not rigidly foldable.

6 Application of Numerical Method
The usefulness of the numerical method is shown as follows. For n lines,
the number of combinations of possible mountain-valley assignments is 2n.
Using the numerical method, we can identify the rigid foldable pattern (if
any) from these total patterns. In this way we can check the validity of the
method.

As a first example, consider a single vertex of degree 4 as shown Fig-
ure 6. The number of combinations of mountain-valley assignments is 16.
In Table 1, the left part shows all combinations of mountain-valley as-
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Figure 6. The single vertex having degree 4 (upper left) and four possible
mountain-valley assignments.

signments and the supposed mode of α. The right part shows the values
of converged ε. In all combinations, the patterns whose sign of ε agree
with α are only the four patterns shown in Figure 6. In fact, the rigidly
foldable patterns are only these four patterns. These four patterns also
satisfy the flat foldable conditions, which shows that some foldable crease
patterns that satisfy the flat foldable condition can also satisfy the rigid
foldable condition. And, we can note that |l1| = |l3| and |l2| = |l4| in abso-
lute value of converged ε. This property corresponds to a result shown by
Lang [5] (and, implicitly, by Huffman [3]) that opposite dihedral angles of
a flat-foldable degree-4 vertex are equal in absolute value.

A second example is a single vertex of degree 5 (Figure 7). From the 25

possible patterns, the ten patterns shown are selected as rigid foldable. This
example illustrates the fact that a vertex pattern can be rigidly foldable
even if it is not flat foldable (since a flat-foldable vertex must have even
degree).

pattern Actual Input α Judging Converged ε
No. Foldability l1 l2 l3 l4 Result l1 l2 l3 l4

1 × −1 −1 −1 −1 × −0.007 −0.001 0.000 −0.019
2 � 1 −1 −1 −1 � 0.500 −1.207 −0.500 −1.207
3 � −1 1 −1 −1 � −1.207 0.500 −1.207 −0.500
4 × 1 1 −1 −1 × −0.013 0.001 0.000 −0.031
5 × −1 −1 1 −1 × 0.207 −0.500 −0.207 −0.500
6 × 1 −1 1 −1 × 0.019 0.000 0.001 −0.007
7 × −1 1 1 −1 × −0.031 0.000 0.001 0.013
8 × 1 1 1 −1 × 0.500 −0.207 0.500 0.207
9 × −1 −1 −1 1 × −0.500 0.207 −0.500 −0.207

10 × 1 −1 −1 1 × 0.031 0.000 −0.001 −0.013
11 × −1 1 −1 1 × −0.019 0.000 −0.001 0.007
12 × 1 1 −1 1 × −0.207 0.500 0.207 0.500
13 × −1 −1 1 1 × 0.013 −0.001 0.000 0.031
14 � 1 −1 1 1 � 1.207 −0.500 1.207 0.500
15 � −1 1 1 1 � −0.500 1.207 0.500 1.207
16 × 1 1 1 1 × 0.007 0.001 0.000 0.019

Table 1. Judging results of a single vertex having degree 4.
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Figure 7. A vertex having
degree 5 (top) and the ten
rigid-foldable patterns.

Figure 8. Four-vertices pattern (top) and its
flat-foldable patterns.

A third example is the pattern having four vertices of degree four (Fig-
ure 8). In this pattern, the mountain-valley combinations satisfying flat
foldability total 16. But, the selected patterns that are rigid foldable total
only 12 (those not shaded in Figure 8). This means that the other four are
patterns that are flat foldable but are not rigidly foldable. In fact, these
four patterns cannot be folded without bending some of the surfaces.

7 Conclusion
To summarize, the two methods, diagram method and numerical method,
have been presented for judging rigid foldability, and their validity and
practicability have been demonstrated by using considerations of infinites-
imal deformations. We have illustrated their application with several ex-
amples. This system is not complete, however, because we have shown
only necessary conditions; we have not shown that these conditions are
sufficient. We expect that these concepts will be refined further in the
future.
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Simulation of Rigid Origami

Tomohiro Tachi

1 Introduction
Simulation of origami is very important for representing or designing origami
via computer. It helps paperfolders to understand the structure of origami
models and can be used as a tool for designers to draw diagrams. We pro-
pose a system for simulating the folding process from a given crease pattern
to the folded base, based on rigid origami simulation (Figure 1).

There have been several approaches for simulating origami. One way
is to simulate origami by a sequence of simple folding steps as shown by
Miyazaki et al. [5]. Since the final state of an origami model is represented
by folding steps, it is easy to reconstruct an animation progressing from a
sheet of paper to the finished model. However, the origami models that can
be represented in this system are limited by an enforced simplicity of the
individual folding steps, and this approach is not suitable for many complex
origami models whose folding process cannot be divided into simple folding
steps.

Thus, representing origami models by crease patterns seems suitable.
ORIPA is a crease pattern editor developed by Mitani [4] that provides an
estimation of the folded figure from the crease pattern. The final state with
stacking order is estimated, though sometimes the estimation fails. The
thickness of paper is included in the representation for better understanding
of the structure of the model, but it does not provide intermediate states
between the crease pattern and the final shape.

175
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(a) (b) (c)

Figure 1. Screenshots of the simulation program. (a) Base of Kamehameha Wave
(model by the author). (b) Pleated hypar. (c) Base of Tachikoma (model by the
author).

It is possible to simulate an intermediate state of folding, by using a rigid
origami model, i.e., a model with plates connected by hinges. Resch and
Christiansen [6] solved the geometry of a kinematic folded-plate structure
based on a combination of elastic analysis and constraints by truss elements.
In their method, the configuration is represented by the coordinates of
vertices, as opposed to our method representing the configuration with
fold angles. Balkcom [1] used a rigid origami model represented by fold
angles for origami simulation. His method is based on virtual cutting and
a combination of forward and inverse kinematics. The calculation of the
trajectory runs fast in this method, but the method was not general enough
to provide a system that simulates a folding motion from an arbitrarily
given crease pattern.

Our system is based on rigid origami simulation, and uses the crease
angles of all fold lines as variables to represent the configuration of an
origami model. The simulation method is based on projection onto the
constraint space, thus it is possible to use the folding motion of all crease
lines as the driving force of folding. This results in a robust overall motion
that is not influenced by the degeneracy of vertex coordinates at the flat-
folded state or artifacts caused by virtual cutting. Additionally, our system
can add flexibility to origami models by adding and adjusting crease lines.
With this method, the folding motion of non-rigidly-foldable models can
also be simulated.

The system provides a smooth and comprehensible interactive folding
animation from a crease pattern to the folded base. This helps users to
understand the structure of origami models, and encourages paper fold-
ers to fold models from crease patterns. This also indicates the possibil-
ity of using crease patterns as a primary medium for publishing origami
models.
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Figure 2. Left: No hole is inside the loop and the constraint is satisfied by the
intersection of single-vertex constraints inside. Right: There is a hole inside the
paper, around which we need to separately formalize the constraint.

2 Kinematics of Rigid Origami
In our model, an origami configuration is represented by the fold angles
of edges (fold lines). Fold angles change according to the mountain-valley
assignment of the fold lines when the paper gets folded. These fold lines
are connected with facets and form closed loops, and for each closed loop
we have a constraint on angle movement. If there is no hole inside the
loop, then the constraint is satisfied by the intersection of all constraints
by single vertices inside the loop (Figure 2). Our model assumes that the
paper has no holes, i.e., is homeomorphic to a disk. The folding motion is
numerically calculated using a linear approximation of constraints by single
vertices.

Necessary conditions for single-vertex rigid origami shown by belcastro
and Hull [2] are used as the constraints of multivertex rigid origami models.
Suppose there are n fold lines �1, · · · , �n connected to the vertex. For a
single-vertex origami, the 3× 3 matrix constraint function F of fold angles
ρ1, · · · , ρn is given by

F (ρ1, · · · , ρn) = χ1 · · ·χn−1χn = I,

where matrices χ1, · · · , χn represent the rotations about fold lines �1, · · · , �n,
respectively (Figure 3). Differentiating this equation gives

dF
dt

=
∂F
∂ρ1

ρ̇1 + · · · + ∂F
∂ρi

ρ̇i + · · · + ∂F
∂ρn

ρ̇n =

⎡⎣0 0 0
0 0 0
0 0 0

⎤⎦ .
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�1

�2

�3

�4

B12
B23

B34
B41

C1(ρ1)

C2(ρ2)

C3(ρ3)

C4(ρ4)

X1=C1B12
X2=C2B23
X3=C3B34
X4=C4B41

Figure 3. An example of rotation matrices of a single-vertex origami.

We get nine equations (i.e., one for each element of F) for angle move-
ments ρ1, · · · , ρn represented using a 9 × n matrix:⎡⎢⎢⎢⎢⎢⎣

∂F
∂ρ1 (1,1)

· · · ∂F
∂ρn (1,1)

∂F
∂ρ1 (1,2)

· · · ∂F
∂ρn (1,2)

...
...

∂F
∂ρ1 (3,3)

· · · ∂F
∂ρn (3,3)

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

9×nmatrix

⎡⎢⎣ρ̇1

...
ρ̇n

⎤⎥⎦ =

⎡⎢⎣0
...
0

⎤⎥⎦ . (1)

However, since F is a rotation matrix (i.e., orthogonal matrix), the
equations are redundant and only three of the nine equations are inde-
pendent. The partial derivative of an orthogonal matrix F at F = I is a
skew-symmetric matrix because

∂F
∂ρi

+
(

∂F
∂ρi

)T
∣∣∣∣∣
F=I

=
∂F
∂ρi

FT + F
∂FT

∂ρi

∣∣∣∣
F=I

=
∂

∂ρi

(
FFT

)∣∣∣∣
F=I

= 0.

The partial derivative of the constraint function is represented in the fol-
lowing form using three independent variables a, b, and c 1:

∂F
∂ρi

=

⎡⎣ 0 −a c
a 0 −b
−c b 0

⎤⎦ .

1It was later pointed out by Professor Ken’ichi Kawaguchi that a, b, and c are the
direction cosines of corresponding fold lines.
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We get the following 3 × n matrix instead of the 9 × n matrix shown in
Equation (1): ⎡⎣a1 · · · an

b1 · · · bn

c1 · · · cn

⎤⎦
⎡⎢⎣ρ̇1

...
ρ̇n

⎤⎥⎦ =

⎡⎢⎣0
...
0

⎤⎥⎦ .

Then, we rewrite the matrix using a global edge number to construct a
global matrix. Assume that edge i is connected and edge j is not connected
to vertex k. Constraint by vertex k is represented by matrix Ck, whose ith
column is identical to the column of the previous matrix that corresponds
to the edge, and whose jth column is the zero vector.

[Ck]

⎡⎢⎣ ρ̇1

...
˙ρN

⎤⎥⎦ =

ith jth⎡⎣· · · aki · · · 0 · · ·
· · · bki · · · 0 · · ·
· · · cki · · · 0 · · ·

⎤⎦
︸ ︷︷ ︸

3×Nmatrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ̇1

...
ρ̇i

...
ρ̇j

...
˙ρN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣0
0
0

⎤⎦ ,

where N is the number of fold lines. The global constraints by multiple
vertices are given by the intersection of the conditions:

Cρ̇ =

⎡⎢⎣ [C1]
...

[CM ]

⎤⎥⎦
︸ ︷︷ ︸

3M×Nmatrix

⎡⎢⎣ ρ̇1

...
˙ρN

⎤⎥⎦ =

⎡⎢⎣0
...
0

⎤⎥⎦ , (2)

where M is the number of vertices inside the paper.
If and only if the rank of matrix C is less than N , the linear equation

has nontrivial solutions. The solution of this linear equation is calculated
using the pseudoinverse matrix C+ of matrix C:

ρ̇ =
[
IN − C+C

]
ρ̇0,

where ρ̇0 is the unconstrained value of the angles’ velocity determined from
the mountain-valley assignment of the fold lines. The idea is to project un-
constrained angle movement into constrained space by using the orthogonal
projection matrix [IN − C+C]. The trajectory can then be calculated by
Euler integration as follows:

Δρ = ρ̇(t)Δt =
[
IN − C+C

]
Δρ0.
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Ideal Trajectory

Modified Trajectory

Euler Integration

Δρ0

-C+CΔρ0

−C+r

r=r

r=0

Figure 4. Idea of the trajectory:
[
IN − C+C

]
is a projection matrix that projects

unconstrained angles movement vector Δρ0 to the constraint linear space. The
angles movement vector is further modified to reduce residual.

However, this Euler integration results in the accumulation of numerical
error, so we modify Equation (2) using residual vector r:

Cρ̇ = −r,

where

r =
[
r1a r1b r1c · · · rka rkb rkc · · · rMa rMb rMc

]T
,

and rka, rkb, and rkc are the residuals of elements of F corresponding to
ak, bk, and ck, respectively.

F =

⎡⎣ 1 0 − ra 0 + rc

0 + ra 1 0 − rb

0 − rc 0 + rb 1

⎤⎦ .

The modified solution is as follows (see Figure 4):

Δρ = −C+r +
[
IN − C+C

]
Δρ0.

The pseudoinverse is calculated as C+ = CT
(
CCT

)−1 if C is full rank
and 3M < N . When this condition is satisfied, the linear equation is solved
as follows:

Δρ = −C+r +
[
IN − C+C

]
Δρ0

= −CT
(
CCT

)−1
r +

[
IN − CT

(
CCT

)−1
C

]
Δρ0

= Δρ0 − CT
{(

CCT
) \ (r + CΔρ0)

}
.
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θ θ
θ+δ θ−δθ

θ−αα

Closed Vertex Split Inside Angle Reduce Inside Angle

outside inside

Mountain Fold
Valley Fold

Figure 5. Two ways to avoid a closed vertex.

3 Adding and Adjusting Crease Lines

3.1 Closed Vertex

If we simply fold a paper on an existing fold line, the intersection of a
new line and an old line is a vertex with fold lines whose motion is locked
by the new fold. We call this kind of a singular vertex a closed vertex .
In our system, a vertex is detected as a closed vertex if there is a set of
three adjacent crease lines connected to the vertex whose outer two are
symmetric about the center crease and their mountain-valley assignments
are opposite.

There are two ways to avoid closed vertices. One way is to split the
inside angle, i.e., the angle to be folded inside, by adding crease lines. The
other way is to reduce the inside angle (Figure 5).

3.2 Adding Crease Lines by Triangulation

Many rigid origami models with degree-4 vertices are not rigidly foldable
because of the lack of sufficient degrees of freedom (DOF). The total num-
ber of degrees of freedom of the model is N −3M if the constraint matrix is
full rank (i.e., if there is no singularity), where M and N are the number of
vertices and edges inside the paper (i.e., not on the perimeter), respectively.

Polygons with more than three vertices are triangulated. By adding
k − 3 crease lines on each polygon, k − 3 degrees of freedom are added
to the model per each k-gon. If all the polygons are triangulated, the
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Figure 6. An example of triangulation. Left: Not-triangulated model is overcon-
strained (M = 19, N = 42, DOF = N − 3M < 0). Right: Triangulated model
has three DOF (M = 19, N = 60, N0 = 6, DOF = N − 3M = N0 − 3 = 3).

total degrees of freedom of the model is N0 − 3 where N0 is the number of
edges on the perimeter of the paper (Figure 6). There are multiple ways
to add crease lines when triangulating polygons. Appropriate crease lines
are added so that as many inside angles as possible are split.

3.3 Adjusting Crease Lines

Crease lines are adjusted to avoid singularity arising from closed vertices.
The position of each vertex is moved in the direction that reduces the inside
angles of closed vertices. The amount of displacement for each vertex is
set according to the angle unevenness of the vertex, which is defined as
{max(ρi) − min(ρi)}, for better balance of the folding process for fold lines.
This reasonably results in no adjustment of the crease pattern when in both
the unfolded and completely folded state.

Most origami models have many flat-foldable vertices. Flat-foldable
vertices are kept flat foldable during the adjustment of crease lines so that
an adjusted model can be folded to the final state. Kawasaki’s theorem
is used to set the constraints on displacement of the vertices [3]. Here is
Kawasaki’s theorem: ∑

i:odd

θk,i =
∑

i:even

θk,i = π,

where θk,i represents the ith angle between the edges around vertex k
(Figure 7).

The displacement of the vertices is represented as a 2Mall × 1 vector[
ΔX
ΔY

]
,
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θk,1

θk,2θk,3

θk,4
θk,5

θk,6

Figure 7. A flat-foldable vertex k.

where Mall is the total number of vertices. The constraint for the displace-
ment is represented by a matrix Cadj as[

∂G
∂X

∂G
∂Y

]
︸ ︷︷ ︸

[Cadj]

[
ΔX
ΔY

]
= 0,

where G is a M × 1 vector function of X and Y whose kth element is

G (X,Y)k =
∑
i:odd

θk,i −
∑

i:even

θk,i.

Constrained displacements of the vertices are calculated in the same
way as calculating the trajectory of the angles:[

ΔX
ΔY

]
= −C+

adjrg +
[
I2Mall − C+

adjCadj

] [
ΔX0

ΔY0

]
,

where [
ΔX0

ΔY0

]
is the unconstrained vertex displacement and rg is the residual vector of
function G.

3.4 Result of Adding and Adjusting Crease Lines

Figure 8 shows the results of adjusting crease lines after triangulating the
model. Some models become flexible enough to show how the facets are
stacked when all the crease lines are simultaneously folded. Other models
become possible to fold only when their crease lines have been adjusted.
The overall animation of folding from the crease pattern to the final shape
is smoother and more comprehensible when the crease lines are adjusted.
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Triangulated Triangulated & Adjusted

Figure 8. Top two rows: Adjusting crease lines adds flexibility to the model
and results in more natural and comprehensible origami representation. Bottom
two rows: Some models cannot be folded to the final state without adjustment.
(Model in last row is the base of Tea Time by the author.)

4 Implementation and Result

The system described above has been implemented as a program written in
C using ATLAS and OpenGL. The user can interactively simulate folding
and unfolding of origami models, whose crease pattern data is given in
DXF format or ORIPA format. A conjugate gradient method was used
for solving the linear equation system. The program runs at an interactive
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(a)

(b)

Figure 9. Transition from one folded state to another. (a) Petal fold can be
simulated. (b) Simple open sink can be folded, but one needs to unfold all crease
lines during the folding process.

speed for many complex origami models (e.g, a 16×16 box-pleated model).
Screenshots of the program are shown in Figure 1.

Two types of penalty forces are used to avoid local self-intersection. One
limits the fold angles of mountain or valley crease lines to [−π, π] to prevent
two adjacent facets from intersecting each other. The other limits the fold
angles of added crease lines according to the fold angles of adjacent crease
lines such that three adjacent facets sharing one vertex do not intersect
each other. Although this self-intersection avoidance is not sufficient to
avoid global or complicated local self-intersection, it is observed that it
works in many practical cases.

The system also supports transitions from one folded state to another
folded state so that it can be used as a tool for drawing diagrams. The
folding process can be controlled by a set of multiple crease patterns. How-
ever, it is observed that many origami folding steps are not rigidly foldable.
For example, it is impossible to execute sink folds and some reverse folds
without unfolding all crease lines (Figure 9).

Many models can be folded to the desired state in this system, although
some cannot be so folded. We have observed that the foldability of the
model is determined by whether the model has closed folds in the structure
rather than by the number of the fold lines in the model. In general, origami
models that are easy to open into a sheet of paper in the “real world” can
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(a) (b) (c)

(d) (e) (f)

Figure 10. Examples of simulation. (a) Miura-ori, (b) waterbomb tessellation,
and (c) pleated hypar are foldable; and (d) crane with finishing, (e) four-crane
base, and (f) tatou get stuck or intersect themselves before becoming completely
folded.

be easily folded and unfolded in the simulation. For example, a Miura-ori ,
a waterbomb tessellation, and a pleated hypar are smoothly folded in the
simulation, while a crane with its finishing step (reverse-folding the neck),
a four-crane base, or a tatou cannot be folded to the final state (Figure 10).

Rigid Origami Simulator, the simulation program based on the proposed
method, is available on the author’s website (http://www.tsg.ne.jp/TT/
software/), and the resulting images can be seen on Flickr (http://www.
flickr.com/photos/tactom/).

5 Conclusions and Future Works
We proposed a system for simulating folding motion of origami by calculat-
ing the trajectory via projection to the constrained space based on a rigid
origami model. An additional method was proposed for making origami
models more flexible by triangulating polygons and adjusting crease lines.
Moreover, we investigated local self-intersection avoidance and the transi-

http://www.%EF%AC%82ickr.com/photos/tactom/
http://www.%EF%AC%82ickr.com/photos/tactom/
http://www.tsg.ne.jp/TT/software/
http://www.tsg.ne.jp/TT/software/
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tion from one state to another. As a result, we can get an interactive system
with which users can fold and unfold relatively “open” origami models to
and from the crease pattern in a robust, smooth, and comprehensible way.

The global self-intersection avoidance problem and the stacking order
problem are not solved in this paper and should be the subject of future
work. Another work to be done in the future is controlling the surface of
high-DOF origami models through user interaction, which is useful for un-
derstanding how an origami surface three-dimensionally changes its form.
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Facet Ordering and Crease
Assignment in Uniaxial Bases

Robert J. Lang and Erik D. Demaine

1 Introduction
A renaissance of origami began in the mid-twentieth century as the ex-
posure of the works of Japanese master Akira Yoshizawa inspired a wave
of creation of new design that continues unabated today. Beginning in
the 1960s with the development of box pleating and through the ensuing
decades, the state of complexity and sophistication of origami designs grew
steadily, leading to ever-more challenging subjects as origami artists in-
cluding Elias, Hulme, Engel, and Maekawa developed techniques to design
origami shapes with specified features.

By the 1990s, these techniques began to assume mathematical form.
At roughly the same time, Toshiyuki Meguro in Japan and one of the
authors (Robert Lang) in America devised a set of techniques based on
disk packing that allowed an origami artist to design a basic form, called a
base, with an arbitrary configuration of flaps [8, 9]. These techniques and
their subsequent diffusion through the origami communities on both sides
of the Pacific led to a wave of new origami creation and an “arms race”
(or perhaps a “legs race” is more accurate) of arthropodal invention known
informally as the “Bug Wars.”

While origami artists were not overly concerned with the mathematical
niceties of circle packing so long as it worked in practice, in the mid- to
late 1990s, origami began to receive attention from computational geome-
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ters, including the other author (Erik Demaine), who began investigating
origami design issues from a computational perspective, examining ques-
tions of computational complexity, existence, and formal algorithms for the
solution of various folding problems.

The first computational geometric description of the circle packing de-
sign algorithm was provided by Robert Lang in 1996 [9]. We showed that a
broad class of origami structure—called uniaxial bases—could be designed
by solving a nonlinear constrained optimization (NLCO) problem that, un-
der certain conditions, amounted to a disk packing. The construction of
the base occurred in two steps. After describing the desired base by a
weighted tree graph, one constructed an NLCO from the properties of the
tree graph and then solved it for a set of points that ultimately became
key vertices of the desired crease pattern. In the second step, the pattern
of vertices was filled in with a set of creases utilizing patterns known as
molecules (a name and concept coined by Meguro). The resulting crease
pattern was foldable into a base whose flaps possessed the lengths and con-
nections specified by the original tree graph. We called this algorithm tree
theory, and incorporated it into a freely available software tool for origami
design, TreeMaker [11].

A complete description of a flat folded origami shape requires three
things: the locations of the creases; their assignment (mountain or valley);
and the stacking order of the folded layers. in our original analysis, we
noted that the creases could be classified into four families and that the
crease assignments for some of the families were known, and we commented
that the remaining crease assignments could usually be determined by a
bit of experimentation.

However, lack of a complete description of crease assignment (and the
related information of stacking order) has remained a hole in tree theory
for some ten years. It is by no means assured that the solution to either
problem is trivial; in general, finding crease assignment and/or stacking
order for a given crease pattern is NP-complete [3]. On the other hand,
polynomial-time algorithms for crease assignment and stacking order for
closely related problems [2] have been described, giving grounds for hope
for the existence of a general algorithm.

In this work, we describe for the first time a relatively simple algorithm
for crease assignment in a uniaxial base. The method hinges on the con-
struction of an ordering of the facets, expressed as a digraph, that allows
a mountain-valley assignment that satisfies the Justin conditions on layer
ordering [5]. Although we defer the proof of the algorithm to a future work
due to space limitations, we present it here; this algorithm, plus the NLCO
of tree theory, provides a complete computation algorithm for the crease
pattern, crease assignment, and stacking order for an arbitrary uniaxial
origami base.
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2 Tree Theory

2.1 Optimization

We begin with a brief recapitulation of tree theory and relevant terms and
concepts.

A uniaxial base is a folded shape that can be partitioned into distinct
regions, called flaps, and for which a particular line can be defined, called
the axis. Each flap must be incident to the axis and the perpendicular
projection of the flap onto the axis must be fully contained within each
flap. The connections between flaps are called hinges , and the hinges are
all perpendicular to the axis. Each flap has a defined length, which is simply
the length of its projection upon the axis.

The lengths and connections between flaps in a uniaxial base can be
described by an edge-weighted graph in which edges represent flaps, edge
weights are the flap lengths, and the nodes of the graph represent con-
nections between flaps. Since the paper is simply connected, any shape
folded from the paper must be simply connected, and therefore its graph
must be as well. We call such a graph the tree graph of the base. Given
a uniaxial base, constructing its tree graph is simple and straightforward.
(See Figure 1.)

Many of the classic bases of origami, and many modern bases of great
complexity, are uniaxial bases (although of course many are not). The
property of uniaxiality permits a solution of the inverse problem: given a
tree graph and a sheet of paper, construct a uniaxial base with the given
tree graph (or one that differs by only a proportionality constant), using
an algorithm which we call the TreeMaker algorithm.

We will present examples in which the sheet of paper is a square, but
the algorithm is applicable to any convex polygon P . We first classify nodes
and edges within the tree graph: a node of degree 1 is a leaf node; all others
are branch nodes . Similarly, any edge incident to a leaf node is a leaf edge;
all others are branch edges . With each leaf node ni, we associate a vertex
of the crease pattern vi, which we call a leaf node vertex. (Branch nodes
do not have unique associated vertices.) The first step of the TreeMaker
algorithm is to solve for the positions of the leaf node vertices within the
paper P .

Since the tree graph is simply connected, there is a unique shortest
path between any two nodes ni and nj , called a tree path, consisting of an
ordered list of nodes and edges. With each such tree path, we associate a
tree length lij , which is the sum of the lengths of the edges of the tree path.
In our prior work [9], we showed that for any uniaxial base, a necessary
condition on the crease pattern was that
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axis

(a) (b) (c)

Figure 1. (a) Crease pattern of a uniaxial base. (b) Folded form of the same base,
with axis highlighted. (c) Its tree graph. Note that one flap is hidden inside the
folded form.

|vi − vj | ≥ lij (1)

for all possible pairs of leaf node vertices.
For an arbitrary tree graph, there is no guarantee that a solution to

Equation (1) exists. We therefore introduce a scaling factor m, which is the
ratio between the length of an edge of the tree graph and the length of the
corresponding flap in the folded form. With this introduction, Equation (1)
becomes

|vi − vj | ≥ mlij (2)

for all possible pairs of leaf node vertices.
The scale is a measure of the efficiency of the folded base; a base with

a large scale will have a folded form that is relatively large compared to
the starting paper. The largest potential base is therefore given by the
extremum of the following nonlinear constrained optimization problem:

maximize m over {vi} subject to |vi − vj | ≥ mlij , vi ∈ P. (3)

A straight line between any two vertices vi, vj in the crease pattern is
also called a path (not to be confused with tree paths, which are defined
on the tree graph rather than on the crease pattern). For every tree path
between leaf nodes, there is a corresponding path between leaf node vertices
on the crease pattern, which we call a leaf path. The length of any path
in the crease pattern is the Euclidean distance between its endpoints. If
the length of a leaf path is equal to its scaled length on the tree graph,
corresponding to equality in Equation (2), the path is said to be an active
path, because its associated constraint in the NLCO is in the active set of
constraints. A path that is not active is inactive.
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A leaf path is a polygon path if it is either (a) an active path, or (b) on
the convex hull of the leaf node vertices, in which case it is called a hull
path. If a chain of polygon paths closes on itself, forms a convex polygon,
and contains no leaf node vertices in its interior, the enclosed region and
boundary is said to be an active polygon.

A set of leaf node vertices in a polygon P with convex hull PH is said
to be well-formed with respect to a tree graph if it satisfies the following
properties:

1. Every point within the convex hull lies within some active polygon.

2. Every active polygon contains at most one inactive hull path.

There is no guarantee that a solution to Equation (3) satisfies these
two conditions; it is not uncommon to find a solution with active paths
all around the boundary and one or more unconstrained leaf vertices “rat-
tling around” in the interior of the polygon. However, it is usually possible
to either add additional edges to the tree graph or to selectively lengthen
certain edges of the tree graph to attain the well-formed state—and impor-
tantly, this is accomplished without reducing the size of the original graph;
the solution to Equation (3) remains an optimum.

2.2 Molecules

Given a well-formed vertex set, we can now construct the crease pattern
itself. We first note that any paper outside of the convex hull of the leaf
vertices is effectively unused. In practice, it can be folded underneath and
the resulting polygon treated as a single sheet of paper; in the interest of
brevity, we will ignore it going forward and will assume that the paper P
and the convex hull of the leaf node vertices PH are one and the same.

We now introduce a coordinate system in the folded form: for any point
p in the crease pattern, its perpendicular distance from the axis is called
the elevation e, and its distance along the axis from some fixed reference
point (to be defined presently) is called the depth d.

The leaf node vertices, by definition, lie on the axis of the base in the
folded form, and so have elevation zero. It can be shown that any active
path must have constant elevation along its length; thus, every point along
an active path between two leaf node vertices has elevation zero and lies
on the axis in the folded form. We call such a path an axial path. Since
all points in the immediate neighborhood of an axial path lie at higher
elevation than the axial path, there must be a gradient discontinuity along
an axial path in the mapping from the crease pattern to the folded form—
in other words, every axial path is folded. We can therefore construct
creases along all axial paths in a well-formed vertex set; said creases are
axial creases . (See Figure 2.)
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Figure 2. (a) A tree graph. (b) A well-formed vertex set for this tree graph with
active and inactive polygon paths highlighted.

We now construct the crease pattern inside of each active polygon.
They can be treated independently at this point; we call the crease pattern
for any axial-boundary polygon a molecule. Inactive polygon paths (which
exist only on the boundary of the convex hull) are not forced to be axial
paths but we will choose them to be so. Thus, every active polygon has
elevation zero on its boundary and, as it turns out, elevation greater than
zero everywhere in its interior. The boundary paths of each active polygon
are all lines of constant elevation and run parallel to the axis in the folded
form. If we inset the boundary by some constant distance h, the resulting
smaller polygon must also have a boundary that has constant elevation,
but that elevation is now given by h. (See Figure 3.)

The corners of the inset polygon are gradient discontinuities in the
mapping from the crease pattern to the folded form, and therefore must
be folded points. In other words, there must be creases radiating inward
from the corners of the active polygons. We call such creases ridge creases.
If we denote the vertices of the active polygon by {vi} and the vertices of
the inset polygon by {v′

i}, the inset vertices must obey a set of conditions
analogous to the tree conditions, which are

|v′
i − v′

j | ≥ mlij − h(cotαi + cotαj) (4)

for all possible pairs of inset vertices, where αi and αj are, respectively,
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Figure 3. Insetting the boundary of an active polygon produces a polygon with a
constant-elevation boundary at higher elevation.

half of the vertex angles at vi and vj . The path from v′i to v′j is called a
reduced active path.

As the inset distance h is increased, one of two things happens. Either
two inset vertices merge—in which case the polygon degree is reduced—or
one (or more) of the reduced active paths becomes active, i.e., the inequal-
ity in Equation (4) reaches equality. When this happens, the situation is
analogous to an axial path; the reduced path must be a line of constant
elevation, the paper on either side of the path lies at higher elevation, and
therefore, the path must be a (folded) crease, called a gusset crease. The
gusset crease(s) divide the reduced polygon into two (or more) separate
reduced polygons, each of which has degree lower than the original poly-
gon, and the insetting process continues. Eventually, the ridge creases and
vertices merge at a point, and the polygon is filled by a network of ridge
and gusset creases, all of which are folded. (See Figure 4.)

These are not the only creases in the crease pattern, however. For a
given uniaxial base, the flaps can be positioned in multiple arrangements.
As noted earlier, the boundaries between flaps are called hinges; in the
crease pattern, hinges are represented by hinge creases. A hinge crease can
be folded or unfolded, depending on the relative positions of the flaps to
either side.

While the tree graph is a discrete structure, we can expand it into
a metric space in which a point can be defined anywhere along an edge
and characterized by its distance along the edge. We call this space the
metric tree. If we do this, then along any axial path in the crease pat-
tern, there is a one-to-one mapping between any point on the path and
a unique point on the metric tree. In particular, we can identify points
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Figure 4. (a) The tree graph. (b) The universal molecule, showing ridge, gusset,
folded and unfolded hinge, and pseudohinge creases. (c) The folded form, showing
the folded positions of each crease.

on the crease pattern that map to branch nodes on the metric tree. Such
points must be incident to hinge creases. And since hinge creases are
lines of constant depth (just as axial and gusset creases were lines of
constant elevation), we can identify vertices along the axial creases that
correspond to the branch nodes along the tree, and then by propagat-
ing hinge creases out from them (and reflecting the hinge creases when
they hit ridge creases), we can construct all of the hinge creases in the
crease pattern (though not, as yet, determine whether they are folded
or unfolded).

There is one more type of crease to construct. From every hull path in
the crease pattern, there is a chain of ridge creases—called a ridgeline—
connecting its endpoints. The intermediate vertices along this chain are
incident to hinge creases that connect the ridgeline to the hull path, for
the most part. However, if the hull path is inactive, there will be at least
one vertex formed in the insetting process that is not incident to a hinge
crease connecting it to the hull. We drop a new crease from each such
vertex to the hull path, and call such creases pseudohinge creases. Like
hinge creases, pseudohinge creases are creases of constant depth. Unlike
hinge creases, pseudohinge creases are always folded and do not map to
branch nodes on the metric tree.

Thus, the crease pattern is composed of creases and vertices that par-
tition each active polygon into regions called facets . Each facet is part of
a flap that corresponds to an edge of the tree graph; that edge is called
the projection of the facet. If we take the projection of all of the facets in
a molecule, we get a set of tree graph edges that is a subset of the edges
of the entire tree graph. This set of edges and their incident nodes form a



�

�

�

�

�

�

�

�

Facet Ordering and Crease Assignment in Uniaxial Bases 197

subgraph of the tree graph, which is called the subtree of the tree graph. A
facet that is incident to the boundary of a molecule (and which therefore
is incident to an axial crease) is an axial facet . A facet that is incident to
a pseudohinge crease is a pseudohinge facet . Since all pseudohinge creases
are incident to axial creases, all pseudohinge facets are also axial facets. A
corridor is a connected set of facets that belong to the same flap in the
folded form. A corridor can (and typically does) extend across multiple
molecules.

This completes the construction of the crease pattern. Most of this
algorithm has been previously described in [9, 10], although we had not
previously made the distinction between hinge and pseudohinge creases.
The crease pattern within each polygon is called the universal molecule,
and the algorithm to construct it, the universal molecule algorithm. This
algorithm provides all of the folds necessary to create the folded form. How-
ever, it does not give the crease assignments, nor even fully specify which
of the hinge creases are folded, and it says nothing about the stacking or-
der of the layers. It is well known that given a stacking order, the crease
assignment is trivially deduced, while even given a full crease assignment,
determining a valid stacking order can be NP-complete. Fortunately, de-
termination of the stacking order and crease assignment in uniaxial bases
is not NP-complete, as we will show in the next section.

3 Facet Ordering

3.1 Ordering Conditions

For an origami crease pattern to be flat foldable, it must satisfy three sets
of conditions. The most famous of these are Maekawa’s Theorem on crease
directions at a vertex (|M −V | = 2) [4] and Kawasaki’s Theorem on angles
between creases around a vertex (

∑
i odd φi =

∑
i even φi = 180◦) [6,7]. Less

known are the layer ordering conditions formulated by Jacques Justin [5],
which govern the stacking order of overlapping facets in the folded form.
In fact, it is these conditions that lead to the computational complexity of
many folding problems.

Our crease pattern satisfies Kawasaki’s Theorem by design, and Mae-
kawa’s Theorem follows automatically if Justin’s conditions are satisfied;
thus, our focus on determining crease assignment is in fact an attempt to
satisfy Justin’s conditions. In his original formulation, Justin considered
that all creases would be folded. In our crease pattern, we allow for unfolded
creases, which necessitates a slight modification of the descriptions of the
Justin conditions, of which there are four. (See Figure 5.)
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Figure 5. The four Justin conditions, illustrated schematically (edge views of the
creases). Both valid and invalid configurations are illustrated.
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(a) (b) (c)

Figure 6. (a) A complete ordering graph. (b) An equivalent ROG. (c) The folded
form.

The Justin conditions affect layer ordering among overlapping facets; we
therefore must define an ordering relation for any two facets that overlap
in the folded form. Such a relationship can readily be described by a
directed graph, called an ordering graph, or OG, where the nodes of the
graph represent the facets of the crease pattern and the directed edges
represent order. An edge (Fi, Fj) is in the ordering graph if and only if
facet Fi overlaps facet Fj . For convenience, one can draw an embedding
of the ordering graph by positioning the nodes at the centroids of their
corresponding facets, as shown in Figure 6.

An ordering graph can be fairly complex; for N facets, it can have as
many as N(N − 1)/2 edges (see, e.g., the stamp-folding problem). The
Justin conditions apply to edges of the ordering graph that relate facets on
either side of creases that overlap in the folded form. The ordering graph
is directed, but it need not be simply connected, acyclic, or possessed of
any other particular property. However, if an ordering graph is acyclic, it
can be described by a simpler structure, which we call a reduced ordering
graph, or ROG. Specifically, one can derived the OG from an ROG; the
edge (Fi, Fj) is in an OG if and only if Fi overlaps Fj and there exists a
directed path (Fi, ..., Fj) in the ROG.

An ROG can be much simpler—having many fewer edges—than an
OG, since in an ROG both edges and paths imply ordering relationships
between facets. However, an ROG must necessarily be directed acyclic,
leading to a directed acyclic ordering graph, and so not all OGs can be
described by an ROG. On the other hand, since ROGs are DAGs (directed
acyclic graphs), they are sortable; it is possible to assign an index to every
facet such that the ordering relationship between the facets can be inferred
simply by comparing the values of the two facet indices.
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3.2 Rooted Embedding

As already noted, for a given crease pattern, there are usually several differ-
ent folded forms with the same tree graph, depending on the arrangement
of flaps. In particular, any given flap can be “flipped” about its hinge to
point in either the positive or negative depth direction. Not all arrange-
ments are possible, however. For some bases, there are flap directions for
which no valid facet ordering exists (or put differently, for which the flaps
must intersect one another).

To avoid this problem, we choose a particular flap arrangement that
avoids such problems, by assigning depth in a particular way. We pick one
node of the tree graph, which we call the root node, and assign it a discrete
depth of zero. We then move out from the root node and assign each node
a discrete depth, incrementing the discrete depth counter as we cross each
edge. Thus, at the end, every node has a discrete depth that is simply its
distance (in hops) from the root node.

We can now assign true depth to every vertex of the base, by setting
the difference in depth between any two hinges to be the length of the
edge between them, and choosing the sign of the difference in depth from
the sign of the difference in their discrete depths. In a physical analogy,
this algorithm is equivalent to “picking up the base” by its root node and
letting all of the flaps dangle under the force of gravity.

Once the true depth of all hinges and hinge vertices has been assigned,
there is sufficient information to assign both depth and elevation to every
point in the folded form. This information then allows one to determine
which hinge creases are folded; if the depth mapping is smooth across the
hinge crease, it is unfolded; if it is gradient discontinuous, the hinge crease
is folded.

Within the full tree graph, there is exactly one root node, which has
the lowest possible discrete depth, i.e., zero. Each molecule has a subtree
associated with it; within each subtree, there is one (or more) nodes with
the lowest discrete depth, which may be greater than zero. These nodes are
called the local root nodes of the subtree associated with the molecule. (To
further distinguish the local root node of a subtree from the root node of
the tree, we will sometimes call the latter the global root node.) The hinge
creases associated with the local root nodes are the local root hinges of the
molecule. The vertices incident to local root hinges are local root vertices
of the molecule.

3.3 Reduced Ordering Graphs

We are now in a position to construct the ROG for the crease pattern.
We begin by constructing directed graphs on each molecule. Each graph is
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composed of a set of directed paths, called chains , of which there are two
types.

A corridor chain connects facets in the same corridor and is constructed
as follows. It begins from an axial facet. We repeatedly add directed
edges from the current facet to the next facet; the next facet in the chain
is the facet that lies on the other side of either (a) the highest-elevation
ridge crease, (b) the gusset crease, or (c) the pseudohinge crease of the
current facet (other than the crease just crossed). Repeatedly following
this rule gives a connected chain of facets, all within the same corridor,
that eventually terminates on another axial facet. Each of the directed
edges created in this fashion is a corridor link .

The axial chain connects facets in distinct corridors and is constructed
as follows. We begin with an axial facet positioned immediately CCW
from a local root hinge. if this facet is not an in-link of an existing corridor
chain, we launch a new corridor chain from this facet and propagate it
until it terminates (on some other axial facet). We then look for the next
CCW axial facet that is not a pseudohinge facet. If the two facets are in
different corridors, we add a directed edge from the current facet to this
new facet (skipping over any pseudohinge facets between them) and repeat
the process until we have reconnected with the first facet with which we
started. Each of the directed edges created in this fashion is an axial link .

When this process is completed, the resulting graph, called a molecular
ordering graph (MOG), will be connected. It may not (yet) be an ROG,
because it may contain a cycle (if the local root node was a branch node
of the subtree). In this latter case, if you delete any single axial link that
crosses a local root hinge crease, the graph becomes an ROG and (while it
is beyond the scope of this paper to prove) it is a valid facet ordering for
the molecule. (See Figure 7.)

However, we must find a valid ROG for the entire crease pattern. We
construct the MOG for each molecule—each of which may contain a cycle.
We then merge the MOGs into a single directed graph. Two MOGS can
merge at any common vertex that is a local root hinge vertex for one of
the molecules. To merge two MOGs at a vertex, we delete the axial links
on either side of the vertex and add two links connecting the “cut ends” to
each other. In this fashion, we merge all molecules into a single directed
graph.

At this point, if the global root node is a leaf node of the tree, the
resulting graph is acyclic, constitutes an ROG, and produces a valid facet
ordering (again, the proof is beyond the scope of this paper). If the global
root node is not a leaf node, then this graph contains a cycle; breaking the
cycle by deleting an axial link crossing a hinge crease incident to a global
root vertex. The resulting graph is then acyclic, is an ROG, and produces
a valid facet ordering.
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Figure 7. (a) The molecular ordering graph for a single molecule. (b) Deleting the
edge crossing the ridge crease incident to node 1 transforms it into a valid ROG.

3.4 Crease Assignment

Once the ROG has been constructed, crease assignment is straightforward.
Since the ROG is sortable, each facet can be assigned an index, beginning
with the (sole) source facet, such that the relative ordering of the facets
implied by the ROG can be deduced by comparing the indices of the two
facets. We then two-color the facets as “white-up” (W ) and “color-up”
(C) so that the facets on either side of every folded crease are of opposite
color. (See Figure 8.) Mountain/valley (M/V ) assignment of every folded
crease can be computed from the two-coloring and the relative ordering of
the facets on each side of the crease:

1. (W → C) =⇒ M .

2. (C → M) =⇒ V .

Of course, the opposite assignment is equally valid, being equivalent to the
interchange of M and V creases. This completes the crease assignment
algorithm. (See Figure 9.)

3.5 TreeMaker 5

We have implemented this algorithm in a revised version of our TreeMaker
program, in which the optimization, crease construction, and crease assign-
ment algorithms encompass roughly 27,500 lines of code. We have tested
the algorithm on a wide range of tree graphs, all producing facet orderings
and crease assignments that yield valid folded forms (both mathematically
and physically). TreeMaker 5 is cross-platform (Mac, GNU/Linux, and
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Figure 8. The completed ordering graph and two-coloring.

Figure 9. The completed M/V assignment.
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Windows), open-source (GPL), and can be downloaded from http://www.
langorigami.com.

4 Discussion
This algorithm completes the plan laid out in [9]. Given an arbitrary tree
graph, it is now possible to construct the crease pattern, including crease
assignment, for a valid base whose projection is the given tree graph. We
note that the technique of incrementally constructing ordering graphs and
merging them into a single graph is conceptually similar to the technique
used in [1]—as is the concept of rooting the folded form. The explicit
construction of an ordering graph as we have done here leads to a relatively
straightforward computer implementation of the ordering algorithm. It also
emphasizes the primacy of the ordering relationship, rather than the crease
assignment, as the fundamental mathematical description.

Of course, we have not proven that the ROG satisfies the Justin condi-
tions. To do so requires first, a transformation of the Justin conditions on
facets into required properties of the graph, and second, a proof that the
constructed graph has those properties. A complete derivation and proof is
the subject of ongoing work. We do note, however, that we have tested the
algorithm on many individual cases, including intentionally pathological
test structures, with success, and so feel that the algorithm may be use-
fully employed even now. We believe that this approach could be adapted
to provide crease assignment and facet ordering for other related folding
problems, such as polyhedron flattening (the airbag problem), among oth-
ers.
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dell’Università di Padova, 1991.

[7] Toshikazu Kawasaki. “On the Relation between Mountain-Creases and
Valley-Creases of a Flat Origami.” In Proceedings of the First International
Meeting of Origami Science and Technology, edited by H. Huzita, pp. 229–
237. Padova, Italy: Dipartimento di Fisica dell’Università di Padova, 1991.

[8] Robert J. Lang. “Mathematical Algorithms for Origami Design.” Symmetry:
Culture and Science 5:2 (1994), 115–152.

[9] Robert J. Lang. “A Computational Algorithm for Origami Design.” In
Proceedings of the Twelfth Annual Symposium on Computational Geometry,
pp. 98–105. New York: ACM Press, 1996.

[10] Robert J. Lang. Origami Design Secrets: Mathematical Methods for an
Ancient Art. A K Peters, 2003.

[11] Robert J. Lang. “TreeMaker.” Available at http://www.langorigami.com/
treemaker.htm, 2003.

http://www.langorigami.com/treemaker.htm
http://www.langorigami.com/treemaker.htm




�

�

�

�

�

�

�

�

Integer Programming Models
for Flat Origami

Goran Konjevod

1 Introduction
Most traditional and many contemporary origami models fold flat, or at
least have flat-foldable crease patterns. Thus, it would be very useful to
have a complete mathematical description of flat-foldable origami. This
has often been stated as a major open problem in the mathematical foun-
dations of origami. There are three main mathematical properties of an
origami model: continuity, piecewise isometry, and noncrossing. Justin [7]
proposed a set of noncrossing axioms and claimed their validity was not
only necessary but sufficient for flat foldability. His proof, however, is not
very formal and the problem of whether the axioms are sufficient has re-
mained open. Recently, E. Demaine [3] announced a positive answer to
this question.

However, a mathematical description is of limited practical use unless
it is effective, that is, unless it comes with (preferably efficient) procedures
for practical manipulation of the objects it describes.

In the case of flat foldability, there are several types of questions an
effective model should be able to answer. The simplest is that of deciding
flat foldability of a crease pattern1: given a set of creases, with their orien-

1In this paper, a crease pattern includes not only the location of every crease in the
model to be folded, but also the information explaining which creases are mountain folds
and which are valley folds.
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tations (mountain or valley) assigned, is there a flat origami with exactly
the given creases taking on exactly the given orientations? Even this prob-
lem is unlikely to have an efficient algorithm because it is NP-complete, as
shown by Bern and Hayes [1].

More general is the design problem: given a certain property required of
a flat origami model, for example a given shape, or arrangement of flaps, or,
for duo-colored paper, a color-change pattern, is it possible to design such
a flat fold? Ideally, in the case of a positive answer, the solution should
also include an (efficient) procedure to determine the crease pattern and
the arrangement of layers in such a model.

What makes these problems particularly difficult at the current state of
mathematical knowledge is that they are at the same time continuous and
discrete. There is a continuum of possible creases, and so it is not clear
how to model the problem using combinatorial techniques, which have been
developed for working with finite sets, and yet at the heart of the foldability
problem lies the combinatorial issue of arranging the layers correctly [1].

In order to bring the problem closer to what mathematics can currently
deal with, we restrict it to a special case, only considering folds in which
all the creases are either vertical, horizontal, or at a ±45 degree angle, and
each crease goes through a point of a fixed square grid (see Figure 1 for
an example). Even though the problem now becomes discrete, and may
appear simpler, the NP-completeness of flat foldability remains.

We represent a flat origami model by an integer linear program2 (ILP)
[10]. The variables of the ILP will model both the creases and the arrange-
ment of layers. If we then set the crease variables to predefined values, we
get a specific instance of the ILP whose feasible solutions represent exactly
the ways to flat-fold the crease pattern. Thus, flat foldability of a crease
pattern reduces to deciding if the corresponding ILP instance has any so-
lutions. We will also show how certain properties (e.g., color-change) of an
origami model can be described by linear constraints. In this case, defining
additional variables and constraints, and setting them to desired values,
gives us an ILP instance whose solutions will provide the necessary values
for crease variables and thus an answer to the design problem.

2 Integer Programming Model

2.1 Grids and Creases

Original grid. We begin with a k × k square grid placed on an uncreased
square sheet of paper, and allow folding only on the segments of the grid

2The word program is here used in the older sense of planning, as in mathematical
programming, and not in the sense of computer programming.
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Figure 1. The 2 × 2 square triangle grid.

and the segments of diagonals of the grid squares (Figure 1). Additionally,
we allow at most one of the diagonals of each grid square to be folded (this
simplifies the model, and leads to no loss of generality).

The two diagonals in each grid square define four grid triangles. Due
to the restrictions on where creases lie, every grid triangle will be flat
and uncreased in the final folded state. We call these triangles the basic
polygons. Some parts of the ILP model described here depend directly on
the fact that the basic polygons are the grid triangles, but other parts of
the model would still work even if this were not the case. We use V to
denote the set of all basic polygons, and n for the number of elements in
V , that is, |V | = n = 4k2.

Creases. For each pair of adjacent basic polygons, the segment separating
them may be a crease line. We define a graph based on this property, taking
V as the set of vertices and adding an edge between two vertices if the basic
polygons corresponding to these vertices are adjacent and separated by a
potential crease. We label the set of all edges by E.

Folded model. Just like we named the elements of the unfolded sheet of
paper by considering the grid of allowed creases, we must name the elements
of the folded model. It is not difficult to see that as long as we fold only
on the allowed creases, every basic polygon is folded into the location of
another basic polygon, possibly lying in a grid that extends beyond the
boundaries of the original sheet. This property simplifies the model, and
is the main reason to work with this particular triangle-square grid.

We will in general know the area covered by the folded model. For
example, if we are interested in figuring out how to fold something, the
shape of the folded model is naturally given as a parameter of the problem.
On the other hand, if we are testing the foldability of a crease pattern, we
can easily infer the location of each basic polygon from the crease pattern.
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(Indeed, first we fix one basic polygon to be at a location of our choice in
the folded model. Everything else is done relative to this polygon. Then
for each other basic polygon we can trace a path along the grid segments
from the one fixed polygon, and account for each crease by changing the
direction of the path appropriately, until we reach the polygon of interest.)

Thus, we name the set of locations where original basic polygons may
lie in the folded model: W , and the set of adjacent pairs of polygons in the
folded model: F .

2.2 Crease Variables and Constraints

In order to have a set of numbers describe a fold, we relate them to the
features of the fold. The easiest to understand are the crease variables.
For each crease segment e ∈ E, we have two variables, fv

e and fm
e . In a

fold where the segment e is (a part of) a valley fold, we have f v
e = 1. In

the case of a mountain fold, fm
e = 1. If the segment e is not folded, then

fv
e = fm

e = 0.
It is clear that the inequality fv

e + fm
e ≤ 1 is always satisfied: if the

segment e is folded at all, it is either a mountain or a valley fold, but not
both. For each crease segment e we have such an inequality in our model.

2.3 Orientation and Location Constraints

If we are to describe a folded model, we need to know exactly where every
basic polygon is located after folding. Folding along a segment flips a
part of the sheet about the segment as the axis, turning the folded part
of the sheet upside-down and changing the location of every one of its
basic polygons. By examining each crease segment and checking whether
it is folded, we can figure out exactly where every basic polygon ends up
after folding. To describe the location of each polygon, we use location
assignment variables. Given a basic polygon v ∈ V of the unfolded grid
and a basic polygon w ∈ W of the folded model, we define x(v, w) to be 1
if v ends up at the same location as w, and 0 otherwise. Since there are no
cuts, every basic polygon of the unfolded grid is still present in the folded
model, and so it must be true that

∑
w∈W x(v, w) = 1 for every v ∈ V

(that is, every basic polygon is mapped somewhere).
This is not enough to describe the folded model, however. The basic

polygons are isosceles right triangles, and thus symmetric about the line
passing through their right angle vertex and dividing the hypothenuse in
half. Therefore, a basic polygon can be mapped to the same location in
two ways: its original top side may still be at the top after folding, or not.
To capture this, we use the variable σv for every v ∈ V . If the original top
side of v is still its top side, then σv = 0 (otherwise, σv = 1). We refer to
σv also as the orientation of v. Clearly for every v, either σv = 1 or σv = 0.
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To understand the following sets of constraints, consider a grid segment
e. The orientations of its two defining polygons u and v depend on whether
e is folded or not. The next four constraints describe completely the relation
between the orientations σu, σv, and the fold variables fm(u, v), fv(u, v):

σu − σv ≤ fm(u, v) + fv(u, v),
σv − σu ≤ fm(u, v) + fv(u, v),
σu + σv ≥ fm(u, v) + fv(u, v),
σu + σv ≤ 2 − fm(u, v) − fv(u, v).

Location is a little more difficult to characterize. However, the location
of a basic polygon is still determined completely by the location of any one
of its neighbors and by the value of their common crease variable. Say
v, v′ ∈ V are two neighboring basic polygons, sharing the grid segment e.
Suppose v′ is mapped to the basic polygon w of the folded model, that is,
x(v′, w) = 1. Then stating that v is mapped to w is equivalent to stating
that e is folded, in other words, x(v, w) = fv(v, v′) + fm(v, v′). Here we
have a condition that says “x(v′, w) = 1 if and only if this equation holds.”
Our goal is, of course, to write all this as a linear equation. The key is to
notice that if x(v′, w) = 0, our constraint should require nothing. Here’s
how to do this:

x(v, w) ≥ x(v′, w) + fv(v, v′) + fm(v, v′) − 1.

In other words, if both x(v′, w) and one of the fold variables are set to 1,
then x(v, w) will be forced to 1 as well. If one of the former is 0, then the
constraint will simply say x(v, w) ≥ 0, which is true anyway.

Of course, it is possible that the segment shared by v and v′ is not
folded. In that case, v and v′ will not be mapped to the same fold polygon,
but to adjacent ones—which ones exactly, will depend on their orientation.
The constraints are somewhat more complicated for this case, and we will
not explain the details here.

2.4 Noncrossing Constraints

The constraints described so far ensure that the locations of points in the
fold satisfy two of the three basic properties of flat origami: continuity and
isometry (no ripping or stretching of paper). The noncrossing property is
the one that actually makes the problem difficult, and will also cause us
the most trouble.

Assuming the Justin axioms (see Section 1 for background), there are
three types of crossings that a flat-foldable origami avoids, as illustrated in
Figure 2: we refer to them by mnemonics W, X, and Y.
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Figure 2. The three crossing types.

In our simplified version, where all folds lie along the square-triangle
grid, any imaginable crossing would happen along a grid segment as well,
so as with orientation and location, it suffices to enforce noncrossing for
pairs of adjacent basic polygons in the grid of the folded model. Consider
a flat-folded model. At any point, there may be several layers of paper
one below the other. Number them from the bottom, starting from 1.
Do this independently for each basic polygon of the fold grid, and we will
have for every polygon in the fold an ordering of all the polygons mapped
to it by the fold. We next show how to force the integer program to
assign layers to basic polygons in the fold grid, and then it will be clear
how to complete the constraint set, because it is not difficult to express
the noncrossing constraints in terms of layers. (The same idea is used
by Jonathan Schneider [9] who calls it superposition ordering in order to
describe properties of flat-foldable crease patterns.)

For example, suppose w and w′ are two neighboring polygons in the
fold. Say two neighboring basic polygons, v and v′, are mapped to w.
They share a grid segment e. Suppose f is the segment of the fold grid to
which e is mapped and w′ the fold polygon adjacent to w but on the other
side of f . If another basic polygon z is mapped to w and lies between v
and v′ in the fold (that is, it is at a layer between the layers of v and v′),
then there will be a noncrossing constraint of type Y that will say that it
is impossible for a neighbor of z to be mapped to w′.

Layering constraints. We first make sure that every basic grid polygon is
assigned to a layer: ∑

k∈L

λ(v, w, k) = x(v, w),

for all v ∈ V and w ∈ W , where L is the set of all possible layers (that
is, the set of numbers {1, 2, . . . , Lmax} for some large enough Lmax). What
the constraint really says is that if v is mapped to w by the fold, then it
lies at some layer over w. The value of the variable λ(v, w, k) is 1 if v lies
at layer k over the fold polygon w, and 0 otherwise.
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Then we make sure that layers fill up starting from the bottom by
requiring that if layer k is empty, then so are all the layers above it:∑

v∈V

λ(v, w, k) ≤
∑
v∈V

λ(v, w, k − 1),

for all w ∈ W and k > 1.
Finally, we make sure that at each layer there is at most one polygon:∑

v∈V

λ(v, w, k) ≤ 1,

for all k and all w ∈ W .
Now we can compute the layer at which a polygon v lies. First, let

l(v, k) = 1 if v is at layer k, and l(v, k) = 0 otherwise. Then we have

λ(v, w, k) ≤ l(v, k),
λ(v, w, k) ≥ x(v, w) + l(v, k) − 1.

