
        
            
                
            
        

    
[image: Image 1]

Outstanding User Interfaces 

with Shiny

Chapman & Hall/CRC

The R Series

Series Editors

John M. Chambers, Department of Statistics, Stanford University, California, USA Torsten Hothorn, Division of Biostatistics, University of Zurich, Switzerland Duncan Temple Lang, Department of Statistics, University of California, Davis, USA Hadley Wickham, RStudio, Boston, Massachusetts, USA

Recently Published Titles

Learning Microeconometrics with R

 Christopher P. Adams

R for Conservation and Development Projects: A Primer for Practitioners Nathan Whitmore

Using R for Bayesian Spatial and Spatio-Temporal Health Modeling Andrew B. Lawson

Engineering Production-Grade Shiny Apps 

 Colin Fay, Sébastien Rochette, Vincent Guyader, and Cervan Girard\ Javascript for R 

 John Coene

Advanced R Solutions

 Malte Grosser, Henning Bumann, and Hadley Wickham

Event History Analysis with R, Second Edition 

 Göran Broström

Behavior Analysis with Machine Learning Using R

 Enrique Garcia Ceja

Rasch Measurement Theory Analysis in R: Illustrations and Practical Guidance for Researchers and Practitioners Stefanie Wind and Cheng Hua

Spatial Sampling with R

 Dick R. Brus

Crime by the Numbers: A Criminologist’s Guide to R

 Jacob Kaplan

For more information about this series, please visit:  https://www.crcpress.com/Chapman--HallCRC-The-R-Series/book-

series/CRCTHERSER

[image: Image 2]

Outstanding User Interfaces 

with Shiny 

David Granjon

First edition published 2022

by CRC Press

6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press

4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

 CRC Press is an imprint of Taylor & Francis Group, LLC

© 2022 David Granjon

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. 

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. 

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

 Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for iden-tification and explanation without intent to infringe. 

ISBN: 978-0-367-64526-7 (hbk)

ISBN: 978-0-367-64526-7 (pbk) 

ISBN: 978-1-003-12492-4 (ebk)

DOI: 10.1201/9781003124924

Typeset in LMRoman10-Regular font 

by KnowledgeWorks Global Ltd. 

 Publisher’s note: This book has been prepared from camera-ready copy provided by the authors. 

To my daughter, my wife, and my family, 

who gave me the inspiration to write this book

[image: Image 3]

Contents

Foreword

xv

Welcome

xvii

1 Shiny and the Web

3

1.1

Shiny generates HTML code from R . . . . . . . . . . . . . . . . . . . . . . 

3

1.2

Be a DJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4

1.3

HTML 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5

1.3.1

HTML basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5

1.3.2

Tag attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6

1.3.3

The simplest HTML skeleton . . . . . . . . . . . . . . . . . . . . . . 

7

1.3.4

About the Document Object Model (DOM) . . . . . . . . . . . . . . 

8

1.3.5

Preliminary introduction to CSS and JavaScript . . . . . . . . . . . 

12

1.4

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

15

2 Manipulate HTML tags from R with {htmltools}

17

2.1 Writing HTML Tags from R

. . . . . . . . . . . . . . . . . . . . . . . . . . 

17

2.2

Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

18

2.3 Adding new tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

21

2.4 Alternative way to write tags . . . . . . . . . . . . . . . . . . . . . . . . . . 

21

2.5

Playing with tags

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

23

2.5.1

Tags structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

23

2.5.2

Practical examples: shinyRPG . . . . . . . . . . . . . . . . . . . . . 

24

2.5.3

Useful functions for tags . . . . . . . . . . . . . . . . . . . . . . . . . 

27

2.5.4

Other functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

30

2.5.5

Conditionally set attributes . . . . . . . . . . . . . . . . . . . . . . . 

31

2.5.6

Using %>% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

31

2.5.7

Programmatically create children elements . . . . . . . . . . . . . . . 

32

2.6

Modern {htmltools} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

32

2.6.1

Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

34

2.6.2

Query tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

35

2.6.3

Modify tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

36

2.6.4

Chain tag queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

39

2.6.5

Specific cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

40

2.6.6

Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

41

2.6.7

Alter tag rendering with render hooks . . . . . . . . . . . . . . . . . 

42

3 Discover Shiny dependencies

49

3.1

Introduction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

49

3.2

Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

50

3.3

jQuery, DOM manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 

51

3.4

Custom dependencies

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

52

vii

viii

 Contents

3.5

Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

52

4 Handle HTML dependencies with {htmltools}

55

4.1

Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

55

4.2

Importing HTML dependencies from other packages . . . . . . . . . . . . . 

58

4.3

Suppress dependencies

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

60

4.4

Resolve dependencies

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

61

4.5

Insert Custom script in the head . . . . . . . . . . . . . . . . . . . . . . . . 

62

5 Web application concepts

65

5.1 The client-server model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

65

5.2 About HTTP requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

66

5.3

Structure of an URL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

67

5.4 Web app files structure

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

67

5.5

Serving web apps

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

68

5.6 About {httpuv} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

69

5.7

Shiny app lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

69

5.7.1

Building the UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

69

5.7.2

Serving HTML with {httpuv} . . . . . . . . . . . . . . . . . . . . . 

74

5.8

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

75

6 CSS for Shiny

77

6.1

How to include CSS? 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

77

6.2

CSS selectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

78

6.2.1

Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

78

6.2.2

Select by class, id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

79

6.2.3

Apply CSS to single elements . . . . . . . . . . . . . . . . . . . . . . 

80

6.2.4

Advanced selectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

80

6.3

Best practices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

86

6.3.1

DRY principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

86

6.3.2

Selector specificity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

87

6.3.3

Block element modified (BEM) . . . . . . . . . . . . . . . . . . . . . 

88

6.4

Modify CSS with the HTML inspector

. . . . . . . . . . . . . . . . . . . . 

88

6.4.1

Add inline properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 

88

6.4.2

View local changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

89

6.5

CSS in action

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

90

6.5.1

Text Styling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

90

6.5.2

Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

92

6.5.3

Borders and shadows . . . . . . . . . . . . . . . . . . . . . . . . . . . 

93

6.5.4

Animations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

96

6.5.5

Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

98

6.5.6

Responsive design: media queries . . . . . . . . . . . . . . . . . . . . 

102

7 Tidy your CSS with Sass

107

7.1

Getting started with Sass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

107

7.1.1

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

108

7.1.2

Partials and Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 

108

7.1.3

Mixins and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 

109

7.1.4

Extend/Inheritance

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

111

7.1.5

Flow controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

112

7.1.6

Nesting code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

115

 Contents

ix

7.2

{sass} best practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

116

7.3

From Sass to CSS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

118

7.4

Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

118

7.5

Sass and Shiny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

119

7.6

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

120

7.6.1

Customize {bs4Dash} colors . . . . . . . . . . . . . . . . . . . . . . 120

7.6.2

Customize {shinybulma} . . . . . . . . . . . . . . . . . . . . . . . . 122

8 Beautify with {fresh}

125

8.1

{fresh}, the big picture

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

125

8.1.1

Customize {bs4Dash} . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.1.2

Customize {shinydashboard} . . . . . . . . . . . . . . . . . . . . . 134

9 Become a theming wizard with {bslib}

137

9.1

High-level customization

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

138

9.1.1

Create a theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

138

9.1.2

Update a theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

139

9.1.3

Preview a theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

140

9.1.4

Live theming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

140

9.2

Low-level customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

142

9.2.1

Add new variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

142

9.2.2

Import external rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 

143

9.3

Dynamic theming

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

144

9.3.1

Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

144

9.3.2

Custom elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

146

9.3.3

Conditional rendering . . . . . . . . . . . . . . . . . . . . . . . . . . 

149

9.4

Further resources

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

157

10 JavaScript for Shiny

161

10.1 Shiny JavaScript sources

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

161

10.2 Introduction to JavaScript

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

162

10.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

164

10.3.1 Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

164

10.3.2 Choose a good IDE

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

164

10.3.3 First script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

165

10.4 Programming with JS: basis

. . . . . . . . . . . . . . . . . . . . . . . . . . 

166

10.4.1 JS types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

166

10.4.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

166

10.4.3 Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

168

10.4.4 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

169

10.4.5 Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

171

10.4.6 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

172

10.4.7 JS code compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . 

173

10.4.8 Event listeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

173

10.5 jQuery

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

174

10.5.1 Introduction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

174

10.5.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

174

10.5.3 Good practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

175

10.5.4 Useful functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

176

10.5.5 Chaining jQuery methods . . . . . . . . . . . . . . . . . . . . . . . . 

177

10.5.6 Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

177

x

 Contents

10.5.7 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

178

10.5.8 Extending objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

178

10.6 Shiny, JavaScript and the HTML inspector . . . . . . . . . . . . . . . . . . 

179

10.6.1 The console panel

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

179

10.6.2 Debug Shiny/JS code with the inspector . . . . . . . . . . . . . . . . 

180

10.6.3 The Shiny JavaScript object . . . . . . . . . . . . . . . . . . . . . . . 

182

10.7 Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

183

10.7.1 Exercise 1: define variables . . . . . . . . . . . . . . . . . . . . . . . 

184

10.7.2 Exercise 2: define objects . . . . . . . . . . . . . . . . . . . . . . . . 

184

10.7.3 Exercise 3: jQuery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

184

10.7.4 Exercise 4: a pure JS action button . . . . . . . . . . . . . . . . . . . 

185

11 Communicate between R and JS

187

11.1 Introductory example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

187

11.2 JSON: exhange data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

187

11.2.1 Process JSON from R . . . . . . . . . . . . . . . . . . . . . . . . . . 

188

11.2.2 Process JSON from JS . . . . . . . . . . . . . . . . . . . . . . . . . . 

190

11.3 What is a websocket? 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

190

11.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

193

11.3.2 Test it! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

197

11.4 Client concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

198

11.5 Shiny and websockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

199

11.5.1 The Shiny session object . . . . . . . . . . . . . . . . . . . . . . . . . 

199

11.5.2 Server side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

199

11.5.3 Client side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

200

11.5.4 Debug websocket with Shiny . . . . . . . . . . . . . . . . . . . . . . 

202

12 Understand and develop new Shiny inputs

205

12.1 Input bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

206

12.1.1 Input structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

206

12.1.2 Binding Shiny inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 

207

12.1.3 Edit an input binding . . . . . . . . . . . . . . . . . . . . . . . . . . 

221

12.1.4 Update a binding from the client . . . . . . . . . . . . . . . . . . . . 

222

12.2 Secondary inputs

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

224

12.2.1 Boxes on steroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

224

12.2.2 Further optimize boxes . . . . . . . . . . . . . . . . . . . . . . . . . . 

227

12.2.3 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

233

12.3 Utilities to quickly define new inputs

. . . . . . . . . . . . . . . . . . . . . 

235

12.3.1 Introduction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

235

12.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

235

12.4 Custom data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

236

12.4.1 The dirty way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

236

12.4.2 The clean way: leverage getType . . . . . . . . . . . . . . . . . . . . 237

13 Shiny inputs lifecycles

243

13.1 App initialization

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

243

13.2 Update input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

246

14 Mastering Shiny’s events

249

14.1 Get the last changed input

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

249

14.1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

249

 Contents

xi

14.1.2 Invoke JS events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

250

14.1.3 Practical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

252

14.1.4 About {shinylogs} . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

14.2 Custom overlay screens

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

252

14.2.1 Preloader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

253

14.2.2 Load on busy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

253

15 Optimize your apps with custom handlers

255

15.1 Introduction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

255

15.2 The renderUI case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

255

15.3 Other Shiny handlers

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

256

15.3.1 The insertUI case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

256

15.3.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

258

15.4 Custom handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

260

15.4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

260

15.4.2 Toward custom UI management functions . . . . . . . . . . . . . . . 

262

16 Define dependencies

275

16.1 Introduction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

275

16.2 Discover the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

276

16.3 Identify mandatory dependencies . . . . . . . . . . . . . . . . . . . . . . . . 

276

16.4 Bundle dependencies

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

277

17 Create template elements

281

17.1 Identify template elements

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

281

17.2 Design the page layout

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

282

17.2.1 The page wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

282

17.2.2 The body content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

284

17.2.3 The footer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

284

17.2.4 The navbar (or header) . . . . . . . . . . . . . . . . . . . . . . . . . 

285

17.2.5 Card containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

291

17.2.6 Ribbons: card components . . . . . . . . . . . . . . . . . . . . . . . . 

293

17.2.7 Icons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

295

17.3 Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

295

18 Develop custom input widgets

297

18.1 Tabler action button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

297

18.1.1 Reminders about the action button . . . . . . . . . . . . . . . . . . . 

297

18.1.2 Application to Tabler . . . . . . . . . . . . . . . . . . . . . . . . . . 

298

18.2 Toggle Switch

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

299

18.3 Navbar menu input

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

301

18.4 Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

304

19 Adding more interactivity

307

19.1 Custom progress bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

307

19.2 User feedback: toasts

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

310

19.2.1 Toast skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

310

19.2.2 The toast API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

311

19.2.3 R implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

311

19.2.4 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

313

19.3 Transform an element in a custom action button . . . . . . . . . . . . . . . 

313

19.4 Tab events

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

316

xii

 Contents

19.4.1 Insert/remove tabs in tabsetpanel

. . . . . . . . . . . . . . . . . . . 

316

19.4.2 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

320

20 Testing and validating template elements

323

20.1 Validate template functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 

323

20.1.1 Create your own validations . . . . . . . . . . . . . . . . . . . . . . . 

323

20.1.2 Existing utils functions

. . . . . . . . . . . . . . . . . . . . . . . . . 

326

20.1.3 Example: refine navbar menu items . . . . . . . . . . . . . . . . . . . 

327

20.2 Testing templates elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 

329

20.2.1 Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

330

20.2.2 Testing template behavior . . . . . . . . . . . . . . . . . . . . . . . . 

331

20.2.3 Test input bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

336

21 Automate new template creation with {charpente}

343

21.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

343

21.2 General idea

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

344

21.3 A case study: {shinybulma}

. . . . . . . . . . . . . . . . . . . . . . . . . . 

344

21.3.1 Build the HTML dependency . . . . . . . . . . . . . . . . . . . . . . 

345

21.3.2 Set up the minimal page template . . . . . . . . . . . . . . . . . . . 

348

21.3.3 Exercise: add bulmaJS . . . . . . . . . . . . . . . . . . . . . . . . . . 

350

21.3.4 Add custom JS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

351

21.3.5 Add custom input/output bindings . . . . . . . . . . . . . . . . . . . 

352

21.3.6 Organize your JS code . . . . . . . . . . . . . . . . . . . . . . . . . . 

353

21.3.7 Combine multiple dependencies . . . . . . . . . . . . . . . . . . . . . 

355

21.3.8 Other {charpente} helpers . . . . . . . . . . . . . . . . . . . . . . . 355

21.4 Other tips

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

358

21.4.1 Validate JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

358

21.4.2 Test JS code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

359

21.4.3 Beautify JS code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

359

22 Introduction

363

22.1 Case study objectives

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

363

22.2 About mobile development

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

364

22.3 Progressive web apps

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

364

22.3.1 Introduction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

364

22.3.2 What does “installable” mean? . . . . . . . . . . . . . . . . . . . . . 

364

22.3.3 How to develop a PWA? . . . . . . . . . . . . . . . . . . . . . . . . . 

365

23 Reconstruct {shinyMobile}

367

23.1 Introduction to Framework7

. . . . . . . . . . . . . . . . . . . . . . . . . . 

367

23.2 Initiate the package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

367

23.3 Framework7 layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

369

23.4 App initialization

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

373

23.5 App configuration

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

375

23.5.1 Global theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

375

23.5.2 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

375

23.5.3 Components configuration . . . . . . . . . . . . . . . . . . . . . . . . 

376

23.5.4 Allow end-user configuration . . . . . . . . . . . . . . . . . . . . . . 

377

23.5.5 Modify configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 

379

23.5.6 Global data and methods . . . . . . . . . . . . . . . . . . . . . . . . 

379

23.5.7 Other elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

380

 Contents

xiii

23.6 Theming and colors

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

382

23.7 Modularize JS code

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

386

23.8 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

387

24 {shinyMobile} and PWA

389

24.1 Introduction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

389

24.2 {charpente} and PWA tools . . . . . . . . . . . . . . . . . . . . . . . . . . 391

24.2.1 Create the manifest . . . . . . . . . . . . . . . . . . . . . . . . . . . 

392

24.2.2 Google PWA compatibility . . . . . . . . . . . . . . . . . . . . . . . 

394

24.2.3 Service worker and offline page . . . . . . . . . . . . . . . . . . . . . 

395

24.2.4 Disable PWA for the end user . . . . . . . . . . . . . . . . . . . . . . 

400

24.3 Handle the installation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

402

24.4 Other resources

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

406

25 Design widgets

407

25.1 Build the UI

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

408

25.2 Widgets without preexisting UI

. . . . . . . . . . . . . . . . . . . . . . . . 

409

25.3 Initialize the widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

409

25.4 Update widgets

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

412

25.5 More complex elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

417

25.5.1 Add a tooltip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

417

25.5.2 Update a tooltip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

419

26 Fine-tune {shinyMobile}

423

26.1 Enhance the disconnect screen . . . . . . . . . . . . . . . . . . . . . . . . . 

423

27 Shiny and React with {reactR}

429

27.1 Quick introduction to React

. . . . . . . . . . . . . . . . . . . . . . . . . . 

430

27.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

430

27.1.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

431

27.2 Introduction to {reactR} . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

27.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

435

27.2.2 Customize the R logic . . . . . . . . . . . . . . . . . . . . . . . . . . 

437

27.2.3 Implement the JS logic

. . . . . . . . . . . . . . . . . . . . . . . . . 

438

27.2.4 Improve the JS logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 

439

27.2.5 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

440

27.2.6 Technical considerations . . . . . . . . . . . . . . . . . . . . . . . . . 

440

27.2.7 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

442

27.2.8 Add another input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

442

27.3 Further resources

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

445

28 Shiny and modern web development

447

28.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

447

28.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

447

28.3 About the project

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

449

28.3.1 Topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

449

28.3.2 Initialize the project . . . . . . . . . . . . . . . . . . . . . . . . . . . 

449

28.3.3 UI design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

449

28.3.4 R business logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

450

28.3.5 Add Shiny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

453

28.3.6 Create the interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 

453

28.4 Final product

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

470

xiv

 Contents

29 What to do next? 

471

29.1 Multi-page Shiny apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

471

29.2 Web design best practices for Shiny

. . . . . . . . . . . . . . . . . . . . . . 

472

29.3 Conclusion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

472

A Code outputs

473

A.1 Mastering {htmltools} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

473

A.1.1 Shiny RPG rework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

473

A.2 Case Study 2: Mobile development with Shiny

. . . . . . . . . . . . . . . . 

473

A.2.1 Reconstruct {shinyMobile} . . . . . . . . . . . . . . . . . . . . . . . 

473

A.3 R + Shiny + React: welcome {reactR} . . . . . . . . . . . . . . . . . . . . 476

A.3.1 Introduction to {reactR} . . . . . . . . . . . . . . . . . . . . . . . . 476

Bibliography

477

Index

479

Foreword

By Kenton Russel aka @timelyportfolio

Since the initial commit (https://github.com/rstudio/shiny/commit/e28b3da1badf

ecb34235e74a43aac4e8da1641bc) of Shiny in June 2012, the project has grown rapidly with users around the world across nearly every domain. Until 2021, strangely though, there was nearly zero comprehensive resources collecting the scattered wisdom and experience of thousands of Shiny users and developers into a single definitive resource. While, Hadley Wickham’s  Mastering Shiny  book (Hadley, 2021) focuses on providing a solid background about Shiny and the best practices, this book addresses a specific gap between the beginner and advanced level, which is how to deeply customize and enhance Shiny applications, to the point where it looks indistinguishable from a classic web application. As I read through the early drafts, I kept saying to myself with a smile, “Yes, finally”. This book fills a void covering some topics for which an Internet search might yield no useful results. 

Successful open source requires skillful developers, active engaged users, and helpful support-ers. In the R/Shiny community, David Granjon, PhD fulfills all three roles as a prolific R

package creator, educated and thoughtful user with domain expertise, and educator (workshops, posts, and forum responses). I cannot think of anyone more qualified to write a book on Shiny, and I am so happy that David has spent the time to generously share his wisdom and experience in this excellent resource. 

xv

[image: Image 4]

Welcome

Is this book for me? 

You are an experienced Shiny user and you want to learn more about the underlying web technologies so that you can quickly customize your apps. Good news: basic knowledge in HTML, CSS and JavaScript is a plus but not mandatory. 

If you fulfill the above prerequisites, you should read this book if you have already asked one of the following questions:

• How to develop Shiny apps with a more professional look and feel? 

• How to design new input widgets to unleash interactivity? 

• How to better handle JS and CSS in Shiny apps? 

• How to develop a mobile-friendly template for Shiny? 

• How to include React in Shiny apps? 

Learning objectives

This book will help you to:

• Understand how Shiny deals with the classic web development standards and what are the main differences. 

• Manipulate HTML tags from R to create custom layouts. 

• Harness the power of CSS and JavaScript to quickly design apps standing out from the pack. 

• Discover the steps to import and convert existing web frameworks like Bootstrap 41 and Framework72. 

• Learn how Shiny internally deals with inputs. 

• Learn more about less-documented Shiny mechanisms (websockets, sessions, …). 

1https://getbootstrap.com/

2https://framework7.io/

xvii

xviii

 Welcome

Book structure

This book is organized into seven parts:

• Part 1 demonstrates the link between Shiny and the classic web technologies like HTML, CSS and JavaScript. Some of the necessary web development knowledge are gradually introduced, to be able to read the book. We explore the web dependencies behind Shiny such as Bootstrap and jQuery. We dive into the {htmltools} (Cheng et al., 2021b) package, providing functions to create and manipulate HTML tags from R as well as manage web dependencies. 

• Part 2 focuses on cascading stylesheets (CSS) and Sass (Syntactically Awesome Style Sheets). We provide the reader with basic CSS knowledge to get the most out of Sass, a powerful tool to seamlessly alter Shiny apps’s style in a more reproducible manner. 

All along this part, we showcase examples from the R community like {fresh} (Perrier and Meyer, 2020) and {bslib} (Sievert and Cheng, 2021), to significantly beautify apps with only few lines of code. 

• Part 3 contains chapters dedicated to the Shiny input system. This part starts with a JavaScript hands-on, then exposes how Shiny works under the hood by introducing the websockets, which allows the communication between R and JavaScript. We explore the Shiny input life cycle, that is, how they are created and updated. We expose JS

techniques to get rid of unnecessary renderUI patterns that may speed up Shiny apps. 

This part contains many hidden gems to significantly and quickly enhance apps. 

• Part 4 focuses on the development of a new template for Shiny by demonstrating examples from the {tablerDash} (Granjon, 2021d) package. These, and more, may be explored further as part of the RinteRface3 project. This case study mobilizes all knowledge acquired in the previous parts. 

• Part 5 introduces a new opinionated package, {charpente} (Granjon and Coene, 2021), that substantially reduces the burden of JavaScript management during the development of Shiny extensions. 

• Part 6 dives into mobile web development through a practical study involving a rework of {shinyMobile} (Granjon et al., 2021). We give a brief introduction to the progressive web application world with some patterns to get started like service workers, web manifests, offline pages. 

• Part 7 exposes other alternatives like React, taking examples from the {reactR} (Inc et al., 2021) package. Chapter 28 presents a novel approach to develop Shiny apps leveraging modern web development tools like webpack or the JSX syntax, where the UI is JavaScript-driven and computations are mostly done on the server side (R). We finally suggest further directions to definitely master the development of beautiful and optimized user interfaces with Shiny. 

Parts are sorted by difficulty level, the last one being the most technical. However, this does not mean the reader must read all chapters. Given the very heterogeneous background of the community, some people may focus on the JavaScript section, while others will read the 3https://rinterface.com/

 Welcome

xix

Sass part or the mobile development examples. Some patterns exposed in this book may apply to classic Shiny apps projects, that are not necessarily meant to extend Shiny per se, but may need a highly customized experience. Beyond the aesthetic aspect, this book tries to expose best practices to develop optimized shiny apps. 

By the end of that book, the reader should be able to entirely customize any Shiny app in a reasonable amount of time. 

Code structure

This book has a side package containing all the necessary material to run the code without having to reload each previous snippet. 

remotes::install_github("DivadNojnarg/OSUICode")

library(OSUICode)

About RinteRface

The RinteRface4 project is an initiative aiming to provide one of the most famous HTML

templates5 to Shiny. Everything started with the collaboration of John Coene6 and David Granjon7 in early 2018 on {shinybulma} (Coene and Granjon, 2021) to the official release of RinteRface in November 2018 with {shinydashboardPlus} (Granjon, 2021c), {bs4Dash}

(Granjon, 2021a) as line-up packages. 

The biggest RinteRface accomplishment is probably the work-in-progress {shinyMobile}

package, which was initially called {shinyF7}, in collaboration with the dreamRs8 team. 

Since 2019, RinteRface has been involved in various R-related events like local R meetups or conferences (Zurich R User Group9, baselR10, useR201911, satRdayNeuchatel202012, e-Rum202013, RPharma202014). 

4https://rinterface.com/

5https://github.com/RinteRface

6https://john-coene.com/

7https://divadnojnarg.github.io/

8https://www.dreamrs.fr/

9https://www.meetup.com/fr-FR/Zurich-R-User-Group/

10https://www.meetup.com/BaselR/

11https://user2019.r-project.org/

12https://neuchatel2020.satrdays.org/

13https://2020.erum.io/

14https://rinpharma.com/

[image: Image 5]

xx

 Welcome

RinteRface is a contributor in the Shiny Developers Series15, hosted by Eric Nantz, also known as the theRcast16. 

RinteRface work has been awarded several times at the two latest Shiny contests (2019 and 2020), through contributions like:

• A virtual lab17 for teaching physiology (2019), the Apps.Physiol platform18, fueled by

{bs4Dash} and hosted in {CaPO4Sim} (Granjon, 2021b)

FIGURE 1: CaPO4Sim: a virtual patient simulator. 

• {deminR} (Devaux and Granjon, 2021), a minesweeper19 for R (2020), powered by

{shinyMobile}

RinteRface is very grateful to the R community, and this book is a sort of acknowledgment. 

15https://shinydevseries.com/post/episode-4-rinterface/

16https://r-podcast.org/

17https://community.rstudio.com/t/shiny-contest-submission-a-virtual-lab-for-teaching-

physiology/25348

18https://rinterface.com/AppsPhysiol.html

19https://community.rstudio.com/t/deminr-a-minesweeper-for-r-2020-shiny-contest-submission

/56356

[image: Image 6]

 Welcome

xxi

FIGURE 2: deminR, a minesweeper for R. 

Acknowledgements

• I’d like to warmly thank all CRC reviewers: Emily Riederer20, Barret Schloerke21 and Eric Nantz22 for their valuable comments and help. 

• My eternal gratitude to Barret Schloerke for spending hours to get Github Actions working and deploying all app examples in this book (>= 100). 

• Howard Baek23 for testing almost all chapters. Howard was the perfect book target with good knowledge in Shiny and beginner level in web development. 

• Many thanks to Hadley Wickham24 for his general thoughts about the book organization. 

This was really helpful to reorder the content. 

• I am very grateful to Douglas Robinson for proof reading the first book manuscript and fixing many typos it contained. 

• A special thanks to my friends John and Victor for contributing to RinteRface25. 

• Thanks to the ThinkR team: Diane, Margot, Cervan, Colin, Sébastien and Vincent for providing material support during most of the RinteRface workshops. 

20https://emilyriederer.netlify.app/

21http://schloerke.com/

22https://shinydevseries.com/authors/admin/

23http://insidethetv.rbind.io/

24http://hadley.nz/

25https://rinterface.com/

xxii

 Welcome

• RinteRface and this book won’t exist without the amazing R community. Thanks for their valuable feedback. 

• The front cover was designed using the amazing undraw26 open source illustration library. 

Many thanks to Katerina Limpitsouni27 for making this possible. 

Packages

This book was written with {bookdown} (Xie, 2021) in the RStudio28 desktop and VSCode29

IDEs. The website is hosted by RinteRface, and all apps are automatically deployed at each commit by a specific Github Actions workflow30. This book was built with R version 4.0.2

Patched (2020-08-27 r79088) and the following packages:

package

version

source

apexcharter

0.1.8

CRAN (R 4.0.2)

blaze

0.0.1

Github (nteetor/blaze@0adb2ec)

blogdown

1.1

CRAN (R 4.0.2)

brochure

0.0.0.9020 Github (ColinFay/brochure@33a1c2f)

bs4Dash

2.0.3

CRAN (R 4.0.2)

bslib

0.3.0

CRAN (R 4.0.2)

CaPO4Sim

0.2.0

CRAN (R 4.0.2)

charpente

0.0.0.9000 Github (RinteRface/charpente@6e36442)

deminR

0.0.0.9000 Github (DivadNojnarg/deminR@e0bf665)

deSolve

1.29

CRAN (R 4.0.2)

dplyr

1.0.3

CRAN (R 4.0.2)

fresh

0.2.0

CRAN (R 4.0.2)

ggplot2

3.3.3

CRAN (R 4.0.2)

golem

0.3.1

CRAN (R 4.0.2)

htmltools

0.5.2

CRAN (R 4.0.2)

httpuv

1.6.3

CRAN (R 4.0.2)

httr

1.4.2

CRAN (R 4.0.2)

jsonlite

1.7.2

CRAN (R 4.0.2)

jstools

0.1.0

Github (dreamRs/jstools@5689973)

magrittr

2.0.1

CRAN (R 4.0.2)

OSUICode

0.0.0.9002 Github (DivadNojnarg/OSUICode@0d354c0)

packer

0.1.2.9002 Github (JohnCoene/packer@63ae3e1)

purrr

0.3.4

CRAN (R 4.0.2)

reactR

0.4.4

CRAN (R 4.0.2)

sass

0.4.0

CRAN (R 4.0.2)

scales

1.1.1

CRAN (R 4.0.2)

shiny

1.6.0

CRAN (R 4.0.2)

26https://undraw.co/

27https://twitter.com/ninaLimpi

28https://www.rstudio.com/products/rstudio/download/

29https://code.visualstudio.com/

30https://github.com/DivadNojnarg/outstanding-shiny-ui/blob/48262eebad957c7586ad87d7989be8

dbb0632655/.github/workflows/deploy_apps.yaml

 Welcome

xxiii

package

version

source

shiny.fluent

0.2.0

Github (Appsilon/shiny.fluent@b941c0f)

shiny.react

0.2.3

CRAN (R 4.0.2)

shiny.router

0.2.2

CRAN (R 4.0.2)

shinybulma

0.0.2.9000 Github (RinteRface/shinybulma@93855e2)

shinydashboard

0.7.1

CRAN (R 4.0.2)

shinydashboardPlus

2.0.3

CRAN (R 4.0.2)

shinyjs

2.0.0

CRAN (R 4.0.2)

shinylogs

0.1.7

CRAN (R 4.0.2)

shinyMobile

0.9.1

CRAN (R 4.0.2)

shinyWidgets

0.5.7

CRAN (R 4.0.2)

tablerDash

0.1.5

Github (RinteRface/tablerDash@341efde)

testthat

3.0.2

CRAN (R 4.0.2)

thematic

0.1.2

CRAN (R 4.0.2)

waiter

0.2.3

CRAN (R 4.0.2)

websocket

1.3.1

CRAN (R 4.0.2)

[image: Image 7]

Introduction

[image: Image 8]

1

Shiny and the Web

{shiny} (Chang et al., 2021) allows the development of web applications with R in minutes. Let’s face it: this is quite mind blowing. While this may not be a production-ready app, it will still be a fully functional, working prototype. Believe me, doing a web application with pure HTML, CSS and JavaScript is more difficult, especially for someone with a non-web developer background. 

We first load {shiny}:

library(shiny)

1.1 Shiny generates HTML code from R

I propose to warm up with a little exercise:

1. Copy and paste this code to the R console and click enter. 

h1("Hello World")

2. What do you observe? 

The output is HTML code. For an R developer, being able to generate HTML code from R allows the developer to remain focused on the main task instead of the web development burdens. 

Most of the time, a production Shiny app requires custom elements that are not contained or hidden in Shiny’s core. 

Is a Shiny app less customizable than a classic web app? Not at all! Under the hood, Shiny has its own engine to build HTML tags, through R, meaning that all HTML elements are available. You may also include any custom JavaScript1 code and styles with CSS. In

Chapter 2, we will shed the light on the underlying mechanisms that allow you to create HTML from R code. 

Huumm … I feel you don’t believe me … OK, fine … let me show you something! 

1https://shiny.rstudio.com/articles/packaging-javascript.html

3

[image: Image 9]

[image: Image 10]

[image: Image 11]

[image: Image 12]

4

 1 Shiny and the Web

1.2 Be a DJ

What you see below in Figure 1.1 is a Shiny app. Yes, I swear! 

FIGURE 1.1: Shiny app with the Pioneer CDJ 2000 NXS2 professional gear look. 

If you are still not convinced, have a look at the below demonstration. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "intro/dj-system", 

 #

 package = "OSUICode" 

 # )

Wait until the blue waveform appears on the player’s screen. Then click on the green play button to stop and start the music (the space key is also supported). Besides, the waveform is interactive, thereby allowing you to browse through the current track. The rotating part (central part of the jog wheel) indicates the read position and other useful information. 

What is this magic? Under the hood, this Shiny app2 only consists of:

• 111 lines of CSS. 

• 29 lines of JavaScript code. 

• 2 png images (dj gear + rotating wheel). 

• 36 lines of R code, including the {wavesurfer} htmlWidget package3 to display the waveform. 

• Few custom HTML tags. 

• And is inspired by this article4. 

2https://github.com/DivadNojnarg/OSUICode/tree/266ad20f450fdc6a8c939216287b6d67bc9e828d/i

nst/intro/dj-system

3https://github.com/Athospd/wavesurfer/tree/751705010865e263c2cedc9bea6630c1a5d47f09

4https://codepen.io/ruise/pen/MVPgrQ

 1.3 HTML 101

5

We must acknowledge it is still far from offering the same features as the original professional DJ gear5, but it is a fairly good start! 

As you noticed, you will have to acquire a bit of HTML, CSS and JS knowledge to reach the same level of result. Guess what? This is exactly the purpose of this book! 

Are you ready to become a Shiny wizard? 

1.3 HTML 101

This chapter provides a short introduction to the three main web languages, namely HTML, CSS and JavaScript. The following content is crucial to understand Chapter 2 about HTML

generation from R. 

1.3.1 HTML basics

HTML stands for (Hypertext Markup Language). An HTML file contains tags that may be divided into two types:

• Paired tags, where the text is inserted between the opening and the closing tag. 

• Self-closing tags. 

 <!-- paired-tags --> 

<p></p> 

<div></div> 

 <!-- self-closing tags --> 

<iframe/> 

<img/> 

<input/> 

<br/> 

Tags may be divided into three categories, based on their role:

• Structure tags: they constitute the skeleton of the HTML page (<title></title>, 

<head></head>, <body></body>). 

• Control tags: script, inputs and buttons (and more). Their role is to include external resources, provide interactivity with the user. 

• Formatting tags: to control some of the wrapped text properties like its size and font. 

Inside an HTML document, tag elements obey the box model, which briefly defines the element internal margins (padding), margins (space between multiple elements), the width and height. Elements are displayed according to the flow layout model (Figure 1.2). We distinguish block and inline elements:

5https://www.pioneerdj.com/en-gb/product/player/cdj-2000nxs2/black/overview/

[image: Image 13]

6

 1 Shiny and the Web

• Block elements may contain other tags and take the full width (block or inline). 

<div></div> is the most commonly used block element. All elements of a block are printed on top of each other. 

• Inline elements (<span></span>, <a></a>) are printed on the same line. They cannot contain block tags; for instance <span><div><p>Hello World</p></div></span> is not valid, but may contain other nested inline tags like <a><img/></a> (creates a clickable image pointing to a specific location). 

• Inline-block elements allow one to insert a block element in an inline. 

FIGURE 1.2: Flow layout and box model in an HTML document. 

Importantly, <div> and <span> are generic tags and don’t have any semantic meaning, contrary to <header> and <footer>, which allow developers to structure the HTML page, as depicted by Figure 1.3. If you happen to insert a structural tag like <aside></aside> in a basic HTML document, it will not automatically create a sidebar. Instead, it helps to maintain a readable and meaningful code. If you wish to give a proper structure to the page, let’s meet below in section 1.3.5.1 and later in Chapter 6. <div> and <span> are used whenever no semantic block and inline container may be applied, respectively. 

1.3.2 Tag attributes

Attributes are text elements allowing developers to specify some tag properties. For instance for a link tag (<a></a>), we actually expect more than just the tag itself, such as a target url and how to open the new page. In all previous examples, tags don’t have any attributes. Yet, there exists a large range of attributes, and we will only see two of them for now (the reason is that these are the most commonly used in CSS and JavaScript):

• class that may be shared between multiple tags. 

• id that must be unique. 

[image: Image 14]

 1.3 HTML 101

7

FIGURE 1.3: Example of semantic tags in the bs4Dash Shiny Bootstrap 4 dashboard template. 

<div class="awesome-item" id="myitem" ></div> 

 <!-- the class awesome-item may be applied to multiple tags --> 

<span class="awesome-item" ></span> Both attributes are widely used by CSS and JavaScript to apply a custom style to a web page (see Chapter 10). Class attributes apply to multiple elements, however the id attribute is restricted to only one item. 

Interestingly, there is another attribute category, know as non-standard attributes like data-toggle. We see them later in the book in Chapter 17. 

1.3.3 The simplest HTML skeleton

An HTML page is a collection of tags which are interpreted by the web browser step by step. The simplest HTML skeleton may be defined as follows:

<!DOCTYPE HTML> 

<html lang="en" > 

<head> 

 <!-- head content here --> 

<title> A title</title> 

</head> 

<body> 

 <!-- body content here --> 

</body> 

</html> 

• <html> is the main wrapper. 

• <head> and <body> are the two main children. 

– <head> contains dependencies like styles and JavaScript files (but not only). 

8

 1 Shiny and the Web

– <body> contains the page content and it is displayed on the screen. JavaScript files are often added just before the end of the <body>. 

� Only the body content is displayed on the screen. W3C validation (https:

//validator.w3.org/#validate_by_input) imposes at least a title tag in the head section and a lang attribute to the html tag. 

Let’s write the famous Hello World in HTML:

<!DOCTYPE HTML> 

<html lang="en" > 

<head> 

 <!-- head content here --> 

<title> A title</title> 

</head> 

<body> 

<p> Hello World</p> 

</body> 

</html> 

In order to preview this page in a web browser, you have to save the above snippet to a script hello-world.html and double-click on it. It will open with your default web browser. 

Below is how we would do it with a Shiny app:

ui <- fluidPage(p("Hello World"))

server <- function(input, output, session) {}

shinyApp(ui, server)

From outside, it looks identical! Are you sure about this? Let’s meet in Chapter 3 to have a deeper look. 

1.3.4 About the Document Object Model (DOM)

The DOM stands for “Document Object Model” and is a convenient representation of the HTML document. If we consider the last Hello World example, the associated DOM tree may be inspected in Figure 1.4. 

1.3.4.1 Visualizing the DOM with the developer tools

The developer tools are a crucial way to work with websites, and particularly customize Shiny apps. As shown in Figure 1.4, here are example of actions you will be able to perform: inspect the HTML structure of the page, debug JavaScript code as demonstrated in 10.6, inspect served files (static assets like CSS, JS, images), run performances audit 24, inspect websocket activity (section 11) and many more. 

In this section, we restrict the description to the first panel (Elements) of the developer

[image: Image 15]

[image: Image 16]

[image: Image 17]

 1.3 HTML 101

9

tools. This feature is available in all web browsers; however, for demonstration purposes, we will only focus on the Chrome DevTools6. It may be opened:

• After a right click and selecting inspect. 

• After clicking on ctrl + shift (Maj) + I for Windows, option + command + I on Mac. 

In the following:

• Open the hello-world.html example with Chrome. 

• Right-click to open the HTML inspector (developer tools must be enabled if it is not the case). 

The HTML inspector is a convenient tool to explore the structure of the current HTML

page. On the left-hand side, the DOM tree is displayed where we clearly see that <html> is the parent of <head> and <body>. <body> has also one child, that is <p>. We may preview any style (CSS) associated with the selected element on the right panel as well as Event Listeners (JavaScript), which will be discussed later in the book. 

FIGURE 1.4: Inspection of the DOM in the Hello World example. 

1.3.4.2 Web Inspector 101

In the following, we enumerate key features of the inspector Elements tab. In addition to exploring the HTML structure7, the inspector allows you to:

6https://developers.google.com/web/tools/chrome-devtools

7https://developers.google.com/web/tools/chrome-devtools/dom

[image: Image 18]

10

 1 Shiny and the Web

• Dynamically change CSS at run time. 

• Debug JavaScript code (put break points, …). 

• Run JavaScript code from the console. 

• Monitor any error or warning that may prevent your app or website from properly working. 

Another important feature is the ability to switch between different devices, especially mobile platforms and do a global performance audit with Google LightHouse8. The book9

from Colin Fay et al (Fay et al., 2020). details the most relevant elements for Shiny app development. 

We propose a set of quick exercises to review the most important HTML inspector capabilities that are commonly needed during Shiny app customization. We consider the app already defined above:

ui <- fluidPage(p("Hello World"))

server <- function(input, output, session) {}

shinyApp(ui, server)

 1.3.4.2.1 Exercise: Altering the DOM structure

1. Run the Hello World app, right-click on the only text element and select inspect. 

2. Notice we could have done similarly by clicking on the very top-left corner Inspect icon (command + maj + C for Mac) and hovering over the Hello World text. 

You should see a result similar to Figure 1.5, the Inspect icon being in blue. The selected element is highlighted, and a white box displays the main CSS properties like text-color, font-size, margins, as well as accessibility parameters. 

FIGURE 1.5: Inspection of the p element in the Hello World example. 

8https://developers.google.com/web/tools/lighthouse

9https://engineering-shiny.org/when-optimize.html#tools-for-profiling

[image: Image 19]

 1.3 HTML 101

11

3. In the Elements panel, double-click between the <p> and </p> tags to edit the current text. Press enter when finished. 

4. Let’s add some children to our p tag. Right-click and select the Edit as HTML

option. You may enter any valid HTML code inside. Don’t forget about some rules relative to inline and block tags (inline tags cannot contain block tags!!!). 

As depicted in Figure 1.6, we could have done a right click on the p tag to display more options like:

• Add/edit an attribute. You may try to add a class class="awesome-text" and an id id="only-text". 

• Delete the current tag (the delete key would do it as well). 

• Copy the element with all nested elements. 

• Only copy the outside HTML (ignore nested elements). 

• Extract the CSS selector or JavaScript path (code to select the element): body > div > p and document.querySelector("body > div > p"), respectively. These two features are extremely handy as they save you time. Try to copy and paste document.querySelector("body > div > p") in the JavaScript console at the bottom of the inspector window. It returns the selected HTML element, as shown in Figure 1.7! 

Amazing isn’t it? 

• Hide the element. 

• Force a specific state. For instance buttons may be active, inactive. We talk more about this in section 6.2.4.3.2. 

FIGURE 1.6: Modifications of the p element in the Hello World example. 

Whenever you are looking for a specific tag in a more complex page, the search tag option is a game changer (Ctrl + F on Windows, command + F within the Elements tab on a Mac). See Figure 1.8. 

Finally, the inspector toolkit allows you to reorder DOM elements with a rather intuitive drag and drop feature. I invite the reader to take some time to experiment with those features as they will be crucial in the next chapters, particularly Chapter 6. 

[image: Image 20]

[image: Image 21]

12

 1 Shiny and the Web

FIGURE 1.7: Extract the JavaScript path to select the p element. 

FIGURE 1.8: Search for element having the awesome-text class. 

1.3.5 Preliminary introduction to CSS and JavaScript

To introduce this section, I propose looking at the very first website, early in the 1990’s (August 1991 exactly). From an aesthetic point of view (see Figure 1.9), this is far from what we can observe today as shown in Figure 1.10. 

How can we explain that difference? One of the main reasons is the absence of CSS (Cascading Style Sheets) as the first CSS release only appeared in December 1996, that is five years later than the first web site publication. CSS allows you to deeply customize the appearance of any web page by changing colors, fonts, margins and much more. We acknowledge that the role of JavaScript cannot be demonstrated through the previous example. Yet its impact is as important as CSS, so that it is now impossible to dissociate HTML, CSS and JavaScript. 

[image: Image 22]

[image: Image 23]

[image: Image 24]

[image: Image 25]

[image: Image 26]

[image: Image 27]

[image: Image 28]

[image: Image 29]

[image: Image 30]

[image: Image 31]

[image: Image 32]

[image: Image 33]

 1.3 HTML 101

13

FIGURE 1.9: World Wide Web website. 

FIGURE 1.10: RinteRface website: (https://rinterface.com). 

14

 1 Shiny and the Web

1.3.5.1 HTML and CSS

CSS changes the style of HTML tags by targeting specific classes or ids. For instance, if we want all p tags to have red color we use:

p {

color: red; 

}

To include CSS in an HTML page, we use the <style> tag as follows:

<!DOCTYPE HTML> 

<html lang="en" > 

<head> 

<style type="text/css" > 

p {

color: red; 

}

</style> 

<title> A title</title> 

</head> 

<body> 

<p> Hello World</p> 

</body> 

</html> 

You may update the hello-world.html script and run it in your web browser to see the difference. The example may be slight but shows how we may control the look and feel of the display. In a development context, CSS files may so big that it is better to include them in external files. 

Let’s build a Shiny app that does similar things. As a reminder, you may use tags$style to include small pieces of CSS in your app:

ui <- fluidPage(

tags$style("p { color: red;}"), 

p("Hello World")

)

server <- function(input, output, session) {}

shinyApp(ui, server)

Be prepared! In Chapter 6, we’ll dive into CSS and expose best practices. 

1.3.5.2 HTML and JavaScript

JavaScript is a game changer to give life to your web apps. It is an object-oriented programming (OOP) language allowing interaction with the HTML elements. 

In the following example, we defined the changeColor function that targets the element having hello id and change its color property to green. The HTML element has an onClick attribute that triggers the changeColor function each time the button is clicked. 

 1.4 Summary

15

<!DOCTYPE HTML> 

<html lang="en" > 

<head> 

<style type="text/css" > 

p {

color: red; 

}

</style> 

<script language="javascript" > 

 // displays an alert

alert('Click on the Hello World text!'); 

 // change text color

function changeColor(color){

document. getElementById('hello'). style. color = color; 

}

</script> 

<title> A title</title> 

</head> 

<body> 

 <!-- onclick attributes applies the JavaScript

 function changeColor define above --> 

<p id="hello" onclick="changeColor('green')" > Hello World</p> 

</body> 

</html> 

In a few lines of code, you can change the color of the text and this is only the beginning. 

We see below that the process is not dramatically different in a Shiny app. We wrap our custom JavaScript in the tags$script function, as below:

ui <- fluidPage(

tags$script(

"alert('Click on the Hello World text!'); 

// change text color

function changeColor(color){

document.getElementById('hello').style.color = color; 

}

" 

), 

p(id = "hello", onclick="changeColor('green')", "Hello World")

)

server <- function(input, output, session) {}

shinyApp(ui, server)

If you are not already familiar with JS, Chapter 10 provides some basic knowledge to unleash interactivity in your Shiny apps. 

1.4 Summary

As demonstrated above, developing a Shiny app is basically building a website from R and is completely compatible with the web languages, that is, HTML, CSS and JavaScript. In the next chapter, we’ll discover how to manipulate HTML tags from R with the help of

{htmltools} (Cheng et al., 2021b), to seamlessly customize any existing Shiny element but also import any external HTML template. 

[image: Image 34]

[image: Image 35]

2

Manipulate HTML tags from R with {htmltools}

{htmltools} (Cheng et al., 2021b) is a R package designed to:

• Generate HTML tags from R. 

• Handle web dependencies (see Chapter 4). 

Historically, {htmltools} was extracted out of {shiny} (Chang et al., 2021) to be able to extend it, that is, develop custom HTML tags, import extra dependencies from the web. 

That’s why both packages have many common functions! 

The ultimate goal of {htmltools} is to manipulate, combine and rearrange tags in order to create flexible and rich HTML structures from R. Would you believe that the below example heavily relies on {htmltools} (Figure 2.1)? 

FIGURE 2.1: shinyRPG was built with htmltools. 

If you want to try out this example, below is the showcase code: remotes::install_github("RinteRface/shinyRPG")

library(shinyRPG)

shinyRPGDemo()

2.1 Writing HTML Tags from R

To install {htmltools}, we run:

17

18

 2 Manipulate HTML tags from R with {htmltools}

 # CRAN

install.packages("htmltools")

 # development version

remotes::install_github("rstudio/htmltools")

{htmltools} provides the necessary functions to write HTML tags that were introduced in Chapter 1.3. In R, it is even more convenient than raw HTML since there is no opening/closing tag, a simple function call instead:

library(htmltools)

tag <- div("Hello World")

tag

#> <div>Hello World</div> 

Inside the function call, all named elements become attributes, whereas unnamed elements become children. In some cases, tags may have empty attributes like <input disabled>. 

In that case, the corresponding R code is input(disabled = NA). 

� Protip:SincetagfunctionsproduceShinytags,thatis,HTMLelements,calling tag inside a document will render the tag instead of printing its code. Sometimes, particularly in this book, you want to see the code output. In that case, 1

use the code below. You may find another example here . 

 # Render the tag instead of printing its code

library(knitr)

library(htmltools)

registerS3method(

"knit_print", "shiny.tag", 

getS3method("print", "shiny.tag")

)

registerS3method(

"knit_print", "shiny.tag.list", 

getS3method("print", "shiny.tag.list")

)

2.2 Notations

If you type htmltools::tags$ in the R console, you should be suggested the most common available HTML tags, thereby making it fairly easy to switch between HTML and R, as shown Figure 2.2. 

For convenience, the most commonly used tags like p, h1, h2, h3, h4, h5, h6, a, br, div, span, pre, code, img, strong, em, hr, … are accessible by a simple function call like: 1https://github.com/rstudio/htmltools/blob/6a03c3f35fbe6bfd0f91ba0607808a2b9127c5e5/vignettes/

tagQuery.Rmd#L16

[image: Image 36]

 2.2 Notations

19

FIGURE 2.2: htmltools tags builder. 

 # good

h1("This is a title")

 # correct but not necessary

tags$h1("This is a title")

Therefore, whether to use tags$<TAG_NAME or <TAG_NAME> depends if the tag is exported by default. Since nav is not exported, we write:

 # correct

tags$nav("This is the navigation")

 # fail

try(nav("This is the navigation"))

When building custom templates, you will be writing a lot of tags. It might seem too much work to always write tags$<TAG_NAME>. There exists a function called withTags(), which allows you to get rid of all tags$. Hence, the whole code is much easier to write and read:

 # Better

withTags(

nav(div(), ul(li(), li()))

)

 # instead of

tags$nav(div(), tags$ul(tags$li(), tags$li()))

If you had to gather multiple tags together, choose tagList() over list(), although the HTML output is the same:

 # good

tag_list_1 <- tagList(

p("Some text"), 

div("Content")

)

str(tag_list_1)

#> List of 2

#> 

$ :List of 3

#> 

..$ name

: chr "p" 

#> 

..$ attribs : Named list()

#> 

..$ children:List of 1

#> 

.. ..$ : chr "Some text" 

#> 

..- attr(*, "class")= chr "shiny.tag" 

#> 

$ :List of 3

20

 2 Manipulate HTML tags from R with {htmltools}

#> 

..$ name

: chr "div" 

#> 

..$ attribs : Named list()

#> 

..$ children:List of 1

#> 

.. ..$ : chr "Content" 

#> 

..- attr(*, "class")= chr "shiny.tag" 

#> 

- attr(*, "class")= chr [1:2] "shiny.tag.list" "list" 

tag_list_1

#> <p>Some text</p> 

#> <div>Content</div> 

 # correct but not optimal

tag_list_2 <- list(

p("Some text"), 

div("Content")

)

str(tag_list_2)

#> List of 2

#> 

$ :List of 3

#> 

..$ name

: chr "p" 

#> 

..$ attribs : Named list()

#> 

..$ children:List of 1

#> 

.. ..$ : chr "Some text" 

#> 

..- attr(*, "class")= chr "shiny.tag" 

#> 

$ :List of 3

#> 

..$ name

: chr "div" 

#> 

..$ attribs : Named list()

#> 

..$ children:List of 1

#> 

.. ..$ : chr "Content" 

#> 

..- attr(*, "class")= chr "shiny.tag" 

tag_list_2

#> [[1]]

#> <p>Some text</p> 

#> 

#> [[2]]

#> <div>Content</div> 

The first has the shiny.tag.list class in addition to list. You may see it as a detail, but this has noticeable consequences. For instance, tag_list_1 prints as HTML content, whereas tag_list_2 prints as a list. If we try to apply as.character() on both elements, we obtain very different outputs:

 # tag_list_1

as.character(tag_list_1)

#> [1] "<p>Some text</p>\n<div>Content</div>" 

 2.4 Adding new tags

21

 # tag_list_2

as.character(tag_list_2)

#> 

[1] "list(name = "p", attribs = list(), 

#> 

children = list("Some text"))" 

#> 

[2] "list(name = "div", attribs = list(), 

#> 

children = list("Content"))" 

Besides, packages like {golem} (Fay et al., 2021) allow us to test if an R object is a tag list. 

In this case, using a simple list would cause the test to fail. 

2.3 Adding new tags

You may define extra HTML tags with the tag() function:

customTag <- tag(

"test", 

list(class = "test", p("Custom Tag"))

)

str(customTag)

#> List of 3

#> 

$ name

: chr "test" 

#> 

$ attribs :List of 1

#> 

..$ class: chr "test" 

#> 

$ children:List of 1

#> 

..$ :List of 3

#> 

.. ..$ name

: chr "p" 

#> 

.. ..$ attribs : Named list()

#> 

.. ..$ children:List of 1

#> 

.. .. ..$ : chr "Custom Tag" 

#> 

.. ..- attr(*, "class")= chr "shiny.tag" 

#> 

- attr(*, "class")= chr "shiny.tag" 

#> <test class="test"> 

#> 

<p>Custom Tag</p> 

#> </test> 

Good practice is to check whether the created tag is in line with the HTML validation rules. 

If you want to check a web page, particularly a Shiny-generated HTML page, W3C has an online validation tool2. Be careful, as not following this rule will cause the HTML code to be invalid. By default, Shiny complies with all the recommendations, but we suggest you be careful with any exotic template. 

2.4 Alternative way to write tags

{htmltools} comes with the HTML() function that you can feed with raw HTML. It prevents HTML escaping on the provided content, which is convenient, for instance, when using formatting tags inside a string:

2https://validator.w3.org/

22

 2 Manipulate HTML tags from R with {htmltools}

div("Hello <u>World</u>")

#> <div>Hello &lt;u&gt;World&lt;/u&gt;</div> div(HTML("Hello <u>World</u>"))

#> <div>Hello <u>World</u></div> 

Below, both codes give exactly the same output:

HTML("<div>Blabla</div>")

div("Blabla")

Internally, their classes are different, which has consequences: class(HTML("<div>Blabla</div>"))

#> [1] "html" 

"character" 

class(div("Blabla"))

#> [1] "shiny.tag" 

Doing so, you will not be able to use tag-related functions, as in the next parts. 

� We strongly recommend using R as much as possible and avoid mixing HTML

with R. 

Interestingly, if you want to convert raw HTML to R code, there is a Shiny App developed by Alan Dipert from RStudio, namely html2R3, shown Figure 2.3. Non-standard attributes (like data-toggle) are not correctly processed, but there are solutions4. This will save you precious time! A more recent approach is developed in Chapter 21 and has been used internally to develop some of the RinteRface templates5. 

By converting HTML to R functions, it’s easy to parameterize the generated tag and reuse it later in the code. It also allows you to maintain a single code base (only R), which is much simpler in the long run if the code has to be reviewed by people non-familiar with HTML. 

3https://github.com/alandipert/html2r/tree/4217b5430e2bfc3af0d841cbefcd94bc1aadbcdf

4https://github.com/alandipert/html2r/issues/2

5https://github.com/RinteRface

[image: Image 37]

 2.5 Playing with tags

23

FIGURE 2.3: Illustration of the html2R app. 

2.5 Playing with tags

Before becoming an {htmltools} wizard, let’s learn the Shiny tags fundamentals. 

2.5.1 Tags structure

A shiny tag is defined by:

• A name such as span, div, h1 …, accessed with tag$name. 

• Some attributes, which can be accessed with tag$attribs. 

• Children, which can be accessed with tag$children. 

• A class, namely shiny.tag. 

For instance, the tag below has the following structure:

 # create the tag

myTag <- div(

class = "divclass", 

id = "first", 

h1("My first child!"), 

span(class = "child", id = "baby", "Crying")

)

 # access its name

 # myTag$name

 # access its attributes (id and class)

 # myTag$attribs

 # access children (returns a list of 2 elements)

 # myTag$children

 # access its class

str(myTag)

#> List of 3

#> 

$ name

: chr "div" 

24

 2 Manipulate HTML tags from R with {htmltools}

#> 

$ attribs :List of 2

#> 

..$ class: chr "divclass" 

#> 

..$ id

: chr "first" 

#> 

$ children:List of 2

#> 

..$ :List of 3

#> 

.. ..$ name

: chr "h1" 

#> 

.. ..$ attribs : Named list()

#> 

.. ..$ children:List of 1

#> 

.. .. ..$ : chr "My first child!" 

#> 

.. ..- attr(*, "class")= chr "shiny.tag" 

#> 

..$ :List of 3

#> 

.. ..$ name

: chr "span" 

#> 

.. ..$ attribs :List of 2

#> 

.. .. ..$ class: chr "child" 

#> 

.. .. ..$ id

: chr "baby" 

#> 

.. ..$ children:List of 1

#> 

.. .. ..$ : chr "Crying" 

#> 

.. ..- attr(*, "class")= chr "shiny.tag" 

#> 

- attr(*, "class")= chr "shiny.tag" 

and the output is:

#> <div class="divclass" id="first"> 

#> 

<h1>My first child!</h1> 

#> 

<span class="child" id="baby">Crying</span> 

#> </div> 

How to modify the class of the second child? 

second_children <- myTag$children[[2]]

second_children$attribs$class <- "adult" 

myTag

#> <div class="divclass" id="first"> 

#> 

<h1>My first child!</h1> 

#> 

<span class="child" id="baby">Crying</span> 

#> </div> 

 # This is not working ... 

Why is this not working? By assigning myTag$children[[2]] to second_children, second_children$attribs$class <- "adult" modifies the class of the copy and not the original object. Thus we do:

myTag$children[[2]]$attribs$class <- "adult" 

myTag

#> <div class="divclass" id="first"> 

#> 

<h1>My first child!</h1> 

#> 

<span class="adult" id="baby">Crying</span> 

#> </div> 

2.5.2 Practical examples: shinyRPG

Below we give concrete example on how to customize tags in real life. There exists a nice RPG HTML template, that is, rpgui6. It provides the necessary elements to get started developing nice RPG-looking user interfaces, as depicted by Figure 2.4. 

6http://ronenness.github.io/RPGUI/

[image: Image 38]

 2.5 Playing with tags

25

FIGURE 2.4: rpgui select input with two displays: dropdown or list. 

In the following, we consider the select input, which does not have exactly the same structure as the original Shiny tag. However, it is convenient to reuse the Shiny functions to limit our amount of work. We therefore start to write our custom input:

rpgSelect <- function(inputId, label, choices, selected = NULL, multiple = FALSE, size = NULL) {

shiny::selectInput(

inputId, 

label, 

choices, 

selected, 

multiple, 

selectize = FALSE, 

width = NULL, 

size

)

}

According to the rpgui documentation, a select tag is composed of the following HTML

elements:

<select class="rpgui-dropdown" > 

<option value="option1" > option1</option> 

<option value="option2" > option2</option> 

... 

</select> 

Adding a label tag on top of the slider, this is what we would like to get:

<div> 

<label id="variable-label" for="variable" > Variable:</label> 

<select

id="variable" 

class="rpgui-dropdown" > 

<option value="cyl" selected> Cylinders</option> 

<option value="am" > Transmission</option> 

<option value="gear" > Gears</option> 

</select> 

</div> 

We compare with our own rpgSelect() function:

26

 2 Manipulate HTML tags from R with {htmltools}

rpgSelect(

"variable", 

"Variable:", 

c("Cylinders" = "cyl", 

"Transmission" = "am", 

"Gears" = "gear")

)

#> 

<div class="form-group shiny-input-container"> 

#> 

<label class="control-label" id="variable-label" 

#> 

for="variable">Variable:

#> 

</label> 

#> 

<div> 

#> 

<select id="variable" class="form-control"> 

#> 

<option value="cyl" selected>Cylinders</option> 

#> 

<option value="am">Transmission</option> 

#> 

<option value="gear">Gears</option> 

#> 

</select> 

#> 

</div> 

#> 

</div> 

As shown in the above output, this is not exactly matching:

• The outer div should not have any class. 

• The label should not have any class. 

• The input tag is wrapped inside a div container. It should not. 

• The input tag should have the rpgui-dropdown or rpgui-list class, depending on the size value. 

To fix the first problem we target the outer tag (selectTag), that is, the tag returned by our rpgSelect() function. The second row cleans the label class. The third row removes the extra outer div and only keeps its children, corresponding to the input tag. The last instruction ensures we set the appropriate class, depending on the size value:

 # Modify tag

selectTag$attribs$class <- NULL

 # Clean extra label class

selectTag$children[[1]]$attribs$class <- NULL

 # Remove extra outer div

selectTag$children[[2]] <- selectTag$children[[2]]$children[[1]]

 # Add good class for rppgui binding

selectTag$children[[2]]$attribs$class <- if (is.null(size)) {

"rpgui-dropdown" 

} else {

"rpgui-list" 

}

The complete code is given here7, which yields:

rpgSelect(

"variable", 

"Variable:", 

c("Cylinders" = "cyl", 

"Transmission" = "am", 

"Gears" = "gear")

)

#> 

<div> 

#> 

<label id="variable-label" for="variable">Variable:</label> 7https://github.com/RinteRface/shinyRPG/blob/a1fe30761ffd6469f28a0f92107d9613e9eccbe7/R/i

nputs.R#L180

 2.5 Playing with tags

27

#> 

<select id="variable" class="rpgui-dropdown"> 

#> 

<option value="cyl" selected>Cylinders</option> 

#> 

<option value="am">Transmission</option> 

#> 

<option value="gear">Gears</option> 

#> 

</select> 

#> 

</div> 

2.5.3 Useful functions for tags

As shown in the previous shinyRPG example, adding a class and an id to a tag may be done with:

tag$attribs$class <- "class" 

tag$attribs$id <- "id" 

These are two lines of code, and believe me, for complex examples, it might be much worse, thereby significantly impairing code readability. Fortunately, {htmltools} provides powerful functions to overcome this issue, the most significant being reviewed below. 

2.5.3.1 Add attributes

tagAppendAttributes() adds a new attribute to the current tag. For instance, assuming we created a div without any id attribute:

myTag <- div("A tag")

myTag <- tagAppendAttributes(myTag, id = "myid")

myTag

#> <div id="myid">A tag</div> 

You can pass as many attributes as you want, including non-standard attributes such as data-toggle (see Bootstrap 3 tabs8 for instance):

myTag <- tagAppendAttributes(

myTag, 

`data-togglè = "tabs", 

class = "myclass" 

)

myTag

#> <div id="myid" data-toggle="tabs" class="myclass">A tag</div> As a reminder, even though correct, the classic approach would require two steps: myTag$attribs[["data-toggle"]] <- "newValue" 

myTag$attribs$class <- "newClass" 

myTag

#> 

<div id="myid" data-toggle="newValue" 

#> 

class="newClass">A tag

#> 

</div> 

8https://www.w3schools.com/bootstrap/bootstrap_ref_js_collapse.asp

28

 2 Manipulate HTML tags from R with {htmltools}

2.5.3.2 Check if tag has specific attribute

tagHasAttribute() checks if a tag has a specific attribute:

 # I want to know if div has a class

myTag <- div(class = "myclass")

tagHasAttribute(myTag, "class")

#> [1] TRUE

In practice, this function is suitable for testing tag elements as shown in Chapter 20. 

2.5.3.3 Get all attributes

tagGetAttribute() gets the targeted attribute’s value, if it exists, otherwise NULL: myTag <- div(class = "test")

 # returns the class

tagGetAttribute(myTag, "class")

#> [1] "test" 

 # returns NULL

tagGetAttribute(myTag, "id")

#> NULL

2.5.3.4 Set child/children

tagSetChildren() creates children for a given tag. For instance: myTag <- div(

class = "parent", 

id = "father", 

"Father!" 

)

child <- span("Daughter")

myTag <- tagSetChildren(myTag, child)

myTag

#> <div class="parent" id="father"> 

#> 

<span>Daughter</span> 

#> </div> 

� tagSetChildren() removes all existing children. Below we see another set of functions to add children while conserving existing ones. 

 2.5 Playing with tags

29

2.5.3.5 Add child or children

tagAppendChild() and tagAppendChildren() add other tags to an existing tag. Whereas tagAppendChild() only takes one tag, you can pass a list of tags to tagAppendChildren(). 

myTag <- div(class = "parent", "A tag", "Child 1") otherTag <- span("Child 2")

myTag <- tagAppendChild(myTag, otherTag)

myTag

#> <div class="parent"> 

#> 

A tag

#> 

Child 1

#> 

<span>Child 2</span> 

#> </div> 

2.5.3.6 Build your own functions

You might wonder why there is no tagRemoveChild() or tagRemoveAttributes(). Let’s look at the tagAppendChild():

tagAppendChild <- function (tag, child, .cssSelector = NULL) {

if (!is.null(.cssSelector)) {

return(

tagAppendChildren(

tag, 

child, 

.cssSelector = .cssSelector

)

)

}

tag$children[[length(tag$children) + 1]] <- child

tag

}

Below we write the tagRemoveChild(), where tag is the target and n is the position to remove in the list of children:

myTag <- div(class = "parent", span("Hey!"))

 # we create the tagRemoveChild function

tagRemoveChild <- function(tag, n) {

 # check if the list is empty

if (length(tag$children) == 0) {

stop(paste(tag$name, "does not have any children!"))

}

tag$children[n] <- NULL

tag

}

myTag <- tagRemoveChild(myTag, 1)

myTag

#> <div class="parent"></div> 

When defining the tagRemoveChild(), we choose [ instead of [[ to allow to select multiple list elements. Also notice that the function raises an error if the provided tag does not have children. 

30

 2 Manipulate HTML tags from R with {htmltools}

The tagAppendChild() is not able to insert at a specific position. We could draft the tagInsertChild() building on top of the base R append function:

tagInsertChild <- function(tag, child, position) {

tag$children <- append(tag$children, list(child), position - 1) tag

}

res1 <- tagInsertChild(p(span("hello")), a(), 1)

res2 <- tagInsertChild(p(span("hello")), a(), 2)

res1

#> <p> 

#> 

<a></a> 

#> 

<span>hello</span> 

#> </p> 

res2

#> <p> 

#> 

<span>hello</span> 

#> 

<a></a> 

#> </p> 

9

� As of {htmltools} 0.5.2, there is a new tagInsertChildren() function . 

2.5.4 Other functions

The golem10 package written by thinkr11 contains neat functions to edit your tags. 

Particularly, the tagRemoveAttributes():

tagRemoveAttributes <- function(tag, ...) {

attrs <- as.character(list(...))

for (i in seq_along(attrs)) {

tag$attribs[[ attrs[i] ]] <- NULL

}

tag

}

myTag <- div(class = "test", id = "coucou", "Hello") myTag <- tagRemoveAttributes(myTag, "class", "id") myTag

#> <div>Hello</div> 

9https://rstudio.github.io/htmltools/reference/tagAppendChild.html

10https://github.com/ThinkR-open/golem/blob/dev/inst/utils/golem_utils_ui.R

11https://thinkr.fr

 2.5 Playing with tags

31

2.5.5 Conditionally set attributes

Sometimes, you only want to set attributes under specific conditions. 

my_button <- function(color = NULL) {

tags$button(

style = paste("color:", color), 

p("Hello")

)

}

Calling my_button() would give:

#> <button style="color: "> 

#> 

<p>Hello</p> 

#> </button> 

This example will not fail but having style="color: " is not clean. We may use conditions: my_button <- function(color = NULL) {

tags$button(

style = if (!is.null(color)) paste("color:", color), p("Hello")

)

}

Below, we call my_button("blue") and my_button():

my_button("blue")

#> <button style="color: blue"> 

#> 

<p>Hello</p> 

#> </button> 

my_button()

#> <button> 

#> 

<p>Hello</p> 

#> </button> 

In this example, style won’t be available if color is not specified. 

2.5.6 Using %>%

While doing a lot of manipulation for a tag, if you don’t need to create intermediate objects, it is a good idea to use %>% from magrittr12:

12https://magrittr.tidyverse.org

32

 2 Manipulate HTML tags from R with {htmltools}

myTag <- div(class = "cl", h1("Hello")) %>%

tagAppendAttributes(id = "myid") %>%

tagAppendChild(p("some extra text here!"))

myTag

This is overall easier to follow and read. 

2.5.7 Programmatically create children elements

Assume you want to create a tag with five children inside:

myTag <- div(

span(1), 

span(2), 

span(3), 

span(4), 

span(5)

)

myTag

The structure is correct, but imagine if you had to create 1000 span() or a fancier tag. 

The previous approach is not consistent with the DRY programming concept. lapply() function will be useful here (or the purrr map() family):

 # base R

div(lapply(1:5, function(i) span(i)))

 # purrr + %>%

map(1:5, function(i) span(i)) %>% div()

#> <div> 

#> 

<span>1</span> 

#> 

<span>2</span> 

#> 

<span>3</span> 

#> 

<span>4</span> 

#> 

<span>5</span> 

#> </div> 

2.6 Modern {htmltools}

� This section requires basic CSS knowledge, particularly CSS selectors. Please read Chapter 6 before going further. 

As of {htmltools} 0.5.2, the new tagQuery() function makes manipulating Shiny tags a real pleasure, in addition to being more efficient. If you know and like jQuery (Chapter 10.5), the API is really similar. If you don’t know jQuery yet, no problem, we’ll see it later in the book! 

 2.6 Modern {htmltools}

33

As a preliminary example, we want to modify the third span element from the above example in section 2.5.7:

spans <- div(div(p(), lapply(1:5, function(i) span(i)))) spans$children[[1]]$children[[2]][[3]]$attribs$class <- "test" 

spans

#> <div> 

#> 

<div> 

#> 

<p></p> 

#> 

<span>1</span> 

#> 

<span>2</span> 

#> 

<span class="test">3</span> 

#> 

<span>4</span> 

#> 

<span>5</span> 

#> 

</div> 

#> </div> 

Below is the new {htmltools} approach, which leverages tagQuery(): spans <- div(div(p(), lapply(1:5, function(i) span(i)))) spans <- tagQuery(spans)$

find("span")$

filter(function(x, i) i == 3)$

addAttrs("class" = "amazing-tag")$

allTags()

spans

#> <div> 

#> 

<div> 

#> 

<p></p> 

#> 

<span>1</span> 

#> 

<span>2</span> 

#> 

<span class="amazing-tag">3</span> 

#> 

<span>4</span> 

#> 

<span>5</span> 

#> 

</div> 


#> </div> 

As you may notice, the first approach may lead to poorly written code as soon as the tag structure gets more complex. You may easily end up with things like tag$children[[1]]$children[[2]]$children[[1]]$attribs$class, which is nearly impossible to maintain. The second approach is much more human readable, even though not necessarily shorter in this example. The biggest advantage is that is does not always depend on the overall tag structure. As an exercise, you may wrap the span elements inside another div parent:

spans <- div(div(p(), div(lapply(1:5, function(i) span(i))))) spans <- tagQuery(spans)$

find("span")$

filter(function(x, i) i == 3)$

addAttrs("class" = "amazing-tag")$

allTags()

spans

#> <div> 

#> 

<div> 

#> 

<p></p> 

#> 

<div> 

34

 2 Manipulate HTML tags from R with {htmltools}

#> 

<span>1</span> 

#> 

<span>2</span> 

#> 

<span class="amazing-tag">3</span> 

#> 

<span>4</span> 

#> 

<span>5</span> 

#> 

</div> 

#> 

</div> 

#> </div> 

The above code still works, while the previous one would require being updated. 

Another reason to prefer the new tagQuery() API is the substantial performance gains13. Interestingly, under the hood, most if not all older {htmltools} functions like tagAppendChildren() or tagAppendAttributes() call the tagQuery() API when .cssSelector is provided. In practice, while we can achieve multiple modifications at once with a single tagQuery() call, it requires a combination of multiple tagAppendChildren()/tagAppendAttributes() to reach the same result, thereby leading to less performance. Are you ready to become a tag witcher [^tag-witcher]? 

14: I hope you’ll realize that it is easier than killing weird monsters, drinking dangerous potions made of deadly mutagens and not taking any bath for weeks…but one never knows!]. 

2.6.1 Basics

tagQuery() accepts a tag or list of tags as input and returns a data structure containing:

• $allTags(): all tags. 

• $selectedTags(): selected tags, default to $allTags(). 

As an example:

tag_query <- tagQuery(div(p()))

class(tag_query)

#> [1] "shiny.tag.query" 

tag_query

#> `$allTags()`:

#> <div> 

#> 

<p></p> 

#> </div> 

#> 

#> `$selectedTags()`: `$allTags()Às shown above, the returned result is not a Shiny tag. Instead, it is a R615 class having methods to handle those tags. 

13https://rstudio.github.io/htmltools/articles/tagQuery.html#performance-1

14tag-witcher

15https://r6.r-lib.org/articles/Introduction.html

[image: Image 39]

 2.6 Modern {htmltools}

35

2.6.2 Query tags

Below is a table summarizing all available query methods. Note that at the time of writing, tagQuery() only supports simple CSS selectors. For instance, data-... selectors are not covered, as well as ,, + and ~. However, we’ll see below there are many options to work around. 

Method

Description

children

Get all the direct descendants of each selected tag

find

Get all descendants of each selected tag

parent

Get the direct ancestors of each selected tag

parents

Get all parents of each selected tag

siblings

Get all siblings of each selected tag

filter

Subset selected tags with CSS selectors or R function

resetSelected

Reset set of selected tags to the root tag

According to Figure 2.5, while $children() selects only direct descendants, $find() is slightly more powerful and drills down to any level deeper. $filter() is convenient to subset selected tags, for instance, depending on a specific attribute. A dedicated section (2.6.4) covers $resetSelected(), which essentially resets the current selection to the root tag. Whereas $parent() allows going up step by step, returning each time the direct ancestor, $parents() returns all ancestors. If you need to be even more specific, $closest(cssSelector) goes up until it finds the matching cssSelector. Note that, if cssSelector = NULL, $closest() is equivalent to call $selectedTags(). 

FIGURE 2.5: tagQuery API: overview of query methods. 

Let’s consider an example consisting of a tabset16 panel with three tabs. Those menu items 16https://mastering-shiny.org/action-layout.html#tabsets

36

 2 Manipulate HTML tags from R with {htmltools}

are one of the most challenging elements to handle when building a custom Shiny template and the new tagQuery() literally make it a breeze to handle. A detailed case study is available section 17.2.4.1. 

temp_tabs <- lapply(1:3, function(i) {

tabPanel(i, paste("Tab", i))

})

tabs <- bs4Dash::tabsetPanel(.list = temp_tabs)

tabs

#> 

<div class="tabbable"> 

#> 

<ul class="nav nav-tabs" data-tabsetid="5315"> 

#> 

<li class="nav-item"> 

#> 

<a href="#" data-toggle="tab" data-value="1" 

#> 

class="nav-link active" data-target="#tab-5315-1">1

#> 

</a> 

#> 

</li> 

#> 

<li class="nav-item"> 

#> 

<a href="#" data-toggle="tab" data-value="2" 

#> 

class="nav-link" data-target="#tab-5315-2">2

#> 

</a> 

#> 

</li> 

#> 

<li class="nav-item"> 

#> 

<a href="#" data-toggle="tab" data-value="3" 

#> 

class="nav-link" data-target="#tab-5315-3">3

#> 

</a> 

#> 

</li> 

#> 

</ul> 

#> 

<div class="tab-content" data-tabsetid="5315"> 

#> 

<div class="tab-pane active" data-value="1" 

#> 

id="tab-5315-1">Tab 1

#> 

</div> 

#> 

<div class="tab-pane" data-value="2" 

#> 

id="tab-5315-2">Tab 2

#> 

</div> 

#> 

<div class="tab-pane" data-value="3" 

#> 

id="tab-5315-3">Tab 3

#> 

</div> 

#> 

</div> 

#> 

</div> 

How would you select the third tab content element? 

tagQuery(tabs)$

find("div.tab-pane")$  # div element with tab-pane class filter(function(x, i) tagGetAttribute(x, "data-value") == 3)

#> 

[[1]]

#> 

<div class="tab-pane" data-value="3" id="tab-8147-3">Tab 3

#> 

</div> 

Note that we provided an anonymous R function to $filter(), where x is the tag and i the index, allowing us to drill down to the third tab, which has data-value = 3. 

As an exercise, I give you two minutes to find the classic {htmltools} equivalent. If you don’t manage, it means the new tagQuery() system is rather convenient. 

2.6.3 Modify tags

As shown in the preliminary example, the main interest of querying tags is to ultimately modify them. tagQuery() exposes methods to modify attributes, children of the query selection. 

[image: Image 40]

 2.6 Modern {htmltools}

37

2.6.3.1 Playing with attributes

As shown Figure 2.6, there are currently two main methods to alter tag attributes, namely $addAttrs() (equivalent of tagAppendAttributes) and $removeAttrs(), even though more specific methods exists, for instance $addClass(), $removeClass() and $toggleClass(). 

Method

Description

addAttrs

Add any number of attributes to each selected tag

removeAttrs

Remove any number of attributes to each selected tag

hasAttrs

Check if the selected tag has the specified attribute(s)

addClass

Add any number of new classes to each selected tag

removeClass

Remove any number of classes to each selected tag

hasClass

Check if the selected tag has the specified classe(s)

FIGURE 2.6: tagQuery API: modify tag attributes. 

Bootstrap 4 allows us to apply a fade transition17 between tabs, provided that those tabs have the fade class. Below is how to seamlessly do it with tagQuery(): tagQuery(tabs)$

find(".tab-pane")$

addClass("fade")

#> 

[[1]]

#> 

<div class="tab-pane active fade" data-value="1" 

#> 

id="tab-4283-1">Tab 1

#> 

</div> 

#> 

[[2]]

17https://getbootstrap.com/docs/4.6/components/navs/#fade-effect

[image: Image 41]

38

 2 Manipulate HTML tags from R with {htmltools}

#> 

<div class="tab-pane fade" data-value="2" 

#> 

id="tab-4283-2">Tab 2

#> 

</div> 

#> 

[[3]]

#> 

<div class="tab-pane fade" data-value="3" 

#> 

id="tab-4283-3">Tab 3

#> 

</div> 

2.6.3.2 Altering tag/children/siblings

Below are listed some methods to alter the current tag or its children, as depicted Figure

2.7. 

Method

Description

append

Insert content after the children of each selected tag

prepend

Insert content before the children of each selected tag

empty

Remove all children from the selected tag

remove

Remove all selected tags

before

Insert content before each selected tag

after

Insert content after each selected tag

replaceWith

Replace the currently selected tag by the provided tag

FIGURE 2.7: tagQuery API: alter tags children. 

Going back to our previous tabs example, we would like to include an icon before each tab title. We leverage the $prepend() method, after selecting the a elements part of the tab navigation:

 # Add extra item to tabs at the end

new_tabs <- tagQuery(tabs)$

find("a")$

[image: Image 42]

 2.6 Modern {htmltools}

39

prepend(icon("flag"))

new_tabs$selectedTags()

#> 

[[1]]

#> 

<a href="#" data-toggle="tab" data-value="1" 

#> 

class="nav-link active" data-target="#tab-4311-1"> 

#> 

<i class="fa fa-flag" role="presentation" 

#> 

aria-label="flag icon"></i> 

#> 

1

#> 

</a> 

#> 

#> 

[[2]]

#> 

<a href="#" data-toggle="tab" data-value="2" 

#> 

class="nav-link" data-target="#tab-4311-2"> 

#> 

<i class="fa fa-flag" role="presentation" 

#> 

aria-label="flag icon"></i> 

#> 

2

#> 

</a> 

#> 

#> 

[[3]]

#> 

<a href="#" data-toggle="tab" data-value="3" 

#> 

class="nav-link" data-target="#tab-4311-3"> 

#> 

<i class="fa fa-flag" role="presentation" 

#> 

aria-label="flag icon"></i> 

#> 

3

#> 

</a> 

#> 

ui <- fluidPage(new_tabs$allTags())

server <- function(input, output, session) {}

shinyApp(ui, server)

The result is shown in Figure 2.8. 

FIGURE 2.8: tagQuery API in action: a customized Shiny tabsetPanel. 

2.6.4 Chain tag queries

One of the strengths of the tagQuery() API is the ability to chain methods, where the classic {htmltools} syntax might be repetitive and heavy. $resetSelected() allows us to reset the tag selection to the root tag after a given operation, thereby making it possible to chain multiple queries with different purposes. The overall flow is more human readable than a step-by-step approach, similar to the tidyverse or ggplot grammar. Let’s combine all previous examples:

 # add fade class to all panels

tagQuery(tabs)$

find(".tab-pane")$

addClass("fade")$

removeClass("active")$

filter(function(x, i) tagGetAttribute(x, "data-value") == 3)$

40

 2 Manipulate HTML tags from R with {htmltools}

addClass("active")$

resetSelected()$

 # new operation: add icon before each nav link title

find("a")$

prepend(icon("flag"))$

 # Here the next operation use the same target

 # We don't need to reset the scope

removeClass("active")$

 # Select third nav link

filter(function(x, i) tagGetAttribute(x, "data-value") == 3)$

 # Make it active

addClass("active")$

allTags()

#> 

<div class="tabbable"> 

#> 

<ul class="nav nav-tabs" data-tabsetid="8746"> 

#> 

<li class="nav-item"> 

#> 

<a href="#" data-toggle="tab" data-value="1" 

#> 

class="nav-link" data-target="#tab-8746-1"> 

#> 

<i class="fa fa-flag" role="presentation" 

#> 

aria-label="flag icon"></i> 

#> 

1

#> 

</a> 

#> 

</li> 

#> 

<li class="nav-item"> 

#> 

<a href="#" data-toggle="tab" data-value="2" 

#> 

class="nav-link" data-target="#tab-8746-2"> 

#> 

<i class="fa fa-flag" role="presentation" 

#> 

aria-label="flag icon"></i> 

#> 

2

#> 

</a> 

#> 

</li> 

#> 

<li class="nav-item"> 

#> 

<a href="#" data-toggle="tab" 

#> 

data-value="3" class="nav-link active" 

#> 

data-target="#tab-8746-3"> 

#> 

<i class="fa fa-flag" role="presentation" 

#> 

aria-label="flag icon"></i> 

#> 

3

#> 

</a> 

#> 

</li> 

#> 

</ul> 

#> 

<div class="tab-content" data-tabsetid="8746"> 

#> 

<div class="tab-pane fade" data-value="1" 

#> 

id="tab-8746-1">Tab 1

#> 

</div> 

#> 

<div class="tab-pane fade" data-value="2" 

#> 

id="tab-8746-2">Tab 2

#> 

</div> 

#> 

<div class="tab-pane fade active" data-value="3" 

#> 

id="tab-8746-3">Tab 3

#> 

</div> 

#> 

</div> 

#> 

</div> 

#> 

2.6.5 Specific cases

There are situations where the previous methods won’t work. What if you want to modify the tab content from Tab i to This is tab i. A common mistake would be to proceed as follows:

tagQuery(tabs)$

find(".tab-pane")$

empty()$

append(lapply(1:3, function(i) paste("This is tab", i)))

 2.6 Modern {htmltools}

41

#> [[1]]

#> <div class="tab-pane active" data-value="1" id="tab-8362-1"> 

#> 

This is tab 1

#> 

This is tab 2

#> 

This is tab 3

#> </div> 

#> 

#> [[2]]

#> <div class="tab-pane" data-value="2" id="tab-8362-2"> 

#> 

This is tab 1

#> 

This is tab 2

#> 

This is tab 3

#> </div> 

#> 

#> [[3]]

#> <div class="tab-pane" data-value="3" id="tab-8362-3"> 

#> 

This is tab 1

#> 

This is tab 2

#> 

This is tab 3

#> </div> 

You may think it will add each text to the corresponding panel item, but methods like $append() and $prepend() are only able to add the same element(s) to one or multiple target(s). It will actually add three new children to each selected panel. For this case where the content is index specific, we have to utilize $each(). It takes an anonymous function as input, with two parameters. x is the tag and i is the current index. Inside that function, you may edit the tag depending on the index and return the modified structure: tagQuery(tabs)$

find(".tab-pane")$

empty()$

each(function(x, i) {

 # replace text

x <- tagAppendChildren(x, paste("This is tab", i))

 # return edited tag

x

})

#> 

[[1]]

#> 

<div class="tab-pane active" data-value="1" 

#> 

id="tab-8746-1">This is tab 1

#> 

</div> 

#> 

#> 

[[2]]

#> 

<div class="tab-pane" data-value="2" 

#> 

id="tab-8746-2">This is tab 2

#> 

</div> 

#> 

#> 

[[3]]

#> 

<div class="tab-pane" data-value="3" 

#> 

id="tab-8746-3">This is tab 3

#> 

</div> 

#> 

2.6.6 Practice

Let’s rewrite the shinyRPG select (see 2.5.2) input using the new tagQuery() API. As a reminder, the function is given here18. The new approach is described below and leverages almost all the tagQuery() API tools. We first remove the outer div class and the label class with $removeAttrs(). These two steps don’t need any reset since the label is a child of the 18https://github.com/RinteRface/shinyRPG/blob/a1fe30761ffd6469f28a0f92107d9613e9eccbe7/R/i

nputs.R#L180

42

 2 Manipulate HTML tags from R with {htmltools}

outer div. The next step is targeting the select element and requires using $siblings() to catch the div parent followed by a $children(), which will capture the select (interestingly, we could also have reset the selection with $resetSelected() and apply $find()). We also add a custom class with $addClass(). We finally go back to the parent outer div with $resetSelected() and apply $each() to replace the inner div with its children. 

tagQuery(selectTag)$

removeAttrs("class")$  # remove outer div class

find(".control-label")$

removeAttrs("class")$  # remove class from child label siblings()$  # go down to the div

children()$  # go down to the select tag

addClass(selectClass)$  # add class to child select

resetSelected()$ # go back to div parent

each(function(x, i) {

x$children[[2]] <- x$children[[2]]$children

})$  # replace div parent

allTags()

The complete code may be found in A.1.1. 

2.6.7 Alter tag rendering with render hooks

2.6.7.1 Simple hooks

In this section, we’ll see what is probably one of the most advanced {htmltools} feature, recently introduced in version 0.5.219. How would you conditionally render a tag, for instance depending on different conditions like external options, a specific theme version, …? 

Assume you want to design development specific tags, that only appear in Shiny dev mode: devmode(TRUE)

getOption("shiny.devmode")

#> [1] TRUE

Then we create our custom tag with the .renderHook parameter available for the

{htmltools} tag element, providing a special function, namely a render hook, that will be called upon for tag rendering:

cssStyle <- "color:red; border-style:dashed; border-color:blue;" 

customTag <- span("", .renderHook = function(x) {

if (getOption("shiny.devmode")) {

tagAppendAttributes(x, style = cssStyle)

}

})

customTag

#> 

<span style="color:red; border-style:dashed; 

#> 

border-color:blue;"></span> 

19https://rstudio.github.io/htmltools/news/index.html#new-features--improvements-0-5-2

[image: Image 43]

 2.6 Modern {htmltools}

43

Note that if the tag already has any existing hook, tagAddRenderHook() adds another hook to the current list. An option controls whether to erase existing hooks (replace). 

customTag <- tagAddRenderHook(customTag, function(x) {

if (getOption("shiny.devmode")) {

tagAppendChildren(x, "UNDER REWORK")

}

})

The hooks list is accessible with:

customTag$.renderHooks

#> [[1]]

#> function(x) {

#> 

if (getOption("shiny.devmode")) {

#> 

tagAppendChildren(x, "UNDER REWORK")

#> 

}

#> }

 # Remove first hook

 # customTag$.renderHooks[[1]] <- NULL

which is convenient to remove or edit hooks. Figure 2.9 summarizes the main mechanisms. 

FIGURE 2.9: Alter tags before rendering: htmltools hooks. 

Let’s try it in a Shiny app with the dev mode enabled:

[image: Image 44]

[image: Image 45]

44

 2 Manipulate HTML tags from R with {htmltools}

ui <- fluidPage(

sidebarLayout(

sidebarPanel(customTag), 

mainPanel(customTag)

)

)

server <- function(input, output, session) {}

shinyApp(ui, server)

We disable the dev mode:

devmode(devmode = FALSE)

getOption("shiny.devmode")

shinyApp(ui, server)

The result is shown Figure 2.10. 

FIGURE 2.10: tagAddRenderHook in action. Left: Shiny dev mode enabled; right: Shiny dev mode disabled. 

In Chapter 9.3.3 we’ll discuss another use case, which is about theme-dependent rendering, that is, for instance, rendering a tag differently whether Shiny is in Bootstrap 3 or Bootstrap 4 mode. 

2.6.7.2 Nested hooks

In practice, you will rarely have only one render hook to handle. Most Shiny elements are composed of main wrappers and nested tags. For instance, nav elements like tabsetPanel() and tabPanel() are, again, the perfect example. 

How do we handle render hooks with nested elements? Let’s see below with a simple example. 

We first consider the main wrapper, namely my_wrapper_tag(). The function creates a single div wrapper containing other items generated with another function. In the render hook, we simulate the impact of a theme_version option. We capture all passed items in a list and apply tagQuery() to edit a given element targeted with a specific class, using $each() to loop over all items and add an id attribute to them. We store the query result in a new item variable and replace the old items by the newly generated ones in the main wrapper with $empty() and $append(). Note the commented rows, we will discuss it later. 

my_wrapper_tag <- function(...) {

wrapper <- tags$div(class = "parent", ...)

items <- list(...)

tagAddRenderHook(wrapper, function(x) {

version <- getOption("theme_version")

if (!is.null(version)) {

if (version == "4") {

 # resolve sub items

 # items <- lapply(items, as.tags)

 # INSERT BROWSER TO DEBUG

 2.6 Modern {htmltools}

45

new_items <- tagQuery(items)$

find(".new-child")$

each(function(x, i) {

tagAppendAttributes(x, id = i)

})$

allTags()

x <- tagQuery(x)$

 # replace accordion items processed above

empty()$

append(new_items)$

allTags()

}

}

x

})

}

The next step is to design the nested item function. The tag consists of a simple div element with a class. In the render hook, we get the theme version and, depending on the result, we add a child to the item with $append(). Note the new-child class. This is the one targeted one level up in my_wrapper_tag(). 

my_nested_tag <- function() {

wrapper <- tags$div(class = "nested")

tagAddRenderHook(wrapper, function(x) {

version <- getOption("theme_version")

if (!is.null(version)) {

x <- if (version == "4") {

new_child <- tags$div(class = "new-child")

tagQuery(x)$

append(new_child)$

allTags()

}

}

x

})

}

We test it below:

 # Define external option to mimic arbitrary change

options("theme_version" = "4")

my_wrapper_tag(my_nested_tag(), my_nested_tag())

#> <div class="parent"> 

#> 

<div class="nested"> 

#> 

<div class="new-child"></div> 

#> 

</div> 

#> 

<div class="nested"> 

#> 

<div class="new-child"></div> 

#> 

</div> 

#> </div> 

The code does not seem to work as expected since the child items do not get any new id attribute, contrary to what is specified in the my_wrapper_tag() render hook. What is the problem here? 

It is basically a resolve issue. In the top-level render hook, the newly added item is not yet

46

 2 Manipulate HTML tags from R with {htmltools}

available. To check this, we can put a browser() just before the tagQuery() flow inside my_wrapper_tag():

my_wrapper_tag <- function(...) {

 # start

 # ... 

 # TO DEBUG

browser()

new_items <- tagQuery(items)$

find(".new-child")$

each(function(x, i) {

tagAppendAttributes(x, id = i)

})$

allTags()

 # ... 

 # end

}

Then we run tagQuery(items)$find(".new-child") and capture the output:

#> `$allTags()`:

#> <div class="nested"> 

#> 

<div class="new-child"></div> 

#> </div> 

#> <div class="nested"> 

#> 

<div class="new-child"></div> 

#> </div> 

#> 

#> `$selectedTags()`: (Empty selection)

From what we see, tagQuery() does not manage to find the newly inserted element with new-child class in the lower-level render hook. If we inspect str(items[[1]]):

#> List of 4

#> $ name

: chr "div" 

#> $ attribs

:List of 1

#> 

..$ class: chr "nested" 

#> $ children

: list()

#> $ .renderHooks:List of 1

#> 

..$ :function (x)

#> 

.. ..- attr(*, "srcref")= 'srcref' 

#> 

int [1:8] 4 31 20 5 31 5 4 20

#> 

.. .. ..- attr(*, "srcfile")=Classes 'srcfilecopy', 

#> 

'srcfile' <environment: 0x7fcbf889aba8> 

#> - attr(*, "class")= chr "shiny.tag" 

We get the confirmation that the child item is not available for {htmltools}, even if it appears in the code output:

 <!-- items[[1]] --> 

<div class="nested" > 

<div class="new-child" ></div> 

</div> 

A workaround is to manually resolve the sub items with as.tags(), which converts any arbitrary element to be part of the tag structure. Therefore, if you uncomment items <-

lapply(items, as.tags) in my_wrapper_tag(), we obtain:

 2.6 Modern {htmltools}

47

#> List of 4

#> $ name

: chr "div" 

#> $ attribs

:List of 1

#> 

..$ class: chr "nested" 

#> $ children

:List of 1

#> 

..$ :List of 3

#> 

.. ..$ name

: chr "div" 

#> 

.. ..$ attribs :List of 1

#> 

.. .. ..$ class: chr "new-child" 

#> 

.. ..$ children: list()

#> 

.. ..- attr(*, "class")= chr "shiny.tag" 

#> $ .renderHooks: list()

#> - attr(*, "class")= chr "shiny.tag" 

confirming

the

structure

is

now

correctly

processed. 

Running

my_wrapper_tag(my_nested_tag(), my_nested_tag()) yields:

 <!-- RUN: my_wrapper_tag(my_nested_tag(), my_nested_tag()) --> 

<div class="parent" > 

<div class="nested" > 

<div class="new-child" id="1" ></div> 

</div> 

<div class="nested" > 

<div class="new-child" id="2" ></div> 

</div> 

</div> 

which is exactly what we want! A real-life case study is available later in the book in section

9.3.3.3. 

[image: Image 46]

[image: Image 47]

3

Discover Shiny dependencies

3.1 Introduction

If Shiny creates HTML code for us, it is not enough to design a beautiful working app with user interactions. As shown earlier, all modern websites and apps have a lot of CSS and JavaScript under the hood. Let’s explore these elements in the following exercise. 

The simplest Shiny layout is the fluidPage(). The shinyapp predefined RStudio snippet creates a basic app skeleton (type shinyapp in a new script or the console in your RStudio IDE, Figure 3.1). 

FIGURE 3.1: shinyapp code snippet. 

We add some text inside and remove the session parameter from the server function, as we don’t need it:

library(shiny)

ui <- fluidPage(

p("Hello World")

)

server <- function(input, output) {}

shinyApp(ui, server)

At first glance, the page only contains text. Wait … are you sure about this? Let’s run the above example and open the HTML inspector introduced in section 1.3. Results are displayed in Figure 3.2. 

1. Click on “Open in Browser”. 

2. Open the HTML inspector. 

3. Locate the <head> tag. 

49

[image: Image 48]

50

 3 Discover Shiny dependencies

FIGURE 3.2: Shiny dependencies (with Shiny 1.6.0). 

4. Uncollapse

it

and

search

for

the

script

containing

application/html-dependencies. 

5. List all dependencies. 

According to the head section (delimited by <head></head>), Shiny has three main dependencies:

• jQuery. 

• shiny (custom JavaScript and CSS). 

• Bootstrap (JavaScript and CSS). 

� As of {shiny} 1.6.0, json2 is not needed anymore and does not appear in the above list. 

3.2 Bootstrap

According to the gitstar1 ranking, which is an unofficial GitHub star ranking website, Bootstrap2 comes in at seventh place (144563 stars) and twenty-second place for repositories and organization, respectively. First released in 2011, it welcomed the current and fifth version3

in May 2021, at the time of writing. It provides plug and play layout and interactive elements, such as tabs, navigation bars, tooltips, popovers and many input (forms), which is rather convenient since it avoids writing a large amount of CSS/JavaScript that would bring more complexity. The first release of Shiny was shipped with Bootstrap 24. Shiny relied a 1https://gitstar-ranking.com/

2https://getbootstrap.com

3https://v5.getbootstrap.com/

4https://github.com/rstudio/shinybootstrap2

 3.3 jQuery, DOM manipulation

51

long time on Bootstrap 3 (since v0.11), while many efforts are being made to provide a Bootstrap 4 compatibility and further, essentially through the bslib5 R package. 

One of the great advantage of using Bootstrap is the responsiveness of the design that can work either on desktop or mobile, even though advanced users likely prefer other specialized libraries like Framework76 or onsenUI7 to develop native-looking apps, as shown in Chapter

22. 

Bootstrap 3 relies on the grid layout system8, which allows to efficiently organize the content in rows and columns. For instance the fluidRow() and column() Shiny functions leverage the Bootstrap grid to control how elements are displayed on a page. 

How does Shiny attach the Bootstrap dependencies? The well-known fluidPage() layout is actually hiding a lower-level function, that is, bootstrapPage(). The latter is also called in many other high-level layout functions, for instance fixedPage(), fillPage() and navbarPage(). It simply attaches bootstraplib, as well as any Bootstrap-compatible theme css files that one can pass with the {shinythemes} package9. 

� As of {shiny} 1.6.0, end user should use the new theming tools, that is

{bslib}, described in Chapter 9. 

The interested reader should have a look at the following code10, inside which are defined all the Shiny Bootstrap-based layout elements, such as the well-known fluidPage() wrapper. 

3.3 jQuery, DOM manipulation

jQuery11 allows JavaScript developers to perform DOM manipulation, that is, interacting with HMTL elements, in a more user-friendly manner than with pure JavaScript. At that step, you might not be familiar with JavaScript nor jQuery. Don’t worry! Chapter 10

exposes the basics. Below is a comparison on how you would select a button HTML ele-

ment with both technologies. We are sure you’ll notice how jQuery12 is more intuitive than JavaScript. 

Javascript:

 // select the button

var btn = document. getElementById('mybutton'); 5https://github.com/rstudio/bootstraplib

6https://framework7.io/

7https://onsen.io/

8https://getbootstrap.com/docs/3.4/examples/grid/

9https://github.com/rstudio/shinythemes

10https://github.com/rstudio/shiny/blob/60db1e02b03d8e6fb146c9bb1bbfbce269231add/R/bootstr

ap-layout.R

11https://jquery.com/

12

13

The next iteration of Bootstrap, namely Bootstrap 5

completely abandons jQuery for vanilla

JavaScript. The main reason is to lighten the Bootstrap code. 

13https://blog.getbootstrap.com/2020/06/16/bootstrap-5-alpha/

52

 3 Discover Shiny dependencies

 // event

btn. addEventListener('click' , function() {

alert('You clicked me!');  // action

}); 

jQuery:

$('#mybutton'). on('click' , function() {

alert('You clicked me!'); 

}); 

Interestingly, {jquerylib} provides support14 for {shiny} by shipping the necessary content. Nowadays, many websites and frameworks (like Bootstrap 5) tend to avoid jQuery so as to gain in performance. Yet, most of Shiny’s JS code still uses it and won’t be removed any-time soon. 

3.4 Custom dependencies

The last dependency contains custom JS and CSS code necessary for Shiny to work, that is:

• Fine-tune the layout. 

