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Foreword

At its inception some 40 or so years ago, parallel computing was the 
province of experts who applied it to exotic fields, such as high en-
ergy physics, and to engineering applications, such as computational 
fluid dynamics. We’ve come a long way since those early days.

This change is being driven by hardware trends. The days of per-
petually increasing processor clock speeds are now at an end. Instead, 
the increased chip densities that Moore’s Law predicts are being used 
to create multicore processors, or single chips with multiple processor 
cores. Quad-core processors are now common, and this trend will 
continue, with 10’s of cores available on the hardware in the not-too-
distant future.

In the last five years, Microsoft has taken advantage of this tech-
nological shift to create a variety of parallel implementations. These 
include the Microsoft® Windows® High Performance Cluster (HPC) 
technology for message-passing interface (MPI) programs, Dryad, 
which offers a Map-Reduce style of parallel data processing, the Win-
dows Azure™ technology platform, which can supply compute cores 
on demand, the Parallel Patterns Library (PPL) and Asynchronous 
Agents Library for native code, and the parallel extensions of the 
Microsoft .NET Framework 4.

Multicore computation affects the whole spectrum of applica-
tions, from complex scientific and design problems to consumer ap-
plications and new human/computer interfaces. We used to joke that 
“parallel computing is the future, and always will be,” but the pessi-
mists have been proven wrong. Parallel computing has at last moved 
from being a niche technology to being center stage for both applica-
tion developers and the IT industry.

But, there is a catch. To obtain any speed-up of an application, 
programmers now have to divide the computational work to make 
efficient use of the power of multicore processors, a skill that still 
belongs to experts. Parallel programming presents a massive challenge 
for the majority of developers, many of whom are encountering it for 
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the first time. There is an urgent need to educate them in practical 
ways so that they can incorporate parallelism into their applications.

Two possible approaches are popular with some of my computer 
science colleagues: either design a new parallel programming language, 
or develop a “heroic” parallelizing compiler. While both are certainly 
interesting academically, neither has had much success in popularizing 
and simplifying the task of parallel programming for non-experts. In 
contrast, a more pragmatic approach is to provide programmers with 
a library that hides much of parallel programming’s complexity and 
teach programmers how to use it.

To that end, the Microsoft Visual C++® Parallel Patterns Library 
and Asynchronous Agents Library present a higher-level programming 
model than earlier APIs. Programmers can, for example, think in terms 
of tasks rather than threads, and avoid the complexities of thread 
management. Parallel Programming with Microsoft Visual C++ teaches 
programmers how to use these libraries by putting them in the con-
text of design patterns. As a result, developers can quickly learn to 
write parallel programs and gain immediate performance benefits.

I believe that this book, with its emphasis on parallel design pat-
terns and an up-to-date programming model, represents an important 
first step in moving parallel programming into the mainstream.

Tony Hey
Corporate Vice President, Microsoft Research

foreword
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Foreword

This timely book comes as we navigate a major turning point in our 
industry: parallel hardware + mobile devices = the pocket supercom-
puter as the mainstream platform for the next 20 years.

Parallel applications are increasingly needed to exploit all kinds of 
target hardware. As I write this, getting full computational perfor-
mance out of most machines—nearly all desktops and laptops, most 
game consoles, and the newest smartphones—already means harness-
ing local parallel hardware, mainly in the form of multicore CPU pro-
cessing; this is the commoditization of the supercomputer. Increas-
ingly in the coming years, getting that full performance will also mean 
using gradually ever-more-heterogeneous processing, from local 
general-purpose computation on graphics processing units (GPGPU) 
flavors to harnessing “often-on” remote parallel computing power in 
the form of elastic compute clouds; this is the generalization of the 
heterogeneous cluster in all its NUMA glory, with instantiations rang-
ing from on-die to on-machine to on-cloud, with early examples of 
each kind already available in the wild.

Starting now and for the foreseeable future, for compute-bound 
applications, “fast” will be synonymous not just with “parallel,” but 
with “scalably parallel.” Only scalably parallel applications that can be 
shipped with lots of latent concurrency beyond what can be ex-
ploited in this year’s mainstream machines will be able to enjoy the 
new Free Lunch of getting substantially faster when today’s binaries 
can be installed and blossom on tomorrow’s hardware that will have 
more parallelism.

Visual C++ 2010 with its Parallel Patterns Library (PPL), described 
in this book, helps enable applications to take the first steps down 
this new path as it continues to unfold. During the design of PPL, 
many people did a lot of heavy lifting. For my part, I was glad to be 
able to contribute the heavy emphasis on lambda functions as the key 
central language extension that enabled the rest of PPL to be built as 
Standard Template Library (STL)-like algorithms implemented as a 
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normal library. We could instead have built a half-dozen new kinds of 
special-purpose parallel loops into the language itself (and almost did), 
but that would have been terribly invasive and non-general. Adding a 
single general-purpose language feature like lambdas that can be used 
everywhere, including with PPL but not limited to only that, is vastly 
superior to baking special cases into the language.

The good news is that, in large parts of the world, we have as an 
industry already achieved pervasive computing: the vision of putting 
a computer on every desk, in every living room, and in everyone’s 
pocket. But now we are in the process of delivering pervasive and 
even elastic supercomputing: putting a supercomputer on every desk, 
in every living room, and in everyone’s pocket, with both local and 
non-local resources. In 1984, when I was just finishing high school, the 
world’s fastest computer was a Cray X-MP with four processors, 
128MB of RAM, and peak performance of 942MFLOPS—or, put an-
other way, a fraction of the parallelism, memory, and computational 
power of a 2005 vintage Xbox, never mind modern “phones” and Ki-
nect. We’ve come a long way, and the pace of change is not only still 
strong, but still accelerating.

The industry turn to parallelism that has begun with multicore 
CPUs (for the reasons I outlined a few years ago in my essay “The Free 
Lunch Is Over”) will continue to be accelerated by GPGPU comput-
ing, elastic cloud computing, and other new and fundamentally paral-
lel trends that deliver vast amounts of new computational power in 
forms that will become increasingly available to us through our main-
stream programming languages. At Microsoft, we’re very happy to be 
able to be part of delivering this and future generations of tools for 
mainstream parallel computing across the industry. With PPL in par-
ticular, I’m very pleased to see how well the final product has turned 
out and look forward to seeing its capabilities continue to grow as we 
re-enable the new Free Lunch applications—scalable parallel applica-
tions ready for our next 20 years.

Herb Sutter
Principal Architect, Microsoft
Bellevue, WA, USA
February 2011
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Preface

This book describes patterns for parallel programming, with code 
examples, that use the new parallel programming support in the Mi-
crosoft® Visual C++® development system. This support is com-
monly referred to as the Parallel Patterns Library (PPL). There is also 
an example of how to use the Asynchronous Agents Library in con-
junction with the PPL. You can use the patterns described in this book 
to improve your application’s performance on multicore computers. 
Adopting the patterns in your code can make your application run 
faster today and also help prepare for future hardware environments, 
which are expected to have an increasingly parallel computing archi-
tecture.

Who This Book Is For
The book is intended for programmers who write native code for the 
Microsoft Windows® operating system, but the portability of PPL 
makes this book useful for platforms other than Windows. No prior 
knowledge of parallel programming techniques is assumed. However, 
readers need to be familiar with features of the C++ environment such 
as templates, the Standard Template Library (STL) and lambda expres-
sions (which are new to Visual C++ in the Microsoft Visual Studio® 
2010 development system). Readers should also have at least a basic 
familiarity with the concepts of processes and threads of execution.

Note: The examples in this book are written in C++ and use the 
features of the Parallel Patterns Library (PPL). 

Complete code solutions are posted on CodePlex. See http://
parallelpatternscpp.codeplex.com/. 

There is also a companion volume to this guide, Parallel 
Programming with Microsoft .NET, which presents the same 
patterns in the context of managed code.
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Why This Book Is Pertinent Now
The advanced parallel programming features that are delivered with 
Visual Studio 2010 make it easier than ever to get started with parallel 
programming.

The Parallel Patterns Library and Asynchronous Agents Library 
are for C++ programmers who want to write parallel programs. They 
simplify the process of adding parallelism and concurrency to applica-
tions. PPL dynamically scales the degree of parallelism to most effi-
ciently use all the processors that are available. In addition, PPL and 
agents assist in the partitioning of work and the scheduling of tasks 
in threads. The library provides cancellation support, state manage-
ment, and other services. These libraries make use of the Concurrency 
Runtime, which is part of the Visual C++ platform.

Visual Studio 2010 includes tools for debugging parallel applica-
tions. The Parallel Stacks window shows call stack information for all 
the threads in your application. It lets you navigate between threads 
and stack frames on those threads. The Parallel Tasks window re-
sembles the Threads window, except that it shows information about 
each task instead of each thread. The Concurrency Visualizer views in 
the Visual Studio profiler enable you to see how your application in-
teracts with the hardware, the operating system, and other processes 
on the computer. You can use the Concurrency Visualizer to locate 
performance bottlenecks, processor underutilization, thread conten-
tion, cross-core thread migration, synchronization delays, areas of 
overlapped I/O, and other information.

For a complete overview of the parallel technologies available 
from Microsoft, see Appendix C, “Technology Overview.”

What You Need to Use the Code
The code that is used for examples in this book is at http://parallelpat-
ternscpp.codeplex.com/. These are the system requirements:
•	 Microsoft Windows Vista® SP1, Windows 7, Windows Server® 

2008, or Windows XP SP3 (32-bit or 64-bit) operating system.
•	 Microsoft Visual Studio 2010 SP1 (Ultimate or Premium edition 

is required for the Concurrency Visualizer, which allows you to 
analyze the performance of your application); this includes the 
PPL, which is required to run the samples and the Asynchronous 
Agents Library.

preface
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How to Use This Book
This book presents parallel programming techniques in terms of par-
ticular patterns. Figure 1 shows the different patterns and their rela-
tionships to each other. The numbers refer to the chapters in this 
book where the patterns are described.

figure 1
Parallel programming patterns

After the introduction, the book has one branch that discusses 
data parallelism and another that discusses task parallelism.

Both parallel loops and parallel tasks use only the program’s con-
trol flow as the means to coordinate and order tasks. The other pat-
terns use both control flow and data flow for coordination. Control 
flow refers to the steps of an algorithm. Data flow refers to the avail-
ability of inputs and outputs.

Data Parallelism Task Parallelism

Coordinated by
control flow only

Coordinated by control
flow and data flow

5 Futures 7 Pipelines

6 Dynamic Task Parallelism

4 Parallel Aggregation

2 Parallel Loops 3 Parallel Tasks

1 Introduction
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Introduction
Chapter 1, “Introduction,” introduces the common problems faced by 
developers who want to use parallelism to make their applications run 
faster. It explains basic concepts and prepares you for the remaining 
chapters. There is a table in the “Design Approaches” section of Chapter 
1 that can help you select the right patterns for your application.

Parallelism with Control Dependencies 
Only

Chapters 2 and 3 deal with cases where asynchronous operations are 
ordered only by control flow constraints:
•	 Chapter 2, “Parallel Loops.” Use parallel loops when you want 

to perform the same calculation on each member of a collection 
or for a range of indices, and where there are no dependencies 
between the members of the collection. For loops with depen-
dencies, see Chapter 4, “Parallel Aggregation.”

•	 Chapter 3, “Parallel Tasks.” Use parallel tasks when you have 
several distinct asynchronous operations to perform. This 
chapter explains why tasks and threads serve two distinct 
purposes.

Parallelism with Control and Data  
Dependencies

Chapters 4 and 5 show patterns for concurrent operations that are 
constrained by both control flow and data flow:
•	 Chapter 4, “Parallel Aggregation.” Patterns for parallel aggre-

gation are appropriate when the body of a parallel loop includes 
data dependencies, such as when calculating a sum or searching 
a collection for a maximum value.

•	 Chapter 5, “Futures.” The Futures pattern occurs when opera-
tions produce some outputs that are needed as inputs to other 
operations. The order of operations is constrained by a directed 
graph of data dependencies. Some operations are performed in 
parallel and some serially, depending on when inputs become 
available.

Dynamic Task Parallelism and Pipelines
Chapters 6 and 7 discuss some more advanced scenarios:
•	 Chapter 6, “Dynamic Task Parallelism.” In some cases, opera-

tions are dynamically added to the backlog of work as the 
computation proceeds. This pattern applies to several domains, 
including graph algorithms and sorting.

•	 Chapter 7, “Pipelines.” Use a pipeline to feed successive 
outputs of one component to the input queue of another 

preface
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component, in the style of an assembly line. Parallelism results 
when the pipeline fills, and when more than one component is 
simultaneously active.

Supporting Material
In addition to the patterns, there are several appendices:
•	 Appendix A, “The Task Scheduler and Resource Manager.” 

This appendix gives an overview of how the Concurrency 
Runtime’s task scheduler and resource manager function. 

•	 Appendix B, “Debugging and Profiling Parallel Applications.” 
This appendix gives you an overview of how to debug and 
profile parallel applications in Visual Studio 2010.

•	 Appendix C, “Technology Roadmap.” This appendix describes 
the various Microsoft technologies and frameworks for parallel 
programming.

•	 Glossary. The glossary contains definitions of the terms used in 
this book.
Everyone should read Chapters 1, 2, and 3 for an introduction and 

overview of the basic principles. Although the succeeding material is 
presented in a logical order, each chapter, from Chapter 4 on, can be 
read independently.

Callouts in a distinctive style, such as the one shown in the mar-
gin, alert you to things you should watch out for.

It’s very tempting to take a new tool or technology and try and 
use it to solve whatever problem is confronting you, regardless of the 
tool’s applicability. As the saying goes, “when all you have is a hammer, 
everything looks like a nail.” The “everything’s a nail” mentality can 
lead to very unfortunate results, which one hopes the bunny in Figure 
2 will be able to avoid.

You also want to avoid unfortunate results in your parallel pro-
grams. Adding parallelism to your application costs time and adds 
complexity. For good results, you should only parallelize the parts of 
your application where the benefits outweigh the costs.

figure 2
When all you have is a hammer, everything looks like a nail.

Don’t apply the patterns in  
this book blindly to your 
applications.
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What Is Not Covered
This book focuses more on processor-bound workloads than on I/O-
bound workloads. The goal is to make computationally intensive ap-
plications run faster by making better use of the computer’s available 
cores. As a result, the book does not focus as much on the issue of I/O 
latency. Nonetheless, there is some discussion of balanced workloads 
that are both processor intensive and have large amounts of I/O (see 
Chapter 7, “Pipelines”). 

The book describes parallelism within a single multicore node 
with shared memory instead of the cluster, High Performance  
Computing (HPC) Server approach that uses networked nodes with 
distributed memory. However, cluster programmers who want to take 
advantage of parallelism within a node may find the examples in this 
book helpful, because each node of a cluster can have multiple  
processing units.

Goals
After reading this book, you should be able to:
•	 Answer the questions at the end of each chapter.
•	 Figure out if your application fits one of the book’s patterns 

and, if it does, know if there’s a good chance of implementing  
a straightforward parallel implementation.

•	 Understand when your application doesn’t fit one of these 
patterns. At that point, you either have to do more reading  
and research, or enlist the help of an expert.

•	 Have an idea of the likely causes, such as conflicting dependencies 
or erroneously sharing data between tasks, if your implementa-
tion of a pattern doesn’t work.

•	 Use the “Further Reading” sections to find more material.

preface
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Introduction

Parallel programming uses 
multiple cores at the same 
time to improve your 
application’s speed.

Writing parallel programs 
has the reputation of being 
hard, but help has arrived.

Your CPU meter shows a problem. One core is running at 100 percent, 
but all the other cores are idle. Your application is CPU-bound, but 
you are using only a fraction of the computing power of your multi-
core system. Is there a way to get better performance?

The answer, in a nutshell, is parallel programming. Where you once 
would have written the kind of sequential code that is familiar to all 
programmers, you now find that this no longer meets your perfor-
mance goals. To use your system’s CPU resources efficiently, you need 
to split your application into pieces that can run at the same time.

Of course, this is easier said than done. Parallel programming has 
a reputation for being the domain of experts and a minefield of subtle, 
hard-to-reproduce software defects. Everyone seems to have a favor-
ite story about a parallel program that did not behave as expected 
because of a mysterious bug.

These stories should inspire a healthy respect for the difficulty of 
the problems you will face in writing your own parallel programs. 
Fortunately, help has arrived. The Parallel Patterns Library (PPL) and 
the Asynchronous Agents Library introduce a new programming 
model for parallelism that significantly simplifies the job. Behind the 
scenes are sophisticated algorithms that dynamically distribute com-
putations on multicore architectures. In addition, Microsoft® Visual 
Studio® 2010 development system includes debugging and analysis 
tools to support the new parallel programming model.

Proven design patterns are another source of help. This guide in-
troduces you to the most important and frequently used patterns of 
parallel programming and provides executable code samples for them, 
using PPL. When thinking about where to begin, a good place to start 
is to review the patterns in this book. See if your problem has any 
attributes that match the six patterns presented in the following 
chapters. If it does, delve more deeply into the relevant pattern or 
patterns and study the sample code.

1

Attention impatient readers: 
you can skip ahead to the table 
of patterns and when they can 
be used. See “Selecting the 
Right Pattern” later in this 
chapter.



2 chapter one

Most parallel programs conform to these patterns, and it’s very 
likely you’ll be successful in finding a match to your particular prob-
lem. If you can’t use these patterns, you’ve probably encountered one 
of the more difficult cases, and you’ll need to hire an expert or consult 
the academic literature.

The code examples for this guide are online at http://parallel 
patternscpp.codeplex.com/.

The Importance of Potential Parallelism
The patterns in this book are ways to express potential parallelism. This 
means that your program is written so that it runs faster when parallel 
hardware is available and roughly the same as an equivalent sequential 
program when it’s not. If you correctly structure your code, the  
run-time environment can automatically adapt to the workload on a 
particular computer. This is why the patterns in this book only express 
potential parallelism. They do not guarantee parallel execution in every 
situation. Expressing potential parallelism is a central organizing prin-
ciple behind PPL’s programming model. It deserves some explanation.

Some parallel applications can be written for specific hardware. 
For example, creators of programs for a console gaming platform have 
detailed knowledge about the hardware resources that will be avail-
able at run time. They know the number of cores and the details of 
the memory architecture in advance. The game can be written to ex-
ploit the exact level of parallelism provided by the platform. Complete 
knowledge of the hardware environment is also a characteristic of 
some embedded applications, such as industrial process control. The 
life cycle of such programs matches the life cycle of the specific hard-
ware they were designed to use.

In contrast, when you write programs that run on general-purpose 
computing platforms, such as desktop workstations and servers, there 
is less predictability about the hardware features. You may not always 
know how many cores will be available. You also may be unable to 
predict what other software could be running at the same time as 
your application.

Even if you initially know your application’s environment, it can 
change over time. In the past, programmers assumed that their appli-
cations would automatically run faster on later generations of hard-
ware. You could rely on this assumption because processor clock 
speeds kept increasing. With multicore processors, clock speeds on 
newer hardware are not increasing as much as they did in the past. 
Instead, the trend in processor design is toward more cores. If you 
want your application to benefit from hardware advances in the mul-
ticore world, you need to adapt your programming model. You should 

Declaring the potential 
parallelism of your program 
allows the execution environ-
ment to run the program on 
all available cores, whether 
one or many.

Don’t hard code the degree of 
parallelism in an application. 
You can’t always predict how 
many cores will be available  
at run time.
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expect that the programs you write today will run on computers with 
many more cores within a few years. Focusing on potential parallelism 
helps to “future proof” your program.

Finally, you must plan for these contingencies in a way that does 
not penalize users who might not have access to the latest hardware. 
You want your parallel application to run as fast on a single-core com-
puter as an application that was written using only sequential code. In 
other words, you want scalable performance from one to many cores. 
Allowing your application to adapt to varying hardware capabilities, 
both now and in the future, is the motivation for potential parallelism.

An example of potential parallelism is the parallel loop pattern 
described in Chapter 2, “Parallel Loops.” If you have a for loop that 
performs a million independent iterations, it makes sense to divide 
those iterations among the available cores and do the work in parallel. 
It’s easy to see that how you divide the work should depend on the 
number of cores. For many common scenarios, the speed of the loop 
will be approximately proportional to the number of cores.

Decomposition, Coordination, and Scalable 
Sharing

The patterns in this book contain some common themes. You’ll see 
that the process of designing and implementing a parallel application 
involves three aspects: methods for decomposing the work into dis-
crete units known as tasks, ways of coordinating these tasks as they 
run in parallel, and scalable techniques for sharing the data needed to 
perform the tasks.

The patterns described in this guide are design patterns. You can 
apply them when you design and implement your algorithms and 
when you think about the overall structure of your application. Al-
though the example applications are small, the principles they demon-
strate apply equally well to the architectures of large applications.

Understanding Tasks
Tasks are sequential operations that work together to perform a 
larger operation. When you think about how to structure a parallel 
program, it’s important to identify tasks at a level of granularity that 
results in efficient use of hardware resources. If the chosen granular-
ity is too fine, the overhead of managing tasks will dominate. If it’s too 
coarse, opportunities for parallelism may be lost because cores that 
could otherwise be used remain idle. In general, tasks should be as 
large as possible, but they should remain independent of each other, 
and there should be enough tasks to keep the cores busy. You may also 
need to consider the heuristics that will be used for task scheduling. 

Hardware trends predict 
more cores instead of  
faster clock speeds.

A well-written parallel 
program runs at approxi-
mately the same speed  
as a sequential program  
when there is only one core 
available.

Tasks are sequential units of 
work. Tasks should be large, 
independent, and numerous 
enough to keep all cores busy.
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Meeting all these goals sometimes involves design tradeoffs.  
Decomposing a problem into tasks requires a good understanding of 
the algorithmic and structural aspects of your application.

An example of these guidelines at work can be seen in a parallel 
ray tracing application. A ray tracer constructs a synthetic image by 
simulating the path of each ray of light in a scene. The individual ray 
simulations are a good level of granularity for parallelism. Breaking the 
tasks into smaller units, for example, by trying to decompose the ray 
simulation itself into independent tasks, only adds overhead, because 
the number of ray simulations is already large enough to keep all cores 
occupied. If your tasks vary greatly in duration, you generally want 
more of them in order to fill in the gaps.

Another advantage to grouping work into larger and fewer tasks 
is that larger tasks are often more independent of each other than are 
smaller tasks. Larger tasks are less likely than smaller tasks to share 
local variables or fields. Unfortunately, in applications that rely on 
large mutable object graphs, such as applications that expose a large 
object model with many public classes, methods, and properties, the 
opposite may be true. In these cases, the larger the task, the more 
chance there is for unexpected sharing of data or other side effects.

The overall goal is to decompose the problem into independent 
tasks that do not share data, while providing a sufficient number of 
tasks to occupy the number of cores available. When considering the 
number of cores, you should take into account that future generations 
of hardware will have more cores.

Coordinating Tasks
It’s often possible that more than one task can run at the same time. 
Tasks that are independent of one another can run in parallel, while 
some tasks can begin only after other tasks complete. The order of 
execution and the degree of parallelism are constrained by the appli-
cation’s underlying algorithms. Constraints can arise from control 
flow (the steps of the algorithm) or data flow (the availability of inputs 
and outputs).

Various mechanisms for coordinating tasks are possible. The way 
tasks are coordinated depends on which parallel pattern you use. For 
example, the Pipeline pattern described in Chapter 7, “Pipelines,” is 
distinguished by its use of messages to coordinate tasks. Regardless of 
the mechanism you choose for coordinating tasks, in order to have a 
successful design, you must understand the dependencies between 
tasks.

Keep in mind that tasks are  
not threads. Tasks and threads 
take very different approaches 
to scheduling. Tasks are much 
more compatible with the 
concept of potential parallel-
ism than threads are. While  
a new thread immediately 
introduces additional concur-
rency to your application,  
a new task introduces only  
the potential for additional 
concurrency. A task’s potential 
for additional concurrency will 
be realized only when there  
are enough available cores.
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Scalable Sharing of Data
Tasks often need to share data. The problem is that when a program 
is running in parallel, different parts of the program may be racing 
against each other to perform updates on the same memory location. 
The result of such unintended data races can be catastrophic. The 
solution to the problem of data races includes techniques for synchro-
nizing threads.

You may already be familiar with techniques that synchronize 
concurrent threads by blocking their execution in certain circum-
stances. Examples include locks, atomic compare-and-swap opera-
tions, and semaphores. All of these techniques have the effect of se-
rializing access to shared resources. Although your first impulse for 
data sharing might be to add locks or other kinds of synchronization, 
adding synchronization reduces the parallelism of your application. 
Every form of synchronization is a form of serialization. Your tasks 
can end up contending over the locks instead of doing the work you 
want them to do. Programming with locks is also error-prone.

Fortunately, there are a number of techniques that allow data to 
be shared that don’t degrade performance or make your program 
prone to error. These techniques include the use of immutable, read-
only data, sending messages instead of updating shared variables, and 
introducing new steps in your algorithm that merge local versions of 
mutable state at appropriate checkpoints. Techniques for scalable 
sharing may involve changes to an existing algorithm.

Conventional object-oriented designs can have complex and 
highly interconnected in-memory graphs of object references. As a 
result, traditional object-oriented programming styles can be very 
difficult to adapt to scalable parallel execution. Your first impulse 
might be to consider all fields of a large, interconnected object graph 
as mutable shared state, and to wrap access to these fields in serial-
izing locks whenever there is the possibility that they may be shared 
by multiple tasks. Unfortunately, this is not a scalable approach to 
sharing. Locks can often negatively affect the performance of all 
cores. Locks force cores to pause and communicate, which takes time, 
and they introduce serial regions in the code, which reduces the po-
tential for parallelism. As the number of cores gets larger, the cost of 
lock contention can increase. As more and more tasks are added that 
share the same data, the overhead associated with locks can dominate 
the computation.

In addition to performance problems, programs that rely on com-
plex synchronization are prone to a variety of problems, including 
deadlock. Deadlock occurs when two or more tasks are waiting for 
each other to release a lock. Most of the horror stories about parallel 
programming are actually about the incorrect use of shared mutable 
state or locking protocols.

Scalable sharing may involve 
changes to your algorithm.

Adding synchronization 
(locks) can reduce the 
scalability of your  
application.
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Nonetheless, synchronizing elements in an object graph plays a 
legitimate, if limited, role in scalable parallel programs. This book uses 
synchronization sparingly. You should, too. Locks can be thought of 
as the goto statements of parallel programming: they are error prone 
but necessary in certain situations, and they are best left, when pos-
sible, to compilers and libraries.

No one is advocating the removal, in the name of performance, of 
synchronization that’s necessary for correctness. First and foremost, 
the code still needs to be correct. However, it’s important to incorpo-
rate design principles into the design process that limit the need for 
synchronization. Don’t add synchronization to your application as an 
afterthought.

Design Approaches
It’s common for developers to identify one problem area, parallelize 
the code to improve performance, and then repeat the process for the 
next bottleneck. This is a particularly tempting approach when you 
parallelize an existing sequential application. Although this may give 
you some initial improvements in performance, it has many pitfalls, 
such as those described in the previous section. As a result, tradi-
tional profile-and-optimize techniques may not produce the best re-
sults. A far better approach is to understand your problem or applica-
tion and look for potential parallelism across the entire application as 
a whole. What you discover may lead you to adopt a different archi-
tecture or algorithm that better exposes the areas of potential paral-
lelism in your application. Don’t simply identify bottlenecks and paral-
lelize them. Instead, prepare your program for parallel execution by 
making structural changes.

Techniques for decomposition, coordination, and scalable sharing 
are interrelated. There’s a circular dependency. You need to consider 
all of these aspects together when choosing your approach for a par-
ticular application.

After reading the preceding description, you might complain that 
it all seems vague. How specifically do you divide your problem into 
tasks? Exactly what kinds of coordination techniques should you use? 

Questions like these are best answered by the patterns described 
in this book. Patterns are a true shortcut to understanding. As you 
begin to see the design motivations behind the patterns, you will also 
develop your intuition about how the patterns and their variations can 
be applied to your own applications. The following section gives more 
details about how to select the right pattern.

Think in terms of data 
structures and algorithms; 
don’t just identify bottlenecks.

Use patterns.
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Selecting the Right Pattern
To select the relevant pattern, use the following table.

Application characteristic Relevant pattern

Do you have sequential loops where 
there’s no communication among the 
steps of each iteration?

The Parallel Loop pattern (Chapter 2)

Parallel loops apply an independent 
operation to multiple inputs  
simultaneously.

Do you have distinct operations with 
well-defined control dependencies? 
Are these operations largely free of 
serializing dependencies?

The Parallel Task pattern (Chapter 3)

Parallel tasks allow you to establish 
parallel control flow in the style of 
fork and join.

Do you need to summarize data by 
applying some kind of combination 
operator? Do you have loops with 
steps that are not fully independent? 

The Parallel Aggregation pattern 
(Chapter 4)

Parallel aggregation introduces special 
steps in the algorithm for merging 
partial results. This pattern expresses  
a reduction operation and includes 
map/reduce as one of its variations.

Does the ordering of steps in your 
algorithm depend on data flow 
constraints? 

The Futures pattern (Chapter 5)

Futures make the data flow  
dependencies between tasks explicit. 
This pattern is also referred to as  
the Task Graph pattern.

Does your algorithm divide the 
problem domain dynamically during 
the run? Do you operate on recursive 
data structures such as graphs? 

The Dynamic Task Parallelism pattern 
(Chapter 6) 

This pattern takes a divide-and-
conquer approach and spawns  
new tasks on demand.

Does your application perform a 
sequence of operations repetitively? 
Does the input data have streaming 
characteristics? Does the order of 
processing matter?

The Pipeline pattern  (Chapter 7) 

Pipelines consist of components that 
are connected by queues, in the style 
of producers and consumers. All  
the components run in parallel  
even though the order of inputs is 
respected.