In order to write constraints that compare layers of different basic poly-
gons, we use the variable llv to be the exact layer of the basic polygon v.
This value can be expressed directly in terms of l:

llv =
∑
k∈L

k · l(v, k).

In comparing the layers we do not care about their values, only about
the sign of their difference. We use α(u, v) to denote whether the polygon
u lies above polygon v (that is, whether llu > llv). First, no polygon can
lie above itself:

α(v, v) = 0,

for all v ∈ V . Then, if u is above v then v cannot be above u:

α(u, v) + α(v, u) ≤ 1,

for all u, v ∈ V . Finally, we define α in terms of ll:

α(u, v) ≥ llu − llv
Lmax

.

This suffices to establish an ordering among the polygons mapped to
the same location, but additional constraints may be useful. What happens
when the model is used to solve a problem is that a complicated algorithm
examines many possibilities for assigning the 0-1 values to the variables of
the model, and attempts to eliminate inconsistent assignments as efficiently
as possible. Additional constraints usually help in such a situation, and
therefore in the actual implementation of the model we also enforce other
constraints that relate the ordering constraints to orientation and location
constraints.
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Figure 3. The 2 × 2 iso-area chessboard crease pattern.

3 Example and Conclusion
Due to limited space, we do not enumerate all the constraints. The com-
plete integer programming model (written in the modeling language AMPL
[5]) can be found on the author’s webpage.

Figure 4 is a short example showing how the model can be used. The
simplest approach is to list additional constraints that are to be enforced in
order to model an actual fold. The given example gives the crease pattern
illustrated in Figure 3 of the iso-area 2× 2 chessboard folded from a 4 × 4
square.

This example is very simple, however the current version of the model
results in a very large integer program even for this small crease pattern,
and takes several hours to solve on a reasonably fast computer (an AMD64-
based machine). The model can undoubtedly be improved and made more
tractable. This is usually done by a careful examination of constraints.
Some types of linear constraints (such as the one we used to define a lower
bound on α(u, v)) are computationally awkward, in that they cause the in-
teger program solver to generate too many cases that all have to be solved.
It doesn’t seem obvious how to replace these constraints by better ones,
but there are very likely additional inequalities that will reduce the search
space. Schneider describes several necessary conditions for flat foldability,
some of which do not follow immediately from our location and orientation
constraints. It may be possible to derive further inequalities based on these
conditions and thus make the solver’s job easier. A simple improvement for
the foldability problem (but not for the design problem) would be to pre-
compute all the point locations and then have the integer program “only”
test if there is a valid layering.

This work was motivated by attempts to prove bounds on the size of a
k×k chessboard that can be folded out of a unit square of black-and-white
paper. Hulme’s chessboard [6] was the first one, giving an 8×8 board from
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set Valley within E:={(11,13), (16,30), (19,21), (27,29), (35,37),

(36,50), (43,45), (51,53)};

set Mountain within E:={(3,5), (4,18), (8,22), (12,26), (40,54),

(44,58), (48,62), (59,61)};

subject to valleys{(a,b) in E: (a,b) in Valley or (b,a) in Valley}:

fv[a,b] = 1;

subject to mountains{(a,b) in E: (a,b) in Mountain or (b,a) in

Mountain}:

fm[a,b] = 1;

subject to ss: s[1] = 1;

subject to flat{(a,b) in E: not((a,b) in Valley union Mountain)

and not((b,a) in Valley union Mountain)}: fv[a,b] + fm[a,b] = 0;

Figure 4. Additional constraints for the 2 × 2 iso-area board.

a 64 × 64 square, with a “reduction factor” of 8. Montroll’s board [8] uses
a 36 × 36 square, and those of Chen [2] and Dureisseix [4] use a 32 × 32
square, for a reduction factor of 4. It is conjectured that the latter two are
optimal, that is, that an 8× 8 board with correctly colored squares cannot
be folded from a square smaller than 32 × 32. (In general, according to
this conjecture, a k× k board would require a reduction factor of 2k in the
even case.) For now, our work leaves this question open. As far as we can
tell, even for folding a 4 × 4 chessboard, there are no rigorous proofs that
our current best designs (out of 8× 8 square grid, or 10× 10 for a seamless
design) are optimal.
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Construction of 3D Virtual
Origami Models from Sketches

Hiroshi Shimanuki, Jien Kato, and Toyohide Watanabe

1 Introduction
A large number of origami works are presented by origami creators in
origami drill books, webpages, and so on. Traditional origami has usu-
ally been studied using diagrams in drill books in which the processes of
the simple folding operations were illustrated. Origami creators who are
the authors of such books commonly simplify origami models and illustrate
the order of folding using detailed step-by-step instructions. However, re-
cently, we often find realistic, modern, and complex origami models that
are designed by geometric origami design methods [4]. These origami de-
signers draw line segments (creases) onto a sheet of paper and generate
the crease pattern, which is the unfolded state of the paper with creases
indicated thereon. In other words, they design a new model fully before
they fold it. In these works, designing the models consumes much of the
creators’ time and energy, because they have to imagine the completion of
the crease pattern or actually fold it after designing in order to determine
its final appearance.

In this paper, we propose a method for constituting origami models
from handwritten sketches and other two-dimensional images. When there
is no illustration of a design that users want to fold, origami models may
be constituted from images that users input or draw. By this means it
becomes possible to create origami models that users seek at any time.

217



�

�

�

�

�

�

�

�

218 III. Computational Origami

In the past, Uchida et al. [9] have proposed an approach to deduce a
folding process from a crease pattern of origami models, but it was based
on the premise that the origami models were designed by traditional folding
operations. Eisenberg et al. [1,3] have discussed the “folding net problem”
for the purpose of transforming three-dimensional virtual objects such as
polyhedra into a paper representation of the model as a way of creating a
hard copy from virtual environments; this is the opposite of our approach.
However, in such scenarios, the faces of the three-dimensional polygon mod-
els do not overlap each other. In our approach, constructed models may
be inconsistent because of the overlapping faces. This paper proposes a
method for constructing consistent origami models from the crease pat-
terns.

2 Overview
The outline of processing is shown in Figure 1. This processing is roughly
divided into two phases. The first phase constitutes a crease pattern from
a sketch; the second constructs a virtual model from the crease pattern.
These are described in further detail below.

2D to 3D

Figure 1. The outline of the process.
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2.1 From Sketches to Crease Patterns

The procedure of constituting a crease pattern from sketches is as fol-
lows [7]. First, a data structure, called a skeleton graph, of an object is
extracted from a sketch given as input. Second, the skeleton graph is ar-
ranged onto a square, and polygons are constituted in the square. Third,
the polygons are divided into origami molecules. Finally, creases are cre-
ated based on the origami molecules and the complete crease pattern is
constituted.

Skeleton graph. Skeleton graphs are constructed by segmenting the skele-
ton images of the initial sketch. Figure 2 shows an example of extracting
a skeleton image from a sketch and constructing a skeleton graph. The
skeleton graph is defined as follows:

SG = (V, E),
V = {vi | 1 ≤ i ≤ N},
E = {eij = (vi, vj) | vi, vj ∈ V },
X = {xi}vi∈V .

In the above, SG represents the skeleton graph, which is a pair that
consists of sets of vertices and edges. Moreover, the vertices V have their
coordinates X of N points extracted from the skeleton image. The SG is
constituted from the image by thinning the silhouette image, resulting in
a tree graph, which is a connected graph without cycles.

Crease pattern. In order to construct three-dimensional virtual paper-made
objects from crease patterns, the rotational transformations based on creases
using the adjacency relationship among the faces are needed. Therefore, a
graph of the crease pattern in which nodes represent faces and edges repre-
sent creases is constituted, which can represent the positional relationships
among the faces easily (Figure 3). We call this graph the CP-graph.

The crease pattern CP consists of the vertex set V , the crease set C and
the face set F . A crease ci,j ∈ C has information on position coordinates
and angle θi,j between two faces fi, fj . If θi,j = ±π then the crease means
valley or mountain folding in origami. Moreover, as shown in Figure 4,
when one of the right-handed-rotation vectors around the face fi is defined
as −→ci,j which belongs to ci,j , the unit vector of −→ci,j is defined as ĉi,j , and
the vector from the origin to the starting point of −→ci,j is defined as ti,j .

Origami design. Origami models are designed based on origami molecules.
Origami molecules are defined as minimum units that have a certain mean-
ing and a set of faces in origami. Although there are many types of
molecules, the most general one is shown in Figure 5. The left figure
represents a triangular molecule that has creases of three bisectors of each



�

�

�

�

�

�

�

�

220 III. Computational Origami

Figure 2. An example of extracting a silhouette, a skeleton, and a skeleton graph.
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Figure 3. An example of a crease pattern (left), and a face-crease graph of the
crease pattern (right).

Figure 4. Vectors for a crease.
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Figure 5. An example of a triangular origami molecule called rabbit ear.

corner and perpendiculars from the center of gravity of the triangle to each
edge. The right figure is the origami model that is folded from the triangu-
lar molecule in practice. A crease pattern is constituted so that the faces
in the square are origami molecules.

A flap is one of the most important concepts in origami design. We
explain this concept using Figure 5. The flap is the part of the origami
model that is represented as a circle, and the center of the flap represents
the apex of the part (A, B, and C). The circles map out regions that are
necessary to constitute each distinct part of origami model. The tree graph
is now seen to be the two-dimensional projection of the origami model and
the terminal nodes of the tree graph are corresponding to distal points of
the flaps. In this paper, the crease pattern is constituted from the skeleton
graph when used as the tree graph. The node arrangement optimization
method and the method for dividing these polygons into origami molecules
proposed by Lang [4] may therefore be used.

2.2 From Crease Patterns to 3D Models

Although international conferences on origami science have been held only
four times in recent decades, research related to origami has been ongoing in
various fields, including mathematics, engineering, and art. In these fields,
especially in the mathematical field, foldability was the focus of research.
Origami foldability means to decide the following problem: given a crease
pattern, does it have a folded state? Bern et al. [2] proved that this decision
problem is NP-hard and thus can be computationally intractable. This
difficulty arises specifically because computing a valid overlap order of faces
that fold to a common portion of the plane is very difficult. In this paper,
an approximate algorithm for analyzing the overlap order from the given
crease pattern by using cross sections of an origami model is proposed [8].
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Figure 6. A structure of faces.

Preconditions of the given crease pattern and the structure of the re-
sulting origami models are described in the following subsections.

2.3 3D Origami Model

Miyazaki et al. [5] have previously proposed a data structure for origami
that has made it possible to easily represent overlapping faces on the same
plane. An example of this structure is shown in Figure 6. The structure
groups face on the same plane while face lists hold the order of overlapping
between faces, e.g, f2 → f3. Because the orders of overlapping faces are un-
known when we try to transform a crease pattern into a three-dimensional
origami model, we propose a method for consistently arranging the face
lists from the given crease patterns in the following section.

3 Coordinate Transformation
Once an arbitrary face f0 in a crease pattern has been fixed on the xy-plane,
three-dimensional transformations of all other faces can be calculated using
the CP-graph as follows. First, a path from the fixed face f0 to another
face fp is searched. In order to minimize computational complexity, the
shortest path (the path length of any edge is regarded as one) is selected.
When the obtained path is provided, for example,

f0 → · · · → fq → · · · → fp,

the order of edges along this path is defined as

c0,1 → · · · → cq−1,q → cq,q+1 → · · · → cp−1,p.

Next, a transformation matrix for each crease cq−1,q is calculated. A rota-
tional matrix through an angle θq−1,q for the crease vector ĉq−1,q is defined
as Rq ; a parallel translation matrix for the vector tq−1,q is defined as Tq.
Then, the transformation matrix Xq for the crease cq−1,q is

Xq = TqRqT
−1
q .
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Consequently, the 3D transformation matrix Zp for a face fp based on the
path from the fixed face f0 is

Zp(x, y, 0, 1) = X1...Xq...Xp(x, y, 0, 1)t for (x, y) ∈ fp.

By calculating this Zp for all faces in the crease pattern, it is possible to
construct the 3D shape of the paper object.

4 Arrangement of Face Lists
In the previous section, we described how all faces in a crease pattern are
transformed into a 3D space. Therefore, the 3D origami model, which is
described in Section 2.3, can be constructed by using these faces.

First, all faces are grouped with faces on the same plane. Moreover,
each group is able to be defined as a subgraph of the CP-graph and the
subgraph consists of the edges of only those creases whose angles θ are ±π:
those creases correspond to valley/mountain foldings. Such a subgraph can
be colored with two colors because the sides of any two faces which share
the same folded crease become reversed with respect to one another.

Next, by using the two-colored subgraph, a face list is consistently ar-
ranged by considering the positional relationship between two faces in the
list. The positional relationship between two faces is defined as follows.

Definition 1. When a face fi should exist above a face fj , we write fi > fj.

Therefore, the face list is ordered (numbered) so that all face pairs in the
list satisfy fi > fj for i < j, where the i-th face and the j-th face in the
list are fi and fj , respectively. A method for arranging face lists from faces
in a crease pattern is proposed in the following subsections. This method
first judges the relationships between any two adjacent faces in a crease
pattern, and then analyzes overlap order of all faces by using the obtained
adjacency relationship.

4.1 Overlap Order of Adjacent Faces

When there are two adjacent faces fi, fj that share a crease ci,j , the con-
dition for satisfying fi > fj is

• the near side of fi is the front and θi,j is −π, or

• the near side of fi is the back and θi,j is π.

Figure 7 shows an example of two adjacent faces. The near side of face f1 is
the front and the near side of face f2 is the back. Moreover, the angle θi,j of
the crease between the faces is −π, that is, a mountain fold. Therefore, it
is certain that the positional relationship between these two faces becomes
f1 > f2.
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   fold)

Figure 7. An example of adjacent faces.

4.2 Analyzing Overlap Order of Faces

By using the adjacency relationship, the elements of the face list are sorted
and the order is analyzed. However, it is realistically impossible to com-
pute a global solution for the ordering under all circumstances due to the
inherent computational complexity of the problem. Therefore, we propose
a method for analyzing overlap order based on simulated annealing and
consideration of cross sections of the origami model.

Figure 8 shows an example of the cross section that is obtained by
cutting an origami model. The obtained cross section consists of a set of
segments. A cross section is obtained perpendicular to a face in the face
list. Moreover, all nodes of the cross section need to be linearly connected
with segments. A method for generating the cross section by drawing line
segments in the crease pattern has already been proposed [6]. This method
generates the cross sections using the symmetry of the obtained segments.
The obtained cross section S that consists of segments is defined as

{s0, ..., si, ..., sj , ..., sn} ∈ S

where S is a simple path or may be a cycle, where s0 = sn.

Figure 8. An example of generating a cross section.
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(a)

(b) (c)

Figure 9. Arrangement of a cross section onto a two-dimesnional plane: (a) A
cross section that consists of segments. (b) Arrangement onto two-dimensional
plane. (c) The linked vectors.

M cross sections are generated equiangularly around the center of grav-
ity of each face in the crease pattern. In order to analyze relationships
among segments of each cross section, the segments are arranged in a two-
dimensional plane such as Figure 9. In this figure, there are segments
{s1, s2, s3, s4} and the distance between terminal nodes pi, pi+1 of the seg-
ments is represented as di.

First, the segments are arranged to be parallel with the y-axis in or-
der at a regular interval, and the y-coordinates of the terminal nodes are
associated with the same nodes. Next, by using a vector ri, we link the
terminal nodes of pairs of adjacent faces. If fi > fi+1, the direction of ri

is negative about x-axis. If fi < fi+1, the direction of ri is positive.
When the order of segments satisfies the following conditions, the rela-

tionship among segments is consistent:

1. All ri’s are positive directions to the horizontal axis.

2. All ri’s do not cross any segments.

The first condition determines global consistency using local (adjacent)
relationships, and the second condition specifies physical feasibility. Fig-
ure 10 shows an ordering that satisfies these conditions, using the segments
in Figure 9. Only two types of ordering are consistent.

We use a simulated annealing algorithm to obtain consistent overlap
order of the cross section. The cost function F is defined by formulating
the above conditions:
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Figure 10. Feasible order of segments in Figure 9.

F =
M∑

j=1

(α · Nd(j) + β · Ns(j)) for all s(j) ∈ S,

where Nd(j) is the number of ri’s in the negative direction (i.e., condi-
tion 1), Ns(j) is the number of points at the intersection of ri with other
segments (i.e., condition 2), and α and β are coefficient constants.

5 Experimental Results

We have implemented a prototype system based on the proposed method.
The crease pattern is designed using the proposed origami design method
from the extracted skeleton. Moreover, the system automatically con-
structs the three-dimensional paper-made object from the crease pattern.
The implementation is tested with some skeletons and the resulting objects
are represented in 3D virtual space.

Figure 11 shows the result of constituting the origami model from a
sketch that is a real illustration taken from an origami drill book. The
nodes are arranged in the optimal position onto a square, polygons are
divided into origami molecules and creases are created (Figure 11(e)). Fi-
nally, an origami model is actually constituted based on the crease pattern
(Figure 11(f)).

Origami models constructed from crease patterns constituted by the
proposed method have fundamental 3D forms. However, these crease pat-
terns are confined to constitute each part of objects, and it is infeasible
to realize the small details. At any rate, in the field of origami design,
final design is dependent upon the aesthetic sense of the designer. As an
example, Figure 11(g) shows the result of modifying the origami model in
Figure 11(f) by the authors’ subjectivity.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 11. The experimental results: (a) A sketch. (b) The silhouette image.
(c) The skeleton image. (d) The skeleton graph. (e) The crease pattern. (f) The
virtual model. (g) Modification the “real” origami model in Figure 11(f).

6 Conclusion
This paper proposes and describes a method for constructing 3D paper-
made objects by using skeletons obtained from 2D images such as hand-
writing sketches. The framework that constitutes origami models from the
skeleton graph is explained, which makes it possible to constitute crease
patterns automatically from sketches. Moreover, the method for construct-
ing 3D paper-made objects from crease patterns is presented. The proposed
coordinate transformation makes it possible to represent paper-made ob-
jects in 3D virtual space. Furthermore, the proposed analysis method of
the positional relationships among faces arranges the faces overlapped on
the same plane after the transformation in a consistent order. Experimen-
tal results have demonstrated that our current work is able to construct
consistent paper-made objects from sketches.

We note that as part of the origami design process, it is necessary to
deal with this problem: how to find the “optimal” solution if multiple
interpretations for one crease pattern exist. Moreover, in order to animate
origami in 3D virtual space, it is necessary to extract folding process or
something close to it from given crease patterns. We leave that for future
work.
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An Excel-Based Solution to the
One-Cut Folding Problem

Alexander C. Huang

1 Introduction
Given a planar graph drawn with straight lines on a paper, can the piece of
paper be folded so that the entire graph can be mapped to a common line
for a straight single cut? In 1998, Erik Demaine, now an MIT professor, ap-
proached the question using two different methods. The first method [2,3],
the straight skeleton, solves the problem for a polygon by shrinking the
sides at a given rate and stopping when one side disappears, then continu-
ing the process with the new, smaller polygon. In this way, a hexagon, for
example, could be reduced to a pentagon, then a square, then a triangle,
then a point. However, in this method there is no guarantee of finiteness of
the number of so-called perpendicular creases in the solution. The second
method [1], called the disk packing method, describes an algorithm that
fills up a polygon diagram with different sizes of disks from which a crease
pattern is then constructed; this method provides a guaranteed finite so-
lution. The calculation time for filling up the disk packing is on the order
of n(log n)2 with n being the number of disks placed, and they must be
placed according to these rules: the disks may not overlap, the edges of
the polygon are the union of the radii of the disks, and the gaps between
disks have either three or four sides creating both triangles and quadrilat-
erals. Triangles are filled with the three (intersecting) angle bisectors and
perpendiculars from the incenter to the sides. Quadrilaterals are filled by
a pattern called the gusset quad molecule [1, 5].

229
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Although the straight skeleton-based algorithm may in principle result
in an infinite number of creases, for many patterns it is not only finite; it is
also quite simple to implement. In this work, this famous one-cut problem is
revisited with the description of an implementation of the straight skeleton
using only angle bisectors and perpendiculars. The new method is simple
enough to be implemented in Excel to automate the crease creation process.

2 A New Implementation of the Straight Skeleton
Among all possible folding creases, angle bisectors and perpendiculars are
the most important. The angle bisectors allow two adjacent sides of a poly-
gon to be folded into a single line. The perpendiculars, on the other hand,
allow a single side to be folded toward itself into a single line. After many
experiments it was concluded that the following algorithm, a variation of
the straight-skeleton technique, solves the one-cut folding problem:

1. Create angle bisector of the angle created by two adjacent sides; re-
peat at all other vertices.

2. For bisector A extending from vertex A, find out where it intersects
with the two adjacent bisectors.

3. Find the bisector that intersects with bisector A closest to vertex A,
dubbed bisector B extending from vertex B.

4. If the intersection of bisectors A and B is also closer to vertex B than
the intersection between bisectors B and C, then form crease A and
B up to their intersection, now labeled intersection Z.

5. Remove bisectors A and B from the pool and repeat steps 2–4 with
all other bisectors and different names. Bisectors left without a de-
termined intersection will be dealt with later.

6. At intersection Z, form perpendicular creases out to the neighboring
sides. Repeat with all other intersections.

7. Create a flat vertex fold at intersection Z using bisectors A, B, and
one of the perpendicular creases created in step 6. This gives us a
new line, bisector A1. Repeat with all other intersections.

8. Repeat steps 2–4 with bisectors A1, B1, etc.

9. Repeat steps 2–8 until the system is finally closed, when the final
three angle bisectors meet at the same point (the in-center).

It is worthy to note the following:
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1. Bisectors A and B can be considered primary bisectors because they
come from two sides adjacent to each other.

2. Bisectors A1 and B1 can be considered secondary bisectors because
they can be envisioned as the angle bisectors from two sides that are
not immediately adjacent to each other. The secondary bisector is
the result of a flat vertex fold, but it can also be regarded as the angle
bisector of sides 1 and 3 while side 2 is sandwiched.

3. Higher-order angle bisectors (for example, A2, B2, A3, B3, . . . ) are
needed for more complex polygons. For example, a tertiary bisector is
the angle bisector of sides 1 and 4 while sides 2 and 3 are sandwiched.

4. The above algorithm was also tested on shapes both convex and non-
convex. It was observed that concave vertices obey the same law
that convex vertices do. That is, the angle bisectors from concave
vertices also intercept with other angle bisectors just like the way
angle bisectors from convex vertices do, except that the intersections
may lie outside the original polygon.

5. This new algorithm was verified to obey the Maekawa theorem and
the Kawasaki theorem [4]. The former states that when creases meet
at an intersection, to be a flat origami, there must be two more (or two
fewer) mountain folds than valley folds. As a result of the Maekawa
theorem, the total number of creases that meet at the intersection
must be an even number. The Kawasaki theorem, on the other hand,
states that every other angle at the flat vertex fold must add up to
180◦.

As an example, the above algorithm is illustrated step-by-step in con-
structing the folding creases of an irregular hexagon.

1. Start with a hexagon (Figure 1(a)) and draw the angle bisectors (Fig-
ure 1(b)).

2. Drawing out the bisectors is like shrinking the sides at a uniform
rate (Figure 1(c)). After extending the angle bisectors, two will meet
(Figure 1(d)).

3. One side of the shrunken polygon eventually disappears and reduces
the hexagon to a pentagon (Figure 1(e)). Two sides of the outer
hexagon form an additional vertex outside the original hexagon (Fig-
ure 1(f)).

4. The new vertex forms a secondary angle bisector (Figure 1(g)).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

Figure 1. (a)–(m) Step-by-step construction of angle bisectors. (m) Completed
bisectors. (n) Perpendicular creases are added further to complete the pattern.
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5. The same shrinking process is repeated. Continue until two more
bisectors intersect, one more side is further reduced, and the inner
polygon is now a quadrilateral (Figure 1(h)).

6. The above reduction has the same effect as extending the sides of the
original polygon (Figure 1(i)), and another secondary angle bisector
is drawn (Figure 1(j)).

7. Continue shrinking the inner quadrilateral. Two more bisectors touch,
creating the final form. The most inner shape is now a triangle (Fig-
ure 1(k)).

8. The reduction process results in one big triangle whose bisectors meet
at the in-center (Figure 1(l)).

9. After removing the extra lines and returning the original polygon,
the solution is shown (Figure 1(m)).

10. Perpendicular lines are added to finalize the overall folding crease
construction (Figure 1(n)).

3 Implementation with Excel
As an illustration, an Excel program was written for generalizing the calcu-
lation of pentagon creases to the one-cut folding problem. The coordinates
of the pentagon’s five vertices can be arbitrarily assigned or automated via
scroll buttons. The primary and secondary angle bisectors are automati-
cally calculated and displayed. This program, though in its current form
dealing with pentagons, can be easily expanded to arbitrary polygons and
fold crease-creation. Below is the sequence of our calculations.

1. The computer program starts by calculating the slope and y-intercept
of each side.

2. The convexity of each vertex is determined using the vertex coordi-
nates in relation with its neighboring vertices.

3. The interior angle of the vertex is calculated via trigonometric for-
mula.

4. The interior angle of the vertex is halved to form the primary angle
bisector’s direction. The slope and the y-intercept of the bisector are
calculated subsequently.
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5. Repeat the calculation of the slopes and intercepts of the primary bi-
sectors of all vertices. This provides the entire set of primary bisector
information.

6. Calculate the coordinates of all intersections of bisectors from adja-
cent vertices. Folding crease line is drawn only from the nearer in-
tersection to the vertex. This completes the drawing of the primary
bisectors.

7. Information of the secondary angle bisectors is calculated next. If
side 1 and side 2 meet up at vertex 1, side 2 and side 3 intercept at
vertex 2, and if vertex 1 and vertex 2 shoot off bisectors meeting at
point F , the secondary bisector from point F can be calculated with
the angle and vertex formed by side 1 and side 3.

8. Repeat for all vertices. For pentagons, two primary-bisector intersec-
tions and two secondary bisectors are calculated.

In the calculations of the secondary bisectors based on three neigh-
boring sides, nine different scenarios of concave/convex combinations were
found during the debugging phase of the Excel program. Each scenario
was implemented differently such that a secondary angle bisector could be
computed by rotating a neighbor side counterclockwise or clockwise.

The screenshot of the Excel program is shown in Figure 2. The A and
B columns in Figure 2 store the pentagon’s x- and y-coordinates; users can
arbitrarily scroll up and down the coordinate numbers. Each time the co-
ordinate changes, the calculation of line equations, inner angles, bisectors,
and intersection points is automated, and the crease graph is updated. The
graph can then be output to a printer to facilitate manual folding.

4 Summary and Conclusion
In this work, we revisited the famous one-cut folding problem and proposed
a variation of the straight-skeleton algorithm to solve it. The method is
based on only angle bisectors of adjacent sides (primary bisectors) and non-
adjacent sides (higher-order bisectors). The reason that only angle bisectors
are involved is because they allow adjacent sides to line up topologically.
Adding the perpendiculars allows a single side to fold toward itself. The
method is easy enough to be implemented programmatically. Using the
algorithm, a computer automation program was developed via Excel. With
arbitrarily chosen coordinates of vertices, the program can generate the
primary and secondary angle bisectors, which are the folding creases for
the one-cut problem.
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Figure 2. A screenshot of the Excel program demonstrated with pentagons. The
five coordinate pairs (x, y) of the pentagon are listed in columns A and B. Each
x- and y-coordinate is attached with a simple scroll so the user can easily change
the pentagon shape at runtime.

Acknowledgment. The author thanks Dr. Robert J. Lang for corrections
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Computer Origami Simulation
and the Production of
Origami Instructions

Tung Ken Lam

1 Introduction
Computer origami simulation has challenged many different researchers.
This paper summarizes existing achievements and explores the usability of
origami simulation programs.

In particular, it discusses the challenges of automatically producing
diagrams for the printed page. The motivation for this work is that the
task of making origami diagrams is both difficult and time consuming.
Although it is now common for diagrammers to use computers, few authors
use programs that are specifically written for origami diagramming.

As part of a research project, the author developed a program that
extended S. Miyazaki’s origami simulation [22] to automatically produce
diagrams. Feedback on the prototype suggested that further work on this
approach would be worthwhile.

2 Motivation
Whenever a group of origami enthusiasts gather, it’s likely that, sooner or
later, they will share the folding of some origami designs, and, sooner or
later, someone will ask the question, “Do you have diagrams. . . ?”
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Figure 1. A crease pattern (from [6]) and step folds (by Josh + Ferron 7M).

As Koshak [12] wrote:

Even though diagrams are the most common way to document
origami, the labor involved keeps many model designers from
documenting their models . . . The major disadvantage to dia-
gramming is that generating them is a tedious, laborious and
error prone process.

Diagrams are commonly used because they are relatively easy to view
and reproduce. There are a number of alternatives such as video, computer
animation, photographs, step folds (Figure 1, bottom), crease patterns
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(Figure 1, top), and text. The first four methods are relatively difficult
and expensive to create and/or reproduce. Furthermore, the first two are
not convenient to view because they require special equipment. For most
people the last two methods are not sufficiently detailed.

A further advantage of diagrams is that they are understood by almost
all origami enthusiasts. Even if they are written in a foreign language, they
can be understood from their use of pictures and standardized symbols.

3 Computers and Origami Diagramming
The use of computers to aid diagramming has been established since the
mid 1980s [15]. Typical computer tools include

• bitmap paint programs,

• vector drawing/illustration programs (Figure 2),

• CAD (computer aided design),

• General purpose software, e.g., word processors,

• programming languages (Figure 3).

Although the use of computer tools can help, their usefulness is limited
because many are not designed specifically with the task of origami dia-
gramming in mind. From time to time, folders have mooted the use of a
tool that simulates origami and automatically produces origami diagrams
for the printed page. Therefore a search of previous and related work would
establish the feasibility of such a diagramming tool.

4 Existing Origami Simulations
A typical origami enthusiast may be surprised by the number of researchers
that simulated origami in the course of their research. The surprise can
be partly understood because the research is not about origami per se, but
origami is used as a context for research.

4.1 Origami as a Context for Research

Examples of ways in which origami is used as a context for research include

• simulation of folding and virtual reality [24],

• scene capture [34] and diagram recognition [9, 10, 26, 30],
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Figure 2. Screenshot of Macromedia Freehand 9.0 showing diagrams in preview
mode.

Figure 3. Typical arrangement of windows for working with a Doodle file (Xavier
Fouchet’s Pajarita).
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• investigations of software and teaching and learning [11, 19, 36],

• mathematical modeling and proof [7, 8, 18, 35].

4.2 Origami Specific Software

There are three main categories of software specifically designed for origami.

Tools to assist origami design. These programs simulate particular aspects
of origami to fulfill their main purpose.

• Tess is a program that makes crease patterns for origami tessellations
and shows their results [1, 2].

• ReferenceFinder determines folding sequences for a specific location,
e.g., (0, 2

5 ), and produces instructions using diagrams and text [16].

• TreeMaker is a program for designing uniaxial bases [17].

• There is a program that takes a sketch as an input and produces an
origami version of the sketched object [27, 28].

• ORIPA is an editor for designing crease patterns and viewing the
results [20].

Origami-oriented languages. Examples of this second category are Oridraw
[33] and Doodle [5] (Figure 3). They both require the user to construct
programs that are compiled into printable PostScript diagrams. Fisher [4]
created a system that allowed the user to document a design on-screen
using a combination of text and mouse input.

The audience for origami-oriented languages is limited due to the need
for programming skills. Although Oridraw and Doodle have features specif-
ically for origami, the user is still required, to a greater or lesser extent, to
manage the position of lines, vertices, and polygons by hand.

Direct manipulation and virtual reality origami simulation. Direct manipula-
tion is a human-computer interaction style that offers a “natural” input
method, offers immediate visual feedback, and allows for rapid, incremen-
tal, and reversible actions [29].

There are two types of direct manipulation in this category: in the first
type the user manipulates origami, whereas in the second type the user
manipulates diagrams. Examples of the first type are origami simulations
by Lang [13] and by Miyazaki [23] and eGami by Fastag [3]. Examples
of the second type are Foldinator by Szinger [31] and Java Origami by
Nimoy [25]. The type of interaction feels different: the first type attempts
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Figure 4. Nimoy’s Java origami simulator showing the second step of the tradi-
tional cup.

to simulate the feel of folding, but the second requires the user to construct
folds by positioning symbols and then executing them (Figure 4).

Manipulating origami is likely to be preferred by novice users because
it maps more closely to the familiar domain of folding paper. However,
manipulating diagrams could allow more sophisticated users to construct
more sophisticated origami and adjust the appearance of the diagrams as
they go. The most capable program for manipulating origami currently
available is examined in the next section.

5 Extending Miyazaki’s Simulation
for the Printed Page

5.1 Miyazaki’s Simulation

Miyazaki’s simulation [22] allows the user to directly manipulate “virtual
paper.” The user clicks and holds the left mouse button to pick up the
paper, drags the mouse to position the paper and then releases the mouse
button to put the fold in place.
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The simulation is three dimensional and the user can rotate and zoom
the camera to better view the origami. Besides valley folds, the user can
make (inside) reverse folds. The ability to animate between steps is im-
pressive.

5.2 New Features

The existing simulation is relatively sophisticated, but is limited to screen
display. Therefore the program was extended to output PostScript di-
agrams that can be printed. It used a simple scheme to automatically
arrange the diagrams on the page. Each diagram step was meant to have
the same camera orientation as the screen view.

Other changes included implementing outside reverse folds, adding menus
for controlling viewpoint, adding an extra turn over function, and providing
the ability to save/open a folding other than “default.ori” and the ability
to load different settings, e.g., paper shape and colors.

5.3 Using the Program

The user interaction is identical to Miyazaki’s original program. In folding
the crane, the extra turn over fold allows the user to more easily and
accurately position the origami. Once the folding has been completed
(Figure 5), the user invokes the “Export PostScript Diagrams...” menu
item. The program generates diagrams for each step and produces a single
PostScript file (Figure 6). This can be viewed in a PostScript viewer and
converted to PDF and other vector file formats as required.

Figure 5. Traditional crane folded in Miyazaki’s simulator.
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7 8

9 10 Inside reverse fold

11 12 Inside reverse fold

Figure 6. Page 2 of the diagrams automatically produced from the origami in
Figure 5.

5.4 Evaluation

Despite the advantages of direct manipulation (namely, “natural” input
method, immediate visual feedback, and provision for rapid, incremental,
and reversible actions), there are some disadvantages.

The first disadvantage is that the user can only manipulate what he or
she can see—if it is not visible, it cannot be manipulated. One manifesta-
tion of this problem is that the user cannot distinguish multiple layers, nor
can he or she access them.

The second disadvantage is that it is not easy to control “bending”
folds. These are folds with flaps that “stick out,” i.e., the dihedral angle is
not 180◦.
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The third disadvantage is that the program is mouse intensive. Some
users overshoot the mouse and do not get the results they expect. Some
have difficulty lining up significant points or lines. The built-in snap-
ping can help, but one user complained that it made the program harder
to use.

A survey sent before the development of the program showed that vec-
tor drawing programs were considered to be the best type of program for
making origami diagrams. A small number of users completed a usability
questionnaire for the modified origami simulator. They felt it was more
stimulating than vector programs, but vector programs were still better
for power and flexibility. These suggest areas for further work, which are
discussed in the next section.

6 Future Work
There are several improvements that would immediately increase the appeal
and usefulness of the program.

The main criticisms from the usability questionnaire were the proto-
type’s inadequate power and lack of flexibility. The implementation only
allows certain kinds of folding, namely valley and inside reverse folds. There
are many other types of fold that cannot be done, e.g., all types of rab-
bit’s ear; certain kinds of multiple, overlapping reverse folds; inflation; and
stretching. Users needing to make such folds cannot proceed any further.
The only option is to continue the diagramming by editing the output in a
separate application. Some believe that this is a fatal flaw [14]. Therefore,
the usability of the program would be substantially increased by extending
the repertoire of folds. Fastag’s eGami shows that this is possible.

Improving the visual appearance of the diagrams could be achieved by
showing layers and implementing more standard symbols. Layers could be
shown by implementing [32] and using “cartoon rendering” [21].

It is unlikely that any program can automatically produce perfect re-
sults, so some thought needs to be given to ways to improve the editability
of the results. Currently, all lines and polygons are stroked in the PostScript
output. This can be confusing as a creased square may have more lines and
polygons than the user expects.

Finally, there are a couple of remaining improvements that would not
directly increase the functionality of the program, but would make it avail-
able to a wider audience with higher expectations than users of a prototype
program. Firstly, there are issues with the camera that need to be resolved.
Secondly, changes so far have been made to the Windows DirectX version—
applying them to the OpenGL could allow Macintosh and Linux users to
run the program directly.
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If the program’s power and flexibility could be increased, then this
may improve users’ level of satisfaction, ease of use, and enjoyment. The
potential of origami simulation for automating origami diagramming may
eventually be fully realized.

The program and further information can be found at http://www.
angelfire.com/or3/tklorigami0.
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Recognition, Modeling, and
Rendering Method for Origami

Using 2D Bar Codes

Jun Mitani

1 Introduction

The use of computer graphics (CG) to build and display origami models on
a PC has been proposed in several studies [1, 3, 4]. Although some useful
applications have been developed as the results of these studies, there are
still two large problems. The first problem is how to input the data of
origami models into a computer. We can use commercial CG software to
build a three-dimensional model of origami work, or we can use one of the
special origami editors developed in recent studies. But, it is difficult to
master such software and much time is needed to build a three-dimensional
origami model on a PC using a trial-and error approach. The second prob-
lem is how to render (display) the model. Usually, origami models are
displayed in a CG image as a set of polygonal faces that do not have thick-
ness (we call a polygonal part of the structure a face). When the faces
are represented with zero thickness, it is difficult to recognize the origami
configuration because multiple faces are typically located at the same (over-
lapping) position. So far, there have been very few studies addressing this
problem.

In this paper, we propose two new methods for origami modeling. One
method constructs an origami model on a PC. This method is a unique
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technique that uses a digital camera and two-dimensional bar codes for
capturing the configuration of an origami model from photographs. The
second method renders origami models on a screen. This method is not just
a rendering technique; it also perturbs the model geometry to emphasize
the origami configuration to make it easier to understand.

We use Miyazaki’s data structure [3] to implement the proposed method
as an application. One of the benefits of Miyazaki’s data structure is that it
can hold the face stacking order, which represents the order of faces when
they overlap. We can find which face is located above any another face
by using this stacking order. In the next section we describe our method
to recognize and model the origami configuration. Then, we present our
rendering method. Finally, we present our conclusions.

2 Recognizing and Modeling the Origami
Configuration

In this section, we describe a method for inputting origami data into a PC.
Building an origami model on a PC is a very difficult task. Even though
there is a great deal of commercial CG software that implements advanced
interfaces, it is still difficult to build an origami model while adhering to
origami’s restrictions, such as no-stretch, no-penetration, keeping the flat-
ness of facial polygons, and so on.

With our approach, the required task for a user is simply to take pictures
of an origami model under construction with a digital camera. Then, the
images are used to automatically capture the model in a PC. To do this,
we use QR codes. A QR code, shown in Figure 1, is a two-dimensional
bar code; in other words, the QR code stores information horizontally and

Figure 1. An example of a QR code.
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Figure 2. QR code layout and the encoded information.

vertically. Thus, this code can contain hundreds of bytes of information.
The size of the data can be set depending on the number of the dots in the
square and the code’s robustness against noise.

As preparation for our method, QR codes are printed on both sides
of the target origami paper in grid form. We put five-digit numbers into
each QR code. The first number represents a front/back flag (0 or 1) and
the other numbers represent the coordinates of the code (x, y). Figure 2
shows an example of one of our target papers with 20x20 (400) codes on
one side. We use a QR-code-capturing application programming interface
(API) [5]. With this API, our system recognizes multiple codes at once.
Moreover, when the origami is folded flat, rotated codes in the plane are
allowed.

Figure 3 shows the flow of our method to capture an origami configura-
tion using a digital camera. First, we prepare an actual square, flat origami
(a) and a virtual model (h) in a PC. A user folds the origami paper once
(b), then takes a photo of it (d). The system estimates the progression of
the folding operation (f) by comparing the photo (d) and the virtual model
(h). Then, the system updates the virtual model by adopting the estimated
folding operation (i). Capturing one folding operation is composed of these
steps. Additional folding operations can be captured by repeating these
steps (e.g., (c), (e), (g), and (j)).

We can estimate the location of a folding line as the perpendicular
bisector (line l in Figure 4) of the two positions of one QR code before and
after folding (positions P and Q, respectively, in Figure 4).

To define the configuration of the folded origami, information about the
location of the folding line(s) is not enough. We need further information,
such as the type of folding (whether the line is a mountain or a valley
(Figure 5, left), and which faces are folded in multiple target faces (Figure 5,
right).
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Figure 3. Flow of capturing an origami configuration; see text for details.

Figure 4. Estimation of folding line location.

Figure 5. Variation of folding operations for a single folding line.
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Figure 6. Photos and corresponding CG results of folding a cicada.

To estimate this additional information, we use a brute-force approach.
First, the system simulates all possible patterns of foldings. For example,
there are two possible cases for the left side of Figure 5 (valley fold or
mountain fold), and there are four for the right side of Figure 5 (one-sheet
fold or two-sheet fold as well as valley fold or mountain fold). The number
of possible patterns may be a few hundred in complicated cases. For each
possible case, the system extracts a set of QR codes that can be seen from
the user’s eye. Then, the QR codes are compared with the QR codes in
the photo. By doing this, the best match for folding is extracted as the
estimated folding from the set of possible foldings.

Figure 6 shows the result of our method applied to the folding of a cicada
model, which is made by nine folding operations. Figure 6 shows four of
the nine folding stages. The cicada folding was correctly captured and
reproduced in a PC. The data of the model is represented using Miyazaki’s
model. Consequently, it is possible to play back the folding operation as a
three-dimensional CG animation.

3 Rendering
As stated above, one usually uses a flat plane (the thickness is zero) as the
model of a sheet of paper on a PC. This is simple and as easy to handle as
digital data in a computer. But, when multiple sheets of paper are displayed
with zero thickness, the overlapping layers are not represented and we
cannot visually recognize the configuration. As Figure 7 shows, displaying
the overlapping is very important for understanding the configuration.
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(a) (b)

Figure 7. CG images of the folded paper (a) without and (b) with thickness.

(a) (b)

Figure 8. Sliding vertices when the front face hides the back face. (a) Edges are
separated from each other. (b) Vertices rotate to different positions.

To express the overlapping, we shift each polygonal face toward the
normal direction according to the stacking order. By doing this, we can see
the overlapping relation between the faces. The degree of shifting is based
on the position of the face in the face stack of Miyazaki’s data structure.

There are still common problems when origami is viewed from the exact
front. In this situation, the top face hides the back faces. This makes it
difficult to recognize the configuration. To solve this problem, origami drill
books commonly perturb the shape of the faces so that the configuration is
easier to understand. With this approach, accuracy is not important. So,
we add functions to slide the positions of the vertices. There are two ways
of sliding. When multiple edges are located at the same position, we can
move the vertices so that the edges are separated from each other, as shown
in Figure 8(a). Or, as shown in Figure 8(b), we can rotate the vertices so
that the vertices rotate to different positions.

After the model geometry is defined, we use cartoon rendering to dis-
play the model. Cartoon rendering is not real, but it makes it easier to
understand the features of an object [2]. As shown in Figure 9, the bound-
ary edges and silhouette edges are drawn, but the inner edges are not
drawn.

Figure 10 shows some examples using our method. We can see from the
results located under the top row in Figure 10 that the structures are easy
to recognize. These models are three-dimensional models, and so users can
rotate and view them from any angle.
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Boundary Edge

Silhouette Edge

Back Face

Front Face

Inner Edge

Figure 9. Cartoon rendering.

Figure 10. Results using our rendering method.

4 Conclusion

In this paper, a new method for recognizing and configuring an origami
model in a PC using QR codes was proposed. The proposed method worked
well for simple cases and we could build a cicada model, which has nine
folds, from digital images. But, there are drawbacks to this approach. The
system cannot handle a “tuck-inside” action (Figure 11) because a digital
camera cannot capture the inside of an object from the outside. Also, the

Figure 11. Tuck-inside action.
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system can only handle flat folded models. So, more improvements are
planned as future work.

Additionally, a new method for rendering (displaying) an origami model
was proposed. This method emphasizes the thickness of a sheet of paper by
shifting faces according to the paper’s position in the face stack, and it slides
vertices to make it easier for users to understand the configuration. As a
result, we found this approach can generate easily understandable images.
In future work we plan to add more advanced visualization features, such
as changing the position of vertices depending on the user’s eye position in
real time.
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3D Origami Design Based on
Tucking Molecules

Tomohiro Tachi

1 Introduction
Designing arbitrary three-dimensional surfaces by origami is one of the ul-
timate objectives of origami design. There are currently several approaches
for designing 3D models, but none of them provide methods for designing
arbitrary 3D surfaces.

The most popular way of designing a 3D origami model is by shaping
a flat-folded uniaxial base with controlled flap lengths. Methods for de-
signing uniaxial bases using circle-packing patterns have been investigated
by Toshiyuki Meguro [8,9], Fumiaki Kawahata [2], and Robert Lang [4–7].
This method works well for organic models such as insects and some ani-
mals. However, it is not possible to fully specify the 3D shape, because the
only controllable parameters are the lengths of the flaps.

Some origami artists are also engaged in two-dimensional design of
origami bases. A practical design method for 2D origami shape based
on placing facets has been investigated by Toshiyuki Meguro [10]. The-
oretically, Demaine et al. [1] gives a constructive proof for designing the
silhouette of an arbitrary 2D polygon. Another method has been proposed
by Masahiko Tanaka [12].

The idea for 2D origami design was extended to a 3D origami design
method by Demaine et al. [1], who proved that any polyhedron can be
folded from a sheet of paper. However, the method used in the proof is

259
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Figure 1. A 3D teapot can be folded (right) from the crease pattern (middle)
constructed from the teapot represented by a triangle mesh (left).

based on wrapping a thin strip of paper around a polyhedron, and so it is
not a practical method to design a real model.

A few true 3D polyhedral models have been designed in practice. Two
such examples—roofs by the author [11] and a frog by Masahiko Tanaka
[12]—are constructed by placing facets and inserting symmetric tucks be-
tween the facets. However, it is very hard to design a complex model using
only symmetric tucks, since the symmetry of the alignment constrains the
overall configuration to a very limited range of possibilities.

In this paper, we propose a new approach for designing an arbitrary
polyhedral surface, with an example of our method realized as shown in
Figure 1. Instead of using symmetric tucks between edges, we propose a
general structure, which we call an edge-tucking molecule, which can be
generated for arbitrarily given alignments of pairs of mating edges (with a
few limitations). Edge-tucking molecules are flexible and general enough
to enable manual design of complex 3D origami figures using conventional
paper craft and drawing software. We further investigate the conditions
for 3D foldability represented by several inequalities; these conditions are
the key part of 3D origami design.

2 Method Overview

2.1 Tucking Molecules

Our approach is to align facets of the polyhedral surface (surface polygons)
onto a convex region of a plane and fill the gap between the surface polygons
with edge-tucking molecules and vertex-tucking molecules . The purpose of
the “molecules” is to “use up” the paper between the surface polygons,
thereby bring corresponding pairs of surface polygon edges into alignment.
Figure 2 shows an example of how the paper is tessellated into surface
polygons and molecules.
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Vertex-Tucking Molecules

Edge-Tucking Molecules

Surface Polygons

Figure 2. Paper surface tessellated into surface polygons and molecules.

A
B

A′

B′

A
B

A′

B′

(a) (b)

Figure 3. Edge-tucking and vertex-tucking molecules. (a) Edge-tucking molecule
maps two segments to an identical position. (b) Vertex-tucking molecule maps
vertices to an identical position.

An edge-tucking molecule is inserted between a pair of edges of the
surface polygons that have been laid out on the paper. The two edges
are mapped to the same position by folding the edge-tucking molecule
(Figure 3(a)). A vertex-tucking molecule is inserted between the multiple
vertices in the crease pattern that correspond to one vertex of the three-
dimensional surface. The vertices are mapped to the same position in
the 3D form by folding the vertex-tucking molecule (Figure 3(b)). Hence,
the set of edge-tucking molecules and vertex-tucking molecules “paste”
together the pairs of edges and the sets of vertices, respectively.

2.2 Conditions

There are two types of conditions for laying out surface polygons and tuck-
ing molecules. One is called a 2D condition, which is primarily related to
the possibility of aligning the surface polygons and molecules on the un-
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folded paper. The other is called a 3D condition, which comes from the
relationships between the surface polygons and the molecules in the folded
state. In the following, Conditions 1 and 2 represent 2D conditions, and
Conditions 3 and 4 represent 3D conditions:

Condition 1. Surface polygons and tucking molecules must properly tessel-
late a convex planar region of the paper.

Condition 2. The crease pattern can be properly generated without intersect-
ing surface polygons.

Condition 3. Tucking molecules and surface polygons do not intersect each
other in the folded state.

Condition 4. Tucking molecules provide adequate angles to obtain the cur-
vature of the required 3D surface in the folded state.

Since an origami model is designed by placing surface polygons and
molecules and generating the crease pattern on a 2D sheet, the 3D con-
ditions must be satisfied by the 2D configuration. We use the idea of a
tuck proxy (Section 6) to handle the 3D positions of the folded tucking
molecules, so that the sufficient conditions of the 3D conditions may be
written as angle inequalities that apply to the 2D configuration.

The procedure and the conditions for a proper tessellation are shown
in Section 3. The method and the conditions for generating the crease
pattern for the edge-tucking molecule for a given pair of edges is shown in
Section 4.1 and Section 4.2, respectively. The method and the conditions
for generating the crease pattern of the vertex-tucking molecule for a given
combination of vertices is shown in Section 5.1 and Section 5.2, respectively.
The 3D conditions are then investigated in Section 6. Finally, Section 7
shows examples of the successful application of this method.

3 Tessellation
We begin by cutting the polyhedral surface into one or more groups of
connected polygons, i.e., so that each group forms an isometric map from
its corresponding portion of the polyhedral surface to the 2D plane. Then,
edge-tucking molecules and vertex-tucking molecules are inserted into the
surface to connect edges and vertices of the surface polygons to form a
2D composite figure topologically equivalent to a disk. The ordering of
vertices around the molecules is set according to the surface orientation in
a 3D configuration.

Surface polygons and inserted molecules must be mapped onto a convex
region of a plane without intersection of the elements or any change in the
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(a) (b) (c) (d)

Figure 4. (a) A proper tessellation. (b) The vertex-tucking molecule is crossed.
(c) The edge-tucking molecule is crossed. (d) The vertex-tucking molecules and
edge-tucking molecules have negative signed area.

connectivity between corresponding pairs of edges and vertices. The sur-
face polygons are kept congruent after the 2D mapping, while the tucking
molecules are deformed to conform to the gaps between the aligned sur-
face polygons. The following are the conditions for properly tessellating a
planar region by surface polygons and molecules:

Condition 5. Any mapped tucking molecule may not cross itself.

Condition 6. The signed area of any tucking molecule cannot be negative.

Condition 7. The mapped boundary of the surface must be convex.

Figure 4 shows an example of how Conditions 5 and 6 help avoid inter-
sections of molecules.

Once the surface polygons have been mapped and the (empty) edge-
tucking molecules and vertex-tucking molecules defined, we then turn to
creating the creases inside each polygon that turn it into the appropriate
molecule.

4 Edge-Tucking Molecules

4.1 Generating Edge-Tucking Molecule

Figure 5 shows the procedure for generating the creases inside an edge-
tucking molecule. An edge-tucking molecule is a quadrilateral (AA′B′B)
surrounded by a pair of edges of surface polygons (AB and A′B′) and two
segments that connect corresponding vertices of the paired edges (AA′ and
BB′).
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A
B
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MB
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C

D
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LB

MA

MB

Valley
Mountain

Figure 5. Generating procedure of crease pattern for an edge-tucking molecule.
Right image shows the resulting crease pattern.

The basic idea of the edge-tucking molecule is that it contains two valley
folds along perpendicular bisectors of AA′ and BB′ so that point A is folded
to A′ and B to B′; with this pair of lines as the starting point, we then
generate a flat-foldable crease pattern that connects these perpendicular
bisectors. The procedure is as follows:

1. Define LA as the perpendicular bisector of segment AA′ and define
LB as the perpendicular bisector of segment BB′.

2. Let MA and MB denote the midpoint of segment AA′ and the mid-
point of segment BB′, respectively.

3. If AB′ = A′B, then LA is on LB and the crease pattern can be
obtained by drawing a valley crease on segment MAMB. Otherwise,
we assume without loss of generality that A′B < AB′.

4. Arbitrarily define point C on LA inside quad AA′B′B.

5. Define point D on LB such that ∠MACA′ + ∠DCB = π.

6. The necessary vertices are defined; draw the crease pattern shown in
the right image of Figure 5 with mountain and valley folds defined as
shown.

In Step 5, Kawasaki’s theorem [3] is used to ensure the flat-foldability
of vertex C. Note that Kawasaki’s theorem is satisfied also in vertex D.
Although we do not provide the detailed proof here, this condition is always
satisfied if and only if you can locate point D on LB.

4.2 Conditions for Generating Edge-Tucking Molecule

The following are the two conditions for a quadrilateral to be a valid edge-
tucking molecule:
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A
B

A′

B′

A
B

A′

B′

(a)

Β

Α′

Β′

Α

ΜΑ=Χ
LΑ

LΑ

Δ ΜΒ

Β

Α′

Β′

Α

ΜΑ=Χ

DΜΒ

(b)

Figure 6. Conditions for an edge-tucking molecule. (a) The condition to generate
the crease pattern: on the left, AB′ ≥ AB and A′B ≥ AB, but on the right,
A′B < AB. (b) The condition for ensuring that the crease pattern is contained
inside the molecule: on the left, CP is inside; on the right, CP is outside.

Condition 8. A crease pattern can be generated for each edge-tucking molecule.

Condition 9. The generated crease patterns do not intersect each other.

The necessary and sufficient condition for Condition 8 can be written
as follows:

Condition 10. The perpendicular bisectors of AA′ and BB′ do not intersect
the surface polygons adjacent to the edge-tucking molecule.

Figure 6(a) shows an example of this situation. Condition 8 can be
represented as

AB′ ≥ AB and A′B ≥ AB(= A′B′).

Instead of Condition 9, we can use the following sufficient condition, which
is more useful because it can be determined only from the shape of each
molecule.

Condition 11. The generated crease pattern lies entirely inside the quadri-
lateral of the molecule.

Condition 11 can be represented by an angle inequality (Figure 6(b)).
Assume that we put point C (a point on LA from which the new crease line
is generated) on MA, which is the most favorable position to put the crease
pattern inside the quadrilateral. The condition is satisfied if and only if
point D lies inside the quadrilateral AA′B′B, which is the case as long as

∠BMAMB ≤ ∠BMAD.
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Since point D is defined by flat-foldability around vertex C,

∠BMAD = π − ∠LAMAA =
π

2
.

Therefore, Condition 11 can be represented as

∠BMAMB ≤ π

2
.

5 Vertex-Tucking Molecules

5.1 Generating Vertex-Tucking Molecule

Next, we construct the vertex-tucking molecules. Figure 7 shows how the
crease pattern for a vertex-tucking molecule is generated. The procedure
is as follows:

1. Draw the Voronoi diagram of the vertex-tucking-molecule polygon
using valley creases and using the vertices of the molecule as the
generating points.

2. Connect the vertices of each Voronoi polygon to the generating points
with mountain creases.

3. Crimp fold or rabbit-ear fold any triangles that do not connect to
adjacent edge-tucking molecules.

Step 3 ensures that the folded shape of the molecule is connected to one axis
(Figure 10), to enable an easy calculation of the 3D conditions as shown in
Section 6. However, this procedure can be omitted in the practical design.

Figure 7. Generating procedure of the crease pattern for a vertex-tucking
molecule.
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Note that this type of molecule based on the Voronoi diagram has been
used previously for some origami designs; Robert Lang showed the same
molecule used for the connection of strip grafts [7, p.152], and Toshiyuki
Meguro [10] has proposed essentially an identical molecule as a “generalized
twist fold.”

5.2 Conditions for Generating Vertex-Tucking Molecule

The following are the two conditions necessary for generating valid vertex-
tucking molecules:

Condition 12. A crease pattern can be generated for each vertex-tucking
molecule.

Condition 13. The generated crease patterns do not intersect each other.

Condition 12 may be represented as follows:

Condition 14. The boundary of the vertex-tucking molecule is composed of a
subset of the edges of the Delaunay triangles that are dual to the generated
Voronoi diagram.

Figure 8(a) shows how this condition works. If a segment on the bound-
ary does not lie on the edges of the Delaunay triangles, an edge-tucking
molecule cannot connect to the segment because the perpendicular bisector
does not cross the segment.

Instead of Condition 13, we can use the following sufficient condition:

Condition 15. The generated crease pattern is wholly inside the molecule.

This condition can be written in the following way: for every edge ViVj

on the boundary of the molecule and for every vertex Vk(k �= i, j) of the
molecule,

∠VjVkVi ≤ π

2
. (1)

Note that Equation (1) is also a sufficient condition for Condition 14, as
well as for Condition 13. Figure 8(b) shows an example of this condition. In
the right image, ∠V1V2V0 > π/2, and the crease pattern crosses segment
V1V0.