• Register input/output and handle every single input/output action. Detailed mechanisms are studied in Chapters 12 and 13. 

• Initialize and control the R/JS communication, as shown in Chapter 11.3.1. 

• Handle alerts/modals/notifications. 

• …

Chapters 10.6.3, 12, 15 and 19 showcase the most important elements of those custom files. 

3.5 Exercise

In the following exercise, we consider a slightly more complex app with a slider as well as a plot output. 

1. Run the app runExample("01_hello"). 

2. Open the HTML inspector. 

3. Delete the bootstrap.min.css and ion.rangeSlider.css dependencies by removing the corresponding DOM element. 

4. What happened to the application’s UI? 

14https://github.com/rstudio/jquerylib

 3.5 Exercise

53

To sum up, all of these libraries are necessary to make Shiny what it is! Importantly, Shiny only loads what is necessary to have. For instance, as shown above, it is only necessary to include the slider dependencies when there is at least one slider in the app, which eventually improves app performances. 

In Chapter 4, we explore tools to manage HTML dependencies. In Chapters 19.4.1 and 15, we study a special case to insert dependencies at runtime. 

[image: Image 49]

[image: Image 50]

4

Handle HTML dependencies with {htmltools}

In this chapter, I’ll demonstrate how we can utilize {htmltools} (Cheng et al., 2021b) to manage web dependencies, that is handling CSS and JS code as well as other assets in your Shiny apps. This literally opens the doors to work with almost any web framework and design outstanding user experiences with Shiny in a reasonable amount of time and reproducible manner. 

4.1 Motivations

In this example, we would like to include a Material Bootstrap card1 in a Shiny apps, as shown in Figure 4.1. 

FIGURE 4.1: Material Bootstrap design card. 

The naive approach would be to include the HTML code directly in the app code. my_card() creates the card structure:

library(shiny)

 # we create the card function before

my_card <- function(...) {

withTags(

tags$div(

class = "card", 

tags$div(

class = "card-body", 

tags$h5(class = "card-title", "Card title"), tags$p(class = "card-text", "Card content"), tags$button(

type = "button", 

1https://mdbootstrap.com/docs/standard/components/cards/

55

[image: Image 51]

56

 4 Handle HTML dependencies with {htmltools}

class = "btn btn-primary", 

"Button" 

)

)

)

)

}

Below is a Shiny app example:

 ### RUN ###

 # OSUICode::run_example(

 #

 "htmltools/deps/card/ex1", 

 #

 package = "OSUICode" 

 # )

FIGURE 4.2: Attempt to display a Material Bootstrap card without dependencies in a Shiny app. 

As depicted by Figure 4.2, nothing is displayed, which was expected since {shiny} (Chang et al., 2021) does not import Bootstrap 4 dependencies. Don’t panic! We load the necessary css to display this card (if required, we could include the javascript as well). We could use either includeCSS(), tags$head(tags$link(rel = "stylesheet", type = "text/css", href = "custom.css")), as described in the Shiny documentation here2. Web development best practices recommend pointing to an external file rather than including CSS in the head or as inline CSS (see Chapter 6). In the below example, we use a CDN (content delivery network), but that could be a local file in the www/ folder:

 ### RUN ###

 # OSUICode::run_example(

 #

 "htmltools/deps/card/ex2", 

 #

 package = "OSUICode" 

 # )

The card may seem ugly, but at least it is displayed as shown in Figure 4.3. This approach is, however, not easy to share with other developers since there is no way to recover the specific dependency. 

The best approach actually consists in leveraging the htmlDependency() and attachDependencies() functions from {htmltools}. htmlDependency() takes the following main parameters:

• A name. 

• A version (useful to remember on which version it is built upon). 

2https://shiny.rstudio.com/articles/css.html

[image: Image 52]

 4.1 Motivations

57

FIGURE 4.3: Material Bootstrap card within a simple app. 

• A path to the dependency (can be a CDN or a local folder). 

• script and stylesheet to respectively pass css and scripts. 

 # handle dependency

mdb_cdn <- " https://cdnjs.cloudflare.com/ajax/libs/" 

mdb_card_dep <- function() {

htmlDependency(

name = "mdb-card", 

version = "1.0", 

src = c(href = mdb_cdn), 

stylesheet = "mdb-ui-kit/3.6.0/mdb.min.css" 

)

}

If you are not pointing to a CDN and use local files, this is crucial to wrap the newly created dependency in a function since the path has to be determined at run time and not when the package builds. It means that if you are developing a package with dependencies, forgetting this step might prevent other users from getting the dependency working on their own machine (the differences between Unix and Windows OS paths is clearly a good example). 

We create the card tag and give it the Material Bootstrap dependency through the attachDependencies() function. 

� In a recent version of {htmltools}, we may simply use tagList(tag, deps) instead. Importantly, attachDependencies() has an append parameter FALSE by default. Ensure to set it to TRUE if you want to keep already attached dependencies. 

 # create the card

my_card_with_deps <- function(...) {

cardTag <- my_card(...)

 # attach dependencies (old way)

 # htmltools::attachDependencies(cardTag, bs4_card_dep())

 # simpler way

tagList(cardTag, mdb_card_dep())

}

We finally run our app:

[image: Image 53]

[image: Image 54]

58

 4 Handle HTML dependencies with {htmltools}

 ### RUN ###

 # OSUICode::run_example(

 #

 "htmltools/deps/card/ex3", 

 #

 package = "OSUICode" 

 # )

According to Figure 4.4, something seems to be broken or conflicting. If we look at the developer tools, we realize that the new Material Design stylesheet comes before the Shiny Bootstrap CSS, which is the source of our problems. 

� This raises an important consideration about htmlDependency(). Under the hood, Shiny adds many necessary dependencies like Bootstrap and jQuery, and you have no control over where your own dependencies will be inserted. Section

4.3 explains how to seamlessly solve that issue. 

FIGURE 4.4: Conflict between Material Bootstrap and Bootstrap CSS. 

With this approach, you can develop a package of custom dependencies that people could use when they need to add custom elements in shiny. 

4.2 Importing HTML dependencies from other packages

The {shinydashboard} (Chang and Borges Ribeiro, 2018) package helps to design dashboards with Shiny. In the following, we would like to integrate the box component in a classic Shiny App (without the dashboard layout). However, if you try to include the box tag, you will notice that nothing is displayed since {shiny} does not have {shinydashboard} dependencies. {htmltools} contains a function, namely findDependencies() that looks for all dependencies attached to a tag. Before going further, let’s define the basic dashboard skeleton:

 4.2 Importing HTML dependencies from other packages 59

library(shinydashboard)

dashboard_ui <- dashboardPage(

dashboardHeader(), 

dashboardSidebar(), 

dashboardBody()

)

There are numerous details associated with {shinydashboard} that we will not go into. 

If you are interested in learning more, please check out the package website3. The key point here is the main wrapper function dashboardPage(). The fluidPage() is another wrapper function that most are already familiar with. We apply findDependencies() on dashboard_ui:

library(htmltools)

dashboard_deps <- findDependencies(dashboard_ui)

dashboard_deps[[1]]

#> 

List of 10

#> 

$ name

: chr "font-awesome" 

#> 

$ version

: chr "5.13.0" 

#> 

$ src

:List of 1

#> 

..$ file: chr "www/shared/fontawesome" 

#> 

$ meta

: NULL

#> 

$ script

: NULL

#> 

$ stylesheet: chr [1:2] "css/all.min.css" 

#> 

"css/v4-shims.min.css" 

#> 

$ head

: NULL

#> 

$ attachment: NULL

#> 

$ package

: chr "shiny" 

#> 

$ all_files : logi TRUE

#> 

- attr(*, "class")= chr "html_dependency" 

For space reasons, we only printed the first dependency output, but dashboard_deps is a list containing four dependencies:

• Font Awesome4

handles icons. Interestingly, this dependency is provided by

dashboardHeader, especially the shiny::icon("bars") that collapses the left sidebar. 

• Bootstrap5 is the main HTML/CSS/JS template. Importantly, please note the version 3.3.7, whereas the current is 4.5.2. 

• AdminLTE6 is the dependency containing HTML/CSS/JS related to the admin template. 

It is closely linked to Bootstrap 3. 

• shinydashboard, the CSS and javascript necessary for our dashboard to work properly. 

In practice, integrating custom HTML templates to Shiny does not usually work out of the box for many reasons, and some modifications are necessary. For instance, here is a list of changes7 to optimize AdminLTE for Shiny. This has major consequences on the template maintenance such that upgrading to another AdminLTE version would require modifying all these elements by hand. You may understand why template maintainers are quite often reluctant to upgrade their dependencies as it might breake the whole package, quite easily. 

3https://rstudio.github.io/shinydashboard/

4https://fontawesome.com

5https://getbootstrap.com/docs/3.3/

6https://adminlte.io

7https://github.com/rstudio/shinydashboard/blob/4ac99720653f2295f486734c862e56c82edb5d80/

srcjs/AdminLTE/README-shiny-mods.md

[image: Image 55]

60

 4 Handle HTML dependencies with {htmltools}

Below, we attach the dependencies to the box() with tagList(), as shown above. Notice that our custom box() does not contain all parameters as in the official {shinydashboard}

version, which is actually OK at this time. For a better contrast with the body, we add a custom color to the background, as depicted by Figure 4.5: my_dashboard_box <- function(title, status) {

tagList(

box(title = title, status = status), 

dashboard_deps

)

}

 ### RUN ###

 # OSUICode::run_example(

 #

 "htmltools/deps/dashboard", 

 #

 package = "OSUICode" 

 # )

FIGURE 4.5: AdminLTE2 box inside classic Shiny app. 

You now have limitless possibilities. Interestingly, the shinyWidgets8 useBs4Dash() function relies on the same approach. 

4.3 Suppress dependencies

In rare cases, you may need to remove an existing conflicting dependency. The suppressDependencies() function allows users to perform this task. For instance, shiny.semantic9 built on top of semantic ui is not compatible with Bootstrap, the latter being dropped from the list, as illustrated by Figure 4.6. 

Below, we remove the AdminLTE2 dependency from a {shinydashboard} page and nothing is displayed (as expected):

 ### RUN ###

 # OSUICode::run_example(

 #

 "htmltools/deps/remove-deps", 

 #

 package = "OSUICode" 

 # )

8https://github.com/dreamRs/shinyWidgets/blob/5b1fe07eaa13ff9157effaa13187d560d4d97644/R/

useBs4Dash.R#L123

9https://github.com/Appsilon/shiny.semantic/tree/f184da21864db3c39ea5233187400a87df85fb0f

[image: Image 56]

 4.4 Resolve dependencies

61

FIGURE 4.6: Deletion of Bootstrap inside semanticPage. 

4.4 Resolve dependencies

Imagine a situation in which we would like to use the very last version of Font Awesome icons, which is currently 5.15.1 according to jsdelivr10. We recall that {shiny} already provides version 5.13.0 through the icon() function. Including another version would probably cause conflicts, and we would like to avoid that case. {htmltools} has a resolveDependencies() tool that removes any redundant dependencies, keeping the dependency with the higher version if names are identical:

jsdelivr_cdn <- " https://cdn.jsdelivr.net/npm/@fortawesome/" 

ft_aws <- paste0(jsdelivr_cdn, "fontawesome-free@5.15.1/") new_icon_dep <- htmlDependency(

name = "font-awesome", 

version = "5.15.1", 

src = c(href = ft_aws), 

stylesheet = "css/all.min.css" 

)

10https://www.jsdelivr.com/package/npm/@fortawesome/fontawesome-free

62

 4 Handle HTML dependencies with {htmltools}

icon_deps <- list(

new_icon_dep, 

findDependencies(shiny::icon("th"))[[1]]

)

resolveDependencies(icon_deps)

#> 

[[1]]

#> 

List of 10

#> 

$ name

: chr "font-awesome" 

#> 

$ version

: chr "5.15.1" 

#> 

$ src

:List of 1

#> 

..$ href: chr " https://cdn.jsdelivr.net/npm/@fortawesome

#> 

/fontawesome-free@5.15.1/" 

#> 

$ meta

: NULL

#> 

$ script

: NULL

#> 

$ stylesheet: chr "css/all.min.css" 

#> 

$ head

: NULL

#> 

$ attachment: NULL

#> 

$ package

: NULL

#> 

$ all_files : logi TRUE

#> 

- attr(*, "class")= chr "html_dependency" 

Combining findDependencies(), suppressDependencies() and resolveDependencies() gives you great power to successfully manage your dependencies! 

4.5 Insert Custom script in the head

With {shinydashboardPlus}, users can fine-tune their dashboard behavior with a simple option parameter passed to dashboardPage(). The sidebarExpandOnHover capability that consists of expanding the sidebar when hovering on it, is part of those options11, yet it is not exposed by {shinydashboard}. Under the hood, all those options are gathered in a list, then converted into JSON to eventually generate a JavaScript configuration file. Until now, we only saw two ways to include scripts or stylesheets. How do we include any arbitrary script (defined on the fly by the user when the app starts) in a dependency? 

htmlDependency() has a head parameter allowing passage of any lines of HTML to insert into the document head. We can easily imagine giving it a string containing a script. 

Below, we first construct the options list. Then, we create the dependency: notice since src is mandatory, we have to give it a value, but we will not use script nor stylesheet arguments. 

options <- list(

sidebarExpandOnHover = TRUE, 

boxWidgetSelectors = list(

remove = '[data-widget="remove"]' 

)

)

config_script <- function(options) {

htmlDependency(

"options", 

as.character(utils::packageVersion("shinydashboardPlus")), src = c(file = system.file(

11https://adminlte.io/themes/AdminLTE/documentation/index.html#adminlte-options

 4.5 Insert Custom script in the head

63

"shinydashboardPlus-2.0.0", 

package = "shinydashboardPlus")

), 

head = if (!is.null(options)) {

paste0(

"<script>var AdminLTEOptions = ", 

jsonlite::toJSON(

options, 

auto_unbox = TRUE, 

pretty = TRUE

), 

";</script>" 

)

}

)

}

 # show the script

print(HTML(config_script(options)$head))

#> <script>var AdminLTEOptions = {

#> 

"sidebarExpandOnHover": true, 

#> 

"boxWidgetSelectors": {

#> 

"remove": "[data-widget=\"remove\"]" 

#> 

}

#> };</script> 

We invite the reader to run the example below involving {shinydashboardPlus}, open the HTML inspector and look at the head. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "htmltools/deps/custom", 

 #

 package = "OSUICode" 

 # )

According the the AdminLTE documentation12, global options must be passed before loading the app.min.js script. Creating this “dummy” dependency allowed us to do so, as shown on Figure 4.7. 

12https://adminlte.io/themes/AdminLTE/documentation/index.html#adminlte-options

[image: Image 57]

64

 4 Handle HTML dependencies with {htmltools}

FIGURE 4.7: Insert arbitrary script in the head. 

5

Web application concepts

In this chapter, we discuss the fundamental concepts underlying web applications, like the client-server model, the HTTP protocol and web servers, showing how Shiny integrates that system and what the differences are compared to the classic web standards. This chapter may significantly ease the understanding of Part 3. 

5.1 The client-server model

A Shiny app is a web application, and like all web applications, it follows the server-client model which consists of:

• A client, which sends requests to the server through the network. 

• A server composed of hardware and software elements that treats the client request. 

• A network inside which flow requests between the server and the client occur. It is done with the HyperText Transfer Protocol (HTTP). 

Each time a client sends a request, it is processed by the server, which provides an answer and closes the connection before treating any other request. In practice, to get a web page, the client emits many requests, one to get the page and then one request per JS/CSS/image assets. As an example, try to run the following in the R console and open the developer tools:

library(shiny)

ui <- fluidPage()

server <- function(input, output, session) {}

shinyApp(ui, server)

Under the network tab, we notice many files (if nothing is shown, reload the web browser tab), which actually correspond to all requests made by the client to the server, as seen in

Figure 5.1. We also get the current answer status, 200 being the OK HTTP status1, the size and the time needed to treat the request. Nowadays, there exists mechanisms like web browser caching to speed up the request treatment. Don’t believe that each time you visit a Shiny app, all requests are answered by the server. Actually, most assets are recovered from the web browser cache, which takes significantly less time, although, sometimes misleading. 

I am sure you already found this situation when, after updating your Shiny app style, you still get the old design. Most of the time this is a caching issue and resetting Chrome’s cache solves the problem. 

1https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

65

[image: Image 58]

[image: Image 59]

66

 5 Web application concepts

FIGURE 5.1: Request flow between client and server at Shiny app start. 

5.2 About HTTP requests

If we inspect the first request from Figure 5.1, we obtain Figure 5.2. An HTTP request is composed of:

• A method2 that indicates the intentions. We mostly use GET to ask for something or POST, to submit something. 

• An url corresponding to the path to the targeted element. Here, if nothing is specified in the path, the server will try to get the main HTML page, also called index.html. 

The HTTP protocol is unidirectional, that is, you may see it as a phone call during which you are only allowed one question, thereby terminating the call. 

{httr} (Wickham, 2020) allows most of the HTTP request to come directly from R like: library(httr)

res <- GET(" https://www.google.com") 2https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

[image: Image 60]

 5.4 Structure of an URL

67

FIGURE 5.2: Details about an HTTP request. 

5.3 Structure of an URL

The url (uniform resource locator) defines the unique location of the content to access on the server. The general structure is the following3:

<PROTOCOL>://<HOST>:<PORT>/<PATH>?<QUERY>#<ANCHOR> PROTOCOL or (scheme) is the communication protocol, that is HTTP or HTTPS (encrypted HTTP). HOST is an IP adress or a domain name, that may be bought. For instance google.com is an owned domain name. The PORT indicates which program to use to access the specified resources (80 and 443 are the default HTTP and HTTPS values, respectively). PATH is the location of the resource on the server. For instance, if you run the above basic Shiny app and enter http://127.0.0.1:<PORT>/shared/jquery.min.js (replace PORT by your own value), you’ll see the jQuery.min.js code, which is actually needed by Shiny. QUERY is the place to add extra parameters, following the key/value notation like ?key1=value1&.... In a Shiny app, query parameters may be retrieved with parseQueryString() or altered by updateQueryString(). 

5.4 Web app files structure

There are substantial differences between Shiny and classic web applications regarding the project file structure. While web applications are composed of at least an index.html file, as well as optional pages and assets (extra CSS and JS files, images), we don’t exactly find such a file structure in Shiny. A basic Shiny app folder is mostly composed of: 3https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_URL

68

 5 Web application concepts

• app.R or ui.R/server.R

• A www folder containing assets like JS, CSS, images. 

Where is the index.html file? It is actually created on the fly when you run shinyApp(). 

The detailed processes are mentioned later in this chapter. 

5.5 Serving web apps

In order to expose our app to the rest of the world, we have to host it somewhere, that is a web server. A server actually corresponds to:

• A hardware layer, namely the machine or virtual machine able to run programs. Most of servers are running under Linux. It is actually pretty straightforward to set up your own server thanks to the many solutions like digitalocean4 or the Amazon Web Service5, also known as AWS. 

• A software layer, which are programs necessary to treat the client requests. You probably know Apache6 or nginx7, which are the most common solutions. 

How is a Shiny app served? In the Shiny context, we need software able to run R scripts, thereby preventing us from relying on classic hosting strategies. RStudio developed multiple solutions, the most famous is likely shiny server:

• Shiny server open source8. 

• Shiny server pro9. 

• RStudio Connect10. 

• shinyapps.io11. 

You can see Shiny server as an improved web server. Indeed, in addition to run Rmd documents (R markdown) or Shiny apps, it is able to interpret classic HTML files. An excellent guide developed by Dean Attali to set up your own server is available here12. 

Another noticeable difference between web servers and Shiny server is the running port, which defaults to 3838 for the latter (instead of the classic 80), although entirely customizable through the configuration file. 

4https://www.digitalocean.com/

5https://aws.amazon.com/

6https://httpd.apache.org/

7https://www.nginx.com/

8https://rstudio.com/products/shiny/download-server/

9https://rstudio.com/products/shiny-server-pro/

10https://rstudio.com/products/connect/evaluation/

11https://www.shinyapps.io/

12https://deanattali.com/2015/05/09/setup-rstudio-shiny-server-digital-ocean/

 5.7 About {httpuv}

69

5.6 About {httpuv}

In addition to the Shiny server layer, which is able to run R code and start any app on the server as a result of a user request, Shiny relies on {httpuv} (Cheng and Chang, 2021) which fires a web server for each app directly from R, making it possible to handle HTTP

requests but also the R and JS communication, which will be covered later in Chapter 11. 

5.7 Shiny app lifecycle

Whenever a user (client) accesses a Shiny app with his web browser, a series of events occurs

(Figure 5.3):

1. The client sends a HTTP CONNECT request to the server (Shiny server) containing the path to the targeted app. 

2. The Shiny server starts the targeted app with runApp(). 

Under the hood, runApp():

• Calls shinyApp(), which returns a Shiny app object composed of a server function and the UI. The UI has to be formatted to be a function returning an HTTP response, as requested by {httpuv}. Section 5.7.1 explains this process in detail. 

• Calls startApp, which creates HTTP and WebSocket (WS) handlers. WS handlers are responsible for controlling the WS behavior when the app starts, when a message is received from a client and when the app closes. WS are necessary communication between R and JS, as shown in Chapter 11. 

• Calls startServer from {httpuv}, which starts the HTTP server and opens the server WS connection. 

3. If the R code does not contain errors, the server returns the Shiny UI HTML

code to the client. 

4. The HTML code is received and interpreted by the client web browser. 

5. The HTML page is rendered. It is an exact mirror of the initially provided ui.R

code. 

The returned HTML contains all the necessary JavaScript to subsequently open the client WS connection and start the dialog between R and JS. This will be discussed in Chapter

11. 

5.7.1 Building the UI

As stated above in section 5.4, the Shiny app file structure does not follow all the web development standards. Particularly, there is no index.html file. 

What definitely makes Shiny wonderful is the ability to only write R code to produce HTML. 

[image: Image 61]

70

 5 Web application concepts

FIGURE 5.3: Shiny App lifecycle. 

Although convenient for R users, there is a moment where all this R code has to become HTML, since web browsers are just not able to process R files. 

Shiny must provide a string containing the HTML code that will be later given to the

{httpuv} server and displayed to the end user, if the request is successful. Moreover, it must be a valid HTML template, as shown in Chapter 1.3.3, which is not the case when you use top-level UI shiny function like fluidPage():

fluidPage(p())

#> <div class="container-fluid"> 

#> 

<p></p> 

#> </div> 

In the above output, we miss the <!DOCTYPE html> indicating to the web browser that our document is HTML and to load the appropriate interpreter. Additionally, html, head and body are not provided with fluidPage(). 

How does Shiny create an appropriate HTML template? These steps heavily rely on

{htmltools}, particularly the renderDocument() function. If this has not been documented in Chapter 2, it’s mainly because it is, in theory, quite unlikely you’ll ever use those functions, unless you try to develop another web framework for R, built on top of {httpuv}, like {ambriorix} or {fiery}. Another use case is {argonR}, which allows us to design Bootstrap 4 HTML templates, on top of the argon13 design system. 

Under the hood, shinyApp() does many things, particularly creating a valid HTTP response template for {httpuv}, through the internal shiny:::uiHttpHandler function 14. The 13https://www.creative-tim.com/product/argon-design-system

14

15

The interested reader will have a look at the following script

, which contains all previously mentioned

functions like uiHttpHandler. 

15https://github.com/rstudio/shiny/blob/60db1e02b03d8e6fb146c9bb1bbfbce269231add/R/shinyui.R

 5.7 Shiny app lifecycle

71

conversion from R to HTML is achieved by shiny:::renderPage. First, the provided UI R code is wrapped in a tags$body(), if not yet done. As a reminder fluidPage does not create a body tag, which is required to produce a valid HTML template. The result is given to htmlTemplate() to fill the following boilerplate, part of the Shiny package:

<!DOCTYPE html> 

<html{{ if (isTRUE(nzchar(lang)))

paste0(" lang="" , lang, """) }}> 

<head> 

{{ headContent() }}

</head> 

{{ body }}

</html> 

If we assume that our UI is built as follows, applying htmlTemplate() on it yields: ui <- fluidPage(

textInput("caption", "Caption", "Data Summary"), verbatimTextOutput("value")

)

ui <- htmlTemplate(

system.file("template", "default.html", package = "shiny"), lang = "en", 

body = tags$body(ui), 

document_ = TRUE

)

The output is shown below (body content is cropped for space reasons):

<!DOCTYPE html> 

<html lang="en" > 

<head> 

 <!-- HEAD_CONTENT --> 

</head> 

<body> 

<div class="container-fluid" > 

 <!-- Body content --> 

</div> 

</body> 

</html> 

You may wonder what headContent() does. It inserts the string <!-- HEAD_CONTENT --> inside the head tag so that Shiny knows where to insert the dependencies, that is all mandatory JS and CSS assets. Then, all necessary dependencies like jQuery, Bootstrap and shiny css/javascript files (shiny:::shinyDependencies) are added in the UI head by renderDocument(). renderDocument() is a three steps process:

• Convert all R Shiny tags to HTML with renderTags(). For each tag, renderTags() returns a list of four elements: the head content, any singletons, the list of dependencies and the HTML string. 

• Treat the dependencies with resolveDependencies() to remove conflicts, as shown in Chapter 4.4. 

• Process the dependencies with createWebDependency(), which make sure each dependency can be served over HTTP. 

• Convert dependencies R code to HTML with renderDependencies() and insert it in the template head, replacing the <!-- HEAD_CONTENT --> string. 

72

 5 Web application concepts

For instance, we call renderTags() on the Shiny icon():

library(htmltools)

res <- renderTags(icon("cogs"))

str(res)

#> 

List of 4

#> 

$ head

: 'html' chr "" 

#> 

..- attr(*, "html")= logi TRUE

#> 

$ singletons

: chr(0)

#> 

$ dependencies:List of 1

#> 

..$ :List of 9

#> 

.. ..$ name

: chr "font-awesome" 

#> 

.. ..$ version

: chr "5.13.0" 

#> 

.. ..$ src

:List of 1

#> 

.. .. ..$ file: chr "<TRUNCATED>" 

#> 

.. ..$ meta

: NULL

#> 

.. ..$ script

: NULL

#> 

.. ..$ stylesheet: chr [1:2] "css/all.min.css" 

#> 

"css/v4-shims.min.css" 

#> 

.. ..$ head

: NULL

#> 

.. ..$ attachment: NULL

#> 

.. ..$ all_files : logi TRUE

#> 

.. ..- attr(*, "class")= chr "html_dependency" 

#> 

$ html

: 'html' chr "<i class="fa fa-cogs" 

#> 

role="presentation" aria-label="cogs icon"></i>" 

#> 

..- attr(*, "html")= logi TRUE

and then renderDependencies() on the tag dependency:

renderDependencies(res$dependencies)

#> 

<link href="TRUNCATED/fontawesome/css/all.min.css" 

#> 

rel="stylesheet" /> 

#> 

<link href="TRUNCATED/fontawesome/css/v4-shims.min.css" 

#> 

rel="stylesheet" /> 

Let’s apply renderDocument() to our previous template:

html <- renderDocument(

ui, 

deps = c(

list(

htmlDependency(

"jquery", 

"3.5.1", 

c(href = "shared"), 

script = "jquery.min.js" 

)

), 

shiny:::shinyDependencies()  # Shiny JS + CSS

), 

processDep = createWebDependency

)

The final HTML output is shown as follow (body content is cropped to save space). Look at the head tag where all dependencies are correctly inserted. 

 5.7 Shiny app lifecycle

73

<!DOCTYPE html> 

<html lang="en" > 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 

<script type="application/shiny-singletons" ></script> 

<script type="application/html-dependencies" > jquery[3. 5.1]; shiny-css[1. 6.0]; shiny-javascript[1. 6.0]; bootstrap[3. 4.1]</script> 

<script src="shared/jquery.min.js" ></script> 

<link href="shared/shiny.min.css" rel="stylesheet" /> 

<script src="shared/shiny.min.js" ></script> 

<meta name="viewport" content="width=device-width, initial-scale=1" /> 

<link href="shared/bootstrap/css/bootstrap.min.css" 

rel="stylesheet" /> 

<link href="shared/bootstrap/accessibility/css/

bootstrap-accessibility.min.css" rel="stylesheet" /> 

<script src="shared/bootstrap/js/bootstrap.min.js" ></script> 

<script src="shared/bootstrap/accessibility/js

/bootstrap-accessibility.min.js" ></script> 

</head> 

<body> 

<div class="container-fluid" > 

 <!-- Body content --> 

</div> 

</body> 

</html> 

The final step is to return an HTTP response containing the HTML string. As of {shiny}

1.6.0, the httpResponse function is exported by default, and the returned content is exactly the same as showed above:

httpResponse(

status = 200, 

content = enc2utf8(paste(collapse = "\n", html))

)

#> 

$status

#> 

[1] 200

#> 

#> 

$content_type

#> 

[1] "text/html; charset=UTF-8" 

#> 

#> 

$content

#> 

[1] "<!DOCTYPE html> 

#> 

<html lang="en"> 

#> 

<head> 

#> 

#> 

<meta http-equiv="Content-Type" content="text/html; 

#> 

charset=utf-8"/> 

#> 

#> 

<script type="application/shiny-singletons"></script> 

#> 

#> 

<script type="application/html-dependencies">jquery[3.5.1]; 

#> 

shiny-css[1.6.0];shiny-javascript[1.6.0];bootstrap[3.4.1]

#> 

</script> 

#> 

#> 

<script src="shared/jquery.min.js"></script>... TRUNCATED" 

#> 

#> 

$headers

#> 

$headers$`X-UA-Compatiblè

#> 

[1] "IE=edge,chrome=1" 

#> 

#> 

#> 

attr(,"class")

#> 

[1] "httpResponse" 

74

 5 Web application concepts

5.7.2 Serving HTML with {httpuv}

Once the UI is processed, Shiny makes it available to end users by leveraging {httpuv}, which provides tools to set up an HTTP server. The main function is startServer, which requires a host, port and an app. If you run a Shiny app locally, the default host is localhost or 127.0.0.1, and the port is randomly chosen by shinyApp or runApp, even though you may fix it. The most important element is the app, and {httpuv} expects a list of functions like:

• call, to handle the client HTTP request and return the server HTTP response. Depending on the context, Shiny may return different responses like 403 (unauthorized), 404 (not found) or 200 (OK). 

• onHeaders if the request contains headers. For instance, this may be required for authentication. 

• staticPaths to serve assets, especially CSS or JS files. 

A valid call function template containing the previously processed HTML UI is defined below:

app <- list()

app$call <- function(req) {

list(

status = 200L, 

headers = list(

'Content-Type' = 'text/html' 

), 

body = html

)

}

We then invoke startServer:

library(httpuv)

s <- startServer(

"127.0.0.1", 

8080, 

app

)

Now, if we browse to 127.0.0.1:8080, we see the text input. However, opening the HTML

inspector shows many errors, most of them due to the fact that we forgot to serve static assets, all located in the inst/www/shared folder of the {shiny} package. Let’s do it below by adding a staticPaths component to our app:

s$stop()  # stop the server before running it again! 

app$staticPaths <- list(shared = system.file(

package = "shiny", 

"www", 

"shared" 

))

s <- startServer(

"127.0.0.1", 

8080, 

app

)

The response may be inspecting directly from R (ideally within another R session) with an

{httr} GET request:

 5.8 Summary

75

GET("http://127.0.0.1:8080")

 ## Response [http://127.0.0.1:8080]

 ##

 Date: 2021-03-04 23:41

 ##

 Status: 200

 ##

 Content-Type: text/html

 ##

 Size: 5 B

Keep in mind that Shiny does many more things to set up the server, and we just highlighted the most important steps. The above code crashes since the HTML page returned to the client tries to connect to a server WS, that does not yet exist. 

5.8 Summary

So far so good! You hopefully now better understand what a Shiny app is, how it is served and the differences between classic web apps. 

Beautify with CSS and Sass

6

CSS for Shiny

In the previous part, we saw how to create and manipulate HTML tags with {shiny} and

{htmltools}, as well as importing external web dependencies, especially CSS files. This is, however, far from being enough to develop apps that stand out from the pack. As introduced in 1.3.5.1, CSS is a web language allowing a deep customization of the appearance. This part aims at providing an acceptable overview of CSS capabilities in the Shiny context, so that you may start to seamlessly and quickly customize your apps. 

6.1 How to include CSS? 

There are three ways to include CSS in a web page:

• Point to an external file <link rel="stylesheet" href="style.css"/>. 

• Insert the style in the head. Not recommended for complex projects since this is hard to maintain. 

• Insert the style at the tag level, through the style attribute, also known as inline CSS, and this is not recommended since it is hard to maintain. 

<!DOCTYPE html> 

<html lang="en" > 

<head> 

<meta charset="utf-8" /> 

<link rel="stylesheet" href="style.css" /> 

<title> CSS</title> 

<style type="text/css" > 

p {

color: red; 

}

</style> 

</head> 

<body> 

<p style="color: red" > Hello World</p> 

<p> Some text</p> 

<div> Plop</div> 

</body> 

</html> 

We advise you to follow the first method as much as you can so that you modify the CSS in only one place! At the end of the day, your CSS script will look like the following example: 77

78

 6 CSS for Shiny

tag1 {

property1 : value1; 

property2 : value2; 

}

tag2 {

property1 : value1; 

}

All of the above methods apply to Shiny:

• External

CSS

file

tags$link(rel = "stylesheet", type="text/css", href="www/style.css"). 

• Internal CSS tags$head(tags$style("p {color: red;}")). 

• Inline CSS p(style = "color:red;", "Red text"). 

However, if you correctly followed the previous part about HTML dependencies (see Chapter

4), the best way in Shiny to create a dependency and attach it to a tag is: css_dep <- function() {

htmlDependency(

name = "css dep", 

version = "1.0", 

src = path_to_css, 

stylesheet = filename

)

}

tagList(tag, css_dep)

Following this method, you make the file accessible on the server, thereby easing the debugging process. When should we apply the above method? Well, it does not make a lot of sense for tiny CSS modifications, where you could use one of the three other methods listed previously. Moreover, it is also fine for an external dependency for which you don’t need to debug or modify the code. 

6.2 CSS selectors

CSS selectors define on which elements to apply CSS rules. Below, we review the most common patterns. 

6.2.1 Basics

To apply CSS, we select a tag, choose the property we want to change and give it a value: selector {

property: value; 

}

 6.2 CSS selectors

79

For instance, to set the color blue to the p tag, we would do:

p {

color: red; 

}

Now, how would we apply the same property to multiple tags? We separate tags by a comma, also called a grouping selector:

p, div {

color: red; 

}

See below an example with a Shiny app:

 ### RUN ###

 # OSUICode::run_example(

 #

 "css/selector-basics", 

 #

 package = "OSUICode" 

 # )

6.2.2 Select by class, id

The method shown above applies to all selected tags. This is not necessarily what we want as we probably would like to filter. We first add a class to the first p tag. Best practice is to give it a meaningful name:

<p class="first-p" ></p> 

On the CSS side, we prefix the class by a .:

.first-p {

color: red; 

}

To style unique elements, we may use id:

 #element {

color: red; 

}

As another example, the result is shown in Figure 6.1:

 ### RUN ###

 # OSUICode::run_example(

 #

 "css/selector-class-id", 

 #

 package = "OSUICode" 

 # )

The second p tag is not selected. 

[image: Image 62]

80

 6 CSS for Shiny

FIGURE 6.1: Select by class and id. 

6.2.3 Apply CSS to single elements

Let’s consider the following example:

<p> Hello World! What's up? </p> 

How would you change the color of the World word? We could not select the whole p element, as it would apply to the whole tag. There exists specific tags like div and span that you can apply. As stated in Chapter 1.3, span may be used inside containers to surround words:

<p> Hello <span class="custom" > World</span> ! What's up? </p> 

.custom {

color: red; 

}

6.2.4 Advanced selectors

Until now, we’ve seen how to select an element by the tag name, a class and an id. Yet, this is not enough. How would you select the below tag? 

<a data-toggle="dropdown" > Tag</a> 6.2.4.1 Select nested tags

We consider two HTML tags. We only want the first a element to have red text. We can’t select by class .nav-link as it would also style the second element! 

<li class="nav-item" > 

<a class="nav-link" href="#" > Link</a> 

</li> 

<a class="nav-link" href="#" > Link</a> 

[image: Image 63]

 6.2 CSS selectors

81

The idea is to select the first tag, that is li, then select its child a: li a {

color: red; 

}

The Shiny navbarPage template is composed of navigation items li and a, which we may easily modify:

 ### RUN ###

 # OSUICode::run_example(

 #

 "css/selector-nested/ex1", 

 #

 package = "OSUICode" 

 # )

FIGURE 6.2: Style all nav link elements. 

You’ll notice that tabsetPanel() tabs are also modified, which is not exactly what we wanted, as shown in Figure 6.2. The main difference between navbarPage() and tabsetPanel() is the class held by the the menu wrapper ul:

navbarPage(tabPanel("test"))

#> 

<nav class="navbar navbar-default navbar-static-top" 

#> 

role="navigation"> 

#> 

<div class="container-fluid"> 

#> 

<div class="navbar-header"> 

#> 

<span class="navbar-brand"> 

#> 

<div class="tab-pane" title="test" 

#> 

data-value="test"></div> 

#> 

</span> 

#> 

</div> 

#> 

<ul class="nav navbar-nav" data-tabsetid="2341"></ul> 

#> 

</div> 

#> 

</nav> 

#> 

<div class="container-fluid"> 

#> 

<div class="tab-content" data-tabsetid="2341"></div> 

#> 

</div> 

tabsetPanel(tabPanel("test"))

#> 

<div class="tabbable"> 

#> 

<ul class="nav nav-tabs" data-tabsetid="6625"> 

#> 

<li class="active"> 

#> 

<a href="#tab-6625-1" data-toggle="tab" 

#> 

data-value="test">test

#> 

</a> 

#> 

</li> 

#> 

</ul> 

#> 

<div class="tab-content" data-tabsetid="6625"> 

#> 

<div class="tab-pane active" data-value="test" 

[image: Image 64]

82

 6 CSS for Shiny

#> 

id="tab-6625-1"> 

#> 

</div> 

#> 

</div> 

#> 

</div> 

which is nav navbar-nav for navbarPage() and nav nav-tabs for tabsetPanel(). To isolate navbarPage() tabs, we have to improve our previous selector:

.navbar-nav li a {

font-size: 20px; 

font-weight: bold; 

}

Doing so, we’ll only look at the link elements inside the container having the navbar-nav class. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "css/selector-nested/ex2", 

 #

 package = "OSUICode" 

 # )

The final result is depicted in Figure 6.3. 

FIGURE 6.3: Style specific navbar nav link elements. 

6.2.4.2 Select by attributes

To select by attribute, we use tag[attribute]:

<a data-toggle="dropdown" > Tag</a> 

<a data-toggle="my dropdown" > Tag</a> 

<a data-toggle="whatever" > Tag</a> The below CSS code selects all a tags having a data-toggle attribute: a[data-toggle] {

color: red; 

}

while the following code, will only select the first a tag:

 6.2 CSS selectors

83

a[data-toggle="dropdown"] {

color: red; 

}

The reason is that we exactly match the dropdown value! 

We could be less specific:

a[data-toggle*="dropdown"] {

color: red; 

}

* checks whether the word dropdown is there but not the position. You may use ^ and $ like you do with regular expressions to check if the value starts or ends by the specified word, respectively. 

6.2.4.3 Other selectors

 6.2.4.3.1 Direct descendants

Let’s consider a navbarPage() with nested navigation. This is accomplished with the navbarMenu() function:

navbarPage(

"App Title", 

tabPanel("Plot"), 

navbarMenu(

"More", 

tabPanel("Summary"), 

"----", 

"Section header", 

tabPanel("Table")

)

)

The resulting HTML code is as follow:

#> 

<ul class="nav navbar-nav" data-tabsetid="5879"> 

#> 

<li class="active"> 

#> 

<a href="#tab-5879-1" data-toggle="tab" data-value="Plot"> 

#> 

Plot

#> 

</a> 

#> 

</li> 

#> 

<li class="dropdown"> 

#> 

<a href="#" class="dropdown-toggle" data-toggle="dropdown" 

#> 

data-value="More"> 

#> 

More

#> 

<b class="caret"></b> 

#> 

</a> 

#> 

<ul class="dropdown-menu" data-tabsetid="7141"> 

#> 

<li> 

#> 

<a href="#tab-7141-1" data-toggle="tab" 

#> 

data-value="Summary">Summary</a> 

#> 

</li> 

#> 

<li class="divider"></li> 

#> 

<li class="dropdown-header">Section header</li> 

#> 

<li> 

#> 

<a href="#tab-7141-4" data-toggle="tab" 

#> 

data-value="Table">Table</a> 

#> 

</li> 

#> 

</ul> 

#> 

</li> 

#> 

</ul> 

[image: Image 65]

[image: Image 66]

84

 6 CSS for Shiny

There are two ul menus with multiple li and a inside. Applying our previous CSS selector as depicted in Figure 6.4 selects all links. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "css/selector-descendant", 

 #

 package = "OSUICode" 

 # )

FIGURE 6.4: Style all navbar nav link elements. 

What if we only want to select the direct a children of the outer menu, meaning we exclude the inner menu links? Using the child combinator >, we can select direct children and not all descendants that could contain grand children. 

.navbar-nav > li > a {

font-size: 20px; 

font-weight: bold; 

}

Result is displayed in Figure 6.5:

 ### RUN ###

 # OSUICode::run_example(

 #

 "css/selector-direct-descendant", 

 #

 package = "OSUICode" 

 # )

FIGURE 6.5: Style only direct children navbar nav link elements. 

Well, what if we want to be even more specific and get only the very first nav link element? 

We have to introduce pseudo-classes. 

[image: Image 67]

 6.2 CSS selectors

85

 6.2.4.3.2 Pseudo-classes

A pseudo-class starts with the : symbol. For instance, a:active styles active links and button:disabled applies for disabled buttons. 

a :active {

}

button :disabled {

}

checkbox :checked {

}

There exists many pseudo-classes types, particularly the structural ones. Those are useful to select specific children like element:first-child. Going back to the navbarPage() example, we could refine our CSS selector adding :first-child to the li element as we want to only select the first item:

.navbar-nav > li :first-child > a {

font-size: 20px; 

font-weight: bold; 

}

As expected, only the first link is styled, as demonstrated in Figure 6.6. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "css/selector-pseudoclass", 

 #

 package = "OSUICode" 

 # )

FIGURE 6.6: Style only the first navbar nav link element. 

 6.2.4.3.3 Pseudo-elements

Pseudo-elements are preceded by ::. The most famous ones are ::before and ::after, that respectively apply before and after the selected element. 

[image: Image 68]

86

 6 CSS for Shiny

a ::before {

}

a ::after {

}

For instance .navbar-nav > li:first-child > a::before will insert an element before the very first navbar link. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "css/selector-pseudoelement", 

 #

 package = "OSUICode" 

 # )

As an exercise, you may change a::before to a::after and notice how the emoji behaves in the above example. 

FIGURE 6.7: Add before pseudo-element. 

6.3 Best practices

6.3.1 DRY principle

DRY stands for “Don’t repeat yourself”. This methodology not only applies to structural languages like R and JavaScript but also to declarative languages like CSS. Below is an example of badly managed CSS code. Both .class-1 and .class-2 have the same color and border radius. Only the padding and font size change. This type of code does not follow the DRY rule and increases the risk of having contradictory CSS properties. 

.class-1{

color: #33BEFF; 

padding: 10px 16px; 

font-size: 12px; 

border-radius: 3px; 

}

.class-2{

color: #33BEFF; 

padding: 5px 10px; 

font-size: 12px; 

border-radius: 3px; 

}

We could gather all common properties in one generic class:

 6.3 Best practices

87

.generic {

color: #33BEFF; 

border-radius: 3px; 

}

.specific-1 {

padding: 10px 16px; 

font-size: 18px; 

}

.specific2 {

padding: 5px 10px; 

font-size: 12px; 

}

On the HTML side, we add classes from the most generic to the most specific like:

<div class="generic specific-1" > My element</div> 

<div class="generic specific-2" > My element</div> As an even more concrete example, take a look at the bulma1 button:

<button class="button is-large is-fullwidth" > Large</button> Notice how easy it is to predict the style of the button. It will be large and take the maximum width. It is for sure more meaningful than seeing a .class1! 

6.3.2 Selector specificity

What happens in case multiple different selectors target the same element? Which style is really applied? Consider the following example:

<div id="element" class="myclass" > Some text</div> with the following CSS rules:

 #element {

color: red; 

}

.myclass {

color: blue; 

}

div {

color: green; 

}

Can you guess what would be the element text color? Well, this is not obvious. You must understand that web browsers apply rules to select the more specific rules:

• Inline style is the most specific. This is style directly attached to the HTML tag. 

1https://bulma.io/documentation/elements/button/

88

 6 CSS for Shiny

• id applies to unique objects. 

• class, pseudoclasses, attributes. 

• elements and pseudo-elements. 

Going back to our previous example, the most specific selector is #element, therefore the text color will be red. What happens in case of equality? The last written selector is applied:

<div class="class1 class2" > Some text</div> 

.class1 {

color: blue; 

}

.class2 {

color: red; 

}

Only the second selector is applied to the tag. To apply class1, you must move it after the class2 style definition. 

Best practice is to keep the lowest specificity as possible, thereby making .class the first choice. 

6.3.3 Block element modified (BEM)

The BEM methodology2 will help you to write meaningful CSS, easier to manage. A block is a standalone entity having a self-explanatory name like header, checkbox. An elements is part of the block but not standalone like menu items. A modifier indicates a specific state of an element, for instance if a button is disabled, active, … The general scheme is defined below:

.block__element--modifier {

 /* rules */

}

Following this methodology guaranties you have documented and meaningful classes. 

6.4 Modify CSS with the HTML inspector

6.4.1 Add inline properties

1. Run the following app:

2http://getbem.com/introduction/

[image: Image 69]

 6.5 Modify CSS with the HTML inspector

89

ui <- fluidPage(

tags$style("p { color: red;}"), 

p("Hello World")

)

server <- function(input, output, session) {}

shinyApp(ui, server)

2. Right-click the p element and open the inspector. In the Styles tab, notice the element.style section. This is to define inline new CSS rules for the selected item. 

3. Let’s add two rules by clicking inside the element.style container:

• border-style: dashed. Indicates we want a box with dashed border

• border-color: .... To set a border color

After typing enter, the inline CSS is automatically added in the tag element. 

You probably noticed the auto-suggestion feature while typing a property, as shown in

Figure 6.8, being particularly handy when learning CSS. 

FIGURE 6.8: Edit CSS with Chrome DevTools. 

6.4.2 View local changes

Whenever playing around with a web page style or a Shiny app, it may be good to have an overview of all changes when you are satisfied about the new design. 

1. Run the previous Shiny app example and open the inspector. 

2. In the Styles tab, add some new CSS properties to the first p element set of rules. 

3. Once done press enter and click on the file name located at the top-right corner of the property box. 

4. This opens the Sources tab. In the left sidebar, right click on the file name (index) and select Local Modifications. 

5. This opens a Git like diff panel called Changes where you can review any change and see the previous values. If you refresh the page, you will lose every local change, unless the persistent authoring feature is active. 

To get a deeper understanding of the different CSS options please refer to the Google documentation3. 

3https://developers.google.com/web/tools/chrome-devtools/css

[image: Image 70]

90

 6 CSS for Shiny

FIGURE 6.9: Review all CSS changes. 

6.5 CSS in action

We review the most commonly used CSS properties such as text styling, shadows, color and background color, …

6.5.1 Text Styling

6.5.1.1 Fonts

Fonts control the text appearance and may be changed as below: tag {

font-family: mypolice1, mypolice2, ... , serif; 

}

[image: Image 71]

[image: Image 72]

 6.5 CSS in action

91

In practice, we enter multiple font values, in case the end user does not have the same font. 

The last values are composed of generic polices like serif and monospace. For instance, Bootstrap 3 utilizes the default sans-serif police. A neat tool to inspect the current text fonts is the HTML inspector CSS Overview tab, as shown Figure 6.10. 

FIGURE 6.10: Overview of the font properties. 

Custom fonts may be downloaded with @font-face, but there are few prerequisites to make them render properly:

• The file format must be correctly handled by the end-user web browsers. There are currently .ttf (works on almost all web browsers), .woff (works on almost all web browsers), 

.svg (iPhone and iPad), .eot (IE only) and .otf (doesn’t work on IE). 

• Those files have to be downloaded, which may take time. 

• Most fonts are not open source. 

@font-face {

font-family: 'customPolice' ; 

src: url('customPolice.ttf'), 

url('customPolice.woff'); 

}

Importantly, the font files must be accessible to the CSS file where they are called from. As another example, the below code means that the fonts folder is located one level above the CSS file:

@font-face {

font-family: 'Framework7 Icons' ; 

font-style: normal; 

font-weight: 400; 

src: url("../fonts/Framework7Icons-Regular.eot"); src: url("../fonts/Framework7Icons-Regular.woff2"), url("../fonts/Framework7Icons-Regular.woff"), 

url("../fonts/Framework7Icons-Regular.ttf"); 

}

Chapters 9 and 8 expose convenient methods to seamlessly handle Shiny app’s font. 

92

 6 CSS for Shiny

6.5.1.2 Size

To change the text size, we use the font-size property. From there, you have two choices:

• Relative size (first choice) like small, medium, … You may also find notations like 1em (default size), 1.8em being bigger and 0.5em being smaller; as well as percentages. 

• Absolute size: 16px, 20px, …

In the following example, the second h1 tag is smaller than the default one, so is p:

 ### RUN ###

 # OSUICode::run_example(

 #

 "css/font-size", 

 #

 package = "OSUICode" 

 # )

6.5.1.3 Alignment

This is a job for text-align which accepts four values (left, center, right and justify). 

Importantly, this does not work for inline tags like span! 

6.5.1.4 Other styling properties

You can also put any text in bold, italic using font-style: italic and font-weight: bold, respectively. 

6.5.2 Colors

We have already mentioned this property before in the previous examples. In CSS, there are four ways to apply colors to a text or to the background:

• Using the hexadecimal notation (HEX). For instance #FFFFFF corresponds to the white color. Given a color code, unless you already know it, the result is quite hard to predict. 

Could you guess what is the result of #4b0082? 

• Using the rgb code. If you ever followed art courses, this is the classic system used in painting, by mixing colors. rgb stands for red, green and blue. Each scale goes from 0 to 255 (256 choices), which gives a weight to each color! Why 255? Because 256*256*256

gives about 16 millions colors, the maximum number of colors that the actual screen can display. 

• Using the hsl convention. hsl stands for hue, saturation and lightness. Saturation and lightness are expressed in percentage from 0 to 100. The hue goes from red (0) to 360 (a sort of red) each time incrementing by 15. The yellow color is 60. 

• Using the color name like ghostwhite, maroon, red…

While rgb and hsl give an unlimited number of possibilities, HTML color names are not infinite. There are many tools allowing you to get each of those codes, for example, color pickers:

• https://html-color.codes/

• https://www.w3schools.com/colors/colors_picker.asp

 6.5 CSS in action

93

6.5.2.1 Text color

Given the methods listed above, we use the color property to change any text color. For obvious colors like red, this is not necessary to use the rgb convention. 

p {

color: red; 

}

6.5.2.2 Background color

backgound-color is the property necessary to apply a given color to the background. To change to page background color, we target the body tag, but you could also target any tag like p. 

Colors may be seamlessly tweaked with the developer tools as shown later in Figure 6.13. 

6.5.3 Borders and shadows

These effects may be applied to text and block elements. The easiest way to set up a border is to leverage the border property, which accepts three parameters:

• The border width in px. 

• The border color with any valid CSS color like rgb(), red, …

• The border type, which corresponds to the border style (none, solid, dotted, dashed, double, groove, ridge, inset and outset). In practice, we mostly use solid. 

There exists other properties such as border-radius, which controls the shape of the corners from top left to bottom left. The higher the value the more rounded is the corner. 

If for any reason, you want to fine-tune the border position, there are four properties: border-top, border-bottom, border-left and border-right. 

Finally, shadows are controlled by two properties:

• text-shadow, which applies a shadow to a text element (rarely used). 

• box-shadow for styling blocks. 

For instance:

block {

box-shadow: 2px 2px 0px black; 

}

The box-shadow property4 takes four main parameters:

• The horizontal offset in px. 

• The vertical offset in px. 

4https://www.w3schools.com/cssref/css3_pr_box-shadow.asp

[image: Image 73]

[image: Image 74]

[image: Image 75]

94

 6 CSS for Shiny

• The blur radius value in px. The higher the more blurred. 

• The shadow color. 

Do you remember the {shinydashboard} box that we imported inside a simple Shiny app in Chapter 4.2? This box has been included in the {OSUICode} side package. Let’s add some border and shadows:

 ### RUN ###

 # OSUICode::run_example(

 #

 "css/custom-box/start", 

 #

 package = "OSUICode" 

 # )

The box class is styled as follows and shown Figure 6.11:

.box {

border-radius: 3px; 

border-top: 3px solid #d2d6de; 

box-shadow: 0 1px 1px rgb(0 0 0 / 10%); 

}

FIGURE 6.11: shinydashboard box style. 

The border-radius of 3px indicates that the box is slightly rounded on all corners. There is a top solid border whose color is gray as well as a tiny shadow. Let’s increase the border-radius to 10px, change the top border to border-left with an orange color and slightly increased thickness:

.box {

border-radius: 10px; 

border-left: 6px solid #e28810; 

box-shadow: 0 1px 1px rgb(0 0 0 / 10%); 

}

[image: Image 76]

[image: Image 77]

 6.5 CSS in action

95

We would like to increase the shadow effect only on mouse hover, with reasonable values. 

To proceed we leverage the pseudo format elements like :hover:

.box:hover {

box-shadow: 0px 8px 8px 0px rgb(0, 0, 0, 0.2); 

}

The easiest way to modify the shadow style is directly inside the HTML inspector, as demonstrated in Figure 6.12. Next to the property text, there is a button to open the shadow editor. We click on it, which opens a box with input to control the shadow offset, the blur and the spread parameter. We leave the effect outside the box, that is, outset is unchanged. To change the color, we click on the color widget next to the rgb value, which opens Figure 6.13. 

FIGURE 6.12: Box shadow shape tools. 

FIGURE 6.13: Box shadow color tools. 

We finally include this new CSS rule inside the previous app. Optionally, we may change the color of the text header to be white, to improve the contrast with the box background. 

(See Figure 6.14):

 ### RUN ###

 # OSUICode::run_example(

 #

 "css/custom-box/end", 

 #

 package = "OSUICode" 

 # )

[image: Image 78]

96

 6 CSS for Shiny

FIGURE 6.14: Improved box shadow on hover. 

6.5.4 Animations

Properly utilized, CSS animations are a powerful way to highlight a specific part of your app, without any line of JavaScript code. For instance, assume you have an application that requires users to click on a run button after filling some parameters. You may want to indicate to the user that they can click on it. However, I would recommend playing the animation once or adding a disable option, as it might cause more frustration if people visit your app quite frequently. 

To create an animation, you have to leverage the @keyframes rule5. This basically describes what happens and when during the animation. For instance:

@keyframes animation {

from {property: value; }

to {property: new_value; }

}

Alternatively, you may also use percentages, which is more flexible as you may introduce multiple changes. The percentage is calculated based on the overall animation duration, that is, if the animation lasts 4 seconds, 50% corresponds to 2s:

@keyframes my-animation {

0%

{property: value1; }

25%

{property: value2; }

50%

{property: value3; }

 /* ... */

100% {property: value4; }

}

We try below in a simple Shiny app, where we simply change the text color from black to red:

 ### RUN ###

 # OSUICode::run_example(

 #

 "css/animations/basic-broken", 

 #


 package = "OSUICode" 

 # )

5https://www.w3schools.com/css/css3_animations.asp

 6.5 CSS in action

97

Nothing happens. Could you spot why? We forgot to attach the animation to the element. 

You may use the animation super property or multiple properties as shown below: element {

animation: name, duration, delay, count, ... ; 

 /* OR */

animation-name: ... , 

animation-duration: ... , 

 /* ... */

}

If you want to keep the last state of the animation active, use animation-fill-mode: forwards;. You also may want to give time to the user to open the page before playing the animation, especially if the latter has a short duration. Therefore, it is often advised to specify a delay with animation-delay. 

Let’s try again below. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "css/animations/basic", 

 #

 package = "OSUICode" 

 # )

To close this section, I propose creating a very simple Shiny app that calculates the sum of two numbers. It relies on a run button to update the result. The goal is to make it blinking one second after the app starts, for 3 seconds. We first design the animation, calling it blink. 

We decide to utilize the background-color property, which fills the button with green. To add more effect to the button border, we also leverage box-shadow. Finally, we change the button text color to white, to improve the color contrast. The animation consists of one step, that is, at 50% of the animation, we apply a green background and add box shadow to the element. As an exercise, you may add more steps with extra colors for a smoother transition. The code is found below. 

@keyframes blink {

50% {

background-color: #16a520; 

box-shadow: 0 0 10px 2px #16a520; 

color: white; 

}

}

We apply the animation with a delay of 1 second, each cycle lasts 1 second, repeated three times:

.blink-green {

animation: blink 1s 1s 3 linear; 

}

Notice the fourth parameter, which corresponds to the animation-timing-function prop-erty6. It controls the animation speed curve. Passing it the linear value ensures a smoother transition than using the default ease. The whole code is shown below. 

6https://developer.mozilla.org/en-US/docs/Web/CSS/animation-timing-function

[image: Image 79]

98

 6 CSS for Shiny

 ### RUN ###

 # OSUICode::run_example(

 #

 "css/animations/blink", 

 #

 package = "OSUICode" 

 # )

6.5.5 Layout

As mentioned in section 1.3, there exists block and inline tags. While block elements are displayed under each other, inline elements are added next to each other, as shown in Figure

6.15. 

FIGURE 6.15: Inline and block elements. 

CSS allows deep customization of block elements like setting up the width, height and margin. Let’s review them below. 

6.5.5.1 Style blocks

As shown in Figure 6.16, a block tag may be seen as a box. CSS allows you to set internal and external margins. Internal margins, also called padding, is the space between the block border and the content, in all directions. External margins also known as margin are all spaces between blocks in all directions. A block is also defined by a width and height, as well as optional minimal width and height. Width and height may be set either using absolute unites (px) or relative unites (%), but minimal values are always absolute. Minimal values are useful in case the end user resizes the windows. 

[image: Image 80]

 6.5 CSS in action

99

The corresponding CSS properties are found below:

.block {

width: 50%;  /* % also work and will be relative size*/

height: 200px; 

min-width: 200px; 

}

Padding and margins are called CSS super properties. Indeed, setting padding: 10px guarantees having 10px in all directions. If you need custom values, you will have to specify the directions:

.block {

padding: 10px; 

margin-top: 10px; 

margin-left: 5px; 

}

There exists a shortcut margin: 5px 0 5px 2, which means 5px on the top, 0px on the right, 5px on the bottom and 2px on the left. To remember the good order, it is clockwise (top, right, bottom, left). Specifying only 2 values margin: 5px 2.5px means 5px top and bottom, 2.5px left and right. All of the above obviously applies to padding! 

FIGURE 6.16: Blocks layout. 

Using margin allows you to center a block when margin: auto is applied in combination with a given width. 

What happens when the content inside a block is bigger than the block itself? We apply the overflow super property that acts either horizontally or vertically. To have only vertical overflow, choose overflow-y. The overflow property has four possible values:

• visible shows the content. 

• hidden hides the content that goes outside the block. 

100

 6 CSS for Shiny

• scroll shows scrolling bars in all directions to see the hidden content. 

• auto lets the web browser decide. 

Let’s apply our newly acquired knowledge to a simple Shiny app. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "css/layout/blocks", 

 #

 package = "OSUICode" 

 # )

Well, is that all? I could do better by combining fluidRow and column! Indeed, those two functions are part of the grid system built on top of flexbox. Let’s talk about this in the next section. 

6.5.5.2 Flexbox

The flexbox7 (“flexible boxes”) model is a game changer in layout development as it allows you to seamlessly:

• Align items in a container. 

• Ensure those items fill the same space. 

The first step is to define the main container and give the flex value to the display property:

.container {

display: flex; 

}

Once done, we have to define the direction, that is flex-direction with four choices, as shown Figure 6.17:

• row

• row-reverse

• column

• column-reverse

Below is an example involving Shiny. We first define the container CSS, where display: flex and flex-direction: row set the flexbox display. We also add a border to better see the container limits:

.container {

display: flex; 

flex-direction: row; 

border: red dashed 2px; 

}

7https://css-tricks.com/snippets/css/a-guide-to-flexbox/

[image: Image 81]

 6.5 CSS in action

101

FIGURE 6.17: Flexbox directions. 

Then, we define the style for container elements, that are p tags. We give them a width and height to better see the blocks. Each child has a given background color with the

:nth-child(n) pseudo-class. As an exercise, you may try to replace the flex-direction by any of the four values and see how blocks move in the main container:

 ### RUN ###

 # OSUICode::run_example(

 #

 "css/layout/flexbox", 

 #

 package = "OSUICode" 

 # )

The flex-wrap property may be useful to control how blocks are arranged:

• nowrap (default) puts all items on the same row. 

• wrap puts items on multiple lines from top to bottom. 

• wrap-reverse puts items on multiple lines from bottom to top. 

Interestingly, both flex-wrap and flex-direction may be merged with flex-flow: direction wrap mode. 

Items may be aligned either on the principal axis defined in the container CSS or on the secondary axis, called cross-axis:

• justify-content may take the following values: flex-start (default), flex-end, center, space-between, space-around and space-evenly. 

• align-items whose values can be stretch (default), flex-start, flex-end, center and baseline. 

justify-content and align-items are applied at the container level and not on individual

102

 6 CSS for Shiny

items! Whenever the container has multiple lines, as a result of a flex-wrap: wrap or flex-flow: ... wrap, we use align-content to align on the cross-axis (flex-start, flex-end, center, stretch by default, space-between, space-around). 

flexbox is a mono-dimensional system. 

6.5.5.3 Grid model

As mentioned above, fluidRow and column leverage the Bootstrap grid8 system, which uses Flexbox. This is unfortunately rather complex and out of the scope of this book. 

6.5.6 Responsive design: media queries

At the very beginning of the web, there were no smart phones or tablets. All websites were mostly designed to be displayed on fixed computer screens. Everything has changed now, which leads to several problems for non-responsive sites. 

Media queries are convenient to solve this issue. They allow you to set up rules depending on various conditions. The structure is defined as follows:

@media rule1 {

 /* CSS */

}

 /* We may combine rules */

@media rule1 and rule 2 and ... {

 /* CSS */

}

For instance, assuming you want to increase the text size, only for mobile devices:

@media all and (max-device-width: 480px) {

p {

font-size: 1.5em; 

}

}

all stands for all screen sizes, and the second request target devices having a width of 480px, at most. 

In a Shiny app, this would give:

 ### RUN ###

 # OSUICode::run_example(

 #

 "css/media-queries/basic", 

 #

 package = "OSUICode" 

 # )

As shown in Figure 6.18, the developer tools have a responsive mode, which you can enable by clicking on the blue button next to the Elements tabs. The responsive mode lets you define the viewport dimensions, that is the height and width of the web browser page, so as to test the media queries. We set the width to 480px so that the text size appears increased. 

8https://getbootstrap.com/docs/4.3/layout/grid/

[image: Image 82]

[image: Image 83]

[image: Image 84]

[image: Image 85]

 6.5 CSS in action

103

You may try with 481px and see that this text becomes smaller. Be careful, the responsive mode tool does not display the web browser navigation bars, nor the status bar (the bar containing the battery icon and various indicators). Be sure to select the ... icon to enable the show media queries and show rulers options. The media query option provides a better visualization of the media query range versus the current screen width, while the ruler helps to fine-tune the design. 

FIGURE 6.18: HTML inspector in responsive mode. 

Let’s consider another example, involving shiny::modalDialog. This function displays a Bootstrap 3 modal, whose design is partly controlled by media queries. We run the app below and open the developer tools:

 ### RUN ###

 # OSUICode::run_example(

 #

 "css/media-queries/modal", 

 #

 package = "OSUICode" 

 # )

The corresponding CSS rules are located in the Bootstrap (3) CSS file:

@media (min-width: 768px) {

.modal-dialog {

width: 600px; 

margin: 30px auto; 

}

.modal-content {

-webkit-box-shadow: 0 5px 15px rgba(0, 0, 0, 0.5); box-shadow: 0 5px 15px rgba(0, 0, 0, 0.5); 

}

.modal-sm {

width: 300px; 

}

}

@media (min-width: 992px) {

104

 6 CSS for Shiny

.modal-lg {

width: 900px; 

}

}

The first query fixes a width of 600px for all modals having the .modal-dialog class (default), as long as the screen size is at least 768px. Moreover, if the modal has the modal-sm class, its width is set to 300px. Finally, as soon as the screen width is higher or equal to 992px, all modals having the .modal-lg class have a width set to 900px. 

Figure 6.19 illustrates the modal responsiveness. 

In Figure 6.20, we changed the modal size from s to l (top and bottom, respectively). 

This has strong implications for the modal size on mobiles. As long as the screen size is lower than 768px, the size parameter is ignored! 

[image: Image 86]

[image: Image 87]

[image: Image 88]

[image: Image 89]

[image: Image 90]

[image: Image 91]

 6.5 CSS in action

105

FIGURE 6.19: Responsive modal. Top: first media query is fullfilled, width is 600px. 

Bottom: First media query not met, width is set to auto. 

[image: Image 92]

[image: Image 93]

[image: Image 94]

[image: Image 95]

[image: Image 96]

[image: Image 97]

106

 6 CSS for Shiny

FIGURE 6.20: Changed modal size. Top: small modal when screensize is at least 768px. 

Bottom: large modal when screen size is at least 992px. 

7

Tidy your CSS with Sass

One of the main problem with CSS is to handle the growing number of files and the code repetition. Nowadays, web developers mainly use CSS pre-processors like Sass1, which stands for “Syntactically Awesome Style Sheets”, providing access to variables, mathematical operators, functions and loops, thereby reducing the code complexity and extending the possibilities. RStudio2 developed the {sass}3 package (Cheng et al., 2021a), which makes it possible to use Sass in Shiny apps or Rmarkdown documents. 

7.1 Getting started with Sass

While we could use Sass from the terminal, we leverage the {sass} package features to work from R. To install {sass}, we run:

 # CRAN

install.packages("sass")

 # development version

remotes::install_github("rstudio/sass")

The main function is sass(), whose input parameter accepts:

• A R string like a { color: pink}. 

• A named list(). 

• A file passed with sass_file(); imports with sass_import(). 

• More complex structures. 

library(sass)

 # with a string

sass(input = ".element-class { color: pink;}")

 # with named list

sass(list(color = "pink", ".element-class { color: $color;}"))

#> /* CSS */

#> .element-class {

#> 

color: pink; 

#> }

Note how the R code objects are seamlessly converted to Sass variables. For convenience, we will be using named lists in the remainder of the book. 

1https://sass-lang.com/guide

2https://rstudio.com

3https://rstudio.github.io/sass/articles/sass.html

107

108

 7 Tidy your CSS with Sass

7.1.1 Variables

Let us consider the following example, where two different classes have the same color:

.class-1{

color: #33BEFF; 

}

.class-2{

background-color: #33BEFF; 

}

Shouldn’t this be easier? Imagine if we had hundreds of elements with the same color. What happens in case the color changes? Do we have to update all properties by hand? 

If we let the Sass variable $color:

$color : purple; 

.class-1{

color: $color; 

}

.class-2{

background-color: $color; 

}

we can quickly solve that problem. With {sass}, we define one variable holding the color as well as our two rules, so that we obtain:

rule1 <- ".class-1{ color: $color; }" 

rule2 <- ".class-2{ background-color: $color; }" 

sass(input = list(color = "purple", rule1, rule2))

#> /* CSS */

#> .class-1 {

#> 

color: purple; 

#> }

#> 

#> .class-2 {

#> 

background-color: purple; 

#> }

� Add the default! tag after the variable definition, if you want to let others modify it, that is "$color: purple !default;". 

7.1.2 Partials and Modules

It is best practice to save useful code snippets in one place, and reuse them anytime and anywhere. Sass allows to define partials, like _partial.css, with the leading underscore, which avoids its conversion into CSS. Partials are subsequently called with @import

<PARTIAL_NAME> (you may also find @use, the latter not being handled by LibSass, which fuels{sass}), thereby significantly reducing code duplication. 

 7.1 Getting started with Sass

109

Modules are pieces of Sass files that are later converted into CSS, reducing file size to a minimum. Below is an example of the bootstrap.scss file4:

 /*! 

 * Bootstrap v5.0.0-beta1 (https://getbootstrap.com/)

 ... 

 */

// scss-docs-start import-stack

// Configuration

@import "functions" ; 

@import "variables" ; 

@import "mixins" ; 

@import "utilities" ; 

// Layout & components

@import "root" ; 

@import "reboot" ; 

... 

// Helpers

@import "helpers" ; 

// Utilities

@import "utilities/api" ; 

// scss-docs-end import-stack

which is easier to read and maintain than the original bootstrap.css with 10717 lines of code! In practice, we often end up with a main Sass file and compile it as follows: sass(sass_file("main.scss"))

7.1.3 Mixins and Functions

Another great advantage of Sass is the ability to generate reusable units of code, also known as mixins or functions. 

7.1.3.1 Mixins

To make a 90-degree rotation in CSS, we have to write:

.element {

-webkit-transform: rotate(90deg); 

-ms-transform: rotate(90deg); 

transform: rotate(90deg); 

}

which is already tedious. Mixins allow us to encapsulate the logic into a reusable unit:

@mixin transform($property, ...) {

-webkit-transform: $property; 

-ms-transform: $property; 

transform: $property; 

}

.element1 {

@include transform(rotate(90deg)); 

}

4https://github.com/twbs/bootstrap/blob/main/scss/bootstrap.scss

110

 7 Tidy your CSS with Sass

The mixin starts with a @mixin keyword followed by its name and parameters. It is called with @include <MIXIN_NAME(PARMS)>, very similar to a function declaration, except that it must return a CSS rule. 

mixin <- "@mixin transform($property) {

-webkit-transform: $property; 

-ms-transform: $property; 

transform: $property; 

}" 

rule <- ".element1 { @include transform($prop); }" 

sass(input = list(prop = "rotate(90deg)", mixin, rule))

#> /* CSS */

#> .element1 {

#> 

-webkit-transform: rotate(90deg); 

#> 

-ms-transform: rotate(90deg); 

#> 

transform: rotate(90deg); 

#> }

7.1.3.2 Functions

Sass offers many built-in modules5 containing ready-to-use functions for colors, numbers, strings, lists, maps, … Some functions like rgb are global, so that we don’t have to import the corresponding module. 

sass(".pouet { color: rgb(0, 255, 0); }")

#> /* CSS */

#> .pouet {

#> 

color: lime; 

#> }

Besides, it is also possible to design custom functions with @function, the syntax being similar to that of the mixins:

@function name($parm1, $parm2) {

 /* logic */

@return value; 

}

While debugging functions, it might be useful to capture intermediate elements. @debug allows this:

$test : 1; 

@debug test; 

sass(

list(

a = 2, 

b = 4, 

"@function multiply($parm1, $parm2) {

@debug 'parm1 is #{$parm1}'; 

@debug 'parm2 is #{$parm2}'; 

5https://sass-lang.com/documentation/modules

 7.1 Getting started with Sass

111

@return $parm1 * $parm2; 

}", 

".my-class {

width: multiply($a, $b) * 1px; 

}" 

)

)

#> /* CSS */

#> .my-class {

#> 

width: 8px; 

#> }

Notice the use of mathematical operators like *, +, -, / and %, which is not possible with CSS. 

7.1.4 Extend/Inheritance

We consider two alerts with the color as the only difference. As we can’t capture multiple properties inside one single Sass variable, we introduce the extend concept, which permits us to import CSS properties inside multiple rules. We first define a generic alerts-common rule, prefixed by the % symbol. It contains several rules and variables:

%alerts-common {

position: relative; 

padding: $alert-padding-y $alert-padding-x; 

margin-bottom: $alert-margin-bottom; 

}

.alert-red {

@extend %alerts-common; 

color: red; 

}

.alert-green {

@extend %alerts-common; 

color: green; 

}

Let’s translate this into R:

common <- "%alerts-common {

position: relative; 

padding: $alert-padding-y $alert-padding-x; 

margin-bottom: $alert-margin-bottom; 

}" 

alert_red <- ".alert-red {

@extend %alerts-common; 

color: red; 

}

" 

alert_green <- ".alert-green {

@extend %alerts-common; 

color: green; 

}

" 

sass(input = list(

"alert-padding-y" = "5px", 

"alert-padding-x" = "10px", 

"alert-margin-bottom" = "2px", 

112

 7 Tidy your CSS with Sass

common, 

alert_red, 

alert_green

))

#> /* CSS */

#> .alert-green, .alert-red {

#> 

position: relative; 

#> 

padding: 5px 10px; 

#> 

margin-bottom: 2px; 

#> }

#> 

#> .alert-red {

#> 

color: red; 

#> }

#> 

#> .alert-green {

#> 

color: green; 

#> }

This method avoids to overload elements with unnecessary classes such as .alert-common

.alert-red .... Yet, we could have programmatically generated the two alert classes with a loop to avoid duplication. 

7.1.5 Flow controls

These are elements aimed at fine-tuning mixins and functions behavior. 

7.1.5.1 if and else

As in every programming language, if and else control the execution of a code block, depending on some conditions. Below, we only want to conditionally control a shadow property, depending on the alert color:

@mixin add-shadow($color) {

@if $color == red {

box-shadow:

0 4px 10px 0 rgb(255, 0, 0), 

0 4px 20px 0 rgb(255, 0, 0); 

} @else if $color == green {

box-shadow:

0 4px 10px 0 rgb(0, 255, 0), 

0 4px 20px 0 rgb(0, 255, 0); 

}

}

.alert-red {

@extend %alerts-common; 

color: red; 

@include add-shadow($color: red); 

}

.alert-green {

@extend %alerts-common; 

color: green; 

@include add-shadow($color: green); 

}

 7.1 Getting started with Sass

113

add_shadow <- "@mixin add-shadow($color) {

@if $color == red {

box-shadow:

0 4px 10px 0 rgb(255, 0, 0), 

0 4px 20px 0 rgb(255, 0, 0); 

} @else if $color == green {

box-shadow:

0 4px 10px 0 rgb(0, 255, 0), 

0 4px 20px 0 rgb(0, 255, 0); 

}

}

" 

common <- "%alerts-common {

position: relative; 

padding: $alert-padding-y $alert-padding-x; 

margin-bottom: $alert-margin-bottom; 

}" 

alert_red <- ".alert-red {

@extend %alerts-common; 

color: red; 

@include add-shadow($color: red); 

}

" 

alert_green <- ".alert-green {

@extend %alerts-common; 

color: green; 

@include add-shadow($color: green); 

}

" 

sass(input = list(

"alert-padding-y" = "5px", 

"alert-padding-x" = "10px", 

"alert-margin-bottom" = "2px", 

common, 

add_shadow, 

alert_red, 

alert_green

))

#> /* CSS */

#> .alert-green, .alert-red {

#> 

position: relative; 

#> 

padding: 5px 10px; 

#> 

margin-bottom: 2px; 

#> }

#> 

#> .alert-red {

#> 

color: red; 

#> 

box-shadow: 0 4px 10px 0 red, 0 4px 20px 0 red; 

#> }

#> 

#> .alert-green {

#> 

color: green; 

#> 

box-shadow: 0 4px 10px 0 lime, 0 4px 20px 0 lime; 

#> }

7.1.5.2 Loops

 7.1.5.2.1 Each

We would like to create the alert class with only one rule. We first define a list of colors in Sass and call @each:

$colors : red, green; 

114

 7 Tidy your CSS with Sass

@each $color in $colors {

.alert-#{$color} {

color: green; 

@include add-shadow($box-color: $color); 

}

}

The structure is the same as the JavaScript loop. You’ll also notice the #{...}, which is called interpolation6 and allows us to insert any Sass expression in a string. As another example, if we want to create a background-image property within a mixin, we could do background-image: url("/some_path/#{$name}.svg"), where #{$name} holds the file name. 

add_shadow <- "@mixin add-shadow($color) {

@if $color == red {

box-shadow:

0 4px 10px 0 rgb(255, 0, 0), 

0 4px 20px 0 rgb(255, 0, 0); 

} @else if $color == green {

box-shadow:

0 4px 10px 0 rgb(0, 255, 0), 

0 4px 20px 0 rgb(0, 255, 0); 

}

}

" 

common <- "%alerts-common {

position: relative; 

padding: $alert-padding-y $alert-padding-x; 

margin-bottom: $alert-margin-bottom; 

}" 

alerts_rule <- "@each $color in $colors {

.alert-#{$color} {

@extend %alerts-common; 

color: green; 

@include add-shadow($color: $color); 

}

}

" 

sass(input = list(

colors = c("green", "red"), 

"alert-padding-y" = "5px", 

"alert-padding-x" = "10px", 

"alert-margin-bottom" = "2px", 

common, 

add_shadow, 

alerts_rule

))

#> /* CSS */

#> .alert-red, .alert-green {

#> 

position: relative; 

#> 

padding: 5px 10px; 

#> 

margin-bottom: 2px; 

#> }

#> 

#> .alert-green {

#> 

color: green; 

#> 

box-shadow: 0 4px 10px 0 lime, 0 4px 20px 0 lime; 

#> }

#> 

#> .alert-red {

#> 

color: green; 

#> 

box-shadow: 0 4px 10px 0 red, 0 4px 20px 0 red; 

#> }

6https://sass-lang.com/documentation/interpolation

 7.1 Getting started with Sass

115

It becomes even more powerful while working with maps like $font-weights: ("regular": 400, "medium": 500, "bold": 700);, i.e, by key/value pairs7. @each is as convenient as lapply or map functions to chain repetitive rules creation. 

 7.1.5.2.2 For

However, it is not straightforward to count up or down with @each. This is precisely where

@for fills the gap. The generic scheme is:

@for <variable> from <expression> to <expression> { ... }

@for <variable> from <expression> through <expression> { ... }

to excludes the last number while through includes it. 

7.1.6 Nesting code

To make your code more readable, Sass allows you to nest rules by hierarchy, thereby aligning with the underlying HTML structure. For instance, looking at the previous example from section 6.2.4.3.3:

.navbar-nav > li :first-child > a {

font-size: 20px; 

font-weight: bold; 

}

.navbar-nav > li :first-child > a ::before {

content:

}

Transforming to Sass code, we combine the two previous rules into a single one:

.navbar-nav {

> li:first-child {

> a {

font-size: 20px; 

font-weight: bold; 

&  :before {

content: '� 

' 

}

}

}

}

The following is another example taken from the AdminLTE3 library powering {bs4Dash}. 

This code shows how the card CSS is structured, leveraging all the above Sass capabilities like mixins, nesting, functions, … This chunk may be read from top to bottom and gives a rather good idea of how the card will look, contrary to the classic CSS approach. It first applies a shadow with a mixin, then sets the bottom margin with a function. All listed variables are defined in a separate file. Besides, the card body has text printed in white color when the dark mode is active. Finally, when the card is collapsed, none of the body and footer elements are displayed. 

7https://sass-lang.com/documentation/at-rules/control/each#with-maps

116

 7 Tidy your CSS with Sass

.card {

@include box-shadow($card-shadow); 

margin-bottom: map-get($spacers, 3); 

&.bg-dark {

.card-header {

border-color: $card-dark-border-color; 

}

& , 

.card-body {

color: $white; 

}

}

 /* other rules */

// collapsed mode

&.collapsed-card {

.card-body, 

.card-footer {

display: none; 

}

}

 /* other rules */

}

7.2 {sass} best practices

As it’s best practice, especially for debugging purposes, to include assets as HTML dependencies, it is a good idea to organize the Sass variable definition, the function/mixins in layers, leveraging the sass_layer() function:

rule1 <- ".class-1{ color: $color; }" 

rule2 <- ".class-2{ background-color: $color; }" 

layer1 <- sass_layer(

defaults = list(color = "purple"), 

rules = list(rule1, rule2)

)

#> /* Sass Bundle */

#> $color: purple; 

#> .class-1{ color: $color; }

#> .class-2{ background-color: $color; }

#> /* *** */

Besides, sass_layer() provides options like:

• declarations containing any function, mixin elements, in a sass_file for instance. 

• html_deps that attaches a single or a list of HTML dependencies to the provided Sass code, as shown below. 

sass_layer(

html_deps = htmltools::htmlDependency(

name = "my-dep", 

version = "1.0.0", 

package = "mypkg", 

src = "path", 

... 

)

)

 7.2 {sass} best practices

117

Ultimately, multiple layers may be bundled with sass_bundle():

layer2 <- sass_layer(

defaults = list(color = "blue"), 

rules = list(rule1, rule2)

)

my_bundle <- sass_bundle(layer1 = layer1, layer2 = layer2)

my_bundle

#> /* Sass Bundle: layer1, layer2 */

#> $color: blue; 

#> $color: purple; 

#> .class-1{ color: $color; }

#> .class-2{ background-color: $color; }

#> .class-1{ color: $color; }

#> .class-2{ background-color: $color; }

#> /* *** */

#> /* CSS */

#> .class-1 {

#> 

color: purple; 

#> }

#> 

#> .class-2 {

#> 

background-color: purple; 

#> }

#> 

#> .class-1 {

#> 

color: purple; 

#> }

#> 

#> .class-2 {

#> 

background-color: purple; 

#> }

sass_bundle_remove() removes a given layer from the bundle, provided that you passed a named list to sass_bundle(). This allows other developers to reuse and modify predefined layers:

my_bundle <- sass_bundle_remove(my_bundle, "layer2") my_bundle

#> /* Sass Bundle: layer1 */

#> $color: purple; 

#> .class-1{ color: $color; }

#> .class-2{ background-color: $color; }

#> /* *** */

sass(my_bundle)

#> <style>.class-1 {

#> 

color: purple; 

#> }

#> 

#> .class-2 {

#> 

background-color: purple; 

#> }

#> </style> 

118

 7 Tidy your CSS with Sass

#> /* CSS */

#> .class-1 {

#> 

color: purple; 

#> }

#> 

#> .class-2 {

#> 

background-color: purple; 

#> }

7.3 From Sass to CSS

sass() can generate CSS from Sass by passing an output parameter pointing to the path where to generate the CSS file. Best practice consists in enabling compression and source maps. We discuss this later in the book in Chapter 21. Overall those steps makes the code faster to load and easier to debug:

sass(

list(

color = "pink", 

".a { color: $color; }" 

), 

options = sass_options(

output_style = "compressed", 

source_map_embed = TRUE

)

)

 /* CSS */

.a{color:pink}

 /*# sourceMappingURL=data:application/json;base64,ewoJInZlcn Npb24iOiAzLAoJImZpbGUiOiAic3RkaW4uY3NzIiwKCSJzb3VyY2VzIjogWwo JCSJzdGRpbiIKCV0sCgkibmFtZXMiOiBbXSwKCSJtYXBwaW5ncyI6ICJBQUNB

 LEFBQUEsRUFBRSxBQUFDLENBQUUsS0FBSyxDQURGLElBQUksQ0FDVSIK

 fQ== */

sass(

sass_file("main.scss"), 

"<OUTPUT PATH>", 

options = sass_options(

output_style = "compressed", 

source_map_embed = TRUE

)

)

7.4 Caching

By default, sass() will try to do the minimum work, that is, on the first compilation, the resulting code is cached so that further compilation is not required. However, this behavior can lead to issues during development, especially for previewing a new theme change, since

 7.5 Sass and Shiny

119

by definition, sass() will go directly in the cache instead of picking up the new elements. 

This is also what happens in a web browser when CSS is cached, preventing seeing any style change unless the cache is emptied. To avoid this, we encourage developers to set options(sass.cache=FALSE) during the theme development phase. 

7.5 Sass and Shiny

Now let’s go back to Shiny! How do we include Sass code in a Shiny app? There are multiple situations:

1. You simply want to style a Shiny app. 

2. You developed a template with custom JS and Sass/CSS to be reused by other developers. 

The first option is rather simple since the Sass code is compiled with sass() before the Shiny app is launched. The resulting code may be either a string or a CSS file (within the www folder), to be included in the head. We assume it is located at the app folder level: sass(

list(

color = "pink", 

size = "30px", 

".awesome-link {

color: $color; 

font-size: $size; 

&:hover{

color: green; 

}

}" 

), 

output = "www/main.min.css", 

options = sass_options(

output_style = "compressed", 

source_map_embed = TRUE

)

)

Source maps allow us to see the original Sass code, as shown Figure 7.1. sass_options() gives the flexibility to fine-tune the CSS output and source map configuration. 

� For complex projects where the CSS compilation may take time, we strongly advise processing the CSS independently from the app startup. 

The second option requires running sass() passing an output file within the package. 

Then, the generated CSS is included in an HTML dependency, ready to be shipped with the template:

[image: Image 98]

120

 7 Tidy your CSS with Sass

FIGURE 7.1: Inspect Sass code in the web browser. 

sass(

sass_file("main.scss"), 

"<OUTPUT PATH>/main.css", 

options = sass_options(

output_style = "compressed", 

source_map_embed = TRUE

)

)

my_css_deps <- htmltools::htmlDependency(

name = "my-style", 

version = "1.0.0", 

package = "mypkg", 

src = "<OUTPUT PATH>", 

stylesheet = "main.css" 

)

7.6 Examples

7.6.1 Customize {bs4Dash} colors

{bs4Dash} is a Bootstrap 4 dashboard template built on top of the AdminLTE38 HTML

template. {shinydashboard} is powered by the previous version, that is AdminLTE29, which makes it somehow {bs4Dash}’s big brother! AdminLTE3 relies on Sass, and all files are stored here10. Particularly, all variables are located in the _variables.scss partial. 

Since we can decompose our Sass code in multiple layers, we seamlessly customize the theme color variables listed below:

$blue : #0073b7 !default; 

$lightblue : #3c8dbc !default; 

$navy : #001f3f !default; 

$teal : #39cccc !default; 

$olive : #3d9970 !default; 

$lime : #01ff70 !default; 

$orange : #ff851b !default; 

8https://adminlte.io/themes/v3/

9https://adminlte.io/themes/AdminLTE/index2.html

10https://github.com/ColorlibHQ/AdminLTE/tree/4fc0f9e59fff2a96b2fecae66def58664af57e9d/bui

ld/scss

 7.6 Examples

121

$fuchsia : #f012be !default; 

$purple : #605ca8 !default; 

$maroon : #d81b60 !default; 

$black : #111 !default; 

$gray-x-light : #d2d6de !default; 

Let’s provide our own defaults with some custom colors11:

$blue : #136377 !default; 

$olive : #d8bc66 !default; 

$lime : #fcec0c !default; 

$orange : #978d01 !default; 

$maroon : #58482c !default; 

$gray-x-light : #d1c5c0 !default; 

Now we would have to recompile the whole AdminLTE3 Sass code to account for these changes. It means all scss assets must be accessible somewhere: this is what the {fresh} package is doing under the hood12. No worries, we’ll come back to

{fresh} in the next chapter. For now, we rely on the {OSUICode} Sass code stored at

system.file("sass/adminlte/adminlte.scss", package = "OSUICode") (since

{fresh} may change in the future, {OSUICode} will be frozen to make sure the code always works):

css <- sass(

sass_layer(

defaults = list(

lightblue = "#136377", 

olive = "#d8bc66", 

lime = "#fcec0c", 

orange = "#978d01", 

maroon = "#58482c", 

"gray-x-light" = "#d1c5c0" 

), 

rules = sass_file(

input = system.file(

"sass/adminlte/adminlte.scss", 

package = "OSUICode" 

)

)

)

)

 # This CSS is injected inside the app head (see example)

The corresponding app may be tested below. If you want to see the whole code, run OSUICode::get_example("sass/examples/bs4Dash-custom"). 

 ### RUN ###

 # OSUICode::run_example(

 #

 "sass/examples/bs4Dash-custom", 

 #

 package = "OSUICode" 

 # )

Output is shown in Figure 7.2. 

You probably noticed a potential issue. We indeed have to rely on a specific AdminLTE

version, namely 3.1.0, that is not necessarily the one we want. Therefore, an alternative would be to download the Sass files from AdminLTE3, store them in a package, ideally the 11https://colorswall.com/palette/66354/

12https://github.com/dreamRs/fresh/blob/bf1e00a9d9f2c3388fd88a6a0ca63869b3bf8a81/R/create_t

heme.R#L69

[image: Image 99]

[image: Image 100]

122

 7 Tidy your CSS with Sass

FIGURE 7.2: Custom AdminLTE colors. 

/inst folder, and recompile the code from that folder with new variables. As AdminLTE3

depends on Bootstrap 4, we would have to recover those dependencies in a separate folder, making sure it is accessible to the AdminLTE Sass code. 

7.6.2 Customize {shinybulma}

For convenience, the Sass code is already included in the book side package13. The goal is to change the main color palette that comprises:

• primary

• info

• success

• warning

• danger

In total, bulma exposes 419 Sass variables14! 

Among all files, we locate the main variables file and select the relevant variables we want to modify. Notice we can retrieve all the information on initial variables15 and derived variables16. 

We assign them new values17:

$turquoise : #03a4ff; 

$cyan : #e705be; 

$green : #f3d6e9; 

$yellow : #fdaf2c; 

$red : #ff483e; 

$scheme-main : hsl(0, 0%, 4%); 

Particularly, we target the main body color stored in $scheme-main. Instead of pointing 13https://github.com/DivadNojnarg/OSUICode/tree/43911d32885e960d6f42c7bd7d92748109f29f00/i

nst/sass/bulma

14https://bulma.io/documentation/customize/concepts/

15https://bulma.io/documentation/customize/variables/#initial-variables

16https://bulma.io/documentation/customize/variables/#variables

17https://blog.depositphotos.com/neon-color-palettes.html

[image: Image 101]

 7.6 Examples

123

to $white, we change its value to the default $black. We then Compile the new CSS with sass():

css <- sass(

sass_layer(

defaults = list(

turquoise = "#03a4ff", 

cyan = "#e705be", 

green = "#f3d6e9", 

yellow = "#fdaf2c", 

red = "#ff483e", 

"scheme-main" = "hsl(0, 0%, 10%)" 

), 

rules = sass_file(input = system.file(

"sass/bulma/bulma.sass", 

package = "OSUICode" 

))

)

)

Finally, we try the new theme in the following app, shown in Figure 7.3. If you want to see the whole code, run OSUICode::get_example("sass/examples/shinybulma-custom"). 

 ### RUN ###

 # OSUICode::run_example(

 #

 "sass/examples/shinybulma-custom", 

 #

 package = "OSUICode" 

 # )

FIGURE 7.3: Custom bulma theme. 

[image: Image 102]

8

Beautify with {fresh}

As shown in the previous chapter, Sass is a powerful tool to customize apps in minutes, in addition to drastically improving code quality, thereby empowering long term maintenance. 

Some CSS knowledge are required and it may not be that easy to find the corresponding variables to a specific purpose. For instance, would you be able to guess what Bootstrap 4

variables are required to customize the {bs4Dash} template? 

In this chapter, as well as in Chapter 9, we show higher-level tools to customize Bootstrap-based templates. Let’s start with the first one: {fresh}. 

{fresh}1 is an R package developed by the dreamRs2 team, also authors of shinyWidget3

and esquisse4. All dreamRs projects are clearly a great source of inspiration to design outstanding Shiny apps, to such an extent that we highly recommend the reader explore more about their work. 

To install {fresh}, we run:

 # CRAN

install.packages("fresh")

 # development version

remotes::install_github("dreamRs/fresh")

An interactive live theming tool may be run from Github with an example shown in Figure

8.1:

shiny::runGitHub("dreamRs/fresh", subdir = "inst/examples/create")

8.1 {fresh}, the big picture

{fresh} is built on top of {sass} and what you see later in Figures 8.6 and 8.7 may be done in few minutes. To design a new theme, the main function is create_theme(): 1https://github.com/dreamRs/fresh

2https://www.dreamrs.fr/

3https://github.com/dreamRs/shinyWidgets

4https://github.com/dreamRs/esquisse

125

[image: Image 103]

[image: Image 104]

[image: Image 105]

[image: Image 106]

[image: Image 107]

[image: Image 108]

[image: Image 109]

[image: Image 110]

[image: Image 111]

126

 8 Beautify with {fresh}

FIGURE 8.1: Live theming app with fresh. 

create_theme(

..., 

theme = c("default", "cerulean", ...), 

output_file = NULL, 

include_assets = FALSE

)

theme allows you to import a Bootswatch5 CSS theme; you may already know this if you ever used {shinythemes}. output_file controls the output. If provided, create_theme() creates a CSS file at the specified location. Otherwise, it returns a string value containing the compiles CSS. It is useful in a package context where you don’t necessarily want to generate a new theme each time. … is where we pass a list of CSS variables through bs4Dash_*

(specific to {bs4Dash}), adminlte_* (for {shinydashboard}) or bs_vars_* (for classic

{shiny} apps) functions, which we describe below. 

In general, you’ll have to call use_theme() inside the app UI to load the newly generated theme. 

� Note that {bs4Dash} and {shinydashboardPlus} expose a freshTheme parameter, which handles the provided theme on the fly. 

8.1.1 Customize {bs4Dash}

In what follows, we explain how to set a blue ocean theme in only few minutes. 

5https://bootswatch.com/

 8.1 {fresh}, the big picture

127

8.1.1.1 Statuses and colors

In Chapter 7.6.1, we showed how to change {bs4Dash} color, with a few lines of Sass code. 

Guess what: {fresh} makes it even easier! The bs4dash_status() and bs4Dash_color() functions allow to overwrite all the default statuses and colors: bs4dash_status(

primary = NULL, 

secondary = NULL, 

success = NULL, 

info = NULL, 

warning = NULL, 

danger = NULL, 

light = NULL, 

dark = NULL

)

bs4dash_color(

blue = NULL, 

lightblue = NULL, 

navy = NULL, 

cyan = NULL, 

teal = NULL, 

olive = NULL, 

green = NULL, 

 # ... 

)

By default, primary is blue but could become green with just one line of code. Do you recall section 7.6.1, where we customized {bs4Dash} colors with Sass? Let’s try again with

{fresh}. We first create the new theme, passing it the new colors and injecting it inside the previously mentioned freshTheme parameter:

library(fresh)

custom_colors_theme <- create_theme(

bs4dash_color(

lightblue = "#136377", 

olive = "#d8bc66", 

lime = "#fcec0c", 

orange = "#978d01", 

maroon = "#58482c", 

gray_x_light = "#d1c5c0" 

)

)

The corresponding example may be run with:

 ### RUN ###

 # OSUICode::run_example(

 #

 "fresh/bs4Dash-custom", 

 #

 package = "OSUICode" 

 # )

To preview the code, use OSUICode::get_example("fresh/bs4Dash-custom"). 

� Note that complex variable names like gray-x-light become gray_x_light! 

Compared to the approach described in section 7.6.1, there a few advantages:

[image: Image 112]

128

 8 Beautify with {fresh}

• We don’t have to specify the AdminLTE.scss location, as {fresh} hosts it here6. 

• We don’t have to look for all colors names as they are described along the bs4dash_color function definition. We even have a description of the default values (as well as statuses in bold), depicted in Figure 8.2 below. 

FIGURE 8.2: Default bs4Dash theme colors. 

Corporate users will appreciate being able to set up a custom internal theme in minutes. 

8.1.1.2 General Layout

bs4Dash_layout exposes variables to control the sidebar width when expanded or collapsed, the sidebar padding, the controlbar width, the main background color and the main content padding. For the blue ocean theme, we change the body background color passing a new value to the main_bg variable, as below (Figure 8.3): layout_vars <- bs4dash_layout(main_bg = "#006994")

ocean_theme <- create_theme(layout_vars)

We acknowledge the result is not yet consistent, but it gives a small glimpse about the package capabilities. 

8.1.1.3 Navbar

As illustrated in the {bs4Dash} documentation, the dashboardHeader() has two color flavors, that is light and dark. It defaults to light, meaning that icons and text will be displayed with a darker color, for contrast reasons, and inversely. The {bs4Dash} gallery7

illustrates this property quite well. 

6https://github.com/dreamRs/fresh/tree/bf1e00a9d9f2c3388fd88a6a0ca63869b3bf8a81/inst/asse

ts/AdminLTE-3.1.0

7https://dgranjon.shinyapps.io/bs4DashDemo/

[image: Image 113]

[image: Image 114]

 8.1 {fresh}, the big picture

129

FIGURE 8.3: Customized body background color. 

Navbar variables may be found with search_vars_bs4dash("navbar"), for example: library(tibble)

head(

as_tibble(

search_vars_bs4dash("navbar")

)[, c("variable", "value")]

)

#> # A tibble: 6 x 2

#> 

variable

value

#> 

<chr> 

<chr> 

#> 1 navbar-nav-link-pa~ 1rem

#> 2 navbar-brand-font-~ $font-size-lg

#> 3 navbar-brand-height $navbar-brand-font-size * $~

#> 4 navbar-toggler-pad~ .25rem

#> 5 navbar-toggler-pad~ .75rem

#> 6 navbar-toggler-fon~ $font-size-lg

We’ll be using the navbar_light_* variables as follows:

• The navbar color is determined by the navbar-light class. We change the global light status value to the brand new ocean blue with bs4dash_status(). 

• navbar_light_color set the navbar text and icon elements to white (#fff). It is the best choice given the background color we want to apply. 

We also modified the primary status to be a shade of green:

navbar_vars <- list(

 # navbar background

bs4dash_status(light = "#005475", primary = "#00755c"), 

 # put toggler in white

bs4dash_vars(navbar_light_color = "#fff")

)

ocean_theme <- create_theme(layout_vars, navbar_vars)

130

 8 Beautify with {fresh}

8.1.1.4 Text color

The card text elements would not properly be styled without setting the white color to the global ocean blue theme color, as they would render dark, which is a bad contrast option. 

Hence, we change the white and gray_900 colors with bs4dash_color(). 

inverted_colors <- bs4dash_color(

gray_900 = "#fff", 

white = "#005475" 

)

ocean_theme <- create_theme(

layout_vars, 

navbar_vars, 

inverted_colors

)

8.1.1.5 Color contrast

bs4dash_yiq() fine-tunes the contrast8 between a given color and its background. It relies on the Bootstrap 4 color-yiq function, whose code may be found below9. Interested readers will have a look at the following article10, that explains better where this calculation is derived from. 

@function color-yiq($color, $dark: $yiq-text-dark, 

$light: $yiq-text-light) {

$r: red($color); 

$g: green($color); 

$b: blue($color); 

$yiq: (($r * 299) + ($g * 587) + ($b * 114)) / 1000; 

@if ($yiq >= $yiq-contrasted-threshold) {

@return $dark; 

} @else {

@return $light; 

}

}

The function has three major steps:

• Given a color, we extract its three components in the rgb space. 

• The yiq value is computed from these contributions, according to the above formula. 

• The threshold determines the final color value. If yiq is higher than the threshold, the color is black. Conversely, if yiq is lower than the threshold, the resulting color is white. 

As an example, let’s apply this to the default AdminLTE3 primary color #0073b7, with a threshold value of 150. We included an extra parameters to the color-yiq function, that represents the threshold value (defaulting to 150). 

We utilize knowledge from Chapter 7, particularly, the sass_layer() function to separate functions/mixins from rules and defaults:

8https://getbootstrap.com/docs/4.0/getting-started/theming/#color-contrast

9https://github.com/dreamRs/fresh/blob/bf1e00a9d9f2c3388fd88a6a0ca63869b3bf8a81/inst/asse

ts/bootstrap-4.5.2/_functions.scss#L70

10https://en.wikipedia.org/wiki/Luma_(video)

 8.1 {fresh}, the big picture

131

color_yiq <- " 

@function color-yiq($color, $threshold: 150, 

$dark: $yiq-text-dark, $light: $yiq-text-light) {

$r: red($color); 

$g: green($color); 

$b: blue($color); 

$yiq: (($r * 299) + ($g * 587) + ($b * 114)) / 1000; 

@if ($yiq >= $threshold) {

@return $dark; 

} @else {

@return $light; 

}

}

" 

background <- " 

$bg: #0073b7 !default; 

$yiq-text-dark: #111 !default; 

$yiq-text-light: #fff !default; 

" 

test_contrast <- ".test { background: color-yiq($bg); }" 

sass(

sass_layer(

defaults = background, 

declarations = color_yiq, 

rules = test_contrast

)

)

#> <style>.test {

#> 

background: #fff; 

#> }

#> </style> 

Wait a moment: bs4dash_yiq() does not expose any color parameter! Indeed, the color is already implicitly applied by the AdminLTE Sass code. 