One way to become familiar with the possibilities of the six pat-
terns is to read the first page or two of each chapter. This will give you 
an overview of approaches that have been proven to work in a wide 
variety of applications. Then go back and more deeply explore pat-
terns that may apply in your situation.
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A Word about Terminology
You’ll often hear the words parallelism and concurrency used as syn-
onyms. This book makes a distinction between the two terms.

Concurrency is a concept related to multitasking and asynchro-
nous input-output (I/O). It usually refers to the existence of multiple 
threads of execution that may each get a slice of time to execute be-
fore being preempted by another thread, which also gets a slice of 
time. Concurrency is necessary in order for a program to react to  
external stimuli such as user input, devices, and sensors. Operating 
systems and games, by their very nature, are concurrent, even on one 
core.

With parallelism, concurrent threads execute at the same time on 
multiple cores. Parallel programming focuses on improving the perfor-
mance of applications that use a lot of processor power and are not 
constantly interrupted when multiple cores are available.

The goals of concurrency and parallelism are distinct. The main 
goal of concurrency is to reduce latency by never allowing long peri-
ods of time to go by without at least some computation being  
performed by each unblocked thread. In other words, the goal of 
concurrency is to prevent thread starvation.

Concurrency is required operationally. For example, an operating 
system with a graphical user interface must support concurrency if 
more than one window at a time can update its display area on a sin-
gle-core computer. Parallelism, on the other hand, is only about 
throughput. It’s an optimization, not a functional requirement. Its goal 
is to maximize processor usage across all available cores; to do this, it 
uses scheduling algorithms that are not preemptive, such as algorithms 
that process queues or stacks of work to be done.

The Limits of Parallelism
A theoretical result known as Amdahl’s law says that the amount of 
performance improvement that parallelism provides is limited by the 
amount of sequential processing in your application. This may, at first, 
seem counterintuitive.

Amdahl’s law says that no matter how many cores you have, the 
maximum speed-up you can ever achieve is (1 / fraction of time spent 
in sequential processing). Figure 1 illustrates this.
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figure 1
Amdahl’s law for an 
application with 25 
percent sequential 
processing

For example, with 11 cores, the application runs slightly more 
than three times faster than it would if it were entirely sequential.

Even with fewer cores, you can see that the expected speed-up is 
not linear. Figure 2 illustrates this.

figure 2
Per-core performance 
improvement for a 25 
percent sequential 
application

Figure 2 shows that as the number of cores (and overall applica-
tion speed) increases, the percentage of time spent in the sequential 
part of the application increases. (The elapsed time spent in sequen-
tial processing is constant.) The illustration also shows why you might 
be satisfied with a 2x speed-up on a four-core computer for actual 
applications, as opposed to sample programs. The important question 
is always how scalable the application is. Scalability depends on the 
amount of time spent doing work that is inherently sequential in nature.
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Another implication of Amdahl’s law is that for some problems, 
you may want to create additional features in the parts of an applica-
tion that are amenable to parallel execution. For example, a developer 
of a computer game might find that it’s possible to make increasingly 
sophisticated graphics for newer multicore computers by using the 
parallel hardware, even if it’s not as feasible to make the game logic 
(the artificial intelligence engine) run in parallel. Performance can in-
fluence the mix of application features.

The speed-up you can achieve in practice is usually somewhat 
worse than Amdahl’s law would predict. As the number of cores in-
creases, the overhead incurred by accessing shared memory also in-
creases. Also, parallel algorithms may include overhead for coordina-
tion that would not be necessary for the sequential case. Profiling 
tools, such as the Visual Studio Concurrency Visualizer, can help you 
understand how effective your use of parallelism is.

In summary, because an application consists of parts that must 
run sequentially as well as parts that can run in parallel, the application 
overall will rarely see a linear increase in performance with a linear 
increase in the number of cores, even if certain parts of the applica-
tion see a near linear speed-up. Understanding the structure of your 
application and its algorithms—that is, which parts of your applica-
tion are suitable for parallel execution—is a step that can’t be skipped 
when analyzing performance.

A Few Tips 
Always try for the simplest approach. Here are some basic precepts:
•	 Whenever possible, stay at the highest possible level of abstrac-

tion and use constructs or a library that does the parallel work 
for you.

•	 Use your application server’s inherent parallelism; for example, 
use the parallelism that is incorporated into a web server or 
database.

•	 Use an API to encapsulate parallelism, such as the Parallel 
Patterns Library. These libraries were written by experts and 
have been thoroughly tested; they help you avoid many of the 
common problems that arise in parallel programming.

•	 Consider the overall architecture of your application when 
thinking about how to parallelize it. It’s tempting to simply  
look for the performance hotspots and focus on improving 
them. While this may produce some improvement, it does  
not necessarily give you the best results.

•	 Use patterns, such as the ones described in this book.
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•	 Often, restructuring your algorithm (for example, to eliminate 
the need for shared data) is better than making low-level 
improvements to code that was originally designed to run 
serially.

•	 Don’t share data among concurrent tasks unless absolutely 
necessary. If you do share data, use one of the containers 
provided by the API you are using, such as a shared queue.

•	 Use low-level primitives, such as threads and locks, only as  
a last resort. Raise the level of abstraction from threads to  
tasks in your applications.

Exercises
1. What are some of the tradeoffs between decomposing a 

problem into many small tasks and decomposing it into larger 
tasks?

2. What is the maximum potential speed-up of a program that 
spends 10 percent of its time in sequential processing when 
you move it from one to four cores?

3. What is the difference between parallelism and concurrency?

For More Information
If you are interested in better understanding the terminology used in 
the text, refer to the glossary at the end of this book.

The design patterns presented in this book are consistent with 
classifications of parallel patterns developed by groups in both indus-
try and academia. In the terminology of these groups, the patterns in 
this book would be considered to be algorithm or implementation 
patterns. Classification approaches for parallel patterns can be found 
in the book by Mattson, et al. and at the Our Pattern Language (OPL) 
web site. This book attempts to be consistent with the terminology 
of these sources. In cases where this is not possible, an explanation 
appears in the text.

For a detailed discussion of parallelism on the Microsoft Windows® 
platform, see the book by Duffy. 

Duffy, Joe. Concurrent Programming on Windows, Addison-
Wesley, 2008.

Mattson, Timothy G., Beverly A. Sanders, and Berna L. Massin-
gill. Patterns for Parallel Programming. Addison-Wesley, 2004.

OPL, Our Pattern Language for Parallel Programming ver2.0, 
2010. http://parlab.eecs.berkeley.edu/wiki/patterns.

http://parlab.eecs.berkeley.edu/wiki/patterns




13

Parallel Loops2

The Parallel Loop pattern 
independently applies an 
operation to multiple data 
elements. It’s an example  
of data parallelism.

Use the Parallel Loop pattern when you need to perform the same 
independent operation for each element of a collection or for a fixed 
number of iterations. The steps of a loop are independent if they 
don’t write to memory locations or files that are read by other steps.

The syntax of a parallel loop is very similar to the for and for_each 
loops you already know, but the parallel loop completes faster on a 
computer that has available cores. Another difference is that, unlike a 
sequential loop, the order of execution isn’t defined for a parallel loop. 
Steps often take place at the same time, in parallel. Sometimes, two 
steps take place in the opposite order than they would if the loop 
were sequential. The only guarantee is that all of the loop’s iterations 
will have run by the time the loop finishes.

It’s easy to change a sequential loop into a parallel loop. However, 
it’s also easy to use a parallel loop when you shouldn’t. This is because 
it can be hard to tell if the steps are actually independent of each 
other. It takes practice to learn how to recognize when one step is 
dependent on another step. Sometimes, using this pattern on a loop 
with dependent steps causes the program to behave in a completely 
unexpected way, and perhaps to stop responding. Other times, it in-
troduces a subtle bug that only appears once in a million runs. In 
other words, the word “independent” is a key part of the definition of 
the Parallel Loop pattern, and one that this chapter explains in detail.

For parallel loops, the degree of parallelism doesn’t need to be 
specified by your code. Instead, the run-time environment executes 
the steps of the loop at the same time on as many cores as it can. The 
loop works correctly no matter how many cores are available. If there 
is only one core and assuming the work performed by each iteration 
is not too small, then the performance is close to (perhaps within  
a few percentage points of) the sequential equivalent. If there are 
multiple cores, performance improves; in many cases, performance 
improves proportionately with the number of cores.
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The Basics
The Parallel Patterns Library (PPL) includes both parallel for and paral-
lel for_each loops. Use the parallel_for function to iterate over a 
range of integer indices and the parallel_for_each function to iterate 
over user-provided values. 

Parallel for Loops
Here’s an example of a sequential for loop in C++. 

vector<double> results = ...
int workload = ...
size_t n = results.size(); 
for (size_t i = 0; i < n; ++i)
{
  results[i] = DoWork(i, workLoad);
}

To take advantage of multiple cores, replace the for keyword with 
a call to the parallel_for function and convert the body of the loop 
into a lambda expression.

vector<double> results = ...
int workload = ...
size_t n = results.size(); 

parallel_for(0u, n,   
  [&results, workLoad](size_t i) 
  {
    results[i] = DoWork(i, workLoad); 
  });

The parallel_for function uses multiple cores if they’re available 
to operate over the index range.

The parallel_for function has overloaded versions. Here’s the 
signature of the version of parallel_for that’s used in the example.

template <typename _Index_type, typename _Function>
void parallel_for(_Index_type _First, 
                  _Index_type _Last, 
                  const _Function& _Func);

In the example, the first two arguments specify the iteration 
limits. The first argument is the lowest index of the loop. The second 
argument is the exclusive upper bound, or the largest index plus one. 
The third argument is a function that’s invoked once per iteration. The 
function takes the iteration’s index as its argument and executes the 
loop body once for each index.

To make for and for_each 
loops with independent 
iterations run faster on 
multicore computers, use 
their parallel counterparts.

Don’t forget that the steps  
of the loop body must be 
independent of one another  
if you want to use a parallel 
loop. The steps must not 
communicate by writing  
to shared variables.

The example includes a  
lambda expression in the  
form [captured variables] (args) 
{body}. You may need to brush 
up on the syntax of lambda 
expressions in C++ before 
reading further. 
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The parallel_for method has an additional overloaded version. It 
is covered in the “Variations” section later in this chapter.

The example includes a lambda expression in the form [captured 
variables] (args) {body} as the third argument to the parallel_for invo-
cation. Lambda expressions denote function objects that can capture 
variables from their enclosing scope. Of course, the _Func parameter 
could also be a pointer to a function declared elsewhere. You don’t 
have to use lambda expressions.

parallel_for_each
Here’s an example of a sequential for_each loop in C++ that uses the 
conventions of the Standard Template Library (STL).

vector<size_t> inputs = ...   
int workload = ...

for_each(inputs.cbegin(), inputs.cend(), 
  [workLoad](size_t i)
  {
    DoWork(i, workLoad);
  });

To take advantage of multiple cores, replace the for_each key-
word with a call to the parallel_for_each method.

vector<size_t> inputs = ...   
int workload = ...

parallel_for_each(inputs.cbegin(), inputs.cend(), 
  [workLoad](size_t i)
  {
    DoWork(i, workLoad);
  });

The parallel_for_each function is very similar in syntax to the 
std::for_each function. The first argument is an iterator that refer-
ences the position of the first element in the range to be operated on. 
The second argument is an iterator that references the position one 
past the final element in the range.  The third argument is a function 
object that’s invoked for each element of the input range.

The parallel_for_each method does not guarantee the order of 
execution. Unlike a sequential for_each loop, the incoming values 
aren’t always processed in order.

The parallel_for method does 
not guarantee any particular 
order of execution. Unlike  
a sequential loop, some 
higher-valued indices may  
be processed before some 
lower-valued indices.

parallel_for_each runs  
the loop body for each 
element in a collection.

Don’t forget that iterations 
need to be independent. The 
loop body must only make 
updates to fields of the 
particular instance that’s 
passed to it.

If you’re unfamiliar with the 
syntax for lambda expressions, 
see “Further Reading” at the 
end of this chapter. Once you 
use lambda expressions, you’ll 
wonder how you ever lived 
without them.
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What to Expect
By default, the degree of parallelism (that is, how many iterations run 
at the same time in hardware) depends on the number of available 
cores. In typical scenarios, the more cores you have the faster your 
loop executes, until you reach the point of diminishing returns that 
Amdahl’s Law predicts. How much faster depends on the kind of 
work your loop does. (See Chapter 1 for a discussion of Amdahl’s Law.)

If an exception is thrown during the execution of one of the it-
erations of a parallel_for or parallel_for_each function, that excep-
tion will be rethrown in the context of the calling thread. To learn 
more about exception handling for parallel loops, see the “Variations” 
section later in this chapter.

If you convert a sequential loop to a parallel loop and then find 
that your program does not behave as expected, the most likely prob-
lem is that the loop’s steps are not independent. Here are some com-
mon examples of dependent loop bodies:
•	 Writing to shared variables. If the body of a loop writes to a 

shared variable, there is a loop body dependency. This is a 
common case that occurs when you are aggregating values. Here 
is an example, where total is shared across iterations.
for(int i = 1; i < n; i++)
  total += data[i];

If you encounter this situation, see Chapter 4, “Parallel Ag-
gregation.”

Shared variables come in many flavors. Any variable that is 
declared outside of the scope of the loop body is a shared vari-
able. Shared references to types such as classes or arrays will im-
plicitly allow all fields or array elements to be shared. Parameters 
that are passed by reference or by pointer result in shared vari-
ables, as do variables captured by reference in a lambda expression.

•	 Using data accessors of an object model. If the object being 
processed by a loop body exposes data accessors, you need to 
know whether they refer to shared state or state that’s local to 
the object itself. For example, an accessor method named 
GetParent is likely to refer to global state. Here’s an example.
for(int i = 0; i < n; i++)
  SomeObject[i].GetParent().Update();

In this example, it’s likely that the loop iterations are not in-
dependent. It’s possible that, for all values of i, SomeObject[i].
GetParent() is a reference to a single shared object.

•	 Referencing data types or functions that are not thread safe. 
If the body of the parallel loop uses a data type or function that 

Adding cores makes your loop 
complete faster; however, 
there’s always an upper limit.

Check carefully for dependen-
cies between loop iterations! 
Not noticing dependencies 
between steps is by far the 
most common mistake you’ll 
make with parallel loops.

Robust exception handling  
is an important aspect of 
parallel loop processing.

You must choose the right 
granularity. Too many small 
parallel loops can reach a point 
of over-decomposition where 
the multicore speedup is more 
than offset by the parallel 
loop’s overhead.

You must be extremely 
cautious when getting data 
from accessors. Large object 
models are known for sharing 
mutable state in unbelievably 
convoluted ways.
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is not thread safe, the loop body is not independent because 
there’s an implicit dependency on the thread context.

•	 Loop-carried dependence. If the body of a parallel_for loop 
performs arithmetic on a loop-indexed variable, there is likely to 
be a dependency that is known as loop-carried dependence. This 
is shown in the following code example. The loop body refer-
ences data[i] and data[i – 1]. If parallel_for is used here, then 
there’s no guarantee that the loop body that updates data[i – 1] 
has executed before the loop body for data[i].
for(int i = 1; i < N; i++)
  data[i] = data[i] + data[i - 1]; 

It’s sometimes possible to use a parallel algorithm in cases of 
loop-carried dependence, but this is outside the scope of this 
book. Your best options are to look elsewhere in your program for 
opportunities for parallelism or to analyze your algorithm and see 
if it matches some of the advanced parallel patterns that occur in 
scientific computing. Parallel scan and parallel dynamic program-
ming are examples of these patterns.
When you look for opportunities for parallelism, profiling your 

application is a way to deepen your understanding of where your ap-
plication spends its time; however, profiling is not a substitute for 
understanding your application’s structure and algorithms. For exam-
ple, profiling doesn’t tell you whether loop bodies are independent.

An Example
Here’s an example of when to use a parallel loop. Fabrikam Shipping 
extends credit to its commercial accounts. It uses customer credit 
trends to identify accounts that might pose a credit risk. Each cus-
tomer account includes a history of past balance-due amounts. Fabri-
kam has noticed that customers who don’t pay their bills often have 
histories of steadily increasing balances over a period of several 
months before they default.

To identify at-risk accounts, Fabrikam uses statistical trend analy-
sis to calculate a projected credit balance for each account. If the 
analysis predicts that a customer account will exceed its credit limit 
within three months, the account is flagged for manual review by one 
of Fabrikam’s credit analysts. 

In the application, a top-level loop iterates over customers in the 
account repository. The body of the loop fits a trend line to the bal-
ance history, extrapolates the projected balance, compares it to the 
credit limit, and assigns the warning flag if necessary.

An important aspect of this application is that each customer’s 
credit status can be calculated independently. The credit status of one 

Arithmetic on loop index 
variables, especially addition or 
subtraction, usually indicates 
loop-carried dependence.

Don’t expect miracles from 
profiling—it can’t analyze your 
algorithms for you. Only you 
can do that.
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customer doesn’t depend on the credit status of any other customer. 
Because the operations are independent, making the credit analysis 
application run faster is simply a matter of replacing a sequential 
for_each loop with a parallel loop.

The complete source code for this example is online at http://
parallelpatternscpp.codeplex.com in the Chapter2\CreditReview proj-
ect.

Sequential Credit Review Example
Here’s the sequential version of the credit analysis operation.

void UpdatePredictionsSequential(AccountRepository& accounts)
{
  for_each(accounts.begin(), accounts.end(), 
  [](AccountRepository::value_type& record)
  {
    Account& account = record.second;
    Trend trend = Fit(account.Balances());
    double prediction = PredictIntercept(trend, 
         (account.Balances().size() + g_predictionWindow)); 
    account.SeqPrediction() = prediction;
    account.SeqWarning() = prediction < account.GetOverdraft();
   });
}

The UpdatePredictionsSequential method processes each ac-
count from the application’s account repository. The Fit method is a 
utility function that uses the statistical least squares method to create 
a trend line from an array of numbers. The Fit method is a pure func-
tion. This means that it doesn’t modify any state.

The prediction is a three-month projection based on the trend. If 
a prediction is more negative than the overdraft limit (credit balances 
are negative numbers in the accounting system), the account is flagged 
for review.

Credit Review Example Using  
parallel_for_each

The parallel version of the credit scoring analysis is very similar to the 
sequential version.

void UpdatePredictionsParallel(AccountRepository& accounts)
{
  parallel_for_each(accounts.begin(), accounts.end(),
    []
    (AccountRepository::value_type& record)
    {
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      Account& account = record.second;
      Trend trend = Fit(account.Balances());
      double prediction = PredictIntercept(trend, 
        (account.Balances().size() + g_predictionWindow));
      account.ParPrediction() = prediction;
      account.ParWarning() = prediction < account.GetOverdraft();
  });
}

The UpdatePredictionsParallel method is identical to the  
UpdatePredictionsSequential method, except that the parallel_for_
each function replaces the for_each operator.

Performance Comparison 
Running the credit review example on a quad-core computer shows 
that the parallel_for_each version runs slightly less than four times as 
fast as the sequential version. Timing numbers vary; you may want to 
run the online samples on your own computer.

Variations
The credit analysis example shows a typical way to use parallel loops, 
but there can be variations. This section introduces some of the most 
important ones. You won’t always need to use these variations, but 
you should be aware that they are available.

Breaking out of Loops Early
Breaking out of loops is a familiar part of sequential iteration. It’s less 
common in parallel loops, but you’ll sometimes need to do it. Here’s 
an example of the sequential case.

int n = ...
for (int i = 0; i < n; i++)
{
  // ... 
  if (/* stopping condition is true */)
    break;   
}

The situation is more complicated with parallel loops because 
more than one step may be active at the same time, and steps of a 
parallel loop are not necessarily executed in any predetermined order.  
However, you can break out of a parallel loop by canceling the task 
group that contains it. Task groups are described in Chapter 3, “Parallel 
Tasks.”

Use the task_group::cancel 
method to break out of a 
parallel loop early.
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Here’s an example of how to break out of a parallel loop early.

vector<double> results = ...
int workLoad = ...
task_group tg;
size_t fillTo = results.size() - 5 ;
fill(results.begin(), results.end(), -1.0);

task_group_status status = tg.run_and_wait([&]
  {
     parallel_for(0u, results.size(), [&](size_t i)
     {
       if (i > fillTo)
         tg.cancel();
       else
         results[i] = DoWork(i, workLoad);
     });
   });

The example code shows that if you want to break out of a paral-
lel loop early, you need to create a task group object and execute the 
parallel loop within that task group. When you want to break out of 
the loop, you invoke the task group’s cancel method.

You should keep in mind that parallel loops may execute steps out 
of order. Unlike breaking from a sequential loop, canceling the task 
group of a parallel loop cannot guarantee that higher-indexed itera-
tions won’t have had a chance to run before the cancel operation 
takes effect.

Exception Handling
If the body of a parallel loop throws an unhandled exception, the 
parallel loop no longer begins any new steps. By default, iterations 
that are executing at the time of the exception, other than the itera-
tion that threw the exception, will complete. After they finish, the 
parallel loop will throw an exception in the context of the thread that 
invoked it. 

Because the loop runs in parallel, there may be more than one 
exception. If more than one exception has occurred, the parallel loop 
will nondeterministically choose one of the exceptions to throw. The 
remaining exceptions will not be externally observable.

Here’s an example of how to handle exceptions from a parallel 
loop.

Don’t forget that parallel loops 
can execute steps out of order. 
Canceling a parallel loop 
doesn’t ensure that iterations 
with higher-valued indices 
won’t run.

Throwing an unhandled 
exception prevents new 
iterations from starting.
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Consider using partitioning 
strategies when you have 
many iterations that each 
perform a small amount of 
work.

vector<double> results = ...
    
try
{
  size_t n = results.size(); 
  parallel_for(0u, n, [&results](size_t i) 
  {
    results[i] = DoWork(i, 10); // throws exception
  });
}
catch (ParallelForExampleException e)
{
  printf(“Exception caught as expected.\n”);
}

Special Handling of Small Loop Bodies
If the body of the loop performs only a small amount of work, you 
may find that you achieve better performance by partitioning the it-
erations into larger units of work. The reason for this is that there are 
two types of overhead that are introduced when processing a loop: 
the cost of managing worker threads and the cost of invoking the 
function object. In most situations, these costs are negligible, but with 
very small loop bodies they can be significant.

An overloaded version of parallel_for allows you to specify a step 
size for the indices. Iterating with step sizes greater than one lets you 
embed a sequential loop within your parallel loop. Each iteration of 
the outer (parallel) loop handles a range of indices instead of individ-
ual indices. By grouping iterations into ranges, you can avoid some of 
the overhead of a normal parallel loop. Here’s an example.

size_t size = results.size();
size_t rangeSize = size / (GetProcessorCount() * 10);
rangeSize = max(1, rangeSize);
 
parallel_for(0u, size, rangeSize, 
  [&results, size, rangeSize, workLoad](size_t i) 
  {
    for (size_t j = 0; (j < rangeSize) && (i + j < size); ++j)
        results[i + j] = DoWork(i + j, workLoad);
  });

Partitioning your data into ranges results in more complicated 
application logic than using an ordinary parallel_for function without 
partitioning.  When the amount of work in each iteration is large (or 
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of uneven size across iterations), partitioning may not result in better 
performance. Generally, you would only use the more complicated 
syntax after profiling or in the case where loop bodies are extremely 
small and the number of iterations large.

The number of ranges that you use will normally depend on the 
number of cores in your computer. A good default number of ranges 
is approximately three to ten times the number of cores.

Another approach for handling smaller loop bodies is to use the 
parallel_for_fixed or parallel_for_each_fixed functions that are 
provided in the Concurrency Runtime sample pack. By default, the 
parallel_for and parallel_for_each functions perform dynamic load 
balancing. When the amount of work for each item is small, the  
cost of load balancing can become significant. The sample pack’s 
parallel_for_fixed and parallel_for_each_fixed functions do not 
perform load balancing so they may outperform parallel_for and 
parallel_for_each when the loop bodies are small. 

Another difference is that the parallel_for and parallel_for_each 
functions check for cancellation with each iteration. In contrast, the 
parallel_for_fixed and parallel_for_each_fixed functions do not 
check for cancellation within their subranges.

Controlling the Degree of Parallelism
Although you usually let the system manage how iterations of a paral-
lel loop are mapped to your computer’s cores, in some cases you may 
want additional control.

You’ll see this variation of the Parallel Loop pattern in a variety of 
circumstances. Reducing the degree of parallelism is often done in 
performance testing to simulate less capable hardware. Increasing the 
degree of parallelism to a number larger than the number of cores can 
be appropriate when iterations of your loop spend a lot of time wait-
ing for I/O operations to complete.

The term degree of parallelism refers to the number of cores that 
are used to process iterations simultaneously. The degree of parallel-
ism is automatically managed by the underlying components of the 
system. The implementation of the parallel_for and parallel_for_
each functions, the Concurrency Runtime’s task scheduler, and the 
operating system’s thread scheduler all play a role in optimizing 
throughput under a wide range of conditions. You can’t control the 
degree of parallelism directly, but you can influence it by controlling 
the number of threads that are simultaneously executed by a parallel 
loop. To do this, you need to set the MinConcurrency and Max 
Concurrency policies of the SchedulerPolicy class.  For more  
information about setting these policies, see Appendix A, “The Task 
Scheduler and Resource Manager.”

You can control the maximum 
number of active threads used 
concurrently by a parallel 
loop.
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Anti-Patterns
Anti-patterns are cautionary tales. They highlight issues that need to 
be carefully considered as well as problem areas. Here are some issues 
to think about when you implement a parallel loop.

Hidden Loop Body Dependencies
Incorrect analysis of loop dependencies is a frequent source of soft-
ware defects. Be careful that all parallel loop bodies do not contain 
hidden dependencies. This is a mistake that’s easy to make.

The case of trying to share an instance of a class which is not 
thread safe across parallel iterations is an example of a subtle depen-
dency. You should also be careful when you share state by using refer-
ence variables from the enclosing lexical scope in a lambda expression.

When loop bodies are not fully independent of each other, it may 
still be possible to use parallel loops. However, in these cases, you 
must make sure that all shared variables are protected and synchro-
nized, and you must understand the performance characteristics of 
any synchronization you add. Adding synchronization can greatly re-
duce the performance of a parallel program, but forgetting to add 
necessary synchronization can result in a program with bugs that are 
catastrophic and difficult to reproduce.

If the loop body is not independent—for example, when you use 
an iteration to calculate a sum—you may need to apply the variation 
on a parallel loop that’s described in Chapter 4, “Parallel Aggregation.”

Small Loop Bodies with Few Iterations
You probably won’t get performance improvements if you use a paral-
lel loop for very small loop bodies with only a limited number of data 
elements to process. In this case, the overhead required by the parallel 
loop itself will dominate the calculation. Simply changing every se-
quential for loop to parallel_for will not necessarily produce good 
results.

Duplicates in the Input Enumeration
If you’re using the parallel_for_each function, duplicate references or 
pointers to objects in the enumeration often indicate an unsafe race 
condition in your code. If an object reference (that is, a pointer or 
reference to an instance of a class) appears more than once in the in-
put to the loop, then it’s possible that two parallel threads could try 
to update that object at the same time.

Don’t allow duplicate instances 
in parallel loops. If an object 
appears more than once in the 
input to a loop, then it’s 
possible that two parallel 
threads could update the 
object at the same time.
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Scheduling Interactions with  
Cooperative Blocking

If you perform a cooperative blocking operation in every iteration of 
a parallel loop, the task scheduler may create more threads than you 
intend. Cooperative blocking operations should be performed infre-
quently within the parallel loop.

Related Patterns
The Parallel Loop pattern is the basis of the parallel aggregation pat-
tern, which is the subject of Chapter 4, “Parallel Aggregation.”

Exercises
1. Which of the following problems could be solved using the 

parallel loop techniques taught in this chapter?

a. Sorting an in-memory array of numbers with a million 
elements.

b. Putting the words in each line that’s read from a text 
file in alphabetical order.

c. Adding together all the numbers in one collection to 
obtain a single sum.

d. Adding numbers from two collections pair-wise to 
obtain a collection of sums.

e. Counting the total number of occurrences of each word 
in a collection of text files.

f. Finding the word that occurs most frequently in each 
file in a collection of text files.

2. Choose a suitable problem from Exercise 1. Code two 
solutions, using a sequential loop and a parallel loop.

3. Do a performance analysis of the credit review example code 
on the CodePlex site http://parallelpatternscpp.codeplex.
com. Use command line options to independently vary the 
number of iterations (the number of accounts) and the 
amount of work done in the body of each iteration (the 
number of months in the credit history). Record the execu-
tion times reported by the program for all three versions, 
using several different combinations of numbers of accounts 
and months. Repeat the tests on different computers with 
different numbers of cores and with different execution 
loads (from other applications).
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Further Reading
The examples in this book use features and libraries of Microsoft® 
Visual C++®. MSDN® is the recommended source for reference infor-
mation about these features and libraries, including lambda expres-
sions. The book by Mattson, et al. describes software design patterns 
for parallel programming that are not specialized for a particular lan-
guage or library. Messmer’s article gives a number of related patterns 
and tips for parallel loops in PPL. 

Mattson, T.G., B. A. Sanders, and B. L. Massingill. Patterns for  
Parallel Programming. Addison-Wesley, 2004.

Mattson, T.G., “Use and Abuse of Random Numbers” (video), 
Feb 14, 2008, http://software.intel.com/en-us/videos/tim-
mattson-use-and-abuse-of-random-numbers/.

Messmer, B., Parallel Patterns Library, Asynchronous Agents  
Library, & Concurrency Runtime: Patterns and Practices, 2010.  
http://www.microsoft.com/downloads/en/confirmation.aspx? 
displaylang=en&FamilyID=0e70b21e-3f10-4635-9af2-e2f7bdd-
ba4ae.