6 3D Conditions
The 3D conditions are conditions that must be met in the folded state,
presented earlier as Conditions 3 and 4. These necessary and sufficient
conditions for 3D foldability are difficult to test using characteristics of
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good bad

(a)

V0

V1

V2

V3

(b)

Figure 8. Conditions for a vertex-tucking molecule. (a) The condition to generate
the crease pattern: on the left, the condition is valid, but on the right, the bound-
ary is not on the edges of Delaunay triangles. (b) The condition for ensuring that
the crease pattern is contained inside the molecule: on the left, CP is inside; on
the right, CP is outside.

the crease pattern because the three-dimensional configuration changes not
only by the crease pattern, but also by the folding angles of the non-flat-
folded crease lines.

Thus we assume that the tucks, i.e., the folded tucking molecules, lie on
a predefined surface, which we call the tuck proxy, so that Condition 4 can
be tested and satisfied with respect to parameters of the crease pattern,
i.e., by angle inequalities, while keeping Condition 3 satisfied.

6.1 Generating the Tuck Proxy

The tuck proxy is an imaginary surface that must contain all of the folded
tucking molecules and that extends toward the inside of the 3D polyhedron
(so that the folded tucking molecules are hidden inside the folded model).
The distance that the tuck proxy extends away from the surface is what
we will call its width. We initially set the width of the tuck proxy as large
as possible, as long as it does not intersect with surface polygons or with
other parts of the tuck proxy, since it defines the range in which tucking
molecules can exist; if the tuck proxy does not exhibit improper inter-
sections, then that guarantees that the tucking molecules will not exhibit
improper intersections in 3D.

Here is an example procedure for generating a tuck proxy (Figure 9):

1. Define a segment from each vertex to the direction opposite to the
surface orientation (e.g., with the direction chosen as some average
of the surface normals at the vertex). The length of the segment is
initially chosen such that the segment does not intersect any surface
polygons.

2. Connect adjacent segments with strips of two triangles and define the
union of all such strips as the tuck proxy.
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Figure 9. Generating procedure of the tuck proxy.

3. If the strips intersect with other strips, then shorten the segment
length and redo the procedure from Step 1. Otherwise end the pro-
cedure.

As we assume that folded tucking molecules will conform to the tuck
proxy, the width of the folded tuck must be less than or equal to the width
of the tuck proxy. Because of the use of bisectors in their construction, half
of the distance between the corresponding vertices of the tucking molecules
can be used for calculating the width of the folded tucks.

6.2 Angle Inequality

A sufficient condition for Condition 4 to be satisfied can be provided by
inequalities between angles of the folded molecules and angles between
edges along the tuck proxy.

The relation between the angle along the unfolded paper and the angle
along the folded molecule is shown in Figure 10. In this example, which
satisfies ∠ABB′ < ∠A′B′B, ∠ABB′ keeps its angle in the folded state. The
general equation is as follows:

min (∠ABB′, ∠A′B′B) + ∠OBBB′|in 2D = ∠ABOB|in 3D . (2)

We name this angle (i.e., ∠ABOB|in 3D) the tuck angle and denote it by
θi,k for edge i connecting to vertex k.

Folded tucking molecules are easily folded to conform to the tuck proxy
and are crimped to adjust the tuck angles of each edge (Figure 11). Note
that the joint axis (i.e., the axis along which the tucks are connected) can
move by folding the tucks so that one of the tuck angles is increased. The
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Figure 10. Angles on unfolded paper and on folded molecules.
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Figure 11. Adjusting tuck angles. Left to middle: One of the tuck angles is
increased by moving the joint axis. Middle to right: Any other tuck angle can
be reduced by crimping.

necessary and sufficient condition for making such adjustment possible for
vertex k is as follows: for every edge i and j (i �= j) connected to vertex k,

θi,k + θj,k ≥ θ′i,k + θ′j,k,

where θi,k is the original tuck angle calculated from Equation (2), and θ′i,k
is the desired tuck angle along the tuck proxy.

7 Application
We show two useful applications of our design method. Figure 12 shows
the two examples.

First, by applying the proposed method to an entire 3D surface, a com-
plex, three-dimensionally defined model can be folded from a single uncut
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(a) (b)

Figure 12. Examples of applications of the tucking molecule design algorithms:
(a) Zoom view of the crease pattern for the Teapot. See Figure 1 for the whole
crease pattern and the folded model. (b) Connecting a 3D design (top) to a
regular box pleating pattern (bottom).

sheet of paper. It is possible to follow the procedure manually, because
there is no constraint represented by any equality conditions. Figure 12(a)
shows a small part of the crease pattern for the model Teapot , whose com-
plete crease pattern and a photograph of the folded model were shown in
Figure 1.

This method is also useful for designing selected parts of a 3D model and
for connecting it to other parts that might have been designed with other
methods. As shown in Figure 12(b), the connection portion of the crease
pattern can be flexibly and efficiently designed using tucking molecules.
This approach should help designers to locally add 3D high-resolution de-
tails to any desired part of their model.

8 Conclusions
In summary, we proposed a method for designing origami renditions of ar-
bitrary 3D polyhedral surfaces using tucking molecules. The procedures
for generating vertex-tucking molecules and edge-tucking molecules were
shown. We investigated the conditions for generating the crease pattern
(2D conditions) and for constructing desired 3D configuration (3D condi-
tions).

The proposed method is easily implemented and can be used for de-
signing complicated three-dimensional models and also for improving other
origami designing methods. As a practical implementation of these con-
cepts, Origamizer, a software tool based on a method that further ex-
tends the concepts presented here, is available on the author’s website
(http://www.tsg.ne.jp/TT/software/).

http://www.tsg.ne.jp/TT/software/
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eGami: Virtual Paperfolding
and Diagramming Software

Jack Fastag

1 Introduction and Goals
eGami is a computer software application that simulates the sequential
folding of flat origami models in real time, using an intuitive interface
designed to suggest the experience of folding an actual piece of physical
paper. As the model is “folded” or manipulated on-screen by the user,
its folding sequence diagram is automatically generated, complete with
arrows, symbols, and basic verbal instructions commonly seen in traditional
origami diagrams.

Every origami designer has his or her favorite drawing program to pub-
lish their diagrams, but there’s no specialized package specifically designed
for origami diagramming. eGami can be used as an alternative to hand-
drawing or to replace the use of illustration software to create origami
diagrams quickly and efficiently.

Computational origami is a relatively recent field, whose goal is to find
algorithms and solutions for a variety of paper-folding problems. Demaine
and Demaine [3] classify these into origami design and origami foldability
problems, and offer a good overview of existing results. The current work
belongs to the foldability type, given that we are attempting to prove that
the folded state reached after each manipulation of the model is a “valid”
one, as defined and further discussed below. Origami design applications
are covered in [3] and elsewhere.
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Previous computer implementations of origami model and/or diagram
manipulation include: Jack Fastag and Robert Lang’s simulators [7], work-
ing simultaneously in the late 1980s, on PC and Mac applications, respec-
tively; Miyazaki et al. [9]; John Szinger’s Foldinator [11]; Josh Nimoy’s
web-based Java applet [10]; and Tung Ken Lam’s simulator and diagram-
mer [6], also presented at 4OSME.

The goals that the author established when eGami development began
were: (a) the simulation must be in real time; (b) manipulation of the
model must have a natural “grab-and-pull” feel that resembles real-life
paper folding; (c) automatic diagram generation must be fully customizable
and printable; and (d) animated step-by-step folding tutorials should be
created.

2 Program Features and Use
eGami is designed to follow the standard Windows interface, with intuitive
menus, toolbars, and tool panels. The interface allows multiple models to
be open at once, which is useful when designing models with multiple parts,
such as modulars.

To create a new model, we begin the same way we do in real life, by
choosing the piece of paper that we wish to use. Selecting the “File > New”
menu item, or pressing the corresponding button on the toolbar, presents
the user with a dialog box, where the paper shape, size, and colors can be
selected (Figure 1). Many traditional paper shapes are predefined (square,
common and custom rectangles, money bills, triangles and other polygons,
etc.) or new ones can be defined. The model’s name, author, and optional
comments can also be entered in this screen.

The selected piece of paper is then presented in the Editor’s window,
as shown in Figure 2. This is the place where the model is displayed and
manipulated by the various tools. As the model is folded, new steps are
generated, one for each folding operation, although multiple operations
per step are also allowed (such as folding all four corners to the center of
a square in a single blintz-fold step). At the bottom of this window there
are buttons that let us navigate along our folding sequence.

There are several views available in the Editor window that can be
selected either through toolbar or menu options: (a) the “Flat” view, which
displays the folded model in mathematically perfect alignment; (b) the
“Model” view, which shows underlying layers of the model by skewing
vertices slightly, as is customary in published origami diagrams; (c) the
“Diagram” view, where the full diagram, complete with fold lines, arrows,
instructions, and other symbols is displayed; and (d) the “Crease Pattern”
view, which shows, as its name implies, the crease pattern of the flat piece
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Figure 1. New Model dialog box.

Figure 2. Main screen.
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General Tools:

• Grab: select, move, resize

• Zoom: in, out, actual-size, to-fit, %, custom

• Rotate: 1/4 turn clockwise, 1/4 turn counter-clockwise, 1/2 turn, custom
angle

• Flip: side-to-side, top-to-bottom

• Diagram: draw line, arrow, circle, rectangle, or text box

• Delete: delete diagram item, delete step

• Duplicate: duplicate diagram item, duplicate step

Folding Tools:

• Fold: valley, mountain, valley-under, mountain-under, crease

• Reverse: inside, outside, asymmetric-inside*, asymmetric-outside*

• Squash: symmetric, asymmetric*

• Petal: symmetric, asymmetric*, swivel-fold*

• Rabbit Ear*

• Sink*

• Pleat: parallel over, parallel under, radial over, radial under

• Fan Fold: parallel over, parallel under, radial over, radial under,
parallel crease, radial crease, fold over-and-over

• Crimp: parallel inside, parallel outside, radial inside, radial outside

• Unfold: unfold all, unfold flap*

* Feature under development

Table 1. eGami Tools.

of paper for the current step, with all creases, mountain folds, and valley
folds indicated. The ability to view multiple steps on a single page still
remains to be implemented, as well as printing and exporting functions.

On the right side of the main window is the Tool Panel, where the
various tools can be selected and their properties set. The folding tools
reflect the language and procedures traditionally found in modern origami
books and diagrams. Table 1 lists the tools that the application currently
provides, as well as several that are still under development.

To use the folding tools, the mouse cursor is shown as a hand ready to
“grab” the model, which is then folded by clicking and dragging. Figure 3
illustrates a valley fold in progress.
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Figure 3. Valley fold in progress.

To help increase fold precision, holding the shift key during folding
restricts the movement to a user-specified angle. And as an additional
aid during folding, the application defines user-selectable landmarks that
the cursor can “snap” to. Available landmarks include visible vertices,
edges, and flaps, as well as edge midpoints, flap centers, angle bisectors,
and the intersection of two edges. The Landmarks panel, also visible in
Figure 3, allows us to specify which of these landmarks can be “grabbed,”
the landmark we want to fold to, and/or landmarks we want to “fold along.”
Together, the various options in this panel offer the ability to perform most
of the operations defined by the Huzita-Hatori Axioms [8].

After one or more folds have been carried out, switching to the “Dia-
gram” view shows the diagram created for each step, with its corresponding
fold lines, arrows, and other symbols, as well as automatically generated
verbal instructions. An example showing the step before a petal fold was
performed can be seen in Figure 4.

The default instructions describe the operation that was performed, in-
cluding references to any landmarks affected. The program also allows the
naming of any landmark, which aids in more readable instructions. For ex-
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Figure 4. Diagram view.

ample, if we know that a certain vertex will be the model’s “head,” labeling
it as such would generate instructions such as “Inside reverse-fold the head
towards the lower right.” Of course, program-generated instructions can
be turned off, edited, or completely rewritten if desired.

All graphic items in the diagram can be selected individually with the
mouse, and moved, resized, or reformatted to fine-tune the illustration or
to suit the diagrammer’s taste. Furthermore, global styles are defined for
each diagram object type, which are sets of formatting characteristics that
apply to all objects of that type. For instance, some authors prefer using
arrows with filled arrowheads for valley folds, while others prefer unfilled
arrowheads; defining the basic valley-fold arrow style applies the chosen
format to all valley-fold arrows in the diagram. Styles can be defined for
lines, arrows, fills, and text boxes. Moreover, the style of any individual
object in the diagram can be overridden by custom formatting at any time.
This functionality will be quite familiar to users of traditional illustration
software.

In addition to all the familiar commands to Open, Save, and Close
model files, the File menu also offers an option to “Save As Base. . . ,” which
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Figure 5. Program structure and data flow.

saves the current model as an origami base that can be used as the starting
point for other models. This allows us to create a library of origami bases,
both traditional and novel.

3 Data and Program Structure
Figure 5 illustrates eGami’s general program structure and data pipeline.
Its data classes can be grouped into three main sections: (a) classes defining
the origami model; (b) those that are part of the user interface; and (c) the
origami tools’ classes.

3.1 Origami Model

Each step in the sequence of an origami model is a paper configuration
that can be considered a state of a polygon mesh with strict consistency
and other constraints. In eGami, this polygon mesh is defined by a mod-
ified winged-edge boundary representation (b-rep), common in computer
graphics applications that require describing objects in terms of their sur-
face boundaries [4]. This b-rep is defined by an interconnected collection
of vertices, edges, and polygons, as exemplified in Figure 6.

The consistency of this mesh must be insured at all times, by following
these constraints: (a) all polygons are closed; (b) all edges are used by
not more than two polygons; (c) each vertex is referenced by at least two
edges and at least one polygon; and (d) the mesh is completely connected,
topologically planar and has no holes (i.e., one boundary only).
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Figure 6. Winged-edge boundary representation.

Our mesh data model must include additional constraints that reflect
the properties of the paper: (e) vertices on the raw edge of the paper must
be connected to exactly two “raw” edges; (f) vertices inside the paper must
satisfy Maekawa’s Theorem [5]; (g) paper does not stretch, which means
vertex positions are fixed and edge lengths are constant; (h) paper faces
are flat, which means that each polygon’s vertices are coplanar and implies
that only rigid folds are allowed; and (i) no rips or holes.

Finally, some constraints related to the folding itself: (j) paper is in-
finitely thin, implying that paper “creep” is not taken into account; (k) only
flat folds are allowed, meaning each vertex inside the paper must satisfy
Kawasaki’s Theorem [5]; and (l) paper does not intersect itself. It has
been noted in [1], [2], and elsewhere that these last two constraints are the
hardest to satisfy and thus implement, and they will be discussed further
below.

3.2 User Interface

The heart of the user interface is the “Editor” control, whose main function
is to display the origami model, as defined by the b-rep mesh described
above. This module also manages the collection of landmarks explained
in the Program Features section, as well as the various views, sequence
navigation, diagram formatting, etc.

The Editor control also handles mouse and keyboard inputs, which are
sent to the origami Tools for processing, as was shown in Figure 5.

3.3 Origami Tools

eGami “Tools” are defined as modular program classes with a standard
implementation interface, making it relatively easy to add new ones. All
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tools are collected in a “Toolbox” object that receives its input from the
Editor control and forwards it to the currently active tool.

Instead of manipulating the origami model directly, tools are designed
to be operation-driven. This means that tools perform their action(s) by
creating one or more discrete operations (themselves a data class), which
contain a full description of the manipulations to be performed. The re-
sult is that it is then very easy to maintain a full history of all operations
performed and to implement Undo/Redo capability. One could theoreti-
cally reproduce the entire folding sequence simply from the starting paper
configuration and the history of operations, although this is not how it is
implemented in practice.

3.4 Validity Testing

Whenever a tool executes its operation(s) and makes changes to the model,
all the constraints defined above must be tested to ensure the consistency
of the mesh. This happens to be the most critical step in the pipeline,
as well as the hardest. In fact, a full answer to the question whether a
given crease pattern can be folded flat has been proven to be an NP-hard
problem [2].

This becomes apparent when we test that the model folds flat without
intersecting itself, which requires assessing the relationship between each
polygon and every other polygon. eGami takes a few shortcuts, but it still
remains that the order of complexity is not polynomial but factorial. The
practical result is that as the model becomes more elaborate, the simulation
becomes noticeably slower. It is unlikely that eGami (or any other origami
computer simulation for that matter) would be practical for truly complex
models, at least not until nondeterministic computers are invented!

4 Limitations and Future Development

Besides the complexity issue outlined above, the computer interface itself
raises some limitations. One limitation is that the mouse is a single-control-
point input device that can be equated to “folding with one hand,” with
the other hand limited to holding the paper down. Many real-life origami
operations are defined by multiple points or landmarks, which would require
preselecting additional landmarks ahead of time. This still remains to be
implemented in eGami.

Another interface-related limitation is the difficulty of selecting which
layers are affected in operations that involve multiple layers with alternative
outcomes. An example of this is a reverse fold where the “split” can occur
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anywhere in between a number of different layers. A way of showing and
choosing where this split should occur has yet to be developed.

At this time, all tools fold across single or overlapping fold lines, so
reverse folds, squashes, and petal folds all result in symmetrical folds. The
ability to fold across multiple nonoverlapping fold lines is a feature that is
already under development, and would allow us to create asymmetrical as
well as swivel folds.

The goal of creating animated step-by-step tutorials mentioned ear-
lier also remains to be implemented. Since eGami stores the full folding
sequence of a model, animating that sequence would be relatively straight-
forward, and would be useful for teaching purposes. Libraries of models
could be easily built and distributed with the application, and it is even
conceivable that authors may perhaps someday distribute eGami versions
of their creations.

In spite of its limitations, eGami so far promises to have practical uses
in the origami community. Feedback has been positive and further devel-
opment is certainly warranted.
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Computational Origami System Eos

Tetsuo Ida, Hidekazu Takahashi, Mircea Marin,
Asem Kasem, and Fadoua Ghourabi

1 Introduction
In this paper we describe a software environment for computational origami
[1, 4] called E-origami system, abbreviated to Eos. We have been develop-
ing Eos since 2002 as part of our research in constraint solving and theorem
proving. Using Eos we can create an origami on the screen of a computer,
as if we had folded it by hand with a piece of paper. Eos is intended to be
an integrated tool for constructing and reasoning about origami. So far our
emphasis in the design of Eos is on mathematical rigor. This means that we
consider origami as an art and also as a science of geometrical shapes, which
enables us to reason about them. For this reason, we implemented most
of Eos in Mathematica [6], a language for symbolic computation. Mathe-
matica facilitates the manipulation of shapes constituting an origami form
both symbolically and numerically. Representing the internal data struc-
tures of origami figures symbolically is the first step toward manipulation
and visualization of origami. We found that symbolic representation of the
internal data structures is important for advanced processing of origami
works and for reasoning about them.

The paper is organized as follows. In Section 2, we will give an overview
of Eos. In Sections 3 and 4, we explain the use of Eos with illustrative
examples. In Section 5, we will explain the use of Eos for proving the
correctness of the construction. In Section 6, we explain webOrigami, which
interfaces Eos to the web. We summarize our results in Section 7.
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Figure 1. Overview of Eos.

2 Overview of Eos

Figure 1 shows the software architecture of Eos. Eos consists of two mod-
ules: OrigamiBasics and webOrigami. OrigamiBasics is a Mathematica
package, which implements the algorithms of origami-specific geometrical
computation as well as visualization. The Mathematica notebook is the
user’s interface to OrigamiBasics.

The module webOrigami interfaces OrigamiBasics with a web browser.
It consists of a collection of HTML and JSP pages, and a package called
webOrigamiLoader. Some functionality of OrigamiBasics is thereby made
accessible to users via a web browser.

Eos provides two methods for folding: mathematical fold and artistic
fold. The former fold method is based on the axiomatic definition of origami
folds proposed by Huzita [3]. The latter is the classical artistic method of
folding, which is typically used for constructing origami art pieces.

We have performed a complete implementation of Huzita’s six axioms
and the seventh axiom added by Hatori [2]. Those axioms are declarative
statements about the existence of lines along which we can make a fold. We
transform those axioms into algorithmic statements, which are amenable
for computation by Mathematica. We provide each fold method that cor-
responds to each axiom as a Mathematica function. Table 1 summarizes
the function invocations corresponding to each axiom.
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Function Call Corresponding Axiom
Fold[A,Along→ PQ] Fold along the line passing through points

P and Q, moving point A.

Fold[P,Q] Fold to bring point P to point Q.

Fold[PQ,EF] Fold to superpose lines PQ and EF.
Fold[A, AlongPerpendicular→
{P,EF}]

Fold along the line perpendicular to EF
and passing through P (moving point A).

Fold[P,EF,Through→ Q] Fold to superpose point P and line EF
along the line passing through point Q.

Fold[P,EF,Q,GH] Fold to superpose point P and line EF,
and point Q and line GH, simultaneously.

Fold[P,EF,

AlongPerpendicular→ GH]

Fold to superpose point P and line EF
along the line perpendicular to line GH.

Table 1. Function invocations corresponding to Huzita’s axioms.

We will explain the usage of these functions in Section 3, where we
construct a regular heptagon.

As for the artistic fold method, we have implemented the mountain fold,
valley fold, inside-reverse fold, outside-reverse fold, and squash fold, each of
which is realized by functions MountainFold, ValleyFold, InsideReverse-
Fold, OutsideReverseFold, and SquashFold, respectively. The usage of
these functions is discussed in Section 4.

3 Construction of a Regular Heptagon
In this section, we present a stepwise construction of a regular heptagon
by Eos. We start the construction by calling function BeginOrigami. The
following function call creates the initial origami shape and visualizes it as
shown in Figure 2(a):

BeginOrigami[ {10, MarkPoints→ {"A", "B", "C", "D"}},
FaceColor→ {Hue[.5], Hue[.17]}];

Actual construction begins with the following call:

Fold[A,D, MarkPointOn→ True];

This command performs the fold of the origami to bring point A to point
D. Note also that the MarkPointOn option tells the system to mark the
intersection points with the fold line. To make a single unfold of the current
origami, we call Unfold. Figure 2(b) shows the corresponding result.

We proceed by repeated applications of Fold and Unfold and obtain
the origami shape shown in Figure 2(c). We mark the center of the intended
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Figure 2. Initial sequence of origami folding steps for heptagon construction:
(a) Initial position. (b) After a single fold. (c) After a series of folds and unfolds.
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Figure 3. Multiple folding choices.

regular heptagon by point G, and its first vertex by point H. After that,
we make a fold to superpose point J and line GH, and point N and line
GE, respectively, by:

Fold[J, GH, N, GE];

For this folding action, we have three cases (see Figure 3). Since we
want the third case, we perform again the same call with the additional
parameter Case → 3.

Fold[J, GH, N, GE, Case → 3];

Next, we duplicate point J on other faces in order to keep its projection
point P, and then unfold the origami. This produces the origami shown in
Figure 4(a).

DupPoint["J"]; Unfold[ ];

Fold[H, PT, Through→ G];
Fold[H, PT, Through → G, Case → 1];
DupPoint["H"]; Unfold[];

The second vertex of the regular heptagon lies on the perpendicular of
line GH passing through P. So we make this fold by calling:
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Figure 4. Intermediate construction steps: (a) P, the reflection of J. (b) Fold for
the second vertex. (c) U, the second vertex.
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Figure 5. Final origami (left) and final origami displayed using special viewing
options (right).

Fold[H,AlongPerpendicular→{P,HG},MarkPointOn →BC]; Unfold[];

To obtain the second vertex, we make a fold along a line passing through
G such that H and line PT are superposed. Since two folds are possible, we
choose the first one. Then, we duplicate point H on line PT to obtain the
second vertex U. Figures 4(b) and (c) show some output of the subsequent
constructions.

The remaining vertices can be obtained by simple folds using the sym-
metric nature of the problem. Points W, X, F1, E1, and A1 are constructed
by the following commands:

Fold[H, Along → UG]; DupPoint["H"]; Unfold[];
Fold[U, Along → WG]; DupPoint["U"]; Unfold[];
Fold[B, Along → HG]; DupPoint[{"U", "W", "X"}]; Unfold[];

The final origami contains the heptagon HUWXF1E1A1 shown in Fig-
ure 5.
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Figure 6. InsideReverseFold[{2, 3}, GI] and OutsideReverseFold[KM].

Figure 7. SquashFold[{2, 3}, {GB, GI}, π
4
] and SquashFold[{2, 3}, {GB, GI}, π].

4 Artistic Fold Method

In classical artistic origami, mountain and valley folds are the basic ac-
tions used to create the work. Functions ValleyFold[seg, θ] and Mountain-
Fold[seg, θ] perform valley and mountain folds, respectively, where seg is
the segment along which the fold is made and θ is the angle of rotation of
the paper about the fold line. Usually (and in flat origami), the angle of
rotation θ is π.

InsideReverseFold[{bottom, top}, seg] performs the inside-reverse fold,
which makes a tuck by folding along the segment seg. The pair {bottom, top}
indicates the bottom and top of the faces that are to be folded.

OutsideReverseFold[seg] performs the outside-reverse fold such that
the faces are folded along the segment seg in an opposite direction to wrap
themselves (see Figure 6).

SquashFold[{bottom, top}, {seg1, seg2}, θ] performs a squash fold. The
pair of faces {bottom, top} are the bottom and top of the faces to be folded.
The top face is folded along the segment seg2 by the angle θ, and the
bottom face is folded along the segment seg1 (see Figure 7).

Figure 8 shows the construction of a traditional crane. The construction
uses ValleyFold, InsideReverseFold, and SquashFold.
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Figure 8. Construction of a crane.

5 Automated Proof of Correctness
After constructing an origami shape with Eos, we can proceed to prove the
correctness of the construction. The automated proof of the correctness of
the construction by Eos proceeds in the following steps:

1. We extract the geometrical properties of the construction and trans-
form them into a system of polynomial equalities and inequalities.

2. We model and represent the conclusion to be proved also as a system
of polynomial equalities and/or inequalities.

3. We form the logical implication premise =⇒ conclusion. This is the
theorem to be proved. The theorem means that under the premise
(which is true since we constructed the object by origami folds) the
conclusion holds, which we want to know. We send this formula to
a theorem prover. When the formula contains only equalities and
disequalities, we can use the Gröbner bases method. When the for-
mula contains inequalities, we need more powerful methods. We use
Mathematica implementation of cylindrical algebraic decomposition.

4. Depending on the theorem provers that are used, we obtain the proof
result in a human-readable form or in a form that may need further
processing for easy interpretation.
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Figure 9. Webpage of webOrigami.

6 webOrigami
The idea of webOrigami is to enable origamists all over the world to have
access to part of Eos functionalities without requiring Eos packages and
Mathematica installation. We envisage that using a standard web browser,
an origamist can access the system and enjoy creating origami pieces.

Figure 9 shows a snapshot of a webOrigami dynamic page that we can
create by visiting the URL http://webeos.score.cs.tsukuba.ac.jp.

webOrigami has a collection of special web pages that contain Math-
ematica programs to be executed by a computing server. The programs
in the webpage are executed in the computing server after obtaining the
necessary parameter input created by the user of the web browser. These
programs call functions defined in OrigamiBasics that run on the comput-
ing server. The program part of the web page is replaced by the result of
the computation. The web page newly created in this way is then sent to
the web browser, which renders the page. To enable this interaction, we
use webMathematica [5].

webOrigami offers the following functionalities to users of a web browser
for constructing origami pieces: color selection for both faces of an origami;
choice between classical artistic origami and mathematical origami; three-
dimensional image view of the constructed origami; LiveGraphics3D that
generates origami as a three-dimensional Java object; save/restore of user’s

http://webeos.score.cs.tsukuba.ac.jp.
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session work; save of the construction as Mathematica notebook; a set
of useful functions such as duplicating and deleting points, unfolding and
flipping of an origami, and rolling back to a previous step; and other viewing
options and useful information that can be configured during construction
steps.

7 Conclusion
We have presented the computational origami system Eos, which not only
simulates origami folds, but also proves geometric properties of the con-
struction. We have also explained webOrigami and its features.
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Computational Complexity
of a Pop-Up Book

Ryuhei Uehara and Sachio Teramoto

1 Introduction
Origami is the centuries-old art of folding paper. Recently, some mathe-
maticians and computer scientists have started to study origami. As one
example, a geometric approach to origami design has been taken, resulting
in the TreeMaker program by Lang [8]. As another example, global flat
foldability of an origami has been considered, with the result being a proof
that the general problem to find an appropriate overlap order to fold a
given origami flat is NP-hard [1]. Many other generalizations of origami
and related problems (e.g., map folding) are possible; the reader can find a
comprehensive survey of the complexity of folding an origami and related
results due to Demaine and Demaine [3] and Demaine and O’Rourke [4].

Another hundred-years-old art of folding paper is the pop-up book.
While often considered something primarily for children, contemporary
pop-up book artists have invented many sculptures of great beauty and
intricacy (see, e.g., [9]).

A pop-up book has two major differences from origami: first, it has two
rigid surfaces connected by a hinge (the pages of the book), and the essential
movement of the mechanism depends solely on these two surfaces. Hence
the movement is strongly restricted (see, e.g., [2,7] for possible movements).
Second, a pop-up book form must be functional in both the closed (or
folded) and opened (or unfolded) positions. For a pop-up book designer,
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then, the problem is to design sculptures using paper that lies between two
covers, and to make the book so that it can be opened and closed.

A further constraint arises because to see a page of the book, we usually
open or close the page exactly once. That is, we do not repeat the move-
ments of opening and closing to see a page in the book; the form must be
created based on a single opening motion of the pages. From the viewpoint
of the “computation” of the movement, this point also strongly restricts
the designer.

In this paper, we first give a model for the pop-up book design problem.
Next, we show that both the opening book problem and the closing book
problem are NP-hard. We note that our results do not use the overlap order
technique used in [1] to show the NP-hardness of the foldability problem
of an origami.

2 Definitions
An input of the problem is a paper sculpture contained within a book
structure. That is, a book consists of two (surface) covers that are joined
by a hinge, and some paper objects that are fixed between the covers. A
paper object between the covers consists of faces and creases. In our model,
creases are given as a part of the input, that is, we are not allowed to create
a new crease as part of the opening/closing action. An input crease can be
folded in both directions; it is also allowed to be not folded, i.e., flat.

A given input will be the (possible) design of a pop-up book, which
consists of two surface covers with a fixed fold angle between them, say
θ0, and our objective will be the opening or closing of the book. More
precisely, for a given angle θ1, we aim to make the angle of the book vary
continuously from θ0 to θ1 without making a new crease or introducing a
penetration of one layer by another.

Now, we denote by POP(θ0, θ1) the problem of whether a given pop-up
book with two covers of fold angle θ0 can be opened or closed to fold angle
θ1 without making a new crease. The size of an input (or a pop-up book) is
defined by the summation of the number of lines (or edges of papers), the
number of (predefined) creases, and the number of corners. In this paper,
all borders (and creases) of a paper consist of straight lines. That is, we
do not deal with the case in which the border of a paper makes a curve.

3 Closing a Pop-Up Book
In this section, we show NP-hardness of the closing of a pop-up book. More
precisely, the main theorem in this section is the following:
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Figure 1. REVSTOP gadget.
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Figure 2. CLAUSEc gadget: (a) The three parts. (b)–(c) Composition of the parts
(reverse stoppers are omitted).

Theorem 1. The problem POP(θ0, θ1) is NP-hard for any θ0 > θ1 ≥ 0.

We reduce from a well-known NP-complete problem, NAE3SAT, de-
fined as follows [5, LO3]:

Input: A formula F consists of m clauses c1, c2, . . . , cm of three literals
with n variables x1, x2, . . . , xn.

Output: “Yes” if there is a truth assignment such that each clause has at
least one true literal and at least one false literal.

To reduce the problem, we make three kinds of gadgets called REVSTOP,
CLAUSEc, and VARIABLEc from paper.

The REVSTOP gadget is illustrated in Figure 1; for face A, face B can be
flipped from degree 0 to degree 180 centered at the line pivot.

The CLAUSEc gadget is illustrated in Figure 2. A CLAUSEc consists of three
parts (Figure 2(a)). On the papers A and B, the right upper parts form
REVSTOP. For clarity, they are omitted in Figure 2(b) and (c). Figure 2(c) is
the final form of the CLAUSEc (with REVSTOP).

The VARIABLEc gadget is illustrated in Figure 3; two bottom lines will be
glued to two surface covers, respectively. The neutral position is depicted
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Figure 3. VARIABLEc gadget. (a) Neutral position. (b) True assignment. (c) False
assignment. (d) Illegal position. (e) Another illegal position.

in Figure 3(a). Since the bottom lines have the same height, we have four
possible cases to fold the VARIABLEc flat shown in Figure 3(b)–(e). Among
these four cases, the cases (d) and (e) will be inhibited by other gadgets.
Hence, we will represent the true and false assignments by the forms (b)
and (c), respectively. We call two lines labeled by a and c in the gadget
ridges. When two foldings (b) and (c) are exchanged, the heights of the
two ridges (ex)change 2w.

Now we show how to construct a paper sculpture, that is, the struc-
ture of a pop-up book, from a given formula F (Figure 4). For each
i = 1, 2, . . . , n, the VARIABLEc Xi for xi are glued to the two covers at
the bottom lines. Initially, each VARIABLEc is in a neutral position; its two
ridges are at the same height.

For a clause cj = (�i1 , �i2 , �i3) with �i = xi or �i = x̄i, the CLAUSEc Cj

is connected to VARIABLEc Xi1 , Xi2 , and Xi3 as follows: If �i1 = xi1 , the
bottom line of A in Figure 2 is connected to the right ridge of the VARIABLEc

Xi1 . If �i2 = x̄i2 , the bottom line of C in Figure 2 is connected to the left
ridge of the VARIABLEc Xi2 . The bottom line of B in Figure 2 is connected
to the ridge of the VARIABLEc Xi3 similarly. The connections are done in
a natural way; see Figure 4 for the clause cj = (x1, x2, x̄n). In Figure 4,
the ridges imply x1 is true, x2 is false, and xn is true. We note that each
VARIABLEc is in a neutral position, and all ridges have the same height. Thus,
each CLAUSEc is also in a neutral position as in Figure 2(c). We do not glue
the gadgets to the covers except along the bottom lines of VARIABLEcs. After
connecting CLAUSEcs and VARIABLEcs, each VARIABLEc cannot be folded in the
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Cover

Hinge

...

Make a clause
 gadget here.

Glue two bottom lines
to the covers

X1 X2 Xn

Figure 4. Construction from F .

form in Figure 3(d) and (e) without making a new crease. This reduction
can clearly be done in a time that is polynomial in the size of F .

Now we are ready to show the key lemma:

Lemma 1. The pop-up book constructed above can be closed completely if
and only if there is a truth assignment of F such that each clause has at
least one true literal and at least one false literal.

Proof: Each ridge of a VARIABLEc can be high when it is on the top of the
mountain, and low when it is on the bottom of the valley. To fold each
VARIABLEc flat, one of two ridges is high and the other ridge is low. Hence
the parts A, C, B of a CLAUSEc can take only two states, say, high and low.

We first show feasible cases for a CLAUSEc. When B and C correspond
to the same height, and A corresponds to a different height, C can come
near to B, and then A can be moved up or down 2w height to fold them
flat (Figure 5(a)). On the other hand, when A and B correspond to the
same height and C takes a different height, A and B can go farther to both
sides, and then C can be moved up or down 2w height to fold them flat
(Figure 5(b)). Using the symmetric way, a CLAUSEc can be folded flat when
one of A, B, and C is high and one of them is low.

The other ways to fold them flat can be classified in two cases. The
first case is three different heights; from the form in Figure 5(b), we can
fold A, C, and B flat with three different heights in this order or vice versa.
However, this case is impossible since the three parts can take either high
or low from the restriction by the VARIABLEcs.

The last case is the case that A, B, and C have the same height. This
folding can be done if A and B are folded symmetrically as shown in Figure
5(c) where the face A, which forms a symmetric shape of B, is omitted for
clarity.
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Figure 5. Foldable and unfoldable cases in proof of Lemma 1: face A is omitted
in (c) for clarity; see text for details.

However, this case is also impossible. In this case, two symmetric faces,
marked by R in Figure 5(c), of A and B have to make a 360 degree rotation.
However, the “reverse” movement is inhibited by the REVSTOP in Figure 2(a).

Therefore, the CLAUSEc Cj can be folded flat if and only if one variable
takes the different value from the other two variables. Hence, the pop-up
book can be closed if and only if F is a yes instance of NAE3SAT. �

Proof (of Theorem 1): Now we prove the main theorem in this section. In
Lemma 1, making the gadgets small enough, we can prove the theorem if
θ0 is small enough and θ1 = 0. When θ1 > 0 and θ0 is close enough to θ1,
we make the gadgets between two inner covers, and put some stable stands
between the inner covers and surface covers. On the other hand, when θ1

is large, we join the inner covers and surface covers by a long paper ribbon
with one crease. It is easy to adjust the length of them to fit for given θ1

and θ0. This completes the proof of Theorem 1. �

4 Opening a Pop-Up Book
In this section, we show NP-hardness of the opening of a pop-up book.
More precisely, the main theorem in this section is the following:

Theorem 2. The problem POP(θ0, θ1) is NP-hard for any θ1 > θ0 ≥ 0.

We reduce from the 3SAT, a well-known NP-complete problem [5]. Let
F be an instance of 3SAT, which consists of m clauses c1, c2, . . . , cm of
three literals with n variables x1, x2, . . . , xn. To reduce F , we make two
kinds of gadgets called VARIABLEo and CLAUSEo by paper.

The VARIABLEo is described in Figure 6; that consists of three thick
rectangles and six thin rectangles. Two edges of the same label are glued
as in Figure 6. We note that the resultant gadget is completely flat. Let
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Figure 6. VARIABLEo gadget.
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Figure 7. Handles with VARIABLEo gadget: (a) Two handles are glued. (b) True
case. (c) False case.

h be the common height of the rectangles. Next, two handles are glued to
the VARIABLEo at height h/2 as in Figure 7(a). (Two handles can be folded
flat at the center creases.) Then, there are only two ways to make two
handles 2h move apart as shown in Figure 7(b) and (c). (Note that this
has the same structure as an old Asian wooden toy that consists of several
boards banded like Figure 6, which can be continuously flipped by twisting
a handle.) We call the case (b) true and case (c) false. Now, we attach two
kinds of arms in Figure 8 to the VARIABLEo. (The number of arms will be
described later.) The labeled edges are glued to the corresponding edges
in Figure 6. (To be precise, the left arm is between A and F at a3, and the
right arm is between B and I at b3.) The joints for adjustment are folded
flat as in Figure 8.

Now, from the completely closed VARIABLEo, when we make two handles
a distance 2h apart as in Figure 7(b), the left arm can go down at most
h/2 since it is free except at the edge a3, but the right arm has to go up
h/2 since it is caught by B and C, and pulled up. Hence, the bottom line
of the left arm can go down h by unfolding the joint, and the bottom line
of the right arm cannot go down from the initial position. We note that,
in this case, the left arm can choose to stay at the initial position by using
the joint. Similarly, when we make two handles 2h apart as in Figure 7(c),
the right arm can go down h, and the left arm cannot go down at all.

The CLAUSEo is described in Figure 9. A CLAUSEo consists of three ribbons
P, Q, and R. The ribbon R has length 6h, and both sides are glued to the
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Figure 8. Arms for VARIABLEo gadget.
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Figure 9. CLAUSEo gadget.

covers at distance d from the hinge. The ribbon P joins the hinge and one
of the valley on R, and the ribbon Q joins the hinge and another valley
on R.

Now, we can construct a paper sculpture that is the design of a pop-up
book from a given formula F . For each i = 1, 2, . . . , n, the VARIABLEo Xi for
xi are glued to two covers by two handles at distance 2d from the hinge.

For a clause cj = (�i1 , �i2 , �i3) with �i = xi or �i = x̄i, the CLAUSEo Cj

is connected to VARIABLEo Xi1 , Xi2 , and Xi3 as follows: If �i1 = xi1 , one of
three mountains on the ribbon R of Cj is connected to the bottom line of
the left arm of Xi1 . If �i2 = x̄i2 , another mountain on R is connected to the
bottom line of the right arm of Xi2 . The last mountain of R is connected
to Xi3 similarly.



�

�

�

�

�

�

�

�

Computational Complexity of a Pop-Up Book 303

Hence, Xi has li left arms and ri right arms, where li and ri are the
number of occurrences of xi and x̄i in F , respectively.

We note that, with suitable choice of h and d, all gadgets can be folded
flat, and the resultant pop-up book can be closed completely. The reduction
can be done in a time polynomial in the size of F .

Now we are ready to show the key lemma of this section:

Lemma 2. The pop-up book constructed above can be opened if and only if
there is a truth assignment of F such that each clause has at least one true
literal.

Proof: We try to open the book with the assignment for each VARIABLEo.
For each clause cj , if at least one of three literals is true, the corresponding
arm comes down to Cj , and hence it can be opened to θ with d sin θ = h.
However, if none of them are true, no arms come close to Cj , and hence
it cannot be opened. Hence F is satisfiable if and only if the pop-up book
can be opened to θ. �

Proof (of Theorem 2): Now we prove the main theorem. In Lemma 2, let-
ting d � h, we have the theorem for POP(0, θ1) for small θ1 > 0. We use
the same trick in Section 3 for the other cases. This completes the proof
of Theorem 2. �

5 Concluding Remarks
For the problems for an origami and a pop-up book, while we have shown
that they are NP-hard, we did not show that they are in NP. In fact, the
problems might be PSPACE-hard in some models, since the underlying
motions seem to be similar to the movement problems for two-dimensional
linkages, which is known to be PSPACE-hard due to Hopcroft, Joseph, and
Whitesides [6].
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Concepts and Modeling of a
Tessellated Molecule Surface

Elias Halloran

1 Background
The use of repeating folding patterns has produced polyhedral surfaces
with remarkable geometric properties. These surfaces have both flat-folded
states and three-dimensional folded states and provide solutions to pack-
aging problems where large surfaces must be deployed from small areas.

Moreover, folding polyhedral surfaces have a variety of uses. For exam-
ple, Miura made use of one such surface in his design of maps and atlases [5]
and Z. You made use of another such surface in his design of an expandable
heart stent [4, 7]. In fact, such surfaces have also been found operating in
nature. In a paper on leaf forms, H. Kobayashi and others [3] discussed
how leaves of Carpinus Betulus and Fagus Sylvaticus deployed similarly to
a polyhedral surface called Miura-ori [6].

This paper will focus on the surface associated with You’s expandable
origami stent. The design of this surface has a history: although there may
have been several, if not many, independent discoveries of the crease pattern
for this surface (see Figure 1), the first published appearance of the crease
pattern was in 1982 by Fujimoto [2], who used it to make rigid cylinders.
However, this rigidity was not too pronounced. You showed that although
Fujimoto’s cylinder was rigid, it deployed with small deformations [4, 7]
and could function as a stent when made with semirigid materials. With
that said, this type of cylinder rigidity will not be discussed in this paper;
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Figure 1. The crease pattern of a tessellated waterbomb.

while the crease pattern shown in Figure 1 was studied by You with a
cylindrical connection [7], this paper will explore the same crease pattern
and corresponding polyhedral surface without the cylindrical connection.

2 Introduction
Many polyhedral surfaces using repeating folding patterns work on a com-
mon principle. By tessellating origami molecules in a crease pattern, basic
origami folds produce complete surfaces. Our goal in this paper is to discuss
one of these surfaces called a tessellated waterbomb surface.

Definition 1. A tessellated waterbomb surface or tessellated waterbomb for
short is a polyhedral surface consisting of interlocking waterbomb molecules
whose crease pattern is arranged as shown in Figure 1.

Such tessellated waterbomb surfaces have many folded states and as
they change shape they morph between these folded states. For example,
Figure 2 shows a basic empirical result: elongating the highlighted region
of a closed model as shown deploys the tessellated waterbomb, giving it
a cylindrical shape. As we will show, this highlighted region in Figure 2,
called a line of latitude, controls that action.
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Figure 2. Deploying a tessellated waterbomb.

Definition 2. A line of latitude or latitude for short is a string of waterbomb
molecules connected laterally along axial lines as highlighted in Figure 2.

The pertinence of this naming scheme is shown within another experi-
mental tessellated waterbomb in Figure 3: when placed in a circular shape
the many lines of latitude of a tessellated waterbomb appear to shrink and
expand with some similarity to the latitudinal lines around the earth.

The body of this paper will be devoted to further discussing the rela-
tionship between a latitude and the regions around it. In order to show
that a line of latitude controls the action shown in Figure 2, we will assume
a line of latitude has been put in a rigid folded state in which all vertex
points along that latitude have been fixed in space. Then we will show
that fixing these points fixes an entire region, called a rigid neighborhood ,
around that latitude. Thus, if a latitude is put into a rigid folded state,
then a neighborhood around that latitude must also be rigid.
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Figure 3. Justification of latitude nomenclature.

3 Surface Analysis

3.1 Rigidity and Hinges

Definition 3. Every crease in a three-dimensional folded structure connects
two faces, and together a crease and the two faces it borders make a hinge.

A selection of three types of hinges found within the tessellated water-
bomb surface, labeled as R, G, and B, are shown in Figure 4. With the
exception of a special class of exceptional cases for the B hinge, these three
hinges are in a rigid folded state when the position of their base segments
( �A, �C in Figure 4) defined by three points (�a,�b,�c in Figure 4) are fixed in
space.

Because of this relationship, we may define functions that output the
missing tip of hinges given the input values of three specific points for
each of R, G, and B. These functions, called R, G, and B, are defined in
Equations (1)–(3), respectively, with labels shown in Figure 4:

G(�a,�b,�c) =
⇀

b + �K, (1)

R(�a,�b,�c) =
⇀

b + �Q, (2)

B(�a,�b,�c) =
⇀

b + �M. (3)

Each of functions R, G, and B, respectively, operates on three domain
points on the tessellated waterbomb (one point on each side of a hinge
crease, one point on the hinge crease) and give the position in space of a
fourth range point on the hinge crease.
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Figure 4. Hinge functions R, G, and B.

As an aside: for the course of this paper, the explicit definition of
functions R, G, and B are less important than the observation that they
exist. However, since the explicit definitions of these functions do exist,
are not too complicated, and would be useful for calculating the curvature
and position of points within rigid neighborhoods in a practical setting, it
is worth mentioning that in all but a few exceptional cases vectors �Q, �M ,
and �K can be written in the form e(�C + �A) + f(�C × �A), where e and f
take on varying scalar values. For example, suppose we wanted to calculate
the value of �M that is associated with our B hinge; we would first define
�C = �c −�b and �A = �a −�b to form the base vectors of the hinge, then let
�M = ‖�C× �A‖ | �A|, since �M has the same magnitude as its base segments
and is perpendicular to them. Thus, for our B hinge, we would have e = 0
and f = | �A|/|�C × �A|.

What is most important is that these hinges and their functions, R, G,
and B, fully tessellate the crease pattern plane in a variety of useful ways
(for example, see the tessellation in Figure 5, which will be put to work
in Figure 6) and may therefore be used to show (as planned) that rigidity
extends from one latitude to a neighborhood of higher and lower lines of
latitude.
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Figure 5. Tessellation of hinge functions.

3.2 Rigidity Neighborhood of a Latitude

Suppose a latitude has been given a fixed position in space. Iterative use
of functions R, G, and B can extend what is known to be rigid from just
that latitude to a neighborhood around it.

A snapshot is shown in Figure 6: beginning with a line of latitude, R,
G, and B are applied wherever possible so that larger and larger portions
of our given tessellated waterbomb surface are fixed in space, stopping only
when there are no domain points that R, G, and B can operate on.

Figure 6. Iterative use of R, G, and B.
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(a) (b) (c)

(d) (e)

Figure 7. Rigid neighborhoods of several latitudes: (a) 4, (b) 5, (c) 6, (d) 7, and
(e) 10.

Definition 4. A latitude of size n is a line of latitude consisting of a string
of n waterbomb molecules.

The more general result is shown in Figures 7(a)–(e): if we highlight
latitudes of several different sizes, then find the rigid neighborhoods around
them using compositions of R, G, and B, we get Figures 7(a)–(e), which
show the rigid neighborhoods around latitudes of size 4, 5, 6, 7, and 10,
respectively.

Definition 5. A rigid neighborhood of a latitude is a region of a tessellated
waterbomb surface that is fixed in space whenever a given latitude is fixed
in space.

Note that these rigid neighborhoods can be shown in three-space. For
example, the rigid neighborhood of a latitude of size 4 shown in Figure 7(a)
corresponds to the region highlighted in Figure 8 when its latitude is put
in the appropriate shape.

3.3 Analysis of Rigid Neighborhoods

Figure 7 shows the rigid neighborhoods of several different sizes of lati-
tudes. This section will provide an informal argument as to why these
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Figure 8. A rigid neighborhood in three-space.

rigid neighborhoods are the largest rigid neighborhoods fixed in place by
their latitudes. The argument relies on two considerations—a certain count
of creases emanating from the vertex points along the boundary of rigid
neighborhoods, and a previous result discussed by Balkom [1].

Definition 6. The exterior count of a vertex on the boundary of a rigid
neighborhood W is the number of creases emanating from that vertex that
are both outside of W and off the boundary of W.

An illustration of an exterior count of the many vertex points of W is
shown in Figure 9 where Figure 7(a) has been redrawn with circles where
counts are made. Here, identical to all the other rigid neighborhoods found
in Figure 7, the exterior count of each vertex on the boundary of W has a
value of 2 or greater.

WW

Figure 9. The boundary of a rigidity neighborhood.
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If the exterior count of each vertex along the boundary of W is 2 or
greater, then each counted vertex has at least four dihedral angles that are
not fixed to any definite value. This implies that the region around W
is physically flexible and not rigid since the mobility of a vertex with m
creases is m − 3 [1].

In other words, if the exterior count of vertex points along W were 1
then there would be hinge functions that could extend rigidity, but since
the exterior count of each vertex along the boundary of W is respectively
2 or greater—assuming that rigidity must come from somewhere already
rigid—each of the neighborhoods in Figure 7 is the largest neighborhood
fixed by its corresponding latitudes.

4 Conclusions and Future Research
The purpose of this research was to investigate a latitude as a means for
controlling the shape of a tessellated waterbomb surface. After assuming
the latitude was in a fixed folded state, three types of hinges and their
associated functions were used to find what area around the latitude was
also fixed in place. Consequently, we have shown that a latitude does in
fact control the shape of a tessellated waterbomb surface, though not the
entire tessellated waterbomb surface, and we provided some justification as
to why this is the case.

Our findings suggest a variety of future results. There are two that
could presumably be shown using the methodology within this paper. First,
the correspondence between latitudes and their rigid neighborhoods can be
extended to tessellated molecule surfaces with some generality, for example,
try a tessellated fish base surface. Second, the position of points within
more general rigid neighborhoods may be defined quantitatively. Thus,
the applications of tessellated molecule surfaces may be further studied
and properties such as localized curvature fully defined.
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Folding Paper Shopping Bags

Devin J. Balkcom, Erik D. Demaine, Martin L. Demaine,
John A. Ochsendorf, and Zhong You

1 Introduction
In grocery stores around the world, people fold and unfold countless pa-
per bags every day. The rectangular-bottomed paper bags that we know
today are manufactured in their three-dimensional shape, then folded flat
for shipping and storage, and later unfolded for use. This process was
revolutionized by Margaret Knight (1838–1914), who designed a machine
in 1867 for automatically gluing and folding rectangular-bottomed paper
bags [12]. Before then, paper bags were cut, glued, and folded by hand.
Knight’s machine effectively demolished the working-class profession of
“paper folder.”

Our work questions whether paper bags can be truly (mathematically)
folded and unfolded in the way that happens many times daily in reality.
More precisely, we consider foldings that use a finite number of creases,
between which the paper must stay rigid and flat, as if the paper were
made of plastic or metal plates connected by hinges. Such foldings are
sometimes called rigid origami, being more restrictive than general origami
foldings, which allow continuous bending and curving of the paper and thus
effectively uncountably infinite “creasing.” It is known that essentially
everything can be folded by a continuous origami folding [7], but that this
is not the case for rigid origami.

We prove that the rectangular-bottomed paper bag cannot be folded
flat or unfolded from its flat state using the usual set of creases that are
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Figure 1. A shopping bag with the traditional crease pattern.

so common in reality—in fact, the bag cannot move at all from either its
folded or unfolded state.

The difficulty with folding can be removed by shortening the bag—for
example, by making a horizontal cut all the way around the bag at a height
of d/2, with dimensions as shown in Figure 1. The pattern of creases on
the shortened bag resembles that of cardboard boxes department stores use
to pack sweaters or collared shirts.

One way to understand the difference between short bags and tall bags
is to make a vertical cut along the edge between the right and back sides
of the bag, and another along the edge between the left and back sides. As
the cut bag is folded, the cut sides separate from each other by as much as
22◦. Adding additional paper between the cut edges might therefore allow
the bag to be folded.

Finally, we prove that rigid folding is possible without adding paper.
If all of the dimensions of the bag are equal, then the pattern of diagonal
creases shown in Figure 10(b) can be used to “twist” the bag flat. If the
dimensions are not equal, a sequence of “telescoping” folds, as shown in
Figure 12, shortens the bag until it can be collapsed. (These are discussed
in more detail later.)

2 Related Work
In the mathematical literature, the closest work to rigid folding is rigid-
ity. The famous Bellows Theorem of Connelly, Sabitov, and Walz [5] says
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that any polyhedral piece of paper forming a closed surface preserves its
volume when folded according to a finite number of creases. In contrast,
as suggested by the existence of bellows in the real world, it is possible
to change the volume using origami folding. Even more fundamental are
Cauchy’s rigidity theorem, Aleksandrov’s extension, and Connelly’s exten-
sion [3], which all establish an inability to fold a convex polyhedron using
a finite number of creases. (In Cauchy’s case, the creases must be pre-
cisely the edges of the polyhedron; in Connelly’s case, any finite set of
additional creases can be placed; Aleksandrov’s theorem is somewhere in
between.) Another result found by Connelly1 is that a positive-curvature
corner (the cycle of facets surrounding a vertex in a convex polyhedron)
cannot be turned “inside-out” no matter how we place finitely many addi-
tional creases; this result answers a problem of Gardner [8]. In contrast,
a paper bag can be turned inside-out with an origami folding (and in real
life) [4].

Few papers discuss rigid origami directly. Demaine and Demaine [6]
present a family of origami “bases” that can be folded rigidly. Streinu and
Whiteley [15] proved that any single-vertex crease pattern can be folded
rigidly—up to but not including the moment at which multiple layers of
paper coincide. Balkcom and Mason [1] demonstrate how some classes of
origami can be rigidly folded by a robot.

Huffman [10] and McCarthy [13] derive equations describing the rela-
tionship between angles of four creases that meet at a vertex. Hull and
belcastro [2] describe the relationship for vertices where several creases
intersect using a product of rotation matrices; we solve these equations
explicitly to compute three dependent crease angles as a function of the
other crease angles.

If a rigid folding is possible, the equations relating crease angles must
have a solution along the entire folding trajectory. The connectedness of
the space of solutions has been analyzed by Kapovich and Millson [11];
our approach is based on work on planar closed chains by Milgram and
Trinkle [14].

3 Model and Definitions
We take a simple polyhedral model of the shopping bag. The facets are
rigid and infinitely thin; facets may become coplanar during folding, but
are not permitted to pass through one another. Creases are assumed to
be line segments, and their positions relative to the facets that they bound
are fixed.

1Personal communication, 1998.
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Several creases may meet at a vertex; we will call the angles between
adjacent creases meeting at a vertex sector angles, and the angles between
adjacent facets across a crease dihedral angles. The sector angles depend
on the design of the bag, which we will call the crease pattern, while the
dihedral angles describe the current configuration of the bag.

4 Nonfoldability of the Traditional Crease Pattern

Figure 1 shows the traditional crease pattern for a shopping bag. The
height of the bag is h, the width is w, and the depth is d. We assume that
h > d/2; this ensures that the diagonal creases on the right and left sides
of the bag meet.

We can distinguish three types of vertices; see Figure 2. The vertices in
the middle of each of the right and left sides of the bag have sector angles of
(90◦, 135◦, 90◦, 45◦). There is a vertex along each of the two of the upright
edges of the bag, with sector angles (90◦, 90◦, 90◦, 90◦). There are vertices
at the corners of the bag with sector angles (90◦, 90◦, 45◦, 45◦).

Some pairs of vertices share a crease; Figure 3 shows how vertices of
each type are connected to one another.

The sequence of sector angles around a vertex determines a relationship
between the dihedral angles at creases around the vertex. Huffman [10] de-
rives a relationship between opposite dihedral angles m and n for a degree-
four vertex,

1 − cosn =
sin A sin B

sinC sinD
(1 − cosm), (1)

where A, B, C, and D are sector angles, as shown in Figure 4.

(a) (b) (c)

Figure 2. The three types of vertices found in a shopping bag: (a) Side vertex.
(b) Edge vertex. (c) Corner vertex.
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Figure 3. The vertex graph for a shopping bag. The nodes represent edge, side,
and corner vertices, and the edges represent creases that connect vertices.

p

q

m
n

Figure 4. Huffman’s notation for the relationship between four creases. A, B, C,
and D are sector angles; m, n, p, and q are dihedral angles.

For both side and edge vertices, A + C = 180◦, and B + D = 180◦.
Equation (1) can be simplified:

cosn = cosm.

We can use this relationship between dihedral angles to show that a
shopping bag with the traditional crease pattern cannot be rigidly folded.

Theorem 1. A shopping bag with the traditional crease pattern cannot be
rigidly folded.

Proof: Consider an edge vertex. The two vertical creases that meet at this
vertex have crease angles that are equal in magnitude; if the magnitude is
not 0 or π, then the two horizontal creases from this vertex must be one
of {0, π}. Choose a crease that is 0 or π, and connected to another vertex.
Walk the crease network; each of the left and right sides is flat (open or
folded), and each of the corners is either fully open or collapsed. �
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5 Folding Short Bags
On each of the left and right sides of the traditional shopping bag, there
are two creases that make a 45◦ angle with the bottom edge. If h ≤ d/2,
then the creases on each side do not intersect on the interior of the facet;
we say the bag is short.