As a last example, we design an app with a slider input controlling the contrast threshold and a radio input color picker to set the box current status color. We dynamically call bs4dash_yiq() and create_theme, with an initial threshold of 150 (Bootstrap default) and a dark and light values set to primary and white, respectively. The initial status is primary (blue), and as shown above, we expect the yiq value to be lower than the threshold since the blue color has a relatively light weight for the calculation, thereby fixing the background text color to white. As an exercise, you may try to reduce the threshold until the text becomes black. What is the threshold value. Then, replace the card status from primary to warning. What happens? Why? As yellow is made of green and red, which have the highest contributions in the yiq calculation, this result is not surprising! 

 ### RUN ###

 # OSUICode::run_example(

 #

 "fresh/color-contrast", 

 #

 package = "OSUICode" 

 # )

The output is shown Figure 8.4. 

8.1.1.6 Sidebar

Like dashboardHeader(), dashboardSidebar() exposes two flavors, namely light and dark. Since we set the sidebar to be light, we leverage the bs4Dash_sidebar_light()

[image: Image 115]

132

 8 Beautify with {fresh}

FIGURE 8.4: Color contrast function in action. 

helper. We set the main background (bg variable) to ocean blue and set the menu color (color variable) to white, so as to have a better contrast. Additionally, we invert the text_dark and text_light colors for an even better contrast with bs4dash_yiq(). In short, the higher the contrasted_threshold parameter the less sensitive is the change. 

sidebar_vars <- list(

bs4dash_yiq(

contrasted_threshold = 10, 

text_dark = "#FFF", 

text_light = "#272c30" 

), 

bs4dash_sidebar_light(

bg = "#005475", 

color = "#FFF", 

hover_color = "#FFF", 

submenu_color = "#FFF", 

submenu_hover_color = "#FFF" 

)

)

ocean_theme <- create_theme(

layout_vars, 

navbar_vars, 

inverted_colors, 

sidebar_vars

)

As the {fresh} theme does not apply to static plots, since they are not HTML element and not part of the DOM, we leverage the {thematic}11 package, that in short, provides a sort of CSS interface for base R plots, ggplot and lattice. Specifically, in the Shiny context, we choose thematic_shiny(). By default, it sets the appropriate background, foreground and accent colors. The final product is shown Figure 8.5 and may be run as per below code:

 ### RUN ###

 # OSUICode::run_example(

 #

 "fresh/bs4Dash-ocean-theme", 

 #

 package = "OSUICode" 

 # )

You may notice the inappropriate sliderInput() style. This is because it is not a Bootstrap 4 element. In this case, you’ll have to create custom CSS rules targeting the slider labels and scale. 

Below is another example of a custom dark theme, whose code may be found right after

Figure 8.6. 

11https://rstudio.github.io/thematic/

[image: Image 116]

[image: Image 117]

[image: Image 118]

[image: Image 119]

[image: Image 120]

[image: Image 121]

[image: Image 122]

[image: Image 123]

 8.1 {fresh}, the big picture

133

FIGURE 8.5: Ocean theme for bs4Dash. 

FIGURE 8.6: Few lines of code to create a bs4Dash dark theme. 

134

 8 Beautify with {fresh}

dark_theme <- create_theme(

bs4dash_vars(

navbar_light_color = "#bec5cb", 

navbar_light_active_color = "#FFF", 

navbar_light_hover_color = "#FFF" 

), 

bs4dash_yiq(

contrasted_threshold = 10, 

text_dark = "#FFF", 

text_light = "#272c30" 

), 

bs4dash_layout(main_bg = "#353c42"), 

bs4dash_sidebar_dark(

bg = "#272c30", 

color = "#bec5cb", 

hover_color = "#FFF", 

submenu_bg = "#272c30", 

submenu_color = "#FFF", 

submenu_hover_color = "#FFF" 

), 

bs4dash_status(dark = "#272c30"), 

bs4dash_color(gray_900 = "#FFF", white = "#272c30")

)

 ### RUN ###

 # OSUICode::run_example(

 #

 "fresh/bs4Dash-dark-theme", 

 #

 package = "OSUICode" 

 # )

8.1.2 Customize {shinydashboard}

Similarly, {fresh} supports {shinydashboard}-powered apps. In few lines of code, you may definitely provide a cyberpunk look and feel to your favorite Shiny dashboard (Figure 8.7). 

{shinydashboardPlus} (v212) has a plug and play support for {fresh}, where the theme has to be passed to the dashboardPage  freshTheme  parameter (it would also seamlessly work with {shinydashboard}). We start by creating the theme with adminlte_colors(), adminlte_sidebar() and adminlte_global():

cyberpunk_theme <- create_theme(

adminlte_color(

green = "#3fff2d", 

blue = "#2635ff", 

red = " #ff2b2b", 

yellow = "#feff6e", 

fuchsia = "#ff5bf8", 

navy = "#374c92", 

purple = "#615cbf", 

maroon = "#b659c9", 

light_blue = "#5691cc" 

), 

adminlte_sidebar(

dark_bg = "#D8DEE9", 

dark_hover_bg = "#81A1C1", 

dark_color = "#2E3440" 

), 

adminlte_global(

content_bg = "#aaaaaa" 

)

)

12https://rinterface.github.io/shinydashboardPlus/articles/more-skins.html#fresh

[image: Image 124]

[image: Image 125]

 8.1 {fresh}, the big picture

135

The demonstration may be run with the following code, the result being shown in Figure

8.7:

 ### RUN ###

 # OSUICode::run_example(

 #

 "fresh/shinydashboardPlus-cyberpunk", 

 #

 package = "OSUICode" 

 # )

FIGURE 8.7: Cyberpunk shinydashboard. 

[image: Image 126]

[image: Image 127]

9

Become a theming wizard with {bslib}

{bslib}1 (Sievert and Cheng, 2021) is a package developed by RStudio, built on top {sass}

providing weapons to deeply customize your apps, in a ridiculously short amount of time and without too much pain, as shown in Figure 9.1. 

FIGURE 9.1: Shiny app with NES css custom theme. 

� At the time of writing, {bslib} does not support {shinydashboard} and

{bs4Dash}. {bslib} requires {shiny} >= 1.6.0. Bootstrap 5 support requires

{shiny} >= 1.6.0.9001 and {bslib} >= 0.3.0. {bslib} > 0.3.0 defaults to Bootstrap 5. 

To install {bslib}, we run:

 # CRAN

install.packages("bslib")

 # development version

remotes::install_github("rstudio/bslib")

The following code will allow you to quickly customize the theme from Figure 9.1 and get a better idea of {bslibs}’s power. Let’s meet in the next section to understand what magic is behind it. 

library(bslib)

library(magrittr)

OSUICode::nes_theme %>% bs_theme_preview()

1https://blog.rstudio.com/2021/02/01/shiny-1-6-0/

137

138

 9 Become a theming wizard with {bslib}

9.1 High-level customization

Like {fresh}, {bslib} offers a high-level set of functions allowing users to quickly customize Shiny apps. For many users, this step will be enough. 

9.1.1 Create a theme

bs_theme() seamlessly modifies the main CSS properties like:

• The background color, namely bg. 

• The foreground color, namely fg. 

• Change default theme colors, also called accents2. 

• Modify the font3. This leverages the font_google(), font_face() and font_link() functions. In practice, font_google() caches the font resources so that they are always available to the user. 

Additionally, it gives the flexibility to choose Bootstrap version, falling back to version_default() if not specified. Currently, the version is 4 but will change in the future, which is why it is advised to specify a value to avoid any unexpected breaking change. This function has three flavors:

• Bootstrap 3, with "3" (see Chapter 3, Shiny primarily relies on Bootstrap 3). 

• Bootstrap 4 + compatibility with Bootstrap 3, with "4". 

• Bootstrap 5 with "5". 

• More Bootstrap versions

Advanced users appreciate a ... slot to add extra variables through bs_add_variables(), with literally hundreds of choices. We give more details in section 9.2. In the following, we decide to default to Bootstrap 4. 

library(bslib)

bs_theme(

version = version_default(), 

bootswatch = NULL, 

..., 

bg = NULL, 

fg = NULL, 

primary = NULL, 

secondary = NULL, 

success = NULL, 

info = NULL, 

warning = NULL, 

danger = NULL, 

base_font = NULL, 

code_font = NULL, 

heading_font = NULL

)

2https://getbootstrap.com/docs/4.1/utilities/colors/

3https://rstudio.github.io/bslib/articles/theming.html#main-colors-fonts

 9.1 High-level customization

139

Let’s create a very simple theme:

simple_bs4_theme <- bs_theme(version = 4)

We deliberately trimmed the corresponding output to get a better rendering in the book. 

#> /* Sass Bundle: _root, _reboot, ..., _toasts, _modal, ... */

#> 

#> /* MORE Sass imports ... */

#> @import "../scss/_toasts.scss"; 

#> @import "../scss/_modal.scss"; 

#> 

#> /* MORE Sass imports ... */

#> 

#> /* *** */

#> Other Sass Bundle information:

#> List of 2

#> 

$ html_deps

:List of 1

#> 

..$ :List of 10

#> 

.. ..$ name

: chr "bs3compat" 

#> 

.. ..$ version

: chr "0.2.5.9002" 

#> 

.. ..$ src

:List of 1

#> 

.. .. ..$ file: chr "bs3compat/js" 

#> 

.. ..$ meta

: NULL

#> 

.. ..$ script

: chr [1:3] "transition.js" "tabs.js" 

#> 

"bs3compat.js" 

#> 

.. ..$ stylesheet: NULL

#> 

.. ..$ head

: NULL

#> 

.. ..$ attachment: NULL

#> 

.. ..$ package

: chr "bslib" 

#> 

.. ..$ all_files : logi TRUE

#> 

.. ..- attr(*, "class")= chr "html_dependency" 

#> 

$ file_attachments: Named chr "..." 

#> 

..- attr(*, "names")= chr "fonts" 

At a glance, the output contains a bundle with Sass code for all Bootstrap 4 components (toasts, modals, …). Then, each of those modules are imported with the @import statement. 

The remaining consists of an HTML dependency providing compatibility with Bootstrap 3

and fonts assets. 

9.1.2 Update a theme

{bslib} exposes handy functions to alter the theme Sass code, that is, remove (bs_remove()) or add (bs_theme_update()) rules to/from a preexisting theme. This may be useful to reduce the code size or add missing rules on the fly. For instance, if we don’t need to alter the toast component, there is no need to include its Sass code in the theme. 

We therefore do:

simple_bs4_theme <- bs_remove(simple_bs4_theme, "_toasts") Inversely, if we missed a CSS rule, we may leverage bs_theme_update(), which is able to update a given theme object, generated with bs_theme(). Below, we change the default primary color () to a lighter blue:

simple_bs4_theme <- bs_theme_update(

simple_bs4_theme, 

primary = htmltools::parseCssColors("lightblue")

)

140

 9 Become a theming wizard with {bslib}

Note the use of htmltools::parseCssColors(), which converts a color name to the corresponding HEX code:

htmltools::parseCssColors("blue")

#> [1] "#0000FF" 

htmltools::parseCssColors("gainsboro")

#> [1] "#DCDCDC" 

9.1.3 Preview a theme

We first create a custom neon theme:

bslib_neon_theme <- bs_theme(

version = 4, 

bg = "#000000", 

fg = "#FFFFFF", 

primary = "#9600FF", 

secondary = "#1900A0", 

success = "#38FF12", 

info = "#00F5FB", 

warning = "#FFF100", 

danger = "#FF00E3", 

base_font = "Marker Felt", 

heading_font = "Marker Felt", 

code_font = "Chalkduster" 

)

At any time, developers may preview the resulting theme with bs_theme_preview(), for instance:

 ### RUN ###

 # OSUICode::run_example(

 #

 "bslib/theme-preview", 

 #

 package = "OSUICode" 

 # )

Interestingly, bs_theme_preview() is no more than shiny::runApp() when the with_themer is FALSE. This gives the result shown in Figure 9.2. 

9.1.4 Live theming

Let’s go even further! Wouldn’t it be cool to be able to modify the app at runtime with a plug and play widget? This is possible with {bslib}, owing to the run_with_themer() wrapper. It takes a Shiny App object as input (i.e. defined with shiny::shinyApp()):

 ### RUN ###

 # OSUICode::run_example(

 #

 "bslib/run-with-themer", 

[image: Image 128]

[image: Image 129]

[image: Image 130]

[image: Image 131]

[image: Image 132]

 9.2 High-level customization

141

FIGURE 9.2: Theme preview in action. 

 #

 package = "OSUICode" 

 # )

As depicted by Figure 9.3, the themer does not only show a live theming widget. It also shows the corresponding code output step by step, so as to update the original theme. Under the hood, it leverages the bs_theme_update() function, described above. 

FIGURE 9.3: Live theming with bslib. Left: themer widget. Right: code output. 

Alternatively, passing with_themer = TRUE inside bs_theme_preview does also the same thing. For further details, we refer the reader to the official documentation4. Even though there exists a third function, namely bs_themer, I don’t encourage using it, as it has to be inserted in the server function, which can be easily forgotten by mistake. 

4https://rstudio.github.io/bslib/reference/run_with_themer.html#limitations

142

 9 Become a theming wizard with {bslib}

9.2 Low-level customization

9.2.1 Add new variables

bs_add_variables() adds new variables at a specific position within a theme. By default, they are inserted before other Sass defaults. It is a lower-level function since you have to know the corresponding Bootstrap variable(s). Let’s consider the example of a Bootstrap 4

badge where we aim at changing the font size, font weight and padding. The corresponding Sass code may be found here5, and we identify a few variables, whose default values are shown in the Bootstrap 4 variables code here6:

// Typography

//

// Font, line-height, and color for body text, headings, and more. 

$font-weight-bold :

 700 !default; 

// Define common padding and border radius sizes and more. 

$border-radius :

 .25rem !default; 

// Badges

$badge-font-size :

 75% !default; 

$badge-font-weight :

 $font-weight-bold !default; 

$badge-padding-y :

 .25em !default; 

$badge-padding-x :

 .4em !default; 

$badge-border-radius :

 $border-radius !default; 

Now we create our custom theme, increasing the font weight, size and changing the border radius to obtain rounded corners7:

library(magrittr)

custom_badge_theme <- bs_theme(

version = 4, 

 # high level theming

success = htmltools::parseCssColors("lightgreen")

) %>%

bs_add_variables(

 # low level theming

"badge-font-weight" = 900, 

"badge-font-size" = "100%", 

"badge-padding-y" = "0.5em", 

"badge-padding-x" = "0.8em", 

"badge-border-radius" = "1rem" 

)

� It would be tempting to change the global $font-weight-bold, but it might affect other elements. Let’s just overwrite the badge-font-weight. 

The badge code is given by the following HTML:

5https://github.com/twbs/bootstrap/blob/5d24fef741944c168ad0ca9cabd1509d5803e441/scss/_bad

ge.scss

6https://github.com/twbs/bootstrap/blob/v4-dev/scss/_variables.scss

7https://shoelace.style/tokens/border-radius

[image: Image 133]

 9.2 Low-level customization

143

<span class="badge badge-success" > Success</span> We leverage our previous knowledge to convert it to R and make it browsable with

{htmltools}:

library(htmltools)

my_badge <- a(class = "badge badge-success", "1") preview_badge <- function(theme = NULL) {

if (interactive()) {

tag <- if (is.null(theme)) {

 # default bs4 theme

bs_theme(version = 4)

} else {

 # altered badge

theme

}

browsable(

tags$body(

br(), 

bs_theme_dependencies(theme), 

my_badge

)

)

}

}

 # preview_badge(custom_badge_theme)

 # preview_badge() # default badge

FIGURE 9.4: Custom Bootstrap 4 badge with bslib. Left: custom badge, right: default badge. 

bs_theme_dependencies() is used outside of a Shiny context to include the theme Sass code as a dependency. 

9.2.2 Import external rules

Let’s try with another example. We would like to bring a refreshment to the Bootstrap UI elements with one of the most modern UI kit to date, namely 98.css8, a Windows 98 CSS

kit. The CSS assets may be accessed from jsdelivr9, as follows:

win98_cdn <- " https://cdn.jsdelivr.net/npm/98.css@0.1.16/" 

win98_css <- paste0(win98_cdn, "dist/98.min.css")

{bslib} exposes neat tools to import extra CSS in the current theme, such as bs_add_rules(), which calls sass::sass_file() under the hood:

8https://jdan.github.io/98.css/

9https://cdn.jsdelivr.net/npm/98.css@0.1.16/dist/98.min.css

144

 9 Become a theming wizard with {bslib}

theme %>%

bs_add_rules(

sprintf('@import "%s"', win98_css)

)

The three theme colors are #c0c0c0 for the background and all colors (except primary), 

#03158b for primary and #222222 for the text. We also disable the rounded option so that button borders stay squared. 

windows_grey <- "#c0c0c0" 

windows98_theme <- bs_theme(

version = 4, 

bg = windows_grey, 

fg = "#222222", 

primary = "#03158b", 

base_font = c("Times", "Arial"), 

secondary = windows_grey, 

success = windows_grey, 

danger = windows_grey, 

info = windows_grey, 

light = windows_grey, 

dark = windows_grey, 

warning = windows_grey, 

"font-size-base" = "0.75rem", 

"enable-rounded" = FALSE

) %>%

bs_add_rules(

sprintf('@import "%s"', win98_css)

)

To run the corresponding app you may call windows98_theme %>% bs_theme_preview() or copy and paste the below code in your R console. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "bslib/windows-98", 

 #

 package = "OSUICode" 

 # )

When you run the above demonstration, you’ll notice that the slider input is not properly styled. It’s not surprising knowing that the slider is not shaped by Bootstrap but Ion.RangeSlider10. Therefore, if you want a better appearance, like in 98.css11, we would need extra work. The output is shown in Figure 9.5. 

9.3 Dynamic theming

9.3.1 Basics

Now, let’s say you design an app and want to give the choice between the vanilla Shiny design and your new cyberpunk theme, created in the previous section. We leverage the 10http://ionden.com/a/plugins/ion.rangeSlider/

11https://jdan.github.io/98.css/#slider

[image: Image 134]

[image: Image 135]

[image: Image 136]

 9.3 Dynamic theming

145

FIGURE 9.5: Modern Windows 98 theme for Shiny. 

new session$setCurrentTheme feature that allows {bslib}-generated themes to pass to JavaScript through the session object. Our Shiny app contains a Bootstrap 4 toggle defined by the theme_toggle() function, whose value is either TRUE or FALSE. On the JavaScript side, we first create a custom Shiny input with Shiny.setInputValue that gets the current mode value from the toggle. If TRUE, then the custom theme is applied by session$setCurrentTheme in an observeEvent(). 

theme_toggle <- function() {

div(

class = "custom-control custom-switch", 

tags$input(

id = "custom_mode", 

type = "checkbox", 

class = "custom-control-input", 

onclick = HTML(

"Shiny.setInputValue(

'dark_mode', 

document.getElementById('custom_mode').value

);" 

)

), 

tags$label(

"Custom mode?", 

`for` = "custom_mode", 

class = "custom-control-label" 

)

)

}

If FALSE, we fall back to a default Bootstrap 4 theme provided by bs_theme(version =

4). 

Like for {fresh}, the {bslib} theme does not apply to static plots, as they are not HTML

elements. Therefore we load {thematic}. 

146

 9 Become a theming wizard with {bslib}

 ### RUN ###

 # OSUICode::run_example(

 #

 "bslib/dynamic-theming", 

 #

 package = "OSUICode" 

 # )

� At the time of writing, an issue with bindCache() not aware of session$setCurrentTheme() is described at h t t p s : / / g i t h u b . c o m

/ r s t u d i o / s h i n y / i s s u e s / 3 2 08, with {shiny} 1.6.0. Moreover, session$setCurrentTheme() is not able to handle dynamic change of Bootstrap version. 

A common mistake would be to forget to specify the session object in the server function, which would cause session$setCurrentTheme() to fail. Be careful! 

9.3.2 Custom elements

For elements other than core Shiny components like numericInput() or {thematic} compatible elements such as plotOutput(), {bslib} provides tools to design dynamically the-meable custom components. 

Let’s take the example of a simple card where the Sass code is defined below:

• .supercard has a shadow, takes half of the page width and has a fixed height. Notice the background-color that takes the value of the $primary Sass variable, inherited from Bootstrap 4. 

• .supercard_body adds padding to the card body content. 

.supercard {

box-shadow: 0 4px 10px 0 rgb(0, 0, 0), 0 4px 20px 0

rgb(0, 0, 0); 

width: 50%; 

height: 200px; 

background-color: $primary; 

.supercard_body {

padding: 0.01em 16px; 

}

}

Below, for convenience, we put that Sass code inside a R string, even though best practice would be to save it in a file and compile it with sass_file(). 

 9.3 Dynamic theming

147

sass_str <- " 

.supercard {

box-shadow: 0 4px 10px 0 rgb(0, 0, 0), 0 4px 20px 0

rgb(0, 0, 0); 

width: 50%; 

height: 200px; 

background-color: $primary; 

.supercard_body {

padding: 0.01em 16px; 

}

}" 

If you try to run sass(input = sass_str), it will fail, as $primary is not defined. Now, the goal is to link this custom Sass code to the main app theme, created with bs_theme(). 

We invoke the bs_dependency() function where:

• input refers to a list of Sass rules, that is sass_str in our example. 

• theme is a theme generated with bs_theme(). 

• name and version are metadata. 

In case we are not in a {bslib} context, i.e. the app does not pass a bs_theme() element, we create a fallback containing the card CSS code:

super_card_dependency <- function(theme) {

dep_name <- "supercard" 

dep_version <- "1.0.0" 

if (is_bs_theme(theme)) {

bs_dependency(

input = sass_str, 

theme = theme, 

name = dep_name, 

version = dep_version

)

} else {

htmlDependency(

name = dep_name, 

version = dep_version, 

src = "supercard-1.0.0/css", 

stylesheet = "super-card.css", 

package = "OSUICode" 

)

}

}

As shown, in Chapter 4, we have to add this dependency to the card tag. Importantly, we wrap it inside bs_dependency_defer() that enables us to dynamically update the theme on the server side, each time session$setCurrentTheme is called: super_card <- function(...) {

div(

class = "supercard", 

div(class = "supercard_body", ...), 

bs_dependency_defer(super_card_dependency)

)

}

We then create a simple dark theme that will be utilized by session$setCurrentTheme and run the app:

[image: Image 137]

[image: Image 138]

[image: Image 139]

148

 9 Become a theming wizard with {bslib}

dark_theme <- bs_theme(version = 4) %>%

bs_theme_update(

bg = "black", 

fg = "white", 

primary = "orange" 

)

 ### RUN ###

 # OSUICode::run_example(

 #

 "bslib/custom-components", 

 #

 package = "OSUICode" 

 # )

� Live theming requires the session parameter to the server function. Don’t forget it! 

The reader is invited to exploit the run_with_themer() capabilities, which allows users to dynamically modify the current theme, as shown later in Figure 9.6. 

FIGURE 9.6: Theme preview with custom component. 

Below, we try without passing any theme to fluidPage(), to test our CSS fall back strategy: ui <- fluidPage(super_card("Hello World!"))

server <- function(input, output) {}

shinyApp(ui, server)

 9.3 Dynamic theming

149

9.3.3 Conditional rendering

9.3.3.1 Bootstrap badges

In this section, we see how to create components whose rendering may adapt depending on the currently active theme properties, like the current Bootstrap version. Bootstrap badges have slightly different structures between Bootstrap 3 and Bootstrap 4/5:

 <!-- BS3 --> 

<span class="badge" > 42</span> 

 <!-- BS4 --> 

<span class="badge badge-secondary" > New</span> 

 <!-- BS5 --> 

<span class="badge bg-secondary" > New</span> Bootstrap 3 badges don’t have any color class contrary to Bootstrap 4 or 5. Bootstrap 4 and 5 badges color classes slightly differ: badge-<COLOR> (BS4) vs bg-<COLOR> (BS5). Below, let’s write a common wrapper to create a bs_badge() function for Shiny that works for all Bootstrap versions. No question to create three different functions! The common skeleton tag is a simple span element with the badge class. Depending on the version, we create a render hook with htmltools::tagAddRenderHook() that is able to adequately alter the tag structure. We first get the currently active theme with shiny::getCurrentTheme() or bslib::bs_current_theme(). We check if it is a {bslib} theme, and if yes, we recover its version with bslib::theme_version(). Note the importance of timing. Calling shiny::getCurrentTheme() outside the render hook would give NULL, thereby preventing the code from working. We raise an error if color is used whenever the Bootstrap version is lower than 4. In case of Bootstrap 4 or 5, we utilize htmltools::tagQuery() to efficiently modify the tag structure in one single flow of instructions, as shown in section 2.6. The result is shown below:

bs_badge <- function(text, color = NULL) {

 # Create common badge skeleton for BS3/4/5

badge_skeleton <- tags$span(class = "badge", text)

 # Handle BS4 and BS5 extra class

if (!is.null(color)) {

badge_skeleton <- tagAddRenderHook(

badge_skeleton, function(x) {

 # get theme and version

theme <- getCurrentTheme()

version <- if (bslib::is_bs_theme(theme)) {

bslib::theme_version(theme)

}

switch(

version, 

 # stop if color is used with BS3

"3" = stop(

sprintf(

"color is not available for Bootstrap %s", 

version

)

), 

"4" =

tagQuery(x)$

[image: Image 140]

[image: Image 141]

[image: Image 142]

150

 9 Become a theming wizard with {bslib}

addClass(sprintf("badge-%s", color))$

allTags(), 

"5" = tagQuery(x)$

addClass(sprintf("rounded-pill bg-%s", color))$

allTags()

)

})

}

badge_skeleton

}

Let’s test it below, with the result illustrated Figure 9.7. 

 # BS3

ui <- fluidPage(

theme = bs_theme(version = 3), 

bs_badge(42)

)

server <- function(input, output, session) {}

shinyApp(ui, server)

 # BS4

ui <- fluidPage(

theme = bs_theme(version = 4), 

bs_badge(42, "primary")

)

shinyApp(ui, server)

 # BS5

ui <- fluidPage(

theme = bs_theme(version = 5), 

bs_badge(42, "primary")

)

shinyApp(ui, server)

FIGURE 9.7: Conditional rendering of a Bootstrap component. Left: BS3 badge; center: BS4 badge; right: BS5 badge. 

9.3.3.2 Bootstrap navs

Another great real-life example is documented in the {shiny} package itself (see https:

//github.com/rstudio/shiny/pull/3372/files#diff-befe9146792f0d65aeeaf781

e8ba00a1a3638ac2be162b61b6c8958440860b56), which briefly consists of handling nav12

element differences between Bootstrap 3 and Bootstrap 4/5. 

12https://getbootstrap.com/docs/5.0/components/navs-tabs/

[image: Image 143]

 9.3 Dynamic theming

151

9.3.3.3 Guided exercise: Bootstrap accordions

We conclude this part with a guided exercise. Similarly to badges, Bootstrap accordions differ between the three last major versions. First, they don’t natively exist in Bootstrap 3, and the tag structure is different between Bootstrap 4 and 5. The purpose of this activity is to provide a generalized wrapper that would support all versions. 

Figure 9.8 illustrates the Bootstrap 5 accordion. It is composed of items that can collapse if one clicks on their title. Overall, they are convenient to save space in any user interface, when the amount of text would be to much to be printed at once. 

FIGURE 9.8: A Bootstrap 5 accordion. 

From an HTML point of view, the accordion has a main div wrapper with the accordion class, inside of which are found the accordion items. Whereas in Bootstrap 5, these elements are div with the accordion-item class, Bootstrap 4 considers div with card class. An accordion item is composed of a title with a button, which is able to control the collapsed state of the linked body part, the latter being a simple div. The link is made with the data-bs-target attribute on the title that must match the id attribute of the body part. 

The data-bs-toggle activates the JS, which makes the whole component collapse. Each body element refers to the parent accordion with data-bs-parent that must match the parent id, thereby guarantying no unwanted interaction between multiple accordions. Below is the HTML structure of the BS5 accordion:

 <!-- BS5 --> 

<div class="accordion" id="accordionExample" > 

<div class="accordion-item" > 

<h2 class="accordion-header" id="headingOne" > 

<button

class="accordion-button" 

type="button" 

data-bs-toggle="collapse" 

data-bs-target="#collapseOne" 

aria-expanded="true" 

aria-controls="collapseOne" > 

Accordion Item #1

</button> 

</h2> 

<div

id="collapseOne" 

152

 9 Become a theming wizard with {bslib}

class="accordion-collapse collapse show" 

aria-labelledby="headingOne" 

data-bs-parent="#accordionExample" > 

<div class="accordion-body" > 

Blablabla

</div> 

</div> 

</div> 

 <!-- Other items ... --> 

</div> 

and the BS4 accordion:

<div class="accordion" id="accordionExample" > 

<div class="card" > 

<div class="card-header" id="headingOne" > 

<h2 class="mb-0" > 

<button

class="btn btn-link btn-block text-left" 

type="button" 

data-toggle="collapse" 

data-target="#collapseOne" 

aria-expanded="true" 

aria-controls="collapseOne" > 

Accordion Item #1

</button> 

</h2> 

</div> 

<div

id="collapseOne" 

class="collapse show" 

aria-labelledby="headingOne" 

data-parent="#accordionExample" > 

<div class="card-body" > 

Blablabla

</div> 

</div> 

</div> 

1. Compare the Bootstrap 4 and 5 HTML code. What are the differences? Is the tag structure the same? Are there differences for tag attributes? 

2. Based on the previous question, create the bs_accordion() function. This function starts by defining a tag structure common to BS4 and BS5. 

bs_accordion <- function(id, items) {

 # main wrapper

accordion_tag <- tags$div(

class = "accordion", 

id = ..., 

items

)

accordion_tag

}

3. Let’s handle the Bootstrap differences for bs_accordion(). As shown above, leverage tagAddRenderHook(). First, create the get_theme_version() function to detect the currently used theme version. Then call this function inside the tagAddRenderHook() and store it in the version variable. 

 9.3 Dynamic theming

153

 # Function to get the current them version

get_theme_version <- function() {

theme <- bslib::... 

if (bslib::...(theme)) bslib::...(theme)

}

bs_accordion <- function(id, items) {

 # Accordion wrapper (see 2 above)

tagAddRenderHook(accordion_tag, function(x) {

 # get theme version

version <- ... 

})

}

4. Now, we’ll edit tagAddRenderHook() so that we raise an error if the Bootstrap version is 3. Edit the bs_accordion() to incorporate the below code. 

if (version == ...) {

stop(

sprintf(

"accordion is not available for Bootstrap %s", 

version

)

)

}

5. We are good with the main wrapper. Let’s create the bs_accordion_item() function, which will have to be nested inside the bs_accordion(). We assume it has two main parameters, title and content. To get a better code, we’ll design intermediate components for the header and the body. In this step, we only create the body element since the header is slightly more complex to handle. If you have had a look to the HTML structure, you will notice below that id, aria-labelledby and data-(bs)-parent will be handled later from the bs_accordion(). These parameters require knowing the bs_accordion() id, which is impossible to get within a child element. We also added an active parameter to control the start state. Fill in the ... element below. 

bs_accordion_item <- function(title, content) {

item_body <- tags$...(

 # id will be added from bs_accordion

 # aria-labelledby also added from bs_accordion

 # data parent differs between BS4 and BS5

class = paste("collapse", if (active) ...), 

tags$div(

 # class differs between BS4 and BS5

... 

)

)

 # accordion item wrapper

tags$div(

 # class differs between BS4 and BS5

... 

)

}

6. Utilize

tagAddRenderHook()

to

handle

BS4

and

BS5

differences

in

154

 9 Become a theming wizard with {bslib}

bs_accordion_item(). As in bs_accordion(), recover the version with get_theme_version(). Then, create the Bootstrap 4 item header based on its HTML structure shown above. 

bs_accordion_item <- function(title, content, active = FALSE) {

 # item body code 5 (see above)

 # item wrapper 5 (see above)

tagAddRenderHook(..., function(x) {

 # get theme and version

version <- ... 

 # create accordion item header

... <- if (version == "4") {

tags$div(

class = ..., 

 # id will be added from bs_accordion

tags$h2(

class = "mb-0", 

tags$button(

class = ..., 

type = "button", 

`data-togglè = "collapse", 

 # data-target will be added from bs_accordion

ària-expanded` = tolower(...), 

 # aria-controls will be added from bs_accordion

title

)

)

)

}

}

}

7. Add an else if statement to handle Bootstrap 5, based on its HTML structure, provided above. 

else if (version == "5") {

tags$h2(

class = ..., 

tags$button(

class = ..., 

type = "button", 

`data-bs-togglè = "collapse", 

ària-expanded` = tolower(...), 

title

)

)

}

8. We now have to handle missing classes and add the new elements. We created a switch to start handling Bootstrap 4 and Bootstrap 5 differences. Based on the accordion item HTML structure, fill in the missing tagQuery() steps for Bootstrap 4. 

bs_accordion_item <- function(title, content, active = FALSE) {

 # item body code (see 5 above)

 # item wrapper (see above)

tagAddRenderHook(..., function(x) {

 # get theme and version (see 6 above)

 9.3 Dynamic theming

155

 # create accordion item header (see 6-7 above)

 # alter tag structure

switch(

version, 

 # don't need to handle BS3

"4" =

tagQuery(x)$

addClass(...)$

 # prepend header tag

prepend(...)$

find(".collapse")$

children()$

 # add class to item body

addClass(...)$

allTags()

)

})

}

9. Do the same for Bootstrap 5. 

bs_accordion_item <- function(title, content, active = FALSE) {

 # item body code (see 5 above)

 # item wrapper (see 5 above)

tagAddRenderHook(..., function(x) {

 # get theme and version (see 6 above)

 # create accordion item header (see 6-7 above)

 # alter tag structure

switch(

version, 

 # don't need to handle BS3

"4" =

 # see 8 above, 

"5" = tagQuery(x)$

addClass(...)$

prepend(...)$

find(".collapse")$

addClass("accordion-collapse")$

children()$

addClass(...)$

allTags()

)

})

}

10. We

come

back

to

bs_accordion()

in

order

to

create

the

correct

bs_accordion_item() children ids (mentioned in 5) and treat missing attributes. We have to process all items and use lapply() since it works well with Shiny tags. All nested item ids are prefixed by the parent accordion id; for instance we can write paste(id, "heading", i, sep = "_"), where id refers to the parent accordion and i is the current item within the lapply loop. This is to avoid uniqueness issue in case multiple accordions are present in the code, which would ultimately prevent the accordion from behaving properly. Then, items are resolved with htmltools::as.tags(), as explained in section 2.6.7.2. 

Fill in the blanks .... 

bs_accordion <- function(id, items) {

 # Accordion wrapper (see 2 above)

tagAddRenderHook(accordion_tag, function(x) {

 # get theme and version (see 3 above)

156

 9 Become a theming wizard with {bslib}

 # Check version (see 3 above)

 # process accordion items to add missing attributes

new_items <- lapply(seq_along(...), function(i) {

 # temp ids based on the parent id

heading_id <- paste(..., "heading", i, sep = "_") controls_id <- paste0(..., "_collapse_", i)

target_id <- paste0("#", controls_id)

 # resolve bs_accordion_item

items[[i]] <- as.tags(...)

 # see 11

})

 # see 13

})

}

11. Right after the as.tags() function, add a switch to handle the Bootstrap 4

version. Fill in the blanks .... Overall these codes add missing attributes so that the accordion works properly. 

 # handle BS4

switch(

version, 

"4" = tagQuery(...[[i]])$

find(".card-header")$

addAttrs("id" = ...)$

find(".btn")$

addAttrs(

"data-target" = ..., 

"aria-controls" = ... 

)$

resetSelected()$

find(".collapse")$

addAttrs(

"id" = ..., 

"aria-labelledby" = ..., 

"data-parent" = paste0("#", ...)

)$

allTags(), 

"5" =  # see 12

)

12. Add a Bootstrap 5 case to the switch filling the following code. 

tagQuery(...[[i]])$

find(".accordion-header")$

addAttrs("id" = ...)$

children()$

addAttrs(

"data-bs-target" = ..., 

"aria-controls" = ... 

)$

resetSelected()$

find(".accordion-collapse")$

addAttrs(

"id" = ...elt(), 

"aria-labelledby" = ..., 

"data-bs-parent" = paste0("#", id)

)$

allTags()

 9.4 Further resources

157

13. Add the newly processed accordion items at the end of the bs_accordion() render hook, paying attention to fill the blank. 

 # alter main tag structure

tagQuery(x)$

 # replace accordion items processed above

empty()$

append(...)$

allTags()

14. We create a Shiny app to test the newly designed components with Bootstrap 4. 

You may use bs_theme(version = 5) to handle Bootstrap 5. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "bslib/conditional-rendering/bs4-accordions", 

 #

 package = "OSUICode" 

 # )

Figure 9.9 shows the expected output for Bootstrap 4 and 5. Solutions may be found in the

{OSUICode} package (see https://github.com/DivadNojnarg/outstanding-shiny-ui-

code/blob/b95f656bce9de7600c05b5045a4e005f70c4f83d/R/bslib-utils.R#L166). 

9.4 Further resources

The reader will refer to the {bslib} various vignettes13. 

13https://rstudio.github.io/bslib/articles/theming.html

[image: Image 144]

[image: Image 145]

[image: Image 146]

[image: Image 147]

158

 9 Become a theming wizard with {bslib}

FIGURE 9.9: Bootstrap accordions for Shiny. Top: BS4 accordion; bottom: BS5 accordion. 

Unleash interactivity with

JavaScript

[image: Image 148]

10

JavaScript for Shiny

Designing an outstanding interface is not just about making it look nice with HTML and CSS. How do we handle interactivity, widget creation and data flow between R and JS? 

This is where JavaScript (JS) is our biggest ally. To understand how Shiny works from inside, especially how inputs are handled, we gradually dive into its core, which contains a substantial amount of JS. Therefore, this chapter proposes a rather brief introduction to JS


and jQuery, but this is still necessary as this book is supposed to be standalone. Advanced JS users may likely skip this part. If you wish to know more about this language, MDN web docs by Mozilla is an excellent resource1. 

10.1 Shiny JavaScript sources

� Since commit 1b8635d (https://github.com/rstudio/shiny/commit/1b

8635db327a753007b1d7d052b138353745d251), the whole JS core has been converted to TypeScript. As this book was written before these changes, we’ll point the user to the code prior to 1b8635d, that is this state (https://github

.com/rstudio/shiny/tree/60db1e02b03d8e6fb146c9bb1bbfbce269231add). 

Practically, the underlying mechanisms remain exactly the same. 

Let’s have a look at the {shiny} (Chang et al., 2021) github project2. As a R package, it is composed of standard folders like R, man, tests and other elements. The inst folder contains resources for external dependencies like Bootstrap 33, jQuery4, datatables5, Font Awesome6, 

… mentioned in Chapter 3 sorted in the www/shared sub-folder, as well as the whole CSS and JS Shiny codes. Notice the presence of minified files like shiny.min.js and non-minified elements such as shiny.css. Overall, the minification process reduces the loading time of a web page by removing comments and extra spaces, thereby decreasing the file size. For instance shiny.js has more than 6500 lines of code (240kb), while shiny.min.js is only 91.4kb. 

1https://developer.mozilla.org/en-US/docs/Web/JavaScript

2https://github.com/rstudio/shiny/tree/60db1e02b03d8e6fb146c9bb1bbfbce269231add

3https://getbootstrap.com/docs/3.3/

4https://jquery.com/

5https://datatables.net/

6https://fontawesome.com/

161

[image: Image 149]

[image: Image 150]

[image: Image 151]

[image: Image 152]

[image: Image 153]

[image: Image 154]

162

 10 JavaScript for Shiny

Notice the srcjs/ folder shown in Figure 10.1. It actually contains all pieces to reconstruct the whole shiny.js file. 

FIGURE 10.1: Shiny JavaScript sources. 

Since in Chapter 12 we’ll use some of those scripts, a little understanding of the basic underlying JavaScript concepts is necessary. 

10.2 Introduction to JavaScript

JavaScript was created in 1995 by Brendan Eich and is also known as ECMAScript (ES). 

Interestingly, you might have heard about ActionScript, which is no more than an implementation of ES by Adobe Systems. Nowadays, JavaScript is the centerpiece of web development across all websites. 

Here is a quick example. If you have a personal blog, you probably know Hugo7 or Jekyll8, especially the R interfaces like blogdown9 (Xie et al., 2021). These tools allow one to rapidly develop a nice-looking blog in just a few minutes, focusing on the content rather than technical aspects, which is really the point! Now, if you open the HTML inspector introduced in Chapter 1.3, click on the elements tab, which may open by default, and uncollapse the 7https://gohugo.io/

8https://jekyllrb.com/

9https://bookdown.org/yihui/blogdown/

[image: Image 155]

[image: Image 156]

[image: Image 157]

[image: Image 158]

[image: Image 159]

[image: Image 160]

 10.3 Introduction to JavaScript

163

<head> tag, you see that a lot of scripts are included, as shown in Figure 10.2. This is similar for the <body> tag. 

FIGURE 10.2: Many websites require a lot JavaScript code. 

There are three ways to include scripts in an HTML document:

• Use the <script> tag with the JS code inside. 

• Add the onclick attribute to an HTML tag (preferably a button) to trigger JS as soon as it is clicked. 

• Import an external file containing the JS code only. 

<script type="text/javascript" > 

 // JS code here

</script> 

<button id="hello" onclick="jsFunction()" > Hello World</button> 

 <!-- We use the src attribute to link the external file --> 

<script type="text/javascript" src="file.js" > Whether to choose the first, second or third method depends on the content of your script. 

If we consider the JS library jQuery, it unfortunately contains so much code making it a challenge to understand. This makes user choose the third method most of the time. 

164

 10 JavaScript for Shiny

10.3 Setup

Like R10 or Python11, JavaScript (JS) is an interpreted language. It is executed client-side, in other words in the browser. This also means that JS code may not be run without a suitable tool. In the following, we’ll list some tools to test JS code, even though JS may also be run through the web browser developer tools, as demonstrated in section 10.6. 

10.3.1 Node

Node12 contains an interpreter for JS as well as a dependencies manager, npm (Node Package Manager). To install Node on your computer, browse to the website and follow the installation instructions. Afterwards, open a terminal and check if: which node

node --version

returns something. If not, Node may not be properly installed13. 

� IfyouprefernotinstallingNode,thereexistsalternativeslikerepl.it(https://

repl.it/languages/nodejs), offering a Node.js online compiler environment. 

This will be more than enough to follow this part. 

10.3.2 Choose a good IDE

Personally, I really like VSCode14 for coding with JS, as it is chipped with a plug and play Node interpreter, allowing you to seamlessly execute any JS code. Moreover, VSCode supports R very well, a comprehensive installation guide being shown here15. In the remainder of the book, most screenshots are taken from RStudio since, at the time of writing, this is still the best IDE choice for R users. However, keep in mind that VSCode is even more powerful for web development, particularly to handle JSX code, as studied in Chapters 27

and 28. As a side note, I encourage you to try the dracula16 color theme, which is my favorite. RStudio IDE17 can also handle JS code, but running it is less straightforward. Below, we will explain how to run a JS code in both IDE’s. In section 10.6, we will show how to manipulate JS code directly in the web browser, through the HTML inspector. This is the method we will mostly rely on in the remainder of the book since we will also work with HTML and CSS at the same time. 

10https://www.r-project.org/

11https://www.python.org/

12https://nodejs.org/en/

13https://www.taniarascia.com/how-to-install-and-use-node-js-and-npm-mac-and-windows/

14https://code.visualstudio.com

15https://github.com/REditorSupport/vscode-R

16https://draculatheme.com/visual-studio-code/

17https://rstudio.com/products/rstudio/

[image: Image 161]

[image: Image 162]

[image: Image 163]

[image: Image 164]

 10.4 Setup

165

10.3.3 First script

Let’s write our first script:

console. log('Hello World'); 

You notice that all instructions end with a ;. You can run this script either in RStudio IDE

or VSCode. 

FIGURE 10.3: Run JS in VSCode. 

In VSCode, clicking on the run arrow (top center) of Figure 10.3 triggers the node hello.js command, which tells Node to run the script. We see the result in the right panel (code=0

means the execution is fine, and we even have the compute time). To run this script in the RStudio IDE, you need to click on the terminal tab (you could also open a basic terminal) and type node hello.js (or node mycustompath/hello.js if you are not already in the script folder). You should see the Hello World message in the console (see Figure 10.4). 

FIGURE 10.4: Run JS within an RStudio shell terminal. 

166

 10 JavaScript for Shiny

10.4 Programming with JS: basis

We are now all set to introduce the basis of JS. As in many languages, JS is made of variables and instructions. All instructions end with a ; symbol. 

10.4.1 JS types

JS defines several types:

• Number: JS does not distinguish between integers and others. In R for instance, numeric contains integers and double. 

• String: characters (‘blabla’). 

• Boolean: true/false. 

To check the type of an element, we may use the typeof operator: typeof 1;  // number

typeof 'pouic' ;  // string

� In JS, typeof is not a function like in R! Therefore, don’t write typeof('string');. 

10.4.2 Variables

Variables are key elements to programming languages. They allow you to store intermediate results and do other manipulations. In JS, a variable is defined by:

• A type. 

• A name. 

• A value. 

� A valid variable name:

• Doesn’t use a reserved JS name like typeof! 

• Doesn’t start with a number (123soleil)! 

• Doesn’t include any space (total price)! 

Besides, code style is a critical element in programming, increasing readability and general consistency. There are several styles, the main ones being snake_case and camelCase. 

As shown in the following, there are two ways to create variables in JavaScript. 

 10.4 Programming with JS: basis

167

10.4.2.1 Const

We may use const:

const n = 1; 

n = 2;  // error

const n = 3;  // error

const a; 

a = 1;  // errors

As shown above, such variables:

• Cannot be modified. 

• Cannot share the same name. 

• Must be assigned a value. 

10.4.2.2 let

Another way to define a variable:

let myVariable = 'welcome' ; 

myVariable = 1; 

console. log(myVariable); 

All mathematical operators apply, for example:

let myNumber = 1;  // initialize

myNumber--;  // decrement

console. log(myNumber);  // print 0

� List of numerical operators in JS:

• + (also allows you to concatenate strings together)

• -

• *

• /

• % (modulo)

• ++ (incrementation)

• -- (decrementation)

You may also know var to declare variables. What is the difference with let? It is mainly a scope reason18:

18https://www.w3schools.com/js/js_let.asp

168

 10 JavaScript for Shiny

var i = 1; 

{

var i = 2;  // this will modify i globally, not locally

}

console. log(ì is ${i}`);  // i is 2. 

let j = 1; 

{

let j = 2;  // j is only declared locally and not globally! 

}

console. log(`j is ${j}`);  // j is 1

You will see later that we still use var in the Shiny core. 

10.4.3 Conditions

Below are the operators to check conditions:

� • === (A equal value, equal type B)

• == (A equal to B)

• !== (A not equal value or not equal type B)

• != (A not equal to B)

• >, >=

• <, <=

• AND (A AND B) or && 

• OR (A OR B) or ||

� Importantly, prefer === and !== to compare elements since 5 == "5" would return true, which is generally not what you want! 

There are several ways to test conditions:

• if (condition) { console.log('Test passed'); }

• if (condition) { instruction A } else { instruction B }

The ternary operator is a shortcut condition ? instruction if true : instruction if false that may be chained. For complex instructions, we recommend not using it, as it may affect code readability. 

Whenever a lot of possible conditions have to be evaluated, it is better to choose the switch: switch (variable) {

case val1:  // instruction 1

break;  // don't forget the break! 

case val2:

 // instruction 2

break; 

default:  // when none of val1 and val2 are satisfied

}

 10.4 Programming with JS: basis

169

10.4.4 Objects

JavaScript is an object-oriented programming language (like Python). An object is defined by:

• A type. 

• Some properties. 

• Some methods (to manipulate properties). 

Let’s construct our first object:

const me = {

name : 'Divad' , 

age : 29, 

music : '' , 

printName: function() {

console. log(Ì am ${this. name}`); 

}

}

me. geek = true;  // works (see const variables above)

 // print a human readable object. 

console. log(JSON. stringify(me)); 

console. log(me. name); 

console. log(me. age); 

console. log(me. music); 

 // don't repeat yourself!!! 

for (let key in me) {  // here is it ok to use ìn`

console. log(`me[${key}] is ${me[key]}`); 

}

me. printName(); 

me = {

name: 'Paul' , 

age: 40

}  // error (see const variables above)

Some comments on the above code:

• To access an object property, we use object.<property>. 

• To print a human readable version of the object, JSON.stringify will do the job. 

• We introduced string interpolation with ${*}. * may be any valid expression. 

• Methods are called with object.<method>. We use this to refer to the object itself. Take note, we will see it a lot! 

In JavaScript, there are already predefined objects to interact with arrays, dates, …

10.4.4.1 Arrays

An array is a structure allowing you to store information; for instance: const table = [1, 'plop']; 

table = [2];  // error

console. log(table); 

170

 10 JavaScript for Shiny

Array may be nested:

const nested = [1, ['a' , [1, 2, 3]], 'plop']; console. log(nested); 

In arrays, elements may be accessed by their index, but as mentioned before, the first index is 0 (not 1 like in R). For instance, if we want to get the first element of the nested array, we do:

console. log(nested[0]); 

 // To get deeply nested element

 // we may chain index

nested[1][1]  // Access [1, 2, 3]

Note that the length method returns the size of an array and is very convenient in for loops, as we’ll see later:

nested. length  // 3

nested[1]. length  // 2

nested[1][1]. length  // 3

Below is a table referencing the principal methods for arrays. 

Method/Property

Description

length

Return the number of elements in an array

join(separator)

Transform an array into a single string

concat(array1, array2)

Assemble 2 arrays

pop()

Remove the last element of an array

shift()

Remove the first element of an array

unshift(el1, el2, …)

Insert elements at the beginning of an array

push(el1, el2, …)

Add extra elements at the end of an array

sort()

Sort array elements by increasing value of alphabetical order

reverse()

Symetric of sort()

Among those methods, we mainly use push and length in the next chapters: table. push('hello');  // [1, 'plop', 'hello']; 10.4.4.2 Strings

Below are the main methods related to the String object (character in R). 

Method/Property/Operator

Description

+ (operator)

String concatenation

length

String length

indexOf()

Position of the character following the input string

toLowerCase()

Put the string in small letters

 10.4 Programming with JS: basis

171

Method/Property/Operator

Description

toUpperCase()

Put the string in capital letters

10.4.4.3 Math

Below we mention some useful methods to handle mathematical objects. 

Method

Description

parseInt(string, radix)

Convert a string to integer

parseFloat()

Conversion to floating number

All classic functions such as trigonometric functions are, of course, available. We call them with the Math.* prefix. 

10.4.5 Iterations

Iterations allow you to repeat an instruction or a set of instructions multiple times. Let’s assume we have an array containing 100,000 random numbers. How would you automatically print them? This is what we are going to see below! 

10.4.5.1 For loops

The for loop has multiple uses. A convenient way to print all an array’s elements is to use an iteration:

 // ES6 syntax

const nested = [1, ['a' , [1, 2, 3]], 'plop']; for (let i of nested) {

console. log(i); 

}

 // or with the classic approach

for (let i = 0; i < nested. length; i++) {

console. log(nested[i]); 

}

The modern approach (ES6) consists in the for, let and of keywords. We define the variable i that will take all values among the nested array and print them. Importantly, i does not refer to the element index, but the element itself! The classic approach shown below uses the index, being slightly more verbose. 

� Contrary to R, the JavaScript index starts from 0 (not from 1)! This is good to keep in mind when we mix both R and JS. 

JS has other methods to do iterations. Let’s have a look at the forEach method for arrays (introduced in ES5):

172

 10 JavaScript for Shiny

const letters = ['a' , 'b' , 'c' , 'd']; letters. forEach((letter) => {

console. log(letter); 

}); 

Since arrays are objects, it is not surprising to see array.forEach(element, ...). 

Which for loop should we use? The answer is: it depends on the situation! Actually, there even exists other ways (replace of by in and you get the indexes of the array, like with the first code, but this is not recommended19). 

10.4.5.2 Other iterations: while

While loops are another way to iterate, the incrementation step taking place at the end of the instruction:

const h = 3; 

let i = 0; 

while (i <= h) {

console. log(i); 

i++;  // we need to increment to avoid infinite loop

}

10.4.6 Functions

Functions are useful to wrap a succession of instructions to accomplish a given task. Defining functions allows programmers to save time (less copy and paste, less search and replace), make less errors and easily share code. In modern JavaScript (ES6), functions are defined as follows:

const a = 1; 

const fun = (parm1, parm2) => {

console. log(a); 

let p = 3; 

 // The Math object contains the max method

return Math. max(parm1, parm2); 

}

let res = fun(1, 2); 

console. log(res);  // prints a and 2

console. log(p);  // fails as p was defined inside the function The above function computes the maximum of two provided numbers. Some comments about scoping rules: variables defined inside the function, like p, are only available within the function scope, but not outside. It should be noted that functions may use global variables, defined outside like a. In the Shiny JS core, you’ll still find the classic way of defining function:

function initShiny() {

 // do things

}

The main difference being that the ES6 syntax may not be understood by all environments. 

19https://hacks.mozilla.org/2015/04/es6-in-depth-iterators-and-the-for-of-loop/

 10.4 Programming with JS: basis

173

10.4.6.1 Export functions: about modules

What happens if you write 100 functions that you want to reuse in different scripts? To prevent copying and pasting, we will now introduce the concept of modules. Let’s save the below function in a script utils.js:

const findMax = (parm1, parm2) => {

return Math. max(parm1, parm2); 

}

module. exports = {

findMax : findMax

}

We create a test.js script in the same folder that calls the findMax function. To do this, we import the corresponding module:

const { findMax } =  require('./utils.js'); findMax(1, 2);  // prints 2

ES6 introduced another way to import and export elements across multiple scripts, which will be leveraged starting from Chapter 23. 

export { findMax, ... };  // in utils.js

import { findMax, ... } from './utils.js' ;  // in test.js

10.4.7 JS code compatibility

As ES6 is not fully supported by all web browsers, you might wonder how to make your JS

code standard. A tool called transpiler can convert any modern JS code into a universal JS code. This is the case of Babel20, one of the most commonly used. In Chapter 21, we’ll see how to do it with a JS bundler, namely esbuild, as well as webpack in Chapters 27

and 28. 

10.4.8 Event listeners

When you explore a web application, clicking on a button usually triggers something like a computation, a modal or an alert. How does this work? In JavaScript, interactivity plays a critical role. Indeed, you want the web application to react to user inputs like mouse clicks or keyboard events. Below we introduce DOM events. 

Let’s consider a basic HTML button:

<button id="mybutton" > Go! </button> On the JavaScript side, we first capture the button element using its id selector with getElementById:

20https://babeljs.io/

174

 10 JavaScript for Shiny

const btn = document. getElementById('mybutton'); We then apply the addEventListener method. In short, an event listener is a program that triggers when a given event occurs (we can add multiple event listeners per HTML

element). It takes two main parameters:

• The event: click, change, mouseover, …

• The function to call, also known as callback. 

btn. addEventListener('click' , function() {

alert('Thanks!'); 

}); 

10.5 jQuery

10.5.1 Introduction

jQuery21 is a famous JavaScript library providing a user-friendly interface to manipulate the DOM and is present in almost all actual websites. It is slightly easier (more convenient to use) than vanilla JS. To use jQuery in a web page, we must import its code in the head of our HTML page:

<!doctype html> 

<html lang="en" > 

<head> 

<meta charset="utf-8" > 

<title> Including jQuery</title> 

 <!-- How to include jQuery --> 

<script src="https://code.jquery.com/jquery-3.5.1.js" > 

</script> 

</head> 

<body> 

<p> Hello World</p> 

<script> 

$('p'). css('color' , 'red'); 

</script> 

</body> 

</html> 

10.5.2 Syntax

The following is a minimal jQuery code representing its philosophy (“write less, do more.”): $(selector). action(); 

21https://jquery.com

 10.5 jQuery

175

The selector slot stands for any jQuery selector like class, id, element, [attribute], 

:input (will select all <input> elements) and many more22. As a reminder, let’s consider the following example:

<p class="text" > Hello World</p> To select and interact with this element, we use JavaScript and jQuery:

 // vanilla JS

let inner = document. getElementsByClassName('text'). innerHTML; 

 // jQuery

let inner = $('.text'). html(); 

This is, of course, possible to chain selectors:

<ul class="list" > 

<li class="item" > 1</li> 

<li class="item" > 2</li> 

<li class="item" > 3</li> 

<li class="item" id="precious-item" > 4</li> 

</ul> 

<ul class="list" id="list2" > 

<li class="item" > 1</li> 

<li class="item" > 2</li> 

<li class="item" > 3</li> 

<li class="item" > 4</li> 

</ul> 

 // Returns an array containing 8 li tags

let items = $('.list .item'); 

 // Selects only li tags from the second ul element

let otherItems = $('#list2 .item'); 

 // Returns an array with 2 ul elements

let lists = $('ul'); 

 // Returns the first li element of the second ul. 

let firstItem = $('#list2:first-child'); 

The good news is that you should already be at ease with CSS selectors from section 6.2. 

10.5.3 Good practice

It is recommended to wrap any jQuery code as follows:

$(document). ready(function(){

 // your code

}); 

 // or a shortcut

$(function() {

 // your code

}); 

22https://www.w3schools.com/jquery/jquery_ref_selectors.asp

176

 10 JavaScript for Shiny

This is to avoid interacting with the DOM before it is actually ready. Most of the time, if you forget this, you’ll end up with many issues involving undefined elements. 

10.5.4 Useful functions

There are filtering functions dedicated to simplifying item selection23. Below is a list containing those mostly used in Shiny. 

10.5.4.1 Travel in the DOM

Method

Description

children()

Get the children of each element passed in the

selector (important: only travels a single level

down the DOM tree)

first()

Given a list of elements, select the first item

last()

Given a list of elements, select the last item

find()

Look for a descendant of the selected element(s)

that could be multiple levels down in the DOM

closest()

Returns the first ancestor (including itself)

matching the condition (travels up in the DOM)

filter()

Fine-tune element selection by applying a filter. 

Only return elements for which the condition is

true

siblings()

Get all siblings of the selected element(s)

next()

Get the immediately following sibling

prev()

Get the immediately preceding sibling

not()

Given an existing set of selected elements, 

exclude element(s) that match the given

condition

10.5.4.2 Manipulate tags

Below is a list of the main jQuery methods24 to manipulate tags (adding class, CSS property…)

Method

Description

addClass()

Add class or multiple classes to the set of

matched elements

hasClass()

Check if the matched element(s) have a given

class

removeClass()

Remove class or multiple classes to the set of

matched elements

attr()

Get or set the value of a specific attribute

23https://api.jquery.com/category/traversing/

24https://api.jquery.com/category/manipulation/

 10.5 jQuery

177

Method

Description

after()

Insert content after

before()

Insert content before

css()

Get or set a CSS property

remove()

Remove element(s) from the DOM

val()

Get the current value of the matched element(s)

10.5.5 Chaining jQuery methods

A lot of jQuery methods may be chained from one method to the next using a .. 

<ul> 

<li> Item 1</li> 

<li> Item 2</li> 

<li> Item 3</li> 

<li> Item 4</li> 

<li> Item 5</li> 

</ul> 

We end the chain by ; and each step is indented by two spaces in the right direction: $('ul')

. first()

. css('color' , 'green')  // add some style with css

. attr('id' , 'myAwesomeItem')  // add an id attribute

. addClass('amazing-ul'); 

10.5.6 Iterations

Like in JavaScript, it is possible to do iterations with jQuery. Let’s consider the following HTML elements:

<ul> 

<li> Item 1</li> 

<li> Item 2</li> 

</ul> 

Many jQuery methods have an implicit iteration. For instance, to change the style of each matched element, we don’t need to do as below:

$('li'). each(function() {

$(this). css('visibility' , 'hidden');  // Hides all li items

}); 

Instead, we just have to write:

$('li'). css('visibility' , 'hidden'); 

178

 10 JavaScript for Shiny

which is much better. The map method has a different purpose. It creates a new object based on the provided one:

const items = [0, 1, 2, 3, 4, 5]; const threshold = 3; 

let filteredItems = $. map(items, function(i) {

 // removes all items > threshold

if (i > threshold)

return null; 

return i; 

}); 

10.5.7 Events

In jQuery there are a significant number of methods related to events. Below are the most popular:

$(element). click();  // click event

$(element). change();  // trigger change on an element

 // attach an event handler function. 

 // Here we add click

$(element). on('click' , function() {

 // handle event

}); 

 // one triggers only once

$(element). one('click' , function() {

 // handle event

}); 

 // useful to trigger plot resize in Shiny so that

 // they correctly fit their container

$(element). resize(); 

 // similar to $(element).change(); 

$(element). trigger('change'); 

The .on event is frequently used in Shiny since it allows you to pass custom events that are not part of the JS predefined events. For instance, {shinydashboard} (Chang and Borges Ribeiro, 2018) relies on a specific HTML/JavaScript/CSS template including a homemade API for handling the dashboard events. 

10.5.8 Extending objects

A last feature we need to mention about jQuery is the ability to extend objects with additional properties and/or methods. 

 // jQuery way

$(function() {

let object1 = { apple: 0 }; 

$. extend(object1, {

print: function() {

console. log(this); 

}

}); 

object1. print(); 

}); 

 10.6 Shiny, JavaScript and the HTML inspector 179

With pure JS we would use Object.defineProperty:

 // pure JavaScript

Object. defineProperty(object1, 'print' , {

value: function() {

console. log(this); 

}, 

writable: false

}); 

10.6 Shiny, JavaScript and the HTML inspector

In the part above, we provided some elementary JS knowledge. This section comes back to the main point of this book, which is Shiny. We describe how to leverage the developer tools so as to test, run and debug JavaScript code related to a Shiny app. 

10.6.1 The console panel

While developing JS code, we often put some console.log(var) calls to track the content of a given variable and check that our code is doing what it is supposed to do. The resulting messages, errors or warnings are printing in the console, also called a Read-eval-print loop (REPL), suitable to experiment and practice your new JS/jQuery skills. 

10.6.1.1 A real REPL

As a warm-up, run the Shiny app below and open the Chrome DevTools. Notice the two Console tabs (next to Elements and at the bottom; the latter may not be visible all the time and can be activated in the parameters), as depicted in Figure 10.5. We recommend using the bottom one to still see the Elements tab and preview DOM modifications in real time. 

ui <- fluidPage()

server <- function(input, output, session) {}

shinyApp(ui, server)

Interestingly, you may access any element contained in the window. Copy and paste $("body").addClass("plop"); in the prompt. Notice what happens in the Elements tab. 

10.6.1.2 Track errors and warnings

A lot of Shiny app issues on Stack Overflow25 or in the RStudio community26 could be more easily solved by quickly inspecting the console. 

25https://stackoverflow.com/

26https://community.rstudio.com/

[image: Image 165]

180

 10 JavaScript for Shiny

FIGURE 10.5: The console panel in the Chrome developer tools. 

10.6.2 Debug Shiny/JS code with the inspector

To debug Shiny apps from the inspector, all your scripts have to be in a folder accessible by the app like the www/ folder or by using addResourcePath(). Moreover, if you have minified files, there should be source maps27, which will allow reconstructing the original scripts, that is as they were before the minification process. For instance, Shiny has the shiny.min.js.map. In practice, most R packages bundling HTML templates do not ship these files since they could be quite large (> 1.5MB), and CRAN restricts the package size to 5MB. For instance, the Framework728 HTML template, which {shinyMobile} is built on (Granjon et al., 2021), has source maps but the size would exceed 5MB, which is obviously too big to include in the R package. 

In the following, we consider a very simple Shiny app deployed on shinyapps.io29, where a notification is displayed with JavaScript as soon as a user clicks the action button. We deliberately made some typos, the goal being to find and fix them. 

1. Browse to the app30. 

2. Open the Chrome DevTools. 

3. Click on the action button (I am pretty sure you clicked before step 2 ;)). 

4. As expected and shown in Figure 10.6, the console displays an error message: Uncaught TypeError: Cannot read property 'show' of undefined. Sounds good, doesn’t it? 

27https://www.html5rocks.com/en/tutorials/developertools/sourcemaps/

28https://framework7.io/

29https://www.shinyapps.io/

30https://dgranjon.shinyapps.io/debug_app_in_web_browser/

[image: Image 166]

[image: Image 167]

 10.6 Shiny, JavaScript and the HTML inspector

181

FIGURE 10.6: Error in the console panel. Errors are displayed in red, warnings in yellow and messages in grey. 

5. Expand the error message to show the stack trace. We see that the error occurred during an onclick event calling the sendNotif function. Interestingly, we can open this file by clicking on the provided link (notif.js:2). You should get a layout similar to Figure 10.7, depending on your screen width. 

FIGURE 10.7: Inspect the source causing the error. 

6. Let’s briefly describe Figure 10.7. On the left side, you can navigate through all files accessible by the web server, that is Shiny internal resources, Shiny external dependencies (like Bootstrap 3), as well as your own scripts. If the app is deployed on shinyapps.io, all scripts are located in a folder starting by _w_, which corresponds to the shinyapps.io workerId (This is a detail and not important to understand. See more here31.) The central part contains any opened script like a classic IDE. The right side displays debugging tools; you can trigger them by clicking on the corresponding accordion. The scope shows all variables/object 31https://github.com/rstudio/shiny/blob/60db1e02b03d8e6fb146c9bb1bbfbce269231add/R/shiny.R

#L69

[image: Image 168]

182

 10 JavaScript for Shiny

values at a break point. Watch allows you to track specific elements, and Event Listener Breakpoints allow you to stop at a given listener type. We could create a new “watcher” by entering typeof message and clicking the add icon to check the message type within the sendNotif function. Watched expressions are saved when you close the browser. 

7. Put a break point at line two by clicking on the left side of the center panel and click again on the action button to trigger the break point. I also additionally set two Watch Expressions (for message and duration) whose type are string and number, respectively, as depicted in Figure 10.8. According to the results, nothing seems wrong for the function arguments. 

FIGURE 10.8: Inspection of the scope at the breakpoint. 

8. The error message Uncaught TypeError: Cannot read property 'show' of undefined actually means that notification does not exist. Try yourself by typing Shiny.notification in the console. You’ll get undefined. Instead, the console suggests Shiny.notifications. Let’s replace the wrong code in the notif.js script and then save it. Click on the “Resume script execution” blue button (top left of the right panel). Notice that a notification is displayed and no more error is thrown. 

Congrats! You’ve just debugged your first Shiny app from the web inspector. In practice, your code is probably much more complex than this example, but the workflow remains the same. 

10.6.3 The Shiny JavaScript object

The Shiny object is exported at the top of the shiny.js file. In other words, we may use this object and any of its properties within the HTML inspector console tab, in any JavaScript file or Shiny app as follows:

[image: Image 169]

[image: Image 170]

[image: Image 171]

 10.7 Exercises

183

ui <- fluidPage(

tags$script(

"$(function() {

console.log(Shiny); 

}); 

" 

)

)

server <- function(input, output, session) {}

shinyApp(ui, server)

This object contains many properties and methods as shown in Figure 10.9. Some of particular interest, such as like Shiny.setInputValue, Shiny.addCustomMessageHandler, Shiny.shinyapps, Shiny.bindAll, will be detailed later in Chapters 12 and 15. 

FIGURE 10.9: The Shiny JavaScript object. 

� At this point, users may find options(shiny.minified = FALSE) convenient to debug the Shiny.js core. 

10.7 Exercises

Because the JavaScript console is a REPL, all JavaScript exercises may be done inside, except exercise 3, which also involves HTML. In that case, the reader may browse to jsfiddle32. 

32https://jsfiddle.net/

184

 10 JavaScript for Shiny

10.7.1 Exercise 1: define variables

1. Play with the example below

let myNumber = 1;  // initialize

myNumber--;  // decrement

console. log(myNumber);  // print 0

10.7.2 Exercise 2: define objects

Below is an object skeleton. 

const me = {

name : , 

age : , 

music : , 

printName: function() {

console. log(Ì am ${}`); 

}

}

1. Fill in the objection with some random values. 

2. Access the name property. 

3. Create the printAge method, which returns the age. Hint: this refers to the object itself. For instance this.name gives the name property. 

10.7.3 Exercise 3: jQuery

JSFiddle33 allows you to insert HTML, CSS and JavaScript to test code, share and more. 

It also does not require you to have any specific configuration on your machine so that you focus on testing! 

1. Go to JSFiddle. 

2. Insert the following HTML code chunk in the HTML sub-window. 

<!DOCTYPE HTML> 

<html> 

<head> 

 <!-- head content here --> 

</head> 

<body> 

<ul> 

<li> Item 1</li> 

<li> Item 2</li> 

<li> Item 3</li> 

<li> Item 4</li> 

<li> Item 5</li> 

</ul> 

</body> 

</html> 

This is a very basic HTML skeleton. 

33https://jsfiddle.net/

 10.7 Exercises

185

3. In the JavaScript windows, select jQuery 3.5.1 in the dropdown menu. (Why 3.5.1? The latest Shiny release (v1.6.0) relies on that version. It is therefore best practice to ensure dependencies are similar, at least the major version.) 4. Since it is best practice to run jQuery code only when the document is ready (avoiding targeting non existing elements), we wrap our JS code in the following: $(function() {

 // your code

}); 

 // or a more explicit syntax

$(document). ready(function() {

 // code

}); 

5. Create an event listener to change the third item color as soon as you click on it. Hint 1: To select a specific item you may use $(selector:eq(i)), where i is the index of the element. Keep in mind that JavaScript starts from 0 and not 1

like R! Hint 2: as a reminder, to create an event listener in jQuery, we use the following pattern. 

$('selector'). on('event_name' , function(e) {

 // your logic

}); 

10.7.4 Exercise 4: a pure JS action button

Below is another example of a button element with an attached event listener. Clicking on the button will increment its value by 1. Fill in the blanks. 

<!DOCTYPE HTML> 

<html> 

<head> 

 <!-- head content here --> 

</head> 

<body> 

<button> click</button> 

</body> 

</html> 

$(function() {

 // recover the button inner html

const btnText = ...; 

 // event listener for button element

$(... ). click(function() {

var val = ...; 

 // (1) increment button

 // (2) add the button value to the inner text

... 

 // show alert given condition

if (val > 3) {

... 

}

}); 

}); 

[image: Image 172]

11

Communicate between R and JS

This chapter aims at untangling what are the main mechanisms behind a Shiny app responsible for driving the R/JavaScript communication, which is quite frankly mind-blowing. 

Understanding this is crucial if you aim at developing your very own Shiny input widgets. 

This is a feature leveraging the httpuv1 package. The HTTP protocol is not very convenient chaining numerous requests since the connection is closed after each request, as previously stated in section 5.2. If you already built complex apps festooned with inputs and outputs, you may imagine the amount of exchanges necessary between R and JS, thereby making HTTP definitely not suitable. What we would need instead is a permanent connection, allowing bidirectional fluxes, that is, if R wants to inform JS about something or if JS

wants to send information to R. 

11.1 Introductory example

The Shiny app shown in Figure 11.1 consists of an actionButton() and a sliderInput(). 

Clicking on the action button triggers an observeEvent(), which subsequently fires updateSlideInput(). Under the hood, clicking on the action button sends a message from the client (JS) to the server (R). This message is processed and the corresponding input value is updated on the server R, thereby invalidating any observer, reactive element. 

updateSlideInput() sends a message back to the client containing the id of the input to update. This message is received and processed by JS, thereby updating the corresponding input element on the client. You may imagine that when the slider is updated, it also sends a message back to the server, triggering a cascade of reactions. 

Reading this will probably raise a burning question: how can two different languages like R

and JS communicate? 

Let’s meet below to understand what are the mechanisms involved. 

11.2 JSON: exhange data

Since R and JS are very different languages, we can’t just send R code to JS and conversely. 

We must find a common language to exchange data. Guess what? We’ll be using JSON. 

1https://github.com/rstudio/httpuv

187

[image: Image 173]

188

 11 Communicate between R and JS

FIGURE 11.1: Websocket allows communication between server and client. 

JSON stands for JavaScript Object Notation. JSON has the great advantage that it is suitable for many languages, particularly R. It has the same structure as a JS object but can be serialized as a character string, for instance:

my_json <- ' 

{

"name": "David", 

"color": "purple", 

"planet": "Mars", 

"animals": [

{

"name": "Euclide", 

"type": "cat", 

"age": 7

}

]

}

' 

In the next section, we’ll see how we may interact with JSON. 

11.2.1 Process JSON from R

There are two situations:

• Read data from a JSON and convert it to the appropriate R structure, like list(). 

• Export data from a R structure and convert it into JSON, for later use in another language, for instance JS. 

The most commonly utilized R package is {jsonlite} (Ooms, 2020), which allows reading

 11.2 JSON: exhange data

189

JSON with fronJSON and exporting to JSON with toJSON. Let’s try to read the above defined JSON:

library(jsonlite)

res <- fromJSON(my_json)

str(res)

#> List of 4

#> 

$ name

: chr "David" 

#> 

$ color

: chr "purple" 

#> 

$ planet : chr "Mars" 

#> 

$ animals:'data.frame': 1 obs. of

3 variables:

#> 

..$ name: chr "Euclide" 

#> 

..$ type: chr "cat" 

#> 

..$ age : int 7

By default, this gives us a list. Interestingly, the nested array is converted into a dataframe. 

If you don’t like this behavior, you may pass the simplifyVector = FALSE options, giving nested lists:

fromJSON(my_json, simplifyVector = FALSE)

#> $name

#> [1] "David" 

#> 

#> $color

#> [1] "purple" 

#> 

#> $planet

#> [1] "Mars" 

#> 

#> $animals

#> $animals[[1]]

#> $animals[[1]]$name

#> [1] "Euclide" 

#> 

#> $animals[[1]]$type

#> [1] "cat" 

#> 

#> $animals[[1]]$age

#> [1] 7

Inversely, assume we have a R list() that we want to transmit to JS. We apply toJSON: my_list <- list(

name = "David", 

color = "purple", 

planet = "Mars" 

)

toJSON(my_list)

#> {"name":["David"],"color":["purple"],"planet":["Mars"]}

toJSON(my_list, auto_unbox = TRUE, pretty = TRUE)

#> {

#> 

"name": "David", 

#> 

"color": "purple", 

#> 

"planet": "Mars" 

#> }

190

 11 Communicate between R and JS

Note the auto_unbox (unbox atomic vectors of length 1) and pretty (adds indentation) options that allow for a better rendering. There are many more available options and we invite the reader to refer to the {jsonlite} documentation. 

Most of the time, you will pass more complex data structures like nested lists. For instance imagine you have to send user profile information containing a unique id, name and organization, the latter being a nested list with fields like id, name, site, …: my_list <- list(

id = "01522", 

name = "David", 

organization = list(

id = "AWER12", 

name = "RinteRface", 

site = "Switzerland" 

)

)

toJSON(my_list, auto_unbox = TRUE, pretty = TRUE)

#> {

#> 

"id": "01522", 

#> 

"name": "David", 

#> 

"organization": {

#> 

"id": "AWER12", 

#> 

"name": "RinteRface", 

#> 

"site": "Switzerland" 

#> 

}

#> }

11.2.2 Process JSON from JS

Like R, JS has two methods to process JSON, which are provided by the JSON class. We parse a JSON, that is converting it from character to JS object with: JSON. parse(my_json)

Conversely, we convert a JS object to JSON leveraging JSON.stringify: myObject = {

"name" : "David" , 

"color" : "purple" , 

"planet" : "Mars" , 

}

JSON. stringify(my_object)

Now that we have seen a convenient way to exchange data between two different languages, R and JS, we are going to explain how this communication is made possible. This involves web elements called websockets. 

11.3 What is a websocket? 

Before going further let’s define what is a websocket. It is an advanced technology allowing bidirectional communication between a (or multiple) client(s) and a server. For instance, 

 11.3 What is a websocket? 

191

a chat2 system may be built on top of a websocket 3. The server is generally created using Node.js libraries like ws5 and the client with JavaScript. In the R Shiny context, the server part is created from {httpuv} (Cheng and Chang, 2021) and the client either with

{websocket} (Chang et al., 2020) (see below) or directly from JavaScript, as described later:

library(httpuv)

 # set the server

s <- startServer("127.0.0.1", 8080, 

list(

onWSOpen = function(ws) {

 # The ws object is a WebSocket object

cat("Server connection opened.\n")

ws$onMessage(function(binary, message) {

cat("Server received message:", message, "\n") ws$send("Hello client!")

})

ws$onClose(function() {

cat("Server connection closed.\n")

})

}

)

)

On the server side, startServer() also handles websockets. To proceed, the app list must contain an extra element, that is the onWSOpen function, defining all actions to perform after the connection is established. Those actions are listed in the {httpuv} WebSocket R6

class:

• onMessage is invoked whenever a message is received on this connection. 

• onClose is invoked when the connection is closed. 

• send sends a message from the server (to the client). 

On the client, we may use the {websocket} WebSocket class provided by the websocket6

package:

library(websocket)

 # set the client

ws <- websocket::WebSocket$new("ws://127.0.0.1:8080/") ws$onMessage(function(event) {

cat("Client received message:", event$data, "\n")

})

 # Wait for a moment before running next line

ws$send("Hello server!")

 # Close client

ws$close()

We briefly describe the above code:

2https://dev.to/spukas/learn-websockets-by-building-simple-chat-app-dee

3By default, each time a client connects to the server, a new connection is opened, thereby preventing this 4

client from capturing others connections messages, also called single cast. For a chat, we use a multi-cast strategy, that is forwarding one client’s message to (all) other connected clients. {httpuv} does not provide such a feature since this would not make sense and would be harmful in the context of Shiny. 

4https://medium.com/the-quarter-espresso/multicast-websocket-nodejs-ff1f400ba2f7

5https://github.com/websockets/ws

6https://github.com/rstudio/websocket

[image: Image 174]

192

 11 Communicate between R and JS

• We create a new client socket instance, which triggers the server onWSOpen function, displaying the welcome message. 

• We set the client ws$onMessage event manager that will print the message sent by the server. 

• Then a message is sent from the client with ws$send, received on the server and sent back to the client, and so on. Figure 11.2 shows the main mechanisms. 

• The client connection is closed, which also closes the server connection. 

FIGURE 11.2: Typical websocket flow between client and server. 

Interestingly, multiple clients can connect to the same server. You may give it a try with the {OSUICode} side package:

library(OSUICode)

server <- websocket_server()

client_1 <- websocket_client()

client_2 <- websocket_client()

client_1$send("Hello from client 1")

client_2$send("Hello from client 2")

client_1$close()

client_2$send("Only client 2 is here")

client_2$close()

Sys.sleep(1)

server$stop()

whose output is shown below. 

#> Server connection opened. 

#> Server connection opened. 

#> Server received message: Hello from client 1

#> Client received message: Hello client! 

#> Server received message: Hello from client 2

#> Client received message: Hello client! 

#> Server connection closed. 

#> Server received message: Only client 2 is here

#> Client received message: Hello client! 

#> Server connection closed. 

[image: Image 175]

 11.3 What is a websocket? 

193

Under the hood, whenever a client initiates a websocket connection, it actually sends an HTTP request to the server. This is called the handshake, utilizing the CONNECT

HTTP method to establish a bridge between the HTTP server and the websocket server. If the server accepts, the returned HTTP code is 101, meaning that we switch protocole from HTTP to WS or WSS, as depicted by Figure 11.3. 

FIGURE 11.3: HTTP upgrade to WS in a Shiny app example. 

11.3.1 Example

In practice, Shiny does not use {websocket}. As mentioned earlier, the client is directly built from JS. To better understand the whole process, we are going to design a simple web page containing an HTML range slider and pass its value from JS to R through the websocket, so that R can produce a simple histogram. Moreover, R will also send a message to JS, thereby updating a gauge meter widget located in the HTML page. 

To proceed, we need a few elements:

• The HTML page containing the slider, gauge and the JS logic to create the client websocket connection, process the slider value and update the gauge value. 

• An app composed of an {httpuv}-powered HTTP server serving this HTML page as well as a websocket server to connect R and JS. 

11.3.1.1 Create the app

To start the server, we leverage the startServer() function that expects:

• A host, usually 127.0.0.1 if you work locally. 

• A port, like 8080 (app may be accessed on <HOST>:<PORT> in your web browser). 

• A list of functions describing the app, particularly:

– call expects the HTTP response. 

– onWSOpen expects the websocket server. 

In the following, we gradually explain how to design each part. 

194

 11 Communicate between R and JS

 11.3.1.1.1 Handle the websocket server

The most important element is the app, which consists of a server websocket (R) and an HTTP response (HTML, JS). The websocket call back may be defined as follows. We first raise a message upon client connection:

ws_handler <- function(ws) {

 # The ws object is a WebSocket object

cat("New connection opened.\n")

}

The critical part is the onMessage callback, which has to process the client message. 

ws_handler <- function(ws) {

 # The ws object is a WebSocket object

cat("New connection opened.\n")

ws$onMessage(function(binary, message) {

 # server logic

}

}

As we’ll send a JSON (from the client), we leverage fromJSON() to properly treat the message. It is printed for debugging purposes, and the value is injected inside a hist(rnorm()) function. Copy the below code inside the ws$onMessage handler. 

 # capture client message

input_message <- jsonlite::fromJSON(message)

 # debug

print(input_message)

cat("Number of bins:", input_message$value, "\n")

 # create plot

hist(rnorm(input_message$value))

Still within ws$onMessage, we send a message to JS in order to update the gauge value. 

See it like an updateSlider() function for instance. We utilize toJSON() to send a random value to JS as well as a polite message:

 # Send random value to JS

output_message <- jsonlite::toJSON(

list(

val = sample(0:100, 1), 

message = "Thanks client! I updated the plot..." 

), 

pretty = TRUE, 

auto_unbox = TRUE

)

ws$send(output_message)

 # debug

cat(output_message)

We finally add the onClose callback to handle client disconnection:

 11.3 What is a websocket? 

195

ws$onClose(function() {

cat("Server connection closed.\n")

})

The whole code may be found in the {OSUICode} package (see https://github.com/Div

adNojnarg/outstanding-shiny-ui-code/blob/b95f656bce9de7600c05b5045a4e005f70

c4f83d/R/websocket.R#L145). 

 11.3.1.1.2 Handle the HTTP response

The HTTP response is returned by the call function and is typically defined as follows: http_response <- function(req) {

list(

status = 200L, 

headers = list(

'Content-Type' = 'text/html' 

), 

body = "Hello world!" 

)

}

It returns a list composed of:

• A status code, 200 being the OK HTTP status7. 

• Some headers indicating the content nature. 

• The body, which is what will be displayed upon client request. 

To start the server, we leverage the startServer() function, giving it a default port 8080

and host such that the url is 127.0.0.1:8080:

startServer(

"127.0.0.1", 

8080, 

list(call = http_response, onWSOpen = ws_handler)

)

The next step is to replace the http_reponse$body by a real HTML page containing the client websocket handler, as well as the slider and gauge widgets. 

11.3.1.2 Design the page content

The first task consists of setting up the websocket client connection:

• We initialize the socket connection with the WebSocket API8. It is crucial that the host and port match the parameters provided during the websocket server initialization. 

• We create the event registry that is socket.onopen, socket.onmessage. Inside socket.onmessage, we have to process the message sent from R with JSON.parse, which creates an object. Remember that we sent a list from R and are only interested in the val element. 

7https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

8https://developer.mozilla.org/en-US/docs/Web/API/WebSocket

196

 11 Communicate between R and JS

� Importantly, we must wait for all elements to be available in the DOM

before starting any action. Therefore, we wrap the whole thing inside a document.addEventListener("DOMContentLoaded", ...). 

document. addEventListener(

'DOMContentLoaded' , function(event) {

 // Capture gauge widget

let gauge = document. getElementById('mygauge'); 

 // Initialize client socket connection

let mySocket = new WebSocket('ws://<HOST>:<PORT>'); mySocket. onopen = function (event) {

 // do things

}; 

 // Handle server message

mySocket. onmessage = function (event) {

let data = JSON. parse(event. data); gauge. value = data. val; 

}; 

}); 

We eventually insert it inside the script tag of our basic HTML boilerplate, which also contains the gauge skeleton, borrowed from the MDN resources9. min, max and value set the range, while low, high and optimum are responsible for the color (red, yellow and green, respectively):

<!DOCTYPE HTML> 

<html lang="en" > 

<head> 

<script language="javascript" > 

 // ADD EVENT LISTENER HERE

</script> 

<title> Websocket Example</title> 

</head> 

<body> 

<label for="mygauge" > Gauge:</label> 

<meter id="mygauge" min="0" max="100" low="33" high="66" 

optimum="80" value="50" ></meter> 

</body> 

</html> 

Once done, we have to take care of the range slider, whose code is taken from the MDN

resources10:

<div> 

<input type="range" id="slider" name="volume" 

min="0" max="100" > 

<label for="slider" id ="sliderLabel" > Value:</label> 

</div> 

It is a simple div containing an input tag as well as a label. The input tag has some attributes, notably the minimum and maximum value. The slider has to be inserted in the HTML boilerplate shown below:

9https://developer.mozilla.org/fr/docs/Web/HTML/Element/Meter

10https://developer.mozilla.org/en-US/docs/Web/HTML/Element/Input/range

 11.4 What is a websocket? 

197

<!DOCTYPE HTML> 

<html lang="en" > 

<head> 

<script language="javascript" > 

 // ADD EVENT LISTENER HERE

</script> 

<title> Websocket Example</title> 

</head> 

<body> 

 <!-- INSERT SLIDER HERE --> 

<br/> 

<label for="mygauge" > Gauge:</label> 

<meter id="mygauge" min="0" max="100" low="33" high="66" 

optimum="80" value="50" ></meter> 

</body> 

</html> 

The slider behavior is entirely controlled by JS. We recover its value with document.getElementById and add it to the label inner HTML so as to know the current value. We also add an event listener to update the slider value each time the range is updated, either by drag or by keyboard action with oninput. It is best practice to convert the slider value to a number with parseInt11, as the returned value defaults to a string. Finally, we send the value through the websocket, converting it to JSON so that we may process it from R with {jsonlite} (or any other relevant package): let sliderWidget = document. getElementById('slider'); let label = document. getElementById('sliderLabel'); label. innerHTML = 'Value:' + slider. value;  // init

 // on change

sliderWidget. oninput = function() {

let val =  parseInt(this. value, 10); mySocket. send(

JSON. stringify({

value: val, 

message: 'New value for you server!' 

})

); 

label. innerHTML = 'Value:' + val; 

}; 

11.3.2 Test it! 

For convenience, the whole code is provided by OSUICode::httpuv_app(). Run that function in the R console and browse to 127.0.0.1:8080 with Chrome. You should see the range slider, as well as its current value. We suggest the reader have R and Chrome side by side, to properly see all messages sent between R and JS. In Chrome, open the developer tools and navigate to the Network tab and select the websocket entry, as show Figure 11.4. 

From now, you may change the slider value. Notice the green arrow message appearing in the developer tools. This indicates a message sent by the client: here a JSON containing the slider value as well as a tiny message, to be polite with the server. In the R console, you may inspect the received message (it should be the same as the client). R is instructed to create a new plot and, once done, sends a message back to the client (red arrow) to indicate that the plot is updated and a new value has been generated for the gauge. 

11https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseInt

[image: Image 176]

[image: Image 177]

[image: Image 178]

[image: Image 179]

198

 11 Communicate between R and JS

FIGURE 11.4: Server-client communication through a websocket. 

11.4 Client concurrency

Not shown in the above sections, httpuv_app() exposes a delay parameter that simulates a computationally intense task on the server:

ws$onMessage(function(binary, message) {

message <- jsonlite::fromJSON(message)

print(message)

cat("Number of bins:", message$value, "\n")

hist(rnorm(message$value))

if (!is.null(delay)) Sys.sleep(delay)

ws$send("Thanks client! I updated the plot.")

})

This is to simulate concurrency that could occur between multiple clients. To test it, you may try to call my_app <- httpuv_app(5), open two browser tabs pointing to 127.0.0.1:8080, update the slider on the first client and update it on the second client. 

What happens? Why? This highlights one fundamental limitation in Shiny: as R is single-threaded, clients have to queue to get an answer from the server. 

� Once done, don’t forget to close the server connection with my_app$stop()! 

In practice, Shiny’s core is much more complex, but hopefully, you should get a better understanding of the general idea. The reader must understand that when Shiny inputs/outputs are modified on the client by an end user, there are many exchanges between R and JS

through the websocket. In the following, we briefly describe how Shiny leverages this technology, on both server-side and client-side. 

 11.5 Shiny and websockets

199

11.5 Shiny and websockets

In the previous section, we showed how R and JS can communicate through a {httpuv}-

powered websocket. Now let’s see what happens in the context of Shiny. 

11.5.1 The Shiny session object

We won’t be able to go anywhere without giving some reminders about the Shiny session12

object. Why do we say object? session is actually an instance of the ShinySession13 R6

class. Importantly, the session is unique to a given user. It means that two different clients cannot share the same session. This is important since it contains all information about input, output and client data. 

Upon calling ShinySession$new(), the initialization method takes one parameter, namely the websocket. As shown in the last section, the websocket allows bidirectional exchanges between R and JS. The session object exposes two methods to communicate with JavaScript from R:

• sendCustomMessage sends messages from R to JS. It calls the private sendMessage method which itself calls write. The message is sent only when the session is opened, through the websocket private$websocket$send(json). If the shiny.trace option14 is TRUE, a message showing the sent JSON is displayed, which is useful for debugging. 

• sendInputMessage

is

used

to

update

inputs

from

the

server. 

The

mes-

sage is stored in a message queue and ultimately sent through the websocket private$websocket$send(json). 

Curious readers will look at the shiny.R file15. 

We will discuss sendInputMessage and sendCustomMessage in Chapters 12 and 15. 

11.5.2 Server side

On the server, that is R, a websocket is initiated in the startApp16 function, leveraging the

{httpuv} package. Websocket handlers are defined17 by shiny:::createAppHandlers: 12https://shiny.rstudio.com/reference/shiny/1.6.0/session.html

13https://github.com/rstudio/shiny/blob/60db1e02b03d8e6fb146c9bb1bbfbce269231add/R/shiny.R

#L338

14https://shiny.rstudio.com/reference/shiny/0.14/shiny-options.html

15https://github.com/rstudio/shiny/blob/da6df5da9e4ab40e2ed0afa846d5b2d172b647c1/R/shiny.R

#L1264

16https://github.com/rstudio/shiny/blob/da6df5da9e4ab40e2ed0afa846d5b2d172b647c1/R/server. 

R#L534

17https://github.com/rstudio/shiny/blob/da6df5da9e4ab40e2ed0afa846d5b2d172b647c1/R/server. 

R#L303

200

 11 Communicate between R and JS

ws = function(ws) {

 # ....; Extra code removed

shinysession <- ShinySession$new(ws)

ws$onMessage(function(binary, msg) {

 # If unhandled errors occur, make sure they get

 # properly logged

withLogErrors(messageHandler(binary, msg))

})

ws$onClose(function() {

shinysession$wsClosed()

appsByToken$remove(shinysession$token)

appsNeedingFlush$remove(shinysession$token)

})

return(TRUE)

}

Overall, handlers drive the server websocket behavior. When the Shiny session is initialized, a message is sent through the WS, providing the sessionId, workerId, and user to the client (see Shiny.shinyapp.config and section 10.6.3): private$sendMessage(

config = list(

workerId = workerId(), 

sessionId = self$token, 

user = self$user

)

)

The workerId is not always used. In practice, it is relevant only in the context of solutions able to load-balance clients across multiple workers, that is shinyapps.io18, RStudio Connect19 and Shiny Server Pro20. 

ws$onMessage describes what should happen when the server receives an message from the client. It applies the messageHandler function that, in short:

• Decodes the received message. 

• Processes the message. At initialization, the client sends a message with an init key, which tells Shiny to manage inputs before running any observer (since inputs do not have values yet). After initialization, client messages have the update key, meaning that we wait for observers to run before. 

Finally, when the server connection is closed, all client connections are also closed. 

11.5.3 Client side

On the JS side, the socket creation occurs in the shinyapps.js file21: 18https://www.shinyapps.io/

19https://www.rstudio.com/products/connect/

20https://docs.rstudio.com/other/ssp/

21https://github.com/rstudio/shiny/blob/60db1e02b03d8e6fb146c9bb1bbfbce269231add/srcjs/shi

nyapp.js#L58

 11.5 Shiny and websockets

201

var ws = new WebSocket(

protocol +

'//' +

window. location. host +

defaultPath

); 

through the WebSocket object. protocol is the chosen protocol, either ws or wss (if using https). window.location.host contains the host name and its port22. Once the connection is opened, events are handled with the onopen event registry:

socket. onopen = function() {

hasOpened = true; 

$(document). trigger({

type: 'shiny:connected' , 

socket: socket

}); 

self. onConnected();  // remove overlay

socket. send(JSON. stringify({

method: 'init' , 

data: self. $initialInput

})); 

while (self. $pendingMessages. length) {

var msg = self. $pendingMessages. shift(); socket. send(msg); 

}

}

The shiny:connected event is triggered, any disconnected overlay (the  famous  grayed-out screen) is then removed from the DOM. Initial input values are sent to the server via the send method. The onmessage registry aims at handling messages received from the server: socket. onmessage = function(e) {

self. dispatchMessage(e. data); 

}; 

It subsequently invokes the dispatchMessage method that sends a message to all handlers, triggering the shiny:message event. Shiny has internal and custom-provided handlers (read user-defined) stored in separate arrays. Each time, a message type matches a given handler, it is treated. For instance, there is a dedicated internal handler for input messages, which bridges the gap between a given input and the corresponding input binding. This handler eventually triggers the inputBinding.receiveMessage method so that the input value is updated on the client. We discuss this in detail section 13.2. 

Finally the onclose method is called when the websocket connection is closed. 

socket. onclose = function() {

 // These things are needed only if we've successfully

 // opened the websocket. 

if (hasOpened) {

$(document). trigger({

type: 'shiny:disconnected' , 

socket: socket

}); 

22https://developer.mozilla.org/fr/docs/Web/API/window/location

202

 11 Communicate between R and JS

self. $notifyDisconnected(); 

}

self. onDisconnected();  // Run before self.$removeSocket() self. $removeSocket(); 

}

If the connection was opened, the shiny:disconnected event is triggered. Then, the disconnect overlay is added to the DOM (grayed-out), and the socket is removed. 

Should any error occurs in the R code, the server sends the error through the websocket, which is captured by the client and displayed. 

11.5.4 Debug websocket with Shiny

Let’s run the following app (see Figure 11.5, left panel): library(shiny)

shinyApp(

ui = fluidPage(

selectInput(

"variable", 

"Variable:", 

c("Cylinders" = "cyl", 

"Transmission" = "am", 

"Gears" = "gear")

), 

tableOutput("data")

), 

server = function(input, output) {

output$data <- renderTable({

mtcars[, c("mpg", input$variable), drop = FALSE]

}, rownames = TRUE)

}

)

After opening the HTML inspector, we select the network tab and search for websocket in the list. By choosing the message tab, you may inspect what R and JavaScript say to each others. As stated above, the first message sent contains initial input values. Then Shiny recalculates the table, notifies when the recalculation is done and becomes idle. The second message received from R is after updating the select input, which triggers the same event cycle. 

Although complex, it is extremely useful to check whether the input and output communication is working properly. If not, we would see the error field identifying the issue. 

Shiny.shinyapp.$socket.readyState returns the state of the socket connection. It should be 1 if your app is running. In some instances when the socket is closed, an error would be raised. 

It lets you imagine how many messages are exchanged for more complex apps. 

[image: Image 180]

[image: Image 181]

[image: Image 182]

[image: Image 183]

[image: Image 184]

 11.5 Shiny and websockets

203

FIGURE 11.5: Inspect content exchanged in the websocket within a Shiny app. 

[image: Image 185]

[image: Image 186]

[image: Image 187]

[image: Image 188]

[image: Image 189]

[image: Image 190]

[image: Image 191]

12

Understand and develop new Shiny inputs

Shiny inputs are key elements of Shiny apps since they are a way for the end-user to interact with the app. You may know sliderInput(), numericInput() and checkboxInput(), but sometimes you may need fancier elements like knobInput() from shinyWidgets1, as depicted in Figure 12.1 or even more sophisticated inputs like the shinyMobile2 smartSelect()

(Figure 12.1, right panel). Have you ever wondered what mechanisms are behind inputs? 

Have you ever dreamed of developing your own? 

The goal of this section is to understand how Shiny inputs work and how to create new ones. 

FIGURE 12.1: Custom shiny inputs. left: knobInput from shinyWidgets; right: smart select from shinyMobile. 

1https://github.com/dreamRs/shinyWidgets/blob/5566202a4b9a0899eaafa36da23f076454bc9622/R/

input-knob.R#L69

2https://github.com/RinteRface/shinyMobile/blob/93eaffee6a8941376802ae867add36407531e19d/

R/f7-inputs.R

205

206

 12 Understand and develop new Shiny inputs

12.1 Input bindings

When we run our app, most of the time it works just fine. The question is, what is the magic behind? Upon initialization, Shiny runs several JavaScript functions, some of them being exposed to the programmer, through the Shiny JS object, already mentioned in section

10.6.3. To illustrate what they do, let’s run the app below:

 ### RUN ###

 # OSUICode::run_example(

 #

 "input-system/dummy-app", 

 #

 package = "OSUICode" 

 # )

We then open the HTML inspector and run Shiny.unbindAll(document); with document being the scope, that is where to search. Try to change the slider input. You will notice that nothing happens. Now let’s type Shiny.bindAll(document) and update the slider value. 

Moving the slider successfully updates the plot. Magic, isn’t it? This simply shows that when inputs are not bound, nothing happens so binding inputs is necessary. 

We consider another example with multiple inputs and two buttons to bind/unbind inputs, respectively. Start it, change some input values, have a look at the corresponding text output. Click on unbind all and try to change some inputs. What happens? Click on bind and change another input value. What do you observe? 

 ### RUN ###

 # OSUICode::run_example(

 #

 "input-system/bind-unbind", 

 #

 package = "OSUICode" 

 # )

Let’s see below what is an input binding and how it works. 

12.1.1 Input structure

In HTML, an input element is given by the <input> tag, as well as several attributes. 

<input id = "id" type = "text" class = "..." value = value> 

• id guarantees the input uniqueness and a way for Shiny to recover it in the input$<id> element. 

• type3 like checkbox, button, text …type may also be a good target for the input binding find method, as explained below. 

• class may be required to find the element in the DOM. It is more convenient for an input binding to target a class (and all associated elements) rather than an id, which corresponds to one element by definition. It is also used by CSS to apply styles. 

• value holds the input value. 

3https://www.w3schools.com/tags/att_input_type.asp

 12.1 Input bindings

207

12.1.2 Binding Shiny inputs

An input binding allows Shiny to identify each instance of a given input and what you may do with this input. For instance, a slider input must update whenever the range is dragged or when the left and right arrows of the keyboard are pressed. It relies on a class defined in the input_binding.js file4. 

Let’s describe each method chronologically. For better convenience, the book side package contains step-by-step demonstrations which may be found here5. Each example is called by the customTextInputExample(), which takes the input binding step as the only parameter. For instance, customTextInputExample(1) will invoke the first step, while customTextInputExample(4) will include all steps from 1 to 4. 

12.1.2.1 Find the input

The first step is critical, which requires locating the input in the DOM. On the R side, we define an input, with a specific attribute that will serve as a receptor for the binding. 

For most of inputs, this may be handled by the type attribute. In other cases, this may be the class, like for the actionButton(). On the JS side, we need a method able to identify this receptor. Moreover, two different types of inputs (for instance radioButton() and selectInput()) cannot have the same receptor for conflict reasons, whereas two instances of the same input type can. If your app contains 10 sliders, they all share the same input binding, and this is where the thing is powerful since they are all bound in one step. The receptor identifier is provided by the find method of the InputBinding class. This method must be applied on a scope; that is, the document. find accepts any valid jQuery selector: find: function(scope) {

return $(scope). find('.input-text'); 

}

� Don’t forget the return statement. Omitting it would cause the binding step to fail, as well as all other downstream steps. 

