

• • • • • •
• • • • • • • •
• • • • • • •
• • • • •

PARAL L E L
PR O G RAM M I N G

M I C R O S O F T

V I S UAL C++
Design Patterns for
Decomposition and Coordination
on Multicore Architectures

WITH

Colin Campbell
Ade Miller

Forewords by
Tony Hey
Herb Sutter

parallel programming with microsoft visual c++®

Parallel Programming
with Microsoft Visual
C++®

Design Patterns for Decomposition and
Coordination on Multicore Architectures

Colin Campbell
Ade Miller

ISBN 978-0-7356-5175-3

This document is provided “as-is.” Information and views expressed in this
document, including URL and other Internet website references, may change
without notice. You bear the risk of using it. Unless otherwise noted, the
companies, organizations, products, domain names, email addresses, logos,
people, places, and events depicted in examples herein are fictitious. No
association with any real company, organization, product, domain name, email
address, logo, person, place, or event is intended or should be inferred. Comply-
ing with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this document may be reproduced,
stored in or introduced into a retrieval system, or transmitted in any form or by
any means (electronic, mechanical, photocopying, recording, or otherwise), or for
any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or
other intellectual property rights covering subject matter in this document.
Except as expressly provided in any written license agreement from Microsoft,
the furnishing of this document does not give you any license to these patents,
trademarks, copyrights, or other intellectual property.

© 2011 Microsoft Corporation. All rights reserved.

Microsoft, MSDN, Visual Basic, Visual C++, Visual C#, Visual Studio, Windows,
Windows Live, Windows Server, and Windows Vista are trademarks of the
Microsoft group of companies.

All other trademarks are property of their respective owners.

Contents

foreword xi
Tony Hey

foreword xiii
Herb Sutter

preface xv
Who This Book Is For xv
Why This Book Is Pertinent Now xvi
What You Need to Use the Code xvi
How to Use This Book xvii

Introduction xviii
Parallelism with Control Dependencies Only xviii
Parallelism with Control and Data
Dependencies xviii
Dynamic Task Parallelism and Pipelines xviii
Supporting Material xix

What Is Not Covered xx
Goals xx

acknowledgments xxi

1 Introduction 1
The Importance of Potential Parallelism 2
Decomposition, Coordination, and Scalable Sharing 3

Understanding Tasks 3
Coordinating Tasks 4
Scalable Sharing of Data 5
Design Approaches 6

Selecting the Right Pattern 7
A Word about Terminology 8
The Limits of Parallelism 8
A Few Tips 10
Exercises 11
For More Information 11

vi

2 Parallel Loops 13
The Basics 14

Parallel for Loops 14
parallel_for_each 15
What to Expect 16

An Example 17
Sequential Credit Review Example 18
Credit Review Example Using
parallel_for_each 18
Performance Comparison 19

Variations 19
Breaking out of Loops Early 19
Exception Handling 20
Special Handling of Small Loop Bodies 21
Controlling the Degree of Parallelism 22

Anti-Patterns 23
Hidden Loop Body Dependencies 23
Small Loop Bodies with Few Iterations 23
Duplicates in the Input Enumeration 23
Scheduling Interactions with
Cooperative Blocking 24

Related Patterns 24
Exercises 24
Further Reading 25

3 Parallel Tasks 27
The Basics 28
An Example 29
Variations 31

Coordinating Tasks with Cooperative Blocking 31
Canceling a Task Group 33
Handling Exceptions 35
Speculative Execution 36

Anti-Patterns 37
Variables Captured by Closures 37
Unintended Propagation of Cancellation Requests 38
The Cost of Synchronization 39

Design Notes 39
Task Group Calling Conventions 39
Tasks and Threads 40
How Tasks Are Scheduled 40
Structured Task Groups and Task Handles 41
Lightweight Tasks 41

Exercises 42
Further Reading 42

 vii

4 Parallel Aggregation 45
The Basics 46
An Example 49
Variations 55

Considerations for Small Loop Bodies 55
Other Uses for Combinable Objects 55

Design Notes 55
Related Patterns 57
Exercises 58
Further Reading 58

5 Futures 61
The Basics 62

Futures 63
Example: The Adatum Financial Dashboard 65

The Business Objects 66
The Analysis Engine 67

Variations 70
Canceling Futures 70
Removing Bottlenecks 70
Modifying the Graph at Run Time 71

Design Notes 72
Decomposition into Futures 72
Functional Style 72

Related Patterns 72
Pipeline Pattern 73
Master/Worker Pattern 73
Dynamic Task Parallelism Pattern 73
Discrete Event Pattern 73

Exercises 73

6 Dynamic Task Parallelism 75
The Basics 75
An Example 77
Variations 80

Parallel While-Not-Empty 80
Adding Tasks to a Pending Wait Context 81

Exercises 83
Further Reading 83

7 Pipelines 85
Types of Messaging Blocks 86
The Basics 86

viii

An Example 92
Sequential Image Processing 92
The Image Pipeline 94
Performance Characteristics 96

Variations 97
Asynchronous Pipelines 97
Canceling a Pipeline 101
Handling Pipeline Exceptions 102
Load Balancing Using Multiple Producers 104
Pipelines and Streams 106

Anti-Patterns 107
Copying Large Amounts of Data between
 Pipeline Stages 107
Pipeline Stages that Are Too Small 107
Forgetting to Use Message Passing for Isolation 107
Infinite Waits 107
Unbounded Queue Growth 107
More Information 107

Design Notes 108
Related Patterns 109
Exercises 109
Further Reading 109

appendices

a the task scheduler and
 resource manager 111

Resource Manager 113
Why It’s Needed 113
How Resource Management Works 113
Dynamic Resource Management 115
Oversubscribing Cores 116
Querying the Environment 116

Kinds of Tasks 116
Lightweight Tasks 117
Tasks Created Using PPL 117

Task Schedulers 118
Managing Task Schedulers 118

Creating and Attaching a Task Scheduler 119
Detaching a Task Scheduler 120
Destroying a Task Scheduler 120
Scenarios for Using Multiple Task Schedulers 120
Implementing a Custom Scheduling Component 121

 ix

The Scheduling Algorithm 121
Schedule Groups 121
Adding Tasks 122
Running Tasks 123
Enhanced Locality Mode 124
Forward Progress Mode 125
Task Execution Order 125
Tasks That Are Run Inline 125

Using Contexts to Communicate with the Scheduler 126
Debugging Information 126
Querying for Cancellation 126
Interface to Cooperative Blocking 127
Waiting 127
The Caching Suballocator 127
Long-Running I/O Tasks 128

Setting Scheduler Policy 128
Anti-Patterns 129

Multiple Resource Managers 129
Resource Management Overhead 129
Unintentional Oversubscription from Inlined Tasks 130
Deadlock from Thread Starvation 131
Ignored Process Affinity Mask 131

References 132

b debugging and profiling parallel
 applications 133
 The Parallel Tasks and Parallel Stacks Windows 133

Breakpoints and Memory Allocation 136
The Concurrency Visualizer 137

Scenario Markers 141
Visual Patterns 142

Oversubscription 142
Lock Contention and Serialization 143
Load Imbalance 145

Further Reading 147

c technology overview 149
Further Reading 151

glossary 153

index

xi

Foreword

At its inception some 40 or so years ago, parallel computing was the
province of experts who applied it to exotic fields, such as high en-
ergy physics, and to engineering applications, such as computational
fluid dynamics. We’ve come a long way since those early days.

This change is being driven by hardware trends. The days of per-
petually increasing processor clock speeds are now at an end. Instead,
the increased chip densities that Moore’s Law predicts are being used
to create multicore processors, or single chips with multiple processor
cores. Quad-core processors are now common, and this trend will
continue, with 10’s of cores available on the hardware in the not-too-
distant future.

In the last five years, Microsoft has taken advantage of this tech-
nological shift to create a variety of parallel implementations. These
include the Microsoft® Windows® High Performance Cluster (HPC)
technology for message-passing interface (MPI) programs, Dryad,
which offers a Map-Reduce style of parallel data processing, the Win-
dows Azure™ technology platform, which can supply compute cores
on demand, the Parallel Patterns Library (PPL) and Asynchronous
Agents Library for native code, and the parallel extensions of the
Microsoft .NET Framework 4.

Multicore computation affects the whole spectrum of applica-
tions, from complex scientific and design problems to consumer ap-
plications and new human/computer interfaces. We used to joke that
“parallel computing is the future, and always will be,” but the pessi-
mists have been proven wrong. Parallel computing has at last moved
from being a niche technology to being center stage for both applica-
tion developers and the IT industry.

But, there is a catch. To obtain any speed-up of an application,
programmers now have to divide the computational work to make
efficient use of the power of multicore processors, a skill that still
belongs to experts. Parallel programming presents a massive challenge
for the majority of developers, many of whom are encountering it for

xii

the first time. There is an urgent need to educate them in practical
ways so that they can incorporate parallelism into their applications.

Two possible approaches are popular with some of my computer
science colleagues: either design a new parallel programming language,
or develop a “heroic” parallelizing compiler. While both are certainly
interesting academically, neither has had much success in popularizing
and simplifying the task of parallel programming for non-experts. In
contrast, a more pragmatic approach is to provide programmers with
a library that hides much of parallel programming’s complexity and
teach programmers how to use it.

To that end, the Microsoft Visual C++® Parallel Patterns Library
and Asynchronous Agents Library present a higher-level programming
model than earlier APIs. Programmers can, for example, think in terms
of tasks rather than threads, and avoid the complexities of thread
management. Parallel Programming with Microsoft Visual C++ teaches
programmers how to use these libraries by putting them in the con-
text of design patterns. As a result, developers can quickly learn to
write parallel programs and gain immediate performance benefits.

I believe that this book, with its emphasis on parallel design pat-
terns and an up-to-date programming model, represents an important
first step in moving parallel programming into the mainstream.

Tony Hey
Corporate Vice President, Microsoft Research

foreword

xiii

Foreword

This timely book comes as we navigate a major turning point in our
industry: parallel hardware + mobile devices = the pocket supercom-
puter as the mainstream platform for the next 20 years.

Parallel applications are increasingly needed to exploit all kinds of
target hardware. As I write this, getting full computational perfor-
mance out of most machines—nearly all desktops and laptops, most
game consoles, and the newest smartphones—already means harness-
ing local parallel hardware, mainly in the form of multicore CPU pro-
cessing; this is the commoditization of the supercomputer. Increas-
ingly in the coming years, getting that full performance will also mean
using gradually ever-more-heterogeneous processing, from local
general-purpose computation on graphics processing units (GPGPU)
flavors to harnessing “often-on” remote parallel computing power in
the form of elastic compute clouds; this is the generalization of the
heterogeneous cluster in all its NUMA glory, with instantiations rang-
ing from on-die to on-machine to on-cloud, with early examples of
each kind already available in the wild.

Starting now and for the foreseeable future, for compute-bound
applications, “fast” will be synonymous not just with “parallel,” but
with “scalably parallel.” Only scalably parallel applications that can be
shipped with lots of latent concurrency beyond what can be ex-
ploited in this year’s mainstream machines will be able to enjoy the
new Free Lunch of getting substantially faster when today’s binaries
can be installed and blossom on tomorrow’s hardware that will have
more parallelism.

Visual C++ 2010 with its Parallel Patterns Library (PPL), described
in this book, helps enable applications to take the first steps down
this new path as it continues to unfold. During the design of PPL,
many people did a lot of heavy lifting. For my part, I was glad to be
able to contribute the heavy emphasis on lambda functions as the key
central language extension that enabled the rest of PPL to be built as
Standard Template Library (STL)-like algorithms implemented as a

xiv

normal library. We could instead have built a half-dozen new kinds of
special-purpose parallel loops into the language itself (and almost did),
but that would have been terribly invasive and non-general. Adding a
single general-purpose language feature like lambdas that can be used
everywhere, including with PPL but not limited to only that, is vastly
superior to baking special cases into the language.

The good news is that, in large parts of the world, we have as an
industry already achieved pervasive computing: the vision of putting
a computer on every desk, in every living room, and in everyone’s
pocket. But now we are in the process of delivering pervasive and
even elastic supercomputing: putting a supercomputer on every desk,
in every living room, and in everyone’s pocket, with both local and
non-local resources. In 1984, when I was just finishing high school, the
world’s fastest computer was a Cray X-MP with four processors,
128MB of RAM, and peak performance of 942MFLOPS—or, put an-
other way, a fraction of the parallelism, memory, and computational
power of a 2005 vintage Xbox, never mind modern “phones” and Ki-
nect. We’ve come a long way, and the pace of change is not only still
strong, but still accelerating.

The industry turn to parallelism that has begun with multicore
CPUs (for the reasons I outlined a few years ago in my essay “The Free
Lunch Is Over”) will continue to be accelerated by GPGPU comput-
ing, elastic cloud computing, and other new and fundamentally paral-
lel trends that deliver vast amounts of new computational power in
forms that will become increasingly available to us through our main-
stream programming languages. At Microsoft, we’re very happy to be
able to be part of delivering this and future generations of tools for
mainstream parallel computing across the industry. With PPL in par-
ticular, I’m very pleased to see how well the final product has turned
out and look forward to seeing its capabilities continue to grow as we
re-enable the new Free Lunch applications—scalable parallel applica-
tions ready for our next 20 years.

Herb Sutter
Principal Architect, Microsoft
Bellevue, WA, USA
February 2011

xv

Preface

This book describes patterns for parallel programming, with code
examples, that use the new parallel programming support in the Mi-
crosoft® Visual C++® development system. This support is com-
monly referred to as the Parallel Patterns Library (PPL). There is also
an example of how to use the Asynchronous Agents Library in con-
junction with the PPL. You can use the patterns described in this book
to improve your application’s performance on multicore computers.
Adopting the patterns in your code can make your application run
faster today and also help prepare for future hardware environments,
which are expected to have an increasingly parallel computing archi-
tecture.

Who This Book Is For
The book is intended for programmers who write native code for the
Microsoft Windows® operating system, but the portability of PPL
makes this book useful for platforms other than Windows. No prior
knowledge of parallel programming techniques is assumed. However,
readers need to be familiar with features of the C++ environment such
as templates, the Standard Template Library (STL) and lambda expres-
sions (which are new to Visual C++ in the Microsoft Visual Studio®
2010 development system). Readers should also have at least a basic
familiarity with the concepts of processes and threads of execution.

Note: The examples in this book are written in C++ and use the
features of the Parallel Patterns Library (PPL).

Complete code solutions are posted on CodePlex. See http://
parallelpatternscpp.codeplex.com/.

There is also a companion volume to this guide, Parallel
Programming with Microsoft .NET, which presents the same
patterns in the context of managed code.

xvi

Why This Book Is Pertinent Now
The advanced parallel programming features that are delivered with
Visual Studio 2010 make it easier than ever to get started with parallel
programming.

The Parallel Patterns Library and Asynchronous Agents Library
are for C++ programmers who want to write parallel programs. They
simplify the process of adding parallelism and concurrency to applica-
tions. PPL dynamically scales the degree of parallelism to most effi-
ciently use all the processors that are available. In addition, PPL and
agents assist in the partitioning of work and the scheduling of tasks
in threads. The library provides cancellation support, state manage-
ment, and other services. These libraries make use of the Concurrency
Runtime, which is part of the Visual C++ platform.

Visual Studio 2010 includes tools for debugging parallel applica-
tions. The Parallel Stacks window shows call stack information for all
the threads in your application. It lets you navigate between threads
and stack frames on those threads. The Parallel Tasks window re-
sembles the Threads window, except that it shows information about
each task instead of each thread. The Concurrency Visualizer views in
the Visual Studio profiler enable you to see how your application in-
teracts with the hardware, the operating system, and other processes
on the computer. You can use the Concurrency Visualizer to locate
performance bottlenecks, processor underutilization, thread conten-
tion, cross-core thread migration, synchronization delays, areas of
overlapped I/O, and other information.

For a complete overview of the parallel technologies available
from Microsoft, see Appendix C, “Technology Overview.”

What You Need to Use the Code
The code that is used for examples in this book is at http://parallelpat-
ternscpp.codeplex.com/. These are the system requirements:
•	 Microsoft Windows Vista® SP1, Windows 7, Windows Server®

2008, or Windows XP SP3 (32-bit or 64-bit) operating system.
•	 Microsoft Visual Studio 2010 SP1 (Ultimate or Premium edition

is required for the Concurrency Visualizer, which allows you to
analyze the performance of your application); this includes the
PPL, which is required to run the samples and the Asynchronous
Agents Library.

preface

http://msdn.microsoft.com/en-us/library/dd470722(v=VS.100).aspx

 xvii

How to Use This Book
This book presents parallel programming techniques in terms of par-
ticular patterns. Figure 1 shows the different patterns and their rela-
tionships to each other. The numbers refer to the chapters in this
book where the patterns are described.

figure 1
Parallel programming patterns

After the introduction, the book has one branch that discusses
data parallelism and another that discusses task parallelism.

Both parallel loops and parallel tasks use only the program’s con-
trol flow as the means to coordinate and order tasks. The other pat-
terns use both control flow and data flow for coordination. Control
flow refers to the steps of an algorithm. Data flow refers to the avail-
ability of inputs and outputs.

Data Parallelism Task Parallelism

Coordinated by
control flow only

Coordinated by control
flow and data flow

5 Futures 7 Pipelines

6 Dynamic Task Parallelism

4 Parallel Aggregation

2 Parallel Loops 3 Parallel Tasks

1 Introduction

xviii

Introduction
Chapter 1, “Introduction,” introduces the common problems faced by
developers who want to use parallelism to make their applications run
faster. It explains basic concepts and prepares you for the remaining
chapters. There is a table in the “Design Approaches” section of Chapter
1 that can help you select the right patterns for your application.

Parallelism with Control Dependencies
Only

Chapters 2 and 3 deal with cases where asynchronous operations are
ordered only by control flow constraints:
•	 Chapter 2, “Parallel Loops.” Use parallel loops when you want

to perform the same calculation on each member of a collection
or for a range of indices, and where there are no dependencies
between the members of the collection. For loops with depen-
dencies, see Chapter 4, “Parallel Aggregation.”

•	 Chapter 3, “Parallel Tasks.” Use parallel tasks when you have
several distinct asynchronous operations to perform. This
chapter explains why tasks and threads serve two distinct
purposes.

Parallelism with Control and Data
Dependencies

Chapters 4 and 5 show patterns for concurrent operations that are
constrained by both control flow and data flow:
•	 Chapter 4, “Parallel Aggregation.” Patterns for parallel aggre-

gation are appropriate when the body of a parallel loop includes
data dependencies, such as when calculating a sum or searching
a collection for a maximum value.

•	 Chapter 5, “Futures.” The Futures pattern occurs when opera-
tions produce some outputs that are needed as inputs to other
operations. The order of operations is constrained by a directed
graph of data dependencies. Some operations are performed in
parallel and some serially, depending on when inputs become
available.

Dynamic Task Parallelism and Pipelines
Chapters 6 and 7 discuss some more advanced scenarios:
•	 Chapter 6, “Dynamic Task Parallelism.” In some cases, opera-

tions are dynamically added to the backlog of work as the
computation proceeds. This pattern applies to several domains,
including graph algorithms and sorting.

•	 Chapter 7, “Pipelines.” Use a pipeline to feed successive
outputs of one component to the input queue of another

preface

 xix

component, in the style of an assembly line. Parallelism results
when the pipeline fills, and when more than one component is
simultaneously active.

Supporting Material
In addition to the patterns, there are several appendices:
•	 Appendix A, “The Task Scheduler and Resource Manager.”

This appendix gives an overview of how the Concurrency
Runtime’s task scheduler and resource manager function.

•	 Appendix B, “Debugging and Profiling Parallel Applications.”
This appendix gives you an overview of how to debug and
profile parallel applications in Visual Studio 2010.

•	 Appendix C, “Technology Roadmap.” This appendix describes
the various Microsoft technologies and frameworks for parallel
programming.

•	 Glossary. The glossary contains definitions of the terms used in
this book.
Everyone should read Chapters 1, 2, and 3 for an introduction and

overview of the basic principles. Although the succeeding material is
presented in a logical order, each chapter, from Chapter 4 on, can be
read independently.

Callouts in a distinctive style, such as the one shown in the mar-
gin, alert you to things you should watch out for.

It’s very tempting to take a new tool or technology and try and
use it to solve whatever problem is confronting you, regardless of the
tool’s applicability. As the saying goes, “when all you have is a hammer,
everything looks like a nail.” The “everything’s a nail” mentality can
lead to very unfortunate results, which one hopes the bunny in Figure
2 will be able to avoid.

You also want to avoid unfortunate results in your parallel pro-
grams. Adding parallelism to your application costs time and adds
complexity. For good results, you should only parallelize the parts of
your application where the benefits outweigh the costs.

figure 2
When all you have is a hammer, everything looks like a nail.

Don’t apply the patterns in
this book blindly to your
applications.

xx

What Is Not Covered
This book focuses more on processor-bound workloads than on I/O-
bound workloads. The goal is to make computationally intensive ap-
plications run faster by making better use of the computer’s available
cores. As a result, the book does not focus as much on the issue of I/O
latency. Nonetheless, there is some discussion of balanced workloads
that are both processor intensive and have large amounts of I/O (see
Chapter 7, “Pipelines”).

The book describes parallelism within a single multicore node
with shared memory instead of the cluster, High Performance
Computing (HPC) Server approach that uses networked nodes with
distributed memory. However, cluster programmers who want to take
advantage of parallelism within a node may find the examples in this
book helpful, because each node of a cluster can have multiple
processing units.

Goals
After reading this book, you should be able to:
•	 Answer the questions at the end of each chapter.
•	 Figure out if your application fits one of the book’s patterns

and, if it does, know if there’s a good chance of implementing
a straightforward parallel implementation.

•	 Understand when your application doesn’t fit one of these
patterns. At that point, you either have to do more reading
and research, or enlist the help of an expert.

•	 Have an idea of the likely causes, such as conflicting dependencies
or erroneously sharing data between tasks, if your implementa-
tion of a pattern doesn’t work.

•	 Use the “Further Reading” sections to find more material.

preface

xxi

Acknowledgments

Writing a technical book is a communal effort. The patterns & prac-
tices group always involves both experts and the broader community
in its projects. Although this makes the writing process lengthier and
more complex, the end result is always more relevant. The authors
drove this book’s direction and developed its content, but they want
to acknowledge the other people who contributed in various ways.

This book depends heavily on the work we did in Parallel
Programming with Microsoft .NET. While much of the text in the cur-
rent book has changed, it discusses the same fundamental patterns.
Because of this shared history, we’d like to again thank the co-authors
of the first book: Ralph Johnson (University of Illinois at Urbana
Champaign) Stephen Toub (Microsoft), and the following reviewers
who provided feedback on the entire text: Nicholas Chen, DannyDig,
Munawar Hafiz, Fredrik Berg Kjolstad and Samira Tasharofi, (Univer-
sity of Illinois at Urbana Champaign), Reed Copsey, Jr. (C Tech Devel-
opment Corporation), and Daan Leijen (Microsoft Research). Judith
Bishop (Microsoft Research) reviewed the text and also gave us her
valuable perspective as an author. Their contributions shaped the
.NET book and their influence is still apparent in Parallel Programming
with Microsoft Visual C++.

Once we understood how to implement the patterns in C++, our
biggest challenge was to ensure technical accuracy. We relied on
members of the Parallel Computing Platform (PCP) team at Microsoft
to provide information about the Parallel Patterns Library and the
Asynchronous Agents Library, and to review both the text and the
accompanying samples. Dana Groff, Niklas Gustafsson and Rick
Molloy (Microsoft) devoted many hours to the initial interviews
we conducted, as well as to the reviews. Several other members of
the PCP team also gave us a great deal of their time. They are: Gene-
vieve Fernandes, Bill Messmer, Artur Laksberg, and Ayman Shoukry
(Microsoft).

xxii

In addition to the content about the two libraries, the book and
samples also contain material on related topics. We were fortunate to
have access to members of the Visual Studio teams responsible for
these areas. Drake Campbell, Sasha Dadiomov, and Daniel Moth
(Microsoft) provided feedback on the debugger and profiler described
in Appendix B. Pat Brenner and Stephan T. Lavavej (Microsoft)
reviewed the code samples and our use of the Microsoft Foundation
Classes and the Standard Template Library.

We would also like to thank, once again, Reed Copsey, Jr. (C Tech
Development Corporation), Samira Tasharofi (University of Illinois at
Urbana Champaign), and Paul Petersen (Intel) for their reviews of
individual chapters. As with the first book, our schedule was aggressive,
but the reviewers worked extra hard to help us meet it. Thank you,
everyone.

There were a great many people who spoke to us about the book
and provided feedback. They include the attendees at the Intel and
Microsoft Parallelism Techdays (Bellevue), as well as contributors to
discussions on the book’s CodePlex site.

A team of technical writers and editors worked to make the prose
readable and interesting. They include Roberta Leibovitz (Modeled
Computation LLC), Nancy Michell (Content Masters LTD), and RoAnn
Corbisier (Microsoft).

Rick Carr (DCB Software Testing, Inc) tested the samples and
content.

The innovative visual design concept used for this guide was
developed by Roberta Leibovitz and Colin Campbell (Modeled
Computation LLC) who worked with a group of talented designers
and illustrators. The book design was created by John Hubbard (Eson).
The cartoons that face the chapters were drawn by the award-winning
Seattle-based cartoonist Ellen Forney. The technical illustrations were
done by Katie Niemer (Modeled Computation LLC).

acknowledgments

1

Introduction

Parallel programming uses
multiple cores at the same
time to improve your
application’s speed.

Writing parallel programs
has the reputation of being
hard, but help has arrived.

Your CPU meter shows a problem. One core is running at 100 percent,
but all the other cores are idle. Your application is CPU-bound, but
you are using only a fraction of the computing power of your multi-
core system. Is there a way to get better performance?

The answer, in a nutshell, is parallel programming. Where you once
would have written the kind of sequential code that is familiar to all
programmers, you now find that this no longer meets your perfor-
mance goals. To use your system’s CPU resources efficiently, you need
to split your application into pieces that can run at the same time.

Of course, this is easier said than done. Parallel programming has
a reputation for being the domain of experts and a minefield of subtle,
hard-to-reproduce software defects. Everyone seems to have a favor-
ite story about a parallel program that did not behave as expected
because of a mysterious bug.

These stories should inspire a healthy respect for the difficulty of
the problems you will face in writing your own parallel programs.
Fortunately, help has arrived. The Parallel Patterns Library (PPL) and
the Asynchronous Agents Library introduce a new programming
model for parallelism that significantly simplifies the job. Behind the
scenes are sophisticated algorithms that dynamically distribute com-
putations on multicore architectures. In addition, Microsoft® Visual
Studio® 2010 development system includes debugging and analysis
tools to support the new parallel programming model.

Proven design patterns are another source of help. This guide in-
troduces you to the most important and frequently used patterns of
parallel programming and provides executable code samples for them,
using PPL. When thinking about where to begin, a good place to start
is to review the patterns in this book. See if your problem has any
attributes that match the six patterns presented in the following
chapters. If it does, delve more deeply into the relevant pattern or
patterns and study the sample code.

1

Attention impatient readers:
you can skip ahead to the table
of patterns and when they can
be used. See “Selecting the
Right Pattern” later in this
chapter.

2 chapter one

Most parallel programs conform to these patterns, and it’s very
likely you’ll be successful in finding a match to your particular prob-
lem. If you can’t use these patterns, you’ve probably encountered one
of the more difficult cases, and you’ll need to hire an expert or consult
the academic literature.

The code examples for this guide are online at http://parallel
patternscpp.codeplex.com/.

The Importance of Potential Parallelism
The patterns in this book are ways to express potential parallelism. This
means that your program is written so that it runs faster when parallel
hardware is available and roughly the same as an equivalent sequential
program when it’s not. If you correctly structure your code, the
run-time environment can automatically adapt to the workload on a
particular computer. This is why the patterns in this book only express
potential parallelism. They do not guarantee parallel execution in every
situation. Expressing potential parallelism is a central organizing prin-
ciple behind PPL’s programming model. It deserves some explanation.

Some parallel applications can be written for specific hardware.
For example, creators of programs for a console gaming platform have
detailed knowledge about the hardware resources that will be avail-
able at run time. They know the number of cores and the details of
the memory architecture in advance. The game can be written to ex-
ploit the exact level of parallelism provided by the platform. Complete
knowledge of the hardware environment is also a characteristic of
some embedded applications, such as industrial process control. The
life cycle of such programs matches the life cycle of the specific hard-
ware they were designed to use.

In contrast, when you write programs that run on general-purpose
computing platforms, such as desktop workstations and servers, there
is less predictability about the hardware features. You may not always
know how many cores will be available. You also may be unable to
predict what other software could be running at the same time as
your application.

Even if you initially know your application’s environment, it can
change over time. In the past, programmers assumed that their appli-
cations would automatically run faster on later generations of hard-
ware. You could rely on this assumption because processor clock
speeds kept increasing. With multicore processors, clock speeds on
newer hardware are not increasing as much as they did in the past.
Instead, the trend in processor design is toward more cores. If you
want your application to benefit from hardware advances in the mul-
ticore world, you need to adapt your programming model. You should

Declaring the potential
parallelism of your program
allows the execution environ-
ment to run the program on
all available cores, whether
one or many.

Don’t hard code the degree of
parallelism in an application.
You can’t always predict how
many cores will be available
at run time.

 3introduction

expect that the programs you write today will run on computers with
many more cores within a few years. Focusing on potential parallelism
helps to “future proof” your program.

Finally, you must plan for these contingencies in a way that does
not penalize users who might not have access to the latest hardware.
You want your parallel application to run as fast on a single-core com-
puter as an application that was written using only sequential code. In
other words, you want scalable performance from one to many cores.
Allowing your application to adapt to varying hardware capabilities,
both now and in the future, is the motivation for potential parallelism.

An example of potential parallelism is the parallel loop pattern
described in Chapter 2, “Parallel Loops.” If you have a for loop that
performs a million independent iterations, it makes sense to divide
those iterations among the available cores and do the work in parallel.
It’s easy to see that how you divide the work should depend on the
number of cores. For many common scenarios, the speed of the loop
will be approximately proportional to the number of cores.

Decomposition, Coordination, and Scalable
Sharing

The patterns in this book contain some common themes. You’ll see
that the process of designing and implementing a parallel application
involves three aspects: methods for decomposing the work into dis-
crete units known as tasks, ways of coordinating these tasks as they
run in parallel, and scalable techniques for sharing the data needed to
perform the tasks.

The patterns described in this guide are design patterns. You can
apply them when you design and implement your algorithms and
when you think about the overall structure of your application. Al-
though the example applications are small, the principles they demon-
strate apply equally well to the architectures of large applications.

Understanding Tasks
Tasks are sequential operations that work together to perform a
larger operation. When you think about how to structure a parallel
program, it’s important to identify tasks at a level of granularity that
results in efficient use of hardware resources. If the chosen granular-
ity is too fine, the overhead of managing tasks will dominate. If it’s too
coarse, opportunities for parallelism may be lost because cores that
could otherwise be used remain idle. In general, tasks should be as
large as possible, but they should remain independent of each other,
and there should be enough tasks to keep the cores busy. You may also
need to consider the heuristics that will be used for task scheduling.

Hardware trends predict
more cores instead of
faster clock speeds.

A well-written parallel
program runs at approxi-
mately the same speed
as a sequential program
when there is only one core
available.

Tasks are sequential units of
work. Tasks should be large,
independent, and numerous
enough to keep all cores busy.

4 chapter one

Meeting all these goals sometimes involves design tradeoffs.
Decomposing a problem into tasks requires a good understanding of
the algorithmic and structural aspects of your application.

An example of these guidelines at work can be seen in a parallel
ray tracing application. A ray tracer constructs a synthetic image by
simulating the path of each ray of light in a scene. The individual ray
simulations are a good level of granularity for parallelism. Breaking the
tasks into smaller units, for example, by trying to decompose the ray
simulation itself into independent tasks, only adds overhead, because
the number of ray simulations is already large enough to keep all cores
occupied. If your tasks vary greatly in duration, you generally want
more of them in order to fill in the gaps.

Another advantage to grouping work into larger and fewer tasks
is that larger tasks are often more independent of each other than are
smaller tasks. Larger tasks are less likely than smaller tasks to share
local variables or fields. Unfortunately, in applications that rely on
large mutable object graphs, such as applications that expose a large
object model with many public classes, methods, and properties, the
opposite may be true. In these cases, the larger the task, the more
chance there is for unexpected sharing of data or other side effects.

The overall goal is to decompose the problem into independent
tasks that do not share data, while providing a sufficient number of
tasks to occupy the number of cores available. When considering the
number of cores, you should take into account that future generations
of hardware will have more cores.

Coordinating Tasks
It’s often possible that more than one task can run at the same time.
Tasks that are independent of one another can run in parallel, while
some tasks can begin only after other tasks complete. The order of
execution and the degree of parallelism are constrained by the appli-
cation’s underlying algorithms. Constraints can arise from control
flow (the steps of the algorithm) or data flow (the availability of inputs
and outputs).

Various mechanisms for coordinating tasks are possible. The way
tasks are coordinated depends on which parallel pattern you use. For
example, the Pipeline pattern described in Chapter 7, “Pipelines,” is
distinguished by its use of messages to coordinate tasks. Regardless of
the mechanism you choose for coordinating tasks, in order to have a
successful design, you must understand the dependencies between
tasks.

Keep in mind that tasks are
not threads. Tasks and threads
take very different approaches
to scheduling. Tasks are much
more compatible with the
concept of potential parallel-
ism than threads are. While
a new thread immediately
introduces additional concur-
rency to your application,
a new task introduces only
the potential for additional
concurrency. A task’s potential
for additional concurrency will
be realized only when there
are enough available cores.

 5introduction

Scalable Sharing of Data
Tasks often need to share data. The problem is that when a program
is running in parallel, different parts of the program may be racing
against each other to perform updates on the same memory location.
The result of such unintended data races can be catastrophic. The
solution to the problem of data races includes techniques for synchro-
nizing threads.

You may already be familiar with techniques that synchronize
concurrent threads by blocking their execution in certain circum-
stances. Examples include locks, atomic compare-and-swap opera-
tions, and semaphores. All of these techniques have the effect of se-
rializing access to shared resources. Although your first impulse for
data sharing might be to add locks or other kinds of synchronization,
adding synchronization reduces the parallelism of your application.
Every form of synchronization is a form of serialization. Your tasks
can end up contending over the locks instead of doing the work you
want them to do. Programming with locks is also error-prone.

Fortunately, there are a number of techniques that allow data to
be shared that don’t degrade performance or make your program
prone to error. These techniques include the use of immutable, read-
only data, sending messages instead of updating shared variables, and
introducing new steps in your algorithm that merge local versions of
mutable state at appropriate checkpoints. Techniques for scalable
sharing may involve changes to an existing algorithm.

Conventional object-oriented designs can have complex and
highly interconnected in-memory graphs of object references. As a
result, traditional object-oriented programming styles can be very
difficult to adapt to scalable parallel execution. Your first impulse
might be to consider all fields of a large, interconnected object graph
as mutable shared state, and to wrap access to these fields in serial-
izing locks whenever there is the possibility that they may be shared
by multiple tasks. Unfortunately, this is not a scalable approach to
sharing. Locks can often negatively affect the performance of all
cores. Locks force cores to pause and communicate, which takes time,
and they introduce serial regions in the code, which reduces the po-
tential for parallelism. As the number of cores gets larger, the cost of
lock contention can increase. As more and more tasks are added that
share the same data, the overhead associated with locks can dominate
the computation.

In addition to performance problems, programs that rely on com-
plex synchronization are prone to a variety of problems, including
deadlock. Deadlock occurs when two or more tasks are waiting for
each other to release a lock. Most of the horror stories about parallel
programming are actually about the incorrect use of shared mutable
state or locking protocols.

Scalable sharing may involve
changes to your algorithm.

Adding synchronization
(locks) can reduce the
scalability of your
application.

6 chapter one

Nonetheless, synchronizing elements in an object graph plays a
legitimate, if limited, role in scalable parallel programs. This book uses
synchronization sparingly. You should, too. Locks can be thought of
as the goto statements of parallel programming: they are error prone
but necessary in certain situations, and they are best left, when pos-
sible, to compilers and libraries.

No one is advocating the removal, in the name of performance, of
synchronization that’s necessary for correctness. First and foremost,
the code still needs to be correct. However, it’s important to incorpo-
rate design principles into the design process that limit the need for
synchronization. Don’t add synchronization to your application as an
afterthought.

Design Approaches
It’s common for developers to identify one problem area, parallelize
the code to improve performance, and then repeat the process for the
next bottleneck. This is a particularly tempting approach when you
parallelize an existing sequential application. Although this may give
you some initial improvements in performance, it has many pitfalls,
such as those described in the previous section. As a result, tradi-
tional profile-and-optimize techniques may not produce the best re-
sults. A far better approach is to understand your problem or applica-
tion and look for potential parallelism across the entire application as
a whole. What you discover may lead you to adopt a different archi-
tecture or algorithm that better exposes the areas of potential paral-
lelism in your application. Don’t simply identify bottlenecks and paral-
lelize them. Instead, prepare your program for parallel execution by
making structural changes.

Techniques for decomposition, coordination, and scalable sharing
are interrelated. There’s a circular dependency. You need to consider
all of these aspects together when choosing your approach for a par-
ticular application.

After reading the preceding description, you might complain that
it all seems vague. How specifically do you divide your problem into
tasks? Exactly what kinds of coordination techniques should you use?

Questions like these are best answered by the patterns described
in this book. Patterns are a true shortcut to understanding. As you
begin to see the design motivations behind the patterns, you will also
develop your intuition about how the patterns and their variations can
be applied to your own applications. The following section gives more
details about how to select the right pattern.

Think in terms of data
structures and algorithms;
don’t just identify bottlenecks.

Use patterns.

 7introduction

Selecting the Right Pattern
To select the relevant pattern, use the following table.

Application characteristic Relevant pattern

Do you have sequential loops where
there’s no communication among the
steps of each iteration?