Short bags, unlike tall bags with the traditional crease pattern, can be
rigidly folded flat. The proof has three components. First, we conjecture
a solution: a continuous trajectory of dihedral angles that starts with the
open configuration and ends at a flat configuration. We then show that
the solution is topologically consistent—i.e., that all configurations along
the trajectory satisfy the constraints among crease angles imposed by the
geometry of the paper and the crease pattern. Finally, we show that the
paper does not pass through itself at any point along the trajectory.

5.1 Configuration-Space Topology

The configuration of a rigid origami mechanism is completely determined
by the dihedral angles, but not all choices of dihedral angles satisfy the
constraints imposed by the geometry of the paper and the crease pattern.

Finding a trajectory from start to goal that satisfies the constraints can
be difficult. The space of configurations may have multiple components, or
sections of the configuration space may be joined only at specific regions
along their boundaries. For the tall shopping bag described, the possible
configurations are fully open and fully closed ; the configuration space is a
pair of isolated points.

In this section, we describe a geometric method for analyzing the con-
nectedness of the configuration space for a single vertex at the intersection
of four creases; this method is based on work by Trinkle and Milgram [16].
If the configuration space has only one component, then there exists a
topologically consistent path between every pair of start and goal configu-
rations.

The technique can also be used to determine whether a given path
is topologically consistent. For the purposes of this analysis, we allow
paper to pass through itself; we deal with self-intersections separately in
the foldability proofs below.

Figure 5 shows an example. We first cut the paper along one of the
creases, as shown. If the crease angles were known for creases 1 and 2,
then the configuration of the mechanism would be completely determined.
However, there is an additional constraint—that the crease angles of the
uncut creases be such that the edges of the cut crease “line up.” We will
therefore analyze the behavior of a point on the cut crease (points A and
B in the figure), and see how it restricts motion of the other creases.
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Figure 5. A degree-four vertex, cut along crease 3.

We label the creases as shown in Figure 5, cut crease 3, and rigidly
attach the facet between creases 1 and 4 to the ground. Consider the
motion of the point A as the paper is allowed to fold along creases 1 and
2. Point A is a fixed distance from the central vertex, and can move on
the surface of a sphere. Its motion is also bounded on the left by a plane
normal to crease 1, and containing point A. There are two configurations
of crease angles 1 and 2 that allow point A to reach most locations on
the sphere: crease 2 may be convex, or concave. There are some locations
that can only be reached in one way: those that fall on the plane normal
to crease 1 and containing point A. There is also one point that can be
reached in an infinite number of ways, at the intersection of crease 1 and
the sphere.

Now consider point B, that rotates around crease 4. The reachable
locations form a circle that lies in a plane perpendicular to crease 4.

If the cut is removed, point A and point B must touch; we will call this
point AB. AB must move on the intersection of the sphere cut by a plane
that A moves on, and the circle that B moves on. The locations that AB
can reach therefore form an arc of a circle.

We can describe the space of possible configurations of the paper by
the ways in which point AB can reach each point on the arc. There are
two configurations that reach each point on the interior of the arc (crease 2
may be either concave or convex). There is only one way in which each of
the endpoints of the arc can be reached—crease 2 is flat at each endpoint.

Each point on the arc corresponds to a slice of the space of configu-
rations of the paper, described by crease angles 1 and 2. Starting at one
endpoint of the arc, the slice is a single configuration. Moving continuously
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null-null

null-transverse

null-tangent

transverse-transverse

tangent-transverse

radzero-transverse

tangent-tangent
radzero-tangent

radzero-radzero

transverse-null

tangent-null

transverse-tangent

radzero-null

Figure 6. Thirteen of the sixteen possible ways a circle can intersect the workspace
of an open three-bar spherical chain. For each class, the ellipses on the left show
the workspace; the circles on the right show the configuration space (the pre-
image of the workspace). There are seven distinct topological classes of configu-
ration space.

along the arc, each new slice corresponds to two configurations. At the final
slice (at the other endpoint of the arc), there is only one configuration. The
topology of this shape, and thus of the configuration space, is a circle—a
one-dimensional manifold with one component.

In general, the set of reachable locations of point A is a sphere bounded
by two planes perpendicular to crease 1. The intersection of this surface
with the circle reachable by point B can be a circle, an arc of a circle, or two
arcs of a circle. Depending on the shape of this workspace, and the ways in
which point AB can reach each point on the workspace, the configuration
space may have one of several different structures, as shown in Figure 6
and described as follows:
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• Null intersection. One side of the circle may be completely contained
in the workspace. The pre-image of an arc completely contained
within the workspace is two arcs.

• Transverse intersection. One side of the circle may be cut by the
bounding plane at two points. The pre-image of an arc touching the
bounding plane is an arc.

• Tangent intersection. The circle just touches a bounding circle of
nonzero radius. The pre-image of an arc tangent to the bounding
circle is a pair of arcs touching at a single interior point.

• Radius-zero intersection. The circle touches the bounding plane at
one of the poles of the sphere on the x axis. The pre-image of this
point is a circle of configurations corresponding to spinning links
about the x axis; the pre-image of an arc through this point is two
arcs connected by a circle.

We ignore the case where the circle is completely contained within the
boundary of the open workspace.

5.2 Proof of Foldability

Theorem 2. Every short shopping bag can be rigidly collapsed.

Proof: Consider a corner vertex. If we ignore self-intersections, we can see
that the configuration space is a single connected component as follows.
Let the links be numbered as shown in Figure 7, and anchor link 1. The
workspace of the endpoint of link 3 is the portion of the sphere bounded
by two halfplanes; |x| <

√
2/2. The workspace of the endpoint of link 4 is

a circle of radius
√

2/2, centered at the point (0,−1). The pre-image of the
intersection of these two workspaces is a pair of circles connected at two
points. (These points correspond to two collapsed configurations.)

We choose the collapsed configuration in which all dihedral angles are
π, and choose a trajectory that moves to this configuration directly (i.e.,
without passing through the other collapsed trajectory). We let θ1 increase
monotonically from π/2 to π. From Equation (1), θ2 = ±θ4; for the tra-
jectory we have chosen, θ2 = θ4. θ1 also increases monotonically from π/2
to π for this trajectory.

Adjacent facets can only collide if the angle between them is zero or π;
no crease angles are 0 or π except at the start and end of the trajectory.
Intersections between facets 1 and 3 must first occur when the θ2 or θ3 axis
touches the z = 0 plane; since θ1 and θ4 are positive except at the end of
the trajectory, there are no intersections. The case of intersection between
facets 2 and 4 is symmetric.
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Figure 7. A corner of the short bag, cut between two facets and anchored to the
ground.

The four corners of the bag are connected by creases along the bottom
of the bag, and all four corners fold simultaneously and symmetrically; the
condition that h ≤ d/2 is sufficient to ensure that no facets that do not
share a vertex can intersect. �

6 Folding Tall Bags
Short bags can be folded; this suggests several techniques for folding taller
bags. We consider adding new paper between creases, and adding more
creases.

6.1 Folding by Adding Material

Figure 8(a) shows a bag whose height is greater than d/2. Three horizontal
creases have been added at a height of d/2, forming a complete rectangle
of creases that circumscribe the bag. Experimenting with a card model
reveals that the edges of the bag turn to split open during the folding. In
other words, gaps, as those shown in Figure 8(b), appear during the folding
process. We can compute the size of the gaps.

Consider a tall bag with edges above height d/2 being cut open. Figure 8
shows a partially folded bag. A set of vectors, a3, a4, a5, and a6, are
introduced to present the creases and the edges of panels that are slit
open. We choose a right-handed Cartesian coordinate system as shown,
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(a)

(gap)
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ya6

θ

ϕ

x

z

(b)

Figure 8. A tall bag. (a) The crease pattern. (b) Partially folded bag when some
of the edges are cut open.

with origin at vertex O, the x axis along the bottom front edge, and the
y axis in the plane of the bottom of the bag. This can be expressed as
follows:

a3 = (1, 0, 0),

a4 =
OE − OD

|OE − OD| = (− cos δ, 1 − cos θ, sin δ − sin θ).

Since the slit edges are perpendicular to both FD and DH, a3 · a5 = 0, and
a4 · a6 = 0. Therefore,

a5 = (0, cosω, sinω),

a6 = (
sin δ − sin θ√
1 − 4 sin4 θ/2

, 0,− cos δ√
1 − 4 sin4 θ/2

),

where ω is a variable describing the rotation between the portions of the
side panel above and below DH. Denote by ϕ the angle between a5 and a6.
Since cosϕ = a5 · a6,

cosϕ =
sin ω cos δ√
1 − 4 sin4 θ/2

=
sinω

√
1 − tan2 θ/2√

1 − 4 sin4 θ/2
. (2)

While folding the bag with slit edges, it is always possible to adjust ω
so that a5 and a6 become the closest, or ϕ is minimum. It is obvious from
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C

DE

O

11o

Figure 9. A tall shopping bag with material added to allow folding.

Equation (2) that the minimum is obtained when ω = π/2:

cosϕmin =

√
1 − tan2 θ/2√
1 − sin4 θ/2

.

Plotting this curve, we find that the maximum gap angle during folding
is about 22◦. This solution indicates that the box can be folded rigidly
provided that additional material can be found to fill the gap; Figure 9
shows a conjectured solution.

6.2 Folding Cubical Bags by Twisting

In the special case that d = h = w, a twist folding scheme can be applied.
The crease pattern is shown in Figure 10(a) and a card model is displayed
in Figure 10(b).

The scheme is not applicable to taller bags with a square base—during
the fold, corner and midpoints on the top edges of the bag are not coplanar

(a) (b)

Figure 10. The twist folding of a cubical bag. (a) Crease pattern. (b) Card model.
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in spite of the fact that they become coplanar in the fully folded and fully
open states. This makes it difficult to join two neighboring portions of
the bag when the same folding scheme applies to both portions. The twist
folding scheme is not applicable to bags with a rectangular base due to lack
of rotational symmetry.

6.3 Folding by Telescoping

We have considered a few special cases; in this section we show that any
tall shopping bag can be collapsed with the addition of a finite number of
fixed creases. Theorem 3 will show the procedure. In order to verify the
procedure, it is necessary to show that facets do not collide during folding;
the primary method for showing this will be to consider the volumes that
might be swept by each facet during folding, and to show that these volumes
do not intersect.

Theorem 3. A tall shopping bag can be collapsed with the addition of a finite
number of creases.

Proof: The approach is to shorten the box, by adding creases that allow
the top to be rolled inside the box. Once the box is short, Theorem 2 allows
the box to be collapsed. We consider a single edge of the box, with crease
pattern shown in Figure 11.

The crease between facets 1 and 2 is fixed at 90◦. The fold takes place
in three steps. During step 1, we fix crease 5, and drive crease 3 from 180◦

to 0◦, choosing the solution such that crease angle 1 is positive, crease angle
2 is negative, and crease angle 4 is positive. During step 2, we fix crease
3 at 0◦, and drive crease 1 to 180◦. Crease angles 2 and 4 do not change
sign, and crease angle 5 becomes positive. During step 3, we fix crease 1 at
180◦, and drive crease 3 to −180. Crease angles 2 and 4 return to 0◦, and
crease angle 5 reaches 180◦. Table 1 summarizes the crease angles after
each step.

Ignoring self-intersection, the existence of a trajectory of this form can
be verified using the graphical method for determining the topology of a
degree-four spherical linkage, since each of the steps fixes two of the six
creases (the crease between facets 1 and 2, and one other).

θ1 θ2 θ3 θ4 θ5

Start 0◦ 0◦ 90◦ 0◦ 0◦

After step 1 +, < 180◦ −, > −180◦ 0◦ +, < 180◦ 0◦

After step 2 180◦ −, > −180◦ 0◦ +, < 180◦ +, < 180◦

After step 3 180◦ 0◦ −180◦ +, < 180◦ 0◦

Table 1. A trajectory for shortening an edge of a shopping bag.



�

�

�

�

�

�

�

�

328 III. Computational Origami

Figure 11. An edge of the shopping bag with creases added to allow folding. Facets
1 and 2 are rigidly connected; there are joints (creases) between all other pairs
of adjacent facets.

Figure 12. Procedure for shortening a rectangular tube.

To prove that self-intersection does not occur, consider pairwise inter-
sections of facets. No two adjacent facets can collide unless the angle of
the crease between them crosses 180◦; this never happens for our choice
of trajectory. Table 2 summarizes the analysis of collision possibilities for
nonadjacent facets.

A single edge can be rolled inside the box using the procedure above; to
shorten the box, place symmetric crease patterns at each edge. Figure 12
shows an animation. For a tall box, or a box with dissimilar length and
width, it may be necessary to perform a number of shortenings before
collapsing the box. Note that the height removed during a shortening can
be as small as desired, so it is possible to shorten the box to any desired
height. �
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facet(s) vs. facet(s) Don’t intersect because:
Step 1 3 1, 6 Workspace of 3 is a right circular cone that

intersects plane of facets 1, 6 only at origin.
3 5 Workspaces of 3, 5 right circular cones,

sep. ≥ 90◦.
4 1, 2, 6 Facet 4 is bounded by two creases. Crease

2 is inside the box for θ1 ≥ 0, and crease 3
is as well for θ5 = 0, θ4 ≥ 0.

5 2 Workspace of 5 is a right circular cone that
intersects plane of facet 2 only at origin.

5 6 Facet 6 is coplanar with facet 1.

Step 2 4, 5 1, 2 Crease 2 and crease 4 are inside the box
for θ1 ≥ 0 and θ5 ≥ 0.

3 1 Cone workspace vs. plane; intersection is
origin.

3 6 Right circular cone workspaces sep. ≥ 90◦.
6 2 Cone workspace vs. plane; intersection is

origin.

Step 3 6 2, 3 Cone workspace vs. plane.
6 4 Right circular cone workspaces sep. ≥ 90◦.
5 1, 2, 3 Creases 3, 4 inside the box for range of

θ2, θ5.
4 1 Cone workspace vs. plane.
4 6 Right circular cone workspaces sep. ≥ 90◦.

Table 2. Summary of collision possibilities for nonadjacent facets while shortening
the tall shopping bag.

7 Relationships Among Crease Angles for
Degree-n Vertices

Huffman gives a relationship between opposite dihedral angles for a degree-
four vertex, and we have described a graphical method for analyzing the
connectedness of the space of configurations for vertices, assuming that
self-intersection of the paper is ignored.

In order to permit simulation and analysis of more complicated origami
mechanisms, we expect it to be useful to be able to determine the relation-
ship between dihedral angles around vertices of higher degree. This section
presents a parameterization of the configurations of the paper around a ver-
tex; this parameterization was used to build a simulator for rigid origami,
which was used to generate the frames shown in Figure 12.

We choose n−3 arbitrary independent crease angles as input, and solve
for the remaining crease angles. (In the special case where the dependent
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Figure 13. Solving for three dependent crease angles.

crease angles are sequential, a simpler solution is possible using the inverse
kinematics approach described in [9].)

Figure 13 shows the procedure; ϕ1, ϕ2, and ϕ3 are the crease angles
to be solved for. First cut the crease corresponding to ϕ3, and flatten the
paper. For any valid configuration of the paper, the two cut edges must
line up in such a way that they could be reglued together. Let pl and pr

be points along these edges a unit distance from the vertex.
Anchor the facet clockwise from the ϕ3 crease, and choose a coordinate

system with origin at the vertex and with the x-axis along the ϕ1 crease.
The point pr lies at a fixed position within the z = 0 plane in this coordinate
system.

If pl were permitted to move, then its location would be given by a
sequence of rotations about each of the creases. Let Rx and Rz be matrices
describing rotation about the x- and z-axes respectively. Let R1, R2, and
R3 be matrices corresponding to rotations about the independent crease
angles, as shown in Figure 13.

The closure constraint can now be written as

R1Rx(ϕ1)R2Rz(α)Rx(ϕ2)Rz(−α)R3pl = pr. (3)

Our goal is to solve for ϕ1 and ϕ2, given R1, R2, and R3, which may be
easily computed from the independent crease angles and the geometry of
the paper. Rewrite Equation (3):

Rx(ϕ1)ZRx(ϕ2)a = b, (4)
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where Z, a, and b may be computed as

Z = R2Rz(α),
a = Rz(−α)R3pl,

b = RT
1 pr.

Multiplying out Equation (4) gives three equations, the first of which is

k3 = k1 cosϕ2 + k2 sin ϕ2, (5)

with k1, k2, and k3 computed to be

k1 = z12a2 + z13a3,

k2 = z13a2 − z12a3,

k3 = b1 − z11a1.

If k1 = k2 = 0, then Equation (5) implies that ϕ2 can take on any value.
Otherwise, Equation (5) has the solution(s)

ϕ2 = atan(k2, k1) ± acos

(
k3√

k2
1 + k2

2

)
.

There may be zero, one, two, or infinitely many solutions for ϕ2. For each
value of ϕ2, the remaining two rows of Equation (4) can be used to solve
for ϕ1, which either has a unique value or is unconstrained. The value of
ϕ3 is uniquely determined by the angle between the normals to the facets
at either end of the cut chain.

8 Open Problems

We conjecture that it is possible to unfold a paper bag from its flat state
if it was already folded using the usual set of creases (by an adversary
equipped with techniques from origami or reality).

Acknowledgment. Z. You is grateful to the Royal Academy of Engineering
from whom he received a Global Research Award that enabled him to work
on this most exciting problem.

The idea of gluing two shopping bags together along their tops is due
to Robert Lang.
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Origamic Architecture in the
Cartesian Coordinate System

Chew Min Cheong, Hajijubok Zainodin,
and Hiromasa Suzuki

1 Introduction
Origamic architecture (OA) is a relatively new concept of making paper
models of buildings that was introduced by Masahiro Chatani [1]. In this
paper, we attempt to study the mathematical elements connecting two-
dimensional patterns and three-dimensional models in OA. We concentrate
on the coordinate conversion for points between OA pattern in the 2D plane
and those of the OA model in 3D space using the Cartesian coordinate
system. Our result generalizes results previously proposed by Mitani and
Suzuki [2]. From a single pop-up layer, we have further developed the
equations that provide the coordinates of every individual point for up
to multiple (n-th) pop-up layers. This is applicable for points located on
surfaces or at a folded edge, be it a mountain fold or a valley fold, with
angle ranging 0◦ < θ ≤ 180◦ when being folded and unfolded.

Section 2 describes some of the conditions and definitions for the OA
model as well as assumptions made in order to identify the coordinates of
points in 2D and 3D. The formulation for relating coordinates of points
between the OA pattern and the OA model is illustrated in Section 3.
The primary results of this paper can be found specifically in Section 3.4.
Section 4 further describes issues relating to coordinate identification for
points located on edges or boundaries. Section 5 then identifies the coor-
dinate conversion from 3D to 2D.

335



�

�

�

�

�

�

�

�

336 III. Computational Origami

(a) (b)

Figure 1. (a) OA pattern at 180◦ . (b) OA model at 90◦.

(a) (b) (c)

(d) (e)

Figure 2. (a) OA model at 30◦. (b) OA model at 45◦. (c) OA model at 60◦.
(d) OA model at 120◦ . (e) OA model at 150◦.

2 Cartesian System in OA

The coordinate systems for 2D patterns and 3D models in OA are called
the pattern coordinates and the model coordinates, respectively [2]. We
utilize Cartesian coordinates throughout this study. To represent a 2D
pattern coordinate, we shall refer to the x-axis and y-axis and describe
the coordinate by an ordered pair (x, y). To describe a model coordinate,
however, we refer to the mutually perpendicular x-, y-, and z-axes, and
describe the coordinate as the ordered triple (x, y, z).

In order to fully describe the coordinates of a point, first of all we
need to specify the model coordinate at 90◦, corresponding to its pattern
coordinate at 180◦, as illustrated by Figure 1. Only with both values will it
be possible to obtain further coordinates at arbitrary angles (see Figure 2)
from a specified model coordinate.
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Figure 3. Different faces of OA model.

2.1 Definitions

To begin, we define the various types of faces in an OA model. These faces
can be classified as one of the following: back face, vertical face, bottom face,
and horizontal face, as illustrated in Figure 3. Both the vertical and back
faces are perpendicular to the horizon, while the horizontal and bottom
faces are parallel to the horizon.

We will compute the coordinates of points located on a vertical face
and points on a horizontal face separately, as the pop-up distances may
not be the same for both of them, as shown in Figure 5. We denote the
distance between the back face and the vertical face as tv, while denoting
the distance between the bottom face and the horizontal face as th.

2.2 Assumptions

There are three assumptions made for the formulation in this paper. First,
we need to reverse the sign of values for the y-axis in the 2D pattern, so
that values for the y-coordinate would be negative in the first quadrant
and positive in the fourth quadrant (see Figure 4).

Second, the x-, y-, and z-axes of our OA model will follow the left-hand
rule for ease of recognition (compare Figure 5(a) with Figure 4). That is,
the model is just the laterally inverted image of its counterpart on the same
axes following the conventional right-hand rule (see Figure 5(b)).

Finally, we assume nonzero thickness of paper, that is, the pattern
cannot fully close, but can nearly close. From 180◦ in a 2D plane, an
OA pattern can be folded to almost 0◦. Hence, angle θ ranges within
0◦ < θ ≤ 180◦, whereby θ �= 0◦.
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Figure 4. Coordinates of points in a 2D pattern with sign shifted in y-axis.

(a) (b)

Figure 5. (a) A 3D OA model following the left-hand rule. (b) A 3D OA model
following the right-hand rule.

3 Transformation of Coordinates from 2D to 3D

In this section, we proceed to examine the transformation from pattern
coordinates to model coordinates.

As described in Section 2, we must first identify the coordinate of points
from θ = 180◦ in 2D to θ = 90◦ in 3D. The equations for vertical and
horizontal faces at θ = 90◦ are first calculated. Then, the equations for
vertical and horizontal faces at θ other than 90◦ can be identified. Note
that the x-coordinates remain unaltered from 2D to 3D, and vice versa at
any angle.
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Figure 6. Relationship between y3D with tv and z3D with th at 90◦.

3.1 Single Pop-Up Layer

Any point located on a vertical face can either be found within a face or
on an edge. Hence, if we represent the height of a given point as z3D, then
z3D ≤ th, whereby z3D = th if the point is located at the protruding edge
(see Figure 6). Similarly, for a point located on the horizontal face, we
have that y3D = tv. The formulas for the transformation of coordinates of
points located on a vertical face and horizontal face are shown in Equations
(1) and (2), respectively:

x3D = x2D,
y3D = tv,
z3D = tv − y2D;

(1)

x3D = x2D,
y3D = y2D + th,
z3D = th.

(2)

As the OA model is being folded at an angle other than 90◦, we use the
values of x3D, y3D, and z3D obtained from these equations to calculate the
new coordinates. For a point located on a vertical face, the coordinate will
vary with the changes in angle θ, as depicted in Figure 7 (as the vertical
face now becomes the hypotenuse of a triangle). The new coordinate can
be calculated by Equation (3). Similarly, we can also calculate the new
coordinate for a point located on a horizontal face by using Equation (4),
where the changes are illustrated by Figure 8.
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Figure 7. Side view of OA model for identifying vertical face coordinates.

Figure 8. Side view of OA model for identifying horizontal face coordinates.

x = x3D,
y = z3D cos θ + tv,
z = z3D sin θ;

(3)

x = x3D,
y = y3D + th cos θ,
z = th sin θ.

(4)

Figure 9 shows the computer-generated output of the OA model folded
at various angles by using the coordinate formulas given above. The coordi-
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Figure 9. Side view of single pop-up layer OA model at angles 0◦, 30◦, 60◦, 90◦,
120◦ , 150◦, and 180◦.

nates for points located on the back face and bottom face can be calculated
straightforwardly by using sine or cosine as required.

3.2 Double Pop-Up Layers

We now consider double pop-up layers, for which the OA model has addi-
tional distances of th2 and tv2 for the second pop-up layers as depicted in
Figure 10. For transformation of coordinates from 2D to 3D, the formula
for the first layer would be the same as that given in Section 3.1, whereas
for the second layer, the coordinates could be identified by using Equation
(5) for a vertical face and Equation (6) for a horizontal face:

x3D = x2D,
y3D = tv2,
z3D = tv2 − y2D;

(5)

x3D = x2D,
y3D = y2D + (th1 + th2),
z3D = th1 + th2.

(6)

When the OA model is being folded at angles other than 90◦ as shown
in Figure 11, a similar trigonometric concept may be applied as explained
in the previous section. The new coordinates for the second layer can be
obtained from Equations (7) and (8) for the second vertical and horizontal
faces, respectively:

x = x3D,
y = z3D cos θ + tv2,
z = z3D sin θ;

(7)
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Figure 10. Double pop-up layer OA model at 90◦.

Figure 11. Double pop-up layer OA model when θ �= 90◦.

x = x3D,
y = y3D + (th1 + th2) cos θ,
z = (th1 + th2) sin θ.

(8)

Figure 12 shows the image of a double pop-up OA model being folded and
unfolded at various angles.
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Figure 12. Side view of double pop-up layer OA model at angles 0◦, 30◦, 60◦, 90◦,
120◦ , 150◦, and 180◦.

3.3 Triple Pop-Up Layers

We continue on to examine the pattern of changes in coordinates for a
third pop-up layer in this section. The coordinates for the first and second
layers have been discussed in the previous two sections. With tv3 and th3

introduced to represent the third vertical and horizontal faces, respectively,
as shown in Figure 13, we can use Equations (9) and (10) to compute the
coordinates of points when the OA model is folded at 90◦:

x3D = x2D,
y3D = tv3,
z3D = tv3 − y2D;

(9)

x3D = x2D,
y3D = y2D + (th1 + th2 + th3),
z3D = th1 + th2 + th3.

(10)

As for folding angles other than 90◦, we may use equations (11) and (12)
to locate the new coordinate of points on vertical and horizontal face re-
spectively:

x = x3D,
y = z3D cos θ + tv3,
z = z3D sin θ;

(11)

x = x3D,
y = y3D + (th1 + th2 + th3) cos θ,
z = (th1 + th2 + th3) sin θ.

(12)

Figure 14 shows the computer-generated output for a triple layer OA
model being folded and unfolded at various angles.



�

�

�

�

�

�

�

�

344 III. Computational Origami

Figure 13. Triple pop-up layer OA model at 90◦.

Figure 14. Side view of triple pop-up layer OA model at angles 0◦, 30◦, 60◦, 90◦,
120◦, 150◦, and 180◦.

3.4 Generalization of Multiple Pop-Up Layers

Based on the pattern of changes in Equations (1)–(12), we can generalize
for any additional layers that build up on the previous base layers and the
equations for identifying the coordinates of any points on those layers can
be constructed similarly. Thus, the coordinates for any point on the nth
vertical face can be calculated by using Equations (13)–(16):

x3D = x2D,
y3D = tvn,
z3D = tvn − y2D;

(13)
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Figure 15. Multiple pop-up layer OA model at 90◦.

x3D = x2D,
y3D = y2D + (th1 + th2 + ... + thn),
z3D = th1 + th2 + ... + thn;

(14)

x = x3D,
y = z3D cos θ + tvn,
z = z3D sin θ;

(15)

x = x3D,
y = y3D + (th1 + th2 + ... + thn) cos θ,
z = (th1 + th2 + ... + thn) sin θ;

(16)

where n = 1, 2, 3, . . . . See Figure 15.

4 Coordinates of Points on Edges or at Boundaries
For points located on edges or at boundaries, their coordinates can be
computed depending on which layer and surface the points are located.
For instance, by referring to Figure 16, the changes of coordinates of P1 as
the OA model is being folded and unfolded can only be calculated by using
the first vertical face formulas. However, for point P2, the coordinates can
be obtained in two ways: by using the formulas for the first vertical or the
first horizontal face. P3 can be considered as a point located on the first
horizontal face or the second vertical face, while P5 can be treated as either
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Figure 16. Points located on edges or at boundaries.

a point on the second vertical or second horizontal face. P4, being on the
boundary of the moving parts, can only be considered a point located on
the first horizontal face, while P6, also on the boundary, would be computed
as a point on the second horizontal face.

5 Transformation of Coordinates from 3D to 2D

While the formulas for the transformation of coordinates of points from 2D
to 3D can be complicated, the formula for the transformation of coordinates
from 3D to 2D is simple. When the OA pattern is being opened flat at
180◦, the z-axis will be eliminated by setting z = 0. We only refer to x-
and y-axis to obtain the coordinates of any point as an ordered pair (x, y)
by using Equation (17):

x2D = x3D,
y2D = y3D − z3D.

(17)
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6 Conclusion and Future Work
In this study, we developed formulas for the coordinates of points in origamic
architecture using the Cartesian coordinate system. We may, however, be
able to compute the conversion of coordinates of points in OA patterns and
OA models by using other coordinate systems, e.g., by use of the vector.

Acknowledgment. We would like to express our highest gratitude to Dr.
Lionel G. Ripley from University of Sussex, Brighton for proofreading this
paper.
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How Many Ways Can You
Edge-Color a Cube?

Charlene Morrow

1 Introduction
My investigation of this problem began several years ago as I folded one of
my favorite origami cubes designed by Tomoko Fuse [2, pp. 34–35]. This is
a skeletal model made with 12 pieces of paper where the units are pleated
and folded so that they interlock in triples at the vertices of the cube. (See
Figure 1 for a picture of several of these cubes.) I have a favorite color
scheme for this cube: using four colors, three of each color, I connect the
units so that each vertex has three different colors and each face has all four
colors. This construction results in obtaining at the vertices all possible
combinations of four colors taken three at a time, with each combination
appearing exactly twice on vertices diagonally opposite to each other and
with opposite rotations of the colors. That result is so satisfying that it
took a long time for me to look beyond this construction. However, one day
I innocently asked, “How many different ways could I arrange my favorite
set of colors (fours colors, three of each) on a cube?” That is, how many
distinctly different results could be achieved—meaning that no matter how
I oriented the cubes, no two of them could be made to look the same with
color taken into account. This question led to some interesting investi-
gations at the nexus of geometry, symmetry groups, and combinatorics,
summarized below. It is written with an “education flavor,” that is, with
an orientation toward investigations that can be done by students and that
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Figure 1. Edge-colored origami cubes using 12 units.

have been field tested with my own students. (An expanded version of the
investigations is available.)

2 Defining the Question
Consider a cube: it has six faces, eight vertices, and twelve edges. For this
exploration, we will be focusing on the edges and using an origami model
that is made of twelve pieces of paper where each piece of paper forms an
edge of the cube. This allows us to color each edge independently.

Our question is, given a set of 12 edges with a specific color assigned to
each edge (call this the edge set), how many distinctly different colorings
(taking rotations into account) are there? The number of possible edge
sets is very large, and each edge set requires a separate analysis. Some
examples of edge sets are six red edges and six black edges; three green,
three blue, three red, and three aqua edges; four green, four purple, and
four white edges; or seven pink and five orange edges.

Ultimately we will use the Pólya-Burnside Theorem (also referred to as
Burnside’s Theorem, Burnside’s Lemma, or the Pólya-Burnside Counting
Lemma) [7] to find a numerical answer, but in order to use the formula
produced by this theorem, a number of different investigations are required.

The Pólya-Burnside Theorem produces the following formula, essential
to our exploration:∑

(fix[gn])
|G| = number of distinct colorings.
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where fix[gn] is the number of color symmetries for group element gn and
|G| is the order of the group.

In group theory terms, this formula deals with the sorting of the color-
ings of the cube into orbits (mutually exclusive categories with the colorings
in each category merely rotations of each other). It is not my intention here
to discuss this material in depth, but there are interesting investigations
beyond the scope of this paper, including study of the proof of the Pólya-
Burnside Theorem.

Note that an advanced mathematical background is not needed in or-
der to follow the investigations described below. The “big” question has
been broken down into four smaller investigations, outlined below. Each
investigation provides information that is essential in order to answer the
question about the number of distinct colorings.

3 Investigations

3.1 Find the Colorings of a Cube in a Fixed Position

We want to find the number of different colorings with the cube in a fixed
position (i.e., rotations not considered) using combinatorial methods. Our
method involves “placing” edges on the cube, so you need to know how
to calculate the number of possibilities for placing, for example, two red
edges, given twelve possibilities. This expression is referred to as “12 choose
2” and is given by the expression 12!/(2!10!). More generally for a two-
colored cube, where a is the number of edges of one color, the number of
fixed colorings (i.e., without rotation) is “12 choose a” or

12!
a!(12 − a)!

.

This formula takes into account the duplications (permutations) that would
not count as different colorings, even when the cube is not rotated. (Note
that “12 choose 2” and “12 choose 10” are equal.)

The analysis becomes a bit more complicated when more than two
colors are involved. Consider a cube with five red edges, four black edges,
and three white edges. Here is the process for getting the number of static
colorings: First consider the possibilities for placing the red edges. As
described above, this would be 12!/(5!7!). We have colored five of the edges
of the cube; we have seven edges open. We repeat our process with the
seven open spots, placing the four black edges, which gives 7!/(4!3!). Now
we are done because the remaining three open spots will be white, and there
is only one way to do this. Thus we have (12!/(5!7!)) · (7!/(4!3!)) = 27, 720
fixed colorings, without rotation, for a cube with five red edges, four black
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edges, and three white edges. But this is equivalent to computing the
number of fixed colorings more simply as 12!/(5!4!3!). You can find the
number of fixed colorings for any edge set in a similar way, expressed as

12!
c1!c2! · · · cn!

,

where ci is the number of edges of the ith color.
In group theory terms, the number of colorings wanted here are the fixed

colorings (or color symmetries) for the identity in the rotational symmetry
group of the cube.

3.2 Categorize the Rotational Symmetries of the Cube

This investigation is prerequisite to finding the color symmetries of a cube
with a specific edge set. The cube has 24 rotational symmetries, i.e., 24
ways that it can be rotated so that it looks exactly the same before and
after rotation. What is helpful here is to think about the 24 symmetries as
falling into several categories according to type. Consider a 90◦ rotational
symmetry on an axis that passes through the center of two opposite faces
of the cube. We then notice that there are two other axes of symmetry
that are “like” this one, although they pass through two different pairs of
faces. Our categorization according to type of symmetry is designed for
the eventual analysis of color symmetry: the number of colorings that are
determined to be “fixed” or color symmetric for a 90◦ rotation about one
axis of symmetry as above, will be equal to the number of fixed colorings
for each of the other two “like” axes. Note that we consider a 180◦ rotation
on an axis to be of a different type than a 90◦ rotation on this same axis.

The task here is to understand each of the different axes of rotation
and degrees of rotation around these axes that will produce a symmetry
of the cube [1,6]. Finding an “undetectable motion” is an effective way to
think about a rotational symmetry. That is, hold the cube in a particular
orientation, clearly marked as the starting point, and find a way that the
cube can be rotated on an axis so that it looks exactly the same at the
end of the rotation as it did at the starting point. For this investigation
it is best to use a cube that has solid faces and is all one color, since here
we are not considering color in our analysis of symmetry. Table 1 has
the 24 rotational symmetries of the cube categorized according to type of
symmetry as discussed above.

3.3 Find the Color Symmetries of a Cube with a Specific Edge Set

If you ultimately want to know the number of distinctly different colorings
you can get, taking rotations into account, you quickly realize that for any



�

�

�

�

�

�

�

�

H
ow

M
any

W
ays

Can
You

Edge-Color
a

Cube?
355

Edge Set = 4 Colors,
3 of Each

Edge Set = 2 Colors,
6 of Each

Edge Set = 2 Colors,
10 of One + 2 of An-
other

sn

Type of Symmetry Group Element
(i.e., axis of rotation)

|sn|
# of
Axes
of This
Type

fix[n]
# of Fixed
Colorings
for One Axis
of Type sn

|sn| · fix[n] fix[n]
# of Fixed
Colorings
for One Axis
of Type sn

|sn| · fix[n] fix[n]
# of Fixed
Colorings
for One Axis
of Type sn

|sn| · fix[n]

90◦ rotation about the midpoint of
a face

3 0 0 0 0 0 0

180◦ rotation about the midpoint of
a face

3 0 0 20 60 6 18

270◦ rotation about the midpoint of
a face

3 0 0 0 0 0 0

120◦ rotation about a diagonal axis
from corner to corner

4 24 96 6 24 0 0

240◦ rotation about a diagonal axis
from corner to corner

4 24 96 6 24 0 0

180◦ rotation about an axis through
midpoints of diagonally opposite
edges

6 90 540 20 120 6 36

Identity 1 369,600 369,600 924 924 66 66

TOTAL 24 369,792 1152 120

What each total represents |G| Σ(|sn|·fix[n]) Σ(|sn|·fix[n]) Σ(|sn|·fix[n])

Table 1. Analysis for computation of distinct edge-colorings of a cube for three edge sets.
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Cube A Cube B

Figure 2. Example of a coloring that looks identical upon 90◦ rotation on the axis
shown. Cubes A and B look different to us from this point of view, but if we
rotate Cube A 90◦ on the axis shown, it will look exactly like Cube B. We really
do not want to count these cubes as different. Note that neither cube has color
symmetry for this rotation.

given edge set and the distinct static colorings found in Section 3.1, there
will be many colorings that are identical upon rotation. That is, many
colorings look different while static, but are identical when rotated, as in
Figure 2.

In Section 3.1, we found the fixed colorings for the identity, one of the
24 elements in the rotational symmetry group of the cube. Now we need
to find the rest of the fixed colorings. Note that this analysis is unique to
each particular edge set.

One effective way to approach this task is to first notice how edges
interchange within the types of symmetry group elements. For instance,
when looking at either type of 180◦ rotation, we see that edges interchange
in pairs when the rotation is performed. Thus if the edge set cannot be
divided into pairs within every color represented, there will be no color
symmetries for any 180◦ rotation.1 For a second example look at an axis
that goes through diagonally opposite corners with a 120◦ rotation. Here
the edges interchange in triples, thus, if the edge set does not divide into

1One might wonder why we have divided the 180◦ rotations into two types. There is
a subtle difference between them: for the axes going through the midpoints of diagonally
opposite edges, only ten edges exchange in pairs. The other two edges stay fixed (i.e., do
not interchange with another edge). Thus there exists an edge set that produces color
symmetries, but that does not divide into pairs within colors. Consider the following
edge set: ten black edges, one red edge, one green edge. For an axis of the type described
above, there are six color symmetries. For the other type of 180◦ rotational symmetry
(axes going through midpoints of opposite faces), no color symmetries will be produced
by this edge set because all edges interchange in pairs.
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180º

180º

120º

Figure 3. Examples of color symmetries. Each of these cubes will look exactly the
same, including color, when rotated the specified amount on the given axis, thus
each has color symmetry for the given rotation.

sets of three within each color, there will be no color symmetries for these
two symmetries of the cube. Examples of color symmetry for each of three
cubes are shown in Figure 3.

Once we see how subsets of edges interchange, we can effectively use
a combinatorial approach to find color symmetries for each element of the
rotational symmetry group acting on the cube. (See Table 1.)

This investigation is very challenging and requires the use of spatial
and combinatorial reasoning [8]. Start with a very simple edge set to be-
gin building understanding and intuition. Keep track of findings so that
generalizations can be made and shortcuts can be discovered. You should
especially ask how edges interchange for each rotational symmetry, i.e.,
do the edges interchange in pairs, in triples, or sets of four, and how does
this help us analyze the color symmetric properties of the specific cube in
hand? Record results. You will begin to see that some edge sets cannot
produce any color symmetries for particular rotations. For example, if you
are looking at a 90◦ rotation about an axis through the midpoints of two
opposite faces, there will be color symmetry only for cubes that have edge
sets that can be divided into sets of four within each color.

3.4 Use the Pólya-Burnside Theorem to Compute the Number of
Distinctly Different Colorings

The main result of this theorem tells us that the number of distinct col-
orings (i.e., orbits) for a cube with a specific edge set is found by adding
up the number of fixed colorings (or color symmetries) for each rotational
symmetry (or group element) of the cube and dividing by the total number
of rotational symmetries (|G|). Thus, we can deal with duplicate colorings
without actually having to identify them—a very powerful result! Using
the appropriate numbers, gathered in the investigations above, and the for-
mula given at the beginning of this paper, we find the number of distinct
colorings for a cube with a given edge set. Analyses of three cubes with dif-
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Edge Set = 4 Colors, 3 of
Each

Edge Set = 2 Colors, 6 of
Each

Edge Set = 2 Colors,
10 of One + 2 of An-
other∑

(|sn|·fix[n])
|G| = 360,792

24

∑
(|sn|·fix[n])

|G| = 1,152
24

= 48
∑

(|sn|·fix[n])
|G| = 5

=15,408

Table 2. Use of the Pólya-Burnside Theorem to give the number of distinct color-
ings (i.e., orbits) for three edge sets.

ferent edge sets, including the resulting number of distinct colorings using
the Pólya-Burnside Theorem, are given in Table 2.

4 Materials and Pedagogy
Three-dimensional models greatly facilitate these investigations. Some
would even say they are essential. Since this paper was written for a
conference focusing on origami, facility with origami models is assumed.
For the investigations in Sections 3.1 and 3.3, you need origami cubes that
are made with 12 pieces of paper, thus giving the possibility for edges to
be colored independently. It is useful to begin with a simply colored cube
with, for example, ten black edges and two red edges. A cube with six red
edges and six black edges would make for a more challenging investigation.
For the investigation in Section 3.2, it is best to use a one-color model. An
origami cube (e.g., a Sonobe cube) can work well, or you can even glue
together a cube made from six sturdy squares of paper or cardboard. Long
wooden skewers (easily and cheaply purchased in a grocery store) serve
very well as axes of rotation.

There are several origami cube models appropriate for these investi-
gations, including the one I mainly use [2, pp. 34–35], variations of that
unit [2, pp. 30–33], Open Frame I: Bowtie Cube and Open Frame II: Plain
Cube [3, pp. 62–66], the PhiZZ unit2 [4, pp. 125–138], and models presented
by Simon et al. [9].3

Origami does require some investment in learning how to fold and as-
semble the models. It is a particularly good choice if you are trying to
motivate students through the use of aesthetics.

For all investigations, you will gain the most if you take the time to do
hands-on explorations. Discussion of approaches and preliminary results

2For exploring edge coloring on dodecahedron and larger polyhedra.
3See page 24 for an interesting pleated cube, though slightly more complicated for

modeling edge coloring, and page 51 for a unit that can be used to explore vertex coloring
on a dodecahedron.
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followed by further exploratory work is very useful [5]. The investigations
have been designed to be approachable by students with a wide variety
of backgrounds. Note that for any of the investigations described, one can
revert to an analogous two-dimensional analysis, with the edges of a square,
for example. This will be simpler to understand and may provide a needed
basis for expanding to the three-dimensional analyses described here.

5 A Question for Further Investigation
A question in which I have now become very interested is, if we wanted to
build all of the differently colored cubes for a particular edge set, how could
we keep track of the colorings so that we do not produce any duplicates?
Although, through conversations with colleagues, I have two or three pos-
sible ideas about how to approach this problem, I have not yet solved it. I
have been carrying out my explorations with the edge set of six black and
six red edges because there are “only” 48 possible colorings for this edge
set. This context seems hard enough to be illuminating, but still within
reach for actually making cubes representing all of the possible colorings.
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Configuration Spaces for
Flat Vertex Folds

Thomas C. Hull

1 Introduction
Flat vertex folds are crease patterns with a single vertex that lie in the
plane when collapsed. Two well-known results about flat vertex folds are
the Kawasaki-Justin Theorem, which states that a vertex will fold flat if
and only if the sum of every other angle between the creases equals π, and
the Maekawa-Justin Theorem, which states that the difference between the
number of mountain and valley creases must always be two at a flat vertex
fold. (See [3], [4], and [1] for details and other results.)

In this paper, we focus on more combinatorial issues. Given a single-
vertex crease pattern v with specified crease angles but no mountain-valley
(MV) assignment, we may count the number of possible valid (physically
realizable) MV assignments. This total, denoted C(v), can be determined
in linear time [1,2]. If we know only the number of creases, say 2n, but not
the crease angles, we can still obtain sharp bounds on C(v):

2n ≤ C(v) ≤ 2
(

2n

n − 1

)
. (1)

We know that C(v) is always even, as the MV parity of the creases can
always be flipped. But can C(v) achieve all even values between the bounds
in Equation (1)? The answer turns out to be “no,” which immediately
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360

360

360

360

Figure 1. The configuration space for a two-joint robot arm is a torus.

makes us wonder whether we could predict or classify the various values of
C(v).

We will approach this question by describing a configuration space for
flat vertex folds. A configuration space is, typically, a geometric object
that is used to visualize the range of possibilities for a physical or math-
ematical situation. This is done by quantifying the essential variables of
the situation and letting these be parameters along different coordinate
axes; the combination of these forms the configuration space. One clas-
sic example is studying the range of movement for a robot arm with two
joints, as illustrated in Figure 1. If each joint has a planar 360◦ range of
rotation, then each joint can be a variable ranging from 0 to 2π, and thus
the configuration space is the square [0, 2π] × [0, 2π]. However, the points
0 and 2π should be identified for each variable, which makes the square
“wrap around” and form a torus. Each point on the surface of this torus
represents a specific configuration of the robot arm.

Our goal in this paper is to describe the configuration space for a flat
vertex fold of degree 2n.

2 The Degree-4 Case
We begin by examining the n = 2 case in which our flat vertex fold has
four crease lines. Let α1, ..., α4 be the angles, in order, between the creases
of our vertex v. The Kawasaki-Justin Theorem tells us that α3 = π − α1

and α4 = π − α2. All four angles are determined by α1 and α2, so α1 and
α2 can be the parameters of our configuration space.

Assign α1 to our first coordinate and α2 to our second coordinate.
Notice that the range for these parameters is 0 < α1, α2 < π, since if either
were zero, we wouldn’t have four creases, and if either were π then one of
α3, α4 would be zero. Furthermore, if we pick any α1 and α2 between 0 and
π, we can let α3 = π − α1 and α4 = π − α2 to obtain angles for a degree
four flat vertex fold, showing that (α1, α2) must be in our configuration
space. Therefore the configuration space for degree four flat vertex folds,
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Figure 2. Decomposing P4 into C(v) subsets.

which we’ll denote P4, is the open square (see Figure 2)

P4 = (0, π) × (0, π).

Now, within P4 there exist subsets for the different values of C(v). The
maximal C(v) is 8, which corresponds to all the angles being equal. This
is the point (π/2, π/2) in P4.

Next is C(v) = 6, and this occurs when two adjacent angles are equal
and different from the other pair. For example, we could have α1 = α2

(which implies that α3 = α4). This corresponds to the line y = x in P4, for
0 < x < π/2 and π/2 < x < π. Or we could have α2 = α3, which implies
that α2 = π −α1 (which forces α1 = α4) and gives us the line y = π − x in
P4 for 0 < x < π/2 and π/2 < x < π.

The remaining regions of P4 are open right triangles, and these corre-
spond to C(v) = 4 cases. For example, the region bounded by the y-axis,
y = x and y = π − x has α1 < α2, α1 < π/2, and α2 < π − α1. Kawasaki-
Justin then gives us that α3 > π/2 and α1 < α4. In other words, α1 is the
unique smallest angle. Therefore, the creases surrounding α1 must have
different MV parity. (If they were the same, then in the folded model we
would have two large angles covering a smaller angle on the same side of
the paper, forcing a self-intersection.) Thus there are two ways to assign
Ms and Vs to those creases, and then the others must either both be M
or both be V to satisfy the Maekawa-Justin Theorem, yielding C(v) = 4.
The analysis is similar for the other three triangular regions.

This decomposition of P4 into subsets gives us complete classifications
of all the possibilities for C(v). This is summarized in Figure 2.
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3 Higher Dimensions
The configuration spaces P2n quickly become very difficult to visualize for
n > 2, as they are bounded, open sets in R2n−2.

Example 1. Consider n = 3. Letting α1, ..., α6 be the angles, we can express
α5 and α6 in terms of the other angles (using Kawasaki-Justin), and thus
we may parameterize P6 by the angles α1, ..., α4. That is, P6 ⊂ R4. Our
reasoning from the n = 2 case as well as the Kawasaki-Justin conditions
α1 + α3 + α5 = α2 + α4 + α6 = π give us the following restrictions on the
angles:

0 < αi < π for all i, 0 < α1 + α3 < π, and 0 < α2 + α4 < π. (2)

This means that the two-dimensional cross section of P6 along the α1α2-
coordinate plane will be an open square, as in the n = 2 case. However,
the two-dimensional cross section along the α1α3-plane will be an open
triangle bounded by α1 > 0, α3 > 0, and α3 < π − α1. See Figure 3.

In fact, any point (α1, α2, α3, α4) satisfying Equation (2) will be part
of a viable degree-6 flat vertex fold (along with the proper angles α5 and
α6 given by Kawasaki-Justin) and thus be in P6. That is, P6 is an open
set. The closure of this set, P6, will have as extreme points (vertices) all
angle configurations that give equality for Equation (2) and that are the
most degenerate, where one of the angles α1, α3, α5 equals π, one of the
angles α2, α4, α6 equals π, and the rest are zero. Thus P6 is the polytope
formed by the convex hull of the points

(0, 0, 0, 0), (π, 0, 0, 0), (0, π, 0, 0), (0, 0, π, 0), (0, 0, 0, π),

(π, π, 0, 0), (π, 0, 0, π), (0, π, π, 0), (0, 0, π, π).

(This can also be seen by viewing the inequalities in Equation (2) as defining
the supporting hyperplanes for the polytope P6.)

The bounds from Equation (1) give us that 8 ≤ C(v) ≤ 30. Examining
all the possible cases for six angles around a vertex (which is doable, if
somewhat arduous) and using the recursive equations in [2] shows that we
have

C(v) ∈ {8, 12, 16, 18, 20, 24, 30}.
Thus we see that C(v) does not take on all possible values between the
bounds in Equation (1). Nonetheless, each of these values should corre-
spond to a subset of P6.

Rather than focusing on small cases, let us say what we can about the
arbitrary-dimension case and then return to P6.
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Figure 3. α1α2-plane and α1α3-plane slices of P6.

Let P2n be the configuration space for flat vertex folds of degree 2n. If
our angles are, in order α1, ..., α2n, we know by Kawasaki-Justin that the
space can be parameterized by α1, ..., α2n−2. In other words, P2n ⊂ R2n−2.

We say that a point x = (α1, ..., α2n−2) ∈ R2n−2, where αi ≥ 0,
corresponds to a set of angles if there exists α2n−1, α2n ≥ 0 such that
(α1, ..., α2n) satisfy the Kawasaki-Justin conditions. (That is, if α2n−1 =
π − (α1 + α3 + · · ·+ α2n−3) and α2n = π − (α2 + α4 + · · ·+ α2n−2).) Note
that this corresponding set of angles might not be a degree-2n flat vertex
fold, since the definition allows some of the angles to be zero or π.

Theorem 1. P2n is an open set. Furthermore, if x ∈ P2n−P2n (the boundary
of P2n), then x corresponds to a degenerate set of angles where at least one
of the angles αi equals 0 or π.

Proof: The fact that all angles in a degree-2n flat vertex fold must be
nonzero and less than π, together with the Kawasaki-Justin conditions,
give us that every point in P2n must satisfy the inequalities

0 < αi < π for all i, 0 < α1 + α3 + · · · + α2n−3 < π,

and 0 < α2 + α4 + · · · + α2n−2 < π. (3)

Furthermore, any point satisfying these equations must be in P2n, which
proves that P2n is open. Any point x on the boundary of P2n must also
satisfy Equation (3) but have at least one of the inequalities being an
equality. Thus x corresponds to a set of angles α1, ..., α2n where either at
least one of the αi is 0 or π for some 1 ≤ i ≤ 2n − 2 (in which case, we’re
done) or α1 +α3 + · · ·+α2n−3 equals 0 or π or α2 +α4 + · · ·+α2n−2 equals
0 or π. These latter two cases imply that either α2n−1 or α2n equals 0 or
π. Thus every case results in x corresponding to a set of angles where at
least one of the αi equals 0 or π. �

We can use Theorem 1 to examine more carefully the faces of P2n. The
vertices of P2n, for example, will correspond to the most extreme degenerate
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Figure 4. Degenerate angle configurations for a vertex (left) and an edge (right)
of P2n.

degree-2n flat vertex folds, where two angles are equal to π and the rest
are equal to zero. In order for such a case to satisfy Kawasaki-Justin one of
the π angles must be an even-indexed angle and the other an odd-indexed
angle. This is illustrated in the left side of Figure 4.

Thus we have that P2n has n2 vertices whose coordinates are (α1, . . . ,
α2n−2) where at most one of the α2i = π, at most one of the α2i+1 = π,
and the remaining αi = 0. (If all the αi = 0 then we have α2n−1 = α2n = π
in the corresponding set of angles.)

An edge (1-face) of P2n will be a line segment of points E(u, v) =
{λu + (1 − λ)v : 0 ≤ λ ≤ 1} connecting two vertices u and v where the
points of E(u, v), aside from the endpoints, correspond to slightly-less-
extreme degenerate degree-2n flat vertex folds than those of the vertices.
That is, instead of having an even-indexed angle and an odd-indexed angle
equaling π as we did for the vertices, each point in the relative interior
of E(u, v) will correspond to a set of angles with either one even-indexed
angle equaling π and two odd-indexed angles adding to π, or vice versa
(one odd-indexed angle is π and two even-indexed angles sum to π). All
the other angles would have to be zero; see the right side of Figure 4. Thus,
if the nonzero corresponding set of angles for the vertex u are at coordinate
positions 2i and 2j − 1 and those for v are at coordinate positions 2s and
2t − 1, then either i = s or j = t must be true in order for E(u, v) to be
an edge of P2n. That is, u and v must have a π in a common coordinate
so that their other π coordinates can switch places as we travel along the
edge E(u, v).

The number of edges of P2n will therefore be
(

n
1

)(
n
2

)
+
(
n
2

)(
n
1

)
, because

in the corresponding set of angles (α1, ..., α2n) we could choose one of the
n even-indexed angles to be π, two of the n odd-indexed angles to sum to
π, and the rest to be 0, or we could pick two even-indexed angles to sum
to π, one of the odd-indexed angles to be π, and the rest to be 0.

The 2-faces of P2n follow similarly. In the corresponding set of angles
for any point of a 2-face we could have one even-indexed angle α2i = π
(and the rest = 0) and three odd-indexed angles α2j−1, α2k−1, and α2l−1
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being nonzero but adding up to π (and the rest equal 0). This gives us
two parameters (say α2j−1 and α2k−1, which then determine α2l−1) and
thus will span a 2-face. Or we could have chosen two even-indexed angles
and two odd, or three even-indexed angles and one odd. Thus, there are(

n
1

)(
n
3

)
+
(
n
2

)(
n
2

)
+
(
n
3

)(
n
1

)
2-faces total.

Thus we obtain the following:

Theorem 2. The number of k-cells in P2n is

fk =
k∑

i=0

(
n

i + 1

)(
n

k − i + 1

)
=
(

2n

k + 2

)
− 2
(

n

k + 2

)
.

Proof: The previous arguments illustrate how we obtain the summation,
and the summation identity can be obtained via standard combinatorial
methods such as generating functions. We also offer a different combina-
torial reasoning: to count fk we want to pick k + 2 angles from the 2n
corresponding angles to be nonzero in order to create our degenerate flat
vertex fold. But we don’t want all of the angles to be even-indexed or all
odd-indexed, so we subtract the 2

(
n

k+2

)
ways in which this can happen.

The result is all the ways to have all angles zero except for k + 2 of them,
where some are even-indexed and some odd-indexed. The even-indexed
angles must sum to π, and so must the odd-indexed angles. This means
that to parameterize these degenerate cases we don’t need all of the k + 2
angles; we can eliminate one of the even-indexed angles and one of the
odd-indexed angles, leaving us with k parameter coordinates for this face,
thus creating a k-face. �

The arguments given for Theorem 2 provide everything needed to cal-
culate the coordinates for the vertices, edges, etc. of P2n, which can then
be generated using Mathematica or other visualization software.

Figure 5 shows a projection of P6. We can try to compare our general
calculations with the intuition developed earlier for the degree six flat vertex
fold case. For example, the right side of Figure 3 shows how slicing P6 along
the α1α3-plane gives a right triangle. To make such a slice a 2-face of P6,
we would need the other angles (the even-indexed ones) to be extreme,
either 0 or π, while still obeying Kawasaki-Justin. So we could have

(α1, 0, α3, 0) where 0 ≤ α1 + α3 ≤ π and α6 = π,

(α1, π, α3, 0) where 0 ≤ α1 + α3 ≤ π and α6 = 0,

(α1, 0, α3, π) where 0 ≤ α1 + α3 ≤ π and α6 = 0.

The same reasoning applies to slices along the α2α4-plane, giving P6 six
faces that will be 45◦ right triangles. Careful examination of Figure 5
reveals these faces.
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Figure 5. A projection of the four-dimensional polytope P6.

In fact, going back to the general case, we can be more specific about the
structure of P2n. Let ei ∈ R2n−2 be the point with 0 for every coordinate
except the ith, which is π. Let o denote the origin. We denote the convex
hull of a finite set of points xi by conv(x1, ...xn) = {λ1x1 + · · · + λnxn :
λi ≥ 0,

∑n
i=1 λi = 1}. Define

EP2n = conv(o, e2, e4, ..., e2n−2) and OP2n = conv(o, e1, e3, ..., e2n−3).

Then EP2n and OP2n are both (n − 1)-simplices in R2n−2.

Lemma 1. x ∈ EP2n (resp. OP2n) if and only if x = λ1e2 + λ2e4 + · · · +
λn−1e2n−2 (resp. x = λ1e1 + λ2e3 + · · · + λn−1e2n−3) where λi ≥ 0 and∑n−1

i=1 λi ≤ 1.