MSDN, Lambda Expressions in C++, http://msdn.microsoft.com/
en-us/library/dd293608.aspx.
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Parallel Tasks

Parallel tasks are  
asynchronous operations  
that can run at the same 
time. This approach is  
also known as task  
parallelism.

Parallel tasks in PPL  
are managed by the  
task_group class.

Chapter 2, “Parallel Loops,” shows how you can use a parallel loop to 
apply a single operation to many data elements. This is data parallel-
ism. Chapter 3 explains what happens when there are distinct asyn-
chronous operations that can run simultaneously. In this situation, you 
can temporarily fork a program’s flow of control with tasks that can 
potentially execute in parallel. This is task parallelism. The Parallel 
Tasks pattern is sometimes known as the Fork/Join pattern or the 
Master/Worker pattern.

Data parallelism and task parallelism are two ends of a spectrum. 
Data parallelism occurs when a single operation is applied to many in-
puts. Task parallelism uses multiple operations, each with its own input.

In the Parallel Patterns Library (PPL), tasks are started and man-
aged by methods of the task_group class, which is declared in the 
ppl.h header file. The task group class’s run method creates and sched-
ules new tasks. You can wait for all tasks created by the task group to 
complete by invoking the task group’s wait method.  If you think in 
terms of fork/join, the run method is the fork operation and the wait 
method is the join operation.

Scheduling is an important aspect of parallel tasks. Unlike threads, 
new tasks don’t necessarily begin to execute immediately. Instead, 
they are placed in a work queue. Tasks run when their associated task 
scheduler removes them from the queue, usually as processor re-
sources become available. As long as there are enough tasks and the 
tasks are sufficiently free of serializing dependencies, the program’s 
performance scales with the number of available cores. In this way, 
tasks embody the concept of potential parallelism that was intro-
duced in Chapter 1.

Another important aspect of task-based applications is how they 
handle exceptions. In PPL, an unhandled exception that occurs during 
the execution of a task is deferred for later observation. For example, 
the deferred exception is automatically observed at a later time when 
you call the task_group::wait method. At that time, the exception is 

3
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rethrown in the calling context of the wait method. This allows you 
to use the same exception handling approach in parallel programs that 
you use in sequential programs.

The Basics
Each task is a sequential operation; however, tasks can often run in 
parallel. Here’s some sequential code.

  DoLeft();
  DoRight();

Let’s assume that the methods DoLeft and DoRight are indepen-
dent. This means that neither method writes to memory locations  
or files that the other method might read. Because the methods  
are independent, you can use the parallel_invoke function of the 
Concurrency namespace to run them in parallel. This is shown in the 
following code.

  parallel_invoke(
    []() { DoLeft(); },
    []() { DoRight(); }
  );

The parallel_invoke function is the simplest expression of the 
Parallel Tasks pattern. The function creates a new task group with 
new parallel tasks for each lambda expression in its argument list. The 
parallel_invoke function returns when all the tasks are finished.  The 
arguments to parallel_invoke are known as work functions.

There are overloaded versions of the parallel_invoke function 
that accept up to nine work functions.

You can’t assume that all parallel tasks will immediately run. De-
pending on the current work load and system configuration, tasks 
might be scheduled to run one after another, or they might run at the 
same time. For more information about how tasks are scheduled see 
“How Tasks Are Scheduled,” later in this chapter.

The functions run by parallel_invoke can either complete nor-
mally or finish by throwing an exception. If an exception is thrown by 
one of the work functions during the execution of parallel_invoke, it 
will be deferred and rethrown when all tasks finish. If more than one 
of the work functions throws an exception, the runtime chooses one 
of the exceptions to be rethrown. The remaining exceptions will not 
be externally observed. For more information and a code example, see 
the section, “Handling Exceptions,” later in this chapter.

Internally, parallel_invoke creates new tasks and waits for them. 
You can reproduce this functionality by creating a task group object 
and calling its run and wait methods. Here’s an example.

Tasks in PPL defer exceptions 
and rethrow them when the 
task group’s wait method is 
invoked.

The parallel_invoke 
function in the  
Concurrency namespace 
creates a group of parallel 
tasks and waits for them  
all to complete.
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  task_group tg;

  tg.run([](){ DoLeft(); });
  tg.run([](){ DoRight(); });
  tg.wait();

The run method of the task_group class creates and schedules a 
new task. The run method’s argument is a lambda expression, a 
pointer to function, or a function object that will be invoked when 
the task eventually executes. In other words, the argument can be any 
object that supports the function call operator with the signature 
void operator()(). When you use the task_group::run method to 
create a task, the new task is added to a work queue for eventual ex-
ecution, but it does not start to execute until its task scheduler takes 
it out of the work queue, which can happen immediately or can occur 
at some point in the future.

You can wait for the tasks of the task group to complete by call-
ing the task group’s wait method. 

It is also possible to combine the run and wait steps into a single 
operation. This is shown in the following code.

  task_group tg;

  tg.run([](){ DoLeft(); });
  tg.run_and_wait([](){ DoRight(); });  

Calling the task group’s run_and_wait method instead of the run 
method followed by a call to the wait method can result in slightly 
more efficient use of threads. The run_and_wait method acts as a 
hint to the task scheduler that it can reuse the current context to 
execute the new task. 

The examples you’ve seen so far are simple, but they’re powerful 
enough to handle many scenarios. For more ways to use tasks, see the 
section, “Variations,” later in this chapter.

An Example
An example of task parallelism is an image processing application 
where images are created with layers. Separate images from different 
sources are processed independently and then combined with a pro-
cess known as alpha blending. This process superimposes semitrans-
parent layers to form a single image.

The source images that are combined are different, and different 
image processing operations are performed on each of them. This 
means that the image processing operations must be performed sepa-
rately on each source image and must be complete before the images 

Use the task group’s run 
method to create a task and 
schedule its execution. Use 
the wait method to block the 
current context until all of 
the tasks in a task group  
have completed.

If you pass a reference to an 
instance of a class that 
supports operator() as an 
argument to the task_
group::run method, you must 
make sure to manage the 
memory of the function 
object. The function object 
can safely be destroyed only 
after the task group object’s 
wait method returns. Lambda 
expressions and pointers to 
static functions do not require 
explicit deletion and are 
therefore easier to use than 
class-type functors.
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can be blended. In the example, there are only two source images, and 
the operations are simple: conversion to gray scale and rotation. In a 
more realistic example, there might be more source images and more 
complicated operations.

Here’s the sequential code. The source code for the complete 
example is located at http://parallelpatternscpp.codeplex.com in the 
Chapter3\ImageBlender folder.

static void SequentialImageProcessing(
     Bitmap* const source1, Bitmap* const source2, 
     Bitmap* const layer1, Bitmap* const layer2, 
     Graphics* const blender)
{
  SetToGray(source1, layer1);
  Rotate(source2, layer2);
  Blend(layer1, layer2, blender);
}

In this example, source1 and source2 are bitmaps that are the 
original source images, layer1 and layer2 are bitmaps that have been 
prepared with additional information needed to blend the images, and 
blender is a Graphics instance that performs the blending and refer-
ences the bitmap with the final blended image. Internally, SetToGray, 
Rotate, and Blend use methods from the platform’s Gdiplus 
namespace to perform the image processing. 

The SetToGray and Rotate methods are entirely independent of 
each other. This means that you can execute them in separate tasks. 
If two or more cores are available, the tasks might run in parallel, and 
the image processing operations might complete in less elapsed time 
than a sequential version would.

The parallel_invoke function creates tasks and waits for them to 
complete before proceeding. This is shown in the following code.

static void ParallelInvokeImageProcessing(
     Bitmap* const source1, Bitmap* const source2, 
     Bitmap* layer1, Bitmap* layer2, Graphics* blender)
{
  parallel_invoke(
    [&source1, &layer1](){ SetToGray(source1, layer1); },
    [&source2, &layer2](){ Rotate(source2, layer2);} 
  );
  Blend(layer1, layer2, blender);
}

In this example, the tasks are identified implicitly by the argu-
ments to parallel_invoke. This call does not return until all of the 
tasks complete.

Use the parallel_invoke 
function whenever tasks can 
be defined in a single lexical 
scope.
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You can also create parallel tasks explicitly. This is shown in the 
following code.

static void ParallelTaskGroupImageProcessing(
    Bitmap* const source1, Bitmap* const source2,
    Bitmap* layer1, Bitmap* layer2, Graphics* blender)
{
  task_group tasks;
  tasks.run(
     [&source1, &layer1](){ SetToGray(source1, layer1);} 
  );
  tasks.run_and_wait(
     [&source2, &layer2](){ Rotate(source2, layer2); }
  );
  Blend(layer1, layer2, blender);
}

This code allocates a task group on the stack. It then calls task 
group run methods to create and run two tasks that execute  
SetToGray and Rotate. The example uses the run_and_wait method 
to create the second task and to wait for all tasks to finish before 
blending the processed images.

Variations
This section describes variations of PPL’s implementation of the Paral-
lel Task pattern.

Coordinating Tasks with Cooperative 
Blocking

The classes and functions in the Concurrency namespace implement 
a task-coordination feature known as cooperative blocking. With 
cooperative blocking, your task can suspend its execution and relin-
quish control to the task scheduler until a specific condition is met. 
This usually occurs when another task performs an action that the 
first task needs. A typical example of a cooperative blocking opera-
tion is the task_group::wait method. If wait is invoked from within a 
running task, the task scheduler knows that the current task can’t 
continue until all the tasks of the specified task group run to comple-
tion. Cooperative blocking provides a robust and highly programmable 
way to coordinate tasks.

Cooperative blocking can improve the performance of a parallel 
application by enabling fuller use of processor resources. A coopera-
tively blocked task represents an opportunity for the task scheduler 
to apply processor resources to other tasks. If you are going to use 
PPL effectively, it is important to understand the interaction of coop-

Cooperative blocking 
provides a robust and highly 
programmable way to 
coordinate tasks. 
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Cooperative blocking can 
improve the performance of  
a parallel application by 
enabling fuller use of processor 
resources.

erative blocking with the task scheduler. For more information, see 
the “Task Scheduler” section of Appendix A, “The Task Scheduler and 
Resource Manager.”

You can also invoke any of the synchronization features of the 
operating system from within tasks. Using lower-level blocking op-
erations of the operating system is sometimes called noncooperative 
blocking. If you do any type of blocking, you will need to consider 
whether cooperative or noncooperative blocking is most appropriate.  
In general, cooperative blocking has the advantage of better coordina-
tion with the task scheduler.

The following table lists the most important operations that the 
runtime considers to be cooperative blocking operations. Note that 
these operations are not guaranteed to block every time they are 
called; instead, they have the potential to block if certain conditions 
exist. All of the classes are in the Concurrency namespace.

Cooperative blocking 
operation

Description

task_group::wait 
method

This method blocks the current task until the tasks of 
another task group have completed their work.

critical_section::lock 
method

A critical section provides mutual exclusion. Acquiring 
the lock may block the current task if the lock is in use 
by another task. Only one task at a time can possess 
the lock.

critical_section:: 
scoped_lock class 
constructor

An exception-safe way to acquire and release a critical 
section within a block of code is to define a critical_
section ::scoped_lock at the beginning of that block. 

reader_writer_lock:: 
lock method

This method acquires a reader/writer lock for 
concurrency-safe modification of shared data. Calling 
the lock method will block the current task if a reader 
or reader/writer lock is already held by another thread.

reader_writer_lock:: 
scoped_lock class 
constructor

An exception-safe way to acquire and release a reader/
writer lock within a block of code is to define a 
reader_writer_lock:: scoped_lock at the beginning  
of that block. 

reader_writer_lock:: 
lock_read method

This method acquires a reader lock for concurrency-
safe reading of shared data. The lock_read method 
may block the current thread if another thread holds 
the reader/writer lock. Unlike the reader/writer lock, 
more than one task may hold a reader lock at the  
ame time.

reader_writer_lock:: 
scoped_lock_read 
class constructor

An exception-safe way to acquire and release a reader 
lock within a block of code is to define a reader_ 
writer_lock:: scoped_lock_read at the beginning  
of that block. 

Invoking cooperative blocking 
acts as a hint to the scheduler 
that other work may be 
started or resumed.
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event::wait method This method is a cooperatively blocking equivalent of 
a manual reset event. Invoking the event::wait method 
may block if the event has not yet been set.

agent::wait method
agent::wait_for_* 
methods

These methods block the current task until the agent 
instance completes its work.

wait(…) function The Concurrency::wait function cooperatively blocks 
execution for a specified time interval.

Context::Block 
method

This method suspends the current context until it is 
cooperatively reenabled by another task’s invocation 
of the Context::Unblock method. This operation is 
used by libraries to implement new task-coordination 
control structures. It is not normally used by applica-
tion code.

Context::Yield method This method suspends the current thread so that 
another worker thread may be given the opportunity 
to resume execution. Although Yield potentially 
suspends execution of the current thread, it never 
results in a blocked context. Therefore, Yield can  
only loosely be considered a blocking operation.

parallel_for,  
parallel_for_each  
and parallel_invoke 
functions

PPL’s functions for parallel algorithms internally invoke 
blocking operations, such as the wait method.

send and asend 
functions

These functions transmit data to messaging blocks.  
In Microsoft® Visual Studio® 2010 SP1, the  
implementations of the send and asend functions 
sometimes invoke cooperative blocking, depending 
on certain internal system details. The asend function 
is expected to be nonblocking in future versions of  
the runtime.

receive function This function gets a value from a messaging block. 
It may block if the messaging block does not yet  
have a value to provide.

Canceling a Task Group
You can signal cancellation by invoking the task group’s cancel method. 
Here’s an example:

task_group tg;
tg.run([](){ DoLeft(); });
tg.cancel();                   // could be called from any thread
wcout << L"  Is canceling: " << tg.is_canceling() << endl;

task_group_status status = tg.wait();
wcout << L"  Status:    " << status << endl;

Use the task_group::cancel 
method to signal cancellation 
of all tasks in a task group.
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Invoking a task group’s cancel method causes the task group to 
transition to a state where its is_canceling method will return true. 
Tasks in the task group that have not yet started are not allowed to 
run. New tasks that are added to the task group by the run method 
are ignored after the cancel method has been called.  

Tasks in the task group that have started before cancellation  
is signaled continue to run, but their behavior may change. If a task  
of a task group that is being canceled invokes any function in the 
Concurrency namespace, an exception may be thrown. For example, 
if a running task of a task group that is being canceled makes a call to 
another task group’s wait method, an exception may be thrown by the 
runtime. The specific set of functions in the Concurrency namespace 
that will throw exceptions when a task group is undergoing cancella-
tion and the specific set of circumstances that will cause such excep-
tions to be thrown are intentionally not specified. Therefore, your 
application logic should not depend on whether any particular library 
function throws or does not throw an exception when a task group is 
being canceled.

In the current version of PPL, canceling a task group with coop-
eratively (or noncooperatively) blocked tasks may result in deadlock 
in certain cases. For example, consider the case where you create two 
tasks in a task group that share an instance E of the cooperatively 
blocking event class. One of the tasks calls the wait method of event 
E, and the other task calls the signal method of event E. If the task 
group’s cancel method is called while the first task is blocked waiting 
for event E but before the second task has started to execute, there 
will be no way for the wait condition of the first task to be satisfied.

Cancellation will automatically propagate across task groups in 
certain situations. For example, cancellation will be propagated if a 
task in task group A is waiting for the tasks of task group B to com-
plete. In this situation, if task group A’s cancel method is called before 
the call to task group B’s wait method completes, then the runtime 
also invokes task group B’s cancel method. The task in task group A 
that is waiting on task group B remains blocked until task group B has 
no more running tasks. At that time, the call to task group B’s wait 
method will throw an exception. (Of course, if task group B is very 
fast, its wait function might return normally before there is a chance 
to propagate a cancellation from task group A.)

Note that the runtime only returns the enumerated value can-
celed for the wait method of the top-most task group in a tree of 
dependent task groups. The other stack frames will have an internal 
exception passed through them.

You must ensure that your 
task work functions are 
exception safe. Use the 
Resource Acquisition is 
Initialization (RAII) pattern 
for automatic cleanup.

Use extreme caution if you mix 
blocking operations other than 
task_group::wait with task 
group cancellation. In such 
cases you must ensure that all 
possible code paths are 
deadlock free.

A cancellation request 
automatically propagates to 
another task group if a call  
to that group’s wait method 
is blocking any of the tasks  
of a task group that is being 
cancelled.
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Long-running tasks can use the is_canceling method to poll their 
task group for its cancellation status and shut themselves down if 
cancellation has been requested. The is_canceling method might also 
be used if you need to perform local cleanup actions for a task that’s 
in the process of being canceled.  When the task group returns from 
a call to its wait method, its state is reset and its is_canceling method 
thereafter returns false.

Checking for cancellation within a loop that has many iterations 
that each performs a small amount of work can negatively affect your 
application’s performance. On the other hand, checking only infre-
quently for cancellation can introduce unacceptable latency in your 
application’s response to cancellation requests. For example, in an 
interactive GUI-based application, checking for cancellation more 
than once per second is probably a good idea. An application that runs 
in the background could poll for cancellation less frequently, perhaps 
every two to ten seconds. Profile your application to collect perfor-
mance data that will help you determine the best places to test for 
cancellation requests in your code. In particular, look for places in 
your code where you can poll for cancellation at evenly spaced inter-
vals. For more information about profiling, see “Appendix B, Profiling 
and Debugging.”

Handling Exceptions
If the execution of a task’s work function throws an unhandled excep-
tion, the unhandled exception is temporarily unobserved by your ap-
plication. The runtime catches the exception and records its details in 
internal data structures. Then, the runtime cancels the task group that 
contains the faulted task. See the previous section, “Canceling a Task 
Group,” for more information about what happens during task group 
cancellation. Under certain conditions, the cancellation is automati-
cally propagated to other task groups.

Recovering a deferred exception and rethrowing it is known as 
“observing an unhandled task exception.” When all of the tasks in the 
task group have completed, the task_group::wait method rethrows 
the faulted task’s exception in the runtime context of the thread that 
invoked the wait method.  If there is more than one exception (that 
is, if more than one task threw an unhandled exception), the runtime 
will choose one of the exceptions to rethrow. The remaining excep-
tions will not be observed.

If you need to record all of the exceptions, you can implement 
custom logging or tracing code.

Returning from the task_
group::wait method returns 
a task group object to its 
initial, default state.  The 
task group has the same 
behavior as if it were newly 
created.

When a task of a task group 
throws an unhandled 
exception, the runtime 
cancels that task group. The 
task group’s is_canceling 
method returns true during 
the course of the shutdown.

Be aware that if more than one 
task throws an exception, only 
one of the exceptions will be 
observed by the task_
group::wait method. You can’t 
control which exception will 
be rethrown.
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Speculative Execution
Speculative execution occurs when you perform an operation in an-
ticipation of a particular result. For example, you might predict that 
the current computation will produce the value 42. You start the next 
computation, which depends on the current computation’s result, by 
using 42 as the input. If the first computation ends with 42, you’ve 
gained parallelism by successfully starting the dependent operation 
well in advance of when you otherwise could have. If the first compu-
tation results in something other than 42, you can restart the second 
operation using the correct value as the input.

Another example of speculative execution occurs when you exe-
cute more than one asynchronous operation in parallel but need just 
one of the operations to complete before proceeding. Imagine, for 
example, that you use three different search tasks to search for an 
item. After the fastest task finds the item, you don’t need to wait for 
the other searches to complete. In cases like this you wait for the first 
task to complete and usually cancel the remaining tasks. However, you 
should always observe any exceptions that might have occurred in any 
of the tasks.

You can use the task_group::cancel method to implement specu-
lative execution. Here’s an example.

task_group tg;

tg.run([&tg](){ SearchLeft(tg); });
tg.run([&tg](){ SearchRight(tg); });
tg.run_and_wait([&tg](){ SearchCenter(tg); });

In this example, you perform three searches in parallel. You want 
to continue if any of the three functions completes. You don’t need 
to wait for all of them. To make this possible, the code passes a refer-
ence to the task group object to each of the work functions. Inside of 
the work functions, the code cancels the task group when it com-
pletes its work. The following code shows how to accomplish this 
inside of the SearchLeft function.

void SearchLeft(task_group& tg)
{
  bool result = 
              DoCpuIntensiveOperation(g_TaskMilliseconds/5, &tg);
  wcout << L"  Left search finished, completed = " << result 
        << endl;
  tg.cancel();
}

Use task cancellation as a 
way to wait for at least one 
task in a set of tasks to 
complete.



 37par allel tasks

The long-running function, DoCpuIntensiveOperation, checks 
for the cancellation status. This is shown in the following code. 

bool DoCpuIntensiveOperation(DWORD milliseconds, 
                             task_group* tg = nullptr)
{
  // ...
  int i = 0;
  DWORD checkInterval = ...
  while (true) 
  {
    if ((milliseconds == 0) || (++i % checkInterval == 0))
    {
      if (tg && tg->is_canceling())
        return false;
    }
    // ...
  }
}

The body of the while loop periodically checks to see if the task 
group, tg, has received a cancellation request. For performance rea-
sons the code only polls at a specified number of loop iterations.

Anti-Patterns
Here are some things to watch out for when you use task groups.

Variables Captured by Closures
In C++, a closure can be created using a lambda expression that repre-
sents an unnamed (anonymous) function. Closures can refer to vari-
ables defined outside of their lexical scope, such as local variables that 
were declared in a scope that contains the closure.

The semantics of closures in C++ may not be intuitive to some 
programmers, and it’s easy to make mistakes. If you code your closure 
incorrectly, you may find that captured variables don’t behave as you 
expect, especially in parallel programs.

Problems occur when you reference a variable without consider-
ing its scope. Here’s an example.

  task_group tg;
  for (int i = 0; i < 4; i++)
  {
     // WARNING: BUGGY CODE, i has unexpected value
     tg.run([&i]() { wcout << i << endl; } );
  }
  tg.wait();
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You might think that this code sample would print the numbers 
1, 2, 3, 4 in some arbitrary order, but it can print other values, depend-
ing on how the threads happen to run. For example, you might see 4, 
4, 4, 4. The reason is that the variable i is captured by reference and 
shared by all the closures created by the steps of the for loop. By the 
time the tasks start, the value of the single, shared variable i will prob-
ably be different from the value of i when the task was created. 

The solution is to capture the variable by value in the appropriate 
scope.

  task_group tg;
  for (int i = 0; i < 4; i++)
  {
     tg.run([i]() { wcout << i << endl; } );
  }
  tg.wait();

This version prints the numbers 1, 2, 3, 4 in an arbitrary order, as 
was originally intended. The reason is that the value of the variable  
i is passed to the closure. Effectively, a new variable named i is  
instantiated with each iteration of the for loop. 

Unintended Propagation of Cancellation 
Requests

If you use a library that is implemented with PPL, the API calls into 
that library may create task groups that are internal to the library. If 
you call that library’s APIs from a task context within your application, 
you might unintentionally create a situation where a task of your ap-
plication’s task group is waiting on a task group inside of the library’s 
implementation. According to the behavior described in the “Cancel-
ing a Task Group” section, if you invoke the cancel method of a task 
group in your application, you may implicitly cause the cancellation of 
task groups that were created by the library you are calling. Transitive 
propagation of cancellation into another component’s internal task 
groups may not be the behavior you intend; in some cases, you may 
prefer that library functions run to completion even though a higher-
level component is beginning to shut down.

You avoid cases of unintended propagation of runtime context  
by using a neutral, non-PPL thread context to call into any library 
functions that may depend on task group wait operations. For exam-
ple, you could use a lightweight task to invoke library functions.  
A lightweight task is a lower-level type of task that does not result  
in the propagation of cancellation requests. They are described in  
Appendix A. 

It’s a good idea to make sure 
that every lambda expression 
uses explicit capture instead  
of implicit capture.

Be aware that implicit 
parent-child relationships  
can influence the behavior  
of cancellation and  
exception handling,  
especially with libraries.
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The Cost of Synchronization
Locks and other synchronization operations are sometimes necessary 
in parallel programs. However, programmers often underestimate how 
much serializing operations can degrade performance.

You may want to review the “Scalable Sharing of Data” section of 
Chapter 1, “Introduction” for guidance on how to factor synchroniza-
tion into the design of your application. Well-designed applications 
require explicit synchronization operations less often than poorly 
designed applications.

Design Notes
This section describes some of the design considerations that were 
used to create the Parallel Patterns Library, along with some recom-
mended coding practices.

Task Group Calling Conventions
Whenever you call a task group’s run method, you must subsequently 
call its wait method and allow that call to return before you destroy 
the task group. Otherwise, the runtime will throw a “missing wait” 
exception. The missing wait exception only occurs in the normal flow 
of execution; it will not be thrown if you unwind the stack due to an 
application exception. Therefore, you do not need an RAII wrapper 
that calls the wait method. 

The task_group class’s methods are all concurrency safe, so there 
are many ways to invoke these methods. However, no matter which 
method you choose, you must make sure a return from a call to the 
task group’s wait method is the last operation that happens in the 
normal (no exceptions thrown) execution path before allowing a task 
group’s destructor to run.

If a task group’s wait method is called from multiple contexts, and 
you interleave these calls with calls to the task group’s run method, 
be aware that the results may vary from run to run. For example, it is 
possible to call a task group’s wait method concurrently from two 
different contexts. If there are pending tasks in the task group, both 
invocations of task_group::wait will return only after the task group 
has completed all of its pending tasks. However, if the task group is 
canceled while the tasks are running, only one of the wait functions 
will return the canceled status value. The other invocation will return 
a normal status, due to interleaving. (Returning from the wait method 
resets the task group’s is_canceling status as a side effect; whichever 
invocation returns first will perform the reset.)

To avoid performance 
bottlenecks, review your use 
of locks and other synchroni-
zation operations carefully. 
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Tasks and Threads
When a task begins to run, the applicable task scheduler invokes the 
task’s work function in a thread of its choosing.

The task will not migrate among threads at run time. This is a 
useful guarantee because it lets you use thread-affine abstractions, 
such as critical sections, without having to worry, for example, that 
the EnterCriticalSection function will be executed in a different 
thread than the LeaveCriticalSection function. 

In general, creating a new task is a much less resource-intensive 
operation than creating a new thread. It is possible for an application 
to create hundreds of thousands or even millions of tasks and still run 
efficiently.

You may want to profile your application as you experiment with 
strategies for using tasks in your application. If your tasks are too fine 
grained, you will incur overhead for task management that may hurt 
performance. For example, a task that performs a single arithmetic 
operation is not going to improve performance. However, if you de-
compose your application into too few tasks, you will not fully exploit 
the potential parallelism of the application. 

How Tasks Are Scheduled
The techniques for scheduling tasks and scheduling threads demon-
strate fundamentally different goals. The operating system generally 
schedules threads in a way that minimizes latency. Preemptive thread 
scheduling allows users to interact with a busy system with very little 
perceived delay, even on a system with only one core. 

In contrast, the task scheduler tries to maximize overall through-
put rather than ensure low latency for any given task. In other words, 
when you decompose a computationally intensive operation into 
tasks that can potentially run in parallel, you want to complete the 
overall operation as quickly as possible without concern for the sched-
uling delays that any given task might experience. For task-based 
systems such as PPL and the underlying Concurrency Runtime, the 
measure of success is the speed of the overall result. The goal is to 
optimize the use of processor resources. 

For these reasons you should not expect that tasks in PPL are 
scheduled “fairly.” Instead, a variety of techniques are used to improve 
throughput.  These techniques mainly focus on keeping cores busy 
and on an effective use of system caches. For more information about 
scheduling, see Appendix A, “The Task Scheduler and Resource Man-
ager.”
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There are a number of options available that allow you to control 
how the scheduler deals with tasks. See “Schedule Policies” in Ap-
pendix A for more information. 

Structured Task Groups and Task Handles
In addition to the task_group class, PPL also provides a lower-level 
interface called the structured_task_group class, which is docu-
mented on MSDN®. 

Structured task groups have lower overhead than the task groups, 
but there are restrictions on how structured task groups can be used. 
These restrictions require stack-based work functions and strict nest-
ing of subordinate structured task groups. Although the task groups 
are recommended for most application programming, structured task 
groups are important for implementing parallel libraries. For example, 
the PPL parallel_invoke function is implemented with structured 
task groups. The parallel_invoke function is usually enough in cases 
of strict nested parallelism, and because it is much easier to use than 
structured task groups, you probably won’t ever need to use struc-
tured task groups directly.

PPL includes a data type named the task_handle class. It encap-
sulates a work function used by a task. One of the overloaded ver-
sions of the task_group class’s run method accepts a task handle as 
its argument. Task handles are created by means of the make_task 
function. Most applications will never need access to task handles; 
however, you must use task handles with structured task groups. Un-
like lambda expressions, task handles require explicit memory manage-
ment by your application.

Lightweight Tasks
In addition to the task_group objects that were described in this 
chapter, the Concurrency Runtime provides lower-level APIs that may 
be useful to some programmers, especially those who are adapting 
existing applications that create many threads. However, in general it 
is recommended that programmers start with the Parallel Patterns 
Library (PPL) or the Asynchronous Agents Library.

See the “Lightweight Tasks” section of Appendix A, “The Task 
Scheduler and Resource Manager” for more information.
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Exercises
1. The image blender example in this chapter uses task parallel-

ism: a different task processes each image layer. A typical 
strategy in image processing uses data parallelism: the same 
computation processes different portions of an image or 
different images. Is there a way to use data parallelism in the 
image blender example? If there is, what are the advantages 
and disadvantages, compared to the task parallelism discussed 
here?

2. In the image blender sample, the image processing methods 
SetToGray and Rotate are void methods that do not return 
results, but they save their results by updating their second 
argument. Why don’t they return their results?

3. In the image blender sample that uses task_group::run 
method, what happens if one of the parallel tasks throws an 
exception? Answer the same question for the sample that 
uses the parallel_invoke function.