The Parallel Loop pattern (Chapter 2)

Parallel loops apply an independent
operation to multiple inputs
simultaneously.

Do you have distinct operations with
well-defined control dependencies?
Are these operations largely free of
serializing dependencies?

The Parallel Task pattern (Chapter 3)

Parallel tasks allow you to establish
parallel control flow in the style of
fork and join.

Do you need to summarize data by
applying some kind of combination
operator? Do you have loops with
steps that are not fully independent?

The Parallel Aggregation pattern
(Chapter 4)

Parallel aggregation introduces special
steps in the algorithm for merging
partial results. This pattern expresses
a reduction operation and includes
map/reduce as one of its variations.

Does the ordering of steps in your
algorithm depend on data flow
constraints?

The Futures pattern (Chapter 5)

Futures make the data flow
dependencies between tasks explicit.
This pattern is also referred to as
the Task Graph pattern.

Does your algorithm divide the
problem domain dynamically during
the run? Do you operate on recursive
data structures such as graphs?

The Dynamic Task Parallelism pattern
(Chapter 6)

This pattern takes a divide-and-
conquer approach and spawns
new tasks on demand.

Does your application perform a
sequence of operations repetitively?
Does the input data have streaming
characteristics? Does the order of
processing matter?

The Pipeline pattern (Chapter 7)

Pipelines consist of components that
are connected by queues, in the style
of producers and consumers. All
the components run in parallel
even though the order of inputs is
respected.

One way to become familiar with the possibilities of the six pat-
terns is to read the first page or two of each chapter. This will give you
an overview of approaches that have been proven to work in a wide
variety of applications. Then go back and more deeply explore pat-
terns that may apply in your situation.

8 chapter one

A Word about Terminology
You’ll often hear the words parallelism and concurrency used as syn-
onyms. This book makes a distinction between the two terms.

Concurrency is a concept related to multitasking and asynchro-
nous input-output (I/O). It usually refers to the existence of multiple
threads of execution that may each get a slice of time to execute be-
fore being preempted by another thread, which also gets a slice of
time. Concurrency is necessary in order for a program to react to
external stimuli such as user input, devices, and sensors. Operating
systems and games, by their very nature, are concurrent, even on one
core.

With parallelism, concurrent threads execute at the same time on
multiple cores. Parallel programming focuses on improving the perfor-
mance of applications that use a lot of processor power and are not
constantly interrupted when multiple cores are available.

The goals of concurrency and parallelism are distinct. The main
goal of concurrency is to reduce latency by never allowing long peri-
ods of time to go by without at least some computation being
performed by each unblocked thread. In other words, the goal of
concurrency is to prevent thread starvation.

Concurrency is required operationally. For example, an operating
system with a graphical user interface must support concurrency if
more than one window at a time can update its display area on a sin-
gle-core computer. Parallelism, on the other hand, is only about
throughput. It’s an optimization, not a functional requirement. Its goal
is to maximize processor usage across all available cores; to do this, it
uses scheduling algorithms that are not preemptive, such as algorithms
that process queues or stacks of work to be done.

The Limits of Parallelism
A theoretical result known as Amdahl’s law says that the amount of
performance improvement that parallelism provides is limited by the
amount of sequential processing in your application. This may, at first,
seem counterintuitive.

Amdahl’s law says that no matter how many cores you have, the
maximum speed-up you can ever achieve is (1 / fraction of time spent
in sequential processing). Figure 1 illustrates this.

 9introduction

figure 1
Amdahl’s law for an
application with 25
percent sequential
processing

For example, with 11 cores, the application runs slightly more
than three times faster than it would if it were entirely sequential.

Even with fewer cores, you can see that the expected speed-up is
not linear. Figure 2 illustrates this.

figure 2
Per-core performance
improvement for a 25
percent sequential
application

Figure 2 shows that as the number of cores (and overall applica-
tion speed) increases, the percentage of time spent in the sequential
part of the application increases. (The elapsed time spent in sequen-
tial processing is constant.) The illustration also shows why you might
be satisfied with a 2x speed-up on a four-core computer for actual
applications, as opposed to sample programs. The important question
is always how scalable the application is. Scalability depends on the
amount of time spent doing work that is inherently sequential in nature.

Ex
ec

ut
io
n

Sp
ee

d
4

3.5

3

2.5

2

1.5

1

0.5

0
0 6 11 16

Number of cores

% Parallel

% Sequential

KEY

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5

Number of cores

Sp
ee

d−
up

10 chapter one

Another implication of Amdahl’s law is that for some problems,
you may want to create additional features in the parts of an applica-
tion that are amenable to parallel execution. For example, a developer
of a computer game might find that it’s possible to make increasingly
sophisticated graphics for newer multicore computers by using the
parallel hardware, even if it’s not as feasible to make the game logic
(the artificial intelligence engine) run in parallel. Performance can in-
fluence the mix of application features.

The speed-up you can achieve in practice is usually somewhat
worse than Amdahl’s law would predict. As the number of cores in-
creases, the overhead incurred by accessing shared memory also in-
creases. Also, parallel algorithms may include overhead for coordina-
tion that would not be necessary for the sequential case. Profiling
tools, such as the Visual Studio Concurrency Visualizer, can help you
understand how effective your use of parallelism is.

In summary, because an application consists of parts that must
run sequentially as well as parts that can run in parallel, the application
overall will rarely see a linear increase in performance with a linear
increase in the number of cores, even if certain parts of the applica-
tion see a near linear speed-up. Understanding the structure of your
application and its algorithms—that is, which parts of your applica-
tion are suitable for parallel execution—is a step that can’t be skipped
when analyzing performance.

A Few Tips
Always try for the simplest approach. Here are some basic precepts:
•	 Whenever possible, stay at the highest possible level of abstrac-

tion and use constructs or a library that does the parallel work
for you.

•	 Use your application server’s inherent parallelism; for example,
use the parallelism that is incorporated into a web server or
database.

•	 Use an API to encapsulate parallelism, such as the Parallel
Patterns Library. These libraries were written by experts and
have been thoroughly tested; they help you avoid many of the
common problems that arise in parallel programming.

•	 Consider the overall architecture of your application when
thinking about how to parallelize it. It’s tempting to simply
look for the performance hotspots and focus on improving
them. While this may produce some improvement, it does
not necessarily give you the best results.

•	 Use patterns, such as the ones described in this book.

 11introduction

•	 Often, restructuring your algorithm (for example, to eliminate
the need for shared data) is better than making low-level
improvements to code that was originally designed to run
serially.

•	 Don’t share data among concurrent tasks unless absolutely
necessary. If you do share data, use one of the containers
provided by the API you are using, such as a shared queue.

•	 Use low-level primitives, such as threads and locks, only as
a last resort. Raise the level of abstraction from threads to
tasks in your applications.

Exercises
1. What are some of the tradeoffs between decomposing a

problem into many small tasks and decomposing it into larger
tasks?

2. What is the maximum potential speed-up of a program that
spends 10 percent of its time in sequential processing when
you move it from one to four cores?

3. What is the difference between parallelism and concurrency?

For More Information
If you are interested in better understanding the terminology used in
the text, refer to the glossary at the end of this book.

The design patterns presented in this book are consistent with
classifications of parallel patterns developed by groups in both indus-
try and academia. In the terminology of these groups, the patterns in
this book would be considered to be algorithm or implementation
patterns. Classification approaches for parallel patterns can be found
in the book by Mattson, et al. and at the Our Pattern Language (OPL)
web site. This book attempts to be consistent with the terminology
of these sources. In cases where this is not possible, an explanation
appears in the text.

For a detailed discussion of parallelism on the Microsoft Windows®
platform, see the book by Duffy.

Duffy, Joe. Concurrent Programming on Windows, Addison-
Wesley, 2008.

Mattson, Timothy G., Beverly A. Sanders, and Berna L. Massin-
gill. Patterns for Parallel Programming. Addison-Wesley, 2004.

OPL, Our Pattern Language for Parallel Programming ver2.0,
2010. http://parlab.eecs.berkeley.edu/wiki/patterns.

http://parlab.eecs.berkeley.edu/wiki/patterns

13

Parallel Loops2

The Parallel Loop pattern
independently applies an
operation to multiple data
elements. It’s an example
of data parallelism.

Use the Parallel Loop pattern when you need to perform the same
independent operation for each element of a collection or for a fixed
number of iterations. The steps of a loop are independent if they
don’t write to memory locations or files that are read by other steps.

The syntax of a parallel loop is very similar to the for and for_each
loops you already know, but the parallel loop completes faster on a
computer that has available cores. Another difference is that, unlike a
sequential loop, the order of execution isn’t defined for a parallel loop.
Steps often take place at the same time, in parallel. Sometimes, two
steps take place in the opposite order than they would if the loop
were sequential. The only guarantee is that all of the loop’s iterations
will have run by the time the loop finishes.

It’s easy to change a sequential loop into a parallel loop. However,
it’s also easy to use a parallel loop when you shouldn’t. This is because
it can be hard to tell if the steps are actually independent of each
other. It takes practice to learn how to recognize when one step is
dependent on another step. Sometimes, using this pattern on a loop
with dependent steps causes the program to behave in a completely
unexpected way, and perhaps to stop responding. Other times, it in-
troduces a subtle bug that only appears once in a million runs. In
other words, the word “independent” is a key part of the definition of
the Parallel Loop pattern, and one that this chapter explains in detail.

For parallel loops, the degree of parallelism doesn’t need to be
specified by your code. Instead, the run-time environment executes
the steps of the loop at the same time on as many cores as it can. The
loop works correctly no matter how many cores are available. If there
is only one core and assuming the work performed by each iteration
is not too small, then the performance is close to (perhaps within
a few percentage points of) the sequential equivalent. If there are
multiple cores, performance improves; in many cases, performance
improves proportionately with the number of cores.

14 chapter two

The Basics
The Parallel Patterns Library (PPL) includes both parallel for and paral-
lel for_each loops. Use the parallel_for function to iterate over a
range of integer indices and the parallel_for_each function to iterate
over user-provided values.

Parallel for Loops
Here’s an example of a sequential for loop in C++.

vector<double> results = ...
int workload = ...
size_t n = results.size();
for (size_t i = 0; i < n; ++i)
{
 results[i] = DoWork(i, workLoad);
}

To take advantage of multiple cores, replace the for keyword with
a call to the parallel_for function and convert the body of the loop
into a lambda expression.

vector<double> results = ...
int workload = ...
size_t n = results.size();

parallel_for(0u, n,
 [&results, workLoad](size_t i)
 {
 results[i] = DoWork(i, workLoad);
 });

The parallel_for function uses multiple cores if they’re available
to operate over the index range.

The parallel_for function has overloaded versions. Here’s the
signature of the version of parallel_for that’s used in the example.

template <typename _Index_type, typename _Function>
void parallel_for(_Index_type _First,
 _Index_type _Last,
 const _Function& _Func);

In the example, the first two arguments specify the iteration
limits. The first argument is the lowest index of the loop. The second
argument is the exclusive upper bound, or the largest index plus one.
The third argument is a function that’s invoked once per iteration. The
function takes the iteration’s index as its argument and executes the
loop body once for each index.

To make for and for_each
loops with independent
iterations run faster on
multicore computers, use
their parallel counterparts.

Don’t forget that the steps
of the loop body must be
independent of one another
if you want to use a parallel
loop. The steps must not
communicate by writing
to shared variables.

The example includes a
lambda expression in the
form [captured variables] (args)
{body}. You may need to brush
up on the syntax of lambda
expressions in C++ before
reading further.

 15par allel loops

The parallel_for method has an additional overloaded version. It
is covered in the “Variations” section later in this chapter.

The example includes a lambda expression in the form [captured
variables] (args) {body} as the third argument to the parallel_for invo-
cation. Lambda expressions denote function objects that can capture
variables from their enclosing scope. Of course, the _Func parameter
could also be a pointer to a function declared elsewhere. You don’t
have to use lambda expressions.

parallel_for_each
Here’s an example of a sequential for_each loop in C++ that uses the
conventions of the Standard Template Library (STL).

vector<size_t> inputs = ...
int workload = ...

for_each(inputs.cbegin(), inputs.cend(),
 [workLoad](size_t i)
 {
 DoWork(i, workLoad);
 });

To take advantage of multiple cores, replace the for_each key-
word with a call to the parallel_for_each method.

vector<size_t> inputs = ...
int workload = ...

parallel_for_each(inputs.cbegin(), inputs.cend(),
 [workLoad](size_t i)
 {
 DoWork(i, workLoad);
 });

The parallel_for_each function is very similar in syntax to the
std::for_each function. The first argument is an iterator that refer-
ences the position of the first element in the range to be operated on.
The second argument is an iterator that references the position one
past the final element in the range. The third argument is a function
object that’s invoked for each element of the input range.

The parallel_for_each method does not guarantee the order of
execution. Unlike a sequential for_each loop, the incoming values
aren’t always processed in order.

The parallel_for method does
not guarantee any particular
order of execution. Unlike
a sequential loop, some
higher-valued indices may
be processed before some
lower-valued indices.

parallel_for_each runs
the loop body for each
element in a collection.

Don’t forget that iterations
need to be independent. The
loop body must only make
updates to fields of the
particular instance that’s
passed to it.

If you’re unfamiliar with the
syntax for lambda expressions,
see “Further Reading” at the
end of this chapter. Once you
use lambda expressions, you’ll
wonder how you ever lived
without them.

16 chapter two

What to Expect
By default, the degree of parallelism (that is, how many iterations run
at the same time in hardware) depends on the number of available
cores. In typical scenarios, the more cores you have the faster your
loop executes, until you reach the point of diminishing returns that
Amdahl’s Law predicts. How much faster depends on the kind of
work your loop does. (See Chapter 1 for a discussion of Amdahl’s Law.)

If an exception is thrown during the execution of one of the it-
erations of a parallel_for or parallel_for_each function, that excep-
tion will be rethrown in the context of the calling thread. To learn
more about exception handling for parallel loops, see the “Variations”
section later in this chapter.

If you convert a sequential loop to a parallel loop and then find
that your program does not behave as expected, the most likely prob-
lem is that the loop’s steps are not independent. Here are some com-
mon examples of dependent loop bodies:
•	 Writing to shared variables. If the body of a loop writes to a

shared variable, there is a loop body dependency. This is a
common case that occurs when you are aggregating values. Here
is an example, where total is shared across iterations.
for(int i = 1; i < n; i++)
 total += data[i];

If you encounter this situation, see Chapter 4, “Parallel Ag-
gregation.”

Shared variables come in many flavors. Any variable that is
declared outside of the scope of the loop body is a shared vari-
able. Shared references to types such as classes or arrays will im-
plicitly allow all fields or array elements to be shared. Parameters
that are passed by reference or by pointer result in shared vari-
ables, as do variables captured by reference in a lambda expression.

•	 Using data accessors of an object model. If the object being
processed by a loop body exposes data accessors, you need to
know whether they refer to shared state or state that’s local to
the object itself. For example, an accessor method named
GetParent is likely to refer to global state. Here’s an example.
for(int i = 0; i < n; i++)
 SomeObject[i].GetParent().Update();

In this example, it’s likely that the loop iterations are not in-
dependent. It’s possible that, for all values of i, SomeObject[i].
GetParent() is a reference to a single shared object.

•	 Referencing data types or functions that are not thread safe.
If the body of the parallel loop uses a data type or function that

Adding cores makes your loop
complete faster; however,
there’s always an upper limit.

Check carefully for dependen-
cies between loop iterations!
Not noticing dependencies
between steps is by far the
most common mistake you’ll
make with parallel loops.

Robust exception handling
is an important aspect of
parallel loop processing.

You must choose the right
granularity. Too many small
parallel loops can reach a point
of over-decomposition where
the multicore speedup is more
than offset by the parallel
loop’s overhead.

You must be extremely
cautious when getting data
from accessors. Large object
models are known for sharing
mutable state in unbelievably
convoluted ways.

 17par allel loops

is not thread safe, the loop body is not independent because
there’s an implicit dependency on the thread context.

•	 Loop-carried dependence. If the body of a parallel_for loop
performs arithmetic on a loop-indexed variable, there is likely to
be a dependency that is known as loop-carried dependence. This
is shown in the following code example. The loop body refer-
ences data[i] and data[i – 1]. If parallel_for is used here, then
there’s no guarantee that the loop body that updates data[i – 1]
has executed before the loop body for data[i].
for(int i = 1; i < N; i++)
 data[i] = data[i] + data[i - 1];

It’s sometimes possible to use a parallel algorithm in cases of
loop-carried dependence, but this is outside the scope of this
book. Your best options are to look elsewhere in your program for
opportunities for parallelism or to analyze your algorithm and see
if it matches some of the advanced parallel patterns that occur in
scientific computing. Parallel scan and parallel dynamic program-
ming are examples of these patterns.
When you look for opportunities for parallelism, profiling your

application is a way to deepen your understanding of where your ap-
plication spends its time; however, profiling is not a substitute for
understanding your application’s structure and algorithms. For exam-
ple, profiling doesn’t tell you whether loop bodies are independent.

An Example
Here’s an example of when to use a parallel loop. Fabrikam Shipping
extends credit to its commercial accounts. It uses customer credit
trends to identify accounts that might pose a credit risk. Each cus-
tomer account includes a history of past balance-due amounts. Fabri-
kam has noticed that customers who don’t pay their bills often have
histories of steadily increasing balances over a period of several
months before they default.

To identify at-risk accounts, Fabrikam uses statistical trend analy-
sis to calculate a projected credit balance for each account. If the
analysis predicts that a customer account will exceed its credit limit
within three months, the account is flagged for manual review by one
of Fabrikam’s credit analysts.

In the application, a top-level loop iterates over customers in the
account repository. The body of the loop fits a trend line to the bal-
ance history, extrapolates the projected balance, compares it to the
credit limit, and assigns the warning flag if necessary.

An important aspect of this application is that each customer’s
credit status can be calculated independently. The credit status of one

Arithmetic on loop index
variables, especially addition or
subtraction, usually indicates
loop-carried dependence.

Don’t expect miracles from
profiling—it can’t analyze your
algorithms for you. Only you
can do that.

18 chapter two

customer doesn’t depend on the credit status of any other customer.
Because the operations are independent, making the credit analysis
application run faster is simply a matter of replacing a sequential
for_each loop with a parallel loop.

The complete source code for this example is online at http://
parallelpatternscpp.codeplex.com in the Chapter2\CreditReview proj-
ect.

Sequential Credit Review Example
Here’s the sequential version of the credit analysis operation.

void UpdatePredictionsSequential(AccountRepository& accounts)
{
 for_each(accounts.begin(), accounts.end(),
 [](AccountRepository::value_type& record)
 {
 Account& account = record.second;
 Trend trend = Fit(account.Balances());
 double prediction = PredictIntercept(trend,
 (account.Balances().size() + g_predictionWindow));
 account.SeqPrediction() = prediction;
 account.SeqWarning() = prediction < account.GetOverdraft();
 });
}

The UpdatePredictionsSequential method processes each ac-
count from the application’s account repository. The Fit method is a
utility function that uses the statistical least squares method to create
a trend line from an array of numbers. The Fit method is a pure func-
tion. This means that it doesn’t modify any state.

The prediction is a three-month projection based on the trend. If
a prediction is more negative than the overdraft limit (credit balances
are negative numbers in the accounting system), the account is flagged
for review.

Credit Review Example Using
parallel_for_each

The parallel version of the credit scoring analysis is very similar to the
sequential version.

void UpdatePredictionsParallel(AccountRepository& accounts)
{
 parallel_for_each(accounts.begin(), accounts.end(),
 []
 (AccountRepository::value_type& record)
 {

 19par allel loops

 Account& account = record.second;
 Trend trend = Fit(account.Balances());
 double prediction = PredictIntercept(trend,
 (account.Balances().size() + g_predictionWindow));
 account.ParPrediction() = prediction;
 account.ParWarning() = prediction < account.GetOverdraft();
 });
}

The UpdatePredictionsParallel method is identical to the
UpdatePredictionsSequential method, except that the parallel_for_
each function replaces the for_each operator.

Performance Comparison
Running the credit review example on a quad-core computer shows
that the parallel_for_each version runs slightly less than four times as
fast as the sequential version. Timing numbers vary; you may want to
run the online samples on your own computer.

Variations
The credit analysis example shows a typical way to use parallel loops,
but there can be variations. This section introduces some of the most
important ones. You won’t always need to use these variations, but
you should be aware that they are available.

Breaking out of Loops Early
Breaking out of loops is a familiar part of sequential iteration. It’s less
common in parallel loops, but you’ll sometimes need to do it. Here’s
an example of the sequential case.

int n = ...
for (int i = 0; i < n; i++)
{
 // ...
 if (/* stopping condition is true */)
 break;
}

The situation is more complicated with parallel loops because
more than one step may be active at the same time, and steps of a
parallel loop are not necessarily executed in any predetermined order.
However, you can break out of a parallel loop by canceling the task
group that contains it. Task groups are described in Chapter 3, “Parallel
Tasks.”

Use the task_group::cancel
method to break out of a
parallel loop early.

20 chapter two

Here’s an example of how to break out of a parallel loop early.

vector<double> results = ...
int workLoad = ...
task_group tg;
size_t fillTo = results.size() - 5 ;
fill(results.begin(), results.end(), -1.0);

task_group_status status = tg.run_and_wait([&]
 {
 parallel_for(0u, results.size(), [&](size_t i)
 {
 if (i > fillTo)
 tg.cancel();
 else
 results[i] = DoWork(i, workLoad);
 });
 });

The example code shows that if you want to break out of a paral-
lel loop early, you need to create a task group object and execute the
parallel loop within that task group. When you want to break out of
the loop, you invoke the task group’s cancel method.

You should keep in mind that parallel loops may execute steps out
of order. Unlike breaking from a sequential loop, canceling the task
group of a parallel loop cannot guarantee that higher-indexed itera-
tions won’t have had a chance to run before the cancel operation
takes effect.

Exception Handling
If the body of a parallel loop throws an unhandled exception, the
parallel loop no longer begins any new steps. By default, iterations
that are executing at the time of the exception, other than the itera-
tion that threw the exception, will complete. After they finish, the
parallel loop will throw an exception in the context of the thread that
invoked it.

Because the loop runs in parallel, there may be more than one
exception. If more than one exception has occurred, the parallel loop
will nondeterministically choose one of the exceptions to throw. The
remaining exceptions will not be externally observable.

Here’s an example of how to handle exceptions from a parallel
loop.

Don’t forget that parallel loops
can execute steps out of order.
Canceling a parallel loop
doesn’t ensure that iterations
with higher-valued indices
won’t run.

Throwing an unhandled
exception prevents new
iterations from starting.

 21par allel loops

Consider using partitioning
strategies when you have
many iterations that each
perform a small amount of
work.

vector<double> results = ...

try
{
 size_t n = results.size();
 parallel_for(0u, n, [&results](size_t i)
 {
 results[i] = DoWork(i, 10); // throws exception
 });
}
catch (ParallelForExampleException e)
{
 printf(“Exception caught as expected.\n”);
}

Special Handling of Small Loop Bodies
If the body of the loop performs only a small amount of work, you
may find that you achieve better performance by partitioning the it-
erations into larger units of work. The reason for this is that there are
two types of overhead that are introduced when processing a loop:
the cost of managing worker threads and the cost of invoking the
function object. In most situations, these costs are negligible, but with
very small loop bodies they can be significant.

An overloaded version of parallel_for allows you to specify a step
size for the indices. Iterating with step sizes greater than one lets you
embed a sequential loop within your parallel loop. Each iteration of
the outer (parallel) loop handles a range of indices instead of individ-
ual indices. By grouping iterations into ranges, you can avoid some of
the overhead of a normal parallel loop. Here’s an example.

size_t size = results.size();
size_t rangeSize = size / (GetProcessorCount() * 10);
rangeSize = max(1, rangeSize);

parallel_for(0u, size, rangeSize,
 [&results, size, rangeSize, workLoad](size_t i)
 {
 for (size_t j = 0; (j < rangeSize) && (i + j < size); ++j)
 results[i + j] = DoWork(i + j, workLoad);
 });

Partitioning your data into ranges results in more complicated
application logic than using an ordinary parallel_for function without
partitioning. When the amount of work in each iteration is large (or

22 chapter two

of uneven size across iterations), partitioning may not result in better
performance. Generally, you would only use the more complicated
syntax after profiling or in the case where loop bodies are extremely
small and the number of iterations large.

The number of ranges that you use will normally depend on the
number of cores in your computer. A good default number of ranges
is approximately three to ten times the number of cores.

Another approach for handling smaller loop bodies is to use the
parallel_for_fixed or parallel_for_each_fixed functions that are
provided in the Concurrency Runtime sample pack. By default, the
parallel_for and parallel_for_each functions perform dynamic load
balancing. When the amount of work for each item is small, the
cost of load balancing can become significant. The sample pack’s
parallel_for_fixed and parallel_for_each_fixed functions do not
perform load balancing so they may outperform parallel_for and
parallel_for_each when the loop bodies are small.

Another difference is that the parallel_for and parallel_for_each
functions check for cancellation with each iteration. In contrast, the
parallel_for_fixed and parallel_for_each_fixed functions do not
check for cancellation within their subranges.

Controlling the Degree of Parallelism
Although you usually let the system manage how iterations of a paral-
lel loop are mapped to your computer’s cores, in some cases you may
want additional control.

You’ll see this variation of the Parallel Loop pattern in a variety of
circumstances. Reducing the degree of parallelism is often done in
performance testing to simulate less capable hardware. Increasing the
degree of parallelism to a number larger than the number of cores can
be appropriate when iterations of your loop spend a lot of time wait-
ing for I/O operations to complete.

The term degree of parallelism refers to the number of cores that
are used to process iterations simultaneously. The degree of parallel-
ism is automatically managed by the underlying components of the
system. The implementation of the parallel_for and parallel_for_
each functions, the Concurrency Runtime’s task scheduler, and the
operating system’s thread scheduler all play a role in optimizing
throughput under a wide range of conditions. You can’t control the
degree of parallelism directly, but you can influence it by controlling
the number of threads that are simultaneously executed by a parallel
loop. To do this, you need to set the MinConcurrency and Max
Concurrency policies of the SchedulerPolicy class. For more
information about setting these policies, see Appendix A, “The Task
Scheduler and Resource Manager.”

You can control the maximum
number of active threads used
concurrently by a parallel
loop.

 23par allel loops

Anti-Patterns
Anti-patterns are cautionary tales. They highlight issues that need to
be carefully considered as well as problem areas. Here are some issues
to think about when you implement a parallel loop.

Hidden Loop Body Dependencies
Incorrect analysis of loop dependencies is a frequent source of soft-
ware defects. Be careful that all parallel loop bodies do not contain
hidden dependencies. This is a mistake that’s easy to make.

The case of trying to share an instance of a class which is not
thread safe across parallel iterations is an example of a subtle depen-
dency. You should also be careful when you share state by using refer-
ence variables from the enclosing lexical scope in a lambda expression.

When loop bodies are not fully independent of each other, it may
still be possible to use parallel loops. However, in these cases, you
must make sure that all shared variables are protected and synchro-
nized, and you must understand the performance characteristics of
any synchronization you add. Adding synchronization can greatly re-
duce the performance of a parallel program, but forgetting to add
necessary synchronization can result in a program with bugs that are
catastrophic and difficult to reproduce.

If the loop body is not independent—for example, when you use
an iteration to calculate a sum—you may need to apply the variation
on a parallel loop that’s described in Chapter 4, “Parallel Aggregation.”

Small Loop Bodies with Few Iterations
You probably won’t get performance improvements if you use a paral-
lel loop for very small loop bodies with only a limited number of data
elements to process. In this case, the overhead required by the parallel
loop itself will dominate the calculation. Simply changing every se-
quential for loop to parallel_for will not necessarily produce good
results.

Duplicates in the Input Enumeration
If you’re using the parallel_for_each function, duplicate references or
pointers to objects in the enumeration often indicate an unsafe race
condition in your code. If an object reference (that is, a pointer or
reference to an instance of a class) appears more than once in the in-
put to the loop, then it’s possible that two parallel threads could try
to update that object at the same time.

Don’t allow duplicate instances
in parallel loops. If an object
appears more than once in the
input to a loop, then it’s
possible that two parallel
threads could update the
object at the same time.

24 chapter two

Scheduling Interactions with
Cooperative Blocking

If you perform a cooperative blocking operation in every iteration of
a parallel loop, the task scheduler may create more threads than you
intend. Cooperative blocking operations should be performed infre-
quently within the parallel loop.

Related Patterns
The Parallel Loop pattern is the basis of the parallel aggregation pat-
tern, which is the subject of Chapter 4, “Parallel Aggregation.”

Exercises
1. Which of the following problems could be solved using the

parallel loop techniques taught in this chapter?

a. Sorting an in-memory array of numbers with a million
elements.

b. Putting the words in each line that’s read from a text
file in alphabetical order.

c. Adding together all the numbers in one collection to
obtain a single sum.

d. Adding numbers from two collections pair-wise to
obtain a collection of sums.

e. Counting the total number of occurrences of each word
in a collection of text files.

f. Finding the word that occurs most frequently in each
file in a collection of text files.

2. Choose a suitable problem from Exercise 1. Code two
solutions, using a sequential loop and a parallel loop.

3. Do a performance analysis of the credit review example code
on the CodePlex site http://parallelpatternscpp.codeplex.
com. Use command line options to independently vary the
number of iterations (the number of accounts) and the
amount of work done in the body of each iteration (the
number of months in the credit history). Record the execu-
tion times reported by the program for all three versions,
using several different combinations of numbers of accounts
and months. Repeat the tests on different computers with
different numbers of cores and with different execution
loads (from other applications).

 25par allel loops

Further Reading
The examples in this book use features and libraries of Microsoft®
Visual C++®. MSDN® is the recommended source for reference infor-
mation about these features and libraries, including lambda expres-
sions. The book by Mattson, et al. describes software design patterns
for parallel programming that are not specialized for a particular lan-
guage or library. Messmer’s article gives a number of related patterns
and tips for parallel loops in PPL.

Mattson, T.G., B. A. Sanders, and B. L. Massingill. Patterns for
Parallel Programming. Addison-Wesley, 2004.

Mattson, T.G., “Use and Abuse of Random Numbers” (video),
Feb 14, 2008, http://software.intel.com/en-us/videos/tim-
mattson-use-and-abuse-of-random-numbers/.

Messmer, B., Parallel Patterns Library, Asynchronous Agents
Library, & Concurrency Runtime: Patterns and Practices, 2010.
http://www.microsoft.com/downloads/en/confirmation.aspx?
displaylang=en&FamilyID=0e70b21e-3f10-4635-9af2-e2f7bdd-
ba4ae.

MSDN, Lambda Expressions in C++, http://msdn.microsoft.com/
en-us/library/dd293608.aspx.

27

Parallel Tasks

Parallel tasks are
asynchronous operations
that can run at the same
time. This approach is
also known as task
parallelism.

Parallel tasks in PPL
are managed by the
task_group class.

Chapter 2, “Parallel Loops,” shows how you can use a parallel loop to
apply a single operation to many data elements. This is data parallel-
ism. Chapter 3 explains what happens when there are distinct asyn-
chronous operations that can run simultaneously. In this situation, you
can temporarily fork a program’s flow of control with tasks that can
potentially execute in parallel. This is task parallelism. The Parallel
Tasks pattern is sometimes known as the Fork/Join pattern or the
Master/Worker pattern.

Data parallelism and task parallelism are two ends of a spectrum.
Data parallelism occurs when a single operation is applied to many in-
puts. Task parallelism uses multiple operations, each with its own input.

In the Parallel Patterns Library (PPL), tasks are started and man-
aged by methods of the task_group class, which is declared in the
ppl.h header file. The task group class’s run method creates and sched-
ules new tasks. You can wait for all tasks created by the task group to
complete by invoking the task group’s wait method. If you think in
terms of fork/join, the run method is the fork operation and the wait
method is the join operation.

Scheduling is an important aspect of parallel tasks. Unlike threads,
new tasks don’t necessarily begin to execute immediately. Instead,
they are placed in a work queue. Tasks run when their associated task
scheduler removes them from the queue, usually as processor re-
sources become available. As long as there are enough tasks and the
tasks are sufficiently free of serializing dependencies, the program’s
performance scales with the number of available cores. In this way,
tasks embody the concept of potential parallelism that was intro-
duced in Chapter 1.

Another important aspect of task-based applications is how they
handle exceptions. In PPL, an unhandled exception that occurs during
the execution of a task is deferred for later observation. For example,
the deferred exception is automatically observed at a later time when
you call the task_group::wait method. At that time, the exception is

3

28 chapter three

rethrown in the calling context of the wait method. This allows you
to use the same exception handling approach in parallel programs that
you use in sequential programs.

The Basics
Each task is a sequential operation; however, tasks can often run in
parallel. Here’s some sequential code.

 DoLeft();
 DoRight();

Let’s assume that the methods DoLeft and DoRight are indepen-
dent. This means that neither method writes to memory locations
or files that the other method might read. Because the methods
are independent, you can use the parallel_invoke function of the
Concurrency namespace to run them in parallel. This is shown in the
following code.

 parallel_invoke(
 []() { DoLeft(); },
 []() { DoRight(); }
);

The parallel_invoke function is the simplest expression of the
Parallel Tasks pattern. The function creates a new task group with
new parallel tasks for each lambda expression in its argument list. The
parallel_invoke function returns when all the tasks are finished. The
arguments to parallel_invoke are known as work functions.

There are overloaded versions of the parallel_invoke function
that accept up to nine work functions.

You can’t assume that all parallel tasks will immediately run. De-
pending on the current work load and system configuration, tasks
might be scheduled to run one after another, or they might run at the
same time. For more information about how tasks are scheduled see
“How Tasks Are Scheduled,” later in this chapter.

The functions run by parallel_invoke can either complete nor-
mally or finish by throwing an exception. If an exception is thrown by
one of the work functions during the execution of parallel_invoke, it
will be deferred and rethrown when all tasks finish. If more than one
of the work functions throws an exception, the runtime chooses one
of the exceptions to be rethrown. The remaining exceptions will not
be externally observed. For more information and a code example, see
the section, “Handling Exceptions,” later in this chapter.

Internally, parallel_invoke creates new tasks and waits for them.
You can reproduce this functionality by creating a task group object
and calling its run and wait methods. Here’s an example.

Tasks in PPL defer exceptions
and rethrow them when the
task group’s wait method is
invoked.

The parallel_invoke
function in the
Concurrency namespace
creates a group of parallel
tasks and waits for them
all to complete.

 29par allel tasks

 task_group tg;

 tg.run([](){ DoLeft(); });
 tg.run([](){ DoRight(); });
 tg.wait();

The run method of the task_group class creates and schedules a
new task. The run method’s argument is a lambda expression, a
pointer to function, or a function object that will be invoked when
the task eventually executes. In other words, the argument can be any
object that supports the function call operator with the signature
void operator()(). When you use the task_group::run method to
create a task, the new task is added to a work queue for eventual ex-
ecution, but it does not start to execute until its task scheduler takes
it out of the work queue, which can happen immediately or can occur
at some point in the future.

You can wait for the tasks of the task group to complete by call-
ing the task group’s wait method.

It is also possible to combine the run and wait steps into a single
operation. This is shown in the following code.

 task_group tg;

 tg.run([](){ DoLeft(); });
 tg.run_and_wait([](){ DoRight(); });

Calling the task group’s run_and_wait method instead of the run
method followed by a call to the wait method can result in slightly
more efficient use of threads. The run_and_wait method acts as a
hint to the task scheduler that it can reuse the current context to
execute the new task.

The examples you’ve seen so far are simple, but they’re powerful
enough to handle many scenarios. For more ways to use tasks, see the
section, “Variations,” later in this chapter.

An Example
An example of task parallelism is an image processing application
where images are created with layers. Separate images from different
sources are processed independently and then combined with a pro-
cess known as alpha blending. This process superimposes semitrans-
parent layers to form a single image.

The source images that are combined are different, and different
image processing operations are performed on each of them. This
means that the image processing operations must be performed sepa-
rately on each source image and must be complete before the images

Use the task group’s run
method to create a task and
schedule its execution. Use
the wait method to block the
current context until all of
the tasks in a task group
have completed.

If you pass a reference to an
instance of a class that
supports operator() as an
argument to the task_
group::run method, you must
make sure to manage the
memory of the function
object. The function object
can safely be destroyed only
after the task group object’s
wait method returns. Lambda
expressions and pointers to
static functions do not require
explicit deletion and are
therefore easier to use than
class-type functors.

30 chapter three

can be blended. In the example, there are only two source images, and
the operations are simple: conversion to gray scale and rotation. In a
more realistic example, there might be more source images and more
complicated operations.

Here’s the sequential code. The source code for the complete
example is located at http://parallelpatternscpp.codeplex.com in the
Chapter3\ImageBlender folder.

static void SequentialImageProcessing(
 Bitmap* const source1, Bitmap* const source2,
 Bitmap* const layer1, Bitmap* const layer2,
 Graphics* const blender)
{
 SetToGray(source1, layer1);
 Rotate(source2, layer2);
 Blend(layer1, layer2, blender);
}

In this example, source1 and source2 are bitmaps that are the
original source images, layer1 and layer2 are bitmaps that have been
prepared with additional information needed to blend the images, and
blender is a Graphics instance that performs the blending and refer-
ences the bitmap with the final blended image. Internally, SetToGray,
Rotate, and Blend use methods from the platform’s Gdiplus
namespace to perform the image processing.

The SetToGray and Rotate methods are entirely independent of
each other. This means that you can execute them in separate tasks.
If two or more cores are available, the tasks might run in parallel, and
the image processing operations might complete in less elapsed time
than a sequential version would.

The parallel_invoke function creates tasks and waits for them to
complete before proceeding. This is shown in the following code.

static void ParallelInvokeImageProcessing(
 Bitmap* const source1, Bitmap* const source2,
 Bitmap* layer1, Bitmap* layer2, Graphics* blender)
{
 parallel_invoke(
 [&source1, &layer1](){ SetToGray(source1, layer1); },
 [&source2, &layer2](){ Rotate(source2, layer2);}
);
 Blend(layer1, layer2, blender);
}

In this example, the tasks are identified implicitly by the argu-
ments to parallel_invoke. This call does not return until all of the
tasks complete.