Proof: If x ∈ EP2n or OP2n then certainly x can be written as described
in the lemma, since λ0o is just the zero vector. For the other direction, if
we write x = λ0o + λ1e2 + · · · + λn−1e2n−2 where λ0 = 1 − ∑n−1

i=1 λi then
we have that x ∈ EP2n. The same argument with the points e2i switched
to e2i−1 handles the OP2n case. �

Recall that if A and B are sets of points then their Minkowski sum is
A + B = {x + y : x ∈ A, y ∈ B}.
Theorem 3. P2n = OP2n + EP2n.

Proof: Note that x = (α1, ..., α2n−2) ∈ P2n if and only if

x =
α1

π
e1 +

α2

π
e2 + · · · + α2n−2

π
e2n−2

=
(α1

π
e1 +

α3

π
e3 + · · · + α2n−3

π
e2n−3

)
+

(α2

π
e2 +

α4

π
e4 + · · · + α2n−2

π
e2n−2

)
,
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cone 
angle

0

Figure 6. P4 extended to include the cone angle.

where 0 ≤ αi ≤ π for all i and the coordinates of x correspond to a set of
angles that satisfy the Kawasaki-Justin Theorem. These conditions on x are
satisfied if and only if 0 ≤ αi/π ≤ 1,

∑n−1
i=1 α2i−1 ≤ π and

∑n−1
i=1 α2i ≤ π,

i.e.,
α1

π
+

α3

π
+ · · · α2n−3

π
≤ π

π
= 1 and

α2

π
+

α4

π
+ · · · α2n−2

π
≤ π

π
= 1.

Thus by Lemma 1 we have that x ∈ P2n if and only if x ∈ OP2n + EP2n.�

In other words, P2n is the sum of two (n − 1)-simplices.

4 Generalizations and Future Work
Flat vertex folds do not need to be restricted to geometrically flat paper.
If we place the vertex of our fold at the tip of a cone-shaped piece of
paper, then we can consider folding it up. As described in [1] and [2],
the Kawasaki-Justin and Maekawa-Justin Theorems still hold (with some
modifications) for folding cones. For example, instead of 0 < αi < π for
each angle, we have, if ρ is the cone angle of the cone, that 0 < αi < ρ/2.
Also, the Kawasaki-Justin conditions become: the sum of every other angle
around the vertex = ρ/2.

Therefore we could extend the configuration space P2n by adding an
axis to parameterize the cone angle of the paper. Because changing the
cone angle restricts the angles αi, this effectively turns our configuration
space into an infinite cone. The case n = 2 is illustrated in Figure 6.

There is one caveat to this cone angle generalization: if the cone angle
is > 2π then a different kind of flat folding can be done, one where the
vertex is neither convex nor concave but flat, with the excess paper layered
radially around it. The configuration space described here does not include
such cases.
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Additional work needs to be done to see whether or not our descriptions
of the spaces P2n can determine what values C(v) can attain and the subsets
to which they correspond.
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One-, Two-, and Multi-Fold
Origami Axioms

Roger C. Alperin and Robert J. Lang

1 Introduction
In 1989 [17], Huzita introduced the six origami operations that have now
become know as the Huzita Axioms (HAs). The HAs, shown in Figure 1,
constitute six distinct ways of defining a single fold by bringing together
combinations of preexisting points (e.g., crease intersections) and preexist-
ing lines (creases and/or the fold line itself).

It has been shown that all of the standard compass-and-straightedge
constructions of Euclidean geometry can be constructed using the origi-
nal six axioms. In fact, working independently, Martin [25, pp. 145–159]
showed that the operation equivalent to Huzita’s O6 (plus the definition
of a point as a crease intersection) was, by itself, sufficient for the con-
struction of all figures constructible by the full six axioms and that this
included all compass-and-straightedge constructions. Conversely, Auckly
and Cleveland [5,15], unaware of O5 and O6, showed that without O5 and
O6 the field of numbers constructible by the other four HAs was smaller
than the field of numbers constructible by compass and straightedge. An
analysis of the hierarchy of fields that can be constructed using different
axioms systems has been detailed [2, 4].

We note that since the other five of the six HAs can be constructed
using only O6, the derived operations should perhaps be called something
other than axioms. However, we will bow to 20 years of established usage
and continue to call them axioms.

371
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p1

p2
lf

p1

p2

lf

lf

l1

l2

(O1) Given two points p1

and p2, we can fold a line
connecting them.

(O2) Given two points p1

and p2, we can fold p1

onto p2.

(O3) Given two lines l1
and l2, we can fold line
l1 onto l2.

lf

p1

l1 p1

l1

lf

p2
p1

p2

lf

l1

l2

(O4) Given a point p1

and a line l1, we can
make a fold perpendicu-
lar to l1 passing through
the point p1.

(O5) Given two points
p1 and p2 and a line
l1, we can make a fold
that places p1 onto l1 and
passes through the point
p2.

(O6) Given two points p1

and p2 and two lines l1
and l2, we can make a
fold that places p1 onto
line l1 and places p2 onto
line l2.

lf

p1

l2

l1

(O7) Given a point p1

and two lines l1 and
l2, we can make a fold
perpendicular to l2 that
places p1 onto line l1.

Figure 1. O1–O6 are the six Huzita Axioms. O7 is Justin’s (Hatori’s) seventh
axiom.

In the same proceedings that Huzita’s original listing appeared, Justin
[22] presented a list of seven distinct operations—which Justin credited, in
part, to Peter Messer—including one that had been overlooked by Huzita.
(A shorter list of five operations was also presented by Huzita and Scimemi
[20].) Justin’s longer listing has been somewhat overlooked, but in 2001,



�

�

�

�

�

�

�

�

One-, Two-, and Multi-Fold Origami Axioms 373

Hatori [14] rediscovered Justin’s seventh operation, also shown in Figure 1.
While similar to the six HAs, it was not equivalent to any one of them.
However, it did not expand the field of origami-constructible numbers be-
yond the field of the original six HAs. The set of all seven operations might
be called the Huzita-Justin Axioms (HJAs). Hatori’s rediscovery raised an
interesting question implied by Justin’s original list: are the seven axioms
complete, or are there other undiscovered single-fold axioms to be found?

Over the years, various workers have shown many elegant constructions
possible with the HJAs, including constructions not possible with compass-
and-straightedge such as angle trisection [1, 8, 19, 21], cube doubling [26],
and various regular polygons [10–13]. However, there remain constructions
that are not possible with the HJAs, such as angle quintisection, the reg-
ular 11-gon (the smallest regular polygon not possible with the HJAs), or
solution of the general quintic equation.

One of us [23] recently demonstrated an angle quintisection obtained
by folding alone. However, this construction lies outside of the field of
HJA constructions in that at one step it requires making two simultaneous
creases, while all of the HJAs involve making only a single crease. As a con-
sequence of well-known results from field theory [27, p. 170; 9, p. 450], this
leads to a construction of a regular polygon with 11 sides. More generally,
any n-sided regular polygon with value ϕ(n) of Euler’s totient function
divisible by only 2, 3, or 5 can be constructed using folding operations
involving the HJA constructions or the multiple crease quintisection.

This raises the question: if we consider making two, three, or more
simultaneous creases, what types of construction are possible? The angle
quintisection demonstrates that at least one irreducible quintic equation
can be solved by two-fold operations; what higher orders are possible?

In this work, we investigate both one- and two-fold operations. We first
show that all of the HJAs can be described as a combination of one or
two more fundamental conditions, which we call alignments. We identify
all possible alignments, and then, by exhaustive enumeration, show that
the seven HJAs include all possible combinations of such alignments. In
a previous work, one of us [24] noted that the completeness of the HJAs
could be shown, and private copies of the proof have been circulated; Hull
[16] recently presented a summary of the proof. However, this is, to our
knowledge, the first public detailed presentation.

We then turn our attention to two-fold alignments and axioms. We
identify a unique set of 17 alignments that may be combined to define two
simultaneous creases. We then show how an exhaustive (computer-aided)
enumeration of all possible alignment combinations leads to 489 distinct
operations analogous to the seven HJAs, but that define two simultaneous
creases. We show that the previously demonstrated angle quintisection
utilizes one of these two-fold “axioms.” We close by showing that three
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simultaneous folds leads to a solution of the general quintic equation and
that, in general, n− 2 simultaneous folds are sufficient to solve the general
nth-degree equation.

2 Origami Axioms
In Huzita’s original work [17], the HAs were given as literal axioms. In
order to prove completeness, we must describe them in terms of more fun-
damental concepts.

Definition 1 (Point). A point (x, y) is the ordered pair where x and y are the
Cartesian coordinates of the point.

Observe that a point has two degrees of freedom (DOF), i.e., it is defined
by two numbers—namely, its coordinates.

A line can be described in many ways: slope and intercept, angle and
distance from the origin, etc. The following representation offers algebraic
simplicity.

Definition 2 (Line). A line (X, Y ) is the set of points (x, y) that satisfy the
equation Xx + Y y + 1 = 0.

This definition has the desirable property that every describable line has
a unique representation. However, lines passing through the origin cannot
be so described. We can deal with this problem in practice by translating
any system of points and lines so that no line passes through the origin.

Since both points and lines are represented by ordered pairs, we will
adopt the convention that point coordinates are identified with lower-case
letters and line coordinates with upper-case letters.

We can now define the folded image of a point or line to be the reflection
of the point or line through the fold line. A little algebra gives the following.

Definition 3 (Folded Point). The folded image FLF (P ) of a point P = (x, y)
in a fold line LF = (XF , YF ) is the reflection of the point in the fold line.

In our representation, the folded image of a point is given by

FLF (P ) =
(

x(Y 2
F − X2

F ) − 2XF (1 + yYF )
X2

F + Y 2
F

,
y(X2

F − Y 2
F ) − 2YF (1 + xXF )
X2

F + Y 2
F

)
.

(1)

Definition 4 (Folded Line). The folded image FLF (L) of a line L = (X, Y ) in
a fold line LF = (XF , YF ) is the reflection of the line in the fold line.
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In our representation, the folded image of a line is given by

FLF (L) =
(

x(X2
F − Y 2

F ) + 2XF Y YF

X2
F − 2XXF − 2Y YF + Y 2

F

,
y(X2

F − Y 2
F ) − 2XXF YF

X2
F − 2XXF − 2Y YF + Y 2

F

)
.

(2)
Note that for both points and lines, folding, being the reflection op-

erator, is its own inverse. For any point P = (x, y), line L = (X, Y ),
and fold line LF = (XF , YF ), it is easily verified that FLF (FLF (P )) = P
and FLF (FLF (L)) = L. Thus, for any pair of points or lines A and B,
FLF (A) = B ⇐⇒ FLF (B) = A.

Each of the HJAs specifies one or more incidences between points, lines,
and the folded images of points and/or lines. We call such an incidence an
alignment. We denote (co)incidence between two objects A and B by the
notation A ↔ B. There are three possible types of alignment:

Definition 5 (Point-Point Alignment). Given two points P1 = (x1, y1) and
P2 = (x2, y2), the alignment P1 ↔ P2 is satisfied if and only if x1 = x2 and
y1 = y2.

Definition 6 (Line-Line Alignment). Given two lines L1 = (X1, Y1) and L2 =
(X2, Y2), the alignment L1 ↔ L2 is satisfied if and only if X1 = X2 and
Y1 = Y2.

Definition 7 (Point-Line Alignment). Given a point P = (x, y) and a line L =
(X, Y ), the alignment P ↔ L is satisfied if and only if xX + yY + 1 = 0.

As an aside, we note that there is one other incidence-type relation that
could be considered: a line can be oriented such that it is not incident to a
given line—meaning that it is parallel to a given line. While mathematically
sound, in practice, this relationship can only be verified with infinite paper,
and we will restrict our attentions to alignments that can be verified within
a finite region of the paper.

Each of the HJAs can be viewed as a combination of one or more align-
ments. This leads naturally to the following definition:

Definition 8 (One-Fold Axiom). A one-fold axiom (1FA) is a minimal set of
alignments that define a single fold line on a finite region of the Euclidean
plane with a finite number of solutions.

We stipulate a minimal set to exclude redundant alignments that don’t
do anything. We stipulate a finite number of solutions because some com-
binations of alignments have multiple solutions. And we stipulate a finite
region of the plane to exclude alignments that require infinite paper to
verify.
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P1 P2 L1 L2

(A1) FLF (P1) ↔ P2 (A2) FLF (L1) ↔ L2

L
P L

P

(A3) FLF (L) ↔ L (A4) FLF (P ) ↔ L (A5) LF ↔ P

Figure 2. The five one-fold alignments. A1 and A2 define two equations each;
A3–A5 define one equation each.

With this definition, each of the HJAs can be seen to be a one-fold
origami axiom, and the question of completeness can now be precisely
phrased: are there other 1FAs?

To set a condition on a fold line, one side of an alignment must be the
folded image of a point or line. There are five possibilities with the three
types of alignments for a single fold line LF ; each alignment defines one
or two equations. These five one-fold alignments, denoted by A1–A5, are
shown in Figure 2.

Note that A5—aligning a point to the fold line—is equivalent to requir-
ing that the folded image of a point be aligned to itself. That is, we could
write LF ↔ P equivalently as FLF (P ) ↔ P (as was done in [22]).

The case of a line folded onto itself is distinct from a line folded onto
another line in that only a single equation need be satisfied in the former.

Folding a point to a line (FLF (P ) ↔ L)) is equivalent to folding a line
to a point (FLF (L) ↔ P )) since they result in the same equations. We
therefore consider the alignments FLF (P ) ↔ L) and FLF (L) ↔ P ) to be
equivalent under folding.

Also, we do not consider the relationship of a line incident to the fold
line since the goal is to define a fold line that does not already exist.

The fold line LF ≡ (XF , YF ) is defined by its two parameters and
therefore has two degrees of freedom. Therefore, any combination of folds
that specifies the fold line must consist of some combination of alignments
that specifies exactly two equations.

Each of the first two alignments in Figure 2 results in two equations
that must be satisfied; thus, each in and of itself is sufficient to specify the
fold line. And indeed, the alignment FLF (P1) ↔ P2 is equivalent to O2,
while alignment FLF (L1) ↔ L2 is equivalent to O3.
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FLF (L1) ↔ L1 FLF (P1) ↔ L1 LF ↔ P1

FLF (L2) ↔ L2 N/A O7 O4
FLF (P2) ↔ L2 O7 O6 O5

LF ↔ P2 O4 O5 O1

Table 1. All possible pairs of single-equation alignments.

The other three alignments only specify a single equation, which means
that we require two such alignments to fully specify the two degrees of
freedom of the fold line. We consider all possible pairs of the single-equation
alignments in Table 1. The points and lines (other than the fold lines) in
each row and column are assumed to be distinct.

The top left combination (folding two different lines onto themselves)
cannot be part of a valid axiom; if the two lines are nonparallel, then the
equations are inconsistent, whereas if the lines are parallel, the equations
are redundant and cannot be part of a minimal set. All other combinations
correspond to existing HJAs—and we note that Justin/Hatori’s seventh ax-
iom is among them. Thus, Justin/Hatori’s axiom can be defined in exactly
the same way as the other six axioms. And, since we have considered all
possible combinations of alignments, we have proved completeness; there
are no more one-fold axioms to be found.

3 Solving Equations with One-Fold Axioms
Using Lill’s Method

There is a classical method (Lill, 1867 [28]) of using reflections to create
the solutions to real polynomial equations. To solve the equation xn +
an−1x

n−1 + ... + a0 by Lill’s method, you form a right-angle path from the
origin (point O) to a terminus (point T ) in which the lengths and directions
of the segments are given by the coefficients of the equation, starting with
the leading coefficient of 1, ending with a0, and at each junction, turning
left or right depending on the sign of each coefficient (left = positive, right
= negative). You then launch a line from O at some angle that makes a
right-angled turn at each successive line toward the next line, adjusting
the initial slope until the final turn strikes point T . When that condition
is satisfied, the first intersection point gives the desired solution. Lill’s
method works for arbitrarily high degree and lends itself nicely to equation
solving via origami. Depending on the degree of the equation, we can use
origami axioms to determine the correct bouncing strategy.
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O

T

a3
x

1

a2

a1

a0

(a)

O

T

a1

x

1

a0

1

L

A B

(b)

O

T

a2
x

1

a1

a0C1
a0

L1

L2

A B

(c)

Figure 3. (a) Lill diagram for the quartic equation x4−a3x
3+a2x

2−a1x−a0 = 0.
(b) Lill diagram and fold lines for solving the quadratic equation x2−a1x−a0 = 0
using O5. (c) Lill diagram and fold lines for solving the cubic equation x3−a2x

2+
a1x − a0 = 0 using O6.

3.1 Quadratics

We are given three signed lengths determined from the polynomial: OA,
AB, BT , each segment at right angles to the next, as in Figure 3(b).
Construct an auxiliary line L parallel to AB on the opposite side to AB
from O and of distance OA. Now use O5 to fold O to L so that the crease
passes through T .

3.2 Cubics

Using the diagram in Figure 3(c) made from arcs OA, AB, BC, CT , each at
right angles, we construct auxiliary lines: L1, parallel to AB and opposite
O but of distance OA; and L2, parallel to BC and on the opposite side to
T but of distance CT . Using O6, we simultaneously fold O to L1 and T
to L2. This crease, together with the perpendiculars to O and T , gives the
desired bouncing strategy.

We note that a distinct method for producing 3
√

2 was presented by
Messer [26] that, while also relying on O6, uses a somewhat different con-
struction. By applying the method of Figure 3(c) to the cubic x3 − a it
is possible to take arbitrary cube roots, as well as solving a general cubic.
This method of solving the general cubic was discovered and described by
Beloch [6] in 1936.

We return to this method in Section 5 for solving higher degree equa-
tions with two or more folds.
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4 Two-Fold Axioms
We now consider two-fold axioms: combinations of alignments that specify
two simultaneous fold lines. We proceed in the same way as we did in
the previous section. We consider the possible alignments between points,
lines, fold lines, and their folded images. We then construct all possible
combinations that specify two fold lines.

Definition 9 (Two-Fold Axiom). A two-fold origami axiom (2FA) is a minimal
set of alignments that defines two simultaneous fold lines on a finite region
of the Euclidean plane with a finite number of solutions.

There are a few complications when we consider two (or more) fold
lines. First is a practical matter; physically creating a two-fold alignment
requires that one smoothly varies the position of both folds until the various
alignments are satisfied. With two simultaneous folds, any two nonparallel
folds will eventually intersect and in the real world, intersecting folds bind
at their intersection and cannot be smoothly varied in both position and
angle. We will ignore this practical limitation for the moment.

Next, the number of possible alignments and combinations of align-
ments grows explosively with number of simultaneous folds (as we will
see). In order to minimize the number of combinations to count, we will
adopt several rules for equivalence and validity.

Definition 10 (Separability). A two-fold axiom is separable if and only if its
alignments can be partitioned into two sets, each of which is a one-fold
axiom.

For example, the trisection axiom afforded by Abe’s method is given as
a two-fold separable alignment combining O2 and O6: given points P and
Q and a line l through P , we can fold line L1, which reflects P onto Q, and
line L2, which reflects Q onto l and P onto L1 [4].

Definition 11 (Equivalence Under Permutation). Two two-fold axioms are equiv-
alent under permutation if their alignments are equivalent under permuta-
tion of their points, lines, and/or fold lines.

Definition 12 (Equivalence Under Folding). Two two-fold axioms are equiva-
lent under folding if their alignments can be paired such that applying
FLF1 or FLF2 to both sides of one or more alignments makes them equiva-
lent under permutation. Two axioms that are not equivalent under folding
are distinct.

We will restrict our attention to enumerating nonseparable distinct two-
fold axioms. To do this, we enumerate the distinct nonseparable two-fold
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(AL1) FLFa
(LFb) ↔ LFb (AL2) FLFa

(L) ↔ L

(AL3) LFa ↔ P (AL4) FLFa
(L) ↔ LFb

(AL5) FLFa
(P ) ↔ LFb (AL6) FLFa

(P ) ↔ L

(AL7) FLFa
(P ) ↔ FLFb

(L) (AL8) FLFa
(P1) ↔ FLFb

(P2)

(AL9) FLFa
(L1) ↔ FLFb

(L2) (AL10) FLFb
(PLFa ,L1 ) ↔ L2

Figure 4. The ten distinct two-fold alignments.

alignments, analogous to A1–A5 as defined in Figure 2. Figure 4 shows
them all. For brevity, we name them AL1–AL10.

We include here only the alignments that lead to nonseparable combi-
nations. Any combination in which a single alignment fully specifies one of
the fold lines will be separable.

Our ordering is chosen in roughly increasing degree of the underlying
equations. If we denote the two fold lines by Fa and Fb, the equations
resulting from alignments AL1, AL8, and AL9 are symmetric under in-
terchange of fold line while the equations resulting from alignments AL2,
AL3, AL4, AL5, AL6, AL7, and AL10 are not. In forming combinations
of the nonsymmetric alignments, we will append the letter a or b to distin-
guish the two forms. Thus, for example, AL2a is the alignment shown in
Figure 4; AL2b would act on the second fold line. We note that the poten-
tial alignment FLa(L) ↔ FLb

(L) results in the same equations as AL2a +
AL2b, so we do not count it in our listing.

Alignment AL10 (which comes in both a and b varieties) is a bit unusual.
All points appearing in other alignments are preexisting points, but the
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point PLFa ,L1 appearing in AL10 is a virtual point , the intersection of the
first fold line FLa with the existing line L1. AL10 aligns this point with a
second line L2; if the two lines are the same (L1 = L2), then this alignment
forces the intersection of the two fold lines with each other to lie on the
given line. Alignment FLFb

(PLFa ,L1) ↔ P1 is not listed because it can be
decomposed into FLFb

(LFa) ↔ P1 and FLFb
(L1) ↔ P1.

Each of these alignments leads to either one or two equations on the
four degrees of freedom of the two fold lines, which implies that a valid two-
fold axiom will consist of two, three, or four of these alignments. Including
both a and b forms of the nonsymmetric alignments gives a total of 17
possible alignments for each element of a combination. That, in turn, gives
17×17×18×18 = 93, 636 possible combinations to consider. However, those
combinations include combinations that are over- and under-determined
and combinations that are equivalent under permutation or folding. We
constructed a computer-assisted enumeration using Mathematica, following
this procedure:

1. Construct all possible combinations of two, three, or four of the two-
fold alignments.

2. Eliminate duplicates equivalent under permutation or folding.

3. Construct symbolic equations for each remaining combination of align-
ments.

4. Eliminate combinations that did not lead to exactly four equations.

5. Construct the Jacobian for each set of four equations at a solution;
eliminate combinations that did not have four singular values (indi-
cating an inconsistent or under-determined set of equations).

We did this both with and without alignment AL10. Including AL10
gave 489 distinct combinations; leaving it out gave 203 combinations. Each
combination is a distinct nonseparable two-fold alignment, equivalent to
the HJAs. To identify concisely a particular 2FA, we adopt the following
notation for a given combination of alignments. Begin with AL. Append
the number of each alignment, including its a/b suffix, in numerical order
(but without repeating AL). If an alignment appears more than once in
combination, only the suffix is repeated. (This only happens with a/b
alignments.) Thus, for example, the 2FA denoted by AL6ab8 consists of
alignments AL6a, AL6b, and AL8 and involves folding one point to a line
using the first fold line, folding a point to a line using the second fold line,
and bringing the image of the third and fourth points together using both
fold lines. This 2FA and two others that also involve four points and two
lines are shown in Figure 5.
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AL6ab8 AL6a7a8 AL6a7b8

Figure 5. Three of the two-fold axioms.

Space does not permit a complete pictorial listing of the 489 2FAs here,
but using our compact notation, we can provide a complete listing by sym-
bol.

AL110aaa, AL110aab, AL12a10aa, AL12a10ab, AL12a10bb, AL12a3b10a,
AL12a3b10b, AL12a3b7a, AL12a3b7b, AL12a6b10a, AL12a6b10b,

AL12a6b7a, AL12a6b7b, AL12a7a10a, AL12a7a10b, AL12a7aa, AL12a7ab,
AL12a7b10a, AL12a7b10b, AL12a7bb, AL13a10aa, AL13a10ab, AL13a10bb,
AL13ab10a, AL13ab7a, AL13a6b10a, AL13a6b10b, AL13a6b7a, AL13a6b7b,
AL13a7a10a, AL13a7a10b, AL13a7aa, AL13a7ab, AL13a7b10a, AL13a7b10b,

AL13a7bb, AL16a10aa, AL16a10ab, AL16a10bb, AL16ab10a, AL16ab7a,
AL16a7a10a, AL16a7a10b, AL16a7aa, AL16a7ab, AL16a7b10a, AL16a7b10b,
AL16a7bb, AL17a10aa, AL17a10ab, AL17a10bb, AL17aa10a, AL17aa10b,

AL17ab10a, AL810aa, AL810ab, AL910aa, AL910ab, AL10aaaa, AL10aaab,
AL10aabb, AL2a810a, AL2a810b, AL2a910a, AL2a910b, AL2a10aaa,

AL2a10aab, AL2a10abb, AL2a10bbb, AL2ab10aa, AL2ab10ab, AL2ab5a10a,
AL2ab5a10b, AL2ab5ab, AL2ab5a7a, AL2ab5a7b, AL2ab7a10a, AL2ab7a10b,

AL2ab7aa, AL2ab7ab, AL2a3b8, AL2a3b9, AL2a3b10aa, AL2a3b10ab,
AL2a3b10bb, AL2a3b4a, AL2a3b4b, AL2a3b5a10a, AL2a3b5a10b,
AL2a3b5aa, AL2a3b5ab, AL2a3b5a7a, AL2a3b5a7b, AL2a3b5b10a,

AL2a3b5b10b, AL2a3b5bb, AL2a3b5b7a, AL2a3b5b7b, AL2a3b7a10a,
AL2a3b7a10b, AL2a3b7aa, AL2a3b7ab, AL2a3b7b10a, AL2a3b7b10b,

AL2a3b7bb, AL2a4a10a, AL2a4a10b, AL2a4a5b, AL2a4a6b, AL2a4a7a,
AL2a4a7b, AL2a4b10a, AL2a4b10b, AL2a4b5a, AL2a4b6b, AL2a4b7a,

AL2a4b7b, AL2a5a8, AL2a5a9, AL2a5a10aa, AL2a5a10ab, AL2a5a10bb,
AL2a5aa10a, AL2a5aa10b, AL2a5aab, AL2a5aa6b, AL2a5aa7a, AL2a5aa7b,
AL2a5ab10a, AL2a5ab10b, AL2a5abb, AL2a5ab6b, AL2a5ab7a, AL2a5ab7b,

AL2a5a6b10a, AL2a5a6b10b, AL2a5a6b7a, AL2a5a6b7b, AL2a5a7a10a,
AL2a5a7a10b, AL2a5a7aa, AL2a5a7ab, AL2a5a7b10a, AL2a5a7b10b,

AL2a5a7bb, AL2a5b8, AL2a5b9, AL2a5b10aa, AL2a5b10ab, AL2a5b10bb,
AL2a5bb10a, AL2a5bb10b, AL2a5bb6b, AL2a5bb7a, AL2a5bb7b,

AL2a5b6b10a, AL2a5b6b10b, AL2a5b6b7a, AL2a5b6b7b, AL2a5b7a10a,
AL2a5b7a10b, AL2a5b7aa, AL2a5b7ab, AL2a5b7b10a, AL2a5b7b10b,

AL2a5b7bb, AL2a6b8, AL2a6b9, AL2a6b10aa, AL2a6b10ab, AL2a6b10bb,
AL2a6b7a10a, AL2a6b7a10b, AL2a6b7aa, AL2a6b7ab, AL2a6b7b10a,
AL2a6b7b10b, AL2a6b7bb, AL2a7a10aa, AL2a7a10ab, AL2a7a10bb,

AL2a7aa10a, AL2a7aa10b, AL2a7aaa, AL2a7aab, AL2a7ab10a, AL2a7ab10b,
AL2a7abb, AL2a7b10aa, AL2a7b10ab, AL2a7b10bb, AL2a7bb10a,

AL2a7bb10b, AL2a7bbb, AL3a810a, AL3a810b, AL3a910a, AL3a910b,
AL3a10aaa, AL3a10aab, AL3a10abb, AL3a10bbb, AL3ab8, AL3ab9,

AL3ab10aa, AL3ab10ab, AL3ab4a, AL3ab5a10a, AL3ab5a10b, AL3ab5aa,
AL3ab5ab, AL3ab5a7a, AL3ab5a7b, AL3ab7a10a, AL3ab7a10b, AL3ab7aa,

AL3ab7ab, AL3a4a10a, AL3a4a10b, AL3a4a5b, AL3a4a6b, AL3a4a7a,
AL3a4a7b, AL3a4b10a, AL3a4b10b, AL3a4b5a, AL3a4b6b, AL3a4b7a,

AL3a4b7b, AL3a5a8, AL3a5a9, AL3a5a10aa, AL3a5a10ab, AL3a5a10bb,
AL3a5aa10a, AL3a5aa10b, AL3a5aab, AL3a5aa6b, AL3a5aa7a, AL3a5aa7b,
AL3a5ab10a, AL3a5ab10b, AL3a5abb, AL3a5ab6b, AL3a5ab7a, AL3a5ab7b,

AL3a5a6b10a, AL3a5a6b10b, AL3a5a6b7a, AL3a5a6b7b, AL3a5a7a10a,
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AL3a5a7a10b, AL3a5a7aa, AL3a5a7ab, AL3a5a7b10a, AL3a5a7b10b,
AL3a5a7bb, AL3a5b8, AL3a5b9, AL3a5b10aa, AL3a5b10ab, AL3a5b10bb,

AL3a5bb10a, AL3a5bb10b, AL3a5bb6b, AL3a5bb7a, AL3a5bb7b,
AL3a5b6b10a, AL3a5b6b10b, AL3a5b6b7a, AL3a5b6b7b, AL3a5b7a10a,
AL3a5b7a10b, AL3a5b7aa, AL3a5b7ab, AL3a5b7b10a, AL3a5b7b10b,

AL3a5b7bb, AL3a6b8, AL3a6b9, AL3a6b10aa, AL3a6b10ab, AL3a6b10bb,
AL3a6b7a10a, AL3a6b7a10b, AL3a6b7aa, AL3a6b7ab, AL3a6b7b10a,

AL3a6b7b10b, AL3a6b7bb, AL3a7a8, AL3a7a9, AL3a7a10aa, AL3a7a10ab,
AL3a7a10bb, AL3a7aa10a, AL3a7aa10b, AL3a7aaa, AL3a7aab, AL3a7ab10a,

AL3a7ab10b, AL3a7abb, AL3a7b8, AL3a7b9, AL3a7b10aa, AL3a7b10ab,
AL3a7b10bb, AL3a7bb10a, AL3a7bb10b, AL3a7bbb, AL4a8, AL4a9,

AL4a10aa, AL4a10ab, AL4a10bb, AL4ab, AL4a5b10a, AL4a5b10b, AL4a5bb,
AL4a5b6a, AL4a5b6b, AL4a5b7a, AL4a5b7b, AL4a6a10a, AL4a6a10b,
AL4a6ab, AL4a6a7a, AL4a6a7b, AL4a6b10a, AL4a6b10b, AL4a6b7a,
AL4a6b7b, AL4a7a10a, AL4a7a10b, AL4a7aa, AL4a7ab, AL4a7b10a,
AL4a7b10b, AL4a7bb, AL5a810a, AL5a810b, AL5a910a, AL5a910b,
AL5a10aaa, AL5a10aab, AL5a10abb, AL5a10bbb, AL5aa8, AL5aa9,

AL5aa10aa, AL5aa10ab, AL5aa10bb, AL5aab10a, AL5aab10b, AL5aabb,
AL5aab6a, AL5aab6b, AL5aab7a, AL5aab7b, AL5aa6a10a, AL5aa6a10b,

AL5aa6ab, AL5aa6a7a, AL5aa6a7b, AL5aa6b10a, AL5aa6b10b, AL5aa6b7a,
AL5aa6b7b, AL5aa7a10a, AL5aa7a10b, AL5aa7aa, AL5aa7ab, AL5aa7b10a,

AL5aa7b10b, AL5aa7bb, AL5ab8, AL5ab9, AL5ab10aa, AL5ab10ab,
AL5ab6a10a, AL5ab6a10b, AL5ab6ab, AL5ab6a7a, AL5ab6a7b, AL5ab7a10a,

AL5ab7a10b, AL5ab7aa, AL5ab7ab, AL5a6a8, AL5a6a9, AL5a6a10aa,
AL5a6a10ab, AL5a6a10bb, AL5a6ab10a, AL5a6ab10b, AL5a6ab7a,
AL5a6ab7b, AL5a6a7a10a, AL5a6a7a10b, AL5a6a7aa, AL5a6a7ab,

AL5a6a7b10a, AL5a6a7b10b, AL5a6a7bb, AL5a6b8, AL5a6b9, AL5a6b10aa,
AL5a6b10ab, AL5a6b10bb, AL5a6b7a10a, AL5a6b7a10b, AL5a6b7aa,

AL5a6b7ab, AL5a6b7b10a, AL5a6b7b10b, AL5a6b7bb, AL5a7a8, AL5a7a9,
AL5a7a10aa, AL5a7a10ab, AL5a7a10bb, AL5a7aa10a, AL5a7aa10b,

AL5a7aaa, AL5a7aab, AL5a7ab10a, AL5a7ab10b, AL5a7abb, AL5a7b8,
AL5a7b9, AL5a7b10aa, AL5a7b10ab, AL5a7b10bb, AL5a7bb10a,

AL5a7bb10b, AL5a7bbb, AL6a810a, AL6a810b, AL6a910a, AL6a910b,
AL6a10aaa, AL6a10aab, AL6a10abb, AL6a10bbb, AL6ab8, AL6ab9,

AL6ab10aa, AL6ab10ab, AL6ab7a10a, AL6ab7a10b, AL6ab7aa, AL6ab7ab,
AL6a7a8, AL6a7a9, AL6a7a10aa, AL6a7a10ab, AL6a7a10bb, AL6a7aa10a,
AL6a7aa10b, AL6a7aaa, AL6a7aab, AL6a7ab10a, AL6a7ab10b, AL6a7abb,
AL6a7b8, AL6a7b9, AL6a7b10aa, AL6a7b10ab, AL6a7b10bb, AL6a7bb10a,

AL6a7bb10b, AL6a7bbb, AL7a810a, AL7a810b, AL7a910a, AL7a910b,
AL7a10aaa, AL7a10aab, AL7a10abb, AL7a10bbb, AL7aa10aa, AL7aa10ab,
AL7aa10bb, AL7aaa10a, AL7aaa10b, AL7aab10a, AL7aab10b, AL7ab10aa,

AL7ab10ab

This leads naturally to the question: what good are these? The most
complex of the HJAs, axiom O6, imposes a cubic equation on the param-
eterization of the fold line; this condition enables the solution of the gen-
eral cubic equation and various related problems. Folding a 2FA imposes
higher-order equations on the parameterizations of the fold lines; thus, a
2FA can potentially be used to solve higher-order polynomial equations.

We note that the previously mentioned angle quintisection [23] re-
quires a two-fold alignment at one step. Specifically, the required 2FA
is AL3a5b6b7b. Performing an angle quintisection requires the solution of
a particular irreducible quintic equation; thus, this 2FA (and others) allows
the solution of at least some quintic polynomials by origami. The question
of which 2FAs allow this solution, and which still higher-order equations
could be addressed by 2FAs, is the topic of the next section.
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5 Solving Equations with Two-Fold Axioms

In order to fix a line it needs to be specified by two conditions; so two folds
need four conditions to determine the alignment. Each two-fold alignment
yields a system of four equations in four variables with each equation of
degree at most 4.

Of the first 310 2FAs, 303 of them contain at least one equation of de-
gree 1 in two variables (ending with AL3a7bbb); by eliminating a variable
we can reduce the system to three equations of degree at most 4 in three
variables. Of these, 85 systems involve two equations of degree 1 so by fur-
ther elimination we are led to two equations in two unknowns; the solutions
to each of these equations is a curve in the plane and the simultaneous so-
lutions give the coordinates for the two fold lines. By Bezout’s theorem the
product of the two degrees is the number of (complex) solutions counted
with multiplicity.

Considering all systems, the number of solutions is much less than the
theoretical upper bound of 192 (the product of degrees); we obtain at
most 21 solutions in the worst case using Gröbner basis calculations (see,
e.g., [30]) in the program Magma.

In our equations, the first fold is (X, Y ) and the second fold is (Z, W ).
The coefficients of our equations belong to the ring A of rational functions
in variables determined by the generic points and lines given by the data
of the alignment conditions. The fold conditions give an ideal

〈a(X, Y, Z, W ), b(X, Y, Z, W ), c(X, Y, Z, W ), d(X, Y, Z, W )〉

in A[X, Y, Z, W ], which describes an affine variety of dimension 0 (as a
consequence of the non-singularity of the Jacobian of a, b, c, d). We apply
Gröbner basis methods (after specializing the point and line coordinates in
A to rational values). The Gröbner basis method gives another set of ideal
generators of the following form

〈f0(W ), X − f1(W ), Y − f2(W ), Z − f3(W )〉.

The degree of f0 is called the complexity, denoted cx. The degrees of
the other polynomial generators in this ideal are smaller than cx. The
complexity is our measure of the number of different crease patterns that
fulfill the given alignment conditions. For different choices of given points
and lines in the two-fold alignment we get different polynomials; for AL3ab9
the polynomial f0 is of degree 4, but not all polynomials of degree 4 can
arise in this way.
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AL4ab AL3ab9 AL3a4a6b

Figure 6. Three 2FAs. AL3ab9 and AL3a4a6b are shown with their associated
conic sections.

6 Geometry Examples
We explore some of the geometry involved in selected two-fold alignments
and their complexity.

6.1 Trisection

AL4ab, cx = 3. For nonparallel given lines, this alignment gives the tri-
sections of the angle between the given lines as one of the creases and the
other crease is the bisector of the first crease with the remote line, as shown
in Figure 6 (left). For parallel given lines, the alignment gives the folds for
the trisection of the segment perpendicular to the given lines.

6.2 Conics

Two circles: AL3ab*—17 two-folds, AL3ab9, cx = 4. The fold line and point
for AL3a or AL3b can be viewed as a diameter and center of a circle. The
folds reflect given lines to other tangents of the circles. Thus, this folds
the (at most) four common tangents to two circles, as shown in Figure 6
(middle).

The other alignments of this type have complexity at most eight; the
basis polynomial f0 for AL3ab7ab factors as a quadratic and sextic; others
of this type have small complexity.

Circle and parabola: AL3a6b—29 two-folds, AL3a4a6b, cx = 4. The second
crease can be viewed as a tangent to a parabola with the point and line of
AL6b as its focus and directrix; the first crease is a diameter to a circle. The
given line is folded to a tangent to a circle and is a tangent of the parabola,
as shown in Figure 6 (right); thus alignment creates the (at most) four
tangents to a circle and parabola. A method for solving certain quartic
polynomials by folding the common tangents to a circle and parabola has
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Figure 7. Solving a quartic equation by origami and Lill’s method. The two
associated parabolas are also shown.

been discussed in [7]. The method discussed there however does not use a
two-fold.

The alignments of this type have complexity at most 12. The highest
degree factor of f0 by the Gröbner basis calculations yield: AL3a6b4b of
degree 3; AL3a6b5aa of degree 4; AL3a6b5ab of degree 6; AL3a6b5a7a of
degree 6;AL3a6b5a7b of degree 8;AL3a6b5bb of degree 3; AL3a6b5b7a of
degree 8; AL3a6b5b7b of degree 7; AL3a6b8 of degree 4; AL3a6b9 of degree
6; AL3a6b7aa of degree 10; AL3a6b7ab of degree 10; AL3a6b7bb of degree
8; AL3a6b5a10a of degree 8; AL3a6b7a10b of degree 10.

Two parabolas: AL6ab* and solving quartics. The nine alignments involving
AL6a and AL6b have a complexity at most 18. However, the highest degree
factor of f0 by the Gröbner basis calculations yield: AL6ab4a of degree 5;
AL6ab5aa of degree 5; AL6ab5ab of degree 10; AL6ab5a7a of degree 10;
AL6ab5a7b of degree 12; AL6ab9 of degree 8; AL6ab7aa of degree 11;
AL6ab7ab of degree 15; AL6ab7a10a of degree 14.

The alignment AL6ab9 has the highest factor of the polynomial f0 with
Galois group of order 1152 in general. By using a repeated line we reduce
the complexity to four and can then solve the general quartic by using Lill’s
method. We can create this construction using alignment AL6ab9 with the
two parabolas and the (repeated) line BC as shown in Figure 7. Using
OA, AB, BC, CD, DT we consider two parallel parabolas with vertices
at A and D and foci at O and T , respectively. The two directrices of the
parabolas are easily constructed atop the Lill path. We then fold points O
and T onto their respective directrices so that the two fold lines intersect
at a point on line BC. The two creases give two reflections, which is a
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rotation; since we use the same line in the alignment the creases must be
perpendicular and meet on BC. Thus OX , XY , Y Z, ZT is the sequence of
right-angled bounces with X and Z on the lines AB and CD, respectively,
and on the respective creases. The distance from point A to point X is the
desired solution.

Notice that if two folds are perpendicular and meet at P and a line L
passes through P , then the reflection of L in the first and the reflection of
L in the second are the same line; conversely, if L reflects in two folds to
the same line, then the folds are perpendicular and meet at a point on the
line L.

We note in passing that the two fold lines meet at right angles (which
could be enforced by AL1) and the intersection of the fold lines lies on line
BC (which could be enforced by AL10); this particular construction could
be equivalently created by AL16ab10a.

7 Higher Origami: Examples of Degrees 5–8

7.1 Origami Cubic Curve

Reflect a point S in the tangents to a parabola; the locus created is the
origami cubic curve. It is singular at S and is circular, i.e., the cubic part
of its equation is (x2 + y2)(ax + by) when the directrix of the parabola has
equation ax + by = c. An example is shown in Figure 8.

In the one-fold axiom O7 we fold a common tangent to two parabolas.
Call the foci F and S and the directrix of the first is L; the directrix of
the second is M . We can think of this as reflecting S across the tangents
of the parabola so as to land on M . In other words, we are intersecting M
with the origami cubic curve and getting three intersections [3].

Septics and quintics—AL6ab8. The two-fold alignment AL6ab8 means that
we are given two parabolas by foci and directrix Fa, La, Fb, Lb and two
other points Sa, Sb that reflect across the parabola tangents so as to be
coincident. That is the same as locating the intersection of two origami
cubics Ja determined by Fa, La, Sa and Jb determined by Fb, Lb, Sb. Two
cubics will meet in general in nine points but here both cubics are circular so
they already meet at the two circular points. Therefore, there are generally
seven other intersections; that is, the complexity is seven.

If we enforce other coincidences, like the singular point Sa also lies
on Jb, then there will be a common singular point counting for a double
intersection, so the complexity is reduced to five.

In this way we can, by taking the intersection of the two cubic curves,
obtain a quintic f0 that can be solved by means of AL6ab8. It is not
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SF
L

Figure 8. The image of a point S across all fold lines that are tangents to a
parabola defined by focus F and directrix L traces out an origami cubic curve.

L1

L2

Q

P

L

M

N

Figure 9. Quintisection by AL6ab8.

known whether all field extensions of the rational numbers of degree 5 can
be generated by a root of such an f0; however by various choices of points
and lines we can arrange for both solvable and nonsolvable Galois groups.
One of the solvable cases gives a second method for quintisection.

Quintisection. Here we are given lines L1 and L. We want to fold an in-
termediate angle determined by N and its trisection by M so that the
reflection of M across N lands on L. This is the same as the use of Maclau-
rin’s trisectrix (Abe’s origami trisection) and a simultaneous Archimedes
trisection (by neusis). We do both to get a quintisection. It amounts to an
intersection of two origami cubics as described above. In Figure 9 the angle
between L and L1 is quintisected using the intersection of two cubics. The
cubic with singularity at Q is the trisectrix. The cubic with singularity at
P is a focal cubic. The angle between N and L1 is trisected by M using
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properties of the trisectrix; N is the bisector of L and M using properties
of focal cubics.

7.2 Origami Cubic Line Curve

An analogue of the origami cubic curve is obtained by reflecting a line
in the tangents to a parabola and then dualizing this line in a parabola
or other relevant conic; this yields a singular cubic curve that we call an
origami line cubic curve.

AL4a6ab, cx = 5. Here we want the reflection of given line L2 using the
focus directrix P1 −L1 of AL6a to land on the fold made by Q1−M1 using
AL6b. Let K be the parabola made by the focus-directrix Q1 − M1. We
dualize the origami line cubic made by P1, L1, L2 in K. The intersections
of this singular cubic with K are precisely those places where reflections of
L2 give tangents to K. Thus, the six possible intersections of the conic K
and the origami line curve give the possible two-folds. Since the point at
infinity on the conic is one of the common points the solutions are given
by a quintic.

AL6ab9, cx = 8. In this construction we create two line curves by reflections
of lines L2 and M2 in the tangents of P1−L1 and Q1−M1. We are looking
for the coincidences of the two line curves. If we dualize these in the same
parabola K then the two cubics will meet in at most nine points; thus, there
are at most nine possible configurations for a given set of data of lines and
points. However, there is a common point at infinity (the parabolas) for
these two cubics, so there are only eight distinct points of intersection and
thus eight possible two-fold configurations.

8 Three Folds and More

8.1 Solving the General Quintic by Lill’s Method

While selected quintics can be solved by 2FAs, we have not yet found a
solution to the general quintic. However, the general solution is possible
using three simultaneous folds. Using sides OA, AB, BC, CD, DE, ET at
right angles we create the Lill solution OX , XY , Y Z, ZW , WT at right
angles with X, Y, Z, W on the sides of the diagram (Figure 10).

Fold O to L1 on Fa where L1 is parallel to AB passing through the
reflection of O in AB; this is AL6a. This fold line meets AB at X and BC
at Y . Fold T to L2 on Fb where L2 is parallel to DE passing through the
reflection of T in DE; this is AL6b. The intersection with DE is W and
the intersection with CD is Z.
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L1

L2

O

A B

C D

E
T

X Y

Z

W

Fa

Fb

Fc

Figure 10. Solving the quintic with three-fold.

At the same time form a third fold Fc that is perpendicular to Fa (AL1)
so that the fold intersection lies on CD (AL10) and is perpendicular to Fb

(AL1), so that the fold intersection lies on BC (AL10). Lines OX and
WT , plus segments of the three fold lines, complete the Lill path and give
a solution to the general quintic.

8.2 More Folds, Higher-Degree Equations

Before proceeding, we note that the concept can be more broadly general-
ized:

Definition 13 (N -Fold Axiom). An N -fold axiom is a minimal set of align-
ments between sets of points, lines, and their folded images that defines
a finite number of sets of N fold lines on a finite region of the Euclidean
plane.

More generally, this technique can be used to solve an arbitrary poly-
nomial equation using Lill’s method. An nth-degree equation has a Lill
diagram for which the solution path consists of n segments with n − 1
turns. As in the preceding example, we use AL6 for the first and last seg-
ments of the path and n − 2 folds for the intermediate segments, applying
alignments AL1 and AL10 to enforce right-angle turns and turns lying on
specified lines, respectively, for the n − 3 intermediate turns. The number
of equations to be satisfied are 2 × (n − 3) + 2 = 2(n − 2), matching the
available DOF of n − 2-folds. This brings us to the following theorem:

Theorem 1. Every polynomial equation of degree n with real solutions can
be solved by n − 2 simultaneous folds.
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The proof follows from the argument in the preceding paragraph. It
would be interesting to know if equations of degree n that can be solved
by radicals can be solved in general using less than n − 2-folds. This is
certainly true for n = 4 and unknown for n = 5.
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The Power of Multifolds:
Folding the Algebraic Closure

of the Rational Numbers

Timothy Y. Chow and C. Kenneth Fan

1 Introduction
Robert Lang described how to quintisect an arbitrary angle using tech-
niques of origami.

How can this be? Is it not well known that angle quintisection is im-
possible using the Huzita-Hatori axioms1? Lang quintisected using a secret
weapon: the multifold. In “Angle Quintisection” [5], Lang explains that
quintisection is impossible if only one fold is allowed at a time. However, if
one allows simultaneous folds in a single origami maneuver, quintisection
can be achieved.

The question naturally arises: how large is the new set of constructible
numbers if one allows multifolds?

In this paper, we show that the answer is the entire algebraic closure2

of the rational numbers. In a sense, this means that the set of origami
constructible numbers is as large as possible, although we suggest a further
expansion in the last section.

1We assume the reader is familiar with the Huzita-Hatori axioms. For a good intro-
duction see [4]. Also see [1] for more origami constructions.

2We assume the reader has a basic familiarity with field theory. For information on
the algebraic theory involved, see any introduction to abstract algebra, such as [3] or [6].
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2 Multifolds
A multifold is a single origami maneuver that can simultaneously involve
the creation of more than one crease. A multifold is made by forming
a sequence of folds and then “rolling” these folds along until a desired
shape is attained at which point, all creases are made sharp. The various
configurations of the creases involved in the multifold can be parameterized
by some variables. As the creases are rolled along, a path is traced in the
parameter space.

In other words, a multifold consists of a sequence of folds F1, F2, F3, . . . ,
FN . Of course, not any sequence of folds will do! First, the fold Fk must
be specifiable in terms of alignments3 using some combination of preexist-
ing references, references created by prior folds in the sequence and some
finite number of parameters. These parameters will typically correspond to
measurable features of the model, such as an angle or distance. Second, it
must be possible to actually execute these folds. For instance, it’s no good
if at some point in the fold sequence, a fold is called for in some part of
the paper that is completely inaccessible! Finally, these folds should lend
themselves to being rolled along continuously in the parameters.

The last condition makes any unfolding in the sequence risky. If, for
example, the folding sequence involves unfolding a fold and refolding along
a crease that intersects the unfolded crease, it is no longer possible to
manipulate the model continuously: to alter the first crease, the model
would have to be refolded along a discrete new location as opposed to
having the new crease achieved by “rolling” the original crease to a new
position.

In the context of origami constructions, only certain multifolds are use-
ful: the multifold must satisfy some kind of alignment condition involving
existing references (including references created by the folds in the folding
sequence) that fixes and enables explicit computation of the value of at
least one parameter that is related to a measurable feature of the origami
model. When this occurs, the parameters that get fixed are effectively
constructed. When an alignment condition depends on n parameters to
fix the value of the desired parameters, we refer to such a multifold as an
n-parameter multifold.

For example, let F1 be defined by a fold parallel to a fixed edge of a
square sheet of origami paper and a parameter d that gives the distance
of the crease from that edge. Every d that specifies a crease within the
origami square yields a one-parameter multifold (albeit, a degenerate one
because only one crease is formed). However, most of these multifolds are
useless for origami constructions because most do not enable computation
of d. In this example, the book fold, which is specified by an appropriate

3For more details on alignments, see [2, 4].
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alignment condition, does give a constructive multifold because it fixes d
to be half the width of the origami square.

There is a distinct practical advantage to using one-parameter mul-
tifolds. In a one-parameter multifold, one is guaranteed to discover the
alignment condition, assuming it can be achieved, by rolling the creases.
However, in multiparameter multifolds, one could fiddle endlessly with the
paper in a desperate search for the alignment condition.

The good news is that one-parameter multifolds suffice because the
algebraic closure of the rational numbers can be constructed using one-
parameter multifolds alone:

Theorem 1. Suppose that the complex number z is a root of a polynomial
with rational coefficients. Then the real and imaginary parts of z can be
constructed using one-parameter multifolds.

The next six sections are devoted to proving this result.

3 Getting Real
Our construction only directly finds real roots of polynomials. However,
we can construct the complex algebraic number a by constructing its real
and imaginary parts. This is because the algebraic closure of the rational
numbers is a field closed under complex conjugation (see any book on field
theory), so the formulas

�a =
a + a

2
and �a =

a − a

2i

show that the real and imaginary parts of any algebraic number are alge-
braic. (Note that i is algebraic because it is a root of x2 + 1 = 0.)

The above shows that being able to find real roots of any polynomial
with rational coefficients allows us to construct the algebraic closure of the
rationals. However, we can do better. Given an algebraic number z and
a polynomial with rational coefficients p with p(z) = 0, we can construct
polynomials with rational coefficients with the real and imaginary parts of
z among their roots. This not only enables us to construct the algebraic
closure of the rational numbers in the abstract, but also enables us to solve
for the roots of any given polynomial with rational coefficients.

To see this, let rk, k = 1, . . . , n be the roots of p. Let qjk = (rj + rk)/2,
where 1 ≤ j, k ≤ n. Let

f(x) =
∏

j,k=1,...,n

(x − qjk).
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Because nonreal roots of p come in conjugate pairs, the real part of rk, for
any 1 ≤ k ≤ n, is a root of f . The coefficients of f are elementary symmet-
ric polynomials in the qjk . By construction, the coefficients are therefore
symmetric polynomials in the rk . Rational symmetric polynomials in the
rk are rational polynomials in the elementary symmetric polynomials of
rk [3, p. 139]. Hence, the coefficients of f(x) are rational and can be di-
rectly computed from the coefficients of p(x).

To get the imaginary parts, use the polynomial

h(x) =
∏
j �=k

(
x2 +

(
rj − rk

2

)2
)

and apply a similar argument to see that its coefficients are rational and
directly computable from the coefficients of p(x).

4 The Set Up
So, in accordance with Section 3, we are given a polynomial p(x) = anxn +
an−1x

n−1+. . .+a1x+a0 with rational coefficients and we need to construct
its real roots.

Our approach is to use standard constructions for addition and multi-
plication to construct p(x) from the single parameter x. Then, by varying
x, we find a root when the constructed p(x) is 0. However, care must be
taken to ensure that the construction of p(x) varies continuously with x
and does not involve unfolding and refolding or some other obstruction.

To describe the method of construction, it helps to forget about origami
for a moment. Instead, let us imagine that we are working with an unlim-
ited supply of rectangular sheets of paper that can come with any dimen-
sions that we desire. We will show how to find a real root of p using these
sheets of paper and later show how to turn this into an origami multifold.

When we speak of using “large” or “long” sheets, what we mean is
that some finite sized sheets will work and if you try the construction and
discover that you ran out of paper, it means you just have to try again
with larger or longer sheets!

So take a large square sheet and make a book fold through it. Unfold
and orient it so that the resulting crease is vertical. We will refer to this
as the zero crease. Please refer to Figure 1.

Now, fold and unfold another sharp crease parallel to and one unit to
the right of the zero crease. Call this new crease the one crease.

We shall assume that the polynomial is given to us by having rectan-
gular strips with lengths equal to the absolute value of the coefficients. If
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Figure 1. The preliminary setup.

you really want to, you can encode the sign of the coefficient by using one
color for positive and another color for negative.

Next, fold the lower left corner of the square to the center to create a
45◦ crease in the lower left quadrant. Unfold. Call this crease the diagonal
reference.

Finally, take a very long thin rectangular sheet and place it on top of
the square sheet parallel to the zero and one creases. Call this sheet x.

Our multifold will be parameterized by the horizontal distance between
the zero crease and the left edge of sheet x. We shall also use x to refer to
this distance.

In the construction, we will often refer to horizontally, vertically, or
diagonally aligned rectangles. Use the edges of the square or the diagonal
reference to fix these orientations.

5 Overview of the Construction
The idea behind our construction is to define a sequence of folds that
depend on the single parameter x. Performing the folds ultimately results
in a pair of edges separated by the distance p(x). This sequence gives rise
to a one-parameter multifold defined by the alignment condition that this
pair of edges overlap, that is, by the condition that p(x) = 0.

Start by writing

p(x) = x(x(. . . (x(xan + an−1) + an−2) + . . .) + a1) + a0.
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Figure 2. The input and output pairs of horizontal strips are solid black.

We devise a special sequence of folds that takes as input a pair of edges
separated by the distance d and outputs a pair of edges separated by the
distance xd + a, where a is a given constant. Using this special folding
sequence, we can achieve a pair of edges separated by the distance p(x) by
working outward from the innermost embedded expression xan + an−1.

In the next section, we shall describe this special sequence of folds.

6 The Heart of the Construction
Our construction will be achieved by repeated application of the following
folding sequence. Please refer to Figure 2.

We assume that we are given a quantity d encoded as the distance
between the inner edges of two long, thin horizontal strips situated on the
square sheet (the lower pair of black horizontal strips in Figure 2). If the
quantity is positive, think of the lower strip as locating zero, otherwise,
think of the upper strip as locating zero. When we refer to the inner
edge of one of these long, thin horizontal strips, we shall mean inner in
the context of the two strips forming a pair. Let Z denote the point of
intersection of the inner edge of the strip locating zero and the zero crease.

We aim to produce a new pair of long, thin horizontal strips that encode,
in the same manner, the quantity xd + a where a is a real number given
to us as the length of a rectangle that we will call sheet a (just as the
coefficients of the polynomial are given to us).

To do this, note that the inner edges of the horizontal strips together
with the zero and one creases form the edges of a rectangle. Place the edge
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of a long, thin rectangular strip along the diagonal of this rectangle so that
it passes through Z. Follow the edge of this rectangular strip to where
it intersects the left edge of sheet x and mark this intersection point by
placing the top or bottom (whichever is easier to see) edge of an auxiliary
long, thin horizontal strip through the intersection. The vertical distance
between the relevant edge of this auxiliary strip and the inner edge of
the given horizontal strip locating zero is xd. The relevant edge of the
auxiliary strip will be above or below the given horizontal strip locating
zero depending on whether xd > 0 or xd < 0.

Situate sheet a vertically above or below (depending on whether a > 0
or a < 0) the relevant edge of the auxiliary strip. Pick a place where sheet
a will not obscure any important existing intersections. Place another long,
thin horizontal sheet so that its top edge is flush with the side of sheet a
opposite the auxiliary strip. Let Y denote the intersection of the top edge
of this last horizontal sheet and the zero crease.