Further Reading
Leijen et al. discusses design considerations, including the concepts of 
task-based scheduling and work stealing algorithms.

The code samples for the Concurrency Runtime and Parallel  
Pattern Library package is ConcRTExtras on CodePlex.

Leijen, D., W. Schulte, and S. Burckhardt. “The Design of a  
Task Parallel Library.” S. Arora and G.T. Leavens, editors, OOP-
SLA 2009: Proceedings of the 24th Annual ACM SIGPLAN 
Conference on Object-Oriented Programming, Systems,  
Languages, and Applications, pages 227–242. ACM, 2009.

ConcRTExtras software. “Code Samples for the Concurrency 
Runtime and Parallel Pattern Library in Visual Studio 2010.” 
http://code.msdn.microsoft.com/concrtextras.
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Parallel Aggregation4

The Parallel Aggregation 
pattern lets you use multiple 
cores to calculate sums and 
other types of accumulations 
that are based on associative 
operators.

Chapter 2, “Parallel Loops,” shows how to use parallel techniques that 
apply the same independent operation to many input values. How-
ever, not all parallel loops have loop bodies that execute indepen-
dently. For example, a sequential loop that calculates a sum does not 
have independent steps. All the steps accumulate their results in a 
single variable that represents the sum calculated up to that point. 
This accumulated value is an aggregation. If you were to convert the 
sequential loop to a parallel loop without making any other changes, 
your code would fail to produce the expected result. Parallel reads 
and writes of the single variable would corrupt its state.

Nonetheless, there is a way for an aggregation operation to use a 
parallel loop. This is the Parallel Aggregation pattern.

Although calculating a sum is an example of aggregation, the pat-
tern is more general than that. It works for any binary operation that 
is associative. However, some implementations of the Parallel Aggre-
gation pattern also expect the operations to be commutative.

The Parallel Aggregation pattern uses unshared, local variables 
that are merged at the end of the computation to give the final result. 
Using unshared, local variables for partial, locally calculated results 
makes the steps of a loop independent of each other. Parallel aggrega-
tion demonstrates the principle that it’s usually better to make 
changes to your algorithm than to add synchronization primitives to 
an existing algorithm. For more information about the algorithmic 
aspects of this pattern, see the “Design Notes” section later in this 
chapter.

The Parallel Aggregation pattern is also known as the Parallel 
Reduction pattern because it combines multiple inputs into a single 
output.
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The Basics
The most familiar application of aggregation is calculating a sum. 
Here’s a sequential version.

  vector<int> sequence = ...  
  int count = 0;
  for (size_t i = 0; i < sequence.size(); i++)
      count += IsPrime(sequence[i]) ? 1 : 0;
  return count;

This is a typical sequential for loop. In this example and the ones 
that follow, IsPrime is a user-provided function that determines if its 
argument is a prime number. The result is a count of how many prime 
numbers are contained in the input sequence. (Of course, you could 
also have used the Standard Template Library (STL) count_if opera-
tion in this particular example.)

How can sequential accumulation be adapted for parallel process-
ing? As was explained in Chapter 2, simply swapping the for operator 
with parallel_for won’t work because the count variable is shared by 
all iterations. You might also be tempted to wrap a critical section 
around the operation that increments the count variable. The critical 
section would prevent parallel iterations from performing conflicting 
reads and writes, but the performance of that approach would be 
much, much worse than the sequential version you are trying to opti-
mize. The cost of synchronization would be prohibitive. (In fact, 
programmers often underestimate the performance cost of synchro-
nization operations.)

Typical of many situations in parallel programming, the answer is 
not to apply synchronization operations to the existing sequential 
algorithm in order to make it “safe” for parallel execution. Instead, 
redesign the algorithm to use a two-phase approach. First, subdivide 
the problem into as many tasks as you have cores and calculate partial 
results locally on a per-core basis. Then, once all of the per-task partial 
results are ready, sequentially merge the results into one final accumu-
lated value. The process of combining partial reductions is graphically 
illustrated by the cartoon illustration on this chapter’s facing page. 

PPL provides a special data structure that makes it easy to create 
per-task local results in parallel and merge them as a final sequential 
step.  This data structure is the combinable class. The following code 
examples show how to use the combinable class to implement the 
Parallel Aggregation pattern.

  vector<int> sequence = ...  
  
  combinable<int> count([]() { return 0; });     

The combinable class makes 
it easy to create per-task local 
results in parallel and merge 
them as a final sequential 
step.
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  parallel_for_each(sequence.cbegin(), sequence.cend(), 
    [&count](int i)
    {
        count.local() += IsPrime(i) ? 1 : 0;
    });
  return count.combine(plus<int>());

The count variable is a combinable object that provides thread-
private values. To compute the initial, local values the constructor of 
the combinable class takes a function as an argument.

Next, a parallel_for_each loop creates multiple tasks (typically, 
equal to some multiple of the number of cores on your computer) and 
runs the loop body function in parallel. The tasks collect the partial, 
per-core results into per-task variables that are provided by the  
combinable object’s local method.  

The number of tasks depends on the level of concurrency avail-
able in the current context. See Appendix A, “The Task Scheduler and 
Resource Manager” for more information about runtime policy set-
tings for concurrency. Also, the parallel_for_each loop uses dynamic 
range stealing to equalize the amount of work among its internal 
worker threads.

After the parallel_for_each loop completes, the combinable 
object’s combine method applies a user-specified binary operation to 
aggregate the values of each of the per-task partial results. In this 
example the combination function is integer addition. The return 
value of the combine method is the final aggregated value.

The Concurrency Runtime sample pack provides several STL-style 
parallel aggregation functions.  The easiest way to understand how 
these functions work is to compare them with their corresponding 
sequential operations in STL. 

STL provides a very simple way to express sequential aggregation 
with iterators. Here is an example.

  vector<int> sequence = ...  
  return accumulate(sequence.cbegin(), sequence.cend(), 0, 
                    IncrementIfPrime());

The STL accumulate function applies a binary function to an in-
ternal accumulation variable and to each element of a sequence, up-
dating the accumulation variable with each iteration. The first and 
second arguments to the accumulate function give the iteration 
bounds. The third argument is the initial value of the accumulation 
variable, and the fourth argument is a binary reduction function that 
will be successively applied to the accumulation variable and to each 
iterated value. The job of the reduction function is to combine two 
input values. Here is the implementation of the reduction function, 
IncrementIfPrime.

The combinable class assumes 
that the operation provided as 
an argument to the combine 
method is commutative.
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struct IncrementIfPrime
{
    int operator()(int total, int element) const
    {
        return total + (IsPrime(element) ? 1 : 0);
    }
};

The STL accumulate function is a sequential operation whose 
performance is comparable to the sequential for loop shown in the 
earlier example. To convert an STL accumulate expression into a  
parallel aggregation you can use the parallel_reduce function of the 
Concurrency Runtime sample pack. The following code gives an  
example.

using namespace ::Concurrency::samples;
vector<int> sequence = ...  
return parallel_reduce(sequence.cbegin(), sequence.cend(), 0, 
                       CountPrimes(), plus<int>());

The parallel_reduce function takes five arguments.  The first two 
arguments give the iteration bounds. The third argument gives the 
value of the reduction’s identity element.  If the reduction is based on 
addition, this element will be 0. For multiplicative reduction, the iden-
tity element is 1. For reductions such as aggregate set union, the 
identity element is the empty set.

The fourth argument is a function object that can be applied on 
a subrange of an iterator to produce a local partial aggregation. This 
example uses a functor created by instantiating the CountPrimes 
class. The return value of the function object is the local partial result 
from the first phase of the Parallel Aggregation pattern.

The fifth argument is a reduction function that will combine the 
partial results that have been calculated for each of the subranges.

Here is the implementation of the CountPrimes class-type functor.

struct CountPrimes
{
  int operator()(vector<int>::const_iterator begin, 
                 vector<int>::const_iterator end, 
                 int right) const
  {
    return right + accumulate(begin, end, 0, IncrementIfPrime());
  }
};

If the conventions of STL 
algorithms are unfamiliar to 
you, you should brush up on 
them before reading this 
chapter. See the “Further 
Reading” section for more 
information.
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The parallel_reduce function divides the input iterator into 
ranges. There will be enough ranges to compensate for the effects of 
uneven workloads, but not so many ranges that the overhead of cal-
culating them dominates the computation. PPL determines how many 
ranges to create. 

In this example, the CountPrimes function object will be invoked 
one time for each of the ranges. It executes a sequential accumulation 
operation on the subrange and collects the result.

The parallel_reduce function is usually the recommended ap-
proach whenever you need to apply the Parallel Aggregation pattern 
within applications that use PPL. Its declarative nature makes it less 
prone to error than other approaches, and its performance on multi-
core computers is competitive with them. Implementing parallel  
aggregation with parallel_reduce doesn’t require adding locks in  
your code. Instead, all the synchronization occurs internally. Of 
course, if parallel_reduce doesn’t meet your needs or if you prefer a 
less declarative style of coding, you can also use the combinable class 
with parallel_for or parallel_for_each to implement the parallel  
aggregation. 

You should be aware that parallel_for and parallel_for_each add 
overhead due to their support of features such as cancellation and 
dynamic range stealing. Also, a call to the combinable::local() method 
inside of a parallel loop adds the cost of a hash table lookup to each 
iteration of the loop. In general, use parallel aggregation to increase 
performance when iterations perform complex computations.

An Example
Aggregation doesn’t only apply to numeric values. It arises in many 
other application contexts. The following example shows how to use 
a variation of parallel aggregation known as map/reduce to aggregate 
nonscalar data types.

The example is of a social network service, where subscribers can 
designate other subscribers as friends. The site recommends new 
friends to each subscriber by identifying other subscribers who are 
friends of friends. To limit the number of recommendations, the ser-
vice only recommends the candidates who have the largest number of 
mutual friends. Candidates can be identified in independent parallel 
operations, and then candidates are ranked and selected in an aggre-
gation operation.

Here’s how the data structures and algorithms that are used by 
the recommendation service work. Subscribers are identified by inte-
ger ID numbers. A subscriber’s friends are represented by the collec-
tion of their IDs. The collection is a set because each element (a 
friend’s ID number) occurs only once and the order of the elements 
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doesn’t matter. For example, the subscriber whose ID is 0 has two 
friends whose IDs are 1 and 2. This can be written as:

0 -> { 1, 2 }
The social network repository stores an entry like this for every 

subscriber. In order to recommend friends to a subscriber, the recom-
mendation service must consider a subscriber’s entry, as well as the 
entries for all of that subscriber’s friends. For example, to recommend 
friends for subscriber 0, the pertinent entries in the repository are:

0 -> { 1, 2 }
1 -> { 0, 2, 3 }
2 -> { 0, 1, 3, 4 }
You can see that the service should recommend subscribers 3 and 

4 to subscriber 0 because they appear among the friends of subscrib-
ers 1 and 2, who are already friends of 0. In addition, the recommenda-
tion service should rank subscriber 3 higher than 4, because 3 is a 
friend of both of 0’s friends, while 4 is a friend of only one of them. 
You can write the results like this:

{ 3(2), 4(1) }
This means that subscriber 3 shares two mutual friends with sub-

scriber 0, and subscriber 4 shares one. This is an example of a type of 
collection known as a multiset. In a multiset, each element (3 and 4 in 
this example) is associated with a multiplicity, which is the number of 
times it occurs in the collection (2 and 1, respectively). So a multiset 
is a collection where each element only occurs once, yet it can repre-
sent duplicates (or larger multiplicities). The order of elements in a 
multiset doesn’t matter.

The recommendation service uses map/reduce and has three 
phases.

 In the first phase, which is the map phase, the service creates 
collections of friend candidates. The collections of potential friends 
are calculated by iterating through the subscriber’s friends and search-
ing their friends for people that are not currently friends of the sub-
scriber. 

In the second phase, which is the reduce phase, the service ag-
gregates the sets of potential friends into a multiset where each can-
didate’s ID is associated with its multiplicity (the number of mutual 
friends).  For each set of possible friends, the reduce phase merges the 
sets of potential friends and maintains a count of the occurrences. It 
uses a hash_map<FriendID, int> instance for this purpose. 

The final phase performs postprocessing. The service ranks can-
didates by sorting them according to their multiplicity and selects 
only the candidates with the largest multiplicities.

An important feature of map/reduce is that the result of the map 
stage is a collection of items that is compatible with the reduce stage. 
The reduce stage uses multisets; therefore, the map stage does not 

The example in this section 
uses a multiset implementation 
that differs from STL.
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produce only a list of candidate IDs; instead, it produces a vector of 
multisets, where each multiset contains only one candidate with a 
multiplicity of one. In this example, the output of the map stage is a 
collection of two multisets. The subscribers are the numbers 3 and 4.

{ 3(1) }, { 3(1) , 4(1) } 
Here, the first multiset contains friends of subscriber 1, and the 

second multiset contains friends of subscriber 2.
Another important feature of map/reduce is that the aggregation 

in the reduce phase is performed by applying a binary operation to 
pairs of elements from the collection that is produced by the map 
phase. In this example, the operation is a multiset union, which com-
bines two multisets by collecting the elements and adding their mul-
tiplicities. The result of applying the multiset union operation to the 
two multisets in the preceding collection is:

{ 3(2), 4(1) }
Now that there is only one multiset, the reduce phase is complete. 

By repeatedly applying the multiset union operation, the reduce phase 
can aggregate any collection of multisets, no matter how large, into 
one multiset.

This is the code that defines the main data types that are used in 
the sample.

typedef int SubscriberID;
typedef int FriendID;
typedef set<FriendID> FriendsSet;
typedef shared_ptr<FriendsSet> FriendsSetPtr;
typedef hash_map<SubscriberID, FriendsSetPtr> SubscriberMap;

class FriendMultiSet : public hash_map<FriendID, int>
{
  // Multiset of potential friends.
  // ...
} 

typedef shared_ptr<FriendMultiSet> FriendMultiSetPtr;

The FriendsSet type is implemented by an STL set. The Friend 
MultiSet type has a custom implementation. In addition to these data 
types, the sample also uses an ordered list of potential friends that is 
sorted by multiplicity in decreasing order. Here is the code.

struct LessMultisetItem
{
  bool operator()(const pair<FriendID, int> value1, 
                  const pair<FriendID, int> value2) const
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  {
    return (value1.second == value2.second) ? 
              (value1.first > value2.first) : 
              (value1.second > value2.second);
  }
};

typedef public set<pair<FriendID, int>, LessMultisetItem>  
                                           FriendOrderedMultiSet;

Note that STL also implements a std::multiset type, but it is used 
to store sets which contain multiple key values with equal values, 
rather than key/value pairs.

Finally, here is the code for the sequential version of the algorithm 
that suggests potential friends. 

FriendOrderedMultiSet 
PotentialFriendsSequentialTransform(
  const SubscriberMap& subscribers, 
  SubscriberID id, 
  int maxCandidates)
{
  // Map:

  FriendsSetPtr friends = subscribers.find(id)->second;
  vector<FriendMultiSetPtr> friendsOfFriends(friends->size());

  transform(friends->cbegin(),friends->cend(), 
    friendsOfFriends.begin(), 
    [&subscribers,&friends,&id](int friendID)->FriendMultiSetPtr 
    {
      FriendsSetPtr theirFriends = 
                      subscribers.find(friendID)->second;
      FriendsSetPtr friendsOfFriend = make_shared<FriendsSet>();

      set_difference(theirFriends->cbegin(), 
        theirFriends->cend(),
        friends->cbegin(),friends->cend(), 
        inserter(*friendsOfFriend, friendsOfFriend->end()));
      friendsOfFriend->erase(id);

      return FriendMultiSetPtr(
                          new FriendMultiSet(friendsOfFriend));
    });

  // Reduce:
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  // The reduction does not use std:accumulate because 
  // this results in too much copying of intermediate 
  // FriendCountMap
  FriendMultiSet candidates;
  for_each(friendsOfFriends.cbegin(), friendsOfFriends.cend(),  
    [&candidates](FriendMultiSetPtr set)
    {
      candidates.Union(set);
    });

  // Postprocess:

  return candidates.MostNumerous(maxCandidates);
} 

In the map phase, this code loops sequentially over the subscrib-
er’s friends and builds a collection of multisets of candidates. In the 
reduce phase, the code loops sequentially over those multisets and 
aggregates them with the multiset union operation, which is imple-
mented by the Union method. If this code executes with the few 
subscribers in the example, the id argument is 0 and subscribers.
find(id)->second returns { 1, 2}. When the map phase completes,  
the friendsOfFriend variable contains { 3(1) }, { 3(1) , 4(1) }. When the 
reduce phase completes, candidates contains { 3(2), 4(1) }.

Multiset union is associative; if you aggregate several multisets 
into one by successively forming unions in a pair-wise manner, the fi-
nal result does not depend on the order of the union operations. 
Multiset union is also commutative; the result does not depend on the 
order of its arguments. If the aggregation function is not associative, 
it can’t be done in parallel without potentially getting different re-
sults. If it’s not commutative, the potential for parallelism is greatly 
reduced.

Here’s how to use the parallel_transform and parallel_reduce 
functions of the Concurrency Runtime sample pack to apply map/
reduce to the social networking example.

FriendOrderedMultiSet 
PotentialFriendsParallel(const SubscriberMap& subscribers, 
                         SubscriberID id, 
                         int maxCandidates)
{
  // Map:

  FriendsSetPtr friends = subscribers.find(id)->second;

Strictly speaking, floating-point 
arithmetic is neither commuta-
tive nor associative. From run to 
run, parallel computations over 
floats or doubles may end up 
with slightly different results 
due to rounding errors.
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  vector<FriendMultiSetPtr> friendsOfFriends(friends->size());

  parallel_transform(friends->cbegin(),friends->cend(), 
    friendsOfFriends.begin(), 
    [&subscribers,&friends,&id](int friendID)->FriendMultiSetPtr 
    {
      FriendsSetPtr theirFriends = 
                             subscribers.find(id)->second;
      FriendsSetPtr friendsOfFriend = make_shared<FriendsSet>();

      set_difference(
        theirFriends->cbegin(), theirFriends->cend(), 
        friends->cbegin(), friends->cend(), 
        inserter(*friendsOfFriend, friendsOfFriend->end()));
      friendsOfFriend->erase(id);

      return FriendMultiSetPtr(
                          new FriendMultiSet(friendsOfFriend));
    });

  // Reduce:

  FriendMultiSet candidates;
  candidates = 
    parallel_reduce(friendsOfFriends.cbegin(), 
      friendsOfFriends.cend(), 
      FriendMultiSet(), 
      [](vector<FriendMultiSetPtr>::const_iterator cbegin, 
         vector<FriendMultiSetPtr>::const_iterator cend, 
         const FriendMultiSet& right)
      { 
        return right.Union(cbegin, cend); 
      },
      [](const FriendMultiSet& left, const FriendMultiSet& right)
      { 
        return left.Union(right);
      });

  // Postprocess:

  return candidates.MostNumerous(maxCandidates);
}
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Recall that in map/reduce, independent parallel operations (the 
map phase) are followed by aggregation (the reduce phase). In the map 
phase, the parallel operations iterate over all the friends of subscriber 
0. The map phase is performed by the parallel_transform function, 
which finds all the friends of each friend of the subscriber. The set_
difference function prevents redundant recommendations by remov-
ing the subscriber. The output of the map phase is a vector of multi-
sets for each of the subscriber’s friends. 

The reduce phase is performed by the call to the parallel_reduce 
function, which counts the duplicate candidate IDs. Note that the call 
to the FriendMultiSet function returns an empty multiset that is 
used as the identity element. The Union method combines two mul-
tisets.

The return statement performs the final postprocessing step that 
selects the candidates with the highest multiplicities.

Variations
This section contains some common variations of the Parallel Aggre-
gation pattern.

Considerations for Small Loop Bodies
If the body of your parallel aggregation loop performs very little work, 
you may find that performing parallel aggregation takes longer than 
sequential aggregation. When you have small loop bodies, you can 
apply the techniques that were described in Chapter 3, “Parallel 
Loops” in the “Special Handling of Small Loop Bodies” section. These 
techniques allow you to use sequential aggregation within subranges.

Other Uses for Combinable Objects
The combinable class is most commonly used to implement the Paral-
lel Aggregation pattern, but you do not necessarily need to use  
combinable objects for aggregation. You can also use combinable 
instances to create thread-local variables when a thread starts. 

Design Notes
If you compare the sequential and parallel versions of the Parallel  
Aggregation pattern, you see that the design of the parallel version 
includes an additional step in the algorithm that merges partial results. 
Figure 1 illustrates the two phases of parallel aggregation.
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figure 1
Parallel aggregation 

Figure 1 shows that instead of placing the accumulation in a single, 
shared result, the parallel loop uses unshared local storage for partial 
results (these are named subtotals in Figure 1). The local method of the 
combinable class provides access to the unshared storage for each 
thread. Each worker thread processes a single partition of the input 
values. The number of partitions depends on the degree of parallelism 
that’s needed to efficiently use the computer’s available cores. After 
all of the partial results have been computed, the combine function of 
the combinable object merges the local results into the final, global 
result. 

The reason that this approach is fast is that there is very little 
need for synchronization operations. Calculating the per-task local 
results uses no shared variables, and therefore requires no locks. The 
combine operation is a separate sequential step and also does not 
require locks.

This discussion shows that the Parallel Aggregation pattern is a 
good example of why changes to your algorithm are often needed 
when moving from a sequential to a parallel approach.

To make this point clear, here’s an example of what parallel ag-
gregation would look like if you simply added locks to the existing 
sequential algorithm. To do this, you only need to convert sequential 
for to parallel_for and add one lock statement.

// WARNING: BUGGY CODE. Do not copy this example.
// It will run *much slower* than the sequential version.
// It is included to show what *not* to do.

vector<int> sequence = ...
CRITICAL_SECTION cs;
InitializeCriticalSectionAndSpinCount(&cs, 0x80000400);

You can’t simply add locks 
and expect to get good perfor-
mance. You also need to think 
about the algorithm.
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int count = 0;

// BUG -- Do not use parallel_for_each in this case
parallel_for_each(sequence.cbegin(), sequence.cend(), 
  [&count, &cs](int i)
  {
    // BUG -- Do not use locking inside of a parallel aggregation
    EnterCriticalSection(&cs);
    // BUG -- Do not use shared variable for parallel aggregation
    count += IsPrime(i) ? 1 : 0;
    LeaveCriticalSection(&cs);
  });

return count;

If you forget to enter and exit the critical section, this code fails 
to calculate the correct sum on a multicore computer. Adding the 
synchronization code makes this example correct with respect to se-
rialization. If you run this code, it produces the expected sum. How-
ever, it fails completely as an optimization. This code is many times 
slower than the sequential version it attempted to optimize! The 
reason for the poor performance is the cost of synchronization.

In contrast, the examples of the Parallel Aggregation pattern that 
you have seen elsewhere in this chapter will run much faster on mul-
ticore computers than the sequential equivalent, and their perfor-
mance also improves in approximate proportion to the number of 
cores.

It might at first seem counterintuitive that adding additional steps 
can make an algorithm perform better, but it’s true. If you introduce 
extra work, and that work has the effect of preventing data depen-
dencies between parallel tasks, you often benefit in terms of perfor-
mance.

Related Patterns
There’s a group of patterns related to summarizing data in a collec-
tion. Aggregation (also known as Reduce) is one of them. The others 
include Scan and Pack. The Scan pattern occurs when each iteration 
of a loop depends on data computed in the previous iteration. The 
Pack pattern uses a parallel loop to select elements to retain or dis-
card. The result of a pack operation is a subset of the original input. 
These patterns can be combined, as in the Fold and Scan pattern.  
For more information about these related patterns, see the section, 
“Further Reading,” at the end of this chapter.
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Exercises
1. Consider the small social network example (with subscribers 

0, 1, 2). What constraints exist in the data? How are these 
constraints observed in the sample code?

2. In the social network example, there’s a separate postprocess-
ing step where the multiset of candidates, which is an 
unordered collection, is transformed into a sequence that is 
sorted by the number of mutual friends, and then the top N 
candidates are selected. Could some or all of this postpro-
cessing be incorporated into the reduction step? 

3. In the standard reference on map/reduce (see the section, 
“Further Reading”), the map phase executes a map function 
that takes an input pair and produces a set of intermediate 
key/value pairs. All pairs for the same intermediate key are 
passed to the reduce phase. That reduce phase executes a 
reduce function that merges all the values for the same 
intermediate key to a possibly smaller set of values. The  
signatures of these functions can be expressed as: map  
(k1,v1)  -> list(k2,v2) and reduce (k2,list(v2))  -> list(v2). In  
the social network example, what are the types of k1, v1,  
k2, and v2? What are the map and reduce functions?

Further Reading
Musser et al. explain the standard template library (STL). A thorough 
treatment of synchronization techniques appears in the book by 
Duffy. The related patterns of Stencil, Scan, and Pack are discussed by 
McCool. The standard reference on map/reduce is the paper by Dean 
and Ghemawat. Other cases of algorithms that use parallel loops with 
some dependencies between steps are described by Toub. These in-
clude fold-and-scan and dynamic programming. Toub’s examples are 
in managed code, but the algorithms apply equally to native code. The 
Wikipedia article describes the mathematical multisets that were used 
in code example in this chapter.

Dean, J., and S. Ghemawat. “MapReduce: Simplified Data 
Processing on Large Clusters.” In OSDI ‘04: Sixth Symposium on 
Operating System Design and Implementation, 137–150, 2004.
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2009.

http://www.ddj.com/go-parallel/article/showArticle.jhtml? 
articleID=223101515.

Musser, D. R.,  G. J. Derge, and A. Saini. STL Tutorial and Refer-
ence Guide: C++ Programming with the Standard Template Library,  
3rd  edition. Addison-Wesley Professional, December 2009.

Toub, S., “Patterns of Parallel Programming: Understanding and 
Applying Parallel Patterns with the .NET Framework 4.” 2009. 

http://www.microsoft.com/downloads/details.aspx?FamilyID= 
86b3d32b-ad26-4bb8-a3ae-c1637026c3ee&displaylang=en.
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Futures5

Futures are asynchronous 
functions.

In Chapter 3, “Parallel Tasks,” you saw how the Parallel Task pattern 
allows you to fork the flow of control in a program. In this chapter, 
you’ll see how control flow and data flow can be integrated with the 
Futures pattern.

A future is a stand-in for a computational result that is initially 
unknown but becomes available at a later time. The process of calcu-
lating the result can occur in parallel with other computations. The 
Futures pattern integrates task parallelism with the familiar world of 
arguments and return values. 

Futures express the concept of potential parallelism that was in-
troduced in Chapter 1, “Introduction.” Decomposing a sequential 
operation with futures can result in faster execution if hardware re-
sources are available for parallel execution. However, if all cores are 
otherwise occupied, futures will be evaluated without parallelism.

You can think of a future as a task that returns a value. Instead of 
explicitly waiting for the task to complete, using a method such as 
wait, you simply ask the task for its result when you are ready to use 
it. If the task has already finished, its result is waiting for you and is 
immediately returned. If the task is running but has not yet finished, 
the thread that needs the result blocks until the result value becomes 
available. (While the thread is blocked, the core is available for other 
work.) If the task hasn’t started yet, the pending task may be executed 
in the current thread context.

The Parallel Patterns Library (PPL) makes it very easy to use the 
Futures pattern. Here is a minimal futures implementation that illus-
trates how futures work.

template <class T> 
class Future
{
  private:
    single_assignment<T> m_val;

Don’t confuse the task- 
based futures in this chapter 
with other Future pattern 
implementations such as  
the std::future implementation 
in the Standard Template 
Library (STL) that has been 
incorporated into the C++0x 
working paper.
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    task_group m_tg; 

  public:
    template <class Func>
    Future(Func f) 
    {
        m_tg.run([f, this]() 
        {
          send(m_val, f());
        });
    }

    T Result() 
    {
       m_tg.wait();
       return receive(&m_val);
    }
};

In this example, each new instance of the Future<T> class creates 
a task group and uses the task group’s run method to add a new task 
to that task group. The work function of the new task is an argument 
to the constructor of the Future<T> class. The work function returns 
a value of type T.

Note:  The single_assignment class that is used in the imple-
mentation of the Future class is a type of messaging buffer.  
The send and receive functions allow for concurrency-safe 
communication of a single data value. For more information  
about messaging buffers, see Chapter 7, “Pipelines.”

The Futures pattern discussed in this chapter is closely related  
to what is sometimes known as a task graph. When futures provide 
results that are the inputs to other futures, this can be seen as a  
directed graph. The nodes are tasks, and the arcs are values that act as 
inputs and outputs of the tasks.

The Basics
When you think about the Parallel Task pattern described in Chapter 
3, you see that, in many cases, the purpose of a task is to calculate a 
result. In other words, asynchronous operations often act like func-
tions with return values. Of course, tasks can also do other things, 
such as reordering values in an array, but calculating new values is 
common enough to warrant a pattern tailored to it. It’s also much 
easier to reason about pure functions, which don’t have side effects 

This implementation of a 
Future class omits features 
such as the ability to rethrow 
exceptions when you call the 
Result method multiple times. 
You can use this implementa-
tion in your own applications, 
but you should be aware that it 
is not meant to be completely 
full-featured.

You can easily implement 
futures using task groups.

Be careful not to confuse 
futures with pipelines. As you 
will see in Chapter 7, “Pipe-
lines,” pipeline tasks are also 
nodes of a directed graph, but 
the arcs that connect stages of 
the pipeline are concurrent 
queues that convey a series of 
values, just as an assembly line 
or data stream does. In 
contrast, with futures, nodes 
of the task graph are connect-
ed by singleton values, similar 
to arguments and return 
values.
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and therefore exist purely for their results. This simplicity becomes 
very useful as the number of cores becomes large.