Use the parallel_invoke
function whenever tasks can
be defined in a single lexical
scope.

 31par allel tasks

You can also create parallel tasks explicitly. This is shown in the
following code.

static void ParallelTaskGroupImageProcessing(
 Bitmap* const source1, Bitmap* const source2,
 Bitmap* layer1, Bitmap* layer2, Graphics* blender)
{
 task_group tasks;
 tasks.run(
 [&source1, &layer1](){ SetToGray(source1, layer1);}
);
 tasks.run_and_wait(
 [&source2, &layer2](){ Rotate(source2, layer2); }
);
 Blend(layer1, layer2, blender);
}

This code allocates a task group on the stack. It then calls task
group run methods to create and run two tasks that execute
SetToGray and Rotate. The example uses the run_and_wait method
to create the second task and to wait for all tasks to finish before
blending the processed images.

Variations
This section describes variations of PPL’s implementation of the Paral-
lel Task pattern.

Coordinating Tasks with Cooperative
Blocking

The classes and functions in the Concurrency namespace implement
a task-coordination feature known as cooperative blocking. With
cooperative blocking, your task can suspend its execution and relin-
quish control to the task scheduler until a specific condition is met.
This usually occurs when another task performs an action that the
first task needs. A typical example of a cooperative blocking opera-
tion is the task_group::wait method. If wait is invoked from within a
running task, the task scheduler knows that the current task can’t
continue until all the tasks of the specified task group run to comple-
tion. Cooperative blocking provides a robust and highly programmable
way to coordinate tasks.

Cooperative blocking can improve the performance of a parallel
application by enabling fuller use of processor resources. A coopera-
tively blocked task represents an opportunity for the task scheduler
to apply processor resources to other tasks. If you are going to use
PPL effectively, it is important to understand the interaction of coop-

Cooperative blocking
provides a robust and highly
programmable way to
coordinate tasks.

32 chapter three

Cooperative blocking can
improve the performance of
a parallel application by
enabling fuller use of processor
resources.

erative blocking with the task scheduler. For more information, see
the “Task Scheduler” section of Appendix A, “The Task Scheduler and
Resource Manager.”

You can also invoke any of the synchronization features of the
operating system from within tasks. Using lower-level blocking op-
erations of the operating system is sometimes called noncooperative
blocking. If you do any type of blocking, you will need to consider
whether cooperative or noncooperative blocking is most appropriate.
In general, cooperative blocking has the advantage of better coordina-
tion with the task scheduler.

The following table lists the most important operations that the
runtime considers to be cooperative blocking operations. Note that
these operations are not guaranteed to block every time they are
called; instead, they have the potential to block if certain conditions
exist. All of the classes are in the Concurrency namespace.

Cooperative blocking
operation

Description

task_group::wait
method

This method blocks the current task until the tasks of
another task group have completed their work.

critical_section::lock
method

A critical section provides mutual exclusion. Acquiring
the lock may block the current task if the lock is in use
by another task. Only one task at a time can possess
the lock.

critical_section::
scoped_lock class
constructor

An exception-safe way to acquire and release a critical
section within a block of code is to define a critical_
section ::scoped_lock at the beginning of that block.

reader_writer_lock::
lock method

This method acquires a reader/writer lock for
concurrency-safe modification of shared data. Calling
the lock method will block the current task if a reader
or reader/writer lock is already held by another thread.

reader_writer_lock::
scoped_lock class
constructor

An exception-safe way to acquire and release a reader/
writer lock within a block of code is to define a
reader_writer_lock:: scoped_lock at the beginning
of that block.

reader_writer_lock::
lock_read method

This method acquires a reader lock for concurrency-
safe reading of shared data. The lock_read method
may block the current thread if another thread holds
the reader/writer lock. Unlike the reader/writer lock,
more than one task may hold a reader lock at the
ame time.

reader_writer_lock::
scoped_lock_read
class constructor

An exception-safe way to acquire and release a reader
lock within a block of code is to define a reader_
writer_lock:: scoped_lock_read at the beginning
of that block.

Invoking cooperative blocking
acts as a hint to the scheduler
that other work may be
started or resumed.

 33par allel tasks

event::wait method This method is a cooperatively blocking equivalent of
a manual reset event. Invoking the event::wait method
may block if the event has not yet been set.

agent::wait method
agent::wait_for_*
methods

These methods block the current task until the agent
instance completes its work.

wait(…) function The Concurrency::wait function cooperatively blocks
execution for a specified time interval.

Context::Block
method

This method suspends the current context until it is
cooperatively reenabled by another task’s invocation
of the Context::Unblock method. This operation is
used by libraries to implement new task-coordination
control structures. It is not normally used by applica-
tion code.

Context::Yield method This method suspends the current thread so that
another worker thread may be given the opportunity
to resume execution. Although Yield potentially
suspends execution of the current thread, it never
results in a blocked context. Therefore, Yield can
only loosely be considered a blocking operation.

parallel_for,
parallel_for_each
and parallel_invoke
functions

PPL’s functions for parallel algorithms internally invoke
blocking operations, such as the wait method.

send and asend
functions

These functions transmit data to messaging blocks.
In Microsoft® Visual Studio® 2010 SP1, the
implementations of the send and asend functions
sometimes invoke cooperative blocking, depending
on certain internal system details. The asend function
is expected to be nonblocking in future versions of
the runtime.

receive function This function gets a value from a messaging block.
It may block if the messaging block does not yet
have a value to provide.

Canceling a Task Group
You can signal cancellation by invoking the task group’s cancel method.
Here’s an example:

task_group tg;
tg.run([](){ DoLeft(); });
tg.cancel(); // could be called from any thread
wcout << L" Is canceling: " << tg.is_canceling() << endl;

task_group_status status = tg.wait();
wcout << L" Status: " << status << endl;

Use the task_group::cancel
method to signal cancellation
of all tasks in a task group.

34 chapter three

Invoking a task group’s cancel method causes the task group to
transition to a state where its is_canceling method will return true.
Tasks in the task group that have not yet started are not allowed to
run. New tasks that are added to the task group by the run method
are ignored after the cancel method has been called.

Tasks in the task group that have started before cancellation
is signaled continue to run, but their behavior may change. If a task
of a task group that is being canceled invokes any function in the
Concurrency namespace, an exception may be thrown. For example,
if a running task of a task group that is being canceled makes a call to
another task group’s wait method, an exception may be thrown by the
runtime. The specific set of functions in the Concurrency namespace
that will throw exceptions when a task group is undergoing cancella-
tion and the specific set of circumstances that will cause such excep-
tions to be thrown are intentionally not specified. Therefore, your
application logic should not depend on whether any particular library
function throws or does not throw an exception when a task group is
being canceled.

In the current version of PPL, canceling a task group with coop-
eratively (or noncooperatively) blocked tasks may result in deadlock
in certain cases. For example, consider the case where you create two
tasks in a task group that share an instance E of the cooperatively
blocking event class. One of the tasks calls the wait method of event
E, and the other task calls the signal method of event E. If the task
group’s cancel method is called while the first task is blocked waiting
for event E but before the second task has started to execute, there
will be no way for the wait condition of the first task to be satisfied.

Cancellation will automatically propagate across task groups in
certain situations. For example, cancellation will be propagated if a
task in task group A is waiting for the tasks of task group B to com-
plete. In this situation, if task group A’s cancel method is called before
the call to task group B’s wait method completes, then the runtime
also invokes task group B’s cancel method. The task in task group A
that is waiting on task group B remains blocked until task group B has
no more running tasks. At that time, the call to task group B’s wait
method will throw an exception. (Of course, if task group B is very
fast, its wait function might return normally before there is a chance
to propagate a cancellation from task group A.)

Note that the runtime only returns the enumerated value can-
celed for the wait method of the top-most task group in a tree of
dependent task groups. The other stack frames will have an internal
exception passed through them.

You must ensure that your
task work functions are
exception safe. Use the
Resource Acquisition is
Initialization (RAII) pattern
for automatic cleanup.

Use extreme caution if you mix
blocking operations other than
task_group::wait with task
group cancellation. In such
cases you must ensure that all
possible code paths are
deadlock free.

A cancellation request
automatically propagates to
another task group if a call
to that group’s wait method
is blocking any of the tasks
of a task group that is being
cancelled.

 35par allel tasks

Long-running tasks can use the is_canceling method to poll their
task group for its cancellation status and shut themselves down if
cancellation has been requested. The is_canceling method might also
be used if you need to perform local cleanup actions for a task that’s
in the process of being canceled. When the task group returns from
a call to its wait method, its state is reset and its is_canceling method
thereafter returns false.

Checking for cancellation within a loop that has many iterations
that each performs a small amount of work can negatively affect your
application’s performance. On the other hand, checking only infre-
quently for cancellation can introduce unacceptable latency in your
application’s response to cancellation requests. For example, in an
interactive GUI-based application, checking for cancellation more
than once per second is probably a good idea. An application that runs
in the background could poll for cancellation less frequently, perhaps
every two to ten seconds. Profile your application to collect perfor-
mance data that will help you determine the best places to test for
cancellation requests in your code. In particular, look for places in
your code where you can poll for cancellation at evenly spaced inter-
vals. For more information about profiling, see “Appendix B, Profiling
and Debugging.”

Handling Exceptions
If the execution of a task’s work function throws an unhandled excep-
tion, the unhandled exception is temporarily unobserved by your ap-
plication. The runtime catches the exception and records its details in
internal data structures. Then, the runtime cancels the task group that
contains the faulted task. See the previous section, “Canceling a Task
Group,” for more information about what happens during task group
cancellation. Under certain conditions, the cancellation is automati-
cally propagated to other task groups.

Recovering a deferred exception and rethrowing it is known as
“observing an unhandled task exception.” When all of the tasks in the
task group have completed, the task_group::wait method rethrows
the faulted task’s exception in the runtime context of the thread that
invoked the wait method. If there is more than one exception (that
is, if more than one task threw an unhandled exception), the runtime
will choose one of the exceptions to rethrow. The remaining excep-
tions will not be observed.

If you need to record all of the exceptions, you can implement
custom logging or tracing code.

Returning from the task_
group::wait method returns
a task group object to its
initial, default state. The
task group has the same
behavior as if it were newly
created.

When a task of a task group
throws an unhandled
exception, the runtime
cancels that task group. The
task group’s is_canceling
method returns true during
the course of the shutdown.

Be aware that if more than one
task throws an exception, only
one of the exceptions will be
observed by the task_
group::wait method. You can’t
control which exception will
be rethrown.

36 chapter three

Speculative Execution
Speculative execution occurs when you perform an operation in an-
ticipation of a particular result. For example, you might predict that
the current computation will produce the value 42. You start the next
computation, which depends on the current computation’s result, by
using 42 as the input. If the first computation ends with 42, you’ve
gained parallelism by successfully starting the dependent operation
well in advance of when you otherwise could have. If the first compu-
tation results in something other than 42, you can restart the second
operation using the correct value as the input.

Another example of speculative execution occurs when you exe-
cute more than one asynchronous operation in parallel but need just
one of the operations to complete before proceeding. Imagine, for
example, that you use three different search tasks to search for an
item. After the fastest task finds the item, you don’t need to wait for
the other searches to complete. In cases like this you wait for the first
task to complete and usually cancel the remaining tasks. However, you
should always observe any exceptions that might have occurred in any
of the tasks.

You can use the task_group::cancel method to implement specu-
lative execution. Here’s an example.

task_group tg;

tg.run([&tg](){ SearchLeft(tg); });
tg.run([&tg](){ SearchRight(tg); });
tg.run_and_wait([&tg](){ SearchCenter(tg); });

In this example, you perform three searches in parallel. You want
to continue if any of the three functions completes. You don’t need
to wait for all of them. To make this possible, the code passes a refer-
ence to the task group object to each of the work functions. Inside of
the work functions, the code cancels the task group when it com-
pletes its work. The following code shows how to accomplish this
inside of the SearchLeft function.

void SearchLeft(task_group& tg)
{
 bool result =
 DoCpuIntensiveOperation(g_TaskMilliseconds/5, &tg);
 wcout << L" Left search finished, completed = " << result
 << endl;
 tg.cancel();
}

Use task cancellation as a
way to wait for at least one
task in a set of tasks to
complete.

 37par allel tasks

The long-running function, DoCpuIntensiveOperation, checks
for the cancellation status. This is shown in the following code.

bool DoCpuIntensiveOperation(DWORD milliseconds,
 task_group* tg = nullptr)
{
 // ...
 int i = 0;
 DWORD checkInterval = ...
 while (true)
 {
 if ((milliseconds == 0) || (++i % checkInterval == 0))
 {
 if (tg && tg->is_canceling())
 return false;
 }
 // ...
 }
}

The body of the while loop periodically checks to see if the task
group, tg, has received a cancellation request. For performance rea-
sons the code only polls at a specified number of loop iterations.

Anti-Patterns
Here are some things to watch out for when you use task groups.

Variables Captured by Closures
In C++, a closure can be created using a lambda expression that repre-
sents an unnamed (anonymous) function. Closures can refer to vari-
ables defined outside of their lexical scope, such as local variables that
were declared in a scope that contains the closure.

The semantics of closures in C++ may not be intuitive to some
programmers, and it’s easy to make mistakes. If you code your closure
incorrectly, you may find that captured variables don’t behave as you
expect, especially in parallel programs.

Problems occur when you reference a variable without consider-
ing its scope. Here’s an example.

 task_group tg;
 for (int i = 0; i < 4; i++)
 {
 // WARNING: BUGGY CODE, i has unexpected value
 tg.run([&i]() { wcout << i << endl; });
 }
 tg.wait();

38 chapter three

You might think that this code sample would print the numbers
1, 2, 3, 4 in some arbitrary order, but it can print other values, depend-
ing on how the threads happen to run. For example, you might see 4,
4, 4, 4. The reason is that the variable i is captured by reference and
shared by all the closures created by the steps of the for loop. By the
time the tasks start, the value of the single, shared variable i will prob-
ably be different from the value of i when the task was created.

The solution is to capture the variable by value in the appropriate
scope.

 task_group tg;
 for (int i = 0; i < 4; i++)
 {
 tg.run([i]() { wcout << i << endl; });
 }
 tg.wait();

This version prints the numbers 1, 2, 3, 4 in an arbitrary order, as
was originally intended. The reason is that the value of the variable
i is passed to the closure. Effectively, a new variable named i is
instantiated with each iteration of the for loop.

Unintended Propagation of Cancellation
Requests

If you use a library that is implemented with PPL, the API calls into
that library may create task groups that are internal to the library. If
you call that library’s APIs from a task context within your application,
you might unintentionally create a situation where a task of your ap-
plication’s task group is waiting on a task group inside of the library’s
implementation. According to the behavior described in the “Cancel-
ing a Task Group” section, if you invoke the cancel method of a task
group in your application, you may implicitly cause the cancellation of
task groups that were created by the library you are calling. Transitive
propagation of cancellation into another component’s internal task
groups may not be the behavior you intend; in some cases, you may
prefer that library functions run to completion even though a higher-
level component is beginning to shut down.

You avoid cases of unintended propagation of runtime context
by using a neutral, non-PPL thread context to call into any library
functions that may depend on task group wait operations. For exam-
ple, you could use a lightweight task to invoke library functions.
A lightweight task is a lower-level type of task that does not result
in the propagation of cancellation requests. They are described in
Appendix A.

It’s a good idea to make sure
that every lambda expression
uses explicit capture instead
of implicit capture.

Be aware that implicit
parent-child relationships
can influence the behavior
of cancellation and
exception handling,
especially with libraries.

 39par allel tasks

The Cost of Synchronization
Locks and other synchronization operations are sometimes necessary
in parallel programs. However, programmers often underestimate how
much serializing operations can degrade performance.

You may want to review the “Scalable Sharing of Data” section of
Chapter 1, “Introduction” for guidance on how to factor synchroniza-
tion into the design of your application. Well-designed applications
require explicit synchronization operations less often than poorly
designed applications.

Design Notes
This section describes some of the design considerations that were
used to create the Parallel Patterns Library, along with some recom-
mended coding practices.

Task Group Calling Conventions
Whenever you call a task group’s run method, you must subsequently
call its wait method and allow that call to return before you destroy
the task group. Otherwise, the runtime will throw a “missing wait”
exception. The missing wait exception only occurs in the normal flow
of execution; it will not be thrown if you unwind the stack due to an
application exception. Therefore, you do not need an RAII wrapper
that calls the wait method.

The task_group class’s methods are all concurrency safe, so there
are many ways to invoke these methods. However, no matter which
method you choose, you must make sure a return from a call to the
task group’s wait method is the last operation that happens in the
normal (no exceptions thrown) execution path before allowing a task
group’s destructor to run.

If a task group’s wait method is called from multiple contexts, and
you interleave these calls with calls to the task group’s run method,
be aware that the results may vary from run to run. For example, it is
possible to call a task group’s wait method concurrently from two
different contexts. If there are pending tasks in the task group, both
invocations of task_group::wait will return only after the task group
has completed all of its pending tasks. However, if the task group is
canceled while the tasks are running, only one of the wait functions
will return the canceled status value. The other invocation will return
a normal status, due to interleaving. (Returning from the wait method
resets the task group’s is_canceling status as a side effect; whichever
invocation returns first will perform the reset.)

To avoid performance
bottlenecks, review your use
of locks and other synchroni-
zation operations carefully.

40 chapter three

Tasks and Threads
When a task begins to run, the applicable task scheduler invokes the
task’s work function in a thread of its choosing.

The task will not migrate among threads at run time. This is a
useful guarantee because it lets you use thread-affine abstractions,
such as critical sections, without having to worry, for example, that
the EnterCriticalSection function will be executed in a different
thread than the LeaveCriticalSection function.

In general, creating a new task is a much less resource-intensive
operation than creating a new thread. It is possible for an application
to create hundreds of thousands or even millions of tasks and still run
efficiently.

You may want to profile your application as you experiment with
strategies for using tasks in your application. If your tasks are too fine
grained, you will incur overhead for task management that may hurt
performance. For example, a task that performs a single arithmetic
operation is not going to improve performance. However, if you de-
compose your application into too few tasks, you will not fully exploit
the potential parallelism of the application.

How Tasks Are Scheduled
The techniques for scheduling tasks and scheduling threads demon-
strate fundamentally different goals. The operating system generally
schedules threads in a way that minimizes latency. Preemptive thread
scheduling allows users to interact with a busy system with very little
perceived delay, even on a system with only one core.

In contrast, the task scheduler tries to maximize overall through-
put rather than ensure low latency for any given task. In other words,
when you decompose a computationally intensive operation into
tasks that can potentially run in parallel, you want to complete the
overall operation as quickly as possible without concern for the sched-
uling delays that any given task might experience. For task-based
systems such as PPL and the underlying Concurrency Runtime, the
measure of success is the speed of the overall result. The goal is to
optimize the use of processor resources.

For these reasons you should not expect that tasks in PPL are
scheduled “fairly.” Instead, a variety of techniques are used to improve
throughput. These techniques mainly focus on keeping cores busy
and on an effective use of system caches. For more information about
scheduling, see Appendix A, “The Task Scheduler and Resource Man-
ager.”

 41par allel tasks

There are a number of options available that allow you to control
how the scheduler deals with tasks. See “Schedule Policies” in Ap-
pendix A for more information.

Structured Task Groups and Task Handles
In addition to the task_group class, PPL also provides a lower-level
interface called the structured_task_group class, which is docu-
mented on MSDN®.

Structured task groups have lower overhead than the task groups,
but there are restrictions on how structured task groups can be used.
These restrictions require stack-based work functions and strict nest-
ing of subordinate structured task groups. Although the task groups
are recommended for most application programming, structured task
groups are important for implementing parallel libraries. For example,
the PPL parallel_invoke function is implemented with structured
task groups. The parallel_invoke function is usually enough in cases
of strict nested parallelism, and because it is much easier to use than
structured task groups, you probably won’t ever need to use struc-
tured task groups directly.

PPL includes a data type named the task_handle class. It encap-
sulates a work function used by a task. One of the overloaded ver-
sions of the task_group class’s run method accepts a task handle as
its argument. Task handles are created by means of the make_task
function. Most applications will never need access to task handles;
however, you must use task handles with structured task groups. Un-
like lambda expressions, task handles require explicit memory manage-
ment by your application.

Lightweight Tasks
In addition to the task_group objects that were described in this
chapter, the Concurrency Runtime provides lower-level APIs that may
be useful to some programmers, especially those who are adapting
existing applications that create many threads. However, in general it
is recommended that programmers start with the Parallel Patterns
Library (PPL) or the Asynchronous Agents Library.

See the “Lightweight Tasks” section of Appendix A, “The Task
Scheduler and Resource Manager” for more information.

42 chapter three

Exercises
1. The image blender example in this chapter uses task parallel-

ism: a different task processes each image layer. A typical
strategy in image processing uses data parallelism: the same
computation processes different portions of an image or
different images. Is there a way to use data parallelism in the
image blender example? If there is, what are the advantages
and disadvantages, compared to the task parallelism discussed
here?

2. In the image blender sample, the image processing methods
SetToGray and Rotate are void methods that do not return
results, but they save their results by updating their second
argument. Why don’t they return their results?

3. In the image blender sample that uses task_group::run
method, what happens if one of the parallel tasks throws an
exception? Answer the same question for the sample that
uses the parallel_invoke function.

Further Reading
Leijen et al. discusses design considerations, including the concepts of
task-based scheduling and work stealing algorithms.

The code samples for the Concurrency Runtime and Parallel
Pattern Library package is ConcRTExtras on CodePlex.

Leijen, D., W. Schulte, and S. Burckhardt. “The Design of a
Task Parallel Library.” S. Arora and G.T. Leavens, editors, OOP-
SLA 2009: Proceedings of the 24th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 227–242. ACM, 2009.

ConcRTExtras software. “Code Samples for the Concurrency
Runtime and Parallel Pattern Library in Visual Studio 2010.”
http://code.msdn.microsoft.com/concrtextras.

45

Parallel Aggregation4

The Parallel Aggregation
pattern lets you use multiple
cores to calculate sums and
other types of accumulations
that are based on associative
operators.

Chapter 2, “Parallel Loops,” shows how to use parallel techniques that
apply the same independent operation to many input values. How-
ever, not all parallel loops have loop bodies that execute indepen-
dently. For example, a sequential loop that calculates a sum does not
have independent steps. All the steps accumulate their results in a
single variable that represents the sum calculated up to that point.
This accumulated value is an aggregation. If you were to convert the
sequential loop to a parallel loop without making any other changes,
your code would fail to produce the expected result. Parallel reads
and writes of the single variable would corrupt its state.

Nonetheless, there is a way for an aggregation operation to use a
parallel loop. This is the Parallel Aggregation pattern.

Although calculating a sum is an example of aggregation, the pat-
tern is more general than that. It works for any binary operation that
is associative. However, some implementations of the Parallel Aggre-
gation pattern also expect the operations to be commutative.

The Parallel Aggregation pattern uses unshared, local variables
that are merged at the end of the computation to give the final result.
Using unshared, local variables for partial, locally calculated results
makes the steps of a loop independent of each other. Parallel aggrega-
tion demonstrates the principle that it’s usually better to make
changes to your algorithm than to add synchronization primitives to
an existing algorithm. For more information about the algorithmic
aspects of this pattern, see the “Design Notes” section later in this
chapter.

The Parallel Aggregation pattern is also known as the Parallel
Reduction pattern because it combines multiple inputs into a single
output.

46 chapter four

The Basics
The most familiar application of aggregation is calculating a sum.
Here’s a sequential version.

 vector<int> sequence = ...
 int count = 0;
 for (size_t i = 0; i < sequence.size(); i++)
 count += IsPrime(sequence[i]) ? 1 : 0;
 return count;

This is a typical sequential for loop. In this example and the ones
that follow, IsPrime is a user-provided function that determines if its
argument is a prime number. The result is a count of how many prime
numbers are contained in the input sequence. (Of course, you could
also have used the Standard Template Library (STL) count_if opera-
tion in this particular example.)

How can sequential accumulation be adapted for parallel process-
ing? As was explained in Chapter 2, simply swapping the for operator
with parallel_for won’t work because the count variable is shared by
all iterations. You might also be tempted to wrap a critical section
around the operation that increments the count variable. The critical
section would prevent parallel iterations from performing conflicting
reads and writes, but the performance of that approach would be
much, much worse than the sequential version you are trying to opti-
mize. The cost of synchronization would be prohibitive. (In fact,
programmers often underestimate the performance cost of synchro-
nization operations.)

Typical of many situations in parallel programming, the answer is
not to apply synchronization operations to the existing sequential
algorithm in order to make it “safe” for parallel execution. Instead,
redesign the algorithm to use a two-phase approach. First, subdivide
the problem into as many tasks as you have cores and calculate partial
results locally on a per-core basis. Then, once all of the per-task partial
results are ready, sequentially merge the results into one final accumu-
lated value. The process of combining partial reductions is graphically
illustrated by the cartoon illustration on this chapter’s facing page.

PPL provides a special data structure that makes it easy to create
per-task local results in parallel and merge them as a final sequential
step. This data structure is the combinable class. The following code
examples show how to use the combinable class to implement the
Parallel Aggregation pattern.

 vector<int> sequence = ...

 combinable<int> count([]() { return 0; });

The combinable class makes
it easy to create per-task local
results in parallel and merge
them as a final sequential
step.

 47par allel aggregation

 parallel_for_each(sequence.cbegin(), sequence.cend(),
 [&count](int i)
 {
 count.local() += IsPrime(i) ? 1 : 0;
 });
 return count.combine(plus<int>());

The count variable is a combinable object that provides thread-
private values. To compute the initial, local values the constructor of
the combinable class takes a function as an argument.

Next, a parallel_for_each loop creates multiple tasks (typically,
equal to some multiple of the number of cores on your computer) and
runs the loop body function in parallel. The tasks collect the partial,
per-core results into per-task variables that are provided by the
combinable object’s local method.

The number of tasks depends on the level of concurrency avail-
able in the current context. See Appendix A, “The Task Scheduler and
Resource Manager” for more information about runtime policy set-
tings for concurrency. Also, the parallel_for_each loop uses dynamic
range stealing to equalize the amount of work among its internal
worker threads.

After the parallel_for_each loop completes, the combinable
object’s combine method applies a user-specified binary operation to
aggregate the values of each of the per-task partial results. In this
example the combination function is integer addition. The return
value of the combine method is the final aggregated value.

The Concurrency Runtime sample pack provides several STL-style
parallel aggregation functions. The easiest way to understand how
these functions work is to compare them with their corresponding
sequential operations in STL.

STL provides a very simple way to express sequential aggregation
with iterators. Here is an example.

 vector<int> sequence = ...
 return accumulate(sequence.cbegin(), sequence.cend(), 0,
 IncrementIfPrime());

The STL accumulate function applies a binary function to an in-
ternal accumulation variable and to each element of a sequence, up-
dating the accumulation variable with each iteration. The first and
second arguments to the accumulate function give the iteration
bounds. The third argument is the initial value of the accumulation
variable, and the fourth argument is a binary reduction function that
will be successively applied to the accumulation variable and to each
iterated value. The job of the reduction function is to combine two
input values. Here is the implementation of the reduction function,
IncrementIfPrime.

The combinable class assumes
that the operation provided as
an argument to the combine
method is commutative.

48 chapter four

struct IncrementIfPrime
{
 int operator()(int total, int element) const
 {
 return total + (IsPrime(element) ? 1 : 0);
 }
};

The STL accumulate function is a sequential operation whose
performance is comparable to the sequential for loop shown in the
earlier example. To convert an STL accumulate expression into a
parallel aggregation you can use the parallel_reduce function of the
Concurrency Runtime sample pack. The following code gives an
example.

using namespace ::Concurrency::samples;
vector<int> sequence = ...
return parallel_reduce(sequence.cbegin(), sequence.cend(), 0,
 CountPrimes(), plus<int>());

The parallel_reduce function takes five arguments. The first two
arguments give the iteration bounds. The third argument gives the
value of the reduction’s identity element. If the reduction is based on
addition, this element will be 0. For multiplicative reduction, the iden-
tity element is 1. For reductions such as aggregate set union, the
identity element is the empty set.

The fourth argument is a function object that can be applied on
a subrange of an iterator to produce a local partial aggregation. This
example uses a functor created by instantiating the CountPrimes
class. The return value of the function object is the local partial result
from the first phase of the Parallel Aggregation pattern.

The fifth argument is a reduction function that will combine the
partial results that have been calculated for each of the subranges.

Here is the implementation of the CountPrimes class-type functor.

struct CountPrimes
{
 int operator()(vector<int>::const_iterator begin,
 vector<int>::const_iterator end,
 int right) const
 {
 return right + accumulate(begin, end, 0, IncrementIfPrime());
 }
};

If the conventions of STL
algorithms are unfamiliar to
you, you should brush up on
them before reading this
chapter. See the “Further
Reading” section for more
information.

 49par allel aggregation

The parallel_reduce function divides the input iterator into
ranges. There will be enough ranges to compensate for the effects of
uneven workloads, but not so many ranges that the overhead of cal-
culating them dominates the computation. PPL determines how many
ranges to create.

In this example, the CountPrimes function object will be invoked
one time for each of the ranges. It executes a sequential accumulation
operation on the subrange and collects the result.

The parallel_reduce function is usually the recommended ap-
proach whenever you need to apply the Parallel Aggregation pattern
within applications that use PPL. Its declarative nature makes it less
prone to error than other approaches, and its performance on multi-
core computers is competitive with them. Implementing parallel
aggregation with parallel_reduce doesn’t require adding locks in
your code. Instead, all the synchronization occurs internally. Of
course, if parallel_reduce doesn’t meet your needs or if you prefer a
less declarative style of coding, you can also use the combinable class
with parallel_for or parallel_for_each to implement the parallel
aggregation.

You should be aware that parallel_for and parallel_for_each add
overhead due to their support of features such as cancellation and
dynamic range stealing. Also, a call to the combinable::local() method
inside of a parallel loop adds the cost of a hash table lookup to each
iteration of the loop. In general, use parallel aggregation to increase
performance when iterations perform complex computations.

An Example
Aggregation doesn’t only apply to numeric values. It arises in many
other application contexts. The following example shows how to use
a variation of parallel aggregation known as map/reduce to aggregate
nonscalar data types.

The example is of a social network service, where subscribers can
designate other subscribers as friends. The site recommends new
friends to each subscriber by identifying other subscribers who are
friends of friends. To limit the number of recommendations, the ser-
vice only recommends the candidates who have the largest number of
mutual friends. Candidates can be identified in independent parallel
operations, and then candidates are ranked and selected in an aggre-
gation operation.

Here’s how the data structures and algorithms that are used by
the recommendation service work. Subscribers are identified by inte-
ger ID numbers. A subscriber’s friends are represented by the collec-
tion of their IDs. The collection is a set because each element (a
friend’s ID number) occurs only once and the order of the elements

50 chapter four

doesn’t matter. For example, the subscriber whose ID is 0 has two
friends whose IDs are 1 and 2. This can be written as:

0 -> { 1, 2 }
The social network repository stores an entry like this for every

subscriber. In order to recommend friends to a subscriber, the recom-
mendation service must consider a subscriber’s entry, as well as the
entries for all of that subscriber’s friends. For example, to recommend
friends for subscriber 0, the pertinent entries in the repository are:

0 -> { 1, 2 }
1 -> { 0, 2, 3 }
2 -> { 0, 1, 3, 4 }
You can see that the service should recommend subscribers 3 and

4 to subscriber 0 because they appear among the friends of subscrib-
ers 1 and 2, who are already friends of 0. In addition, the recommenda-
tion service should rank subscriber 3 higher than 4, because 3 is a
friend of both of 0’s friends, while 4 is a friend of only one of them.
You can write the results like this:

{ 3(2), 4(1) }
This means that subscriber 3 shares two mutual friends with sub-

scriber 0, and subscriber 4 shares one. This is an example of a type of
collection known as a multiset. In a multiset, each element (3 and 4 in
this example) is associated with a multiplicity, which is the number of
times it occurs in the collection (2 and 1, respectively). So a multiset
is a collection where each element only occurs once, yet it can repre-
sent duplicates (or larger multiplicities). The order of elements in a
multiset doesn’t matter.

The recommendation service uses map/reduce and has three
phases.

 In the first phase, which is the map phase, the service creates
collections of friend candidates. The collections of potential friends
are calculated by iterating through the subscriber’s friends and search-
ing their friends for people that are not currently friends of the sub-
scriber.

In the second phase, which is the reduce phase, the service ag-
gregates the sets of potential friends into a multiset where each can-
didate’s ID is associated with its multiplicity (the number of mutual
friends). For each set of possible friends, the reduce phase merges the
sets of potential friends and maintains a count of the occurrences. It
uses a hash_map<FriendID, int> instance for this purpose.

The final phase performs postprocessing. The service ranks can-
didates by sorting them according to their multiplicity and selects
only the candidates with the largest multiplicities.

An important feature of map/reduce is that the result of the map
stage is a collection of items that is compatible with the reduce stage.
The reduce stage uses multisets; therefore, the map stage does not

The example in this section
uses a multiset implementation
that differs from STL.

 51par allel aggregation

produce only a list of candidate IDs; instead, it produces a vector of
multisets, where each multiset contains only one candidate with a
multiplicity of one. In this example, the output of the map stage is a
collection of two multisets. The subscribers are the numbers 3 and 4.

{ 3(1) }, { 3(1) , 4(1) }
Here, the first multiset contains friends of subscriber 1, and the

second multiset contains friends of subscriber 2.
Another important feature of map/reduce is that the aggregation

in the reduce phase is performed by applying a binary operation to
pairs of elements from the collection that is produced by the map
phase. In this example, the operation is a multiset union, which com-
bines two multisets by collecting the elements and adding their mul-
tiplicities. The result of applying the multiset union operation to the
two multisets in the preceding collection is:

{ 3(2), 4(1) }
Now that there is only one multiset, the reduce phase is complete.

By repeatedly applying the multiset union operation, the reduce phase
can aggregate any collection of multisets, no matter how large, into
one multiset.

This is the code that defines the main data types that are used in
the sample.

typedef int SubscriberID;
typedef int FriendID;
typedef set<FriendID> FriendsSet;
typedef shared_ptr<FriendsSet> FriendsSetPtr;
typedef hash_map<SubscriberID, FriendsSetPtr> SubscriberMap;

class FriendMultiSet : public hash_map<FriendID, int>
{
 // Multiset of potential friends.
 // ...
}

typedef shared_ptr<FriendMultiSet> FriendMultiSetPtr;

The FriendsSet type is implemented by an STL set. The Friend
MultiSet type has a custom implementation. In addition to these data
types, the sample also uses an ordered list of potential friends that is
sorted by multiplicity in decreasing order. Here is the code.

struct LessMultisetItem
{
 bool operator()(const pair<FriendID, int> value1,
 const pair<FriendID, int> value2) const

52 chapter four

 {
 return (value1.second == value2.second) ?
 (value1.first > value2.first) :
 (value1.second > value2.second);
 }
};

typedef public set<pair<FriendID, int>, LessMultisetItem>
 FriendOrderedMultiSet;

Note that STL also implements a std::multiset type, but it is used
to store sets which contain multiple key values with equal values,
rather than key/value pairs.

Finally, here is the code for the sequential version of the algorithm
that suggests potential friends.

FriendOrderedMultiSet
PotentialFriendsSequentialTransform(
 const SubscriberMap& subscribers,
 SubscriberID id,
 int maxCandidates)
{
 // Map:

 FriendsSetPtr friends = subscribers.find(id)->second;
 vector<FriendMultiSetPtr> friendsOfFriends(friends->size());

 transform(friends->cbegin(),friends->cend(),
 friendsOfFriends.begin(),
 [&subscribers,&friends,&id](int friendID)->FriendMultiSetPtr
 {
 FriendsSetPtr theirFriends =
 subscribers.find(friendID)->second;
 FriendsSetPtr friendsOfFriend = make_shared<FriendsSet>();

 set_difference(theirFriends->cbegin(),
 theirFriends->cend(),
 friends->cbegin(),friends->cend(),
 inserter(*friendsOfFriend, friendsOfFriend->end()));
 friendsOfFriend->erase(id);

 return FriendMultiSetPtr(
 new FriendMultiSet(friendsOfFriend));
 });

 // Reduce:

 53par allel aggregation

 // The reduction does not use std:accumulate because
 // this results in too much copying of intermediate
 // FriendCountMap
 FriendMultiSet candidates;
 for_each(friendsOfFriends.cbegin(), friendsOfFriends.cend(),
 [&candidates](FriendMultiSetPtr set)
 {
 candidates.Union(set);
 });

 // Postprocess:

 return candidates.MostNumerous(maxCandidates);
}

In the map phase, this code loops sequentially over the subscrib-
er’s friends and builds a collection of multisets of candidates. In the
reduce phase, the code loops sequentially over those multisets and
aggregates them with the multiset union operation, which is imple-
mented by the Union method. If this code executes with the few
subscribers in the example, the id argument is 0 and subscribers.
find(id)->second returns { 1, 2}. When the map phase completes,
the friendsOfFriend variable contains { 3(1) }, { 3(1) , 4(1) }. When the
reduce phase completes, candidates contains { 3(2), 4(1) }.

Multiset union is associative; if you aggregate several multisets
into one by successively forming unions in a pair-wise manner, the fi-
nal result does not depend on the order of the union operations.
Multiset union is also commutative; the result does not depend on the
order of its arguments. If the aggregation function is not associative,
it can’t be done in parallel without potentially getting different re-
sults. If it’s not commutative, the potential for parallelism is greatly
reduced.

Here’s how to use the parallel_transform and parallel_reduce
functions of the Concurrency Runtime sample pack to apply map/
reduce to the social networking example.

FriendOrderedMultiSet
PotentialFriendsParallel(const SubscriberMap& subscribers,
 SubscriberID id,
 int maxCandidates)
{
 // Map:

 FriendsSetPtr friends = subscribers.find(id)->second;

Strictly speaking, floating-point
arithmetic is neither commuta-
tive nor associative. From run to
run, parallel computations over
floats or doubles may end up
with slightly different results
due to rounding errors.