Points Z and Y are on the zero crease and are separated by a distance
of xd+a. We want to encode this distance as the separation between a new
pair of long, thin horizontal strips in the same way that we were given d.
To do this, take a pair of long, thin parallel rectangular strips so that their
inner edges pass through Z and Y . Use the diagonal reference to orient
these strips at a 45◦ angle. Place a vertical strip across this pair of diagonal
strips in a location where, looking horizontally from the intersections, you
have a clean part of the square sheet in which to work. (If you have
to go too far, it means that you did not start with a big enough square
sheet.)

Finally, place a pair of thin, long horizontal strips so that their inner
edges pass through the intersections of the inner edges of the pair of diago-
nal strips with the vertical strip. Take note of which horizontal strip traces
back to point Z and regard this strip as the one that is locating zero.

7 The Construction
As indicated in Section 5, to complete the construction, we iterate the
procedure explained in the previous section n times. Begin the process
by sandwiching the sheet representing the coefficient an between two long,
thin horizontal strips.

Now imagine sliding sheet x left or right to vary x. As this is done, the
entire contraption of horizontal, vertical, and diagonal sheets move in tan-
dem according to the prescription of alignments given for the construction.
Undoubtedly, it would help to have a lot of people working as a team to
do this! (A word of advice: put your fastest sprinters on the strips that
encode p(x).) The upshot is that the final pair of horizontal strips will
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widen and narrow representing the values of p(x). When their inner edges
touch, x is a root of p(x).

Our setup is slightly more amenable to computing positive real roots
of polynomials, but this does not present any difficulty because one can
always replace the polynomial p(x) by p(−x).

8 Returning to Origami Land

Given a polynomial, there are well-known bounds on the size of its real
roots. This enables us to find sufficiently large, yet finite sheets to perform
the massive procedure outlined in Sections 5–7.

Although our multifold uses several auxiliary parameters, the alignment
p(x) = 0 depends only on the parameter x, so this is considered a one-
parameter multifold. Also, by carefully following the procedure with all
its recommendations, there will be no operational concerns such as having
some important intersections or sheets blocked from access. Furthermore,
the entire construction of p(x) involves no unfolding, so we do not have to
concern ourselves with the possibility of such unfolding causing a violation
of the last condition for the folding sequence of a multifold.

All that remains then, is to show how the whole contraption can be
made from a single sheet of square origami paper!

This can be done by connecting all sheets involved by an ultrathin strip
of paper. When making these connections, attach the ultrathin strips to
unimportant locations around the edges of the sheets used in the apparatus.
Use plenty of slack in these connections so that the whole apparatus can
be manipulated without obstructions. Now, purchase a really, really, really
long, ultrathin strip of paper and fold it, using standard techniques (see
Figure 3), into this massive contraption of connected sheets. Finally, if you
are truly determined to use a square sheet of origami paper, purchase a
gigantic square of origami paper with side length equal to the length of the
super long ultrathin strip and fold it over and over along parallel creases
until it has the exact dimensions of said super long ultrathin strip.

This completes the proof of our theorem.
A related, but geometrically different, construction for the real roots of a

polynomial was discovered by Lill in 1867 and is described in [7]. However,
it should be possible to use Lill’s method4 to create an alternative origami
construction. In our construction, we took care to avoid paper obstructing
the view of the folder, and some care would have to be taken to avoid this
in adapting Lill’s method to origami.

4The authors thank the referee for pointing out this method.
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Figure 3. A schematic showing how to turn a strip into a rectangle. In actuality, all
intersecting lines make 45◦ or 90◦ angles. In order to show all the folds clearly, we
drew the folds askew to avoid overlaps. With minor alterations, the dimensions
of the rectangle can be changed and the places where the strip enters and exits
the rectangle can be relocated.

9 Multifolds and Beyond

The introduction of multifolds into origami constructibility fuels questions
of practicality. Typically, multifolds are not easy to perform in the tra-
ditional way in which origami is practiced: by a lone folder. Indeed, the
multifold introduced in this paper to construct p(x) from x would be im-
possible to fold by any normal human being! However, keep in mind that
ours is a general construction that, in principle, could even be applied to
polynomials of degree one googol and one, something you couldn’t even
solve numerically with a supercomputer!

Finally, we ask, can the world of origami constructible numbers be
further extended? Can nonalgebraic numbers like π be constructed as
well?

Because alignments are specified by algebraic conditions, transcenden-
tal numbers would only be possible if the toolbox of allowable origami
maneuvers is expanded.

To this end, one could introduce a mathematical model of an ideal
sheet of paper that includes a description of how paper behaves in all three
dimensions. Such a model would consider not only folds but also how
paper curves in space. For example, one might consider continuous, path-
length-preserving maps from the square into space with the property that
any region of the image that does not involve creases has zero curvature
and satisfies certain physical conditions on tension. An allowable proce-
dure would then be to specify a boundary condition in terms of existing
references and to extract lengths between reference points in the result-
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ing structure where possible. This would bring analysis into the world of
origami constructible numbers and pi would likely be attainable (for exam-
ple, by making a cylinder, measuring off the diameter, and then taking a
reciprocal).
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Fujimoto, Number Theory, and
a New Folding Technique

Tamara B. Veenstra

1 Introduction

The standard method to fold a piece of paper into fifths, sevenths, or, gen-
erally, nths was developed independently by Fujimoto [2] and Brunton [1] in
the 1970s. This method, usually referred to as the Fujimoto approximation
technique, is a recursive process that finds a better and better approxima-
tion to 1/nth of the paper, eventually reaching this value as precisely as
the dynamics of folding paper will allow. During this process, numerous
crease marks are made along the paper. In addition to eventually finding
1/nth of the paper, sometimes these crease lines will also mark all mul-
tiples of 1/n but sometimes they will mark only certain multiples. This
paper discusses results that classify which values of n completely divide the
paper into nths in this manner from two different viewpoints: one using
modular arithmetic and another using binary representations. As a conse-
quence, there are some interesting connections between these two methods
of classifying n that lead to a generalization of the Fujimoto technique that
provides an alternate way to find 1/nth of the paper.

405
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2 The Fujimoto Approximation Technique
The general algorithm for the Fujimoto approximation technique for any
odd n works by first placing a pinch mark at a rough approximation for
1/nth of the paper. A sequence of folds is then made recursively using
the current pinch mark to locate the next pinch mark. More precisely, at
any stage in the process, the location of the crease line can be viewed as a
fraction of the paper, either from the left-hand side or the right-hand side.
Since n is odd, exactly one of these fractions will have an even numerator.
To get the next crease line, fold in half from the current crease line to the
edge of the paper corresponding to the even numerator. Eventually, there
will be a pinch mark that provides a new, more accurate approximation for
1/nth of the paper, since the error is reduced by half every time the paper
is folded in half. One can repeat the process until there is no noticeable
difference in the successive pinch marks for 1/n, at which point 1/nth is
found as accurately as possible. At this time, the pinch marks may be
extended to crease lines all the way through the paper.

For example, to fold a piece of paper into fifths, the first pinch mark
guesses 1

5
from the left and 4

5
from the right. Since the numerator of 4

5
is even, we fold halfway from the right-hand side to the first pinch mark.
This gives us a new pinch mark that is 3

5
from the left and 2

5
from the

right. Again, the numerator on the right-hand side is even, so we fold that
side in half. We proceed similarly until we produce a new pinch mark for
1
5 from the left. We see that by the time we return to the pinch mark for
1
5 from the left we have made pinch marks at 1

5 , 3
5 , 4

5 , and 2
5 where these

represent, in order, the pinch marks made as a fraction of the paper from
the left side. Thus, for this value of n, we have produced pinch marks at all
multiples of 1

5 . Thus, after we have found 1/5th accurately and made all
the crease lines, we will have completely divided the paper into fifths. This
property does not hold for all n. For example, if we apply the Fujimoto
approximation technique to n = 7, then there are only three crease lines
produced at 1

7
, 2

7
, and 4

7
, and the paper is not completely divided into

sevenths. To study this property we introduce the following definition:

Definition 1. For odd n, n has a complete Fujimoto division if the Fujimoto
algorithm for finding 1/nth of the paper also produces crease lines at all
multiples of 1/n.

There are many examples of n that have a complete Fujimoto division
and many examples of n that do not. For example, n = 3, 5, 11, 13, and 19
all have a complete Fujimoto division, while n = 7, 9, 15, 17, 21, and 23 do
not. In the next section, we summarize results that answer the question of
which n have a complete Fujimoto division by finding formulas to compute
the number of crease lines for any n in two different ways.
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lklk+1 10

(a)

1 – lk

lk lk+1 10

(b)

Figure 1. Finding lk+1 in terms of lk. (a) Folding the left side of the paper to lk.
(b) Folding the right side of the paper to lk.

3 The Number of Crease Lines
Since we are only interested in where the crease lines occur, we will assume
that we have already found 1/nth exactly and are just going through the
algorithm the last time to make the creases all the way down the paper. To
keep track of the location of these crease lines, we introduce the following
notation:

Definition 2. Let lk(n) denote the fraction of the paper that is to the left of
the pinch mark at the kth step in the Fujimoto approximation for finding
1/nth of the paper.

We will always assume that we start with a pinch mark 1/nth from the
left so l1(n) = 1

n . In most instances we will simply write lk unless it is
necessary to specify the n.

To understand where the crease lines fall we first construct algebraic
formulas for the lk. Because the instructions for Fujimoto use the current
crease line, lk, to determine the placement of the next crease line, lk+1,
we end up with a recursive function. There are two cases, depending on
whether we are folding the left or the right side in half. Note that with our
notation, the left-hand side of the paper corresponds to a value of 0 and
the right-hand side of the paper corresponds to 1. If we are folding the left
side of the paper in half we have lk+1 = lk/2 while folding the right side in
half gives

lk+1 = 1 − 1 − lk
2

=
lk + 1

2
as in Figure 1.

We summarize in Equation (1) below. For lk as in Definition 2 we have
l1 = 1

n
and

lk+1 =
1
2

(lk + ck) , where ck =

{
0 if nlk is even,
1 if nlk is odd.

(1)
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To verify that nlk really is the numerator of lk, we state some facts
that are proved in a generalized case in Corollary 1. First, lk = a

n for
some integer a with 1 ≤ a ≤ n − 1. Second, gcd(a, n) = 1 so the fraction
a
n

cannot be reduced. Thus, Equation (1) does indeed correspond to the
directions for the Fujimoto approximation technique.

These facts already give us some insight into which n can have a com-
plete Fujimoto division. For example, if n = 9 then lk �= 3

9 for any k since
gcd(3, 9) = 3. This means there will be no crease mark at 3

9
, so that 9 does

not have a complete Fujimoto division. Thus, if n is a composite number
it will not have a complete Fujimoto division. The converse is not true,
however, as many prime n, such as n = 7, also do not have a complete Fuji-
moto division. To answer the question about which primes have a complete
Fujimoto division we state the following theorem from [6]:

Theorem 1. Let n be odd. The number of crease marks produced in the
Fujimoto approximation technique is the (multiplicative) order of 2 mod n.
Moreover, n has a complete Fujimoto division if and only if n is a prime
where n ≡ ±3 mod 8 and |2| = n − 1.

From this theorem, we see that it is relatively rare for n to have a
complete Fujimoto division. We next describe a different way to find a
formula for the number of crease lines produced in the Fujimoto technique.
This uses the binary representation of 1

n and is based on independent work
by Robert Lang [4,5] and James Brunton [1]. Their ideas can be stated as
the following theorem.

Theorem 2. Let n be odd. The Fujimoto approximation technique for 1
n

produces r crease lines if and only if 1
n = (.a1 · · · ar)2. Moreover, n has a

complete Fujimoto division if and only if r = n − 1.

As an example of applying this theorem, we examine the binary rep-
resentations for 1

5
= (.0011)2 and 1

7
= (.001)2. We see that Theorem 2

confirms that the Fujimoto algorithm produces four crease lines for n = 5
and only three crease lines for n = 7.

The idea underlying the proof of this theorem is that ai = 0 or 1
corresponds to folding the left- or right-hand side (respectively) in half.
However, it does not refer to what happens at the ith step as the corre-
spondence uses the coefficients in reverse order. To clarify how this works
(and to help us generalize later) we use the Fujimoto approximation tech-
nique for n = 7 to construct the binary representation for 1

7
. Applying

Equation (1) converts the folding algorithm into the algebraic algorithm
with l1 = 1

7
, l2 = 1

2
(l1 + 1), l3 = 1

2
(l2), and l4 = 1

2
(l3). To produce a
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binary expansion we start with l4 and recursively substitute in the above
formulas:

l4 =
1
2

(l3) =
1
2

(
1
2
(l2)

)
=

1
22

(l2) =
1
22

(
1
2
(l1 + 1)

)
=

l1
23

+
1
23

.

If we plug in l1 = 1
7 we see that l4 = 1

7 . This is where the Fujimoto
algorithm starts repeating since it only produces three distinct crease lines
for n = 7. Plugging in 1/7 for both l1 and l4 in the above equation and
then solving for it yields

1
7

=
1
23

(
1

1 − 1
23

)
=

1
23

(
1 +

1
23

+
1
26

+ · · ·
)

= (.001)2.

Because we substituted the lk in reverse we see why the coefficients of
the binary expansion determine the folding in reverse order. We will prove
this always happens for a generalized case in the next section.

4 Consequences and Generalizations
We now have two ways to determine the number of crease lines produced in
the Fujimoto approximation technique. Thus, we must have the following
connection:

Theorem 3. Let n be odd. The fraction 1
n has a binary expansion 1

n =
(.a1a2 · · · ar)2 if and only if r is the order of 2 mod n.

We know this theorem is true by combining Theorems 2 and 1, hence
we can just say proof by origami! While Theorem 3 emerged naturally out
of connections to origami, it does not actually depend on using a base 2
representation (see, e.g., [3, p.112]); that is, we have the following well-
known generalization:

Theorem 4. The fraction m
n

has a base b representation as m
n

= (.a1a2 · · · ar)b

if and only if the gcd(n, b) = 1 and r equals the order of b mod n.

A natural question arising from this generalization is whether expressing
1
n

in other bases corresponds to an alternate folding technique for finding
1/nth of the paper. The theorem forces gcd(n, b) = 1 but with that condi-
tion we can, in fact, use a base b representation to produce an interesting
folding algorithm, albeit with some added complications.

For motivation on how to turn a base b representation for 1
n

into a
folding algorithm we recall the steps for the binary case. We first translated
the folding algorithm into an algebraic algorithm with the lk. Then we used
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these recursive formulas to construct the binary representation. For the
base b case, we will go through these steps in the opposite order. That is,
we will use the base b representation to construct an algebraic algorithm;
then we will translate the algebraic algorithm into a folding algorithm.

To convert the base b representation into a recursive algebraic algo-
rithm, we have the following theorem.

Theorem 5. Let lk be a recursively defined set of formulas with lk+1 =
1
b (lk + ck) where the ck are integers such that 0 ≤ ck < b. Then lr+1 = l1
if and only if l1 = (.cr · · · c1)b.

Proof: We first assume that lr+1 = l1. Applying the definition of the lk
recursively we have:

lr+1 =
1
b

(lr + cr) =
1
b
(lr) +

cr

b

=
1
b

(
1
b

(lr−1 + cr−1)
)

+
cr

b
=

1
b2

(lr−1) +
cr−1

b2
+

cr

b

...

=
lk

br−k+1
+

ck

br−k+1
+ · · · + cr

b
...

=
1
br

l1 +
c1

br
+ · · · + cr−1

b2
+

cr

b
.

Now substituting lr+1 = l1 and solving for l1 yields

l1 =
(c1

br
+ · · · + cr

b

) (
1

1 − 1
br

)
.

To convert l1 into an infinite repeating base b representation we recognize
1/(1 − (1/br)) as the sum of a geometric series. Thus, we have

l1 =
(c1

br
+ · · · + cr

b

)(
1 +

1
br

+
1

b2r
+ · · ·

)
=

(cr

b
+ · · · + c1

br

)
+

( cr

br+1
+ · · · c1

b2r

)
+ · · · = (.cr · · · c1)b.

For the other direction, essentially we work through all the above steps
in reverse. �

To see how Theorem 5 translates a ternary representation into an alge-
braic algorithm we examine 1

5
= (.0121)3. We first define l1 = (.0121)3 = 1

5
.
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Now, since the length of the repeated pattern is 4 the formulas will start
repeating with l5 = l1. Applying the coefficients of (.0121)3 in the reverse
order we have

l2 =
1
3

(l1 + 1) =
1
3

(
1
5

+ 1
)

=
2
5
,

l3 =
1
3

(l2 + 2) =
1
3

(
2
5

+ 2
)

=
4
5
,

l4 =
1
3

(l3 + 1) =
(

4
5

+ 1
)

=
3
5
,

l5 =
1
3

(l4 + 0) =
1
5
.

From this example we see where the crease lines should fall in a Fujimoto-
like algorithm, but it is not at all obvious how to construct a folding method
for obtaining these crease lines in general. We do notice that all the crease
lines are multiples of 1

n
. This will always be true, as we see in the following

corollary.

Corollary 1. Let gcd(n, b) = 1, l1 = (.cr · · · c1)b, and lk+1 = 1
b
(lk + ck). If

l1 = 1
n , then for all k, lk = Lk

n where Lk is an integer such that 0 ≤
Lk < n and gcd(Lk, n) = 1. Moreover, Lk ≡ (b−1)k−1 mod n so it can be
completely specified in terms of powers of b mod n.

Proof: Let the lk be defined as above with l1 = 1
n . By Theorem 5, lr+1 =

l1 = 1
n
. Combining this with an intermediate step in the proof of Theorem

5 for k ≤ r we have

1
n

= lr+1 =
lk

br−k+1
+

ck

br−k+1
+ · · · cr

b
.

Multiplying by nbr−k+1 and solving for nlk gives

nlk = br−k+1 − n(ck + · · · + br−kcr).

All terms except lk are integers, so nlk is an integer. Thus, we let Lk = nlk
and prove the remaining properties of Lk. Reducing mod n yields Lk ≡
br−k+1 ≡ (b−1)k−1 mod n since r is the order of b mod n by Theorem 4.

To see that 0 ≤ Lk < n, let

Mk =
Lk

nbr−k+1
=

1
n
−

(cr

b
+ · · · ck

br−k+1

)
.

Thus,

Mk = (.cr · · · c1)b −
(cr

b
+ · · · ck

br−k+1

)
=

ck−1

br−k+2
+

ck−2

br−k+3
+ · · · .
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Clearly Mk ≥ 0. By construction of binary coefficients we must have
Mk < 1/br−k+1. Thus, 0 ≤ Mk < 1/br−k+1 and 0 ≤ Lk < n.

To show that gcd(Lk, n) = 1 we use induction. Since l1 = 1
n

we have
L1 = 1 so clearly gcd(L1, n) = 1. We next assume that gcd(Lk, n) = 1.
From equation 1 we have Lk+1 = Lk + nck. From properties of great-
est common denominators, gcd(Lk + nck, n) = gcd(Lk, n) = 1. Thus by
induction, gcd(Lk, n) = 1 for all k. �

Now that we have the base b representation for 1
n

translated into an al-
gebraic equation we are ready to turn this into a folding algorithm. There
are two parts to this process: we first need to understand what the for-
mula lk+1 = 1

b
(lk + ck) corresponds to in terms of a folding action. Then

we need to specify the folding algorithm independently from the base b
representation for 1

n
.

We first examine how lk+1 = 1
b (lk + ck) corresponds to a folding action.

Multiplying by 1/b corresponds to folding 1/bth of the way between two
points, just like multiplying by 1/2 corresponded to folding halfway between
two points in the binary case. Thus, we already see one difficulty of this
method as, in general, folding into bths already requires some work. We
must also figure out which two points to fold between. As in the binary
case, one of the points is always the current crease line lk. The other is
determined by the coefficient ck. In binary the ck take only two values, 0
or 1, and these correspond to points at the left and right ends of the paper.
For base b we will need b different points since there are b different values
for the ck.

For an example, consider b = 3. The formulas for the lk are of the
form lk+1 = 1

3 (lk + ck) with ck = 0, 1 or 2. Two of these values for
ck correspond to straightforward generalizations of the binary case where
we folded the left side or the right side in half. If ck = 0 then folding
lk+1 = lk/3 corresponds to folding 1/3 of the way from the left edge of the
paper (denoted as 0) to the crease line lk. If lk+1 = 1

3
(lk + 2) = 1−(1−lk)/3

then we fold 1/3 of the way from the right edge of the paper (denoted as
1) to the crease line lk.

The case where ck = 1 is not at all similar to the binary case. The
formula lk+1 = 1

3 (lk + 1) still corresponds to folding 1/3 of the way from
a point A to lk, but A does not fall at either end of the paper. To see
what the point A corresponds to, we examine the action of folding 1/3
of the way from an arbitrary point A to the current crease line lk as in
Figure 2.

This folding corresponds to lk+1 = A − 1
3
(A − lk). While lk need not

be to the left of A, the formula will be the same. To find A in the case
where lk+1 = 1

3(lk + ck) we solve 1
3 (lk + 1) = A − 1

3(A − lk) yielding
A = 1/2. Alternatively, one can think of A = 1/2 as the fixed point of the
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A-l k

1/3(A-l k)

l k A 10 l k+1

Figure 2. Folding the second crease line

transformation T (x) = 1
3 (x + 1). Thus, this case represents folding 1/3 of

the way from the point at 1/2 of the paper to the crease line, lk.
For an arbitrary base b, if

lk+1 =
1
b
(lk + ck) =

ck

b − 1
− 1

b

(
ck

b − 1
− lk

)
,

the folding algorithm is to fold 1/bth of the way from Ak = ck/(b − 1) to
lk. As a consequence, using this method requires being able to fold 1/b and
1/(b − 1).

Our last step is to construct a folding algorithm that does not require
the base b representation of 1

n to determine the ck. Recall that the instruc-
tions for the Fujimoto approximation technique specify which way to fold
based on the parity of nlk, or equivalently, ck ≡ nlk mod 2. In the gen-
eral case, we’re hoping for a similar condition on the numerator Lk = nlk,
presumably mod b, to specify the folding action. From Equation (1) we
have bLk+1 = Lk + nck. All terms in this equation are integers, so we may
reduce mod b to obtain Lk ≡ −nck mod b and ck ≡ (−n)−1Lk mod b
since gcd(n, b) = 1. Moreover, since 0 ≤ ck < b, ck is exactly equal to
(−n)−1Lk reduced mod b.

Thus, if gcd(n, b) = 1, the generalized algorithm for folding 1/nth of
the paper using a base b technique is as follows:

1. Guess where 1/nth of the paper is and make a pinch mark there.

2. Find the fold point by computing ck ≡ (−n)−1Lk mod b and mark
Ak = ck/(b − 1).

3. Fold 1/bth of the way from Ak to lk.

4. Repeat Steps 2 and 3 until return to lk = 1
n .

5. Repeat Steps 2–4 until there is no noticeable difference in the approx-
imation for 1

n
.
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k Lk = nlk ck = Lk mod 3 Ak = ck
2

lk+1 = 1
b
(lk + ck)

1 1 1 mod 3 = 1 1/2 2
5

2 2 2 mod 3 = 2 2/2 = 1 = RHS 4
5

3 4 4 mod 3 = 1 1/2 3
5

4 3 3 mod 3 = 0 0/2 = 0 = LHS 1
5

Table 1. Finding the fold points.

Note that Step 2 and Step 3 may require an additional folding algorithm
such as the Fujimoto approximation technique. We illustrate with 1

5 to
clarify. Since (−n)−1 mod b = (−5)−1 mod 3 = 1, we have ck ≡ Lk

mod b. First, as in the binary case, we make a guess pinch mark for 1
5 = l1.

In Table 1 we show the necessary calculations to compute the fold points
for the rest of the algorithm. To get the second crease we fold 1/3 of the
way from a point at 1/2 of the paper to 1

5 . This produces a crease line at
l2 = 2

5
. To form the third crease line we fold 1/3 of the way between the

right side of the paper and l2 since A2 = 1. For the fourth crease line we
fold 1/3 of the way from A3 = 1

2 to the third crease line l3. For the fifth
crease line we fold 1/3 of the way from the left side of the paper (A4 = 0) to
l4. At this point we will have a new more accurate pinch mark for 1

n = l1,
and the process can be repeated as necessary. The error decreases even
faster than in the Fujimoto approximation technique since, assuming we
can fold into bths accurately, the error will decrease by a factor of 1

b each
time we fold into bths.

5 Conclusion

It is quite a bit easier to fully divide a piece of paper into nths when the
Fujimoto approximation technique produces crease lines at all multiples of
n. Many origami fans have probably wondered why this does or doesn’t
work for their favorite n. We now have several different viewpoints from
which to examine n to see if there will be a complete Fujimoto division.
The modular arithmetic method may be an easier way for many people to
understand how this algorithm works mathematically and to determine the
number of crease lines that will be produced for any odd n. The connection
between this new modular arithmetic analysis and previous binary analysis
led to a generalized Fujimoto technique. There are cases where this new
technique will work better for completely dividing a paper into nths. For
example, if n = 7, the standard Fujimoto technique did not produce crease
lines at all multiples of n. However, if we use the base 3 method instead
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it will produce crease lines at all multiples of n since powers of 3 generate
all elements mod 7. It requires adding a pinch mark at 1/2 of the paper,
folding in thirds instead of halves, and performing some mod 3 calculations
along the way, but it is still possible that this may be a useful folding
algorithm in some cases. At the very least the mathematical algorithm
is quite intriguing and provides an interesting application for expressing
numbers in alternate bases.
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On the Fish Base Crease Pattern
and Its Flat Foldable Property

Hideaki Azuma

1 Introduction
This is an introductory approach to apply conic sections—in particular,
ellipses—to the composition of flat foldable origami crease patterns. Al-
though many studies have been reported on origami bases (see, e.g., [5]), it
seems that few articles treat objects using the methods of projective geom-
etry. So we hope that this short article will provide a little hint for people
studying or teaching the mathematical aspects of origami.

Mathematical terms, definitions, and several fundamental propositions
or theorems without proof in this article are primarily quoted from two
books: one by Honsberger [4] (its cover illustration in fact displays the
property of isogonal conjugates in a triangle) and another edited by Iwata
[6] (in Japanese—the work by Coxeter-Greitzer [2] is a good alternative in
English). Technical terms on the topological graph theory are those used in
the monograph by Gross-Tucker [3]. In addition, the website MathWorld [8]
will be useful for looking up mathematical terms used in this article.

In this paper, the phrase (generalized) fish base crease pattern will de-
note not only the well-known traditional fish base but also the pattern that
is composed of segments on an appropriate quadrilateral domain that is
topologically equivalent to the traditional base as a planar graph. Figure 1
shows three examples of such a fish base crease pattern: the traditional
crease pattern (left), its flat foldable deformation (center), and a non-flat
foldable one (right); each of these is defined on a square domain.
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Figure 1. Three equivalent graphs of the fish base crease pattern.

Figure 2. Isogonal conjugates P and Q in �ABC.

2 Basic Facts and Results

2.1 Isogonal Conjugates

For any triangle ABC, the following statement is satisfied:

If lines through A, B, and C are concurrent at P , then the
isogonal lines are concurrent at a point Q. [4, p. 53]

The two points P and Q so defined are called isogonal conjugates (Figure 2).
The angular relations with isogonal conjugates P and Q in �ABC are as
follows:

∠PAC = ∠QAB, ∠PBA = ∠QBC, ∠PCA = ∠QCB.

2.2 Inellipse of a Triangle

A key relation between isogonal conjugates and conic sections within a
triangle is the following:
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Figure 3. Isogonal conjugates P and Q are foci of an inellipse.

Two isogonal conjugate points of any �ABC are the two foci
of a central conic inscribing �ABC [6, p. 391]

(translated from the original Japanese). See Figure 3.
The central conic must be an ellipse or a hyperbola [8]. Notice that every

triangle has inellipses for which the foci are found inside the triangle, and
note that any triangle can be regarded as a degenerate hexagon whose three
diagonals are concurrent, so that Brianchon’s theorem—which guarantees
the existence of (infinitely many) ellipses inscribing the triangle—will be
applicable to it [2, pp. 77–79].

2.3 Apollonius’ Result on Conic Sections

Apollonius’ theorem for central conics provides angular relations between
segments/rays concurrent at those respective foci:

Let P be a point outside of a fixed central conic, and draw two
tangents PT and PT ′ (i.e., thus T and T ′ are tangential points
on the conic), and let F and F ′ be the two foci of the central
conic. Then, the angle formed by PT and PF is equal to the
angle formed by PT ′ and PF ′: ∠TPF = ∠T ′PF ′. Moreover,
PF bisects ∠TFT ′ and PF ′ bisects ∠TF ′T ′ [6, p. 391]

(translated from the original Japanese). See Figure 4. Consider a triangle
ABC and let P and Q be foci of its inellipse (so that these are isogonal
conjugates of �ABC). Denote the three tangential points on the circum-
scribing �ABC by D, E, and F as in Figure 5. Three angular equations
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Figure 4. In the case of the ellipse.

Figure 5. Angular relations with isogonal conjugates.

given by Apollonius’ theorem for the six segments: PA, PF , PB, PD,
PC, and PE at P are as follows:

∠APF = ∠APE, ∠BPF = ∠BPD, ∠CPD = ∠CPE.

Since ∠APF + ∠BPF + ∠BPD + ∠CPD + ∠CPE + ∠APE = 2π, the
equations

∠APF + ∠BPD + ∠CPE = ∠APE + ∠BPF + ∠CPD = π

are obtained. Namely, the six concurrent segments PA, PF , PB, PD,
PC, and PE satisfy Kawasaki’s flat foldable conditions [7] at P .
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In the same way, three angular equations for the six segments QA, QF ,
QB, QD, QC, and QE at Q may be written as

∠AQF = ∠AQE, ∠BQF = ∠BQD, ∠CQD = ∠CQE.

Also those segments satisfy Kawasaki’s flat foldable conditions at Q:

∠AQF + ∠BQD + ∠CQE = ∠AQE + ∠BQF + ∠CQD = π.

Because of the arrangement of these six angles around each focus, the
following flat foldable conditions, each applying to four segments/rays, are
satisfied at P :

∠APE + ∠BPC = ∠APB + ∠CPE = π with AP, BP, CP, EP,

∠APF + ∠BPC = ∠APC + ∠BPF = π with AP, BP, CP, FP,

∠BPD + ∠CPA = ∠CPD + ∠APB = π with AP, BP, CP, DP,

and at Q:

∠AQE + ∠BQC = ∠AQB + ∠CQE = π with AQ, BQ, CQ, EQ,

∠AQF + ∠BQC = ∠AQC + ∠BQF = π with AQ, BQ, CQ, EQ,

∠BQD + ∠CQA = ∠CQD + ∠AQB = π with AQ, BQ, CQ, EQ.

Each of these angular relations with its crease pattern indicated by
symbols/characters in Figure 5 can be applied to determine a flat foldable
crease pattern on a symmetrical quadrilateral domain ABCB′ as shown in
Figure 6: namely, a generalized fish base crease pattern.

The angular equations that relate to the segments/rays that are con-
current at P or Q in Figure 6 describe vertex-wise flat foldability and give
rise to total flat foldability on the entire figure, thanks to the shapes of the
defined domain and its crease pattern(s).

The flat foldable condition at P with the four segments PA, PB, PC,
and PQ′ is given by

∠APB + ∠CPQ′ = ∠APQ′ + ∠BPC = π,

while the condition at Q′ with the segments Q′A, Q′B′, Q′C, and Q′P is

∠AQ′B′ + ∠CQ′P = ∠AQ′P + ∠B′Q′C = π.

Hence, the crease pattern we have composed here satisfies flat foldability
at both P and Q simultaneously. Three local systems of the pattern each
consists of two segments at respective vertices A (= A′), B (= B′), and C
(= C′); those systems, formed in the folding at the same time, are also flat
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Figure 6. A kite ABCB′ consists of two triangles: �ABC ≡ �A′B′C′.

foldable. Therefore, thanks to the isogonal conjugate relations at vertices,
the generalized fish base pattern is totally flat foldable.

The other crease pattern is also totally flat foldable, since its structure,
as mentioned above, is given by the reflection of the flat foldable pattern
in the diagonal AC (see Figure 6).

Thus we can sum up these arguments as follows:

Proposition 1. A generalized fish base crease pattern defined on a quadri-
lateral domain is flat foldable if and only if the following two conditions
hold:

1. Its quadrilateral domain is mirror symmetric, so that one of its di-
agonals is the axis of symmetry itself (that is, the quadrilateral is
divided into two congruent triangles that are symmetric about one of
its diagonals; see the quadrilateral on the left side of Figure 6).

2. When the symmetrical quadrilateral is folded in a triangle along that
diagonal, its axis of symmetry, then two vertices of degree 4 in the
generalized fish base defined on the quadrilateral will coincide with
isogonal conjugates (i.e., the foci of an appropriate inellipse of the
triangle; see the inellipsed triangle on the right side of Figure 6).

We may call such a quadrilateral with an axis of mirror symmetry a kite,
for simplicity.

If both vertices of degree 4 coincide with the same point of the triangle
as those that are folded in, then that point must be the incenter of the
triangle. Also the vertices must be respective incenters of two mirror-
symmetric triangles that compose the quadrilateral domain. An example
of this case, called Incenter-Incenter, is shown on the left in Figure 7.
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Figure 7. Triangle centers in isogonal conjugates.

Proposition 2. For any flat foldable generalized fish base crease pattern and
its quadrilateral domain, it is possible to deform the given crease pattern
smoothly and continuously over the domain while maintaining its flat fold-
ability.

Both of these propositions demonstrate that the flat foldability of the
crease pattern that we have introduced here is an invariant characteris-
tic property in projective geometry. A deformation of an ellipse and its
circumscribing polygon by a nondegenerate linear transformation of the
two-dimensional Euclidean plane does not always preserve those shapes
or values of angles, but the angular relations as described in Apollonius’
theorem—which was introduced at the beginning of this section—will be
preserved for corresponding foci, vertices, edges, and segments.



�

�

�

�

�

�

�

�

424 IV. Origami Mathematics

Figure 8. Three arrangements into kites.

3 In Variations

3.1 Three Kites in Composition

Three convex and symmetrical quadrilaterals consisting of the same pair
of acute triangles in different arrangements are displayed in Figure 8. Usu-
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ally, each admits two generalized flat foldable fish base crease patterns;
both crease patterns are defined on a quadrilateral and can be turned over
each other by reflection in the symmetrical axis of the quadrilateral (which
is one of its diagonals). The discussion about such crease patterns can
be developed into further results by systematic approaches: other cases
(e.g., with nonconvex/concave symmetrical quadrilaterals, variations on a
generalized bird base) will be found in the articles at [1].

3.2 Four Patterns Composed from Triangle Centers

Four generalized fish base crease patterns with different isogonal conjugate
relations on the congruent convex quadrilaterals are shown in Figure 7.
Each of those will be flat foldable via the traditional paper-folding process.
Basic crease patterns with characters/symbols for indicating geometric re-
lations are at the top; inellipsed crease patterns are next; then the two flat
foldable patterns of creases, each determined by the corresponding basic
pattern, are presented in the bottom two rows. Pairs of isogonal conjugate
points may be identified as follows: from left to right, Incenter-Incenter
(this type corresponds to the traditional fish base and is composed by bi-
secting angles), Triangle Centroid-Symmedian [4, Chapter 7], Orthocenter-
Circumcenter, and Brocard Points [4, Chapter 10].

Acknowledgment. The author gratefully thanks Robert J. Lang for helpful
suggestions on the manuscript.
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Orizuru Deformation Theory for
Unbounded Quadrilaterals

Toshikazu Kawasaki and Hidefumi Kawasaki

1 Introduction
We usually fold an orizuru (the traditional origami crane) from square pa-
per, but square paper is not strictly required. It is also easy to fold an
orizuru from any kite shape, i.e., a quadrilateral with reflection symmetry
about one of the diagonals. However, if in such a kite shape, we choose
point O as in Figure 1 as the center of the orizuru (where the center of
orizuru means the vertex on the orizuru’s back), then we get a nonsym-
metric orizuru.

Husimi [1] found a method to fold a symmetric orizuru from any kite
shape. He took point H in Figure 1 as the center of orizuru. Point H is the
point of incidence of two circles tangent to the edges of the quadrilateral
and to the line of symmetry.

Justin [2] extended the Husimi deformation to apply to non-reflection-
symmetric quadrilaterals. He proved that one can fold a head-wing inter-
changeable orizuru (see Definition 1) from a quadrilateral if and only if the
quadrilateral has an inscribed circle. He chose the intersection of two hy-
perbolas as the center of orizuru, as shown in Figure 2. One passes through
points A and C with foci B and D. The other passes through B and D
with foci A and C. Point J exists if and only if the quadrilateral has an
inscribed circle. If it does, we call point J the center of the quadrilateral.

427



�

�

�

�

�

�

�

�

428 IV. Origami Mathematics

H
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Figure 1. The Husimi deformation.
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D

Figure 2. The Justin deformation (middle) and the Kawasaki deformation (right)
of a starting position (left).

O

Figure 3. The Maekawa deformation.

Maekawa found a still new type of orizuru; see Figure 3. Even if we
apply the Maekawa deformation to the square, it is different from Justin’s
construction, because Justin’s theory is based on triangulation of the paper,
while the Maekawa deformation creates a quadrilateral partition—compare
the shaded regions in Figures 2 and 3.

One of the authors [4,5] proposed an orizuru deformation theory based
on a quadrilateral partitioning that includes the Maekawa deformation.
Moreover, it can deal with head-wing noninterchangeable orizurus. He
proved that one can fold a not-necessarily-head-wing-interchangeable orizuru
from a quadrilateral if and only if it has an inscribed circle. Further, he
proved that it is enough to take any point on either of two hyperbolas as
the center of the orizuru.
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The aims of this paper are to extend the orizuru deformation theory to
unbounded quadrilaterals and to show that we need other conic sections—
namely, parabolas and ellipses—to define the center.

This paper is organized as follows. In Section 2, we describe our nota-
tions and definitions. In Section 3, we illustrate an unbounded orizuru from
an unbounded kite shape. Section 4 is devoted to one-sided open quadri-
laterals. In Section 5, we deal with the other four cases of unbounded
quadrilaterals. In Section 6, we discuss foldability and head-wing inter-
changeability of an unbounded bird base.

2 Preliminaries
In this paper, a fold refers to any folded paper object. For any (finite-
length) edge e, line e refers to the (unbounded) line including edge e. For
any points F, G ∈ R2, p ∈ R, and a line λ, we define the following sets:

E(F, G; p) := {X ∈ R2 |FX + GX = p},
P (F ; λ) := {X ∈ R2 |FX = d(X, λ)}, and

H(F, G; p) := {X ∈ R2 |FX − GX = p},
in which, for example, FX denotes the distance between points F and
X and d(X, λ) denotes the distance from point X to a line λ. These sets
are, respectively, an ellipse with foci F and G, a parabola with focus F and
directrix λ, and a hyperbola with foci F and G. We remark that H(F, G; 0)
becomes a line.

Definition 1. We define four terms:

• If the crease pattern in Figure 4 (middle) is flat folded such that the
four edges and point K lay on a line in the fold, then we call the fold
a bird base.

• We say that a bird base is foldable from ABCD, if there exists a
crease pattern satisfying these conditions.

• We call point K and the line the center and the axis of the bird base,
respectively.

• Further, we say that a bird base is head-wing interchangeable if it
can be folded from the center crease pattern in Figure 4 and another
bird base can be folded from the right one with the positions of the
vertices unchanged.
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A C

K

D

B

A

BC

DA

B
Same center
Same mountain creases
Different valley creases

C

D

Figure 4. The center and the axis of a bird base (left), and head-wing interchange-
ability (middle and right).

Lemma 1. [4] For any not necessarily convex quadrilateral, the following
conditions are equivalent to each other. Further, the center of the radical
creases in (a) coincides with the point in (b) and the center of the circle
in (c):

(a) The quadrilateral can be flat folded by four radial creases, one from
each of the four vertices, so that the four edges of the quadrilateral lie
on a common line.

(b) The bisectors of the four vertices of the quadrilateral meet at one point.

(c) The quadrilateral has an inscribed circle.

(d) The alternating sum of the lengths of the four edges taken cyclically
equal zero, i.e., l1 − l2 + l3 − l4 = 0 where l1 . . . l4 are the lengths of the
four edges.

(e) B, D ∈ H(A, C; p) for some p ∈ R.

(f) A, C ∈ H(B, D; q) for some q ∈ R.

Lemma 2. [4] If two bounded quadrilaterals having an inscribed circle are
joined along adjacent edges as in Figure 5, then the result also has an in-
scribed circle. Conversely, when a quadrilateral having an inscribed circle
is divided into two quadrilaterals along adjacent edges, the following condi-
tions are equivalent to each other:

(a) The left quadrilateral has an inscribed circle.

(b) The right quadrilateral has an inscribed circle.

(c) A, C, E ∈ H(B, D; p) for some p ∈ R.
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D

A

C

E
j

B

i

Figure 5. Join and division of quadrilaterals.

3 An Orizuru from an Unbounded Kite Shape
As was mentioned earlier, we can fold a bird base from any finite kite shape.
However, we can extend this concept to unbounded shapes. The left image
in Figure 6 shows an unbounded kite shape, taken as the limit of a finite
shape as one of the vertices moves arbitrarily far away.

Husimi’s concept works in this case. Indeed, we get a symmetric bird
base having a long tail from the center crease pattern of Figure 6 and
another bird base having a long wing from the right crease pattern.

We now consider the generalization of other methods of forming an
orizuru. In the following sections, we have to consider five cases of un-
bounded quadrilaterals; see Figure 7. For brevity, we will give proofs only
for case 1 in Figure 7. The proofs for the other cases follow similarly, so in
the other cases, we only describe the conclusion in Section 5.

A

B

K

C
KK

Tail Wing

Wing

Wing

Wing

Figure 6. Two crease patterns (middle and left) for the unbounded kite shape
(right).
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Figure 7. Five patterns of unbounded quadrilaterals.
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Figure 8. Constructed lines and points that define substitute edge lengths partic-
ipating in the alternating sum of edge lengths.

4 One-Sided Open Quadrilaterals
The aim of this section is to extend Lemmas 1 and 2 to one-sided open
quadrilaterals in which semiinfinite lines e and h have an intersection, as
illustrated in Figure 8 (left), which we regard as a fourth vertex D. We
define point D′ so that ADCD′ is a parallelogram. Further, since one-
sided open quadrilaterals have two edges of infinite length, we introduce a
substitute for the edge length in order to extend condition (d) of Lemma 1.

Definition 2. For any point P on the bisector of D, we denote by Pe and Ph

the feet of perpendiculars from P to e and h, respectively. Then, we call
aP − b + c − dP the alternating sum of edge lengths.

These new points are illustrated in Figure 8.
By suitable identification of new vertices and edges, we can show that

exactly the same conditions apply as in Lemma 1.

Lemma 3. For any one-sided open quadrilateral with nonparallel edges e and
h, the following conditions are equivalent to each other. Further, the center
of the radical creases in (a) coincides with the point in (b) and the center
of the circle in (c):

(a) The quadrilateral can be flat folded by four radial creases, one from
each of four vertices, so that the four edges of the quadrilateral lie on
a common line.

(b) Four bisectors of the four vertices meet at one point.

(c) There exists a circle that contacts four lines e, f , g, and h.

(d) The alternating sum of edge lengths equals zero.
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α
β

δ

γ

D

C

A
B

C

A
B

Figure 9. If four bisectors meet at one point, then α − β + γ − δ = 0. Hence, the
quadrilateral can be flat folded by the right crease pattern.
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IaaI

cc b

IdId

g f

Figure 10. The existence of the inscribed circle is equivalent so that the alternating
sum of edge lengths is zero.

(e) A, C ∈ E(B, D; p) for some p > 0.

(f) B, D′ ∈ H(A, C; q) for some q ∈ R.

Proof: (a)⇒(b) is trivial. (b)⇒(a): if four bisectors meet at one point,
then, with respect to Figure 9, α − β + γ − δ = 0. That is, the local flat
foldable condition [3] is satisfied at the point. Hence, the quadrilateral can
be flat folded.

(b)⇔(c)⇒(d) are evident from Figure 10 (left) and the definition of the
alternating sum of edge lengths.

(d)⇔(e)⇔(f): the alternating sum of edge lengths is zero if and only
if (IeD − AD) − AB + BC − (IhD − CD) = 0. Since IeD = IhD, the
latter is equivalent to AD + AB = CB + CD, which implies (e). Further
(e) is expressed as BA−BC = DC −DA = D′A−D′C, where the second
equality follows from the definition of D′, which implies (f). (d)⇒(c): we
may assume that a circle contacts e, g, and h without loss of generality.
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Figure 11. Vertical and horizontal joins and divisions.

Define x, y, z, and r as in Figure 10 (right). Then, by the Pythagorean
theorem, x2+y2 = r2+(c−dI)2, x2+z2 = r2+(aI )2, and y+z = b. Solving
these equation, we get x = r. Therefore, the circle contacts edge f . �

Lemma 4 (Vertical join and division). If two one-sided open quadrilaterals hav-
ing an inscribed circle are joined along two adjacent edges i and j as in Fig-
ure 11 (left), where lines e, h, and i are assumed to meet at a point, then
the result also has an inscribed circle. Conversely, when a one-sided open
quadrilateral efgh having an inscribed circle is divided into two quadrilat-
erals along two edges i and j, where line i is assumed to pass through point
D, the following conditions are equivalent to each other:

(a) The left quadrilateral has an inscribed circle.

(b) The right quadrilateral has an inscribed circle.

(c) A, C, E ∈ E(B, D; p) for some p > 0.

Proof: Since quadrilateral efgh has an inscribed circle, A, C ∈ E(B, D; p)
for some p > 0 by Lemma 3. Also by Lemma 3, condition (a) is equivalent
to C, E ∈ E(B, D; q) for some q > 0. Condition (b) is equivalent to
E, A ∈ E(B, D; r) for some r > 0. Hence when either (a) or (b) holds, we
get p = q = r and the other two conditions immediately follow. �

Lemma 5 (Horizontal join and division). If two quadrilaterals having an in-
scribed circle, one being bounded and the other being one-sided open, are
joined along two adjacent edges i and j as in Figure 11 (right), then the
result also has an inscribed circle. Conversely, when a one-sided open
quadrilateral efgh having an inscribed circle is divided into two quadri-
laterals along two edges i and j as in Figure 11 (right), then the following
conditions are equivalent to each other:
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pattern parallel edges vertical horizontal

bounded none A, C, E ∈ H(B,D; p) B, D, E ∈ H(A,C; q)

case 1 none A,C, E ∈ E(B, D; p) B, D′, E ∈ H(A,C; q)

case 2 one pair A, C, E ∈ P (B, λ) B, D, E ∈ H(A,C; q)

case 3 none A, C, E ∈ H(B,D; p) B′, D′, E ∈ H(A,C; q)

case 4 one pair A, C, E ∈ P (D, λ) D′, E ∈ H(A,C; q)

case 5 two pairs A, C, E ∈ line E ∈ H(A,C; q)

Table 1. This table summarizes lemmas corresponding to Lemmas 3–5 in the
bounded case and five unbounded patterns.

(a) The upper bounded quadrilateral has an inscribed circle.

(b) The lower one-sided open quadrilateral has an inscribed circle.

(c) B, D′, E ∈ H(A, C; p) for some p ∈ R.

Proof: By Lemma 3, the whole quadrilateral has an inscribed circle if and
only if B, D′ ∈ H(A, C; p) for some p ∈ R, and the lower one has an
inscribed circle if and only if D′, E ∈ H(A, C; q) for some q ∈ R. By
Lemma 1, the upper quadrilateral has an inscribed circle if and only if
B, E ∈ H(A, C; r) for some r ∈ R. Our assertions follow. �

5 The Other Four Patterns
In this section, we deal with cases 2–5 in Figure 7. When the quadrilateral
has a pair of parallel edges, we regard the center line between them as
a bisector, and define the alternating sum of edge lengths as well as the
equivalent of Definition 2.

Table 1 summarizes Lemmas 3–5 in the bounded case and five un-
bounded patterns. For example, by replacing “A, C, E ∈ E(B, D; p)” with
the condition of the third column, we obtain the lemma corresponding to
Lemma 4.

6 Foldability
We now expand on some items previously defined in Definition 1.

Definition 3. We say that a bird base is foldable from a given unbounded
quadrilateral if the following three conditions are all satisfied:
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Figure 12. Two kinds of unbounded crease patterns.
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Figure 13. Two kinds of unbounded bird bases.

• The quadrilateral is divided into four quadrilaterals as in Figure 12.

• Either of the crease patterns in Figure 12 is flat folded.

• All edges of four quadrilaterals lie on a line when folded as in Fig-
ure 13.

Then we call the fold a bird base, point Ki (i = 1, 2) the center, and
the line the axis. When K1 = K2 and we can fold a bird base from
both crease patterns in Figure 12, we say that each bird base is head-wing
interchangeable.

Definition 4. For any quadrilateral having an inscribed circle, we call the
intersection of the quadratic curves in the third and fourth columns of
Table 1 the center of the quadrilateral. For example, in case 1, the center
is the intersection of the ellipse and the hyperbola.

Theorem 1. A bird base is foldable from a given quadrilateral if and only
if it has an inscribed circle. Then the center of the bird base lies on the
quadratic curve specified in Table 1. Furthermore, if we choose the center
of the quadrilateral as the center of the bird base, then we get a head-wing
interchangeable bird base.
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K
●

●● ●●

AC
K ● A

B

D

C

Q2

Q1

Q3

Q1

Q2Q3

degenerate
vertices

degenerate
vertices

K
●

Q4 Q1

Q2Q3

Q4

Q4

wing wing

Figure 14. A procedure to design a crease pattern of a bird base.
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Figure 15. A head-wing interchangeable bird base.

Proof: We give a proof only for case 3. Assume that the quadrilateral has
an inscribed circle. Take any point K on the quadratic curve in the fourth
column of Table 1 as the center of the bird base. Next, horizontally divide
the quadrilateral along polygonal line AKC as in Figure 14 (upper left).
Then both quadrilaterals also have an inscribed circle. Further, divide each
quadrilateral along line KB and KD, respectively, as in Figure 14 (upper
right). Then the four results Qi (i = 1, 2, 3, 4) also each have an inscribed
circle. Hence each Qi is flat folded by its four bisector creases, and its edges
lie on a line (see Figure 14, lower left), where we note that each Qi has a
degenerate vertex whose angle is π, so that its bisector is perpendicular to
the edge. Joining these four folds along the axis, we get a bird base. Since
the converse is easily proved, we omit the proof.

When we take as the center of the bird base the center of the quadri-
lateral, starting with vertical division in Figure 15 (left), we similarly get
four quadrilaterals having an inscribed circle. Then we obtain another
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crease pattern, Figure 15 (right). Therefore, the bird base is head-wing
interchangeable. �

The proofs of the remaining cases follow similarly.
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A Crystal Map of
the Orizuru World

Toshikazu Kawasaki

1 Introduction

We usually fold the orizuru (traditional Japanese origami crane) from
square paper. However, it is possible to fold orizurus from many kinds of
quadrilaterals [1–7]. It is known that an orizuru is foldable from a quadri-
lateral if and only if the quadrilateral has an inscribed circle (see previous
paper). So we may regard the set of quadrilaterals with an inscribed cir-
cle as the orizuru world (the set of orizurus). The aim of this paper is to
present a map of the orizuru world, which, rather pleasingly, takes the form
of a crystal.

2 Notation

We denote by O, Q, R3, and R4, respectively, the set of all deformed
orizurus (see Figure 1), the set of all quadrilaterals with inscribed unit cir-
cles (Figure 2), the three-dimensional real space, and the four-dimensional
real space. Since the deformed orizurus must be folded from quadrilaterals
with inscribed circles, we identify Q with O.

439
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O

Figure 1. Some representative deformed orizurus. O is the set of all such deformed
orizurus.

Q

Figure 2. Some representative quadrilaterals with inscribed unit circles.

3 Representation
First of all, we represent a quadrilateral with an inscribed circle as a point
in R4.

Definition 1. For any quadrilaterals q, we let a1, a2, a3, a4 be the center
angles of q and let Ti be the midpoint of the ith side of the quadrilateral
where the circle touches it. We define a mapping r : Q → R4; r(q) =
(a1, a2, a3, a4), as shown in Figure 3, and call it the representation mapping.
Furthermore, we call the image r(q) the representation of q.

The examples in Figure 4 show the relation between corner shape and
center angle, also shown schematically in Figure 5.

Representation r(q) = (a1, a2, a3, a4) must satisfy some conditions.
Since the sum of the exterior angle for any polygon is 360, we have the
first condition:

a1 + a2 + a3 + a4 = 360. (1)
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r
( a1, a2, a3, a4 )  Ra1

a2

a3

a4

T3

T4

T2

T1

4

Figure 3. We define the representation mapping in this way.

e1

e2

e3

T3

a3

a3

T4

a4

a4

T2

A2

A1
A3

A4

a2

a2

T1

a1

a1

e4

I

(90, 90, 90, 90)

(a)

(90, 150, –30, 150)

e1

e2

a3

a4

A2

A1

A3

A4

a2

a1

e4

Ie3

(b)

(0, 45, 135, 180)

e1

e2

e3

T3

A2

A3

A1 = T1 = T2

a2

a3

a4 = 180

a1 = 0

e4

T4

(c)

Figure 4. Illustration that the center angle is equal to the exterior angle. (a) Rep-
resentation of the regular square is (90, 90, 90, 90). (b) A concave quadrilateral
with negative angle a3. (c) Here, two sides of the figure are parallel and the inner
angle of the vertex A1 is 180◦. Thus center angles a1 = 0 and a4 = 180.

Now, with respect to Figure 6(a), if the angle a1 is not larger than
−180, then the edge e1 passes through the edge e2. Figure 6(b) illustrates
an inequality a1 < 360. So we have the second condition:

−180 < ai < 360. (2)

In Figure 6(c), dotted half lines depict bisectors. Since their intersection
is the center of the inscribed circle, they meet in the quadrilateral. Thus
we have the third condition, that the sum of the adjacent angles ai and
ai+1 is positive, i.e.,

ai + ai+1 > 0. (3)
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concave

–180 180 3600

convex open
flat parallel

ai

Figure 5. Relation between corner shape and center angle.

concave

e1

e2

a1

(a)

a1

e1

e2

(b)

ai < 0

ai+1

(c)

Figure 6. (a) A concave quadrilateral. (b) The angle from side e1 to side e2 is
less than 360. (c) If ai + ai+1 is 0 or negative, then bisectors do not meet in the
quadrilateral. Thus, ai + ai+1 > 0.

4 Normalization
Definition 2. Normalization n is an affine mapping n : R4 → R4; bi =
ai/270 − 1/3 and n(a1, a2, a3, a4) = (b1, b2, b3, b4).

Theorem 1. The three conditions in Equations (1)–(3) and Figure 5 are
transformed by normalization n to

b1 + b2 + b3 + b4 = 0, (4)

−1 < bi < 1, (5)

−2/3 < bi + bi+1 < 2/3, and (6)

Figure 7.

Proof:

b1 + b2 + b3 + b4 = (a1 + a2 + a3 + a4)/270 − 1/3
= 360/270− 4/3
= 4/3 − 4/3
= 0.
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-1 -1/3 1/3 1

concave convex open
flat parallel

bi

Figure 7. Relation between corner shape and center angle after normalization.

q in Q
r n

(a1,a2,a3,a4)  R (b1,b2,b3,b4) in a hyperplane H
normalizationrepresentation

4

Figure 8. Transformation of a representation of a deformed orizuru into a normal-
ized hyperplane.

n(−180) = −80/270− 1/3
= −2/3− 1/3
= −1.

n(360) = 360/270− 1/3
= 4/3 − 1/3
= 1.

bi + bi+1 = ai/270− 1/3 + ai/270− 1/3
= ai + ai+1 − 2/3
> −2/3.

n(−180) = −1, n(0) = −1/3, n(180) = 1/3, and n(360) = 1.

Thus we have the relationship shown in Figure 7. �

Equation (4) implies that image n(r(Q)) is a subset of a hyperplane in
R4. We denote it H. Equation (5) implies that n(r(Q)) is a subset of a
four-dimensional cube. (See Figure 8.)

5 Embedding
Definition 3. An embedding is the linear mapping

e : R4 → R3; e(b1, b2, b3, b4) = b1v1 + b2v2 + b3v3 + b4v4,
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where v1 = (3/4,−3/4,−3, 4), v2 = (−3/4, 3/4,−3, 4), v3 = (−3/4,−3/4,
3, 4), and v4 = (3/4, 3/4, 3, 4).

Theorem 2. Embedding e restricted in H is injective.

Proof: Since v1 + v2 + v3 + v4 = (3/4,−3/4,−3/4)+ (−3/4, 3/4,−3/4)+
(−3/4,−3/4, 3/4)+(3/4, 3/4, 3/4) = 0, we have that v4 = −(v1 +v2 +v3).
If e(b1, b2, b3, b4) = 0 for (b1, b2, b3, b4) in a hyperplane H, then b1v1+b2v2+
b3v3 + b4v4 = 0. Thus we have

b1v1 + b2v2 + b3v3 − b4(v1 + v2 + v3) = 0,

(b1 − b4)v1 + (b2 − b4)v2 + (b3 − b4)v3 = 0.

Since {v1,v2,v3} are linearly independent, the coefficients b1 − b4, b2 − b4,
and b3 − b4 are all 0. So we have

b1 = b2 = b3 = b4. (7)

b1 + b2 + b3 + b4 = 0 for(b1, b2, b3, b4) ∈ H. (8)

Combining Equations (7) and (8), we obtain

b1 = b2 = b3 = b4 = 0.