Figure 12.2 summarizes this important step. 

Below, we are going to re-create textInput() binding, step by step. As {shiny} already provides bindings for the textInput(), we don’t want them to recognize our new input. 

Therefore, we add a new input-text class and make our own input binding pointing to that specific class:

customTextInput <- function (

inputId, 

label, 

value = "", 

width = NULL, 

placeholder = NULL, 

4https://github.com/rstudio/shiny/blob/60db1e02b03d8e6fb146c9bb1bbfbce269231add/srcjs/inp

ut_binding.js

5https://github.com/DivadNojnarg/OSUICode/blob/43911d32885e960d6f42c7bd7d92748109f29f00/R

/inputs.R

[image: Image 192]

208

 12 Understand and develop new Shiny inputs

FIGURE 12.2: How to find inputs. 

binding_step

) {

 # this external wrapper ensure to control the input width

div(

class = "form-group shiny-input-container", 

style = if (!is.null(width)) {

paste0("width: ", validateCssUnit(width), ";")

}, 

 # input label

shinyInputLabel(inputId, label), 

 # input element + JS dependencies

tagList(

customTextInputDeps(binding_step), 

tags$input(

id = inputId, 

type = "text", 

class = "form-control input-text", 

value = value, 

placeholder = placeholder

)

)

)

}

The last part of the code contains a tagList() with two elements:

• The element input binding, customTextInputDeps(). binding_step allows us to review one step at a time, which is easier from a learning perspective. 

• The input tag. 

Below is an example of how we managed the dependency creation in the side package. If we had multiple inputs, we would add more script to the dependency by passing a vector to the script parameter. 

[image: Image 193]

 12.1 Input bindings

209

customTextInputDeps <- function(binding_step) {

htmlDependency(

name = "customTextBindings", 

version = "1.0.0", 

src = c(file = system.file(

"input-system/input-bindings", 

package = "OSUICode" 

)), 

script = paste0(

"customTextInputBinding_", 

binding_step, 

".js" 

)

)

}

Figure 12.3 shows the main elements of the textInput() widget. In the above code, shinyInputLabel is a Shiny internal function that creates the numeric input label, or in other words the text displayed next to it. The core input element is wrapped by tags$input. 

FIGURE 12.3: Shiny’s textInput elements. 

We invite the reader to run the full working demonstration exposed below. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "input-system/binding-find", 

 #

 package = "OSUICode" 

 # )

In short, this example consists of a simple text input and an output showing the current text input value:

customTextInputExample <- function(binding_step) {

ui <- fluidPage(

customTextInput(

inputId = "caption", 

label = "Caption", 

value = "Data Summary", 

binding_step = binding_step

), 

textOutput("custom_text")

)

server <- function(input, output) {

output$custom_text <- renderText(input$caption)

}

shinyApp(ui, server)

}

We open the developer tools to inspect the customTextInputBinding.js script, put a breakpoints in the find method and reload the page. Upon reload, the JavaScript debugger opens, as shown Figure 12.4. Type $(scope).find('.input-text') in the console, and see what is displayed. This is the DOM element, which you may highlight when you hover over the JavaScript output. 

[image: Image 194]

[image: Image 195]

[image: Image 196]

210

 12 Understand and develop new Shiny inputs

FIGURE 12.4: Find is the first method triggered. 

Building input bindings like this significantly ease the debugging process, and you’ll get more chances to be successful! 

Now, let’s see why it is better to target elements by type or class. We run the below example. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "input-system/binding-find-2", 

 #

 package = "OSUICode" 

 # )

This is a demonstration app containing two text inputs. Moreover, the binding is modified so that it looks for element having a specific id:

find: function(scope) {

return $(scope). find('#mytextInput'); 

}

If you repeat the above debugging steps, $(scope).find('.input-text') only targets the first text input, meaning that the second input will not be found and bound, as demonstrated in Figure 12.5. 

As a side note, you’ll also get an error in the binding (Uncaught Not implemented), indicating that the getValue method is not implemented yet. Fear not! We are going to add it very soon. 

12.1.2.2 Initialize inputs

Upon initialization, Shiny calls the initializeInputs function that takes all input bindings and calls their initialize method before binding all inputs. Note that once an input

[image: Image 197]

[image: Image 198]

[image: Image 199]

 12.1 Input bindings

211

FIGURE 12.5: Find by id is a rather bad idea. 

has been initialized, it has a _shiny_initialized tag to avoid initializing it twice. The initialize method is not always defined but some elements require to be explicitly initialized or activated. For instance the Framework76 API, on top of which {shinyMobile}

(Granjon et al., 2021) is built, requires instantiating all elements. Below is an example for the toggle7 input:

 // what is expected

let toggle = app. toggle. create({

el: '.toggle' , 

on: {

change: function () {

console. log('Toggle changed')

}

}

}); 

el: '.toggle' means that we are looking at the element(s) having the toggle class. 

app.toggle.create is internal to the Framework7 API. The corresponding {shinyMobile}

input binding starts as follows:

let f7ToggleBinding = new Shiny. InputBinding(); $. extend(f7ToggleBinding, {

initialize: function(el) {

app. toggle. create({el: el}); 

}, 

 // other methods

}); 

Once initialized, we may use all specific methods provided by the API. Framework78 is 6https://framework7.io

7https://framework7.io/docs/toggle.html

8https://framework7.io

[image: Image 200]

[image: Image 201]

212

 12 Understand and develop new Shiny inputs

clearly a gold mine, as its API provides many possible options for many inputs/widgets. We provide more examples in Chapters 23 and 25. 

12.1.2.3 Get the value

The getValue method returns the input value. The way to obtain the value is different for almost all inputs. For instance, the textInput() is pretty simple since the value is located in the value attribute. el refers to the element holding the id attribute and recognized by the find method. Figure 12.6 shows the result of a console.log($(el));. 

FIGURE 12.6: About the el element. 

getValue: function(el) {

console. log($(el)); 

return $(el). val(); 

}

To get the value, we apply the jQuery method val on the $(el) element and return the result. 

� Don’t forget the return statement. 

Similarly as in the find section, we run the below example and open the developer tools to inspect the customTextInputBinding_2.js script. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "input-system/binding-get", 

 #

 package = "OSUICode" 

 # )

We put breakpoints in the getValue method and reload the page. Upon reload, the JavaScript debugger opens starts in find. You may click on the next blue arrow to jump to the next breakpoint that is getValue, as shown Figure 12.7. Typing $(el).val() in the console shows the current text value. 

Clicking on next again will exit the debugger. Interestingly, you’ll notice that a text appears below the input, meaning that the input$caption element exists and is internally tracked by Shiny. Notice that when you try to change the text content, the output value does not update as we would normally expect. We are actually omitting a couple of methods that prevent the binding from being fully functional. We will introduce them in the following sections. 

[image: Image 202]

[image: Image 203]

[image: Image 204]

 12.1 Input bindings

213

FIGURE 12.7: getValue returns the current input value. 

12.1.2.4 Set and update

setValue is used to set the value of the current input. This method is necessary so that the input value may be updated. It has to be used in combination with receiveMessage, which is the JavaScript part of all the R updateInput functions, like updateTextInput(). 

We usually call the setValue method inside. 

 // el is the DOM element. 

 // value represents the new value. 

setValue: function(el, value) {

$(el). val(value); 

}

Let’s create a function to update our custom text input. Call it updateCustomTextInput. 

It requires at least three parameters:

• inputId tells which input to update. 

• value is the new value. This will be taken by the setValue JS method in the input binding. 

• session is the Shiny session object mentioned earlier in section 11.5.1. We will use the sendInputMessage to send values from R to JavaScript. The receiveMessage method will apply setValue with the data received from R. The current session is recovered with getDefaultReactiveDomain(). 

updateCustomTextInput <- function(

inputId, 

value = NULL, 

session = getDefaultReactiveDomain()

) {

session$sendInputMessage(inputId, message = value)

}

[image: Image 205]

214

 12 Understand and develop new Shiny inputs

We add setValue and receiveMessage to custom input binding. 

Figure 12.8 illustrates the main mechanisms. 

FIGURE 12.8: Events following a click on the update button. This figure demonstrates how R and JS communicate, through the websocket. 

If we have to pass multiple elements to update, we would have to change the updateCustomTextInput function such as:

updateCustomTextInput <- function(

inputId, 

value = NULL, 

placeholder = NULL, 

session = getDefaultReactiveDomain()

) {

message <- dropNulls(

list(

value = value, 

placeholder = placeholder

)

)

session$sendInputMessage(inputId, message)

}

shiny:::dropNulls is an internal function ensuring that the list does not contain NULL

elements. We send a list from R, which is then serialized to a JSON object. In the receiveMessage method, properties like value may be accessed using the . notation. It is good practice to add a data.hasOwnProperty check to avoid running code if the specified property does not exist:

 // data are received from R. 

 // It is a JS object. 

receiveMessage: function(el, data) {

console. log(data); 

if (data. hasOwnProperty('value')) {

[image: Image 206]

[image: Image 207]

[image: Image 208]

 12.1 Input bindings

215

this. setValue(el, data. value); 

}

 // other parameters to update... 

}

� this refers to the custom text input binding class (which is an object), so that this.setValue allows calling the setValue method. 

Similarly to the previous sections, we run updateCustomTextInputExample(3) and open the developer tools to inspect the customTextInputBinding_3.js script. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "input-system/binding-receive", 

 #

 package = "OSUICode" 

 # )

We put breakpoints in the receiveMessage and setValue methods and reload the page. 

Upon reload, the JavaScript debugger opens starts in find. You may click on the next blue arrow until you reach receiveMessage, as shown Figure 12.9. Inspecting the data object, it contains only one property, namely the value. In practice, there may be more complex structure. As an exercise, you may change the data.value to whatever value you want. 

FIGURE 12.9: Receive a message from R. 

Clicking on the next arrow makes us jump in the next call that is setValue, where we can print the value to check whether it is correct. Running $(el).val(value); in the debugger console instantaneously update the DOM element with the new text, as shown in Figure

12.10. 

So far so good. We managed to update the text input value on the client. Yet, after clicking

[image: Image 209]

[image: Image 210]

[image: Image 211]

216

 12 Understand and develop new Shiny inputs

FIGURE 12.10: Set the new value. 

the button, the output value still does not change. We are going to fix this missing step in the next section. 

12.1.2.5 Subscribe

subscribe listens to events defining Shiny to update the input value and make it available in the app. Some API like Bootstrap explicitly mention those events (like hide.bs.tab, shown.bs.tab, …). Going back to our custom text input, what event would make it change? 

• After a key is released on the keyboard. We may listen to keyup. 

• After copying and pasting any text in the input field or dictating text. The input event may be helpful. 

We add those events9 to our binding using an event listener seen in Chapter 10. 

$(el). on(

'keyup.customTextBinding input.customTextBinding' , 

function(event) {

callback(true); 

}); 

� Notice the event structure: EVENT_NAME.BINDING_NAME. It is best practice to follow this convention. 

9https://javascript.info/events-change-input

[image: Image 212]

[image: Image 213]

[image: Image 214]

 12.1 Input bindings

217

The callback parameter ensures that the new value is captured by Shiny. Chapter 13

provides more details, but this is quite technical. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "input-system/binding-subscribe", 

 #

 package = "OSUICode" 

 # )

We

run

the

above

example, 

open

the

HTML

inspector, 

select

the

customTextInputBinding_4.js script and put a breakpoint in the getValue, as well as subscribe method. We enter a new text inside the input field, which triggers the debugger inside the subscribe call. Inspecting the event object, the type indicates the action, which is an input action and the target is the text input element itself, depicted in

Figure 12.11. 

FIGURE 12.11: Subscribe method after the text input manual update. 

We click on next and notice that we go back in the getValue method to get the new value. 

You may check typing $(el).val() in the debugger console, like in Figure 12.12. Clicking next again shows the updated output value. 

Hooray! The output result is successfully changed when the input value is manually updated. However, it is not modified when we click on the update button. What did we miss? 

Looking back at the receiveMessage method, we changed the input value, but how does Shiny knows that this step was successful? To check that no event is raised, we put a console.log(event); in the subscribe method. Any action like removing the text content or adding new text triggers event, but clicking on the action button does not. Therefore, we must trigger an event and add it to the subscribe method. We may choose the change event, which triggers when an element is updated. Notice the parameter passed to callback. 

We discuss it in the next part! 

[image: Image 215]

[image: Image 216]

[image: Image 217]

218

 12 Understand and develop new Shiny inputs

FIGURE 12.12: Subscribe is followed by a new getValue. 

$(el). on('change.customTextBinding' , function(event) {

callback(false); 

}); 

Besides, in the receiveMessage we must trigger a change event to trigger the subscribe method:

receiveMessage: function(el, data) {

if (data. hasOwnProperty('value')) {

this. setValue(el, data. value); 

$(el). trigger('change'); 

}

}

Let’s try again. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "input-system/binding-subscribe-2", 

 #

 package = "OSUICode" 

 # )

We put a new break point in the second event listener, that is, the one for the change event. 

Clicking on the button only triggers the change event, as shown Figure 12.13. 

[image: Image 218]

[image: Image 219]

[image: Image 220]

 12.1 Input bindings

219

FIGURE 12.13: Add multiple event listeners inside the subscribe method. 

� … In some situations, we have to be careful with the this element. Indeed, called in an event listener, this refers to the element that triggered the event and not to the input binding object. For instance, below is an example where we need to trigger the getValue method inside an event listener located in the subscribe method. If you call this.getValue(el), you’ll get an error. The trick consists of creating a variable, namely self, which takes this as value, outside the event listener. In that case, self refers to the binding itself, and it makes sense to call self.getValue(el):

subscribe: function(el, callback) {

self = this; 

$(el). on('click.button' , function(e) {

var currentVal = self. getValue(el); 

$(el). val(currentVal + 1); 

callback(); 

}); 

}

Perfect? Not exactly. 

12.1.2.6 Setting rate policies

It would be better to only change the input value once the keyboard is completely released for some time (and not each time a key is released). This is what we call debouncing, which allows a delay before telling Shiny to read the new value, and it is achieved using the getRatePolicy method. Additionally, we must also pass true to the callback in the

220

 12 Understand and develop new Shiny inputs

subscribe method, in order to apply our specific rate policy (debounce10, throttle). This is useful, for instance, when we don’t want to flood the server with useless update requests. 

For example, when using a slider, we only want to send the value as soon as the range stops moving and not all intermediate values. Those elements are defined here11. 

Run the below app and try to manually change the text input value by adding a couple of letters as fast as you can. What do you notice? We see the output value only updates when we release the keyboard. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "input-system/binding-rate-policies", 

 #

 package = "OSUICode" 

 # )

You may adjust the delay according to your needs, but we caution to not set the delay too long as this becomes problematic too (unnecessary lags). 

If you want to get an overview of all binding steps, you may try the following slide12 from the 2020 R in Pharma workshop. 

12.1.2.7 Register an input binding

At the end of the input binding definition, we register it for Shiny. 

let myBinding = new Shiny. inputBinding(); $. extend(myBinding, {

 // methods go here

}); 

Shiny. inputBindings. register(

myBinding, 

'PACKAGE_NAME.BINDING_NAME' 

); 

Best practice is to name it following PACKAGE_NAME.BINDING_NAME, to avoid conflicts. 

Although the Shiny documentation13 mentions a Shiny.inputBindings.setPriority method to handle conflicting bindings, if you respect the above convention, this case almost never happens. 

As a side note, if you think that the binding name is useless, have a look at the {shinytest}

internal structure. Under the hood, it has a file14, which maps all input elements: widget_names <- c(

"shiny.actionButtonInput" 

= "actionButton", 

"shiny.checkboxInput" 

= "checkboxInput", 

"shiny.checkboxGroupInput" = "checkboxGroupInput", Guess what? Those names are the ones given during the input binding registration. 

10https://davidwalsh.name/javascript-debounce-function

11https://github.com/rstudio/shiny/blob/60db1e02b03d8e6fb146c9bb1bbfbce269231add/srcjs/inp

ut_rate.js

12https://rinterface.com/shiny/talks/RPharma2020/?panelset1=r-code2#45

13https://shiny.rstudio.com/articles/building-inputs.html

14https://github.com/rstudio/shinytest/blob/dea2ecc9f9d87f98fa109a6959b07d3e6e3ff4f3/R/shi

ny-mapping.R#L56

[image: Image 221]

[image: Image 222]

[image: Image 223]

 12.1 Input bindings

221

12.1.2.8 Other binding methods

There are a couple of methods not described above that are contained in the InputBinding class prototype. They were not described before since, most of the time, we don’t need to change them and can rely on the defaults:

• getId returns the object id (Figure 12.14). If you don’t provide your own method, the binding falls back to the default one provided in the InputBinding class. This method is called after the find step. Chapter 13 provides more details. 

• getType required to handle custom data formats. It is called after getId. An entire

section 12.4 is dedicated to this. 

FIGURE 12.14: The binding getId method. 

12.1.3 Edit an input binding

In some cases, we would like to access the input binding and change its default behavior, even though not always recommended, since it will affect all related inputs. As bindings are contained in a registry, namely Shiny.inputBindings, one may seamlessly access and modify them. This is a five-step process:

1. Wait for the shiny:connected event15, so that the Shiny JS object exists. 

2. Unbind all inputs with Shiny.unbindAll(). 

3. Access the binding registry, Shiny.inputBindings. 

4. Extend the binding and edit its content with $.extend(... {...}) 5. Apply the new changes with Shiny.bindAll(). 

15https://shiny.rstudio.com/articles/js-events.html

222

 12 Understand and develop new Shiny inputs

$(function() {

$(document). on('shiny:connected' , function(event) {

Shiny. unbindAll(); 

$. extend(Shiny

. inputBindings

. bindingNames['shiny.actionButtonInput']

. binding, {

 // do whathever you want to edit existing methods

}); 

Shiny. bindAll(); 

}); 

}); 

12.1.4 Update a binding from the client

The interest of receiveMessage and setValue is to be able to update the input from the server side, that is R, through the session$sendInputMessage. Yet, this task might be done directly on the client, thereby lowering the load on the server. We consider the following example: a Shiny app contains two action buttons; clicking on the first one increases the value of the second by 10. This won’t be possible with the classic approach since a button click only increases its value by 1. How do we proceed? 

1. We first set an event listener on the first button. 

2. We

target

the

second

button

and

get

the

input

binding

with

$obj.data('shiny-input-binding'). 

3. We recover the current value. 

4. We call the setValue method, adding 10 to the current value. 

5. Importantly, to let Shiny update the value on the R side, we must trigger an event that will be detected in the subscribe method. The action button only has one event listener, but other may be added. Don’t forget that triggering a click event would also increment the button value by 1! In the following, we have to customize the subscribe method to work around:

$(function() {

 // each time we click on #test (a button)

$('#button1'). on('click' , function() {

let $obj = $('#button2'); 

let inputBinding = $obj. data('shiny-input-binding'); let val = $obj. data('val') || 0; inputBinding. setValue($obj, val + 10); 

$obj. trigger('event'); 

}); 

}); 

If you click on the second button, the value increments only by 1 and the plot will be only visible after 10 clicks, while only 1 click is necessary on the first button. The reset button resets the second action button value to 0. 

$('#reset'). on('click' , function() {

let $obj = $('#button2'); 

let inputBinding = $obj. data('shiny-input-binding'); inputBinding. reset($obj); 

$obj. trigger('change'); 

}); 

[image: Image 224]

 12.1 Input bindings

223

It implements the feature discussed in the previous part, where we extend the button binding to add a reset method and edit the subscribe method to add a change event listener, simply telling Shiny to get the new value. Contrary to click, change does not increment the button value, which is exactly what we want. 

$. extend(

Shiny

. inputBindings

. bindingNames['shiny.actionButtonInput']

. binding, {

reset: function(el) {

$(el). data('val' , 0); 

}, 

subscribe: function(el, callback) {

$(el). on('click.actionButtonInputBinding' , function(e) {

let $el = $(this); 

let val = $el. data('val') || 0; 

$el. data('val' , val + 1); 

callback(); 

}); 

 // this does not trigger any click and won't change

 // the button value

$(el). on('change.actionButtonInputBinding' , function(e) {

callback(); 

}); 

}

}); 

The whole JS code is found in the {OSUICode} package (see https://github.com/Divad

Nojnarg/outstanding-shiny-ui-code/blob/b95f656bce9de7600c05b5045a4e005f70

c4f83d/inst/input-system/input-bindings/editBinding.js#L1) and below is the related app. It is available as an HTML dependency with OSUICode::editBindingDeps(), whose output is shown Figure 12.15. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "input-system/edit-binding-client", 

 #

 package = "OSUICode" 

 # )

FIGURE 12.15: Edit and trigger an input binding from the client. 

224

 12 Understand and develop new Shiny inputs

This trick has been extensively used in the virtual physiology simulator16 to trigger anima-tions17. 

Another example of accessing a binding method from the client is found in the

{shinydashboard} package18. 

12.2 Secondary inputs

The Shiny input binding system is too convenient to be only used for primary input elements like textInput(), numericInput(). It is a super powerful tool to unleash apps’s interactivity. In the following, we show how to add an input to an element that was not primarily designed to be a user input, also non-officially denoted as secondary inputs. 

� By convention, we’ll not use inputId but id for secondary inputs, which is the case in all the new versions of RinteRface packages like {bs4Dash}. 

12.2.1 Boxes on steroids

You may know the {shinydashboard} box function. Boxes are containers with a title, body and footer, as well as optional elements. Those boxes may also be collapsed. It would be nice to capture the state of the box in an input, so as to trigger other actions as soon as this input changes. Since an input value is unique, we must add an id parameter to the box function. Below is what we had to modify compared to the shinydashboard::box() function. 

box <- function(.., id = NULL, title = NULL, footer = NULL, background = NULL, width = 6, height = NULL, 

collapsible = FALSE, collapsed = FALSE) {

 # ....; Extra code removed

tagList(

boxDeps(),  # required to attach the binding

div(

class = if (!is.null(width)) paste0("col-sm-", width), div(

id = id,  # required to target the unique box

class = boxClass,  # required to target all boxes

 # ....; Extra code removed (box header, body, footer)

)

)

)

}

boxDeps() contains the JS dependencies to handle the box behavior. 

16https://community.rstudio.com/t/shiny-contest-submission-a-virtual-lab-for-teaching-

physiology/25348

17https://dgranjon.shinyapps.io/entry_level/

18https://github.com/rstudio/shinydashboard/blob/dc1e15b39b7198286373643e8e4417867548c467/

srcjs/sidebar.js#L29

[image: Image 225]

 12.2 Secondary inputs

225

boxDeps <- function() {

htmlDependency(

name = "boxBinding", 

version = "1.0.0", 

src = c(file = system.file(

"input-system/input-bindings", 

package = "OSUICode" 

)), 

script = "boxBinding.js" 

)

}

As we may collapse and uncollapse the box, we create the updateBox() function, which will toggle it. In this example, it does not send any specific message since we’ll rely on internal AdminLTE JS methods to do the work. 

updateBox <- function(

id, 

session = getDefaultReactiveDomain()

) {

session$sendInputMessage(id, message = NULL)

}

If you play with this example19 and inspect a box as shown in Figure 12.16, you’ll notice that when collapsed, a box gets the collapsed-box class, which is useful to keep in mind for the input binding design. 

FIGURE 12.16: Collapsed AdminLTE2 box. 

This is time to design the JS dependency, that is, boxBinding.js. Like all input bindings, it starts by instantiating a new object with Shiny.InputBinding(). At the end of the code, we register the binding so that Shiny knows it exists. 

let boxBinding = new Shiny. InputBinding(); $. extend(boxBinding, {

 // Methods go here

}); 

Shiny. inputBindings. register(boxBinding, 'box-input'); The following are the main steps taken to design the binding. 

1. find: there is nothing special to say, we are looking for elements having the box class. 

19https://adminlte.io/themes/AdminLTE/index2.html

226

 12 Understand and develop new Shiny inputs

find: function(scope) {

return $(scope). find('.box'); 

}

2. getValue: we check if the element has the collapsed-box class and return an object, which will give a list in R. This is in case we add other elements like the remove action available in AdminLTE. We therefore access each input element with input$<box_id>$<property_name>. 

getValue: function(el) {

let isCollapsed = $(el). hasClass('collapsed-box') return {collapsed: isCollapsed};  // this will be a list in R

}

3. setValue: we call the plug and play AdminLTE toggleBox method. 

setValue: function(el, value) {

$(el). toggleBox(); 

}

4. receiveMessage: we call the setValue method and trigger a change event so that Shiny knows when the value needs to be updated within subscribe. 

receiveMessage: function(el, data) {

this. setValue(el, data); 

$(el). trigger('change'); 

}

5. subscribe: as previously mentioned, it is necessary to know when to tell Shiny to update the value with the subscribe method. Most of the time, the change event might be sufficient, but as {shinydashboard} is built on top of AdminLTE220, it has an API to control the box behavior. We identify two events corresponding to the collapsible action:

• expanded.boxwidget (Triggered after the box is expanded)

• collapsed.boxwidget (Triggered after the box is collapsed)

After further investigations, those events are not possible to use since the AdminLTE library does not trigger them in the main JS code21 (see the collapse method). There are other solutions, and we decided to listen to the click event on the [data-widget="collapse"]

element and delay the callback call by a value which is slightly higher than the default AdminLTE2 animation to collapse the box (500 ms). If you omit this part, the input will not have time to properly update. 

20https://adminlte.io/docs/2.4/js-box-widget

21https://github.com/rstudio/shinydashboard/blob/dc1e15b39b7198286373643e8e4417867548c467/

srcjs/AdminLTE/app.js#L577

 12.2 Secondary inputs

227

subscribe: function(el, callback) {

$(el). on(

'click' , 

'[data-widget="collapse"]' , 

function(event) {

 setTimeout(function() {

callback(); 

}, 50); 

}); 

$(el). on('change' , function(event) {

 setTimeout(function() {

callback(); 

}, 50); 

}); 

}

6. Even though animations are nice, it might appear rather sub-optimal to wait 500

ms for a box to collapse. AdminLTE options22 allow you to change this through the $.AdminLTE.boxWidget object. We specify the animationSpeed property to 10 ms and update the input binding script to reduce the delay in the subscribe method (50 ms seems reasonable). 

$(function() {

 // overwrite box animation speed. 

 // Putting 500 ms add unnecessary delay for Shiny. 

$. AdminLTE. boxWidget. animationSpeed = 10; 

}); 

We don’t need an extra listener for the updateBox() function since it also triggers a click on the collapse button, thereby forwarding to the corresponding listener. The whole code may be found here23. 

Let’s try our new toy in a simple app. The output is depicted in Figure 12.17. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "input-system/boxes-on-steroids", 

 #

 package = "OSUICode" 

 # )

The {bs4Dash} box function follows the same principle, with extra features showed here24. 

We leave the reader to explore the code as an exercise. 

12.2.2 Further optimize boxes

We may imagine leveraging the input binding system to update any box property and get rid of the classic renderUI() approach. Indeed, until now, there would be only one way to update a box from the server. In the following code, we intentionally added a dummy task causing a 5 s delay in the card rendering. You’ll notice that nothing happens for some time, 22https://adminlte.io/themes/AdminLTE/documentation/index.html#adminlte-options

23https://github.com/DivadNojnarg/outstanding-shiny-ui-code/blob/b95f656bce9de7600c05b5045a

4e005f70c4f83d/inst/input-system/input-bindings/boxBinding.js#L1

24https://github.com/RinteRface/bs4Dash/blob/6fb8f8175e3672bbb65236d76285c6310197f10c/srcj

s/bs4Dash-2.0.0/cards.js#L2

[image: Image 226]

[image: Image 227]

[image: Image 228]

228

 12 Understand and develop new Shiny inputs

FIGURE 12.17: shinydashboard box with custom input binding listening to the box collapse state. 

which is weird for the end user and might cause you to think about a possible app crash

(Figure 12.18, left side). 

 ### RUN ###

 # OSUICode::run_example(

 #

 "input-system/update-box-renderUI", 

 #

 package = "OSUICode" 

 # )

FIGURE 12.18: Left: what the user sees when app starts. Right: what the user sees after 5 s. 

The whole piece of UI is re-rendered each time, while only the box class should be modified. 

As shown above, this does have substantial impact for a very complex app festooned with inputs/outputs, thereby altering the overall user experience. 

Let’s provide some optimization and get rid of the renderUI(). Figure 12.19 summarizes the main idea, and you may use it as a mind map to follow the remainder of this section. 

We proceed in two steps. The first part consists in customizing the previously designed

 12.2 Secondary inputs

229

box() function from 12.2.1 to gather as many parameters as possible in a list of options. 

For instance, we choose to extract width and title. 

width is expected to be numeric, while title might be any HTML tag, a list of HTML tags, justifying the use of slightly more sophisticated code (we can’t use toJSON() on a Shiny tag … not yet). So that we don’t shoot ourselves in the foot, we create a specific object for the processed title, that is, processed_title. Indeed, a common mistake would be to re-inject the processed title later in the HTML box tag, which would cause an error. Its purpose is solely to be part of the configuration script required by JS. 

box2 <- function(..., id = NULL, title = NULL, footer = NULL, background = NULL, width = 6, height = NULL, 

collapsible = FALSE, collapsed = FALSE) {

if (!is.null(title)) {

processed_title <- if (

inherits(title, "shiny.tag.list") ||

inherits(title, "shiny.tag")

) {

as.character(title)

} else {

title

}

}

props <- dropNulls(

list(

title = processed_title, 

background = background, 

width = width

)

)

 # ....; Extra code removed

}

This properties list has to be treated on the JS side, the reason why we remove NULL

elements with dropNulls(), since we don’t want to send empty arrays. We choose the following approach, where we convert our properties to a JSON with toJSON() and embed them in a script tag. Note the data-for attribute pointing to the unique id parameter. 

This will guarantee the uniqueness of our configuration script. 

box2 <- function(..., id = NULL, title = NULL, footer = NULL, background = NULL, width = 6, height = NULL, 

collapsible = FALSE, collapsed = FALSE) {

 # ....; Extra code removed

configTag <- tags$script(

type = "application/json", 

`data-for` = id, 

jsonlite::toJSON(

x = props, 

auto_unbox = TRUE, 

json_verbatim = TRUE

)

)

}

To create the box HTML tag, we leverage the box() function. The next step is to add the configuration tag, which is achieved with the new {htmltools} tagQuery() API, extensively studied in section 2.6. We finally attach the not-yet-designed JS dependencies with tagList(). 

230

 12 Understand and develop new Shiny inputs

box2 <- function(..., id = NULL, title = NULL, footer = NULL, background = NULL, width = 6, height = NULL, 

collapsible = FALSE, collapsed = FALSE) {

 # ....; Extra code removed

boxTag <- tagQuery(

box(

..., id = id, title = title, footer = footer, 

background = background, width = width, height = height, 

collapsible = collapsible, collapsed = collapsed

)

)$

append(configTag)$

allTags()

tagList(box2Deps(), boxTag)

}

Like in 12.2.1, we define the new dependencies, namely box2Deps(), referencing the boxBindingEnhance.js script, which we are going to design in few minutes. 

box2Deps <- function() {

htmlDependency(

name = "boxBinding", 

version = "1.0.0", 

src = c(file = system.file(

"input-system/input-bindings", 

package = "OSUICode" 

)), 

script = "boxBindingEnhanced.js" 

)

}

Then, we have to modify the updateBox() function such that it handles both toggle and update possibilities. options contains all changeable properties like title and width. We don’t describe the toggle case since it is quite similar to the previous implementations. When the action is update, we enter the if statement and options must be processed. If the option element is a Shiny tag or a list of Shiny tags (tagList()), we convert it to character with as.character(). The returned message is a vector containing the action as well as the option list:

updateBox2 <- function(

id, 

action = c("toggle", "update"), 

options = NULL, 

session = getDefaultReactiveDomain()

) {

 # for update, we take a list of options

if (action == "update") {

 # handle case where options are shiny tag

 # or a list of tags ... 

options <- lapply(options, function(o) {

if (inherits(o, "shiny.tag") ||

inherits(o, "shiny.tag.list")) {

o <- as.character(o)

}

o

})

message <- dropNulls(

c(

action = action, 

options = list(options)

)

)

session$sendInputMessage(id, message)

 12.2 Secondary inputs

231

} else if (message == "toggle") {

session$sendInputMessage(id, message = match.arg(action))

}

}

Let’s define the new JS binding required by box2Deps(). We start from the previously defined binding in boxBindings.js and modify the setValue method to import our newly defined properties. The boxTag has two children, the box and the configuration script. 

$(el) refers to the box, therefore we have to look one level up to be able to use the find method (find always goes deeper in the DOM), namely $(el).parent(). From there, we only have to target the script tag $(el).parent().find('script[data-for="' + el.id

+ '"]'). In practice, you may reuse this piece of code in multiple places, for instance in the getValue method. To avoid duplication, we create an internal function, _getConfig. 

Note the _ prefix, which makes the difference between the default input binding methods (available for all bindings) and the user-defined methods, local to a specific binding. This function just returns the config script:

_getConfigScript: function(el) {

return(

$(el)

. parent()

. find('script[data-for="' + el. id + '"]')

)

}

We also extract the _processConfig method that calls _getConfigScript and converts the script content to a JS object that we can manipulate. Notice the this keyword: it represents the input binding instance as explained in section 12.1.2. 

_processConfig: function(el) {

return(

JSON. parse(

this

. _getConfigScript(el)

. html()

)

)

}

Then, we call _processConfig inside setValue:

setValue: function(el, value) {

let config = this. _processConfig(el); 

}

From the above code, config.width returns the initial width, while value.options.width contains the new width value provided in the updateBox2 message output. As a security, we don’t want to change config if the action provided in updateBox2 is not update (see if statement). Assuming value.action === "update", we can continue to develop our JS logic. Good practice is to check whether value.options.width exists with value.options.hasOwnProperty("width"). If yes, we ensure whether its value and config.width are different. We always choose ===, which compares the type and the value (== only compares the value such that "1" == 1 is true):

232

 12 Understand and develop new Shiny inputs

setValue: function(el, value) {

let config = this. _processConfig(el); 

if (value. action === 'update') {

if (value. options. hasOwnProperty('width')) {

if (value. options. width !== config. width) {

this. _updateWidth(

el, 

config. width, 

value. options. width

)

config. width = value. options. width; 

}

}

 // other items to update

}

}

_updateWidth is a internal method defined in the input binding. It has three parameters, el, o and n (o and n being the old and new values, respectively): _updateWidth: function(el, o, n) {

 // removes old class

$(el). parent(). toggleClass('col-sm-' + o); $(el). parent(). addClass('col-sm-' + n); 

 // trigger resize so that output resize

$(el). trigger('resize'); 

}

We must trigger a resize event so that output correctly scales. The internal method is identified by an underscore since it is not an inherited Shiny.InputBinding method. We finally update the config value by the newly set value and repeat the process for any other property. Don’t forget to update the config script attached to the card tag at the end of the update condition, otherwise the input value won’t be modified:

 // replace the old JSON config by the

 // new one to update the input value

this

. _getConfigScript(el)

. replaceWith(

'<script type="application/json" data-for="' +

el. id +

'">' +

JSON. stringify(config) +

'</script>' 

); 

The whole JS code may be found here25. Below is the reworked version of the previously updated box without renderUI(). When the app starts, the box is displayed as shown in

Figure 12.20, which is better for the end-user experience. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "input-system/boxes-on-steroids-2", 

 #

 package = "OSUICode" 

 # )

25https://github.com/DivadNojnarg/outstanding-shiny-ui-code/blob/b95f656bce9de7600c05b5045a

4e005f70c4f83d/inst/input-system/input-bindings/boxBindingEnhanced.js#L1

[image: Image 229]

[image: Image 230]

[image: Image 231]

[image: Image 232]

 12.2 Secondary inputs

233


FIGURE 12.19: Box config tag concept and application. 

FIGURE 12.20: Left: what the user sees when app starts. Right: what the user sees after 5 s. 

12.2.3 Exercise

In the above example, the title is also updated. In order to reproduce this behavior, you’ll have to update the boxBindingEnhanced.js to include the corresponding JS logic. 

1. Inside boxBindingEnhanced.js, right after the update width logic, add an if statement to check if title belongs to the update properties, sent through updateBox2(). Fill in the blank. 

if (value. options. hasOwnProperty(... )) {

}

2. Add a nested if statement to check whether the new title is different from the old one (needless to update if both titles are the same). 

234

 12 Understand and develop new Shiny inputs

if (value. options. hasOwnProperty(... )) {

if (... !== ... ) {

}

}

3. On the R side, the new title will be provided as below:

updateBox2(

"mybox", 

action = "update", 

options = list(

title = tagList(

shinydashboardPlus::dashboardBadge("New", color = "red"), 

"New title" 

)

)

)

However, a valid AdminLTE box title has the following HTML structure:

<h3 class="box-title" > 

 <!-- TITLE CONTENT --> 

</h3> 

Modify the below code to wrap the provided title in a h3 tag with the box-title class. 

if (value. options. hasOwnProperty(... )) {

if (... !== ... ) {

let newTitle; 

newTitle = `<h3 class="box-title">${... }</h3>`

newTitle = $. parseHTML(... ); 

}

}

4. Locate the old title in the DOM and replace it with the new one. 

if (value. options. hasOwnProperty(... )) {

if (... !== ... ) {

let newTitle; 

newTitle = `<h3 class="box-title">${... }</h3>`

newTitle = $. parseHTML(... ); 

$(el)

. find(... )

. replaceWith($(... )); 

}

}

5. Update the current config title value with the new one. 

if (value. options. hasOwnProperty(... )) {

if (... !== ... ) {

let newTitle; 

newTitle = `<h3 class="box-title">${... }</h3>`

newTitle = $. parseHTML(... ); 

 12.3 Utilities to quickly define new inputs 235

$(el)

. find(... )

. replaceWith($(... )); 

config. title = ...; 

}

}

Answers may be found here26. 

If it represents a significant amount of work, it is also guarantees to lower the load on the server side, thereby offering a faster end-user experience. A full working prototype has been implemented in {shinydashboardPlus} and {bs4Dash} (including all box parameters). 

12.3 Utilities to quickly define new inputs

12.3.1 Introduction

If you ever wondered where the Shiny.onInputChange or Shiny.setInputValue comes from (see article27), they are actually defined in the initShiny function. 

exports. setInputValue = function(name, value, opts) {

opts = addDefaultInputOpts(opts); 

inputs. setInput(name, value, opts); 

}; 

We recommend using Shiny.setInputValue over Shiny.onInputChange, the latter being slightly misleading. Briefly, this function avoids the creation of an input binding and is faster to code, but there is a price to pay: losing the ability to easily update the new input through R. Indeed, without an input binding, there is no R side updateInput function! By default, Shiny.setInputValue is able to cache the last set value from that input, so that if it is identical, no value is being assigned. If this behavior does not meet your expectations and you need to set the input even when the value did not change, be aware that you may specify a priority option like:

Shiny. setInputValue('myinput' , value, {priority: 'event'}); 

12.3.2 Examples

Shiny.setInputValue becomes powerful when combined with the numerous Shiny JavaScript events listed here28. To get access to the Shiny JS object, we have to wait for the shiny:connected event. In the following, we create a custom input that stores whether the user has MacOS. On the R side, we’ll access it with input$isMac. 

26https://github.com/DivadNojnarg/outstanding-shiny-ui-code/blob/a7a398c47a9f0ac5cd286da639

514bbfcb4c0033/inst/input-system/input-bindings/boxBindingEnhanced.js#L53

27https://shiny.rstudio.com/articles/communicating-with-js.html

28https://shiny.rstudio.com/articles/js-events.html

236

 12 Understand and develop new Shiny inputs

$(document). on('shiny:connected' , function(event) {

Shiny. setInputValue(

'isMac' , 

(navigator. appVersion. indexOf('Mac') != -1)

); 

}); 

This allows you to conditionally display elements and deeply customize the interface. In the following example, the card will show a different title if the user is browsing with MacOS. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "input-system/set-input-value", 

 #

 package = "OSUICode" 

 # )

This is what we leverage in the shinyMobile29 package to store the current device information in a Shiny input. Briefly, Framework7 (on top of which is built {shinyMobile}) has a method Framework7.device, which gives many details30 related to the user device. 

12.4 Custom data format

In some cases, the automatic Shiny R to JS data management may not meet our needs. We introduce input handlers, a tool to fine-tune the deserialization of data from JS. 

12.4.1 The dirty way

For instance, assume we create a date in JS with new Date() and store it in a Shiny input with Shiny.setInputValue. On the R side, we will not obtain a date but a character, which is not convenient. This is where input handlers are useful since they allow you to manipulate data generated on the JS side before injecting them in R. Such handlers are created with registerInputHandler, which takes two parameters:

• type allows the handler to connect to Shiny.setInputValue. Note that the id is followed by the handler type, for instance Shiny.setInputValue('test:handler', ...) is connected to shiny::registerInputHandler('handler', ...). As recommended by the Shiny documentation, if the input handler is part of a package, it is best practice to name it like packageName.handlerName. 

• a function to transform data, having data as main parameter. 

Below we directly include JS code in the Shiny app snippet, which is not best practice but convenient for the demonstration. Only the second input will give the correct result thanks to the defined handler:

29https://rinterface.github.io/shinyMobile/articles/shinyMobile_tools.html

30https://framework7.io/docs/device.html

 12.4 Custom data format

237

 ### RUN ###

 # OSUICode::run_example(

 #

 "input-system/dummy-input-handler", 

 #

 package = "OSUICode" 

 # )

12.4.2 The clean way: leverage getType

The cleanest way is to leverage the getType method from the InputBinding class. Let’s refine our text input so that it handles dates. On the R side, in the customTextInput() function, we check the current value’s type:

type <- if (inherits(value, "Date")) {

"date" 

} else {

NULL

}

We add a custom data attribute to the input tag, which won’t be displayed if the value is not a date:

tags$input(

id = inputId, 

type = "text", 

class = "form-control input-text", 

value = value, 

placeholder = placeholder, 

`data-data-typè = type

)

We then define our custom handler. This code is run when the package is loaded and usually located in a zzz.R script:

.onLoad <- function(...) {

registerInputHandler(

"OSUICode.textDate", function(data, ...) {

if (is.null(data)) {

NULL

} else {

res <- try(as.Date(unlist(data)), silent = TRUE)

if ("try-error" %in% class(res)) {

warning("Failed to parse dates!")

data

} else {

res

}

}

}, force = TRUE)

}

� {shiny} already handles dates, and we could use the built-in input handler. 

The current handler was only designed to explain the underlying processes. 

On the JavaScript side, we refer to the OSUICode.textDate defined input handler. We

[image: Image 233]

[image: Image 234]

[image: Image 235]

238

 12 Understand and develop new Shiny inputs

recover the data-type value passed from R and call the handler if the type is a date. We return false otherwise, which is the default behavior:

getType: function getType(el) {

var dataType = $(el). data('data-type'); if (dataType === 'date') return 'OSUICode.textDate' ; else return false; 

}

To use the Shiny built-in handler, we could return "shiny.date" instead. We then run:

 ### RUN ###

 # OSUICode::run_example(

 #

 "input-system/input-handler-1", 

 #

 package = "OSUICode" 

 # )

which sets the value as text by default. After opening the HTML inspector and setting a breakpoint in the getType method (Figure 12.21), we check that the data type is not defined. Therefore, the input handler will not apply. 

FIGURE 12.21: Example where getType does not call the input handler. 

For the second example, we give a date value to the function:

 ### RUN ###

 # OSUICode::run_example(

 #

 "input-system/input-handler-2", 

 #

 package = "OSUICode" 

 # )

As illustrated Figure 12.22, the date is properly processed. Moreover, if you type any other valid date in the text field like 2020-11-12, it will be recognized as a date, while entering

[image: Image 236]

[image: Image 237]

[image: Image 238]

[image: Image 239]

 12.4 Custom data format

239

a text will return a character element. This is a way to obtain a slightly more clever text input widget. 

FIGURE 12.22: Passing a date to a text input correctly processes it. 

Importantly, since the data-type is set at app startup by checking the class of the value, it will never change later. For instance, if you start the app with the text input value to be a simple text, setting it to a date through the app does not convert it into a date since $(el).data("data-type") always returns undefined! Therefore, if you want to be able to use both text and dates, be sure to wisely set the initial value. 

To finish, we could seamlessly make our text input even more clever, by handling numbers. 

Even though Shiny has a shiny.number input handler31, it simply makes sure that whenever the input is missing a value, NA is returned instead of "". (Figure 12.23). 

FIGURE 12.23: shiny.number input handler ensures that an empty numericInput returns NA instead of "". 

What we want is a handler that recognizes the string "1" and convert it to a number. In R, converting a string to a number gives NA:

31https://github.com/rstudio/shiny/blob/60db1e02b03d8e6fb146c9bb1bbfbce269231add/R/server-

input-handlers.R#L144

240

 12 Understand and develop new Shiny inputs

as.numeric("test")

#> Warning: NAs introduced by coercion

#> [1] NA

Therefore, if we obtain NA, we return original data so that the input gives the correct type. 

In the zzz.R script, right after our previous handler, we can write: registerInputHandler(

"OSUICode.textNumber", function(data, ...) {

if (is.null(data)) {

NULL

} else {

res <- as.numeric(unlist(data))

if (is.na(res)) {

data

} else {

res

}

}

}, force = TRUE)

We also update the JavaScript getType method as follows:

getType: function getType(el) {

var dataType = $(el). data('data-type'); if (dataType === 'date') return 'OSUICode.textDate' ; else if (dataType === 'number') return 'OSUICode.textNumber' ; else return false; 

}

On the R side, don’t forget to add an extra else if statement to the customTextInput() function32:

type <- if (inherits(value, "Date")) {

"date" 

} else if (inherits(value, "numeric")) {

"number" 

} else {

NULL

}

If we run:

 ### RUN ###

 # OSUICode::run_example(

 #

 "input-system/input-handler-3", 

 #

 package = "OSUICode" 

 # )

we obtain the desired behavior shown Figure 12.24. 

32https://github.com/DivadNojnarg/outstanding-shiny-ui-code/blob/1b626e97738fd627097b57e213

59b603e03d33eb/R/inputs.R#L35

[image: Image 240]

[image: Image 241]

[image: Image 242]

 12.4 Custom data format

241

FIGURE 12.24: Passing a number to a text input correctly processes it. 

[image: Image 243]

13

Shiny inputs lifecycles

In the following, we provide an integrated view of the Shiny input system by summarizing all mechanisms seen since Chapter 11. 

13.1 App initialization

When a Shiny app starts, Shiny runs initShiny on the client. This JS function1 has three main tasks:

• Bind all inputs and outputs. 

• Initialize all inputs (if necessary) with initializeInputs. 

• Initialize the client websocket connection mentioned in Chapter 11 and send initial values to the server. 

Most input bindings are, in principle, bundled in the {shiny} package. Some may be user-defined like in {shinyMobile} or even in a simple Shiny app. In any case, they are all contained in a binding registry, namely inputBindings built on top the following class: var BindingRegistry = function() {

this. bindings = []; 

this. bindingNames = {}; 

}

This class has a method to register a binding. This method is executed when calling Shiny.inputBindings.register(myBinding, 'reference');, which appends the newly created binding to the bindings array. 

When Shiny starts, it has to find all defined bindings with the getBindings method. Once done, for each binding, find is triggered. If no corresponding element is found in the DOM, nothing is done. For each found input, the following methods are triggered:

• getId returns the input id. This ensures the uniqueness and is critical. 

• getType optionally handles any registerInputHandler defined by the user on the R side. 

A detailed example is shown in section 12.4. 

• getValue gets the initial input value. 

• subscribe registers event listeners driving the input behavior. 

1https://github.com/rstudio/shiny/blob/60db1e02b03d8e6fb146c9bb1bbfbce269231add/srcjs/ini

t_shiny.js

243

[image: Image 244]

244

 13 Shiny inputs lifecycles

The data attribute shiny-input-binding is then added. This allows Shiny to access the input binding methods from the client, as shown in section 12.1.4. The shiny-bound-input class is added, the corresponding input is appended to the boundInputs object (listing all bound inputs) and shiny:bound triggered on the client. As a side note, if you recall the Shiny.unbinAll() method from sections 12.1 and 12.1.3, it triggers the shiny:unbound event for all inputs as well as removes them from the boundInputs registry. 

Once done, Shiny stores all initial values in a variable initialInput, also containing all client data2 and passes them to the Shinyapp.connect method. As shown in Chapter 11, 

the latter opens the client websocket connection, raises the shiny:connected event and sends all values to the server (R). A few time after, shiny:sessioninitialized is triggered. 

FIGURE 13.1: What Shiny does client side on initialization. 

In Chapter 11, we briefly described the Shiny JavaScript object. As an exercise, let’s explore what the Shiny.shinyApp object contains. The definition is located in the shinyapps.js script3. 

var ShinyApp = function() {

this. $socket = null; 

 // Cached input values

this. $inputValues = {}; 

 // Input values at initialization (and reconnect)

this. $initialInput = {}; 

 // Output bindings

2https://shiny.rstudio.com/articles/client-data.html

3https://github.com/rstudio/shiny/blob/60db1e02b03d8e6fb146c9bb1bbfbce269231add/srcjs/shi

nyapp.js

[image: Image 245]

[image: Image 246]

 13.2 App initialization

245

this. $bindings = {}; 

 // Cached values/errors

this. $values = {}; 

this. $errors = {}; 

 // Conditional bindings

 // (show/hide element based on expression)

this. $conditionals = {}; 

this. $pendingMessages = []; 

this. $activeRequests = {}; 

this. $nextRequestId = 0; 

this. $allowReconnect = false; 

}; 

It creates several properties; some of them are easy to guess like inputValues or initialInput. Let’s run the example below and open the HTML inspector. Notice that the sliderInput is set to 500 at t0 (initialization):

ui <- fluidPage(

sliderInput(

"obs", 

"Number of observations:", 

min = 0, 

max = 1000, 

value = 500

), 

plotOutput("distPlot")

)

server <- function(input, output, session) {

output$distPlot <- renderPlot({

hist(rnorm(input$obs))

})

}

shinyApp(ui, server)

Figure

13.2

shows

how

to

access

Shiny’s

initial

input

value

with

Shiny.shinyapp.$initialInput.obs. After changing the slider position, its value is given by Shiny.shinyapp.$inputValues.obs. $initialInput and $inputValues contain many more elements, however we are only interested in the slider function in this example. 

FIGURE 13.2: Explore initial input values. 

246

 13 Shiny inputs lifecycles

13.2 Update input

Below we try to explain what are the mechanisms to update an input from the server on the client. As stated previously, it all starts with an update<name>Input function call, which actually sends a message through the current session. This message is received by the client websocket message manager:

socket. onmessage = function(e) {

self. dispatchMessage(e. data); 

}; 

which sends the message to the appropriate handler4, that is inputMessages: addMessageHandler('inputMessages' , function(message) {

 // inputMessages should be an array

for (var i = 0; i < message. length; i++) {

var $obj = $('.shiny-bound-input#' + $escape(message[i]. id)); var inputBinding = $obj. data('shiny-input-binding'); 

 // Dispatch the message to the appropriate input object

if ($obj. length > 0) {

var el = $obj[0]; 

var evt = jQuery. Event('shiny:updateinput'); evt. message = message[i]. message; 

evt. binding = inputBinding; 

$(el). trigger(evt); 

if (! evt. isDefaultPrevented())

inputBinding. receiveMessage(el, evt. message); 

}

}

}); 

In short, it gets the inputId and accesses the corresponding input binding. Then it triggers the shiny:updateinput event5 and calles the input binding receiveMessage method. This fires setValue and subscribe. The way subscribe works is not really well covered in the official documentation6. The callback function is actually defined during the initialization process7:

function valueChangeCallback(binding, el, allowDeferred) {

var id = binding. getId(el); 

if (id) {

var value = binding. getValue(el); 

var type = binding. getType(el); 

if (type)

id = id + ':' + type; 

let opts = {

priority: allowDeferred ? 'deferred' : 'immediate' , binding: binding, 

el: el

}; 

inputs. setInput(id, value, opts); 

4https://github.com/rstudio/shiny/blob/60db1e02b03d8e6fb146c9bb1bbfbce269231add/srcjs/shi

nyapp.js#L552

5https://shiny.rstudio.com/articles/js-events.html

6https://shiny.rstudio.com/articles/building-inputs.html

7https://github.com/rstudio/shiny/blob/60db1e02b03d8e6fb146c9bb1bbfbce269231add/srcjs/ini

t_shiny.js#L128

 13.2 Update input

247

}

}

valueChangeCallback ultimately calls inputs.setInput(id, value, opts). The latter involves a rather complex chain of reactions8 (which is not described here). It is important to understand that the client does not send input values one by one, but by batch:

 ### RUN ###

 # OSUICode::run_example(

 #

 "inputs-lifecycle/event-message", 

 #

 package = "OSUICode" 

 # )

Overall, the result is stored in a queue, namely pendingData, and sent to the server with shinyapp.sendInput:

this. sendInput = function(values) {

var msg = JSON. stringify({

method: 'update' , 

data: values

}); 

this. $sendMsg(msg); 

$. extend(this. $inputValues, values); 

 // ....; Extra code removed

}

The message has an update tag and is sent through the client websocket, only if the connection is opened. If not, it is added to the list of pending messages. 

this. $sendMsg = function(msg) {

if (!this. $socket. readyState) {

this. $pendingMessages. push(msg); 

}

else {

this. $socket. send(msg); 

}

}; 

Finally, current inputValues are updated. On the server side, the new value is received by the server websocket message handler, that is ws$onMessage(message). 

8https://github.com/rstudio/shiny/blob/60db1e02b03d8e6fb146c9bb1bbfbce269231add/srcjs/inp

ut_rate.js

[image: Image 247]

248

 13 Shiny inputs lifecycles

FIGURE 13.3: What Shiny does upon input update. 

[image: Image 248]

14

Mastering Shiny’s events

We’ve already seen a couple of Shiny JS events since the beginning of this book. You may know the shiny:connected, meaning that the client and server are properly initialized and all internal methods/functions are available to the programmer. Below, we add more elements to the list, trying to give practical examples and see how it can significantly improve your apps. If you ever used the {waiter} (Coene, 2021c) package by John Coene, know that it heavily relies on some Shiny’s events (Figure 14.1). 

FIGURE 14.1: waiter preloader significantly improves the perceived app performance and user experience. 

14.1 Get the last changed input

14.1.1 Motivations

We probably all had this question one day: How can I get the last changed input in a Shiny app? There are already some methods like this one1:

 ### RUN ###

 # OSUICode::run_example(

 #

 "shiny-events/get-last-changed", 

 #

 package = "OSUICode" 

 # )

Shouldn’t this be easier? Could we do that from the client instead, thereby reducing the server load? 

1https://stackoverflow.com/questions/31250587/creating-shiny-reactive-variable-that-

indicates-which-widget-was-last-modified

249

[image: Image 249]

[image: Image 250]

[image: Image 251]

250

 14 Mastering Shiny’s events

14.1.2 Invoke JS events

shiny:inputchanged is the event we are looking for. It is fired each time an input gets a new value. The related event has five properties:

• name, the event name. 

• value, the new value. 

• inputType, the input type. 

• binding, the related input binding. 

• el, the related input DOM element. 

You may try below:

 ### RUN ###

 # OSUICode::run_example(

 #

 "shiny-events/get-input-changed", 

 #

 package = "OSUICode" 

 # )

Changing the textInput() value fires the event as shown Figure 14.2. 

FIGURE 14.2: Inspect the input-changed event in the JS console. 

Contrary to what is mentioned in the online documentation2, inputType does not always have a value. In this case, an alternative, is to access the related input binding and extract its name, as illustrated by Figure 14.3 and in the following code: $(document). on('shiny:inputchanged' , function(event) {

Shiny. setInputValue(

'pleaseStayHome' , 

{

2https://shiny.rstudio.com/articles/js-events.html

[image: Image 252]

 14.1 Get the last changed input

251

name: event. name, 

value: event. value, 

type: event. binding. name. split('.')[1]

}

); 

}); 

If you use this code in a custom Shiny template, it is possible that input bindings doesn’t have a name, which would thereby make event.binding.name.split('.')[1] crash, event.binding being undefined. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "shiny-events/get-input-changed-info", 

 #

 package = "OSUICode" 

 # )

FIGURE 14.3: Extract input-changed event’s most relevant elements. 

� For the textInput(), the event is also fired when moving the mouse cursor with the keyboard arrows, which is a sort of false positive, since the value isn’t changed. However, as Shiny.setInputValue only sets a new value when the input value really changed (unless the priority is set to event), we avoid this edge case. As an exercise, you may try to add {priority: 'event'} to the above code. 

$(document).on('shiny:inputchanged') is also cancellable, that is we may definitely prevent the input from changing its value, calling event.preventDefault();, as depicted in Figure 14.4. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "shiny-events/freeze-input-change", 

 #

 package = "OSUICode" 

 # )

[image: Image 253]

252

 14 Mastering Shiny’s events

FIGURE 14.4: Cancel input update on the client. 

14.1.3 Practical example

{shinyMobile}

natively

implements

this

feature

that

may

be

accessed

with

input$lastInputChanged. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "shiny-events/get-last-changed-shinyMobile", 

 #

 package = "OSUICode" 

 # )

This approach has the advantage of not overloading the server part with complex logic. 

14.1.4 About {shinylogs}

The {shinylogs} (Meyer and Perrier, 2019) package developed by dreamRs3 provides this feature with much more advanced options, such as a history of past values, as demonstrated in Figure 14.5. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "shiny-events/get-last-changed-shinylogs", 

 #

 package = "OSUICode" 

 # )

14.2 Custom overlay screens

If you ever designed corporate production apps, you probably faced this situation where clients wanted a loading screen whenever a computation occurs or at the start. To date, one of the most comprehensive alternatives is the {waiter} package. It provides myriad options to significantly enhance the perceived performance of your app. In the following, we’ll focus on the waiter_preloader() and waiter_on_busy() functions. How does this work? 

3https://github.com/dreamRs/shinylogs

[image: Image 254]

 14.2 Custom overlay screens

253

FIGURE 14.5: shinylogs allows real-time input tracking and storage for analytics purposes. 

14.2.1 Preloader

Under the hood, this feature relies on the shiny:idle event. When the app starts, shiny:idle is triggered just after shiny:connected and shiny:sessioninitialized. 

shiny:idle is also called each time a computation cycle is finished, that is each time an input is changed and the related output is re-rendered. 

Whenever we call waiter_preloader(), an HTML overlay is added in the DOM. Moreover, this extra JS code ensures hiding the waiter when Shiny is ready: window. ran = false; 

$(document). on('shiny:idle' , function(event){

if(! window. ran)

hide_waiter(id = null); 

window. ran = true; 

}); 

As a security, window.ran prevents us from running this code twice. As an example, consider this app with a slider input and a plot output. We simulated a delay of 3 s to produce the plot. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "shiny-events/waiter-on-load", 

 #

 package = "OSUICode" 

 # )

Notice how the waiter correctly handles the plot processing time. 

14.2.2 Load on busy

Similarly, the waiter_on_busy() exploits the shiny:idle and shiny:busy events. Each time an output is invalidated, shiny:busy is fired, which triggers the recalculation until the next shiny:idle event. The loader is shown as soon as Shiny is busy:

254

 14 Mastering Shiny’s events

$(document). on('shiny:busy' , function(event) {

show_waiter(

id = null, 

html = ..., 

color = ... 

); 

}); 

and is hidden once Shiny is done:

$(document). on('shiny:idle' , function(event) {

hide_waiter(null); 

}); 

 ### RUN ###

 # OSUICode::run_example(

 #

 "shiny-events/waiter-on-busy", 

 #

 package = "OSUICode" 

 # )

15

Optimize your apps with custom handlers

The three previous chapters are largely dedicated to Shiny input elements. Yet, not everything is input in Shiny. This chapter shows how you may leverage the internal Shiny JavaScript tools to build highly interactive and optimized interfaces. 

15.1 Introduction

As shown in Hadley Wickham’s Mastering Shiny book (Hadley, 2021), many functions can update UI components from the server. You can use all update functions like updateTextInput() or updateTabsetPanel(). Other tools to manage your UI consist of toggle functions like hideTab(), showTab(), the limit being the very few number of them, which often obliges to use packages like shinyjs (Attali, 2020) or write custom JavaScript code. Finally, insertUI() and removeUI() allow users to dynamically insert or remove any element, anywhere in the DOM. Let’s start this chapter with the less optimized approach, that is renderUI(), to highlight its caveats and introduce better approaches to optimize your apps. 

15.2 The renderUI case

The renderUI() and uiOutput() couple is the most famous way to render any HTML

block from the server, without too much pain. While the update<INPUT_NAME> and toggle tools are component-specific, meaning they only target the element to modify, renderUI re-renders the whole block each time an associated reactive dependency is invalidated, even though only a little part would deserve to be updated. You should avoid choosing this approach since it implies poor performances in complex apps. We consider a simple app in which a 3 s computation is required to get the slider input value, subsequently triggering the slider input rendering:

 ### RUN ###

 # OSUICode::run_example(

 #

 "custom-handlers/renderUI-delay", 

 #

 package = "OSUICode" 

 # )

The same example with the updateSliderInput() functions:

255

256

 15 Optimize your apps with custom handlers

 ### RUN ###

 # OSUICode::run_example(

 #

 "custom-handlers/update-slider", 

 #

 package = "OSUICode" 

 # )

As already discussed in section 12.2.2, the first approach’s biggest problem is the 3 s delay, during which nothing happens, which may discourage the end users. The second approach is already much better, even though they may be tempted to play with the slider (and they will!), until it suddenly changes value, thereby creating a possibly weird situation. 

Below is an very naive and dirty example where renderUI() makes an entire dropdown menu re-render each time something changes in the renderUI() expression, which is definitely not optimal. React users would probably leap off their chairs if they ever heard about this. Indeed, in React, we only re-render what needs to be updated1! 

Run the app below, open the HTML inspector and click to add one message. Notice that the entire block is updated, whereas only the corresponding HTML element should (Figure

15.1). No doubt that any advanced user sees a place for insertUI(). 

� This requires {bs4Dash} >= 2.0.0. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "custom-handlers/renderUI-dropdownMenu", 

 #

 package = "OSUICode" 

 # )

This lack of specificity justifies why you should avoid this method as much as possible, as it overloads the server. Later in this chapter, we leverage custom handlers to solve this problem. Overall, it’s more work, maybe more complex but ensures it is specific and more optimized. 

15.3 Other Shiny handlers

As mentioned in Chapter 13.2, all update<INPUT_NAME> functions are Shiny defined messages handlers. 

15.3.1 The insertUI case

Under the hood, insertUI() sends a R message2 through session$sendInsertUI, via the websocket:

1https://en.reactjs.org/docs/rendering-elements.html#react-only-updates-whats-necessary

2https://github.com/rstudio/shiny/blob/60db1e02b03d8e6fb146c9bb1bbfbce269231add/R/shiny.R

#L1751

[image: Image 255]

[image: Image 256]

[image: Image 257]

 15.3 Other Shiny handlers

257

FIGURE 15.1: renderUI is not specific. 

session$sendInsertUI(

selector = selector, 

multiple = multiple, 

where = where, 

content = processDeps(ui, session)

)

sendInsertUI = function(selector, multiple, where, content) {

private$sendMessage(

`shiny-insert-uì = list(

selector = selector, 

multiple = multiple, 

where = where, 

content = content

)

)

}

The content is processed by shiny:::processDeps() that:

• Finds and resolves any HTML dependency, as shown in Chapter 4. 

• For each dependency, makes sure the corresponding files can be accessed on the server with createWebDependency() and addResourcePath(). 

• Returns a list of the HTML element and dependencies. The HTML will be accessed by message.content.html and dependencies by message.content.deps. 

� I strongly discourage using shiny:::processDeps() or any other internal function, since they might change in future Shiny releases. Instead, we’ll leverage the htmltools::renderTags() function mentioned earlier in section 5.7.1. 

258

 15 Optimize your apps with custom handlers

On the UI side, Shiny has a predefined message handler3:

addMessageHandler('shiny-insert-ui' , function(message) {

let targets = $(message. selector); 

if (targets. length === 0) {

 // render the HTML and deps to a null target, so

 // the side-effect of rendering the deps, singletons, 

 // and <head> still occur

console. warn(

'The selector you chose ("' +

message. selector +

'") could not be found in the DOM.' 

); 

exports. renderHtml(

message. content. html, 

$([]), 

message. content. deps

); 

} else {

targets. each(function (i, target) {

exports. renderContent(

target, 

message. content, 

message. where

); 

return message. multiple; 

}); 

}

})

It checks whether the provided selector has multiple DOM elements. If at least one item is found, it calls renderContent(html, el, dependencies), which triggers renderHtml(html, el, dependencies):

• Processes the provided HTML (treats the head, body and singletons). 

• Renders all given dependencies into the page’s head4. 

• Inserts the HTML into the page at the position provided in the insertUI where parameter. Internally, this calls the insertAdjacentHTML method. 

• Initializes any input, binds them to the scope and sends the value to the server so that output/observers are invalidated. Outputs are also bound. Skipping this step will result in a broken Shiny app. 

� Keep renderContent and renderHtml in mind; we’ll use them in section

15.4.2. 

15.3.2 Example

Going back to the previous example, why don’t we just go for insertUI()? To save space, we encapsulated the dashboard UI inside a function that will be reused across some example. 

dropdownMenuUI <- function() {

bs4Dash::dashboardPage(

3https://github.com/rstudio/shiny/blob/60db1e02b03d8e6fb146c9bb1bbfbce269231add/srcjs/shi nyapp.js#L671

4https://github.com/rstudio/shiny/blob/60db1e02b03d8e6fb146c9bb1bbfbce269231add/srcjs/out

put_binding_html.js#L249

[image: Image 258]

 15.3 Other Shiny handlers

259

dark = FALSE, 

header = bs4Dash::dashboardHeader(

rightUi = OSUICode::dropdownMenu(

badgeStatus = "danger", 

type = "messages" 

)

), 

sidebar = bs4Dash::dashboardSidebar(), 

controlbar = bs4Dash::dashboardControlbar(), 

footer = bs4Dash::dashboardFooter(), 

title = "test", 

body = bs4Dash::dashboardBody(

actionButton("add", "Add dropdown item")

)

)

 ### RUN ###

 # OSUICode::run_example(

 #

 "custom-handlers/insertUI-dropdownMenu-1", 

 #

 package = "OSUICode" 

 # )

If the item is inserted, the item counter as well as the dropdown text are not, as depicted in Figure 15.2. We can’t blame insertUI() for this, since this is the fault of the {bs4Dash} component, which actually has interconnected HTML pieces. Indeed, the bs4Dash::dropdownMenu() function generates HTML, detecting the number of bs4Dash::messageItem(). This works well when the app fires, but the component is not able to maintain an up-to-date state. 

FIGURE 15.2: insertUI is not specific enough. 

We may fix that by adding extra insertUI() and removeUI() to replace those parts (insertUI() does not update the targeted item). Moreover, we must set correct priority for each observeEvent() (try to remove them; it will fail) to ensure that remove happens before insert. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "custom-handlers/insertUI-dropdownMenu-2", 

 #

 package = "OSUICode" 

 # )

So many observeEvent() used for a simple action! Imagine if we had 10 similar tasks …

260

 15 Optimize your apps with custom handlers

Isn’t there a way to do all of this at once, thereby reducing the server code? Moreover, setting priorities in observeEvent() is a rather bad smell of poorly designed Shiny app. 

It seems that we have to create our own message handler. 

15.4 Custom handlers

Custom handlers are a specific category of message handlers, as they are user-defined. 

15.4.1 Theory

Shiny provides tools to ease the communication between R and JavaScript, as illustrated in Chapter 11. We already discussed the usage of session$sendInputMessage() in

the

input

binding

Chapter

12. 

The

other

important

method

is

ses-

sion$sendCustomMessage(type, message). It works by pairing with the JS method Shiny.AddCustomMessageHandler, tightly linked by the type parameter. 

say_hello_to_js <- function(

text, 

session = getDefaultReactiveDomain()

) {

session$sendCustomMessage(type = 'say-hello', message = text)

}

The JavaScript part is defined below:

$(function() {

Shiny. AddCustomMessageHandler(

'say-hello' , function(message) {

alert(`R says ${message} to you!`)

}); 

}); 

The following Shiny app example will simply print a welcome message every 5 seconds. 

We obviously set options(shiny.trace = TRUE) so as to capture all messages sent between R and JS. Figure 15.3 summarizes the main mechanisms involved in the R to JS

communication. The corresponding code may be found here5. Don’t forget to load the say_hello_to_js() function before:

 ### RUN ###

 # OSUICode::run_example(

 #

 "custom-handlers/say-hello", 

 #

 package = "OSUICode" 

 # )

Combining Shiny.setInputValue and Shiny.addCustomMessageHandler, here is a fun example that sets the body background as a result of a simple button click. A demonstration may be run from the {OSUICode} side package. 

5https://github.com/DivadNojnarg/OSUICode/blob/43911d32885e960d6f42c7bd7d92748109f29f00/R

/custom-handlers.R#L9

[image: Image 259]

 15.4 Custom handlers

261

FIGURE 15.3: From R to JavaScript with the customMessageHandler API. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "custom-handlers/get-random-pokemon", 

 #

 package = "OSUICode" 

 # )

On the JS side, the getPokemon function, whose script is adapted from Colin Fay et al. (see here6), fetches the pokeapi7 data and if successful sets an input value, which will be subsequently available on the R side. 

const getPokemon = () => {

 // FETCHING THE API DATA

let randId = Math. floor(Math. random() * (+151 + 1 - +1)) + +1; fetch('https://pokeapi.co/api/v2/pokemon/' + randId)

 // DEFINE WHAT HAPPENS WHEN JAVASCRIPT RECEIVES THE DATA

. then((data) => {

 // TURN THE DATA TO JSON

data. json(). then((res) => {

 // SEND THE JSON TO R

Shiny. setInputValue('pokeData' , res, {priority: 'event'})

})

})

 // DEFINE WHAT HAPPENS WHEN THERE IS AN ERROR FETCHING THE API

. catch((error) => {

alert('Error catching result from API')

})

}; 

input$pokeData is actually a quite complex list, and some manipulation is done from R in the observeEvent() block. Once done, we send the data back to JS through the websocket (the session object sends a message). 

6https://engineering-shiny.org/optimjs.html

7https://pokeapi.co/

262

 15 Optimize your apps with custom handlers

An event listener is set to the only button on the page so that each time we click, we call getPokemon to select a random background image. 

 // add event listener

$('#button'). on('click' , function() {

getPokemon(); 

}); 

This last piece of JS code ensures adding the randomly selected background contained in the message parameter to the body tag. 

 // update background based on R data

Shiny. addCustomMessageHandler(

'update_background' , function(message) {

$('body'). css({

'background-image' :'url(' + message +')' , 

'background-repeat' :'no-repeat' 

}); 

}); 

$(function() {

 // INSERT PREVIOUS CODE HERE

}); 

15.4.2 Toward custom UI management functions

15.4.2.1 An insertMessageItem function

In this example, we go back to the bs4Dash::dropdownMenu() issue, discussed earlier in the chapter. We propose a method only involving custom message handlers. 

insertDropdownItem <- function(

item, 

session = shiny::getDefaultReactiveDomain()

) {

session$sendCustomMessage(

type = "add-dropdown-item", 

message = as.character(item)

)

}

We create the insertMessageItem function with two parameters:

• item, the HTML element we want to insert in the DOM. 

• session, used to send a message to JavaScript with session$sendCustomMessage. 

We don’t use htmltools::renderTags as it is very unlikely that our messageItem contains any extra dependency. Item is converted to a character (important) and sent to JavaScript through the Shiny session R6 object. We give it a type, that is add-message-item, to be able to identify it from JavaScript with Shiny.addCustomMessageHandler. 

$(function() {

Shiny. addCustomMessageHandler(

'add-message-item' , function(message) {

 // since we do not re-render the dropdown, 

 15.4 Custom handlers

263

 // we must update its item counter

let $items = $('.dropdown-menu')

. find('.dropdown-item')

. length; 

$('.dropdown-item.dropdown-header'). html($items + ' Items'); $('.nav-item.dropdown'). find('.navbar-badge'). html($items); 

 // convert string to HTML

let itemTag = $. parseHTML(message)[0]; 

$(itemTag). insertAfter($('.dropdown-item.dropdown-header')); 

}); 

}); 

We also update the dropdown menu item counter as well as the icon text since the dropdown menu is not re-rendered. The number of items is given by the dropdown children (without the dropdown-divier class). These two extra JS steps save us from creating extra observeEvent() on the server, as shown before. We then recover the sent message on the JS

side with Shiny.addCustomMessageHandler, parse the string to HTML with $.parseHTML

and insert it after the header (that is the next UI element of the dropdown body). The bs4Dash::dropdownMenu() is modified so that dependencies are attached8. 

dropdownDeps <- function() {

htmltools::htmlDependency(

name = "bs4-dropdown", 

version = "1.0.0", 

src = c(file = "custom-handlers/add-message-item"), 

script = "add-message-item.js", 

package = "OSUICode" 

)

}

dropdownMenu <- function(

...,  # ...; comment extra parameters

) {

 # ... ; Did not change

shiny::tags$li(

dropdownDeps(),  # added dependencies

class = "nav-item dropdown", 

 # ... ; Did not change

)

}

You may run the example yourself. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "custom-handlers/add-message-item", 

 #

 package = "OSUICode" 

 # )

This solution significantly lightens the server code since everything may be done on the JS

side in one step. 

8https://github.com/DivadNojnarg/outstanding-shiny-ui-code/blob/85cb171642de7a564e27743909

64d1bfbbd5b4ee/R/insertMessageItem.R#L61

[image: Image 260]

264

 15 Optimize your apps with custom handlers

15.4.2.2 A chat system for {shinydashboardPlus}

{shinydashboardPlus} user messages provide an easy way to create a chat system within a Shiny app. userMessages() hosts the main container, while userMessage() is the message element. All of this is pure HTML:

<div class="direct-chat-msg" > 

<div class="direct-chat-info clearfix" > 

<span class="direct-chat-name pull-left" > Alexander Pierce

</span> 

<span class="direct-chat-timestamp pull-right" > 23 Jan 2:00 pm

</span> 

</div> 

 <!-- /.direct-chat-info --> 

<img class="direct-chat-img" src="dist/img/user1-128x128.jpg" 

alt="message user image" > 

 <!-- /.direct-chat-img --> 

<div class="direct-chat-text" > 

Is this template really for free? That's unbelievable! 

</div> 

 <!-- /.direct-chat-text --> 

</div> 

Figure 15.4 shows the overall appearance. 

FIGURE 15.4: Chat user interface for AdminLTE2. 

Given

that

no

JavaScript

API

is

available

to

handle

messages, 

that

is

send/receive/edit/remove action, we are going to design a dedicated R and JavaScript API step by step. 

 15.4.2.2.1 HTML elements

The message container is a simple div element:

<div class="direct-chat-messages" > ... </div> where ... receives all messages (userMessage()). From the AdminLTE demonstration page9, the class direct-chat-warning gives the yellow color to the sent messages, while received messages are always gray. In {shinydashboardPlus}, the container is defined as below:

9https://adminlte.io/themes/AdminLTE/index2.html

 15.4 Custom handlers

265

userMessages <- function(..., id = NULL, status, width = 4, height = NULL) {

cl <- "direct-chat-messages direct-chat" 

if (!is.null(height)) shiny::validateCssUnit(height)

if (!is.null(status)) {

validateStatus(status)

cl <- paste0(cl, " direct-chat-", status)

}

msgtag <- shiny::tags$div(

class = cl, 

..., 

style = if (!is.null(height)) {

sprintf("height: %s; overflow-y: auto;", height)

} else {

"height: 100%;" 

}

)

shiny::tags$div(

id = id, 

class = if (!is.null(width)) paste0("col-sm-", width), msgtag

)

}

The most important element is the id parameter that makes the link with the custom message handler on the JavaScript side. 

The userMessage() element’s class varies depending whether it is received or sent, which actually changes its position (left and right, respectively). 

messageCl <- "direct-chat-msg" 

if (type == "sent") messageCl <- paste0(messageCl, " right") The message tag is made of three parts:

• The author tag, defined in the messageInfo variable. 

 # message info

messageInfo <- shiny::tags$div(

class = "direct-chat-info clearfix", 

shiny::tags$span(

class = if (type == "right") {

"direct-chat-name pull-right" 

} else {

"direct-chat-name" 

}, 

author

), 

if (!is.null(date)) {

shiny::tags$span(

class = if (type == "right") {

"direct-chat-timestamp right" 

} else {

"direct-chat-timestamp" 

}, 

date

)

}

)

• The author image, contained in the messageImg variable. 

266

 15 Optimize your apps with custom handlers

 # message author image

messageImg <- shiny::tags$img(

class = "direct-chat-img", 

src = image

)

• The message itself, defined in the messageTxt variable. Note the corresponding HTML

classes like direct-chat-text since we will use them in the JS code. 

 # message Text

messageTxt <- shiny::tags$div(

class = "direct-chat-text", 

... 

)

The entire code is shown below. 

userMessage <- function(..., author, date = NULL, image = NULL, type = c("sent", "received")) {

type <- match.arg(type)

messageCl <- "direct-chat-msg" 

if (type == "sent") messageCl <- paste0(messageCl, " right")

 # ... Message info ... 

 # ... Message text ... 

 # ... Message image ... 

shiny::tags$div(

class = messageCl, 

messageInfo, 

messageImg, 

messageTxt

)

}

 15.4.2.2.2 Handle interactions

userMessages() and userMessage() alone only provide a static API. Let’s design an updateUserMessages() function that offers ways to update the message container. That function must allow users to:

• Add any message to the list. 

• Remove any existing message. 

• Update a selected message. 

For now, we assume we add only one message at a time. updateUserMessages() is linked to any userMessages() container by the id parameter. In order to delete/update a message, we define an index parameter. 

� Don’t forget that the first element of a vector has index 1 in R, while JS starts from 0. 

 15.4 Custom handlers

267

Consequently, we have to decrease the R index by 1 so that JS receives the correct number. 

We must also provide a content parameter so as to update any existing message content. 

The content has to be compatible with the userMessage structure. We expect the user to pass a list like:

list(

author = "David", 

date = "Now", 

image = OSUICode::dashboardUserImage, 

type = "received", 

text = tagList(

sliderInput(

"obs", 

"Number of observations:", 

min = 0, 

max = 1000, 

value = 500

), 

plotOutput("distPlot")

)

)

Interestingly, we may offer the ability to add input/output elements in the message content (as shown above) with dependencies that are not yet made available to shiny. We therefore assume that if the content is a shiny tag or a list of shiny tags, it may contain elements with extra dependencies and leverage the htmltools::renderTags() function on the R side for all elements with lapply() function. Finally, the message is sent to JS with session$sendCustomMessage:

updateUserMessages <- function(

id, 

action = c("add", "remove", "update"), index = NULL, 

content = NULL, 

session = shiny::getDefaultReactiveDomain()

) {

action <- match.arg(action)

content <- lapply(content, function(c) {

if (inherits(c, "shiny.tag") ||

inherits(c, "shiny.tag.list")) {

 # necessary if the user pass input/output with deps

 # that are not yet available in the page before

 # inserting the new tag

c <- htmltools::renderTags(c)

}

c

})

session$sendCustomMessage(

"user-messages", 

list(

id = session$ns(id), 

action = action, 

index = index, 

body = content

)

)

}

We also share the container id to be able to select the appropriate target on the JS side. 

As a reminder, the message handler name has to be the same on the JS side! 

268

 15 Optimize your apps with custom handlers

� Note the session$ns that actually makes sure this function can work within shiny modules (https://shiny.rstudio.com/reference/shiny/1.6.0/mo

duleServer.html). 

We are now all done on the R side but still have to design the JS interface. The first step is to create a custom message handler skeleton:

Shiny. addCustomMessageHandler(

'user-messages' , function(message) {

 // JS logic

}); 

where the message parameter is actually the message sent through the R

updateUserMessages() function. We recall that if we send a list, it is subsequently converted into a JS object. Therefore, to access the container id element, we do: message. id

and similarly for other elements. There may be nested lists, like the message content, which is not very complex to handle: we simply use the . JS notation to access lower-level elements, that is message.content.text for the message text. 

The second step is to store all message elements in multiple variables separated by commas. 

This step is not mandatory but improves the code readability:

Shiny. addCustomMessageHandler(

'user-messages' , function(message) {

 // Variables definition

let id = message. id, 

action = message. action, 

content = message. body, 

index = message. index; 

}); 

In the following, we show how to process any message content. For sake of simplicity, we assume we are able to only edit the message text. As mentioned earlier, there are two possible cases:

• The text is simple text or simple HTML without any extra dependency, we do nothing more than storing it into a meaningful variable. 

• The text is a list of Shiny tags containing input/output with extra dependencies like sliderInput(). We have to leverage the renderHtml method to correctly process the missing dependencies passed from R via htmltools::renderTags() in updateUserMessages(). 

This yields:

 15.4 Custom handlers

269

Shiny. addCustomMessageHandler(

'user-messages' , function(message) {

 // ... Variables definition ... 

 // Process message content

if (content. hasOwnProperty('text')) {

let text; 

if (content. text. html === undefined) {

text = content. text; 

} else {

text = Shiny. renderHtml(

content. text. html, 

$([]), 

content. text. dependencies

). html; 

}

}

}); 

� hasOwnProperty checks whether content has a text property, which avoids running code whenever not necessary. 

Then, the next step is to implement the multiple options provided by the user (update, add, remove). We consider the simplest case, that is remove a message. We remind the reader that the action contains the user choice in updateUserMessages(). What do we need to remove a given message? 

• Its index contained in the index variable. 

• The container id. 

• Remember that a message has the direct-chat-msg class. 

• Use the remove jQuery method. 

We, therefore, target the main container with $("#" + id), look for its messages with find(".direct-chat-msg"), specify the target using eq(index - 1) (index is the R value) and apply the remove method:

Shiny. addCustomMessageHandler(

'user-messages' , function(message) {

 // ... Variables definition ... 

 // ... Process message content ... 

if (action === 'remove') {

$('#' + id)

. find('.direct-chat-msg')

. eq(index - 1)

. remove(); 

}

}); 

We could add more security with console.warn whenever the user wants to delete a message that does not exist. We leave it to the reader as an exercise. 

The second case consists of adding a new message. We define new variables containing the author, the date, the image and the message type. 

270

 15 Optimize your apps with custom handlers

 // ... Other conditions .... 

else if (action === 'add') {

 // Variables definition

let author = content. author, 

date = content. date, 

image = content. image, 

type = content. type; 

}

Below is a reminder of the message HTML structure:

<div class="direct-chat-msg" > 

<div class="direct-chat-info clearfix" > 

<span class="direct-chat-name pull-left" > AUTHOR (TO REPLACE)

</span> 

<span class="direct-chat-timestamp pull-right" > DATE (TO REPLACE)

</span> 

</div> 

 <!-- /.direct-chat-info --> 

<img class="direct-chat-img" src="IMAGE URL (TO REPLACE)" 

alt="message user image" > 

 <!-- /.direct-chat-img --> 

<div class="direct-chat-text" > MAIN CONTENT (TO REPLACE)

</div> 

 <!-- /.direct-chat-text --> 

</div> 

In our JS logic, we use the same template and replace any relevant element (see capital letters) by the previously created variables. We might use the string interpolation10. 

 // ... Other conditions ... 

else if (action === 'add') {

 // ... Variables definition ... 

 // build the new message

let newMessage = `

<div class="direct-chat-info clearfix"> 

<span class="direct-chat-name"> 

${author}

</span> 

<span class="direct-chat-timestamp" 

style="margin-left: 4px"> 

${date}

</span> 

</div> 

<img class="direct-chat-img" src="${image}"/> 

<div class="direct-chat-text">${text}</div>`; 

}

We wrap all of these elements in a direct-chat-msg div, whose class may vary depending on the message type. If sent, the class is direct-chat-msg right and direct-chat-msg otherwise. 

 // ... Other conditions ... 

else if (action === 'add') {

 // ... Variables definition ... 

10https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals#brows

er_compatibility

 15.4 Custom handlers

271

 // ... build the new message ... 

 // build wrapper

let newMessageWrapper; 

if (type === 'sent') {

newMessageWrapper = `

<div class="direct-chat-msg right"> 

${newMessage}

</div>`; 

} else {

newMessageWrapper = `

<div class="direct-chat-msg"> 

${newMessage}

</div>`; 

}

}

The final step is to target the main container with $("#" + id), look for the messages slot find(".direct-chat-messages") (the message container is nested in the main wrapper) and append it to the DOM. We used append, which adds the message at the end but could choose prepend to add it on top of all other messages. This behavior may be defined by the programmer with no option for the end user. Alternatively, the developer could expose an external parameter to control the add position. 

 // ... Other conditions ... 

else if (action === 'add') {

 // ... Variables definition ... 

 // ... build the new message ... 

 // ... build wrapper ... 

 // append message

$('#' + id)

. find('.direct-chat-messages')

. append(newMessageWrapper); 

}

Finally, the last case is to update a given message. As stated above, we only edit the message text and the date. To update the message, we target the messages container with $("#" +

id), look for all texts with find(".direct-chat-text"), refine our choice by targeting the good element with eq(index - 1) and call replaceWith containing the new text element:

 // ... Other conditions ... 

else if (action === 'update') {

 // today's date

let d = new Date(); 

let month = d. getMonth() + 1; 

let day = d. getDate(); 

let today = d. getFullYear() + '/' +

(('' +month). length< 2 ? '0' : '') + month + '/' +

(('' +day). length< 2 ? '0' : '') + day; 

 // we assume only text may be updated. 

 // Does not make sense to modify author

$('#' + id)

. find('.direct-chat-text')

. eq(index - 1)

. replaceWith(`

<div class="direct-chat-text"> 

<small class="text-red"> 

(modified: ${today})

</small> 

<br> 

272

 15 Optimize your apps with custom handlers

</div> 

`)

}

Don’t forget to unbind, re-initialize and bind all inputs by successively calling Shiny.unbindAll();, Shiny.initializeInputs(); and Shiny.bindAll();. If you omit this part, the newly inserted input/output elements won’t work. 

Shiny. addCustomMessageHandler(

'user-messages' , function(message) {

 // ... Variables definition ... 

 // ... Process message content ... 

 // unbind all

Shiny. unbindAll(); 

if (action === 'remove') {

 // ... Remove logic ... 

} else if (action === 'add') {

 // ... Add logic ... 

} else if (action === 'update') {

 // ... Update logic ... 

}

 // Calls .initialize() for all of the input objects

 // in all input bindings. 

Shiny. initializeInputs(); 

Shiny. bindAll();  // bind all inputs/outputs

}); 

The whole JS code may be found here11. 

Output is shown in Figure 15.5. To reproduce that figure, run the below demonstration, click on add message, then click on update message leaving the numeric input to 1. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "custom-handlers/shinydashboardPlus-chat", 

 #

 package = "OSUICode" 

 # )

Why can’t we use the renderContent JS function, thereby allowing us to remove the three extra steps (unbind, initialize and bind inputs)? This would lead to a timing issue. 

Indeed, let’s say we first click on add message which creates one slider input and one plot output. It works well the first time since those element don’t exist for Shiny. If we remove the newly created message and click again on add, we obtain an error message Uncaught Duplicate binding for ID distPlot. The root cause is rather obvious and internal to renderContent. The later cannot be called before the target is in the DOM. It means that during some time, we actually added a second output (identical to the first one) without unbinding the first, thereby causing the duplication error. 

Chapter 19 provide another case study to practice custom handler design. 

11https://github.com/RinteRface/shinydashboardPlus/blob/ee2437cbaa1b7db36adea534d5b613b944

c0a09e/srcjs/shinydashboardPlus-2.0.2/userMessages.js#L2

[image: Image 261]

[image: Image 262]

[image: Image 263]

 15.4 Custom handlers

273

FIGURE 15.5: Chat user interface for shinydashboardPlus. 

Practice: A Bootstrap 4

dashboard template

16

Define dependencies

16.1 Introduction

The web provides a myriad of relevant open-source HTML templates like Colorlib1 and Creative Tim2. Many of the RinteRface packages are actually built on top of those resources. However, some of them may require more efforts to work with {shiny}, for reasons mentioned in Chapter 3:

• {shiny} is built on top of Bootstrap 33 (HTML, CSS and Javascript framework), and changing the framework will not be a trivial endeavor. However, shinymaterial4 and shiny.semantic5 are good examples that show this is possible. 

• {shiny} relies on jQuery6. Consequently, all templates based upon React7, Vue8 and other Javascript frameworks will not be natively supported. Again, there exist some examples9

for React with {shiny} and more generally, the reactR10 package developed by Kent Russell and Alan Dipert. Chapter 27 provides a general overview. 

In the next chapters, we will focus on the pretty tabler.io11 dashboard template (Figure

16.1). We’ll describe how to create an R wrapper on top of it, thereby making it available for all Shiny users. 

� This chapter was written about two years ago, on top of the 1.0.0-alpha.7

GitHub release (https://github.com/tabler/tabler/tree/14d0c001436b

85d2a4533d63680d209affdf774b). If the Tabler library significantly evolved since that date, the way to incorporate it into the Shiny ecosystem remains unchanged. Hence, the methods we describe below may be generalized to other templates. We recommend reading this chapter before the next part in

Chapter 21, during which we present a more automated workflow, if you want to grasp the main concepts. 

1https://colorlib.com

2https://www.creative-tim.com/bootstrap-themes/free

3https://getbootstrap.com/docs/3.3/

4https://github.com/ericrayanderson/shinymaterial

5https://github.com/Appsilon/shiny.semantic

6https://jquery.com

7https://fr.reactjs.org

8https://vuejs.org

9https://github.com/alandipert/react-widget-demo/blob/3cd9087c62ece68e8bcdd86f69e4319ac994

dc97/app.R

10https://react-r.github.io/reactR/

11https://preview-dev.tabler.io/layout-dark.html

275

[image: Image 264]

[image: Image 265]

[image: Image 266]

[image: Image 267]

[image: Image 268]

[image: Image 269]

276

 16 Define dependencies

FIGURE 16.1: Tabler dashboard overview. 

16.2 Discover the project

The first step of any template adaptation consists of exploring the underlying GitHub repository12 and looking for mandatory elements, like CSS/JS dependencies. This is a similar strategy if you want to incorporate an htmlwidget as well. 

As depicted in Figure 16.2, the most important folders are:

• dist, which contains CSS and JS files, as well as other libraries like Bootstrap and jQuery. 

It is also a good moment to look at the version of each dependency that might conflict with Shiny. 

• demo is the website folder used for demonstration purpose. This is our source to explore the template capabilities in depth. 

The scss and build folder may be used to customize the tabler template directly. However, as stated above, directions on how to do so are out of the scope for this book. 

16.3 Identify mandatory dependencies

Bootstrap 4, jQuery, tabler.min.css and tabler.min.js are key elements for the template, contrary to flag icons, which are optional (and take a lot of space). If your goal is to 12https://github.com/tabler/tabler/tree/14d0c001436b85d2a4533d63680d209affdf774b

[image: Image 270]

[image: Image 271]

[image: Image 272]

[image: Image 273]

 16.4 Bundle dependencies

277

FIGURE 16.2: GitHub project exploration. 

release your template on CRAN, be mindful of the 5 Mb maximum size limit. From personal experience, I can attest that this is quite challenging to manage. 

To inspect dependencies, we proceed as follows:

• Download or clone the GitHub repository. 

• Go to the demo folder and open the layout-dark.html file. 

• Open the HTML inspector. 

As shown in Figure 16.3 left-hand side, we need to include the tabler.min.css from the header. If you are not convinced, try to remove it from the DOM and see what happens. 

jqvmap13 is actually related to an external visualization plugin used in the demo. Finally, the demo.min.css file is for the demo purpose. This will not prevent the template from working, so we will skip it for now. So far so good, we only need one file thus. 

JavaScript dependencies are shown on the right-hand side and located at the end of the body tag. Because we will not need all chart-related dependencies, such as apexcharts, jquery.vmap and vmap world, we may safely ignore them. We only retain the Bootstrap 4, jQuery core and tabler.min.js, in the same order. 

16.4 Bundle dependencies

With the help of the htmlDependency() function, we are going to create our main Tabler HTML dependency containing all assets to allow our template to render properly. In this example, we are going to cheat a bit: instead of handling local files, we will use a CDN

(content delivery network) that hosts all necessary Tabler assets14. This avoids having to include all the necessary files in the R package, as well as in a GitHub repository. 

13https://www.10bestdesign.com/jqvmap/

14https://www.jsdelivr.com/package/npm/tabler

[image: Image 274]

[image: Image 275]

[image: Image 276]

[image: Image 277]

[image: Image 278]

[image: Image 279]

278

 16 Define dependencies

FIGURE 16.3: Tabler dependencies overview. 

� For a production template that is designed to go on CRAN, we recommend hosting files locally, as described in Chapter 21. 

library(htmltools)

tabler_cdn <- "https://cdn.jsdelivr.net/npm/tabler@1.0.0-alpha.7/" 

tablers_deps <- htmlDependency(

name = "tabler", 

version = "1.0.7",  # we take that of tabler, 

src = c(href = tabler_cdn), 

script = "dist/js/tabler.min.js", 

stylesheet = "dist/css/tabler.min.css" 

)

We advise the reader to create one HTML dependency per element. The Bootstrap version is 4.3.1. We can also use a CDN:

bs4_cdn <- "https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/" 

bs4_deps <- htmlDependency(

name = "Bootstrap", 

version = "4.3.1", 

src = c(href = bs4_cdn), 

script = "js/bootstrap.bundle.min.js" 

)

We finally create our dependency manager:

 16.4 Bundle dependencies

279

 # add all dependencies to a tag. Don't forget to set

 # append to TRUE to preserve any existing dependency

add_tabler_deps <- function(tag) {

 # below, the order is of critical importance! 

deps <- list(bs4_deps, tablers_deps)

attachDependencies(tag, deps, append = TRUE)

}

Notice the dependencies order in the deps list. This will be exactly the same order in the head of the HTML page. Some libraries require being loaded at a specific place, like the Tabler dependencies, which must come after Bootstrap. 

Let’s see how to use add_tabler_deps(). We consider a <div> placeholder and check for its dependencies with findDependencies(). Then, we wrap it with add_tabler_deps(): tag <- div()

findDependencies(tag)

#> NULL

tag <- add_tabler_deps(div())

findDependencies(tag)

#> [[1]]

#> List of 10

#> 

$ name

: chr "Bootstrap" 

#> 

$ version

: chr "4.3.1" 

#> 

$ src

:List of 1

#> 

..$ href: chr "https://.../bootstrap/4.3.1/js/" 

#> 

$ meta

: NULL

#> 

$ script

: chr "bootstrap.bundle.min.js" 

#> 

$ stylesheet: NULL

#> 

$ head

: NULL

#> 

$ attachment: NULL

#> 

$ package

: NULL

#> 

$ all_files : logi TRUE

#> 

- attr(*, "class")= chr "html_dependency" 

#> 

#> [[2]]

#> List of 10

#> 

$ name

: chr "tabler" 

#> 

$ version

: chr "1.0.7" 

#> 

$ src

:List of 1

#> 

..$ href: chr "https://.../tabler@1.0.0-alpha.7/dist/" 

#> 

$ meta

: NULL

#> 

$ script

: chr "js/tabler.min.js" 

#> 

$ stylesheet: chr "css/tabler.min.css" 

#> 

$ head

: NULL

#> 

$ attachment: NULL

#> 

$ package

: NULL

#> 

$ all_files : logi TRUE

#> 

- attr(*, "class")= chr "html_dependency" 

As shown above, our dependencies are applied to the div, in the correct order. This order is set by the list list(bs4_deps, tablers_deps) and allows us to avoid potential conflicts. 

If we try to run this simple tag in a Shiny app, we notice that all dependencies are added to the <head> tag, whereas the original template loads JavaScript dependencies in the <body>. 

� Unfortunately, {htmltools} does not allow developers to distribute dependencies in different places yet. 

280

 16 Define dependencies

Here there is no impact, but this might be no-go for templates requiring JavaScript to be placed in the body. In practice, this is challenging to guess and may only be solved by manual testing. 

library(shiny)

ui <- fluidPage(tag)

server <- function(input, output, session) {}

shinyApp(ui, server)

Even though the add_tabler_deps() function may be applied to any tag, we will use it with the core HTML template, which remains to be designed. 

Would you like to see if our dependency system works? Let’s meet in the next chapter to design the main dashboard layout. 

[image: Image 280]

[image: Image 281]

[image: Image 282]

17

Create template elements

The list of all available tabler layouts is quite impressive (horizontal, vertical, compressed, right to left, dark, …). In the next steps, we will focus on the dark-compressed template, leaving the reader to try other templates as an exercise. 

17.1 Identify template elements

We are quite lucky since there is nothing fancy about the Tabler layout. As usual, let’s inspect the layout-condensed-dark.html (located /demo folder1) in Figure 17.1. 

FIGURE 17.1: Tabler condensed layout. 

1https://github.com/tabler/tabler/blob/14d0c001436b85d2a4533d63680d209affdf774b/demo/layo

ut-condensed-dark.html

281

282

 17 Create template elements

There are two main components:

• the header containing the brand logo, the navigation and dropdown. 

• the content containing the dashboard body as well as the footer. 

� The dashboard body does not mean <body> tag. 

That is it for now. 

17.2 Design the page layout

17.2.1 The page wrapper

Do you remember the structure of a basic HTML page seen in section 1.3? Well, if not, here is a reminder. 

<!DOCTYPE HTML> 

<html lang="en" > 

<head> 

 <!-- head content here --> 

<title> A title</title> 

</head> 

<body> 

 <!-- body content here --> 

</body> 

</html> 

We actually don’t need to include the <html> tag since Shiny does it on the fly, as described earlier in section 5.7.1. Below we construct a list of tags with tagList(), including the head and the body. In the head, we have the meta tag, which has multiple purposes:

• Describe the encoding2, which briefly controls what character can be displayed on the page. UTF-8 is a safe choice as it covers almost all existing characters. 

• How to display the app on different devices. For instance the viewport meta tag handles the responsive web design. width=device-width, allows the page width to vary depending on the user device. initial-scale=1 handles the initial page zoom. 

• Set the favicon, which is an icon representing the website icon, that is the one you may see on the right side of the searchbar. Try Twitter3 for instance. 

• …

The page title and favicon may be changed by the developer, so they may be included as function parameters. If you remember, there should also be CSS in the head but they are missing. Actually, the insertion of dependencies is achieved by our very own 2https://www.w3schools.com/html/html_charset.asp

3https://twitter.com/home

 17.2 Design the page layout

283

add_tabler_deps() function defined in Chapter 16. Tabler comes with two main themes, namely white and dark, which may be applied through the <body> class attribute (respectively, antialiased theme-dark and antialiased). The … parameter contains other template elements like the header and the dashboard body, which remain to be designed. 

As shown in Figure 16.1, the Tabler dashboard template may contain a navigation bar as well as a footer. As they are not mandatory, we don’t create dedicated parameters and pass all elements in the ... slot:

tabler_page <- function(..., dark = TRUE, title = NULL, favicon = NULL){

 # head

head_tag <- tags$head(

tags$meta(charset = "utf-8"), 

tags$meta(

name = "viewport", 

content = " 

width=device-width, 

initial-scale=1, 

viewport-fit=cover" 

), 

 # ... Elements omitted for space reasons

tags$link(

rel = "shortcut icon", 

href = favicon, 

type="image/x-icon" 

)

)

 # body

body_tag <- add_tabler_deps(

tags$body(

tags$div(

class = paste0("antialiased ", if (dark) "theme-dark"), style = "display: block;", 

tags$div(class = "page", ...)

)

)

)

tagList(head_tag, body_tag)

}

The whole code maybe found in the {OSUICode} side package4. 

Below we quickly test if a Tabler element renders well, to confirm whether our setup is adequate. To do this, we include a card element taken from the demo HTML page, using HTML(). 

� Let’s be clear: this is only for testing purposes. In production, you should avoid this as much as possible because of security issues and the bad readability of the code. 