Futures
The following example is from the body of a sequential method.

  int a = 22;

  int b = F1(a); 
  int c = F2(a); 
  int d = F3(c); 
  int f = F4(b, d); 
  return f;

Suppose that F1, F2, F3, and F4 are processor-intensive functions 
that communicate with one another using arguments and return val-
ues instead of reading and updating shared state variables.

Suppose, also, that you want to distribute the work of these func-
tions across available cores, and you want your code to run correctly 
no matter how many cores are available. When you look at the inputs 
and outputs, you can see that F1 can run in parallel with F2 and F3 but 
that F3 can’t start until after F2 finishes. How do you know this? The 
possible orderings become apparent when you visualize the function 
calls as a graph. Figure 1 illustrates this.

figure 1
A task graph for calculating f

The nodes of the graph are the functions F1, F2, F3, and F4. The 
incoming arrows for each node are the inputs required by the func-
tion, and the outgoing arrows are values calculated by each function. 
It’s easy to see that F1 and F2 can run at the same time but that F3 
must follow F2.
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Here’s an example that shows how to create futures for this ex-
ample. For simplicity, the code assumes that the values being calcu-
lated are integers and that the value of variable a has already been 
supplied, perhaps as an argument to the current method.

  int a = 22;

  Future<int> futureB([a](){ return F1(a); });
  int c = F2(a);
  int d = F3(c);
  int f = F4(futureB.Result(), d);
  return f;

This code creates a future that begins to asynchronously calculate 
the value of F1(a). On a multicore system, F1 will be able to run in 
parallel with the current thread. This means that F2 can begin execut-
ing without waiting for F1. The function F4 will execute as soon as 
the data it needs becomes available. It doesn’t matter whether F1 or 
F3 finishes first, because the results of both functions are required 
before F4 can be invoked. (Recall that the Result method does not 
return until the future’s value is available.) Note that the calls to F2, 
F3, and F4 do not need to be wrapped inside of a future because a 
single additional asynchronous operation is all that is needed to take 
advantage of the parallelism of this example.

Of course, you could equivalently have put F2 and F3 inside of a 
future, as shown here.

  int a = 22;

  Future<int> futureD([a](){ return F3(F2(a)); });
  int b = F1(a);
  int f = F4(b, futureD.Result());
  return f;

It doesn’t matter which branch of the task graph shown in the 
figure runs asynchronously.

An important point of this example is that exceptions that occur 
during the execution of a future are thrown by the Result method. 
This makes exception handling easy. You can think of futures as either 
returning a result or throwing an exception. Conceptually, this is very 
similar to the way any C++ function works. Here is another example 
of exception handling.

The Result method either 
returns a precalculated value 
immediately or waits until 
the value becomes available.

Futures, when they are based 
on tasks, defer exceptions 
until the Result method  
is called.



 65futures

  int a = 22;

  Future<int> futureD([a](){ return F3(F2error(a)); });
  int b = F1(a);
  try
  {
    int f = F4(b, futureD.Result());
    printf("  Result = %d\", f);
  }
  catch (exception& e)
  {
    printf("  Exception ‘%s’ is caught as expected.\n", 
           e.what());
  }  

If an exception of type exception were thrown in F2 or F3, it 
would be deferred and rethrown when the Result method of futureD 
is called. In this example, the invocation of the Result method occurs 
within a try block, which means that the exception can be handled in 
the corresponding catch block.

Example: The Adatum Financial Dashboard 
Here’s an example of how the Futures pattern can be used in an ap-
plication. The example shows how you can run computationally inten-
sive operations in parallel in an application that uses a graphical user 
interface (GUI).

Adatum is a financial services firm that provides a financial dash-
board application to its employees. The application, known as the 
Adatum Dashboard, allows employees to perform analyses of financial 
markets. The dashboard application runs on an employee’s desktop 
workstation. The Adatum Dashboard analyzes historical data instead 
of a stream of real-time price data. The analysis it performs is compu-
tationally intensive, but there is also some I/O latency because the 
Adatum Dashboard application collects input data from several 
sources over the network.

After the application has the market data, it merges the datasets 
together. The application normalizes the merged market data and 
then performs an analysis step. After the analysis, it creates a market 
model. It also performs these same steps for historical market data 
from the Federal Reserve System. After the current and historical 
models are ready, the application compares the two models and makes 
a market recommendation of “buy,” “sell,” or “hold.” You can visualize 
these steps as a graph. Figure 2 illustrates this.
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figure 2
Adatum Dashboard 
tasks

The tasks in this diagram communicate by specific types of busi-
ness objects. These are implemented as classes in the Adatum Dash-
board application.

You can download the source code for the Adatum Dashboard 
application from the CodePlex site at http://parallelpatternscpp.code-
plex.com/ in the Chapter5\A-Dash project. The application consists 
of three parts: the business object definitions, an analysis engine, and 
the user interface. 

The Business Objects
The Adatum Dashboard uses immutable data types. Objects of these 
types cannot be modified after they are created, which makes them 
well suited to parallel applications.

The StockDataCollection type represents a time series of closing 
prices for a group of securities. You can think of this as a dictionary 
indexed by a stock symbol. Conceptually, the values are arrays of 
prices for each security. You can merge StockDataCollection values 
as long as the stock symbols don’t overlap. The result of the merge 
operation is a new StockDataCollection value that contains the time 
series of the inputs.

The StockAnalysisCollection type is the result of the analysis 
step. Similarly, the MarketModel and MarketRecommendation 
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classes are the outputs of the modeling and the comparison phases of 
the application. The MarketRecommendation class has a data acces-
sor method that returns a “buy, hold, or sell” decision. 

The Analysis Engine
The Adatum Dashboard’s AnalysisEngine class produces a market 
recommendation from the market data it receives.

The sequential process is shown in the following code. This code 
differs slightly from the online sample source; details of cancellation 
handling have been omitted for clarity.

MarketRecommendation 
DoAnalysisSequential(AnalysisEngineState& engineState) const
{
  engineState.Reset();
  engineState.IsRunning();
  vector<StockDataCollection> stockDatasets;
  vector<MarketModel> models;

  // Current market data tasks

  stockDatasets.push_back(LoadNyseData());
  stockDatasets.push_back(LoadNasdaqData());
  StockDataCollection mergedMarketData = 
                              MergeMarketData(stockDatasets);
  StockDataCollection normalizedMarketData = 
                              NormalizeData(mergedMarketData);
  StockAnalysisCollection analyzedStockData = 
                               AnalyzeData(normalizedMarketData);
  models.push_back(RunModel(analyzedStockData));

  // Historical data tasks

  StockDataCollection fedHistoricalData = 
                                     LoadFedHistoricalData();
  StockDataCollection normalizedHistoricalData = 
                              NormalizeData(fedHistoricalData);
  StockAnalysisCollection analyzedHistoricalData = 
                          AnalyzeData(normalizedHistoricalData);
  models.push_back(RunModel(analyzedHistoricalData));

  // Compare results

  MarketRecommendation result = CompareModels(models);
  engineState.SetMarketRecommendation(result.GetValue());
  engineState.IsStopped();
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  return result;
}

The final result of the computation is a MarketRecommendation 
object. Each of the method calls returns data that becomes the input 
to the operation that invokes it. When you use method invocations in 
this way, you are limited to sequential execution. 

The parallel version uses futures for each of the operational steps. 
Here’s the code. This code differs slightly from the online sample 
source; details of cancellation handling have been omitted for clarity.

MarketRecommendation 
DoAnalysisParallel(AnalysisEngineState& engineState) const
{
  engineState.Reset();
  engineState.IsRunning();

  // Current market data tasks

  Future<StockDataCollection> future1(
    [this, &engineState]()->StockDataCollection
    { 
      scoped_oversubcription_token oversubscribeForIO;
      return LoadNyseData();
    });

  Future<StockDataCollection> future2(
    [this, &engineState]()->StockDataCollection
    { 
      scoped_oversubcription_token oversubscribeForIO; 
      return LoadNasdaqData();
    });

  Future<StockDataCollection> future3(
    [this, &engineState, &future1, &future2]()
      ->StockDataCollection
    {
      vector<StockDataCollection> stockDatasets;
      stockDatasets.push_back(future1.Result());
      stockDatasets.push_back(future2.Result());
      return this->MergeMarketData(stockDatasets);
    });

  Future<StockDataCollection> future4(
    [this, &engineState, &future3]()->StockDataCollection
    {
      return NormalizeData(future3.Result());
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    });

  Future< StockAnalysisCollection> future5(
    [this, &engineState, &future4]()
      ->StockAnalysisCollection
    {
      return AnalyzeData(future4.Result());
    });

  Future< MarketModel> future6 = Future<MarketModel>(
    [this, &engineState, &future5]()->MarketModel
    {
      return RunModel(future5.Result());
    });

  // Historical data tasks

  Future<StockDataCollection> future7(
    [this, &engineState]()->StockDataCollection
    { 
      scoped_oversubcription_token oversubscribeForIO;
      return LoadFedHistoricalData();
    });

  Future<StockDataCollection> future8(
    [this, &engineState, &future7]()->StockDataCollection
    {
      return NormalizeData(future7.Result());
    });

  Future<StockAnalysisCollection> future9(
    [this, &engineState, &future8]()->StockAnalysisCollection
    {
      return AnalyzeData(future8.Result());
    });

  Future<MarketModel> future10 = Future<MarketModel>(
    [this, &engineState, &future9]()->MarketModel 
    {
      return RunModel(future9.Result());
    });

  // Compare results

  vector<MarketModel> models;
  models.push_back(future6.Result());
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  models.push_back(future10.Result());
  MarketRecommendation result = CompareModels(models);
  engineState.SetMarketRecommendation(result.GetValue());
  engineState.IsStopped();
  return result;
} 

The parallel version, provided by the DoAnalysisParallel method, 
is similar to the sequential version, except that the synchronous 
method calls have been replaced with futures. On a single-core ma-
chine the performance of the parallel version will be approximately 
the same as the sequential version. On a computer with many cores, 
the futures will all execute in parallel, constrained by the data depen-
dencies that exist among them.

Several of the futures are long-running I/O-intensive tasks that 
use a small percentage of a core’s processing power. For these futures, 
the code uses the scoped_oversubscription_token class to signal 
that the task scheduler can use the resources that were allocated to 
the current task to perform another task concurrently. 

Variations
So far, you’ve seen some of the most common ways to use futures to 
create tasks. This section describes some other ways to use them.

Canceling Futures 
There are several ways to implement a cancellation model using the 
Futures pattern. 

By default, if you enter the Result method of a future from 
within a task context, canceling that task’s task group before the 
Result method exits will implicitly cause the task group in the Future 
instance to be canceled. See the section, “Canceling a Task,” in Chap-
ter 3, “Parallel Tasks” for more information about the propagation of 
cancellation across task groups.

In addition to implicitly propagated task cancellation, you can also 
use messaging buffers as a way to implement an explicit cancellation 
approach for futures. A cancellation strategy based on messaging buf-
fers is shown in the ImagePipeline example in Chapter 7, “Pipelines.”

Removing Bottlenecks
The idea of a critical path is familiar from project management. A 
“path” is any sequence of tasks from the beginning of the work to the 
end result. A task graph may contain more than one path. For example, 
look at the task graph that is shown in Figure 2. You can see that there 
are three paths, beginning with “Load NYSE,” “Load Nasdaq,” and 
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“Load Fed Historical Data” tasks. Each path ends with the “Compare” 
task.

The duration of a path is the sum of the execution time for each 
task in the path. The critical path is the path with the longest dura-
tion. The amount of time needed to calculate the end result depends 
only on the critical path. As long as there are enough resources (that 
is, available cores), the noncritical paths don’t affect the overall execu-
tion time.

If you want to make your task graph run faster, you need to find 
a way to reduce the duration of the critical path. To do this, you can 
organize the work more efficiently. You can break down the slowest 
tasks into additional tasks, which can then execute in parallel. You can 
also modify a particularly time-consuming task so that it executes in 
parallel internally using any of the patterns that are described in this 
book.

The Adatum Dashboard example doesn’t offer much opportunity 
for breaking down the slowest tasks into additional tasks that execute 
in parallel. This is because the paths are linear. However, you can use 
the Parallel Loops and Parallel Aggregation patterns to exploit more 
of the potential parallelism within each of the Analyze tasks if they 
take the most time. The task graph remains unchanged, but the tasks 
within it are now also parallelized. The Parallel Loops pattern is dis-
cussed in Chapter 2, “Parallel Loops,” and the Parallel Aggregation 
pattern is discussed in Chapter 4, “Parallel Aggregation.”

Modifying the Graph at Run Time
The code in the financial program’s analysis engine creates a static 
task graph. In other words, the graph of task dependencies is reflected 
directly in the code. By reading the implementation of the analysis 
engine, you can determine that there are a fixed number of tasks with 
a fixed set of dependencies among them.

However, you can also create dependencies between futures dy-
namically. For example, if you wanted to update the UI after each of 
the futures in the Adatum Dashboard example completed in order to 
show the application’s progress, you could create tasks that wait on 
the futures that make up the task graph of the Adatum Dashboard 
example. In other words, you can call the Result method of the  
Future class as many times as needed. With each invocation, the call-
ing context will be suspended until the values have been computed. 
Making calls to the Result method can occur outside of the context 
where the futures were originally created.

Dynamically created tasks are also a way to structure algorithms 
used for sorting, searching, and graph traversal. For examples, see 
chapter 6, “Dynamic Task Parallelism.”
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Design Notes
There are several ideas behind the design of the Adatum Dashboard 
application.

Decomposition into Futures 
The first design decision is the most obvious one: the Adatum Dash-
board introduces parallelism by means of futures. This makes sense 
because the problem space could be decomposed into operations 
with well-defined inputs and outputs.

Functional Style
There are implicit and explicit approaches to synchronizing data be-
tween tasks. In this chapter, the examples use an explicit approach. 
Data is passed between tasks as parameters, which makes the data 
dependencies very obvious to the programmer. Alternatively, as you 
saw in Chapter 3, “Parallel Tasks,” it’s possible to use an implicit ap-
proach. In Chapter 3, tasks communicate with side effects that 
modify shared data structures. In this case, you rely on the tasks to 
use control dependencies that block appropriately. However, in gen-
eral, explicit data flow is less prone to error that implied data flow.

You can see this by analogy. In principle, there’s no need for a 
programming language to support methods with return values. Pro-
grammers can always use methods without return values and perform 
updates on shared global variables as a way of communicating the 
results of a computation to other components of an application. 
However, in practice, using return values is considered to be a much 
less error-prone way to write programs. Programmers tend to make 
more mistakes with global variables than with return values.

Similarly, futures (tasks that return values) can reduce the possibil-
ity of error in a parallel program as compared to tasks that communi-
cate results by modifying shared global state. In addition, tasks that 
return values can often require less synchronization than tasks that 
globally access state variables, and they are much easier to understand. 

Futures also promote a natural kind of data isolation similar to 
what is found in functional programming, which relies on operations 
that communicate with input and output values. Functional programs 
are very easy to adapt to multicore environments. In general, futures 
should only communicate with the outside world by means of their 
return values. It’s also a good practice to use immutable types for  
return values. 

Related Patterns
There are a number of patterns that have some similarities to the  
Futures pattern, but they also have some important differences. This 
section provides a brief comparison.

Applications that use 
arguments and return values 
to communicate among tasks 
scale well as the number of 
cores increases.

 
 

 
 



 73futures

Pipeline Pattern
The Pipeline pattern is described in Chapter 7, “Pipelines.” It differs in 
several important respects from a task graph. The pipeline focuses on 
data flow by means of queues (messaging buffers), instead of task 
dependencies. In a pipeline, the same task is executed on multiple data 
items.

Master/Worker Pattern
Tasks within the Master/Worker pattern have a parent/child relation-
ship. The master task creates the worker tasks, passes data to them, 
and waits for a result to be returned. Typically, worker tasks all execute 
the same computation against different data. The implementation of 
parallel loops in PPL uses the Master/Worker pattern internally.

Dynamic Task Parallelism Pattern
The Dynamic Task Parallelism pattern is also known as the Divide and 
Conquer pattern. It is the subject of Chapter 6, “Dynamic Task Paral-
lelism.” Dynamic task parallelism creates trees of tasks on the fly in a 
manner similar to recursion. If futures are asynchronous functions, 
dynamic task parallelism produces asynchronous recursive functions.

Discrete Event Pattern
The Discrete Event pattern focuses on sending messages between 
tasks. There is no limitation on the number of events a task raises or 
when it raises them. Events can also pass between tasks in either di-
rection; there is no antecedent/dependency relationship. The Discrete 
Event pattern can be used to implement a task graph by placing  
additional restrictions on it.

Exercises
1. Suppose you use futures in the style of the first example,  

in the section “The Basics,” to parallelize the following 
sequential code. 
auto b = F1(a);  auto d = F2(c);  auto e = F3(b,d);  
auto f = F4(e);  auto g = F5(e);  auto h = F6(f,g);

Draw the task graph. In order to achieve the greatest degree of 
concurrency, what is the minimum number of futures you must 
define? What is the largest number of these futures that can 
be running at the same time?

2. Modify the BasicFutures sample from the CodePlex at  
http://parallelpatternscpp.codeplex.com/ so that one of the 
futures throws an exception. What should happen? Observe 
the behavior when you execute the modified sample.
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Dynamic Task Parallelism6

Dynamic task parallelism is 
similar to recursion. Tasks 
create subtasks on the fly to 
solve subproblems as needed.

The Dynamic Task Parallelism pattern is applicable to problems that 
are solved by first solving smaller, related problems. For example, 
when you count the number of nodes in a data structure that repre-
sents a binary tree, you can count the nodes in the left and right 
subtrees and then add the results. A sequential algorithm that uses 
recursion can easily be transformed into a computation that uses  
dynamic task parallelism.

Dynamic task parallelism is also known as recursive decomposition 
or “divide and conquer.”

Applications that use data structures such as trees and graphs are 
typical examples of where you can use dynamic task parallelism. It’s 
also used for applications that have geographic or geometric aspects, 
where the problem can be partitioned spatially. Dynamic task paral-
lelism differs from the techniques that have been presented so far in 
this book. It is distinguished by the fact that tasks are added to the 
work queue as the computation proceeds.

The Basics
The following code shows a binary tree.

template<typename T>
struct TreeNode
{
private:
  T m_data;
  shared_ptr<TreeNode<T>> m_left;
  shared_ptr<TreeNode<T>> m_right;
  // ...
}
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If you want to perform an action on each data value in the tree, 
you need to visit each node. This is known as walking the tree, which 
is a naturally recursive operation. Here’s an example that uses sequen-
tial code.

template<typename Func>
static void SequentialWalk(shared_ptr<TreeNode<T>> node,
                           Func action)
{
  if (nullptr == node) return;

  action(node->Data());
  SequentialWalk(node->Left(), action);
  SequentialWalk(node->Right(), action);
}

The SequentialWalk applies the function action to each node in 
the tree in depth-first order. You can also use parallel tasks to walk the 
tree. This is shown in the following code.

template<typename Func>
static void ParallelWalk(shared_ptr<TreeNode<T>> node, 
                         Func action)
{
  if (nullptr == node) return;

  parallel_invoke(
    [&node, &action] { action(node->Data()); },
    [&node, &action] 
    { 
      Tree<T>::ParallelWalk(node->Left(), action); 
    },
    [&node, &action] 
    { 
      Tree<T>::ParallelWalk(node->Right(), action); 
    }
  );
}

When you use dynamic task parallelism to perform a tree walk, 
you no longer visit nodes in a predictable order. If you need to visit 
nodes in a sequential order, such as with a preorder, inorder, or post-
order traversal, you may want to consider the Pipeline pattern that’s 
described in Chapter 7, “Pipelines.”

In this example, the number of tasks is three times the number of 
nodes in the tree. In an actual scenario, the number of nodes could be 

Dynamic task parallelism 
results in a less predictable 
order of execution than 
sequential recursion.
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very large. The Parallel Pattern Library (PPL) is designed to handle this 
situation, but you may want to read the section, “Design Notes,” later 
in this chapter for some performance tips.

An Example
An example of dynamic task parallelism is when you sort a list with an 
algorithm such as QuickSort. This algorithm first divides an unsorted 
array of values into sublists, and then it orders and recombines the 
pieces. Here’s a sequential implementation.

static void SequentialQuickSort(VectorIter begin,
                                VectorIter end, 
                                long threshold)
{
  if (distance(begin, end) <= threshold) 
  {
    InsertionSort(begin, end);
  }
  else
  {
    VectorIter pivot = partition(begin + 1, 
                                 end,
                                 bind2nd(less<int>(), *begin));
    iter_swap(begin, pivot-1);
    SequentialQuickSort(begin, pivot - 1, threshold);
    SequentialQuickSort(pivot, end, threshold);
  }
}

In this example, the VectorIter typedef expands to the 
vector<int>::iterator method. This method sorts a vector<int> in-
stance in place, instead of returning a sorted array. The begin and end 
arguments identify the segment that will be sorted. The code includes 
an optimization. It’s not efficient to use the recursive algorithm on 
short segments, so the method calls the non-recursive InsertionSort 
method on segments that are less than or equal to threshold, which 
is set in a global variable. This optimization applies equally to the se-
quential and parallel versions of the QuickSort algorithm.

If a segment is longer than threshold, the recursive algorithm is 
used. The std::partition method moves all the array elements that are 
not greater than the element at pivot to the segment that precedes 
pivot. It leaves the elements that are greater than pivot in the seg-
ment that follows pivot (pivot itself may be moved). Then, the 
method recursively calls SequentialQuickSort on both segments.

Sorting is a typical applica-
tion that can benefit from 
dynamic task parallelism.

This example uses iterator 
conventions from the Standard 
Template Library (STL).
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The following code shows a parallel implementation of the 
QuickSort algorithm.

static void ParallelQuickSort(VectorIter begin, VectorIter end,
                              long threshold, int depthRemaining)
{
  if (distance(begin, end) <= threshold)
  {
    InsertionSort(begin, end);
  }
  else
  {
    VectorIter pivot = partition(begin + 1, 
                                 end, 
                                 bind2nd(less<int>(), *begin));
    iter_swap(begin, pivot-1);
    if (depthRemaining > 0)
    {
      parallel_invoke(
        [begin, end, pivot, depthRemaining, threshold] { 
          Sort::ParallelQuickSort(begin, pivot - 1,
                                  depthRemaining - 1, threshold);
        },
        [&pivot, begin, end, depthRemaining, threshold] { 
          Sort::ParallelQuickSort(pivot, end,
                                  depthRemaining - 1, threshold);
        }
      );
    }
    else
    {
      SequentialQuickSort(begin, pivot - 1, threshold);
      SequentialQuickSort(pivot, end, threshold);
    }
  }
}

The parallel version uses parallel_invoke to execute the recursive 
calls in tasks that can run in parallel. Tasks are created dynamically 
with each recursive call; if the array is large, many tasks might be  
created.

The parallel version includes an additional optimization besides 
using insertion sort for subsequences of small size. It’s generally not 
useful to create many more tasks than there are processors to run 
them. So, the ParallelQuickSort method includes an additional  
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argument to limit task creation. The depthRemaining argument is 
decremented on each recursive call, and tasks are created only when 
this argument exceeds zero. The following code shows how to calcu-
late an appropriate depth (that is, the depthRemaining argument) 
from the number of processors.

static void ParallelQuickSort(vector<int>& a, long threshold)
{
  const int maxTasks = 
    CurrentScheduler::Get()->GetNumberOfVirtualProcessors();

  ParallelQuickSort(a.begin(), a.end(),
    (int)LogN(float(maxTasks), 2.0f) + 4, threshold);
}

One relevant factor in selecting the number of tasks is how simi-
lar the predicted run times of the tasks will be. In the case of Quick-
Sort, the duration of the tasks may vary a great deal because the pivot 
points depend on the unsorted data. Using arbitrary, unsorted pivots 
produces segments of unequal size (in fact, the sizes can vary widely). 
The processing time required to sort each segment depends on the 
segment’s size; therefore, you can expect tasks that are created by 
using pivots to divide segments to be of uneven duration. To compen-
sate for the uneven durations of the tasks, the formula that calculates 
the depthRemaining argument produces a starting value that will al-
low more tasks to be created than the number of cores. The formula 
limits the number of tasks to approximately sixteen times the number 
of cores. This is because the number of tasks can be no larger than 2 
^ depthRemaining. If you substitute depthRemaining = log2(NCores) 
+ 4 and simplify the expression, you see that the number of tasks is 16 
x NCores. (Recall that for any value a, 2 ^ (a + 4) is the same as 16 
times 2^a and that if a = log2(b), 2^a = b.)

For other algorithms you might want to use a depthRemaining 
value of 2 or 3, which would correspond to a limit on the number of 
tasks to 4 x NCores and 8 x NCores respectively. The number of tasks 
you choose depends on how unequal in duration you expect your 
tasks to be. The more variability in task durations, the more tasks you 
will probably want.

Note: The QuickSort example that is shown in this section was 
selected to illustrate the principles of dynamic task parallelism. As  
a sorting algorithm it may or may not be what you want. There are 
other examples of parallel sorting algorithms in the ConcRT Extras 
sample pack that may be better suited to your application.

Limiting the number of 
subtasks by measuring the 
recursion depth is an extremely 
important technique for 
ensuring that an appropriate 
amount of potential parallelism 
will be introduced. Too many 
tasks could introduce 
task-related overhead; too few 
would result in underutilization 
of available cores.
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Variations
Dynamic task parallelism has several variations.

Parallel While-Not-Empty 
The examples shown so far in this chapter use techniques that are the 
parallel analogs of sequential depth-first traversal. There are also par-
allel algorithms for other types of traversals. These techniques rely on 
concurrent collections to keep track of the remaining work to be 
done. Here’s an example.

template<typename T, typename Func>
void ParallelWhileNotEmpty1(
  vector<shared_ptr<TreeNode<T>>> initialValues, 
  Func body)
{
  concurrent_vector<shared_ptr<TreeNode<T>>>
    from(initialValues.size());
  for (size_t i = 0; i < initialValues.size(); i++)
    from[i] = initialValues[i];

  while(!from.empty())
  {
    concurrent_vector<shared_ptr<TreeNode<T>>> to;
    function<void (shared_ptr<TreeNode<T>>)> addMethod = 
        [&to](shared_ptr<TreeNode<T>> n) { to.push_back(n); };
    parallel_for_each(from.cbegin(), from.cend(), 
      [&body, &addMethod](shared_ptr<TreeNode<T>> item) 
      { 
        body(item, addMethod); 
      }
    );
    from = to;
  }
} 

The ParallelWhileNotEmpty1 method shows how you can use 
parallel_for_each to process a collection of values that may grow 
over time. While the ParallelWhileNotEmpty1 method processes 
the initial values, additional values to process may be discovered. The 
additional values are placed in the to queue. After the first batch of 
values is processed, the method starts processing the additional val-
ues, which may again result in more values to process. This processing 
repeats until no additional values are produced.

The concurrent_vector class is provided by the Concurrency 
Runtime as a concurrency-safe implementation of a vector type.
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The  ParallelWalkWithWhileNotEmpty1 method uses the  
ParallelWhileNotEmpty1 method  to walk a binary tree. This is 
shown in the following code example.

template<typename T, typename Func>
void ParallelWalkWithWhileNotEmpty1(shared_ptr<TreeNode<T>> node,
                                    Func action)
{
  if (nullptr == node)
    return;
  vector<shared_ptr<TreeNode<T>>> nodes;
  nodes.push_back(node);

  ParallelWhileNotEmpty1(nodes, 
    /* Func body */ [&action](shared_ptr<TreeNode<T>> item,
    function<void (shared_ptr<TreeNode<T>>)> addMethod)
    {
      if (nullptr != item->Left()) addMethod(item->Left());
      if (nullptr != item->Right()) addMethod(item->Right());
      action(item->Data());
    });
} 

A website tool that checks links is an example of an appropriate 
place to use the ParallelWalkWithWhileNotEmpty1 method. The 
tool loads the initial page and searches it for links. Each link is checked 
and removed from the list, and additional links to unchecked pages 
from the same site are added to the list. Eventually, there are no more 
unchecked links and the application stops.

Adding Tasks to a Pending Wait Context
In most cases you invoke the wait method of a task group only after 
all of the tasks have been created. In some cases, it is useful to create 
new tasks after the wait method has been invoked but before the 
previously created tasks have finished. A typical example arises when 
you are traversing nodes of a graph. 

Here is an example of a function that uses parallel tasks of a single 
task group to traverse a tree.

template<typename T, typename Func>
void ParallelSubtreeHandler(task_group& tg, 
                            shared_ptr<TreeNode<T>> node, 
                            Func action) 
{
  while (nullptr != node)
  {
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    // Start up processing the left subtree in a new task
    if (nullptr != node->Left())
    {
      tg.run([&tg, node, action]() { 
        ParallelSubtreeHandler(tg, node->Left(), action); 
      });
    }

    // Process this node
    tg.run([node, action]() { action(node->Data()); });

    // Walk down the right side of the tree
    node = node->Right();
  }
}

The ParallelSubtreeHandler is called from the top-level function 
that is shown below.

template<typename T, typename Func>
void ParallelTreeUnwinding(shared_ptr<TreeNode<T>> node, 
                           Func action)
{
  if (nullptr == node)
    return;

  task_group tg; 

  ParallelSubtreeHandler(tg, node, action);

  tg.wait();
}

The ParallelTreeUnwinding function creates a single task group 
that is used by the code that handles the subtrees. Here is a code ex-
ample that shows how the function is called. The lambda expression 
simply records all the nodes that are visited.

  const Tree<int>& tree = ...
  concurrent_vector<int> result;
    
  ParallelTreeUnwinding(tree.Root(),
    [&result](int itemData)
    {
      DoCpuIntensiveOperation(Time);
      result.push_back(itemData);
    });
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Dynamically adding new tasks to the task group allows you to use 
the task_group object to track unprocessed nodes instead of using a 
concurrent_vector, as was done in the ParallelWhileNotEmpty1 
code example.  The task_group also makes the code easier to read 
because it eliminates the need for a separate data structure to hold 
unprocessed nodes. Rather than completing when all unprocessed 
nodes have been removed from the concurrent_vector, this example 
completes when the task_group contains no more incomplete tasks.