54 chapter four

 vector<FriendMultiSetPtr> friendsOfFriends(friends->size());

 parallel_transform(friends->cbegin(),friends->cend(),
 friendsOfFriends.begin(),
 [&subscribers,&friends,&id](int friendID)->FriendMultiSetPtr
 {
 FriendsSetPtr theirFriends =
 subscribers.find(id)->second;
 FriendsSetPtr friendsOfFriend = make_shared<FriendsSet>();

 set_difference(
 theirFriends->cbegin(), theirFriends->cend(),
 friends->cbegin(), friends->cend(),
 inserter(*friendsOfFriend, friendsOfFriend->end()));
 friendsOfFriend->erase(id);

 return FriendMultiSetPtr(
 new FriendMultiSet(friendsOfFriend));
 });

 // Reduce:

 FriendMultiSet candidates;
 candidates =
 parallel_reduce(friendsOfFriends.cbegin(),
 friendsOfFriends.cend(),
 FriendMultiSet(),
 [](vector<FriendMultiSetPtr>::const_iterator cbegin,
 vector<FriendMultiSetPtr>::const_iterator cend,
 const FriendMultiSet& right)
 {
 return right.Union(cbegin, cend);
 },
 [](const FriendMultiSet& left, const FriendMultiSet& right)
 {
 return left.Union(right);
 });

 // Postprocess:

 return candidates.MostNumerous(maxCandidates);
}

 55par allel aggregation

Recall that in map/reduce, independent parallel operations (the
map phase) are followed by aggregation (the reduce phase). In the map
phase, the parallel operations iterate over all the friends of subscriber
0. The map phase is performed by the parallel_transform function,
which finds all the friends of each friend of the subscriber. The set_
difference function prevents redundant recommendations by remov-
ing the subscriber. The output of the map phase is a vector of multi-
sets for each of the subscriber’s friends.

The reduce phase is performed by the call to the parallel_reduce
function, which counts the duplicate candidate IDs. Note that the call
to the FriendMultiSet function returns an empty multiset that is
used as the identity element. The Union method combines two mul-
tisets.

The return statement performs the final postprocessing step that
selects the candidates with the highest multiplicities.

Variations
This section contains some common variations of the Parallel Aggre-
gation pattern.

Considerations for Small Loop Bodies
If the body of your parallel aggregation loop performs very little work,
you may find that performing parallel aggregation takes longer than
sequential aggregation. When you have small loop bodies, you can
apply the techniques that were described in Chapter 3, “Parallel
Loops” in the “Special Handling of Small Loop Bodies” section. These
techniques allow you to use sequential aggregation within subranges.

Other Uses for Combinable Objects
The combinable class is most commonly used to implement the Paral-
lel Aggregation pattern, but you do not necessarily need to use
combinable objects for aggregation. You can also use combinable
instances to create thread-local variables when a thread starts.

Design Notes
If you compare the sequential and parallel versions of the Parallel
Aggregation pattern, you see that the design of the parallel version
includes an additional step in the algorithm that merges partial results.
Figure 1 illustrates the two phases of parallel aggregation.

56 chapter four

figure 1
Parallel aggregation

Figure 1 shows that instead of placing the accumulation in a single,
shared result, the parallel loop uses unshared local storage for partial
results (these are named subtotals in Figure 1). The local method of the
combinable class provides access to the unshared storage for each
thread. Each worker thread processes a single partition of the input
values. The number of partitions depends on the degree of parallelism
that’s needed to efficiently use the computer’s available cores. After
all of the partial results have been computed, the combine function of
the combinable object merges the local results into the final, global
result.

The reason that this approach is fast is that there is very little
need for synchronization operations. Calculating the per-task local
results uses no shared variables, and therefore requires no locks. The
combine operation is a separate sequential step and also does not
require locks.

This discussion shows that the Parallel Aggregation pattern is a
good example of why changes to your algorithm are often needed
when moving from a sequential to a parallel approach.

To make this point clear, here’s an example of what parallel ag-
gregation would look like if you simply added locks to the existing
sequential algorithm. To do this, you only need to convert sequential
for to parallel_for and add one lock statement.

// WARNING: BUGGY CODE. Do not copy this example.
// It will run *much slower* than the sequential version.
// It is included to show what *not* to do.

vector<int> sequence = ...
CRITICAL_SECTION cs;
InitializeCriticalSectionAndSpinCount(&cs, 0x80000400);

You can’t simply add locks
and expect to get good perfor-
mance. You also need to think
about the algorithm.

 57par allel aggregation

int count = 0;

// BUG -- Do not use parallel_for_each in this case
parallel_for_each(sequence.cbegin(), sequence.cend(),
 [&count, &cs](int i)
 {
 // BUG -- Do not use locking inside of a parallel aggregation
 EnterCriticalSection(&cs);
 // BUG -- Do not use shared variable for parallel aggregation
 count += IsPrime(i) ? 1 : 0;
 LeaveCriticalSection(&cs);
 });

return count;

If you forget to enter and exit the critical section, this code fails
to calculate the correct sum on a multicore computer. Adding the
synchronization code makes this example correct with respect to se-
rialization. If you run this code, it produces the expected sum. How-
ever, it fails completely as an optimization. This code is many times
slower than the sequential version it attempted to optimize! The
reason for the poor performance is the cost of synchronization.

In contrast, the examples of the Parallel Aggregation pattern that
you have seen elsewhere in this chapter will run much faster on mul-
ticore computers than the sequential equivalent, and their perfor-
mance also improves in approximate proportion to the number of
cores.

It might at first seem counterintuitive that adding additional steps
can make an algorithm perform better, but it’s true. If you introduce
extra work, and that work has the effect of preventing data depen-
dencies between parallel tasks, you often benefit in terms of perfor-
mance.

Related Patterns
There’s a group of patterns related to summarizing data in a collec-
tion. Aggregation (also known as Reduce) is one of them. The others
include Scan and Pack. The Scan pattern occurs when each iteration
of a loop depends on data computed in the previous iteration. The
Pack pattern uses a parallel loop to select elements to retain or dis-
card. The result of a pack operation is a subset of the original input.
These patterns can be combined, as in the Fold and Scan pattern.
For more information about these related patterns, see the section,
“Further Reading,” at the end of this chapter.

58 chapter four

Exercises
1. Consider the small social network example (with subscribers

0, 1, 2). What constraints exist in the data? How are these
constraints observed in the sample code?

2. In the social network example, there’s a separate postprocess-
ing step where the multiset of candidates, which is an
unordered collection, is transformed into a sequence that is
sorted by the number of mutual friends, and then the top N
candidates are selected. Could some or all of this postpro-
cessing be incorporated into the reduction step?

3. In the standard reference on map/reduce (see the section,
“Further Reading”), the map phase executes a map function
that takes an input pair and produces a set of intermediate
key/value pairs. All pairs for the same intermediate key are
passed to the reduce phase. That reduce phase executes a
reduce function that merges all the values for the same
intermediate key to a possibly smaller set of values. The
signatures of these functions can be expressed as: map
(k1,v1) -> list(k2,v2) and reduce (k2,list(v2)) -> list(v2). In
the social network example, what are the types of k1, v1,
k2, and v2? What are the map and reduce functions?

Further Reading
Musser et al. explain the standard template library (STL). A thorough
treatment of synchronization techniques appears in the book by
Duffy. The related patterns of Stencil, Scan, and Pack are discussed by
McCool. The standard reference on map/reduce is the paper by Dean
and Ghemawat. Other cases of algorithms that use parallel loops with
some dependencies between steps are described by Toub. These in-
clude fold-and-scan and dynamic programming. Toub’s examples are
in managed code, but the algorithms apply equally to native code. The
Wikipedia article describes the mathematical multisets that were used
in code example in this chapter.

Dean, J., and S. Ghemawat. “MapReduce: Simplified Data
Processing on Large Clusters.” In OSDI ‘04: Sixth Symposium on
Operating System Design and Implementation, 137–150, 2004.

Duffy, J., Concurrent Programming on Windows. Addison-Wesley,
2008.

 59par allel aggregation

McCool, M., “Structured Patterns: An Overview.” December
2009.

http://www.ddj.com/go-parallel/article/showArticle.jhtml?
articleID=223101515.

Musser, D. R., G. J. Derge, and A. Saini. STL Tutorial and Refer-
ence Guide: C++ Programming with the Standard Template Library,
3rd edition. Addison-Wesley Professional, December 2009.

Toub, S., “Patterns of Parallel Programming: Understanding and
Applying Parallel Patterns with the .NET Framework 4.” 2009.

http://www.microsoft.com/downloads/details.aspx?FamilyID=
86b3d32b-ad26-4bb8-a3ae-c1637026c3ee&displaylang=en.

Wikipedia. “Multiset.” http://en.wikipedia.org/wiki/Multiset.

61

Futures5

Futures are asynchronous
functions.

In Chapter 3, “Parallel Tasks,” you saw how the Parallel Task pattern
allows you to fork the flow of control in a program. In this chapter,
you’ll see how control flow and data flow can be integrated with the
Futures pattern.

A future is a stand-in for a computational result that is initially
unknown but becomes available at a later time. The process of calcu-
lating the result can occur in parallel with other computations. The
Futures pattern integrates task parallelism with the familiar world of
arguments and return values.

Futures express the concept of potential parallelism that was in-
troduced in Chapter 1, “Introduction.” Decomposing a sequential
operation with futures can result in faster execution if hardware re-
sources are available for parallel execution. However, if all cores are
otherwise occupied, futures will be evaluated without parallelism.

You can think of a future as a task that returns a value. Instead of
explicitly waiting for the task to complete, using a method such as
wait, you simply ask the task for its result when you are ready to use
it. If the task has already finished, its result is waiting for you and is
immediately returned. If the task is running but has not yet finished,
the thread that needs the result blocks until the result value becomes
available. (While the thread is blocked, the core is available for other
work.) If the task hasn’t started yet, the pending task may be executed
in the current thread context.

The Parallel Patterns Library (PPL) makes it very easy to use the
Futures pattern. Here is a minimal futures implementation that illus-
trates how futures work.

template <class T>
class Future
{
 private:
 single_assignment<T> m_val;

Don’t confuse the task-
based futures in this chapter
with other Future pattern
implementations such as
the std::future implementation
in the Standard Template
Library (STL) that has been
incorporated into the C++0x
working paper.

62 chapter five

 task_group m_tg;

 public:
 template <class Func>
 Future(Func f)
 {
 m_tg.run([f, this]()
 {
 send(m_val, f());
 });
 }

 T Result()
 {
 m_tg.wait();
 return receive(&m_val);
 }
};

In this example, each new instance of the Future<T> class creates
a task group and uses the task group’s run method to add a new task
to that task group. The work function of the new task is an argument
to the constructor of the Future<T> class. The work function returns
a value of type T.

Note: The single_assignment class that is used in the imple-
mentation of the Future class is a type of messaging buffer.
The send and receive functions allow for concurrency-safe
communication of a single data value. For more information
about messaging buffers, see Chapter 7, “Pipelines.”

The Futures pattern discussed in this chapter is closely related
to what is sometimes known as a task graph. When futures provide
results that are the inputs to other futures, this can be seen as a
directed graph. The nodes are tasks, and the arcs are values that act as
inputs and outputs of the tasks.

The Basics
When you think about the Parallel Task pattern described in Chapter
3, you see that, in many cases, the purpose of a task is to calculate a
result. In other words, asynchronous operations often act like func-
tions with return values. Of course, tasks can also do other things,
such as reordering values in an array, but calculating new values is
common enough to warrant a pattern tailored to it. It’s also much
easier to reason about pure functions, which don’t have side effects

This implementation of a
Future class omits features
such as the ability to rethrow
exceptions when you call the
Result method multiple times.
You can use this implementa-
tion in your own applications,
but you should be aware that it
is not meant to be completely
full-featured.

You can easily implement
futures using task groups.

Be careful not to confuse
futures with pipelines. As you
will see in Chapter 7, “Pipe-
lines,” pipeline tasks are also
nodes of a directed graph, but
the arcs that connect stages of
the pipeline are concurrent
queues that convey a series of
values, just as an assembly line
or data stream does. In
contrast, with futures, nodes
of the task graph are connect-
ed by singleton values, similar
to arguments and return
values.

 63futures

and therefore exist purely for their results. This simplicity becomes
very useful as the number of cores becomes large.

Futures
The following example is from the body of a sequential method.

 int a = 22;

 int b = F1(a);
 int c = F2(a);
 int d = F3(c);
 int f = F4(b, d);
 return f;

Suppose that F1, F2, F3, and F4 are processor-intensive functions
that communicate with one another using arguments and return val-
ues instead of reading and updating shared state variables.

Suppose, also, that you want to distribute the work of these func-
tions across available cores, and you want your code to run correctly
no matter how many cores are available. When you look at the inputs
and outputs, you can see that F1 can run in parallel with F2 and F3 but
that F3 can’t start until after F2 finishes. How do you know this? The
possible orderings become apparent when you visualize the function
calls as a graph. Figure 1 illustrates this.

figure 1
A task graph for calculating f

The nodes of the graph are the functions F1, F2, F3, and F4. The
incoming arrows for each node are the inputs required by the func-
tion, and the outgoing arrows are values calculated by each function.
It’s easy to see that F1 and F2 can run at the same time but that F3
must follow F2.

F1 F2

F3

F4

a a

c

d

b

f

64 chapter five

Here’s an example that shows how to create futures for this ex-
ample. For simplicity, the code assumes that the values being calcu-
lated are integers and that the value of variable a has already been
supplied, perhaps as an argument to the current method.

 int a = 22;

 Future<int> futureB([a](){ return F1(a); });
 int c = F2(a);
 int d = F3(c);
 int f = F4(futureB.Result(), d);
 return f;

This code creates a future that begins to asynchronously calculate
the value of F1(a). On a multicore system, F1 will be able to run in
parallel with the current thread. This means that F2 can begin execut-
ing without waiting for F1. The function F4 will execute as soon as
the data it needs becomes available. It doesn’t matter whether F1 or
F3 finishes first, because the results of both functions are required
before F4 can be invoked. (Recall that the Result method does not
return until the future’s value is available.) Note that the calls to F2,
F3, and F4 do not need to be wrapped inside of a future because a
single additional asynchronous operation is all that is needed to take
advantage of the parallelism of this example.

Of course, you could equivalently have put F2 and F3 inside of a
future, as shown here.

 int a = 22;

 Future<int> futureD([a](){ return F3(F2(a)); });
 int b = F1(a);
 int f = F4(b, futureD.Result());
 return f;

It doesn’t matter which branch of the task graph shown in the
figure runs asynchronously.

An important point of this example is that exceptions that occur
during the execution of a future are thrown by the Result method.
This makes exception handling easy. You can think of futures as either
returning a result or throwing an exception. Conceptually, this is very
similar to the way any C++ function works. Here is another example
of exception handling.

The Result method either
returns a precalculated value
immediately or waits until
the value becomes available.

Futures, when they are based
on tasks, defer exceptions
until the Result method
is called.

 65futures

 int a = 22;

 Future<int> futureD([a](){ return F3(F2error(a)); });
 int b = F1(a);
 try
 {
 int f = F4(b, futureD.Result());
 printf(" Result = %d\", f);
 }
 catch (exception& e)
 {
 printf(" Exception ‘%s’ is caught as expected.\n",
 e.what());
 }

If an exception of type exception were thrown in F2 or F3, it
would be deferred and rethrown when the Result method of futureD
is called. In this example, the invocation of the Result method occurs
within a try block, which means that the exception can be handled in
the corresponding catch block.

Example: The Adatum Financial Dashboard
Here’s an example of how the Futures pattern can be used in an ap-
plication. The example shows how you can run computationally inten-
sive operations in parallel in an application that uses a graphical user
interface (GUI).

Adatum is a financial services firm that provides a financial dash-
board application to its employees. The application, known as the
Adatum Dashboard, allows employees to perform analyses of financial
markets. The dashboard application runs on an employee’s desktop
workstation. The Adatum Dashboard analyzes historical data instead
of a stream of real-time price data. The analysis it performs is compu-
tationally intensive, but there is also some I/O latency because the
Adatum Dashboard application collects input data from several
sources over the network.

After the application has the market data, it merges the datasets
together. The application normalizes the merged market data and
then performs an analysis step. After the analysis, it creates a market
model. It also performs these same steps for historical market data
from the Federal Reserve System. After the current and historical
models are ready, the application compares the two models and makes
a market recommendation of “buy,” “sell,” or “hold.” You can visualize
these steps as a graph. Figure 2 illustrates this.

66 chapter five

figure 2
Adatum Dashboard
tasks

The tasks in this diagram communicate by specific types of busi-
ness objects. These are implemented as classes in the Adatum Dash-
board application.

You can download the source code for the Adatum Dashboard
application from the CodePlex site at http://parallelpatternscpp.code-
plex.com/ in the Chapter5\A-Dash project. The application consists
of three parts: the business object definitions, an analysis engine, and
the user interface.

The Business Objects
The Adatum Dashboard uses immutable data types. Objects of these
types cannot be modified after they are created, which makes them
well suited to parallel applications.

The StockDataCollection type represents a time series of closing
prices for a group of securities. You can think of this as a dictionary
indexed by a stock symbol. Conceptually, the values are arrays of
prices for each security. You can merge StockDataCollection values
as long as the stock symbols don’t overlap. The result of the merge
operation is a new StockDataCollection value that contains the time
series of the inputs.

The StockAnalysisCollection type is the result of the analysis
step. Similarly, the MarketModel and MarketRecommendation

Load NYSE

Merge

Normalize

Analyze

Compare

Load Fed
Historical Data

Normalize

Analyze

Create Model

Create Model

Load Nasdaq

StockDataCollection

StockDataCollection

StockDataCollection

StockDataCollection

StockDataCollection StockDataCollection

MarketModel

StockAnalysisCollection

StockAnalysisCollection

MarketModel

MarketRecommendation

 67futures

classes are the outputs of the modeling and the comparison phases of
the application. The MarketRecommendation class has a data acces-
sor method that returns a “buy, hold, or sell” decision.

The Analysis Engine
The Adatum Dashboard’s AnalysisEngine class produces a market
recommendation from the market data it receives.

The sequential process is shown in the following code. This code
differs slightly from the online sample source; details of cancellation
handling have been omitted for clarity.

MarketRecommendation
DoAnalysisSequential(AnalysisEngineState& engineState) const
{
 engineState.Reset();
 engineState.IsRunning();
 vector<StockDataCollection> stockDatasets;
 vector<MarketModel> models;

 // Current market data tasks

 stockDatasets.push_back(LoadNyseData());
 stockDatasets.push_back(LoadNasdaqData());
 StockDataCollection mergedMarketData =
 MergeMarketData(stockDatasets);
 StockDataCollection normalizedMarketData =
 NormalizeData(mergedMarketData);
 StockAnalysisCollection analyzedStockData =
 AnalyzeData(normalizedMarketData);
 models.push_back(RunModel(analyzedStockData));

 // Historical data tasks

 StockDataCollection fedHistoricalData =
 LoadFedHistoricalData();
 StockDataCollection normalizedHistoricalData =
 NormalizeData(fedHistoricalData);
 StockAnalysisCollection analyzedHistoricalData =
 AnalyzeData(normalizedHistoricalData);
 models.push_back(RunModel(analyzedHistoricalData));

 // Compare results

 MarketRecommendation result = CompareModels(models);
 engineState.SetMarketRecommendation(result.GetValue());
 engineState.IsStopped();

68 chapter five

 return result;
}

The final result of the computation is a MarketRecommendation
object. Each of the method calls returns data that becomes the input
to the operation that invokes it. When you use method invocations in
this way, you are limited to sequential execution.

The parallel version uses futures for each of the operational steps.
Here’s the code. This code differs slightly from the online sample
source; details of cancellation handling have been omitted for clarity.

MarketRecommendation
DoAnalysisParallel(AnalysisEngineState& engineState) const
{
 engineState.Reset();
 engineState.IsRunning();

 // Current market data tasks

 Future<StockDataCollection> future1(
 [this, &engineState]()->StockDataCollection
 {
 scoped_oversubcription_token oversubscribeForIO;
 return LoadNyseData();
 });

 Future<StockDataCollection> future2(
 [this, &engineState]()->StockDataCollection
 {
 scoped_oversubcription_token oversubscribeForIO;
 return LoadNasdaqData();
 });

 Future<StockDataCollection> future3(
 [this, &engineState, &future1, &future2]()
 ->StockDataCollection
 {
 vector<StockDataCollection> stockDatasets;
 stockDatasets.push_back(future1.Result());
 stockDatasets.push_back(future2.Result());
 return this->MergeMarketData(stockDatasets);
 });

 Future<StockDataCollection> future4(
 [this, &engineState, &future3]()->StockDataCollection
 {
 return NormalizeData(future3.Result());

 69futures

 });

 Future< StockAnalysisCollection> future5(
 [this, &engineState, &future4]()
 ->StockAnalysisCollection
 {
 return AnalyzeData(future4.Result());
 });

 Future< MarketModel> future6 = Future<MarketModel>(
 [this, &engineState, &future5]()->MarketModel
 {
 return RunModel(future5.Result());
 });

 // Historical data tasks

 Future<StockDataCollection> future7(
 [this, &engineState]()->StockDataCollection
 {
 scoped_oversubcription_token oversubscribeForIO;
 return LoadFedHistoricalData();
 });

 Future<StockDataCollection> future8(
 [this, &engineState, &future7]()->StockDataCollection
 {
 return NormalizeData(future7.Result());
 });

 Future<StockAnalysisCollection> future9(
 [this, &engineState, &future8]()->StockAnalysisCollection
 {
 return AnalyzeData(future8.Result());
 });

 Future<MarketModel> future10 = Future<MarketModel>(
 [this, &engineState, &future9]()->MarketModel
 {
 return RunModel(future9.Result());
 });

 // Compare results

 vector<MarketModel> models;
 models.push_back(future6.Result());

70 chapter five

 models.push_back(future10.Result());
 MarketRecommendation result = CompareModels(models);
 engineState.SetMarketRecommendation(result.GetValue());
 engineState.IsStopped();
 return result;
}

The parallel version, provided by the DoAnalysisParallel method,
is similar to the sequential version, except that the synchronous
method calls have been replaced with futures. On a single-core ma-
chine the performance of the parallel version will be approximately
the same as the sequential version. On a computer with many cores,
the futures will all execute in parallel, constrained by the data depen-
dencies that exist among them.

Several of the futures are long-running I/O-intensive tasks that
use a small percentage of a core’s processing power. For these futures,
the code uses the scoped_oversubscription_token class to signal
that the task scheduler can use the resources that were allocated to
the current task to perform another task concurrently.

Variations
So far, you’ve seen some of the most common ways to use futures to
create tasks. This section describes some other ways to use them.

Canceling Futures
There are several ways to implement a cancellation model using the
Futures pattern.

By default, if you enter the Result method of a future from
within a task context, canceling that task’s task group before the
Result method exits will implicitly cause the task group in the Future
instance to be canceled. See the section, “Canceling a Task,” in Chap-
ter 3, “Parallel Tasks” for more information about the propagation of
cancellation across task groups.

In addition to implicitly propagated task cancellation, you can also
use messaging buffers as a way to implement an explicit cancellation
approach for futures. A cancellation strategy based on messaging buf-
fers is shown in the ImagePipeline example in Chapter 7, “Pipelines.”

Removing Bottlenecks
The idea of a critical path is familiar from project management. A
“path” is any sequence of tasks from the beginning of the work to the
end result. A task graph may contain more than one path. For example,
look at the task graph that is shown in Figure 2. You can see that there
are three paths, beginning with “Load NYSE,” “Load Nasdaq,” and

 71futures

“Load Fed Historical Data” tasks. Each path ends with the “Compare”
task.

The duration of a path is the sum of the execution time for each
task in the path. The critical path is the path with the longest dura-
tion. The amount of time needed to calculate the end result depends
only on the critical path. As long as there are enough resources (that
is, available cores), the noncritical paths don’t affect the overall execu-
tion time.

If you want to make your task graph run faster, you need to find
a way to reduce the duration of the critical path. To do this, you can
organize the work more efficiently. You can break down the slowest
tasks into additional tasks, which can then execute in parallel. You can
also modify a particularly time-consuming task so that it executes in
parallel internally using any of the patterns that are described in this
book.

The Adatum Dashboard example doesn’t offer much opportunity
for breaking down the slowest tasks into additional tasks that execute
in parallel. This is because the paths are linear. However, you can use
the Parallel Loops and Parallel Aggregation patterns to exploit more
of the potential parallelism within each of the Analyze tasks if they
take the most time. The task graph remains unchanged, but the tasks
within it are now also parallelized. The Parallel Loops pattern is dis-
cussed in Chapter 2, “Parallel Loops,” and the Parallel Aggregation
pattern is discussed in Chapter 4, “Parallel Aggregation.”

Modifying the Graph at Run Time
The code in the financial program’s analysis engine creates a static
task graph. In other words, the graph of task dependencies is reflected
directly in the code. By reading the implementation of the analysis
engine, you can determine that there are a fixed number of tasks with
a fixed set of dependencies among them.

However, you can also create dependencies between futures dy-
namically. For example, if you wanted to update the UI after each of
the futures in the Adatum Dashboard example completed in order to
show the application’s progress, you could create tasks that wait on
the futures that make up the task graph of the Adatum Dashboard
example. In other words, you can call the Result method of the
Future class as many times as needed. With each invocation, the call-
ing context will be suspended until the values have been computed.
Making calls to the Result method can occur outside of the context
where the futures were originally created.

Dynamically created tasks are also a way to structure algorithms
used for sorting, searching, and graph traversal. For examples, see
chapter 6, “Dynamic Task Parallelism.”

72 chapter five

Design Notes
There are several ideas behind the design of the Adatum Dashboard
application.

Decomposition into Futures
The first design decision is the most obvious one: the Adatum Dash-
board introduces parallelism by means of futures. This makes sense
because the problem space could be decomposed into operations
with well-defined inputs and outputs.

Functional Style
There are implicit and explicit approaches to synchronizing data be-
tween tasks. In this chapter, the examples use an explicit approach.
Data is passed between tasks as parameters, which makes the data
dependencies very obvious to the programmer. Alternatively, as you
saw in Chapter 3, “Parallel Tasks,” it’s possible to use an implicit ap-
proach. In Chapter 3, tasks communicate with side effects that
modify shared data structures. In this case, you rely on the tasks to
use control dependencies that block appropriately. However, in gen-
eral, explicit data flow is less prone to error that implied data flow.

You can see this by analogy. In principle, there’s no need for a
programming language to support methods with return values. Pro-
grammers can always use methods without return values and perform
updates on shared global variables as a way of communicating the
results of a computation to other components of an application.
However, in practice, using return values is considered to be a much
less error-prone way to write programs. Programmers tend to make
more mistakes with global variables than with return values.

Similarly, futures (tasks that return values) can reduce the possibil-
ity of error in a parallel program as compared to tasks that communi-
cate results by modifying shared global state. In addition, tasks that
return values can often require less synchronization than tasks that
globally access state variables, and they are much easier to understand.

Futures also promote a natural kind of data isolation similar to
what is found in functional programming, which relies on operations
that communicate with input and output values. Functional programs
are very easy to adapt to multicore environments. In general, futures
should only communicate with the outside world by means of their
return values. It’s also a good practice to use immutable types for
return values.

Related Patterns
There are a number of patterns that have some similarities to the
Futures pattern, but they also have some important differences. This
section provides a brief comparison.

Applications that use
arguments and return values
to communicate among tasks
scale well as the number of
cores increases.

 73futures

Pipeline Pattern
The Pipeline pattern is described in Chapter 7, “Pipelines.” It differs in
several important respects from a task graph. The pipeline focuses on
data flow by means of queues (messaging buffers), instead of task
dependencies. In a pipeline, the same task is executed on multiple data
items.

Master/Worker Pattern
Tasks within the Master/Worker pattern have a parent/child relation-
ship. The master task creates the worker tasks, passes data to them,
and waits for a result to be returned. Typically, worker tasks all execute
the same computation against different data. The implementation of
parallel loops in PPL uses the Master/Worker pattern internally.

Dynamic Task Parallelism Pattern
The Dynamic Task Parallelism pattern is also known as the Divide and
Conquer pattern. It is the subject of Chapter 6, “Dynamic Task Paral-
lelism.” Dynamic task parallelism creates trees of tasks on the fly in a
manner similar to recursion. If futures are asynchronous functions,
dynamic task parallelism produces asynchronous recursive functions.

Discrete Event Pattern
The Discrete Event pattern focuses on sending messages between
tasks. There is no limitation on the number of events a task raises or
when it raises them. Events can also pass between tasks in either di-
rection; there is no antecedent/dependency relationship. The Discrete
Event pattern can be used to implement a task graph by placing
additional restrictions on it.

Exercises
1. Suppose you use futures in the style of the first example,

in the section “The Basics,” to parallelize the following
sequential code.
auto b = F1(a); auto d = F2(c); auto e = F3(b,d);
auto f = F4(e); auto g = F5(e); auto h = F6(f,g);

Draw the task graph. In order to achieve the greatest degree of
concurrency, what is the minimum number of futures you must
define? What is the largest number of these futures that can
be running at the same time?

2. Modify the BasicFutures sample from the CodePlex at
http://parallelpatternscpp.codeplex.com/ so that one of the
futures throws an exception. What should happen? Observe
the behavior when you execute the modified sample.

75

Dynamic Task Parallelism6

Dynamic task parallelism is
similar to recursion. Tasks
create subtasks on the fly to
solve subproblems as needed.

The Dynamic Task Parallelism pattern is applicable to problems that
are solved by first solving smaller, related problems. For example,
when you count the number of nodes in a data structure that repre-
sents a binary tree, you can count the nodes in the left and right
subtrees and then add the results. A sequential algorithm that uses
recursion can easily be transformed into a computation that uses
dynamic task parallelism.

Dynamic task parallelism is also known as recursive decomposition
or “divide and conquer.”

Applications that use data structures such as trees and graphs are
typical examples of where you can use dynamic task parallelism. It’s
also used for applications that have geographic or geometric aspects,
where the problem can be partitioned spatially. Dynamic task paral-
lelism differs from the techniques that have been presented so far in
this book. It is distinguished by the fact that tasks are added to the
work queue as the computation proceeds.

The Basics
The following code shows a binary tree.

template<typename T>
struct TreeNode
{
private:
 T m_data;
 shared_ptr<TreeNode<T>> m_left;
 shared_ptr<TreeNode<T>> m_right;
 // ...
}

76 chapter six

If you want to perform an action on each data value in the tree,
you need to visit each node. This is known as walking the tree, which
is a naturally recursive operation. Here’s an example that uses sequen-
tial code.

template<typename Func>
static void SequentialWalk(shared_ptr<TreeNode<T>> node,
 Func action)
{
 if (nullptr == node) return;

 action(node->Data());
 SequentialWalk(node->Left(), action);
 SequentialWalk(node->Right(), action);
}

The SequentialWalk applies the function action to each node in
the tree in depth-first order. You can also use parallel tasks to walk the
tree. This is shown in the following code.

template<typename Func>
static void ParallelWalk(shared_ptr<TreeNode<T>> node,
 Func action)
{
 if (nullptr == node) return;

 parallel_invoke(
 [&node, &action] { action(node->Data()); },
 [&node, &action]
 {
 Tree<T>::ParallelWalk(node->Left(), action);
 },
 [&node, &action]
 {
 Tree<T>::ParallelWalk(node->Right(), action);
 }
);
}

When you use dynamic task parallelism to perform a tree walk,
you no longer visit nodes in a predictable order. If you need to visit
nodes in a sequential order, such as with a preorder, inorder, or post-
order traversal, you may want to consider the Pipeline pattern that’s
described in Chapter 7, “Pipelines.”

In this example, the number of tasks is three times the number of
nodes in the tree. In an actual scenario, the number of nodes could be

Dynamic task parallelism
results in a less predictable
order of execution than
sequential recursion.

 77dynamic task par allelism

very large. The Parallel Pattern Library (PPL) is designed to handle this
situation, but you may want to read the section, “Design Notes,” later
in this chapter for some performance tips.

An Example
An example of dynamic task parallelism is when you sort a list with an
algorithm such as QuickSort. This algorithm first divides an unsorted
array of values into sublists, and then it orders and recombines the
pieces. Here’s a sequential implementation.

static void SequentialQuickSort(VectorIter begin,
 VectorIter end,
 long threshold)
{
 if (distance(begin, end) <= threshold)
 {
 InsertionSort(begin, end);
 }
 else
 {
 VectorIter pivot = partition(begin + 1,
 end,
 bind2nd(less<int>(), *begin));
 iter_swap(begin, pivot-1);
 SequentialQuickSort(begin, pivot - 1, threshold);
 SequentialQuickSort(pivot, end, threshold);
 }
}

In this example, the VectorIter typedef expands to the
vector<int>::iterator method. This method sorts a vector<int> in-
stance in place, instead of returning a sorted array. The begin and end
arguments identify the segment that will be sorted. The code includes
an optimization. It’s not efficient to use the recursive algorithm on
short segments, so the method calls the non-recursive InsertionSort
method on segments that are less than or equal to threshold, which
is set in a global variable. This optimization applies equally to the se-
quential and parallel versions of the QuickSort algorithm.

If a segment is longer than threshold, the recursive algorithm is
used. The std::partition method moves all the array elements that are
not greater than the element at pivot to the segment that precedes
pivot. It leaves the elements that are greater than pivot in the seg-
ment that follows pivot (pivot itself may be moved). Then, the
method recursively calls SequentialQuickSort on both segments.

Sorting is a typical applica-
tion that can benefit from
dynamic task parallelism.

This example uses iterator
conventions from the Standard
Template Library (STL).

78 chapter six

The following code shows a parallel implementation of the
QuickSort algorithm.

static void ParallelQuickSort(VectorIter begin, VectorIter end,
 long threshold, int depthRemaining)
{
 if (distance(begin, end) <= threshold)
 {
 InsertionSort(begin, end);
 }
 else
 {
 VectorIter pivot = partition(begin + 1,
 end,
 bind2nd(less<int>(), *begin));
 iter_swap(begin, pivot-1);
 if (depthRemaining > 0)
 {
 parallel_invoke(
 [begin, end, pivot, depthRemaining, threshold] {
 Sort::ParallelQuickSort(begin, pivot - 1,
 depthRemaining - 1, threshold);
 },
 [&pivot, begin, end, depthRemaining, threshold] {
 Sort::ParallelQuickSort(pivot, end,
 depthRemaining - 1, threshold);
 }
);
 }
 else
 {
 SequentialQuickSort(begin, pivot - 1, threshold);
 SequentialQuickSort(pivot, end, threshold);
 }
 }
}

The parallel version uses parallel_invoke to execute the recursive
calls in tasks that can run in parallel. Tasks are created dynamically
with each recursive call; if the array is large, many tasks might be
created.

The parallel version includes an additional optimization besides
using insertion sort for subsequences of small size. It’s generally not
useful to create many more tasks than there are processors to run
them. So, the ParallelQuickSort method includes an additional

 79dynamic task par allelism

argument to limit task creation. The depthRemaining argument is
decremented on each recursive call, and tasks are created only when
this argument exceeds zero. The following code shows how to calcu-
late an appropriate depth (that is, the depthRemaining argument)
from the number of processors.

static void ParallelQuickSort(vector<int>& a, long threshold)
{
 const int maxTasks =
 CurrentScheduler::Get()->GetNumberOfVirtualProcessors();

 ParallelQuickSort(a.begin(), a.end(),
 (int)LogN(float(maxTasks), 2.0f) + 4, threshold);
}

One relevant factor in selecting the number of tasks is how simi-
lar the predicted run times of the tasks will be. In the case of Quick-
Sort, the duration of the tasks may vary a great deal because the pivot
points depend on the unsorted data. Using arbitrary, unsorted pivots
produces segments of unequal size (in fact, the sizes can vary widely).
The processing time required to sort each segment depends on the
segment’s size; therefore, you can expect tasks that are created by
using pivots to divide segments to be of uneven duration. To compen-
sate for the uneven durations of the tasks, the formula that calculates
the depthRemaining argument produces a starting value that will al-
low more tasks to be created than the number of cores. The formula
limits the number of tasks to approximately sixteen times the number
of cores. This is because the number of tasks can be no larger than 2
^ depthRemaining. If you substitute depthRemaining = log2(NCores)
+ 4 and simplify the expression, you see that the number of tasks is 16
x NCores. (Recall that for any value a, 2 ^ (a + 4) is the same as 16
times 2^a and that if a = log2(b), 2^a = b.)

For other algorithms you might want to use a depthRemaining
value of 2 or 3, which would correspond to a limit on the number of
tasks to 4 x NCores and 8 x NCores respectively. The number of tasks
you choose depends on how unequal in duration you expect your
tasks to be. The more variability in task durations, the more tasks you
will probably want.

Note: The QuickSort example that is shown in this section was
selected to illustrate the principles of dynamic task parallelism. As
a sorting algorithm it may or may not be what you want. There are
other examples of parallel sorting algorithms in the ConcRT Extras
sample pack that may be better suited to your application.

Limiting the number of
subtasks by measuring the
recursion depth is an extremely
important technique for
ensuring that an appropriate
amount of potential parallelism
will be introduced. Too many
tasks could introduce
task-related overhead; too few
would result in underutilization
of available cores.

80 chapter six

Variations
Dynamic task parallelism has several variations.