This also checks that our basic Shiny input/output system works as expected with a textInput() linked to a textOutput() to provide the card title:

4https://github.com/DivadNojnarg/outstanding-shiny-ui-code/blob/b040a24e576f5d190825be0433

edac288bbfbc26/R/tabler.R#L69

284

 17 Create template elements

 ### RUN ###

 # OSUICode::run_example(

 #

 "tabler/test-template", 

 #

 package = "OSUICode" 

 # )

OK, our card and the shiny element work like a charm, which is a good start. Now we may focus on the aesthetics. 

17.2.2 The body content

In this part, we translate the dashboard body HTML code to R. As a reminder, the html2r5

by Alan Dipert6 substantially speeds up the conversion process. You copy the code in the HTML text area, click on convert and get the R Shiny output. We create a function called tabler_body(). The … parameter holds all the dashboard body elements, and the footer is dedicated for the future tabler_footer() function. 

tabler_body <- function(..., footer = NULL) {

div(

class = "content", 

div(class = "container-xl", ...), 

tags$footer(class = "footer footer-transparent", footer)

)

}

Let’s test it with the previous example. 

ui <- tabler_page(tabler_body(h1("Hello World")))

server <- function(input, output) {}

shinyApp(ui, server)

Way better! 

17.2.3 The footer

The footer is composed of left and right containers. We decide to create parameters left and right in which the user may pass any elements:

tabler_footer <- function(left = NULL, right = NULL) {

div(

class = "container", 

div(

class = "row text-center align-items-center

flex-row-reverse", 

div(class = "col-lg-auto ml-lg-auto", right), 

div(class = "col-12 col-lg-auto mt-3 mt-lg-0", left)

)

)

}

All the class attributes are taken from the original HTML template. If you are already familiar with Bootstrap 4, you may easily customize the style. The main container leverages 5https://alandipert.shinyapps.io/html2r/

6https://github.com/alandipert

[image: Image 283]

[image: Image 284]

[image: Image 285]

 17.2 Design the page layout

285

the flexbox model, shown in section 6.5.5.2. In short, row means that all elements are aligned on a row; text-center and align-items-center handle the text and content centering. flex-row-reverse displays elements in a reversed order. Notice also that a row element contains columns created with the col class. 

As above, let’s check our brand-new element (Figure 17.2). 

 ### RUN ###

 # OSUICode::run_example(

 #

 "tabler/basic-template", 

 #

 package = "OSUICode" 

 # )

FIGURE 17.2: Tabler basic structure with content and footer. 

17.2.4 The navbar (or header)

This function is called tabler_header(). In the Tabler template, the header has the navbar navbar-expand-md navbar-light classes. We don’t need the navbar-light class since we are only interested in the dark theme. As shown in Figure 17.3, the header is composed of four elements:

• The navbar toggler is only visible when we reduce the screen width, like on mobile devices. 

• The brand image

• The navigation menu. 

[image: Image 286]

286

 17 Create template elements

• The dropdown menus (this is not mandatory). 

FIGURE 17.3: Tabler header structure. 

You may have a look at the Bootstrap 47 documentation for extra configuration and layout. 

Each of these elements will be considered a parameter to the tabler_navbar() function, except the navbar toggler, which is a default element and must not be removed: tabler_navbar <- function(..., brand_url = NULL, 

brand_image = NULL, nav_menu, 

nav_right = NULL) {

 # SEE BELOW

}

Morever, we only show the brand element when it is provided. The … parameter is a slot for extra elements (between the menu and dropdowns). In the following, we start by creating the main container, that is header_tag and its unique child container_tag: header_tag <- tags$header(class = "navbar navbar-expand-md") container_tag <- tags$div(class = "container-xl")

The latter has four children: toggler_tag, brand_tag, dropdown_tag and navmenu_tag. 

toggler_tag is only visible on small screen devices or when the browser window’s width is reduced. It consists of a button that has two important attributes data-toggle and data-target. They are part of the Bootstrap 4 template and briefly mean that the button will toggle a collapsible element having the navbar-menu unique id. The toggle icon is provided in a simple span element:

7https://getbootstrap.com/docs/4.0/components/navbar/

 17.2 Design the page layout

287

 # toggler for small devices (must not be removed)

toggler_tag <- tags$button(

class = "navbar-toggler", 

type = "button", 

`data-togglè = "collapse", 

`data-target` = "#navbar-menu", 

span(class = "navbar-toggler-icon")

)

The navmenu_tag is the toggler_tag target, linked by the id and the collapse class. It is a container leveraging Flexbox, that will host the not yet defined nav_menu elements. 

In the following code, you probably notice some outstanding classes like mr-md-4, py-2. 

It corresponds to the Bootstrap 4 spacing system8. Overall, m stands for margin while p means padding. x, y, t, b, l and r set the direction. The spacing value is an integer whose value ranges between 0 and 5 (or set to auto). Keep in mind the following rule

{sides}-{breakpoint}-{size}, where breakpoint may be one of sm, md, lg and xl. If you remember the CSS media queries section 6.5.6, this is the same principle: pl-md-4 will apply a padding on the left side for all devices with a screen width9 of at least 768px (md), thereby excluding small and extra-small devices (sm, xs). 

navmenu_tag <- div(

class = "collapse navbar-collapse", 

id = "navbar-menu", 

div(

class = "d-flex flex-column flex-md-row flex-fill

align-items-stretch align-items-md-center", 

nav_menu

), 

if (length(list(...)) > 0) {

div(

class = "ml-md-auto pl-md-4 py-2 py-md-0 mr-md-4

order-first order-md-last flex-grow-1 flex-md-grow-0", 

... 

)

}

)

The brand_tag is an optional image with navbar-brand main class:

 # brand elements

brand_tag <- if (!is.null(brand_url) ||

!is.null(brand_image)) {

a(

href = if (!is.null(brand_url)) {

brand_url

} else {

"#" 

}, 

class = "navbar-brand navbar-brand-autodark

d-none-navbar-horizontal pr-0 pr-md-3", 

if(!is.null(brand_image)) {

img(

src = brand_image, 

alt = "brand Image", 

class = "navbar-brand-image" 

)

}

)

}

8https://getbootstrap.com/docs/4.0/utilities/spacing/

9https://getbootstrap.com/docs/4.0/layout/grid/#grid-options

288

 17 Create template elements

dropdown_tag:

dropdown_tag <- if (!is.null(nav_right)) {

div(class = "navbar-nav flex-row order-md-last", nav_right)

}

Remember that container_tag has to contain the four previously defined children tags. In this situations, {htmltools} functions like tagAppendChild() and tagAppendChildren() are game changers to better organize the code and make it more maintainable. 

 # ... other tags defined above

container_tag <- tagAppendChildren(

container_tag, 

toggler_tag, 

brand_tag, 

dropdown_tag, 

navmenu_tag

)

 # Final navbar wrapper

tagAppendChild(header_tag, container_tag)

Users never know in advance how extra features will be added to that component. Hence being cautious at the very beginning is crucial! The tabler_navbar() full code is given here10. 

The navbar menu is the main navbar component. The … parameter is a slot for the menu items. Compared to the original Tabler dashboard template where there is only the navbar-nav class, we have to add at least, the nav class to make sure items are correctly activated/inactivated. The nav-pills class is to select pills instead of basic tabs (see here11), which is nothing more than a cosmetic consideration. Notice the ul tag that will contain li elements, that is the navbar items:

tabler_navbar_menu <- function(...) {

tags$ul(class = "nav nav-pills navbar-nav", ...)

}

Besides, each navbar menu item could be either a simple button or contain multiple menu sub-items. For now, we only focus on simple items. 

17.2.4.1 Navbar navigation

The navbar is crucial since it drives the template navigation. We would like to associate each item to a separate page in the body content. This would allow us to navigate to a new page each time we change an item. In brief, it is very similar to the Shiny tabsetPanel() function. 

In HTML, menu items are <a> tags (links) with a given href attribute pointing to a specific page located in the server files. With Shiny, as applications are single page by design, we can’t split our content into multiple pages. The strategy here is to create a tabbed navigation, to mimic multi-pages layout. 

10https://github.com/DivadNojnarg/outstanding-shiny-ui-code/blob/b040a24e576f5d190825be0433

edac288bbfbc26/R/tabler.R#L236

11https://getbootstrap.com/docs/4.0/components/navs/

[image: Image 287]

 17.2 Design the page layout

289

Let’s see how the tab navigation works. In the menu list, all items must have:

• A data-toggle attribute set to tab or pill. 

• A href or data-target attribute holding a unique id, being mandatory since it points the menu item to the corresponding body content. 

� Importantly, href navigation appears to be broken on shinyapps.io, RStudio Connect (actually all rstudio products relying on workers to spread the user load across multiple R processes). Therefore, we’ll choose the data-target attribute. 

On the body side, tab panels are contained in a tabset panel (simple div container), have a role attribute set to tabpanel and an id corresponding to the data-target passed in the menu item. The exact match between id and data-target is mandatory, as shown in

Figure 17.4. 

FIGURE 17.4: Tabler tabset panel: main principle. 

Below, we propose a possible implementation of a menu item, as well as the corresponding body tab panel. The text parameter corresponds to the nav item text displayed in the menu. 

We also added an optional icon and the ability to select the item at start: tabler_navbar_menu_item <- function(text, tabName, icon = NULL, selected = FALSE) {

item_cl <- paste0("nav-link", if (selected) " active") tags$li(

class = "nav-item", 

a(

class = item_cl, 

290

 17 Create template elements

`data-target` = paste0("#", tabName), 

`data-togglè = "pill", 

`data-valuè = tabName, 

role = "tab", 

span(class = "nav-link-icon d-md-none

d-lg-inline-block", icon), 

span(class = "nav-link-title", text)

)

)

}

We also decided to add a fade transition effect between tabs, as per Bootstrap 4 documentation, which consists of the fade extra class:

tabler_tab_items <- function(...) {

div(class = "tab-content", ...)

}

tabler_tab_item <- function(tabName = NULL, ...) {

div(

role = "tabpanel", 

class = "tab-pane fade container-fluid", 

id = tabName, 

... 

)

}

What about testing this in a Shiny app? 

 ### RUN ###

 # OSUICode::run_example(

 #

 "tabler/navbar", 

 #

 package = "OSUICode" 

 # )

At this point you might argue that we did not even validate the template elements. For instance, going back to the tabler_navbar_menu_item function, we find the following possible issues:

• What happens if the user provides an invalid tabName, i.e. a text that is not valid for jQuery like tab&?++? 

• What happens if the user accidentally activates two tabs at start? 

We see later in Chapter 20 how to validate those parameters. 

17.2.4.2 Fine-tune tabs behavior

Quite good, isn’t it? You notice however that even if the first tab is selected by default, its content is not shown. To fix this, we apply our jQuery skills. According to the Bootstrap documentation, we must trigger the show event on the active tab at start, as well as add the classes show and active to the associated tab panel in the dashboard body. We therefore target the nav item that has the active class and if no item is found, we select the first item by default and activate its body content. 

 17.2 Design the page layout

291

$(function() {

 // this makes sure to trigger the show event on

 // the active tab at start

let activeTab = $('#navbar-menu .nav-link.active'); 

 // if multiple items are found

if (activeTab. length > 0) {

let tabId = $(activeTab). attr('data-value'); $(activeTab). tab('show'); 

$(`#${tabId}`). addClass('show active'); 

} else {

$('#navbar-menu .nav-link')

. first()

. tab('show'); 

}

}); 

This script is included in the the below app www folder. We see in Chapter 18 that custom input binding may perfectly handle this situation and are actually preferred. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "tabler/navbar-bis", 

 #

 package = "OSUICode" 

 # )

The result is shown in Figure 17.5. We’d also suggest including at least one input/output per tab, to test whether everything works properly. 

Looks like we are done for the main template elements. Actually, wouldn’t it be better to include, at least, card containers? 

17.2.5 Card containers

Card are a central piece of template as they may contain visualizations, metrics and much more, generally enhancing content visibility. Thus, this is not a hazard why I choose this component and fortunately, Tabler offers a large choice of card containers. 

17.2.5.1 Classic card

What we call a classic card is like the shinydashboard12 box() container. The card structure has key elements:

• A width to control the space taken by the card in the Bootstrap grid13. 

• A title, in general in the header (Tabler does always not follow this rule and header is optional). 

• A body where the main content is. 

• Style elements like color statuses. 

• A footer (optional, Tabler does not include this). 

A comprehensive list of all Tabler card features may be found here14. To be faster, we copy the following HTML code in the html2R15 Shiny app to convert it to Shiny tags: 12https://rstudio.github.io/shinydashboard/structure.html

13https://getbootstrap.com/docs/4.0/layout/grid/

14https://preview-dev.tabler.io/docs/cards.html

15https://github.com/alandipert/html2r

[image: Image 288]

[image: Image 289]

[image: Image 290]

292

 17 Create template elements

FIGURE 17.5: Tabler template with navbar. 

<div class="col-md-6" > 

<div class="card" > 

<div class="card-status-top bg-danger" ></div> 

<div class="card-body" > 

<h3 class="card-title" > Title</h3> 

<p> Some Text. </p> 

</div> 

</div> 

</div> 

Below is the result. The next step consists of replacing all content by parameters to the tabler_card() function, whenever necessary. For instance, the first <div> sets the card width. The Bootstrap grid ranges from 1 to 12, so why not create a width parameter to control the card size. We proceed similarly for the title, status, body content. It seems reasonable to allow title to be NULL (if so, the title is not shown), same thing for the status. 

Regarding the card default width, a value of six also makes sense, which would take half of the row:

tabler_card <- function(..., title = NULL, status = NULL, width = 6, stacked = FALSE, 

padding = NULL) {

 17.2 Design the page layout

293

card_cl <- paste0(

"card", 

if (stacked) " card-stacked", 

if (!is.null(padding)) paste0(" card-", padding)

)

status_tag <- if (!is.null(status)) {

div(class = paste0("card-status-top bg-", status))

}

body_tag <- div(

class = "card-body", 

 # we could have a smaller title like h4 or h5... 

if (!is.null(title)) {

h3(class = "card-title", title)

}, 

... 

)

main_wrapper <- div(class = paste0("col-md-", width)) card_wrapper <- div(class = card_cl)

card_wrapper <- tagAppendChildren(

card_wrapper, status_tag, body_tag

)

tagAppendChild(main_wrapper, card_wrapper)

}

In the meantime, it would be also convenient to be able to display cards in the same row. 

Let’s create the tabler_row() function:

tabler_row <- function(...) {

div(class = "row row-deck", ...)

}

Below, 

we

show

an

example

of

the

tabler_card()

function, 

in

combina-

tion with the {apexcharter} package. The whole code may be printed with OSUICode::get_example("tabler/card"). 

 ### RUN ###

 # OSUICode::run_example(

 #

 "tabler/card", 

 #

 package = "OSUICode" 

 # )

The code output is shown in Figure 17.6. 

17.2.6 Ribbons: card components

Let’s finish this part by including a card component, namely the ribbon16. 

tabler_ribbon <- function(..., position = NULL, color = NULL, bookmark = FALSE) {

ribbon_cl <- paste0(

"ribbon", 

if (!is.null(position)) sprintf(" bg-%s", position), if (!is.null(color)) sprintf(" bg-%s", color), 

16https://preview-dev.tabler.io/docs/ribbons.html

[image: Image 291]

294

 17 Create template elements

FIGURE 17.6: Tabler card component. 

if (bookmark) " ribbon-bookmark" 

)

div(class = ribbon_cl, ...)

}

Integrating the freshly created ribbon component requires modifying the card structure since the ribbon is added after the body tag, and no parameter is associated with this slot. We could also modify the tabler_card() function, but {htmltools} offers tools to help us. Since the ribbon should be put after the card body, we may think about the tagAppendChild() function, introduced in Chapter 2:

 # add the ribbon to a card

my_card <- tabler_card(title = "Ribbon", status = "info") my_card$children[[1]] <- tagAppendChild(

my_card$children[[1]], 

tabler_ribbon(

icon("info-circle", class = "fa-lg"), 

bookmark = TRUE, 

color = "red" 

)

)

Now, we check how it looks in a Shiny app. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "tabler/ribbon", 

 #

 package = "OSUICode" 

 # )

[image: Image 292]

 17.3 Exercises

295

FIGURE 17.7: Tabler ribbon component. 

17.2.7 Icons

Not mentioned before, but we may include Font Awesome icons provided with Shiny, as well as other libraries. Moreover, Tabler has a internal svg library located here17. 

17.3 Exercises

1. Have a look at this page18. Select two elements and create the corresponding R

functions. 

2. Leverage the new {htmltools} tagQuery() API (see section 2.6) to rewrite the tabler_navbar() and tabler_card() functions. 

17https://preview-dev.tabler.io/icons.html

18https://preview-dev.tabler.io/snippets.html

[image: Image 293]

18

Develop custom input widgets

In the previous chapter, we built template dependencies, the page skeleton, as well as containers like cards. Now is a great time to integrate new inputs, leveraging all knowledge from Chapter 12. 

18.1 Tabler action button

Let’s start with a simple input: the action button. Tabler has built-in HTML buttons with a substantial amount of custom styles, compared to the classic Shiny action button. 

18.1.1 Reminders about the action button

Below is the actionButton() code:

actionButton <- function (inputId, label, icon = NULL, width = NULL, ...)

{

value <- restoreInput(id = inputId, default = NULL)

tags$button(

id = inputId, 

style = if (!is.null(width)) {

paste0("width: ", validateCssUnit(width), ";")

}, 

type = "button", 

class = "btn btn-default action-button", 

`data-val` = value, 

list(validateIcon(icon), label), ... 

)

}

The button tag has some attributes like id, style, type, class, data-val, label and children passed via .... 

When the app starts, the action button has the value 0, and each click increments its value by 1. How is this behavior controlled? If you recall, it is due to the input binding file, specifically the one for the action button:

var actionButtonInputBinding = new InputBinding(); $. extend(actionButtonInputBinding, {

find: function(scope) {

return $(scope). find('.action-button'); 

}, 

getValue: function(el) {

return $(el). data('val') || 0; 

297

298

 18 Develop custom input widgets

}, 

 // ....; Extra code removed

}); 

What you see above is not the whole script since we focus on the first method, that is find. 

It will look for all elements having the class action-button, making it possible to define multiple action buttons at the same time. 

Consequently, if we go back to the previous section, the actionButton() has the class action-button, thereby making it visible to the binding. Interestingly, all elements having the class action-button will be considered by the same shiny input binding. 

18.1.2 Application to Tabler

First of all, let’s compare the tabler HTML button to the Shiny action button. 

<button class="btn btn-primary" > Button</button> We convert it to R code. The button API contains more style and we leave the reader to add extra elements as an exercise. 

tabler_button <- function(inputId, label, status = NULL, icon = NULL, width = NULL, ...) {

 # SEE BELOW

}

In Tabler, the button status is mandatory, which is the reason why it is a function parameter. We assume that by default, the button has a blue color, which is given by btn-primary: btn_cl <- paste0(

"btn action-button", 

if (is.null(status)) {

" btn-primary" 

} else {

paste0(" btn-", status)

}

)

Moreover, we add an horizontal right margin to the icon, if provided so that the label renders well (mr-1, where m stands for margin, r is the right direction and 1 is the margin value). 

 # custom right margin

if (!is.null(icon)) icon$attribs$class <- paste0(

icon$attribs$class, " mr-1" 

)

The button tag is identical to that of Shiny, which is the reason why we don’t show it here. 

The whole code may be found here1. 

1https://github.com/DivadNojnarg/outstanding-shiny-ui-code/blob/b040a24e576f5d190825be0433

edac288bbfbc26/R/tabler.R#L622

[image: Image 294]

 18.2 Toggle Switch

299

 ### RUN ###

 # OSUICode::run_example(

 #

 "tabler/button", 

 #

 package = "OSUICode" 

 # )

We easily check that clicking on the button increments the related input. Thus, one may see how easy it is to implement a Tabler input button, built on top of the Shiny action button. 

The output is shown in Figure 18.1. 

FIGURE 18.1: Tabler action button. 

� As a general rule, don’t try to reinvent the wheel and see whether any existing Shiny element may be used instead. 

18.2 Toggle Switch

We implement the toggle switch component. The HTML structure may be inspected here2

(or in demo/form-elements.html if you already downloaded the repository locally). 

<label class="form-check form-switch" > 

<input class="form-check-input" type="checkbox" checked> 

<span class="form-check-label" > Option 1</span> 

</label> 

Notice that the tabler switch has the checkbox type, which is very similar to the Shiny checkbox (a switch being a checkbox with a different style):

checkboxInput("test", "Test", TRUE)

#> <div class="form-group shiny-input-container"> 

#> 

<div class="checkbox"> 

#> 

<label> 

#> 

<input id="test" type="checkbox" checked="checked"/> 

#> 

<span>Test</span> 

#> 

</label> 

#> 

</div> 

#> </div> 

2https://github.com/tabler/tabler/blob/14d0c001436b85d2a4533d63680d209affdf774b/demo/form-

elements.html

300

 18 Develop custom input widgets

Therefore, we should again be able to build on top of an existing input binding3. We create the tabler_switch() function. 

tabler_switch <- function(inputId, label, value = FALSE, width = NULL) {

 # SEE BELOW

}

We start to recover any possible bookmarked value with restoreInput(): value <- restoreInput(id = inputId, default = value)

Then, in line with the above HTML structure, we design the input tag. If we want to reuse the shiny::checkboxInput() binding, we must not forget the type = checkbox: $. extend(checkboxInputBinding, {

find: function(scope) {

return $(scope). find('input[type="checkbox"]'); 

}

 // other methods

}); 

input_tag <- tags$input(

id = inputId, 

type = "checkbox", 

class = "form-check-input" 

)

We conditionally add a checked attribute depending on the current value parameter: if (!is.null(value) && value) {

input_tag <- tagAppendAttributes(

input_tag, 

checked = "checked" 

)

}

We proceed to the main wrapper creation, which has a label tag having the form-check form-switch class, as well as an optional width parameter:

input_wrapper <- tags$label(

class = "form-check form-switch", 

style = if (!is.null(width)) {

paste0("width: ", validateCssUnit(width), ";")

}

)

We finally put everything together with tagAppendChildren(), the whole code being accessible here4:

3https://github.com/rstudio/shiny/blob/60db1e02b03d8e6fb146c9bb1bbfbce269231add/srcjs/inp

ut_binding_checkbox.js#L1

4https://github.com/DivadNojnarg/outstanding-shiny-ui-code/blob/b040a24e576f5d190825be0433

edac288bbfbc26/R/tabler.R#L661

[image: Image 295]

 18.3 Navbar menu input

301

tagAppendChildren(

input_wrapper, 

input_tag, 

span(class = "form-check-label", label)

)

Besides, we may also create an update_tabler_switch() function similar to the updateCheckboxInput(). We leverage OSUICode::dropNulls(), a function that removes all NULL elements from a list. If you remember, the session$sendInputMessage from R is received by the receiveMessage method on the JavaScript side:

update_tabler_switch <- function (session, inputId, 

label = NULL, 

value = NULL) {

message <- dropNulls(list(label = label, value = value))

session$sendInputMessage(inputId, message)

}

In the following example, the action button toggles the switch input value when clicked, as shown in Figure 18.2. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "tabler/switch", 

 #

 package = "OSUICode" 

 # )

FIGURE 18.2: Tabler action button updating a toggle input. 

Et voilà! Two inputs in just a few minutes. 

18.3 Navbar menu input

As stated in Chapter 12, it is quite straightforward to bind elements other than primary inputs (HTML elements with the input tag) to Shiny. As a reminder, we created a custom input binding to detect the state of a {shinydashboard} box. In Chap-

ter 17, we designed the tabler_navbar(), as well as the tabler_navbar_menu() and tabler_navbar_menu_item(). As in {shinydashboard}, it would be great to capture the currently selected tab to subsequently perform actions on the server side, updating the selected tab based on a button click. 

Where do we start? First of all, we add an id attribute to the tabler_navbar_menu() so that it holds the corresponding input$id. Whether to use inputId or id as a parameter name is up to you, id being personally prefered in that case:

302

 18 Develop custom input widgets

tabler_navbar_menu <- function(..., inputId = NULL) {

tags$ul(

id = inputId, 

class = "nav nav-pills navbar-nav", 

... 

)

}

The next step is the JS navbarMenuBinding creation. We decide to look for the navbar-nav class in the find method. Below, we describe the binding step by step. You may find the whole working code at the end of this example:

find: function(scope) {

return $(scope). find('.navbar-nav'); 

}

In the initialize method, we ensure that if no tab is selected at start, the first tab will be selected by default. Otherwise, we select the activated tab. We use the template literals to ease the insertion of JS code in strings (${menuId} .nav-link.active): initialize: function(el) {

let menuId = '#' + $(el). attr('id'); let activeTab = $(`${menuId} .nav-link.activè); 

 // if multiple items are found

if (activeTab. length > 0) {

let tabId = $(activeTab). attr('data-value'); $(activeTab). tab('show'); 

$(`#${tabId}`). addClass('show active'); 

} else {

$(`${menuId} .nav-link`)

. first()

. tab('show'); 

}

}

The role of getValue is to return the currently selected tab. As a reminder, here is the tabler_navbar_menu_item() function:

tabler_navbar_menu_item <- function(text, tabName, 

icon = NULL, 

selected = FALSE) {

item_cl <- paste0("nav-link", if(selected) " active") tags$li(

class = "nav-item", 

a(

class = item_cl, 

`data-valuè = tabName, 

 # Commented since not relevant

)

)

}

From that function, the active item has is the a element with the classes nav-link active. 

We recover the tab value stored in the data-value attribute. A bit of jQuery does the trick: getValue: function(el) {

let activeTab = $(el). find('a'). filter('nav-link active'); return $(activeTab). attr('data-value'); 

}

 18.3 Navbar menu input

303

setValue is the function allowing to update the active tab. Bootstrap 4 already has predefined methods to activate5 tabs. The easiest way is to select the tab by name like $('#tabMenu a[data-target="#tab1"]').tab('show'). The receiveMessage is simply applying the setValue method:

setValue: function(el, value) {

let hrefVal = '#' + value; 

let menuId = $(el). attr('id'); 

$(`#${menuId} a[data-target="${hrefVal}"]`). tab('show'); 

}

receiveMessage: function(el, data) {

this. setValue(el, data); 

}

Besides, we have to create the update_tabler_tab_item() function: update_tabler_tab_item <- function(

inputId, 

value, 

session = getDefaultReactiveDomain()

) {

session$sendInputMessage(inputId, message = value)

}

subscribe tells Shiny when to change the current input value and made it available in the whole app. We may listen to multiple events, keeping in mind that events occur in the following order:

• hide.bs.tab (on the current active tab). 

• show.bs.tab (on the to-be-shown tab). 

• hidden.bs.tab (on the previous active tab, the same one as for the hide.bs.tab event). 

• shown.bs.tab (on the newly-active just-shown tab, the same one as for the show.bs.tab event). 

Hence, it makes more sense to listen to shown.bs.tab, that is wait for the current tab to be shown:

subscribe: function(el, callback) {

 // important to use shown.bs.tab and not show.bs.tab! 

$(el). on('shown.bs.tab.navbarMenuBinding' , function(e) {

callback(); 

}); 

}, 

unsubscribe: function(el) {

$(el). off('.navbarMenuBinding'); 

}

The whole binding code is located here6. 

How do we include this custom input binding in our package? In {OSUICode}, we created the following HTML dependency:

5https://getbootstrap.com/docs/4.0/components/navs/#via-javascript

6https://github.com/DivadNojnarg/outstanding-shiny-ui-code/blob/db99b034b06a1ab26ef27bf864

b2c853626ebc19/inst/tabler/tabler-update-navbar/navbarMenuBinding.js

304

 18 Develop custom input widgets

tabler_custom_js <- htmlDependency(

name = "tabler-bindings", 

version = "1.0.7", 

src = "tabler", 

package = "OSUICode", 

script = "input-bindings/navbarMenuBinding.js" 

)

We also updated the add_tabler_deps, as below. 

add_tabler_deps <- function(tag) {

 # below, the order is of critical importance! 

deps <- list(bs4_deps, tablers_deps, tabler_custom_js)


attachDependencies(tag, deps, append = TRUE)

}

We test the new navbar_menu() binding below. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "tabler/update-navbar", 

 #

 package = "OSUICode" 

 # )

Here we are! 

18.4 Exercises

1. Have a look at the Tabler documentation about buttons7 and extend the tabler_button function accordingly. 

2. Propose an implementation of the Advanced selectboxes shown here8 and Fig-

ure 18.3. 

3. Cards are central elements of all templates. So are tabset panels. Try to modify the tabler_card() function to create a tabler_tab_card() function, adding tab navigation within the card header. 

7https://github.com/tabler/tabler/blob/14d0c001436b85d2a4533d63680d209affdf774b/demo/butt

ons.html

8https://github.com/tabler/tabler/blob/14d0c001436b85d2a4533d63680d209affdf774b/demo/form-

elements.html

[image: Image 296]

 18.4 Exercises

305

FIGURE 18.3: Advanced select input with user image. 

[image: Image 297]

[image: Image 298]

19

Adding more interactivity

In this part, we are going to bring even more life to the template element. We first see how to enhance an existing static HTML component, through a simple progress bar example. 

Then we explore more complex elements involving specific Shiny patterns. By the end of the chapter, you will be able to implement components like the one showed in Figure 19.1. 

FIGURE 19.1: Stacked progress bar inside a card. 

All the JavaScript handlers described below are gathered in an HTML dependency, as well as an input binding(s):

 # contains bindings and other JS code

tabler_custom_js <- htmlDependency(

name = "tabler-custom-js", 

version = "1.0.7", 

src = "tabler", 

package = "OSUICode", 

script = c(

"tabler-update-navbar/navbarMenuBinding.js", 

"handlers/tabler_progress_handler.js", 

"handlers/tabler_toast_handler.js", 

"handlers/tabler_dropdown_handler.js", 

"handlers/tabler_insert_tab_handler.js" 

)

)

19.1 Custom progress bars

Progress bars are a good way to display metrics related to a progress, for instance tracking the number of remaining tasks for a project. In general, those elements are static HTML. 

Hence, it would be interesting to update the current value from the server side. Since it is not an proper input element, implementing an input binding is inappropriate, and we decide to proceed with a custom handler. We first create the tabler_progress() tag, which is mainly composed of:

307

308

 19 Adding more interactivity

• style gives the current progress value. This is the main element. 

• min and max are bounds, in general between 0 and 100. 

• id ensures the progress bar uniqueness, thereby avoiding conflicts. 

• aria-... parameters are accessibility1 elements. 

tabler_progress <- function(id = NULL, value) {

div(

class = "progress", 

div(

id = id, 

class = "progress-bar", 

style = paste0("width: ", value, "%"), 

role = "progressbar", 

ària-valuenow` = as.character(value), 

ària-valuemin` = "0", 

ària-valuemax` = "100", 

span(class = "sr-only", paste0(value,"% complete"))

)

)

}

The next element is the update_tabler_progress() function, which sends two elements from R to JS. 

� How to handle custom messages in Shiny modules? Well, it is pretty straightforward. We wrap any id with the module namespace given by session$ns() before sending it to JS. You may even do it by default since session$ns() returns "". 

• The progress id wrapped in session$ns. 

• The new value. 

update_tabler_progress <- function(

id, 

value, 

session = shiny::getDefaultReactiveDomain()

) {

message <- list(id = session$ns(id), value = value)

session$sendCustomMessage(

type = "update-progress", 

message

)

}

On the JS side, we leverage the well-known Shiny.addCustomMessageHandler. As mentioned in Chapter 10, sendCustomMessage and addCustomMessageHandler are connected by the type parameter. This is crucial! Moreover, as the sent message is a R list, it becomes an JSON, meaning that elements must be accessed with a . in JS:

$(function () {

Shiny. addCustomMessageHandler(

'update-progress' , function(message) {

$('#' + message. id). css('width' , message. value +'%'); 1https://developer.mozilla.org/fr/docs/Web/Accessibility/ARIA

[image: Image 299]

 19.1 Custom progress bars

309

}); 

}); 

We finally test these components in a simple app, whose output is depicted in Figure 19.2:

 ### RUN ###

 # OSUICode::run_example(

 #

 "tabler/update-progress", 

 #

 package = "OSUICode" 

 # )

FIGURE 19.2: Progress bar component updated by a slider. 

Is there a way to directly update the progress from the client that would avoid to exchange data between R and JS, thereby saving some time? 

The

idea

is

to

get

rid

of

the

classic

session$sendCustomMessage

and

Shiny.addCustomMessageHandler method. We could directly create a function that inserts a script in the UI taking a trigger and target as main parameters. This function would have to be inserted multiple times if multiple triggers had to update the same target. 

The JS logic is slightly different:

• We have to wait for Shiny to be connected so that the JS Shiny object is ready. 

• We recover the trigger element with any JS/jQuery method. 

• We leverage the noUiSlider API2 to listen to any update in the range. It’s fine because the slider instance has already been initialized in the shinyWidget input binding3. This would not work if we were not waiting for Shiny to be connected (you may try)! Notice the use of this.get() in the event listener, which avoids repeating slider.noUiSlider

• We modify the width CSS property of the target as in the previous example. 

$(document). on('shiny:connected' , function(event) {

let slider = document. getElementById('triggerId'); slider. noUiSlider. on('update' , function(event) {

$('#targetId'). css('width' , this. get() + '%'); 

}); 

}); 

To insert this script in the app UI, we create update_tabler_progress2 that just wraps it inside a tags$script. 

update_tabler_progress2 <- function(trigger, target) {

tags$script(

paste0(

2https://refreshless.com/nouislider/

3https://github.com/dreamRs/shinyWidgets/blob/55ec7eab9bcf18ceefee2e3714328fd09cfa6e06/in

st/assets/nouislider/nouislider-bindings.js#L100

310

 19 Adding more interactivity

"$(document).on('shiny:connected', function(event) {

let slider = document.getElementById('", trigger, "'); slider.noUiSlider.on('update', function(event) {

$('#", target, "').css('width', this.get() + '%'); 

}); 

}); 

" 

)

)

}

 ### RUN ###

 # OSUICode::run_example(

 #

 "tabler/update-progress-2", 

 #

 package = "OSUICode" 

 # )

Question: Run the above example in an external web browser, then stop the app from RStudio. Try to move both sliders. What happens for the progress bars? Compare with a classic update function. How could you explain this? Answer: as we are not sending a message through the websocket with session$sendCustomMessage, the progress bar still updates even though the websocket connection is closed. 

Overall this way is a bit more complex. Yet, assuming an app with data manipulation, tons of inputs and visualizations, everything that can be done from the client (web browser) is less work for the R server part and a better end-user experience! Building outstanding Shiny apps is not only designing amazing user interfaces, it’s also about optimization and speed as mentioned by Colin Fay et al. in their book4 (Fay et al., 2020). 

19.2 User feedback: toasts

Toasts are components to send discrete user feedback, contrary to modals which open in the middle of the page. Toasts may open on all sides of the window and are similar to the Shiny notifications (see here5). The Tabler toast component is built on top of Bootstrap 46. Therefore, we rely on this documentation. 

19.2.1 Toast skeleton

The skeleton is the HTML structure of the toast:

<div class="toast show" role="alert" aria-live="assertive" 

aria-atomic="true" data-autohide="false" data-toggle="toast" > 

<div class="toast-header" > 

<span class="avatar mr-2" 

style="background-image: url(...)" ></span> 

<strong class="mr-auto" > Mallory Hulme</strong> 

<small> 11 mins ago</small> 

4https://engineering-shiny.org/optimjs.html

5https://shiny.rstudio.com/reference/shiny/0.14/showNotification.html

6https://getbootstrap.com/docs/4.3/components/toasts/

 19.2 User feedback: toasts

311

<button type="button" class="ml-2 close" 

data-dismiss="toast" aria-label="Close" > 

<span aria-hidden="true" > &times; </span> 

</button> 

</div> 

<div class="toast-body" > 

Hello, world! This is a toast message. 

</div> 

</div> 

Toasts are mainly composed of a header and a body. There might be a close button in case the toast does not hide itself after a period of time. If multiple toasts appear one after each others, they are stacked, the latest being at the bottom of the stack. The position is controlled with the style attribute like style="position: absolute; top: 0; right: 0;" for a top-right placement. Accessibility parameters like aria-live are detailed here7. 

19.2.2 The toast API

Toasts

have

a

JS

API

to

control

their

behavior, 

for

instance

$('<toast_selector>').toast(option), where option is a JSON with the following fields:

• animation applies a CSS fade transition to the toast and is TRUE by default. 

• autohide automatically hides the toast (TRUE by default). 

• delay is the delay to hide the toast (500 ms). 

There are three methods: hide, show and dispose (dispose ensures the toast does not appear anymore). Finally, we may fine-tune the toast behavior with four events: show.bs.toast, shown.bs.toast, hide.bs.toast, hidden.bs.toast (like for tabs). 

19.2.3 R implementation

We first create the toast skeleton in a tabler_toast() function. We assume our toast will eventually hide automatically, so we may remove the delete button as well as the data-autohide="false attribute. All parameters are optional except the toast id, which is required to toggle the toast:

tabler_toast <- function(id, title = NULL, subtitle = NULL, 

..., img = NULL) {

 # SEE BELOW

}

The first part is the toast header, which is a direct translation of the above HTML structure. 

Notice how we handle optional parameters with if (!is.null(<PARAM>)) so that the tag is not included if no value is given:

7https://getbootstrap.com/docs/4.3/components/toasts/#accessibility

312

 19 Adding more interactivity

toast_header <- div(

class = "toast-header", 

if (!is.null(img)) {

span(

class = "avatar mr-2", 

style = sprintf("background-image: url(%s)", img)

)

}, 

if (!is.null(title)) strong(class = "mr-2", title), if (!is.null(subtitle)) tags$small(subtitle)

)

The body is the simplest part, it receives the main content in ...: toast_body <- div(class = "toast-body", ...)

The wrapper is the external toast tag that will received both body and header elements, owing to tagAppendChildren():

toast_wrapper <- div(

id = id, 

class = "toast", 

role = "alert", 

style = "position: absolute; top: 0; right: 0;", 

ària-livè = "assertive", 

ària-atomic` = "true", 

`data-togglè = "toast" 

)

tagAppendChildren(toast_wrapper, toast_header, toast_body)

The whole code may be found in the {OSUICode} package (see https://github.com/Div

adNojnarg/outstanding-shiny-ui-code/blob/101248eabda2bd2682c73c2998dbe7d53c

b5eb78/R/tabler.R#L820). 

We create the show_tabler_toast() function. Since the toast automatically hides, it does not make sense to create the hide function, as well as the dispose: show_tabler_toast <- function(

id, 

options = NULL, 

session = getDefaultReactiveDomain()

) {

message <- dropNulls(

list(

id = session$ns(id), 

options = options

)

)

session$sendCustomMessage(type = "tabler-toast", message)

}

Let’s design the corresponding JS handler. We first configure the toast and show it. Notice how we chained jQuery methods (see Chapter 10). We optionally add an event listener to capture the hidden.bs.toast event, so that we may trigger an action when the toast is closed. The input$id is used for that purpose in combination with the Shiny.setInputValue. Notice the extra parameter {priority: 'event'}: basically, once the toast is closed, input$id is always TRUE, thereby breaking the reactivity. Adding this extra parameter forces the evaluation of the input, although constant over time. 

[image: Image 300]

 19.3 Transform an element in a custom action button

313

$(function() {

Shiny. addCustomMessageHandler(

'tabler-toast' , function(message) {

$(`#${message. id}`)

. toast(message. options)

. toast('show'); 

 // add custom Shiny input to listen to the toast state

$(`#${message. id}`). one('hidden.bs.toast' , function() {

Shiny. setInputValue(

message. id, 

true, 

{priority: 'event'}

); 

}); 

}); 

}); 

 ### RUN ###

 # OSUICode::run_example(

 #

 "tabler/toast", 

 #

 package = "OSUICode" 

 # )

The result of shown in Figure 19.3. 

FIGURE 19.3: Tabler toast element. 

19.2.4 Exercise

Based on the Tabler documentation8, add the tabler_tooltip() function. Hint: you may also check the corresponding Bootstrap 4 help. 

19.3 Transform an element in a custom action button

As seen in Chapter 18, any <button>, <a> element holding the action-button class may eventually become an action button. The Tabler template has dropdown menus in the navbar, and we would like to transform those dropdown items in action buttons. The tabler_dropdown() function takes the following parameters:

• id is required by the show_tabler_dropdown() (see below) function, which opens the menu. 

• title is the dropdown menu name. 

8https://preview-dev.tabler.io/docs/tooltips.html

314

 19 Adding more interactivity

• subtitle is optional text. 

• img is an optional image. 

• … hosts the tabler_dropdown_item() (see below). 

tabler_dropdown <- function(..., id = NULL, title, 

subtitle = NULL, img = NULL) {

 # SEE BELOW

}

We proceed step by step. The image tag is:

img_tag <- if (!is.null(img)) {

span(

class = "avatar", 

style = sprintf("background-image: url(%s)", img)

)

}

The title tag accepts both title and subtitle parameters. It is given by: title_tag <- div(

class = "d-none d-xl-block pl-2", 

div(title), 

if (!is.null(subtitle)) {

div(class = "mt-1 small text-muted", subtitle)

}

)

The link tag contains both image tag and title tag:

link_tag <- tagAppendChildren(

a(

href = "#", 

id = id, 

class = "nav-link d-flex lh-1 text-reset p-0", 

`data-togglè = "dropdown", 

ària-expanded` = "false" 

), 

img_tag, 

title_tag

)

The dropdown tag receives the main content:

dropdown_tag <- div(

class = "dropdown-menu dropdown-menu-right", 

ària-labelledby` = id, 

... 

)

Both link tag and dropdown tag are wrapped in an external tag:

tagAppendChildren(

div(class = "nav-item dropdown"), 

link_tag, 

dropdown_tag

)

[image: Image 301]

 19.4 Transform an element in a custom action button

315

The whole code is located here9. 

To convert a dropdown item in an action button, we add the action-button class as well as the id parameter to recover the corresponding input id. 

tabler_dropdown_item <- function(..., id = NULL) {

a(

id = id, 

class = "dropdown-item action-button", 

href = "#", 

... 

)

}

We finally create the show_tabler_dropdown(), as well as the corresponding Shiny message handler. 

show_tabler_dropdown <- function(

id, 

session = getDefaultReactiveDomain()

) {

session$sendCustomMessage(

type = "show-dropdown", 

message = session$ns(id)

)

}

To show the dropdown, we use the dropdown method, which is linked to the data-toggle="dropdown" of tabler_dropdown(). 

$(function() {

Shiny. addCustomMessageHandler(

'show-dropdown' , function(message) {

$(`#${message}`). dropdown('show'); 

}); 

}); 

Let’s play with it (Figure 19.4). 

 ### RUN ###

 # OSUICode::run_example(

 #

 "tabler/dropdown", 

 #

 package = "OSUICode" 

 # )

FIGURE 19.4: Tabler dropdown element. 

9https://github.com/DivadNojnarg/outstanding-shiny-ui-code/blob/101248eabda2bd2682c73c2998

dbe7d53cb5eb78/R/tabler.R#L926

316

 19 Adding more interactivity

19.4 Tab events

Do you remember about the navbar element and the tabsetpanel system of Chapter 17? 

Navs allow users to organize any app into several tabs, acting like a multi-page application. 

This is a powerful tool for Shiny since it is currently not straightforward to create multi-pages10 Shiny apps like anyone would do in a standard website. Navs rely on the Bootstrap 4 API but we only use a few JS functions. 

19.4.1 Insert/remove tabs in tabsetpanel

How about dynamically inserting/removing tabs from a tabler_navbar()? We chose this example since it involves extra technical details about Shiny, especially process extra dependencies at render time. 

How do we proceed? If you recall about the tabler_navbar_menu_item() and tabler_tab_item() coupling, inserting a tab implies inserting the trigger in the navigation menu as well as the content in the dashboard body. Therefore, we need to know the structure of what we insert. Below is a reminder:

• tabler_navbar_menu_item() are <li> elements. 

• tabler_tab_item() is a <div> element with specific classes. 

<li class="nav-item" > 

<a class="nav-link" href="#ww" data-toggle="pill" 

data-value="ww" role="tab" > 

<span class="nav-link-icon d-md-none d-lg-inline-block" > 

</span> 

<span class="nav-link-title" > ww</span> 

</a> 

</li> 

<div role="tabpanel" class="tab-pane fade container-fluid" 

id="ww" > 

</div> 

We design the insert_tabler_tab() function similar to the Shiny insertTab(). 

insert_tabler_tab <- function(

inputId, 

tab, 

target, 

position = c("before", "after"), 

select = FALSE, 

session = getDefaultReactiveDomain()

) {

 # SEE BELOW

}

To handle shiny modules, we wrap the inputId in the session namespace session$ns. 

10https://community.rstudio.com/t/shiny-app-composed-of-many-many-pages/7698

 19.4 Tab events

317

inputId <- session$ns(inputId)

We recover the provided new tab position, leveraging match.arg(): position <- match.arg(position)

We create the menu item element based on the new tab and the above HTML structure: navbar_menu_item <- tags$li(

class = "nav-item", 

a(

class = "nav-link", 

href = "#", 

`data-target` = paste0("#", session$ns(tab$attribs$id)), 

`data-togglè = "pill", 

`data-valuè = tab$attribs$id, 

role = "tab", 

tab$attribs$id

)

)

Since JS does not understand Shiny tags, we have to convert both tab and the nav link to character:

tab <- as.character(tab)

navbar_menu_item <- as.character(navbar_menu_item)

We finally, build our message as a list, whose NULL elements are handled by dropNulls() and send it to JS with session$sendCustomMessage. 

message <- dropNulls(

list(

inputId = inputId, 

content = tab, 

link = navbar_menu_item, 

target = target, 

position = position, 

select = select

)

)

session$sendCustomMessage(type = "insert-tab-1", message) On the JS side, we capture the R message (list) in two elements:

• $divTag contains the tab content. 

• $liTag contains the tab link, i.e. the navigation part. 

Depending on the position parameter, we use the insertAfter() and insertBefore() jQuery methods. Finally, if the newly inserted tab has to be selected, we activate the corresponding tab element with $(tablink).tab('show'). 

[image: Image 302]

318

 19 Adding more interactivity

$(function() {

Shiny. addCustomMessageHandler(

'insert-tab-1' , function(message) {

 // define div and li targets

let $divTag = $(message. content); 

let $liTag = $(message. link); 

let targetId = '#' + message. target; if (message. position === 'after') {

$divTag. insertAfter($(targetId)); 

$liTag. insertAfter(

$('[data-target="' + targetId + '"]')

. parent()

); 

} else if (message. position === 'before') {

$divTag. insertBefore($(targetId)); 

$liTag. insertBefore(

$('[data-target="' + targetId + '"]')

. parent()

); 

}

if (message. select) {

 // trigger a click on corresponding the new tab button. 

let newTabId = $divTag. attr('id'); 

$('#' +

message. inputId +

' a[data-target="#' +

newTabId +'"]'). tab('show'); 

}

}); 

}); 

 ### RUN ###

 # OSUICode::run_example(

 #

 "tabler/insert-tab-1", 

 #

 package = "OSUICode" 

 # )

If the tab is well inserted, we notice that the slider and the plot are not properly shown, as illustrated in Figure 19.5. 

FIGURE 19.5: The newly inserted tab fails to render its content. 

How could we explain that? It is a dependency issue: the slider input relies on a specific JS library11, namely ionRangesSlider, as depicted in Figure 19.6. In our previous example, if you open the HTML inspector, the dependency is not included in the page. 

Even stranger, when we use renderUI() to conditionally render the slider, the dependency is only included when the go button is pressed. How does Shiny include them? 

 ### RUN ###

 # OSUICode::run_example(

 #

 "tabler/renderUI", 

 #

 package = "OSUICode" 

 # )

11http://ionden.com/a/plugins/ion.rangeSlider/

[image: Image 303]

[image: Image 304]

[image: Image 305]

[image: Image 306]

[image: Image 307]

 19.4 Tab events

319

FIGURE 19.6: Inspect slider input dependencies. 

Let’s look at renderUI():

renderUI <- function (

expr, 

env = parent.frame(), 

quoted = FALSE, 

outputArgs = list()

) {

installExprFunction(expr, "func", env, quoted)

createRenderFunction(func, function(result, shinysession, name, ...) {

if (is.null(result) || length(result) == 0)

return(NULL)

processDeps(result, shinysession)

}, uiOutput, outputArgs)

}

The last line returned is processDeps(result, shinysession). As stated in section 15.3, 

this function is responsible to handle dependencies during run time. shiny:::processDeps (R side) works with Shiny.renderContent (JS side), as already mentioned in part 15.3. The latter takes a tag element as well as an object containing its HTML code and dependencies, for instance:

exports. renderContent($tag[0], {

html: $tag. html(), 

deps: message. tag. deps

}); 

Note that, as it is bad practice to rely on other packages’s internal functions, we’ll rely on htmltools::renderTags instead of shiny:::processDeps, being very similar. 

In the following, we modify the insert_tabler_tab() to include the dependencies processing step. This actually requires changing only three lines of code (the last one consists of pointing to the new JS handler):

320

 19 Adding more interactivity

insert_tabler_tab_2 <- function(

inputId, 

tab, 

target, 

position = c("before", "after"), 

select = FALSE, 

session = getDefaultReactiveDomain()

) {

 # ... Unchanged

content <- htmltools::renderTags(tab), 

link <- htmltools::renderTags(navbar_menu_item), 

session$sendCustomMessage("insert-tab-2", message)

}

We then apply the Shiny.renderContent method to the tab content and navigation item. 

Below, we only show what changed compared to the first handler defined earlier: $(function() {

Shiny. addCustomMessageHandler('insert-tab-2' , 

function(message) {

 // message.content and message.link are objects

 // with 2 fields: html (tag) and deps (dependencies)

 // We only need HTML for now. 

let $divTag = $(message. content. html); let $liTag = $(message. link. html); 

 // Unchanged

 // Render input/output in newly added tab. 

 // It takes the possible deps and add them to the tag. 

Shiny. renderContent(

$liTag[0], 

{html: $liTag. html(), deps: message. link. dependencies}

); 

Shiny. renderContent(

$divTag[0], 

{html: $divTag. html(), deps: message. content. dependencies}

); 

 // Trigger show: unchanged

}); 

}); 

We check if our approach works as expected. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "tabler/insert-tab-2", 

 #

 package = "OSUICode" 

 # )

Et voila! As shown in Figure 19.7, everything is properly displayed. 

19.4.2 Exercise

Taking

inspiration

from

the

insert_tabler_tab()

function, 

write

the

remove_tabler_tab() function. 

[image: Image 308]

[image: Image 309]

[image: Image 310]

 19.4 Tab events

321

FIGURE 19.7: htmltools::renderTags and Shiny.renderContent in action. 

[image: Image 311]

20

Testing and validating template elements

Until now, we have been building the template boilerplate, that is, the main skeleton functions (page, navbar, navbar menu, …) as well as some components, such as cards, ribbons and progress bars. We also exposed some techniques to substantially give more interactivity to the template, leveraging our freshly acquired JavaScript skills. Does this mean we are ready to make the template public? Not yet since some essentials steps are missing:

• Input validation is a crucial step toward success. Briefly, it consists of checking user inputs so that your functions fail safely and elegantly by providing meaningful error messages or warnings. This concept has already been covered in  R for Data Science (Wickham and Grolemund, 2017),  Advanced R (Hadley, 2019) and many other resources. Hence, we are not trying to reinvent the wheel, and we rely on the already existing patterns, whose effectiveness is no longer to be demonstrated. Welcome to the defensive programming world! 

• On the other hand, testing components allows us to check if a function does what it is supposed to do. Consequently, it is a proof of robustness and increases reproducibility. 

It significantly reduces the mental load when it comes to start code refactoring, thereby making you feel slightly less guilty about creating breaking changes since, most of the time, your tests will be able to capture those errors. 

20.1 Validate template functions

20.1.1 Create your own validations

Below, we showcase some examples to validate user inputs. We first consider the tabler_card() element from Chapter 17:

library(shiny)

tabler_card <- function(..., title = NULL, status = NULL, width = 6, stacked = FALSE, 

padding = NULL) {

card_cl <- paste0(

"card", 

if (stacked) " card-stacked", 

if (!is.null(padding)) paste0(" card-", padding)

)

status_tag <- if (!is.null(status)) {

div(class = paste0("card-status-top bg-", status))

}

323

324

 20 Testing and validating template elements

main_wrapper <- div(class = paste0("col-md-", width))

 # ...Code commented for space reasons

}

The first thing is to think about what to validate. Here, we see at least three tests:

• Checking the status value. 

• Checking the width value. 

• Checking the padding value. 

Writing validation tests requires knowing about the underlying mechanisms. In our case, we must know the Bootstrap 4 grid rules and valid color statuses. The Bootstrap 4 grid1

ranges from 1 to 12. In other words, a card having a width of 12 will take the full page, whereas we may align three cards of width 4. Valid statuses2 are primary, secondary, success, info, danger, warning, light and dark. 

It is therefore pretty straightforward to validate the card width as it must be numeric and between 1 and 12. Moreover, since the template has other containers including the width parameter, we create a function to rule them all:

validate_width <- function(width) {

if (is.numeric(width)) {

if (width < 1 || width > 12) {

stop(

"\n width must belong to [1, 12], as per

BS4 grid documentation. 

See https://getbootstrap.com/docs/4.0/layout/grid/." 

)

}

} else {

stop("width must be numeric.")

}

}

validate_width(4)

try(validate_width(-1))

#> Error in validate_width(-1) :

#> 

width must belong to [1, 12], as per

#> 

BS4 grid documentation. 

#> 

See https://getbootstrap.com/docs/4.0/layout/grid/. 

try(validate_width(13))

#> Error in validate_width(13) :

#> 

width must belong to [1, 12], as per

#> 

BS4 grid documentation. 

#> 

See https://getbootstrap.com/docs/4.0/layout/grid/. 

try(validate_width("string"))

#> Error in validate_width("string") : width must be numeric. 

1https://getbootstrap.com/docs/4.0/layout/grid/

2https://getbootstrap.com/docs/4.0/utilities/colors/

 20.1 Validate template functions

325

To check the status parameter, we save the valid statuses in a vector and take the validStatuses function from {shinydashboard} utils3. It also make sense to create a function since this parameter is widely used among other template components. Contrary to the {shinydashboard} function, our custom valid_status() does not fail if the status is NULL since it is not a mandatory parameter. 

valid_statuses <- c(

"primary", 

"secondary", 

"success", 

"info", 

"warning", 

"danger", 

"light", 

"dark" 

)

validate_status <- function(status) {

if (is.null(status)) {

return(TRUE)

} else {

if (status %in% valid_statuses) {

return(TRUE)

}

}

stop("Invalid status: ", status, ". Valid statuses are: ", paste(valid_statuses, collapse = ", "), ".")

}

We finish by the padding validation. According to the Tabler documentation, there are three possible choices, namely sm, md or lg:

valid_paddings <- c("sm", "md", "lg") validate_padding <- function(padding) {

if (!is.null(padding)) {

if (!(padding %in% valid_paddings)) {

stop("Invalid status: ", padding, ". Valid choices are: ", paste(valid_paddings, collapse = ", "), ".")

}

}

}

We apply all these validation to our card element. 

tabler_card <- function(..., title = NULL, status = NULL, width = 6, stacked = FALSE, 

padding = NULL) {

validate_status(status)

validate_width(width)

validate_padding(padding)

 # ... remaining code

}

As of R 4.0.0, the stopifnot() function may be a good alternative to stop(). 

3https://github.com/rstudio/shinydashboard/blob/4ac99720653f2295f486734c862e56c82edb5d80/

R/utils.R#L121

326

 20 Testing and validating template elements

� We recommend to be reasonable and not to validate every single parameter, as it might be not that productive and could cause frustration for the end users. 

20.1.2 Existing utils functions

20.1.2.1 Validating tags

With the above approach, it takes some time to create all validation functions. Fortunately, packages like {shinydashboard} include really powerful validation functions, especially tagAssert(). This function has been included in the book side package ({OSUICode}) so that you may use it at any time:

library(OSUICode)

myTag <- div(class = "bg-blue")

tagAssert(myTag, type = "div")

tagAssert(myTag, class = "bg-blue")

try(tagAssert(myTag, type = "li"))

#> 

Error in tagAssert(myTag, type = "li") :

#> 

Expected tag to be of type li

Importantly, tagAssert() raises an error if the condition is not fulfilled. Another function, tagMatches() simply returns TRUE or FALSE. It looks for ìd, class, name and any other tag attribute like data-value. Like tagAssert(), tagMatches() is also available in

{OSUICode}. 

tagMatches(myTag, id = "d")

#> [1] FALSE

tagMatches(myTag, class = "bg-blue")

#> [1] TRUE

20.1.2.2 Validating CSS units

The validateCssUnit() function belongs to the Shiny exported function. It is useful to quickly check any parameter involving a CSS unit like width and height. 

library(shiny)

validateCssUnit("5px")

#> [1] "5px" 

 20.1 Validate template functions

327

validateCssUnit("5rem")

#> [1] "5rem" 

validateCssUnit("100%")

#> [1] "100%" 

try(validateCssUnit("plop"))

#> 

Error in validateCssUnit("plop") :

#> 

"plop" is not a valid CSS unit

#> 

(e.g., "100%", "400px", "auto")

20.1.3 Example: refine navbar menu items

20.1.3.1 Avoid wrong jQuery selectors

In Chapter 17, we developed the tabler_navbar_menu_item() function. The tabName parameter is critical since it is responsible for driving the navigation. We must ensure that the value provided by the user is compatible with jQuery selectors conventions4. To illustrate the problem, we consider the example below, where the second tab name is hello%%&1: tabler_navbar_menu_item(

text = "Tab 2", 

icon = NULL, 

tabName = "hello%%&1" 

)

 ### RUN ###

 # OSUICode::run_example(

 #

 "tabler/wrong-tab", 

 #

 package = "OSUICode" 

 # )

Notice that we cannot see the second tab content. This issue is quite vicious since we don’t even see any error message on the JS side. Below is a proposal for the validate_tab() function. We first detect any punctuation in the provided input with [[:punct:]]. The trick is not to capture the _ that is valid in jQuery. We use a negative look-ahead assertion (?!_). We finally raise an error if any punctuation is found:

validate_tabName <- function(tabName) {

forbidden <- "(?!_)[[:punct:]]" 

wrong_selector <- grepl(forbidden, tabName, perl = TRUE)

4https://api.jquery.com/category/selectors/

328

 20 Testing and validating template elements

if (wrong_selector) {

stop(

paste(

"Please do not use punctuation characters in tabNames. 

This might cause JavaScript issues." 

)

)

}

}

validate_tabName("plop")

try(validate_tabName("test%"))  # will fail

#> Error in validate_tabName("test%") :

#> 

Please do not use punctuation characters in tabNames. 

#> 

This might cause JavaScript issues. 

validate_tabName()

must

be

then

inserted

at

the

beginning

of

tabler_navbar_menu_item(), as well as in tabler_tab_item(), the latter also relying on tabName. 

20.1.3.2 Checking for multiple selected items

Another issue is the possibility of having multiple selected tab items at the start. Looking back at tabler_navbar_menu(), this is not surprising since there are absolutely no checks! 

tabler_navbar_menu <- function(...) {

tags$ul(class = "nav nav-pills navbar-nav", ...)

}

A classic method to inspect items provided to tabler_navbar_menu() is to capture them in a list. We extract the children of those items via lapply(list(...), `[[`, "children"). 

As a reminder, a Shiny tag is a structure containing the tag name, a named list of attributes, and the children (See chapter 2). For each child, we apply the {shinydashboard} internal function findAttribute(), which allows us to search for a specific attribute value in a given tag. We use the vapply() to return an atomic vector, such as c(1, 2) (lists are vectors but recursive) and compute the sum of the vector. Each TRUE occurrence is counted as 1

and FALSE 0. Therefore, if the latter is higher than 1, it means that the user provided more than 1 selected tab, which should subsequently raise an error:

tabler_navbar_menu <- function(...) {

items <- unlist(

lapply(list(...) , `[[`, "children"), 

recursive = FALSE

)

res <- sum(

vapply(

items, 

findAttribute, 

"class", 

"nav-link active", 

FUN.VALUE = logical(1)

)

)

if (res > 1) {

stop("Cannot have multiple selected items at start!")

}

 20.2 Testing templates elements

329

tags$ul(class = "nav nav-pills navbar-nav", ...)

}

try({

tabler_navbar_menu(

tabler_navbar_menu_item(

text = "Tab 1", 

tabName = "tab1", 

selected = TRUE

), 

tabler_navbar_menu_item(

text = "Tab 2", 

tabName = "tab2", 

selected = TRUE

)

)

})

 #> Cannot have multiple selected items at start! 

20.2 Testing templates elements

Imagine if one day, someone or yourself accidentally removed the width validation function, after a significant code refactoring. Later, you receive a new message from GitHub, stating that someone opened a new issue. According to the report, the card is not properly displayed although no error is thrown. Among the 400 lines of code provided, you hardly notice that the width parameter is set to 13, which is not in line with the Bootstrap 4 documentation, as it should remain between 1 and 12. You lost 10 minutes and so did your end user, which is even worse. 

With a proper testing pipeline, this problem could have been avoided. Ironically, writing the corresponding test takes only two minutes. 

A reference for testing functions is the {testthat}5 package (Wickham, 2021). In short, a unit test consists of setting expectations about our function and checking whether they fail or pass. For instance, in the previous tabler_card() example, validate_width() must fail if the given width is not in the expected bounds or not numeric. We apply the test_that() function with a description containing the test context, followed by the expectations inside the curly brackets. 

library(testthat)

test_that("validate width works", {

expect_error(tabler_card(width = -1))

expect_error(tabler_card(width = 13))

expect_error(tabler_card(width = "hello world"))

})

#> 

Test passed ! 

We then test validate_status() and validate_padding(). 

5https://testthat.r-lib.org/index.html

330

 20 Testing and validating template elements

test_that("validate status works", {

expect_error(tabler_card(status = "toto"))

})

#> Test passed

test_that("validate padding works", {

expect_error(tabler_card(width = "xs"))

})

#> Test passed

So far so good. In few lines of code, we substantially increased the robustness of our function without increasing its complexity. Now, let’s try to remove the validate_width() step from the tabler_card(). 

tabler_card <- function(..., title = NULL, status = NULL, width = 6, stacked = FALSE, 

padding = NULL) {

 # validation

 # validate_width(width)

validate_status(status)

validate_padding(padding)

 # ... Code commented

}

test_that("validate width works", {

expect_error(tabler_card(width = -1))

expect_error(tabler_card(width = 13))

expect_error(tabler_card(width = "hello world"))

})

#> -- Failure (<text>:2:3): validate width works ----------------------------------

#> `tabler_card(width = -1)` did not throw an error. 

#> 

#> -- Failure (<text>:3:3): validate width works ----------------------------------

#> `tabler_card(width = 13)` did not throw an error. 

#> 

#> -- Failure (<text>:4:3): validate width works ----------------------------------

#> `tabler_card(width = "hello world")` did not throw an error. 

Notice how the three above tests elegantly fail. The provided context (“validate width works”) immediately indicates the culprit, which is a game changer for debugging. 

20.2.1 Caveats

As stated above, there might be situations where tests should be carefully written and not rely too much on upstream package structure. I propose considering a real-life example involving the {shinyMobile} CRAN package, depending on {shiny} and {htmltools}. It has a function, namely preview_mobile() allowing you to preview an app on a mobile device iframe. This function has an internal test6 to check if HTML dependencies are properly 6https://github.com/schloerke/shinyMobile/blob/5e0344ad083217d0bd3be82aff446e63fbb1d000/t

ests/testthat/test-preview_mobile.R#L18

 20.2 Testing templates elements

331

applied. However, the test may fail if Shiny dependencies are updated, which is independent of {shinyMobile} but would eventually prevent {shiny} from being released on CRAN7. 

Below is what is obtained with {shiny} 1.6.0. 

#> [[1]]

#> List of 10

#> 

$ name

: chr "marvel-devices-css" 

#> 

$ version

: chr "1.0.0" 

#> 

... 

#> 

#> [[2]]

#> List of 10

#> 

$ name

: chr "bootstrap" 

#> 

$ version

: chr "3.4.1" 

#> 

... 

Then doing expect_length(deps, 2) is fine8. However, with {shiny} 1.7.0 (it could also come from another {htmltools} version), the result is significantly different:

#> [[1]]

#> List of 10

#> 

$ name

: chr "jquery" 

#> 

$ version

: chr "3.6.0" 

#> 

... 

#> 

#> [[2]]

#> List of 10

#> 

$ name

: chr "marvel-devices-css" 

#> 

$ version

: chr "1.0.0" 

#> 

... 

#> 

#> [[3]]

#> List of 10

#> 

$ name

: chr "bootstrap" 

#> 

$ version

: chr "3.4.1" 

#> 

... 

The returned list contains one extra dependency, thereby breaking the underlying test. This subsequently requires changing the test. 

20.2.2 Testing template behavior

Testing the JavaScript behavior is one of the biggest challenges to validating a template. 

If the R component has been carefully validated, it does not mean that its JavaScript effects are. For instance, let’s consider the tabler_progress() that may be updated with update_tabler_progress(). How do we check whether the progress value is correctly set? 

20.2.2.1 R side

Testing the R side is quite easy. Let’s recall the update_tabler_progress() function: update_tabler_progress <- function(

id, 

value, 

session = shiny::getDefaultReactiveDomain()

) {

7https://github.com/RinteRface/shinyMobile/pull/211

8https://github.com/schloerke/shinyMobile/commit/5e0344ad083217d0bd3be82aff446e63fbb1d000

#diff-d206e3d4eeee0729f4975a2a8e8414182a6603d10aca57be2c3eb97b5fe7e160L25

332

 20 Testing and validating template elements

message <- list(id = session$ns(id), value = value)

session$sendCustomMessage(type = "update-progress", message)

}

This function does two things:

• Captures the id of the targeted progress and its new value. 

• Sends the message the JS. 

The test consists of checking whether we send all elements to the session. We first create a dummy session environment which contains ns to mimic the session$ns function and sendCustomMessage to test the message handler part:

session <- as.environment(

list(

ns = identity, 

sendCustomMessage = function(type, message) {

session$lastCustomMessage <- list(

type = type, 

message = message

)

}

)

)

Here, 

sendCustomMessage

simply

stores

the

last

sent

message

in

session$lastCustomMessage, and session$ns returns the provided element: session$ns("test")

#> [1] "test" 

session$sendCustomMessage("test", message = "hello") session$lastCustomMessage

#> $type

#> [1] "test" 

#> 

#> $message

#> [1] "hello" 

We then call update_tabler_progress() with some random parameters and capture the last sent message in the res variable:

library(OSUICode)

update_tabler_progress(

id = "myprogress", 

value = 10, 

session = session

)

res <- session$lastCustomMessage

 20.2 Testing templates elements

333

� Importantly, don’t forget to set the session parameter to session, otherwise, it will default to shiny::getDefaultReactiveDomain which is NULL outside of the Shiny app. 

Now we can set expectations:

• res must be a list of length 2. 

• The expected custom handler type is update-progress. 

• The sent value is 10. 

• The sent id is myprogress. 

And next we can translate into {testthat}:

test_that("update progress works", {

update_tabler_progress(

id = "myprogress", 

value = 10, 

session = session

)

res <- session$lastCustomMessage

expect_length(res, 2)

expect_equal(res$type, "update-progress")

expect_length(res$message, 2)

expect_equal(res$message$id, "myprogress")

expect_equal(res$message$value, 10)

})

#> Test passed

This test being set, it ensures seamlessly capturing any breaking change in the API. 

20.2.2.2 JS side

In the following, we have to test whether the corresponding JS handler works as expected: Shiny. addCustomMessageHandler(

'update-progress' , function(message) {

$('#' + message. id)

. css('width' , message. value +'%')

. attr('aria-valuenow' , message. value); 

}); 

We leverage the {crrry} packages developed by Colin Fay from ThinkR. Overall, {crrry}

is an adaptation of {crrri}, specifically optimized for {shiny}, which is a native Chrome Remote Interface in R using the Chrome Debugging Protocol. In other words, it provides tools to programmatically control the web browser and do many things like inspecting a web page, taking screenshots, testing… You may know {shinytest}, which relies on another technology, phantomjs. The latter does not play well with Bootstrap 4 templates, which is why we don’t use it here. At the time of writing, RStudio is working on {shinytest2}, which will leverage the Chrome Debugging Protocol, thereby fixing the current issues with Bootstrap 4 and above. However, as it is not yet public, we could not describe it in this book. 

334

 20 Testing and validating template elements

� {crrry} is already introduced in the Engineering Production-Grade Shiny Apps book (https://engineering-shiny.org/step-secure.html#testing-

the-interactive-logic) (Fay et al., 2020). 

The first step is to call the update_tabler_progress() example locally and add the returned url to the following code. We run the app in another process with {processx}: p <- processx::process$new(

"Rscript", 

c(

"-e", 

"options('shiny.port'= 3515); 

OSUICode::run_example('tabler/update-progress')" 

)

)

Sys.sleep(2)

p$is_alive()

 #> [1] TRUE

That way, we can run our test in the main R process, after checking that our task p is alive. 

Here the app loads immediately, but you may wait some time if there are computations: library(crrry)

library(testthat)

test <- CrrryOnPage$new(

chrome_bin = pagedown::find_chrome(), 

chrome_port = httpuv::randomPort(), 

url = "http://localhost:3515/", 

headless = TRUE

)

 #> Running '/Applications/Google Chrome.app/...' 

 #> 

 '--no-first-run --headless' \

 #> 

 '--user-data-dir=/Users/david/Library/...' \

 #> 

 '--remote-debugging-port=31683' 

We wait for Shiny to be ready:

test$wait_for_shiny_ready()

 #> Shiny is computing

Note the output of --remote-debugging-port=31683 gives the link to the Chrome devtools link to inspect the current app, as shown in Figure 20.1. In practice, open a web browser window and type localhost:<REMOTE-DEBUGGING-PORT>. Follow the instructions and select the Console tab within the developer tools. 

It is now time to write the JS testing logic. We know that moving the slider triggers the update_tabler_progress() function. This is how we change the slider value, thanks to the noUiSlider API9. We first select the slider DOM element and call noUiSlider.set on the selected instance:

var slider = document. getElementById('progress_value'); slider. noUiSlider. set(50); 

9https://refreshless.com/nouislider/slider-read-write/#section-setting

[image: Image 312]

[image: Image 313]

 20.2 Testing templates elements

335

FIGURE 20.1: Tabler progress bar debug tools. 

We use call_js() to update the slider value within our testing pipeline (R side): test$call_js(

"var slider = document.getElementById('progress_value'); 

slider.noUiSlider.set(50); 

" 

)

 #> �� Launching JS:

 #> var slider = document.getElementById('progress_value'); 

 #> 

 slider.noUiSlider.set(50); 

 #> 

 ���������������������������������������������������

 #> Shiny is computing

 #> � Shiny is still running

According to Figure 20.2, if the slider is properly updated, the progress bar also seems to have the expected value. 

We recover the progress value knowing that it is contained in the aria-valuenow attribute, as a string. We have to convert it to a number with parseInt:

val <- test$call_js(

"parseInt($('#progress1').attr('aria-valuenow'), 10); 

" 

)

 #> �� Launching JS:

 #> parseInt($('#progress1').attr('aria-valuenow'), 10); 

 #> 

 ��������������������������������������������������

 #> Shiny is computing

 #> � Shiny is still running

expect_equal(val$result$value, 50)

 # Will fail

expect_equal(val$result$value, 30)

 #> Error: val$result$value not equal to 30. 

 #> 1/1 mismatches

 #> [1] 50 - 30 == 20

[image: Image 314]

[image: Image 315]

336

 20 Testing and validating template elements

FIGURE 20.2: Updated slider. 

 # stop the test whenever satisfied

test$stop()

The test is a success, meaning that update_tabler_progress(), especially the associated custom message handler, works. This test was simple and did not involve any input elements. 

Yet, {crrry} also supports setting input values with shiny_set_input(id, value). 

20.2.3 Test input bindings

We decide to add more complexity and show how to test a home-made input binding. 

We are going to test the Tabler navbar JavaScript logic developed in Chapter 18.3. Before starting to test, we define the expectations:

• If no tabler_navbar_menu_item() is selected by default, at the start, the first item is selected. It must have the active class on it. Hence, we have to check whether the first

<a class="nav-link"> has the active class. 

• Moreover, if one item is selected at start, we have to make sure this item has the active class. 

• We have to ensure that clicking on another link switches the currently selected link so that the corresponding input on the R side is properly updated. 

• When we call update_tabler_tab_item(), we have to check whether the active link is successfully changed. 

• Each time a navbar item is active, the corresponding body tabler_tab_item() must hold the active show class, to make sure the tab content is visible. Only one tab may have those classes at a time. 

As described above, we run our app in another R process, so as to keep the main process for the test:

[image: Image 316]

[image: Image 317]

 20.2 Testing templates elements

337

p <- processx::process$new(

"Rscript", 

c(

"-e", 

"options('shiny.port'= 3515); 

OSUICode::run_example('tabler/update-navbar')" 

)

)

Sys.sleep(2)

p$is_alive()

 #> [1] TRUE

test <- CrrryOnPage$new(

chrome_bin = pagedown::find_chrome(), 

chrome_port = httpuv::randomPort(), 

url = "http://localhost:3515/", 

headless = TRUE

)

 #> Running '/Applications/Google Chrome.app/...' 

 #> 

 '--no-first-run --headless' \

 #> 

 '--user-data-dir=/Users/david/Library/...' \

 #> 

 '--remote-debugging-port=11028' 

test$wait_for_shiny_ready()

 #> Shiny is computing

 #> � Shiny is still running

After running the above code, browse to localhost:<REMOTE-DEBUGGING-PORT> and you should get what is shown in Figure 20.3. 

FIGURE 20.3: Tabler navbar example with debug tools. 

At start, no link was selected, meaning we expect the first link to be active and shown. The navbar may be targeted using the navbar-nav class, and we use find to locate the active child, which must have the nav-link active classes. We also control that only one item is selected by inspecting the length of the active nav link items. We extract its index with index, which is contained in the data-value attribute:

active <- test$call_js(

"$('.navbar-nav').find('.nav-link.active').length" 

)

 #> �� Launching JS:

 #> 

 $('.navbar-nav').find('.nav-link.active').length

 #> 

 �������������������������������������������������

338

 20 Testing and validating template elements

 #> Shiny is computing

 #> � Shiny is still running

expect_equal(active$result$value, 1)

test$wait_for_shiny_ready()

 #> Shiny is computing

 #> � Shiny is still running

res1 <- test$call_js(

"$('.navbar-nav')

.find('.nav-link.active')

.attr('data-value')" 

)

 #> �� Launching JS: $('.navbar-nav')

 #> 

 .find('.nav-link.active')

 #> 

 .attr('data-value')

 #> 

 ������������������������������������������������-

 #> Shiny is computing

 #> � Shiny is still running

expect_equal(res1$result$value, "tab1")

Now let’s see whether the body tab has the good index. We target the tab-content class and look for the element having active show classes. We recover its id which contains the tab name:

res2 <- test$call_js(

"$('.tab-content').find('.active.show').attr('id')" 

)

 #> �� Launching JS:

 #> 

 $('.tab-content').find('.active.show').attr('id')

 #> 

 �������������������������������������������������

 #> Shiny is computing

 #> � Shiny is still running

expect_equal(res1$result$value, res2$result$value)

We programmatically change the active tab by clicking on the second link, with click. Below we use .nav-link:eq(1) to select the second link, but we could use

.nav-link:not(.active) since we only have two links. We also recover the index of the selected link and the corresponding tab. If everything happens well, we expect their value to be 2:

test$call_js("$('.navbar-nav .nav-link:eq(1)').click();") res3 <- test$call_js(

"$('.navbar-nav')

.find('.nav-link.active')

.attr('data-value')" 

)

 #> �� Launching JS: $('.navbar-nav')

 #> 

 .find('.nav-link.active')

 #> 

 .attr('data-value')

 #> 

 �������������������������������������������������

 #> Shiny is computing

 #> � Shiny is still running

expect_equal(res3$result$value, "tab2")

test$wait_for_shiny_ready()

 #> Shiny is computing

 #> � Shiny is still running

res4 <- test$call_js(

"$('.tab-content')

.find('.active.show')

.attr('id')" 

)

 #> �� Launching JS: $('.tab-content')

 #> 

 .find('.active.show')

 20.2 Testing templates elements

339

 #> 

 .attr('id')

 #> 

 ������������������������������������������������

expect_equal(res3$result$value, res4$result$value)

We then click on the “change tab” button, which has the update id. The latter, actually triggers update_tabler_tab_item(). We also want to check its behavior and expect to be back on tab 1:

test$call_js("$('#update').click();")

 #> �� Launching JS: $('#update').click(); 

 #> 

 ������������������������������������������������

 #> Shiny is computing

 #> � Shiny is still running

res5 <- test$call_js(

"$('.navbar-nav')

.find('.nav-link.active')

.attr('data-value')" 

)

 #> �� Launching JS: $('.navbar-nav')

 #> 

 .find('.nav-link.active')

 #> 

 .attr('data-value')

 #> 

 ������������������������������������������������

 #> Shiny is computing

 #> � Shiny is still running

expect_equal(res5$result$value, "tab1")

test$wait_for_shiny_ready()

 #> Shiny is computing

 #> � Shiny is still running

res6 <- test$call_js(

"$('.tab-content')

.find('.active.show')

.attr('id')" 

)

 #> Shiny is computing

 #> � Shiny is still running

expect_equal(res5$result$value, res6$result$value)

If the test is successful, it means that the receiveMessage and setValue methods work as expected. We finally test the input value by setting its value to tab2 with shiny_set_input. 

All Shiny input values are stored in the Shiny.shinyapp.$inputValues object, as shown in Chapter 13:

test$shiny_set_input("current_tab", "tab2")

 #> �� Setting id current_tab with value tab2

 #> 

 �����������������������������������������������

 #> Shiny is computing

 #> � Shiny is still running

tab_input <- test$call_js(

"Shiny.shinyapp.$inputValues.current_tab" 

)

 #> �� Launching JS: Shiny.shinyapp.$inputValues.current_tab

 #> 

 �����������������������������������������������

 #> Shiny is computing

 #> � Shiny is still running

expect_equal(tab_input$result$value, "tab2")

test$stop()

This does not effect the navbar but triggers the notification. 

As an exercise, we leave the reader to write a test to check the app behavior when the second tab is active at start. 

[image: Image 318]

Toward a better workflow

[image: Image 319]

[image: Image 320]

[image: Image 321]

21

Automate new template creation with {charpente}

FIGURE 21.1: The charpente package. 

21.1 Motivations

Translating an HTML template into an R API requires the creation of a package. This is not a good practice to proceed as follows:

ui <- fluidPage(

useShinydashboard(), 

tags$script(

"$(function() {

// JS logic

}); 

" 

), 

 # R UI elements

)

server <- function(input, output, session) {

 # R server logic

}

shinyApp(ui, server)

Imagine if we had to repeat the process for more than twenty components. The R package structure provides many advantages like:

• Develop a comprehensive documentation of the underlying API. 

• Design unit tests to guarantee code robustness and improve long term plan. 

• Relevant file organization, easing collaboration. 

343

344

 21 Automate new template creation with {charpente}

21.2 General idea

{charpente}1 is a game changer for custom template creation and has been widely used to help develop RinteRface packages. {charpente} (Granjon and Coene, 2021) drastically:

• Eases the import of external dependencies. 

• Speeds up the HTML to R conversion, which is quite frankly a rather boring process, allowing the focus to be on the features rather than the syntax. This feature builds on top of the {html2R} Shiny app by Alan Dipert, already mentioned in Chapter 2. 

• Eases JS code management, leveraging esbuild2. 

Let’s try below with html_2_R():

library(charpente)

html_2_R('<div class="divclass" id = "someid"></div>')

#> 

#> -- Converting code ... --

#> 

#> v Code converted with success. 

#> i Copy and paste the following R code

#> --------------------------------------------------

#> tags$div(

#> 

class = "divclass", 

#> 

id = "someid" 

#> )

html_2_R has a prefix parameter, which adds a tags$ prefix if TRUE. It is TRUE by default which prevents errors with non exported Shiny tags like nav, as discussed in 2. 

The second main benefit of {charpente} is the dependency management system. We explain the main principles in the below example. 

21.3 A case study: {shinybulma}

In the following, we’ll illustrate {charpente}’s workflow, through a case study3 involving Bulma4, a more and more popular open source CSS framework for the web. Importantly, 1https://github.com/RinteRface/charpente

2https://esbuild.github.io/

3https://github.com/RinteRface/Unleash-Shiny-Exercise-1

4https://bulma.io/

[image: Image 322]

 21.3 A case study: {shinybulma}

345

there isn’t any JavaScript in the Bulma core code. We’ll see later that the recent bulma JS5 provides such an implementation. For now, we only focus on HTML and CSS. 

To initialize a {charpente} package, we run:

path <- file.path(tempdir(), "mypkg")

create_charpente(path, license = "mit")

This sets up a minimal viable package under version control (git) and optionally GitHub remote setup, Figure 21.2. 

FIGURE 21.2: Package structure for charpente. 

By default, the package DESCRIPTION Imports field has shiny, htmltools and utils. 

{charpente} is never required to be a dependency of your package since it might be invasive. 

In the ./R folder, {charpente} creates a mypkg-utils.R script containing:

• Tools to facilitate HTML dependency management like add_dependencies (see corresponding section below). 

• Some validation functions mentioned in Chapter 20. 

Finally, you may see some exotic folders and files like srcjs, package.json, package-lock.json and node_modules. Fear not, we describe them later in section 21.3.6. 

Overall, they are here to support JS code management. 

21.3.1 Build the HTML dependency

The interested reader may have a look at the Getting started guide6, so as to know more about how to get Bulma. In short, to install Bulma dependencies, there are several ways: 5https://bulmajs.tomerbe.co.uk/

6https://bulma.io/documentation/overview/start/

346

 21 Automate new template creation with {charpente}

• The content delivery network method (CDN), which consists of getting dependencies from a dedicated server. Files are not stored locally, which may be a problem if someone does not have internet. 

• The local method consists of downloading the production files (minified CSS). 

• Using npm7 (JS package repository but far less controlled than CRAN), which installs Bulma sources as well as production files. It means you can modify sources at anytime, which is not recommended since it would be hard to maintain. 

In our case, we show the two first methods, the third being out of the scope of this book. 

As shown previously in Chapter 16, we could build the Bulma dependency as follows: library(htmltools)

bulma_deps <- htmlDependency(

name = ..., 

version = ..., 

src = c(href = ...), 

stylesheet = ... 

)

add_bulma_deps <- function(tag) {

tagList(..., bulma_deps)

}

but this already takes too much time. This is where {charpente} comes into play. Specifically, the create_dependency() function automatically points to the specified dependency by just providing its name. This means you have to know what you are looking for. Best practice is to look at the jsdelivr8 website ({charpente} is built on top of jsdelivr) and find the correct repository, as shown Figure 21.3. create_dependency() will also create the add_<DEP_NAME>_deps function in a <DEP_NAME>--dependencies.R script and open it. 

charpente_options(local = FALSE) allows you to fine-tune the behavior. If local is FALSE, {charpente} points to the CDN without downloading any files. However, your end users will require an internet connection to be able to access static assets required by the Shiny app. Therefore, package developers should prefer the option local = TRUE to ensure dependencies are always accessible. Extra parameters like tag control the downloaded version since HTML templates may have several flavors. It is always good to be able to test multiple versions and select the best option. 

Once satisfied, we simply run the below code to get the latest version, or a specific version if tag is used:

 # CDN method

create_dependency(

"bulma", 

options = charpente_options(local = FALSE)

)

create_dependency(

"bulma", 

tag = "0.7.0", 

options = charpente_options(local = FALSE)

)

 # local method (default)

create_dependency("bulma")

7https://www.npmjs.com/

8https://www.jsdelivr.com/

[image: Image 323]

[image: Image 324]

 21.3 A case study: {shinybulma}

347

FIGURE 21.3: jsdelivr result for Bulma. 

Moreover, 

create_dependency()

is

able

to

filter

all

files, 

through

the

charpente_options():

• minified targets all files with .min, if TRUE. 

• bundle targets all files containing .bundle, if TRUE. 

• lite targets files with lite keyword, if TRUE. 

• rtl target all files with .rtl, if TRUE. rtl design stands for right to left and is common in some countries, for instance. 

You may imagine that charpente_options() targets .min files by default. If you don’t find any script, you probably have to change options. For instance, some templates like Bootstrap and Framework7 have bundle.min files (charpente_options(bunlde = TRUE)), whereas Bulma doesn’t. 

We can test our new dependency:

devtools::load_all()

findDependencies(add_bulma_deps(div()))

which works like a charm. If you chose the local option, you also get an inst/bulma-<BULMA-VERSION> folder with all relevant files sorted by type. The bulma-dependencies.R script contains the newly created add_bulma_deps function, either pointing to the CDN or the local files, depending on the chosen strategy:

 # local dependency script output

 #' bulma dependencies utils

 #' 

 #' @description This function attaches bulma dependencies

348

 21 Automate new template creation with {charpente}

 #' to the given tag

 #' 

 #' @param tag Element to attach the dependencies. 

 #' 

 #' @importFrom htmltools tagList htmlDependency

 #' @export

add_bulma_deps <- function(tag) {

bulma_deps <- htmlDependency(

name = "bulma", 

version = "0.9.3", 

src = c(file = "bulma-0.9.3"), 

stylesheet = "css/bulma.min.css", 

package = "mypkg", 

)

tagList(tag, bulma_deps)

}

 # CDN dependencies

 #' bulma dependencies utils

 #' 

 #' @description This function attaches bulma

 #' dependencies to the given tag

 #' 

 #' @param tag Element to attach the dependencies. 

 #' 

 #' @importFrom htmltools tagList htmlDependency

 #' @export

add_bulma_deps <- function(tag) {

bulma_deps <- htmlDependency(

name = "bulma", 

version = "0.9.3", 

src = c(href = "https://cdn.jsdelivr.net/npm/bulma@0.9.3/"), stylesheet = "css/bulma.min.css" 

)

tagList(tag, bulma_deps)

}

{charpente} sets the roxygen skeleton so that you don’t have to worry about function imports. 

21.3.2 Set up the minimal page template

According to the Bulma documentation9, the starter page template is:

<!DOCTYPE html> 

<html> 

<head> 

<meta charset="utf-8" > 

<meta name="viewport" content="width=device-width, initial-scale=1" > 

<title> Hello Bulma! </title> 

<link rel="stylesheet" href=" https://cdn.jsdelivr.net/

/bulma.min.css" > 

</head> 

<body> 

<section class="section" > 

<div class="container" > 

<h1 class="title" > 

Hello World

</h1> 

<p class="subtitle" > 

My first website with <strong> Bulma</strong> ! 

</p> 

9https://bulma.io/documentation/overview/start/#starter-template

 21.3 A case study: {shinybulma}

349

</div> 

</section> 

</body> 

</html> 

Adding some {charpente} magic with html_2_R(), we set the path parameter to /html to get the entire template. We, replace ... with the appropriate content (see above). Since the copied HTML contains double quotations marks like <p class="subtitle"></p>, we put the string in single quotation marks. 

 # bulma_html_skeleton is the above HTML code

html_2_R(bulma_html_skeleton, path = "/html")

#> 

#> -- Converting code ... --

#> 

#> v Code converted with success. 

#> i Copy and paste the following R code

#> --------------------------------------------------

#> tags$html(

#> 

tags$head(

#> 

tags$meta(charset = "utf-8"), 

#> 

tags$meta(

#> 

name = "viewport", 

#> 

content = "width=device-width, initial-scale=1" 

#> 

), 

#> 

tags$title("Hello Bulma!")

#> 

), 

#> 

tags$body(tags$section(

#> 

class = "section", 

#> 

tags$div(

#> 

class = "container", 

#> 

tags$h1(

#> 

class = "title", 

#> 

"Hello World" 

#> 

), 

#> 

tags$p(

#> 

class = "subtitle", 

#> 

"My first website with", 

#> 

tags$strong("Bulma"), 

#> 

"!" 

#> 

)

#> 

)

#> 

))

#> )

� At run time, Shiny adds html around the UI, thereby making it not necessary to include. We don’t need the link(rel = "stylesheet", href

= "https://cdn.jsdelivr.net/npm/bulma@0.9.3/css/bulma.min.css") since add_bulma_deps does already attach the dependencies to the page. 

We removed tags$section content, as it may correspond to another Bulma component, like bulma_section(). 

350

 21 Automate new template creation with {charpente}

The prefix parameter defaults to TRUE, so that we don’t have to worry about whether tags functions are exported by Shiny (see Chapter 2). 

The bulma_page() function is defined below, considering a simplified version of the above HTML to R translation, which we save in the ./R package folder:

bulma_page <- function(..., title = NULL) {

tagList(

tags$head(

tags$meta(charset = "utf-8"), 

tags$meta(

name = "viewport", 

content = "width=device-width, initial-scale=1" 

), 

tags$title(title)

), 

add_bulma_deps(tags$body(...))

)

}

With some practice, going from step one to the Bulma page templates literally takes three minutes, while it would have taken much more time by hand. At any time, you may replace the dependency with another version. Be careful, since {charpente} does not make snapshots of old versions. 

21.3.3 Exercise: add bulmaJS

As stated in the above, Bulma only contains CSS code. It means we need to either develop custom JS code to add interactivity or rely on any third-party existing API. bulma JS10 is one of these. 

� This example has been written and tested with bulmaJS (https://www.js

delivr.com/package/npm/@vizuaalog/bulmajs?version=0.12.1) 0.12.1. 

Some features may change in future releases. 

1. Using {charpente}, create a Bulma js dependency. We point to vizuaalog/bulmajs11 since some bulmajs already exist and is not what we want. Run the following code in the R console. 

get_dependency_assets("@vizuaalog/bulmajs")

#> 

� Trying with https://data.jsdelivr.com/v1/package/

#> 

npm/@vizuaalog/bulmajs

#> 

� Success! 

#> 

��������������������������������������������������������

#> 

$url

#> 

[1] "https://cdn.jsdelivr.net/npm/@vizuaalog/

#> 

bulmajs@0.12.1/dist/" 

#> 

#> 

$files

#> 

name

hash

10https://bulmajs.tomerbe.co.uk/

11https://bulmajs.tomerbe.co.uk/

 21.3 A case study: {shinybulma}

351

#> 

1

alert.js 0Tq89d1U9WqE...=

#> 

2

bulma.js vbERfMn7TdJ3...=

#> 

3

dropdown.js a4jYH26F8++6...=

#> 

4

file.js auA7tFsecFic...=

#> 

5

message.js xIxQKW6ezuEu...=

#> 

6

modal.js hBvcaTjLTgUE...=

#> 

7

navbar.js kZ1bvDA2eaAt...=

#> 

8

notification.js DLFq8emqUPpF...=

#> 

9

panel.js NSnEBEPnog3o...=

#> 

10

panelTabs.js YYhbFo+xIExS...=

#> 

11

tabs.js /DBuPkvCsQJ6...=

#> 

#> 

$hasSubfolders

#> 

[1] FALSE

As shown in the code output, bulmajs does not have minified JS and CSS files. Therefore, to install the dependency, we have to specify the charpente_options(minified = FALSE): opts <- charpente_options(minified = FALSE)

create_dependency(..., options = opts)

Notice how many files are added to the dependency. Below, we only work with notifications:

• Only keep notification.js and remove all the unnecessary files

• Only keep bulma.js that gather all plugins in one script. 

The best practice is usually to keep only what we need since some scripts may be heavy to load. 

2. Run devtools::load_all(). Modify the below code to test the newly created dependency. Hint: toggle the HTML inspector to check all appropriate dependencies are there. 

 # Where should the html dependency be added? 

ui <- bulma_page()

server <- function(input, output, session) {}

shinyApp(ui, server)

21.3.4 Add custom JS

Notifications are always useful to send user feedback. Shiny has a notification system through shiny::showNotification. Like Shiny, Bulma notifications12 are entirely built from JS (no need for any HTML code). 

The API works as follows:

• Bulma(target).notification(config) creates the notification based on a JSON option list (config). target expects a jQuery selector. 

• show toggles the newly instantiated notification

12https://bulmajs.tomerbe.co.uk/docs/0.11/2-core-components/notification/

352

 21 Automate new template creation with {charpente}

In other words the following code attaches the notification to the body: Bulma('body'). notification({

body: 'Example notification' , 

color: 'info' 

}). show(); 

In the following, we design the R interface and JS handler (which is no more than an event listener). {charpente} has a function that creates both pieces, namely create_custom_handler():

create_custom_handler("notification")

We obtain the notification-handler.R script:

send_notification_message <- function(

id = NULL, 

options = NULL, 

session = shiny::getDefaultReactiveDomain()

) {

message <- list(

 # your logic

)

session$sendCustomMessage(type = "notification", message)

}

and the corresponding JavaScript piece in notification.js, derived from the golem::add_js_handler function:

$(function() {

Shiny. addCustomMessageHandler(

'notification' , function(message) {

}); 

}); 

By default, the JS file is created in the ./srcjs directory. This is a special directory where we store all JavaScript files that depend on the package author. For instance, bulmaJS is an external dependency and is very unlikely to be edited by the package author. For that reason, it remains in the ./inst folder like all other external dependencies. 

21.3.5 Add custom input/output bindings

In section 12.2, we created better {shinydashboard} boxes that one may programmatically collapse, close, and restore. Until now, there was no way to setup an input binding skeleton and you had to copy and paste the same code each time. {charpente}

has a create_input_binding() and create_output_binding() (functions that you can also find in the development version of {golem}). Contrary to the custom handler case, create_input_binding() only generates the JavaScript piece since the R part is highly variable from one input to another. To get a plug-and-play box input binding, we call: create_input_binding("boxBinding")

 21.3 A case study: {shinybulma}

353

which gives the input-boxBinding.js script in the ./srcjs folder: var boxBinding = new Shiny. InputBinding(); $. extend(boxBinding, {

find: function(scope) {

 // JS logic $(scope).find('whatever')

}, 

getValue: function(el) {

 // JS code to get value

}, 

setValue: function(el, value) {

 // JS code to set value

}, 

receiveMessage: function(el, data) {

 // this.setValue(el, data); 

}, 

subscribe: function(el, callback) {

$(el). on('click.boxBinding' , function(e) {

callback(); 

}); 

}, 

unsubscribe: function(el) {

$(el). off('.boxBinding'); 

}

}); 

Shiny. inputBindings. register(boxBinding, 'shiny.whatever'); This function has multiple options:

• initialized is FALSE by default. If TRUE, it adds an initialized method to the binding. 

• dev adds some console.log elements whenever relevant to help in the debugging process. 

• event is a list containing events related to the binding. By default, it generates a click event without any rate policy. To add extra events we do list(name = c("click", 

"whatever"), rate_policy = c(FALSE, TRUE)). 

Similarly, the create_output_binding() function creates a ready to use output binding JS script, in the ./srcjs folder (create_output_binding("menuOutput")): var menuOutput = new Shiny. OutputBinding(); $. extend(menuOutput, {

find: function(scope) {

 // JS logic $(scope).find('whatever')

}, 

renderValue: function(el, data) {

 // JS logic

}

}); 

Shiny. outputBindings. register(menuOutput, 'shiny.whatever'); 

21.3.6 Organize your JS code

This naturally leads us to this part, which is about JS code organization. Shiny developers may have a lot of custom JS scripts, and it is generally a bad idea to put them all under

./inst. Instead, we store them in ./srcjs, as already stated above. {charpente} has a function providing a tool to bundle the JS code for production or development, that is build_js():

354

 21 Automate new template creation with {charpente}

• It compresses, mangles all JS files and concatenate them in one minified file called mypkg.min.js. If mode is dev, the files are not minified. 

• In production mode (mode is prod, by default), it additionally generates source maps. 

� esbuild concatenates files by the order provided in the ./srcjs/main.js entry point, automatically generated by create_charpente(). The configuration is provided by {charpente} in the package.json file. 

The script mypkg.min.js is not human readable but the generated source map allows us to reconstruct the original code, whose location is under the web browser ./srcjs folder, like all Shiny JS files. From there, we can access any mapped script and start the debugging process like setting break points. 

� In production, the variable names, functions, are mangled. For instance, a variable config could be called t in the minified file. 

Additionally, build_js() creates the mypkg-dependencies.R file containing the HTML

dependency pointing to the newly generated JS file (below for production):

 #' mypkg dependencies utils

 #' 

 #' @description This function attaches mypkg dependencies

 #' to the given tag

 #' 

 #' @param tag Element to attach the dependencies. 

 #' 

 #' @importFrom utils packageVersion

 #' @importFrom htmltools tagList htmlDependency

 #' @export

add_mypkg_deps <- function(tag) {

mypkg_deps <- htmlDependency(

name = "mypkg", 

version = packageVersion("mypkg"), 

src = c(file = "mypkg-0.0.0.9000"), 

script = "js/mypkg.min.js", 

package = "mypkg", 

)

tagList(tag, mypkg_deps)

}

Switching between prod and dev automatically updates the mypkg-dependencies.R JS

files. 

Finally, 

under

the

hood, 

create_js(), 

create_input_binding(), 

create_output_binding() and create_custom_handler() add a reference to the newly created script in the main.js entry point, which may look like:

 // Gather all files to import here

import './init.js' 

import './widgets.js' 

import './test.js' 

 21.3 A case study: {shinybulma}

355

A real-life example will be shown in the section 23.7 and the result showcased here13. 

export and import must be called from the top level of a script. For instance, they cannot live inside the $( document ).ready(function(...)});, as this would trigger a build error. 

{charpente} currently does not provide a similar process for CSS, as this is still work in progress. Other tools exist like {packer}14 by John Coene15, which leverages webpack16 to handle JS code. 

21.3.7 Combine multiple dependencies

add_dependencies() allows you to select any dependencies available in the ./R folder, provided that they follow the convention <depName>_dependencies.R (which is always the case if you use {charpente}). 

For instance add_dependencies(div(), deps = c("bulma", "bulmajs")) adds Bulma (first) and bulmajs dependencies to a div tag. You may change the order as you see fit, as most of the time, the order matters. We update bulma_page() to benefit from the new dependencies:

bulma_page <- function(..., title = NULL) {

tagList(

tags$head(

tags$meta(charset = "utf-8"), 

tags$meta(

name = "viewport", 

content = "width=device-width, initial-scale=1" 

), 

tags$title(title)

), 

add_dependencies(

tags$body(...), 

deps = c("bulma", "mypkg")

)

)

}

As mentioned above, add_dependencies() belongs to the mypkg-utils.R script so that you don’t have to import {charpente} in the DESCRIPTION Imports field. 

21.3.8 Other {charpente} helpers

Let’s finish this section by listing other useful {charpente} tools. We know create_dependency() to install an external dependency. As shown earlier, this code installs Bulma dependencies:

create_dependency("bulma")

13https://github.com/DivadNojnarg/outstanding-shiny-ui-code/tree/fd0ba28881869c5c605dd0e5b9

f7a8f420bbedb4/srcjs

14https://github.com/JohnCoene/packer

15https://john-coene.com/

16https://webpack.js.org/

356

 21 Automate new template creation with {charpente}

However, we don’t necessarily know all package versions and may need bulma 0.9.3 or bulma 0.7.0. get_dependency_versions() allows to look for all existing versions: get_dependency_versions("bulma")

#> i Trying with https://data.jsdelivr.com/v1/package/npm/bulma

#> v Success! 

#> --------------------------------------------------

#> 

[1] "0.9.3" 

"0.9.2" 

"0.9.1" 

"0.9.0" 

"0.8.2" 

#> 

[6] "0.8.1" 

"0.8.0" 

"0.7.5" 

"0.7.4" 

"0.7.3" 

#> [11] "0.7.2" 

"0.7.1" 

"0.7.0" 

"0.6.2" 

"0.6.1" 

#> [16] "0.6.0" 

"0.5.3" 

"0.5.2" 

"0.5.1" 

"0.5.0" 

#> [21] "0.4.4" 

"0.4.3" 

"0.4.2" 

"0.4.1" 

"0.4.0" 

#> [26] "0.3.2" 

"0.3.1" 

"0.3.0" 

"0.2.3" 

"0.2.1" 

#> [31] "0.2.0" 

"0.1.2" 

"0.1.1" 

"0.1.0" 

"0.0.28" 

#> [36] "0.0.27" "0.0.26" "0.0.25" "0.0.24" "0.0.23" 

#> [41] "0.0.22" "0.0.21" "0.0.20" "0.0.19" "0.0.18" 

#> [46] "0.0.17" "0.0.16" "0.0.15" "0.0.14" "0.0.13" 

#> [51] "0.0.12" "0.0.11" "0.0.10" "0.0.9" 

"0.0.8" 

#> [56] "0.0.7" 

"0.0.6" 

"0.0.5" 

"0.0.4" 

get_dependency_versions("bulma", latest = TRUE)

#> i Trying with https://data.jsdelivr.com/v1/package/npm/bulma

#> v Success! 