Exercises
1. The sample code on CodePlex assigns a particular default 

value for the threshold segment length. At this point, the 
QuickSort methods switch to the non-recursive Insertion-
Sort algorithm. Use the command line argument to assign 
different values for the threshold value, and then observe 
the execution times for the sequential version to sort differ-
ent array sizes. What do you expect to see? What’s the best 
value for threshold on your system?

2. Use the command line argument to vary the array size, and 
then observe the execution time as a function of array size 
for the sequential and parallel versions. What do you expect? 
Can you explain your observations?

3. Suggest other measures, besides the number of cores, to limit 
the number of tasks.

Further Reading
Heineman et al. discuss additional variations on QuickSort and other 
sorting algorithms. 

Heineman, George T., Gary Pollice, and Stanley Selkow.  
Algorithms in a Nutshell. O’Reilly Media, 2008.
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Pipelines7

A dataflow network is a set  
of asynchronous components 
that use messages to com-
municate with one other.

A data pipeline is a 
sequence of asynchronous 
components that are con-
nected by message buffers. 
Each stage of the pipeline 
receives input from its 
predecessor. Use a pipeline 
when data dependencies 
prevent you from a using  
a parallel loop.

In this chapter, the  
Asynchronous Agents  
Library’s function is to 
improve performance when 
there are multiple cores 
available, but it has other  
uses. More generally,  
agents with asynchronous 
communication can be used 
to implement concurrency  
and as a way to organize 
applications such as  
simulations. 

The Pipeline pattern allows you to achieve parallelism in cases where 
there are data dependencies that would prevent you from using a 
parallel loop. A pipeline is composed of a linear series of producer/
consumer stages, where each stage depends on the output of its pre-
decessor. The pipeline is an example of a more general category 
known as a dataflow network. A dataflow network decomposes 
computation into cooperating components that communicate by 
sending and receiving messages.

There are a variety of techniques for implementing pipelines. 
Those described in this chapter use in-process messaging blocks and 
asynchronous agents, both of which are provided by the Asynchro-
nous Agents Library.

A pipeline’s data flows from its first stage, through intermediate 
stages and then to a final stage. The stages of a pipeline execute con-
currently, but in contrast to a parallel loop, the overall effect is to 
process the input data in a fixed order. You can think of software 
pipelines as analogous to assembly lines in a factory, where each item 
in the assembly line is constructed in stages. The partially assembled 
item is passed from one assembly stage to another. The outputs of the 
assembly line occur in the same order as that of the inputs, but more 
than one item is assembled at a time.

Pipelines occur in many applications. You can use a pipeline when 
data elements are received from a real-time event stream, such as 
values on stock ticker tapes, user-generated mouse click events, or 
packets that arrive over the network. You can also use pipelines to 
process elements from a data stream, as is done with compression and 
encryption, or to apply transformation operations to streams of video 
frames. In all of these cases, it’s important that the data elements are 
processed in sequential order. You can’t use a parallel loop for these 
cases because a parallel loop doesn’t preserve the processing order.
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Types of Messaging Blocks
The Asynchronous Agents Library includes the following types of 
messaging blocks, which are useful in a variety of situations:
•	 unbounded_buffer: a concurrent queue of unbounded size.
•	 overwrite_buffer: a single value that can be updated many 

times.
•	 single_assignment: a single value that can be set just once.
•	 call: a function that is invoked whenever a value is added to the 

messaging block.
•	 transformer: a function that is invoked whenever a value is 

added to the messaging block; the function’s return value is 
added to an output messaging block.

•	 choice: selects a message from a set of sources.
•	 join: waits for more than one source before proceeding.
•	 multitype_join: same as join, except that inputs may have 

multiple message types. 
•	 timer: produces messages based on time intervals.

In this chapter you’ll see examples of four types of messaging 
blocks. They are the unbounded_buffer<T>, overwrite_buffer<T>, 
transformer<T, S> and call<T> messaging blocks.  It’s also possible to 
implement your own messaging blocks. 

The Basics
In the Asynchronous Agents Library, the buffers that connect stages 
of a software pipeline are usually messaging blocks, such as instances 
of the unbounded_buffer<T> class. Although the buffer itself is un-
bounded, the pipeline includes a feedback mechanism that limits the 
number of pending items. The stages of the pipeline can themselves 
be implemented with instances of the agent class.

Figure 1 illustrates an example of a pipeline that has four stages. 
It reads words and sentence fragments from a data source, it corrects 
the punctuation and capitalization, it combines the words and phras-
es into complete sentences, and then it writes the sentences to a disk 
file.

The Asynchronous 
Agents Library 
provides messaging 
blocks, agents, and 
functions that send  
and receive messages.

Don’t confuse pipelines and 
parallel loops. Pipelines are 
used when parallel loops can’t 
be. With the Pipeline pattern, 
the data is processed in 
sequential order. The first 
input is transformed into  
the first output, the second 
input into the second output, 
and so on.

This section describes an 
agent-based approach to 
pipelines that requires a 
dedicated thread for each 
pipeline stage. Each stage uses 
an instance of the agent class. 
See “Asynchronous Pipelines” 
in this chapter for an impor-
tant variation of this pattern 
that does not dedicate a thread 
to each pipeline stage.
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figure 1
Sample pipeline

Stages of the pipeline read from a dedicated input, or source, and 
write to a particular output, or target. For example, the “Correct Case” 
stage uses buffer 1 as its source and writes to buffer 2 as its target. All 
the stages of the pipeline can execute at the same time because the 
three messaging blocks buffer any shared inputs and outputs. If there 
are four available cores, the four stages can run in parallel. 

Stages in the pipeline block (that is, wait) on inputs. An input wait 
is familiar from other programming contexts—if an enumeration or a 
stream doesn’t have a value, the consumer of that enumeration or 
stream waits until a value is available or an end–of-file condition oc-
curs. Using buffers that hold more than one value at a time compen-
sates for variability in the time it takes to process each value. Buffers 
allow stages of the pipeline to be asynchronous.

Note: When using the unbounded_buffer<T> class you should 
define a special value as your end-of-file token. This special value is 
sometimes called the sentinel value. When using sentinel values you 
must be careful that the end-of-file signal can never occur as one of 
the regular messages. This example uses the value given by the 
PhraseSource:: FinishedSentinel () static method to signal the 
end of the sequence of values.  

Choosing a sentinel value can be harder than it seems at first. 
It’s often the case that all values of the type T have meaning as 
valid payloads of an unbounded_buffer<T> instance. For 
example, if your payload type is a string, you might be tempted to 

Read Strings

Correct Case

Create Sentences

Write Sentences

Buffer 1

Buffer 2

Buffer 3

input

output
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use the empty string as the sentinel value, but this would only be 
safe if you can guarantee that the empty string is never used as a 
normal value to be processed by the pipeline. In practice, the null 
pointer is often used as the sentinel value. 

The following code demonstrates how to implement a pipeline 
that uses the unbounded_buffer<T> class for the buffers and the 
agent class for the stages of the pipeline. 

unbounded_buffer<wstring> buffer1;
unbounded_buffer<wstring> buffer2;
unbounded_buffer<wstring> buffer3;
PipelineGovernor governor(g_sentencePipelineLimit);

ReadStringsAgent agent1(seed, g_sentenceMax, governor, buffer1);
CorrectCaseAgent agent2(buffer1, buffer2);
CreateSentencesAgent agent3(buffer2, buffer3);
WriteSentencesAgent agent4(g_targetSentence, g_pipelineResults,
                           governor, buffer3);

agent1.start(); 
agent2.start(); 
agent3.start(); 
agent4.start();

agent* agents[4] = { &agent1, &agent2, &agent3, &agent4 };
agent::wait_for_all(4, agents);

The first stage generates the input strings and places them in  
buffer1. The second stage transforms the strings. The third stage 
combines the strings into sentences. The final stage writes the cor-
rected sentences to a file. Note that in this example, the number of 
input elements (words) is not the same as the number of output ele-
ments (sentences); part of the pipeline’s functionality is to combine 
words into sentences.

References to input and output buffers are passed to each agent’s 
constructor. For example, the second stage, agent2, which is an in-
stance of the CorrectCaseAgent class, uses buffer1 as its input and 
buffer2 as its output. Figure 1 illustrates the resulting connections 
among the agents.

Stages of the pipeline may not take exactly the same amount of 
time to process each element. To prevent an excess number of buff-
ered elements, the pipeline uses a mechanism for limiting the number 
of data elements that may be pending at any given time.  This mecha-
nism is provided by the PipelineGovernor class, which is defined in 
the Utilities folder of the Microsoft® Visual Studio® solution for the 

Use an instance of the 
unbounded_buffer<T> 
class to connect stages of  
a pipeline.
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example code. Only the first and the last stages of the pipeline need 
to interact with the pipeline governor. When an item exits the pipe-
line, the last stage of the pipeline asks the governor instance to decre-
ment a counter of in-flight elements. Before placing a new element 
into the pipeline, the first stage of the pipeline checks to see that the 
maximum number of in-flight elements hasn’t been exceeded. If this 
is the case, the pipeline stage asks the governor instance to increment 
the count of in-flight elements and then places the element into the 
first buffer. If the pipeline is full, the first stage waits for the governor 
to signal when space in the pipeline becomes available. Internally, the 
governor uses a messaging block to synchronize between the last 
stage of the pipeline and the first.

After all of the agents have been created and connected to their 
respective sources and targets, the code invokes the start method of 
each agent. 

The code calls the wait_for_all static method of the agent class 
to defer cleanup until after all stages have completed processing their 
inputs. In this code example, the memory for the agents is allocated 
on the stack in the current context, so you can’t exit the current con-
text until the agents have finished their work. 

The first stage of the pipeline is implemented by the ReadStrings 
Agent class. This agent includes a sequential loop that writes to its 
output buffer. Here is the code for the agent’s run method, which 
specifies what the agent should do after it has started.

class ReadStringsAgent : public agent
{
  // ...
  void run()
  {
    PhraseSource source(m_seed, m_numberOfSentences);
    wstring inputPhrase;
    do
    {
      // ...
      inputPhrase = source.Next();
  
      // Limit whole sentences in the pipeline not phrases.
      if (phrase == L".") 
        m_governor.WaitForAvailablePipelineSlot();
      asend(m_phraseOutput, inputPhrase);
    } while (inputPhrase != PhraseSource::FinishedSentinel());
    done();
  }
};

If you don’t use a governor to 
limit the in-flight elements in a 
pipeline, their numbers can 
grow without bound. Adding 
too many elements at once can 
result in performance problems 
or out-of-memory errors. The 
governor provided in this 
example is just one approach; 
you may want to consider 
others, depending on the 
needs of your application.

Use a governor to limit the 
number of in-flight elements 
in the pipeline.

Call an agent’s start method 
to begin execution.

Use the wait_for_all 
method to allow agents  
to finish processing before 
proceeding in the current 
context.

An agent’s run method is 
invoked when the agent is 
started. The agent terminates 
when the run method invokes 
the agent’s done method  
and exits.
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The sequential do loop populates the output buffer with values. 
The loop is sequential in order to preserve the order of elements that 
are processed, which is one of the requirements of applications that 
use the Pipeline pattern. The values come from an external data 
source that’s represented by the PhraseSource class. Successive val-
ues are retrieved by calling the phrase source object’s Next method. 

The asend function, named for “asynchronous send,” is provided 
by the Asynchronous Agents Library in the agents.h header file. It 
schedules a task to propagate the data to the target messaging block. 

A producer can use either the send or asend function to relay 
values, which are also referred to as messages, to the target messaging 
block. The send function blocks the current context until the target 
messaging block accepts or rejects the message. The send function 
returns true if the message was accepted and false otherwise. The 
asend function does not wait for the target to accept or decline the 
message before it returns. Use send when you must ensure that the 
value reaches its destination before proceeding in the current context. 
Use asend when you want a “fire and forget” style of message passing. 

It’s possible in some cases that a message won’t be accepted by 
the target messaging block. This can occur, for example, if you at-
tempt to send more than one message to a single assignment buffer. 
The second message won’t be accepted by the buffer. Additionally, 
messaging block constructors allow you to provide a custom filter 
function that determines whether an incoming message will be ac-
cepted by that messaging block.

The first stage of the pipeline invokes the WaitForAvailable 
PipelineSlot method of the governor before adding a new element.  
If the pipeline is full, the governor will block until space becomes 
available.

The second stage of the pipeline capitalizes words if necessary. It 
consumes values from its source buffer, transforms them, and places 
the transformed values into its target buffer. The following code 
shows the run method of the CorrectCaseAgent class.

class CorrectCaseAgent : public agent
{
  // ...

  void run()
  {
    wstring inputPhrase;
    while(true) 
    {
      inputPhrase = receive(m_phraseInput);
      if (inputPhrase == PhraseSource::FinishedSentinel())

Applications that use the 
Pipeline pattern require that 
elements be processed in 
order. If the processing order is 
not important, you may 
consider using another pattern, 
such as the Parallel Loop 
pattern, to process your data. 

Use the send or asend 
function to place data into 
the next stage’s input buffer.
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      {
        asend(m_phraseOutput, inputPhrase);
        break;
      }     
      // ... transform phrase by possibly capitalizing it
      asend(m_phraseOutput, outputPhrase);
    }
    done();
  }
};

The important point of this code is that the receive function is 
called on the messaging block that acts as the source. This allows the 
consuming agent to wait for values to become available from the 
producer of those values. The code iterates until the special end-of-
file sentinel value is seen.

Some messaging blocks allow multiple consumers and producers. 
The third stage of the pipeline uses the run method of the Create 

SentencesAgent class to read a sequence of phrases and combine 
them into sentences. When it encounters a phrase that ends with the 
period character, it knows that the end of the sentence has been 
reached and writes the sentence to the target messaging buffer. The 
CreateSentencesAgent class shows that it’s not always necessary for 
pipeline stages to consume and produce an identical number of val-
ues.

The last stage of the pipeline, which is implemented by the  
WriteSentencesAgent class, consumes values from its predecessor in 
the pipeline but doesn’t produce any values. Instead, it writes to an 
output file stream. Here’s the code for the agent’s run method.

class WriteSentencesAgent : public agent
{ 
  // ...

  void run()
  {
    wofstream fout;
    fout.open(m_outputPath);
    wstring sentence;
    while(true)
    {
      sentence = receive(m_sentenceInput);
      if (sentence == PhraseSource::FinishedSentinel())
        break;
      if (sentence == m_targetSentence)

Use the receive function  
to wait for input from a 
messaging block. Use a 
sentinel value to indicate 
shutdown.

Some messaging blocks, 
including the unbounded_
buffer<T> class, support 
multiple producers and 
consumers.

Pipeline stages can  
summarize or combine  
values. There’s not always  
a one-to-one correspondence 
of inputs and transformed 
outputs in each stage of  
a pipeline.
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        sentence.append(L"       Success!");
      fout << m_currentSentenceCount++ << L" " 
                                     << sentence.c_str() << endl;
      sentence.clear();
      m_governor.FreePipelineSlot();

      OutputProgress(m_currentSentenceCount);
    }
    fout.close();
    done();
  }
};

The agent reads sentences it receives and compares them to the 
desired target sentence, m_targetSentence. It writes all generated 
sentences to a file and flags the ones that match the target.

The agent invokes the FreePipelineSlot method of the pipeline’s 
governor to signal that space in the pipeline has become available.

One reason that agents and messaging blocks make it easy to 
write pipelines is that you can rely on familiar sequential techniques 
such as iteration. There is some synchronization, but it’s hidden inside 
the implementation of the unbounded_buffer<T> class.

(Some details of error handling, cancellation, and the collection 
of performance data have been omitted from this example for clarity. 
To see error handling and cancellation code, review the full Image-
Pipeline sample that’s mentioned later in this chapter.)

An Example
The online samples include an application named ImagePipeline. This 
application takes a directory of JPEG images and generates thumbnail 
versions, which are also post-processed with an image-enhancing fil-
ter. The resulting processed images are displayed as a slideshow, in 
alphabetical file name order.

Sequential Image Processing
Each image is processed in four stages: the large color image is loaded 
from a file, a small thumbnail with a picture frame is generated from 
it, noise is added to the image to create a speckling effect, and then 
the processed image is displayed as the next picture in the slideshow. 
Figure 2 illustrates this sequence.

You can’t use a parallel loop for 
this example because the 
application requires that 
images be processed in 
sequence. Parallel loops don’t 
guarantee any particular 
processing order.
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figure 2
Sequential image 
processing

Here’s the code for the sequential version.

vector<wstring> filenames = ...

int sequence = kFirstImage;

for_each_infinite(filenames.cbegin(), filenames.cend(), 
  [this, &sequence, offset] (wstring file)->bool
{
  ImageInfoPtr pInfo = LoadImage(sequence++, file, offset);
  ScaleImage(pInfo, m_imageDisplaySize);
  FilterImage(pInfo, m_noiseLevel);
  DisplayImage(pInfo);
  return IsCancellationPending();
});            

The four steps are performed by the LoadImage, ScaleImage, 
FilterImage, and DisplayImage methods. This example is slightly 
abridged for clarity. The code that deals with the capture of perfor-
mance measurements is omitted. You can refer to the online samples 
to see those details. 

The type ImageInfoPtr is a typedef abbreviation for shared_
ptr<ImageInfo>, a Standard Template Library (STL) shared pointer to 
an ImageInfo instance. The ImageInfo class is a data record that 
contains the image bitmap to be processed. Pointers are used as a way 
to pass data between stages of the pipeline without the overhead of 
copying the image bitmaps.  Buffering ensures that no locks are 
needed for this “shared” data; each ImageInfo instance is guaranteed 
to be accessed by only one stage of the pipeline at a time.

The function for_each_infinite is a helper function that is de-
fined by the sample code. It invokes a function (in this case a function 
object given by a lambda expression) on each element of a sequence. 

Load Image

Scale Image

Filter Image

Display Image
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When the loop reaches the end of the sequence, it restarts at the 
beginning; however, if any invocation of the function returns true, 
iteration stops. In this example, the only way to exit the loop is by 
throwing an exception or when IsCancellationPending() returns 
true. See “Variations” in this chapter for more information on the 
cancellation model that is used in this example.

The Image Pipeline
The sequential loop can process only one image at a time; each image 
must complete all four stages before work can begin on the next im-
age, and the stages themselves are sequentially linked. In fact, this 
example seems intractably sequential—the top-level loop has the 
restriction that images must be displayed in order (like video frames), 
and within each step are substeps that require inputs from previous 
substeps. You can’t display an image until after the filter is applied to 
it. You can’t apply the filter until after the image is scaled to thumbnail 
size. You can’t do the scaling until after the original image loads.

Even with such strong sequential constraints, the Pipeline pattern 
can introduce parallelism into this example. Each image will still pass 
through all four stages, in sequence, but the stages themselves can 
work on different images at the same time. Figure 3 illustrates the 
image pipeline.

figure 3
Image pipeline

The following code from the ImageAgentPipelineControlFlow.h 
file shows the parallel version.

unbounded_buffer<ImageInfoPtr> buffer1;
unbounded_buffer<ImageInfoPtr> buffer2;
unbounded_buffer<ImageInfoPtr> buffer3;

input Load Image

Scale Image

Filter Image

Display Image

Thumbnail
images

Original 
images

Filtered
images
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ImageScalerAgent   imageScaler(..., buffer1, buffer2);
ImageFiltererAgent imageFilterer(..., buffer2, buffer3);
ImageDisplayAgent  imageDisplayer(..., m_governor, 
                                  ..., buffer3);

imageScaler.start();
imageFilterer.start();
imageDisplayer.start();

vector<wstring> filenames = ...

int sequence = kFirstImage;

for_each_infinite(filenames.cbegin(), filenames.cend(), 
  [this, offset, &buffer1, &sequence] (wstring file)->bool
{
  ImageInfoPtr pInfo = this->LoadImage(sequence++, file, offset);
  if (nullptr == pInfo) 
    return true;
  m_governor.WaitForAvailablePipelineSlot();
  asend(buffer1, pInfo);

  return IsCancellationPending();
});

m_governor.WaitForEmptyPipeline(); 
asend<ImageInfoPtr>(buffer1, nullptr);
agent* agents[3]={&imageScaler, &imageFilterer, &imageDisplayer};
agent::wait_for_all(3, agents);

There are three unbounded_buffer<T> messaging blocks that act 
as buffers between the stages of the pipeline. A call to the agent’s 
start method launches each processing stage.

The code iterates through the file names to be processed and uses 
the LoadImage method to load each image into memory. This step is 
the same as in the sequential version of the code. However, instead of 
proceeding directly to the next operation, the code places a shared 
pointer to the newly loaded image’s data into messaging block  
buffer1, which is the input source of the ImageScalerAgent object. 
The image scaling agent receives the image and begins to process it. 
Meanwhile, the loop continues with its next iteration and begins load-
ing the next image.

Like the text processing example described in the previous  
section of this chapter, the image processing example uses the  
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PipelineGovernor utility class to limit the maximum number of in-
flight elements in the pipeline.

 (Some details of error handling, cancellation, and the collection 
of performance data have been omitted here for clarity. Refer to the 
online sample for the complete implementation.)

Performance Characteristics
To understand the performance characteristics of the sequential and 
pipelined versions, it’s useful to look at a scheduling diagram such as 
Figure 4.

figure 4
Image pipeline with stages of equal speed

Figure 4 shows how the tasks in the image pipeline example exe-
cute over time. For example, the top row shows that stage 1 pro-
cesses image 1 starting at time t0 and image 2 starting at time t1. Stage 
2 begins processing image 1 at time t1. Assume for a moment that the 
pipeline is perfectly balanced; that is, each stage of the pipeline takes 
exactly the same amount of time to do its work. Call that duration T. 
Therefore, in Figure 4, t1 occurs after T units of time have elapsed, t2 
after 2 x T units of time have elapsed, and so on.

If there are enough available cores to allow the pipeline’s tasks to 
run in parallel, Figure 4 shows that the expected execution time for 
six images in a pipeline with four stages is approximately 9 x T. In 
contrast, the sequential version takes approximately 24 x T because 
each of the 24 steps must be processed one after another.

The average performance improves as more images are processed. 
The reason for this, as Figure 4 illustrates, is that some cores are idle 
as the pipeline fills during startup and drains during shutdown. With 
a large number of images, the startup and shutdown times become 
relatively insignificant. The average time per image would approach T.

Be careful about copying large 
amounts of data between pipe-
line stages. For example, 
copying large bitmapped 
images between stages will 
unnecessarily consume a large 
amount of memory. Instead, 
pass a pointer to a data 
structure.
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If there are enough available 
cores, and if all stages of a 
pipeline take an equal 
amount of time, the execution 
time for the pipeline as a 
whole is the same as the time 
for just one stage.
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However, there’s one catch: the assumption that all the pipeline 
steps take exactly the same amount of time isn’t always true. Figure 5 
shows the scheduling pattern that emerges when the filter stage takes 
twice as long as the other stages.

figure 5
Image pipeline with unequal stages

When one of the stages takes 2 x T units of time while the other 
stages take T units of time, you can see that it’s not possible to keep 
all of the cores completely busy. On average (with a large number of 
images), the time to process an image is 2 x T. In other words, when 
there are enough cores for each pipeline stage, the speed of a pipeline 
is approximately equal to the speed of its slowest stage.

If you run the ImagePipeline application, you can see this effect 
for yourself. The ImagePipeline sample has a user interface (UI) fea-
ture that reports the average length of time in milliseconds for each 
of the stages of the pipeline. It also reports the overall average length 
of time that’s needed to process each image. When you run the sample 
in sequential mode (by selecting the Sequential radio button), you’ll 
notice that the steady-state elapsed time per image equals the sum of 
all the stages. When you run in pipeline mode, the average elapsed 
time per image converges to approximately the same amount of time 
as slowest stage. The most efficient pipelines have stages of equal 
speed. You won’t always achieve this, but it’s a worthy goal.

Variations
There are several variations to the pipeline pattern.

Asynchronous Pipelines
The pipelines that have been described so far are synchronous. Pro-
ducers and consumers are long-running tasks (implemented with the 
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When the stages of a pipeline 
don’t take the same amount 
of time, the speed of a 
pipeline is approximately 
equal to the speed of its 
slowest stage.
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agent class) that internally use sequential loops to read inputs and 
write outputs. Agents whose run methods contain sequential loops 
are sometimes called control-flow agents. They require a dedicated 
thread for each stage of the pipeline. Dedicating a thread to each 
stage makes sense if the pipeline follows the recommended practice 
of dividing the work into stages of equal duration.  With an equal divi-
sion of work, each of the threads will be continuously busy for the 
duration of the pipeline’s run. See the “Performance Characteristics” 
section of this chapter for more information about the ideal allocation 
of work to pipeline stages.

You can also have an asynchronous pipeline, where tasks are only 
created after data becomes available. This style of implementation is 
more oriented toward dataflow than control flow. The differences 
between the control flow and dataflow approaches are a matter of 
coding preference. However, there are some functional and perfor-
mance distinctions between the two approaches. 

Asynchronous pipelines are implemented using the transformer 
class and the call class. These classes are messaging blocks in the 
Asynchronous Agents Library. The transformer class and call class are 
queues that a producer puts data into; if there’s currently no task 
processing the queue when data arrives, a new task is created to pro-
cess the queue, and it’s active as long as there’s incoming data to 
process. If it ever finds that there is no more data, the task goes away. 
If more data arrives, a new task starts. In other words, the transformer 
class or call class is a message buffer that acts like an agent but creates 
tasks as needed to process incoming data values instead of dedicating 
a thread to this purpose.

Asynchronous pipelines are useful in cases where there are many 
pipeline stages, and you don’t want to dedicate a thread to each stage. 
They are also efficient in cases where you expect the pipeline to often 
be empty (for example, while waiting for input). In these cases, trans-
former messaging blocks can improve application performance due to 
better utilization of threads.

A drawback to asynchronous pipelines is that the code can be 
slightly more difficult to write and debug than the agent-based style 
that was shown earlier in this chapter. The asynchronous style of 
pipelines may require the use of a separate task scheduler instance in 
order to keep scheduling latency low. Asynchronous pipelines are 
limited to pipeline stages that have an equal number of inputs and 
outputs. See Appendix A for more information about task schedulers.

Here is an example of an asynchronous pipeline from the Image 
AgentPipelineDataFlow class. 

The transformer and call 
classes are message buffers 
that act like agents, but 
unlike agents they don’t 
require dedicated threads. 
Use transformer and call 
objects to implement 
asynchronous pipelines.
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void Initialize()
{
  m_scaler = unique_ptr<transformer<ImageInfoPtr, ImageInfoPtr>>(
                new transformer<ImageInfoPtr, ImageInfoPtr>(
                [this](ImageInfoPtr pInfo)->ImageInfoPtr
                {
                    this->ScaleImage(pInfo, m_imageDisplaySize);
                    return pInfo;
                }, 
                ...
            ));

  m_filterer = 
           unique_ptr<transformer<ImageInfoPtr, ImageInfoPtr>>(
                new transformer<ImageInfoPtr, ImageInfoPtr>(
                [this](ImageInfoPtr pInfo)->ImageInfoPtr
                {
                    this->FilterImage(pInfo, m_noiseLevel);
                    return pInfo;
                }, 
                ...
            ));

  m_displayer = unique_ptr<call<ImageInfoPtr>>(
                new call<ImageInfoPtr>(
                [this](ImageInfoPtr pInfo)
                {
                    this->DisplayImage(pInfo);                                          
                    m_governor.FreePipelineSlot();
                },
                ...
            ));

  m_scaler->link_target(m_filterer.get());
  m_filterer->link_target(m_displayer.get());
}

This code creates transformer objects that receive and send 
ImageInfoPtr objects. Each transformer declaration specifies a 
lambda function. The lambda function takes an image pointer as its 
argument, performs an operation on it, and returns the pointer to the 
modified image. A transformer has a one-to-one relationship between 
input and output messages. In other words, for each input value, the 
transformation function must return a single corresponding output 
value.
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The final stage in the pipeline uses a call messaging block. Call 
messaging blocks are similar to transformers but have no output mes-
sage. The m_displayer variable contains a lambda function that dis-
plays the image and updates the pipeline governor but does not pro-
duce any output.

You provide a function that performs a transformation on input 
values as an argument to the transformer class’s constructor.  The 
transformation function is invoked by the system when inputs are 
available; therefore, you should be careful that all exceptions are 
handled within the transformation function.

The code creates transformer and call objects that correspond 
to all stages of the pipeline except the first. The transformer’s targets 
are configured by invoking the link_target method. You don’t need 
to set sources because transformer and call objects are themselves a 
kind of messaging block; they are their own data sources.

The code shows the run method of the dataflow-based imaging 
pipeline.

Initialize();
vector<wstring> filenames = ...
                        
int sequence = kFirstImage;
for_each_infinite(filenames.cbegin(), filenames.cend(), 
  [this, offset, &sequence](wstring file)->bool
{
  ImageInfoPtr pInfo = this->LoadImage(sequence++, file, offset);
  if (nullptr == pInfo) 
    return true;
  m_governor.WaitForAvailablePipelineSlot();    
  asend(m_scaler.get(), pInfo);

  return IsCancellationPending();
});

// Allow subsequent stages to terminate
m_governor.WaitForEmptyPipeline();
done();

If you compare the code sample with the run method of the 
agent-based image pipeline that was described in the previous section, 
you can see similarities. In both, a sequential loop loads images and 
sends them to a messaging block that is the data source for the image 
scaling stage. In both, the number of in-flight elements is limited by a 
call to a governor object.