Parallel While-Not-Empty
The examples shown so far in this chapter use techniques that are the
parallel analogs of sequential depth-first traversal. There are also par-
allel algorithms for other types of traversals. These techniques rely on
concurrent collections to keep track of the remaining work to be
done. Here’s an example.

template<typename T, typename Func>
void ParallelWhileNotEmpty1(
 vector<shared_ptr<TreeNode<T>>> initialValues,
 Func body)
{
 concurrent_vector<shared_ptr<TreeNode<T>>>
 from(initialValues.size());
 for (size_t i = 0; i < initialValues.size(); i++)
 from[i] = initialValues[i];

 while(!from.empty())
 {
 concurrent_vector<shared_ptr<TreeNode<T>>> to;
 function<void (shared_ptr<TreeNode<T>>)> addMethod =
 [&to](shared_ptr<TreeNode<T>> n) { to.push_back(n); };
 parallel_for_each(from.cbegin(), from.cend(),
 [&body, &addMethod](shared_ptr<TreeNode<T>> item)
 {
 body(item, addMethod);
 }
);
 from = to;
 }
}

The ParallelWhileNotEmpty1 method shows how you can use
parallel_for_each to process a collection of values that may grow
over time. While the ParallelWhileNotEmpty1 method processes
the initial values, additional values to process may be discovered. The
additional values are placed in the to queue. After the first batch of
values is processed, the method starts processing the additional val-
ues, which may again result in more values to process. This processing
repeats until no additional values are produced.

The concurrent_vector class is provided by the Concurrency
Runtime as a concurrency-safe implementation of a vector type.

 81dynamic task par allelism

The ParallelWalkWithWhileNotEmpty1 method uses the
ParallelWhileNotEmpty1 method to walk a binary tree. This is
shown in the following code example.

template<typename T, typename Func>
void ParallelWalkWithWhileNotEmpty1(shared_ptr<TreeNode<T>> node,
 Func action)
{
 if (nullptr == node)
 return;
 vector<shared_ptr<TreeNode<T>>> nodes;
 nodes.push_back(node);

 ParallelWhileNotEmpty1(nodes,
 /* Func body */ [&action](shared_ptr<TreeNode<T>> item,
 function<void (shared_ptr<TreeNode<T>>)> addMethod)
 {
 if (nullptr != item->Left()) addMethod(item->Left());
 if (nullptr != item->Right()) addMethod(item->Right());
 action(item->Data());
 });
}

A website tool that checks links is an example of an appropriate
place to use the ParallelWalkWithWhileNotEmpty1 method. The
tool loads the initial page and searches it for links. Each link is checked
and removed from the list, and additional links to unchecked pages
from the same site are added to the list. Eventually, there are no more
unchecked links and the application stops.

Adding Tasks to a Pending Wait Context
In most cases you invoke the wait method of a task group only after
all of the tasks have been created. In some cases, it is useful to create
new tasks after the wait method has been invoked but before the
previously created tasks have finished. A typical example arises when
you are traversing nodes of a graph.

Here is an example of a function that uses parallel tasks of a single
task group to traverse a tree.

template<typename T, typename Func>
void ParallelSubtreeHandler(task_group& tg,
 shared_ptr<TreeNode<T>> node,
 Func action)
{
 while (nullptr != node)
 {

82 chapter six

 // Start up processing the left subtree in a new task
 if (nullptr != node->Left())
 {
 tg.run([&tg, node, action]() {
 ParallelSubtreeHandler(tg, node->Left(), action);
 });
 }

 // Process this node
 tg.run([node, action]() { action(node->Data()); });

 // Walk down the right side of the tree
 node = node->Right();
 }
}

The ParallelSubtreeHandler is called from the top-level function
that is shown below.

template<typename T, typename Func>
void ParallelTreeUnwinding(shared_ptr<TreeNode<T>> node,
 Func action)
{
 if (nullptr == node)
 return;

 task_group tg;

 ParallelSubtreeHandler(tg, node, action);

 tg.wait();
}

The ParallelTreeUnwinding function creates a single task group
that is used by the code that handles the subtrees. Here is a code ex-
ample that shows how the function is called. The lambda expression
simply records all the nodes that are visited.

 const Tree<int>& tree = ...
 concurrent_vector<int> result;

 ParallelTreeUnwinding(tree.Root(),
 [&result](int itemData)
 {
 DoCpuIntensiveOperation(Time);
 result.push_back(itemData);
 });

 83dynamic task par allelism

Dynamically adding new tasks to the task group allows you to use
the task_group object to track unprocessed nodes instead of using a
concurrent_vector, as was done in the ParallelWhileNotEmpty1
code example. The task_group also makes the code easier to read
because it eliminates the need for a separate data structure to hold
unprocessed nodes. Rather than completing when all unprocessed
nodes have been removed from the concurrent_vector, this example
completes when the task_group contains no more incomplete tasks.

Exercises
1. The sample code on CodePlex assigns a particular default

value for the threshold segment length. At this point, the
QuickSort methods switch to the non-recursive Insertion-
Sort algorithm. Use the command line argument to assign
different values for the threshold value, and then observe
the execution times for the sequential version to sort differ-
ent array sizes. What do you expect to see? What’s the best
value for threshold on your system?

2. Use the command line argument to vary the array size, and
then observe the execution time as a function of array size
for the sequential and parallel versions. What do you expect?
Can you explain your observations?

3. Suggest other measures, besides the number of cores, to limit
the number of tasks.

Further Reading
Heineman et al. discuss additional variations on QuickSort and other
sorting algorithms.

Heineman, George T., Gary Pollice, and Stanley Selkow.
Algorithms in a Nutshell. O’Reilly Media, 2008.

85

Pipelines7

A dataflow network is a set
of asynchronous components
that use messages to com-
municate with one other.

A data pipeline is a
sequence of asynchronous
components that are con-
nected by message buffers.
Each stage of the pipeline
receives input from its
predecessor. Use a pipeline
when data dependencies
prevent you from a using
a parallel loop.

In this chapter, the
Asynchronous Agents
Library’s function is to
improve performance when
there are multiple cores
available, but it has other
uses. More generally,
agents with asynchronous
communication can be used
to implement concurrency
and as a way to organize
applications such as
simulations.

The Pipeline pattern allows you to achieve parallelism in cases where
there are data dependencies that would prevent you from using a
parallel loop. A pipeline is composed of a linear series of producer/
consumer stages, where each stage depends on the output of its pre-
decessor. The pipeline is an example of a more general category
known as a dataflow network. A dataflow network decomposes
computation into cooperating components that communicate by
sending and receiving messages.

There are a variety of techniques for implementing pipelines.
Those described in this chapter use in-process messaging blocks and
asynchronous agents, both of which are provided by the Asynchro-
nous Agents Library.

A pipeline’s data flows from its first stage, through intermediate
stages and then to a final stage. The stages of a pipeline execute con-
currently, but in contrast to a parallel loop, the overall effect is to
process the input data in a fixed order. You can think of software
pipelines as analogous to assembly lines in a factory, where each item
in the assembly line is constructed in stages. The partially assembled
item is passed from one assembly stage to another. The outputs of the
assembly line occur in the same order as that of the inputs, but more
than one item is assembled at a time.

Pipelines occur in many applications. You can use a pipeline when
data elements are received from a real-time event stream, such as
values on stock ticker tapes, user-generated mouse click events, or
packets that arrive over the network. You can also use pipelines to
process elements from a data stream, as is done with compression and
encryption, or to apply transformation operations to streams of video
frames. In all of these cases, it’s important that the data elements are
processed in sequential order. You can’t use a parallel loop for these
cases because a parallel loop doesn’t preserve the processing order.

86 chapter seven

Types of Messaging Blocks
The Asynchronous Agents Library includes the following types of
messaging blocks, which are useful in a variety of situations:
•	 unbounded_buffer: a concurrent queue of unbounded size.
•	 overwrite_buffer: a single value that can be updated many

times.
•	 single_assignment: a single value that can be set just once.
•	 call: a function that is invoked whenever a value is added to the

messaging block.
•	 transformer: a function that is invoked whenever a value is

added to the messaging block; the function’s return value is
added to an output messaging block.

•	 choice: selects a message from a set of sources.
•	 join: waits for more than one source before proceeding.
•	 multitype_join: same as join, except that inputs may have

multiple message types.
•	 timer: produces messages based on time intervals.

In this chapter you’ll see examples of four types of messaging
blocks. They are the unbounded_buffer<T>, overwrite_buffer<T>,
transformer<T, S> and call<T> messaging blocks. It’s also possible to
implement your own messaging blocks.

The Basics
In the Asynchronous Agents Library, the buffers that connect stages
of a software pipeline are usually messaging blocks, such as instances
of the unbounded_buffer<T> class. Although the buffer itself is un-
bounded, the pipeline includes a feedback mechanism that limits the
number of pending items. The stages of the pipeline can themselves
be implemented with instances of the agent class.

Figure 1 illustrates an example of a pipeline that has four stages.
It reads words and sentence fragments from a data source, it corrects
the punctuation and capitalization, it combines the words and phras-
es into complete sentences, and then it writes the sentences to a disk
file.

The Asynchronous
Agents Library
provides messaging
blocks, agents, and
functions that send
and receive messages.

Don’t confuse pipelines and
parallel loops. Pipelines are
used when parallel loops can’t
be. With the Pipeline pattern,
the data is processed in
sequential order. The first
input is transformed into
the first output, the second
input into the second output,
and so on.

This section describes an
agent-based approach to
pipelines that requires a
dedicated thread for each
pipeline stage. Each stage uses
an instance of the agent class.
See “Asynchronous Pipelines”
in this chapter for an impor-
tant variation of this pattern
that does not dedicate a thread
to each pipeline stage.

 87pipelines

figure 1
Sample pipeline

Stages of the pipeline read from a dedicated input, or source, and
write to a particular output, or target. For example, the “Correct Case”
stage uses buffer 1 as its source and writes to buffer 2 as its target. All
the stages of the pipeline can execute at the same time because the
three messaging blocks buffer any shared inputs and outputs. If there
are four available cores, the four stages can run in parallel.

Stages in the pipeline block (that is, wait) on inputs. An input wait
is familiar from other programming contexts—if an enumeration or a
stream doesn’t have a value, the consumer of that enumeration or
stream waits until a value is available or an end–of-file condition oc-
curs. Using buffers that hold more than one value at a time compen-
sates for variability in the time it takes to process each value. Buffers
allow stages of the pipeline to be asynchronous.

Note: When using the unbounded_buffer<T> class you should
define a special value as your end-of-file token. This special value is
sometimes called the sentinel value. When using sentinel values you
must be careful that the end-of-file signal can never occur as one of
the regular messages. This example uses the value given by the
PhraseSource:: FinishedSentinel () static method to signal the
end of the sequence of values.

Choosing a sentinel value can be harder than it seems at first.
It’s often the case that all values of the type T have meaning as
valid payloads of an unbounded_buffer<T> instance. For
example, if your payload type is a string, you might be tempted to

Read Strings

Correct Case

Create Sentences

Write Sentences

Buffer 1

Buffer 2

Buffer 3

input

output

88 chapter seven

use the empty string as the sentinel value, but this would only be
safe if you can guarantee that the empty string is never used as a
normal value to be processed by the pipeline. In practice, the null
pointer is often used as the sentinel value.

The following code demonstrates how to implement a pipeline
that uses the unbounded_buffer<T> class for the buffers and the
agent class for the stages of the pipeline.

unbounded_buffer<wstring> buffer1;
unbounded_buffer<wstring> buffer2;
unbounded_buffer<wstring> buffer3;
PipelineGovernor governor(g_sentencePipelineLimit);

ReadStringsAgent agent1(seed, g_sentenceMax, governor, buffer1);
CorrectCaseAgent agent2(buffer1, buffer2);
CreateSentencesAgent agent3(buffer2, buffer3);
WriteSentencesAgent agent4(g_targetSentence, g_pipelineResults,
 governor, buffer3);

agent1.start();
agent2.start();
agent3.start();
agent4.start();

agent* agents[4] = { &agent1, &agent2, &agent3, &agent4 };
agent::wait_for_all(4, agents);

The first stage generates the input strings and places them in
buffer1. The second stage transforms the strings. The third stage
combines the strings into sentences. The final stage writes the cor-
rected sentences to a file. Note that in this example, the number of
input elements (words) is not the same as the number of output ele-
ments (sentences); part of the pipeline’s functionality is to combine
words into sentences.

References to input and output buffers are passed to each agent’s
constructor. For example, the second stage, agent2, which is an in-
stance of the CorrectCaseAgent class, uses buffer1 as its input and
buffer2 as its output. Figure 1 illustrates the resulting connections
among the agents.

Stages of the pipeline may not take exactly the same amount of
time to process each element. To prevent an excess number of buff-
ered elements, the pipeline uses a mechanism for limiting the number
of data elements that may be pending at any given time. This mecha-
nism is provided by the PipelineGovernor class, which is defined in
the Utilities folder of the Microsoft® Visual Studio® solution for the

Use an instance of the
unbounded_buffer<T>
class to connect stages of
a pipeline.

 89pipelines

example code. Only the first and the last stages of the pipeline need
to interact with the pipeline governor. When an item exits the pipe-
line, the last stage of the pipeline asks the governor instance to decre-
ment a counter of in-flight elements. Before placing a new element
into the pipeline, the first stage of the pipeline checks to see that the
maximum number of in-flight elements hasn’t been exceeded. If this
is the case, the pipeline stage asks the governor instance to increment
the count of in-flight elements and then places the element into the
first buffer. If the pipeline is full, the first stage waits for the governor
to signal when space in the pipeline becomes available. Internally, the
governor uses a messaging block to synchronize between the last
stage of the pipeline and the first.

After all of the agents have been created and connected to their
respective sources and targets, the code invokes the start method of
each agent.

The code calls the wait_for_all static method of the agent class
to defer cleanup until after all stages have completed processing their
inputs. In this code example, the memory for the agents is allocated
on the stack in the current context, so you can’t exit the current con-
text until the agents have finished their work.

The first stage of the pipeline is implemented by the ReadStrings
Agent class. This agent includes a sequential loop that writes to its
output buffer. Here is the code for the agent’s run method, which
specifies what the agent should do after it has started.

class ReadStringsAgent : public agent
{
 // ...
 void run()
 {
 PhraseSource source(m_seed, m_numberOfSentences);
 wstring inputPhrase;
 do
 {
 // ...
 inputPhrase = source.Next();

 // Limit whole sentences in the pipeline not phrases.
 if (phrase == L".")
 m_governor.WaitForAvailablePipelineSlot();
 asend(m_phraseOutput, inputPhrase);
 } while (inputPhrase != PhraseSource::FinishedSentinel());
 done();
 }
};

If you don’t use a governor to
limit the in-flight elements in a
pipeline, their numbers can
grow without bound. Adding
too many elements at once can
result in performance problems
or out-of-memory errors. The
governor provided in this
example is just one approach;
you may want to consider
others, depending on the
needs of your application.

Use a governor to limit the
number of in-flight elements
in the pipeline.

Call an agent’s start method
to begin execution.

Use the wait_for_all
method to allow agents
to finish processing before
proceeding in the current
context.

An agent’s run method is
invoked when the agent is
started. The agent terminates
when the run method invokes
the agent’s done method
and exits.

90 chapter seven

The sequential do loop populates the output buffer with values.
The loop is sequential in order to preserve the order of elements that
are processed, which is one of the requirements of applications that
use the Pipeline pattern. The values come from an external data
source that’s represented by the PhraseSource class. Successive val-
ues are retrieved by calling the phrase source object’s Next method.

The asend function, named for “asynchronous send,” is provided
by the Asynchronous Agents Library in the agents.h header file. It
schedules a task to propagate the data to the target messaging block.

A producer can use either the send or asend function to relay
values, which are also referred to as messages, to the target messaging
block. The send function blocks the current context until the target
messaging block accepts or rejects the message. The send function
returns true if the message was accepted and false otherwise. The
asend function does not wait for the target to accept or decline the
message before it returns. Use send when you must ensure that the
value reaches its destination before proceeding in the current context.
Use asend when you want a “fire and forget” style of message passing.

It’s possible in some cases that a message won’t be accepted by
the target messaging block. This can occur, for example, if you at-
tempt to send more than one message to a single assignment buffer.
The second message won’t be accepted by the buffer. Additionally,
messaging block constructors allow you to provide a custom filter
function that determines whether an incoming message will be ac-
cepted by that messaging block.

The first stage of the pipeline invokes the WaitForAvailable
PipelineSlot method of the governor before adding a new element.
If the pipeline is full, the governor will block until space becomes
available.

The second stage of the pipeline capitalizes words if necessary. It
consumes values from its source buffer, transforms them, and places
the transformed values into its target buffer. The following code
shows the run method of the CorrectCaseAgent class.

class CorrectCaseAgent : public agent
{
 // ...

 void run()
 {
 wstring inputPhrase;
 while(true)
 {
 inputPhrase = receive(m_phraseInput);
 if (inputPhrase == PhraseSource::FinishedSentinel())

Applications that use the
Pipeline pattern require that
elements be processed in
order. If the processing order is
not important, you may
consider using another pattern,
such as the Parallel Loop
pattern, to process your data.

Use the send or asend
function to place data into
the next stage’s input buffer.

 91pipelines

 {
 asend(m_phraseOutput, inputPhrase);
 break;
 }
 // ... transform phrase by possibly capitalizing it
 asend(m_phraseOutput, outputPhrase);
 }
 done();
 }
};

The important point of this code is that the receive function is
called on the messaging block that acts as the source. This allows the
consuming agent to wait for values to become available from the
producer of those values. The code iterates until the special end-of-
file sentinel value is seen.

Some messaging blocks allow multiple consumers and producers.
The third stage of the pipeline uses the run method of the Create

SentencesAgent class to read a sequence of phrases and combine
them into sentences. When it encounters a phrase that ends with the
period character, it knows that the end of the sentence has been
reached and writes the sentence to the target messaging buffer. The
CreateSentencesAgent class shows that it’s not always necessary for
pipeline stages to consume and produce an identical number of val-
ues.

The last stage of the pipeline, which is implemented by the
WriteSentencesAgent class, consumes values from its predecessor in
the pipeline but doesn’t produce any values. Instead, it writes to an
output file stream. Here’s the code for the agent’s run method.

class WriteSentencesAgent : public agent
{
 // ...

 void run()
 {
 wofstream fout;
 fout.open(m_outputPath);
 wstring sentence;
 while(true)
 {
 sentence = receive(m_sentenceInput);
 if (sentence == PhraseSource::FinishedSentinel())
 break;
 if (sentence == m_targetSentence)

Use the receive function
to wait for input from a
messaging block. Use a
sentinel value to indicate
shutdown.

Some messaging blocks,
including the unbounded_
buffer<T> class, support
multiple producers and
consumers.

Pipeline stages can
summarize or combine
values. There’s not always
a one-to-one correspondence
of inputs and transformed
outputs in each stage of
a pipeline.

92 chapter seven

 sentence.append(L" Success!");
 fout << m_currentSentenceCount++ << L" "
 << sentence.c_str() << endl;
 sentence.clear();
 m_governor.FreePipelineSlot();

 OutputProgress(m_currentSentenceCount);
 }
 fout.close();
 done();
 }
};

The agent reads sentences it receives and compares them to the
desired target sentence, m_targetSentence. It writes all generated
sentences to a file and flags the ones that match the target.

The agent invokes the FreePipelineSlot method of the pipeline’s
governor to signal that space in the pipeline has become available.

One reason that agents and messaging blocks make it easy to
write pipelines is that you can rely on familiar sequential techniques
such as iteration. There is some synchronization, but it’s hidden inside
the implementation of the unbounded_buffer<T> class.

(Some details of error handling, cancellation, and the collection
of performance data have been omitted from this example for clarity.
To see error handling and cancellation code, review the full Image-
Pipeline sample that’s mentioned later in this chapter.)

An Example
The online samples include an application named ImagePipeline. This
application takes a directory of JPEG images and generates thumbnail
versions, which are also post-processed with an image-enhancing fil-
ter. The resulting processed images are displayed as a slideshow, in
alphabetical file name order.

Sequential Image Processing
Each image is processed in four stages: the large color image is loaded
from a file, a small thumbnail with a picture frame is generated from
it, noise is added to the image to create a speckling effect, and then
the processed image is displayed as the next picture in the slideshow.
Figure 2 illustrates this sequence.

You can’t use a parallel loop for
this example because the
application requires that
images be processed in
sequence. Parallel loops don’t
guarantee any particular
processing order.

 93pipelines

figure 2
Sequential image
processing

Here’s the code for the sequential version.

vector<wstring> filenames = ...

int sequence = kFirstImage;

for_each_infinite(filenames.cbegin(), filenames.cend(),
 [this, &sequence, offset] (wstring file)->bool
{
 ImageInfoPtr pInfo = LoadImage(sequence++, file, offset);
 ScaleImage(pInfo, m_imageDisplaySize);
 FilterImage(pInfo, m_noiseLevel);
 DisplayImage(pInfo);
 return IsCancellationPending();
});

The four steps are performed by the LoadImage, ScaleImage,
FilterImage, and DisplayImage methods. This example is slightly
abridged for clarity. The code that deals with the capture of perfor-
mance measurements is omitted. You can refer to the online samples
to see those details.

The type ImageInfoPtr is a typedef abbreviation for shared_
ptr<ImageInfo>, a Standard Template Library (STL) shared pointer to
an ImageInfo instance. The ImageInfo class is a data record that
contains the image bitmap to be processed. Pointers are used as a way
to pass data between stages of the pipeline without the overhead of
copying the image bitmaps. Buffering ensures that no locks are
needed for this “shared” data; each ImageInfo instance is guaranteed
to be accessed by only one stage of the pipeline at a time.

The function for_each_infinite is a helper function that is de-
fined by the sample code. It invokes a function (in this case a function
object given by a lambda expression) on each element of a sequence.

Load Image

Scale Image

Filter Image

Display Image

94 chapter seven

When the loop reaches the end of the sequence, it restarts at the
beginning; however, if any invocation of the function returns true,
iteration stops. In this example, the only way to exit the loop is by
throwing an exception or when IsCancellationPending() returns
true. See “Variations” in this chapter for more information on the
cancellation model that is used in this example.

The Image Pipeline
The sequential loop can process only one image at a time; each image
must complete all four stages before work can begin on the next im-
age, and the stages themselves are sequentially linked. In fact, this
example seems intractably sequential—the top-level loop has the
restriction that images must be displayed in order (like video frames),
and within each step are substeps that require inputs from previous
substeps. You can’t display an image until after the filter is applied to
it. You can’t apply the filter until after the image is scaled to thumbnail
size. You can’t do the scaling until after the original image loads.

Even with such strong sequential constraints, the Pipeline pattern
can introduce parallelism into this example. Each image will still pass
through all four stages, in sequence, but the stages themselves can
work on different images at the same time. Figure 3 illustrates the
image pipeline.

figure 3
Image pipeline

The following code from the ImageAgentPipelineControlFlow.h
file shows the parallel version.

unbounded_buffer<ImageInfoPtr> buffer1;
unbounded_buffer<ImageInfoPtr> buffer2;
unbounded_buffer<ImageInfoPtr> buffer3;

input Load Image

Scale Image

Filter Image

Display Image

Thumbnail
images

Original
images

Filtered
images

 95pipelines

ImageScalerAgent imageScaler(..., buffer1, buffer2);
ImageFiltererAgent imageFilterer(..., buffer2, buffer3);
ImageDisplayAgent imageDisplayer(..., m_governor,
 ..., buffer3);

imageScaler.start();
imageFilterer.start();
imageDisplayer.start();

vector<wstring> filenames = ...

int sequence = kFirstImage;

for_each_infinite(filenames.cbegin(), filenames.cend(),
 [this, offset, &buffer1, &sequence] (wstring file)->bool
{
 ImageInfoPtr pInfo = this->LoadImage(sequence++, file, offset);
 if (nullptr == pInfo)
 return true;
 m_governor.WaitForAvailablePipelineSlot();
 asend(buffer1, pInfo);

 return IsCancellationPending();
});

m_governor.WaitForEmptyPipeline();
asend<ImageInfoPtr>(buffer1, nullptr);
agent* agents[3]={&imageScaler, &imageFilterer, &imageDisplayer};
agent::wait_for_all(3, agents);

There are three unbounded_buffer<T> messaging blocks that act
as buffers between the stages of the pipeline. A call to the agent’s
start method launches each processing stage.

The code iterates through the file names to be processed and uses
the LoadImage method to load each image into memory. This step is
the same as in the sequential version of the code. However, instead of
proceeding directly to the next operation, the code places a shared
pointer to the newly loaded image’s data into messaging block
buffer1, which is the input source of the ImageScalerAgent object.
The image scaling agent receives the image and begins to process it.
Meanwhile, the loop continues with its next iteration and begins load-
ing the next image.

Like the text processing example described in the previous
section of this chapter, the image processing example uses the

96 chapter seven

PipelineGovernor utility class to limit the maximum number of in-
flight elements in the pipeline.

 (Some details of error handling, cancellation, and the collection
of performance data have been omitted here for clarity. Refer to the
online sample for the complete implementation.)

Performance Characteristics
To understand the performance characteristics of the sequential and
pipelined versions, it’s useful to look at a scheduling diagram such as
Figure 4.

figure 4
Image pipeline with stages of equal speed

Figure 4 shows how the tasks in the image pipeline example exe-
cute over time. For example, the top row shows that stage 1 pro-
cesses image 1 starting at time t0 and image 2 starting at time t1. Stage
2 begins processing image 1 at time t1. Assume for a moment that the
pipeline is perfectly balanced; that is, each stage of the pipeline takes
exactly the same amount of time to do its work. Call that duration T.
Therefore, in Figure 4, t1 occurs after T units of time have elapsed, t2
after 2 x T units of time have elapsed, and so on.

If there are enough available cores to allow the pipeline’s tasks to
run in parallel, Figure 4 shows that the expected execution time for
six images in a pipeline with four stages is approximately 9 x T. In
contrast, the sequential version takes approximately 24 x T because
each of the 24 steps must be processed one after another.

The average performance improves as more images are processed.
The reason for this, as Figure 4 illustrates, is that some cores are idle
as the pipeline fills during startup and drains during shutdown. With
a large number of images, the startup and shutdown times become
relatively insignificant. The average time per image would approach T.

Be careful about copying large
amounts of data between pipe-
line stages. For example,
copying large bitmapped
images between stages will
unnecessarily consume a large
amount of memory. Instead,
pass a pointer to a data
structure.

Image
 1

Image
 2

Image
 3

Image
 3

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Stage 1: Load

Stage 2: Scale

Stage 3: Filter

Stage 4 Display

idle

idle idle

idle idle idle

idle idle

idle

idle

idle

idle

Image
 1

Image
 1

Image
 1

Image
 2

Image
 2

Image
 2

Image
 3

Image
 3

Image
 4

Image
 4

Image
 4

Image
 4

Image
5

Image
5

Image
5

Image
5

Image
 6

Image
 6

Image
 6

Image
 6

If there are enough available
cores, and if all stages of a
pipeline take an equal
amount of time, the execution
time for the pipeline as a
whole is the same as the time
for just one stage.

 97pipelines

However, there’s one catch: the assumption that all the pipeline
steps take exactly the same amount of time isn’t always true. Figure 5
shows the scheduling pattern that emerges when the filter stage takes
twice as long as the other stages.

figure 5
Image pipeline with unequal stages

When one of the stages takes 2 x T units of time while the other
stages take T units of time, you can see that it’s not possible to keep
all of the cores completely busy. On average (with a large number of
images), the time to process an image is 2 x T. In other words, when
there are enough cores for each pipeline stage, the speed of a pipeline
is approximately equal to the speed of its slowest stage.

If you run the ImagePipeline application, you can see this effect
for yourself. The ImagePipeline sample has a user interface (UI) fea-
ture that reports the average length of time in milliseconds for each
of the stages of the pipeline. It also reports the overall average length
of time that’s needed to process each image. When you run the sample
in sequential mode (by selecting the Sequential radio button), you’ll
notice that the steady-state elapsed time per image equals the sum of
all the stages. When you run in pipeline mode, the average elapsed
time per image converges to approximately the same amount of time
as slowest stage. The most efficient pipelines have stages of equal
speed. You won’t always achieve this, but it’s a worthy goal.

Variations
There are several variations to the pipeline pattern.

Asynchronous Pipelines
The pipelines that have been described so far are synchronous. Pro-
ducers and consumers are long-running tasks (implemented with the

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Stage 1: Load

Stage 2: Scale

Stage 3: Filter

Stage 4 Display

Image
 1

Image
 1

Image
 1

Image
 1

Image
2

Image
2

Image
2

Image
2

Image
3

Image
3

Image
3

Image
3

When the stages of a pipeline
don’t take the same amount
of time, the speed of a
pipeline is approximately
equal to the speed of its
slowest stage.

98 chapter seven

agent class) that internally use sequential loops to read inputs and
write outputs. Agents whose run methods contain sequential loops
are sometimes called control-flow agents. They require a dedicated
thread for each stage of the pipeline. Dedicating a thread to each
stage makes sense if the pipeline follows the recommended practice
of dividing the work into stages of equal duration. With an equal divi-
sion of work, each of the threads will be continuously busy for the
duration of the pipeline’s run. See the “Performance Characteristics”
section of this chapter for more information about the ideal allocation
of work to pipeline stages.

You can also have an asynchronous pipeline, where tasks are only
created after data becomes available. This style of implementation is
more oriented toward dataflow than control flow. The differences
between the control flow and dataflow approaches are a matter of
coding preference. However, there are some functional and perfor-
mance distinctions between the two approaches.

Asynchronous pipelines are implemented using the transformer
class and the call class. These classes are messaging blocks in the
Asynchronous Agents Library. The transformer class and call class are
queues that a producer puts data into; if there’s currently no task
processing the queue when data arrives, a new task is created to pro-
cess the queue, and it’s active as long as there’s incoming data to
process. If it ever finds that there is no more data, the task goes away.
If more data arrives, a new task starts. In other words, the transformer
class or call class is a message buffer that acts like an agent but creates
tasks as needed to process incoming data values instead of dedicating
a thread to this purpose.

Asynchronous pipelines are useful in cases where there are many
pipeline stages, and you don’t want to dedicate a thread to each stage.
They are also efficient in cases where you expect the pipeline to often
be empty (for example, while waiting for input). In these cases, trans-
former messaging blocks can improve application performance due to
better utilization of threads.

A drawback to asynchronous pipelines is that the code can be
slightly more difficult to write and debug than the agent-based style
that was shown earlier in this chapter. The asynchronous style of
pipelines may require the use of a separate task scheduler instance in
order to keep scheduling latency low. Asynchronous pipelines are
limited to pipeline stages that have an equal number of inputs and
outputs. See Appendix A for more information about task schedulers.

Here is an example of an asynchronous pipeline from the Image
AgentPipelineDataFlow class.

The transformer and call
classes are message buffers
that act like agents, but
unlike agents they don’t
require dedicated threads.
Use transformer and call
objects to implement
asynchronous pipelines.

 99pipelines

void Initialize()
{
 m_scaler = unique_ptr<transformer<ImageInfoPtr, ImageInfoPtr>>(
 new transformer<ImageInfoPtr, ImageInfoPtr>(
 [this](ImageInfoPtr pInfo)->ImageInfoPtr
 {
 this->ScaleImage(pInfo, m_imageDisplaySize);
 return pInfo;
 },
 ...
));

 m_filterer =
 unique_ptr<transformer<ImageInfoPtr, ImageInfoPtr>>(
 new transformer<ImageInfoPtr, ImageInfoPtr>(
 [this](ImageInfoPtr pInfo)->ImageInfoPtr
 {
 this->FilterImage(pInfo, m_noiseLevel);
 return pInfo;
 },
 ...
));

 m_displayer = unique_ptr<call<ImageInfoPtr>>(
 new call<ImageInfoPtr>(
 [this](ImageInfoPtr pInfo)
 {
 this->DisplayImage(pInfo);
 m_governor.FreePipelineSlot();
 },
 ...
));

 m_scaler->link_target(m_filterer.get());
 m_filterer->link_target(m_displayer.get());
}

This code creates transformer objects that receive and send
ImageInfoPtr objects. Each transformer declaration specifies a
lambda function. The lambda function takes an image pointer as its
argument, performs an operation on it, and returns the pointer to the
modified image. A transformer has a one-to-one relationship between
input and output messages. In other words, for each input value, the
transformation function must return a single corresponding output
value.

100 chapter seven

The final stage in the pipeline uses a call messaging block. Call
messaging blocks are similar to transformers but have no output mes-
sage. The m_displayer variable contains a lambda function that dis-
plays the image and updates the pipeline governor but does not pro-
duce any output.

You provide a function that performs a transformation on input
values as an argument to the transformer class’s constructor. The
transformation function is invoked by the system when inputs are
available; therefore, you should be careful that all exceptions are
handled within the transformation function.

The code creates transformer and call objects that correspond
to all stages of the pipeline except the first. The transformer’s targets
are configured by invoking the link_target method. You don’t need
to set sources because transformer and call objects are themselves a
kind of messaging block; they are their own data sources.

The code shows the run method of the dataflow-based imaging
pipeline.

Initialize();
vector<wstring> filenames = ...

int sequence = kFirstImage;
for_each_infinite(filenames.cbegin(), filenames.cend(),
 [this, offset, &sequence](wstring file)->bool
{
 ImageInfoPtr pInfo = this->LoadImage(sequence++, file, offset);
 if (nullptr == pInfo)
 return true;
 m_governor.WaitForAvailablePipelineSlot();
 asend(m_scaler.get(), pInfo);

 return IsCancellationPending();
});

// Allow subsequent stages to terminate
m_governor.WaitForEmptyPipeline();
done();

If you compare the code sample with the run method of the
agent-based image pipeline that was described in the previous section,
you can see similarities. In both, a sequential loop loads images and
sends them to a messaging block that is the data source for the image
scaling stage. In both, the number of in-flight elements is limited by a
call to a governor object.

Set targets of the trans-
former and call objects
using the link_target
method.

 101pipelines

The difference between the two approaches is seen at run time.
With the asynchronous pipeline, a new task is created whenever an
empty transformer messaging block receives a new element (by
means of the send or asend functions). This new task invokes the
transformation function (that was passed to it as the first argument
of the constructor), and then sends the return value of the transfor-
mation function to the messaging block that has been configured as
the transformer’s target.

A call messaging block behaves like a transformer messaging
block, except that no target is involved. The call block’s function is
invoked on the new input element. It does not return a value.

Canceling a Pipeline
Pipeline tasks work together to perform their work; they must also
work together when they respond to a cancellation.

A natural place to check for cancellation is at the end of the loop
that processes items from the input source of a pipeline stage. In the
image processing example, you’ll see that the ImagePipelineDlg class
that controls the user interface provides an instance of the overwrite_
buffer<bool> class. This object signals that cancellation has been
requested from the user interface. Each stage of the pipeline periodi-
cally checks the value of the overwrite buffer to see if cancellation
has been requested.

For example, the base class, AgentBase, which is used to imple-
ment the agents in the image processing example, includes the follow-
ing definitions.

class AgentBase : public agent
{
 private:
 // ...
 ISource<bool>& m_cancellationSource;

 public:
 // ...
 AgentBase(HWND dialog,
 ISource<bool>& cancellationSource, ...) :
 m_dialogWindow(dialog),
 m_cancellationSource(cancellationSource),
 ...
 {
 // ...
 }

At run time, transformer
and call messaging blocks
create tasks on demand to
process any queued items. An
active task is present only
when there are elements to
process.

102 chapter seven

 bool IsCancellationPending() const
 {
 return ... || receive(m_cancellationSource);
 }

 // ...
}

This code shows how the external environment (in this case, a
request from the application’s user interface) can signal that the
pipeline should cancel processing. The agent’s constructor includes a
parameter that takes an ISource<bool> object as a cancellation
source. The cancellation source is implemented as an instance of the
overwrite_buffer<bool> class. Its value is false unless the user
requests cancellation, and then the value of the cancellation source
becomes true. Individual pipeline operations invoke the IsCancellation
Pending() method to effect an orderly shutdown.

How you implement cancellation can affect the performance of
your application. You should be careful not to check for cancellation
within tight loops, but you should also check for cancellation often
enough to keep cancellation latency from becoming noticeable to the
user. The Image Pipeline checks for cancellation at the beginning of
each pipeline step which, depending on the speed of your computer,
corresponds to one check every few hundred milliseconds for each
agent thread. Profiling your application can help you determine if poll-
ing for cancellation is harming performance.

Handling Pipeline Exceptions
Exceptions are similar to cancellations. The difference between the
two is that when an exception occurs within one of the pipeline
stages, the tasks that execute the other stages don’t by default receive
notification that an exception has occurred elsewhere. Without such
notification, there are several ways for the application to deadlock.

The base class, AgentBase, in the image processing example uses
an instance of the overwrite_buffer<bool> class to alert all pipeline
stages when an exception in one stage has occurred. This is shown in
the following code.

class AgentBase : public agent
{
 private:
 // ...
 mutable overwrite_buffer<bool> m_shutdownPending;

 public:
 // ...

When there is an exception in
one pipeline stage, you should
cancel the other stages. If you
don’t do this, deadlock can
occur. Follow the guidelines in
this section carefully.

 103pipelines

 AgentBase(...) ...
 {
 send(m_shutdownPending, false);
 }

 void ShutdownOnError(Phases phase, const wstring& filePath,
 const exception& e) const
 {
 wostringstream message;
 message << e.what();
 SendError(phase, filePath, message.str());
 }

 void SendError(Phases phase, const wstring& filePath,
 wstring message) const
 {
 // ...
 send(m_shutdownPending, true);
 send(m_errorTarget, ErrorInfo(phase, filePath, message));
 PostMessageW(m_dialogWindow, WM_REPORTERROR, 0, 0);
 }

 bool IsCancellationPending() const
 {
 return receive(m_shutdownPending) ||
 receive(m_cancellationSource);
 }

 // ...
}

The stages of the pipeline invoke the application’s ShutdownOn
Error method if they catch an exception. Because the pipeline stages
run concurrently, the shutdown method is coded in a concurrency-
safe manner. It sends values to buffers instead of updating shared
variables directly.

The ShutdownOnError method sends the value true to the over-
write buffer m_shutdownPending to signal the other pipeline agents
of the imminent shutdown. Next, the method sends a message that
contains the error information to the unbounded buffer m_error
Target. Finally, it sends a custom Windows message, WM_REPORT
ERROR, to notify the UI that an error needs to be processed. When
the UI thread handles the Windows message, it invokes an application
callback method that gets information from the m_errorTarget buf-
fer and displays it in a dialog box. The information contains a text

104 chapter seven

description of the exception and the name of the image file that was
being processed when the exception occurred.