#> --------------------------------------------------

#> [1] "0.9.3" 

Specifying latest = TRUE ensures recovering the very last stable version (it excludes alpha/beta versions). 

You may explore also the dependency files with get_dependency_assets(), even for a specific version with tag:

get_dependency_assets("bulma")

#> i Trying with https://data.jsdelivr.com/v1/package/npm/bulma

#> v Success! 

#> --------------------------------------------------

#> $url

#> [1] " https://cdn.jsdelivr.net/npm/bulma@0.9.3/" 

#> 

#> $files

#> 

name

#> 1

bulma.css

#> 2

bulma.css.map

#> 3

bulma.min.css

#> 4

bulma-rtl.css

#> 5 bulma-rtl.css.map

 21.4 A case study: {shinybulma}

357

#> 6 bulma-rtl.min.css

#> 

hash

#> 1 QWzsjhiaNlONAp479EIeaY+tQvrt3v1iOYtBMVZ7RJc=

#> 2 039vv4Mje70ZS33gGww4tRQgCnEKI2C87RydZz8KHig=

#> 3 UDtbUHqpVVfXmdJcQVU/bfDEr9xldf3Dbd0ShD0Uf/Y=

#> 4 TUHS7Sxzy8yNpSvZw/kemcmvnax3Js9PHq1cPdo7i7U=

#> 5 jrQYx00fN25Pxm81v1gPZtcutWE2KvnijIX5nR/V9uc=

#> 6 LchhQrhf3t9LP/bBuIq1SvOWEIiX8bpgQedoeytbSV0=

#> 

#> $hasSubfolders

#> [1] TRUE

This is helpful to further fine-tune charpente_options(), as stated previously. It is indeed possible that you don’t want bundles, minified, lite or rtl versions of scripts. Internally, create_dependency() relies on get_dependency_assets(). 

get_installed_dependency() allows you to inspect which dependencies are installed. It only works if the dependencies were created locally, that is charpente_options(local =

TRUE). 

Finally, we may ask how to update a given dependency. update_dependency() does this, provided that the dependency is installed locally. By default, it installs the latest version of the targeted dependency. It gives a diagnosis comparing the current installed version with the latest available version, yielding three possible cases. Dependencies are up to date and update_dependency("bulma") yields:

#> � Trying https://data.jsdelivr.com/v1/package/npm/bulma

#> � Success! 

#> �������������������������������������������������������

#> Error in update_dependency("bulma") : Versions are identical The

installed

dependencies

are

outdated

(we

have

0.7.0

with

create_dependency("bulma", tag = "0.7.0", options = charpente_options(local

= TRUE))), the function shows the targeted version as well as the last one:

#> � Trying https://data.jsdelivr.com/v1/package/npm/bulma

#> � Success! 

#> �������������������������������������������������������

#> � current version: 0.7.0 ||

#> target version: 0.9.3 ||

#> latest version: 0.9.3

#> ! Upgrading bulma to 0.9.3

#> � Directory inst/bulma-0.9.3/css successfully created

#> ! Remove existing file R/bulma-dependencies.R

The last use case is a downgrade, which may be possible if the package maintainer realizes that the dependency version is too unstable. In the following, we have bulma-0.9.3

installed and downgrade to 0.7.0 with update_dependency("bulma", version_target =

"0.7.0"):

#> � Trying https://data.jsdelivr.com/v1/package/npm/bulma

#> � Success! 

#> �������������������������������������������������������

#> � current version: 0.9.3 ||

#> target version: 0.7.0 ||

#> latest version: 0.9.3

#> ! Downgrading bulma to 0.7.0

#> � Directory inst/bulma-0.7.0/css successfully created

#> ! Remove existing file R/bulma-dependencies.R

358

 21 Automate new template creation with {charpente}

21.4 Other tips

21.4.1 Validate JavaScript

We could not finish this chapter without mentioning tools to validate JavaScript code. 

JSHint17, which comes with {jstools}18. Below is an example of how to check all the shiny-Mobile19 JavaScript input bindings at once:

shinyMobileJS <- system.file(

sprintf(

"shinyMobile-%s/js/shinyMobile.js", 

packageVersion("shinyMobile")

), 

package = "shinyMobile" 

)

 # jstools print messages to the console

 # We don't want to see them all in the book ... 

invisible(capture.output(

temp <- jshint_file(

input = shinyMobileJS, 

options = jshint_options(

jquery = TRUE, 

globals = list("Shiny", "app")

)

)

))

head(tibble::as_tibble(temp$errors[, c("line", "reason")]))

 #> A tibble: 51 x 2

 #> 

 line reason

 #> 

 <int> <chr> 

 #> 

 1

 33 'template literal syntax' is only available in ES6. 

 #> 

 2

 37 'template literal syntax' is only available in ES6. 

 #> 

 3

 41 'template literal syntax' is only available in ES6. 

 #> 

 4

 42 'template literal syntax' is only available in ES6. 

 #> 

 5

 52 'arrow function syntax (=>)' is only available in ES6. 

 #> 

 6

 64 'arrow function syntax (=>)' is only available in ES6. 

You may fine-tune the jshint_file behavior with the jshint_options20. You will be often tempted to call eval in JS code, which will result in a JSHint error. An option called evil exists to disable the corresponding test. However, we recommend playing the game, accept those errors and try to fix them instead of cheating with options! An important remark about validation is that it does not check whether your code does what it should do. It just focuses on checking whether the code could probably execute. To test the JavaScript logic, please refer to section 20.2.2.2. Be extremely careful: if we consider the example mentioned in section 10.6.2, the following code is valid JavaScript: const sendNotif = (message, type, duration) => {

Shiny. notification. show({

html: `<strong>${message}</strong>`, 

type: type, 

duration: duration

}); 

}; 

17https://jshint.com

18https://github.com/dreamRs/jstools

19https://github.com/RinteRface/shinyMobile

20https://jshint.com/docs/options/

 21.4 Other tips

359

sendNotif('Hello')

and will pass the validation step without any error:

jshint(

"const sendNotif = (message, type, duration) => {

Shiny.notification.show({

html: `<strong>${message}</strong>`, 

type: type, 

duration: duration

}); 

}; 

sendNotif('Hello'); 

", 

options = jshint_options(

esversion = 6, 

jquery = TRUE, 

globals = list("Shiny", "app")

)

)$errors

#> NULL

Yet the code won’t work since Shiny.notification does not exist. 

21.4.2 Test JS code

{charpente} provides a starting point to test the JS code with test_js(), by leveraging the mocha21 library. All tests are assumed to be contained within the srcjs/test folder. Inside, we find test_basic.js, which was created upon package initialization, as a boilerplate:

describe('Basic test' , () => {

it('should not fail' , (done) => {

done(); 

}); 

}); 

This test starts with a describe function, similar to the {testthat} context() function, where you provide the general idea behind the test. it is equivalent to test_that(), where we describe what specific feature is being tested. Inside, we write a series of instructions, some of them failing, others passing. Naturally, mocha works better with other assertions libraries like expect.js22 or should.js23, whose details are out of the scope of this book. 

21.4.3 Beautify JS code

If you work with the RStudio IDE, your JS code may sometimes be messy with bad indentation. {jstools} also provides a function and addin to fix the problem. prettier_js(code) and prettier_file(input = "path/to/file.js", output =

21https://mochajs.org/

22https://github.com/Automattic/expect.js

23http://shouldjs.github.io/

[image: Image 325]

360

 21 Automate new template creation with {charpente}

"path/to/reformated.js") does this. I often use the Prettier addin, which is way faster than typing the function call (Figure 21.4). 

FIGURE 21.4: Better JS formatting. 

Case study: Mobile

development for Shiny

[image: Image 326]

[image: Image 327]

22

Introduction

22.1 Case study objectives

All previously mentioned templates, except Framework71, are best suited for desktop usage. 

Even though most of them, like {bs4Dash}, work quite well on mobile platforms, you don’t get the native look and feel that you have with mobile apps like Twitter, as shown in Figure

22.1. 

FIGURE 22.1: Twitter design on mobile devices. 

The goal of this short chapter is to introduce you to mobile development for Shiny. We are going to reconstruct the {shinyMobile} package with the help of {charpente} and all what we have learnt since the beginning of the book. 

1https://v5.framework7.io/docs/

363

364

 22 Introduction

22.2 About mobile development

Mobile app development consists of developing an application for mobile devices, such as tablets and phones (Android, iPadOS). We call a native app when it is dedicated to the specified platform. For instance, iOS applications are developed using Objective-C or Swift whereas Android apps are mainly developed with Java. Those apps are faster than web apps since they exploit the full capabilities of the platform. The UI is also more consistent, they may be installed via stores (App store, google play), and they can work offline. The main issue is the need to know multiple languages and maintain multiple code bases. 

Isn’t there something between pure web apps and native apps? 

22.3 Progressive web apps

22.3.1 Introduction

Progressive web apps or (PWA2) improve classic web apps capabilities by being able to have a full-screen display, being installable and providing a launch screen, like native apps with a consistent UI. They must obey three rules:

• Being capable: media control, file system access, …

• Being reliable: fast and usable offline. Transparent failures. 

• Being installable: Standalone use, launch from user’s home screen. 

22.3.2 What does “installable” mean? 

There are several criteria to meet the installable state:

• The app must be served over HTTPS. 

• It must include a manifest, that is a JSON file specifying app metadata like its name, short name (short_name), icons to use for user’s home screen and launch screen (displayed image before the first paint), the start url (start_url), the display mode (generally standalone), the splash screen background color (background_color)…

• The app must have a registered service worker, which can cache the app content, thereby making sure to provide offline support. 

Once all criteria are fulfilled, the web browser may show an installation prompt to start the process. 

2https://web.dev/what-are-pwas/

[image: Image 328]

[image: Image 329]

 22.3 Progressive web apps

365

22.3.3 How to develop a PWA? 

Nowadays, tools exist to develop native-looking apps with a common language, JavaScript. 

This is the case with Framework73. {shinyMobile} (Figure 22.2) was developed using this template. Other tools like the Google PWA compatibility script4 significantly reduce the pain to make our apps installable on multiple platforms. 

FIGURE 22.2: Twitter design on mobile devices. 

Let’s meet in the next part to start your mobile development journey. 

3https://framework7.io/

4https://github.com/GoogleChromeLabs/pwacompat

[image: Image 330]

23

Reconstruct {shinyMobile}

� This section has been written and tested with Framework7 5.7.14. Some feature may change in future releases. However, fear not! The process follows the same general principles. 

� As a reminder, the code examples shown throughout this chapter are gathered in the {OSUICode} package accessible at https://github.com/DivadNojnar

g/OSUICode/tree/1d42aa7531705954d3c21921c8bbb10623b20d12. 

23.1 Introduction to Framework7

Framework7 is the HTML/CSS/JavaScript engine that fuels {shinyMobile}. It is a flexible toolkit to build native-looking web apps or progressive web apps (PWA). It has an incredibly rich ecosystem:

• Provides a core JavaScript API, React API, Vue API, Svelte API. 

• A CLI (command line interface) to ease the creation of PWA, provide boilerplate and starter templates. 

• A full set of native icons1. 

• Hundreds of components with different looks for iOS and material design, even desktop. 

• A comprehensive set of documentation2. 

• A supportive community3. 

23.2 Initiate the package

This is time to initialize the package structure and extract the Framework7 dependencies. 

To get an idea of the package file structure, we run:

1https://framework7.io/icons/

2https://framework7.io/docs/

3https://forum.framework7.io/

367

368

 23 Reconstruct {shinyMobile}

library(charpente)

get_dependency_assets("framework7", tag = "5.7.14")

 # Output was manually truncated for formatting reasons

 #> $url

 #> [1] "https://cdn.jsdelivr.net/npm/framework7@5.7.14/ " 

 #> 

 #> $files

 #> 

 name

 #> 2

 framework7.bundle.min.css

 #> 6

 framework7.min.css

 #> 11

 framework7.bundle.min.js

 #> 15

 framework7.min.js

 #> 18

 framework7-lite.bundle.js

 #> 19

 framework7-lite.bundle.min.js

 #> 23

 framework7-lite.min.js

 #> 

 hash

 #> 2

 P0Yv9hUd1e2zLYv9F3eEiJ29wz3ZOSIbdHGEj3Jwzyo=

 #> 6

 fYS3dYPbdZeiQAM9wTUQiLP82ZTcVoA970gb2Ov7EFY=

 #> 11 k0i6vZYYH7MIgZvxSp4eQFS2HCEXy1ae5BF/YWSMyys=

 #> 15 FJ+5ZHj8V2fzT7Lts0ELaWSC4ZJtmxQzRuWeWwke9a0=

 #> 18 EiVuejoa3kTItzhZ5mw7WhB+Ah75R5HpM+34hijj7wA=

 #> 19 LKMinGOXYGPI4wdD4ZIPp5kx84PP3f7EkD8dUxFPRAI=

 #> 23 liT0rss/O3G2MtXQ3/zAu+8jmTrrPhwiqV+Pd58qJJo=

 #> 

 #> $hasSubfolders

 #> [1] TRUE

We browse the package4 page, which provides details about all necessary components. We are going to use the bundle version since the lite approach is missing several components, particularly Framework7 widgets. We therefore target framework7.bundle.min.js and framework7.bundle.min.css:

path <- file.path(tempdir(), "shinyMobile")

create_charpente(path, license = "mit")

Once the package is created and opened, we download Framework7 dependencies, specifying the following version, that is, 5.7.14, and targeting bundle.min files by setting charpente_options(bundle = TRUE) (default to FALSE):

create_dependency(

"framework7", 

tag = "5.7.14", 

options = charpente_options(bundle = TRUE)

)

Besides, this generates the framework7-dependencies.R script:

add_framework7_deps <- function(tag) {

framework7_deps <- htmltools::htmlDependency(

name = "framework7", 

version = "5.7.14", 

src = c(file = "framework7-5.7.14"), 

script = "js/framework7.bundle.min.js", 

stylesheet = "css/framework7.bundle.min.css", 

package = "shinyMobile", 

)

htmltools::tagList(tag, framework7_deps)

}


4https://framework7.io/docs/package.html

[image: Image 331]

[image: Image 332]

[image: Image 333]

 23.3 Framework7 layouts

369

23.3 Framework7 layouts

Framework7 has three predefined layouts (Figure 23.1):

• Single-page layout. 

• Multi-tabs layout. 

• Split layout, targeting tablet/desktop. It is composed of a sidebar and a main panel. 

FIGURE 23.1: Framework7 layouts. 

Let’s start simple and choose the single-page layout, whose corresponding HTML is given by:

<!DOCTYPE html> 

<html> 

<head> 

 <!-- Head content (see below) --> 

</head> 

<body> 

 <!-- App root element (see below) --> 

 <!-- Path to Framework7 Library Bundle JS--> 

<script type="text/javascript" 

src="path/to/framework7.bundle.min.js" ></script> 

 <!-- Path to your app js--> 

<script type="text/javascript" 

src="path/to/my-app.js" ></script> 

</body> 

</html> 

370

 23 Reconstruct {shinyMobile}

The head tag contains meta tags (some are required for PWA features), which are discussed in the next Chapter 24. The most important part is the dependencies that will be included. 

Note that the order matters: Framework7 dependencies go first, other dependencies follow. 

<head> 

 <!-- Required meta tags--> 

<meta charset="utf-8" > 

<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1, minimum-scale=1, 

user-scalable=no, viewport-fit=cover" > 

<meta name="apple-mobile-web-app-capable" content="yes" > 

 <!-- Color theme for statusbar (Android only) --> 

<meta name="theme-color" content="#2196f3" > 

 <!-- Your app title --> 

<title> My App</title> 

 <!-- Path to Framework7 Library Bundle CSS --> 

<link rel="stylesheet" 

href="path/to/framework7.bundle.min.css" > 

 <!-- Path to your custom app styles--> 

<link rel="stylesheet" href="path/to/my-app.css" > 

</head> 

The body tag is composed of several layers. The first one is the app root element, which is crucial to the template initialization. We’ll come back to that point in the next section. 

 <!-- App root element --> 

<div id="app" > 

 <!-- Your main view, should have "view-main" class --> 

<div class="view view-main" > 

 <!-- Initial Page --> 

<div class="page" > 

 <!-- Top Navbar --> 

 <!-- Bottom Toolbar --> 

 <!-- Scrollable page content --> 

</div> 

</div> 

</div> 

Then, we find the view component, inside which is located the page, which hosts the navbar, toolbar (bottom bar) and the page content. 

 <!-- Top Navbar --> 

<div class="navbar" > 

<div class="navbar-bg" ></div> 

<div class="navbar-inner" > 

<div class="title" > Awesome App</div> 

</div> 

</div> 

 <!-- Bottom Toolbar --> 

<div class="toolbar toolbar-bottom" > 

<div class="toolbar-inner" > 

 <!-- Toolbar links --> 

<a href="#" class="link" > Link 1</a> 

<a href="#" class="link" > Link 2</a> 

</div> 

</div> 

 <!-- Scrollable page content --> 

<div class="page-content" > 

<p> Page content goes here</p> 

 <!-- Other content --> 

</div> 

 23.3 Framework7 layouts

371

Although, Framework7 inserts JavaScript code at the end of the body, we can include them in the head as well. 

Leveraging the {charpente} html_2_R(), we convert the previous code to R and extract the f7_page() function. We replace the title content with a title parameter, paying attention to remove all CSS and JS links, as they are already included with the add_dependencies() function applied to body. The page content is contained in a ... parameter. We also move the navbar and toolbar content to create two other layout functions. Meta tags are commented to save space in the book, but are available here5:

f7_page <- function(..., navbar, toolbar, title = NULL) {

tagList(

tags$head(

 # Meta tags are commented for space reasons

tags$title(title)

), 

add_dependencies(

tags$body(

tags$div(

id = "app", 

tags$div(

class = "view view-main", 

tags$div(

class = "page", 

navbar, 

toolbar, 

tags$div(class = "page-content", ...)

)

)

)

), 

deps = "framework7" 

)

)

}

Below are the navbar and toolbar components. The navbar has only a title parameter, and the toolbar may contain items in a ... parameter. In practice, they may contain more elements, but this is enough for now:

f7_navbar <- function(title) {

tags$div(

class = "navbar", 

tags$div(class = "navbar-bg"), 

tags$div(

class = "navbar-inner", 

tags$div(

class = "title", 

title

)

)

)

}

f7_toolbar <- function(...) {

tags$div(

class = "toolbar toolbar-bottom", 

tags$div(

class = "toolbar-inner", 

... 

)

)

}

5https://github.com/DivadNojnarg/outstanding-shiny-ui-code/blob/0ba1c35b85342c6933cc56489b

ae41186cc01601/R/shinyMobile.R#L74

[image: Image 334]

372

 23 Reconstruct {shinyMobile}

� Don’t forget to regularly insert roxygen documentation with the insert roxygen skeleton RStudio feature (Figure 23.2) and run devtools::document(), devtools::load_all(). 

FIGURE 23.2: RStudio helper to add roxygen2 skeleton to any R function. 

At this point, we can try to run a simple Shiny app. Best practice is to save the app.R file in the ./inst/demo folder:

library(shiny)

ui <- f7_page(

"Test", 

navbar = f7_navbar("Title"), 

toolbar = f7_toolbar(), 

title = "shinyMobile" 

)

server <- function(input, output, session) {}

shinyApp(ui, server)

which displays nothing, but returns no error. We actually forgot the app initialization step. 

 23.4 App initialization

373

23.4 App initialization

This step is mandatory to activate all template components (router, panels, …). We create a custom script with create_js, which automatically updates the {charpente} provided main.js entry point:

create_js("init")

We add the following piece of JS inside init.js:

$( document ). ready(function() {

app = new Framework7({

 // App root element

root: '#app' , 

 // App Name

name: 'My App' , 

 // other options

}); 

}); 

Importantly, we made app global so as to access it in other scopes. There is currently no easy way to work around this issue. 

� Most of the code inside init.js is wrapped in a function that waits for the document to be ready before interacting with the DOM. This is necessary since the configuration is retrieved from a script DOM element inserted when the application starts, thus not immediately available. If you try to remove the $( document ).ready(function(...)});, an error will be raised since the configuration cannot be properly retrieved. 

This script creates the app instance necessary to leverage Framework7 methods6, initialize other widgets, interact with layout elements and listen to app events (offline, online, …). 

Since the root element is a direct child of the body, the root property is not mandatory. 

The full configuration list may be found here7. The next step consists of initializing the main view, we add this line right after the app creation:

let mainView = app. views. create('.view-main'); Once done, we compress the corresponding JS file to create the shinyMobile.min.js code, update the f7_page() to include the new dependency, after the Framework7 one, and document the package to set up the package imports:

build_js()

 # updated f7_page

6https://framework7.io/docs/app.html#app-methods-properties

7https://framework7.io/docs/app.html

[image: Image 335]

[image: Image 336]

[image: Image 337]

374

 23 Reconstruct {shinyMobile}

f7_page <- function(..., navbar, toolbar, title = NULL) {

tagList(

tags$head(

 # Head content (unchanged)

), 

add_dependencies(

 # Body tag (unchanged)

deps = c("framework7", "shinyMobile")

)

)

}

 # Initialize NAMESPACE file

devtools::document()

The working app is shown in Figure 23.3. The right panel displays the developer tools inside which we can seamlessly debug the JS code, by leveraging source maps. 

FIGURE 23.3: First working shinyMobile app. 

From now, we can add a welcome notification message with the notification8 API. There are two steps:

• Create the notification instance with app.notification.create(parameters). 

• Tell the app to open the notification at start with app.notification.open(). 

We add the following code to init.js and call build_js():

8https://framework7.io/docs/notification.html

 23.5 App configuration

375

let notification = app. notification. create({

text: 'Welcome to shinyMobile!' , 

on: {

opened: function () {

console. log('Notification opened'); 

}

}

}). open(); 

It opens at app start up and closes on swipe gesture. The Framework7 API is quite easy to understand and extremely powerful. Chapter 25 gives a better introduction to the main Framework7 widgets. 

23.5 App configuration

The app9 object has a tremendous amount of methods and parameters. In this section, we briefly describe the most significant and how to set them up. Among all parameters, there are metadata parameters like name and version. Once the app initialized, all app parameters are accessible with the . notation. For instance, if you set a version number, it is accessible later with app.version. 

23.5.1 Global theme

theme controls the overall app design (Figure 23.4):

• ios corresponds to the iOS design. 

• md stands for material design. 

• aurora is a desktop optimized design. 

As this parameter is set to auto, Framework7 detects the current device stored in app.device, and accordingly adapts the design. Nothing prevents you from forcing the iOS

layout on android devices, even though being quite irrelevant. Here are many properties to review10. 

23.5.2 Events

The app is able to emit events whenever relevant like init, resize, online, offline, which allows us to add interactivity:

app = new Framework7({

on: {

init: function () {

console. log('App initialized'); 

9https://framework7.io/docs/app.html

10https://framework7.io/docs/device.html

[image: Image 338]

[image: Image 339]

376

 23 Reconstruct {shinyMobile}

FIGURE 23.4: Framework7 skins: iOS (left), md (right). 

}, 

 // other events

}

}); 

23.5.3 Components configuration

All Framework7 components are highly customizable. Yet, if you know that some parameters are not going to change, it is a good idea to make them global and share them across all instances. For example, notifications have global options. Let’s add this code to the init.js script directly inside the var app = new Framework7({ ... }):

notification: {

title: 'My App' , 

closeTimeout: 3000, 

}

This means all notifications will close after 3 seconds and have the My App title. We rebuild the JS code with build_js() and run the previous app example. We add another notification to the init.js script with a delay of 1 second so as to test this global feature. Note the use of the internal Framework7 utils11 app.utils.nextTick, which is nothing more than a setTimeout function

let otherMessage = app. notification. create({

text: 'You look great!' 

}); 

 // equivalent to setTimeout ... 

app. utils. nextTick(function() {

otherMessage. open(); 

}, 1000); 

11https://framework7.io/docs/utils.html#nexttick

 23.5 App configuration

377

23.5.4 Allow end-user configuration

In the above sections, we described some parameters to configure the app. Yet, we did set up all values directly in JavaScript. How do we allow the end user to provide their very own parameters? 

The idea is the following:

• We create an options argument in the f7_page() function, which accepts a list of parameters. 

• We convert it to the JSON format and store it in a tag, ideally next to the body element. 

• We recover those data on the JS side and update the app initialization method. 

The f7_page() may be accordingly modified. We convert the options list to a JSON with jsonlite::toJSON and embed it in a script tag (as a reminder, we exploit this method in

section 12.2). The data-for attribute with the id attribute guarantees the uniqueness of our configuration script:

config_tag <- shiny::tags$script(

type = "application/json", 

`data-for` = "app", 

jsonlite::toJSON(

x = options, 

auto_unbox = TRUE, 

json_verbatim = TRUE

)

)

We then create an intermediate body_tag component where we insert the configuration tag. 

f7_page <- function(..., navbar, toolbar, title = NULL, options = NULL) {

 # Create config (see above)

 # create body_tag

body_tag <- tags$body(

 # Body content (unchanged)

 # Config tag

config_tag

)

tagList(

tags$head(

 # Head content (unchanged)

), 

add_dependencies(

body_tag, 

deps = c("framework7", "shinyMobile")

)

)

}

On the JS side, the data collection must occur before the app initialization and is quite easy with the jQuery find method:

let config = $(document). find('script[data-for="app"]'); config = JSON. parse(config. html()); 

We accordingly update the app initialization:

378

 23 Reconstruct {shinyMobile}

app = new Framework7({

 // App root element

root: '#app' , 

 // App Name

name: 'My App' , 

version: config. version, 

 // other options

theme: config. theme, 

notification: {

closeTimeout: 3000

}

}); 

What happens if the user forgets to supply the version number? data.version is undefined and the app still works! The biggest advantage of this approach is the fact that all TRUE

and FALSE (R) are converted to true and false (JS), which avoids unnecessary conversion steps. However, we are still missing many potential configuration options. For instance, with the above code, only root, name, version, theme, notifications, touch are considered. 

If the user provides any other option, it is ignored. 

In theory, this is what we could do to make sure that all elements are considered: app = new Framework7(config); 

 // Don't forget to set the root! 

config. root = '#app' ; 

It is assumed that the user knows exactly what to provide in the list, especially mandatory elements. Knowing the tremendous number of options, it might be slightly overwhelming for a new user. What we suggest is providing a default option list, say shinyMobile_options, available for f7_page():

shinyMobile_options <- list(

theme = "auto", 

dark = TRUE, 

filled = FALSE, 

color = "#007aff", 

iosTranslucentBars = FALSE, 

navbar = list(

iosCenterTitle = TRUE, 

hideOnPageScroll = TRUE

), 

toolbar = list(

hideOnPageScroll = FALSE

), 

 # remaining options ... 

)

f7_page <- function(

 # other parameters are not mentioned

options = shinyMobile_options

) {

 # function body ... 

}

You only need to add one line of documentation in the roxygen part and write app =

new Framework7(config); on the JS side, which is convenient to maintain. This approach avoids creating too many parameters, but be careful about the documentation, as it may cause frustration for the end user. Don’t forget that since config is an object, you may add any other properties or methods, on the fly with the . notation or app.utils.extend. 

 23.5 App configuration

379

� You finally may ask why we put dark, color and filled in the options list given they are not part of the app API parameters. As any unknown parameter is not considered by the Framework7 class, we can definitely keep them here, which is easier to treat on the JS side. 

23.5.5 Modify configuration

As previously stated, the app configuration is passed during the initialization process, through new Framework7(config). What if the user wants to programmatically change these options when the app is running? 

Since app parameters are located in app.params, the idea would be to extend that list: let newParams = {

dialog: {

buttonOk:

'Yeaaaah!' , 

buttonCancel: 'Ouuups!' 

}

}

app. utils. extend(app. params, newParams); The above example changes the default buttons text for all modal dialog. 

� As far as I know, some options won’t work like the global theme, which would require re-initializing the app and is not possible. 

23.5.6 Global data and methods

The Framework7 data parameters allows you to store global elements, data, and use them in different scripts:

config. data = function () {

return {

username: 'dgranj' , 

firstName: 'David' , 

lastName: 'Granjon' , 

 // may also be array

widgets: []

}; 

}; 

Similarly methods hosts all global app methods, functions you may re-use in different parts. 

Like for app.data, we access them with app.methods:

config. methods = {

getUsername: function() {

app. data. username; 

}, 

 // other methods

}

380

 23 Reconstruct {shinyMobile}

� Framework7 6.0.0, app.data has been removed in favor of a more flexible alternative called store. It is documented here: https://framework7.io/docs

/store.html. 

23.5.7 Other elements

Framework7 provides mobile-specific modules like touch12, which is a long press event (here 750 ms). This is something you can usually do on many mobile apps. The touch module parameters are defined as follows:

touch: {

tapHold: true, 

tapHoldDelay: 750, 

}

which translates into a named list in R:

list(

tapHold = TRUE, 

tapHoldDelay = 750, 

 # other touch options

)

To activate that feature, we update shinyMobile_options():

shinyMobile_options <- list(

theme = "auto", 

dark = TRUE, 

filled = FALSE, 

color = "#007aff", 

iosTranslucentBars = FALSE, 

navbar = list(

iosCenterTitle = TRUE, 

hideOnPageScroll = TRUE

), 

toolbar = list(

hideOnPageScroll = FALSE

), 

 # TOUCH MODULE OPTIONS

touch = list(

tapHold = TRUE, 

tapHoldDelay = 750, 

iosTouchRipple = FALSE

)

 # remaining options ... 

)

We create a button element and add to it the taphold event in init.js: $('#mybutton'). on('taphold' , function () {

app. dialog. alert('Tap hold fired!'); 

}); 

12https://framework7.io/docs/support#method-touch

 23.5 App configuration

381

The app.R script should look like:

 ### RUN ###

 # OSUICode::run_example(

 #

 "shinyMobile/taphold", 

 #

 package = "OSUICode" 

 # )

� Once the app is running, don’t forget to open the developer tools and set the device on mobile mode (iPhone or android) since taphold does not fire on the desktop (Figure 23.5). You may place a breakpoint inside the taphold event listener to check that it is properly triggered. 

taphold also triggers events related to the click like text selection, which is rarely desirable. 

Hence, we have to add the following code to init.js, making sure to check that touch exists:

 // tapHold custom css

if (config. hasOwnProperty('touch')) {

if (config. touch. tapHold) {

$('<style>')

. prop('type' , 'text/css')

. html(

`-moz-user-select: none; 

-webkit-user-select: none; 

user-select: none;`

)

. appendTo('head'); 

}

}

It disables classic text selection after a long press in the window. 

An important remark is the click handling in Framework7. Framework7 has its own internal router13 that allows users pass data between pages and perform quite advanced actions. Do you remember the app.views.create('.view-main'); step? This real purpose is actually to activate the internal router. While extremely convenient for classic web apps, this feature is not completely suited for Shiny that does not natively support multi-page apps. The recent work14 in the field is promising and plays well with {shinyMobile} (see here15) but this is out of the scope of this chapter. The internal router has strong implications, for instance, clicking on <a href="https://www.google.com/">Click me</a> will fail (while it works like a charm for a classic Shiny app). 

To fix this issue, Framework7 has a clicks module option, accepting any valid CSS selector. 

Below is the default configuration:

clicks: {

externalLinks: '.external' , 

}

13https://framework7.io/docs/view.html

14https://github.com/ColinFay/brochure

15https://github.com/RinteRface/shinyMobile/issues/136

[image: Image 340]

[image: Image 341]

382

 23 Reconstruct {shinyMobile}

FIGURE 23.5: Long press or taphold event. 

Consequently, in order to skip the internal router, links must have the .external class. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "shinyMobile/links", 

 #

 package = "OSUICode" 

 # )

� One might be tempted to target all a elements: this is a bad idea, as it also targets tabs navigation, which eventually fails. Therefore, it is best practice to add the external class to all the necessary links like a(href =

"https://www.google.com/", "Click me", class = "external")

23.6 Theming and colors

Framework7 offers fifteen color themes16 with a dark/light global appearance. To apply them, we add color-theme-COLOR to the parent element. Best practice is to target the body since it is the parent of all the page content, thereby ensuring global consistency. The dark theme is triggered by adding the theme-dark class to html. Since body belongs to f7_page() but not html (added by Shiny at startup), we can apply the color in R, while the dark mode has to be activated from JS:

16https://framework7.io/docs/color-themes.html?theme=light&bars=empty&color=%09+%23673ab7

 23.6 Theming and colors

383

f7_page <- function(..., navbar, toolbar, 

title = NULL, options = NULL) {

body_cl <- NULL

if (!is.null(options$color)) {

body_cl <- sprintf("color-theme-%s", options$color)

}

 # Config tag (unchanged)

 # Modify the body tag to add a class

tags$body(

class = body_cl, 

 # ... App wrapper (unchanged), 

config_tag

)

 # ... 

}

This approach assumes the user passing the color name as a parameter like pink, yellow and won’t be considered in the remaining of the book. What if we want to allow more flexibility and add any existing HEX color? Framework7 has tools, namely app.utils.colorThemeCSSProperties, that is a JS method creating the required CSS

on the fly depending on the provided HEX color. For instance, if we select a cyberpunk green color:

app. utils. colorThemeCSSProperties('#42f5a1'); 

 // /* Custom color theme */

 // {

 //

 "--f7-theme-color": "#42f5a1"; 

 //

 "--f7-theme-color-rgb": "66, 245, 161"; 

 //

 "--f7-theme-color-shade": "#1bf38e"; 

 //

 "--f7-theme-color-tint": "#69f7b4"; 

 // }

The commented code has to be injected in the app CSS. I personally don’t think it’s a problem to look for a specific HEX code, knowing that many online tools can help. Therefore, I prefer the second approach. We edit the init.js code by adding the following JS snippet: if (config. hasOwnProperty('color')) {

let colorCSS = app. utils. colorThemeCSSProperties(config. color); $('<style>')

. prop('type' , 'text/css')

. html(`:root {

--f7-theme-color:${colorCSS['--f7-theme-color']}; 

--f7-theme-color-rgb:${colorCSS['--f7-theme-color-rgb']}; 

--f7-theme-color-shade:${colorCSS['--f7-theme-color-shade']}; 

--f7-theme-color-tint:${colorCSS['--f7-theme-color-tint']}; 

}`)

. appendTo('head'); 

}

config.hasOwnProperty('color') ensures that this code does not run if color is missing from the provided config. Then, we generate an object, colorCSS, containing the theme color properties with app.utils.colorThemeCSSProperties(config.color). Importantly, as this is an object, we can’t insert it in a string. However, we can extract its properties 1 by 1

to generate the relevant piece of CSS, for instance colorCSS["--f7-theme-color"]. Then we add a style tag to the head containing the CSS rule. Once done, recompile the JS with build_js() and try with the following app. 

384

 23 Reconstruct {shinyMobile}

 ### RUN ###

 # OSUICode::run_example(

 #

 "shinyMobile/white-filled", 

 #

 package = "OSUICode" 

 # )

We can go further and apply the filled theme, which is an alternative design where all navbar, toolbar, … are filled with the theme color. In that case, we add the following CSS

inside init.js:

if (! config. hasOwnProperty('filled')) config. filled = false; if (config. filled) {

let filledCSS = `

:root, 

:root.theme-dark, 

:root .theme-dark {

--f7-bars-bg-color: var(--f7-theme-color); 

--f7-bars-bg-color-rgb: var(--f7-theme-color-rgb); 

--f7-bars-translucent-opacity: 0.9; 

--f7-bars-text-color: #fff; 

--f7-bars-link-color: #fff; 

--f7-navbar-subtitle-text-color: rgba(255,255,255,0.85); 

--f7-bars-border-color: transparent; 

--f7-tabbar-link-active-color: #fff; 

--f7-tabbar-link-inactive-color: rgba(255,255,255,0.54); 

--f7-sheet-border-color: transparent; 

--f7-tabbar-link-active-border-color: #fff; 

}

.appbar, 

.navbar, 

.toolbar, 

.subnavbar, 

.calendar-header, 

.calendar-footer {

--f7-touch-ripple-color: var(--f7-touch-ripple-white); 

--f7-link-highlight-color: var(--f7-link-highlight-white); 

--f7-button-text-color: #fff; 

--f7-button-pressed-bg-color: rgba(255,255,255,0.1); 

}

.navbar-large-transparent, 

.navbar-large.navbar-transparent {

--f7-navbar-large-title-text-color: #000; 

--r: 0; 

--g: 122; 

--b: 255; 

--progress: var(--f7-navbar-large-collapse-progress); 

--f7-bars-link-color: rgb(

calc(var(--r) + (255 - var(--r)) * var(--progress)), 

calc(var(--g) + (255 - var(--g)) * var(--progress)), 

calc(var(--b) + (255 - var(--b)) * var(--progress))

); 

}

.theme-dark .navbar-large-transparent, 

.theme-dark .navbar-large.navbar-transparent {

--f7-navbar-large-title-text-color: #fff; 

}`; 

$('<style>')

. prop('type' , 'text/css')

. html(`${filledCSS}`)

. appendTo('head'); 

}

The result is displayed in Figure 23.6. Don’t forget to set filled = TRUE in shinyMobile_options. 

Let’s finish this section with the dark mode. We leverage the Framework7 app method element since we could also toggle the dark mode under other circumstances. We add a

[image: Image 342]

[image: Image 343]

[image: Image 344]

 23.7 Theming and colors

385

FIGURE 23.6: Filled blue color theme. 

toggleDarkTheme function to the methods object then trigger it depending on the value of the config. If the user doesn’t provide any value, we set config.dark to false. We insert it right before app = new Framework7(config); inside init.js:

 // ... get config

config. methods = {

toggleDarkTheme: function () {

let self = this; 

let $html = self. $('html'); 

$html. toggleClass('theme-dark'); 

}

}; 

if (! config. hasOwnProperty('dark')) config. dark = false; app = new Framework7(config); 

if (config. dark) {

app. methods. toggleDarkTheme(); 

}

 // ... other code

At this point init.js is given in appendix A.2.1. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "shinyMobile/dark-filled", 

 #

 package = "OSUICode" 

 # )

The overall expected result is shown Figure 23.7. 

[image: Image 345]

[image: Image 346]

[image: Image 347]

386

 23 Reconstruct {shinyMobile}

FIGURE 23.7: Dark mode in shinyMobile. 

23.7 Modularize JS code

As shown above, the init.js code starts to grow and this is not a good sign. In this section, we show how to utilize the import and export statements, possible owing to the esbuild JS bundler. Note that this is a more modern version of writing equivalent to the module.exports and require shown in section 10.4.6.1. 

In the R console, we run create_js("helpers_config", add_reference = FALSE), which creates a new JS script but does not import it in the main.js esbuild entry point. 

Inside we extract a function containing all steps to set up the app configuration object: export const setConfig = () => {

 // collect all data elements stored in body

let config = $(document). find('script[data-for="app"]'); config = JSON. parse(config. html()); 

 // always erase existing root value just in case the user

 // changes the root. This may be harmful

config. root = '#app' ; 

 // store app methods

config. methods =

{

toggleDarkTheme: function() {

let self = this; 

let $html = self. $('html'); 

$html. toggleClass('theme-dark'); 

}

}; 

 // App data

config. data = function() {

return {

 // any interesting element to save

}; 

 23.8 Exercise

387

}; 

return config; 

}; 

This function does not have any argument and must return the config variable that will be subsequently injected in new Framework7(config) to initialize the app. In the init.js script, we import the setConfig() function and call it within $( document ).ready: import { setConfig } from './helpers_config.js' ; 

$( document ). ready(function() {

let config = setConfig(); 

 // create app instance

app = new Framework7(config); 

 // ... 

}); 

We finally bundle our code with build_js(). 

� If the function has a side effect, for instance modifying a variable located in another scope, it must return the transformed variable output, so that it can be tracked at the upper level. 

We have now set all foundations. In the next chapter, we see how to convert a {shinyMobile}

app (and any vanilla shiny app) into a progressive web app (PWA). 

23.8 Exercise

Continue to improve the JS code by adding an extra helper consisting of all related theme and layout features. 

1. Run create_js("helpers_theme", add_reference = FALSE). 

2. Add to it a setTouchStyle function (copy and paste code from section 23.5.7):

const setTouchStyle = (config) => {

if (config. hasOwnProperty('touch')) {

if (config. touch. tapHold) {

 // touch logic

}

}

}; 

3. Add a setColorTheme function (copy and paste code from section 23.6):

388

 23 Reconstruct {shinyMobile}

const setColorTheme = (config, app) => {

if (config. hasOwnProperty('color')) {

 // logic

}

}; 

4. Add a setFilledTheme function (copy and paste code from section 23.6):

const setFilledTheme = (config) => {

if (! config. hasOwnProperty('filled')) config. filled = false; if (config. filled) {

 // logic

}

}; 

5. Add the setDarkMode function:

const setDarkMode = (config, app) => {

if (! config. hasOwnProperty('dark')) config. dark = false; if (config. dark) {

app. methods. toggleDarkTheme(); 

}

}; 

6. Finish by exporting the initTheme function, that calls all previously defined helpers:

export const initTheme = (config, app) => {

setTouchStyle(config); 

setColorTheme(config, app); 

setFilledTheme(config); 

setDarkMode(config, app); 

}; 

7. Move it to the init.js script and import the helpers_theme.js. 

import { initTheme } from './helpers_theme.js' 

8. initTheme has to be called after app instantiation. You should obtain something like below. Once done, rebuild the JS code with build_js() and test with an app example. 

import { setConfig } from './helpers_config.js' ; 

import { initTheme } from './helpers_theme.js' 

$( document ). ready(function() {

let config = setConfig(); 

 // create app instance

app = new Framework7(config); 

 // Set theme: dark mode, touch, filled, color, taphold css

initTheme(config, app); 

 // ... 

}); 

24

{shinyMobile} and PWA

Transforming a classic Shiny app into a PWA is a game changer for end users. By the end of this chapter, you’ll be able to provide top-notch features for your Shiny apps like:

• Add a fullscreen support. 

• Make them installable. 

• Support offline capabilities. 

� Some of the PWA features won’t work with iOS (https://medium.com/@fir

t/progressive-web-apps-on-ios-are-here-d00430dee3a7), like the install prompt. 

� As a reminder, the code examples shown throughout this chapter are gathered in the {OSUICode} package accessible here: https://github.com/DivadNo

jnarg/OSUICode/tree/1d42aa7531705954d3c21921c8bbb10623b20d12, 

specifically PWA apps are available here: https://github.com/DivadNojnar

g/OSUICode/blob/1d42aa7531705954d3c21921c8bbb10623b20d12/inst/sh

inyMobile/pwa/app.R. 

24.1 Introduction

Below, we review one by one the necessary steps to convert a Shiny app to a PWA. To get a good idea of what our mission exactly is, we leverage the Application tab of the developer tools as shown on Figure 24.1. Alternatively, you may use the Google Lighthouse1 utility to provide a general diagnosis to the app, as illustrated on Figure 24.2. There are many categories like performance, accessibility. In our case, let’s just select the PWA category, check the mobile device radio and click on generate a report. 

According to the diagnostic result displayed in Figure 24.3, we don’t meet all requirements; most importantly there is:

• No manifest. 

• No service worker. 

1https://developers.google.com/web/tools/lighthouse/

389

[image: Image 348]

[image: Image 349]

[image: Image 350]

[image: Image 351]

[image: Image 352]

[image: Image 353]

390

 24 {shinyMobile} and PWA

• No icons. 

• No offline fallback. 

FIGURE 24.1: Application tab of the developers tools. 

FIGURE 24.2: Google Lightouse utility. 

[image: Image 354]

 24.2 {charpente} and PWA tools

391

FIGURE 24.3: Lighthouse audit result. 

24.2

{charpente} and PWA tools

{charpente} has tools to help design a PWA, particularly the set_pwa() function, which does all the previously mentioned steps in only one line of code. There are, however, a few prerequisites:

• The app must belong to a package. However, if you followed the previous chapter, this is already the case. 

• The function must target the app directory. 

392

 24 {shinyMobile} and PWA

Let’s create a inst/examples/pwa-app sub-folder and the app.R file: library(shiny)

library(shinyMobile)

ui <- f7_page(

navbar = f7_navbar("PWA App"), 

toolbar = f7_toolbar(), 

title = "shinyMobile" 

)

server <- function(input, output, session) {}

shinyApp(ui, server)

Then we set the PWA configuration with set_pwa(). Overall, this function generates a manifest.webmanifest file, downloads the Google PWA compatibility script, adds a custom dependency pointing to the manifest.webmanifest file and a 144x144 icon file, copies a boilerplate service-worker.js with its offline.html page and optionally registers the service worker (whose code is borrowed from web.dev2):

window. addEventListener('load' , () => {

if ('serviceWorker' in navigator) {

var pathname = window. location. pathname; navigator. serviceWorker

. register(

pathname +

'service-worker.js' , 

{ scope: pathname}

)

. then(function() {

console. log('Service Worker Registered'); 

}); 

}; 

}); 

In the {shinyMobile} case, as Framework7 already registers any provided service worker, we don’t need that initialization script. Therefore, to skip the creation of sw-register.js and importing it in main.js, we should actually call:

set_pwa("inst/examples/pwa-app", register_service_worker = FALSE) Importantly, this function does not handle icon creation. There are tools such as appsco3

and app-manifest4, to create those custom icons and splash screens, if you need to. 

In the following, we provide more detail about the mentioned steps. 

24.2.1 Create the manifest

We would like to create a JSON configuration file like this: 2https://web.dev/offline-fallback-page/#registering-the-service-worker

3https://appsco.pe/developer/splash-screens

4https://app-manifest.firebaseapp.com

 24.2 {charpente} and PWA tools

393

{

"short_name" : "My App" , 

"name" : "Super amazing app" , 

"description" : "This app is just mind blowing" , 

"icons" : [

{

"src" : "icons/icon.png" , 

"type" : "image/png" , 

"sizes" : "192x192" 

}

 // ... 

], 

"start_url" : "<APP_URL>" , 

"background_color" : "#3367D6" , 

"display" : "standalone" , 

"scope" : "/" , 

"theme_color" : "#3367D6" , 

"shortcuts" : [

{

"name" : "Open toast" , 

"short_name" : "Shortcut" , 

"description" : "Do something" , 

"url" : "<APP_URL>/..." , 

"icons" : [{ "src" : "icons/.png" , "sizes" : "192x192" }]

}

]

}

All fields are following the official recommendation provided by Google regarding the PWA, I do not recommend removing any entry, except the shortcuts, described later. Since the state of the art may slightly change in the future, you are encouraged to regularly check this website5 to get the latest features. 

This file has to be accessible by the app, hence best practice is to put it in the /www folder, icon images being hosted in the /www/icons sub-directory. The {charpente}

create_manifest() function writes a JSON file at the provided location. Interestingly the shortcuts fields gives the ability to start the app in a specific state, so that end users save time. This feature is only supported by latest Android devices as well as up-to-date Windows 10 computers (no Apple support). In practice, the shortcut url can be processed by shiny::parseQueryString on the server side. For instance, if the url contains a query string like https://domain/path/?foo=1, we could show a notification: observeEvent(session$clientData$url_search, {

query <- parseQueryString(session$clientData$url_search)

req(length(query) > 0)

 # Ways of accessing the values

if (as.numeric(query$foo) == 1) {

f7_notif(text = "Plop")

}

})

The web manifest and icons have to be included in the head before the Google PWA compatibility script:

<link rel="manifest" href="manifest.webmanifest" /> 

 <!-- include icon also from manifest --> 

<link rel="icon" type="image/png" 

href="icons/icon-144.png" sizes="144x144" /> 5https://web.dev/add-manifest/

394

 24 {shinyMobile} and PWA

set_pwa() internally calls create_pwa_dependency(), which creates an HTML dependency containing all necessary resources:

 #' PWA dependencies utils

 #' 

 #' @description This function attaches PWA manifest and

 #' icons to the given tag

 #' 

 #' @param tag Element to attach the dependencies. 

 #' 

 #' @importFrom utils packageVersion

 #' @importFrom htmltools tagList htmlDependency

 #' @export

add_pwa_deps <- function(tag) {

pwa_deps <- htmlDependency(

name = "pwa-utils", 

version = packageVersion("shinyMobile"), 

src = c(file = "shinyMobile-0.0.0.9000"), 

head = "<link rel=\"manifest\" 

href=\"manifest.webmanifest\"/> 

<link rel=\"icon\" type=\"image/png\" 

href=\"icons/icon-144.png\" sizes=\"144x144\" />", package = "mypkg2", 

)

tagList(tag, pwa_deps)

}

In practice, since the package already relies on other dependencies like Framework7, we will leverage the add_dependencies() function to add all dependencies at once. 

� All provided icons must follow the convention icon-<size_in_px>.png like icon-144.png, which is the default. 

24.2.2 Google PWA compatibility

As we use the Google PWA compatibility script, we have to include at least one icon like

<link rel="icon" type="image/png" href="res/icon-128.png" sizes="128x128" 

/>. However, we found some discrepancies between the developer tools recommendations and the PWA compatibility script. Therefore, we recommend following the developer tools prescriptions, that is, to include at least one icon of size 144x144. All other elements are generated by the script itself, which is convenient. Indeed, having to handle all possible screen sizes and different OS is particularly tricky, repetitive, and not interesting. 

The

HTML

dependency

is

downloaded

with

create_dependency("pwacompat", 

options = charpente_options(bundle = FALSE)). 

Don’t

forget

to

update

the

add_dependencies() call in f7_page() by including the two new dependencies, that is pwa and pwacompat:

f7_page <- function(..., navbar, toolbar, title = NULL, options = NULL) {

 # Config tag (unchanged)

 # Body tag (unchanged)

tagList(

tags$head(

[image: Image 355]

 24.2 {charpente} and PWA tools

395

 # Head content (unchanged)

), 

add_dependencies(

body_tag, 

deps = c("framework7", "shinyMobile", "pwa", "pwacompat")

)

)

}

Calling devtools::load_all() and running the app again, you should see the new dependencies in the head (Figure 24.4). 

FIGURE 24.4: New PWA dependencies in the head tag. 

Yet, according to Figure 24.5, we still miss the service worker, as shown in the manifest diagnostic. This demonstrates how powerful the developer tools are as the end user is always guided step by step. 

24.2.3 Service worker and offline page

The second mandatory step to make our app installable is the service worker. We borrowed and modified the code from web.dev6. set_pwa() copies this code in the the provided app

/www folder:

6https://web.dev/offline-fallback-page/

[image: Image 356]

396

 24 {shinyMobile} and PWA

FIGURE 24.5: Missing service worker registration. 

 // Incrementing OFFLINE_VERSION will kick off the install

 // event and force previously cached resources to be

 // updated from the network. 

const OFFLINE_VERSION = 1; 

const CACHE_NAME = 'offline' ; 

 // Customize this with a different URL if needed. 

const OFFLINE_URL = 'offline.html' ; 

self. addEventListener('install' , (event) => {

 // Install logic

}); 

self. addEventListener('activate' , (event) => {

 // Activate logic

}); 

self. addEventListener('fetch' , (event) => {

 // Fetch logic

}); 

This service worker is composed of three steps, which we succinctly describe below. 

24.2.3.1 Installation

During the installation step, the cache is initialized and assets like HTML page (offline.html), CSS, JS and images are asynchronously cached. Assets’s respective

 24.2 {charpente} and PWA tools

397

path is taken from the server location, for instance, Framework7 assets are located in framework7-5.7.14/... and jQuery assets in shared/. Best practice is to look at the developer tools Source tab, which provides the right location. 

self. addEventListener('install' , (event) => {

event. waitUntil(

(async () => {

const cache = await caches. open(CACHE_NAME); await cache. add(

new Request(OFFLINE_URL, { cache: 'reload' })

); 

 // Cache other assets ... 

})()

); 

 // Force the waiting service worker to become

 // the active service worker. 

self. skipWaiting(); 

}); 

24.2.3.2 Activation

This step ensures that the service worker boots. As the service worker boot-up time may be delayed (until 0.5 s), the navigation preload feature7 guaranties to have reasonable performances by making network requests in parallel of the booting process. In sum, don’t touch this code. 

self. addEventListener('activate' , (event) => {

event. waitUntil(

(async () => {

 // Enable navigation preload if it's supported. 

 // Speeds up

if ('navigationPreload' in self. registration) {

await self. registration. navigationPreload. enable(); 

}

})()

); 

 // Tell the active service worker to take control of

 // the page immediately. 

self. clients. claim(); 

}); 

24.2.3.3 Fetch

Once active, the service worker intercepts all network requests sent by the client and returns answers according to a predefined strategy. Here we set the “network first” strategy, meaning we always try to return an answer from the network and fall back to the cache if the request failed (for instance, in case of missing internet connection). In the above code, there are two kind of requests: navigation, which is related to an HTML page, and other requests corresponding to static assets like CSS or JS. Therefore, we have an if and else statement to consider those two cases. If you would like to know more about caching strategies please refer to the Google documentation: https://developers.google.com/web/tools/work

box/modules/workbox-strategies. 

7https://developers.google.com/web/updates/2017/02/navigation-preload

398

 24 {shinyMobile} and PWA

 // Fix service-worker bug

if (event. request. cache === 'only-if-cached') return; 

 // We only want to call event.respondWith() if this

 // is a navigation request for an HTML page ... 

if (event. request. mode === 'navigate') {

 // Navigation request

} else {

 // Other requests

}

Below is the navigation request logic, which is what will be triggered each time an end-user points to your app. As stated above, if the navigation preload is available, we return the preload response. If not, the request is fetched. In case of failure, we fall back to the offline HTML page, cached during the installation step. 

 // Navigation request logic

event. respondWith(

(async () => {

try {

 // First, try to use the navigation preload response

 // if it's supported. 

const preloadResponse = await event. preloadResponse; if (preloadResponse) {

return preloadResponse; 

}

 // Always try the network first. 

const networkResponse = await fetch(event. request); return networkResponse; 

} catch (error) {

console. log('Returning offline page instead.' , error); const cache = await caches. open(CACHE_NAME); const cachedResponse = await cache. match(OFFLINE_URL); return cachedResponse; 

}

})()

); 

All other requests are handled in the else statement. The logic remains the same. We first try to get assets from the network and fallback to the cache upon error, that is for instance in offline mode. 

 // Other requests

event. respondWith(

(async () => {

try {

 // Always try the network first. 

const networkResponse = await fetch(event. request); return networkResponse; 

} catch (error) {

const cache = await caches. open(CACHE_NAME); const cachedResponse = await cache. match(event. request); if (cachedResponse) return cachedResponse; 

}

})()

); 

To sum up, this service worker redirects the end user to the offline cached page

 24.2 {charpente} and PWA tools

399

(offline.html) whenever the app is offline, thereby offering a better user experience. The full code is located here8. 

� We strongly advise keeping the same file names. 

24.2.3.4 Registration

The next step involves the service worker registration. Framework7 has a dedicated module in the app configuration. We modify the config in helpers_config.js before initializing the app and run build_js() to update the minified file:

config. serviceWorker = {

path: window. location. pathname + 'service-worker.js' , scope: window. location. pathname

}; 

If the process is successful, you get the result shown in Figure 24.6. 

At this point, you should also check whether the service worker was able to cache files by inspecting the cache storage section, as depicted by Figure 24.7. 

24.2.3.5 Offline fallback

The new PWA standard imposes returning a valid response when the app is offline. The offline page is also copied from {charpente} and below is a summarized version:

<!DOCTYPE html> 

<html> 

<head> 

 <!-- Required meta tags ... --> 

<link

rel="stylesheet" 

href="framework7-5.7.14/css/framework7.bundle.min.css" > 

</head> 

<body> 

<div id="app" > 

 <!-- App content (navbar, toolbar, page, ...) --> 

</div> 

<script type="text/javascript" src="shared/jquery.min.js" > 

</script> 

<script

type="text/javascript" 

src="framework7-5.7.14/js/framework7.bundle.min.js" > 

</script> 

 <!-- Path to your app js --> 

<script> 

var app = new Framework7({

 // ... 

}); 

 // ... 

</script> 

</body> 

</html> 

Notice that jQuery, required for easier DOM interactions, as well as Framework7 CSS and 8https://github.com/DivadNojnarg/outstanding-shiny-ui-code/blob/5bc49eab9496696a06da3f62d6

aaf8ef468cdad4/inst/shinyMobile/pwa/www/service-worker.js

[image: Image 357]

400

 24 {shinyMobile} and PWA

FIGURE 24.6: Registered service worker. 

JS assets are cached in the above service worker script, thereby making them available to offline.html. This offline fallback relies on Framework7 for consistency reasons but could be replaced by any other HTML page. The whole code is stored here9. 

Now, let’s audit our app again: congrats! It is installable and reliable, although further PWA optimization may be provided. 

� A common source of error is the browser cache. It is best practice to regularly empty it. Alternatively, you may run in incognito mode, which does not cache files. 

24.2.4 Disable PWA for the end user

With the above approach, {shinyMobile} will always look for a service worker to register. 

Particularly, this would raise an error in case no service worker is found on the server. What if the user doesn’t want to create a PWA, let’s say for less important applications? We may 9https://github.com/DivadNojnarg/outstanding-shiny-ui-code/blob/5bc49eab9496696a06da3f62d6

aaf8ef468cdad4/inst/shinyMobile/pwa/www/offline.html

[image: Image 358]

 24.2 {charpente} and PWA tools

401

FIGURE 24.7: Service worker caches static assets to make them available offline. 

add a parameter to f7_page(), for instance allowPWA, that is either TRUE or FALSE and store its value in the body data-pwa attribute. 

f7_page <- function(..., navbar, toolbar, title = NULL, options = shinyMobile_options, 

allowPWA = TRUE) {

 # ... unchanged

 # create body_tag

body_tag <- tags$body(

`data-pwà = tolower(allowPWA), 

tags$div(

id = "app", 

 # ... unchanged

)

)

 # ... unchanged

}

We recover it on the JS side within helpers_config.js:

[image: Image 359]

[image: Image 360]

[image: Image 361]

402

 24 {shinyMobile} and PWA

FIGURE 24.8: Installable shinyMobile app. 

 // check if the app is intended to be a PWA

let isPWA = $('body'). attr('data-pwa') === 'true' ; if (isPWA) {

config. serviceWorker = {

path: window. location. pathname + 'service-worker.js' , scope: window. location. pathname

}; 

}

It only creates config.serviceWorker if the user specifies allowPWA = TRUE. 

24.3 Handle the installation

It is a great opportunity to propose a custom10 installation experience. 

� To be able to install the app, make sure to replace

start_url

by

the

url

where

the

app

is

deployed

like

https://dgranjon.shinyapps.io/installable-pwa-app/

for

instance. 

Missing that step would cause an issue during the service worker registration. 

We create a new script with create_js("helpers_pwa") and export the setPWA function: 10https://developers.google.com/web/fundamentals/app-install-banners/native

 24.3 Handle the installation

403

export const setPWA = (app) => {

 // Install logic

}; 

Once the installation criteria are met, the web browser raises the beforeinstallprompt event (except on the iOS platform, which is not compatible yet). We add an event listener inside setPWA:

let deferredPrompt; 

window. addEventListener('beforeinstallprompt' , (e) => {

 // Prevent the mini-infobar from appearing on mobile

e. preventDefault(); 

 // Stash the event so it can be triggered later. 

deferredPrompt = e; 

}); 

This code adds an event listener to the window, prevents it from showing at start with e.preventDefault and captures it in an external variable called deferredPrompt. 

The next step comprises the design of our custom piece of UI, which will trigger the prompt install. We can benefit from the rich Framework7 interface and display a toast11

containing an install button. The initialization is fairly simple, following the pattern app.<COMPONENT>.create(parameters):

 // Create custom install UI

let installToast = app. toast. create({

position: 'center' , 

text: `<button

id="install-button" 

class="toast-button button color-green"> 

Install

</button>`

}); 

We give it an id so as to call it later and edit the beforeinstallprompt event listener to show the toast:

let deferredPrompt; 

window. addEventListener('beforeinstallprompt' , (e) => {

 // Prevent the mini-infobar from appearing on mobile

e. preventDefault(); 

 // Stash the event so it can be triggered later. 

deferredPrompt = e; 

 // Show install trigger

installToast. open(); 

}); 

� With jQuery like $(window).on('beforeinstallprompt', ...), we would capture the event with e.originalEvent. 

We register a second event listener, which fires on the toast button click. We first close the toast, call the prompt method on the deferred event and log the result: 11https://framework7.io/docs/toast.html

[image: Image 362]

404

 24 {shinyMobile} and PWA

app. utils. nextTick(function() {

$('#install-button'). on('click' , function() {

 // close install toast

installToast. close(); 

if (! deferredPrompt) {

 // The deferred prompt isn't available. 

return; 

}

 // Show the install prompt. 

deferredPrompt. prompt(); 

 // Log the result

deferredPrompt. userChoice. then((result) => {

console. log('OK' , 'userChoice' , result); 

 // Reset the deferred prompt variable, since

 // prompt() can only be called once. 

deferredPrompt = null; 

}); 

}); 

}, 500); 

Inside init.js, we add our brand new module:

import { setConfig } from './helpers_config.js' ; 

import { initTheme } from './helpers_theme.js' 

import { setPWA } from './helpers_pwa.js' 

 // other imports ... 

$( document ). ready(function() {

let config = setConfig(); 

 // create app instance

app = new Framework7(config); 

 // Set theme: dark mode, touch, filled, color, taphold css

initTheme(config, app); 

 // PWA setup

setPWA(app); 

}); 

We run build_js() and deploy the app to shinyapps.io (remember, we must serve the app under HTTPS). Figure 24.9 illustrates the install prompt window that appears to install the app. Once installed, the beforeinstallprompt event does not fire anymore and the app may be launched as a standalone app, for instance on macOSX (Figure 24.10). 

FIGURE 24.9: Install prompt window. 

In Figure 24.10, the blue window color corresponds to the tags$meta(name =

"theme-color", content = "#2196f3"), passed in the f7_page() layout element. To simulate a network issue and validate the offline mode, we selected the developer tools Network tab and changed the dropdown value to offline. As shown in Figure 24.11, the offline template shows and pulls static assets from the service worker (the failed network requests are shown in red). 

The final product may be run with:

 ### RUN ###

 # OSUICode::run_example(

[image: Image 363]

[image: Image 364]

[image: Image 365]

 24.3 Handle the installation

405

FIGURE 24.10: Installed PWA on macOSX. 

FIGURE 24.11: Offline HTML template. 

406

 24 {shinyMobile} and PWA

 #

 "shinyMobile/pwa", 

 #

 package = "OSUICode" 

 # )

This chapter was part of a workshop available here12. 

24.4 Other resources

The process described above works perfectly for any Shiny template. The reader may also consider other packages like {shiny.pwa}13, that creates a PWA-compatible structure at run time, within the app /www folder. 

12https://github.com/RinteRface/rencontresR2021

13https://github.com/pedrocoutinhosilva/shiny.pwa

[image: Image 366]

[image: Image 367]

[image: Image 368]

25

Design widgets

Framework7 brings dozens of different widgets like a photo browser, virtual lists (high performance lists), messages, notifications and toasts. Figure 25.1 shows from left to right the chat widget, the floating action buttons and the gauges. 

FIGURE 25.1: Framework7 widgets. From left to right: chat, floating action button and gauges. 

Looking at the documentation1, the API is most of the time always the same, that is, we create the widget:

app. widget. create(parameters); 

and we update, open or close it later:

app. widget. update(newParameters); 

app. widget. open(); 

app. widget. close(); 

I must admit, there are few deviations like the navbar (app.navbar.show()) or the modal dialog2, but we have enough common points to design a main wrapper that creates any widget and update/open/close it. 

1https://v5.framework7.io/docs/

2https://v5.framework7.io/docs/dialog.html#dialog-shortcuts

407

408

 25 Design widgets

What we do below significantly simplifies the R/JS API by providing a general method to initialize and update some of those widgets. 

� As a reminder, the code examples shown throughout this chapter are gathered in the {OSUICode} package accessible here: https://github.com/DivadNo

jnarg/OSUICode/tree/1d42aa7531705954d3c21921c8bbb10623b20d12, 

specifically at https://github.com/DivadNojnarg/OSUICode/blob/1d42aa

7531705954d3c21921c8bbb10623b20d12/R/shinyMobile.R#L151 for widgets. 

25.1 Build the UI

We know that JavaScript must receive a configuration object to create the widget instance. 

As shown earlier in this book, there is a simple way to achieve this. Let’s consider the gauge3

example:

On the UI side, we expect to have:

<div class="gauge" ></div> 

Upon widget instantiation, Framework7 populates this container with the relevant tags and attributes. The f7_gauge() function creates a div tag with the gauge class, as well as a configuration tag:

f7_gauge <- function(id, value, options = NULL) {

if (is.null(options[["valueText"]])) {

options[["valueText"]] <- paste(value * 100, "%")

}

gaugeProps <- c(list(value = value), options)

gaugeConfig <- shiny::tags$script(

type = "application/json", 

`data-for` = id, 

jsonlite::toJSON(

x = gaugeProps, 

auto_unbox = TRUE, 

json_verbatim = TRUE

)

)

shiny::tags$div(

class = "gauge", 

id = id, 

gaugeConfig

)

}

We provide a default for the valueText option that should display the current value followed by a % symbol. Note that the class is crucial to target the relevant tag on the JS side. All other widgets more or less follow the same scheme. Be careful about partial matching 3https://v5.framework7.io/docs/gauge.html

 25.3 Widgets without preexisting UI

409

with the $ operator. This is the reason why we used [[ instead: with $, valueText could be matched with valueTextColor, leading to unexpected behavior. 

25.2 Widgets without preexisting UI

There are few widgets like toasts and notifications that don’t have any predefined UI element when the app starts. In this case, we simply send the configuration to JS, through the session:

f7_notif <- function(

id = NULL, 

text, 

options = NULL, 

session = shiny::getDefaultReactiveDomain()

) {

if (!is.null(options$icon)) {

options$icon <- as.character(options$icon)

}

message <- c(

dropNulls(list(id = session$ns(id), text = text)), 

options

)

 # see my-app.js function

session$sendCustomMessage("notification", message)

}

Pay attention to the options$icon element. As we can’t convert Shiny tags to JSON, it must be converted to character first. If multiple parameters should contain tags, you must treat them accordingly. 

25.3 Initialize the widget

On the JS side, we create a new script, widgets.js:

library(charpente)

create_js("widgets")

We set an array containing all compatible widget names in two categories and concatenate in a widgets element:

const uiWidgets = ['gauge' , 'swiper' , 'searchbar']; const serverWidgets = ['toast' , 'photoBrowser' , 'notification']; const widgets = uiWidgets. concat(serverWidgets); Notice that as we are going to use the app object, we import them from the init.js script, located in the same ./srcjs folder. 

410

 25 Design widgets

We then define the activateWidget function, only considering UI widgets. 

const activateWidget = (widget) => {

 // function logic

}; 

Since we have two widgets categories, this function first checks whether the widget is part of the uiWidgets array with indexOf:

const activateWidget = (widget) => {

if (uiWidgets. indexOf(widget) > -1) {

 // Init widget

}

}; 

As there may be multiple widgets of the same type, we must loop through all possible elements. This is where the class is important and must match the widget generic name. 

For instance, the gauge has the gauge class, and the methods are always app.gauge.. How do we loop through multiple widgets? We use the jQuery each method: const activateWidget = (widget) => {

if (uiWidgets. indexOf(widget) > -1) {

$('.' + widget). each(function() {

 // Init widget

}

}

}; 

We see that $('.' + widget) gives $('.gauge') when the widget is a gauge, which targets all gauges one by one. Then for each gauge, we extract the configuration containing all options passed by the end user. Remember that each element has a unique id. We extract the current element $(this) in the $el variable and search for a script tag pointing to the unique tag having $el.attr('id') as id. The configuration is parsed and converted to an object. Note that most of the time, Framework7 expects to have el attributes which simply contain the CSS selector of the current element, in other words its unique id '#' +

$el.attr('id'):

let $el = $(this); 

let config = $(document). find(

'script[data-for="' + $el. attr('id') + '"]' 

); 

config = JSON. parse(config. html()); 

 // add the id

config. el = '#' + $el. attr('id'); The final step consists of initializing the widget, which is quite straightforward if we notice that app.gauge is the same as app["gauge"]. We obtain the general code: app[widget]. create(config); 

For the server widgets, it is even simpler. We recover the message with a Shiny.addCustomMessageHandler("type", callback) and initialize it. The only possible source of problem is the custom message type that must be the same as the one specified in the R function with session$sendCustomMessage("type", message). As shown in the below code, we can chain methods and immediately open the widget, right after

 25.4 Initialize the widget

411

its creation. Moreover, it is always good practice to let Shiny know about the widget state, that is whether it is currently opened. This is the reason why we added an on property to the message. All widgets trigger events4, for instance, notifications have the notification:opened and notification:closed. For each event, we set an input value on the fly, with Shiny.setInputValue as explained in section 12.3. This way, our future users can know exactly when the widget is closed or opened, thereby being able to trigger any subsequent action. This obviously requires the widget to pass an optional id attribute to ensure the uniqueness. 

 // Server widget logic

Shiny. addCustomMessageHandler(widget, function(message) {

if (message. id !== undefined) {

message. on = {

opened: function() {

Shiny. setInputValue(message. id, true); 

}, 

closed: function() {

Shiny. setInputValue(message. id, false); 

}

}; 

}

app[widget]. create(message). open(); 

}); 

We create an else statement following the if condition (handling the UI widgets) and put the server widget logic inside:

const activateWidget = (widget) => {

if (uiWidgets. indexOf(widget) > -1) {

 // UI widget logic

} else {

 // Server widget logic

}

}; 

The full JavaScript code may be found here5. 

The final step aims at activating all widgets. We proceed with a forEach loop:

 // Loop over all widgets to activate them

widgets. forEach(function(w) {

activateWidget(w); 

}); 

Let’s try below with a notification example, where we capture the state of the notification in an input element. This triggers another notification on the server side, in another observeEvent(). 

 ### RUN ###

 # OSUICode::run_example(

 #

 "shinyMobile/notification", 

 #

 package = "OSUICode" 

 # )

4https://v5.framework7.io/docs/notification.html#dom-events

5https://github.com/DivadNojnarg/outstanding-shiny-ui-code/blob/5bc49eab9496696a06da3f62d6

aaf8ef468cdad4/srcjs/widgets.js#L7

[image: Image 369]

[image: Image 370]

[image: Image 371]

412

 25 Design widgets

FIGURE 25.2: Notification widget (top). 

25.4 Update widgets

We would like to develop a similar generalized interface to update any element in the DOM. 

Instead of having a collection of function like update_f7_gauge() or update_f7_swiper(), we want a single update_f7_instance() function, which will be easier to maintain. 

We leverage the app.data element (see Chapter 23.5.6) to store all instances by widget type. Inside helper_config.js, we add a empty gauge array to config.data: config. data = function() {

return {

 // any other widget type to cache ... 

gauge: []

}; 

}; 

The array name must be the same as the app method. For instance, we have app.gauge, which means that we should create config.data.gauge and not config.data.gauges, as it would lead to errors later. 

 25.4 Update widgets

413

Once the cache is available, we have to modify the JavaScript, which creates the widget instance, to store the new instance in the cache, as shown Figure 25.3. We add the following code, where w refers to the widget instance:

 // ui widgets

app. data[widget][$el. attr('id')] = w; 

� This manipulation does not make sense for server widgets as they are already generated by the server. 

The activateWidget function should be:

 // Instantiate a widget

const activateWidget = (widget) => {

 // Handle ui side widgets

if (uiWidgets. indexOf(widget) > -1) {

$('.' + widget). each(function() {

 // unchanged

 // feed the create method

let w = app[widget]. create(config); 

 // Store the widget instance in the app data cache

app. data[widget][$el. attr('id')] = w; 

}); 

} else {

 // Server widgets logic

 // Unchanged

}

}; 

Once done, this is time to design update_f7_instance(). The R code sends a message to the current session containing:

• The id of the element to update. 

• The new configuration. 

Since we send a JSON, the hardest part is to correctly process shiny tags. How do we track shiny tags? As a reminder, let’s run the code below:

class(shiny::div())

#> [1] "shiny.tag" 

class(shiny::tagList(shiny::div(), shiny::h1()))

#> [1] "shiny.tag.list" "list" 

For each configuration element, we must check whether its class contains shiny.tag or shiny.tag.list and convert it to a character. Moreover, it may contain a nested list, like this:

414

 25 Design widgets

options = list(

buttons = list(

list(

text = "Some text", 

icon = f7Icon("info"), 

color = "pink" 

)

)

)

In that case, our function must be recursive to handle any item having the list class. If the element is simple text or numeric, we return it as is. 

We finally get:

update_f7_instance <- function(

id, 

options, 

session = shiny::getDefaultReactiveDomain()

) {

 # Convert any shiny tag into character so that toJSON

 # does not cry

listRenderTags <- function(l) {

lapply(

X = l, 

function(x) {

if (inherits(x, c("shiny.tag", "shiny.tag.list"))) {

as.character(x)

} else if (inherits(x, "list")) {

 # Recursive part

listRenderTags(x)

} else {

x

}

}

)

}

options <- listRenderTags(options)

message <- list(id = session$ns(id), options = options)

session$sendCustomMessage("update-instance", message)

}

On the JS side, we receive the message, still in the widget.js script: Shiny. addCustomMessageHandler(

'update-instance' , 

function(message) {

 // Treat message ... 

}

); 

All widgets are stored by type in the app data, for instance, the element having a unique id mygauge is located in app.data['gauge']['mygauge']. As there is no easy way to recover the widget type given its id, the first step of the message handler is to find where our instance is located. We design a nested for loop. The outer loop scans all app.data properties (i.e. widget categories), while the inner loop scans all existing instances for each category. 

Whenever, the message.id matches the instance name, we store the corresponding widget category in a variable:

 25.4 Update widgets

415

let instanceFamily; 

for (const property in app. data) {

for (const e in app. data[property]) {

if (e === message. id) {

instanceFamily = property; 

}

}

}

We then access the old instance using the newly defined variable and the message.id. We capture its parameters located in oldInstance.params. From there, multiple options are available:

• We extend the old configuration with the new one. 

• We entirely overwrite the existing options. 

In what follows, we decided to merge the old and new configurations using app.utils.extend:

let oldInstance = app. data[instanceFamily][message. id]; let oldConfig = oldInstance. params; 

let newConfig = app. utils. extend(oldConfig, message. options); 

The next steps consist of destroying the old instance, initializing the new instance, and refreshing the app.data cache:

 // Destroy old instance

oldInstance. destroy(); 

 // Create new config

let newInstance = app[instanceFamily]. create(newConfig); 

 // Update app data

app. data[instanceFamily][message. id] = newInstance; The whole code can be found here6. The update concept is illustrated Figure 25.3. 

The code below is an example showing how to update a gauge from the server (Figure

25.4). As you may notice, this approach is not perfect as the user has to explicitly update the valueText field so that it reflects the new value. Similarly, you may ask why the gauge value has to be between 0 and 1, instead of 0 and 100. The reason comes from the Framework7 API. You might be tempted to convert the value inside f7_gauge() (so that the user only provides a number between 0 and 100), but this would also mean having to manually convert the value in the update_f7_instance() function later. As stated in previous chapters, there is always a compromise between a simple API that is easy for the developer to maintain and the user’s experience. This issue may/should be solved with comprehensive documentation. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "shinyMobile/update-gauge", 

 #

 package = "OSUICode" 

 # )

6https://github.com/DivadNojnarg/outstanding-shiny-ui-code/blob/5bc49eab9496696a06da3f62d6

aaf8ef468cdad4/srcjs/widgets.js#L55

[image: Image 372]

[image: Image 373]

[image: Image 374]

[image: Image 375]

416

 25 Design widgets

FIGURE 25.3: Initializing and updating widgets in the app.data store. 

FIGURE 25.4: Update gauge on the server side. We inspect app.data.gauge within the JS console. 

 25.5 More complex elements

417

� If you don’t see the Install button, copy over the www folder from your PWA app. 

25.5 More complex elements

We consider the tooltip example7. A tooltip is a help text generally displayed on hover (or click) over a specific element. They are commonly used to improve user experience in all websites. Framework7 provides two tooltips APIs:

• A purely-UI side API where the tooltip is attached to a tag. 

• A server-side API where the tooltip is dynamically injected in the page content. 

While the first approach is obviously not interesting for us since it does not involve a single line of JS, the second approach heavily relies on the app.data object. This is the one we choose to study. 

25.5.1 Add a tooltip

In the following, we design the add_f7_tooltip() function that may be added right after the existing gauge and notification widgets. Since a tooltip is attached to a DOM element, add_f7_tooltip() must provide parameters to identify its target, that is either id or CSS

selector, but not both. Therefore, we create a helper function, validate_selector(), that checks if the end user provides id or selector. 

validate_selector <- function(id, selector) {

if (!is.null(id) && !is.null(selector)) {

stop("Please choose either target or selector!")

}

}

%OR% ensures that we return a if not NULL otherwise b. 

"%OR%" <- function(a, b) if (!is.null(a)) a else b add_f7_tooltip() sends the tooltip target, as well a list of options to JS with the add_tooltip identifier. 

add_f7_tooltip <- function(

id = NULL, 

selector = NULL, 

options, 

session = shiny::getDefaultReactiveDomain()

) {

 # We use already defined popover functions

validate_selector(id, selector)

7https://v5.framework7.io/docs/tooltip.html

418

 25 Design widgets

if (!is.null(id)) id <- paste0("#", session$ns(id)) options$targetEl <- id %OR% selector

session$sendCustomMessage("add_tooltip", options)

}

On the JS side within widgets.js, we recover the message by building a custom message handler with Shiny.addCustomMessageHandler pointing to add_tooltip. Again, if there is a mismatch between R and JS type, the API won’t work. Like all Framework7 widgets, creating a tooltip is rather straightforward:

Shiny. addCustomMessageHandler('add_tooltip' , function(message) {

app. tooltip. create(message). show(); 

}); 

As mentioned earlier, this syntax is fine since message is a JSON element and we can also chain methods. There is however a problem: add_tooltip is fired each time the user triggers a specific element on the R side. It means the tooltip instance is created each time, which is not optimal. To fix this issue, we set a tooltips cache in the app.data object and accordingly modify helpers_config.js:

config. data = function() {

return {

gauge: [], 

tooltips: []

}; 

}; 

We update the previous custom handler so that we:

• Check if the tooltip instance is already in the cached app.data before creating an instance. 

If is is already there, nothing has to be done. 

• Each time we create a new instance, we save it in the app.data cache to retrieve it later. 

Shiny. addCustomMessageHandler('add_tooltip' , function(message) {

 // We store all created instances in app data so that we don't

 // recreate them later if they exist ... 

if (app. data. tooltips[message. targetEl] === undefined) {

 // create instance

let t = app. tooltip. create(message); 

 // Open tooltip

t. show(); 

 // Storage in app data (tooltips array)

app. data. tooltips[message. targetEl] = t; 

}

}); 

We store the current instance with app.data.tooltips[message.targetEl] = t;. The reference is given by message.targetEl that is the target to apply the tooltip on. When multiple tooltips are created, we may search for them by target name, which is a reasonable choice. For instance, app.data.tooltips["#mybutton"] points to the tooltip associated with the element having #mybutton as id. So far so good! 

[image: Image 376]

 25.5 More complex elements

419

 ### RUN ###

 # OSUICode::run_example(

 #

 "shinyMobile/add-tooltip", 

 #

 package = "OSUICode" 

 # )

FIGURE 25.5: Create a tooltip on the server and attach it to a DOM element. 

25.5.2 Update a tooltip

Framework7 does not provide any native enable/disable method, which means that once the tooltip is activated on a given element, it is visible forever (Figure 25.5), unless destroyed. 

The main purpose of update_f7_tooltip() is to avoid this, by temporarily disabling any tooltip and reactivating it later. Like for add_f7_tooltip(), we may target either by id or provide a more complex CSS selector. We support two actions: toggle the tooltip (enable/disable) and update, that is, change data like the displayed text. 

update_f7_tooltip <- function(

id = NULL, 

selector = NULL, 

action = c("toggle", "update"), 

text = NULL, 

session = shiny::getDefaultReactiveDomain()

) {

validate_selector(id, selector)

if (!is.null(id)) id <- paste0("#", session$ns(id)) targetEl <- id %OR% selector

message <- dropNulls(

list(

targetEl = targetEl, 

action = action, 

text = text

)

)

session$sendCustomMessage("update_tooltip", message)

}

420

 25 Design widgets

update_f_tooltip() sends three elements to JS, namely the tooltip target element message.targetEl, the optional new text, that is message.text and the action to perform message.action (either update or toggle state). 

The corresponding JS handler:

• Checks if the specified tooltip instance exists and only update if it is the case. 

• Handles two situations: updating the tooltip content or toggling the tooltip visibility. It is actually more than just showing/hiding the tooltip. Remember that each tooltip is shown on hover so applying hide on a visible tooltip will only have effect until the user hovers again over the same tooltip, which is useless. 

In widgets.js, right after the add_tooltip handler, we add the update logic, that consists in changing the text:

Shiny. addCustomMessageHandler(

'update_tooltip' , function(message) {

 // Don't do anything if the instance is not there in app data if (app. data. tooltips[message. targetEl] !== undefined) {

let t = app. data. tooltips[message. targetEl]; if (message. action === 'update') {

t. setText(message. text); 

}

}

}); 

The

corresponding

tooltip

instance

is

accessed

in

app.data

with

app.data.tooltips[message.targetEl] and stored in a local variable, t. We apply the Framework7 tooltip method8 setText only if the user action corresponds to update. 

The next step is to handle the toggle case. We check whether the current instance is active, applying the app.tooltip.get method on message.targetEl. If the instance is alive, we get an object, while we obtain undefined if it does not exist. We then call the app.tooltip.destroy method on the current instance:

Shiny. addCustomMessageHandler(

'update_tooltip' , function(message) {

 // Don't do anything if the instance is not there in app data if (app. data. tooltips[message. targetEl] !== undefined) {

let t = app. tooltip. get(message. targetEl); if (message. action === 'update') {

t. setText(message. text); 

} else if (message. action === 'toggle') {

 // destroy

if (t) {

t. destroy(); 

}

}

}

}); 

Wait a moment … There are two issues with this code. As t is a variable pointing to the current instance, if we destroy that instance, t will point to a destroyed element the next time it is called, and any action like setText will raise an error. The trick is to create a shallow clone with Object.assign that won’t be affected by the destroy method, save the 8https://v5.framework7.io/docs/tooltip.html#tooltip-app-methods

 25.5 More complex elements

421

shallow clone in the app.data cache and destroy the old instance. Therefore, we update the tooltips.js script:

Shiny. addCustomMessageHandler(

'update_tooltip' , function(message) {

if (app. data. tooltips[message. targetEl] !== undefined) {

 // Try to get the instance

let t = app. tooltip. get(message. targetEl); if (message. action === 'update') {

if (t) {

t. setText(message. text); 

}

} else if (message. action === 'toggle') {

if (t) {

 // create copy that won't be modified if

 // t is destroyed! 

let cachedTooltip = Object. assign({}, t); 

 // save copy to replace the deleted one in the app data

app. data. tooltips[message. targetEl] = cachedTooltip; 

 // destroy current instance

t. destroy(); 

}

}

}

}); 

We also check whether the instance is alive before updating it. We are still missing the re-activation step that consists in rebuilding the tooltip instance based on the cached data app.data.tooltips[message.targetEl] previously saved. All parameters are contained in the params object (instance element):

 // Capture parameters

let pars = app. data. tooltips[message. targetEl]. params; 

 // Recreate the tooltip based on the copy configuration

t = app. tooltip. create(pars); 

 // Replace the app data instance

app. data. tooltips[message. targetEl] = t; The final JS code is:

Shiny. addCustomMessageHandler(

'update_tooltip' , function(message) {

if (app. data. tooltips[message. targetEl] !== undefined) {

 // Unchanged

if (message. action === 'update') {

 // Unchanged

} else if (message. action === 'toggle') {

if (t) {

 // Unchanged

} else {

 // Capture parameters

let pars = app. data. tooltips[message. targetEl]. params; 

 // Recreate the tooltip based on the copy configuration

t = app. tooltip. create(pars); 

 // Replace the app data instance

app. data. tooltips[message. targetEl] = t; 

}

}

}

}); 

422

 25 Design widgets

You may find an example below. 

 ### RUN ###

 # OSUICode::run_example(

 #

 "shinyMobile/update-tooltip", 

 #

 package = "OSUICode" 

 # )

[image: Image 377]

26

Fine-tune {shinyMobile}

26.1 Enhance the disconnect screen

As depicted in Figure 26.1, having the classic Shiny disconnect screen in a mobile device is not that beautiful, especially knowing about all the Framework7 capabilities. 

FIGURE 26.1: Vanilla Shiny disconnect screen. 

Let’s do better! Upon disconnection, we want to display a toast with two buttons:

• A reload button that reloads the window and re-initializes the app. This button calls location.reload() upon click. 

• A reconnect button, that tries to reconnect with the server websocket, so that we don’t lose any input, output elements. This button calls Shiny.shinyapp.reconnect() upon click. 

423

424

 26 Fine-tune {shinyMobile}

How do we know when shiny is disconnected? As described in Chapter 11, whenever the client socket connection is closed, for any reason, the shiny:disconnected event1 is raised: socket. onclose = function() {

 // These things are needed only if we've successfully

 // opened the websocket. 

if (hasOpened) {

$(document). trigger({

type: 'shiny:disconnected' , 

socket: socket

}); 

self. $notifyDisconnected(); 

}

self. onDisconnected();  // run before self.$removeSocket() self. $removeSocket(); 

}

This allows us to listen to that event on the JS side:

$(document). on('shiny:disconnected' , function(event) {

 // Do things

}); 

In the next step, we to remove the default Shiny reconnect elements. They are inserted by the onDisconnected method, which adds a disconnect overlay (gray-out screen) and optionally a reconnect notification:

 // From within Shiny.shinyapp... 

this. onDisconnected = function() {

 // Add gray-out overlay, if not already present

var $overlay = $('#shiny-disconnected-overlay'); if ($overlay. length === 0) {

$(document. body)

. append('<div id="shiny-disconnected-overlay"></div>'); 

}

 // To try a reconnect, both the app (this.$allowReconnect)

 // and the server (this.$socket.allowReconnect) must allow

 // reconnections, or session$allowReconnect("force") was

 // called. The "force" option should only be used for

 // testing. 

if (

(this. $allowReconnect === true && 

this. $socket. allowReconnect === true) ||

this. $allowReconnect === 'force')

{

var delay = reconnectDelay. next(); 

exports. showReconnectDialog(delay); 

this. $scheduleReconnect(delay); 

}

}

To remove default shiny reconnect elements, there are multiple alternatives. The easiest way is to wait for the client to be connected, that is listening to shiny:connected, and set the Shiny.shinyapp.onDisconnected method to only add the gray overlay. 

1https://shiny.rstudio.com/articles/js-events.html

 26.1 Enhance the disconnect screen

425

� Before modifying any vanilla shiny elements, make sure to check all the possible side effects. 

 // remove shiny reconnect stuff; 

$(document). on('shiny:connected' , function(event) {

Shiny. shinyapp. onDisconnected = function() {

 // Add gray-out overlay, if not already present

let $overlay = $('#shiny-disconnected-overlay'); if ($overlay. length === 0) {

$(document. body)

. append('<div id="shiny-disconnected-overlay"></div>'); 

}

}; 

}); 

We edit the previous disconnected event listener to add a custom Framework7 toast, which closes upon click:

$(document). on('shiny:disconnected' , function(event) {

let reconnectToast = app. toast

. create({

position: 'center' , 

text:

Òups... disconnected </br> </br> 

<div class="row"> 

<button

onclick="Shiny.shinyapp.reconnect();" 

class="toast-button button color-green col"> 

Reconnect

</button> 

<button

onclick="location.reload();" 

class="toast-button button color-red col"> 

Reload

</button> 

</div>`

})

. open(); 

 // close toast whenever a choice is made ... 

$('.toast-button'). on('click' , function() {

reconnectToast. close(); 

}); 

}); 

The result is shown in Figure 26.2. 

The above JS code ignores the user reconnect setup2 and proposes reconnecting regardless of the session$allowReconnect configuration. If you want to keep the original behavior, you may include the following condition before showing the toast: if (

(Shiny. shinyapp. $allowReconnect === true && Shiny. shinyapp. $socket. allowReconnect === true) ||

Shiny. shinyapp. $allowReconnect === 'force') {

 // Toast logic

}

2https://shiny.rstudio.com/articles/reconnecting.html

[image: Image 378]

426

 26 Fine-tune {shinyMobile}

FIGURE 26.2: Vanilla Shiny disconnect screen. 

Going further

[image: Image 379]

[image: Image 380]

[image: Image 381]

[image: Image 382]

27

Shiny and React with {reactR}

React1 is an open-source library designed to quickly develop user interfaces or UI components, on the front end. It has been developed by Facebook2 and the community (more than 1500 contributors) and made public in May 2013. It is currently used worldwide and has around 163 k stars on the GitHub ranking and widely impacts the mobile market, through the React Native3 library. React is also really convenient to develop attractive documentations with docusaurus4. If you ever have built user interfaces with pure JS, you might like React! 

Below, we give a short introduction to the React ecosystem and see how we can benefit from it from the R Shiny side. By the end of this chapter, you’ll be able to develop R interfaces to some nice React libraries like the Argon design system5, shown Figure 27.1. 

FIGURE 27.1: Argon design template with React. 

1https://reactjs.org/

2https://github.com/facebook/react

3https://reactnative.dev/

4https://v2.docusaurus.io/

5https://demos.creative-tim.com/argon-design-system-react/?_ga=2.179634850.760978196.1612

189904-282783983.1612189904#/

429

430

 27 Shiny and React with {reactR}

As another example, {reactable} is an HTML widget developed on top of the react-table6 library. 

27.1 Quick introduction to React

To understand React, there are few prerequisites, notably basic HTML/CSS/JS knowledge, especially JS modules (see section 10.4.6.1). However, if you managed to reach this chapter, you should not worry too much. 

27.1.1 Setup

Node and npm are required. If you are not sure, run: node -v

npm -v

At that stage it is also good to have yarn7, as we’ll need it for {reactR}. 

If nothing is returned, please refer to section 10.3.1. To initiate a React project8, we leverage the npx9 command:

npx create-react-app <PROJECT_NAME> 

Replace <PROJECT_NAME> by the real name of your project. If this seems intimidating, keep in mind this is the same concept that the {golem} package10 uses to initiate the creation of robust Shiny projects, except that we work from the terminal. 

Once done (the package initialization takes some time), move to the project folder and launch the demo app:

cd <PROJECT_NAME> && npm start

If you have yarn, yarn start also works. 

You should see something similar to Figure 27.2. 

Congrats! You are running your first React app. 

6https://github.com/tannerlinsley/react-table

7https://classic.yarnpkg.com/en/docs/install#mac-stable

8https://create-react-app.dev/

9https://docs.npmjs.com/cli/v7/commands/npx

10https://github.com/ThinkR-open/golem

[image: Image 383]

[image: Image 384]

[image: Image 385]

 27.1 Quick introduction to React

431

FIGURE 27.2: npm start opens the React app. 

27.1.2 Basics

We are now all set up to start learning the basics of React. Among all created files, notice the /src/app.js file. Inside the App function, we remove all the content inside the return statement to put a simple <h1>Hello, world!</h1> HTML title. We also clean the imports as we don’t need any CSS and logo anymore. We obtain:

function App() {

return (

<h1> Hello, world! </h1> 

); 

}

 // don't remove, this is needed by index.js

export default App; 

Once done, we run npm build (or yarn build), to rebuild the JS code and npm start to restart the server and preview the app. In practice, once the server is launched, there is no need to restart it whenever the code is updated. A simple save will refresh the interface! 

The code you see above is a React component. The definition is rather simple: it is a function that returns a rather complex piece of UI. How are components rendered by React? 

So far, we didn’t have a look at the /src/index.js script. Inside we find: ReactDOM. render(

App, 

document. getElementById('root')

); 

� Recent versions of npx create-react-app have <React.StrictMode><App

/></React.StrictMode> instead of App, which does the same thing. You may also find <App />. In practice, we rarely modify this part. 

In short, this inserts the App component inside the element having root as id in the main HTML page. This HTML skeleton may be found in the public/index.html folder. You may imagine that at the end of the day, our app will be composed of multiple bricks and call ReactDOM.render on the top-level component. 

432

 27 Shiny and React with {reactR}

27.1.2.1 About JSX

We just wrote our first React component. Didn’t you notice something weird in that code? 

JS and HTML are mixed, in what we called JSX, that is a syntax extension to JS. JSX

makes the code less verbose, for instance:

React. createElement(

'h1' , 

'Hello, world!' 

); 

does exactly the same thing as above but when the code becomes more complex, it is nearly impossible to read. 

Let’s see how to pass variables into JSX. We want to show Hello, <Your Name>, we store the name in a variable and modify the app.js code accordingly:

function App() {

const name = 'David' ; 

return (

<h1> Hello, {name}</h1> 

); 

}

Expressions are passed within curly brackets {expression} and you may even call functions inside. Tag attributes also require curly brackets. Let’s modify the title tag to give it a color and a size. 

function App() {

const name = 'David' ; 

return (

<h1 style={color: 'red' , fontSize: 40}> Hello, {name}</h1> 

); 

}

Try to save. Why does this fail? We can’t pass multiple object properties inside a single {}. 

We need either double brackets like {{object properties: values, ...}} or to store the object in a variable before:

function App() {

const name = 'David' ; 

return (

<h1 style={{color: 'red' , fontSize: 40}}> Hello, {name}</h1> 

); 

}

 // OR

function App() {

const name = 'David' ; 

const myStyle = {

color: 'red' , 

fontSize: 40

}

return (

<h1 style={myStyle}> Hello, {name}</h1> 

); 

}

Notice that we write CSS properties following the camelCase syntax, font-size being equivalent to fontSize. 

 27.1 Quick introduction to React

433

27.1.2.2 Combining components

The whole interest is to combine multiple components to create reusable pieces. We edit the above code to create a SayHello component. Notice the props parameter. It is a way to pass configuration from the parent component. In that case, we want to display the person name, that is props.name. In the meantime, we edit the App parent component and call SayHello three times, passing a different name like <SayHello name="David" /> (this is the reason why we recover props.name in the lower-level component): function SayHello(props) {

return (

<h1> Hello, {props. name}</h1> 

); 

}

function App() {

return(

<> 

<SayHello name="David" /> 

<SayHello name="Lisa" /> 

<SayHello name="Simon" /> 

</> 

); 

}

� Notice the enclosing <>...</>. This is called a React fragment and useful if we don’t want to insert any extra <div> in the DOM. 

We could be even more efficient by leveraging the lists capabilities. We create an array of names and apply the map method to return the corresponding <SayHello /> sub-component:

const names = ['David' , 'Lisa' , 'Simon']; function App() {

const sayHelloToAll = names. map(

(name) => <SayHello key={name} name={name} /> 

); 

return(sayHelloToAll); 

}

� By convention, all elements inside a map require keys. 

Props are read-only and must not be modified within their own component. How do we update components then? 

27.1.2.3 Component state

A component state is private and controlled by this same component. Since React 16.8

and the introduction of hooks, this is not necessary to convert the component function

434

 27 Shiny and React with {reactR}

to a class11. The easiest example to illustrate hooks capabilities is the button. Each time, we click on a button, we want to keep the current number of clicks in a state, like the actionButton(). We start by importing the useState function from react and create a new ActionButton component. Inside, we set the state with useState, which creates the state variable count, as well as the function to update it, namely setCount. This way to create two variables at once is called array destructuring. We set the initial number of counts to 0:

import {useState} from 'react' ; 

function ActionButton() {

const [count, setCount] = useState(0); 

}

Next step is to create the button skeleton. We provide an onClick property that updates the button state. Inside, we write an anonymous function, which calls setCount and increments the count value by 1. At this point, you may replace the app.js content by: import {useState} from 'react' ; 

function ActionButton() {

const [count, setCount] = useState(0); 

return(

<button onClick={() => setCount(count + 1)}> Number of clicks: {count}

</button > 

); 

}

function App() {

return (

<ActionButton /> 

); 

}

export default App; 

We may improve the previous app and add a reset button within the ActionButton component that sets the count back to 0:

function ActionButton() {

const [count, setCount] = useState(0); 

return(

<> 

<button onClick={() => setCount(count + 1)}> Number of clicks: {count}

</button > 

<button onClick={() => setCount(0)}> Reset

</button > 

</> 

); 

}

It would make more sense to only show the reset button once the button has been clicked at least once. We define the isResetVisible variable which is true whenever the count is higher than 0 and false if the count is 0, leveraging the JS ternary operator. We store the reset button in a variable and only return something if isResetVisible is true: 11https://reactjs.org/docs/components-and-props.html#function-and-class-components

 27.2 Introduction to {reactR}

435

function ActionButton() {

const [count, setCount] = useState(0); 

const isResetVisible = count > 0 ? true : false; let resetButton; 

if (isResetVisible) {

resetButton = <button onClick={() => setCount(0)}> Reset

</button > 

}

return (

<> 

<button onClick={() => setCount(count + 1)}> Number of clicks: {count}

</button > 

{resetButton}

</> 

); 

}

That’s all folks! Now that you get a better understanding of how React works, let’s see how to use it with Shiny. 

27.2 Introduction to {reactR}

� This section has been written and tested with {reactR} 0.4.4. Some features may change in future releases. 

In this part, we see how to leverage {reactR} (Inc et al., 2021) to bring a few component from the reactstrap library12 to Shiny. 

To install {reactR}:

 # stable from CRAN

install.packages("reactR")

 # lastest from GitHub

remotes::install_github("react-R/reactR")

In the following, we are going to propose an implementation of the reactstrap button, which is a Bootstrap 4 and React-powered action button. 

27.2.1 Setup

{reactR} exposes the scaffoldReactShinyInput(), which sets the necessary pieces of code to get started with the input development (see Figure 27.3):

• An <input_name>.R file containing the input skeleton as well as its related update function, located in the ./R folder. It also creates a custom HTML dependency pointing to the input JS logic. 

12https://reactstrap.github.io/

[image: Image 386]

[image: Image 387]

[image: Image 388]

436

 27 Shiny and React with {reactR}

• A jsx file with a boilerplate to start developing the input JS logic, located in the ./srcjs folder. 

• A package.json file containing dependencies. 

• An app.R file to host the input demonstration code. 

• A webpack.config.js file (discussed later). 

• Classic R package files like DESCRIPTION, .Rbuildignore… Interestingly, the

.Rbuildignore contains a few lines to ignore non-standard files and folders like srcjs and package.json. 

Besides, providing an optional dependency with a name and version taken from npm installs all necessary dependencies in the package.json file:

path <- file.path(tempdir(), "reactstrapTest")

usethis::create_package(path, rstudio = TRUE)

 # Wait new project to be created before running

 # the following!!! 

reactR::scaffoldReactShinyInput(

"action_button", 

list(

"reactstrap" = "^8.9.0" 

)

)

FIGURE 27.3: Package initialization with reactR. 

Note that {reactR} provides webpack as JS code manager. To build the JS code, we go to the RStudio terminal tab (or any terminal) and run at the package root: yarn install

yarn run webpack --mode=development

 27.2 Introduction to {reactR}

437

This installs all dependencies listed in the package.json file and creates a package-lock.json file. If you ever used {renv}, this is very similar and guarantees isolation of your package. All dependencies are stored in the node_modules folder. 

The run webpack command compiles the JS in production-ready code. Should you need to customize the build pipeline, the webpack configuration is located in webpack.config.js. 

On the R side, the generated JS file is referenced in HTML dependencies, located in the

<input_name>.R file. If you specify the --mode=development tag, it falls back to development code. 

In the following, we see how to customize the newly created component. 