Set targets of the trans-
former and call objects 
using the link_target 
method.
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The difference between the two approaches is seen at run time. 
With the asynchronous pipeline, a new task is created whenever an 
empty transformer messaging block receives a new element (by 
means of the send or asend functions). This new task invokes the 
transformation function (that was passed to it as the first argument 
of the constructor), and then sends the return value of the transfor-
mation function to the messaging block that has been configured as 
the transformer’s target.

A call messaging block behaves like a transformer messaging 
block, except that no target is involved. The call block’s function is 
invoked on the new input element. It does not return a value.

Canceling a Pipeline
Pipeline tasks work together to perform their work; they must also 
work together when they respond to a cancellation.

A natural place to check for cancellation is at the end of the loop 
that processes items from the input source of a pipeline stage. In the 
image processing example, you’ll see that the ImagePipelineDlg class 
that controls the user interface provides an instance of the overwrite_
buffer<bool> class. This object signals that cancellation has been  
requested from the user interface. Each stage of the pipeline periodi-
cally checks the value of the overwrite buffer to see if cancellation 
has been requested. 

For example, the base class, AgentBase, which is used to imple-
ment the agents in the image processing example, includes the follow-
ing definitions.

class AgentBase : public agent
{
  private:
    // ...
    ISource<bool>& m_cancellationSource;

  public:
    // ...
    AgentBase(HWND dialog, 
              ISource<bool>& cancellationSource, ...) : 
        m_dialogWindow(dialog), 
        m_cancellationSource(cancellationSource), 
        ...
    {
      // ...
    }

At run time, transformer 
and call messaging blocks 
create tasks on demand to 
process any queued items. An 
active task is present only 
when there are elements to 
process.



102 chapter seven

    bool IsCancellationPending() const 
    { 
        return ... || receive(m_cancellationSource); 
    }

    // ...
}

This code shows how the external environment (in this case, a 
request from the application’s user interface) can signal that the  
pipeline should cancel processing. The agent’s constructor includes a  
parameter that takes an ISource<bool> object as a cancellation 
source. The cancellation source is implemented as an instance of the 
overwrite_buffer<bool> class. Its value is false unless the user  
requests cancellation, and then the value of the cancellation source 
becomes true. Individual pipeline operations invoke the IsCancellation 
Pending() method to effect an orderly shutdown. 

How you implement cancellation can affect the performance of 
your application. You should be careful not to check for cancellation 
within tight loops, but you should also check for cancellation often 
enough to keep cancellation latency from becoming noticeable to the 
user. The Image Pipeline checks for cancellation at the beginning of 
each pipeline step which, depending on the speed of your computer, 
corresponds to one check every few hundred milliseconds for each 
agent thread. Profiling your application can help you determine if poll-
ing for cancellation is harming performance. 

Handling Pipeline Exceptions
Exceptions are similar to cancellations. The difference between the 
two is that when an exception occurs within one of the pipeline 
stages, the tasks that execute the other stages don’t by default receive 
notification that an exception has occurred elsewhere. Without such 
notification, there are several ways for the application to deadlock.

The base class, AgentBase, in the image processing example uses 
an instance of the overwrite_buffer<bool> class to alert all pipeline 
stages when an exception in one stage has occurred. This is shown in 
the following code.

class AgentBase : public agent
{
  private:
    // ...
    mutable overwrite_buffer<bool> m_shutdownPending;

  public:
    // ...

When there is an exception in 
one pipeline stage, you should 
cancel the other stages. If you 
don’t do this, deadlock can 
occur. Follow the guidelines in 
this section carefully.
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    AgentBase(...) ...
    {
      send(m_shutdownPending, false);
    }

    void ShutdownOnError(Phases phase, const wstring& filePath,
                         const exception& e) const
    {
      wostringstream message;
      message << e.what();
      SendError(phase, filePath, message.str());
    }

    void SendError(Phases phase, const wstring& filePath,
                   wstring message) const
    {
      // ...
      send(m_shutdownPending, true);
      send(m_errorTarget, ErrorInfo(phase, filePath, message));
      PostMessageW(m_dialogWindow, WM_REPORTERROR, 0, 0);
    }

    bool IsCancellationPending() const 
    { 
        return receive(m_shutdownPending) ||  
               receive(m_cancellationSource); 
    }

    // ...
}

The stages of the pipeline invoke the application’s ShutdownOn 
Error method if they catch an exception. Because the pipeline stages 
run concurrently, the shutdown method is coded in a concurrency-
safe manner. It sends values to buffers instead of updating shared 
variables directly.

The ShutdownOnError method sends the value true to the over-
write buffer m_shutdownPending to signal the other pipeline agents 
of the imminent shutdown. Next, the method sends a message that 
contains the error information to the unbounded buffer m_error 
Target. Finally, it sends a custom Windows message, WM_REPORT 
ERROR, to notify the UI that an error needs to be processed. When 
the UI thread handles the Windows message, it invokes an application 
callback method that gets information from the m_errorTarget buf-
fer and displays it in a dialog box. The information contains a text 
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description of the exception and the name of the image file that was 
being processed when the exception occurred. 

The IsCancellationPending method checks for two conditions: 
whether shutdown is pending due to an exception, or whether there 
is a user-initiated cancellation request. Two separate buffers are used 
because the implementation does not reuse the signaling mechanism 
provided for external cancellation. The pipeline stages can signal that 
an exception has occurred, but only the user can request cancellation 
of the operation. The reason is one of scope: operations other than 
the pipeline might be affected by a cancellation request.  Error han-
dling is intended to be local to the pipeline itself.

Load Balancing Using Multiple Producers
The unbounded_buffer<T> class allows you to read values from more 
than one producer. This feature can be used to implement load bal-
ancing for pipeline stages that take longer than other stages.

The image pipeline example described earlier in this chapter re-
quires that the slideshow of thumbnail images be performed in the 
same order as the input files. This is a constraint that’s common to 
many pipeline scenarios, such as processing a series of video frames. 
However, in the case of the image pipeline example, the filter opera-
tions on successive images are independent of each other. In this case, 
you can insert an additional pipeline task. This is shown in Figure 6.

figure 6
Consuming values from  
multiple producers

Figure 6 shows what happens when you add an additional filter 
task. The numbers in the figure represent the sequence numbers of 
the images being processed. (Recall that the images must be processed 
in order in this example.) Both of the filter tasks take images produced 
by the previous stage of the pipeline. The order in which they con-
sume these images is not fully determined, although from a filter’s 
local point of view, no input image ever arrives out of order.
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It is sometimes possible to 
implement load balancing by 
increasing the number of 
tasks used for a particular 
pipeline stage.
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Each of the filter stages has its own target buffer to hold the ele-
ments that it produces. The consumer of these queues is a component 
known as a multiplexer, which combines the inputs from all of the 
producers. The multiplexer provided in the sample code allows its 
consumer, which in this case is the display stage of the pipeline, to 
receive the images in the correct sequential order. The images don’t 
need to be sorted or reordered. Instead, the fact that each producer 
queue is locally ordered allows the multiplexer to look for the next 
value in the sequence by simultaneously monitoring the heads of all 
of the producer queues. 

Here’s an example to make this more concrete. Suppose that each 
image has a unique sequence number that’s available by invoking a 
data accessor method. The image numbers start with 1 and increase 
sequentially. As Figure 6 shows, the first filter might process images 
that are numbered 1, 4, and 5, while the second filter processes im-
ages with sequence numbers 2, 3, 6, and 7. Each load-balanced filter 
stage collects its output images into its own queue. The two output 
queues are correctly ordered (that is, no higher numbered image 
comes before a lower numbered image), but there are gaps in the se-
quence of numbers. For example, if you take values from the first fil-
ter’s output queue, you get image 1, followed by image 4, followed by 
image 5. Images 2 and 3 are missing because they’re found in the sec-
ond filter’s output queue.

The gaps are a problem. The next stage of the pipeline, the Dis-
play Image stage, needs to show images in order and without gaps in 
the sequence. This is where the multiplexer comes in. The multiplexer 
waits for input from both of the filter stage producer queues. When 
an image arrives, the multiplexer looks to see if the image’s sequence 
number is the next in the expected sequence. If it is, the multiplexer 
passes it to the Display Image stage. If the image is not the next in the 
sequence, the multiplexer holds the value in an internal look-ahead 
buffer and repeats the take operation for the input queue that does 
not have a look-ahead value. This algorithm allows the multiplexer to 
put together the inputs from the incoming producer queues in a way 
that ensures sequential order without sorting the values.

Figure 7 shows the performance benefit of doubling the number 
of filter stages when the filter operation is twice as expensive as the 
other pipeline stages.
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figure 7
Image pipeline with load balancing

If all pipeline stages, except the filter stage, take T units of time 
to process an image, and the filter stage takes 2 x T units of time, using 
two filter stages and two producer queues to load balance the pipe-
line results in an overall speed of approximately T units of time per 
image as the number of images grows. If you run the ImagePipeline 
sample and select the Load Balanced radio button, you’ll see this ef-
fect. The speed of the pipeline (after a suitable number of images are 
processed) will converge on the average time of the slowest single-
instance stage or on one-half of the average filter time, whichever is 
greater.

The queue wait time of Queue 3, which is displayed on the Image-
Pipeline sample’s UI, indicates the overhead that’s introduced by wait-
ing on multiple producer queues. This is an example of how adding 
overhead to a parallel computation can actually increase the overall 
speed if the change also allows more efficient use of the available 
cores.

Pipelines and Streams
You may have noticed that message buffers and streams have some 
similarities. It’s sometimes useful to treat a message buffer as a stream, 
and vice versa. For example, you may want to use a Pipeline pattern 
with library methods that read and write to streams. Suppose that you 
want to compress a file and then encrypt it. Both compression and 
encryption are supported by native libraries, but the functions’ param-
eter lists expect streams, not messaging blocks. It’s possible to imple-
ment a stream whose underlying implementation relies on agents and 
messaging blocks. 
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Anti-Patterns
There are a few things to watch out for when implementing a pipeline.

Copying Large Amounts of Data between 
Pipeline Stages

If your data structures are large, you should pass pointers to data, and 
not the data itself, down the pipeline. Use the Resource Acquisition is 
Initialization (RAII) patterns to ensure correctness when using point-
ers. This is especially true for non-linear dataflow networks with 
multiple endpoints. Only pass small data items by value.

Pipeline Stages that Are Too Small
Don’t pass very small items of work. The overhead of managing the 
pipeline will override the gains from parallelism.

Forgetting to Use Message Passing for 
Isolation

Don’t use shared data structures, such as locks and semaphores, to 
share data between agents. Instead, pass messages.

Infinite Waits
If a pipeline task catches an exception and terminates, it will no longer 
take values from its input messaging block. Depending on the logic of 
your pipeline, you may find that processing is blocked indefinitely. You 
can avoid this situation by using the technique that was described in 
the section, “Exception Handling,” earlier in this chapter.

Unbounded Queue Growth
You should be careful to limit the number of elements that can be 
pending at one time in the pipeline’s buffers. Use the techniques de-
scribed in the previous sections to enforce such a limit. Refer to the 
PipelineGovernor class in the online samples for an example of how 
to limit the number of in-flight items in a pipeline.

More Information
For more information about this guidance, see Best Practices in the 
Asynchronous Agents Library on MSDN at http://msdn.microsoft.
com/en-us/library/ff601928.aspx.

http://msdn.microsoft.com/en-us/library/ff601928.aspx
http://msdn.microsoft.com/en-us/library/ff601928.aspx
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Design Notes
When you use the Pipeline pattern to decompose a problem, you 
need to consider how many pipeline stages to use. This depends on 
the number of cores you expect to have available at run time as well 
as the nature of the application you are trying to implement. Unlike 
most of the other patterns in this book, the Pipeline pattern doesn’t 
automatically scale with the number of cores. This is one of its limita-
tions. (Of course, in some cases you can introduce additional parallel-
ism within a pipeline stage itself.)

More stages work well unless the overhead of adding and remov-
ing elements from the buffers becomes significant. This is usually only 
a problem for stages that perform very small amounts of work.

To achieve a high degree of parallelism, you need to be careful 
that all the stages in the pipeline take approximately the same amount 
of time to perform their work. If they don’t, the pipeline will be gated 
by the slowest component.

The number of in-flight elements in the pipeline is also important 
for overall performance. If you limit your pipelines to contain only 
very small numbers of data values, you may find that not all stages of 
your pipeline are fully occupied with work, especially if data elements 
take a variable amount of processing time. Allowing the pipeline buf-
fers to hold more data elements accommodates the variability in 
processing time. The allowed number of in-flight data elements can 
also depend on the size of the objects being processed. You would 
probably want to use fewer entries if each element contained an ob-
ject such as a large bitmapped image that required a great deal of 
memory.

In general, there should be enough buffering to absorb variability 
in the pipeline flow, but no more. Use the Visual Studio Concurrency 
Visualization view to understand the throughput characteristics of 
the pipeline and modify the pipeline capacity to minimize the amount 
of time each stage is blocked by I/O waits.



 109pipelines

Related Patterns
The Pipeline pattern has much in common with the concepts of pipes 
and filters that are implemented in operating systems. Pipelines are 
also related to streaming concepts.

Pipelines are expressions of a general technique known as pro-
ducer/consumer. The pipeline is composed of a series of producer/
consumers, each one depending on the output of its predecessor.

Exercises
1. Write your own pipeline by modifying the example shown in 

the first section of this chapter. 
2. Execute the code with the Concurrency Visualizer. View and 

interpret the results.

Further Reading
Multiplexing inputs from multiple producer queues is covered by 
Campbell. A description of the pipes and filters pattern used by com-
mand shells for operating systems is described by Buschmann. 

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. 
Stal. Pattern-Oriented Software Architecture Volume 1: A System 
of Patterns. Wiley, 1996.

Campbell, C., M. Veanes, J. Huo, and A. Petrenko. “Multiplexing 
of Partially Ordered Events.” TestCom 2005, Springer Verlag, June 
2005. http://research.microsoft.com/apps/pubs/default.
aspx?id=77808.
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The Task Scheduler and 
Resource Manager

Appendix A

The Parallel Patterns Library (PPL) and Asynchronous Agents Library 
rely on features of a lower-level component known as the Concur-
rency Runtime. The Concurrency Runtime contains a task scheduler 
and a resource manager. Both are documented on MSDN®, but in this 
appendix you’ll find an overview of their functionality and learn of 
some of the motivations that shaped their designs. 

The Concurrency Runtime enables you to declare sources of po-
tential parallelism in your applications. It is designed both to use exist-
ing parallel hardware architectures and to take advantage of future 
advances in those architectures. In other words, your applications will 
continue to run efficiently as platforms evolve. The task scheduler 
determines where and when to run your application’s tasks, and it 
uses cooperative scheduling to provide load balancing across cores. 
The resource manager prevents the different parts of your applica-
tion, as well as any libraries they use, from contending for parallel 
computing resources. It also helps to ensure the best use of resources 
such as hardware caches. The problems addressed by the Concurrency 
Runtime are far from trivial. It uses advanced algorithms and benefits 
from many person-years of experience to optimize parallel perfor-
mance on multicore architectures.

Figure 1 illustrates how the components in the Concurrency 
namespace relate to each other. (These components are shown in 
shaded blue.)
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figure 1
Relationships among  
libraries and run-time  
components

The following table lists the header files for each component of 
the Concurrency Runtime. The information in these files gives you a 
convenient way to learn the capabilities of a component.

Component C++ Header File

Parallel Patterns Library ppl.h

Asynchronous Agents Library agent.h

Data structures concurrent_vector.h
concurrent_queue.h

Task scheduler concrt.h

Resource manager concrtrm.h

The Concurrency Runtime is a user-mode layer that sits on top of 
the operating system. It can manage large numbers of cores, some-
thing that is not feasible for an application to do by itself. The Con-
currency Runtime is part of the C++ runtime that is included in Micro-
soft® Visual Studio® 2010 development system. No additional 
libraries are required. 

The Concurrency Runtime abstracts some of the operating sys-
tem’s processor management APIs and provides implementations that 
automatically use the features of each version of the operating sys-
tem. For example, on a 64-bit version of Microsoft Windows® 7 op-
erating system, you can scale your application to 256 cores while au-
tomatically assigning tasks to cores in a way that respects Non-Uniform 
Memory Architecture (NUMA) boundaries. (This would not be easy 
to program.) This same application will run on Windows Vista®, which 
supports 64 cores. 
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Note: All class names and global function names mentioned in this 
appendix are from the Concurrency namespace, unless otherwise 
specified.

Resource Manager
The resource manager allocates processor cores among the applica-
tion’s task schedulers and ensures that related tasks execute as “lo-
cally” as possible. Local execution includes taking advantage of the 
memory access characteristics of NUMA nodes and hardware caches. 
The resource manager is a singleton instance of the Resource 
Manager class.

Most programmers won’t invoke the resource manager directly, 
but it’s helpful to understand how the resource manager works.

Why It’s Needed
The resource manager is especially helpful when there are multiple 
scheduler instances within a single application. In these situations, the 
resource manager allows task scheduling components, including the 
Scheduler class as well as components written by third parties, to 
coexist without contending for cores. For example, if your application 
has two schedulers, both with default scheduler policies, the resource 
manager initially divides the available cores on your computer equally 
between them. The resource manager makes the division of cores 
along NUMA node boundaries or processor packages, if possible. 

The resource manager is also helpful when an application uses 
parallel libraries from more than one vendor. The resource manager 
allows these libraries to cooperatively share resources. Microsoft en-
courages vendors who write libraries for concurrency to build their 
components on top of the Concurrency Runtime so that all the librar-
ies can take advantage of this feature.

The resource manager also provides dynamic resource manage-
ment, which adjusts the level of concurrency across components 
based on core utilization.

How Resource Management Works
The main abstraction of the resource manager is a virtual processor 
object that is provided by the IVirtualProcessorRoot class. You can 
think of a virtual processor object as a token that grants a scheduler 
the right to start (or resume) one thread. The core that runs the thread 
is chosen based on a processor affinity mask that is specified by the 
virtual processor object. A processor affinity mask is a bit mask that 
specifies which core(s) the operating system can use to run a particu-
lar thread. Cores mean all hardware-supported execution resources, 

The resource manager is a 
singleton instance of the 
ResourceManager class.  
It allocates processor 
resources to the application’s 
task schedulers and helps 
execute tasks as “locally”  
as possible.
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including hardware threads of simultaneous multithreading (“hyper-
threading”) architectures. 

You can think of a virtual processor object as similar to a concert 
ticket that has a section assignment but no specific seat number. 
When the ticket is eventually presented at the door it gives the 
bearer the right to sit in any seat in the designated section of the 
concert hall. Similarly, the virtual processor object is a “ticket” that 
will allow a worker thread to run on any core that meets the require-
ments of the processor affinity mask. 

Note: To manage threads, the resource manager provides instances 
of the IThreadProxy class, which a scheduling component should 
associate with objects that provide the IExecutionContext 
interface.  

The following diagram shows how this works.

figure 2
Virtual processor objects

Figure 2 shows that the cores of the computer are grouped into 
processor packages and NUMA nodes. The resource manager knows 
how the NUMA nodes and processor packages are laid out in the 
computer. For a particular process, several scheduler objects ask the 
resource manager for specific numbers of virtual processor objects 
that will be used by their worker threads. Some schedulers may want 
a higher degree of concurrency than other schedulers. Some schedul-
ers want as much concurrency as possible. 

The resource manager attempts to satisfy the requests of all 
scheduler objects, given the fact that there are a fixed number of 
cores on the computer. In the end, the resource manager gives some 
virtual processor objects to each scheduler. The virtual processor 
objects do not issue particular core IDs; instead they specify a proces-
sor node, which is an abstraction used by the resource manager to 
represent NUMA nodes, processor packages or other kinds of  

A virtual processor object 
grants a scheduler permission 
to start (or resume) one 
thread. The core that executes 
the thread is chosen based on 
a specific processor affinity 
mask.

A processor node is an 
abstraction created by the 
resource manager to represent 
NUMA nodes, processor 
packages or (potentially) 
other kinds of groupings.
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groupings of execution resources. In any case, each virtual processor 
object represents the right for one worker thread to run on that pro-
cessor node, even though the particular core will be chosen later. 

The resource manager maps processor nodes to a set of cores. 
After a scheduler receives its virtual processor objects, which worker 
thread will use a particular virtual processor object is still unknown. 
As it runs, the scheduler associates (and disassociates) worker threads 
with virtual processor objects. At any given moment, there is one 
virtual processor object per running thread. The virtual processor 
object uses the processor affinity mask to determine which cores can 
be selected by the operating system. The operating system decides 
the specific core that will be assigned to a worker thread. The worker 
thread runs on the chosen core. 

After the thread begins to run, the virtual processor object can’t 
be reused with another thread unless a cooperative context switch oc-
curs. A cooperative context switch happens when a worker thread 
becomes blocked as a result of a cooperative blocking operation. The 
blocked thread is disassociated from its virtual processor object, and 
another worker thread becomes associated with the virtual processor 
object and is allowed to run. If a scheduler wants more threads to run 
at the same time, the scheduler must ask the resource manager for 
additional virtual processor objects. The number of virtual processor 
objects assigned to a scheduler equals that scheduler’s level of concur-
rency, or the number of worker threads that can run at the same time. 
The scheduler is free to create as many threads as it wants, but it can 
only allow as many threads as it has virtual processor objects to run at 
any given time.

The net effect of the interaction between a scheduler and its 
virtual processor objects is to fix the scheduler’s level of concurrency 
and to cause its threads to run on specific cores.

Dynamic Resource Management
The resource manager uses dynamic resource management to help 
schedulers cooperate in their use of cores. At run time, the resource 
manager dynamically monitors the use of execution resources. It 
knows when virtual processor objects are idle and when they are busy. 
If it detects use patterns that indicate consistent underutilization of 
a core, the resource manager might reassign that core to another 
scheduler. Dynamic resource management only occurs when there are 
multiple schedulers.

Techniques such as reassigning cores allow the resource manager 
to place execution resources where they are most needed.  As a con-
sequence, you may notice that the allocation of virtual processor 
objects changes over time. 
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Oversubscribing Cores
If a set of cores has more virtual processor objects than the number 
of cores (where all hardware threads are considered to be cores), the 
cores are said to be oversubscribed. Normally, the default scheduling 
policy partitions the available cores without creating more virtual 
processor objects than there are cores on the computer.  In other 
words, the resource manager avoids oversubscription. When cores are 
busy with compute-intensive operations, oversubscription results in 
contention for system caches and reduced throughput. However, 
there are exceptions to this rule.

For example, the resource manager deliberately uses oversubscrip-
tion if the aggregate minimum level of concurrency required by all of 
the application’s schedulers exceeds the number of cores. Another 
situation is when the scheduling policy option TargetOversubscription 
Factor is set to a value greater than one. This policy allows a sched-
uler to ask for oversubscribed cores at startup.  

A third example is when a scheduler requests additional concur-
rency (in the form of additional virtual processor objects) from the 
resource manager as the program runs. Finally, a special case arises 
when the resource manager’s dynamic resource management feature 
observes that a scheduler is underutilizing one of its cores. In this case 
the resource manager might temporarily oversubscribe the underuti-
lized core with work from other schedulers without removing the 
corresponding virtual processor object from the first scheduler.

Querying the Environment
While it is unlikely that you will need to program directly against the 
resource manager, there are a few functions in the concrtrm.h header 
file that you may find useful. These functions retrieve information 
about the operating environment. The GetProcessorCount and Get 
ProcessorNodeCount functions are particularly useful. They return 
the number of cores (counting all hardware threads as cores) and the 
number of processor nodes on your computer. If you see that the 
number of nodes is greater than one, you can deduce that you are  
on a machine that has some concept of locality for cores, such as a 
machine with NUMA or multiple processor packages. The exact 
meaning of a “processor node” is determined by the resource manager 
and depends on what kind of computer you have. 

Kinds of Tasks
Before discussing the task scheduler it’s important that you under-
stand that there are two types of tasks in the Concurrency Runtime. 
The task scheduler provides its own task abstraction, known as light-
weight task, which should not be confused with the tasks provided by 
PPL.
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Lightweight Tasks
The primary interface to lightweight tasks is the ScheduleTask 
method of the ScheduleGroup class. The ScheduleTask method al-
lows you to add a new, pending lightweight task to the queue of a 
particular schedule group. You can also invoke the Current 
Scheduler::ScheduleTask static method if you want the runtime to 
choose a schedule group for you. Schedulers and schedule groups are 
described in the “Task Schedulers” section of this appendix.

You can use lightweight tasks when you don’t need any of the 
cancellation, exception handling, or task-wait features of PPL tasks. If 
you need to wait for a lightweight task to finish, you must implement 
the wait with lower-level synchronization primitives. If you want to 
handle exceptions, you need to use STL’s exception_ptr class and 
then rethrow captured exceptions at a time of your choosing. 

The Concurrency Runtime’s interface to lightweight tasks is 
similar to the Windows thread pool in that it only uses function point-
ers for its work functions. However, the Concurrency Runtime’s 
sample pack includes, as a convenience, a functor-based way to schedule 
lightweight tasks that uses wrapper classes named task_scheduler 
and schedule_group.  If you use lightweight tasks, you will probably 
find the sample pack’s interface to be a more convenient approach. 

Most programmers won’t use lightweight tasks. Instead, they will 
use PPL to create tasks. Nonetheless, lightweight tasks can be useful 
for programming new control structures. Also, you can use lightweight 
tasks to migrate from threads to tasks. For example, if you have an 
existing application that uses calls to Windows APIs to create threads, 
and you want the application to use a task scheduler object as a better 
thread pool, then you may want to investigate lightweight tasks. 
However, it’s recommended that most programmers should use PPL 
for task-based applications.

The Asynchronous Agents Library uses lightweight tasks to imple-
ment the messaging block and agent classes that are described in 
Chapter 7, “Pipelines.”

Tasks Created Using PPL
When you use any of the features of PPL to create tasks, such as the 
parallel_for, parallel_for_each or parallel_invoke functions, or  
the task_group::run or structured_task_group::run methods, you 
create a kind of task that is distinct from a lightweight task. This  
appendix refers to such tasks as PPL tasks.

Do not confuse lightweight 
tasks provided by the 
Concurrency Runtime with 
tasks in PPL. Most program-
mers will not create light-
weight tasks directly.

Lightweight tasks are used 
internally by the messaging 
block and agent classes of  
the Asynchronous Agents 
Library.
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Task Schedulers
The Concurrency Runtime’s task scheduler is similar to a thread 

pool. In fact, you can think of the task scheduler as a special type of 
thread pool that is very good at optimizing large numbers of fine-
grained work requests. Unlike many thread pool implementations, the 
task scheduler does not automatically create a new worker thread 
when a request arrives and all existing threads are busy. Instead, the 
scheduler queues the new task and executes it when processor re-
sources become available. The goal is to keep all of the processor 
cores as busy as possible while minimizing the number of context 
switches in the operating system and maximizing the effectiveness of 
hardware caches.

Task scheduling is implemented by the Scheduler class. Scheduler 
instances use worker threads that are associated with the virtual pro-
cessor objects provided by the resource manager whenever the 
worker threads are running. There is at most one running thread per 
virtual processor object granted by the resource manager.  

Instances of the Context class represent the threads known to a 
scheduler instance, along with additional per-thread data structures 
that are maintained by the scheduler for its own use. 

Managing Task Schedulers
The Concurrency Runtime provides one default scheduler per process. 
The default scheduler is created when you first make calls into the 
Concurrency Runtime. You can set scheduler policy for the current 
context by creating instances of the Scheduler class and attaching 
them to the currently executing thread. 

Alternatively, you can invoke the SetDefaultSchedulerPolicy 
static method of the Scheduler class at the beginning of your applica-
tion, before the default scheduler has been created, to specify how 
the default scheduler will work. 

If your application uses multiple scheduler objects, you might 
want to construct and attach all of the schedulers at startup. Allocat-
ing schedulers at the outset avoids the overhead that occurs when 
schedulers are created while work is in progress. This overhead in-
cludes reallocating system resources and reassociating threads to 
processor nodes. For example, if you have one scheduler that does a 
parallel_for loop, it will, by default, use all cores on your machine. If 
halfway through the run of the parallel_for operation you add a 
scheduler for use by agent-based code, the first scheduler may be 
asked to reduce its concurrency as it runs. It’s more efficient to allo-
cate the division of cores between the two schedulers at the start of 
the application. 

Task schedulers represent a 
special kind of thread pool 
that is optimized for fine-
grained tasks.

There is one default scheduler 
per process, but you can 
create additional schedulers 
per context. You can also set 
the scheduling policy of the 
default scheduler.
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Creating and Attaching a Task Scheduler
Use the factory method Scheduler::Create to instantiate a scheduler 
object. The method accepts a reference to a SchedulerPolicy object 
as its argument. This object contains configuration settings for your 
scheduler. After creating the scheduler, you attach it to the current 
context to activate it. The following code is an example of how to do 
this.

#include <concrt.h>
#include <concrtrm.h>
#include <stdio.h>
#include <windows.h>
#include <iostream>

using namespace ::Concurrency;
using namespace ::std;

int main()
{
  SchedulerPolicy myPolicy(2, MinConcurrency, 2, 
                              MaxConcurrency, 2);

  Scheduler* myScheduler = Scheduler::Create(myPolicy);
    
  cout << "My scheduler ID: " << myScheduler->Id() << endl;

  cout << "Default scheduler ID: " 
       << CurrentScheduler::Get()->Id() << endl;

  myScheduler->Attach();
    
  cout << "Current scheduler ID: " 
       <<  CurrentScheduler::Get()->Id() << endl;

The Scheduler::Attach method sets the scheduler that will be 
used by the current context. The new scheduler in this example alerts 
the resource manager that it requires a concurrency level of two. You 
must call the Attach method in the thread whose scheduler you want 
to replace. The CurrentScheduler class’s Get method returns the cur-
rent context’s currently attached scheduler object, or the default 
scheduler if no user-provided scheduler was previously attached to 
the current context.