The IsCancellationPending method checks for two conditions:
whether shutdown is pending due to an exception, or whether there
is a user-initiated cancellation request. Two separate buffers are used
because the implementation does not reuse the signaling mechanism
provided for external cancellation. The pipeline stages can signal that
an exception has occurred, but only the user can request cancellation
of the operation. The reason is one of scope: operations other than
the pipeline might be affected by a cancellation request. Error han-
dling is intended to be local to the pipeline itself.

Load Balancing Using Multiple Producers
The unbounded_buffer<T> class allows you to read values from more
than one producer. This feature can be used to implement load bal-
ancing for pipeline stages that take longer than other stages.

The image pipeline example described earlier in this chapter re-
quires that the slideshow of thumbnail images be performed in the
same order as the input files. This is a constraint that’s common to
many pipeline scenarios, such as processing a series of video frames.
However, in the case of the image pipeline example, the filter opera-
tions on successive images are independent of each other. In this case,
you can insert an additional pipeline task. This is shown in Figure 6.

figure 6
Consuming values from
multiple producers

Figure 6 shows what happens when you add an additional filter
task. The numbers in the figure represent the sequence numbers of
the images being processed. (Recall that the images must be processed
in order in this example.) Both of the filter tasks take images produced
by the previous stage of the pipeline. The order in which they con-
sume these images is not fully determined, although from a filter’s
local point of view, no input image ever arrives out of order.

Display image

Multiplexer

Queue

Queue

Queue

Filter Filter

1, 2, 3, 4, 5, 6, 7...

1, 2, 3, 4, 5, 6, 7...

2, 3 ,6 ,7...

2, 3 ,6 ,7...

2, 3 ,6 ,7...
1, 4, 5...

1, 4, 5...

1, 4, 5...

It is sometimes possible to
implement load balancing by
increasing the number of
tasks used for a particular
pipeline stage.

 105pipelines

Each of the filter stages has its own target buffer to hold the ele-
ments that it produces. The consumer of these queues is a component
known as a multiplexer, which combines the inputs from all of the
producers. The multiplexer provided in the sample code allows its
consumer, which in this case is the display stage of the pipeline, to
receive the images in the correct sequential order. The images don’t
need to be sorted or reordered. Instead, the fact that each producer
queue is locally ordered allows the multiplexer to look for the next
value in the sequence by simultaneously monitoring the heads of all
of the producer queues.

Here’s an example to make this more concrete. Suppose that each
image has a unique sequence number that’s available by invoking a
data accessor method. The image numbers start with 1 and increase
sequentially. As Figure 6 shows, the first filter might process images
that are numbered 1, 4, and 5, while the second filter processes im-
ages with sequence numbers 2, 3, 6, and 7. Each load-balanced filter
stage collects its output images into its own queue. The two output
queues are correctly ordered (that is, no higher numbered image
comes before a lower numbered image), but there are gaps in the se-
quence of numbers. For example, if you take values from the first fil-
ter’s output queue, you get image 1, followed by image 4, followed by
image 5. Images 2 and 3 are missing because they’re found in the sec-
ond filter’s output queue.

The gaps are a problem. The next stage of the pipeline, the Dis-
play Image stage, needs to show images in order and without gaps in
the sequence. This is where the multiplexer comes in. The multiplexer
waits for input from both of the filter stage producer queues. When
an image arrives, the multiplexer looks to see if the image’s sequence
number is the next in the expected sequence. If it is, the multiplexer
passes it to the Display Image stage. If the image is not the next in the
sequence, the multiplexer holds the value in an internal look-ahead
buffer and repeats the take operation for the input queue that does
not have a look-ahead value. This algorithm allows the multiplexer to
put together the inputs from the incoming producer queues in a way
that ensures sequential order without sorting the values.

Figure 7 shows the performance benefit of doubling the number
of filter stages when the filter operation is twice as expensive as the
other pipeline stages.

106 chapter seven

figure 7
Image pipeline with load balancing

If all pipeline stages, except the filter stage, take T units of time
to process an image, and the filter stage takes 2 x T units of time, using
two filter stages and two producer queues to load balance the pipe-
line results in an overall speed of approximately T units of time per
image as the number of images grows. If you run the ImagePipeline
sample and select the Load Balanced radio button, you’ll see this ef-
fect. The speed of the pipeline (after a suitable number of images are
processed) will converge on the average time of the slowest single-
instance stage or on one-half of the average filter time, whichever is
greater.

The queue wait time of Queue 3, which is displayed on the Image-
Pipeline sample’s UI, indicates the overhead that’s introduced by wait-
ing on multiple producer queues. This is an example of how adding
overhead to a parallel computation can actually increase the overall
speed if the change also allows more efficient use of the available
cores.

Pipelines and Streams
You may have noticed that message buffers and streams have some
similarities. It’s sometimes useful to treat a message buffer as a stream,
and vice versa. For example, you may want to use a Pipeline pattern
with library methods that read and write to streams. Suppose that you
want to compress a file and then encrypt it. Both compression and
encryption are supported by native libraries, but the functions’ param-
eter lists expect streams, not messaging blocks. It’s possible to imple-
ment a stream whose underlying implementation relies on agents and
messaging blocks.

Image
 1

Image
 1

Image
 1

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Filter

Display

Load

Resize

Image
 1

Image
2

Image
2

Image
2

Image
2

Image
3

Image
3

Image
3

Image
3

Image
4

Image
4

Image
4

Image
4

Image
5

Image
5

Image
5

Image
5

Image
6

Image
6

Image
6

Image
6

 107pipelines

Anti-Patterns
There are a few things to watch out for when implementing a pipeline.

Copying Large Amounts of Data between
Pipeline Stages

If your data structures are large, you should pass pointers to data, and
not the data itself, down the pipeline. Use the Resource Acquisition is
Initialization (RAII) patterns to ensure correctness when using point-
ers. This is especially true for non-linear dataflow networks with
multiple endpoints. Only pass small data items by value.

Pipeline Stages that Are Too Small
Don’t pass very small items of work. The overhead of managing the
pipeline will override the gains from parallelism.

Forgetting to Use Message Passing for
Isolation

Don’t use shared data structures, such as locks and semaphores, to
share data between agents. Instead, pass messages.

Infinite Waits
If a pipeline task catches an exception and terminates, it will no longer
take values from its input messaging block. Depending on the logic of
your pipeline, you may find that processing is blocked indefinitely. You
can avoid this situation by using the technique that was described in
the section, “Exception Handling,” earlier in this chapter.

Unbounded Queue Growth
You should be careful to limit the number of elements that can be
pending at one time in the pipeline’s buffers. Use the techniques de-
scribed in the previous sections to enforce such a limit. Refer to the
PipelineGovernor class in the online samples for an example of how
to limit the number of in-flight items in a pipeline.

More Information
For more information about this guidance, see Best Practices in the
Asynchronous Agents Library on MSDN at http://msdn.microsoft.
com/en-us/library/ff601928.aspx.

http://msdn.microsoft.com/en-us/library/ff601928.aspx
http://msdn.microsoft.com/en-us/library/ff601928.aspx

108 chapter seven

Design Notes
When you use the Pipeline pattern to decompose a problem, you
need to consider how many pipeline stages to use. This depends on
the number of cores you expect to have available at run time as well
as the nature of the application you are trying to implement. Unlike
most of the other patterns in this book, the Pipeline pattern doesn’t
automatically scale with the number of cores. This is one of its limita-
tions. (Of course, in some cases you can introduce additional parallel-
ism within a pipeline stage itself.)

More stages work well unless the overhead of adding and remov-
ing elements from the buffers becomes significant. This is usually only
a problem for stages that perform very small amounts of work.

To achieve a high degree of parallelism, you need to be careful
that all the stages in the pipeline take approximately the same amount
of time to perform their work. If they don’t, the pipeline will be gated
by the slowest component.

The number of in-flight elements in the pipeline is also important
for overall performance. If you limit your pipelines to contain only
very small numbers of data values, you may find that not all stages of
your pipeline are fully occupied with work, especially if data elements
take a variable amount of processing time. Allowing the pipeline buf-
fers to hold more data elements accommodates the variability in
processing time. The allowed number of in-flight data elements can
also depend on the size of the objects being processed. You would
probably want to use fewer entries if each element contained an ob-
ject such as a large bitmapped image that required a great deal of
memory.

In general, there should be enough buffering to absorb variability
in the pipeline flow, but no more. Use the Visual Studio Concurrency
Visualization view to understand the throughput characteristics of
the pipeline and modify the pipeline capacity to minimize the amount
of time each stage is blocked by I/O waits.

 109pipelines

Related Patterns
The Pipeline pattern has much in common with the concepts of pipes
and filters that are implemented in operating systems. Pipelines are
also related to streaming concepts.

Pipelines are expressions of a general technique known as pro-
ducer/consumer. The pipeline is composed of a series of producer/
consumers, each one depending on the output of its predecessor.

Exercises
1. Write your own pipeline by modifying the example shown in

the first section of this chapter.
2. Execute the code with the Concurrency Visualizer. View and

interpret the results.

Further Reading
Multiplexing inputs from multiple producer queues is covered by
Campbell. A description of the pipes and filters pattern used by com-
mand shells for operating systems is described by Buschmann.

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M.
Stal. Pattern-Oriented Software Architecture Volume 1: A System
of Patterns. Wiley, 1996.

Campbell, C., M. Veanes, J. Huo, and A. Petrenko. “Multiplexing
of Partially Ordered Events.” TestCom 2005, Springer Verlag, June
2005. http://research.microsoft.com/apps/pubs/default.
aspx?id=77808.

111

The Task Scheduler and
Resource Manager

Appendix A

The Parallel Patterns Library (PPL) and Asynchronous Agents Library
rely on features of a lower-level component known as the Concur-
rency Runtime. The Concurrency Runtime contains a task scheduler
and a resource manager. Both are documented on MSDN®, but in this
appendix you’ll find an overview of their functionality and learn of
some of the motivations that shaped their designs.

The Concurrency Runtime enables you to declare sources of po-
tential parallelism in your applications. It is designed both to use exist-
ing parallel hardware architectures and to take advantage of future
advances in those architectures. In other words, your applications will
continue to run efficiently as platforms evolve. The task scheduler
determines where and when to run your application’s tasks, and it
uses cooperative scheduling to provide load balancing across cores.
The resource manager prevents the different parts of your applica-
tion, as well as any libraries they use, from contending for parallel
computing resources. It also helps to ensure the best use of resources
such as hardware caches. The problems addressed by the Concurrency
Runtime are far from trivial. It uses advanced algorithms and benefits
from many person-years of experience to optimize parallel perfor-
mance on multicore architectures.

Figure 1 illustrates how the components in the Concurrency
namespace relate to each other. (These components are shown in
shaded blue.)

112 appendix a

figure 1
Relationships among
libraries and run-time
components

The following table lists the header files for each component of
the Concurrency Runtime. The information in these files gives you a
convenient way to learn the capabilities of a component.

Component C++ Header File

Parallel Patterns Library ppl.h

Asynchronous Agents Library agent.h

Data structures concurrent_vector.h
concurrent_queue.h

Task scheduler concrt.h

Resource manager concrtrm.h

The Concurrency Runtime is a user-mode layer that sits on top of
the operating system. It can manage large numbers of cores, some-
thing that is not feasible for an application to do by itself. The Con-
currency Runtime is part of the C++ runtime that is included in Micro-
soft® Visual Studio® 2010 development system. No additional
libraries are required.

The Concurrency Runtime abstracts some of the operating sys-
tem’s processor management APIs and provides implementations that
automatically use the features of each version of the operating sys-
tem. For example, on a 64-bit version of Microsoft Windows® 7 op-
erating system, you can scale your application to 256 cores while au-
tomatically assigning tasks to cores in a way that respects Non-Uniform
Memory Architecture (NUMA) boundaries. (This would not be easy
to program.) This same application will run on Windows Vista®, which
supports 64 cores.

Application

D
at

a
st

ru
ct

ur
es

Parallel
Patterns
Library
(PPL)

Asynchronous
Agents
Library

Task scheduler

Resource manager

Operating system

 113the task scheduler and resource manager

Note: All class names and global function names mentioned in this
appendix are from the Concurrency namespace, unless otherwise
specified.

Resource Manager
The resource manager allocates processor cores among the applica-
tion’s task schedulers and ensures that related tasks execute as “lo-
cally” as possible. Local execution includes taking advantage of the
memory access characteristics of NUMA nodes and hardware caches.
The resource manager is a singleton instance of the Resource
Manager class.

Most programmers won’t invoke the resource manager directly,
but it’s helpful to understand how the resource manager works.

Why It’s Needed
The resource manager is especially helpful when there are multiple
scheduler instances within a single application. In these situations, the
resource manager allows task scheduling components, including the
Scheduler class as well as components written by third parties, to
coexist without contending for cores. For example, if your application
has two schedulers, both with default scheduler policies, the resource
manager initially divides the available cores on your computer equally
between them. The resource manager makes the division of cores
along NUMA node boundaries or processor packages, if possible.

The resource manager is also helpful when an application uses
parallel libraries from more than one vendor. The resource manager
allows these libraries to cooperatively share resources. Microsoft en-
courages vendors who write libraries for concurrency to build their
components on top of the Concurrency Runtime so that all the librar-
ies can take advantage of this feature.

The resource manager also provides dynamic resource manage-
ment, which adjusts the level of concurrency across components
based on core utilization.

How Resource Management Works
The main abstraction of the resource manager is a virtual processor
object that is provided by the IVirtualProcessorRoot class. You can
think of a virtual processor object as a token that grants a scheduler
the right to start (or resume) one thread. The core that runs the thread
is chosen based on a processor affinity mask that is specified by the
virtual processor object. A processor affinity mask is a bit mask that
specifies which core(s) the operating system can use to run a particu-
lar thread. Cores mean all hardware-supported execution resources,

The resource manager is a
singleton instance of the
ResourceManager class.
It allocates processor
resources to the application’s
task schedulers and helps
execute tasks as “locally”
as possible.

114 appendix a

Cores

Computer
Processor nodes

Resource
manager

Virtual
processor
objects for
Scheduler 2

Virtual
processor
objects for
Scheduler 1

including hardware threads of simultaneous multithreading (“hyper-
threading”) architectures.

You can think of a virtual processor object as similar to a concert
ticket that has a section assignment but no specific seat number.
When the ticket is eventually presented at the door it gives the
bearer the right to sit in any seat in the designated section of the
concert hall. Similarly, the virtual processor object is a “ticket” that
will allow a worker thread to run on any core that meets the require-
ments of the processor affinity mask.

Note: To manage threads, the resource manager provides instances
of the IThreadProxy class, which a scheduling component should
associate with objects that provide the IExecutionContext
interface.

The following diagram shows how this works.

figure 2
Virtual processor objects

Figure 2 shows that the cores of the computer are grouped into
processor packages and NUMA nodes. The resource manager knows
how the NUMA nodes and processor packages are laid out in the
computer. For a particular process, several scheduler objects ask the
resource manager for specific numbers of virtual processor objects
that will be used by their worker threads. Some schedulers may want
a higher degree of concurrency than other schedulers. Some schedul-
ers want as much concurrency as possible.

The resource manager attempts to satisfy the requests of all
scheduler objects, given the fact that there are a fixed number of
cores on the computer. In the end, the resource manager gives some
virtual processor objects to each scheduler. The virtual processor
objects do not issue particular core IDs; instead they specify a proces-
sor node, which is an abstraction used by the resource manager to
represent NUMA nodes, processor packages or other kinds of

A virtual processor object
grants a scheduler permission
to start (or resume) one
thread. The core that executes
the thread is chosen based on
a specific processor affinity
mask.

A processor node is an
abstraction created by the
resource manager to represent
NUMA nodes, processor
packages or (potentially)
other kinds of groupings.

 115the task scheduler and resource manager

groupings of execution resources. In any case, each virtual processor
object represents the right for one worker thread to run on that pro-
cessor node, even though the particular core will be chosen later.

The resource manager maps processor nodes to a set of cores.
After a scheduler receives its virtual processor objects, which worker
thread will use a particular virtual processor object is still unknown.
As it runs, the scheduler associates (and disassociates) worker threads
with virtual processor objects. At any given moment, there is one
virtual processor object per running thread. The virtual processor
object uses the processor affinity mask to determine which cores can
be selected by the operating system. The operating system decides
the specific core that will be assigned to a worker thread. The worker
thread runs on the chosen core.

After the thread begins to run, the virtual processor object can’t
be reused with another thread unless a cooperative context switch oc-
curs. A cooperative context switch happens when a worker thread
becomes blocked as a result of a cooperative blocking operation. The
blocked thread is disassociated from its virtual processor object, and
another worker thread becomes associated with the virtual processor
object and is allowed to run. If a scheduler wants more threads to run
at the same time, the scheduler must ask the resource manager for
additional virtual processor objects. The number of virtual processor
objects assigned to a scheduler equals that scheduler’s level of concur-
rency, or the number of worker threads that can run at the same time.
The scheduler is free to create as many threads as it wants, but it can
only allow as many threads as it has virtual processor objects to run at
any given time.

The net effect of the interaction between a scheduler and its
virtual processor objects is to fix the scheduler’s level of concurrency
and to cause its threads to run on specific cores.

Dynamic Resource Management
The resource manager uses dynamic resource management to help
schedulers cooperate in their use of cores. At run time, the resource
manager dynamically monitors the use of execution resources. It
knows when virtual processor objects are idle and when they are busy.
If it detects use patterns that indicate consistent underutilization of
a core, the resource manager might reassign that core to another
scheduler. Dynamic resource management only occurs when there are
multiple schedulers.

Techniques such as reassigning cores allow the resource manager
to place execution resources where they are most needed. As a con-
sequence, you may notice that the allocation of virtual processor
objects changes over time.

116 appendix a

Oversubscribing Cores
If a set of cores has more virtual processor objects than the number
of cores (where all hardware threads are considered to be cores), the
cores are said to be oversubscribed. Normally, the default scheduling
policy partitions the available cores without creating more virtual
processor objects than there are cores on the computer. In other
words, the resource manager avoids oversubscription. When cores are
busy with compute-intensive operations, oversubscription results in
contention for system caches and reduced throughput. However,
there are exceptions to this rule.

For example, the resource manager deliberately uses oversubscrip-
tion if the aggregate minimum level of concurrency required by all of
the application’s schedulers exceeds the number of cores. Another
situation is when the scheduling policy option TargetOversubscription
Factor is set to a value greater than one. This policy allows a sched-
uler to ask for oversubscribed cores at startup.

A third example is when a scheduler requests additional concur-
rency (in the form of additional virtual processor objects) from the
resource manager as the program runs. Finally, a special case arises
when the resource manager’s dynamic resource management feature
observes that a scheduler is underutilizing one of its cores. In this case
the resource manager might temporarily oversubscribe the underuti-
lized core with work from other schedulers without removing the
corresponding virtual processor object from the first scheduler.

Querying the Environment
While it is unlikely that you will need to program directly against the
resource manager, there are a few functions in the concrtrm.h header
file that you may find useful. These functions retrieve information
about the operating environment. The GetProcessorCount and Get
ProcessorNodeCount functions are particularly useful. They return
the number of cores (counting all hardware threads as cores) and the
number of processor nodes on your computer. If you see that the
number of nodes is greater than one, you can deduce that you are
on a machine that has some concept of locality for cores, such as a
machine with NUMA or multiple processor packages. The exact
meaning of a “processor node” is determined by the resource manager
and depends on what kind of computer you have.

Kinds of Tasks
Before discussing the task scheduler it’s important that you under-
stand that there are two types of tasks in the Concurrency Runtime.
The task scheduler provides its own task abstraction, known as light-
weight task, which should not be confused with the tasks provided by
PPL.

 117the task scheduler and resource manager

Lightweight Tasks
The primary interface to lightweight tasks is the ScheduleTask
method of the ScheduleGroup class. The ScheduleTask method al-
lows you to add a new, pending lightweight task to the queue of a
particular schedule group. You can also invoke the Current
Scheduler::ScheduleTask static method if you want the runtime to
choose a schedule group for you. Schedulers and schedule groups are
described in the “Task Schedulers” section of this appendix.

You can use lightweight tasks when you don’t need any of the
cancellation, exception handling, or task-wait features of PPL tasks. If
you need to wait for a lightweight task to finish, you must implement
the wait with lower-level synchronization primitives. If you want to
handle exceptions, you need to use STL’s exception_ptr class and
then rethrow captured exceptions at a time of your choosing.

The Concurrency Runtime’s interface to lightweight tasks is
similar to the Windows thread pool in that it only uses function point-
ers for its work functions. However, the Concurrency Runtime’s
sample pack includes, as a convenience, a functor-based way to schedule
lightweight tasks that uses wrapper classes named task_scheduler
and schedule_group. If you use lightweight tasks, you will probably
find the sample pack’s interface to be a more convenient approach.

Most programmers won’t use lightweight tasks. Instead, they will
use PPL to create tasks. Nonetheless, lightweight tasks can be useful
for programming new control structures. Also, you can use lightweight
tasks to migrate from threads to tasks. For example, if you have an
existing application that uses calls to Windows APIs to create threads,
and you want the application to use a task scheduler object as a better
thread pool, then you may want to investigate lightweight tasks.
However, it’s recommended that most programmers should use PPL
for task-based applications.

The Asynchronous Agents Library uses lightweight tasks to imple-
ment the messaging block and agent classes that are described in
Chapter 7, “Pipelines.”

Tasks Created Using PPL
When you use any of the features of PPL to create tasks, such as the
parallel_for, parallel_for_each or parallel_invoke functions, or
the task_group::run or structured_task_group::run methods, you
create a kind of task that is distinct from a lightweight task. This
appendix refers to such tasks as PPL tasks.

Do not confuse lightweight
tasks provided by the
Concurrency Runtime with
tasks in PPL. Most program-
mers will not create light-
weight tasks directly.

Lightweight tasks are used
internally by the messaging
block and agent classes of
the Asynchronous Agents
Library.

118 appendix a

Task Schedulers
The Concurrency Runtime’s task scheduler is similar to a thread

pool. In fact, you can think of the task scheduler as a special type of
thread pool that is very good at optimizing large numbers of fine-
grained work requests. Unlike many thread pool implementations, the
task scheduler does not automatically create a new worker thread
when a request arrives and all existing threads are busy. Instead, the
scheduler queues the new task and executes it when processor re-
sources become available. The goal is to keep all of the processor
cores as busy as possible while minimizing the number of context
switches in the operating system and maximizing the effectiveness of
hardware caches.

Task scheduling is implemented by the Scheduler class. Scheduler
instances use worker threads that are associated with the virtual pro-
cessor objects provided by the resource manager whenever the
worker threads are running. There is at most one running thread per
virtual processor object granted by the resource manager.

Instances of the Context class represent the threads known to a
scheduler instance, along with additional per-thread data structures
that are maintained by the scheduler for its own use.

Managing Task Schedulers
The Concurrency Runtime provides one default scheduler per process.
The default scheduler is created when you first make calls into the
Concurrency Runtime. You can set scheduler policy for the current
context by creating instances of the Scheduler class and attaching
them to the currently executing thread.

Alternatively, you can invoke the SetDefaultSchedulerPolicy
static method of the Scheduler class at the beginning of your applica-
tion, before the default scheduler has been created, to specify how
the default scheduler will work.

If your application uses multiple scheduler objects, you might
want to construct and attach all of the schedulers at startup. Allocat-
ing schedulers at the outset avoids the overhead that occurs when
schedulers are created while work is in progress. This overhead in-
cludes reallocating system resources and reassociating threads to
processor nodes. For example, if you have one scheduler that does a
parallel_for loop, it will, by default, use all cores on your machine. If
halfway through the run of the parallel_for operation you add a
scheduler for use by agent-based code, the first scheduler may be
asked to reduce its concurrency as it runs. It’s more efficient to allo-
cate the division of cores between the two schedulers at the start of
the application.

Task schedulers represent a
special kind of thread pool
that is optimized for fine-
grained tasks.

There is one default scheduler
per process, but you can
create additional schedulers
per context. You can also set
the scheduling policy of the
default scheduler.

 119the task scheduler and resource manager

Creating and Attaching a Task Scheduler
Use the factory method Scheduler::Create to instantiate a scheduler
object. The method accepts a reference to a SchedulerPolicy object
as its argument. This object contains configuration settings for your
scheduler. After creating the scheduler, you attach it to the current
context to activate it. The following code is an example of how to do
this.

#include <concrt.h>
#include <concrtrm.h>
#include <stdio.h>
#include <windows.h>
#include <iostream>

using namespace ::Concurrency;
using namespace ::std;

int main()
{
 SchedulerPolicy myPolicy(2, MinConcurrency, 2,
 MaxConcurrency, 2);

 Scheduler* myScheduler = Scheduler::Create(myPolicy);

 cout << "My scheduler ID: " << myScheduler->Id() << endl;

 cout << "Default scheduler ID: "
 << CurrentScheduler::Get()->Id() << endl;

 myScheduler->Attach();

 cout << "Current scheduler ID: "
 << CurrentScheduler::Get()->Id() << endl;

The Scheduler::Attach method sets the scheduler that will be
used by the current context. The new scheduler in this example alerts
the resource manager that it requires a concurrency level of two. You
must call the Attach method in the thread whose scheduler you want
to replace. The CurrentScheduler class’s Get method returns the cur-
rent context’s currently attached scheduler object, or the default
scheduler if no user-provided scheduler was previously attached to
the current context.

As a convenience, you can use the Create method of the Current
Scheduler class to instantiate a new scheduler object and attach it to
the current context with a single call.

120 appendix a

Detaching a Task Scheduler
The Detach method of the CurrentScheduler class reverses the ef-
fect of a previous call to the Scheduler::Attach method. Attaching
and detaching schedulers are stack-based operations. If you call
Detach, the current scheduler is popped from the stack and the
previous scheduler is restored as the current scheduler. The following
code shows how to use the Detach method.

 CurrentScheduler::Detach();

 cout << "Current scheduler ID: "
 << Concurrency::CurrentScheduler::Get()->Id() << endl;

Destroying a Task Scheduler
A scheduler object has reference/release semantics that are indepen-
dent of the attach/detach process. Attach/detach logically contains a
reference/release pair.

You can detach the most recently attached scheduler at any time.
The runtime will not destroy the detached scheduler until all refer-
ences to it have been released and all of its tasks have completed. If
you need to be notified when a detached scheduler is eventually de-
stroyed, create a Windows event and register it with the scheduler.
The correct shutdown sequence for a scheduler object is shown in the
following code.

HANDLE schedulerShutdownEvent =
 CreateEvent(NULL, TRUE, FALSE, L"Shutdown Scheduler");
myScheduler->RegisterShutdownEvent(schedulerShutdownEvent);
myScheduler->Release();
WaitForSingleObject(schedulerShutdownEvent, INFINITE);

This code blocks the current context until all other users of the
scheduler are also finished. Waiting for the scheduler to shut down
might be necessary before unloading a DLL, for example.

Scenarios for Using Multiple Task Schedulers
Multiple task schedulers can be helpful when you need quality-of-
service guarantees. They can also provide a better user experience by
ensuring that the application is responsive even if long-running paral-
lel workloads are executing. For example, you can use specific sched-
uler instances to reserve cores for high-priority activities such as audio
processing.

Message passing is another example of a high-priority activity. If
your cores are very busy and message delivery does not have high
priority, tasks that depend on receiving data from messaging buffers
might not be run, which could cause bugs. A solution is to send mes-

 121the task scheduler and resource manager

sages on a dedicated “message propagation” scheduler. For example,
if you wanted to guarantee that a cancellation message gets processed
immediately, you could create a new scheduler for it.

Another case is when you’re running on a multi-node host in a
server farm. For performance reasons, you may not want parallel loops
to span multiple processor nodes. Using multiple schedulers allows
you to limit your parallel loops to a single processor node.

Multiple task schedulers can separate UI work from background
processing. You can have a foreground scheduler in the UI that does
some work when you click a button and a background scheduler for
work that’s ongoing.

Implementing a Custom Scheduling Component
The Scheduler class is not extensible. You cannot use it as a base class.
This means that you must use the runtime’s Scheduler class for sched-
uling work that is created with PPL and the Asynchronous Agents
Library.

However, if you are writing your own parallel programming library,
you can create your own scheduling component by implementing the
IScheduler and IExecutionContext interfaces.

The Scheduling Algorithm
The Scheduler class uses a queue-based approach to run tasks. New
tasks wait in queues until the scheduler assigns processing resources
to them in cooperation with the resource manager and the operating
system. Queues emphasize overall throughput at the cost of schedul-
ing fairness for individual tasks. The motivating idea is that a set of
related tasks represents the decomposition of a larger problem.
Therefore, solving the overall problem in the fastest possible way is
the primary goal, even if some tasks have to wait longer than others
to run.

You can contrast the queue-based approach to scheduling with
preemptive multitasking that gives time slices to all running threads.
Multitasking emphasizes the responsiveness of each thread.

The material in this section can help you understand the perfor-
mance characteristics that you’ll observe when you use the runtime’s
Scheduler class. Be aware that the scheduling algorithm described
here represents an implementation choice. Future versions of the
Concurrency Runtime might optimize task execution differently.

Schedule Groups
A scheduler object has more than one queue of pending tasks. Pending
tasks are tasks that haven’t started to run. Internally, the Scheduler
class uses instances of the ScheduleGroup helper class for its queues
of pending tasks. For example, a scheduler instance may want sepa-
rate queues based on the division of cores into processor nodes.

Queue-based scheduling
emphasizes overall through-
put at the cost of “ fairness”
for individual tasks.

The behind-the-scenes
behavior described in this
section applies to Visual Studio
2010 SP1. There’s no guarantee
that future releases of the
runtime won’t behave
differently.

122 appendix a

When you add a task to the scheduler, you normally allow the
scheduler to choose a schedule group for that task.

The scheduler object maintains several kinds of queues for each
of its schedule groups. This is illustrated in Figure 3.

figure 3
Data structures of schedule groups

Each schedule group contains one queue for lightweight tasks
(LWTs). Each schedule group also contains multiple work-stealing
queues of pending PPL tasks. There is one work-stealing queue of
pending PPL tasks in the schedule group for each execution context.
A work-stealing queue is a mutable list with a private end accessible
to a single context and a public end that can be accessed by many
contexts. Entries in a work-stealing queue can be added or removed
from the private (or local) end with minimal synchronization. Entries
can also be added or removed from the public (or shared) end but
with higher synchronization costs. Only the context that the schedule
group has associated with the work-stealing queue can add to and
remove entries from the private end.

Each schedule group contains one main queue of runnable con-
texts and can also maintain a cache of runnable contexts for each
virtual processor object. A runnable context is a thread that was previ-
ously interrupted by one of the cooperative blocking operations, but
is now unblocked and ready to resume its work.

Adding Tasks
A lightweight task is implicitly created by messaging blocks’ opera-
tions and by starting an agent instance. You can also use the Schedule
Task method of the Scheduler class, the CurrentScheduler class or

LWT
queue
(FIFO)

Work−stealing
queues

per context

Queue of
runnable
contexts
(FIFO)

...

...

...
Cache of
runnable

contexts per
virtual
processor

object (LIFO)

private
end end

Shared

Schedule Group 1

Schedule Group 2

 123the task scheduler and resource manager

the ScheduleGroup class to create a lightweight task. When you
create a new lightweight task, the task is added to the schedule group
you specify or to a schedule group chosen by the scheduler. The new
task is added to the end of the schedule group’s queue of lightweight
tasks.

When you create a PPL task, the new task is added to the private
end of the work-stealing queue of the current context. The current
context may correspond to a thread that is not one of the scheduler’s
worker threads. In this case, the scheduler associates a work-stealing
queue with the current context in one of its schedule groups.

Use the Attach and Detach methods that were described in the
“Managing Task Schedulers” section of this appendix to control which
scheduler is the current scheduler for a given context.

Running Tasks
A virtual processor object can become available in one of two ways.
One way is that the thread that is currently running on the virtual
processor object becomes blocked by one of the cooperative block-
ing operations. The other way is that the thread completes its current
task. When a virtual processor object becomes ready to accept new
work, the scheduler uses heuristics to prioritize the possible next
steps.

As a general rule, the scheduler tries to resume runnable contexts
in preference to starting new pending tasks. A runnable context is a
worker thread that previously ran and became blocked by one of the
cooperative blocking operations, but is now unblocked and ready to
be resumed. The scheduler takes runnable contexts first from the
virtual processor object’s local cache of runnable contexts in last in
first out (LIFO) order and then from the queue of runnable contexts
in the current schedule group in first in first out (FIFO) order. It may
also look for runnable contexts in the caches of other virtual proces-
sor objects and schedule groups. The LIFO cache of runnable con-
texts improves the likelihood that the data in hardware caches will be
relevant. The most recently unblocked context is resumed first, and it
is run on the same virtual processor object as the operation that
caused the context to become unblocked. You can configure the size
of the cache of unblocked tasks with the LocalContextCacheSize
schedule policy key.

If there are no runnable contexts, the scheduler looks for light-
weight tasks in the schedule group’s queue of lightweight tasks. It
takes the next available lightweight task in FIFO order. Lightweight
tasks are usually used to implement message passing and are therefore
considered to be of higher priority than PPL tasks.

If there are no lightweight tasks pending in the current schedule
group, the scheduler looks for tasks from the public ends of the work-

124 appendix a

stealing queues of the current schedule group. It looks for tasks in
work-stealing queues first within the queues associated with the
current processor node, and then across processor nodes.

A special situation arises when a thread enters the task_
group::wait or the structured_task_group::wait methods. Normally,
wait is considered to be one of the cooperative blocking operations.
However, if the call to wait requires the current thread to wait for
pending tasks that are in the current context’s work-stealing queue,
then the current context will not block immediately. Instead, PPL re-
uses the current context to run the locally queued tasks using an op-
timization known as inline execution. The pending tasks are taken
from the private end of the current context’s work-stealing queue in
LIFO order.

The scheduler is unaware of inline execution because the thread
that performs inline execution will not become cooperatively blocked
by the wait method until there are no more tasks in the local work-
stealing queue that would satisfy the wait condition. Of course, if
inline execution has satisfied the wait condition, the wait method will
return and the current thread will continue running its top-level task.
For more information about inlining, see “Tasks That Are Run Inline”
in this appendix.

The Scheduler class implements two variations of its scheduling
algorithm, which can be selected by setting the SchedulingProtocol
scheduling policy key. The two scheduling approaches are enhanced
locality mode (the default) and forward progress mode.

Enhanced Locality Mode
In enhanced locality mode, the scheduler tries to execute related tasks
in batches. The scheduler attempts to process all pending tasks of the
first schedule group until the group contains no more tasks to run.
Then, the scheduler moves on to the pending tasks of the next sched-
ule group, and so on, eventually starting over with the first schedule
group. This order is not strict; there are also heuristics to avoid thread
starvation that can occur if a task that would unblock a currently
blocked task is not allowed to run. These heuristics may periodically
give preference to tasks of other schedule groups. This can occur if
the current schedule group has many pending tasks.

In enhanced locality mode the runtime assumes that tasks in a
schedule group share memory. In order to derive the most benefit
from hardware caches, the scheduler attempts to run the tasks of a
schedule group as close together chronologically as possible, even if it
means that tasks that were added earlier to some other schedule
group experience delays. For example, if tasks 1, 2, and 3 are created
and assigned to schedule groups A, B, and A, respectively, and the
scheduler starts processing schedule group A, then it is likely that task

Enhanced locality scheduling
processes schedule groups in
batches so that related tasks
execute together.

 125the task scheduler and resource manager

Forward progress scheduling
rotates through schedule
groups, executing one task
from each.

3 will be run before task 2, even though task 3 was created after task
2. In other words, the scheduler attempts to run all tasks of schedule
group A (which contains tasks 1 and 3) before proceeding to schedule
group B (which contains task 2).

Due to the processor node affinity provided by the division into
schedule groups, the tasks will be spatially close as well. When the
next schedule group’s turn eventually comes, all of its tasks will be
executed the same way.

Forward Progress Mode
In forward progress mode, the scheduler executes one pending task
from each of its schedule groups in round-robin fashion. Unlike en-
hanced locality scheduling, there are no caches of runnable contexts
per virtual processor object; however, runnable contexts are priori-
tized over pending tasks.

With forward progress scheduling, the runtime assumes that
keeping each schedule group from stalling matters more than running
related tasks as a batch. This might occur, for example, in discrete
event simulation scenarios where you want all schedule groups to
progress by one step before updating a GUI. Forward progress sched-
uling is a less commonly used approach for task-based applications.

Task Execution Order
The scheduler does not make guarantees about the order in which
queued tasks will be executed, and your application should make no
assumptions about when a particular task will be allowed to run. In
the current implementation, pending tasks are generally processed in
FIFO order unless they are inlined. However, given the interaction of
the various queues of pending tasks and the optional round-robin or
batch-oriented processing of schedule groups, it’s not possible to
predict the order of execution. If you need tasks to be run in a par-
ticular order, then you should use one of the task coordination tech-
niques described in this book. Examples include the task_group::wait
method and the receive function of messaging blocks.

Tasks That Are Run Inline
As was mentioned earlier in the section on “Running Tasks,” it is pos-
sible that the scheduler will run a task in the thread context of an-
other task that is waiting for that task to complete. For example, if
you invoke a task group’s wait method from within a task context, the
runtime knows that the current context will be idle until the tasks of
that task group have completed. The runtime can therefore optimize
its use of worker threads by reusing the blocked thread to run one or
more of the pending tasks. Inlining is a good example of potential
parallelism: when dependent tasks run on a machine with many cores,

126 appendix a

If you get the context object
of a thread that is not one of
the scheduler’s worker threads,
be aware that the behavior of
some context-dependent
operations will be different
than would be the case for the
scheduler’s worker threads.

they run in parallel. On a machine with just one available core, they
act like sequential function calls.

Inlining allows you to avoid deadlock due to thread starvation.
Unlike other kinds of cooperative blocking operations, the task_
group::wait function provides a hint to the scheduler about which
pending tasks will unblock the current context. Inlined execution is a
good way to elevate the scheduling priority of tasks that will unblock
other tasks.
Only tasks that were created by the current context are eligible to be
inlined when you invoke their task group’s wait method.