27.2.2 Customize the R logic

A {reactR} input is composed of R and JS code that both exchange information. Upon initialization, we obtained a .R/action_button.R code:

action_buttonInput <- function(inputId, default = "") {

reactR::createReactShinyInput(

inputId, 

"action_button", 

htmltools::htmlDependency(

name = "action_button-input", 

version = "1.0.0", 

src = "www/reactstrapTest/action_button", 

package = "reactstrapTest", 

script = "action_button.js" 

), 

default, 

list(), 

htmltools::tags$span

)

}

For convenience, we remove the input suffix to name it action_button. Overall, this function calls reactR::createReactShinyInput() that:

• Gives the widget a class and id. The class is targeted on the JS side (see 27.2.3) and is necessary to make it working. 

• Sets all necessary dependencies (React, …), as well as the internal JS code (see section

27.2.3). 

• Creates the input HTML code with {htmltools}. 

• Sets the default value, through the default parameter. 

• Allows passing a list of options inside the list() container. By default, nothing is sent but we will use it very soon. 

We also have the corresponding update input function, which we renamed to update_action_button() for consistency:

update_action_button <- function(session, inputId, value, configuration = NULL) {

message <- list(value = value)

if (!is.null(configuration)) {

message$configuration <- configuration

}

session$sendInputMessage(inputId, message); 

}

438

 27 Shiny and React with {reactR}

In Shiny, the end user cannot decide what is the initial value of an action button. It is always set to 0 by default. Therefore, we decided to remove the default parameter from action_button() and make it 0 by default. In order to add a label and change the button color, we introduce two extra parameters and add them to the configuration list: action_button <- function(

inputId, 

label, 

status = "primary" 

) {

reactR::createReactShinyInput(

 # ... unchanged ... 

default = 0, 

configuration = list(

label = label, 

status = status

), 

htmltools::tags$div

)

}

Let’s see below how to make this interactive with some JSX code. 

27.2.3 Implement the JS logic

It’s time to develop the logic. For now, the action_button.jsx file only contains a placeholder generated by {reactR}. The reactstrap documentation provides a boilerplate13, which we slightly modified, according to the {reactR} documentation: import { reactShinyInput } from 'reactR' ; 

import { Button } from 'reactstrap' ; 

function ActionButton() {

return (

<Button

color="primary"> 

</Button> 

); 

}

reactShinyInput(

'.action_button' , 

'reactstrapTest.action_button' , 

ActionButton

); 

As you can see, we need to import the Button component from reactstrap as well as the reactShinyInput function from the {reactR} package. To generate our JS code, we recompile with yarn run webpack, document and reload the package functions: devtools::document()

devtools::load_all()

In the ./app.R script, we have to tell Shiny we want to use Bootstrap 4 instead of Bootstrap 3, through the bslib::bs_theme function. Erase the existing code and replace it by the following:

13https://reactstrap.github.io/components/buttons/

[image: Image 389]

 27.2 Introduction to {reactR}

439

 ### RUN ###

 # OSUICode::run_example(

 #

 "demo-button", 

 #

 package = "reactstrapTest" 

 # )

As you can see Figure 27.4, the button label is not displayed nor its value. This is because we missed to leverage the component arguments that are configuration, value, setValue, making the link between R and JS. 

FIGURE 27.4: Work-in-progress action button with React. 

27.2.4 Improve the JS logic

We modify the action_button.jsx code to add those three parameters to the ActionButton component:

function ActionButton({ configuration, value, setValue }) {

return (

<Button

color={configuration. status}

onClick={() => setValue(value + 1)}> 

{configuration. label}

</Button> 

); 

}

Remember that configuration is an R list and sent to JS as a JSON object with reactR::createReactShinyInput(). On the JS side, we access its properties with configuration.<PROPERTY>. value is the current button value, which is 0 when the app is started. 

How do we update the button value upon click? Well, this is pretty straightforward. The Button element has an onClick property14 inside which we can pass the setValue function and increment it by 1 (setValue is an internal hook, see section 27.1.2.3). 

In

the

below

example, 

we

update

a

button

from

the

server

side

with

update_action_button():

 ### RUN ###

 # OSUICode::run_example(

 #

 "demo-update-button", 

 #

 package = "reactstrapTest" 

 # )

14https://reactstrap.github.io/components/buttons/

[image: Image 390]

440

 27 Shiny and React with {reactR}

Clicking on the first button should increment its value in the R console. You may play around by changing the default color. After clicking on the second button, you should get the result shown Figure 27.5. 

FIGURE 27.5: Fully working React-powered action button. 

27.2.5 Exercise 1

Based on the previous example and the reactstrap documentation, improve the action button component:

1. Add it a size style parameter. 

2. Add it a disabled parameter. 

3. Add it an outline style parameter. 

27.2.6 Technical considerations

Under the hood, the JS reactShinyInput function provides a wrapper to automatically bind the input element. This is convenient as it allows you to solely focus on the component logic rather than binding it to the shiny system. It takes three parameters:

• The element class, which is obtained from the R side by createReactShinyInput(). 

• The

input

binding

name, 

which

is

useful

to

storing

a

reference


in

the

Shiny.InputBindings

registry. 

Recent

versions

of

{reactR}

use

<PACKAGE_NAME>.<INPUT_NAME> as convention, which avoids conflicts between inputs belonging to two different packages. 

• The React component function. 

• There is an optional fourth parameter allowing you to pass custom options like rate policies15. 

Overall, reactShinyInput16 extends the Shiny.InputBinding class by providing extra methods like:

15https://github.com/react-R/reactR/blob/7dccb68a0989cf642d4a5a3eb90b59d1ae773002/srcjs/inp

ut.js#L137

16https://github.com/react-R/reactR/blob/7dccb68a0989cf642d4a5a3eb90b59d1ae773002/srcjs/inp

ut.js#L72

 27.2 Introduction to {reactR}

441

getInputConfiguration(el) {

return $(el). data('configuration'); 

}

setInputConfiguration(el, configuration) {

$(el). data('configuration' , configuration); 

}

getInputConfiguration and setInputConfiguration, respectively, get and set the user-provided configuration, passed in the createReactShinyInput() R side function. Under the hood (in addition to the {reactR}, React, ReactTools HTML dependencies and any user-defined custom dependencies), createReactShinyInput() generates three tag elements:

• The first tag is the element placeholder containing the unique id. React will insert the component inside this target with ReactDOM.render. 

• The second tag is a script containing the value passed as JSON. 

• The second tag is a script containing the configuration, also passed as JSON. 

library(shiny)

reactR::createReactShinyInput(

inputId = "plop", 

class = "myinput", 

dependencies = htmltools::findDependencies(icon("bicycle")), default = 0, 

configuration = list(a = 1, b = "test"), 

container = div

)

#> <div id="plop" class="myinput"></div> 

#> <script id="plop_value" type="application/json">0</script> 

#> <script

#> 

id="plop_configuration" 

#> 

type="application/json">{"a":1,"b":"test"}

#> </script> 

The configuration and values are processed in the initialize method since it is called before the input is bound:

 // Within reactR's initialize method... 

$(el). data('value' , JSON. parse($(el). next(). text())); $(el). data(

'configuration' , 

JSON. parse($(el). next(). next(). text())

); 

The configuration and values are stored in the corresponding data attributes. The most important part is the render method, which creates the React element based upon its configuration and value and renders it in the DOM:

 // reactR's render method

render(el) {

const element = React. createElement(component, {

configuration: this. getInputConfiguration(el), 

value: this. getValue(el), 

setValue: this. setValue. bind(this, el), el: el

}); 

ReactDOM. render(element, el); 

}

The render method is called once inside subscribe and also each time the element is updated with receiveMessage. 

442

 27 Shiny and React with {reactR}

27.2.7 Exercise 2

1. Add an icon (from Font Awesome) parameter to the ActionButton component. Hint: You might find it helpful to capture its HTML dependency with htmltools::findDependencies(iconTag) so as to properly render it. In HTML icon("bicycle") produces <i class="fa fa-bicycle" 

role="presentation" aria-label="bicycle icon"></i>. However, in React we want <i className="fa fa-bicycle />. Therefore, you will have to extract the icon class and send it to JS in the configuration list. 

2. Implement the logic on the JS side. Hint: you may use the code in appendix

A.3.1.1. 

3. Try your code inside a Shiny app. 

27.2.8 Add another input

27.2.8.1 Button group input

In this section, we design a radio input consisting of multiple buttons displayed side by side. 

The corresponding widget has a label and must show the currently selected value. 

We initialized the input elements with:

reactR::scaffoldReactShinyInput("button_group")

As shown previously, this creates ./srcjs/button_group.jsx and .R/button_group.R. 

The button_group() function has four parameters, the most critical being choices. We expect the user to pass a vector like names(mtcars), and we selected the first choice by default. We might add a selected parameter but leave this for the reader as a simple exercise. The function is defined below:

button_group <- function(

inputId, 

label, 

choices, 

status = "primary" 

) {

reactR::createReactShinyInput(

inputId, 

"button_group", 

htmltools::htmlDependency(

name = "button_group-input", 

version = "1.0.0", 

src = "www/reactstrapTest", 

package = "reactstrapTest", 

script = "button_group.js" 

), 

default = choices[1], 

configuration = list(

label = label, 

choices = choices, 

status = status

), 

htmltools::tags$div

)

}

The expected reactstrap button group HTML structure is rather simple including a title, the list of button tags and the selected item in a paragraph:

 27.2 Introduction to {reactR}

443

<div> 

<h5> Radio Buttons</h5> 

<ButtonGroup> 

<Button

color="primary" 

onClick={... }

active={value === 1}> 

One

</Button> 

<Button

color="primary" 

onClick={... }

active={value === 2}> 

Two

</Button> 

// ... other buttons ... 

</ButtonGroup> 

<p> Selected: {value}</p> 

</div> 

Inside ./srcjs/button_group.jsx, we first import the required function and components: import { reactShinyInput } from 'reactR' ; 

import { Button, ButtonGroup } from 'reactstrap' ; 

We then design the ButtonGroupUI JS function that will return our component. The critical step is to recover the user choices (configuration.choices) and store them in a variable. 

Then, we leverage the map feature (see section 27.1.2.2) to iterate over each choice and programmatically create all buttons:

function ButtonGroupUI({ configuration, value, setValue }) {

const choices = configuration. choices

 // programmatically create buttons

const buttons = choices. map(

(choice) => <Button

key={choice}

color={configuration. status}

onClick={() => setValue(choice)}

active={value === choice}> 

{choice}

</Button> 

)

 // ... other code

We finally return the whole component in a fragment <> to prevent creating extra div. The whole code is shown below:

import { reactShinyInput } from 'reactR' ; 

import { Button, ButtonGroup } from 'reactstrap' ; 

function ButtonGroupUI({ configuration, value, setValue }) {

 // ... create buttons ... //

return (

<> 

<h5> {configuration. label}</h5> 

<ButtonGroup> 

{buttons}

</ButtonGroup> 

<p> Selected: {value}</p> 

</> 

); 

}

[image: Image 391]

444

 27 Shiny and React with {reactR}

Now, we may test the newly created element in a Shiny app:

 ### RUN ###

 # OSUICode::run_example(

 #

 "demo-button-group", 

 #

 package = "reactstrapTest" 

 # )

According to Figure 27.6, there are rooms for improvements, but it is a good start! 

FIGURE 27.6: Fully working React powered button group (similar to the Shiny radio input). 

27.2.8.2 Modularize JS code

Imagine if we had to repeat this for ten different elements. As we start to accu-mulate components, it is good practice to start modularizing our code. Inside the

./srcjs/action_button.jsx, we wrap the reactShinyInput call into an export statement:

 // To add in ./srcjs/action_button.jsx

export default function initActionButton(){

reactShinyInput(

'.action_button' , 

'reactstrapTest.action_button' , 

ActionButton

); 

}

We apply the same strategy in the ./srcjs/button_group.jsx script:

 // To add in `./srcjs/button_group.jsx`

export default function initButtonGroup(){

reactShinyInput(

'.button_group' , 

'reactstrapTest.button_group' , 

ButtonGroupUI

); 

}

We create a main.jsx file containing the necessary code to import and initialize our two components:

 27.3 Further resources

445

import initActionButton from './action_button.jsx' ; 

import initButtonGroup from './button_group.jsx' ; 

initActionButton(); 

initButtonGroup(); 

We have to modify the webpack.config.js to change the entry point to main.jsx, whose output will be main.js:

entry: [

path. join(__dirname, 'srcjs' , 'main.jsx')

], 

output: {

path: path. join(__dirname, 'inst/www/reactstrapTest'), filename: 'main.js' 

}

This means we have to update the HTML dependency on the R side, for instance in the button_group.R, we replace the existing dependency by the following:

 # ... button_group.R start

 # ... 

htmltools::htmlDependency(

name = "button_group-input", 

version = "1.0.0", 

src = "www/reactstrapTest", 

package = "reactstrapTest", 

script = "main.js" 

)

 # ... 

 # button_group.R end

We proceed similarly in the action_button.R script. 

27.3 Further resources

{shiny.fluent} (Rogala and Zyla, 2021) leverages {shiny.react} (Zyla and Rogala, 2021), which is another alternative17 to bring React to Shiny. 

17https://appsilon.github.io/shiny.react/index.html

[image: Image 392]

28

Shiny and modern web development

28.1 Motivations

Adapting an external HTML template to R requires time, effort and competent people. As an example, it took me about two years to get {shinyMobile} on the road, definitely not a compatible timeline for more urgent projects that have to be released under weeks. 

What if, instead, we decided to handle the UI part with usual web languages like HTML, JS

and CSS, thereby avoiding the time-consuming HTML to R conversion and input binding creation? 

Theoretically, any front-end web developer could take care of creating the user interface. 

There already exists HTML templates for Shiny1, allowing you to leverage any existing HTML skeleton. The result may be literally stunning, as shown during the latest Shiny contest2 and illustrated in Figure 28.1. However, from a modern web development point of view, there are nowadays much more suited tools to build and maintain applications like React and webpack from the previous chapter. 

Eventually, the above approach would permit the R developers, that are most of the time not UI design experts, to focus on the business logic and improve the code base quality. 

On the other hand, the web developers could focus on building the user interface with their favorite web tools and preparing the link with the R part, without necessarily having a deep knowledge of R. 

This chapter may be of interest to any company leveraging Shiny and having people with different programming backgrounds, who wish to better work together around that same technology. 

In the following, I’ll show you how you may seamlessly leverage Shiny and some modern web dev tools like JSX, ES6, webpack and external JS viz libraries. 

28.2 State of the art

Let’s make a list of all requirements for such a project. Since we are working with both web languages and R, we may select {packer} (Coene, 2021b), which briefly allows us to use 1https://shiny.rstudio.com/articles/templates.html

2https://nz-stefan.shinyapps.io/commute-explorer-2/?_ga=2.70875408.1031573581.1632613467-

748932920.1610966288

447

[image: Image 393]

[image: Image 394]

[image: Image 395]

448

 28 Shiny and modern web development

FIGURE 28.1: Commute explorer app, Shiny Contest winner 2021. 

webpack, a JavaScript bundler, in any R project. Moreover, we seek a robust R package template structure for Shiny, which is a perfect task for {golem}. As for the icing on the cake, {packer} offers a plug and play function to set up a {golem} project with webpack, through packer::scaffold_golem(). 

� An excellent introduction exposing how to maintain robust JavaScript code inside a Shiny project, featuring webpack and NPM, may be found in  JavaScript for R (https://book.javascript-for-r.com/webpack-intro.html) by John Coene (Coene, 2021a). 

To install {packer} and {golem}, we run:

 # CRAN

install.packages(c("packer", "golem"))

 # development version

remotes::install_github("JohnCoene/packer")

remotes::install_github("ThinkR-open/golem")

 28.3 About the project

449

28.3 About the project

28.3.1 Topic

We are going to develop an ordinary differential equation (ODE) solver app for the Van der Pol oscillator, whose equations may be found below:

𝑥̇ = 𝑦, 

{

(28.1)

𝑦̇ = 𝜇(1 − 𝑥2)𝑦 − 𝑥. 

Importantly, we don’t really focus on the scientific content, and the app will, be very simple regarding its features. As shown above, there is only one parameter namely 𝜇, which we will vary to see its influence on the whole system. 

28.3.2 Initialize the project

We assume that the R developer is the first to set up the project, even though, in theory, both can do. 

golem::create_golem("vdpMod")

We then call the specific {packer} function to set up a {golem}-compatible structure: packer::scaffold_golem()

You should end up with the file structure depicted in Figure 28.2. 

The structure is basically the same provided by {golem} with addition of extra files for JS

code management by {packer}. This is the same principle shown in Chapters 21 and 27. 

Let’s pause here for the R setup and continue later in this chapter. 

� With the latest {packer} version, you may get a plug and play Framework7

project by running packer::scaffold_golem(framework7 = TRUE). 

28.3.3 UI design

The UI will contain a slider input to change 𝜇, as well as two plots, one for the solutions x and y and another for the phase plan analysis, including the vector field and a simple trajectory from a chosen initial condition. In short, phase plan analysis allows us to qualitatively study a non-linear system, that is, determine:

• What are the steady states (state for which the system does not change in time). 

• The nature of the steady states (stable, unstable). 

• Whether there are bifurcations (change in number of steady states and stability). 

[image: Image 396]

450

 28 Shiny and modern web development

FIGURE 28.2: vdpMod project initialization with golem and packer. 

• … This is just wonderful, believe me! 

After knowing all those details, we may easily predict, given an initial condition, how the system will react to any external perturbation. If you want to know more, this book3 is a good starting point. 

To build the user interface, we selected the Framework74 template, already mentioned in

Chapter 22 since we want this app to be optimized for mobile platforms. Besides, as

{shinyMobile} does not implement all its features yet, this will also allow us to fully exploit the Framework7 API. The graphic output part will be handled by echartsjs5, offering quite amazing vector field outputs, as depicted here6. 

28.3.4 R business logic

Before designing the app and diving into the reactivity, let’s first think about the business logic. On the server side, we want to write the model equations, create a function to solve it, compute the vector field… in a .R/model.R script. The first step is to store the equations. 

As it is a two-dimension ODE system, we can use a simple vector: vdp_equations <- c(

"Y", 

"p['mu'] * (1 - X^2) * Y - X" 

)

3https://www.springer.com/gp/book/9780387952239

4https://framework7.io/

5https://echarts.apache.org/en/index.html

6https://echarts.apache.org/examples/en/editor.html?c=flowGL-noise&gl=1&theme=dark

 28.3 About the project

451

Equations are solved with the {deSolve} package (Soetaert et al., 2021), whose performances are enough for this example. (For more complex examples, users may switch to compiled code with Fortran, C or C++, {deSolve} providing a convenient API for compiled code.)

solve_model <- function(Y0, t, model, parms) {

deSolve::ode(y = Y0, times = t, model, parms)

}

Y0 refers to the initial condition, t is the time for which we integrate, model contains the equations and parms is a vector of parameters. Importantly, {deSolve} requires the model to be written as follows (t being the time, y a 2D vector and p a parameter vector), returning the value of x and y in a list:

vdp <- function(t, y, p) {

with(as.list(y), {

dX <- eval(parse(text = vdp_equations[1]))

dY <- eval(parse(text = vdp_equations[2]))

list(c(X=dX, Y=dY))

})

}

From there, calling solve_model() will return a vector containing our solutions at each time step:

solve_model(

Y0 = c(X = 1, Y = 1), 

t = seq(0, 1, .1), 

vdp, 

c(mu = 0.1)

)

#> 

time

X

Y

#> 1

0.0 1.000000

1.00000000

#> 2

0.1 1.094807

0.89424469

#> 3

0.2 1.178502

0.77803473

#> 4

0.3 1.250123

0.65309701

#> 5

0.4 1.308892

0.52128961

#> 6

0.5 1.354215

0.38451526

#> 7

0.6 1.385692

0.24464299

#> 8

0.7 1.403100

0.10344169

#> 9

0.8 1.406390 -0.03746953

#> 10

0.9 1.395664 -0.17665503

#> 11

1.0 1.371158 -0.31286984

It is therefore straightforward to plot solutions. However, this output does not tell use anything about the vector field. Below is the code used to generate it. mag represents the speed along trajectories resulting from a linear combination of the vertical speed and the horizontal speed components, respectively dy and dx. It is obtained after applying the Pythagorean theorem:

𝑚𝑎𝑔 = √𝑑𝑥2 + 𝑑𝑦2

(28.2)

We will use it later to set up appropriate color code in the JS code:

452

 28 Shiny and modern web development

build_phase_data <- function(xgrid, ygrid, p) {

vectors <- expand.grid(x = xgrid, y = ygrid)

X <- vectors$x

Y <- vectors$y

vectors$dx <- eval(parse(text = vdp_equations[1]))

vectors$dy <- eval(parse(text = vdp_equations[2]))

vectors$mag <- sqrt(

vectors$dx * vectors$dx +

vectors$dy * vectors$dy

)

vectors

}

grid <- seq(-10, 10)

phase_plan <- build_phase_data(grid, grid, c(mu = 1))

 # Original is 441 rows, we provide a subset

phase_plan[1:5, ]

#> 

x

y

dx

dy

mag

#> 1 -10 -10 -10 1000 1000.0500

#> 2

-9 -10 -10

809

809.0618

#> 3

-8 -10 -10

638

638.0784

#> 4

-7 -10 -10

487

487.1027

#> 5

-6 -10 -10

356

356.1404

We obtain a matrix indicating for each (X,Y) in the grid what the vertical and horizontal speed are, respectively dX and dY, as well as the resulting speed, mag, thereby allowing us to draw the phase plan7. 

The last step is to create a main wrapper that will call solve_model() and build_phase_data() at once. Remember that on the UI side, we generate two outputs, the time series and the phase portrait. The first one requires data obtained from solve_model(). 

The second one requires a subset of solve_model() output and build_phase_data(). Since solve_model() returns a matrix, we convert it to a data.frame, easier to handle on the JS side:

generate_model_data <- function(model, pars, grid) {

model_output <- solve_model(

Y0 = c(X = 1, Y = 1), 

t = seq(0, 100, .1), 

model, 

pars

)

 # time series (x = f(t), y = f(t))

data <- data.frame(model_output)

modelData <- list(t = data$time, X = data$X, Y = data$Y)

 # phase plan

trajectoryData <- data[, c("X", "Y")]

names(trajectoryData) <- NULL

phaseData <- build_phase_data(grid, grid, pars)

names(phaseData) <- NULL

 # return data

list(

lineData = modelData, 

phaseData = jsonlite::toJSON(phaseData, pretty = TRUE), 

trajectoryData = jsonlite::toJSON(

trajectoryData, 

pretty = TRUE

7https://en.wikipedia.org/wiki/Phase_plane

 28.3 About the project

453

)

)

}

This is basically all we need. I highly encourage you not to dive into reactivity first, as this is significantly harder to debug. This way, you can design unit tests for these functions without having to handle the Shiny machinery. 

28.3.5 Add Shiny

Now that the business logic is safe, we describe what we must do on the server side. Remember that the original idea is to have a slider, which we can move to see what impact 𝜇

has on the whole system. 

In the main .R/app_server.R script, we set a reactive expression containing the vector of parameters (here we only have one, but you may imagine adding more later): pars <- reactive({

req(input$mu)

c(mu = input$mu)

})

Then, we add an observeEvent() listening to any change in pars(), triggered as a result of a UI action, that is, a slider input change. Inside, we generate the model data with generate_model_data() and send them to JS through the websocket with session$sendCustomMessage:

observeEvent(pars(), {

session$sendCustomMessage(

"model-data", 

generate_model_data(vdp, pars(), seq(-10, 10))

)

})

That’s all folks! I hope you start to realize the benefits of extracting the business logic out of Shiny. For more complex apps, we recommend you start developing modules and not put the whole code inside .R/app_server.R. 

This is all what the R developer would have to do:

• Write the business logic. 

• Add reactivity and send data to JS. 

• Talk to the JS developer about what inputs should be on the UI side …

Now let’s see what happens on the front-end side. 

28.3.6 Create the interface

This is where the front-end developers come in to play and believe me, there is quite some work for them. 

454

 28 Shiny and modern web development

28.3.6.1 Setup dev JS dependencies

The first thing is to continue with the package setup to add development libraries necessary for building the JS code. For now, those dependencies are listed in ./package.json and only cover webpack:

"devDependencies" : {

"webpack" : "^5.53.0" , 

"webpack-cli" : "^4.8.0" , 

"webpack-merge" : "^5.8.0" 

}

Since we’ll be using quite modern JS syntay (ES6) and some JSX, we have to install Babel that will compile our code to a JS code that all web browsers can understand. 

packer::npm_install(

c(

"babel", 

"babel-loader", 

"@babel/core", 

"@babel/preset-env" 

), 

scope = "dev" 

)

As we depend on Framework7 and echartsjs, we install them as production dependencies (needed by the app):

packer::npm_install(

c(

"framework7", 

"echarts", 

"echarts-gl" 

), 

scope = "prod" 

)

You should obtain this JSON:

"devDependencies" : {

"@babel/core" : "^7.15.5" , 

"@babel/preset-env" : "^7.15.6" , 

"babel" : "^6.23.0" , 

"babel-loader" : "^8.2.2" , 

"webpack" : "^5.53.0" , 

"webpack-cli" : "^4.8.0" , 

"webpack-merge" : "^5.8.0" 

}, 

"dependencies" : {

"echarts" : "^5.2.1" , 

"echarts-gl" : "^2.0.8" , 

"framework7" : "^6.3.4" 

}

We modify the ./srcjs/config/loader.json to include the required loaders for js, jsx and css files. For css, {packer} exposes a functions, use_loader_rule():

 28.3 About the project

455

use_loader_rule(

c("style-loader", "css-loader"), 

test = "\\.css$" 

)

which gives:

[

{

"test" : "\.css$" , 

"use" : [

"style-loader" , 

"css-loader" 

]

}

]

Interestingly, Framework7 allows you to write JSX code without the need to import React. 

This is very convenient but requires adding an extra loader8, as well as a Babel React component (you may imagine designing a use_loader_framework7() function …): use_loader_rule(

"framework7-loader", 

test = "\\.(f7).(html|js|jsx)$", 

use = list("babel-loader", "framework7-loader")

)

packer::npm_install("@babel/preset-react", scope = "dev")

[

 // ... style loader ... 

{

"test" : "\.(f7).(html|js|jsx)$" , 

"use" : [

"babel-loader" , 

"framework7-loader" 

]

}

]

Alternatively, you can copy the ./package.json from here9 to get exactly the same package versions I used when I initialized this project and call packer::npm_install() to pull the dependencies and install them for the project. 

We create a ./.babelrc script providing some configuration for Babel to handle JSX. 

Within the terminal, we call touch .babelrc and add it the following code:

{

"presets" : [

"@babel/preset-env" , 

"@babel/preset-react" 

]

}

We can ultimately bundle our JS code and check whether the app starts: 8https://www.npmjs.com/package/framework7-loader

9https://github.com/RinteRface/shinyComponent/tree/07ef8216c5803147691d95343ef6639a0e1ecf

2f

[image: Image 397]

456

 28 Shiny and modern web development

packer::bundle()

devtools::load_all()

run_app()

FIGURE 28.3: vdpMod basic app. 

28.3.6.2 Basic R UI skeleton

The package configuration is successful but we still have to modify the ./R/app_ui.R to be consistent with the Framework7 expectations. According to what is required in the documentation10, the body must contain a tag with an id, followed by the index.js JS

code (obtained after compilation with {packer}). The order is important, as not following it will break the app:

app_ui <- function(request, title = NULL) {

tagList(

 # Leave this function for adding external resources

golem_add_external_resources(title), 

 # Your application UI logic

tags$body(

div(id = "app"), 

tags$script(src = "www/index.js")

)

)

}

Note that we also have to consider meta tags in the header to handle the viewport, mobile platforms… This is done inside golem_add_external_resources(). Besides, we had to comment out the bundle_resources() call since it would have added the dependencies in the head, before the app tag, which is not consistent with the Framework7 requirements: golem_add_external_resources <- function(title){

add_resource_path(

'www', app_sys('app/www')

)

tags$head(

favicon(), 

tags$meta(charset = "utf-8"), 

tags$meta(

name = "viewport", 

content = "width=device-width, initial-scale=1, 

maximum-scale=1, minimum-scale=1, user-scalable=no, 

viewport-fit=cover" 

), 

10https://framework7.io/docs/app-layout.html

 28.3 About the project

457

tags$meta(

name = "apple-mobile-web-app-capable", 

content = "yes" 

), 

tags$meta(name = "theme-color", content = "#2196f3"), tags$title(title)

 # removed code

)

}

This is all of what we need on the R UI side since most of the code will be written in JSX. 

28.3.6.3 Create the app layout in JS

We have the R logic, the R/UI skeleton, but a few steps remain such as initializing the app as discussed in section 23.4. Everything happens in the ./srcjs/index.js script. For now it should be like below:

import { message } from './modules/message.js' ; 

import 'shiny' ; 

 // In shiny server use:

 // session$sendCustomMessage('show-packer', 'hello packer!') Shiny. addCustomMessageHandler('show-packer' , (msg) => {

message(msg); 

}); 

which is a placeholder provided by {packer}. While we don’t need it, note how we may seamlessly import functions from one script to another with just an import statement followed by the function name and the script path. We’ll use this syntax all over the place. 

What do we need now? We import Framework7 required for the app initialization in new Framework7({...}):

import 'shiny' ; 

 // Import Framework7

import Framework7 from 'framework7' ; 

Then, we import the css, whose assets are located under ./node_modules/framework7

and

as

shown

in

Figure

28.4. 

To

capture

all

CSS, 

we’ll

point

to

framework7/framework7-bundle.min.css (bundle usually corresponds to all components):

import 'shiny' ; 

 // Import Framework7

import Framework7 from 'framework7' ; 

 // Import Framework7 Styles

import 'framework7/framework7-bundle.min.css' ; 

The way we imported Framework7 does not provide any other component. To lighten the JS code, Framework7 has a modular organisation, thereby consisting of importing only what we require. According to Figure 28.4, those components are located in framework7/esm/components/<COMPONENT_NAME>/<SCRIPT.js> If you remember correctly, we seek a slider widget to update the model parameter value. Moreover, it’s always nice to notify the user when the new results are available, so let’s do it with a toast:

[image: Image 398]

458

 28 Shiny and modern web development

FIGURE 28.4: Framework7 assets in node modules. 

 // ... Other imports ... 

 // Install F7 Components using .use() method on class:

import Range from 'framework7/esm/components/range/range.js' ; import Toast from 'framework7/esm/components/toast/toast.js' ; Framework7. use([Range, Toast]); 

For the layout, we selected the main App component template, documented here11. Overall, it offers a better way to organize the app code in different component modules, the App being the top-level component:

 // ... Other imports ... 

import App from './components/app.f7.jsx' ; 

let app = new Framework7({

el: '#app' , 

theme: 'ios' , 

 // specify main app component

component: App

}); 

el targets the app tag id defined in ./R/app_ui.R. If you ever have to change it, don’t forget to replace it in both places. The component slot hosts the App, which has to be defined. We assume it is created in a ./srcjs/components/app.f7.jsx, . being the root of the srcjs folder. Interestingly, it has the .jsx extension, the JSX syntax being very convenient to mix HTML and JavaScript code in the same file. It is crucial to name the files <name>.f7.jsx as it will allow the Framework7 loader to work properly. Practically, a template file will always look the same. We export the main component as a function that may have some parameters. Each component must return a render function containing some tags. Below is a ./srcjs/components/list.f7.jsx example:

11https://framework7.io/docs/router-component.html#main-app-component

 28.3 About the project

459

export default () => {

const ListItem = (props) => {

return (

<li> {props. title}</li> 

)

}

return () => (

<ul> 

<ListItem title="Item 1" /> 

<ListItem title="Item 2" /> 

</ul> 

)

}

You may even split the code into more small pieces; below we assume list-item.f7.jsx is in the same directory as the main component:

 // list-item.f7.jsx

export default (props) => {

return () => <li> {props. title}</li>; 

}

import ListItem from './list-item.f7.jsx' ; 

export default () => {

return () => (

<ul> 

<ListItem title="Item 1" /> 

<ListItem title="Item 2" /> 

</ul> 

)

}

We define the preliminary main app component in ./srcjs/components/app.f7.jsx, the layout being composed of a navbar (top), a toolbar (bottom) and the page content, as already discussed in section 23.3:

export default (props, context) => {

const title = 'Hello World' ; 

const content = 'App content' ; 

return () => (

<div id="app" > 

<div class="view view-main view-init safe-areas" > 

<div class="page" > 

<div class="navbar" > 

<div class="navbar-bg" ></div> 

<div class="navbar-inner" > 

<div class="title" > {title}</div> 

</div> 

</div> 

<div class="toolbar toolbar-bottom" > 

<div class="toolbar-inner" > 

<a href="#" > Link 1</a> 

<a href="#" > Link 2</a> 

</div> 

</div> 

<div class="page-content" > 

{content}

</div> 

</div> 

[image: Image 399]

460

 28 Shiny and modern web development

</div> 

</div> 

)

}

props are elements passed to the component (see section 27.1.2.2) and context is an object containing helpers12, such as:

• $f7 refers to app instance. 

• $update to programmatically re-render the component. 

Once done, we run and preview the app according to Figure 28.5. We are slowly getting there! 

packer::bundle()

devtools::load_all()

run_app()

FIGURE 28.5: vdpMod basic app with main app component template. 

We add the slider component that is going to drive the model computation inside

./srcjs/components/vdp.f7.jsx, leveraging the Framework7 range widget described 12https://framework7.io/docs/router-component.html#component-context

 28.3 About the project

461

here13. To lighten the JS code, we decide to rely on the auto-initialized widget. All attributes are stored in data-<ATTR> format and the range-slider-init class ensures to get the widget properly initialized. The range is inserted in a block container for a better display. We finally bind it to an event14 listening to any value change so that we can assign a Shiny input value and use it on the R side:

const VdpWidget = (props, { $f7, $update}) => {

 // Handle range change for ODE model computation

const getRangeValue = (e) => {

const range = $f7. range. get(e. target); Shiny. setInputValue(range. el. id, range. value); $update(); 

}; 

return () => (

<div> 

<div class="block-title" > Parameter value (mu)</div> 

<div class="block" > 

<div

class="range-slider range-slider-init" 

data-min="0" 

data-min="0" 

data-max="2" 

data-step="0.1" 

data-label="true" 

data-value="0.1" 

data-scale="true" 

data-scale-steps="2" 

data-scale-sub-steps="10" 

id="mu" 

onrangeChange={(e) => getRangeValue(e)}

></div> 

</div> 

</div> 

)

}

export { VdpWidget }; 

Inside ./srcjs/components/app.f7.jsx, we import the newly designed component and replace {content}:

import VdpWidget from './vdp.f7.jsx' ; 

export default (props) => {

const title = 'Hello World' ; 

return () => (

<div id="app" > 

<div class="view view-main view-init safe-areas" > 

<div class="page" > 

< !-- Navbar --> 

< !-- Toolbar --> 

<div class="page-content" > 

<VdpWidget label="Van der Pol Model"/> 

</div> 

</div> 

</div> 

</div> 

)

}

On the R side, you may add this in the server code to track the range value: 13https://framework7.io/docs/range-slider.html#range-slider-auto-initialization

14https://framework7.io/docs/range-slider.html#app-and-range-slider-instance-events

[image: Image 400]

462

 28 Shiny and modern web development

observeEvent(input$mu, {

print(input$mu)

})

After recompiling, this gives us Figure 28.6. 

FIGURE 28.6: vdpMod basic app with range slider. 

You’ll notice that input$mu only exists after the range is dragged. To give it an initial value, we design an additional function, initializeVdpWidget located in

./srcjs/components/vdp.f7.jsx, taking the app instance as parameter. Inside, we listen to the shiny:connected and create input$mu giving it the initial range value. We finally export the new function:

const initializeVdpWidget = (app) => {

$(document). on('shiny:connected' , () => {

 // Init vals for ODE model computation

Shiny. setInputValue(

'mu' , 

 parseFloat($('#mu'). attr('data-value'), 10), 

{priority: 'event'}

); 

}); 

}

export { VdpWidget, initializeVdpWidget }; 

 28.3 About the project

463

Inside ./srcjs/components/app.f7.jsx, we update our import field, passing an extra parameter $f7, which captures the app instance required by initializeVdpWidget: import { VdpWidget, initializeVdpWidget } from './vdp.f7.jsx' ; export default (props, { $f7 }) => {

initializeVdpWidget($f7); 

 // ... unchanged ... 

}

Congratulations, we are now ready to move to the last part about creating the visualization. 

28.3.6.4 Plot model data with echartsjs

As stated above, we leverage echarts and echarts-gl to plot the model results. Like for other dependencies, we have to import them, specifically in the

./srcjs/components/vdp.f7.jsx component:

 // Import plotting library

import * as echarts from 'echarts' ; 

import 'echarts-gl' ; 

To work properly, echarts15 requires a setup of an HTML empty container in the DOM with height and width in pixels, as well as an id. I recommend using percentage for width so as to fill the entire parent container:

<div id="my-plot" style="width:100%; min-height:400px;" ></div> On the JS side, we instantiate the plot and set the options list to give it a title, set the axis labels and add the time series:

myChart = echarts. init(document. getElementById('my-plot')); myChartOptions = {

title: { text: 'Plot title' }, 

legend: { data:[... ] }, 

xAxis: { data: ... }, 

yAxis: { type: ... }, 

series: [

{

name: ..., 

type: ..., 

data: ... 

}, 

 // other data

]

}; 

myChart. setOption(myChartOptions); 

Obviously, many more options exist, but this is enough for this example. We edit the VdpWidget render function to include the time series plot of model solution, below the range slider:

15https://echarts.apache.org/handbook/en/get-started/

464

 28 Shiny and modern web development

const VdpWidget = (props, { $f7, $update}) => {

 // ... unchanged ... 

const plotStyle = {

width: '100%' , 

minHeight: '400px' 

}

return () => (

<div> 

<div class="block-title" > {props. label}</div> 

<div class="block block-strong text-align-center" > 

<p> The below model is computed by R! </p> 

< !-- range slider block --> 

</div> 

<div class="card card-outline" > 

<div class="card-content card-content-padding" > 

<div id="line-plot" style={plotStyle}></div> 

</div> 

</div> 

</div> 

)

}

The initialization happens once, that’s why we include it inside the existing shiny:connect event listener in the initializeVdpWidget function. Notice how we make the plot responsive to any viewport change, by calling the echarts resize method when the window is resized:

const initializeVdpWidget = (app) => {

let linePlot; 

$(document). on('shiny:connected' , () => {

 // ... unchanged ... 

 // prepare echarts plots

linePlot = echarts. init(document. getElementById('line-plot')); 

}); 

 // Resize plot, responsive

$(window). on('resize' , function(){

linePlot. resize(); 

}); 

}; 

The

next

step

is

to

recover

the

model

data

sent

from

R

with

the

session$sendCustomMessage("model-data", ...)

in

./R/app_server.R. 

We

cre-

ate a dedicated message handler on the JS side still in initializeVdpWidget. As a reminder, since we send a list from R, items are accessed with message.<FIELD> in JS: const initializeVdpWidget = (app) => {

 // ... shiny:connected ... 

 // Recover ODE data from R

let lineData, linePlotOptions; 

Shiny. addCustomMessageHandler(

'model-data' , (message) => {

lineData = message. lineData; 

}); 

}

We set the plot options. For the time-series chart, we’ll display the solution X

(lineData['X']) and Y (lineData['Y']) as a function of time (lineData['t']). The plot type is line:

 28.3 About the project

465

const initializeVdpWidget = (app) => {

 // ... shiny:connected ... 

Shiny. addCustomMessageHandler(

'model-data' , (message) => {

 // ... recover data ... 

 // set options

linePlotOptions = {

title: {

text: 'Time series plot' 

}, 

legend: { data: ['X' , 'Y'] }, 

xAxis: { data: lineData['t'] }, 

yAxis: { type: 'value' }, 

series: [

{

name: 'X' , 

type: 'line' , 

data: lineData['X']

}, 

{

name: 'Y' , 

type: 'line' , 

data: lineData['Y']

}

]

}; 

 // use configuration item and data specified to show chart

linePlot. setOption(linePlotOptions); 

}); 

}

We finally leverage the Framework7 toast API to send a message to the user, telling the model is up-to-date:

const initializeVdpWidget = (app) => {

Shiny. addCustomMessageHandler(

'model-data' , (message) => {

 // ... plot config ... 

 // Notify plot update

app. toast. create({

text: 'Model successfuly computed' , 

closeTimeout: 2000, 

}). open(); 

}); 

}

After rebuilding the JS code, you should get Figure 28.7. 

28.3.6.5 Exercise: add the phase portrait

Based on the example shown here16, you’ll have to add the phase portrait chart to the current application. 

1. In VdpWidget, add the card container that will hold the phase plan, right after the time-series card. The plot will have the phase-plot id:

16https://echarts.apache.org/examples/en/editor.html?c=flowGL-noise&gl=1&theme=dark

[image: Image 401]

466

 28 Shiny and modern web development

FIGURE 28.7: vdpMod basic app with time series output. 

const VdpWidget = (props, { $f7, $update}) => {

 // ... getRangeValue ... 

 // ... plotStyle ... 

return () => (

<div> 

<div class="block-title" > {props. label}</div> 

<div class="block block-strong text-align-center" > 

<p> The below model is computed by R! </p> 

< !-- range slider block --> 

</div> 

< !-- line plot --> 

TO ADD

</div> 

)

}

2. In initializeVdpWidget, inside the shiny:connected event listener, initialize the new phasePlot instance. Fill in the .... 

const initializeVdpWidget = (app) => {

let linePlot, ...; 

$(document). on('shiny:connected' , () => {

 // ... Init vals for ODE model computation ... 

 // ... Time series plot init ... 

 28.3 About the project

467

... = echarts. init(document. getElementById(... )); 

}); 

 // ... 

}

3. Ensure it is properly resized by adding an entry to the resize event listener. Fill in the .... 

const initializeVdpWidget = (app) => {

 //... shiny:connected ... 

$(window). on('resize' , function(){

linePlot. resize(); 

.... resize(); 

}); 

}

4. In

initializeVdpWidget, 

after

the

linePlotOptions, 

create

a

new

phasePlotOptions object containing the plot title. Fill in the .... 

const initializeVdpWidget = (app) => {

 // ... shiny:connected ... 

 // ... resize plots ... 

let lineData, linePlotOptions, phasePlotOptions, phaseData, trajectoryData; 

Shiny. addCustomMessageHandler(

'model-data' , (message) => {

lineData = message. lineData; 

phaseData = message. phaseData; 

trajectoryData = message. trajectoryData; 

... = {

title: {

text: 'Phase plot' 

}, 

xAxis: {

type: 'value' 

}, 

yAxis: {

type: 'value' 

}

}

}); 

}

Since we plot Y against X (it was X and Y against time in the previous plot), we add two entries to the previous configuration. 

5. The first layer is a flow GL chart showing particles movement in the vector field. 

The chosen type flowGL entry ensures we utilize the proper chart module. We pass the phaseData recovered from the R side. Other properties are responsible for controlling the particle appearance like the speed, size and transparency. You may try with different values to see what happens in the plot. Fill in the .... 

468

 28 Shiny and modern web development

phasePlotOptions = {

 // ... title, axis ... 

series: [

{

type: ..., 

data: ..., 

particleDensity: 64, 

particleSize: 5, 

particleSpeed: 4, 

supersampling: 4, 

particleType: 'point' , 

itemStyle: {

opacity: 0.5

}

}, 

 // Other series

]

}

6. How do we control the flow-chart visual aspect? As a reminder, phaseData is a matrix with five columns, the last one being a measure of the flow speed. Ideally, we would like to set up a scale representing different speeds. This is where we introduce the visualMap property, which exposes multiple sub-properties like:

• show to display a scale. 

• min and max to set the color grid. 

• dimension is the column of data used to apply colors (here mag). 

• inRange.color defines a color palette for all values in the range. The provided examples default to eleven predefined colors. 

min and max are determined as per below calculation. Fill in the .... 

let magMin = Infinity; 

let magMax = -Infinity; 

for (let i = 0; i < message. phaseData. length; i++) {

let magTemp = message. phaseData[i][4]; 

magMax = Math. max(..., ... ); 

magMin = Math. min(..., ... ); 

}

phasePlotOptions = {

visualMap: {

show: false, 

min: ..., 

max: ..., 

dimension: ...,  // hint: column to select in phaseData inRange: {

color: [

'#313695' , 

'#4575b4' , 

'#74add1' , 

'#abd9e9' , 

'#e0f3f8' , 

'#ffffbf' , 

'#fee090' , 

'#fdae61' , 

'#f46d43' , 

'#d73027' , 

'#a50026' 

]

}

}

}

[image: Image 402]

 28.4 About the project

469

7. The last data to show is the trajectory from the initial condition. Right after the flow GL data series, we add an extra JSON pointing to trajectoryData. Fill in the .... 

series: [

 // flowGL data

{

type: ..., 

data: ..., 

symbol: 'none' 

}

]

8. Finally, at the end of the model-data Shiny custom handler, we apply the newly-defined options to the plot instance. Fill in the .... 

phasePlot. setOption(... ); 

Recompile the code and enjoy the result displayed in Figure 28.8. 

FIGURE 28.8: vdpMod basic app with time series output and phase portrait. 

470

 28 Shiny and modern web development

28.4 Final product

Final code project may be found here17. 

To go even further, part of the app logic may be delegated to a Plumber API, which the web developer can query to fetch data from. This is, however out of the scope of this book. 

17https://github.com/DivadNojnarg/vdpMod/tree/a995480862aebb399be951cf3a28c51cc0e844eb

29

What to do next? 

If you’re still alive by reaching this part, well, congrats! Hopefully, you now have a better understanding of how you may quickly and without too much pain deeply customize your shiny apps. This book has quite a lot of content, yet we just scratched the surface of what you may do with a bit of technique. There are many other topics that could have been covered. Below we give some references that you probably want to explore, should you like to go even further. 

29.1 Multi-page Shiny apps

As shown all along this book, Shiny is not natively designed to end up with a multi-page website. Packages like {shiny.router} (Stachura et al., 2021) or {blaze} (Teetor, 2021) provide sorts of workarounds by playing with the url to mimick the multi-page layout. Yet this is not an authentic multi-page experience! A recent in-development package, namely

{brochure} (Fay, 2021) aims at filling this gap, offering a real multi-page solution1. 

You may have a try:

remotes::install_github("ColinFay/brochure")

library(brochure)

library(shiny)

brochureApp(

 # First page

page(

href = "/", 

ui = fluidPage(

h1("This is my first page"), 

plotOutput("plot")

), 

server = function(input, output, session){

output$plot <- renderPlot({

plot(cars)

})

}

), 

 # Second page, without any server-side function

page(

href = "/page2", 

ui =

fluidPage(

h1("This is my second page"), 

tags$p("There is no server function in this one")

)

)

)

1https://colinfay.me/brochure-r-package/

471

472

 What to do next? 

When you run the above example, the app opens on the first page. Typing /page2 in the search bar goes to the second page. Each page corresponds to a new Shiny session, requiring cookies if you want to exchange information from page to page. Everything is still experimental but promising for sure! 

29.2 Web design best practices for Shiny

You may wonder why there was not even one chapter about UI conception best practices. In this book, we chose a opinionated approach where we focused on building tools to customize interfaces rather than building the interface itself. Yet, after having a custom design, you probably want to organize it better in a well-polished interface. We cannot better recommend you to go through these two chapters: UX Matters2 and Don’t rush into coding3 from (Fay et al., 2020), as well as read the layout basics4 from  Mastering Shiny (Hadley, 2021). 

Keep in mind, your design should follow the two golden rules: simplicity and usability! 

29.3 Conclusion

Your journey doesn’t stop here. Web development hides tons of further opportunities. Great advice is to regularly check the recent innovation in the field and experiment yourself. Don’t be afraid of failing, as this is the usual price to learn new things! 

2https://engineering-shiny.org/ux-matters.html

3https://engineering-shiny.org/dont-rush-into-coding.html

4https://mastering-shiny.org/action-layout.html#multi-page-layouts

A

Code outputs

A.1 Mastering {htmltools}

A.1.1 Shiny RPG rework

Final code expected in section 2.6.6:

rpgSelect <- function(inputId, label, choices, selected = NULL, multiple = FALSE, size = NULL) {

selectTag <- shiny::selectInput(

inputId, 

label, 

choices, 

selected, 

multiple, 

selectize = FALSE, 

width = NULL, 

size

)

selectClass <- if (is.null(size)) {  # add class

"rpgui-dropdown" 

} else {

"rpgui-list" 

}

tagQuery(selectTag)$

removeAttrs("class")$  # remove outer div class

find(".control-label")$

removeAttrs("class")$  # remove class from child label siblings()$  # go down to the div

children()$  # go down to the select tag

addClass(selectClass)$  # add class to child select

resetSelected()$ # go back to div parent

each(function(x, i) {

x$children[[2]] <- x$children[[2]]$children

})$  # replace div parent

allTags()

}

A.2 Case Study 2: Mobile development with Shiny

A.2.1 Reconstruct {shinyMobile}

The init.js code obtained in 23 is shown below. 

473

474

 A Code outputs

$( document ). ready(function() {

 // collect all data elements stored in body

let config = $(document). find('script[data-for="app"]'); config = JSON. parse(config. html()); 

 // always erase existing root value just in case

 // the user changes the root. This may be harmful

config. root = '#app' ; 

 // store app methods

config. methods =

{

toggleDarkTheme: function() {

var self = this; 

var $html = self. $('html'); 

$html. toggleClass('theme-dark'); 

}

}; 

 // create app instance

app = new Framework7(config); 

 // init main view

let mainView = app. views. create('.view-main'); 

 // tapHold custom css

if (config. hasOwnProperty('touch')) {

if (config. touch. tapHold) {

$('<style>')

. prop('type' , 'text/css')

. html(

`-moz-user-select: none; 

-webkit-user-select: none; 

user-select: none;`

)

. appendTo('head'); 

}

}

let notification = app. notification. create({

text: 'Hello, how are you?' , 

on: {

opened: function () {

console. log('Notification opened'); 

}

}

}). open(); 

let otherMessage = app. notification. create({

text: 'You look great!' 

}); 

 // equivalent to setTimeout ... 

app. utils. nextTick(function() {

otherMessage. open(); 

}, 1000); 

 // taphold test

$('#mybutton'). on('taphold' , function () {

app. dialog. alert('Tap hold fired!'); 

}); 

 // Set color theme

if (config. hasOwnProperty('color')) {

let color = config. color

let colorCSS = app. utils. colorThemeCSSProperties(color); $('<style>')

. prop('type' , 'text/css')

. html(`:root {

--f7-theme-color:${colorCSS['--f7-theme-color']}; 

--f7-theme-color-rgb:${colorCSS['--f7-theme-color-rgb']}; 

--f7-theme-color-shade:${colorCSS['--f7-theme-color-shade']}; 

--f7-theme-color-tint:${colorCSS['--f7-theme-color-tint']}; 

}`)

. appendTo('head'); 

 A.3 Case Study 2: Mobile development with Shiny 475

}

 // Filled theme

if (! config. hasOwnProperty('filled')) config. filled = false; if (config. filled) {

let filledCSS = `

:root, 

:root.theme-dark, 

:root .theme-dark {

--f7-bars-bg-color: var(--f7-theme-color); 

--f7-bars-bg-color-rgb: var(--f7-theme-color-rgb); 

--f7-bars-translucent-opacity: 0.9; 

--f7-bars-text-color: #fff; 

--f7-bars-link-color: #fff; 

--f7-navbar-subtitle-text-color: rgba(255,255,255,0.85); 

--f7-bars-border-color: transparent; 

--f7-tabbar-link-active-color: #fff; 

--f7-tabbar-link-inactive-color: rgba(255,255,255,0.54); 

--f7-sheet-border-color: transparent; 

--f7-tabbar-link-active-border-color: #fff; 

}

.appbar, 

.navbar, 

.toolbar, 

.subnavbar, 

.calendar-header, 

.calendar-footer {

--f7-touch-ripple-color: var(--f7-touch-ripple-white); 

--f7-link-highlight-color: var(--f7-link-highlight-white); 

--f7-button-text-color: #fff; 

--f7-button-pressed-bg-color: rgba(255,255,255,0.1); 

}

.navbar-large-transparent, 

.navbar-large.navbar-transparent {

--f7-navbar-large-title-text-color: #000; 

--r: 0; 

--g: 122; 

--b: 255; 

--progress: var(--f7-navbar-large-collapse-progress); 

--f7-bars-link-color: rgb(

calc(var(--r) + (255 - var(--r)) * var(--progress)), 

calc(var(--g) + (255 - var(--g)) * var(--progress)), 

calc(var(--b) + (255 - var(--b)) * var(--progress))

); 

}

.theme-dark .navbar-large-transparent, 

.theme-dark .navbar-large.navbar-transparent {

--f7-navbar-large-title-text-color: #fff; 

}`; 

$('<style>')

. prop('type' , 'text/css')

. html(`${filledCSS}`)

. appendTo('head'); 

}

 // dark mode

if (! config. hasOwnProperty('dark')) config. dark = false; if (config. dark) {

app. methods. toggleDarkTheme(); 

}

}); 

476

 A Code outputs

A.3 R + Shiny + React: welcome {reactR}

A.3.1 Introduction to {reactR}

A.3.1.1 Exercise 2

JSX code from section 27.2.7 may be found below. 

import { reactShinyInput } from 'reactR' ; 

 // reactstrap components

import { Button } from 'reactstrap' ; 

function ActionButton({configuration, value, setValue}) {

let iconTag, btnCl, innerTag; 

if (... ) {

btnCl = 'btn-icon' ; 

innerTag = <> 

<span className="btn-inner--icon" > 

<i className=... /> 

</span> 

<span className="btn-inner--text" > ... </span> 

</>; 

} else {

innerTag = configuration. label; 

}

let outlined; 

if (... ) {

outlined = true; 

}

return (

<Button

color={configuration. status}

className=... 

outline=... 

size=... 

onClick={() => setValue(value + 1)}> 

{innerTag}

</Button> 

); 

}

reactShinyInput(

'.action_button' , 

'reactstrapTest.action_button' , 

ActionButton

); 

Bibliography

Attali, D. (2020).  shinyjs: Easily Improve the User Experience of Your Shiny Apps in Seconds. R package version 2.0.0. 

Chang, W. and Borges Ribeiro, B. (2018).  shinydashboard: Create Dashboards with Shiny. 

R package version 0.7.1. 

Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert, A., and Borges, B. (2021).  shiny: Web Application Framework for R. R package version 1.6.0. 

Chang, W., Cheng, J., Dipert, A., and Borges, B. (2020).  websocket: WebSocket Client Library. R package version 1.3.1. 

Cheng, J. and Chang, W. (2021).  httpuv: HTTP and WebSocket Server Library. R package version 1.6.3. 

Cheng, J., Mastny, T., Iannone, R., Schloerke, B., and Sievert, C. (2021a).  sass: Syntactically Awesome Style Sheets (Sass). R package version 0.4.0. 

Cheng, J., Sievert, C., Schloerke, B., Chang, W., Xie, Y., and Allen, J. (2021b).  htmltools: Tools for HTML. R package version 0.5.2. 

Coene, J. (2021a).  Javascript for R. Chapman & Hall/CRC The R Series. CRC Press. 

Coene, J. (2021b). 

 packer: An Opinionated Framework for Using JavaScript. 

https://github.com/JohnCoene/packer, https://packer.john-coene.com. 

Coene, J. (2021c).  waiter: Loading Screen for Shiny. R package version 0.2.3. 

Coene, J. and Granjon, D. (2021).  shinybulma: Bulma for Shiny. R package version 0.0.2.9000. 

Devaux, G. and Granjon, D. (2021).  deminR: deminR. R package version 0.0.0.9000. 

Fay, C. (2021).  brochure: Multipage Shiny Apps. R package version 0.0.0.9020. 

Fay, C., Guyader, V., Rochette, S., and Girard, C. (2021).  golem: A Framework for Robust Shiny Applications. R package version 0.3.1. 

Fay, C., Rochette, S., Guyader, V., and Girard, C. (2020).  Engineering Production-Grade Shiny Apps. Chapman and Hall/CRC. 

Granjon, D. (2021a).  bs4Dash: A Bootstrap 4 Version of shinydashboard. R package version 2.0.3. 

Granjon, D. (2021b).  CaPO4Sim: A Virtual Patient Simulator in the Context of Calcium and Phosphate Homeostasis. R package version 0.2.0. 

Granjon, D. (2021c).  shinydashboardPlus: Add More AdminLTE2 Components to shinydashboard. R package version 2.0.3. 

477

478

 A Bibliography

Granjon, 

D. 

(2021d). 

 tablerDash:

 Tabler

 API

 for

 Shiny. 

https://rinterface.github.io/tablerDash/, https://github.com/RinteRface/tablerDash/. 

Granjon, D. and Coene, J. (2021).  charpente: Seamlessly Design Robust Shiny Extensions. 

R package version 0.0.0.9000. 

Granjon, D., Perrier, V., and Rudolf, I. (2021).  shinyMobile: Mobile Ready shiny Apps with Standalone Capabilities. R package version 0.9.1. 

Hadley, W. (2019).  Advanced R. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition. 

ISBN 978-0815384571. 

Hadley, W. (2021).  Mastering Shiny: Build Interactive Apps, Reports, and Dashboards Powered by R. O’Reilly Media, Incorporated. 

Inc, F., Weststrate, M., Russell, K., and Dipert, A. (2021).  reactR: React Helpers. R package version 0.4.4. 

Meyer, F. and Perrier, V. (2019).  shinylogs: Record Everything that Happens in a Shiny Application. R package version 0.1.7. 

Ooms, J. (2020).  jsonlite: A Simple and Robust JSON Parser and Generator for R. R

package version 1.7.2. 

Perrier, V. and Meyer, F. (2020).  fresh: Create Custom Bootstrap Themes to Use in Shiny. 

R package version 0.2.0. 

Rogala, M. and Zyla, K. (2021). 

 shiny.fluent: Microsoft Fluent UI for Shiny Apps. 

https://appsilon.github.io/shiny.fluent, https://github.com/appsilon/shiny.fluent. 

Sievert, C. and Cheng, J. (2021).  bslib: Custom Bootstrap Sass Themes for Shiny and rmarkdown. R package version 0.3.0. 

Soetaert, K., Petzoldt, T., and Setzer, R. W. (2021).  deSolve: Solvers for Initial Value Problems of Differential Equations (ODE, DAE, DDE). R package version 1.29. 

Stachura, F., Krzemiński, D., and Igras, K. (2021).  shiny.router: Basic Routing for Shiny Web Applications. R package version 0.2.2. 

Teetor, N. (2021).  blaze: Observe URL Paths with Shiny. R package version 0.0.1. 

Wickham, H. (2020).  httr: Tools for Working with URLs and HTTP. R package version 1.4.2. 

Wickham, H. (2021).  testthat: Unit Testing for R. R package version 3.0.2. 

Wickham, H. and Grolemund, G. (2017).  R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. O’Reilly Media, Inc., 1st edition. 

Xie, Y. (2021).  bookdown: Authoring Books and Technical Documents with R Markdown. R

package version 0.24. 

Xie, Y., Dervieux, C., and Presmanes Hill, A. (2021).  blogdown: Create Blogs and Websites with R Markdown. R package version 1.1. 

Zyla, K. and Rogala, M. (2021).  shiny.react: Tools for Using React in Shiny. R package version 0.2.3. 

Index

A

tag rendering, 44

actionButton(), 187, 207, 297–298, 434, Bootstrap

438–439

accordions, 151–157

AdminLTE, 59, 60, 226

badges, 149–150

animations, 226, 227

choosing versions in, 138

chat user interface, 264

compatibility with, 60

customizing, 134

grid system, 102

demonstration page, 264

HTML/CSS/JS template, use as, 59

documentation, 63

navs, 150

HTML template, 120

overview, 50–51

JS methods, 225

Shiny, use with, 51

library, 115, 226

templates, 347

location, 128

Bootstrap 4, 438

primary color, 130

color function, 130

remove actions, 126

compatibility, 51, 138

Sass code, 121, 122, 131

components, 139

title box, 234

dashboard, 120

versions, 121

dependencies, 56, 122

Amazon Web Service (AWS), 68

documentation, 286, 290, 329

Androids, 364, 375, 381, 393

fade transition, 37

Apache, 68

grid rules, 324

Argon design system, 429

HTML code, 152

Attali, Dean, 68

HTML templates, 70, 284, 286

item header, 154

B

JavaScript dependencies, 276, 277

Babel, 173, 454, 455

navs, 150, 316

BEM, 88

Shiny, relationship between, 157

bidirectional communication, 190–191

spacing system, 287

bidirectional fluxes, 187

Tabler toast, relationship between-, 310

binding registry, 243

tags, 44, 149, 151, 156

block element modified (BEM), 88

templates, 333

blogdown, 162

themes, 145

Boostrap 3, 181, 438

toggles, 145

accordions, 151

variables, 125, 142

AdminLTE, relationship between, 59

Bootstrap 5, 151, 152, 154, 155, 156

attributes, 438

box model, 5

badges, 149

browser cache, 400

fonts, 91

bslib

grid layout, 51

Bootstrap badges, use of, 149–150

nav elements, 150

Bootstrap navs, 150

Shiny’s relationship between, 44, 138, external rules, 143–144

161, 181, 275, 438

installing, 137

tabs, 27

overview, 137

479

480

 Index

sliders, 144

HTML elements, 264–266

themes, creating, 138–139

overview, 264

themes, previewing, 140, 141

Chrome

themes, updating, 139–140

cache, 65

theming basics, 144–146

DevTools, 9, 179, 180, 197, 334

theming customization, 146–148

Chrome Debugging Protocol, 333

variables, 142–143

Chrome Remote Interface, 333

Bulma, 344–345.  See also charpente

client-server model overview, 65

content delivery network, 346

client-side execution, 164

dependencies, 346, 347, 351, 355, code quality, 125

356–357

Coene, John, 249, 355

documentation, 348–349

Colorlib, 275

JS code, custom, use of, 351–361

concurrency, 198

JS code, relationship between, 350–351

CONNECT HTTP method, 193

page templates, 350

content delivery networks (CDNs), 56, 278, business logic, 447

346, 347

CRAN, 180, 277, 278, 330, 331, 346

C

Creative Tim, 275

callback, 226

CSS.  See Cascading Style Sheets (CSS)

Cascading Style Sheets (CSS).  See also CSS

CSS for Shiny.  See also Cascading Style

for Shiny

Sheets (CSS)

assets, 71

animations, 96–97

Bootstrap, relationship between, 59

attributes, 82–83

class, 7

block element modified (BEM) ( see

client-server model, use in, 65

block element modified (BEM))

customization using, 12

borders, 93–95

dependencies, 52, 55, 276

colors, 92, 93

HTML, use with, 14

descendants, direct, 83–84

id, 7

flexbox, 100–102

inline, 56

font size, 92

JavaScript, use with, 12, 14

fonts, 90–91

prevalence, 49

grid model, 102

release of, 12

HTML inspector, modifying with, 88, 

selectors, 34, 35, 381, 410, 417

89, 95

Shiny, use with ( see CSS for Shiny)

id, 79, 88

theme files, 51

inclusion in a web page, 77–78

validating, 326–327

layout, 98–102

web application development with, 3

media queries, 102–104

change event, 218

modifying, 77–78

charpente.  See also Bulma

nested tags, select, 80–82

custom JS code, creating, 352

Overview tab, 91

Framework7, use with, 371

padding, 98

initialize, 345

pseudo-classes, 85, 88

JS code, testing, 359

pseudo-elements, 85–86, 88

overview, 344

selectors, overview, 78–79

PWA tools, 391–392

selectors, specificity, 87–88

tools, 355–357

shadows, 93–95

workflow, 344

single elements, applying to, 79

chat system, Shiny

style blocks, 98–100

functions, 266

super properties, 99

handle interactions, 266–272

text allignment, 92

 Index

481

custom handlers, 256, 272

Framework7, 51, 180, 211–212, 347, 363

theory, 260–262

app initialization, 373, 377–378

user-defined, 260

app method, 385

custom overlay screens, Shiny

assets, 397

load on busy, 253–254

data parameters, 379, 380

overview, 252

dependencies, 370

preloader, 253

initializing, 367–368

layouts, 369–372

D

messages, 407

datables, 161

mobile-specific modules, 380–382

debouncing, 219, 220

modifying configuration, 379

defensive programming, 323

navbar, 407

dependencies

notifications, 407

confliction, 60

photo browser, 407

manager, 278–279, 280

PWA, use in, 365

resolving, 61–62

recursive functions, 414

desktop usage of templates, 363

registration module, 399

dev mode, 43–44

render function, 458

Dipert, Alan, 22, 275, 284

templates, 450

Document Object Model (DOM), 272, 373, toasts, 407

399, 417

toggle case, 420

definition, 8

tooltips, 417–418, 419–422

disconnect overlay, 202

UL build, 408–409

element, 209, 215, 250, 255, 258

virtual lists, 407

events, 173

widget storage, 414

find method, 231

widget updates, 412–415

functions, 176

widgets, initializing, 373

HTML overlay, 253

fresh

HTML, use of, 262

colors, 127–128, 130–131

input, 207

installing, 125

manipulation, 51, 174

layout, 128

modifications, 179

navbar, 128–129

visualizing, using developer tools, 8–9

overview, 125

dracula color scheme, 164

Sass, relationship between, 125

dreamRs, 252

sidebar, 131–132

DRY programming, 32, 86–87

sliders, 132

text colors, 130

E

function call, 18

echartsjs, 463

ECMAScript (ES), 162, 173

G

Eich, Brendan, 162

gauge class, 410, 412

else statement, 397, 398, 411

getType method, 238

ES.  See ECMAScript (ES)

ggplot grammar, 39

esbuild, 173, 344, 354, 386

GitHub, 50, 125, 275, 277, 345, 429

esquisse, 125

gitstar, 50

golem package, 30, 352, 430, 448, 449, 456

F

Google LightHouse, 10

favicon, 282

grid rules, Bootstrap, 324

Fay, Colin, 333

flexbox, 100–102, 285, 287

H

flow layout model, 5, 467, 468

head tag, 72

Font Awesome, 161, 295

HEX code, 92, 140, 383

482

 Index

href navigation, 289

paired tags, 5

HTML.  See Hypertext Markup Language

R, conversion to, 344

(HTML)

raw, 18

HTML inspector, 89, 95, 217, 277

raw, converting to R, 22

html2R, 22, 291

requests, 65, 66

htmlDependency(), 58, 277

self-closing tags, 5

htmltools, 279

skeleton, 7

add attributes, 27

sliders, 193

add child/children, 29

structural tags, 5, 6, 443

all attributes, get, 28

tags, 229

altering tag attributes, 37–38

templates, 447

attributes, conditionall set, 31

url, 66

build your own functions, 29

web application development with, 3

children/siblings, altering, 38

Web Inspector, relationship between, 

extraction from, 17

9–10

findDependencies(), 58

HTML tags, manipulating, 17

I

installing, 17–18

icon() function, 61

notations, 18–21

if statement, 154, 230, 231, 240, 397, 411

query methods/tags, 35–36

initShiny, 235

render hooks, altering tags with ( see

input validation, 323

render hooks)

inputs, Shiny, 198, 200

resolving dependencies, 61–62

.setInputValue, 235, 236

set child/children, 28

bindings, 206, 207–208, 210, 219, 220, 

tag, attribute of, 28

221, 222, 224, 225–226, 232, 237, 

tagQuery() function, 32, 33–34, 36, 38, 

336

39, 46

box functions, 224–227, 227–232

web dependencies, managing, 55

change event, 218

HTTP response, 195

class, 206, 207

httpuv, 69, 74–75, 191, 198, 199

delay, 219, 220

Hugo, 162

find, 207

Hypertext Markup Language (HTML)

getType, 237

attributes, 206, 284

handlers, 236, 237–238, 239–240

block elements, 6

id, 206

boilerplates, 196

initializing, 210–211

class, 6

sliders, 206, 207

control tags, 5

structure, 206

dependencies, 330–331, 441

subscribe, 216, 217

formatting tags, 5

tags, 208

gauges, 193, 196

text, 209

generic tags, 6

toggle, 211

handlers, 69

value, 206, 212, 213, 215, 217, 219, 226, 

id, 6

231

inline elements, 6

insertUI, 256–258, 259

inputs, 206

interactivity, 161

inspector ( see HTML inspector)

interpreted language, 164

message, structure, chat, 270

iPadOS, 364

methods, 66

OK status, 65

J

open-source, 275 ( see also specific open JavaScript

 source templates)

arrays, 169–170

 Index

483

assets, 400

jQuery, 32, 161, 207, 212, 290

bindings, 231, 243–244

best practices, 175–176

bundlers, 448

code, volume of, 163

code management, 344

console panel, 179

code, beautifying, 359–360

DOM manipulation, use in, 51, 179

conditions, 168

elements, 179

configuration object, 408

events, 178

const, 166

find method, 377

custom code, 351–352

insert methods, 317

debugging, 8, 180–182, 194, 215

iterations, 177–178

dependencies, 276

methods, chaining, 177

each loops, 114

objects, extending, 178–179

event listeners, 173–174

overview, 174

events, 249

REPL, 179

events, invoking, 250–251

selectors, 175, 327–328

functions, 172

Shiny, use with, 50, 52, 176, 275

handlers, 307, 312, 319, 333

syntax, 174–175

id, 173, 266, 267, 268

Tabler, use in, 302

initializing, 243

tags, manipulating, 176–177

input bindings, 358

JSHint, 358

inputs, 251, 307

JSON, 308, 409, 413, 441, 454

JSX, 432

configuration, 392–393

length, 170

data exchange via, 187–188

let, 166, 167, 168

debugging, 194

library, 318

fields, 311

logic, 193, 309, 334, 336, 438–439

objects, 214

for loops, 171–172

processing, 188–190

Math, 171

sliders, 197

modularizing code, 386–387, 444–445

JSX code, 454, 455, 457, 458

motivations, 249

objects, 169

K

organizing code, 353–355

keyframes rule, 96

origins, 162

overview, 162–163

L

prevalence, 49

Linux, 68

push, 170

R, communication with, 187

M

Shiny codes, 161

 Mastering Shiny, 255, 472

Shiny object, 182–183

Material Bootstrap card, 55–58

sliders, 460

meta tags, 282, 370, 371, 456

sockets, 200–201

mobile development, Shiny.  See also

Strings, 170

progressive web apps (PWA)

types, 166

app configuration, 375

var, 168

app initialization, 373–375

variables, 166

components, 376

web application development with, 3

disconnect screen, enhancing, 423–425

while loops, 172

end-user configuration, 377

widgets, initializing, 409–411

events, 375

JavaScript Object Notation (JSON).  See

JS code, modularizing, 386–387

JSON

overview, 364

Jekyll, 162

theme, global, 375, 379

484

 Index

welcome message, 374

fresh ( see fresh)

mobile usage of templates, 363

HTML tags, writing, 17–18

mocha, 359

implementation with toast API, 311

Mozilla, 161

interface, creating, for Shiny mobile

app, 453, 454

N

logic, 437–438

navbarPage, 81, 82, 83

notations, 18–21

nested for loop, 414

server, 199

nested lists, 413

UI skeleton, 456–457

nginx, 68

unit tests, 343

Node, 164

web application development with, 3

Node.js libraries, 191

R wrappers, 275

npm, 346

R6 class, 34

NULL, 214, 229, 292, 317, 325, 417

React, 275

button group input, 442

O

combination components, 433

object-oriented programming (OOP)

component state, 433–435, 440

language, 14, 169

ecosystem, 429

ordinary differential equation (ODE), 449, 

element function, 440

450

initialize, 441

OSUICode, 192, 195, 197, 223, 238, 260, 

JSX, 432

283, 303

overview, 429, 431

P

R logic, customizing, 437–438

plug-and-play, 352, 448

render method, 441

progress bars, custom, 307–310

setting up, 430, 435–437

progressive web apps (PWA)

tags, 432

converting a Shiny app to, 369

React Native library, 429

development tools, 365, 394, 395, 397

React Tools, 441

disabling, for end user, 400–402

refactoring, 323

fetch, 397–398

render hooks, 149, 152, 153

Google compatibility, 392, 393, 394–395

nested, 44–47

icons, 393

simple, 42–43

installable criteria, 364

renderDocument(), 71–73

installation, 402–404, 406

renderHTML method, 268

manifest, creating, 392–394

renderTags(), 71, 72, 267, 268

offline fallbac, 399–400

renderUI(), 227, 228, 232, 318, 320

rules of, 364

dropdown menu, use in, 256

service worker, 395–396, 396–399

overview, 255

standards, 399

usage, 227

pseudo-classes, 85, 88

reproducibility, 323

pseudo-elements, 85–86, 88

RinteRface, 22, 224, 275, 344

PWA.  See progressive web apps (PWA)

RStudio, 164, 179, 333, 359, 372

Python, 164, 169

RStudio Connect, 68, 200

RStudio IDE, 164, 165

R

Russell, Kent, 275

API, documentation of, 343

business logic, 450–453

S

code, with HTML, 69–70

Sass

console, 197

best practices, 116–118

developer tools, 65

bundles, 117–118

file organization, 343

caching, 118–119

 Index

485

compression, 118

Shiny server, 68

CSS generations, 118

Shiny Server Pro, 200

customizing, 122–123

shiny.css, 161

each loops, 113–115

shiny.js, 162

extend, 111–112

shiny.router, 471

functions, 110–111

shinydashboard, 224, 226, 301, 325, 352

inheritance, 111–112

customizing with, 134–135

for loops, 115

shinydashboardPlus, 62–63, 264

mixins, 109–110

shinyMobile, 236

modules, use of, 108

shinyRPG, 24–27, 41

nesting code, 115–116

shinyWidgets, 60, 125

overview, 107

sliderInput(), 187, 268

partials, use of, 108

source maps, 374

Shiny, use in, 119

Stack Overflow, 179

source maps, 118

startServer(), 193

variables, 107, 108

string interpolation, 270

semantics, 6

style tag, 14

session object, 213

subscribe method, 222, 223–224

Shiny

super properties, CSS, 99

app initialization, 243

Syntactically Awesome Style Sheets (Sass). 

app lifecycle, 69–74

 See Sass

bindings, defining, 243

chat system ( see chat system, Shiny)

T

conflicts, 279

tabbed navigation, 288

core, 198

Tabler, 277, 279

custom overlay screens ( see custom

action button, 297–299, 313–315

overlay screens, Shiny)

body content, 284

customizing, 15, 52

button tag, 297, 298

dashboard designs, 58–60

card containers, 291–293

dependencies, 50, 78

content, 282

files structure, 67–68, 69–73

dashboard template, 283

HTML code generation with R, 3, 4–5

dropdowns, 286

HTML template creation, 70–71

footer, 284–285

inputs ( see inputs, Shiny)

head, 282

man, 161

icons, 295

messages handlers, 256, 258, 262–263

initialize method, 302

mobile development ( see mobile

layout, 281

development, Shiny)

navbar, 285–288, 288–290, 301, 302, multipage apps, 471–472

304, 336

outputs, 198, 283

optimization, 310

R package, 161

progress bars, custom, 307–310

session object, 199

ribbons, 293–294

sliders, 268, 334, 335

svg library, internal, 295

tag functions, 18

tabs, inserting/removing, 316–320

tags structure, 23–24, 328

toasts ( see toasts)

tags, adding new, 21

toggler, 285, 286, 299–301

tags, conversion, 230

validations ( see validating template

tags, list, 268

elements)

tests, 161

tabler.min.css, 276

widget state, 410–411

tabler.min.js, 276

shiny 1. 6. 0, 73

tag() function, 21

486

 Index

tag$style, 14

selectors, 327–328

tagList(), 59, 60, 282

tags, 326

tagQuery(), 154

Van der Pol oscillator, 449

tags$script, 15

var, 168

ternary operator, 168

vectors, 266

ThinkR, 333

VS Code, 164, 165

tidyverse

Vue, 275

grammar, 39

toasts

W

API, 311

waveforms, 4

body, 312

web applications

disconnect screen, 423

client-server models of, 65

Framework7, 407

files structure, 67–68

headers, 311

servers, relationship between, 68

JavaScript, relationship between, 409

Web Inspector, 9–10

R implementation, 311–313

webpack, 355, 437, 438

skeleton, 310–311

WebSocket (WS) handlers, 69

tag, 312

WebSocket API, 195

usage, 310

websockets

toggle, 211

callback, 194

tooltips, adding in Framework7.  See under class, 191

Framework7

client connections, 195–196

Twitter, 363

connections, 201, 202

debugging with Shiny, 202

U

entry, 197

uniform resource locator (URL)

handlers, 199–200

HTTP, as part of, 67

initiation, 199–200, 243

structure of, 67

message manager, 246, 247

Unix, 57

opening, 244

overview, 190–191

V

package, 191–192

validating template elements

protocols, 201

creating validations, 323–325

server, 193

CSS units, 326–327

Wickham, Hadley, 255

input bindings, testing, 336–339

widget creation, 161

JS side, 333–336

Windows 10, 393

R side, 331–333

Windows OS, 57





Document Outline


	Cover

	Half Title

	Series Page

	Title Page

	Copyright Page

	Dedication

	Contents

	Foreword

	Welcome

	1. Shiny and the Web

	1.1. Shiny generates HTML code from R

	1.2. Be a DJ

	1.3. HTML 101

	1.3.1. HTML basics

	1.3.2. Tag attributes

	1.3.3. The simplest HTML skeleton

	1.3.4. About the Document Object Model (DOM)

	1.3.5. Preliminary introduction to CSS and JavaScript





	1.4. Summary





	2. Manipulate HTML tags from R with {htmltools}

	2.1. Writing HTML Tags from R

	2.2. Notations

	2.3. Adding new tags

	2.4. Alternative way to write tags

	2.5. Playing with tags

	2.5.1. Tags structure

	2.5.2. Practical examples: shinyRPG

	2.5.3. Useful functions for tags

	2.5.4. Other functions

	2.5.5. Conditionally set attributes

	2.5.6. Using %>%

	2.5.7. Programmatically create children elements





	2.6. Modern {htmltools}

	2.6.1. Basics

	2.6.2. Query tags

	2.6.3. Modify tags

	2.6.4. Chain tag queries

	2.6.5. Specific cases

	2.6.6. Practice

	2.6.7. Alter tag rendering with render hooks









	3. Discover Shiny dependencies

	3.1. Introduction

	3.2. Bootstrap

	3.3. jQuery, DOM manipulation

	3.4. Custom dependencies

	3.5. Exercise





	4. Handle HTML dependencies with {htmltools}

	4.1. Motivations

	4.2. Importing HTML dependencies from other packages

	4.3. Suppress dependencies

	4.4. Resolve dependencies

	4.5. Insert Custom script in the head





	5. Web application concepts

	5.1. The client-server model

	5.2. About HTTP requests

	5.3. Structure of an URL

	5.4. Web app files structure

	5.5. Serving web apps

	5.6. About {httpuv}

	5.7. Shiny app lifecycle

	5.7.1. Building the UI

	5.7.2. Serving HTML with {httpuv}





	5.8. Summary





	6. CSS for Shiny

	6.1. How to include CSS? 

	6.2. CSS selectors

	6.2.1. Basics

	6.2.2. Select by class, id

	6.2.3. Apply CSS to single elements

	6.2.4. Advanced selectors





	6.3. Best practices

	6.3.1. DRY principle

	6.3.2. Selector specificity

	6.3.3. Block element modified (BEM)





	6.4. Modify CSS with the HTML inspector

	6.4.1. Add inline properties

	6.4.2. View local changes





	6.5. CSS in action

	6.5.1. Text Styling

	6.5.2. Colors

	6.5.3. Borders and shadows

	6.5.4. Animations

	6.5.5. Layout

	6.5.6. Responsive design: media queries









	7. Tidy your CSS with Sass

	7.1. Getting started with Sass

	7.1.1. Variables

	7.1.2. Partials and Modules

	7.1.3. Mixins and Functions

	7.1.4. Extend/Inheritance

	7.1.5. Flow controls

	7.1.6. Nesting code





	7.2. {sass} best practices

	7.3. From Sass to CSS

	7.4. Caching

	7.5. Sass and Shiny

	7.6. Examples

	7.6.1. Customize {bs4Dash} colors

	7.6.2. Customize {shinybulma}









	8. Beautify with {fresh}

	8.1. {fresh}, the big picture

	8.1.1. Customize {bs4Dash}

	8.1.2. Customize {shinydashboard}









	9. Become a theming wizard with {bslib}

	9.1. High-level customization

	9.1.1. Create a theme

	9.1.2. Update a theme

	9.1.3. Preview a theme

	9.1.4. Live theming





	9.2. Low-level customization

	9.2.1. Add new variables

	9.2.2. Import external rules





	9.3. Dynamic theming

	9.3.1. Basics

	9.3.2. Custom elements

	9.3.3. Conditional rendering





	9.4. Further resources





	10. JavaScript for Shiny

	10.1. Shiny JavaScript sources

	10.2. Introduction to JavaScript

	10.3. Setup

	10.3.1. Node

	10.3.2. Choose a good IDE

	10.3.3. First script





	10.4. Programming with JS: basis

	10.4.1. JS types

	10.4.2. Variables

	10.4.3. Conditions

	10.4.4. Objects

	10.4.5. Iterations

	10.4.6. Functions

	10.4.7. JS code compatibility

	10.4.8. Event listeners





	10.5. jQuery

	10.5.1. Introduction

	10.5.2. Syntax

	10.5.3. Good practice

	10.5.4. Useful functions

	10.5.5. Chaining jQuery methods

	10.5.6. Iterations

	10.5.7. Events

	10.5.8. Extending objects





	10.6. Shiny, JavaScript and the HTML inspector

	10.6.1. The console panel

	10.6.2. Debug Shiny/JS code with the inspector

	10.6.3. The Shiny JavaScript object





	10.7. Exercises

	10.7.1. Exercise 1: define variables

	10.7.2. Exercise 2: define objects

	10.7.3. Exercise 3: jQuery

	10.7.4. Exercise 4: a pure JS action button









	11. Communicate between R and JS

	11.1. Introductory example

	11.2. JSON: exhange data

	11.2.1. Process JSON from R

	11.2.2. Process JSON from JS





	11.3. What is a websocket? 

	11.3.1. Example

	11.3.2. Test it! 





	11.4. Client concurrency

	11.5. Shiny and websockets

	11.5.1. The Shiny session object

	11.5.2. Server side

	11.5.3. Client side

	11.5.4. Debug websocket with Shiny









	12. Understand and develop new Shiny inputs

	12.1. Input bindings

	12.1.1. Input structure

	12.1.2. Binding Shiny inputs

	12.1.3. Edit an input binding

	12.1.4. Update a binding from the client





	12.2. Secondary inputs

	12.2.1. Boxes on steroids

	12.2.2. Further optimize boxes

	12.2.3. Exercise





	12.3. Utilities to quickly define new inputs

	12.3.1. Introduction

	12.3.2. Examples





	12.4. Custom data format

	12.4.1. The dirty way

	12.4.2. The clean way: leverage getType









	13. Shiny inputs lifecycles

	13.1. App initialization

	13.2. Update input





	14. Mastering Shiny’s events

	14.1. Get the last changed input

	14.1.1. Motivations

	14.1.2. Invoke JS events

	14.1.3. Practical example

	14.1.4. About {shinylogs}





	14.2. Custom overlay screens

	14.2.1. Preloader

	14.2.2. Load on busy









	15. Optimize your apps with custom handlers

	15.1. Introduction

	15.2. The renderUI case

	15.3. Other Shiny handlers

	15.3.1. The insertUI case

	15.3.2. Example





	15.4. Custom handlers

	15.4.1. Theory

	15.4.2. Toward custom UI management functions









	16. Define dependencies

	16.1. Introduction

	16.2. Discover the project

	16.3. Identify mandatory dependencies

	16.4. Bundle dependencies





	17. Create template elements

	17.1. Identify template elements

	17.2. Design the page layout

	17.2.1. The page wrapper

	17.2.2. The body content

	17.2.3. The footer

	17.2.4. The navbar (or header)

	17.2.5. Card containers

	17.2.6. Ribbons: card components

	17.2.7. Icons





	17.3. Exercises





	18. Develop custom input widgets

	18.1. Tabler action button

	18.1.1. Reminders about the action button

	18.1.2. Application to Tabler





	18.2. Toggle Switch

	18.3. Navbar menu input

	18.4. Exercises





	19. Adding more interactivity

	19.1. Custom progress bars

	19.2. User feedback: toasts

	19.2.1. Toast skeleton

	19.2.2. The toast API

	19.2.3. R implementation

	19.2.4. Exercise





	19.3. Transform an element in a custom action button

	19.4. Tab events

	19.4.1. Insert/remove tabs in tabsetpanel

	19.4.2. Exercise









	20. Testing and validating template elements

	20.1. Validate template functions

	20.1.1. Create your own validations

	20.1.2. Existing utils functions

	20.1.3. Example: refine navbar menu items





	20.2. Testing templates elements

	20.2.1. Caveats

	20.2.2. Testing template behavior

	20.2.3. Test input bindings









	21. Automate new template creation with {charpente}

	21.1. Motivations

	21.2. General idea

	21.3. A case study: {shinybulma}

	21.3.1. Build the HTML dependency

	21.3.2. Set up the minimal page template

	21.3.3. Exercise: add bulmaJS

	21.3.4. Add custom JS

	21.3.5. Add custom input/output bindings

	21.3.6. Organize your JS code

	21.3.7. Combine multiple dependencies

	21.3.8. Other {charpente} helpers





	21.4. Other tips

	21.4.1. Validate JavaScript

	21.4.2. Test JS code

	21.4.3. Beautify JS code









	22. Introduction

	22.1. Case study objectives

	22.2. About mobile development

	22.3. Progressive web apps

	22.3.1. Introduction

	22.3.2. What does “installable” mean? 

	22.3.3. How to develop a PWA? 









	23. Reconstruct {shinyMobile}

	23.1. Introduction to Framework7

	23.2. Initiate the package

	23.3. Framework7 layouts

	23.4. App initialization

	23.5. App configuration

	23.5.1. Global theme

	23.5.2. Events

	23.5.3. Components configuration

	23.5.4. Allow end-user configuration

	23.5.5. Modify configuration

	23.5.6. Global data and methods

	23.5.7. Other elements





	23.6. Theming and colors

	23.7. Modularize JS code

	23.8. Exercise





	24. {shinyMobile} and PWA

	24.1. Introduction

	24.2. {charpente} and PWA tools

	24.2.1. Create the manifest

	24.2.2. Google PWA compatibility

	24.2.3. Service worker and offline page

	24.2.4. Disable PWA for the end user





	24.3. Handle the installation

	24.4. Other resources





	25. Design widgets

	25.1. Build the UI

	25.2. Widgets without preexisting UI

	25.3. Initialize the widget

	25.4. Update widgets

	25.5. More complex elements

	25.5.1. Add a tooltip

	25.5.2. Update a tooltip









	26. Fine-tune {shinyMobile}

	26.1. Enhance the disconnect screen





	27. Shiny and React with {reactR}

	27.1. Quick introduction to React

	27.1.1. Setup

	27.1.2. Basics





	27.2. Introduction to {reactR}

	27.2.1. Setup

	27.2.2. Customize the R logic

	27.2.3. Implement the JS logic

	27.2.4. Improve the JS logic

	27.2.5. Exercise 1

	27.2.6. Technical considerations

	27.2.7. Exercise 2

	27.2.8. Add another input





	27.3. Further resources





	28. Shiny and modern web development

	28.1. Motivations

	28.2. State of the art

	28.3. About the project

	28.3.1. Topic

	28.3.2. Initialize the project

	28.3.3. UI design

	28.3.4. R business logic

	28.3.5. Add Shiny

	28.3.6. Create the interface





	28.4. Final product





	29. What to do next? 

	29.1. Multi-page Shiny apps

	29.2. Web design best practices for Shiny

	29.3. Conclusion





	A. Code outputs

	A.1. Mastering {htmltools}

	A.1.1. Shiny RPG rework





	A.2. Case Study 2: Mobile development with Shiny

	A.2.1. Reconstruct {shinyMobile}





	A.3. R + Shiny + React: welcome {reactR}

	A.3.1. Introduction to {reactR}









	Bibliography

	Index




index-29_2.png





index-29_1.png





index-29_4.png





index-29_3.png





index-32_1.png





index-31_1.png
. . Inline direction =———————
Block direction Block 1 A: flow layout

Inline 1 Inline 2 Inline 3

Block 2 margin (top) I B: box model

I padding (top)

— height

Ipadding (bottom)

margin (bottom) width

—





index-38_9.png





index-38_8.png





index-38_11.png
r mobile Apps?






index-38_10.png
Are you ready fc






index-41_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-38_12.png
shinyMobile






index-44_1.png
Console Terminal Jobs

~/Documents /David/Advanced_Shiny_Ul/ #
> htmltools:: tags$

hi(..., .noWS = NULL, .renderHook = NULL)
Create an R object that represents an HTML tag. For convenience,

*h1 {htmltools:: tags}

2 {htmltools:: tags} | common HTML tags (e, <aivs) can be created by calling for their
tag name directly (¢.0., 45v ()). To create less common HTLS (or

A {htmltools:: tagsh | QR s (o dari e e, use the cags st collection (6.,

¢ h4 {htmltool tags} tagssarticle()). To create other non HTML/SVG tags, use the
lower-level tag() constructor.

¢ hs {NtMLtoOLs :: tABS} | pres 1 foractonshep

*h6 {htmltools:: tags}






index-42_1.png





index-38_6.png
Filter
> display
block

height
1342px

» margin-bottom
8px

"] Show all






index-38_5.png
html body

Styles  Event Listeners DOM Breakpoints  Prope!

body
display: block;
margin: » 8px;






index-38_7.png
¥# RinteRface Menu  E

RinteRface

HTML templates for ‘

RinteRface aims at bringing the most famot.
source HTML templates to R






index-36_1.png
[¥ (] FElements Console CSSOverview Sources  Nef
<toocTvPE hints
Shints
s
S
b AT e
e
e =
SRR id attribute
</div> Edit as HTML
i Delete clement
it
Copy >
Hide element
Force state »
Break on »
Expand recursively
Collapse children
Scrollinto view
Focus
Store as global variable
Speech >





index-37_2.png
7 ] Eements Console CSSOverview Sources  Net

<1DOCTYPE htnl>
<htnl>

» <head>..</head>
v<body>

vediv class="container—fluid">

nly-text">Edited text</p>

html body div.container-fuid  p#only-text.awesome-text
Gancel

‘awesome-text





index-37_1.png
i Console WnatsNew  Changes lIssues

E O tp v © | Fiter Defauit e
Nomessages > document. querySelector ("body > div >
¢ <p class="awesone-text" id="only-text">Edited text</p>

No wamings

Noiinfo

No verbose

e
o
A
o
]





index-38_2.png
O : w 0 Elements = Console  Sources  Net

<html>
<head></head>
.v<body> == $0
v<header>
<title>The World Wide Web project</title
<nextid n="55">
</nextid>
</header>
<h1>World Wide Web</h1>
"The WorldWideWeb (W3) is a wide-area"
<a name="0" href="WhatIs.html">
hypermedia</a>
" information retrieval
initiative aiming to give universal
access to a large universe of documents."
P <p>.</p>
P <dl>.</d1>
</body>
</html>

niverse of documents.






index-38_1.png
. The World Wide Web project X +

C'  ® Not Secure | info.cern.ch

iPad Pro v X 50% v Online

World Wide Web

‘The WorldWideWeb (W3) is a wide-area information retrieval initiative aiming to give universal access to a large u
Everything there s online about W3 is linked directly or indirectly to this document, including an of the prc
November's .

Pointers to the world's online information, . etc.

on the browser you are using
Alist of W3 project components and their current state. (e.g. X11 B ) JTools .
Details of protocols, formats, program internals etc

Paper documentation on W3 and references.

Alist of some people involved in the project.

‘A summary of the history of the project.

Ifyou wozm like to support the web..

Getting the code by Lete.





index-38_4.png





index-38_3.png
w

vork Performance

ties  Accessibility

thov .cls +

agent stylesheet

A - 3
g |

Memory  »

margin 8

border =

padding -

-| 1008 x 1342






index-34_2.png
nance  Memory  » e : X

Styles = Computed Layout >

Filter thov .cls +‘ <

element.style {

I

p{ user agent stylesheet
display: block;
margin-block-start: lem;
margin-block-end: lem;
margin-inline-start: 0Opx;
margin-inline-end: Opx;

I

margin

border
padding -
= 213 x 18

16






index-34_1.png
x ﬂ Elements  Console = CSS Overview  Sources  Network  Perforn

<!DOCTYPE html>
<html lang="en">
v <head>
<!— head content here ——>
<title>A title</title>
</head>
v<body>
<p>Hello World</p> == $0
</body>
</html>





index-35_1.png
Hello World

P
Color

404.4x20
4333333

Font 14px "Helvetica Neue*, Helvetica, Aril, ...

Margin

ACCESSIBILITY
Contrast

Name

Role
Keyboard-focusable

0Opx 0px 10px

Aa 1263

paragraph

Elements

DOCTYPE htnl>
htnl>

poHello World</p:
t:after
div>
body
/hitnl>






index-34_3.png
html body p






index-80_1.png
Card title

Some quick example text to build on the
card title and make up the bulk of the
card's content.

BUTTON





index-79_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-82_1.png
Card title
Card content

BUTTON






index-81_1.png
Card title
Card content





index-83_2.png
5. 0] ;mdb—

nitial-scal
rel="styles
trap-access

/script>
trap-access






index-83_1.png
Elements  Console  »

-8">
Card title <script typ:

Card content v<scr1pt type="

card[1.0]; bnutstraplz 4. 1]
</script>
<script src="shared/jquery.min.js"></script>
<link hre hared/shiny.min.css" rel="style:
<script src="shared/shiny.min.js"></script>
<link hre ttps://cdnjs.cloudflare.
>

3.6.0/mdb.min.css" re ty
<meta name="viewport" content="

ns

<link href="shared/bootstrap/css/bootstrap.min

hared/bootstrap/accessibility/css/boots:
t">
<script src hared[bootstr n[Js(bootstrap min
<script src="shared/bootstrap/accessibility/js/boots
ibility.mi </script>
<title>Hello Shiny!</title>
</head>

html  head link





index-86_1.png
semanticPage <- function(..., title = ", theme = NULL, suppress_bootstrap = TRUE,
margin = “10px") {
if (suppress_bootstrap) {
suppress_bootstrap <~ EVIFTFITTITISES ("bootstrap")
¥
else {
suppress_bootstrap < NULL
¥
shiny: :tagList(
shiny: : tagsshead(
get_dependencies(thene),
shiny::tagsstitle(title),
shiny::tagsémeta(nane = "viewport”, content = "width=device-width, initial-scale=1.0"),
shiny::tagsslink(rel = “stylesheet”, type = “text/css",
href = “shiny.senantic/shiny-semantic-DT.css"),
shiny::tagssscript(src = "shiny. semantic/shiny-senantic-nodal. js"),
shiny::tagssscript(src = "shiny. semantic/shiny-senantic-dropdown. js"),
shiny: :tagssscript(src = "shiny. semantic/shiny-semantic-button. js"),
shiny::tagssscript(src = "shiny. semantic/shiny-senantic-slider. js"),
shiny::tagssscript(src = "shiny. semantic/shiny-senantic-calendar. js"),
shiny::tagssscript(src = "shiny. semantic/shiny-semantic-fileinput.js"),
shiny::tagssscript(src = "shiny. semantic/shiny-senantic-nunericinput. js"),
shiny::tagssscript(src = "shiny. semantic/shiny-semantic-rating. js"),
shiny: :tagssscript(src = "shiny. semantic/shiny-senantic-tabset. js"),
shiny::tagssscript(src = "shiny. semantic/shiny-senantic-progress. js"),
shiny::tagssscript(src = "shiny. semantic/shiny-senantic-toast. js")

)

shiny: : tagssbody(style = glue: :glue(*margin: {margin};"),
suppress_bootstrap,
cocD





index-85_1.png
Shiny with a box





index-91_1.png
[w ﬂ Elements  Console =~ CSS Overview  Sources  Network >

® © Y Q [JPreservelog [ Disable cache Online v 4+ 3

[] Use large request rows [} Group by frame

] Show overview [] Capture screenshots
Name Status Type Initiator Size Time

B 127.0.01 200 docum... Other 1.0kB 18n
B iquery.min.js 200 script (index) (memo. 0on
B shiny.min.css 200 stylesh... (index) (memo. 0on
B shiny.min.js 200 script (index) (memo. 0n
B bootstrap.min.css 200 stylesh... (index) (memo... 0On
B bootstrap-accessibility.min.css 200 stylesh... (index) (memo. 0n
B bootstrap.min.js 200 script (index) (memo. 0on
B bootstrap-accessibility.min.js 200 script (index) (memo. 0n
B websocket/ 101 webso... shinyapp.js:83 0B Pendir
9requests 1.0 kB transferred 365 kB resources ~ Finish: 37 ms = DOMContentLoaded: 1(






index-89_1.png
<IDOCTYPE html>
<html style="heighi
v<head>

<meta http-equiv="Content-Type" content="text/htnl; charset=utf-t
<script type="application/shiny-singletons">5db525352143a905cheBbe1e72ae8fdc57ae952
</seript>

<script tyy
<script src:
<script src:

auts

‘appLicat ion/html-dependencies">..</script>
hared/json2-min. js"></script>
Shared/jguery.min. js"></script>
<link href="shared/shiny.css" rel="styleshest">
<script src="shared/shiny.min. js"></script>
<Uink href="font-auesome-5.13.0/css/alL.min.css" rel="stylesheet">
<link href="font-auesone=5.13.0/css/vi-shins.min.css" rel="stylesheet">
<meta name="viewport" content="width-device-width, initial-scale
<link href="shared/bootstrap/css/bootstrap.nin.css" rel="stylesheet">
<script src="shared/bootstrap/js/bootstrap.nin.js"></script>
<script src="shared/bootst rap/shin/htnl5shiv.nin. js"></script>
<script src="shared/bootst rap/shin/respond.nin.js"></script>
vescripts

var AdminLTEOptions = {

“sidebarExpandOnover": true,
“boxidgetselectors”: {
renove": " [data-widget=\"renove\"]"
3
i
</seript>

<link href="shinydashboardPlus-0.5.0.9900/css/Adninl TE.nin.css" rel="stylesheet">
<Uink href="shinydashboardPlus-0.5.0.9000/css/ all-skins.min.css" rel="stylesheet">
<script src="shinydashboardPlus-0.8.0.9800/s/bindings. js"></script>
<script src="shinydashboardPlus—0.8.0.9000/]s/app.min. |s"></script>






index-75_1.png
<!DOCTYPE html>
«:<html> == $0

v<head>
<meta http—equiv="Content-Type" content="text/html; charset=utf-8">
<script type="application/shiny-singletons"></script>
<script type="application/html-dependencies">jquery[3.5.1];shiny-css[1.6.0];shiny—
javascript[1.6.0];bootstrap[3.4.1]</script>
<script src="shared/jquery.min.js"></script>
<link href="shared/shiny. css" rel="stylesheet">
<script src="shared/shiny.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link href="shared/bootstrap/css/bootstrap.min.css" rel="stylesheet">
<link href="shared/bootstrap/accessibility/css/bootstrap-accessibility.min.css" rel="style
sheet">
<script src="shared/bootstrap/js/bootstrap.min.js"></script>
<script src="shared/bootstrap/accessibility/js/bootstrap-accessibility.min.js"></script>

</head>






index-60_1.png
root Tag

$chl.I;1ren()






index-63_1.png
root Tag

Sreplacerth(Super Tag)

child Tag

Super Tag

.-.‘

Sprepend()
Sappend()






index-62_1.png
Attributes

SaddAttrs(“id”= "myID”) * | ShasAttrs(“id”) = SremoveClass(“class”= “myClass”)






index-68_1.png
tagAddRenderHook(tag, hook) External conditions:
; Remove class ’

Modified Tag options, theme, ...

Attributes

Activate hook(s)

= LIE]

child Tag child Tag Remove child

Create Tag
)

Start Rendering Rendering

\—Y—}

Shiny, Rmarkdown





index-64_1.png
w1
Tab 2

-2

3





index-69_2.png





index-69_1.png
IUNDER REWORK!






index-74_1.png
Console . owr
~/Documents/David/Advanced_Shiny_Ul/ o
> library(shiny)

ui « fluidPage(
))
server ¢« function(input, output, session) {

}

shinyApp(ui, server)





index-73_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-50_1.png
Dropdoun & Lists

This example shows the dropdown (aka combobox) and the list
widgets. These elements are made from simple “select" with
“"options” and rpgui class.