Thus, the restricted embedding e|H is injective. �

6 Reverse Mapping
Theorem 2 allows us now to consider the reverse mapping f of embedding
e (See Figure 9). For this reverse mapping, we have that

(x, y, z) = e(b1, b2, b3, b4)
= b1v1 + b2v2 + b3v3 + b4v4

= b1(3/4,−3/4,−3, 4)+ b2(−3/4, 3/4,−3/4)
+b3(−3/4,−3/4, 3/4)+ b4(3/4, 3/4, 3/4)

= 3(b1 − b2 − b3 + b4,−b1 + b2 − b3 + b4,−b1 − b2 + b3 + b4)/4.

Since b1 + b2 + b3 + b4 = 0, we have the following:

Theorem 3. For any e(b1, b2, b3, b4) ∈ H,

(x, y, z) = e(b1, b2, b3, b4) = −3(b2 + b3, b1 + b3, b1 + b2)/2. (9)
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e : embedding

f : reverse mapping

(b1, b2, b3, b4) in H (x, y, z) in e(n(r(Q)))

Figure 9. Embedding e and its reverse f.

Continuing on, for any point (x, y, z) ∈ e(n(r(Q))),

(b1, b2, b3, b4) = f(x, y, z) = (x−y−z,−x+y−z,−x−y+z, x+y+z)/3. (10)

Theorem 3 converts Theorem 2 to the following:

Theorem 4. For any (x, y, z) ∈ e(n(r(Q))), each of the following is true:

−3 < x − y − z < 3, (11)
−3 < −x + y − z < 3, (12)
−3 < −x − y + z < 3, (13)
−3 < x + y + z < 3, (14)

−1 < x < 1, (15)
−1 < z < 1. (16)

Proof: The proof follows from direct substitution. �

7 Crystal Map of the Orizuru World
Equations (11)–(16) determine a solid with 12 faces. We denote it C. Each
point within C represents a deformed orizuru. Equations (15) and (16)
imply that C is a subset of a quadratic prism. Inequality (11) determines a
domain that lies between parallel planes. The other inequalities are similar
to (11). So, we end up with the solid shown in Figure 10. It looks like a
crystal. We call it the crystal map of the orizuru world C.

Where do we find the traditional orizuru within C? The traditional
orizuru is folded from a regular square and maps to the point e(n(90, 90, 90,
90)) = e(0, 0, 0, 0) = (0, 0, 0) = 0. So, we find that it maps to the origin O
in R3.

Recall that the set of all quadrilaterals with inscribed circles, Q, con-
tains various quadrilaterals—rhombuses, kite shapes, concave squares, one-
sided open quadrilaterals, and two-sided open quadrilaterals. Where are
these to be found in C, the crystal world? What shape do they form? In
order to know that, we prepare the following:
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(–1,1,1)

(–1,–1,1)

(–1,–3,1)

(–1,3,1)

(1,1,–1)

(1,–1,–1)

(1,–3,–1)

(1,3,–1)

x

y

x + y + z = 3

–x + y + z = 3

–x + y – z = 3

x – y + z = 3

Figure 10. The crystal map. White faces are defined by equations x− y− z = ±3,
−x + y − z = ±3, −x − y + z = ±3, and x + y + z = ±3. Dark faces are defined
by equations x = ±1 and z = ±1.

Theorem 5. For any q ∈ Q and its image e(n(r(q))) = (x, y, z), the follow-
ing are true:

q is bounded ⇔ −3 < x − y − z < 1,−3 < −x + y − z < 1,
−3 < −x − y + z < 1, and − 3 < x + y + z < 1.

(17)

q is convex ⇔ −1 < x − y − z < 3,−1 < −x + y − z < 3,
−1 < −x − y + z < 3, and − 1 < x + y + z < 3.

(18)

q is convex and bounded ⇔ −1 < x − y − z < 1,−1 < −x + y − z < 1,
−1 < −x − y + z < 1, and − 1 < x + y + z < 1.

(19)

Proof: See Figure 7. Quadrilateral q is bounded if and only if q has no
open corner, which is the case if and only if bi < 1/3. Substituting this
into Equation (9), we find that

x − y − z < 1,−x + y − z < 1,−x − y + z < 1 and x + y + z < 1. (20)

Now, q is convex if and only if ai > 0. So bi > −1/3. Substituting this
into Equation (9) gives that

−1 < x−y−z,−1 < −x+y−z,−1 < −x−y+z, and −1 < x+y+z. (21)

The lower bound −3 in Equation (17) and the upper bound 3 in Equa-
tion (18) result from Equations (11)–(14). So these satisfy Equations (17)
and (18). Equations (20) and (21) in turn, give (19). �

Inequalities (20) define a regular tetrahedron, as shown in Figure 11. It
shows the bounded orizuru world. Inequalities (21) define another regular
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(a) (b) (c)

Figure 11. (a) Bounded quadrilateral orizuru world. (b) Convex quadrilateral
orizuru world that includes unbounded quadrilateral orizurus. (c) Bounded and
convex quadrilateral orizuru world.

tetrahedron (Figure 11(b)). It shows the world of orizurus folded from con-
vex quadrilaterals. The intersection of the two tetrahedra forms a regular
octahedron (Figure 11(c)), which is the bounded and convex orizuru world.

We continue to analyze the orizuru world. Next we consider the dia-
mond (rhombus) shape. What shape is the rhombus quadrilateral part of
the orizuru world? For any rhombus q ∈ Q,

ai+2 = ai(i = 1, 2). (22)

Normalization n transforms Equation (22) to

bi+2 = bi(i = 1, 2). (23)

This results in two equations: x− y− z = −x− y + z and −x+ y− z =
x + y + z according to Equation (10). Reducing these gives

z = x, z = −x,

and so
x = z = 0.

This is a segment of the y-axis. For any kite shape q ∈ Q, Equation (23)
is satisfied for i = 1, 2. Thus, the kite shape quadrilateral region of the
orizuru world is the set {(x, y, z) ∈ C| z = x or z = −x}.

How about the unbounded quadrilateral orizuru world? For any two-
sided open quadrilateral q ∈ Q, according to Figure 7,

(b1 > 1/3 and b3 > 1/3) or (b2 > 1/3 and b4 > 1/3).

In the former case, since y = 3(b1 + b3)/2, y > 3(1/3 + 1/3)/2 = 1. In
the latter case, b1 + b2 + b3 + b4 = 0 gives b1 + b3 < −2/3. So y < −1.
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x

z

y

square

bounded

two-sided opentwo-sided open

one-sided open

Figure 12. Structure of a crystal map of the orizuru world C.

This completes our description of the structure of the crystal map of
orizuru world C. A full picture with representative examples of the various
types of orizuru is shown in Figure 12.
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A Geometrical Tree of
Fortune Cookies

Jun Maekawa

1 Introduction
Cookies with strips of paper on which various oracles are written, called
fortune cookies, are served after a meal at many Chinese restaurants in the
United States. This is not a Chinese traditional custom, but an American
one started in the twentieth century. I personally learned of the custom
of fortune cookies in the US, but subsequently found their relatives in
Japan. To my surprise, it turned out that fortune cookies originated in
Japan [2, 6]. I have become more interested in the fact that the shapes of
Japanese cookies are slightly different than those of American ones.

The fortune cookie is a kind of origami that has the following charac-
teristics:

1. It is folded from one circular sheet.

2. It is homeomorphic with a sphere: one side becomes the inside and
the other the outside, without overlapping.

3. It is a developable surface: the sheet does not stretch or shrink.

4. It contains no curved folds. (In fact, most fortune cookies do not have
any curved folds despite the fact that they are formed from curved
surfaces.)
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A

B

B'C

D

E

D'

D''

Figure 1. The “genealogical” tree of fortune cookies.

Various shapes that have all of these features are used as fortune cookies
or other cookies of the same kind. Their different shapes enumerate the
geometric possibilities. They also resemble diverse life forms that have been
evolving in their environment—that environment being restaurants. I have
made a unified list of them as a tree, which is shown in Figure 1. In this
paper, I will explain this tree in detail.

2 Developable Surface
First, I will confirm that a fortune cookie is truly a developable surface.
Developable surfaces are certain types of ruled surfaces, or curved surfaces
formed from a combination of straight lines. There are only four basic
types of developable surface:

1. plane,

2. cylindrical surface,

3. conical surface,

4. tangent surface.

The first three are well known. Tangent surfaces may not be familiar.
One example is the helical convolute surface, which is formed from tan-
gents of a helix curve. Any fortune cookie is a developable combination of
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(a) (b) (c) (d)

Figure 2. Transformation of fortune cookies to polyhedra (branch A of Figure 1):
(a) circle, (b) regular dodecagon, (c) regular octagon, and (d) square (fish base).

planes and conical surfaces, meaning that it can be decomposed into some
combination of planes and conical surfaces.

To understand this intuitively, think of the curved surface as the limit of
a polyhedron formed from triangles, and the circle from which it is folded as
the limit of a polygon that can be folded into the corresponding polyhedron.
Observe that two edges of each face of the polyhedron should be equal to
the ruling lines of the corresponding curved surface, and that the ruling
lines must not be skew lines. Keeping this in mind, look at approximations
by polygons, shown in Figure 2.

Figure 2(a) is a model of tsujiura-senbei , a Japanese traditional fortune
cookie made from a circle. Figure 2(b) has the same structure but is made
from a regular dodecagon. Figure 2(c) shows a cookie that is made from a
regular octagon. Such transformation is possible with other even-gons, such
as a regular decagon or duodecagon. And a square is the most interesting.
As shown in Figure 2(d), folding this structure from a square makes the
fish base, a well-known pattern in origami. Therefore, we can say a fortune
cookie is a fish base folded from a circular sheet.

Such transformations are represented as branch A of the fortune cookie
tree (Figure 1). Though they are not used in real fortune cookies, I modified
one from a regular octagon to design a fortune-cookie-style stable package
folded from square paper.

3 Volume Measurement and Spiral
Now, look at the branches B and B′ in Figure 1. Here I examine the
relationship between the shape and the length of the central straight part,
normalized to the radius of the circle. Figure 3 is a graph describing the
relationship between the length of the central straight line and the volume
of the resulting solid. Though the curve looks simple, the relationship
is quite difficult to solve analytically. This graph is a result of numerical
calculation using a 10,000-gon. The one whose central straight line is about
0.406 units long has the largest volume. Its overall shape is two triangles
facing each other with some gap. Interestingly, the shape is very close to
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0.482..

L

L

0.406..

V

0.261..

Figure 3. Relationship between fortune cookies’ volume and the length of the
central straight lines (branch B of Figure 1).

that of typical American fortune cookies. If we consider fortune cookies to
be a type of container, fortune cookies that have large volume are desirable.
Is this a view of American pragmatism?

On the other hand, typical Japanese tsujiura-senbei have the longest
straight line, which is about 0.482 units long, which results in the two
triangular faces contacting each other, as shown at the lower right of Fig-
ure 3. This type can also be seen in the US, whereas the version that
has the largest volume is not seen in Japan. In Japan, some cookies have
no volume. I show one in the picture, though it is not a fortune cookie
since it has no strip. A tsujiura-senbei of the same shape is depicted in a
publication that was printed around 150 years ago [2] .

Now, why is the limiting length of the straight section about 0.482? If
the only condition is that the opposite points of the circular sheet should
meet each other, the limit is half of the radius, that is, 0.5. If the length
exceeds this value, the faces do not close. In practice, however, there is
a obstacle to reach 0.5. Two trianglular faces start to interfere with each
other when the length gets close to 0.5.

Let us consider what happens if surfaces are allowed to intersect one
another. The result is shown in Figure 4 as the length of the straight section
approaches the maximum length of 0.5. Figure 4(a) resembles a cardioid
curve, and Figure 4(d) a trochoid curve, but these are stranger functions.
In Figure 4(f), two triangular surfaces again interfere with each other. And
it goes further. In fact, the two surfaces must rotate an infinite number of
times for the length to reach 0.5. The final shape, shown in Figure 4(h),
somewhat resembles a logarithmic spiral, though it is not the same. But
the shape is very similar to that of structures of some shells such as those
of Fragum unedo (Figure 4(i)). It is an interesting coincidence, though it
does not appear that they are based on the same principle (the latter is
based on a growth pattern that is roughly logarithmic).
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 4. Allowing intersection of the faces brings spirals (branch B′ of Figure 1):
(a)–(h) Various possibilities for intersections. (i) Fragum unedo (a species of
shellfish).

4 Asymmetrical Transformation

I have previously examined asymmetrical transformation of the bird base
before [3, 5]. The same type of transformation can be applied to fortune
cookies, which is illustrated in Figure 5. At the limit of the transformation,
two valley folds disappear and another valley fold appears. The result is a
simple two-fold. Its volume is 0, of course. There are cookies of this type
in Japan, though they are not fortune cookies because they do not contain
strips of paper. (They have a strange brand name, which translates to “The
Hardest Senbei in Japan.”) Figure 6 shows a contour map representing the
volumes of asymmetrical structures folded from a square, where I have
plotted volume against the lengths of segments P and Q. We can see that
the symmetrical cookies (P = Q) has the largest volume. These shapes
correspond to branch C in Figure 1.

Figure 5. Asymmetrical transformation of
fortune cookies (branch C of Figure 1).

P
Q

P

Q

Figure 6. Relationship between
the volume and the length of
the straight lines in asymmetrical
transformation of fortune cookies.
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Figure 7. Structure of fortune cook-
ies with three projections (branch
D of Figure 1).

L

V

Figure 8. Relationship between fortune
cookies’ volume and size of the central
polygons.

5 Multiprojections

Thus far, we have considered structures that have exactly two projections.
But they can have more than two projections. Figure 7 shows two kinds
of shapes that have three projections. Although they look similar to one
another, these two are actually quite different. The left one in Figure 7
has curved surfaces, while the right one is formed from only planes. In
the limit of a large number of projections, however, the central polygons of
both become circles, and they come to have the same structure. A Japanese
traditional sweet, yubeshi , has a similar shape, though it is not a fortune
cookie, either.

In Figure 8, we plot the volume versions of the side L of the interior
polygon for the two shapes of Figure 7 and a conventional fortune cookie
as described earlier. As can be seen, the volume decreases with increasing
number of projections, so that those that have two projections have the
largest volumes.

Figure 9 shows a fortune cookie that has five projections. This type
of cookie is only available in the year-end and new-year seasons from a
long-established confectionery at Kanazawa, an old city in Japan.

The right figure of Figure 7 becomes the center one of Figure 10 at
the limit of a maximum-size central polygon. Its volume is 0. There is a
fortune cookie that has this structure with some curved folds and slight
overlapping. It is called Karakara-senbei and contains a small toy instead
of an oracle. These are represented in branch D of Figure 1.
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Figure 9. A fortune
cookie with five projec-
tions (branch D′ of Fig-
ure 1).

Figure 10. Further transformation of fortune cookies
with three projections (branch D′′ of Figure 1).

6 Summary and Further Research
We have already discussed asymmetrical transformation in the branch C
of Figure 1, but we can generalize it further. One example is the branch
E. Those that have more than two projections have many more degrees of
freedom. If they have three projections, they have eight parameters. In
making a unified list, I considered creating a parameter space. But, because
of the large number of degrees of freedom (and other reasons) I abandoned
the parameter space and made it a tree. The number of degrees of freedom
is too large to illustrate that extended parameter space in an intuitive way.

Lastly, I mention some topics for further research. First, there is the
problem of the largest volume: what is the solid of largest volume folded
from a circular sheet? I have suggested that one type of American fortune
cookies has the largest volume, but I have not been able to prove it yet.
The similar largest volume problem, in which the sheet is square and the
shape is a convex polyhedron, has been solved by Alexander, Dyson, and
O’Rourke [1]. I have been dealing with this problem with my own approach,
but I have hit a wall because I consider curved folds. One of the reasons
why O’Rourke at al. dealt with only convex polyhedra is that they wanted
to exclude curved folds. Though no convex polyhedron with any volume
can be made from a circular sheet, excluding curved folds would simplify
the problem.

The presentation of crease patterns creates a new theme derived from
this study. How can crease patterns represent structures that have curved
surfaces such as fortune cookies? Conventional origami crease patterns use
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lines for sharp folds but do not represent the smooth curvature of surfaces.
I have tried to color each ruling line according to its curvature and have
succeeded to some degree, but there still remain some issues, such as how
to represent the dihedral angle of a fold when the curvature is infinite (i.e.,
a sharp fold).

Aside from the geometry, the history of fortune cookies, which I have
described briefly in the introduction, is itself an interesting theme. It relates
to the history of Japanese Americans and Chinese Americans. Fortune
cookies also relate to robot technology, since many of them are made by
machines. Some machines can make two or three fortune cookies a second
when fed with materials [4]. But, as far as I have seen, machine-made
fortune cookies tend to be of lower-quality than human-made ones, having
distorted shapes or multiple strips. It is difficult to automate origami even
with such simple structures as fortune cookies.

Acknowledgment. I would like to thank Hatori Koshiro for helping me to
translate this paper into English.
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Origametria: A Program to Teach
Geometry and to Develop Learning

Skills Using the Art of Origami

Miri Golan and Paul Jackson

1 Background
The name Origametria is made from the words origami and geometry.
The term was created by the Israeli Origami Center (IOC) to describe its
innovative program to teach curriculum geometry through origami.

In Israel, the Origametria program is taught in 70 Jewish, Arab, and
Christian schools. The IOC has a team of 40 teachers who are trained
to teach the program. Thus, each week, about 10,000 school students
around the country study Origametria as part of their curriculum. In 2008,
after several years of scrutiny, the Israeli Ministry of Education formally
approved the program. Soon, a pilot course of Origametria will begin in a
college of teacher training. If successful, courses will be made more widely
available. At present, the program is taught to elementary school students
(grades one through six), but there are plans to expand it into high schools.

1.1 Origins of the Program

In 1992, the IOC began to teach an origami program with the purpose
of developing learning skills. The program was designed to enhance self-
esteem and a sense of accomplishment, while developing learning skills such
as motor skills, spatial perception, logical and sequential thinking, hand-
eye coordination, focusing and concentration, aesthetics, three-dimensional
perception, and principles of basic geometry.
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1.2 Why the Program Changed to Origametria

Although the Origami as a Learning Tool program was successful, with the
number of schools in which it was taught increasing each year, it became
apparent that the natural long-term home for origami was not as a special
learning tool class, but rather, as a class integrated into a particular subject
of the school curriculum. Specifically, it was felt that origami should be
integrated into the geometry curriculum.

After a year-long pilot, we found that Origametria was indeed an impor-
tant tool and a powerful way to improve students’ knowledge of geometry.
The transition was not easy at first. When the system was introduced into
schools that already had participated in our old program, we encountered
some problems with the program’s teachers; since those teachers came from
a predominantly arts background and not a mathematics background, they
had difficulty teaching geometry. Additionally, teachers who were familiar
with the old program did not easily adapt to concepts of the new program.

Therefore, in 2002, we replaced almost all of our teachers. Each teacher
we trained was required to have a background in mathematics. This, among
other factors, greatly added to the success of our program. While the basic
concepts, ideas, and didactic methods of the previous program remained
in the new program, the class structure, goals, and subjects had changed.
Without these adaptations, the program could not have succeeded.

The main decision to change the principal IOC program from Origami
as a Learning Tool to Origametria was made after meeting the director
of Ha’Achim School in Kiryat Malaachi. During the discussion, a mathe-
matics teacher described how she taught two third-grade classes and had
noticed a significant difference in the spatial perception and understanding
of geometry between the students of the two classes. Evidently, the IOC
course was taught in only one of the classes—the class in which the level
of understanding was higher. This realization gave the IOC the confidence
to begin expanding the Origametria program.

2 Origametria in the Classroom

2.1 Lesson Structure

Before a lesson can begin, a specific topic of geometry must be chosen for
teaching. This is often done in consultation with the mathematics teachers
at the school. The choice of topic depends on the requirements of the
national curriculum for each grade.

Once a topic is chosen, an origami model is found which, in its se-
quence, focuses on that topic: for example, a model that may consist of
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many different triangles, or specifically isosceles triangles, or polygons, or
bisections.

During the folding of the model by the class, the teacher will stop
after each new step to check if new examples of the chosen topic could be
identified, and if they are the same or different from earlier examples. The
process of identification can be summarized as follows:

• Geometric insight : This term denotes the understanding of the topic
using folds.

• Exploration: This refers to the continuous search throughout the
folding process.

• Properties and context : This refers to the studying of the topic in
various ways using the folded paper or while folding. Importantly,
each year we repeat topics taught in the previous year, in coopera-
tion with the school’s mathematics staff and the standard geometry
curriculum.

• Lesson summary: At the end of the lesson we check if each student
has acquired the geometric knowledge taught in that particular class.
We specifically verify that the weaker students have understood the
concepts. Significantly, after every lesson the students leave with a
folded model, which serves as a motivational tool for future learning.

2.2 The Method of Teaching

Here are some of the principles that define the Origametria program:

1. The way it is taught : We do not use negative terms during our classes.
For example, we will not use a phrase such as: “this isn’t correct.”
Rather, we will say: “this is beautiful; now, open this and fold . . . .”
We do not criticize a student’s folding. This ensures that even weaker
students can fold like all other students. Indeed, everyone receives
positive feedback.

2. We never check the accuracy of folding: We stress that accuracy
is important, although “accuracy” is a relative term that changes
from student to student. When a student asks the teacher if a fold
is accurate, the teacher returns the question to the student, asking
if he thinks it is the most accurate fold that he can make. This
obliges students to inspect their work and to fold as accurately as
they possibly can. Such an approach both improves the students’
accuracy and prevents disappointment.
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3. Our teachers never touch a student’s model : A teacher will show
a step using her own paper again and again. This gives students
a stronger sense of ownership and accomplishment, as their work is
entirely their own, folded by themselves without any assistance.

4. The choice of models: We carefully select the models and improve
their folding sequences, so that the teachers can explain the folding
procedure once and the students should be able to follow easily.

5. Positive reinforcement : After each step, the teacher inspects a stu-
dent’s folds and gives her positive encouragement in Japanese, such
as “Ichiban sugoi!” (“This is excellent!”)

6. The model is never named while being folded : Throughout the folding,
the identity of the final model is never revealed. This has the double
effect of focusing students’ attention on the geometry of the current
step instead of seeing it as a “leg” (or whatever) and also of opening
students’ imaginations. It also gives control of the subject of the
model to the teacher and concludes the lesson with a surprise.

3 The Advantages of Teaching Origametria
In Origametria, the specific model being taught is of little importance.
More important is the way the model is taught.

Most of the success stems from a process the student undergoes while
folding. For the student, the main goal is to create a finished model of
an animal, a toy, or any other form. For the teacher, this is a secondary
goal. The main aim of the program (and of the teacher) is to improve a
student’s knowledge of the geometric topic selected for the class, and to
develop learning skills by exploring and studying the topic while folding
the model.

The strength of using origami for this is that the geometry is inherent
in the folding process—one needs only a quick look at any folding sequence
to identify geometric topics in abundance. For example, in the lesson in
which we teach diagonals, we will look for diagonals while folding, check
whether various folding lines are diagonals, and explore the properties of
the diagonal until we finally complete the model.

The students find the lessons fascinating. For many, it is their favorite
lesson of the week. They are excited to fold a model, and enjoy exploring
the topic with the teacher. For them, it is a game that uses several senses
and provides a positive experience. This deepens their knowledge and
motivates them to learn more. This way, the students will remember a
topic, even after several years.
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3.1 Reasons for the Success of the Program

There seem to be a number of reasons why the Origametria program is
successful, and why it continues to expand:

• We employ rigorous didactic principles in our classes.

• We focus on a single geometric subject in each lesson.

• We use special methods of teaching origami to ensure a student’s
success and satisfaction with the folding.

• There is close coordination between the IOC’s Origametria teacher
and the school’s mathematics teacher(s), so that new topics are taught
in parallel. A student who has just learned the concepts of angles in
Origametria, for example, will have the chance to use his newfound
knowledge in the regular geometry lesson. If this is a weaker student,
his self-esteem will improve and he will be perceived by others as
having a greater self-confidence.

• The IOC teachers are trained continuously. Once a month, they
attend a special training session with senior IOC Supervisors. We
also visit the various school classes to observe in detail the teaching
of each teacher, and to suggest how to improve their skills. The IOC’s
teachers and I introduce innovations and interesting, new ideas from
our own experiences.

The success of Origametria can be described and measured at three
levels:

1. cognitive:

• developing spatial perception,
• developing logical thinking,
• developing visual perception,
• improving use of imagination,
• building knowledge;

2. emotional:

• building self-esteem,
• enhancing feelings of success;

3. motoric:

• developing motor ability,
• improving hand-eye coordination.
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4 Kindergarten Origametria

Here, we explore the experiences of the first author.

4.1 The Origametria Pilot in Broshim Special School

The Broshim Special Education School in Tel Aviv admits students from
first to twelfth grades for a period of three or four years with the explicit
purpose of enabling their rehabilitation into the school system. It has a
special origami room to which the students come for origami lessons in
small groups, or one-to-one with the teacher.

I have been teaching origami in the school for 15 years. While piloting
the Origametria program, I taught it to first graders and also to the older
students. It was apparent that the younger students found it easier to un-
derstand geometric concepts and terms after just a single lesson, whereas
the older students required extra lessons. Regardless, all the classes in
which I had taught Origametria had distinctly better retention of the top-
ics. Even pupils who at first showed resistance to the program enjoyed
visualizing the concepts being taught while folding a model.

The program in Broshim is dynamic. With each lesson we find more
insights and discover other ways to enhance it.

4.2 Origametria in Kindergartens

The IOC has been teaching in kindergartens for 14 years, but we have
always advised that children under the age of five should not be taught
origami since their motor skills are not mature enough.

However, following my experiences with first-grade students at Broshim
School, I have developed a series of origami models that do not require
accurate folding. This ensures that any child folding a model succeeds at
doing so, even if the model is made inaccurately.

These models have opened a new approach to teaching basic geomet-
ric concepts to preschoolers, and to improving important abilities such as
motor skills, hand-eye coordination, and spatial awareness. The didactic
principles are similar to those of Origametria, whereby we emphasize im-
proving the self-esteem of children by ensuring that they succeed in the
folding, and by providing positive reinforcement.

It is my belief that the window of opportunity to acquire basic knowl-
edge is between the ages of three to nine, because it is during these years
that a child’s imagination is at its most active stage. It is during this time
that children can most quickly and surely grasp the concepts of geometry.
Consequently, Origametria is a powerful tool to provide children with an
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understanding of these concepts. As students mature, they find it more
difficult to use imagination to understand three-dimensional and abstract
concepts. Therefore, I believe that the earlier we can teach Origametria
to children, the better we can utilize the resource of imagination to teach
geometry.

5 The Future of Origametria

Many schools provide very positive informal feedback on the successes of
Origametria. However, we understand the necessity of a scientific analysis
of this success, and we are planning to conduct a special study in which
the effects of Origametria as a tool to learn geometry will be systematically
measured.

We believe passionately in the validity of Origametria as a method to
teach geometry, one that additionally (and importantly) uses origami as
a tool to develop learning skills. Origametria makes the traditionally dry,
abstract, and remote subject of geometry not only fun to learn but also
empowering. Furthermore, its hands-on approach to learning makes it an
effective tool for students with learning problems. While it makes geometry
easier to teach, its effective use requires skills in the teaching of origami
and of the specific Origametria method.

The program continues to expand within Israel and it seems likely to be
adopted by schools overseas. In time, we would like to see it adopted as one
of the accepted ways to introduce basic geometric topics as an alternative
and/or an addition to the traditional ruler-and-straight-edge or chalkboard
methods.

We conclude with a story. A school in Hod HaSharon introduced the
Origametria program but, due to a funding crisis, had to cancel it in mid-
semester. Such was their enthusiasm for the program that the affected
students staged a placard demonstration outside the school, demanding
the reinstatement of their Origametria class. Astonished by the students’
enthusiasm for their geometry class, the school reinstated the program.
The studens won.

6 Origametria: An Example

Here is an example of a model, taught according to the principles of Origa-
metria.
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Polygon Heart by Paul Jackson

1. Fold to make a rectangle

2. Fold as shown, then completely unfold

3. Fold a rectangle

4. Fold in only one corner on each side

5. Fold up the tip

6. Fold the remaining corners over the top to look
like the next step
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7. Fold the corners to the centre line to look like
the next step

8. Fold the small triangles into the pockets

9. Fold as shown

10. Inflate. Push down on the top edge

11. Open the Heart as shown, making it hollow in
the middle
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7 Origametria Commentary

7.1 Main Topic: Polygons

Topic of lesson. First and second grades—identify polygons by counting
the number of edges. Third through sixth grades—identify and describe
polygons found during the folding.

Purpose of lesson. To develop abstract thinking and to identify and describe
all major polygons.

Definition of a polygon. A closed figure made from three or more straight
line segments.

Definition of a square. A four-sided polygon having four equal sides and four
angles of 90 degrees.

7.2 Sample Questions

Step 3. How many squares are in the paper?

4 6

7

Steps 4, 6, and 7. How many triangles are found in the paper? Are triangles
also polygons?
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Step 9. What is the largest polygon?

Step 11. After the Polygon Heart is inflated, what polyhedron is made?

Acknowledgment. The authors gratefully acknowledge the advice of Profes-
sor Yoav Vardi and Dr. Dina Vardi and the translation of this article by
Boaz Shuval.

An eight-minute movie about Origametria can be downloaded from the
Green Fuse Films website, www.greenfusefilms.com/origametria.html.
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The Impact of Origami-Mathematics
Lessons on Achievement and Spatial

Ability of Middle-School Students

Norma J. Boakes

1 Introduction

Origami has become a popular instructional method in the mathematics
classroom. Numerous books and practitioner articles cite origami as a use-
ful way to teach mathematics concepts, especially as it relates to geometry
and spatial concepts [6, 16, 22, 27]. In addition, the National Council of
Teachers of Mathematics (NCTM) [20], in its Principles and Standards of
School Mathematics, supports the use of such methods, suggesting that
students engage in active exploration that allows students to study the
construction and deconstruction of two- and three-dimensional figures. An
examination of literature regarding origami as an instructional tool, how-
ever, reveals a lack of studies focusing on the impact of origami instruction
within the mathematics classroom. With a continued need to find effec-
tive instructional methods in mathematics and the substantial support for
origami as such a method, this study was designed and implemented to
explore origami and its effect on student understanding.
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2 Research Questions
In exploring the impact of origami in the mathematics classroom, the fol-
lowing research questions were formulated:

1. How did students who participated in origami-mathematics lessons
integrate into a traditionally instructed geometry unit compared to
students who were instructed solely through traditional instruction in
terms of (a) spatial visualization skills and (b) mathematical achieve-
ment level?

2. Do the effects of origami-mathematics lessons differ by gender? [3]

3 Spatial Visualization and Related Research
Named within the major topics areas in the K-12 mathematics curricu-
lum is the study of geometry. A key component within geometry is the
development of spatial thought [29]. Generally speaking, spatial thought
deals with a student’s ability to visualize, describe, and critically analyze
spatial aspects of the real world. NCTM recognizes the importance and
need to assist students in developing this ability, often referred to as spa-
tial ability. Within this capability is the concept of spatial visualization.
Though definitions vary from author to author, this term refers generally
to the visualization and mental manipulation of figures in two- and three-
dimensions [21]. Spatial visualization, beyond its importance to geometry,
also has direct connections to defining and quantifying human intelligence
and, more specifically, mathematics ability. As a result, a great deal of
research links to this skill and its development in children.

Research reviewed concerning spatial ability and its attainment fall into
three areas: the connection of spatial ability to gender and age, the con-
nection between spatial ability and overall mathematics ability, and the
potential of improving spatial ability through training. Clearly important
after a review of gender- and age-based research is the awareness that males
and females may differ in terms of spatial ability. Though in some cases
females outperformed males on spatial tasks [17], generally researchers con-
clude that a difference persists, with males’ scores superior to females’ on
spatial tests [5,30]. In terms of age, males and females both improve their
spatial abilities as they mature [18]. However, as children reach middle-
and high-school age, improvements are not necessarily equal, with male
gains often greater than females [18, 19].

Many studies sought to research the connection between spatial ability
and mathematics achievement. According to a review of educational re-
search from 1910 to the late 1950s, spatial ability did play a critical role
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in evaluating mathematical ability [23]. However, more recent publications
are not necessarily in agreement. While there are those that found spa-
tial ability to be a predictor of performance [1, 5, 11, 12], a meta-analysis
by Friedman questions the claim, noting that “the bulk of correlational
evidence casts doubt on the conjecture that spatial skill is pervasive in
mathematics as mathematics is taught and tested today” [15, p. 29].

A final area reviewed dealt with studies seeking to improve spatial abil-
ity through specialized instruction. Training came in many forms from
computer software [8, 9] to a variety of hands-on methods [1, 2, 24]. Many
of these studies found that, in some fashion, students made improvements
in their performance as a result of training [2, 4, 8].

Though research is not fully in agreement, there are general themes that
were important to this study. For one, gender and age are both factors
that could have some effect on performance. There is also the possibility
that there is a direct correlation between spatial ability and mathematics
achievement. A final conclusion is that training does have the potential to
improve student performance. Though these are more themes than absolute
truths, they are valuable in studying the influence of origami instruction
on students’ abilities.

4 Procedures
A quasi-experimental pre-test/post-test design with a control and treat-
ment group was used for this study. A convenience sample of 56 seventh-
grade students with the same mathematics instructor from a southern New
Jersey middle school served as participants. Of these, 31 (based on class
assignment) made up the control group and received strictly traditional
textbook-based instruction during experimentation. The remaining 25 stu-
dents (also based on class assignment) served as the experimental group
receiving treatment. Treatment consisted of 12 origami lessons, taught by
the researcher, interspersed within traditional instruction over a one-month
geometry unit. To determine how this setup impacted performance, a 2×2
factorial design was used. Independent variables included gender and the
method of instruction. For dependent variables, mathematics achievement
level and spatial ability were selected.

To determine the mathematics achievement level of students, a 27-
question multiple-choice test was created using released items from the
National Assessment of Educational Progress [20]. All items were from the
geometry/spatial skill strand of the NAEP and geared for middle-school-
age students. A report reviewing a sample of mathematics questions from
NAEP mathematics assessments between the years of 1973 and 1996 calcu-
lated weighted alpha reliability levels of .87 and .85 for middle-school-age
children, establishing fairly strong reliability for NAEP items [28].
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According to NCTM, spatial visualization refers to a student’s abil-
ity to “[build] and [manipulate] mental representations of two- and three-
dimensional objects and [perceive] an object from different perspectives”
[21, p. 40]. With the close tie spatial visualization has to geometry [1]
and to the act of paper-folding [14,26], three spatial ability tests were also
selected as instrumentation for this study. Based on a review of existing
research on spatial ability and appropriateness for the age of participants,
the Paper Folding, Surface Development, and Card Rotation Tests were
chosen from the Kit of Factor-Referenced Cognitive Tests [10]. Each of
these tests consisted of two parts and took between three and six minutes
to complete. Due to time constraints, one part from each test was used.
Reliability was established based on a study conducted by Fleishman and
Dusek, who reported test-retest reliability values ranging from .76 to .92
for spatial-based tests [13].

At the start of the study, all students were pre-tested using the selected
mathematics achievement and spatial ability tests. The regular classroom
teacher then began the unit on geometry. During this time, the treat-
ment group participated in origami instruction three times a week. Each
of these origami lessons was conducted by the researcher with no involve-
ment by the regular classroom teacher. While modeling each step to pro-
duce the origami figure, the researcher interspersed relevant mathematics
terminology and encouraged dialogue with students regarding mathemat-
ics concepts and terminology identifiable within the folding process. (See
the appendix for sample dialogue used with the instruction of an origami
model.)

During the one-month time period, three days of instruction were ran-
domly selected and videotaped. This was done to assure that the only
difference in instruction between the control and treatment groups was the
addition of the origami lessons within the treatment group. Three read-
ers (including the researcher) reviewed the videotapes using a researcher-
designed checklist to track what objectives and terminology were covered
during each session as well as what teaching delivery method was utilized.
Accumulated information revealed that the regular classroom teacher main-
tained the same instructional methods and covered very similar material
in all classes.

When the one-month unit was complete, students were again given the
mathematics achievement and spatial ability tests. Data was then gath-
ered and analyzed using a statistical analysis software package. Analysis
of Covariance (ANCOVA) was used to determine if significant differences
occurred between adjusted mean post-test scores, with the pre-test score
serving as the covariate (to control for initial differences that may have
existed between groups).
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Instrument Group Gender (N) Pre-test SD Post-test SD
Mean Mean

Card Rotation
Test

Experimental Male (14) 62.69 17.14 69.00 13.45

Female (11) 49.27 15.65 48.64 11.87
Total (25) 56.56 17.46 60.04 16.22

Control Male (11) 49.45 14.44 55.82 13.38
Female (20) 53.85 15.21 62.30 13.37
Total (31) 52.29 14.85 60.00 13.52

Paper-Folding
Test

Experimental Male (14) 4.14 2.25 5.36 1.69

Female (11) 3.91 2.55 4.55 2.62
Total (25) 4.04 2.34 5.00 2.14

Control Male (11) 3.00 1.18 3.36 2.01
Female (20) 3.95 1.67 4.85 1.63
Total (31) 3.61 1.56 4.32 1.89

Surface Devel-
opment Test

Experimental Male (14) 10.50 8.30 15.57 9.75

Female (11) 9.36 5.16 12.64 6.07
Total (25) 10.00 6.98 14.28 8.30

Control Male (11) 5.73 2.83 9.91 6.76
Female (20) 12.60 7.64 16.00 8.01
Total (31) 10.16 7.13 13.84 8.04

Mathematical
Achievement
Test

Experimental Male (14) 14.50 3.80 17.00 3.68

Female (11) 13.36 5.14 16.09 4.30
Total (25) 14.00 4.38 16.60 3.91

Control Male (11) 15.55 3.70 15.91 4.30
Female (20) 14.65 4.00 15.55 3.87
Total (31) 14.97 3.86 15.68 3.96

Table 1. Descriptive statistics for all instruments.

5 Results

Descriptive statistics for all pre- and post-tests administered are given in
Table 1. Results are further broken down by group and gender.

A 2×2 between-groups ANCOVA was conducted for each of the spatial
ability tests. For the first of three spatial tests, the Card Rotation Test,
values calculated revealed a significant interaction effect between group
and gender (F (1, 51) = 9.09, p < .005) with a small effect size (∂η2 =
.15), while neither of the main effects were statistically significant (group:
F (1, 51) = .78, p = .381; gender: F (1, 51) = 2.69, p = .107). For the Paper-
Folding Test, calculated ANCOVA values approached significance for the
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Group Gender (N) Adjusted Mean Combined

Experimental
Male (14) 64.62

57.96
Female (11) 51.30

Control
Male (11) 58.39

60.44
Female (20) 62.49

Combined
Male (25) 61.50
Female (31) 56.90

Table 2. Adjusted means for Card Rotation post-test scores.

interaction between group and gender (F (1, 51) = 3.59, p = .064). For
main effects, no significance was found (group: F (1, 51) = 1.39, p = .244;
gender: F (1, 51) = .05, p = .830). The ANCOVA completed for the final
of three spatial tests, the Surface Development Test, revealed no significant
interaction effect (F (1, 51) = .38, p = .540) as well as no main effects by
group or gender (group: F (1, 51) = .10, p = .750; gender: F (1, 51) = .45,
p = .504). An ANCOVA was also completed for the NAEP Mathematics
Achievement Test. Calculations revealed no significant interaction effect
between group and gender (F (1, 51) = .05, p = .817). Similarly, for the
main effects, neither produced significant values (group: F (1, 51) = 2.96,
p = .091; gender: F (1, 51) = .00, p = .977).

One of the four tests utilized in the study resulted in statistical signifi-
cance. For this test, the Card Rotation Test, further analysis was completed
by reviewing the adjusted means shown in Table 2. Males who received
treatment maintained a higher adjusted mean than females within the same
group. Males in the experimental group also scored higher than males in
the control group while females’ adjusted mean scores within the control
group surpassed their female counterparts experiencing treatment.

6 Conclusions
In terms of spatial ability, analysis of pre- and post-tests reveals that
origami did have some impact on students’ spatial visualization skills. The
Card Rotation Test, selected to evaluate students’ ability to mentally ro-
tate two-dimensional figures, produced interesting results with males and
females responding differently dependent upon the instructional method
experienced. Based on results of the ANCOVA, males seemed to respond
best to origami instruction while females seemed to flourish within a tra-
ditional structure. Additionally, for the Paper Folding Test, interaction ef-
fects approached significance, indicating again that group (experimental or
control) and gender had some bearing on mean scores received. The Paper-
Folding Test also dealt with students’ two-dimensional visualization abili-
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ties. The final of these tests, the Surface Development Test, was selected to
determine students’ ability to visualize in both two- and three-dimensions.
Results from this test reveal no significance and seem to indicate that the
instructional method had little to no bearing on mean scores earned by
participants. Clearly the lesson to be learned here, of course within the
limitations of this study, is that males and females can respond differently
to origami instruction.

In considering why such gender differences occurred, one must take
into account what might have inadvertently impacted the results found in
this study. For instance, many spatial ability tests have been found to be
predisposed to gender differences due to the nature of the test questions
[19, 30]. Social and environmental factors such as out-of-school activities
and hobbies may also cause males and females to benefit differently from
such a spatially-based instruction technique [2, 11]. Though the cause of
the results found here cannot be identified with certainty, future studies
should consider gender and factors influencing performance on spatially-
related tasks.

A set of samples from the geometry/spatial sense strand of the NAEP
assessment was used to determine students’ mathematical achievement
level. Based on results presented, mathematics achievement gains were
similar regardless of gender or the type of instruction experienced. This
leads one to conclude that both methods were equally beneficial. Though
this is limited by the confines of this study, this result implies that origami
lessons integrated within mathematics instruction can be a valuable expe-
rience for students. A further convincing factor is the fact that by adding
origami instruction into traditional instruction, 20 to 30 minutes of in-
structional time was lost within each meeting. Although the treatment
group spent less time under traditional instruction by the regular class-
room teacher, students still did as well as those within the control group.
This finding stands then to substantiate the numerous claims that origami
is an effective instructional tool in mathematics.

As is always the case, there are factors that may have contributed to
the results found for mathematical achievement. For one, multiple-choice
tests such as the NAEP are quite common and are something students
are comfortable taking. In addition, the specific NAEP questions selected
for use in the assessment may have had some influence. Though each was
chosen because of their relationship to geometry and spatial ability, they
may not have accurately captured the specific skills and concepts gained
from the unit on geometry [24]. A final factor may be the text used by the
instructor. Most mathematics texts now recognize the importance of the
national mathematics standards and include material to fulfill them. With
the classroom instructor in this study using such a text, it may be that
geometry instruction was already geared to develop students’ geometry
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knowledge and understanding, dampening the effect origami might have
had on students’ skills.

In all, the intent of this study was to determine the impact origami
lessons integrated into a mathematics classroom would have on students’
abilities. Though spatial visualization and mathematics achievement re-
sults differed, it can be said that origami can be beneficial to students.
It is important, though, that others continue to study origami’s true im-
pact on students. There is little formal research currently reported in this
field. Future studies should seek to substantiate other possible benefits of
origami and for a variety of age levels. It is in this way that the mathemat-
ical community can realize the full potential of origami as an instructional
tool.

7 Appendix: Sample Dialogue for Instruction of an
Origami Model

The following presents key questions that could accompany the instructions
for the Leaping Frog origami model (Figure 1). Note that in the following
text, italics indicates answers expected to teacher-initiated questions.

1. Before you fold your card, what mathematical terms could you use to
describe it? [Rectangle or plane.] Once you make the creases using
adjacent corners of the card, what kind of line segments were formed?
[Perpendicular line segments.] What kind of angles are formed then?
[Right angles.] What could you say about the measure of two adjacent
right angles? [They’re supplementary.]

2. Once you mountain fold you form a third line segment. Do you
recognize any of the angles formed here? [There are right and acute
angles formed.] Can you find a set that are supplementary? [Have
student show where they are.] Could you find the exact measures of
the angles without a protractor? [Yes, since the last line cut them in
half, the angles are 45 degrees and 90 degrees.]

3. Once you do the squash fold, what kind of shapes are formed? [Right
triangle and a rectangle.] Can you identify the angle measures of each
of them? [Yes, the rectangle has all 90 degree angles and the right
triangle has two 45 degree angles and one 90 degree angle.] Is there a
more specific name you can give to the triangle? [Yes, it’s isosceles
right! ] What special terms are associated with an isosceles triangle?
[Vertex angle, base angles, legs, and base.]
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Figure 1. Accompanying model: Leaping Frog [25].

4. When you fold the base angles of the isosceles right triangle up, what
have you formed? [Two new, smaller triangles.] What can you say
about them? [There are four of them that are all congruent. They’re
all isosceles right like the other larger one.] How does the area of
the small triangles compare to the one from the previous step? [It’s
exactly a fourth of the original one.]

5. When you fold the sides into the middle, what new shapes do you
have? [Trapezoids.] How do they compare in size? [They’re congru-
ent.] If you ignore all the folds and look at the figure as a whole,
what is it? [It’s a pentagon.]

6. When you’re all done with your frog, what kind of mathematical
terms can you identify with it? [Pentagon, triangles, rectangle, par-
allel lines, perpendicular lines, . . . .]
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Understanding the Effect of
Origami Practice, Cognition, and
Language on Spatial Reasoning

Michael Wilson, Robin Flanagan,
Rona Gurkewitz, and Laura Skrip

1 Discussion
There is ample evidence to suggest that US students are not performing as
well as they might in mathematics. This evidence comes in the form of the
less than stellar performances on the TIMSS and National Assessment of
Educational Performance (NAEP) in mathematics [18]. Vail [24] notes that
the results of the NAEP suggest that mathematics learning is not moving
forward. Cavanagh [5] asserts that the US government needs to establish
policies that generate an improvement in the quality of the mathematics in
US schools. Field [8] stresses that higher education in the US should have
mathematics education as one of its top priorities.

In an initial study, Flanagan et al. [11] found that participants who
experienced a treatment that involved several diagram-based origami ac-
tivities were significantly faster on a mental rotation task than the students
who had not experienced the treatment (M = 1519 ms and SD = 868 ms
versus M = 1783 ms and SD = 993 ms, where M is mean and SD is
standard deviation). The standardized coefficients of the regression equa-
tion generated from this analysis were as follows: estimated reaction time =
(participants ×−.115) + (primed × .08) + (treatment × .144). In addition,
there are a number of other studies that suggest a significant relationship
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between mental rotation like that experienced by students in Flanagan’s
study and students’ performance in mathematics [4,13,19]. Hence, the re-
lationship found in the Flanagan et al. study, if understood, might provide
some insights into improvement of mathematics performance.

There is also ample evidence to show a connection between origami
and mathematics. For example, Alperin [1] discusses the origami in the
context of Euclidean number systems using origami axioms for Pythagorean
numbers, midpoint bisectors, and trisector axioms. Demaine and Demaine
[6] provide an overview of the work accomplished in computational origami
that includes a discussion of 37 articles on the subject. In addition, origami
has been incorporated into educational instruction in mathematics. In the
instructional realm it is used primarily in areas associated with geometry
and trigonometry [14,21]. Yet, relatively little research could be found that
specifically supports the use of origami in the development of cognitive
operations associated with mathematical problem solving. The only article
found was by Bart et al. [3], who investigated the extent to which origami
practices affected the ability of four- to six-year-old Japanese and American
children to judge the size of triangles and squares after manipulating these
shapes during origami experiences. There is clearly room for more of this
research.

1.1 Problem Solving and Problem Space

Both the mental rotation activity studied by Flanagan [11] and much of
the support for mathematics education involves the complex activities in-
volved in problem solving. According to Anderson [2], problem solving
occurs whenever people become involved in a sequence of related mental
behaviors with the intent of achieving a goal. A problem occurs when the
goal is obstructed and requires some process to obtain, or is not obtainable
given existing processes, behaviors, or routines. Jonassen [15] notes that
for these mental behaviors involved in problem solving to be successful,
they must occur within a cognitively defined problem space that is rele-
vant to the problem. This space, according to Jonassan, involves the use
of mental representations. The space established in these mental repre-
sentations are multimodal composites that may consist of elements such
as “structural knowledge, procedural knowledge, reflective knowledge, im-
ages, metaphors of the system and executive strategic knowledge” [15, p.
5]. Zhang and Zhang [25] discuss how mathematical problem space includes
a universe of the problem, its structure, and its attributes. That is, the
problem solver must be able to create a mental representation or replica of
the circumstances and qualities associated with the problem with enough
fidelity and dimensionality to make that representation consistent with the
actual problem to be solved, and thereby attain the goal at hand. Mental
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rotation as mental representation presents problems in a geometric/spatial
format [22]. Roberts, Gilmore, and Woods [20] and Fisk and Sharp [9]
also suggest that the problem space for spatial problems contain a verbal
component in which the respondent organizes and modulates the mental
representations associated with the mental aspects of spatial representa-
tions.

The Flanagan et al. [11] results suggest that the students involved in
origami had some enhancements to their problem space that those who
had not experienced the origami did not have. Understanding the dif-
ferences between the two groups, as well as characteristics of those who
performed better on the mental rotation task, should provide some insight
into the cognitive composition of problem space as experienced by students
in Flanagan’s origami study.

1.2 Origami and Motivation

Let us also make the assumption that the problem space has some voli-
tional qualities. For if one is to make the effort to construct the space and
step into it when it becomes relevant, there must be something to compel
the user in that direction, i.e., something to drive the problem solver to use
a problem space in solution of the problem. In this case as well, origami
represents a constructive activity with inherently desirable characteristics
that internally compels learners’ participation in activities associated with
the problem space described above and also associated with aspects of
mathematics. There is some research that supports the compelling quality
inherent in origami and the motivation it appears to invoke [16, 17, 23].
Without this force, learning does not tend to occur since without moti-
vation, students do not focus their attention on the learning at hand and
consequently do not accomplish the learning tasks that the instruction is
designed to support, to wit, the mental representations associated with
mental rotations. Is the problem space also inhabited by volitional quali-
ties, as well as the cognitive ones suggested above?

2 Design

2.1 Purpose

The purpose of the investigation is to take the Flanagan et al. [11] results
and examine them for insights into the composition of the problem space
associated with the mental rotation task. The methodology and treatment
described here are also described in [11]. Those results and analysis have
shown that origami effectively supports the development of students’ men-
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tal representation. In this paper, we want to examine the student data
analyzed in [11], as well as some data that were not part of the original
paper, to understand how the origami might have affected those involved,
enhancing their problem spaces well enough to provide some advantage in a
mental facility shown to relate to mathematics performance. By extension,
this understanding might also suggest areas that can generalize to other
problem spaces of mathematics and perhaps similar mathematics-related
spaces such as science and computer technology.

2.2 Methodology

The investigation described in this paper began with the intent to simply
determine whether the relationship existed [11]. This paper is an attempt
to extend the investigation into originally unintended territory. Because
of the additional direction, there is a less than perfect fit between the
methodology and the intended goals described here. Instead, this paper
represents thinking that will be used not only to consider the results of the
current study but to extend the thinking engendered through the study to
further theorizing and investigations. Since the investigation is exploratory
in nature, the alpha will be set rather high—at about .2. So it must be
kept in mind that the results are extremely tentative and speculative, and
the discussion of results must be followed with considerable caution. The
alpha is set high in order to identify more readily the relationships that
would be affected by considerable noise due to the original construction of
the study.

2.3 Sample

The investigation used a group of 37 middle-school students who were in-
volved in a summer enrichment program. Each student was randomly
assigned to one of two groups. The control group (n = 19) worked on a
computerized mental rotation problem before working on a set of origami
tasks and the treatment group worked on the origami tasks before attempt-
ing the mental rotation. The origami task required the students to generate
three origami constructions by following a set of pictures and explanatory
text. Although they were randomly assigned, the control group was slightly
older (12.42 to 12.19), reported a slightly higher sense of math success (4.79
to 4.38 on a scale of 1 to 10) and slightly better attitude toward math (7.75
to 7.57 on a scale of 1 to 10). These differences were not significant, and
consistently favored the control group. Prior to becoming part of the in-
vestigation, consent forms were received for all students involved. Students
whose parents did not give permission did not participate, and students
who did not give their own assent did not participate, either.



�

�

�

�

�

�

�

�

Understanding the Effect of Origami Practice, Cognition, and Language . . . 487

2.4 Materials

The origami task consisted of following “standard” Yoshizawa-Randlett
diagrams. This is in contrast to being shown how to fold by a teacher
demonstration and was selected because it has more in common with the
mental rotation tasks that were used.

The models being folded were a box, a picture frame, and a small
book. The folding involved in these models would be classified as sim-
ple by OrigamiUSA. The first two models were each made from one sheet
of 8 1/2 × 11 inch paper and the book was made from ten sheets of 3 inch
square paper, color coded to simplify the assembly of the book. While the
folding of the book modules is simple, the assembly into the book was not
immediately obvious to the students and required considerable attention
to complete.

The diagrams from which students worked showed a sequence of line
drawings of a piece of paper being folded, starting with the original piece.
Each drawing, in turn, showed the result of the folds made in the previous
step and the folds to be performed in the next step. A possible connection
between the origami diagrams and mental rotation may have resulted from
the need to transform images. In origami this meant transforming images
from the directions, and in the mental rotation this meant transforming
one image to compare it to the other. In both cases, transformations were
accomplished through the mental manipulations of lines, spaces, and an-
gles.

The mental rotation task was internet based and produced by Cog
Lab [12]; it requires respondents to determine whether two figures are the
same or a mirror image when one of the figures is rotated 0, 45, 90, or 180
degrees. Each participant completed 80 mental rotation trials. In addition,
prior research [10] suggested that priming might be a factor. The prim-
ing task involved a set of visualization problems and the nonpriming task
involved reading a brief history of origami and answering questions. Both
the treatment and control groups were further separated into priming and
nonpriming groups.

2.5 Treatment

Each session of the investigation occurred on either a Friday or a Monday.
Both measurements of mental rotation occurred on a Monday. During the
first session, both groups of participants were given a brief introduction to
origami and an explanation of the mental rotation task [22] that they would
encounter during the investigation in the internet-based Cog Lab program.
During the second session, the control group worked on a priming task
and the Cog Lab program, and the treatment group worked on the first
origami task. During the third session, the control group worked on the
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first origami task and the treatment group on the second origami task.
During the fourth session, the control group worked on the second origami
task and the treatment group on a priming task and the Cog Lab program.
The fifth session consisted of a debriefing for all participants and a final
origami task.

After each session, the participants were asked to complete a question-
naire, which addressed their feelings about mathematics and the activity
they had just experienced. They were also given the chance to explain the
activity they had just experienced.

3 Results
From the Flanagan et al. results described above, the origami exercises ap-
pear to have had some impact on the participants’ facility with the mental
rotation. Because of this result, we will make the assumption that some-
thing about origami is enhancing that part of mathematical problem space.
In that the solution to the mental rotation task was considered the single
goal consistent across all participants, and the problem space is the mental
area each participant constructed and used to support his or her solution to
the mental rotation problem, an analysis of the effect of origami exercises
on that space should provide us with some clues to its characteristics. This
study is in effect an expedition, a search for possible explanatory clues.
As such, the concern for beta errors outweighs those associated with alpha
errors, hence the high alpha level (0.2).

The variables in this study were generated in two ways. The dependent
variable is the speed with which the mental rotation problems were solved;
this was collected using a computer program. The other means of collecting
variable data was a questionnaire to which students responded at the end
of each origami or mental rotation exercise. From this questionnaire came
data for the following variables:

• Origami-enjoy was based upon the response of a 1–10 point rating
to the question: “how much did you enjoyed working on this task?”

• Origami-giveup on origami task was a 1–10 point rating of the ques-
tion: “how close did you get to giving up on this task?”

• Math-attitude was a 1–10 point rating of the question: “how much
do you like math?”

• Math-success was a 1–10 point rating of the question: “how successful
do you feel in math?”
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• Rotation-enjoy was a 1–10 point rating of the statement: “enjoyed
working on this task.”

• Rotation-giveup was a 1–10 point rating of the question: “how close
did you get to giving up on this task?”

Confusion was a categorical coding of the types of confusion expressed in
writing by the participants in addressing the mental rotation task. Three
types of confusion were observed:

• image: dealing with the visual aspects (“I couldn’t tell whether it
was mirror or not”),

• process: knowing what problem to address or how to address the
problem (“to mentally flip the shapes to figure the art”),

• feedback: needing to know whether the response was correct or not
(e.g., “the most confusing part is I thought I was wrong”).

Challenge was the level of challenge the participant experienced with
the rotation task. A rating of one was given to the highest level showing
the most positive experience (“the most fun aspect was the final results”);
a rating of four was given for less than positive comments describing the
process (“it was kind of serious and not exciting”).

Attention was the level of attention the participant paid to what he
or she was doing or thinking to solve the rotation problem during the
rotation task as reflected in the participant’s comments. These ranged
from the lowest-level attention response (“I did what I had to do”) to
the highest-level attention response (“at first I was just guessing if the
shapes were similar or mirror images, then I started randomly rotating the
shapes to see if they were similar or mirror images. I would tell someone
who was trying this cognitive reasoning task to rotate the shape in your
head into different directions, until it looked similar or mirrored to the
other shape”).

Language was a simple counting of the number of words used in response
to the three open-ended questions. Mechanics was the number of words
used in responses that could be used to refer to aspects of the process or
components involved in both the origami and the mental rotation tasks,
such as aspects of line and angle comparison.

The following analyses were conducted to obtain a sense of the con-
figuration of a problem space that could support a mental rotation task
that we have assumed was established by the origami experiences. These
analyses examine both how the treatment and control group may differ and
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how the available variables may have influenced participants’ solutions to
the rotation problem.

The first analysis was conducted to gain some insight into whether the
enjoyment of origami could have had any effect on the treatment group’s
performance on the mental rotation task. In this analysis, the Origami-
enjoy and Origami-giveup levels are taken as reflections of participants’
feelings associated with the problem space in their origami experience.
These were the only two variables that clearly differentiated the treatment
group from the control groups.