You can provide an explicit hint that inlining should occur by call-
ing the task_group::run_and_wait method. This method creates a
new task and immediately processes it with inline execution.

Using Contexts to Communicate with the
Scheduler

The Context class allows you to communicate with the task
scheduler. The context object that corresponds to the currently
executing thread can be accessed by invoking the static method
Context::CurrentContext.

The CurrentContext method can be called from application
threads as well as from a task scheduler’s worker threads. The behav-
ior of the context object’s methods may differ, depending on wheth-
er the current context object corresponds to a worker thread or
whether it is an application thread. For example, if you call a coopera-
tive blocking operation from within an application thread (that is, a
thread that is not one of the current scheduler’s worker threads), the
thread will block without allowing one of the scheduler’s runnable
contexts to resume as is the case when a worker thread blocks.

Debugging Information
You can get access to useful debugging information from contexts,
such as the integer ID for the current context, the schedule group ID
and the virtual processor object ID. The information is provided by
the static methods Id, ScheduleGroupId, and VirtualProcessorId of
the Context class.

Querying for Cancellation
You can detect that a task is being cancelled even if you don’t have a
reference to its task group object by invoking the Context class’s
static IsCurrentTaskCollectionCanceling method. Checking for can-
cellation is useful if you are about to start a long-running operation.

 127the task scheduler and resource manager

Interface to Cooperative Blocking
A task can communicate with the scheduler by invoking one of the
cooperative blocking operations that were described in Chapter 3,
“Parallel Tasks.” See “Coordinating Tasks with Cooperative Blocking”
in Chapter 3 for a list of the built-in operations.

The Context class provides an additional, lower-level interface to
cooperative blocking through its Block and Unblock methods. PPL
and the Asynchronous Agents Library use the Block and Unblock
methods to implement all of their cooperative blocking operations.

You can use Block and Unblock to coordinate your tasks from
within custom synchronization primitives. If you program your own
parallel synchronization primitives with the Block and Unblock meth-
ods, you must be very careful not to disrupt the runtime’s internal use
of these operations. Block and Unblock are not nesting operations,
but the order of operations is flexible. If Unblock precedes Block, the
Block operation is ignored. You can unintentionally interact with one
of PPL’s internal operations by allowing an out-of-order Unblock call.
For example, an out-of-order call to Unblock followed by a call to
PPL’s critical_section::lock method can, in certain interleavings, cause
a critical section not to be observed.

Block and Unblock are low-level methods. Most programmers
will want to use the higher-level cooperative blocking operations.

Waiting
The Concurrency namespace includes a global wait function that al-
lows you to suspend the current context with the guarantee that the
suspended task will not be resumed until a time interval that is pro-
vided as an argument to the wait function has passed. It is possible,
due to the queue-oriented scheduling approach used by the task
scheduler, that a task will be suspended for a time period that is much
longer than the specified wait period.

The Yield method of the Context class allows a pending light-
weight task to run, or if there are no lightweight tasks, it allows one
of the runnable contexts to resume. If either of these two conditions
is satisfied, then the current worker thread is added to the queue of
runnable contexts; otherwise, the Yield method is a no-op. The Yield
method is also a no-op when called from a thread that is not a worker
thread of a scheduler.

The Caching Suballocator
You can allocate memory from a memory cache that is local to the
current context. This is useful when a task needs to create many small
temporary objects on the heap, and you expect that more than one
task might create objects of the same size.

Most programmers should
use the higher-level built-in
task coordination mechanisms
of PPL and messaging blocks
rather than implementing
their own synchronization
primitives.

If you use the Block and
Unblock methods you must be
very careful to avoid situations
that could unexpectedly
interact with PPL’s internal
use of the methods. Most
programmers will not need
to use Block and Unblock
to implement their own
synchronization primitives.

Calling the Yield method in
a tight loop while polling for
some condition can cause
poor performance. Instead,
wait for an event.

128 appendix a

The synchronization overhead of coordinating memory allocation
and deallocation for a global pool of memory can be a significant
source of overhead for a parallel application. The Concurrency Run-
time provides a thread-private caching suballocator that allows you to
allocate and deallocate temporary working storage within a task and
potentially to use fewer locks or memory barrier operations than you
would if you used the global memory pool. Allocation requests only
incur synchronization overhead at the beginning of the run when new
memory must be added to the cache.

The caching suballocator is meant for situations where there is
frequent allocation of temporary memory within tasks. Invoke its
functions only from within a running task. The caching suballocator
does not improve performance in all scenarios, and it does not free its
memory. Refer to MSDN for more information about its use.

Long-Running I/O Tasks
By default, the scheduler assumes that its tasks are computationally
intensive. Dynamic resource management compensates to some ex-
tent for I/O-intensive tasks that are not computationally intensive,
but if you know that your task is a long-running I/O-intensive task
that will use only a fraction of a processor’s resources, you should give
a hint to the scheduler that it can oversubscribe the current processor
node by one additional running thread.

To do this, call the static method Context::Oversubscribe with
the argument true. This tells the scheduler that it should request an
additional virtual processor object from the resource manager while
using the same processor affinity mask as the current thread is using.
This operation increases the level of concurrency in the scheduler
without increasing the number of cores that will be used by the
scheduler.

When you are done with your long-running I/O-intensive task,
call the Oversubscribe method with the argument false to reset the
level of concurrency to the previous value. Be sure to call the Over
subscribe method in pairs, and to take exceptions into account. The
sample pack includes the scoped_oversubcription_token helper
class to automatically ensure that the Oversubscribe method is called
in pairs. You should place calls to the Oversubscribe method within
the body of the work function of your long-running I/O task.

Setting Scheduler Policy
There are a number of settings that you can control that will affect
how the task scheduler does its job. These are documented on MSDN
as values of the PolicyElementKey enumeration (and they are also
found in the concrt.h header file), but here is a summary of the most
important settings. See the section “Creating and Attaching a Task
Scheduler” in this appendix for a code example of how to set policies.

Use Context::Oversubscribe
to add concurrency to the
current scheduler without
consuming more cores.

 129the task scheduler and resource manager

Policy Key Description

MinConcurrency This is the minimum number of virtual processor
objects that the scheduler requires at startup.

MaxConcurrency This is the maximum number of virtual processor
objects that the scheduler requires at startup. There
is a special value, MaxExecutionResources, that
indicates “as many as exist on the computer.”

SchedulingProtocol This indicates which of the two available scheduling
algorithms should be used by the scheduler. Choose
EnhanceScheduleGroupLocality (the default) or
EnhanceForwardProgress.

TargetOversubscription-
Factor

You can use this setting if you know that your
operations will ordinarily use only a fraction of the
processor’s time, as is typical in I/O-bound
programs. The runtime multiplies the number of
virtual processor objects by the oversubscription
factor.

Anti-Patterns
Here are a few things to watch out for.

Multiple Resource Managers
The resource manager is a singleton that works across one process. It
does not coordinate processor resources across multiple operating-
system processes. If your application uses multiple, concurrent pro-
cesses, you may need to reduce the level of concurrency in each pro-
cess for optimum efficiency.

It is possible, in some situations, for more than one resource man-
ager instance to be created within a single process. If this happens, the
resource manager instances will contend for resources. This situation
arises if a library uses static linking. There will be one resource man-
ager for each statically linked instance of the C++ runtime.

It is also possible to have multiple resource manager instances if
you use more than one version of the C++ runtime within a single
application. In this case, there will be one resource manager for each
version of the runtime.

In general, you should avoid situations where more than one
instance of the resource manager can exist.

Resource Management Overhead
The resource manager optimizes the use of processor resources by
dynamically adjusting the concurrency levels of schedulers that are
active in the application. In certain scenarios, you may find that dy-
namic resource management isn’t providing optimal results. In these

Avoid static linking for your
parallel applications.

130 appendix a

cases you can effectively disable dynamic resource management by
setting the minimum and maximum concurrency levels of your sched-
uler to the same value. You should understand the performance char-
acteristics of your application before doing this. In most scenarios
dynamic resource management will result in better overall throughput
of your application.

Unintentional Oversubscription from
Inlined Tasks

The “Running Tasks” section of this appendix describes how a sched-
uler may reuse a thread that is waiting for the tasks of a task group to
complete to run one or more pending tasks. This is known as inlining.

Inline execution that occurs in a worker thread of a scheduler
object has no effect on the level of concurrency of the scheduler.
With or without inline execution, the number of worker threads that
are allowed to run at the same time is limited by the number of vir-
tual processor objects that have been allocated to the scheduler by
the resource manager.

Unlike worker threads, application threads are not managed by a
task scheduler instance. Application threads (that is, any threads that
are not a scheduler’s worker threads) do not count toward the limit on
the number of concurrent running threads that is coordinated by the
resource manager. Unless blocked by the operating system, applica-
tion threads are always allowed to run.

If you call the task_group::run method from an application
thread and subsequently call the wait method on the task group from
that same thread, inline execution of the task you created may occur
on the application thread. The application thread will be allowed to
run regardless of the number of running worker threads in the sched-
uler. Therefore, inline execution in an application may increase the
parallel operation’s overall level of concurrency by one running thread.
If your scheduler had a maximum concurrency level of four virtual
processor objects, your application might run five tasks concurrently:
four on the worker threads of the scheduler, plus one on the applica-
tion thread that entered the wait method.

Pending PPL tasks are only inlined if they reside in the local work-
stealing queue of the thread that enters the wait method. Therefore,
if you wanted to prevent inline execution of tasks in an application
thread, you could a use a lightweight task to create the PPL task that
would otherwise have been created in the application thread. The
pending PPL task would then be placed in the work-stealing queue of
whatever worker thread executed the lightweight task and would not
be eligible for inline execution on the application thread.

 131the task scheduler and resource manager

The remarks about inlining in this section also apply to parallel_
for, parallel_for_each, and parallel_invoke, as well as tasks created
using structured task groups. Inline execution also occurs whenever
you use the task_group::run_and_wait method.

Deadlock from Thread Starvation
Recall that there are two kinds of blocking operations: cooperative
blocking operations proved by the Concurrency Runtime and “nonco-
operative” blocking operations provided by the operating system.

When a worker thread becomes blocked by a cooperative block-
ing operation, the scheduler will resume one of its runnable contexts
or allow one of the pending tasks to start running. Note that if no idle
worker thread is available to run the pending task, a new worker
thread will be created. Creating the additional thread does not intro-
duce additional concurrency. At any given time, the number of worker
threads that are released to the OS for scheduling never exceeds the
number of virtual processor objects allocated to it by the resource
manager.

Allowing additional pending tasks to run when a task is coopera-
tively blocked increases the chance of running the task that would
unblock the cooperatively blocked task. This can help avoid deadlock
from thread starvation that can occur in systems with many depen-
dent tasks and fixed levels of concurrency.

In contrast to cooperative blocking, noncooperative or OS-level
blocking is opaque to PPL and the Concurrency Runtime, unless the
blocking operation occurs on a User-Mode Scheduled (UMS) thread.
(UMS threads are outside the scope of this book.) When a worker
thread becomes blocked by an OS-level blocking operation, the
scheduler still considers it to be a running thread. The scheduler does
not resume one of its runnable contexts or start one of its pending
tasks in response to an OS-level blocking operation. As a conse-
quence, you may end up with deadlock due to thread starvation. For
example, in an extreme case, if all worker threads of a scheduler are
blocked by noncooperative blocking operations that need pending
tasks to run in order to become unblocked, the scheduler is dead-
locked.

It is therefore recommended that cooperative blocking opera-
tions be used as the primary mechanism of expressing dependencies
among tasks.

Ignored Process Affinity Mask
As of Windows 7 you can set a process affinity mask that limits the
cores on which the threads of your application may run. The version
of the Concurrency Runtime that is shipped as part of Visual Studio

The number of worker threads
in a scheduler is not the
scheduler’s level of concur-
rency. At any given time, the
number of threads that are
released to the OS for
execution will not exceed the
number of virtual processor
objects that have been
allocated to the scheduler by
the resource manager.

132 appendix a

2010 SP1 does not recognize this user-selected process affinity mask.
Instead, it uses all available cores up to the maximum specified level
of concurrency for each scheduler.

This issue is expected to be resolved in a future version of the
Concurrency Runtime.

References
For more information about the caching suballocator, see Alloc Function
on MSDN at

http://msdn.microsoft.com/en-us/library/dd492420.aspx.

For a general description of NUMA, see Introduction to NUMA
on the MSDN Magazine blog at

http://blogs.msdn.com/b/msdnmagazine/archive/2010/
05/06/10009393.aspx.

For more information about the PolicyElementKey enumeration,
see the entry on MSDN at

http://msdn.microsoft.com/en-us/library/dd492562.

http://msdn.microsoft.com/en-us/library/dd492420.aspx
http://blogs.msdn.com/b/msdnmagazine/archive/2010/05/06/10009393.aspx
http://blogs.msdn.com/b/msdnmagazine/archive/2010/05/06/10009393.aspx
http://msdn.microsoft.com/en-us/library/dd492562

133

Appendix B Debugging and Profiling
Parallel Applications

The Microsoft® Visual Studio® 2010 development system debugger
includes two windows that assist with parallel programming: the Par-
allel Stacks window and the Parallel Tasks window. In addition, the
Premium and Ultimate editions of Visual Studio 2010 include a profil-
ing tool. This appendix gives examples of how to use these windows
and the profiler to visualize the execution of a parallel program and to
confirm that it’s working as you expect. After you gain some experi-
ence at this, you’ll be able to use these tools to help identify and fix
problems.

The Parallel Tasks and Parallel Stacks Windows
In Visual Studio, open the parallel guide samples solution. Set the A-
Dash project that is discussed in Chapter 5, “Futures,” to be the
startup project. Open AnalysisEngine.h and find the AnalysisEngine:
:DoAnalysisParallel method, which declares and configures the A-
Dash workflow. Each future executes a different stage of the work-
flow and returns a result that is, in turn, passed to the next future in
the workflow. Insert a breakpoint in the declaration of the future5
lambda.

Start the debugging process. You can either press F5 or click Start
Debugging on the Debug menu. The A-Dash sample begins to run
and displays its GUI. On the GUI, select the Parallel checkbox, and
then click Calculate. When execution reaches the breakpoint, all
tasks stop and the familiar Call Stack window appears. On the Debug
menu, point to Windows, and then click Parallel Tasks. When execu-
tion first reaches the breakpoint, the Parallel Tasks window shows a
task associated with each future that has been added to the workflow.

Figure 1 illustrates a case where multiple tasks are running. Recall
that each task runs in a thread. The Parallel Tasks window shows the
assignment of tasks to threads. The ID column identifies the task,
while the Thread Assignment column shows the thread. If there is task

134 appendix b

inlining, more than one task can run in a thread, so it’s possible that
there will be more tasks than executing threads. The Status column
indicates whether the task is running or is in a scheduled or waiting
state. In some cases the debugger cannot detect that the task is wait-
ing. In these instances, the task is shown as running. The Location
column gives the name of the method that is currently being invoked.
Place the cursor over the location field of each task to see a call stack
pop-up window that displays only the stack frames that are part of
the user’s code. To switch to a particular stack frame, double-click on
it.

Double-click on a task listed in the Task column to switch the
debugger to that task. On the Debug menu, point to Windows, and
then click Call Stack to display the complete stack for the thread that
is executing the task.

figure 1
The Parallel Tasks window

On the Debug menu, point to Windows, and then click Parallel
Stacks. In the Parallel Stacks window, from the drop-down menu in
the upper-left corner, click Tasks. The window shows the call stack
for each of the running or waiting tasks. This is illustrated in Figure 2.

figure 2
The Parallel Stacks window

See the “Further Reading” section for references that discuss the
Parallel Stacks window in more detail.

If you add additional breakpoints to the other futures defined
in DoAnalysisParallel and press F5, the contents of the Parallel
Tasks and Parallel Stacks windows change as the A-Dash workflow

 135debugging and profiling par allel applications

processes data. This is how the application should behave. However,
these windows can also reveal unexpected behavior that can help you
identify and fix performance problems and synchronization errors.
For example, the Parallel Tasks and Parallel Stacks windows can help
to identify common concurrency problems such as deadlocks. This
behavior is demonstrated in the following code, taken from the Pro-
filerExamples sample.

void Deadlock()
{
 reader_writer_lock lock1;
 reader_writer_lock lock2;

 parallel_invoke(
 [&lock1, &lock2]()
 {
 for (int i = 0; ; i++)
 {
 lock1.lock();
 printf("Got lock 1 at %d\n", i);
 lock2.lock();
 printf("Got lock 2 at %d\n", i);
 }
 },
 [&lock1, &lock2]()
 {
 for (int i = 0; ; i++)
 {
 lock2.lock();
 printf("Got lock 2 at %d\n", i);
 lock1.lock();
 printf("Got lock 1 at %d\n", i);
 }
 }
);
}

This code is a classic example of a deadlock. Each task attempts
to acquire a lock. The order in which this occurs leads to a cycle that
eventually results in deadlock. At this point, the application stops
making progress and there is no more new console output. Once the
deadlock occurs, click the Break All option on the Debug menu, and
open the Parallel Tasks window. You’ll see something similar to Figure
3. Notice that the status of each task is Waiting instead of Running.
Visual Studio also displays a warning dialog “The process appears to
be deadlocked (or is not running any user-mode code). All threads

136 appendix b

have been stopped.” Use the Parallel Tasks window to examine each
deadlocked task and its call stack to understand why your application
is deadlocked. Place the cursor over the Status column to see what
the task is waiting for. You can also examine the call stacks and iden-
tify the locks, or other wait conditions, that are causing the problem.

figure 3
Parallel Tasks window showing deadlock

Breakpoints and Memory Allocation
Excessive memory copies can lead to significant performance degra-
dation. Use the debugger to set breakpoints on your class’s copy
constructor and assignment operators to find unintentional copy and
assignment operations.

For example, the ImagePipeline sample passes pointers of type
shared_ptr<ImageInfo> along the pipeline rather than copies of
the ImageInfo objects. These are too expensive to copy because
they contain large bitmaps. However, ImageInfo contains an Image
PerformanceData object that is copied once per image. You can use
the debugger to verify that no extra copies are being made. Here is
how to do this.

Set a breakpoint inside the ImagePerformanceData assignment
operator in ImagePerformanceData.h and then run the ImagePipeline
example. You’ll see that an ImagePerformanceData object is only
assigned once, after it has passed through the pipeline. This occurs
during the display phase, when the ImagePipelineDlg::OnPaint
method creates a copy of the final ImagePerformanceData object so
that the GUI thread has the latest data available to display.

Use the Hit Count feature to count the number of assignments.
In the Breakpoints window, right-click on the breakpoint and then
click Hit Count on the shortcut menu. In the Hit Count dialog box,
select break when the hit count is equal to option from the When
the breakpoint is hit list. Set the hit count number to 100. Run the
sample. The debugger stops on the breakpoint after one hundred im-
ages have been processed. Because the number of hits equals the
number of images processed so far, you know that only one copy was
made for each image. If there were unintentional copies, you would
reach the breakpoint after fewer images were processed.

 137debugging and profiling par allel applications

You can also declare the copy constructors and assignment op-
erators as private to prevent objects from being unintentionally
copied. The ImageInfo object has a private copy constructor and as-
signment operator for just this reason.

The Concurrency Visualizer
The profiler included in the Visual Studio 2010 Premium and Ultimate
editions includes the Concurrency Visualizer. This tool shows how
parallel code uses resources as it runs: how many cores it uses, how
threads are distributed among cores, and the activity of each thread.
This information helps you to confirm that your parallel code is behav-
ing as you intended, and it can help you to diagnose performance
problems. This appendix uses the Concurrency Visualizer to profile
the ImagePipeline sample from Chapter 7 on a computer with eight
logical cores.

The Concurrency Visualizer has two stages: data collection and
visualization. In the collection stage, you first enable data collection
and then run your application. In the visualization stage, you examine
the data you collected.

You first perform the data collection stage. To do this, you must
run Visual Studio as an administrator because data collection uses
kernel-level logging. Open the sample solution in Visual Studio. Click
Start Performance Analysis on the Visual Studio Debug menu. The
Performance Wizard begins. Click Concurrency, and then select
Visualize the behavior of a multithreaded application. The next
page of the wizard shows the solution that is currently open in Visual
Studio. Select the project you want to profile, which is Image
Pipeline. Click Next. The last page of the wizard asks if you want to
begin profiling after the wizard finishes. This check box is selected by
default. Click Finish. The Visual Studio profiler window appears and
indicates that it’s currently profiling. The ImagePipeline sample begins
to run and opens its GUI window. To maximize processor utilization,
select the Load Balanced option, and then click Start. In order to
collect enough data to visualize, let the Images counter on the GUI
reach at least a hundred. Then click Stop Profiling in the Visual Studio
profiler window.

During data collection, the performance analyzer takes frequent
data samples (known as snapshots) that record the state of your run-
ning parallel code. The analyzer also uses Event Tracing for Windows
(ETW) to collect all context switches and some other relevant events.
Each data collection run writes several data files, including a .vsp file.
A single data collection run can write files that are hundreds of

138 appendix b

megabytes in size. Data collected during separate runs of the same
program can differ because of uncontrolled factors such as other
processes running on the same computer.

You can run the visualization stage whenever the data files are
available. You don’t need to run Visual Studio as an administrator to
do this. There are several ways to begin visualization. Unless you’ve
changed the default, visualization automatically starts as soon as data
collection finishes. Alternatively, you can simply open any .vsp file in
Visual Studio. If you select the first option, you’ll see a summary re-
port after the data is collected and analyzed. The summary report
shows the different views that are available. These include a Threads
view, a CPU Utilization view, and a Cores view.

Figure 4 shows the Threads view. Each task is executed in a thread.
The Concurrency Visualizer shows the thread for each task (remember
that there may be more than one task per thread because of inline
tasks).

figure 4
Threads view of the Concurrency Visualizer

The Concurrency Visualizer screens contain many details that may
not be readable in this book’s figures, which are reduced in size and
are not in full color. The full color screen shots from this appendix are
available on the CodePlex site at http://parallelpatternscpp.codeplex.
com/.

The Threads View also contains a couple of other useful features.
Clicking on different segments of an individual thread activity time-

http://parallelpatternscpp.codeplex.com/
http://parallelpatternscpp.codeplex.com/

 139debugging and profiling par allel applications

line in the upper part of the screen allows you to see the current stack
for that activity segment. This allows you to associate code with indi-
vidual activity segments. Clicking on the different activity types in the
Visible Timeline Profile on the bottom left displays a Profile Report.
This allows you to discover which functions in your application are
involved in each activity type for the currently selected portion of the
timeline. You can also click the Demystify feature to get further help
on what different colors mean and on other features of the report.

Figure 5 illustrates the CPU Utilization view. The CPU Utilization
view shows how many logical cores the entire application (all tasks)
uses, as a function of time. On the computer used for this example,
there are eight logical cores. Other processes not related to the ap-
plication are also shown as an aggregated total named Other Pro-
cesses. For the application process, there’s a graph that shows how
many logical cores it’s using at each point in time. To make the pro-
cesses easier to distinguish, the area under each process’s graph ap-
pears in a different color (some colors may not be reproduced accu-
rately in this figure). Some data points show a fraction rather than an
integer such as 0, 1, or 2, because each point represents an average
calculated over the sampling interval.

figure 5
Detail of CPU Utilization view

Figure 6 illustrates the Cores view. The Cores view shows how
the application uses the available cores. There is a timeline for each
core, with a color-coded band that indicates when each thread is

140 appendix b

running (a different color indicates each thread.) In this example, be-
tween 0 and 2.5 on the time scale, the application is idle with little or
no work running on any core. Between 2.5 and 12 the pipeline is filled
and more tasks are eligible to run than there are cores. Several threads
alternate on each core and the table beneath the graph shows that
there is some context switching across cores.

figure 6
Detail of Cores view

Figure 7 illustrates the Threads view. The Threads view shows
how each thread spends its time. The upper part of the view is a
timeline with color-coded bands that indicate different types of activity.
For example, red indicates when the thread is synchronizing (waiting
for something). In this example, the Threads view initially shows the
Main Thread and Worker Thread 4708. Later, more threads are added
to the thread pool as the pipeline starts processing images. Not all
threads are visible in the view pictured here. (You can hide individual
threads by right-clicking the view and then clicking Hide). This view
also shows that the main thread is active throughout; the green-brown
color indicates user interface activity. Other threads show segments
of green, denoting execution, red indicating synchronization, and
yellow for preempted treads.

 141debugging and profiling par allel applications

figure 7
Detail of Threads view

After 2.5 on the timeline, some pipeline threads execute fre-
quently but others execute almost continuously. There are more
pipeline threads than cores, so some pipeline threads must alternate
between running and being preempted.

Scenario Markers
You can use the Scenario library to mark different phases of complex
applications. The following code shows an example. (The Scenario
library is a free download on the MSDN® Code Gallery website. For
more information, see “Scenario Marker Support” on MSDN at http://
msdn.microsoft.com/en-us/library/dd984115.aspx.)

#include “Scenario.h”

// ...

shared_ptr<Scenario> myScenario = shared_ptr<Scenario>(new
Scenario());
myScenario->Begin(0, L”Main Calculation”);

// Main Calculation Phase...

myScenario->End();

These markers will be displayed in all three views. They appear as
a band across the top and bottom of the timeline. Move the mouse
over the band to see the marker name. You can see an example of this

142 appendix b

later on in Figure 11. Don’t use too many markers as they can easily
overwhelm the visualization and make it hard to read. The tool may
hide some markers to improve visibility. You can use the zoom feature
to increase the magnification and see the hidden markers for a spe-
cific section of the view.

Visual Patterns
The patterns discussed in this book focus primarily on ways to express
potential parallelism. However, there are other types of patterns that
are useful in parallel development. The human mind is very good at
recognizing visual patterns, and the Concurrency Visualizer takes ad-
vantage of this. You can learn to identify some common visual pat-
terns that occur when an application has specific performance prob-
lems. This section describes visual patterns that will help you to
recognize and fix oversubscription, lock contention, and load imbal-
ances.

More examples of common patterns indicating poorly behaved
parallel applications are discussed on MSDN. See the “Further Read-
ing” section for more information. You can also access this content
from a link in the Hints tab in the Threads view. As seen earlier, Figure
4 shows the link in this tab.

Oversubscription
Oversubscription occurs when there are more threads than logical
processors to run them. Oversubscription can cause poor perfor-
mance because of the high number of context switches, each of which
takes some processing time and which can decrease the benefits
provided by memory caches.

Oversubscription is easy to recognize in the Concurrency Visual-
izer because it causes large numbers of yellow regions in the profiler
trace. Yellow means that a thread was preempted (the thread was
switched out). When profiled, the following code yields a quintes-
sential depiction of oversubscription.

void Oversubscription()
{
 task_group tasks;

 for (unsigned int p = 0; p < (GetProcessorCount() * 4); p++)
 {
 tasks.run([]()
 {
 // Oversubscribe in an exception safe manner
 scoped_oversubcription_token oversubscribe;
 // Do work

 143debugging and profiling par allel applications

 delay(1000000000);
 });
 }
 tasks.wait();
}

Figure 8 illustrates the Threads view from one run of this function
on a system with eight logical cores. It produces a very distinct pattern.

figure 8
Threads view that shows oversubscription

Lock Contention and Serialization
Contention occurs when a thread attempts to acquire a lock that is
held by another thread. In many cases, this results in the second thread
blocking until the lock is released. The Threads view of the Concur-
rency Visualizer depicts blocking in red. It is often a sign of decreased
performance. In extreme cases, an application can be fully serialized
by one or more locks, even though multiple threads are being used.
You can see this in Figure 9, where the narrow bright green areas
representing execution only appear in one worker thread at a time. In
such cases, the performance may be much worse than in a conven-
tional, serial version of the application.

The following LockContention method produces a lock convoy,
which leads to significant lock contention and serialization of the
program even though multiple threads are in use. A lock convoy is a
performance problem that occurs when multiple threads contend for
a frequently shared resource.

void LockContention()
{
 task_group tasks;
 reader_writer_lock lock;

144 appendix b

 for (unsigned int p = 0; p < GetProcessorCount(); p++)
 {
 tasks.run([&lock]()
 {
 for (int i = 0; i < 10; i++)
 {
 // Do work
 delay(100000);

 // Do protected work
 lock.lock();
 delay(100000000);
 lock.unlock();
 }
 });
 }
 tasks.wait();
}

Figure 9 illustrates the pattern this code produced in the Threads
view of the Concurrency Visualizer.

figure 9
Threads view showing lock convoy

 145debugging and profiling par allel applications

Clicking on one of the Synchronization (red) blocks highlights it
and also indicates which thread blocked it. You can examine the stack
of the unblocking thread by clicking the Unblocking stack tab. This
allows you to see the call stack of the thread that unblocked the
blocked thread. In this example, the maroon block on thread 1428
indicates that it was waiting for thread 7400, which was executing a
call to the ThreadProxy::SwitchTo method. After thread 1428 is un-
blocked it continues to execute and is displayed as a green block in
the Threads view. You can click on any red synchronization block to
examine its unblocking stack, if one is available. When examining call
stacks, remember that you can quickly view the source by double-
clicking on the stack frame. This allows you to associate segments on
the Thread view with the code that was executing during that seg-
ment.

Load Imbalance
A load imbalance occurs when work is unevenly distributed across all
the threads that are involved in a parallel operation. Load imbalances
mean that the system is underutilized because some threads or cores
are idle while others finish processing the operation. The visual pat-
tern produced by a load imbalance is recognizable in several of the
Concurrency Visualizer views. The following code creates a load im-
balance.

void LoadImbalance()
{
 const int loadFactor = 20;

 parallel_for_fixed(0, 100000, [loadFactor](int i)
 {
 // Do work
 delay(i, loadFactor);
 });
}

Although most of the parallelism support in the PPL uses dy-
namic partitioning to apportion work to a pool of tasks, the parallel
_for_fixed method included in concrt_extras.h, which is available at
http://code.msdn.microsoft.com/concrtextras, uses fixed partitioning
of iterations, without range stealing. The code example shown here,
when run on a system with eight logical cores, causes elements [0,
12499] to be processed by one task, elements [12500, 24999] to be
processed by another task, and so on, through the entire range. The
body of the workload iterates from 0 to the current index value,
which means that the amount of work to be done is proportional to
the index. Workers that process lower ranges will have significantly

146 appendix b

less work to do than the workers that process the upper ranges. As a
consequence, the tasks for each sub-range finish at different times.
This load imbalance is an inefficient use of the processors. Figure 10,
which is the CPU Utilization view in the Concurrency Visualizer,
illustrates this.

figure 10
CPU view that shows a load imbalance

When the LoadImbalance method begins to execute, all eight
logical cores on the system are being used. However, after a period of
time, usage drops as each core completes its work. This yields a stair-
step pattern, as threads are dropped after they complete their portion
of the work. The Threads view confirms this analysis. Figure 11 illus-
trates the Threads view.

figure 11
Threads view that shows a load imbalance

 147debugging and profiling par allel applications

The Threads view shows that after completing a portion of the
work, the worker threads were idle while they waited for the Main
Thread, 7136, to complete the remaining work. The example is a con-
sole application and, in this case, the runtime used the main thread to
run one of the tasks.

Further Reading
The Parallel Performance Analysis blog at MSDN discusses many tech-
niques for analyzing your code and includes many examples. MSDN
also provides information about the Scenario library.

Parallel Development in Visual Studio 2010 blog on MSDN:
http://blogs.msdn.com/b/visualizeparallel/.

“Concurrency Visualizer” on MSDN:
http://msdn.microsoft.com/en-us/library/dd537632.aspx.

“Performance Tuning with the Concurrency Visualizer in Visual
Studio 2010” on MSDN:
http://msdn.microsoft.com/en-us/magazine/ee336027.aspx.

Scenario Home Page on MSDN:
http://code.msdn.microsoft.com/scenario.

The Parallel Tasks and Parallel Stacks windows, and other
features of the debugger to support parallel programming:
http://www.danielmoth.com/Blog/Parallel-Debugging.aspx
http://msdn.microsoft.com/en-us/library/ms164746.aspx.

“Debugging Task-Based Parallel Applications in Visual Studio
2010” on MSDN:
http://msdn.microsoft.com/en-us/magazine/ee410778.aspx.

Common Patterns for Poorly-Behaved Multithreaded
Applications:
http://msdn.microsoft.com/en-us/library/ee329530.aspx.

Improve Debugging And Performance Tuning With ETW:
http://msdn.microsoft.com/en-us/magazine/cc163437.aspx.

http://blogs.msdn.com/b/visualizeparallel/
http://code.msdn.microsoft.com/scenario
http://www.danielmoth.com/Blog/Parallel-Debugging.aspx
http://msdn.microsoft.com/en-us/library/ms164746.aspx
http://msdn.microsoft.com/en-us/magazine/ee410778.aspx
http://msdn.microsoft.com/en-us/library/ee329530.aspx
http://msdn.microsoft.com/en-us/magazine/cc163437.aspx

149

Technology OverviewAppendix C

Appendix C describes some of the parallel computing resources
offered by Microsoft® that are not covered in this book. The “Further
Reading” section includes URLs for websites that have more informa-
tion. Figure 1 illustrates the different offerings and how they are
related.

figure 1
Microsoft parallel programming resources

This book covers the Parallel Patterns and Asynchronous Agents
libraries. These libraries use the native Concurrency Runtime, which
includes a task scheduler and a resource manager that execute native
parallel workloads on multicore architectures.

The Microsoft Visual C#®, Visual Basic®, and Parallel LINQ
(PLINQ) languages ship with the Microsoft Visual Studio® 2010 de-
velopment system. These languages use the Task Parallel Library (TPL)

Managed ToolingNative Platform Research/Incubation

Concurrency
Visualizer

Parallel
Debugger
Windows

CHESS

Tools Programming Models

Concurrency Runtime

Operating System

Key:

Async Agents
Library

Parallel Patterns
Library

Task Scheduler

Resource Manager

D
at

a
St

ru
ct

ur
es

D
ata Structures

Rx TPL
Dataflow

C#,
Visual Basic,

and F#

Parallel
LINQ

DryadLINQ

Task Parallel Library

Thread Pool

Task Scheduler

Resource Manager

HPC Server Windows

150 appendix c

to support parallelism. The F# language also ships with Visual Studio.
It exposes a more functional approach to parallelism than the other
languages, and it emphasizes immutable data types. However, the F#
runtime libraries build on and integrate with TPL, and the F# Power-
Pack includes parallelization support that is built on top of PLINQ.
How to develop parallel applications that use the Microsoft .NET
Framework 4, TPL, and PLINQ is covered in the companion to this
book, Parallel Programming with Microsoft .NET. Another library, Reac-
tive Extensions (Rx), allows you to use observable collections to
compose asynchronous and event-based programs.

The Accelerator API (not shown in the diagram) provides a func-
tional programming model for implementing array-processing opera-
tions. Accelerator handles all the details of parallelizing and running
the computation on the selected target processor, which includes
graphics processing units and multicore CPUs. The Accelerator API is
largely processor independent so, with only minor changes, the same
array-processing code can run on any supported processor.

Visual Studio 2010 contains several tools for debugging and pro-
filing parallel applications. For examples of how to use them, see Ap-
pendix B, “Debugging and Profiling Parallel Applications.” You can also
use the CHESS tools from Microsoft Research to detect bugs in your
parallel code.

CHESS and Accelerator are incubation or research projects and
Microsoft has made no commitment to ship them. However, they
contain many new ideas and approaches that will interest anyone who
has read this far in the book. You’re encouraged to download them,
evaluate them, and provide the respective teams with feedback.

DryadLINQ is a programming environment for writing large-scale
data parallel applications that run on High Performance Computing
(HPC) clusters. DryadLINQ combines two important pieces of Micro-
soft technology: the Dryad distributed execution engine and the .NET
Language Integrated Query (LINQ).

All of the above technologies, with the exception of DryadLINQ,
are largely for parallelism on a single computer. Windows HPC Server
targets clusters of servers and supports scale-out across many com-
puters. Although the technologies are very different for clustered
computing, some of the fundamental patterns discussed in this book,
such as Parallel Tasks and Parallel Aggregation, are still applicable.

http://research.microsoft.com/en-us/projects/dryad/default.aspx
http://msdn2.microsoft.com/en-us/netframework/aa904594.aspx

 151technology overview

Further Reading
The MSDN® Parallel Computing Developer Center covers parallel
development on both the managed and native concurrency runtimes,
as well as the Visual Studio 2010 tools that support writing parallel
programs. For more information, see:

http://msdn.microsoft.com/concurrency.

For information about F#, including the language reference and walk-
throughs, see the Microsoft F# Developer Center at:

http://msdn.microsoft.com/fsharp.

Windows HPC Server 2008 R2 product information and developer
resources are available on the Windows HPC Server site at:

http://www.microsoft.com/hpc.

A Community Technology Preview (CTP) of DryadLINQ is available
for download at:

http://technet.microsoft.com/library/ee815854(WS.10).aspx.

Details of the Accelerator project are available at:

http://research.microsoft.com/accelerator.

Descriptions and downloads for Rx are available at:

http://msdn.microsoft.com/en-us/data/gg577609.

CHESS is a Microsoft DevLabs project, and is available at:

http://msdn.microsoft.com/devlabs.

A more in-depth overview of possible future directions for support of
parallel programming in Visual Studio can be found in Stephen Toub’s
talk at TechEd Europe 2010 at:

http://www.msteched.com/2010/Europe/DEV208.

http://msdn.microsoft.com/concurrency
http://msdn.microsoft.com/fsharp
http://www.microsoft.com/hpc
http://research.microsoft.com/accelerator
http://msdn.microsoft.com/en-us/data/gg577609
http://msdn.microsoft.com/devlabs
http://www.msteched.com/2010/Europe/DEV208

153

Glossary

agent. See asynchronous agent.

aggregation. To combine multiple data items into a single result.

alpha blending. Merging different images into a single image by
superimposing them in semitransparent layers.

associative operation. A binary operation is associative if, for a
sequence of operations, the order in which the operations are
performed does not change the result. For example (a + b) + c = a +
(b + c).

asynchronous. An operation that that does not block the current
thread of control when the operation starts.

asynchronous agent. A software component that works asynchro-
nously with other agents as part of a larger computation. Often
shortened to agent.

asynchronous pipeline. A pipeline in which tasks are only created
when data becomes available.

background thread. A thread that stops when a process shuts
down. A running background thread does not keep a process
running. Threads in the thread pool are background threads. Com-
pare to foreground thread.

barrier. A synchronization point where all participating threads must
stop and wait until every thread reaches it.

block. To pause execution while waiting for some event or condi-
tion.

captured variable. A variable defined outside a lambda expression
that is used in the lambda expression. The lambda expression can
update the captured variable.