Dropdoun: List:
v Marrior Blacksmith
Merchant
Warrior
City Guard
Mage o
Alchemist
Rogue
Explorer

Ranger






index-48_1.png
C @ alandipert.shinyapps.io

HTML to R Converter

HTML

<th>Firstnamex</th>
<th>Lastname</th>
<th>Age</th>
<>
<tr>
<td>Jili</td>
<td>Smith</td>
<td>50</td>
<>
<tr>
<td>Evec/td>
<td>Jackson</td>
<td>94</td>
<>
<Htable>

ithub.

Prefix

Convert

tagsstable(style = "width:100%",
tagsstr(tagssth("Firstnane"),
tags$th("Lastnane"),
tags$th(“Age")),
tagsstr(tags$td("Jill"),
tags$td("smith"),
tags$td("50")),
tagsstr(tagsstd(“Eve"),
tags$td(“Jackson"),
tags$td("94")))

[+

»





index-115_1.png
[¥ ] FEements Console CSSOverview Sources Network Performance & i ox
| Styles Computed  Event Listeners
 <heads.</head> Fiter thov .cls +

v<body>
vediv class="container—fluid">
efore
<style=p { color: rec

elenent. style {
padding-left: 15p
padding-right: 15px;
padding-top: 15px;

padding-botton: 15px;

[
color: W#00ff5c;
border-style: » dashed;

box-sizing: border-box;

»

Pl user agent stylesheet
display: block;
margin-block-start: len;
margin-block-—end: len
margin-inline-start:
margin-inline-end: Opx;

hmi body divcontanerfud p )
: Console WharsNew  Changes x lssues. 5
| Gndex) 1515 [<script sre="shared/bootstrap/shin/respond.min.js"></script>

1616 |</head>
1717 |<body>

1018 | <dlv class="container-fluid®>
9 - esylenp { cotors resilesstyles

e stlen alor: redide/styles
22 “poHello World</p>
nA | i

222 |</body>





index-114_1.png
Elements Network ~ Performance  »  ®

<IDOCTYPE html> Styles,

class="container—fluid

#2430eafc;
colo dashed;
picl border
border—color: #2434eafc; border
border—style: dashed; P border-block-end
Hello World: border-block-end-color

border-block-end-style

P border-block-end-width
border-block-start
border-block-start-color






index-116_2.png
o]

occurrence @B

ccurrences @B






index-116_1.png
x ﬂ Elements Console CSS Overview Sources Network Performance  »

(M)

Overview Aa Font info
summary

Colors sans-serif

font-size font-weight line-height

Unused
declarations 10px 1 occurrence @@ 400 1 occurrence @8 normal 1

Media
queries

"Helvetica Neue", Helvetica, Arial, sans-serif
font-size font-weight line-height

14px 12 occurrences @B 400 12 occurrences @@ 20px 12c






index-119_2.png
s Network  Performance  » a : X
Styles =~ Computed Layout >
Filter thov .cls + [«

4
success .Mmoaal—-neaaer, .moaatl-warning

.modal-body, .modal-warning .modal-footer,
.modal-warning .modal-header {

color: M#ffflimportant;
}

.box { AdminLTE.min.css:7

position: relative;
border-radius: » 3px;

background: » M#fff;

border—top: » 3px solid M#d2d6de;
margin-bottom: 20px;

width: 100%;

box-shadow:
[0 1px 1px Mrgb(0 @ 0 / 10%);

> ==

}

* { vendor—prefixes.less:77
A sizingi—berder—bex:
box-sizing: border-box;

Ip

div { user agent stylesheet
display: block;

}

Inherited from body

body { AdminLTE.min.css:7

font—family: 'Source Sans

Pro', 'Helvetica
Nene' Heluetica Arial canc—cerif:






index-119_1.png
x O Elements  Console  CSS Overview  Source:

<!DOCTYPE html>
style="height: auto;">

style="height: auto;":

v class="container—fluid">

efore

/ class="main-sidebar" style="display: none;

class="box bg-blue" style="height: 400px'
iv class="box-header": iv
class="box-body">






index-120_1.png
X offset

Y offset

Blur

Spread

Opx

8px

8px

Opx






index-119_3.png
div.container-fluid iv.col-sm-6 div.box.bg-blue






index-121_1.png
Box with border






index-120_2.png
.
0 I
x
. T
[} [} [} 0.2
R G
asEeeEs

EEBBBBBO
[ ] [ N NN





index-91_2.png
o]

Waterfall A
ns

NS
NS
NS
NS
NS

NS

NS

9

)1ms Load: 100






index-95_1.png
Client 1** (web browser) Server: Shiny Server (srv/shiny-server)

http(s)://<HOSTNAME>:<PORT>/<APP_PATH:

(1)

]
'. - e

(2)

Rendered HTML (4) (3) uiHttpHandler()

page (translated
ui.R into HTML)

*)

(5)
{httpuv} layer: HTTP server tags$body(...) Adds <!DOCTYPE

+ html>, html,
startServer(host, port, app) htmiTemplate() | head and body

Valid HTML template

renderDocument() +  Convert R tags to HTML
(renderTags, *  Extractand resolve
resolveDependencies, dependencies
renderDependencies) |+  Add dependencies to

httpResponse head

+
static paths HTML + dependencies
+

other options

+ (*) httpResponse()
websocket handler

“Websockets are discussed later
** There may be multiple clients. 1 client = 1 browser tab






index-92_1.png
Name % Headers Preview Response Initiator  Timing

B 127001 v General

W iquery.minjs Request URL: http://127.0.0.1:7665/
M shiny.min ces Request Method: GET

Status Code: ® 200 0K |
Remote Address: 127.0.0.1:7665

B shiny.min.js
B bootstrap.min.css

B bootstrap-accessibility.... i
Referrer Policy: strict-origin-when-cross—origin

B bootstrap.min.js

B websocket/ HTTP/1.1 200 0K :
Date: Sun, 28 Feb 2021 14:25:36 GMT :
X-UA-Compatible: IE=edge,chrome=1
Content-Type: text/html; charset=UTF-8

9requests 1.0 kB transfer Content-Length: 890 i






index-106_1.png
App Title = Plot Summary Table

Plot nSummary Table





index-105_1.png
Hello Worid
Another text

Ablock





index-109_1.png
App Title  Plot More ~

Summary

Section header

Table





index-107_1.png
App Title ~ Plot Summary Table

Plot Summary Table





index-110_1.png
App Title Plot More v

Summary

Section header

Table






index-109_2.png
App Title  Plot More ~
Summary

Section header

Table






index-111_1.png
App Title ‘ Plot More ~





index-130_5.png
]  Elements Console  Sources  » &

odals.less bootstrap.css
margin-left: -1px;

}
.modal-footer .btn-block + .btn-block {
margin-left: 0;
}
.modal-scrollbar-measure {
position: absolute;
‘top: -9999px;
width: 50px;
height: 50px;
overflow: scroll;
}
@media (min-width: 768px) {
.modal-dialog {
width: 600px;
margin: 3@px auto;
¥
.modal-content {|
-webkit-box-shadow: @ 5px 15px [rgba(@, @, 0, 0.5);
box-shadow: @ 5px 15px @rgba(e, 0, @, 0.5);
b

modal-sm {
width: 300px;
¥
H
@media (min-width: 992px) {
.modal-1g {
width: 900px;
¥
by
.tooltip {
position: absolute;
z-index: 1070;
display: block;

font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
font-style: normal;

font-weight: 400;

line-height: 1.42857143;

line-break: auto;

text-align: left;

text-align: start;

odal-sm ‘ ~ ‘ v | Aa > Cancel
8 lines, 319 characters selected Coverage: n/a

ve O Scope ~ Watch






index-130_4.png
Responsive ¥ 100% ¥ Mobile ¥ Online ¥

Important message

This is an important message!

Dismiss.






index-131_1.png
Responsive ¥ 768 |x| 811 100% Y Mobile Y Online ¥

6010
6011
6012
6013
il 08 L 208 L 00 00 L 08 L 600 708, 808 Gena

Show modal dialog 6015
e ———— 6016

6017
6018
6019
This is an important message! 6020
6021
6022
Dismiss 6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035 .tooltiy
6036 i
6037
6038
6039
6040
6041

Important message






index-130_6.png





index-131_3.png
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053 ks

{} 3lines, 33

n





index-131_2.png
ments  Console  CSS Overview  Sources  » f o3

X

CSS modals.less

scrollbar—measure {
lon: absolute;
-9999px;

: 50px;

50px;

low: scroll;

(min-width: 768px) {
l-dialog {

th: 60px;

jin: 30px auto;

l-content {
okit-box-shadow: @ 5px 15px Mirgba(e, 0, 0, 0.5);
-shadow: @ 5px 15px Wrgba(@, @, 0, 0.5);

l-sm {
th: 300px;

(min-width: 992px) {
-1g {
th: 900px;

family: "Helvetica Neue", Helvetica, Arial, sans-serif;
style: normal;
veight: 400;
leight: 1.42857143;
yreak: auto;

align: left;

align: start;
jecoration: none;
shadow: none;
transform: none;
r-spacing: normal;
oreak: normal;
spacing: normal;
vrap: normal;

characters selected Coverage:n/a [¥

v @ Scope ~ Watch






index-131_5.png
Console  CSSOverview  Sources  Network > f o3

nodals.less

r-measure {
olute;

oll;

th: 768px) {
j 3k

X5

X auto;

i A
-shadow: @ 5px 15px Hirgba(o, @, @, 0.5);
 5px 15px @rgba(e, @, 0, 0.5);

X

th: 992px) {

Helvetica Neue", Helvetica, Arial, sans-serif;
ormal;
400;
1.42857143;
uto;

eft;

tart;

on: none;
none;

m: none;
g: normal;
ormal;
normal;

et

rs selected Coverage: n/a

v O Scope  Watch






index-131_4.png
Responsive ¥ 992 | x 75% ¥ Mobile ¥ Online ¥

Important message

Thiss an important massage!

Dismiss.

n

4] =
bootstrap.css
}

«modal-scrollba
position: abs
top: -9999px;
width: 50px;
height: 50px;
overflow: scr

3

@nedia (min-wid
.modal-dialog

width: 600p
margin: 3@p
}
«modal-conten
-webkit-box
box-shadow:
3
.modal-sm {
width: 300p
i

}

@nedia (min-wid
.modal-1g {

width: 900p
b

)

Jtooltip {
position: abs
z-index: 1070
display: bloc
font-family:
font-style: n
font-weight:
line-height:






index-145_1.png
Elements Console

Page »

O top
< 127.0.0.1:6928
shared
srejs
(index)

Filesyste

main.min.css
B stin

CSS Overview Sources Network
main.min.css stdin
$color: Mpink;
$size: 30px
some-link {
color: $colo
font-size: $size;
&:hover{
color: Mg i

}

}





index-131_6.png
6043
6044
6045
6046
6047
6048 |
6049
6050
6051

6052
A052 |

line-break: a
text-align:
text-align:
text-decorat
text-shadow:
text-transfo
letter-spacit
word-break:
word-spacing:

rined_vomnns o,

{} 3lines, 33 characte

[TIPCYE S






index-123_1.png
Block 1

Block 2

Block 3 1 Inline text 2 Inline





index-126_1.png
flex-direction: row flex-direction: row-reverse
start ——————- end end ———— start

flex-direction: column

flex-direction: column-reverse






index-124_1.png





index-128_2.png
onsole CSS Overview  Sources

ner—fluid">.</div>
connected-overlay"></div>

W Issues Search

Y © |Filter
>

Network

* 8 @0 =

Performance  » X

Styles Computed Layout >

Filter thov .cls +, [
element.style {
}
body { scaffolding.less:28
font-family: "Helvetica
Neue",Helvetica,Arial,sar
serif;
font-size: 14px;
line-height: 1.42857143;
color: [1#333;
background-color: E#fff;
}
body { normalize. less:22
margin: » @;
% {  vendor-prefixes.less:77
border—box;
X
L]






index-128_1.png
-

> C  ® 127.0.017713

Responsive ¥

480 x| 811

100% v

x Elements  C

Hide media queries
Hide rulers

Add device pixel ratio
Remove device type .
contail
Capture screenshot ny-dis
Capture full size screenshot

Reset to defaults
Close DevTools

html body

Console ~ What's Ne
[ © top

No messages

© No user messages

[ LRSS





index-128_4.png





index-128_3.png
B ¢

No warnings
No info

# No verbose






index-130_2.png
]  Elements Console  Sources  » &

odals.less bootstrap.css
margin-left: -1px;

}
.modal-footer .btn-block + .btn-block {
margin-left: 0;
}
.modal-scrollbar-measure {
position: absolute;
‘top: -9999px;
width: 50px;
height: 50px;
overflow: scroll;
}
@media (min-width: 768px) {
.modal-dialog {
width: 600px;
margin: 3@px auto;
¥
.modal-content {|
-webkit-box-shadow: @ 5px 15px [rgba(@, @, 0, 0.5);
box-shadow: @ 5px 15px @rgba(e, 0, @, 0.5);
b

modal-sm {
width: 300px;
¥
H
@media (min-width: 992px) {
.modal-1g {
width: 900px;
¥
by
.tooltip {
position: absolute;
z-index: 1070;
display: block;

font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
font-style: normal;

font-weight: 400;

line-height: 1.42857143;

line-break: auto;

text-align: left;

text-align: start;

odal-sm ‘ ~ ‘ v | Aa > Cancel
8 lines, 319 characters selected Coverage: n/a

ve O Scope ~ Watch






index-130_1.png
Responsive ¥ 100% ¥ Mobile ¥ Online ¥

Important message

This Is an important message!

Dismiss,






index-130_3.png





index-236_1.png
Caption

Data Summary

inputémytextinput form-controlinp ;0 .,

ut-text

Data Summary

ments Console CSS Overview

Page » customTextlnput...
O top $( (0) a1
@ 127.0.0.1:4749
customTextBinding
$.extend(cus
shared find:
B srcjs 7 : 3
(index) N;
Shiny. inputB
H;

Console = What's New Issues Search





index-235_3.png
op

No messages

No user messages
No errors

No warnings

No info

<

$(scope).find(
S.fn.init [in

ect:

S.fn.ini

: input#ca






index-236_2.png
Sources ~ Network  » f el

X

nding_1_bis.js *

ding
xtBinding = new Shiny.InputBinding();

tomTextBinding, {
tion(scope) { scope = #document {location: Loca
D$(scope).Dfind( ' #mytextInput');D

indings.register(customTextBinding, 'text');

ted Coverage: n/a

Scope = Watich

'#mytextInput')

put#mytextInput.form—control.input-text, pre
Linit(1)]
textInput.form-control.input-text

S.fn.init [document]
Object(0)






index-234_1.png
Text input iabel .

Enter text... value / placeholder





index-233_1.png
sliderinput 1 sliderinput 2 textinput

v v o

<input ... type="text">

OK

S(scope).find(‘ input[type="text"] ')

Text input binding






index-235_2.png
Sources  Network  » o X
nding_1.js X = shiny.min.css bootstrap.css
ding

xtBinding = new Shiny.InputBinding();
tomTextBinding, {

tion(scope) { scope = #document {location: Loca
.Dlog(Ds$(scope).Dfind('.input-text'));
(scope).find( . input-text');

indings.register(customTextBinding, 'text');

ted Coverage: n/a

Scope = Watich

. input-text')

put#caption.form-control.input—text, prevObj
t(1)]
ption.form-control.input-text

S.fn.init [document]
Object(0)






index-235_1.png
Caption

ments Console CSS Overview

Data Summary
Page » customTextinputBir
inputicaption form-controlinput-te oo
xt
O top $( {0 A
@ 127.0.0.1:7258
customTextBinding $.extend(cus:
shared find:
1
W s 7i conso $e
(index) }
};
Shiny.inputB
H;

Console = What's New Issues Search






index-230_4.png
values="0
data-displayPrevious=true

draw' method





index-230_6.png





index-230_5.png
| @ [search






index-230_1.png
x Disable display input

data-width="100"
data-displayInput=false

x Angle offset

data-angle0fset=90
data-linecap=round

data-fgcolor="s

26

data-angleofts
data-angleAr





index-229_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-230_3.png
)

ition=anticiockvise

)





index-230_2.png
node x Display previous value

150" data-displayPrevious=true
-true data-nin="-100"
ss=.3

222222"

] 44

and arc x 4-digit, step 0.1

f66cce6” data-step=".1"
ot=-125 data-min="-10000"
=250 data-max="10000"





index-228_3.png
® 1

100 ms

a... 85

Gin 3

44
55
15
58
57
15

Zinteli3






index-228_2.png
sments

Q

QA g6

Console Sources Network Performance Memory  »

| Preserve log [ | Disable cache Online v + 3

Hide data URLs

CSS Img Media Font Doc WS Manifest Other Has blocked cookies

0 ms

tstra...
js

n.css

40 ms 60 ms 80 ms

Headers Messages Initiator  Timing

Q Al Y Enter regex, for example: (web)?socket

Data

1 {"method":"init","data":{"variable":"cyl",".clientdata_output_data_hidder
4 {"config":{"workerld":"","sessionld":"4d1abb19e62269d844063029b17k
4 {"busy":"busy"}

4 {"recalculating":{"name":"data","status":"recalculating"}}

4 {"recalculating":{"name":"data","status":"recalculated"}}

L "busv""idle"}





index-228_5.png
-table table- spac

}

-table table- spac





index-228_4.png
Fiat 128
Honda Givic
Toyota Gorolla
Toyota Gorona
Dodge Challenger
AMG Javelin
Gamaro 228
Pontiac Firebird
FiatX1-9

Porsche 914-2

Lotus Europa

Ford Pantera L

Ferrari Dino

Maserati Bora

Volvo 1426

B bootstrap.min.js
B htmi5shiv.min.js
B respond.min.js

B websocket/

"errors":{},"values":{"data":"<table class = 'table shiny

"method":"update","data":{"variable":"am"}}

"progress": "data"}}}

"type":"binding","message"

"busy":"busy"}

“recalculating":{"name":"data", "status":"recalculating"
“recalculating":{"name":"data","status":"recalculated"]
"busy":"idle"}

“errors":{},"values":{"data":"<table class = 'table shiny






cover.jpeg
The R Series

Outstanding
User Interfaces
with Shiny

David Granjon

CRC Press
Taylor & Francis Group

A CHAPMAN & HALL BOOK





index-228_1.png
C ® 127.0.0.1:6(

iPad Pro v X

Variable:

Transmission

mpg  am
Mazda RX4 2100 1.00
MazdaRX4Wag 2100 1.00
Datsun 710 2280 100
Hornet 4 Drive 2140 000
Hornet Sportabout 1870 0.00

Name
Valiant 1810 000
Duster 360 1430 0.00 B 127.0.0
Merc 240D 2440 000 B json2-min s
Merc 230 2280 000 i e
Merc 280 1920 000 B jquery.min.js
Merc 280G 17.80  0.00 B shiny.css
Merc 450SE 1640 0,00 . o
Merc 450SL 1730 000 _JSillini:
Merc 450SLC 1520 0,00 Il selectize.boc
Cadilac Fleetwood 1040 0.00 B selectize.min

Lincoln Continental  10.40  0.00

B bootstrap.mi





index-223_4.png
Number of bins: 51

{
"val": 57,
"message": "Thanks client! I updated the plot..." rnorm(input_message$value

}






index-218_1.png
% Headers Messages Initiator  Timing

Request URL: ws://127.0.0.1:4174/websocket/
Request Method: GET
Status Code: ® 101 Switching Protocols

v Response Headers view source
Connection: Upgrade
Content-Length: 0
Date: Wed, 03 Mar 2021 09:41:18 GMT
Sec-WebSocket-Accept: YndpeW+PoKWgBL598ZK]e6c4aPo=
Upgrade: websocket





index-330_1.png
Project Manager

9

Pawet Kuna
Ul Designer

i

Jeffie Lewzey
Chemical Engineer

Mallory Hulme
Geologist IV

Dunn Slane
Research Nurse

Emmy Levet
VP Product Management





index-217_1.png
Client 1 {websocket}
Client ws events manager ({httpuv})

onOpen:
// do something

onMessage:
// received from
server

onError:
// do something

Client 2 {websocket}

: Client send(message) 1

1
1 “Permanent” connection |
1 1
| Server send(message)l

ws://<HOSTNAME>:<PORT>

1 Client send(message) 1

1
j<=-—-=-=-1

1 1
| == ——— 1
1 Server send(message)l

Server {httpuv}

Server ws events manager

onOpen:

// Client connects

onMessage:
// receive from client

onClose:
// Client leaves






index-326_1.png
@ Switch

Go!





index-223_2.png
S Console CSS Overview Sources Network ~ »

Preserve log Disable cache = Online 4
rows Group by frame
Capture screenshots
Headers Messages Initiator  Timing

S Al v
- Data

4 {"value":51,"message":"New value for your server!"}

4 {"val": 57, "message": "Thanks client! | updated the plot..." }

transfer

P zoom HMexport - X &






index-332_1.png
Using Storage 6854.45 MB of 8 GB

® Regular ® System ® Shared ® Free





index-223_1.png
Element

Use large request

Show overview

quests 2.1 kB

New connection opened.
$value
[1] 51

$message
[1] "New value for your server






index-331_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-208_3.png
» showReconnectDialog: j (e)
» unbindAll: f (e)

version: "1.4.0.9003"
» __proto__: Object






index-320_1.png
Ribbon





index-208_2.png
y » ®1 : X
1 hidden ¢
(index):20

er(e,t)

14), bindingNames..

(5), bindingNames..
f, close: f}

lues: {.}, $initi..






index-319_1.png
My card My card

x08  wos 20 2m iz 2 20

@®pce @pop @psavert @ uempmed @ unemploy





index-213_1.png
Client 1

HTML UI
button (actionButton)

——
slider(sliderinput)

Client ws events manager

onOpen:
// do something

onMessage:
// do something

onError:
// do something

ws://<HOSTNAME>:<PORT>

1 Send(message)

WS/WSS

Server: Shiny Server

Shiny app
Server ws events manager

onOpen:

// do something

server.R
onMessage:

// do something App server logic

onClose:
// do something updateSliderinput






index-324_1.png
l Value: 0





index-211_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-321_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-223_3.png
L... Time
51 00:21:2...
68 00:21:2...






index-208_1.png
Y ﬂ Elements

4

© top

“«eP>oo.ii

2 messages

1 user mes...
1 error

No warnings
1 info

No verbose

Console Sources Network Performance Memor

Y © Filter Default levels ¥

vObject

» $escape: f (e)

» InputBinding: f ()

» OutputBinding: f ()

» addCustomMessageHandler: f addCustomMessageHandl
» bindAll: f (e)

» compareVersion: f (e,t,n)

» hideReconnectDialog: f ()

» initializeInputs: f r()

» inputBindings: BindingRegistry {bindings: Array(
» modal: {show: f, remove: f}

» notifications: {show: f, remove: f}

» onInputChange: f (e,t,n)

» outputBindings: BindingRegistry {bindings: Array
» progressHandlers: {binding: f, open: f, update:
» renderContent: f (e,t)

» renderDependencies: f (e)

» renderHtml: f (e, t,n)

» resetBrush: f (e)

» setInputValue: f (e, t,n)

» shinyapp: ShinyApp {$socket: WebSocket, $inputVa





index-317_3.png
Rstats, 2020






index-317_2.png





index-190_4.png
ients/David/js4ds/

ects.js
ings.js

=0






index-310_3.png
Rstats, 2020






index-190_3.png
Console  Terminal R Markdown Jobs
Terminal 1 ~ ~/Documents/David/js4ds

CO2YW2Q7LVDQ:Advanced_Shiny_UI granjdal$ cd ~/Docun
CO2YW2Q7LVDQ: js4ds granjdal$ 1s

app.js hello.js ob
exercices_ch2.js loops.js str
functions. js modules. js

CO2YW2Q7LVDQ: js4ds granjdal$ node hello.js
Hello World
CO2YW2Q7LVDQ: js4ds granjdal$






index-310_2.png
More






index-206_1.png
Console  What'sNew lssues
[@ ® tp

© 4usermes.
© temr

A 1waring

© 4info

# Noverbose | g

v | @ | Fiter DX

detrinental effects to the end user's experience. For more help,
Wed Sep 62 2020 10:22:14 GT+0200 (Central European Sumer Tine)
opened. https://dgran;on.shinyapps. io/debug app in web browser/
Wed Sep 82 2020 10:22:14 GMT+0200 (Central European Sumer Tine)
o
Wed Sep 02 2020 1
discarded from buffer
»Uncaught TypeError: Cannot read property show’ of undefined
at sendNotif (notif.js:2)
at HTMLButtonElenent.onclick ((index):45)
Wed Sep 82 2020 10:23:10 GT+0200 (Central European Sumer Tine)
discarded from buffer

15 GMT+0200 (Central European Sumer Tine)

mossages | A » IDeprecation] Synchronous MLHECpRequest an the msin thread is deprecated because of its e
L check https://uhr, spec.uhatu

[INFI: Connection
[DBG1: Open channel

[08G1: 2 message(s)

(0861 1 message(s)

.org/.
shiny-server-client.min.

shiny-server—client.min.

shiny-server—client.min.

notif.

shiny-server-client.min.js:1





index-314_1.png
e tabler - @ Interface v | [ Forms | 1y Extra v B Docs v Q search. o q) 5‘8[:/5;::3

a(class = “nav-item”, )

div(role = “tabpanel”, id = “

Body tab
content
wrapper

Copvriaht © 2020 Tabler. All riohts reserved.





index-205_1.png
: Console WnarsNew  Changes lssues.

[ © top v © Fiter Default levels v

Nomessages > window. location
< Location {href: “http://127.0.0.1:4963/", ancestorOrigins: DOMStringLis

© Nouserme... & Grigint ntip://157.0.0.1:4953 s protocals Mhepity hosts v127.0.0.1:
4963", -} @

L BB » ancestorOrigins: DOMStringList {length: 8}

A Nowamings b assian: £ assign()
+ fragnentDirective: Frognentoirective {1

© Nowo i

#& Noverbose host: "127.
e

4963/

protocol:
» reload: 7 reload()
» replace: f replace()

search: "
» toString: f toString()
»valucofs f value0f()

Synbol(Symbol. toPrimitive): undefined
»_proto_: Location

x





index-311_1.png
e tabler @Home @ inteffacev EForms YrExtrav 3 Layoutv B Docsw Q Search o (@) Fauetkuna

(1) Logo (2) Navigation (3) Extra elements (4) Dropdowns

Copvriaht © 2020 Tabler. All riahts reserved.





index-188_6.png
1 {color: inherit!important}

</div>

.row.middle-xs.center-xs  div.col-xs-12  h1





index-306_2.png
ponsive and high quality UI.

gle="collapse" data-target=
. d—none-navbar-horizontal pr-0

>

s

1 align-items-stretch align-

-4 order-first order-md-last






index-188_5.png
ttps://cdnjs. cloudflare. con/ajax/Lit
MHL HTMLOTMML" id.</Scripts
»<scripts.</script>
<script async src="https://static.hotjar.com/c/ho
<script charset="utt-8" src="https://platforn. twi
</script>
<script charset="utf-8" src="https://platforn. twi
<script async sre="https://script.hotjar.con/modu
»<style type="text/css">.</style>
>.</styles
</style>
>.MathJax_Preview .MIXf-mat!

<style type="text/cs:
</style>

»<style type="text/css">.</style>

»<style type="text/css">.</style>

»><style type="text/css">.</style=

»<style ="'text/css">.</style>

</head>

MathJax_Message" style="display:
v<header class="row middle-xs center-xs">

nl  body header.row.middle-xs.center-xs div.col-xs-12  di





index-306_1.png
<!doctype html>
==
* Tabler — Premium and Open Source dashboard template with res
* @version 1.0.0-alpha.7
@link https://github.com/tabler/tabler
Copyright 2018-2019 The Tabler Authors
Copyright 2018-2019 codecalm.net Pawet Kuna
Licensed under MIT (https://tabler.io/license)
—_—
<html lang="en">
... » <head>..</head> == $0
v<body class="antialiased" style="display: block;">
v<div class="page">
v<header class="navbar navbar-expand-md navbar-dark">
v<div class="container-x1">
» <button class="navbar-toggler" type="button" data-tog
"#navbar-menu">.</button>
»<a href="." class="navbar-brand navbar-brand-autodark
pr-md-3">..</a>
»<div class="navbar-nav flex-row order-md-last">..</div
v<div class="collapse navbar-collapse" id="navbar-menu
v<div class="d-flex flex-column flex-md-row flex-fil
items-md-center">
»<ul class="navbar-nav">..</ul>
»<div class="ml-md-auto pl-md-4 py-2 py-md-@ mr-md
flex—grow-1 flex-md-grow-0">..</div>
</div>
</div>
</div>

B i e

*
*
*
*






index-190_2.png
UTPUT  --- Code v = 5 <

Running] node "/Users/granjdal/Documents/
)avid/js4ds/hello.js"
lello World

Done] exited with code=0 in 0.046 seconds






index-310_1.png
Hello World





index-190_1.png
Js hello.js

X

Users > granjdal > Documents > David > js4ds > JS hello.js

1

console.log('Hello World"')

hello.js

- O






index-306_3.png
TNENE NSRS N
v<div class="content">
v<div class="container-x1">
<!_—SPagestitien—=
»<div class="page-header">..</div>
»<div class="row row-deck row-cards">.</div>
</div>
» <footer class="footer footer-transparent'>.</footer>
</div>
</div>






index-207_1.png
[% ] Eements Console CSSOverview Sources Network Performance  Memory  Applicaion » ®1A1 & i X

Page Filesystem % i | [ ison2-minjs  jqueryminjs  notitjs < » IO S 7 ]
~Dp 1 const sendoti = (nessage, type, duration) = {4 paused onbreakpoint
o snyanpeio ° 2 notification. @ showls & i
& dgranjon.shinyapps.} 3 Rtml: "<strongs5{messagel</strong>", + Watch + C
I il e
~ [ debug_app_in_web_browser ¢ 3}); g
o typeof duration: “nusber®
+ I _w_186b0a56 Hid
e + Cal Stack
e » sendNotit notitjs2
i rotis oncick ndex):45
» i srojs
[ (ndex)
»script
» Global Window
+ Breakpoints

» XHR/fetch Breakpoints
O Line 2, Column3 Coverage: /a |, DOM Breakpoints





index-206_2.png
[ (I] FElements Console CSSOverview Sources ~Network Performance  Memory  Applcation > ®1A1 @ i

Page Filesystem > i | [ shinyappsjs  notitjs o] > v O
= 1 const sendotif = (message, type, duration) = { | » Watch
=i 2| Shiny.notification.show({®
¥ dgranjon.shinyapps.o 3 htwl: <strongssinessage)</strongs", v Call Stack
Pl b G e tbatose
e In_web_ browser ;
2 debug._2pp.in_web_bro s e
» B _w_186bcass
‘m 8 jot paused
T (hds) + Breakpoints
o breakp

» XHR/fetch Breakpoints
+ DOM Breakpoints

» Global Listeners.

» Event Listener Breakpoints

{} Line2, Column 22 Goverage: n/a





index-317_1.png
@ tabler | Wi T2

Number of observations:

100

Froquency
e

w0

2

Histogram of morm(inputSobs)

a 2

momnputsobs)






index-303_6.png
<S<ript

15t/ 1105/D000XStrap/015T/)S/D00TSIrap. DUNGL

<script src="./dist/Libs/jquery/dist/juery. sUim.min, js"><
<script dist/libs/apexcharts/dist/apexcharts.min. js

<script src="./dist/libs/jqumap/dist/jquery. vnap.min. j5"><
<script src="./dist/libs/jqvmap/dist/maps/jquery.vmap.worl
<script sre="./dist/libs/peity/jquery.peity.min. i5"></scri
<I— Tabler Core —>
<script src="./dist/js/tabler.min.

»<scripte.</scripts

» <scripts.</script>

» <scriptea</scripts

» <scripts.</script>

» <scripte.</scripts

» sscripta.s/script>

» <scripto.</scripts

» <script>.</script>

» <scripts.</script>

> <scripta-</script>

htmi head s!yla
Styles  Event Listeners DOM Breakpoints  Properties  Accessibility

jsn

»</sCripts





index-187_5.png
nputBinding.subscribe’s callback argument
Javascript
updating logic all relevant input labels

String.trim() method since $.trim() is now deprecated

always supply a <label> tag with a special CSS class for h.
“bg-danger, progress-bar-danger is now in bs3compat
always supply a <label> tag with a special CSS class for h.
alizing of passwords and actionButtons

String.trim() method since $.trim() is now deprecated





index-303_1.png
[x (] FElements Console Sources  Network  Performanc
<!doctype html>

St
# Tabler - Premium and Open Source dashboard template with res
* @version 1.0.0-alpha.7

* @link https://github.com/tabler/tabler

* Copyright 2018-2019 The Tabler Authors

* Copyright 2018-2019 codecalm.net Pawet Kuna

* Licensed under MIT (https://tabler.io/license)

—

<ntml lang="en">

ov<head» =0
<neta charset="ut
<neta name="viewport" content="width=device-width, initial
<neta http-equiv="X-UA-Compatible" content="ie=edge">

» <titles.</title>

<link rel="preconnect" href="https://fonts.gstatic.con/" c
<meta name="msapplication-TileColor" content="#206bc4">

<neta theme-color” content="#206bc4"
<neta ‘apple-nobile-web-app-status-bar-style" content
<neta apple-mobile-web-app-capable” content="yes">

| <meta content="yes">
<neta Handhe ldFriendly" content="True">
<neta MobileOptinized" content="320">
<neta robots" content="noindex,nofollow, noarchive"s
<link "icon" href="./favicon.ico" type="image/x-icon">

<link rel="shortcut icon" href="./favicon.ico" type="image

<i— (S5 files —>






index-473_3.png
1-21 0f $52 suburbs < ot >
© mapbox






index-187_4.png
E] Input_binding.|s

E) input_binding_actionbutton.js
B input_binding_checkbox.js

) input_binding_checkboxgroup.js
) input_binding_date.js

) input_binding_daterange.js

) input_binding_fileinput.js

E) input_binding_number.js

) input_binding_password.js

) input_binding_radio.js

Document |
Use ===1in
Apply label
Use native ¢
Exit early if
Inputs now
No need for
Inputs now
Disable ser:

Use native ¢





index-302_4.png
8 static

| svg/brand

navbar overlap, welcome page, ui fixes, libs optimize

svg icons increment build speed

20

22





index-473_2.png
HOME  EXPLORER  PROJECT

AUCKLAND REGION. ~  MODE OF TRAVEL

Work at Home

Commute by Car

=

60% 80% 100%

Use Public Transport

Coromand:

Walk or Jog

l_

o 80% 100%

Commute by Bike

0% 20% o 80% 100%






index-188_1.png
Hi, | am David





index-303_3.png
SLNK MreT=". /0151 1105/ IQVRAP/JIST/IqVIRaD.RiN. €SS~ e

=<Link hre /dist/css/tabler.min.css™
<link href=",/dist/css/deno.min.css" rel="stylesheet">
<style>

body {

display: none;

</styles
»<style type="text/css"z.</style=
</head>
» <body class="antialiased theme-dark" style:
</html>

isplay: block;"

html head style
Styles  Event Listeners DOM Breakpoints  Properties  Accessibility





index-481_1.png
vdpMod





index-187_6.png
13 months ago
4 months ago
13 months ago
4 years ago

16 days ago





index-303_2.png
X

2 Memory »

ponsive and high quality UL.

~scale=1, viewport-fit=cover'>

rossorigins

"black-translucent">

/x~icon'">

tylesheet">

>.</body>





index-475_1.png
@8 New Folder | %] Delete Mg Rename | %¥ More - (]

B A Home > Desktop > test > vdpMod <]
_ AName Size Modifi

@ A gitignore 138 Sep

@ B Rouildignore 1918 Sep

@ ® Rproj.user

8 2 DESCRIPTION 4258 Sep

8 M dev

B M inst

8 @ man

8 B NAMESPACE 2678 Sep

@ ® node_modules

@ A package-lock.json 40.5 KB Sep

@ A package.json 603 B Sep

8 Er

8 M s

B & vdpMod.Rproj 3428 Sep

@ A webpack.common.js 1KB. Sep

B A webpack.devjs 183 B Sep

@ A webpack.prod.js 1518 Sep





index-187_1.png
Branch: master v | shiny / srcjs /

! cpsievert remove renderedFamily info field

B _end.js

B _start.js

) binding_registry.js
) browser.js

) file_processor.js

B init_shiny.js

Split up shir
Add Shiny.v
Remove ext
Split up shir
Fixes for es

remove ren





index-302_1.png
8 .dependabot dependabot update_schedule

B github Merge pull request #608 fron
i build change-version script fix

| demo 1.0.0-alpha.7

il dist 1.0.0-alpha.7

|} img buttons, payments, svg optim
mjs navbar overlap, welcome pag
| pages bootstrap upgrade, table fixe:

B scss bootstrap upgrade, table fixe:





index-469_1.png
A group of buttons

Selected: mpg





index-301_6.png





index-465_1.png
c 127.0.0.1

Newtext Update button1 I





index-187_3.png
w file  Upload files = Find file = History

X Latest commit 3e2bfb2 8 days ago

5 years ago

3 years ago

5 years ago

5 years ago

4 years ago

8 days ago

4 years ago

4 years ago

13 months ago
16 days ago

8 months ago





index-302_3.png
ast month
| days ago
onths ago
| days ago
| days ago
onths ago
) days ago
) days ago
) days ago
 days ago

 days ago





index-473_1.png
@M OTo

SEARCH

ALL DEPARTURES

@eden Terrace
& Freemans Bay

& Ormiston South

& Morningside (Auckland)
Birkdale South
&Parmell West

ZOne Tree Hil

& Papatoetoe Central

& Mount Wellington Cen.
& Birkenhead West

& Point Chevaller East

& Greenlane North

& Avendale North (Auckl
&Grey Lynn Central
@Papatostos North

& New Lynn South
Kingsland

ZAwaruku

& Western Heights (Au.
& Mount Roskil White s
& Takanini South

Total

liDsA

198
245
183
25
183
207
2
135
156
24
25
219
150
219
B
135
”
28
150
147
138

7.

624

660

1563

879

1182

579

182

1218

1083

999

1098

951

1017

708

1155

1128

675

1188

1212

1065

1245

310,

a1
129

2
330
204
246
144
102
102
206
144
209
219
210
I
132
a1
m

%0
i
105

33,4,

609

s

57
20
s07
15
18
%0
18
2

75

303
E
15

171

18,6.

wow
o [
L) iz
30 2ns
PARTY)
o 1914
3 1857
o 115
15 1746
o 1
o o
o 162
o 162
3 1689
6 168
o 1680
27 1659
o e
o 1629
15 1623
o 1620
o 1593
o0 159
6 184
[ ——

Mangawhai
Heads






index-187_2.png
Create ne

y.js

ersion to Javascript (#1826)
raneous indenting

y.js

int

deredFamily info field





index-302_2.png
 change

1 WinterSilence/patch-1

lization

e, ui fixes, libs optimize

21

3m

21

21

20

10

10





index-471_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-188_3.png
erformance Memory  Application Security  Audits

, initial-scale=1.0">
wngrade’>

ical Physiology, Renal Physiology, Zurich.">

inage">

g’

>

1arg.github. i
athematical Physiology, Renal Physiology, Zurich."»
jithub. io/"
ml" rel="alternate" type="application/rss+xml"

/pe="text/css">
ton-one-1ight. css">
)s/mathjex/2.7.1/MathJax. js?conf i

ter, con/js/tineline. d228dct., j5"></script>

AR SN R ek T N P A






index-303_5.png
o Memory »

ponsive and high quality UI,

1eaders

min. js"></script>
/script>
"></script>
/script>
js"></script>

pt>





index-188_2.png
% 0O Elements = Console  Sources  Network

<!doctype html>
<html lang="en-us">
v <head>

le>

Hi, I am David</title>
<meta name="title" content="Hi, I am David">
<meta charset="utf-g8">
<meta http-equiv="X-UA-Compatible" content="chroms
<meta name="HandheldFriendly" content="True">

<meta MobileOptimized” content="320">
<meta viewport" content="width=device-width
<meta referrer” content="no-referrer-when-ds
<meta generator" content>

<base https://divadnojnarg. github. io">
<meta description” content="PhD in Mathemat:
<meta author" content="David Granjon">
<meta twitter:card” content="summary_large_

<neta twitter:site” content="edivadnojnarg":
<meta twitter:creator” content="gdivadnojna
<meta property="og:title" content="Hi, I am David’
<meta property="og:type" content="website">

<meta property="og:url" content="https://divadnoj
<meta property="og:description” content="PhD in M
canonical” href

pS://C
title="Hi, I am David">
<link rel="stylesheet
<link rel="styleshee:






index-303_4.png
[x (] FElements Console Sources Network  Performanc
<!doctype html>

S
# Tabler — Premium and Open Source dashboard template with res
* @version 1.0.0-alpha.7
* @link https://github.com/tabler/tabler
* Copyright 2018-2019 The Tabler Authors
* Copyright 2018-2019 codecalm.net Pawet Kuna
* Licensed under MIT (https://tabler.io/license)
—
<ntml lang="en">
. b <head>..</head> == $0
v<body class="antialiased theme-dark" style="display: block;"
v<div class="page">
» <header class="navbar navbar-expand-md navbar-light">.</I
»<div class="navbar-expand-nd">.</div>
v<div class="content">
v<div class="container—x1">
<!— Page title —>
v<div class="page-header">
»<div class="row align-items-center">.</div>
</div>
»<div class="row row-deck row-cards">.</div>
</div>
»<footer class="footer footer-transparent"s.</footer>
</div>
</div>
<i— Libs 35






index-483_1.png
Files Plots Packages Help Viewer

@8 New Folder %] Delete [ Rename

> Desktop > test » vdpMod > node_modules > framework7 @

A Name

43

M bundle

" s

M@ components

M core

M esm

B framework7-bundle-rtl.css

B framework7-bundle-rtl.min.css
A framework7-bundle.css

8 framework7-bundle.js

R framework7-bundle.js.map

B framework7-bundle.less

B framework7-bundle.min.css
8 framework7-bundle.min.js

R framework7-bundle.min.js.map
A framework7-rtl.css

A framework7-rtl.min.css

=0

L More (]
Size Modified
655.3KB  Oct 26, 19
568.6 KB Oct 26, 19
654.8KB  Oct 26, 19
1.6 MB Oct 26, 19
3.2MB Oct 26, 19
4.2 KB Oct 26, 19
568.3KB  Oct 26, 19
696 kB Oct 26, 19
23 M8 Oct 26, 19
183.4KB  Oct 26, 19
160.7KB  Oct 26, 19





index-188_4.png
BLOG CONTACT ABOUT  RINTERFACE






index-1_1.jpg
The R Series

Outstanding
User Interfaces
with Shiny

webpack

David Granjon

CRC Press

rrrrrrrrrrrrrrrrrrr





index-7_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-4_1.png
CRC Press

Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK





index-21_1.png
@ e

@ e

6 m o






index-464_1.png
127.






index-17_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-25_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-22_1.png
Theme light Theme light Theme light

!

deoming

.
O eeginer
Theme
-

Are you awarrior?

@)






index-27_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-175_3.png





index-298_3.png





index-456_2.png





index-175_2.png





index-298_2.png





index-456_1.png
€3 C O wcumons





index-183_1.png
(owr 00O

Item 1 content

Item 2






index-301_2.png
7Extrav 88 layoutv [ Docsv

0 8% 6,782 ox -

Top countr

I S A





index-461_1.png
reactstrapTest - RStudic

M & ~ Gowiile/function B - Addins -

A action_button.R

« A @ source on Save | @,

9. action_buttonInput ¢ function(inputId, default =
10 reactR:: createReactShinyInput(

11 | inputId,

12 | "action_button",

13 | htmltools:: htmlDependency(

14 | | name = "action_button-input",
15 | version = "1.0.0",

16 | | src = "ww/reactstrapTest/action_button",
17 | | package = "reactstrapTest",
18 | script = "action_button.js"
19 | ),

20 | default,

21 | AGEEEO),

11 (Top Level) =

Console Terminal Jobs

Jprivate/var/folders/Ir/cb85_7yn3fv4q92hycOyzmxc0000gn/T/RtmpdaffZ7 /reactstrapTest/

Created JavaScript implementation srcjs/action_button.jsx

Created example app app.R

v Setting active project to '/private/var/folders/lr/cb85_7yn3fv4q92hycOy
dqffz7/reactstrapTest’

v Adding '“node_modules$', '“srcjs$', '“app\\.R$', '“package\\.json$', '
\\.js$', '“varn\\.lock$' to '.Rbuildisnore'





index-176_1.png
Accordion Item #1 v

Accordion Item #2 ~

This is the second item's accordion body. It is hidden by default, until the collapse plugin adds
the appropriate classes that we use to style each element. These classes control the overall
appearance, as well as the showing and hiding via CSS transitions. You can modify any of this with
custom CSS or overriding our default variables. It's also worth noting that just about any HTML
can go within the .accordion-body, though the transition does limit overflow.

Accordion Item #3 v





index-301_1.png
a tabler

@Home @ UserInterface v & Form elements ¢

Dark mode

75% $4,30

Conversion rate. 7% &

Traffic summary

100





index-456_3.png
Edit src/App. j s and save to reloa

Learn React





index-286_1.png
Triggered
periodically
websocket
‘ \ 5s
Shiny.addCustomMessageHandler(’type’, function(message) { observe ({
alert('R says ${message} to you!"); invalidateLater(5000)
N session$sendCustomMessage(type, message)

127.0.0.1:7461 says

| 1

message <- list(...)

R says hello to you!

JS (client) R (server)





index-454_1.png
&argon Components  Examples

Inputs

FORM CONTROLS

FORM CONTROLS (ALTERNATIVE)

Su

En

CHECKBOXES RADIOS TOGGLE BUTTONS

Unchecked Unchecked






index-453_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-175_1.png
C @ 127






index-298_1.png
Remove message ~ Add message  Update message

Message index:

1

Alexander Pierce

@ (modified: 2021/02/15)

~
K~

Click me!

Sarah Bullock

You better b
David
[~ Number of observations:
W 1,000

I I
0 100 200 300 400 500 600 700 800 900 1000

Histogram of rnorm(input$obs)

100

80





index-454_3.png
Checked & Checked
Disabled Unchecked Disabled unchecked

Disabled Checked © Disabled checkbox





index-173_3.png





index-289_1.png
Direct Chat Q- =~ x
NleanderPerce 25 Jan200pm
©  isthistemplate reallyfor free? That's

- unbelievable!
25s0m208pm Sorah Bulok

You better believe Q

Type Message ..

Direct Chat -~ x
P— [rr—
©  Isthistemplatereally forfee? That's

- unbelievable!

S

EET— @

Type Message ..

Direct Chat Q- x
e 25 Jan200pm
©  isthistemplate eallyfor free? That's

- unbelievable!
25s0m208pm Sorah Bulock

a

Type Message ..

Direct Chat Q- =~
s 2 sen2000m
€ isthistemplate eallyforfree? That's

- unbelievable!

2ssn205pm SarahBullock

You

Type Message .. nd





index-454_2.png
a o & DOWNLOAD

ccess [ )
ror Input ®

ccess [ ]

ror Input ®

SLIDERS





index-183_3.png
Item 1

| Item 2

Item 2 content





index-301_4.png
o
2 I
o wlannanl ! "l

24Jun Jut20

oweb ®socal ®

W

New website






index-461_3.png
Adding 'node_modules' to '.gitignore

Adding 'htmltools' to Imports field in DESCRIPTION
Refer to functions with

Adding 'shiny' to Imports field in DESCRIPTION
Refer to functions with

Adding 'reactR' to Imports field in DESCRIPTION
Refer to functions with

To install dependencies from npm run: yarn install

To build JavaScrint run: varn run webpack

mode=develobment






index-183_2.png
Theme customizer

I

Main colors

Accent colors

Primary color

#9200FF

Links and highlighted navigation

Secondary

#6¢757d

7
c
aQ
Q
®
@
a

#28a745

Info

#17a2b8

g
2,
=)
@





index-301_3.png
° PawetKuna
° UID
esigner

Q search

2,986 .. -
Yt atshrtt il






index-461_2.png
@ reactstrapTest — Rtmpdqffz7 -

=0 Environment History Connections i =5,
Run | @ | B Source - & B B Import Dataset « | ¢
R - | il Global Environment - -
Environment is empty
Files Plots. Packages Help Viewer = =]
@8 New Folder | %J] Delete g Rename | ¥¥ More - (]
B | /4992hycOyzmxc0000gn > T > RtmpdqffZ7 > reactstrapTest @
R Script = A Name Size Modified
=0 t
® D gitignore 258 Aug 16, 2
< @ R Rbuildignore 1238 Aug 16, 2
@ M Rproj.user
® D appr 3178 Aug 16, 2
zmxc0000gn/T/Rtmp @ A DESCRIPTION 507 B Aug 16, 2
@ B NAMESPACE 468 Aug 16, 2
webpack\\.config @ 2 package json 4198 Aug 16, 2
| MR
B © reactstrapTest.Rproj 413B Aug 16, 2
B W s
® A webpack.config.js 8898 Aug 16, 2






index-185_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-183_4.png
Theme customizer

Main colors v
Accent colors 2
Primary color

Links and highlighted navigation

Secondary
#6c757d

(%3
c
15}
Q
@®
@
@

#198764

Info

!‘E’
2
=3
@





index-301_5.png
16l 24
Other

Ul Redesign





index-166_4.png
in eolors

Acsent ealors

Primary ealor

Sueces

Info

Warning

Panger





index-276_1.png
Test

blabla

$name
[1] "test"

$value
[1] "blabla"

stype
[1] "textInput"





index-441_2.png
iR, ¥ 375 x 667 x ol Elements  Console C

4 Gl

Page »

—'Dtop

v 127.0.0.1:3891 37
» [l bookChapterTest-0.(
> [ framework7-5.7.14
» [y shared 42
I . I > [ srcjs *:

. (index) 45
46

{} Lin
SO SR S U ve @

:  Console Issues Search

4 © topv @ ||Filter

» = 1 message 2 BRI

< v [m

© No user messages -
€ Noerrors

» A 1warning






index-166_3.png
Firsttab  Second e

mewwnwmhmh-






index-275_3.png
No vel





index-441_1.png
App DOM IS app.data store

<div class="gauge” id="myGauge”>config</div> app[widget].create factory ig}
) gauge: [
el:"# +id instance_1.
(1) INITIALIZE config instance_2,
WIDGETS Find id + Save new
configuration instance id
Create new ]
instance
widget_2: [...]
R IS app.data store
tch
websocket message.id nomare
session$sendCustomMessage(id, options) —L 1 7] message.options
factory .
(2) UPDATE id match
WIDGETS el:"# +id
—_—

config + options

Merge options

Update instance

app.data[“gauge”][id]





index-168_1.png





index-278_1.png
Console

r -
"name": "s", ——
"timestamp": "2021-08-27 15:41:32", [T s
"value": 6,
"type”: $timestamp
A ; [1] "2021-08-27 15:41:49 CEST"
"binding": "shiny.sliderInput"”
$value
[l
"npame" : ¥ 4rype
"timestamp": "2021-08-27 15:41:49", ] "
"value": 7,
"type": $binding

[1] "shiny.sliderInput"

"binding shiny.sliderInput"






index-441_4.png
&% Noinfo

|| "






index-166_5.png
> run_with_themer(shinyApp(ui, server))
Listening on http://127.0.0.1:3864

s Update your bs_theme() R code with: #iftitst
bs_theme_update(theme, primary = "#00FF31")





index-277_1.png
Test

‘ eeeee

‘[1]'






index-441_3.png
SS Overview  Sources Network » | B 1 e : X

helpers_config.js [y widgets.js *
};
¥
app [widget].create(message).open();
1)
}
¥

Shiny.addCustomMessageHandler('update-instance', functic
let _instanceFamily;

for (const propert)'/ in app.data) {
for (const e in app.datalpropertyl) {

> 43, Column 9 (source mapped from bookChapterTest.min.js) Ct¢

Scope  Watch

Network conditions X
1 Issue: =1 o

.data.gauge

ygauge: t]

mygauge: t

» $el: Dom7 {0: div#mygauge.gauge, length: 1}

» $gaugeSvgELl: Dom7 {@: svg.gauge-svg, length: 1, f..
» app: t {eventsParents: Array(@), eventsListeners:..
» el: div#mygauge.gauge

» eventsListeners: {}

» eventsParents: [t]

» gaugeSvgEl: svg.gauge-svg

» params: {el: "#mygauge", type:

'semicircle", valu..






index-437_1.png
e 3 375 X 667
Mobile S - 320px

Page »

iy~ 8 tor
v 127.0.0.1:6007
» [ bookChapterTest-0.(
» B framework7-5.7.14
» [y shared
> [ srcjs
[ (index)

4

x O Elements  Console  CSS

[y init
1/$(d
2| co
3 co
4| co
6 co
7
8
10
11
117
14
16
18
24
25
26
27

28





index-166_2.png
)| 20201109






index-275_2.png
lements  Console  CSS Overview  » B1 f el

tml>
0
head>
body>

puted Layout Event Listeners DOM Breakpoints ~ »

thov .cls + [«

4

What's New Issues Search Network conditions

DY | © | Filter Default

sages (index):21
S.Event {type: "shiny:inputchange
‘messages ,d", timeStamp: 1630070997389, jQuer
y351ﬂ64369@2171796113 true, name:
ors “"test", inputType: "", ..} @

altKey: (...)

inings vbinding: exports.InputBinding
» find: f (e)
» getId: f (e)

bose

» getRatePolicy: f ()
» getState: f (e)
» getValue: f (e)
name: "shiny.textInput"






index-437_3.png
30
{} Linet

/]






index-275_1.png
Test






index-437_2.png
 Overview Sources Network ~ » B1 f o SN X

is (% widgets.js * [ bookChapterTest.min.js

ocument ).ready(function() {

nst uiWidgets = ["gauge", "swiper", "searchbar"];

nst serverWidgets = ["toast", "photoBrowser", "notificai
nst widgets = uiWidgets.concat(serverWidgets);

nst activateWidget = (widget) => {
if (uiWidgets.indexOf(widget) > -1) {
$("." + widget).each(function() {
// Init widget
let $el = $(this);
let config = $(document).find(
"script[data—for='" + $el.attr("id") + "'I"

)i

config = JSON.parse(config.html());
// add the id
config.el = '#' + $el.attr("id");

app [widget].create(config);
H;
} else {
// This concerns toasts, notifications, photoBrowser,
// that don't have any UI element in the DOM before ci
// the widget instance.
Shiny.addCustomMessageHandler(widget, function(messag
if (message.id !== undefined) {
message.on = {
opened: function() {
Shiny.setInputValue(message.id, true);
tis

, Column 1 (source mapped from bookChapterTest.min.js) Cover |~

Scopne \Watch






index-173_2.png
Theme customizer

Main colors

Accent colors

Primary color

#149A20|

Links

Secor

#28

»
g
5

Il 2

Info

#17a2b8

H
El
E
3

Danger

#dc3545

1.
3
ES
&

Options

Spacing





index-170_2.png
)

Main colors

u)

ea

i)

ouplnpu)

o

Overalltherne

I Defautt <] ‘

® Changing th overall (Bootsvatch) theme may undo othr
heming changes

Background (b eclor
| #00CaC

Foreground|fa) calor

Aocent colors

Fonts

Options

Spacing






index-282_2.png
Console  CSS Overview — » o1 £ : X

ages" class="shiny-html-output shiny-bound-
0

nav-item dropdown show">

"nav-1link" data-toggle="dropdown" href:
‘true">

a fa-bell" role="presentation" aria-label=

aria-

class="badge badge-danger navbar-badge">1</span>

ss="dropdown-menu dropdown-menu-1g dropdown-menu-
>

zlass:"dropduwn—)’tem dropdown-header">1 Items
Tas 'dropdown-divider"></div>

n type="button" class="dropdown-item" disabled>..
I:type:"button" class="dropdown-iten" disabled>..
>

In type="button" class="dropdown-item" disabled>..
In>type="buttun" class="dropdown-iten" disabled>..
>

In type="button" class="dropdown-item" disabled>..
In>type="buttun" class="dropdown-item" disabled>..
>

In type="button" class="dropdown-item" disabled>..
I:type:"buttun" class="dropdown-iten" disabled>..
>

In type="button" class="dropdown-iten" disabled>..
In>‘(ype="buttun“ class="dropdown-item" disabled>..
>

In type="button" class="dropdown-item" disabled>..

auto  li#messages.shiny-htmi-output.shiny-bound-output ...






index-448_1.png





index-170_1.png
Theme demo  Inputs

inpurPancl) SN

Plots

Tables

Notifications

Fonts

Options

selectiput]

aL

selectinputfitiple=T)

tentinput)

Enter some text

numericlnpu()

0

Below are the values bound to each input widget above

passordhn
e el

Atexta

checkbotlr

checkborG
A

B

radicBLtion
A

B

List of 9

$

selectInput
selectiultiInput
textInput
numericTnput
passwordInput
textAreaInput

chr "AL"

NULL

chr "

int 0
chr
chr

ecret”





index-282_1.png
Elements

0

Add message li#messages.shiny-htmi-outputshiny . .o
~bound-output

Ly
Amessage
© yesterday

B
Amessage

© yesterday

@
B Amessage
© yesterday
B =
© yesterday By
<div ¢
© i </butto
' <butto
F </buttol
© yesterday e
6 <butto
© yesterday <butto
</buttol
d’ i <butto
B Amessage i
@ yestercay <butto
| </buttol
© yesterday i sn e

<buttol

9 </buttol

>





index-444_1.png





index-173_1.png
@ Custom mode?






index-284_1.png
Oltems |

Divad Nojnarg *
message2
© today

Divad Nojnarg *
message 1
O today

See more





index-170_3.png
$ checkInput logi TRUE
$ checkGroupInput : NULL
$ radioButtonsInput: chr

A






index-282_3.png
TEC———
© yesterday

© yesterday

n-0

ul.navbar-nav.mi






index-451_1.png
Oups... disconnected

REC..  RELO..






index-158_5.png
Hello World

InfoBox with danger status
53%

tus =






index-266_2.png
Sources  Network » o X

xtinputBinding_7.js X = input_binding_number.js »
customTextBinding = new Shiny.InputBinding();

tend(customTextBinding, {
nd: function(scope) {
return $(scope).find('.input-text');

tType: function getType(el) {

var dataType $(el).data("data-type");

if (d 'date") return "0SUICode.textDa
else Bif ( ‘number") Dreturn "0SUIC
else return false;

Given the DOM element for the input, return the
tValue: function(el) {
return $(el).val();

tValue: function(el, value) {
$(el).val(value);

ters selected Coverage: n/a |¥

Scope  Watch

tTimeout' handler took shiny.min.js:3






index-429_1.png
SEONC

@ 127.0.0.1:5504

Install app?

My Progressive Web App.





index-158_4.png
us InfoBox with secondary status
150






index-266_1.png
1

$value [1] 1 $class [1] “numeric*

177}
»

ew

Page customTe
O top

@ 127.0.0.1:4749 $.e)l<
customTextBindings-1.0.0 il

shared },

B srcjs g¢

(index)
12

}

ge

hH

S€

g

8 chal






index-427_3.png
o sl i Tubansiod iattadi et e iiate + 5 dauitile b i

A Manifest doesn't have a maskable icon

Additional items to manually check (3) —






index-158_7.png
Card with secondary stat

Box Content

Card with warning statu:

Box Content

Card with success status

Box Content






index-267_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-430_2.png
Offline page

Welcome to the offline page

RELOAD

Link 1

Link 2

[

x Elements Console CSS Overview
® © ¥ Q  ([Presenvelog [ Disa
Filter () Hide data URLs

A Fetch/XHR JS CSS Img Media Font Do

("] Blocked Requests
("] Use large request rows

(") Show overview

Name

B 127.001

B ¢ 127.00.1

B framework7.bundle.min.css
B jquery.min.js

B o framework7.bundle.min.css
B framework7.bundle.min.js

B o framework7.bundle.min.js
B 2 jquery.minjs

B favicon.ico

B o favicon.ico

Head
1| /%
2| *
3| *
4| *
5| %
6 *
7| *
8| *
9| *
10| *
1] %
12

13 tf
14/ //3

10requests | OBtransferred = 1.4N| {} Line

: Console Issues x Search

Network c






index-158_6.png
Card with primary status

Box Content

Card with danger status

Box Content

Card with info status

Box Content






index-266_3.png
Console = What's New (S Search

top
« "
= 1 message
© No user messages 7206ms
>

No errors






index-430_1.png





index-264_4.png
[1] 1
[1] NA






index-427_2.png
W Sources Network Performance Lighthouse >

PWVA

®

Progressive Web App

lidate the aspects of a Progressive Web App. Learn more.

meet the installability requirements

s page and start_url
creen Failures: Manifest does not have a PNG icon of at least 512px.
ort

) width OF initial-scale

con

These checks are required by the baseline PWA Checklist but are not

B1






index-427_1.png
7 375 x 667 H = ﬂ Elements Console CSS Overvie

15:00:48 - 127.0.0.1:5749 v ©

l . http://127.0.0.1:5749/

These checks va

. Installable

® Web app manifest and service worker |

% PWA Optimized

Registers a service worker that control:
Redirects HTTP traffic to HTTPS

Is not configured for a custom splash s

Sets a theme color for the address bar.

Content is sized correctly for the viewp

e e o » o o

Has a <meta name="viewport"> tag witt

V= | P

=






index-166_1.png
Themedemo Imputs Plots Tables Mottieations Fonts Options

(TN wellPanel)

sliderinpotl) selectizelnput()

o ) mow
ey

0 10 20 50 40 50 60 70 %0 %0 100

Below are the values bound to each input widget above

List of §

$ stiderTnput : tnk [1:2] 30 70

$ selectizelnput  : chr "AL"

$ selectizeMultiTnput: NULL

$ dakeInput : Dake[1:1], formak: "2020-11-02"

selectizelnputimoltiple=T)

$ dokeRangelnput  : Dake[1:2], format: "2020-11-02" "2020-11-09"

Hereare some octionzutton() s demonstrating different theme (i, accent) colors

o] (i [0 (D D

datelnput()

2020-11-02

dateRangelnputl)

20204102

L






index-162_1.png
Theme demo Inpufs Plots Tables Notifications Fonts Options

Diamond price by carat and cut

Fair Good Very Good
20000

15000
10000-
5000
] o
U
|
L20000-
L 15000
10000-

S000-
0

Choose an example

GeomSmooth -





index-274_1.png
Cool stuff loading...





index-160_1.png
Item 1 o

Cyberpunk Box il - Cyberpunk Box
Item 2

Cyberpunk Box )= Cyberpunk Box





index-270_1.png
iPad Pro v % v Online v

Number of observations:
o 1000

Histogram of morm(inputSobs)

120
)

80 100
L

60

Frequency

0
L

morm(inputSobs)





index-432_1.png
Messages

Sunday, Feb 9, 1258

i0s

Hi there, | am also fine,
thanks! And how are

@D o

Message






index-158_8.png





index-269_1.png
initShiny() =—> Trigger initialize

(1)
(1) getBindings()
_bindAll(scope) inputBindings = {}
register
- User
Bi
|nfi|ngs‘_ defined
registry ,
inputs

bindinputs()

(2) getBindings()

NO: stop

Getall < + getld Add Apply

bindings & YES —> ¢+ getType — binding —— rate
Find (4) . getvalue (5) datato (6) policies

(3) subscribe bomM

boundInputs = {}

shiny:bound
()

Client data + initialValues

(9) l shiny:unbound
shinyapp.connect(initialValues) I

(10) l User calls
createSocket() unbindAll()

* Init client websocket

« Trigger shiny:connected

* Remove disconnected overlay

* Send initialValues to the server (batch)

(11)

shiny:sessioninitialized





index-430_3.png
ols - 127.0.0.1:5504]

141 |B1 | &

Sources

A Network  »

y =

ble cache  Offline + 3

c WS Wasm Manifest Other [ Has blocked cookies

[C) Group by frame
("] Capture screenshots

Initiator

ers

Preview  Response Timing

amework7 5.7.14
Full featured mol
https://framewor!

e HTML framework for buildi
7.10/

Copyright 2014-2020 Vladimir Kharlampidi
Released under the MIT License

Released on: November 9, 2020
/

inction(e, t){"object

# sourceMappingURL ework7.bundle.min. js.map

1, Column 1

onditions

]

ypeof exports&&"undefined"!






index-161_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-273_1.png
Server (R) wsSonMessage(msg)

Receive new data
session$sendinputMessage(message) s with the update status

shinyapp.sendinput(message)
. * Send message to server
shiny:message * Update current inputValues

@ on the client

_sendMessagesToHandlers(message)
* Locates the correct handler

Send
inputMessages handler Other handlers en

pending
(5) data
pendingData ={...}
Add new
(4) | elementto
queue
InputBatchSender(shinyapp)
alue, opts)

shiny:inputchanged
Handlers: internal + external (user defined)






index-432_3.png
50%

amount of something

25% - 75%  100%

Circle Gauges

~

$120

of $1000 budget






index-160_2.png
=






index-270_2.png
q

% @b 0 O i

top Y © Filter

X ﬂ Elements Console Sources Network ~ »
(Y

No messages > Shiny.shinyapp.s$initiallnput.obs

< 500
No user me... X . .

> Shiny.shinyapp.$inputValues.obs
No errors < 662

No warnings = >
No info

No verbose






index-432_2.png
< Floating Action Button

4 sum dolor sit amet, consectetur adipi{ 4
€5, quo rem beatae, delectus eligendi est'™
molestias perferendis suscipit, commodi labore ipsa
non quasi eum magnam neque ducimus! Quasi,
numaquam

Maiores culpa, itaque! Eaque natus ab cum ipsam
numauam blanditiis a, quia, molestiae aut laudantium
recusandae ipsa. Ad iste glilaoeriores ipsa, mollitia
perferendis consectetur {1 eaque, voluptate
laboriosam unde.

Sed odit quis 44 n tiEX s (12 kcessitatibus,
laboriosam, exerCitationci lores 0dlo sapiente
provident. Accusantium idtaque aliquam libero ipsum
eos fugiat distinctio labof 8 h exercitationem sequi
facere quas quidem magnath reprehenderit

Pariatur corporis illo, amet doloremque. Ab veritatis
sunt nisi consectetur error modi, nam illo et nostrum
quia aliquam ipsam vitae facere voluptates atque
similique odit mollitia, rerum placeat nobis est

Etimpedit soluta minus a autem adipisci cupiditate
eius dignissimos nihil officia dolore voluptatibus
aperiam reprehenderit esse facilis labore qui, offigiis

stur. Ipsa g ur odio
+ CREATE +

\da veniaf






index-151_7.png
hinyWidgets}

le

brand_prima

brand_succe

brand_info

brand_warnis

brand_dange





index-258_2.png
My box

Box body





index-415_4.png
IPs

V. 375 x 667

x O Elements  Console G

+ | (new report) v O

Identify and fix common
problems that affect your
site's performance,
accessibility, and user
experience. Learn more

A There may be stored data
affecting loading performance
location: IndexedDB. Audit this
in an incognito window to prev
those resources from affecting
scores.





index-258_1.png
Config tag

getValue :
(7):"" L

. ‘vsetVaIue <,
(4)

receiveMessage

; (8) on change
Subscribe

Input  Plot (2) New config

tag tag

child Tag

session$sendinputMessage(inputld, message) «-=ye==s=*""*"

Box Binding
HTML/JS (client)

R (server) New input value(s) <«





index-415_3.png
& DalbRyrouna oyhiev
A Notifications
£ Payment Handler

Do o






index-151_9.png
Second level title
Third level title





index-258_4.png





index-415_6.png
_






index-151_8.png
g

|:|





index-258_3.png
@ vewtite





index-415_5.png
SS Overview Lighthouse >

in this
5 page
rent
 your

Categories

() Performance
Progressive Web App
() Best practices

[ Accessibility

O SEO

Community Plugins (beta)

(J Publisher Ads

B &

Device
© Mobile
@ Desktop

X






index-415_2.png
'SS Overview

Application >

No manifest detected

Learn more

1






index-158_2.png





index-264_3.png
Console = What's New [EIE Search
top
= 1message > $(el). (

« "
© No user messages

No errors






index-158_1.png
Theming bs4Dash

Menu:

4 Ul components

Number of observations:
Tab2
53
= Item List 7
Oltem1
Histogram of rnorm(input$obs)
Oltem2
8
8
]
s
Y
s
|
° — —

morm(inputSobs)






index-264_2.png
Sources Network > fed

X

xtinputBinding_7.js %
customTextBinding = new Shiny.InputBinding();

tend (customTextBinding, {
nd: function(scope) {
return $(scope).find('.input-text');

tType: function getType(el) {

var dataType = B$(el).Ddata("data-type");

if (dataType === "date") return "0SUICode.textDa
else return false;

Given the DOM element for the input, return the
tValue: function(el) {
return $(el).val();

tValue: function(el, value) {
$(el).val(value);

reiveMaccana: functianlel datal

cters selected Coverage: n/a |¥

Scope =~ Watch

-a—type")

2tTimeout' handler took shiny.min.js:3






index-426_1.png
o000 DevTools - 127.0.0.1:5504/

= Elements Console ~ CSS Overview  Sources  Application  » B1
Application C X | Filter by Path
B Manifest # Name Re... Co... Co... Ti.. Var...
%2 Service Workers 0 /framework7-5.7.14/css/fr... = basic tex... 565... 09/...
£ Storage 1
2 Lomenm——— T oascls
Storage 3
» £2 Local Storage
» £= Session Storage
IndexedDB
Web SQL
» @ Cookies

Cache
v £ Cache Storage
= offline - http://127.0.0.1:5504

Headers  Preview

1 <!DOCTYPE html>

2 <html>
Application Cache 3| <head>
4 <!— Required meta tags-->
5 <meta charset="utf-8">
Background Services 6 viewport" content="width=device-wid

7 apple-mobile-web-app-capable" contel

T, Background Fetch 8 <1-- Color theme for statusbar (Android only) —
9 <meta name="theme-color" content="#2196f3">

) Background Sync 10 <I-—- Your app title ——>

A Notifications 11

5 Payment Handler {} Line 1, Column 1

(O Periodic Background Sync
. Puch Maceanina
¢ Console Issues Search Network conditions X

Total entries: 4





index-158_3.png
M_ Ul components
bs4ValueBox
Tab2
= ltem List v
O Item1

O ttem2 bs4InfoBox

InfoBox with primary stat
150

bs4Card





index-154_1.png
Controls

Number of observations:
Histogram of rnorm(input$obs)

Frequency

morm(inputSobs)





index-263_2.png
Sources Network > fed

X

xtinputBinding_7.js %
customTextBinding = new Shiny.InputBinding();

tend (customTextBinding, {
nd: function(scope) {
return $(scope).find('.input-text');

tType: function getType(el) {

var dataType = B$(el).Ddata("data-type");

if (dataType === "date") return "0SUICode.textDa
else return false;

Given the DOM element for the input, return the
tValue: function(el) {
return $(el).val();

tValue: function(el, value) {
$(el).val(value);

reiveMaccana: functianlel datal

cters selected Coverage: n/a |¥

Scope =~ Watch

-a—type")

2tTimeout' handler took shiny.min.js:3






index-420_1.png
x

& ol Elements ~ Console ~ CSSOverview  Sources  Network > ®3 £
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<script type="application/shiny-singletons"></script>
»<script type="application/html-dependencies">..</script>

<script src="shared/jquery.min.js"></script>

<link href="shared/shiny.min.css" rel="stylesheet">

<script src="shared/shiny.min.js"></script>

<link href="framework7-5.7.14/css/framework7.bundle.min.css" rel="stylesheet">

<script sri ramework7-5.7.14/js/framework7.bundle.min. js"></script>

anifest" href="manifest.webmanifes
icon" type="image/png" href="icons/icon-144.png" sizes="144x144">
pwacompat-2.0.17/js/pwacompat.min.js"></script>
t="utf-8">
viewport" content="width=device-width, initial-scale=1, maximum-scale=1,
, user-scalable=no, viewport-fit=cover">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="theme-color" content="#2196f3">
<title>shinyMobile</title>
»<style type="text/css">.</style>
/style>
'mobile-web-app-capable" content="yes">
"app">
application">

<meta chars

<meta nam
minimum-scal

browsermode" conten

</head>
v <body>
v<div id="app" class="framework7-root">





index-153_1.png
blue
lightblue
navy

cyan

teal
olive
green
lime
orange
yellow
fuchsia
purple
maroon
red

black
gray x light
gray_600
gray_800
gray_900

white

Default: B #007bff. This color is used for primary status.
Default: @ #3c8dbc.

Default: ~ #00113f.

Default: B #17a2b8. This color is used for info status.
Default: @ #39cccc.

Default: B #3d9970.

Default: B #28a745. This color is used for success status.
Default: B #01f70.

Default: M #{f851b.

Default: B #ffc107. This color is used for warning status.
Default: M #{012be.

Default: B #605ca8.

Default: B #d81b60.

Default: B #dc3545. This color is used for danger status.
Default: ~ #111.

Default: M #d2d6de.

Default: B #6c757d. This color is used for secondary statu:
Default:  #343a40. Color for dark skin.

Default: ~ #212529. Color for text in body.

Default: W #fffff.





index-263_1.png
Caption

Data Summary

$value [1] *Data Summary* Sclass [1] *character*

Elements Console CSS Overview

Page Filesystem > customTe
O top

@ 127.0.0.1:4749 $.e)l<

customTextBindings-1.0.0 inl

shared }

W srcjs 10 s
(index)

}

ge

h

se

}

23 chara





index-416_1.png
PVA

Progressive Web App

These checks validate the aspects of a Progressive Web App. Learn more.

© Installable

A Web app manifest or service worker do not meet the installability requirements — 1 reason

* PWA Optimized

A Does not register a service worker that controls page and =care_uz1

‘The service worker is the technology that enables your app to use many Progressive Web App features, such as offline, add
to homescreen, and push notifications. Leam more.

® Redirects HTTP traffic to HTTPS ~

If you've already set up HTTPS, make sure that you redirect all HTTP traffic to HTTPS in order to enable secure w
features for all your users. Learn more

A s not configured for a custom splash screen Failures: No manifest was fetched ~

Athemed splash screen ensures a high-quality experience when users launch your app from their homescreens. Leam
more

A Does not set a theme color for the address bar. Failures:

lo manifest was fetched. ~
The browser address bar can be themed to match your site. Lear more.
® Content s sized correctly for the viewport ~

If the widith of your app's content doesn't match the width of the viewport, your app might not be optimized for mobile.
screens. Leam more.

@ Hasa<meta name="viewpore"> tag With vidth Of initial-scale ~

Add a’<meta name=

jewport*' tag to optimize your app for mobile screens. Learn more.
A Does not provide a valid app1e-taueh-icon ~

For ideal appearance on iOS when users add a progressive web app to the home screen, define an ‘apple-touch-icon’. It





index-157_1.png
Card with custom contrast

Threshold Card Status color
o 255
= CXric iy
) 10 15 82 208 234 255

see me!






index-264_1.png
Caption

2021-02-15

$value [1] *2021-02-15" $class [1] *Date*

Elements Console CSS Overview

Page Filesystem > customTe
O top

@ 127.0.0.1:4749 $.e)l<

customTextBindings-1.0.0 inl

shared }

W srcjs 10 s
(index)

}

ge

h

se

}

23 chara





index-425_1.png
v (1] Elements

Application
B Manifest
%2 Service Workers
W Clear storage

Storage
» EE Local Storage
» EZ Session Storage
IndexedDB
= Web SQL
» & Cookies

(N

Cache

» £ Cache Storage
£2 Application Cache

Background Services

1 Background Fetct
&) Background Sync
A Notifications

= Payment Handler
(© Periodic Backgrot
@ Push Messaging

Console CSS Overview  Sources Network  Application

Service Workers

(] Offiine (] Update on reload [ | Bypass for network

http://127.0.0.1:4145/

Source service-worker.js

Received 02/01/2021, 22:26:10
Status @ #463 activated and is running stop
Clients  http:/127.0.0.1:4145/ focus
Push Test push message from DevTools.
Sync  test-tag-from-devtools

Periodic Sync  test-tag-from-devtools

Service workers from other origins

See all registrations

X

» el

Push
Sync

Periodic Sync





index-154_2.png
100

100






index-263_3.png
Console = What's New [EIE Search
top
= 1message > $(el). (

¢ undefined
© No user messages

No errors






index-421_1.png
X

Y ﬂ Elements Console = CSSOverview  Sources  Application > o1 D

Application App Manifest

L L [ ———

£ Service Workers

W Glear siorage Installability

A No matching service worker detected. You may need to reload the page, or check tl

Storage
» EE Local Storage
» EZ Session Storage Idantity
£ IndexedDB Name My Progressive Web App
= Web SQL
> Cookies Short name My App
cache Presentation
£ Cache Storage
£2 Application Cache Start URL /
- Theme color  M#ffffff
Background Services
1y Background Fetct Background color  W#ffffff
&) Background Sync
A Notifications Orientation
= Payment Handler
(® Periodic Backgrot Display minimal-ui

@ Push Messaging





index-244_2.png
Sources ~ Network  » f el

X

nding_5.js *

.hasOwnProperty('value')) {
etValue(el, data.value);
trigger('change');

function(el, callback) {
('keyup.customTextBinding input.customTextBindin
e. log(event);

ck();

('change. customTextBinding', function(event) {
ck(false);

indings.register(customTextBinding, 'text');

Coverage: n/a

Scope = Watch






index-407_1.png
iPhone 6/7/8 Plus ¥

414 x 736 100% v

Large Red Button

My App

Tap hold fired!

Elements

x dl

Page Filesystem >» H

v [ top
v 127.0.0.1:5651
> framework7-5.7.14
> shared
» [ shinyMobile-0.0.0.9000/
» [ shinyMobile-build

Console

> [ srojs |
| (nden)
{}
n X
¢ Console What's New Issu

4 © top

v






index-401_2.png
< Range Slider

Volume

« —o

Brightness

o ———o

Price Filter $200 - $400

$ e

With Scale

Vertical






index-147_2.png
i

7

81

o1

100

100





index-246_1.png
Caption

Data Summary

Caption

Data Summary

in debugger

~

x O Elements

Page »

v O top
v 127.0.0.1:4749

> customTextBinding

> shared
> [ srcjs
(index)

Console CSS Overview

4| shiny.min.js cu

1| $(function() {

2 // Input bint
3 let customTe:
4

5 $.extend(cus
6 find: func
7/ return
8 t,

& getId: fun
10 return e
11 13

12| });

13

14 Shiny.inputB:
15 IEE));

16

{} Line 10, Column 17

vo O





index-410_1.png
[ 4 375 x| 667 : [x ﬂ Elements  Console  CSS
Page » W Coinit

| i O op
v 127.0.0.1:7128
» B bookChapterTest-0.(
> B framework7-5.7.14
> [ shared
> B srcjs
(index)






index-147_1.png
Custom colors =

_

Number of observations:
Histogram of data

1

Frequency
02468






index-244_3.png
¢  Console What's New Issues Search

4 © top v @ |Filter

i= No messages b

@ No user messages

No errors

VN






index-407_2.png
CSS Overview  Sources ~ Network  » £ X

~ shinyMobile.min.js ]

32 text: 'You look great!'
N

36 app.utils.nextTick(function() {
37 otherMessage.open();
38 }, 10e0);

41 $('#mybutton').on('taphold', function () {
42 app.dialog.alert('Tap hold fired!');

b

Line 42, Column 5 (source mapped from shinyMobile.min.js [~

Scope  Watch

es X
© | Filter Default levels q






index-151_4.png
active theme
or

modify:

COLOR -

|-2
«

ss





index-253_2.png
Background

red





index-415_1.png
([Phes 7 375 x| 667 x @ Elements  Console

Application

%X Service Workers
£ Storage

Local Storage

Session Storage
£ IndexedDB
£ Web SQL

» & Cookies

=

= Trust Tokens

Cache

£ Cache Storage
£Z Application Cache

Background Services

Ty Background Fetch
] ki






index-151_3.png
v | v
dgets}

Inter:
creat

Main theme:

PAPER

Variables to 1

BS_VARS





index-253_1.png
Toggle Box

My box is uncollapsed

Box body

(00z)uious

200

150

100

Index





index-411_3.png
28
29
30

{} Line1






index-151_6.png
progressBar from {s

Plot  Summary  Table

Typography
Classic paragraph

First level tit





index-151_5.png





index-253_3.png
Box body

Background

green]

red
yellow
aqua
blue
light-blue

green
navy






index-149_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-246_3.png
: Console What's New Issues Search

4 © top Y  ©  |[Filter
i= No messages > el.id
< "mytextInput"
© No user messages N

No errors

=k






index-410_3.png
B

{} Line1






index-148_1.png
Tile 2

Hi Bulma!






index-246_2.png
X

Sources ~ Network  » fed
stomTextinput...nding_1_bis.js * input_binding.js
ding
xtBinding = new Shiny.InputBinding();
tomTextBinding, {
tion(scope) {

D$(scope) .Dfind('#mytextInput');D

ction(el) { el = input#mytextInput.form—control

L.Bid;D

indings.register(customTextBinding, 'text');

¢ Coverage: n/a

Scope =~ Watch






index-410_2.png
> Overview  Sources  Network — » B1|| & X

s X
——f7-link-highlight-color: var(—f7-1link-highlight-wh:
——f7-button-text-color: #fff;
——f7-button-pressed-bg-color: rgba(255,255,255,0.1);

}

.navbar-large-transparent,

.navbar-large.navbar-transparent {
——f7-navbar-large-title-text-color: #000;

==(75 ()
01225
——b: 255;

——progress: var(——f7-navbar-large-collapse-progress);
——f7-bars-link-color: rgb(
calc(var(—-r) + (255 - var(—-r)) * var(-—-progress)),
calc(var(--g) + (255 - var(--g)) * var(-—-progress))
calc(var(—-b) + (255 - var(—-b)) * var(——progress))
);
I
.theme-dark .navbar-large-transparent,
.theme-dark .navbar-large.navbar-transparent {
—f7-navbar-large-title-text-color: #fff;

$("<style>")
.prop("type", "text/css")
.html(" ${filledCSS}")
.appendTo("head");

, Column 1 (source mapped from bookChapterTest.min.js) Cover |






index-151_2.png
for Shiny apps

Buttons

Panel from {shinyWi
=






index-250_1.png
AdminlTE

9 Alexander Pierce
oniine

@ Dashboard
O Dashboard v2

) Layout Options

Widgets

Dashboard ver
@ tHome - Dashboard

—
div.box.collapsed-box
Color

it 14px “Source Sans Pro’
kground
rgin

ACCESSIBILITY

Monthly Recap Report

g £ B 6 Nenderrere [ ull Elements

AFFFFFF
Opx Opx 20px
NEW MEMBERS
2,000

generic

... t-wrapper

P <div

v<di

class="row":

v class="row">
before
class="col-md-12">

Console

CSS Overview

iv class="box collapsed-box">

$0

»<div class="box-header with-border
» <div class="box-body" style="display: none;
sec .content div.row .col-md-12  div.box.collapsed-box






index-411_2.png
> Overview Sources Network ~ » B1

s
cument) . ready(function() {

o

't config = $(document).find("script[data—for="app'l");

nfig = JSON.parse(config.html());
nfig.root = "#app";

nfig.methods = {

toggleDarkTheme: function () {
let self = this;
let $html = self.$('html');
$html.toggleClass('theme-dark');

¥

~ (!config.hasOwnProperty('dark')) config.dark = false;

p = new Framework7(config);

~ (config.dark) {
app.methods. toggleDarkTheme() ;

't mainView = app.views.create(".view-main");

't notification = app.notification
.create({
text: "Welcome to shinyMobile!",
on: {
opened: function() {

, Column 1 (source mapped from bookChapterTest.min.js) Cover






index-151_1.png
My application = Fistpage  Secondpage

Custom theme-

This is a sidebarPanel() (same appearance as wellPanel()
Your choice:

(@) shiny
O shinydashboard
O flexdashboard





index-248_1.png
+

Frequency

20

15

10

Value: 10

0

Histogram of rnorm(100)

morm(100)






index-411_1.png
floe N/ 375 x 667

x O Elements  Console

Page »

i~ St
v 127.0.0.1:4643
» B bookChapterTest-0.(
> B framework7-5.7.14
> [ shared
> I srcfs
. (index)

<

a5

2
3

v

=
P oo~

15
17
19
20
23]
25

26
27

CS¢
[y init
$(do
le

co

co

[ofe

if
ap
if

le

le





index-390_2.png





index-241_2.png
Sources ~ Network  » f el

X

nding_3.js *

he DOM element for the input, return the value
function(el) {
(el).val();

function(el, value) { el = input#caption.form—c
val(value);

sage: function(el, data) {
.Dlog(data);
.hasOwnProperty('value')) {
etValue(el, data.value);

ted Coverage: n/a

Scope = Watich

)

. form—control.input-text.shiny-bound-input]






index-394_1.png
Single Layout

Card header

Your plotO- Murder -O- Sick basterd

‘Al Minnesota Vermont
o, R, R






index-241_1.png
el [w ﬂ Elements  Console  CSS Overview

Hacking Shiny!

Page » 4| customTextInputBil
-L"""z‘te e 9 // Given t
Data Summary v Otop 10 getValue:
v 127.0.0.1:5452 11 return $
2 customTextBinding g zétValu e:
> shared 14 _Bslel)
" 15 5
> [ srejs 16 receiveMes:
(index) Ly console
18 if (data
19 this.s
20 }
21 }
22 ¥);
23

24
{} 17 characters selec

At Tt s O

: Console What's New Issues Search

™ e~ e . P P





index-391_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-243_2.png
Sources ~ Network  » f el

X

nding_4.js *

he DOM element for the input, return the value
function(el) { el = input#caption.form-control.

Ds(eV).DvalOfD

function(el, value) {
L(value);

sage: function(el, data) {
.hasOwnProperty('value')) {
etValue(el, data.value);
trigger('change');

function(el, callback) {
('keyup.customTextBinding input.customTextBindin
le.Dlog(event);

ck();

ted Coverage: n/a

Scope = Watch






index-399_3.png
© Nouser...

& Noerors

A 1 warning






index-243_1.png
Data Summar

Update text!

Data Summary

in debugger

x O Elements

Page »

v O top
v 127.0.0.1:4749

4 customTextBinding 13

2 shared
> [ srcjs
(index)

Console

{}
v O

CSS Overview

4] customTextinputBil

setValue:
$(el).va
h
receiveMes
if (data
this.s
$(el).

}
h
subscribe:
$(el).on
conso
callba

1;
i

11 characters selec





index-399_2.png
CSS Overview  Sources ~ Network  » £ X
0 x shinyMobile.min.js
1 $( document ).ready(function() {

3 var app = new Framework7({

5 root: '#app',
7 name: 'l‘iy App',
1

12 var mainView = app.views.create('.view-main');

b;

32 characters selected (source mapped from shinyMobile.n [

Scope  Watch

es X

©®  Filter Default levels 1 hidden %






index-244_1.png
Caption

new text

Update text!

Data Summary

x O Elements

Page »

v O top
v 127.0.0.1:4749

Console

<

CSS Overview

customTextinputBir

4 customTextBinding

2 shared
> [ srcjs
(index)

17
18
19
20
2.
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36

if (data
this.s
$(el).
}
h
subscribe:
$(el).on
conso s
callba

1)

Shiny.inputB.
1.

{} Line29, Column9

v O





index-243_3.png
¢  Console What's New Issues Search

[ © top Y © |Filter

= No messages > $(el).val()

< "Data Summar"
@ No user messages |

€ No errors






index-401_1.png
Brightness

Price Filter

®

With Scale

Vertical

Range Slider

$200 - $400






index-242_1.png
Caption

| Data Summar

Update text!

Data Summary

in debugger

x O Elements

Page »

v O top
v 127.0.0.1:4749

Console

<

CSS Overview

customTextinputBir

4 customTextBinding

2 shared
> [ srcjs
(index)

9
10
1
12
13
14
i1i5
16
by f
18
19
20
21
22
23
24
25
26

27
28

{}
v O

// Given ti
getValue:

return
hH

setValue:
$(el).va
h
receiveMes
if (data
this.s
$(el).
}
h
subscribe
$(el

callba

};
i

11 characters selec





index-394_3.png
Show Plot? ()






index-241_3.png
No messages

No user messages

No errors
No warnings

No info

> value
< "Hacking Shiny
> $(el).val(value

< >S.fn..in.it [
input#captio






index-394_2.png
Tabs

Card header

Number of abservations

Histogram of dist






index-242_3.png
¢  Console What's New Issues Search

[ © top Y  © |Filter

1 message <& S.Event {orig

t:
© No user messages , inputi#captio
currentTarge
€ Noerrors inputi#captio
isDefaultPre!






index-399_1.png
Title

Test

Elements  Console
Page Filesystem >

O top
127.0.0.1:5651
framework7-5.7.14
shared
shinyMobile-0.0.0.9000/,
[\u shinyMobile-build

Console ~ What's New Isst

top

1 message





index-242_2.png
Sources ~ Network  » f el

X

nding_4.js *

he DOM element for the input, return the value
function(el) {
D$(el) .Dval();D

function(el, value) {
L(value);

sage: function(el, data) {
.hasOwnProperty('value')) {
etValue(el, data.value);
trigger('change');

function(el, callback) {
('keyup.customTextBinding input.customTextBindin
Te.log(event);

ck();

ted Coverage: n/a

Scope = Watch

X
Sefault levels &

inalEvent: InputEvent, type: "input", targe

. form—control.input-text.shiny-bound-input,
. form—-control.input-text.shiny-bound-input,
ented: f, .}






index-397_1.png
Aan bookChapterTest
<ox, 0 @ - B @ & ™ Gotofie/function 5 - @ - Addins -

amework7-dependencies.R @ 7_skeleton.R* Dappr R initjs B package json
A B B sourceon Save
~oxp | #' Title

8

#' @param ...
~xx | #' @param navhar
x®v | #' gparam toolbar
TOEM gt Qparam title

~ol | gt

- #' @return

= #' @export

ORA #'

.. H#' @examples

... f7_page « function( ..., navbar, toolbar, title = NULL) {
> taglList(

e )
> B f7_page(..., navbar, toolbar, title) *

sle Terminal Jobs

top/test/bookChapterTest/

Gl e






index-240_3.png
1 message v {value
value:
» @ 1 user message » _proto_:

€ Noerrors > data.value = "
- "Hacking Shiny

A No warnings <
|

1 info






index-236_3.png
op

No messages

No user messages
No errors

No warnings

No info

<

$(scope).find(

S.fn.init [in
vObject: S.fn
: input#my






index-368_1.png
charpente





index-367_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-239_1.png
inputSupdate I

Button

click — websocket — inputSupdate

(1)

(2) .
triggers

i

setValue( ) | (3

observeEvent(inputSupdate, {
— websocket e session$sendinputMessage(

[: I ,
| i
JS (client) 1 R (server)





index-387_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-238_3.png
LIS A 1OR v & riter

i= No messages > $(el).val
e Datal Sunn:
@ No user messages s
No errors
No warnings

€ Noinfo






index-385_1.png
- Addins -

JsTOOLS Q [isto
Prettier

Babel






index-240_2.png
Sources ~ Network  » f el

X

nding_3.js *

he DOM element for the input, return the value
function(el) {
(el).val();

function(el, value) {
val(value);

age: function(el, data) { el = input#caption.f

Dlog(data);
ISR vaTue )

etValue(el, data.value);

Rt

Coverage: n/a

Scope = Watich

X
@

text"} customTextInputBinding 3.js:17
stexth

Object

lacking Shiny!"






index-390_1.png
3
7

=)

Discover shinyMobile =
The brand new package to develop mobile Expandable Card 2

ready apps.

Material Design?

shinyMobile is proudly built on top of






index-240_1.png
Data Summary

Update text!

Data Summary

in debugger

[w ﬂ Elements Console CSS Overview

Page »
9

v Otop 10

v 127.0.0.1:5452 11

4 customTextBinding g

2 shared 14
s 15
> [ srcjs 16
(index) 17
18
19
20
21
2| B
23
24

4] customTextinputBil

// Given ti
getValue:
return $

+
setValue:

$(el).
+

receiveMes
console
if (data
this.s

}

}

{} Line 18, Column 1¢

mlf».y/’o

7 4 H

: Console What's New Issues

™ e~ e . P

Search





index-388_1.png
Jg‘ Accueil

R posts you might have mis... - ¢
I-F-E-O: postcards + distill | Alison

Alison Presmanes Hill

. Think & Smile @
¥ Think and smile






index-237_2.png
Memory % H
ault levels ¥
{index):31

t.shiny-bound-input





index-370_1.png
R Rbuildignore

@ charpenteTest.Rproj
M CODE_OF_CONDUCT.md
cran-comments.md
DESCRIPTION

inst

LICENSE
LICENSE.md

man

NAMESPACE
NEWS.md
node_modules

package-lock.json

package json
I3

@ README.md
- sicjs

M rests

288

4138
5.1KB
196 B
516 B

518
1.1KB

4518
868

3358
550 B

666 B

Feb 18, 2021, 2:57 AM
Feb 18, 2021, 10:44 AM
Feb 18, 2021, 2:50 AM
Feb 18, 2021, 2:50 AM
Feb 18, 2021, 2:50 AM

Feb 18, 2021, 2:50 AM
Feb 18, 2021, 2:50 AM

Feb 18, 2021, 9:31 AM
Feb 18, 2021, 2:50 AM

Feb 18, 2021, 2:50 AM
Feb 18, 2021, 10:48 AM

Feb 18, 2021, 2:50 AM





index-237_1.png
iPad Pro v x 50% v Online v H v Elements  Console

1 messaga
5.fn.init(1) @
» © 1 usermes. : input

input#caption.form-control.input-tex No errors :

t.shiny-bound-input

A Nowarnings

1info

% Noverbose





index-368_2.png





index-238_2.png
Sources ~ Network  » f el

X

nding_2.js *

ding
xtBinding = new Shiny.InputBinding();

tomTextBinding, {
tion(scope) {
D$(scope).Dfind('.input—text');D

he DOM element for the input, return the value
function(el) { el = input#caption.form-control.
log($(el));

Ds(el).Dval()GD

ted Coverage: n/a

Scope = Watich






index-372_2.png
ols v Blog Newsletter © ¥ esm.run

Q bulma

Get a badge for your package

jsDelivr 6BM hits/month

Alternative style

[1[1(https://data. jsdelivr.com/v1/package/n
pn/bulma/badge) ] (https: //wiw. jsdelivr. com/p
ackage/npn/bulna)

Selected files

No files selected. Select the files you want to use
using the switches on the left.






index-238_1.png
Caption Eor— i
skt ﬂ Elements  Console  CSS Overview

Data Summary

Page » ¢ [[] customTextinputBi

v O top
v 127.0.0.1:7258

customTextBinding -
.extend(cus

shared find: func
srejs turn

(index) / n t

getValu
11 console.

13
14
15
16

{
SO S S JI 7

Console = What's New Issues Search






index-372_1.png
in - ANe

® Introducing esm.

\ge CDN for JavaScript modul

'JSDELIVR Features Network Stats Sponsors T

bulma W0 0omn&

H jsthms  $091 & MIT © 0 vulnerabilities
Modern CSS framework based on Flexbox

css  sass  flexbox  responsive  framework

bulma CDN Files

bulma

[B/npm/bulma@0.9.1/bulma.sass

8 /npm/bulma@0.9.1/css

W /npm/bulma@0.9.1/sass

i /npm/bulma@0.9.1/bulma.sass
i /npm/bulma@0.9.1/CHANGELOG.md 073

i /npm/bulma@0.9.1/LICENSE 072
i /npm/bulma@0.9.1/package.json 07.1
07.0

i /npm/bulma@0.9.1/README.md





index-365_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-346_2.png
3 messages

© 1 userm
€ Noerrors
A 2 wamnings
O tinfo

:

No verbose

all_files: true

achment:

meta:

name: "ionrangeslide
package

ion, rang

shared,

» stylesheet [cs
version 1.6"

» : Object
{name: "stritime"

to__: Array(e)





index-361_2.png
ments  Console  Sources  Network % S

>

ad>

class="content">
/ class="container-x
i1V class="forn-group shiny-input-container"s
<tabel for="progress_value">Progress value</label>
adding-left: 10px;
‘progress_value" class
nolli-Ltr noli-horizontal shiny-bound-input" dat

Vend"> = 50
»<div class="noli-base">-</div>
<rdiv>
»<script type='application/json" data-for="progress_value'
</scripts
</div>
div>
liv class="progress">.</div>

_value. sw-no-ul-siider.noUHarget.noUHtrnoUl-horizontal.shiny-bound-i
sed Layout EventListeners DOM Breakpoints Properties »

chow _ele & (]

v © [Fiter Defaultlevels v

document. getElenentByTd( ' triggerTd');

__spectrun: f, create: f}






index-361_1.png
locahost:3515/

Progress value

® ] e
<soocrvve h
S
s

Shs
S
o
=iy
vadi

<
</d:
divéprogres
Styles  Comp
Fiter
Console

[ © twp

var slider

< undefined
Stider

< null
nouistider

< b {version:






index-362_2.png
Console ~ Sources  Network  » B1 E o J

> | | Filter Default levels v || 1lssue: B1 | = o






index-362_1.png
= | localhost:3515/ [x ] @ Elements

P © [topy | @

@ ol 581 C R

Number of observations:

L ——

Histogram of rnorm(inputSobs)

. -
o

s —

£

H g —
2
’ | —

.3 2 ¥ . J 2 s

morm(inputsobs)






index-347_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-346_3.png
jork  Performance  Memory  » azg] @ x
Default levels ¥ 2 hidden ¢
index):30

jeslider.min. js"
‘ionrangeslider"}
s/ion. rangeSlider.css", “css/ion.rangeSlider.ski.

version: "@.9.2", src: {.}, meta: null, script: .





index-360_2.png
ments

>

ad>
o

uted

Console

Layout

‘antialiased theme-dark” styl

Sources  Network  »

isplay: block;"

Event Listeners  DOM Breakpoints ~Properties

v e

Fiter

chow _els

Defaultlevels v






index-360_1.png
locahost:3515/

Progress value

& Ee

<1DOCTYPE hts
<htnl class>
» <head>.</he
v <body> = §
»<div clas
</body>
</htat>

hmi body
Styles  Comp

Console

[ ® tp






index-346_1.png
iPad Pro v 50% ¥ Online ™

@ tabler T [






index-344_5.png
strap/shim/respond.min. is"></script>

Breakpoints  Properties  Accessibility

thov .cls +

ing selector or style





index-344_2.png
% (1] CEements Console Sources Network Performance  Memory »

<!doctype html>
<html class>
v <head>
<neta http-equiv="Content-Type" content="text/html; charset=utf-8">
<script type="application/shiny-singletons"></script>
v<script type="application/html-dependencies"

</script>

shared/json2-min. j
shared/jquer, '></script>

“shared/shiny.css" rel="stylesheet">
'shared/shiny.min. js"></script>
‘shared/ionrangeslider/css/ion, rangeSlider. css" rel
<link href="shared/ionranges\lider/css/ion. rangeslider. skinsh
<script src="shared/ionranges ider/Js/ion. rangeslider.min. js
shared/strftine/strftine-min. js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link href="shared/bootstrap/css/bootstrap.min.css” rel="stylesheet">
<script src="shared/bootstrap/js/bootstrap.min. s"></script>

cerrint ere="chared/haoaotetran/chin/btmlbSehiv.min. ie"s<c/errints

></script>

55" rel="sty
/script>






index-344_1.png
Number of observations:
0

Histogram of






index-344_4.png
oy 0z 0

ouanbaiy






index-344_3.png
®1 X

lesheet">





index-338_1.png





index-334_1.png
Progress value






index-343_1.png
e tabler Tab 1 - Tab 2

Number of observations:






index-340_1.png
Show Notification

Do nothing

Dropdown
click me





index-494_1.png
Hello World

Phase plot

10






index-485_1.png
Hello World






index-491_1.png
Hello World

Van der Pol Model

The below mode! is computed by R

Parameter value (mu)

Van der Pétoscillator: line pl

Model successfuly computed






index-487_1.png
Hello World

Parameter value (mu)