From the overall F test (p = .023), there does appear to be a rela-
tionship between the enjoyment that students experienced in the origami
and the extent to which they felt like giving up on the mental rotation
tasks. From the beta weights (B = −.986 and −.491) and t-test statistics
(p = .010 and .151), it appears that both the enjoyment and sense of giv-
ing up on the rotation problems had some impact on students’ ability to
address the mental rotation. In addition, the enjoyment aspect was clearly
more effective than the sense of giving up.

When the same analysis was conducted on the control group, the F =
1.146, p = .343) is not significant. Therefore, the effect appears to exist for
the treatment group and does not exist for the control group. Furthermore,
the control group R-squared accounts for considerably less variance than
those shown for the experimental group (control R2 = .125, treatment
R2 = .496). In the control group statistics, the beta statistics suggest a
stronger sense of giving up compared to enjoyment (B = −.337 and −.073).
Since the control group did not experience their origami until after they
had been involved in the mental rotation, these results suggest that the
sense of giving up on the mental rotation task may be a general effect on
problem space, whereas the enjoyment is a specific result of the origami
experiences.

The second set of analyses was conducted to gain some insights into
how the control and treatment participants might be different and how
these differences might be associated with or could have influenced the
participants’ performances on the mental rotation task. This portion of
the analysis was accomplished through a series of t-tests.

The most significant difference between the treatment and control groups
appears to be in the area of language (p = .02). This suggests that the
treatment group wrote a great deal more than the control group. At a
somewhat lower level of significance, the control group appears to be pay-
ing more attention (p = .14) to the rotation processes. These are the only
two areas that met the rather liberal standards established for the alpha
level. In the spirit of exploration, four additional variables appeared to
be close to the significance criteria: Challenge (p = .21), Rotation-giveup
(p = .26), Rotation-enjoy (p = .27), and Math-success (p = .28). The two
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groups appear quite similar, however, in all of the rest of the variables—
Mechanics, Origami-giveup, and Math-attitude, suggesting that these last
variables had no impact on the origami treatment.

The third analysis addressed inherent qualities in both the treatment
and control groups combined that might have had an effect on how rapidly
they accomplished the mental rotation tasks. This analysis shows the pre-
dictor variables producing an R squared of .419 and an overall F of 2.166,
df = 8, and a p = .07, suggesting a significant solution that explained
slightly less than half of the variance associated with the response to the
rotation task. The three variables with the most significant effect on the
speed of rotation were Attention (p = .009), followed by Math-attitude
(p = .186), and Challenge (p = .187). The Math-attitude variable is a rela-
tively strong predictor but both groups appear about the same on this vari-
able. Although the Language variable shows significant difference between
the two groups in the t-test comparison, it was not a significant predictor of
mental rotation performance. In these two sets of results together, only the
Attention and Challenge variables have approached significance across the
two tests, suggesting difference between treatment and control groups as
well as significance in prediction discussed above. All of the other variables
show neither any difference between the groups nor affect on the mental
rotation task.

The fourth analysis examines the difference between the treatment and
control groups in the kinds of confusion they experienced during the ro-
tation task. This analysis is based on the written responses to a question
about what confused participants the most. The result from this chi square
analysis (p = .08) suggests that the participants in the treatment group,
while solving the rotation task, are proportionately more involved in the
image; and the participants in the control group are more involved in the
process itself. This result tends to support the analysis above in which the
treatment group seems to be placing less of their attention in the processes
associated with the rotation task.

4 Conclusions
The treatment group appears to be paying less attention to the mental
rotation tasks than the control group and this appears to be having some
effect on the efficiency in solving the mental rotation problem. Since at-
tention was coded as the level of conscious involvement in the process of
problem solving, this result suggests that the treatment group members
may have paid less conscious attention to the processes of solving the men-
tal rotation task problems, which resulted in significantly higher speeds in
their solution of each rotation problem.
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In addition to the cognitive effects on mental rotation, the compelling
nature of origami also seems to have played a role in the solution of the
rotation problem. Those treatment group members who found enjoyment
and the sense of a positive challenge in the origami subsequently performed
better on the rotation task, as suggested by the multiple regression con-
ducted on the treatment portion of the sample. When the two groups were
compared, the treatment group showed a slightly larger mean, suggesting
that it may have had a slightly better experience with the origami than
the control group, who did not get to the origami until after they had
experienced the rotation.

The results taken together suggest a problem space that is both cog-
nitive and motivational. It appears to exclude, however, the function of
language. Although a comparison of the two groups’ level of language
production in the Language variable showed a difference between the two
groups, Language and the kinds of language used in the Mechanics variable
appeared to not have any influence on the speed of the rotation response.

Origami may play a part in the way students pay attention to the
rotation task, developing and supporting both the level of focus on task-
related elements and perhaps some sort of automatic response associated
with attention on the visual aspects of the tasks. These results considered
in conjunction with those on language suggest that the effect on problem
space is more associated with the visual than through language. The visual
component seems to have supported a higher level of automatic behavior
in the treatment group members compared to the response observed in the
control group

Much of what experts do to solve problems is accomplished in the ex-
pert’s unconscious [7]. In this way, much of the problem solving that ex-
perts do is automatic. Perhaps solving the origami problems produced in
the treatment group a greater facility with the rotation problems in the de-
velopment of underlying visual mental representational skills. Automatic
reactions are also a function of attention, which is also supported by these
results. Once acquired through origami, perhaps the treatment group mem-
bers acquired, at an unconscious level, the skills needed to solve the rotation
problem, thereby experiencing more positive reactions and ultimately more
success without the effort needed by the control group participants.

The results in this study are consistent with the work of Bart et al. [3]
on children’s development of shape estimation in that they both show the
influence of origami on mathematical thinking. The analysis goes beyond
this study, however, by endeavoring to suggest some of the conditions of the
problem space that seem to underlie the relationship between the origami
and the mathematics-related cognition.

Before going too far with conjecture, however, caution must be an im-
portant concern here. We must be clear that the alpha level was set very
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high in order to search for possible explanations among data with a sub-
stantial noise factor. The possible findings must be considered weak and
must be followed with a great deal of additional work expanding and un-
derstanding both the potential and the ramification of origami as well as
other practices that might be useful in the development of the capacity to
solve problems supported by cognitive conditions described here as problem
space. If we are to use origami to support mathematics and other learning,
more investigations are needed to clarify and understand the underlying
processes and effects involved in using origami as a problem space support.
It is still too early in the investigative cycle to tell whether, or just how,
to use origami in the development of solving problems in mathematics or
related areas. Still, the road forward looks very promising from where we
stand.
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Modular Origami in the Secondary
Geometry Classroom

Margaret Cagle

1 Introduction
In the current climate of increasingly demanding standards and high-stakes
testing, it may be hard to believe that there is an area of school mathe-
matics not receiving sufficient attention, but that is indeed the case with
three-dimensional geometry. While other areas of the K-12 school math-
ematics curriculum are characterized by long lists of concepts and skills
to be mastered, three-dimensional geometry is often reduced to a single
line item requiring students to calculate the surface area and volume of
a variety of solids. The National Council of Teachers of Mathematics has
identified four overarching geometry standards for students in grades K-12:

1. Analyze characteristics and properties of two- and three-dimensional
geometric shapes and develop mathematical arguments about geo-
metric relationships.

2. Specify locations and describe spatial relationships using coordinate
geometry and other representational systems.

3. Apply transformations and use symmetry to analyze mathematical
situations.

4. Use visualization, spatial reasoning, and geometric modeling to solve
problems [5].
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These standards clearly encompass a broad view of geometry, including the
need for students to develop conceptual understanding and problem-solving
abilities in a three-dimensional environment.

2 Issues Faced by Students in Secondary Geometry
Meeting the standards proposed by NCTM requires students to move from
description to analysis, abstraction, and finally formal proof, as described
in the Van Hiele Model Levels of Geometric Thinking:

• Level One: Visualization

Children at this level can recognize figures by their physical appear-
ance.

• Level Two: Analysis

At this level, children can classify to some extent and can discern
some characteristics. They still cannot see interrelationships between
figures.

• Level Three: Informal Deduction

Children can establish interrelationships between figures and derive
relationships among figures. Simple proofs can be followed, though
not understood completely.

• Level Four: Formal Deduction

Students at this level understand the significance of deduction and
the role of postulates, theorems, and proofs. They are able to write
proofs with understanding.

• Level Five: Rigor

Students understand how to work in an axiomatic system, and are
able to make abstract deductions. Non-Euclidean geometry can be
understood at this highest level.

By the time students are in a secondary high school course, they are
expected to be operating at Van Hiele level three and moving to level four.
Yet most of the curricula they have encountered in their K-8 mathemat-
ics preparation only address geometry at level one, focusing on naming
shapes and relationships such as parallel or perpendicular, with, at best,
infrequent opportunities to develop geometric reasoning. Today’s children
do not play in the same ways as children of past generations and this is
having a significant negative impact on the development of their spatial
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reasoning and visualization abilities. People of earlier generations grew up
routinely engaged in activities that built spatial reasoning. They learned to
sew, following diagrams and using patterns to transform two-dimensional
fabric into three-dimensional garments. They played with Lincoln Logs,
Tinkertoys, and other blocks well past the age of four and may have even
graduated to Erector sets complete with motors and gears. They assem-
bled jigsaw puzzles and built scale models. They climbed trees, played on
jungle gyms, and built impromptu forts from card tables and sofa cush-
ions rather than playing with prefabricated plastic environments. Wood,
metal and plastics shop classes were a staple in junior high schools across
the country, but are now virtually gone. While many of today’s students
play with simple puzzles and build with Lego blocks as young children,
most quickly move to video games, where they spend their time manip-
ulating two-dimensional images of three-dimensional worlds. As a result,
they arrive in secondary geometry classrooms with weak spatial reasoning
and poor visualization skills.

3 The Role of Modular Origami in
the Secondary Geometry Classroom

Given this seemingly daunting confluence of issues, it is reasonable to ask
why origami should be added to the already overcrowded curriculum. The
answer is that origami can provide multiple opportunities to remediate
these areas of weakness in an inherently engaging manner. It is accessible,
affordable, nonroutine, and allows students to produce objects of their own.
Building a model for one’s self provides a profoundly deeper understanding
of the geometry of an object than engaging in a study of either a premade
model or a two-dimensional representation. Educators need to intentionally
move students from concrete to abstract and in order to do that, students
need to be provided with support along the way with intermediate steps.
Before it is possible to visualize accurately in three dimensions, students
need to be taught to look at and analyze three-dimensional objects. De-
veloping this ability does not happen overnight, but can be built over time
through repeated exposure to meaningful exercises.

Origami builds other mathematical capacities as well. If students are
to use mathematical vocabulary with precision, then they need to be pro-
vided with rich environments in which to use that vocabulary in meaningful
ways. Concepts are reinforced when dealt with in concert with the correct
vocabulary, using concrete examples. Constructing origami models pro-
vides a setting to reinforce both the correct vocabulary and underlying
concepts because students are using the words as they are using the con-
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cepts to fold a model. Educators should be prepared to take advantage of
unexpected opportunities to review and reinforce important mathematical
concepts while using origami in their classrooms. Something as basic as
asking students to fold a square in half can easily lead to a deep discussion
of the number of ways in which this can be achieved. Most students will
suggest two possibilities and will be amazed when through discussion they
realize that there are infinite possibilities, provided the fold passes through
the center of the square. Such opportunities rarely arise when performing
routine tasks. The construction of origami models also provides a natural
environment in which to develop accuracy. Students may have different
personal standards for how accurately they fold. As an educator, it is im-
portant to allow students to determine their own criteria for their finished
models. Remember that the goal is not to produce finely crafted end prod-
ucts, but rather to develop students’ spatial reasoning, visualization, and
three-dimensional problem-solving abilities. The fact that some students
are tolerant of a great deal of imprecision may lead to problems in complet-
ing final models, but it also presents a natural opportunity to discuss the
concept of accumulated error. Some models also rely on visual estimation.
Estimation is an important life skill, but like so many topics that are not
easily assessed using multiple choice tests, it is being stripped out of the
K-12 curriculum.

4 Modular Polyhedral Models
While all origami models provide an opportunity to build spatial reasoning
and visualization skills, focusing on polyhedra creates finished models that
can themselves be used in further study of three-dimensional geometry.
One possible classification of origami polyhedral models divides them into
four families; face models, skeleton models, edge models, and other or
miscellaneous models. (See Figure 1.) In face models, each face or seat of
the polyhedra is built as a single piece. This means that there is exactly
one piece composing each face or a single piece may be manipulated to
construct all of the faces, but any individual face is monolithic, with no
seams or joints. Skeleton models rely on constructing some of the internal or
underlying characteristics of the polyhedra. This typically means that the
model is made of portions of certain of the planes of symmetry, which then
end at the edges of the polyhedra. In edge models, each edge is constructed
individually and then assembled at the vertices to produce the polyhedra.
There is a wide variety of types of edge models that have been engineered
for this purpose. Some are specific to a particular polyhedron, while others
have end variations that allow for them to be used to construct various
models. Tom Hull’s PHIZZ unit [3] has the flexibility, both literal and
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Figure 1. Models from all four families. From left to right: face model (Miyuki
Kawamura’s cube [4]), skeleton model (Lewis Simon’s octahedron [1]), edge model
(Tom Hull’s PHIZZ dodecahedron [3]), and miscellaneous model (Mitsunobu
Sonobe’s augmented icosahedron [2]).

figurative, to build pentagonal, hexagonal, or heptagonal faces, allowing its
use in a wide range of models. Other or miscellaneous models are comprised
of modules that make only part of a face or edge such as the Sonobe unit
or its many variations [2]. While they produce beautiful end products and
have much to recommend them, in general this family of models does not
provide as clear an opportunity for direct study of polyhedra and they
do not readily justify the amount of time required to construct them, as
compared to models from the other three families.

4.1 Face Models

Because face models are solid, they are well suited for study of attributes
of the individual faces of a polyhedron, and the relationships between those
faces. This can include investigations about the number of colors required
to ensure that a given model has no adjacent faces (those sharing a common
edge) of the same color, or about the case in which no faces of the same color
meet at any given vertex. The creation of numerous models can be used by
students to investigate space packing with polyhedra. This investigation
can be used as a means of discovering the dihedral angles of the solids as an
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analogy to looking at interior angles of regular polygons and their planar
tessellations.

4.2 Skeleton Models

The inherent characteristics of the skeletal construction present opportuni-
ties to explore the underlying structure of individual polyhedra and related
polyhedra, especially looking at planes and axes of symmetry. Most skele-
ton models are based on a particular arrangement of planes of symmetry
for a polyhedron. By examining one set of planes of symmetry, students are
typically able to visualize other sets of planes and axes of symmetry. This
family of models can also be used as a means of discussing the concept of
polyhedral duals. Duals are formed by replacing each face of a polyhedron
with a vertex at the center of that face and then connecting those new ver-
tices across the edges of the original polyhedron. The resultant polyhedron
shares the same planes and axes of symmetry with the original. Building
skeleton models of a polyhedron and its dual allows students to see this re-
lationship in a very concrete way. Skeleton models also clearly indicate the
center of regular and semiregular polyhedra; the point of intersection of all
the planes and axes of symmetry. This allows students to develop a better
understanding of the ability to inscribe every Platonic and Archimedean
polyhedron inside a sphere so that each vertex lies on the surface of the
sphere.

The structure of skeleton models provides a means for examining poly-
hedra from another perspective, namely, their possible congruent dissec-
tions. The fact that most skeleton models are based on planes of symmetry
allows students to see one possible way of slicing a polyhedron into con-
gruent parts. This can be used to further study related polyhedra, such as
the cube and the rhombic dodecahedron. One possible interpretation of a
rhombic dodecahedron is as originating from a three-dimensional checker-
board of cubes, redistributed using Dirichlet domains. Alternating cubes
are capturing volume from each of the adjacent cubes on all six of their
faces. This means that each cube that is being cannibalized is divided
along its planes of symmetry to create six congruent square-base pyra-
mids, which are then added onto the faces of the cubes that remain intact.
The resultant polyhedra are rhombic dodecahedra. When students build a
skeleton model of a cube, they clearly see how any cube can be sliced into
six congruent square-base pyramids and how each of those pyramids could
be added onto the faces of another cube.

4.3 Edge Models

Edge models are especially well suited for the study of relationships between
different sides of a polyhedron because they are typically open. Students



�

�

�

�

�

�

�

�

Modular Origami in the Secondary Geometry Classroom 503

Figure 2. Schlegel diagram of a dodecahedron.

can actually look through a model to examine the relationships of opposite
sides. Until they have held up an edge model and looked through the cen-
ter, students rarely notice that the opposite faces of a dodecahedron are not
only parallel, but are also 180 degrees rotated from each other. Most edge
models rely on joining individual modules at the vertices, which provides
for a discussion about the relationship between the edges and the vertices.
Euler’s formula for the relationship between vertices, edges, and faces of
a polyhedron is arrived at as a natural extension of building a particular
number of edges and then assembling them at a given number of vertices to
create a given number of faces. In a traditional geometry course, students
may be given the formula, but as with most mathematics that is taught
without a meaningful context, it is rarely understood or remembered. Be-
cause an edge model reduces a polyhedron to a frame, it can be effectively
used to help students see the connections between three-dimensional geom-
etry and graph theory. Looking at a frame representation of a polyhedron
makes it easy to connect it to a Schlegel diagram (Figure 2), which is a
type of planar graph, topologically equivalent to the polyhedron. Schlegel
diagrams can be used to examine relationships between the vertices, edges,
and/or faces of a polyhedron. They are also useful in making decisions
about different types of edge colorings for the three-dimensional models.
It may be desirable to have a dodecahedron made with five colors such
that each color forms one side of every pentagonal face. It may also be
desirable to have a dodecahedron made with three colors such that each
color is present at every vertex. Both of these coloring schemes are more
efficiently explored in a two-dimensional environment before they are used
to guide the actual assembly of an origami model.
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Figure 3. Right-handed and left-handed dodecahedra and their modular units.
(Unit designed by Robert Neale [6].)

4.4 Modular Models

The fact that all modular models are assembled from numerous congru-
ent pieces, provides another opportunity to strengthen students’ ability to
reason spatially. The number of pieces used to construct a model can be
used to inform discussion about the underlying structure of the polyhedron.
Face and edge models typically have a one to one correspondence between
the number of pieces and either the number of faces or the number of
edges. The number of edges that meet at a vertex can be used by students
to make sense of the assembly process. If they know that three edges meet
at a vertex, students can imagine a projection of the vertex with each edge
forming 120 degree angles with the other edges. As the model is assembled,
students must be constantly adjusting and updating their understanding
of the model as it evolves. Few other classroom activities provide opportu-
nities for students to problem-solve in three dimensions within a changing
environment.

Most modular constructions rely on pieces that have either a right-
handed or left-handed bias (see Figure 3), presenting an opportunity to
introduce and discuss the concept of chirality. While chirality or handed-
ness is present in geometry, appearing in the snub Archimedean polyhedra,
it plays an important role in many other fields. Many chemical structures
are defined by their handedness. Students often stumble across the issue of
handedness when working cooperatively with others to build a model. De-
spite explicit instruction, many students will produce modular units with
the orientation opposite from what they are shown. This disparity will only
be noticed when students attempt to assemble pieces that have different
chirality.
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5 Conclusion
Perhaps the most powerful arguments for incorporating modular origami
models into the secondary geometry classroom are that it creates a forum
for active discussion among students and it connects to so many branches of
mathematics while appearing to students to have nothing to do with math.
Sense making is tied to language and when students engage in explaining
to each other the means to assemble a model, they are also enriching and
solidifying their own understanding of the underlying structure and char-
acteristics of the polyhedra that they are building. Students do not learn
the most by watching or by doing, but rather they learn the most by re-
flecting on and talking about the work in which they are engaged. As more
and more is expected of students at younger and younger ages, they are
tending to compartmentalize their learning. Students are given neither the
time nor the encouragement to connect ideas between disciplines or even
within disciplines. This may be most egregiously apparent in mathematics
classrooms where students typically view each topic, concept, and skill as
distinct and separate from other parts of the curriculum. Origami can serve
as an effective bridge to help students see mathematics as a far-reaching
and interconnected discipline with numerous facets, rather than a series of
unrelated skills to be practiced and tasks to be performed in isolation from
each other and from the world at large.
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On the Effective Use of Origami
in the Mathematics Classroom

V’Ann Cornelius and Arnold Tubis

1 Introduction
Origami is a valuable (and largely untapped) resource for supplementing
and strengthening school mathematics curricula. Because it encompasses
elements of both the arts and mathematics, it is ideal for augmenting and
enriching the current educational focus on reading and mathematics. To
date, origami has been used in the mathematics classroom mainly as a tool
for: (1) doing geometric constructions via folding as an alternative to tra-
ditional straight-edge and compass ones, (2) determining area formulae for
simple polygons, (3) developing manual dexterity and spatial visualization,
(4) studying some aspects of line and point symmetry, and (5) studying
properties of polyhedra. (For references see, e.g., Cornelius and Tubis [1]
and Tubis and Mills [8]).

In this paper, we show how origami can be a very effective aid in guid-
ing students in grades K-8 through the first three van Hiele [4, 9] levels of
geometric understanding (visualization, analysis, and abstraction/informal
deduction) that are crucial for success in subsequent studies at the for-
mal deduction level in high-school geometry and rigor in later university
studies. We also propose origami-mathematics activities in which students
relate key dimensions and angles of a folded model to the mathematical
details of the model crease pattern, and show that these activities strongly
support mainstream mathematics standards. These standards are typically
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classified under the headings of number and operation, algebra, geometry,
and measurement/data analysis/probability. (See [5] for recently proposed
key focal points of the K-8 mathematics curriculum.) The limited length
of this paper allows only a cursory presentation of the many ways in which
origami can enhance mathematics education.

2 General Procedure
Our general procedure is outlined below. The associated van Hiele levels
of geometric understanding and mathematics standards are given in square
brackets.

1. Select object to be folded (e.g., a box, envelope, or picture frame).

2. Identify constant features (e.g., size of paper, number of walls, and
bottom face of an open box). [Geometry (Visualization)]

3. Identify variable features (e.g., shapes and sizes of walls and bottom
face of an open box). [Geometry (Visualization)]

4. Fold model.

5. Identify shapes, angles, and symmetries in the crease pattern. [Ge-
ometry (Visualization, Analysis)]

6. Mathematically relate features of the model to those of the crease
pattern. [Geometry (Abstraction/Informal Deduction); Number and
Operation; Algebra]

7. Use mathematics to design and fold a form of a model that satisfies
various requirements. [Geometry ( Abstraction/Informal Deduction);
Number and Operation; Algebra]

8. Check design by measuring dimensions of the folded model. [Mea-
surement/Data Analysis]

We illustrate some of the above points in the next section in connec-
tion with the generalization of the traditional Magazine Box and its crease
pattern. In subsequent sections, we give typical examples of other mod-
els that we have found effective in workshops on origami-mathematics for
students in various grade levels. Except for the Pythagorean Theorem pic-
ture frames and boxes (Figures 6 and 7) and Triangle Boxes (Figure 8),
the models are appropriate for K-8 grades. For fairly obvious reasons, it
is usually desirable for models used in mathematics classes to be foldable
in a short amount of time, be interesting from a utilitarian and/or novelty
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L/2
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W/2 w/2
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Figure 1. The generalized Magazine Box and its crease pattern.

perspective, be analyzable with the mathematical knowledge that is appro-
priate for the grade level of the students, and help students focus on the
important mathematics standards.

3 The Magazine Box

In Figure 1 are displayed a photograph, crease pattern, and design equation
of the generalized Magazine Box made from a rectangular sheet of paper.
Both boxes in the photograph are folded from the same size rectangle. The
design equations relate the features–length l and width w of the box face,
width of the rim hem whem, and box height h—to the length L and width
W of the starting rectangle. Like many other models, the Magazine Box
may be used at various grade levels. In the early grades, the focus should
be on the properties of the various shapes, lines, angles, bisections (angle
and line), and symmetries (line and point) in the crease pattern (van Hiele
levels of visualization and analysis). In higher grades, the mathematics
standards—number and operation, algebra, and geometry (van Hiele level
of abstraction/informal deduction)—come into play in the derivation of
the design equations and in their application to the designing of boxes that
will hold specified objects, as well as the calculation of areas, perimeters,
and volume. Finally, by measuring the dimensions of a folded box and
noting that they differ slightly from the “theoretical” ones implied by the
design equations (measurement and data analysis), students gain a first-
hand appreciation of the distinction between origami models folded with
paper of finite thickness and stiffness, and the box (folded from idealized
infinitely thin paper) described by the design equations.
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Figure 2. Envelope and its crease pattern.

Figure 3. Ninja Star picture frame and its crease pattern.

4 The Envelope
The Envelope (Figure 2), like the Magazine Box , has a crease pattern
with simple symmetries and angles (of measure 45◦ and 90◦), and similar
associated mathematical activities. However, the derivation of its design
equations is somewhat more challenging.

Another model with similar attributes is the traditional Ninja (or Throw-
ing) Star made from two identical rectangular strips that is generalized so
as to serve as a square picture frame (Figure 3). The fact that the edge
length of the frame cannot exceed the strip width presents an interesting
problem that may be used as part of an introduction to inequality problems.

5 The Generalized Traditional Masu
We now present the first of a series of models in which the Pythagorean
Theorem plays a significant role in relating model features to those of the
crease pattern. The theorem may be first introduced in lower grades by
having students simply verify that the length of the diagonal of a square
is equal to approximately 1.4 times the edge length of the square. After
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Figure 4. Crease pattern for informal proof of the Pythagorean Theorem. The
congruence of the four right triangles bordering the inside square can be easily
verified by folding (see, e.g., [6, 8]).

Figure 5. Generalized masu and its crease pattern. All three boxes in the photo-
graph are folded from the same size square.

students learn about the areas of squares, rectangles, and triangles, infor-
mal paper-folding “proofs” of the theorem [6, 8] can be based on forming
the crease pattern in Figure 4. The generalized traditional Japanese masu
(“box”) (Figure 5) is one of the simplest models that illustrate the appli-
cation of the theorem, and we have successfully used it for this purpose for
five years with students in grades four through nine. For an extensive set
of mathematical activities based on the masu and its generalizations, see
Tubis and Mills [8].

6 Pythagorean Theorem Picture Frames and Boxes

The Pythagorean Theorem crease pattern of Figure 4 can serve as the start-
ing point for numerous interesting models such as picture frames (Figure 6)
and boxes (Figure 7). The crease pattern analyses of these two models
would constitute instructive exercises in high-school trigonometry.
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Figure 6. Pythagorean Theorem picture frames and their crease pattern. Both
frames in the photograph are folded from the same size square. The edges of the
picture opening are not crease lines.

Figure 7. Pythagorean Theorem boxes and their crease pattern. All three boxes
in the photograph are folded from the same size square.

7 Isosceles Triangle Boxes from Arbitrary Rectangles
Another model that would be very effective in a high-school trigonometry
class is an Isosceles Triangle Box (Figure 8) with an arbitrary apex angle
θ folded from an arbitrary starting rectangle [1].

8 Washington Crossing the Delaware Model
from a Dollar Bill

Our final example (Figures 9(a) and (b)) is one that has mathemati-
cal significance (involving the construction of angles of 30◦ and 60◦, the
Pythagorean Theorem, and the altitude/base ratio of the equilateral tri-
angle), and and is also relevant to American history (George Washington
and the Revolutionary War). Note that 1732, Washington’s birth year,
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Figure 8. Isosceles Triangle Boxes from an arbitrary rectangle and their crease
pattern. All three boxes in the photograph are folded from the same size rectan-
gle.

(a)

 

(b)

Figure 9. George Washington Crossing the Delaware and its crease pattern. (a)
Part I: framing George in an equilateral triangle. (b) Part II: forming the boat.
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contains the first four digits of the square root of 3 (twice the altitude/base
ratio of the equilateral triangle). For an informal geometric approach to
angles of 30◦ and 60◦, see, e.g., Tubis and Mills [7].

9 Summary and Concluding Remarks
We advocate the origami-mathematics approach of this paper as a practical
vehicle for: (1) providing learners with immediate applications of math-
ematical concepts via the folding/analysis of functional objects (which in
turn serve as catalysts for future learning); (2) guiding students through the
first three van Hiele stages (visualization, analysis, and abstraction/informal
deduction) of geometric understanding; and (3) promoting competence in
general mathematics standards. Aside from the relatively short time re-
quired for teaching the folding steps, the classroom studies associated with
mathematically connecting model features to those of the crease patterns
are all in line with mainstream mathematics classroom activities. “Visual-
tactile” learners [3] might benefit in particular from this type of curricular
content.

An initial trial of the approach outlined here is planned to take place
in the school district of Long Beach, California, in collaboration with an
organization called Dramatic Results—Academic Success Through Art [2].
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Using Origami to Promote
Problem Solving, Creativity,

and Communication in
Mathematics Education

Sue Pope and Tung Ken Lam

1 Introduction
The use of origami in mathematics education has long been known [2, 3,
7, 11]. (The last reference was originally published over 100 years ago.)
However, such paper-folding activities are generally little known and not
widespread [8].

If origami is used at all in mainstream lessons, it tends to be for demon-
strating a small number of geometric principles and ideas [1]. Otherwise,
origami is seen purely as a “fun end of term” activity. Furthermore, the
pedagogic approach in both cases is for the teacher to instruct students
one step at a time. There are few opportunities for creativity and problem
solving; students are hardly ever encouraged to ask why methods work.

There are other teaching and learning strategies besides students fol-
lowing a teacher’s instructions. Some presented here are based on those
advocated by Wollring [12].

• Whole class teaching and challenges are implemented. Only the very
simplest folds are introduced to the whole class. Students then inves-
tigate the properties of the resultant shapes and justify their findings.

517



�

�

�

�

�

�

�

�

518 V. Origami in Education

Students are challenged to develop their shape into something more
interesting.

• Students in groups are challenged to make an existing origami object.
Each group has two examples of a folded object. Students are advised
to dismantle just one object and figure out how it is made. As the
objects are modular (i.e., made of more than one piece), once they
have decided how one unit is made they can then work together to
produce the units they need. By having one intact model they can
figure out how to reconstruct the model.

Teachers can follow up on each of these activities by asking students to
communicate their findings by preparing posters. One aim of these posters
is to communicate to other groups of students how to make the same object.
In order to emphasize visual and geometric understanding, the constraint
of using as few words as possible was given. The use of step folds allows
students who cannot draw neatly with pencils and rulers to produce quality
work.

A third origami activity does not involve instructing students or giving
students existing origami objects:

• Students are challenged to design shapes to have given properties. For
example, students might be asked to produce the largest octagon from
a square. Alternatively, students may be shown a tiling and asked to
reproduce it by folding paper units.

In contrast with students following a teacher’s instructions, these ac-
tivities allow students to think for themselves and to solve problems. A
benefit for the teacher and students is that students can work at their own
pace. This avoids the frustration of some students having to wait for others
to catch up, and some students struggling to keep up. The poster-making
activity ensures that students probe the structure of an origami design.

Another advantage is that students can work at their own level. For
example, there are a number of methods for finding the center of an equi-
lateral triangle. Some may use their visual judgement; others might be
able to work out a more precise folding method.

2 Examples of the Strategies
Examples of these teaching and learning strategies activities are now shown.
They are drawn from a number of contexts including in-service training,
mathematics masterclasses, and summer schools for gifted and talented
children.
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Figure 1. Crease lines on a paper, and trapezium with angles marked.

Figure 2. Fold a regular hexagram from an equilateral triangle.

2.1 Whole Class Teaching and Challenges

Folding a hexagram. Students were asked to fold the paper in half along
the long mirror line, unfold, and to then fold one corner of the shortest
edge onto the original crease to make a new crease through the adjacent
corner (Figure 1). Students were asked to find out all they could about the
resultant quadrilateral.

Once students had agreed and come up with reasons for the properties of
the trapezium, they were asked if it would be possible to make an equilateral
triangle. Students found out for themselves how to fold their equilateral
triangle into a triangle whose sides are half the length (what happens to
the area?) and into a regular hexagon (what fraction of the area of the
equilateral triangle is its area?).

They were then shown a folded regular hexagram (Figure 2) and asked
how they might develop their equilateral triangle into such a shape. The
students worked in groups to develop a poster for other students about how
to make the hexagram (Figure 3).

Further development of this origami included folding frustums of tetra-
hedra and assembling an icosahedron.



�

�

�

�

�

�

�

�

520 V. Origami in Education

Figure 3. Typical poster of instructions for folding the hexagram.

2.2 Challenge to Make an Existing Origami Object

Folding a shuriken star. Pairs of prefolded stars (Figure 4) were distributed
to small groups. They were challenged to work out how to make the star.
Students were advised to pull one star apart and to keep one intact. The
star is a classic origami model which, unlike many modular origami objects,
uses two units that are mirror images of one another.

Figure 4. A pair of four-pointed stars. Each is made from two pieces that are
mirror images.
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Figure 5. Typical poster of instructions for folding the four-pointed star.

Students were challenged to determine the properties of this star and
then, in their groups, to prepare a poster that showed how to make the
star that could then be used with other students (Figure 5).

Another good choice of origami for this type of activity is Robert Neale’s
action origami Pinwheel–Ring–Pinwheel , which can change shape and il-
lustrate rotational symmetry [10].

In addition to two-dimensional origami models, students worked on
three-dimensional modular origami, e.g., Paul Jackson’s Cube and Robert
Neale’s Skeletal Octahedron [9].

2.3 Challenge to Design Shapes with Given Properties

Creating stained glass windows. Using images of stained glass windows and
other tiling designs [4–6], students were challenged to recreate the designs.
Each piece in the design had to be folded as accurately as possible from
square pieces of paper. Figure 6 shows a number of different designs com-
pleted by different groups of students. These required students to work
creatively and to solve their own problems.
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Figure 6. Stained glass window designs.

3 Outcomes
Specific outcomes of this study are described more fully in [8].

Generally, on the affective level, students are engaged and enjoy the
folding activities. Students even make the origami outside of the sessions!

The social aspect of the activities encourage teamwork and communi-
cation. Students realize that their posters sometimes do not contain all the
information needed to make an origami design.

The cognitive and mathematical content of the activities allows stu-
dents to appreciate the connections between topics in mathematics that
are taught at different times. Indeed, the memorable learning experience
is often revealed later in more formal lessons on geometry. They see that
there are a number of methods for doing something, some having disad-
vantages as well as advantages.
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4 Implications for the Classroom
The use of origami allows a wide range of mathematics to be covered in
a stimulating and enjoyable way. Along with the development of mathe-
matical understanding, students develop their problem-solving and creative
skills and their ability to work cooperatively with others. Producing posters
challenged students to succinctly communicate their methods to a defined
audience.

Acknowledgment. We are grateful to the teachers and students who partic-
ipated in this work.
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Redundancy of Verbal Instructions
in Origami Diagrams

Koichi Tateishi

1 Introduction
This paper discusses characteristics of the informational contents of ver-
bal instructions in origami diagrams. We claim that verbal “instructions”
are not real instructions, as the instructional role can be handled by the
diagrams themselves. Rather, the words below the diagrams are for obser-
vational and/or confirmational purposes, that is, the words basically repeat
information that is already shown in the diagrams. Individual diagrams are
only shapes and figures that do not speak and they often incorporate vague
information. The words below the diagrams help us clarify ambiguities and
make sure that in such cases, folders can believe that they are doing the
right thing.

With such goals in mind, we list several questions to address:

1. Do diagrams stand by themselves? Can we understand diagrams
without words and still fold models without difficulty?

2. Do we need words below the diagrams? Do words help us clarify
difficulties that folders may face when they fold models?

3. If so, then why can’t words stand alone? In other words, what is the
role they play in the comprehension of folding procedures? Do they
instruct us how to fold, confirm what the diagrams tell us, explain
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the details of what the diagrams tell us, or just observe the process
that the diagrams show?

There has been one previous study on the informational contents of di-
agrams, an article by Komatsu Hideo in Origami Tanteidan Magazine [2].
As the title of the article, “Orizu Hyogenni Tsuite [Expressions in Dia-
grams],” suggests, Komatsu explored what kind of information the draw-
ings and symbols in diagrams tell us.

Our paper, on the other hand, focuses on the words below the diagrams.
What do they tell us in terms of informational content, and what do they
not tell us? Thus, the current study is not about how to draw good di-
agrams. For that topic, you are referred back to Komatsu’s paper [2], or
carefully study the many and varied diagrams you can find in the origami
literature.

2 Redundancy in Diagrams

Consider Figure 1, which shows a typical diagram of the first step of various
models, including the traditional crane. It tells you to fold the bottom cor-
ner up to the top corner and make a triangular shape, nothing technically
hard or special. In fact, though, even such a simple diagram incorporates
too many information pieces.

The first unnecessary informational piece is an arrow and the word
“upwards.” The two elements tell us the same thing, so either one of the
two is unnecessary; saying “fold corner to corner” is kinder, information-
wise.

The second redundancy can be found in the dashed line indication for
a valley fold and the phrase “valley fold.” Here, too, one or the other is
not necessary.

Moreover, the dashed line for the valley fold is redundant, too. This
is because “a diagram never stands by itself.” There is always the next
diagram so folders can (and must) refer to that to make sure of what they
are doing.

Also, there are some “grammars” of diagrams. For example, when
someone sees a white square followed by a colored triangle, the most natural
interpretation is that the square has been folded along a diagonal, not cut
in half and turned over. So, when one sees a series of diagrams like that
shown in Figure 2, one can and should interpret them as specifying to fold
the square in half along the diagonal. Diagrams and the grammars behind
them provide enough information to follow the instructions. Words below
the diagrams are thus redundant in most cases.
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Valley fold upwards.

Figure 1. Diagram with too much information?

1 2

Figure 2. Diagrams with enough information?

3 Unnecessity of Verbal Instructions

In fact, the use of words below diagrams is not universal. I counted the
use of words throughout all the diagrams in the OrigamiUSA Origami
Collection 2004 [1], and found that the authors’ nationalities affect their
use of words. Table 1 shows that more than 75% of American folders
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Average Top 25%-Tile Median Bottom 25%-Tile
Americans 88.86% 100% 100% 75%

Non-Americans 56.35% 100% 84.12% 3.81%

Table 1. Ratio of verbal instructions per diagram in an OrigamiUSA publication.

Average Top 25%-Tile Median Bottom 25%-Tile

Japanese 62.23% 82.86% 66.15% 46.15%

Americans 78.98% 100% 100% 79.33%

Others 46.48% 84.07% 62.22% 30.05%

Table 2. Ratio of verbal instructions per diagram in a JOAS publication.

use words below most of their diagrams, while the non-Americans (mostly
Europeans) do not use words as much but rather depend more heavily upon
the drawings.

Table 2 shows the result of the same search through The 10th Origami
Tanteidan International Convention Book from JOAS [3]. The same con-
trasts between Americans and non-Americans can be found there, too,
with Japanese authors falling between the two. This is by itself a very
interesting topic sociologically, but I am aware that we have to take into
consideration factors like complexity of the model and the use of English
as an instructional language, among others. Also, we have to know how
the artist’s quality of drawing in the diagrams affects his/her own usage
of words. However, at the least we can say that, in terms of providing
sufficient information, words below diagrams are not necessary.

4 Insecurity Issues
There still remains the question: are diagrams really enough for instruc-
tion? It is true that we have sufficient information with diagrams such
as those in Figure 2, but we tend to feel somehow insecure about such
diagrams.

The cause of this insecurity is perhaps lack of predictability, that is, we
really do not know what is going on and what will come next. Without the
aid of the third diagram, we cannot see what these first two steps of the
diagrams will lead us to. That is, we need words to make sure that we are
doing the right thing.

As for the drawings, Komatsu [2] correctly points out that symbols
within diagrams do not always provide full information. For example, when
we perform an inside reverse fold, there are cases where we would like to
describe the action as “pulling down the corner from inside,” while in other
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Inside Reverse Fold Outside Reverse Fold

Figure 3. The same symbol, folded in opposite directions.

cases it should be carried out as “pushing down the corner from the back.”
Symbols perhaps cannot make such subtle distinctions.

For example, suppose someone used the symbolic system shown in Fig-
ure 3. The arrow in this system means “push the edge inside.” On the left
diagram, pushing in the back edge of the corner with this angle pushes the
corner inside, so this is an inside reverse fold. On the other hand, on the
right diagram, the angle and crease lines cross with a different angle and
this move will reverse the edge itself, so that it will be an outside reverse
fold. So far, there is no contradiction, and the system can give precise
instructions.

However, how can we interpret Figure 4? Does this mean to inside-
reverse-fold along the edge? It appears that this is the only possible in-
terpretation, but, when you look at the diagram carefully, you can find
that the inner layers are colored. This means that we can interpret this
instruction as a sink. Moreover, in this case, the next diagram may not
help, because the corner pushed in by this move may not be visible from
the outside. Thus, we cannot show everything with symbols and diagrams.
Something that corresponds to verbal instructions is necessary in many
cases.

The problem here is very simple: lines and symbols cannot be universal.
People differ even in how they express valley and mountain folds. When
we see a symbol as in Figure 5, for example, we can interpret it as “rotate
the model,” “turn the sheet over,” or “flip the flap/layer over”—or several
other things. At the very least, we need some confirmation of what move
we should take, even when this move is indicated by lines and symbols.
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Now This Is Ambiguous

Figure 4. Which fold? Figure 5. An ambiguous symbol.

5 Words Can’t Suffice

5.1 Verbal Undercommunication

A problem also lies in the fact that words cannot be sufficient in and of
themselves. For example, consider the following instruction without visual
aid and diagrams:

Fold corner to corner and make a triangle, and fold this triangle
in half. There is a pocket on the bottom of the triangle so open
it, and squash into a square. Repeat this on the other side. Pull
up the corner of this square and swivel the edges to the center
line. Flatten the model then. Repeat the same procedure on
the back. Fold the four edges of the flaps to the center line, so
that the flaps become thinner. Fold up the two thin flaps from
inside as far as they go. Fold down a tip of one of them from
inside. Open the wide flaps to the sides.

Experienced folders might perhaps fold and complete a crane successfully
with this form of instruction, but for laymen, words are often ambiguous
and vague. Open? Squash? How? Open completely, or just pull down?
Words just can’t convey everything. This is even more evident in so-called
super-complex models.
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TOTTER!

SMASH!

Figure 6. This figure contains a violent expression!

5.2 Complementary Distribution of Information Pieces

The fact is that words and diagrams complement each other to describe
events in the world outside of origami. For example, in Figure 6, the posi-
tion and types of the added words, “totter” and “smash,” make us imag-
ine completely different events. However, if a series of diagrams provides
enough information, then we do not necessarily need words.

5.3 Verbal Overcommunication

Nevertheless, in some cases, words tell us too much. For example, the
“Open the wings” instruction in Figure 7 is correct, but misleading. The
words “open the wings” may persuade the folders to create a simple origami
crane rather than the action that is indicated by the lines and symbols.

Open the wings.

Figure 7. This is not a crane!
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To make such cases clear, we need to add further (and thus unneces-
sary) precision, by saying something like “Open the edges of the wings
and squash”; perhaps it is better if we simply present the diagram without
words, to avoid such unnecessary confusion.

5.4 Printed Words Do Not Tell Us Anything

Given the discussion so far, we can say the following: words below diagrams
do not exist primarily for instructional and explanatory purposes. To ac-
complish such purposes, words are in some ways powerless and in others
they are too powerful. The real purpose of words, then, is observational
and confirmational. They do not instruct directly, but they confirm what
diagrams tell us. The actual instruction in what to do is the proper role of
the drawings and symbols.

6 Conclusion
Words below diagrams do not exist for instruction, and that’s why we
need aids from diagrams and real instructional languages in origami classes.
Words below diagrams exist for observational and confirmational purposes.
Because of these purposes, words below diagrams use technical terms and
are written without referential terms like this and that, and often describe
several moves at once.

However, this does not mean that we need a new instructional language
with sufficient referential terms below diagrams, because it would both
provide too much information and be redundant with what the diagrams
themselves tell us.

The risk of ignoring such factors is that, uses of the technical terms in
verbal instruction may make the world of origami remote from ordinary
would-be-folders. The proper usage of verbal media in diagrams should
be seriously considered, along with discussions of cross-linguistic origami
terminology.
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Origami, Isometries, and
Multilayer Tangram

Emma Frigerio

1 Introduction
If, as Galilei put it, the book of the Universe is written in the language
of mathematics, this is even more the case for origami: when we fold
an origami model, whether we notice it or not, we also engage in some
form of mathematics. Thinking about the mathematical meaning of the
folds is perhaps the main feature of the 20-hour workshops on origami and
mathematics that I give at both universities in Milan, Italy (see also [2]).
These workshops are addressed to prospective teachers at the elementary
or middle school level. Coming in, none of them is particularly keen on
abstract reasoning. They fall into two groups: the first group is made up
of sophomores majoring in primary education, the second mainly of natural
sciences or biology graduates with some experience in teaching. I believe
that a hands-on approach, rather than a formal study of geometric con-
structions via paper folding, gives them more motivation to discover the
mathematics underlying origami; besides, it allows a quicker start than a
rigorous axiomatization. I often use nonmathematical models to promote
mathematical thinking. Once we have folded the model, I hand out a work-
sheet with questions such as: identify the mathematical meaning of some
creases, compute lengths of segments and amplitudes of angles, recognize
geometric facts (equality of segments or angles, parallelism of lines, . . . ),
and prove some of them. Or, as a final exam, I ask them to prepare a
worksheet, suitable for their students, on an assigned model.
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In this respect, models that use a rectangular sheet of paper are very
interesting. Some can be folded from rectangles of any shape, others from
rectangles of only one shape (e.g., the so-called silver rectangle, whose sides
are in the ratio of 1 :

√
2), and some from rectangles whose shape must lie

within a certain range. This very easy folded envelope by Luisa Canovi [1],
former president of Centro Diffusione Origami (the Italian origami asso-
ciation), is a wonderful example of a model that gives rise to interesting
mathematical questions of various natures and is suitable for students at
different levels. It is so easy to fold that even small children can do it, as
shown in Figure 1.

The knowledge of the Pythagorean theorem and of similarity allows for
a complete study of the geometry of its crease pattern (Figure 2); however,
for younger students, this model can also be the basis for an activity of
experimental mathematics, which can also serve as an introduction to the
concept of a function. Moreover, if we fold the envelope with a sheet of
tissue paper and hold it against a window, we would notice that it is evenly
made of four layers. We could also cut the model apart along its folds and
rearrange the pieces in a sort of multilayer tangram: in any case, the area
of the envelope is one fourth that of the sheet with which we started.

Figure 1. Instructions for folding Canovi’s envelope.
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a

x

y

b

Figure 2. The crease pattern of the envelope.

Finally, on the crease pattern we can “read” the isometries associated
with the folds; this allows us to prove rigorously that we really have a
four-layer tangram.

This instance shows how much mathematics is hidden in an origami
model; we just have to discover it.

2 The Mathematics of the Model
The first mathematical questions about the envelope that one thinks of are
related to everyday life:

1. What size must the paper be if the envelope is to be of a given size?

2. Can the shape of the envelope be chosen at will?

The “dual” questions are somewhat easier:

3. What size will the envelope be if the paper is of a given size?

4. Can the shape of the paper be chosen at will?

Of course, a mathematical mind will immediately ask more questions, such
as the following:

5. What is the ratio of the area of the envelope to the area of the sheet?

6. Is there a shape of the sheet for which the envelope has the same
shape as (is similar to) the given sheet?
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Figure 3. Worksheet on the envelope.
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If we look at the crease pattern of the model in Figure 2, we notice that
these and similar questions can be answered once the Pythagorean theorem
has been studied: all the creases, except the first one, are at a 45◦ angle
to the sides. Thus, the dimensions x and y of the envelope can be easily
related to the dimensions a and b of the sheet.

A worksheet that guides students through the study of this model is
given in Figure 3.

But, perhaps, an experimental mathematics activity before the study
of the Pythagorean theorem is more exciting than filling out a worksheet.
Of course, my students do know the Pythagorean theorem, so I put the
question in these terms:

Pretend you are in fifth grade (no Pythagoras!). What size
must the paper have if you want an envelope measuring 12×17
cm? Experiment with various sheets, working in groups of three
to four persons; make a conjecture, verify it, and correct it if
necessary. Explain your reasoning.

Generally speaking, students in Italy are not used to experimental
mathematics. As a result, they did not know what to do and kept changing
the sizes of both sides of the paper at once, thus not going very far. Had
they kept a fixed, they would have easily noticed that y stays fixed, and as
b increases, so does x; hence as b/a increases, y/x decreases (Figure 4).

Likewise, if b is fixed, x stays fixed; and as a increases, so does y; hence
as b/a decreases, y/x increases (Figure 5).

I must admit, though, that I did not give them much time to work on
the problem. Indeed, time is always a major problem in my workshops: in
20 hours I have to teach them how to fold, how to read origami diagrams,
how to teach origami to their class and, most of all, how to use origami to
do mathematics at school.

The following year, some groups (the A groups) received a set of sheets
with a fixed and the others (the B groups) received sheets with b fixed; both
also got an appropriate worksheet designed to guide their reasoning. The
first steps were to fold an envelope from each of the four supplied sheets,
measure its sides, and fill in the relative table. The theoretical results are
summarized in Tables 1(a) and 1(b), respectively, but in reality they can
vary a little, depending on accuracy in folding.

The A people noticed that a fixed implies y fixed, and that each time
b increases by 2 cm, x increases approximately by 0.7 cm (see Table 1(a));
likewise, the B people noticed that b fixed implies x fixed, and that each
time a increases by 2 cm, y increases approximately by 1.4 cm (Table 1(b)).
Thus, at school, this model can also serve as an introduction to the concept
of a function.
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impossible

Figure 4. Comparing envelopes folded from sheets with a fixed.

Figure 5. Comparing envelopes folded from sheets with b fixed.
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a × b x × y
12 × 14 5.0 × 8.5

12 × 16 5.7 × 8.5

12 × 18 6.4 × 8.5

12 × 20 7.1 × 8.5

a × b x × y
10 × 18 6.4 × 7.1

12 × 18 6.4 × 8.5

14 × 18 6.4 × 9.9

16 × 18 6.4 × 11.3

(a) (b)

Table 1. Measuring x and y for the folded envelopes. (a) Results from A group.
(b) Results from B group. In order to distinguish between questions and answers,
bold face has been used here for what was already printed in the tables, and italics
for the answers.

In the second part of the worksheet, students were asked to make con-
jectures, based on the previous results, about the sizes of the envelope or
of the sheet, verify them, and correct them if necessary. The A groups’
questions can be summarized in Table 2. The analogous questions for the
B groups will not be discussed here, being essentially the same as those for
the A groups.

In the first two cases, with the same a as before, everybody gave the
correct answer. This means they had detected the linearity of the function
with which they were dealing. In the third question, they had to reverse
their reasoning, which was hard for most of them. An easier approach would
be to notice that the desired envelope has both sides approximately twice
as big as the one obtained with a 12 × 18 cm sheet, hence this must hold
for the sides of the paper as well. To this, some objected that similarity is
not studied in fifth grade. This is true, but I believe that fifth graders have
a basic knowledge of the concept from everyday life (clothes in different
sizes, photos printed in different formats, maps in different scales, . . . ). In
question 4, b is the same as in one case in Table 1(a) while a is increased by
2 cm. The best guess was that the envelope would measure 6.4 × 9.2 cm,
which is wrong, but makes some sense: after all, to them a 2 cm increase of

a × b x × y
1 12 × 22
2 12 × 17
3 13 × 17
4 14 × 18
5 18 × 24
6 10 × 18.5

Table 2. Conjecturing on x and y or on a and b.
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a side of the paper meant a 0.7 cm increase of a side of the envelope. Upon
measuring the model, once they found out that their conjecture was wrong,
they were surprised and unable to explain why. In the next questions, both
sides (either of the paper or of the envelope) are different from those of the
samples worked out before. However, in case 5 the sheet is similar to a
previously used one, and this makes the question easier than in the last
case, where some ingenuity is needed. Few participants answered question
5 correctly, while nobody was able to do so with the last question; it is
likely that more time would have helped someone to argue correctly, but
most of them really did not know what to do. Alternatively, to make the
problem easier, each group should get both sets of sheets and fill in both
Tables 1(a) and (b).

As I said earlier, it is easy to compute x and y in terms of a and b, once
the Pythagorean theorem has been studied. Figure 6 shows that the sides
of the envelope are the legs of isosceles right triangles whose hypotenuses
measure b/2 and a respectively, so that

x =
b

2
√

2
=

b
√

2
4

, y =
a√
2

=
a
√

2
2

, (1)

hence
y

x
=

a
√

2
2

/
b
√

2
4

= 2
a

b
.

This means that, if the sheet is a 1 × k rectangle (i.e., b/a = k), then
the envelope is a 1× k′ rectangle, with k′ = 2/k, thus making more precise
the statement “as b/a increases, y/x decreases”; in fact, they are inversely

b/2

yx

a

Figure 6. Computing x and y.
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proportional, their product being equal to 2. Moreover, the envelope is
similar to the sheet if, and only if,

k =
√

2,

i.e., the paper is a silver rectangle, the standard size for paper in most
European countries, including Italy.

The inverse formulas of Equations (1) are

a = y
√

2, b = 2x
√

2.

Since we have assumed a ≤ b, the above relations imply

y ≤ 2x,

which means that it is not possible to obtain a 1 × k′ envelope for k′ > 2.
Students accustomed to working with some kind of dynamic geometry

software might prefer to simulate the folding procedure at the computer:
they can start from a “dynamic” rectangle representing the sheet of paper,
construct the crease pattern of the envelope, and figure out everything.
Reversing the input with the output, they can start from a dynamic rect-
angle representing the envelope and construct the sheet of paper around it
(Figure 7 (right)).

This allows one to answer the real-life questions we asked at the begin-
ning; in particular, it makes very clear (Figure 7 (left)) that, if the desired
envelope is “too long,” it is impossible to fold it.

Figure 7. Constructing the sheet of paper around a given envelope: a possible case
(left) and an impossible case (right).
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Finally, whenever the envelope can be folded (which happens if, and
only if, a ≤ 2 b), the area of the envelope is

x y =
b
√

2
4

a
√

2
2

=
a b

4
,

hence the ratio of the area of the envelope to the area of the sheet is always
1/4.

This last result could be visually ascertained by younger students if
they folded the envelope with a sheet of tissue paper. By holding it against
a window, they would notice that it is evenly made of four layers. They
could also cut the model along the folds and rearrange the pieces into a
sort of multilayer tangram.

3 Isometries
Older students previously exposed to isometries can identify them on the
crease pattern of the envelope. Indeed, the mathematical description of
flat folding is reflection along the crease line of the part of the paper that
we actually move (Figure 8). Moreover, the composition of two reflections
is a translation if the axes are parallel—the vector of the translation is
perpendicular to the axes, its length is twice the distance between them,
and its direction is from the first to the second axis. If the axes intersect,
then the composition of two reflections is a rotation; in particular, if the
axes are perpendicular to each other, the rotation is by 180◦ about the
intersection of the two axes.

The crease lines divide the sheet into regions, whose final position can
be found by applying a composition of reflections to them.

In Figure 9, each part of the multilayer tangram created by the crease
pattern of the envelope is labeled with a number, indicating the layer,

Figure 8. Flat folding = reflection of a part of paper along the crease line.
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4a

2a

3a

4b
2c

1

4c

2b

3b

Figure 9. The multilayer tangram pieces.

v

2a

2c

2b

2a
reflected

2b
reflected

2c
translated

3a

3b

3a 
reflected 3b

rotated

4a

4b

4c

4a
rotated

4b
rotated

4c
reflected

Figure 10. Reflections, translation, and rotations of the tangram pieces.

followed by a letter. Layer 1 is made of just one piece, so no letter is
needed. Layers 2 and 4 are made of three pieces, while layer 3 is made
of two. Observe that, in the folded model, pieces 4a and 4b are inside,
between the second and the third layer, whereas 4c is outside, so it is not
a real layer.
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Then we can notice, as in Figure 10:

• 2a and 2b reflect themselves along the crease lines made in Step 2
(see Figure 1), while 2c, which reflects itself twice along parallel lines,
translates by vector v, determined by the folds in Step 2;

• 3a reflects itself along the crease line made in Step 4, while 3b rotates
by 180◦ about the point of intersection of creases made in Steps 2 and
5;

• 4a and 4b rotate by 180◦ about the points of intersection of the creases
made in Steps 2 and 4, while 4c reflects itself along the crease line
made in Step 5.

The effect of these isometries on the tangram pieces can be easily
demonstrated by using geometry software or can be proved rigorously from
the crease pattern. Both approaches give students a valuable experience.

4 Final Remarks

In conclusion, this model provides so many opportunities to do mathemat-
ics that a teacher willing to use origami in geometry lessons should not
overlook it.

A somewhat similar model by the late Humiaki Huzita was published
in 1989 in the Centro Diffusione Origami newsletter [3]; however, it should
be noted that it can be folded properly only from a silver rectangle, the
result also being a silver rectangle. The folding sequence is much more
complicated than in Canovi’s model, but the envelope is self-locking. In
Huzita’s model (see Figure 11), the area of the envelope is one sixth the
area of the sheet, as he himself pointed out in his diagrams; moreover, the
sheet can be cut along the creases and the pieces rearranged tangram-style
to demonstrate it. But the folded envelope is not a six-layer tangram, the
number of layers at any given point ranging from four to eight.

Huzita was a pioneer in the field of origami and science and the beginner
of these meetings, so we are all, in some sense, indebted to him. I was
initiated into the study of the geometry of origami personally by him;
his reasoning was often unusual and sometimes hard to follow due to a
language barrier, but his insight was really deep. From him I learned to
look at things from novel points of view, and now I regret not having more
conversations with him on the subject. Thank you, Humi.
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Figure 11. The crease pattern of Huzita’s envelope with mountain-fold/valley-fold
assignment indicated.
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