154 glossary

cluster. A parallel computing system composed of multiple comput-
ers connected by a network, not multiple cores in a single physical
processor.

closure. A lambda expression that captures variables from an
enclosing lexical scope.

commutative operation. A binary operation is commutative if
changing the order of the operands does not change the result.
For example, a + b = b + a. Examples of commutative operations
are scalar addition and scalar multiplication.

concurrency. Programming with multiple activities at the same time.
Concurrency enables programs to respond promptly to external
stimuli; its goal is to reduce latency. Concurrency can be imple-
mented with asynchronous operations or with threads, where it
is expected that threads will take turns executing on processors.
Compare to parallelism.

concurrency safe. When a block of code can be run on multiple
cores simultaneously without introducing errors.

Concurrency Visualizer. An addition to the Microsoft® Visual
Studio® development system’s profiler that collects and displays
information about the execution and performance of parallel
programs.

context switch. When one thread stops executing on a processor
and a different thread resumes. Excessive context switching can
occur when processors are oversubscribed and can result in poor
performance.

control flow. A basis for coordination whereby tasks execute
according to the steps of an algorithm, as in a parallel loop.

control-flow agent. Agents whose run methods contain sequential
loops that process incoming values from a messaging block.

cooperative blocking. A programming idiom whereby the current
context waits for a resource to become available or for a signal to
occur. The task scheduler is notified when a cooperative blocking
operation occurs. Compare with non-cooperative blocking.

cooperative cancellation. A programming idiom that uses coopera-
tive blocking to implement operations that are capable of being
canceled before they are completed.

cooperative context switch. When a worker thread becomes
blocked as a result of a cooperative blocking operation.
See cooperative blocking.

 155

coordination. Arranging for tasks to work together to ensure a
correct outcome. Coordination can be based on data flow or
control flow.

core. The part of a physical processor that executes instructions.
Most recent physical processor models have more than one core,
so they can execute tasks in parallel.

data flow. A basis for coordination where tasks execute when data
becomes available, as in a pipeline or task graph. Compare to control
flow.

data parallelism. A form of parallel processing whereby the same
computation executes in parallel on different data. Data parallelism
is supported in the Parallel Patterns Library (PPL) by the parallel_for
and parallel_for_each functions. Compare to task parallelism.

data partitioning. Dividing a collection of data into parts, in order
to use data parallelism.

data race. When more than one concurrent thread reads and
updates a variable without synchronization.

deadlock. When execution stops and cannot resume because the
system is waiting for a condition that cannot occur. Threads can
deadlock when one holds resources that another needs. Compare
to livelock.

decomposition. To break a problem into smaller parts. For parallel
processing, decomposition can be by data or by task.

degree of parallelism. The number of parallel tasks that may
execute concurrently at any one time.

dependency. When one operation uses the results of another.
When there is a dependency between operations, they cannot
run in parallel. Compare to independent.

double-checked locking. Process in which one first tests a condi-
tion, then, only if the condition is true, acquires a lock and tests the
same condition again, this time to determine whether to update
shared data. This maneuver can often avoid the expensive operation
of acquiring a lock when it will not be useful.

dynamic partitioning. Data partitioning whereby the parts are
selected as the parallel tasks execute. Compare to static partitioning.

enhanced locality mode. When a scheduler tries to execute related
tasks in batches.

156 glossary

foreground thread. A thread that keeps a process running. After all
its foreground threads stop, the process shuts down. Compare to
background thread.

fork/join. A parallel computing pattern that uses task parallelism.
Fork occurs when tasks start; join occurs when all tasks finish.

forward progress mode. When a scheduler executes one pending
task from each of its schedule groups in round-robin fashion.

future. A task that returns a value.

function object. See functor.

functor. A language feature that allows an instance of a class to be
invoked as though it were a function. In C++ functors are defined as
a class with a definition for operator().

granularity. The quantity of data in a partition or work in a task.
Equivalently, the number of data partitions or tasks. A coarse level
of granularity has a few large partitions or tasks; a fine level of
granularity has many small partitions or tasks.

hardware thread. An execution pipeline on a core. Simultaneous
multithreading (also sometimes known as hyperthreading) enables
more than one hardware thread to execute on a single core. Each
hardware thread is considered a separate logical processor.

hyperthreading. See simultaneous multithreading.

immutable. Property of data that means it cannot be modified after
it’s created. For example, strings provided by some libraries are
immutable. Compare to mutable.

immutable type. A type whose instances are immutable. Its in-
stances are purely functional data structures.

independent. When one operation does not use the results of
another. Independent operations can execute in parallel. Compare to
dependency.

kernel mode. The mode of execution in which the Microsoft
Windows® kernel runs and has full access to all resources. Compare
to user mode.

lambda expression. An anonymous function that can capture
variables from its enclosing lexical scope.

livelock. When execution continues but does not make progress
toward its goal. Compare to deadlock.

 157

load balancing. When similar amounts of work are assigned to
different tasks so that the available processors are used efficiently.
Compare to load imbalance.

load imbalance. When different amounts of work are assigned to
different tasks so that some tasks don’t have enough work to do,
and the available processors are not used efficiently. Compare to
load balancing.

lock. A synchronization mechanism that ensures that only one
thread can execute a particular section of code at a time.

lock convoy. When multiple tasks contend repeatedly for the
same lock. Frequent failures to acquire the lock can result in poor
performance.

manycore. Multicore, usually with more than eight logical
processors.

map. A parallel computation where multiple tasks independently
perform the same transformation on different data. An example
of data parallelism.

map/reduce. A parallel programming pattern where a data parallel
phase (map) is followed by an aggregation phase (reduce).

memory barrier. A machine instruction that enforces an ordering
constraint on memory operations. Memory operations that precede
the barrier are guaranteed to occur before operations that follow
the barrier.

multicore. Having more than one core, able to execute parallel tasks.
Most recent physical processor models are multicore.

multiplicity. The number of times an element occurs in a multiset.

multiset. An unordered collection that may contain duplicates.
Each element in the collection is associated with a multiplicity (or
count) that indicates how many times it occurs. Compare to set.

multiset union. An operation that combines multisets by merging
their elements and adding the multiplicities of each element.

mutable. Property of data that means that it can be modified after
it is created. Not to be confused with the C++ mutable keyword.
Compare to immutable.

mutable type. A type whose instances are mutable.

nested parallelism. When one parallel programming construct
appears within another.

158 glossary

node. A computer in a cluster.

nonblocking algorithm. An algorithm that allows multiple tasks to
make progress on a problem without ever blocking each other.

noncooperative blocking. Lower-level blocking operations that are
provided by the operating system. The task scheduler is unaware of
noncooperative blocking; to the scheduler, the blocked tasks are
indistinguishable from running tasks. See cooperative blocking.

NUMA (non-uniform memory access). A computer memory
architecture in which memory access time depends on the memory
location relative to a processor.

object graph. A data structure consisting of objects that reference
each other. Object graphs are often of shared mutable data that can
complicate parallel programming.

overlapped I/O. I/O operations that proceed (or wait) while other
tasks are executing.

oversubscription. When there are more threads than processors
available to run them. Oversubscription can result in poor perfor-
mance because time is spent context switching.

parallelism. Programming with multiple threads, when it is expected
that threads will execute at the same time on multiple processors.
Its goal is to increase throughput. Compare to concurrency.

partitioning. Dividing data into parts in order to use data parallel-
ism.

physical processor. A processor chip, also known as a package or
socket. Most recent physical processor models have more than one
core and more than one logical processor per core.

pipeline. A series of producer/consumers, where each one consumes
the output produced by its predecessor.

priority inversion. When a lower-priority thread runs while a
higher-priority thread waits. This can occur when the lower-priority
thread holds a resource that the higher-priority thread requires.

process. A running application. Processes can run in parallel and are
isolated from one another (they usually do not share data). A process
can include several (or many) threads or tasks Compare to thread,
task.

processor affinity mask. A bit mask that tells the scheduler which
processor(s) a thread should be run on.

 159

profiler. A tool that collects and displays information for perfor-
mance analysis. The Concurrency Visualizer is a profiler for
concurrent and parallel programs.

pure function. A function (or method or operation) that has no side
effects (does not update any data nor produce any output) and
returns only a value.

purely functional data structure. A data structure that can only
be accessed by pure functions. An instance of an immutable type.

race. When the outcome of a computation depends on which
statement executes first, but the order of execution is not con-
trolled or synchronized.

race condition. A situation in which the observable behavior of
a program depends on the order in which parallel operations
complete. Race conditions are usually errors; good programming
practices prevent them.

recursive decomposition. In parallel programming, refers to the
situation in which the tasks themselves can start more tasks.

reduce. A kind of aggregation whereby data is combined by an
operation that is associative, which often makes it possible to
perform much of the reduction in parallel.

round robin. A scheduling algorithm whereby each thread is given
its turn to run in a fixed order in a repeating cycle, so that during
each cycle, each thread runs once.

runnable context. A thread that was previously interrupted by a
cooperative blocking operation but is now unblocked and ready
to resume its work.

scalable. A parallel computation whose performance improves
when more processors are available is said to be scalable.

schedule group. An internal data structure used by the scheduler
that represents a queue of pending tasks.

semaphore. A synchronization mechanism that ensures that not
more than a specified number of threads can execute a particular
section of code at a time. Compare to lock.

serialize. To run in sequence, not in parallel.

set. An unordered collection without duplicates. Compare to
multiset.

shared data. Data used by more than one thread. Read/write access
to mutable shared data requires synchronization.

160 glossary

single-threaded data type. A type that is not thread-safe. It cannot
be accessed by multiple threads unless there is additional synchroni-
zation in user code.

simultaneous multithreading (SMT). A technique for executing
multiple threads on a single core.

socket. Physical processor.

speculative execution. To execute tasks even though their results
may not be needed.

static partitioning. Data partitioning whereby the parts are selected
before the program executes. Compare to dynamic partitioning.

sentinel value. A user-defined value that acts as an end-of-file-
token.

synchronization. Coordinating the actions of threads to ensure
a correct outcome. A lock is an example of a synchronization
mechanism.

task. A parallelizable unit of work. A task executes in a thread, but
is not the same as a thread; it is at a higher level of abstraction.
Tasks are recommended for parallel programming with the PPL
and Asynchronous Agents libraries. Compare to thread, process.

task graph. Can be seen as a directed graph when tasks provide
results that are the inputs to other tasks. The nodes are tasks, and
the arcs are values that act as inputs and outputs of the tasks.

task group. A group of tasks that are either waited on or cancelled
together. The task_group class is thread-safe.

task inlining. When more than one task executes in a single thread
concurrently due to one task requesting that the other task run
synchronously at the current point of execution.

task parallelism. A form of parallel processing whereby different
computations execute in parallel on different data. Compare to
data parallelism.

thread. An executing sequence of statements. Several (or many)
threads can run within a single process. Threads are not isolated;
all the threads in a process share data. A thread can run a task,
but is not the same as a task; it is at a lower level of abstraction.
Compare to process, task.

thread affinity. When certain operations must only be performed
by a particular thread.

 161

thread pool. A collection of threads managed by the system that are
used to avoid the overhead of creating and disposing threads.

thread safe. See concurrency safe.

thread starvation. When tasks are unable to run because there are
no virtual processor objects available to run them in the scheduler.

thread-local state. Variables that are accessed by only one thread.
No locking or other synchronization is needed to safely access
thread-local state. The combinable<T> class is a recommended way
to establish thread-local state when using the PPL and Asynchro-
nous Agents libraries.

thread-safe. A type that can be used concurrently by multiple
threads, without requiring additional synchronization in user code.
A thread-safe type ensures that its data can be accessed by only
one thread at a time, and its operations are atomic with respect to
multiple threads. Compare to single-threaded data type.

torn read. When reading a variable requires more than one machine
instruction, and another task writes to the variable between the
read instructions. Compare to torn write.

torn write. When writing a variable requires more than one machine
instruction, and another task reads the variable between the write
instructions. Compare to torn read.

two-step dance. To signal an event while holding a lock, when the
waking thread needs to acquire that lock. It will wake only to find
that it must wait again. This can cause context switching and poor
performance.

undersubscription. When there are fewer tasks than there are
processors available to run them, so processors remain idle.

user mode. The mode in which user applications run but have
restricted access to resources. Compare to kernel mode.

virtual core. Logical processor.

volatile. A keyword that tells the C++ compiler that a field can
be modified by multiple threads, the operating system, or other
hardware.

work functions. The arguments to parallel_invoke or
task_group::run.

work stealing. When a thread executes a task queued for another
thread, in order to remain busy.

163

Index

A
Accelerator API, 150
accumulate function, 47-48
acknowledgments, xxi-xxii
Adatum Dashboard, 65-70
AgentBase class, 101-102
agent class, 86
agent::wait_for_*methods, 33
agent::wait method, 33
Aggregation pattern, 57
alpha blending, 29
Amdahl’s law, 8-10, 16

performance, 96-97
AnalysisEngine class, 67-70
anti-patterns

parallel_for function, 23
Parallel Loop pattern, 23-24
parallel tasks pattern, 37-39
Pipeline pattern, 107
resource manager, 129-131

appendixes see parallel application
debugging and profiling; task
scheduler and resource manager;
technology overview

asend function, 33
Asynchronous Agents Library, xvi, 1

Pipeline pattern, 85
asynchronous pipelines, 97-101
audience, xv

B
Block method, 127
bottlenecks, 70-71
breakpoints and memory allocation,

136-137
business objects, 66-67

C
caching suballocator, 127-128
call class, 98-101
call messaging block, 86
cancellation

futures, 70
is_canceling method, 34-35
IsCancellationPending method,

104
pipelines, 101-102
querying for, 126
task group cancellation, 33-35
unintended propagation of

cancellation requests, 38
cartoons, xix, 12, 25, 44, 60, 74, 84
CHESS, 150
choice messaging block, 86
closures, 37-38
code examples, 2
combinable class, 46-49, 55-56
combinable objects, 55
concurrency

visualizer, 137-142
vs. parallelism, 8

164 index

Concurrency namespace, 31-34
Concurrency Runtime

components, 112
sample pack, 47

Context::Block method, 33
Context class, 126-127
Context::Oversubscribe method, 128
Context::Yield method, 33
contributors and reviewers, xxi-xxii
cooperative blocking, 31-33

interface to, 127
scheduling interactions with, 24

cooperative context switch, 115
coordination, 3
Cores view, 139-140
CorrectCaseAgent class, 90-91
CPU Utilization view, 139
CPU view that shows a load imbalance,

146
credit analysis parallel review example,

18-19
credit analysis sequential review

example, 18
critical_section::lock method, 32
CurrentContext method, 126
CurrentScheduler class, 119

D
data accessors, 16
dataflow network defined, 85
data parallelism, 27
data pipeline defined, 85
data structures of schedule groups, 122
deadlocks, 5, 135-136

from thread starvation, 131
debugging

information, 126
parallel application debugging

and profiling, 133-147
decomposition

Futures pattern, 72
introduction, 3-6
overview, 3

degree of parallelism, 22
dependent loop bodies, 16-17
depthRemaining argument, 79

design
approaches, 6
notes, 72

Detach method, 120
Discrete Event pattern, 73
Divide and Conquer pattern, 75
DoAnalysisParallel method, 70
DoCpuIntensiveOperation function, 37
DryadLINQ, 150
duplicates in the input enumeration, 23
dynamic resource management, 115
Dynamic Task Parallelism pattern, 75-83

adding tasks to a pending wait
context, 81-83

basics, 75-77
depthRemaining argument, 79
exercises, 83
further reading, 83
Futures pattern, 73
ParallelQuickSort method, 78-79
ParallelSubtreeHandler function,

82
ParallelTreeUnwinding function,

82
ParallelWhileNotEmpty1 method,

80-81
QuickSort algorithm, 78
sequential code, 76
SequentialWalk method, 76
variations, 80-83
wait method, 81-82

E
enhanced locality mode, 124-125
EnterCriticalSection function, 40
environment, 116
event::wait method, 33
exception handling, 20-21

parallel tasks pattern, 35
exercises

Dynamic Task Parallelism
pattern, 83

Futures pattern, 73
introduction, 11
parallel tasks pattern, 42
Pipeline pattern, 109

 165

F
Fit method, 18
Fork/Join pattern, 27
forward progress mode, 124-125
FreePipelineSlot method, 92
FriendMultiSet type, 51-55
FriendsSet type, 51-52
functional style, 72
further reading

Dynamic Task Parallelism pattern,
83

Parallel Aggregation pattern,
58-59

parallel application debugging
and profiling, 147

Parallel Loop pattern, 25
parallel tasks pattern, 42
Pipeline pattern, 109
technology overview, 151

Future class, 61-62
future defined, 61
Futures pattern, 61-73

Adatum Dashboard, 65-70
AnalysisEngine class, 67-70
basics, 62-70
bottleneck removal, 70-71
business objects, 66-67
decomposition into futures, 72
design notes, 72
Discrete Event pattern, 73
Divide and Conquer pattern, 73,

75
DoAnalysisParallel method, 70
Dynamic Task Parallelism pattern,

73
exercises, 73
functional style, 72
Future class, 61-62
futures

canceling, 70
defined, 61

MarketRecommendation object,
68-70

Master/Worker pattern, 73
modifying the graph at run time,

71
Pipeline pattern, 73
related patterns, 72-73

Result method, 64-65
scoped_oversubscription_token

class, 70
single_assignment class, 62
StockDataCollection type, 66-67
task graph, 62
variations, 70-72

G
GetParent method, 16
GetProcessorCount function, 116
GetProcessorNodeCount function, 116
glossary, 153-162
goals, xx
granularity, 3-4, 16
graphs, 71
guide, xvii

H
hard coding, 2
Hey, Tony, xi-xii

I
ignored process affinity mask, 131-132
ImageAgentPipelineDataFlow class,

98-101
ImagePerformanceData object, 136-137
image pipeline, 94-96

with load balancing diagram, 106
ImagePipelineDlg class, 101-102
ImagePipeline sample application, 92
IncrementIfPrime function, 47-48
infinite waits, 107
interface to cooperative blocking, 127
introduction, 1-12

Amdahl’s law, 8-10
decomposition, coordination,

and scalable sharing, 3-6
exercises, 11
more information, 11
table of patterns, 7
terminology, 8

is_canceling method, 34-35
IsCancellationPending method, 104
isolation, 107
IVirtualProcessorRoot class, 113

166 index

J
join messaging block, 86

L
LeaveCriticalSection function, 40
lightweight tasks

parallel tasks pattern, 38, 41
task scheduler and resource

manager, 116-117, 122-123
loads

balancing with multiple
producers, 104-106

imbalance, 145-147
LockContention method, 143-145
locks, 5-6
long-running I/O tasks, 128
loop-carried dependence, 17
loops

breaking out of early, 19-20
dependent loop bodies, 16-17
hidden loop body dependencies,

23
parallel loops vs. pipelines, 86
see also Parallel Loop pattern

M
map phase, 50
Map/Reduce pattern, 49-55
MarketRecommendation object, 68-70
Master/Worker pattern, 73

parallel tasks pattern, 27
MaxConcurrency policy key, 129
memory allocation and breakpoints,

136-137
messages, 107
messaging blocks, 86
Microsoft parallel programming

resources, 149
MinConcurrency policy key, 129
multisets, 50

union, 51
multitype_join messaging block, 86

N
Non-Uniform Memory Architecture

(NUMA), xiii, 112-114

O
operator(), 29
out of scope material, xx, 131
oversubscription, 142-143

cores, 116
overwrite_buffer messaging block, 86

P
Pack pattern, 57-58
Parallel Aggregation pattern, 45-59

accumulate function, 47-48
Aggregation pattern, 57
basics, 46-49
combinable class, 46-49, 55-56
Concurrency Runtime sample

pack, 47
considerations for small loop

bodies, 55
design notes, 55-57
example, 49-55, 58
exercises, 58
FriendMultiSet type, 51-55
FriendsSet type, 51-52
further reading, 58-59
IncrementIfPrime function, 47-48
map phase, 50
Map/Reduce pattern, 49-55
multiset, 50
multiset union, 51
other uses for combinable

objects, 55
Pack pattern, 57-58
parallel_reduce function, 48,

53-55
parallel_transform function,

53-55
postprocessing phase, 50
Reduce pattern, 57
reduce phase, 50
related patterns, 57
Scan pattern, 57-58
Stencil pattern, 58
variations, 55

 167

parallel application debugging and
profiling, 133-147

breakpoints and memory
allocation, 136-137

concurrency visualizer, 137-142
Cores view, 139-140
CPU Utilization view, 139
CPU view that shows a load

imbalance, 146
deadlocks, 135-136
further reading, 147
ImagePerformanceData object,

136-137
load imbalance, 145-147
lock contention and serialization,

143-145
LockContention method, 143-145
oversubscription, 142-143
Parallel Stacks window, 133-136
Parallel Tasks window, 133-136
Scenario library, 141-142
scenario markers, 141-142
Threads view, 140-141
Threads view of the Concurrency

Visualizer, 138
Threads view showing lock

convoy, 144-145
Threads view that shows a load

imbalance, 146
visual patterns, 142-147

parallel_for_each function, 14-16
controlling the degree of

parallelism, 22
parallel_for function, 14-16, 21-22

anti-patterns, 23
controlling the degree of

parallelism, 22
overloading, 21-22
Parallel Loop pattern, 23

parallel_invoke function, 28-30, 33, 41
parallelism

degree of parallelism, 22
limits of, 8-10
potential parallelism described, 2
vs. concurrency, 8

Parallel Loop pattern, 13-25
anti-patterns, 23-24
breaking out of loops early, 19-20

credit analysis parallel review
example, 18-19

credit analysis sequential review
example, 18

data accessors, 16
degree of parallelism, 22
dependent loop bodies, 16-17
duplicates in the input

enumeration, 23
exception handling, 20-21
exercises, 24
Fit method, 18
further reading, 25
GetParent method, 16
hidden loop body dependencies,

23
interactions with cooperative

blocking, 24
loop-carried dependence, 17
parallel_for_each function, 14-16

controlling the degree of
parallelism, 22

parallel_for function, 14-16, 21-22
anti-patterns, 23
controlling the degree of

parallelism, 22
overloading, 21-22

parallel_for function overloading,
21-22

profiling, 17
related patterns, 24
sequential credit review example,

18
small loop bodies with few

iterations, 23
special handling of small loop

bodies, 21-22
UpdatePredictionsParallel

method, 18-19
UpdatePredictionsSequential

method, 18
variations, 19-22
when to use, 17-19

parallel loops vs. pipelines, 86
Parallel Patterns Library (PPL), xv, 1
parallel programming, 1

basic precepts, 10-11
patterns, xvii

168 index

ParallelQuickSort method, 78-79
parallel_reduce function, 48, 53-55
ParallelSubtreeHandler function, 82
parallel tasks pattern, 27-42

agent::wait_for_* methods, 33
agent::wait method, 33
alpha blending, 29
anti-patterns, 37-39
asend function, 33
basics, 28-29
cancellation requests, 38
Concurrency namespace, 31-34
Context::Block method, 33
Context::Yield method, 33
cooperative blocking, 31-33
critical_section::lock method, 32
data parallelism, 27
design notes, 39-41
DoCpuIntensiveOperation

function, 37
EnterCriticalSection function, 40
event::wait method, 33
example, 29-31
exception handling, 35
exercises, 42
Fork/Join pattern, 27
further reading, 42
how tasks are scheduled, 40-41
is_canceling method, 34-35
LeaveCriticalSection function, 40
lightweight tasks, 38, 41
Master/Worker pattern, 27
operator(), 29
parallel_invoke function, 28-30,

33, 41
reader_writer_lock::lock method,

32
reader_writer_lock::lock_read

method, 32
reader_writer_lock::scoped_lock

constructor, 32
reader_writer_lock::scoped_

lock_read constructor, 32
receive function, 33
Resource Acquisition is

Initialization (RAII) pattern, 34
run_and_wait method, 31
SearchLeft function, 36

section::scoped_lock constructor,
32

send function, 33
speculative execution, 36-39
structured task groups and task

handles, 41
synchronization costs, 39
task group calling conventions, 39
task group cancellation, 33-35
task_group::cancel method, 33-35
task_group class, 27, 39
task_group::run method, 29
task_group::wait method, 31-32,

35
task parallelism, 27
tasks and threads, 40
variables captured by closures,

37-38
variations, 31-35
wait(…) function, 33

Parallel Tasks window, 133-136
parallel_transform function, 53-55
ParallelTreeUnwinding function, 82
ParallelWhileNotEmpty1 method,

80-81
performance, 96-97

Amdahl’s law, 8-10, 16
PipelineGovernor class, 88-89, 95-96,

107
Pipeline pattern, 85-109

AgentBase class, 101-102
agent class, 86
anti-patterns, 107
Asynchronous Agents Library, 85
asynchronous pipelines, 97-101
basics, 86-92
call class, 98-101
call messaging block, 86
choice messaging block, 86
copying large amounts of data

between stages, 107
CorrectCaseAgent class, 90-91
dataflow network defined, 85
data pipeline defined, 85
design notes, 108
example, 92-97
exercises, 109
forgetting to use message passing

for isolation, 107

 169

FreePipelineSlot method, 92
further reading, 109
Futures pattern, 73
ImageAgentPipelineDataFlow

class, 98-101
image pipeline, 94-96
ImagePipelineDlg class, 101-102
ImagePipeline sample application,

92
image pipeline with load

balancing diagram, 106
infinite waits, 107
IsCancellationPending method,

104
join messaging block, 86
load balancing using multiple

producers, 104-106
more information, 107
multitype_join messaging block,

86
overwrite_buffer messaging

block, 86
performance characteristics,

96-97
pipeline cancellation, 101-102
pipeline exceptions, 102-104
PipelineGovernor class, 88-89,

95-96, 107
pipelines and streams, 106
pipeline stages that are too small,

107
pipelines vs. parallel loops, 86
ReadStringsAgent class, 89
receive function, 91
related patterns, 109
run method, 89-91, 100
sample pipeline, 87
scalability, 108
sequential image processing,

92-94
ShutdownOnError method, 103
single_assignment messaging

block, 86
source, 87
target, 87
timer messaging block, 86
transformer class, 98-101
transformer messaging block, 86

types of messaging blocks, 86
unbounded_buffer messaging

block, 86
unbounded_buffer<T> class,

87-88, 104
variations, 97-106
wait_for_all method, 89
WriteSentencesAgent class, 91-92

pipelines
asynchronous, 97-101
canceling, 101-102
data pipeline defined, 85
exceptions, 102-104
image pipeline with load

balancing diagram, 106
sample, 87
stages, 107
and streams, 106
vs. parallel loops, 86
see also image pipeline

PolicyElementKey enumeration,
128-129

postprocessing phase, 50
PPL tasks, 117, 122-123
prerequisites, xv-xvi
processor affinity mask, 113-114
profiling, 17

Q
QuickSort algorithm, 78

R
ray tracers, 4
reader_writer_lock::lock method, 32
reader_writer_lock::lock_read method,

32
reader_writer_lock::scoped_lock_read

constructor, 32
ReadStringsAgent class, 89
receive function

parallel tasks pattern, 33
Pipeline pattern, 91

recursive decomposition, 75
Reduce pattern, 57
reduce phase, 50
references, 132
Resource Acquisition is Initialization

(RAII) pattern, 34

170 index

resource management overhead,
129-130

resource manager, 113-116, 118-119,
121, 128

anti-patterns, 129-132
ResourceManager class, 113
Result method, 64-65
reviewers, xxi-xxii
run_and_wait method, 31
run method, 89-91, 100

S
sample pipeline, 87
scalable sharing, 5-6
Scan pattern, 57-58
Scenario library, 141-142
scenario markers, 141-142
ScheduleGroup class, 117, 121-122
schedule groups, 121-122
scheduler, 126-128

policy, 128-129
see also task scheduler and

resource manager
Scheduler::Attach method, 119
Scheduler class, 118
Scheduler::Create method, 119
ScheduleTask method, 117
SchedulingProtocol policy key, 129
scoped_oversubscription_token class,

70
SearchLeft function, 36
section::scoped_lock constructor, 32
send function, 33
sequential code, 76
sequential credit review example, 18
sequential image processing, 92-94
SequentialWalk method, 76
SetDefaultSchedulerPolicy method, 118
sharing, 3
ShutdownOnError method, 103
single_assignment class, 62
single_assignment messaging block, 86
small loop bodies, 55

with few iterations, 23
special handling of, 21-22

source, 87
speculative execution, 36-39
Stencil pattern, 58

StockDataCollection type, 66-67
streams and pipelines, 106
structured task groups and task

handles, 41
Sutter, Herb, xiii-xiv
synchronization

costs, 39
issues of, 5-6

system requirements, xv-xvi

T
table of patterns, 7
target, 87
task execution order, 125
task graph, 62
task_group::cancel method, 33-35
task_group class, 27

parallel tasks pattern, 27, 39
task groups

calling conventions, 39
cancellation, 33-35

task_group::wait method, 31-32, 35
task parallelism, 27

see also parallel tasks
tasks

adding, 122-123
adding to a pending wait context,

81-83
coordinating, 4
how they are scheduled, 40-41
kinds of, 116-117
running, 123-124
that are run inline, 125-126
and threads, 40
understanding, 3-4
vs.threads, 4

task scheduler and resource manager,
111-132

Block method, 127
caching suballocator, 127-128
Concurrency Runtime, 111-113,

116-118, 121, 128, 131-132
Concurrency Runtime

components, 112
Context class, 126-127
Context::Oversubscribe method,

128
cooperative context switch, 115

 171

CurrentContext method, 126
CurrentScheduler class, 119
data structures of schedule

groups, 122
deadlock from thread starvation,

131
debugging information, 126
Detach method, 120
dynamic resource management,

115
enhanced locality mode, 124-125
forward progress mode, 124-125
GetProcessorCount function, 116
GetProcessorNodeCount

function, 116
ignored process affinity mask,

131-132
interface to cooperative blocking,

127
IVirtualProcessorRoot class, 113
lightweight tasks, 116-117,

122-123
long-running I/O tasks, 128
MaxConcurrency policy key, 129
MinConcurrency policy key, 129
oversubscribing cores, 116
PolicyElementKey enumeration,

128-129
PPL tasks, 117, 122-123
processor affinity mask, 113-114
querying for cancellation, 126
querying the environment, 116
references, 132
resource management overhead,

129-130
resource manager, 113-116,

118-119, 121, 128
resource manager anti-patterns,

129-131
ResourceManager class, 113
scenarios for multiple task

schedulers, 120-121
ScheduleGroup class, 117,

121-122
schedule groups, 121-122
Scheduler::Attach method, 119
Scheduler class, 118
Scheduler::Create method, 119

schedulers
and contexts, 126-128
policy, 128-129

ScheduleTask method, 117
SchedulingProtocol policy key,

129
SetDefaultSchedulerPolicy

method, 118
TargetOversubscriptionFactor

policy key, 129
task execution order, 125
task runnability, 123-124
tasks

adding, 122-123
kinds of, 116-117
long-running I/O tasks, 128
that are run inline, 125-126

task schedulers, 118-129
creating and attaching, 119
destroying, 120
detaching, 120
managing, 119-121

Unblock method, 127
unintentional oversubscription

from inlined tasks, 130-131
virtual processor, 113-115
wait function, 127
Yield method, 127

task schedulers, 118-129
creating and attaching, 119
destroying, 120
detaching, 120
managing, 119-121

team, xxi-xxii
technology overview, 149-151

Accelerator API, 150
CHESS, 150
DryadLINQ, 150
further reading, 151
Microsoft parallel programming

resources, 149
Visual Studio 2010, 150

terminology, 8
glossary, 153-162

threads
starvation, 8
vs. tasks, 4

172 index

Threads view, 140-141
showing lock convoy, 144-145
that shows a load imbalance, 146

timer messaging block, 86
transformer class, 98-101
transformer messaging block, 86

U
Unblock method, 127
unbounded_buffer messaging block, 86
unbounded_buffer<T> class, 87-88, 104
unintended propagation of cancellation

requests, 38
UpdatePredictionsParallel method,

18-19
UpdatePredictionsSequential method,

18

V
variables captured by closures, 37-38
variations

parallel tasks pattern, 31-35
Pipeline pattern, 97-106

virtual processor, 113-115
visual patterns, 142-147
Visual Studio 2010, 150

W
wait_for_all method, 89
wait(…) function, 33
wait function, 127
wait method, 81-82
WriteSentencesAgent class, 91-92

Y
Yield method, 127

	Contents
	Foreword
	Foreword
	Preface
	Why This Book Is Pertinent Now
	What You Need to Use the Code
	How to Use This Book
	Introduction
	Parallelism with Control Dependencies Only
	Parallelism with Control and Data
Dependencies
	Dynamic Task Parallelism and Pipelines
	Supporting Material

	What Is Not Covered
	Goals

	Acknowledgments
	Chapter 1. Introduction
	The Importance of Potential Parallelism
	Decomposition, Coordination, and Scalable Sharing
	Understanding Tasks
	Coordinating Tasks
	Scalable Sharing of Data
	Design Approaches

	Selecting the Right Pattern
	A Word about Terminology
	The Limits of Parallelism
	A Few Tips
	Exercises
	For More Information

	Parallel Loops
	The Basics
	Parallel for Loops
	parallel_for_each
	What to Expect

	An Example
	Sequential Credit Review Example
	Credit Review Example Using
parallel_for_each
	Performance Comparison

	Variations
	Breaking out of Loops Early
	Exception Handling
	Special Handling of Small Loop Bodies
	Controlling the Degree of Parallelism

	Anti-Patterns
	Hidden Loop Body Dependencies
	Small Loop Bodies with Few Iterations
	Duplicates in the Input Enumeration
	Scheduling Interactions with
Cooperative Blocking

	Related Patterns
	Exercises
	Further Reading

	Chapter 3. Parallel Tasks
	The Basics
	An Example
	Variations
	Coordinating Tasks with Cooperative Blocking
	Canceling a Task Group
	Handling Exceptions

	Speculative Execution
	Anti-Patterns
	Variables Captured by Closures
	Unintended Propagation of Cancellation Requests
	The Cost of Synchronization

	Design Notes
	Task Group Calling Conventions
	Tasks and Threads
	How Tasks Are Scheduled
	Structured Task Groups and Task Handles
	Lightweight Tasks

	Exercises
	Further Reading

	Chapter 4. Parallel Aggregation
	The Basics
	An Example
	Variations
	Considerations for Small Loop Bodies
	Other Uses for Combinable Objects

	Design Notes
	Related Patterns
	Exercises
	Further Reading

	Chapter 5. Futures
	The Basics
	Futures

	Example: The Adatum Financial Dashboard
	The Business Objects
	The Analysis Engine

	Variations
	Canceling Futures
	Removing Bottlenecks
	Modifying the Graph at Run Time

	Design Notes
	Decomposition into Futures
	Functional Style

	Related Patterns
	Pipeline Pattern
	Master/Worker Pattern
	Dynamic Task Parallelism Pattern
	Discrete Event Pattern

	Exercises

	Chapter 6. Dynamic Task Parallelism
	An Example
	Variations
	Parallel While-Not-Empty
	Adding Tasks to a Pending Wait Context

	Exercises
	Further Reading

	Chapter 7. Pipelines
	Types of Messaging Blocks
	The Basics
	An Example
	Sequential Image Processing
	The Image Pipeline
	Performance Characteristics

	Variations
	Asynchronous Pipelines
	Canceling a Pipeline
	Handling Pipeline Exceptions
	Load Balancing Using Multiple Producers
	Pipelines and Streams

	Anti-Patterns
	Copying Large Amounts of Data between Pipeline Stages
	Pipeline Stages that Are Too Small
	Forgetting to Use Message Passing for Isolation
	Infinite Waits
	Unbounded Queue Growth
	More Information

	Design Notes
	Related Patterns
	Exercises
	Further Reading

	Appendix A. The Task Scheduler and Resource Manager
	Resource Manager
	Why It’s Needed
	How Resource Management Works
	Dynamic Resource Management
	Oversubscribing Cores
	Querying the Environment

	Kinds of Tasks
	Lightweight Tasks
	Tasks Created Using PPL

	Task Schedulers
	Managing Task Schedulers
	Creating and Attaching a Task Scheduler
	Detaching a Task Scheduler
	Destroying a Task Scheduler
	Scenarios for Using Multiple Task Schedulers
	Implementing a Custom Scheduling Component

	The Scheduling Algorithm
	Schedule Groups
	Adding Tasks
	Running Tasks
	Enhanced Locality Mode
	Forward Progress Mode
	Task Execution Order
	Tasks That Are Run Inline

	Using Contexts to Communicate with the Scheduler
	Debugging Information
	Querying for Cancellation
	Interface to Cooperative Blocking
	Waiting
	The Caching Suballocator
	Long-Running I/O Tasks

	Setting Scheduler Policy

	Anti-Patterns
	Multiple Resource Managers
	Resource Management Overhead
	Unintentional Oversubscription from Inlined Tasks
	Deadlock from Thread Starvation
	Ignored Process Affinity Mask

	References

	Appendix B. Debugging and Profiling Parallel Applications
	The Parallel Tasks and Parallel Stacks Windows
	Breakpoints and Memory Allocation
	The Concurrency Visualizer
	Scenario Markers

	Visual Patterns
	Oversubscription
	Lock Contention and Serialization
	Load Imbalance

	Further Reading

	Appendix C. Technology Overview
	Further Reading

	Glossary
	Index