As a convenience, you can use the Create method of the Current 
Scheduler class to instantiate a new scheduler object and attach it to 
the current context with a single call.
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Detaching a Task Scheduler
The Detach method of the CurrentScheduler class reverses the ef-
fect of a previous call to the Scheduler::Attach method. Attaching 
and detaching schedulers are stack-based operations. If you call  
Detach, the current scheduler is popped from the stack and the  
previous scheduler is restored as the current scheduler. The following 
code shows how to use the Detach method.

  CurrentScheduler::Detach();
    
  cout << "Current scheduler ID: " 
       << Concurrency::CurrentScheduler::Get()->Id() << endl;

Destroying a Task Scheduler
A scheduler object has reference/release semantics that are indepen-
dent of the attach/detach process. Attach/detach logically contains a 
reference/release pair.

You can detach the most recently attached scheduler at any time. 
The runtime will not destroy the detached scheduler until all refer-
ences to it have been released and all of its tasks have completed. If 
you need to be notified when a detached scheduler is eventually de-
stroyed, create a Windows event and register it with the scheduler. 
The correct shutdown sequence for a scheduler object is shown in the 
following code.

HANDLE schedulerShutdownEvent = 
          CreateEvent(NULL, TRUE, FALSE, L"Shutdown Scheduler");
myScheduler->RegisterShutdownEvent(schedulerShutdownEvent);
myScheduler->Release();
WaitForSingleObject(schedulerShutdownEvent, INFINITE);

This code blocks the current context until all other users of the 
scheduler are also finished. Waiting for the scheduler to shut down 
might be necessary before unloading a DLL, for example. 

Scenarios for Using Multiple Task Schedulers
Multiple task schedulers can be helpful when you need quality-of-
service guarantees. They can also provide a better user experience by 
ensuring that the application is responsive even if long-running paral-
lel workloads are executing. For example, you can use specific sched-
uler instances to reserve cores for high-priority activities such as audio 
processing. 

Message passing is another example of a high-priority activity. If 
your cores are very busy and message delivery does not have high 
priority, tasks that depend on receiving data from messaging buffers 
might not be run, which could cause bugs. A solution is to send mes-

 
 

 
 



 121the task scheduler and resource manager

sages on a dedicated “message propagation” scheduler. For example, 
if you wanted to guarantee that a cancellation message gets processed 
immediately, you could create a new scheduler for it.

Another case is when you’re running on a multi-node host in a 
server farm. For performance reasons, you may not want parallel loops 
to span multiple processor nodes. Using multiple schedulers allows 
you to limit your parallel loops to a single processor node.  

Multiple task schedulers can separate UI work from background 
processing.  You can have a foreground scheduler in the UI that does 
some work when you click a button and a background scheduler for 
work that’s ongoing.

Implementing a Custom Scheduling Component
The Scheduler class is not extensible. You cannot use it as a base class. 
This means that you must use the runtime’s Scheduler class for sched-
uling work that is created with PPL and the Asynchronous Agents 
Library.

However, if you are writing your own parallel programming library, 
you can create your own scheduling component by implementing the 
IScheduler and IExecutionContext interfaces. 

The Scheduling Algorithm
The Scheduler class uses a queue-based approach to run tasks. New 
tasks wait in queues until the scheduler assigns processing resources 
to them in cooperation with the resource manager and the operating 
system. Queues emphasize overall throughput at the cost of schedul-
ing fairness for individual tasks. The motivating idea is that a set of 
related tasks represents the decomposition of a larger problem. 
Therefore, solving the overall problem in the fastest possible way is 
the primary goal, even if some tasks have to wait longer than others 
to run.

You can contrast the queue-based approach to scheduling with 
preemptive multitasking that gives time slices to all running threads. 
Multitasking emphasizes the responsiveness of each thread. 

The material in this section can help you understand the perfor-
mance characteristics that you’ll observe when you use the runtime’s 
Scheduler class. Be aware that the scheduling algorithm described 
here represents an implementation choice. Future versions of the 
Concurrency Runtime might optimize task execution differently.

Schedule Groups
A scheduler object has more than one queue of pending tasks. Pending 
tasks are tasks that haven’t started to run. Internally, the Scheduler 
class uses instances of the ScheduleGroup helper class for its queues 
of pending tasks. For example, a scheduler instance may want sepa-
rate queues based on the division of cores into processor nodes. 

Queue-based scheduling 
emphasizes overall through-
put at the cost of “ fairness” 
for individual tasks.

The behind-the-scenes 
behavior described in this 
section applies to Visual Studio 
2010 SP1. There’s no guarantee 
that future releases of the 
runtime won’t behave 
differently.
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When you add a task to the scheduler, you normally allow the 
scheduler to choose a schedule group for that task. 

The scheduler object maintains several kinds of queues for each 
of its schedule groups. This is illustrated in Figure 3.  

figure 3
Data structures of schedule groups

Each schedule group contains one queue for lightweight tasks 
(LWTs). Each schedule group also contains multiple work-stealing 
queues of pending PPL tasks. There is one work-stealing queue of 
pending PPL tasks in the schedule group for each execution context. 
A work-stealing queue is a mutable list with a private end accessible 
to a single context and a public end that can be accessed by many 
contexts. Entries in a work-stealing queue can be added or removed 
from the private (or local) end with minimal synchronization. Entries 
can also be added or removed from the public (or shared) end but 
with higher synchronization costs. Only the context that the schedule 
group has associated with the work-stealing queue can add to and 
remove entries from the private end.

Each schedule group contains one main queue of runnable con-
texts and can also maintain a cache of runnable contexts for each 
virtual processor object. A runnable context is a thread that was previ-
ously interrupted by one of the cooperative blocking operations, but 
is now unblocked and ready to resume its work. 

Adding Tasks
A lightweight task is implicitly created by messaging blocks’ opera-
tions and by starting an agent instance. You can also use the Schedule 
Task method of the Scheduler class, the CurrentScheduler class or 
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the ScheduleGroup class to create a lightweight task. When you 
create a new lightweight task, the task is added to the schedule group 
you specify or to a schedule group chosen by the scheduler. The new 
task is added to the end of the schedule group’s queue of lightweight 
tasks. 

When you create a PPL task, the new task is added to the private 
end of the work-stealing queue of the current context. The current 
context may correspond to a thread that is not one of the scheduler’s 
worker threads. In this case, the scheduler associates a work-stealing 
queue with the current context in one of its schedule groups.

Use the Attach and Detach methods that were described in the 
“Managing Task Schedulers” section of this appendix to control which 
scheduler is the current scheduler for a given context.

Running Tasks
A virtual processor object can become available in one of two ways. 
One way is that the thread that is currently running on the virtual 
processor object becomes blocked by one of the cooperative block-
ing operations. The other way is that the thread completes its current 
task. When a virtual processor object becomes ready to accept new 
work, the scheduler uses heuristics to prioritize the possible next 
steps. 

As a general rule, the scheduler tries to resume runnable contexts 
in preference to starting new pending tasks. A runnable context is a 
worker thread that previously ran and became blocked by one of the 
cooperative blocking operations, but is now unblocked and ready to 
be resumed. The scheduler takes runnable contexts first from the 
virtual processor object’s local cache of runnable contexts in last in 
first out (LIFO) order and then from the queue of runnable contexts 
in the current schedule group in first in first out (FIFO) order. It may 
also look for runnable contexts in the caches of other virtual proces-
sor objects and schedule groups.  The LIFO cache of runnable con-
texts improves the likelihood that the data in hardware caches will be 
relevant. The most recently unblocked context is resumed first, and it 
is run on the same virtual processor object as the operation that 
caused the context to become unblocked. You can configure the size 
of the cache of unblocked tasks with the LocalContextCacheSize 
schedule policy key.

If there are no runnable contexts, the scheduler looks for light-
weight tasks in the schedule group’s queue of lightweight tasks. It 
takes the next available lightweight task in FIFO order. Lightweight 
tasks are usually used to implement message passing and are therefore 
considered to be of higher priority than PPL tasks.

If there are no lightweight tasks pending in the current schedule 
group, the scheduler looks for tasks from the public ends of the work-
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stealing queues of the current schedule group. It looks for tasks in 
work-stealing queues first within the queues associated with the  
current processor node, and then across processor nodes.

A special situation arises when a thread enters the task_
group::wait or the structured_task_group::wait methods. Normally, 
wait is considered to be one of the cooperative blocking operations. 
However, if the call to wait requires the current thread to wait for 
pending tasks that are in the current context’s work-stealing queue, 
then the current context will not block immediately. Instead, PPL re-
uses the current context to run the locally queued tasks using an op-
timization known as inline execution. The pending tasks are taken 
from the private end of the current context’s work-stealing queue in 
LIFO order. 

The scheduler is unaware of inline execution because the thread 
that performs inline execution will not become cooperatively blocked 
by the wait method until there are no more tasks in the local work-
stealing queue that would satisfy the wait condition.  Of course, if 
inline execution has satisfied the wait condition, the wait method will 
return and the current thread will continue running its top-level task. 
For more information about inlining, see “Tasks That Are Run Inline” 
in this appendix.

The Scheduler class implements two variations of its scheduling 
algorithm, which can be selected by setting the SchedulingProtocol 
scheduling policy key. The two scheduling approaches are enhanced 
locality mode (the default) and forward progress mode.

Enhanced Locality Mode
In enhanced locality mode, the scheduler tries to execute related tasks 
in batches. The scheduler attempts to process all pending tasks of the 
first schedule group until the group contains no more tasks to run. 
Then, the scheduler moves on to the pending tasks of the next sched-
ule group, and so on, eventually starting over with the first schedule 
group. This order is not strict; there are also heuristics to avoid thread 
starvation that can occur if a task that would unblock a currently 
blocked task is not allowed to run. These heuristics may periodically 
give preference to tasks of other schedule groups. This can occur if 
the current schedule group has many pending tasks.

In enhanced locality mode the runtime assumes that tasks in a 
schedule group share memory. In order to derive the most benefit 
from hardware caches, the scheduler attempts to run the tasks of a 
schedule group as close together chronologically as possible, even if it 
means that tasks that were added earlier to some other schedule 
group experience delays. For example, if tasks 1, 2, and 3 are created 
and assigned to schedule groups A, B, and A, respectively, and the 
scheduler starts processing schedule group A, then it is likely that task 

Enhanced locality scheduling 
processes schedule groups in 
batches so that related tasks 
execute together.
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Forward progress scheduling 
rotates through schedule 
groups, executing one task 
from each.

3 will be run before task 2, even though task 3 was created after task 
2. In other words, the scheduler attempts to run all tasks of schedule 
group A (which contains tasks 1 and 3) before proceeding to schedule 
group B (which contains task 2).

Due to the processor node affinity provided by the division into 
schedule groups, the tasks will be spatially close as well. When the 
next schedule group’s turn eventually comes, all of its tasks will be 
executed the same way.

Forward Progress Mode
In forward progress mode, the scheduler executes one pending task 
from each of its schedule groups in round-robin fashion. Unlike en-
hanced locality scheduling, there are no caches of runnable contexts 
per virtual processor object; however, runnable contexts are priori-
tized over pending tasks.

With forward progress scheduling, the runtime assumes that 
keeping each schedule group from stalling matters more than running 
related tasks as a batch. This might occur, for example, in discrete 
event simulation scenarios where you want all schedule groups to 
progress by one step before updating a GUI. Forward progress sched-
uling is a less commonly used approach for task-based applications.

Task Execution Order
The scheduler does not make guarantees about the order in which 
queued tasks will be executed, and your application should make no 
assumptions about when a particular task will be allowed to run. In 
the current implementation, pending tasks are generally processed in 
FIFO order unless they are inlined. However, given the interaction of 
the various queues of pending tasks and the optional round-robin or 
batch-oriented processing of schedule groups, it’s not possible to 
predict the order of execution.  If you need tasks to be run in a par-
ticular order, then you should use one of the task coordination tech-
niques described in this book. Examples include the task_group::wait 
method and the receive function of messaging blocks.

Tasks That Are Run Inline
As was mentioned earlier in the section on “Running Tasks,” it is pos-
sible that the scheduler will run a task in the thread context of an-
other task that is waiting for that task to complete. For example, if 
you invoke a task group’s wait method from within a task context, the 
runtime knows that the current context will be idle until the tasks of 
that task group have completed. The runtime can therefore optimize 
its use of worker threads by reusing the blocked thread to run one or 
more of the pending tasks. Inlining is a good example of potential 
parallelism: when dependent tasks run on a machine with many cores, 
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If you get the context object 
of a thread that is not one of 
the scheduler’s worker threads, 
be aware that the behavior of 
some context-dependent 
operations will be different 
than would be the case for the 
scheduler’s worker threads.

they run in parallel. On a machine with just one available core, they 
act like sequential function calls.

Inlining allows you to avoid deadlock due to thread starvation. 
Unlike other kinds of cooperative blocking operations, the task_
group::wait function provides a hint to the scheduler about which 
pending tasks will unblock the current context. Inlined execution is a 
good way to elevate the scheduling priority of tasks that will unblock 
other tasks.
Only tasks that were created by the current context are eligible to be 
inlined when you invoke their task group’s wait method.

You can provide an explicit hint that inlining should occur by call-
ing the task_group::run_and_wait method. This method creates a 
new task and immediately processes it with inline execution.

Using Contexts to Communicate with the 
Scheduler

The Context class allows you to communicate with the task  
scheduler. The context object that corresponds to the currently  
executing thread can be accessed by invoking the static method 
Context::CurrentContext. 

The CurrentContext method can be called from application 
threads as well as from a task scheduler’s worker threads. The behav-
ior of the context object’s methods may differ, depending on wheth-
er the current context object corresponds to a worker thread or 
whether it is an application thread. For example, if you call a coopera-
tive blocking operation from within an application thread (that is, a 
thread that is not one of the current scheduler’s worker threads), the 
thread will block without allowing one of the scheduler’s runnable 
contexts to resume as is the case when a worker thread blocks. 

Debugging Information
You can get access to useful debugging information from contexts, 
such as the integer ID for the current context, the schedule group ID 
and the virtual processor object ID. The information is provided by 
the static methods Id, ScheduleGroupId, and VirtualProcessorId of 
the Context class.

Querying for Cancellation
You can detect that a task is being cancelled even if you don’t have a 
reference to its task group object by invoking the Context class’s 
static IsCurrentTaskCollectionCanceling method. Checking for can-
cellation is useful if you are about to start a long-running operation.  
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Interface to Cooperative Blocking
A task can communicate with the scheduler by invoking one of the 
cooperative blocking operations that were described in Chapter 3, 
“Parallel Tasks.” See “Coordinating Tasks with Cooperative Blocking” 
in Chapter 3 for a list of the built-in operations.

The Context class provides an additional, lower-level interface to 
cooperative blocking through its Block and Unblock methods. PPL 
and the Asynchronous Agents Library use the Block and Unblock 
methods to implement all of their cooperative blocking operations. 

You can use Block and Unblock to coordinate your tasks from 
within custom synchronization primitives. If you program your own 
parallel synchronization primitives with the Block and Unblock meth-
ods, you must be very careful not to disrupt the runtime’s internal use 
of these operations. Block and Unblock are not nesting operations, 
but the order of operations is flexible. If Unblock precedes Block, the 
Block operation is ignored. You can unintentionally interact with one 
of PPL’s internal operations by allowing an out-of-order Unblock call. 
For example, an out-of-order call to Unblock followed by a call to 
PPL’s critical_section::lock method can, in certain interleavings, cause 
a critical section not to be observed. 

Block and Unblock are low-level methods. Most programmers 
will want to use the higher-level cooperative blocking operations.

Waiting
The Concurrency namespace includes a global wait function that al-
lows you to suspend the current context with the guarantee that the 
suspended task will not be resumed until a time interval that is pro-
vided as an argument to the wait function has passed. It is possible, 
due to the queue-oriented scheduling approach used by the task 
scheduler, that a task will be suspended for a time period that is much 
longer than the specified wait period.

The Yield method of the Context class allows a pending light-
weight task to run, or if there are no lightweight tasks, it allows one 
of the runnable contexts to resume. If either of these two conditions 
is satisfied, then the current worker thread is added to the queue of 
runnable contexts; otherwise, the Yield method is a no-op. The Yield 
method is also a no-op when called from a thread that is not a worker 
thread of a scheduler.

The Caching Suballocator
You can allocate memory from a memory cache that is local to the 
current context. This is useful when a task needs to create many small 
temporary objects on the heap, and you expect that more than one 
task might create objects of the same size.

Most programmers should  
use the higher-level built-in 
task coordination mechanisms 
of PPL and messaging blocks 
rather than implementing  
their own synchronization 
primitives.

If you use the Block and 
Unblock methods you must be 
very careful to avoid situations 
that could unexpectedly 
interact with PPL’s internal  
use of the methods. Most 
programmers will not need  
to use Block and Unblock  
to implement their own 
synchronization primitives.

Calling the Yield method in  
a tight loop while polling for 
some condition can cause  
poor performance. Instead, 
wait for an event. 
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The synchronization overhead of coordinating memory allocation 
and deallocation for a global pool of memory can be a significant 
source of overhead for a parallel application. The Concurrency Run-
time provides a thread-private caching suballocator that allows you to 
allocate and deallocate temporary working storage within a task and 
potentially to use fewer locks or memory barrier operations than you 
would if you used the global memory pool. Allocation requests only 
incur synchronization overhead at the beginning of the run when new 
memory must be added to the cache.

The caching suballocator is meant for situations where there is 
frequent allocation of temporary memory within tasks. Invoke its 
functions only from within a running task. The caching suballocator 
does not improve performance in all scenarios, and it does not free its 
memory. Refer to MSDN for more information about its use.

Long-Running I/O Tasks
By default, the scheduler assumes that its tasks are computationally 
intensive. Dynamic resource management compensates to some ex-
tent for I/O-intensive tasks that are not computationally intensive, 
but if you know that your task is a long-running I/O-intensive task 
that will use only a fraction of a processor’s resources, you should give 
a hint to the scheduler that it can oversubscribe the current processor 
node by one additional running thread.

To do this, call the static method Context::Oversubscribe with 
the argument true. This tells the scheduler that it should request an 
additional virtual processor object from the resource manager while 
using the same processor affinity mask as the current thread is using. 
This operation increases the level of concurrency in the scheduler 
without increasing the number of cores that will be used by the 
scheduler. 

When you are done with your long-running I/O-intensive task, 
call the Oversubscribe method with the argument false to reset the 
level of concurrency to the previous value. Be sure to call the Over 
subscribe method in pairs, and to take exceptions into account. The 
sample pack includes the scoped_oversubcription_token helper 
class to automatically ensure that the Oversubscribe method is called 
in pairs. You should place calls to the Oversubscribe method within 
the body of the work function of your long-running I/O task.           

Setting Scheduler Policy
There are a number of settings that you can control that will affect 
how the task scheduler does its job. These are documented on MSDN 
as values of the PolicyElementKey enumeration (and they are also 
found in the concrt.h header file), but here is a summary of the most 
important settings. See the section “Creating and Attaching a Task 
Scheduler” in this appendix for a code example of how to set policies.

Use Context::Oversubscribe 
to add concurrency to the 
current scheduler without 
consuming more cores. 
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Policy Key Description

MinConcurrency This is the minimum number of virtual processor 
objects that the scheduler requires at startup.

MaxConcurrency This is the maximum number of virtual processor 
objects that the scheduler requires at startup. There 
is a special value, MaxExecutionResources, that 
indicates “as many as exist on the computer.”

SchedulingProtocol This indicates which of the two available scheduling 
algorithms should be used by the scheduler. Choose 
EnhanceScheduleGroupLocality (the default) or 
EnhanceForwardProgress. 

TargetOversubscription-
Factor

You can use this setting if you know that your 
operations will ordinarily use only a fraction of the 
processor’s time, as is typical in I/O-bound 
programs. The runtime multiplies the number of 
virtual processor objects by the oversubscription 
factor. 

Anti-Patterns
Here are a few things to watch out for.

Multiple Resource Managers
The resource manager is a singleton that works across one process. It 
does not coordinate processor resources across multiple operating-
system processes. If your application uses multiple, concurrent pro-
cesses, you may need to reduce the level of concurrency in each pro-
cess for optimum efficiency.

It is possible, in some situations, for more than one resource man-
ager instance to be created within a single process. If this happens, the 
resource manager instances will contend for resources. This situation 
arises if a library uses static linking. There will be one resource man-
ager for each statically linked instance of the C++ runtime. 

It is also possible to have multiple resource manager instances if 
you use more than one version of the C++ runtime within a single 
application. In this case, there will be one resource manager for each 
version of the runtime.

In general, you should avoid situations where more than one  
instance of the resource manager can exist.

Resource Management Overhead
The resource manager optimizes the use of processor resources by 
dynamically adjusting the concurrency levels of schedulers that are 
active in the application. In certain scenarios, you may find that dy-
namic resource management isn’t providing optimal results. In these 

Avoid static linking for your 
parallel applications.
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cases you can effectively disable dynamic resource management by 
setting the minimum and maximum concurrency levels of your sched-
uler to the same value. You should understand the performance char-
acteristics of your application before doing this. In most scenarios 
dynamic resource management will result in better overall throughput 
of your application.

Unintentional Oversubscription from 
Inlined Tasks

The “Running Tasks” section of this appendix describes how a sched-
uler may reuse a thread that is waiting for the tasks of a task group to 
complete to run one or more pending tasks. This is known as inlining.

Inline execution that occurs in a worker thread of a scheduler 
object has no effect on the level of concurrency of the scheduler. 
With or without inline execution, the number of worker threads that 
are allowed to run at the same time is limited by the number of vir-
tual processor objects that have been allocated to the scheduler by 
the resource manager.

Unlike worker threads, application threads are not managed by a 
task scheduler instance. Application threads (that is, any threads that 
are not a scheduler’s worker threads) do not count toward the limit on 
the number of concurrent running threads that is coordinated by the 
resource manager. Unless blocked by the operating system, applica-
tion threads are always allowed to run.

If you call the task_group::run method from an application 
thread and subsequently call the wait method on the task group from 
that same thread, inline execution of the task you created may occur 
on the application thread.  The application thread will be allowed to 
run regardless of the number of running worker threads in the sched-
uler. Therefore, inline execution in an application may increase the 
parallel operation’s overall level of concurrency by one running thread. 
If your scheduler had a maximum concurrency level of four virtual 
processor objects, your application might run five tasks concurrently: 
four on the worker threads of the scheduler, plus one on the applica-
tion thread that entered the wait method.

Pending PPL tasks are only inlined if they reside in the local work-
stealing queue of the thread that enters the wait method. Therefore, 
if you wanted to prevent inline execution of tasks in an application 
thread, you could a use a lightweight task to create the PPL task that 
would otherwise have been created in the application thread. The 
pending PPL task would then be placed in the work-stealing queue of 
whatever worker thread executed the lightweight task and would not 
be eligible for inline execution on the application thread. 
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The remarks about inlining in this section also apply to parallel_
for, parallel_for_each, and parallel_invoke, as well as tasks created 
using structured task groups. Inline execution also occurs whenever 
you use the task_group::run_and_wait method.

Deadlock from Thread Starvation
Recall that there are two kinds of blocking operations: cooperative 
blocking operations proved by the Concurrency Runtime and “nonco-
operative” blocking operations provided by the operating system.  

When a worker thread becomes blocked by a cooperative block-
ing operation, the scheduler will resume one of its runnable contexts 
or allow one of the pending tasks to start running. Note that if no idle 
worker thread is available to run the pending task, a new worker 
thread will be created. Creating the additional thread does not intro-
duce additional concurrency. At any given time, the number of worker 
threads that are released to the OS for scheduling never exceeds the 
number of virtual processor objects allocated to it by the resource 
manager.

Allowing additional pending tasks to run when a task is coopera-
tively blocked increases the chance of running the task that would 
unblock the cooperatively blocked task. This can help avoid deadlock 
from thread starvation that can occur in systems with many depen-
dent tasks and fixed levels of concurrency.

In contrast to cooperative blocking, noncooperative or OS-level 
blocking is opaque to PPL and the Concurrency Runtime, unless the 
blocking operation occurs on a User-Mode Scheduled (UMS) thread. 
(UMS threads are outside the scope of this book.) When a worker 
thread becomes blocked by an OS-level blocking operation, the 
scheduler still considers it to be a running thread. The scheduler does 
not resume one of its runnable contexts or start one of its pending 
tasks in response to an OS-level blocking operation. As a conse-
quence, you may end up with deadlock due to thread starvation. For 
example, in an extreme case, if all worker threads of a scheduler are 
blocked by noncooperative blocking operations that need pending 
tasks to run in order to become unblocked, the scheduler is dead-
locked. 

It is therefore recommended that cooperative blocking opera-
tions be used as the primary mechanism of expressing dependencies 
among tasks.

Ignored Process Affinity Mask
As of Windows 7 you can set a process affinity mask that limits the 
cores on which the threads of your application may run. The version 
of the Concurrency Runtime that is shipped as part of Visual Studio 

The number of worker threads 
in a scheduler is not the 
scheduler’s level of concur-
rency. At any given time, the 
number of threads that are 
released to the OS for 
execution will not exceed the 
number of virtual processor 
objects that have been 
allocated to the scheduler by 
the resource manager.
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2010 SP1 does not recognize this user-selected process affinity mask. 
Instead, it uses all available cores up to the maximum specified level 
of concurrency for each scheduler.

This issue is expected to be resolved in a future version of the 
Concurrency Runtime.

References
For more information about the caching suballocator, see Alloc Function 
on MSDN at 

http://msdn.microsoft.com/en-us/library/dd492420.aspx.

For a general description of NUMA, see Introduction to NUMA 
on the MSDN Magazine blog at 

http://blogs.msdn.com/b/msdnmagazine/archive/2010/ 
05/06/10009393.aspx.

For more information about the PolicyElementKey enumeration, 
see the entry on MSDN at 

http://msdn.microsoft.com/en-us/library/dd492562.

http://msdn.microsoft.com/en-us/library/dd492420.aspx
http://blogs.msdn.com/b/msdnmagazine/archive/2010/05/06/10009393.aspx
http://blogs.msdn.com/b/msdnmagazine/archive/2010/05/06/10009393.aspx
http://msdn.microsoft.com/en-us/library/dd492562


133

Appendix B Debugging and Profiling 
Parallel Applications

The Microsoft® Visual Studio® 2010 development system debugger 
includes two windows that assist with parallel programming: the Par-
allel Stacks window and the Parallel Tasks window. In addition, the 
Premium and Ultimate editions of Visual Studio 2010 include a profil-
ing tool. This appendix gives examples of how to use these windows 
and the profiler to visualize the execution of a parallel program and to 
confirm that it’s working as you expect. After you gain some experi-
ence at this, you’ll be able to use these tools to help identify and fix 
problems.

The Parallel Tasks and Parallel Stacks Windows
In Visual Studio, open the parallel guide samples solution. Set the A-
Dash project that is discussed in Chapter 5, “Futures,” to be the 
startup project. Open AnalysisEngine.h and find the AnalysisEngine:
:DoAnalysisParallel method, which declares and configures the A-
Dash workflow. Each future executes a different stage of the work-
flow and returns a result that is, in turn, passed to the next future in 
the workflow. Insert a breakpoint in the declaration of the future5 
lambda.

Start the debugging process. You can either press F5 or click Start 
Debugging on the Debug menu. The A-Dash sample begins to run 
and displays its GUI. On the GUI, select the Parallel checkbox, and 
then click Calculate. When execution reaches the breakpoint, all 
tasks stop and the familiar Call Stack window appears. On the Debug 
menu, point to Windows, and then click Parallel Tasks. When execu-
tion first reaches the breakpoint, the Parallel Tasks window shows a 
task associated with each future that has been added to the workflow.

Figure 1 illustrates a case where multiple tasks are running. Recall 
that each task runs in a thread. The Parallel Tasks window shows the 
assignment of tasks to threads. The ID column identifies the task, 
while the Thread Assignment column shows the thread. If there is task 
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inlining, more than one task can run in a thread, so it’s possible that 
there will be more tasks than executing threads. The Status column 
indicates whether the task is running or is in a scheduled or waiting 
state. In some cases the debugger cannot detect that the task is wait-
ing. In these instances, the task is shown as running. The Location 
column gives the name of the method that is currently being invoked. 
Place the cursor over the location field of each task to see a call stack 
pop-up window that displays only the stack frames that are part of 
the user’s code. To switch to a particular stack frame, double-click on 
it. 

Double-click on a task listed in the Task column to switch the 
debugger to that task. On the Debug menu, point to Windows, and 
then click Call Stack to display the complete stack for the thread that 
is executing the task. 

figure 1
The Parallel Tasks window

On the Debug menu, point to Windows, and then click Parallel 
Stacks. In the Parallel Stacks window, from the drop-down menu in 
the upper-left corner, click Tasks. The window shows the call stack 
for each of the running or waiting tasks. This is illustrated in Figure 2.

figure 2
The Parallel Stacks window

See the “Further Reading” section for references that discuss the 
Parallel Stacks window in more detail.

If you add additional breakpoints to the other futures defined  
in DoAnalysisParallel and press F5, the contents of the Parallel  
Tasks and Parallel Stacks windows change as the A-Dash workflow 
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processes data. This is how the application should behave. However, 
these windows can also reveal unexpected behavior that can help you 
identify and fix performance problems and synchronization errors. 
For example, the Parallel Tasks and Parallel Stacks windows can help 
to identify common concurrency problems such as deadlocks. This 
behavior is demonstrated in the following code, taken from the Pro-
filerExamples sample.

void Deadlock()
{
    reader_writer_lock lock1;
    reader_writer_lock lock2;

    parallel_invoke(
        [&lock1, &lock2]() 
        { 
            for (int i = 0; ; i++)
            {
                lock1.lock();
                printf("Got lock 1 at %d\n", i);
                lock2.lock();
                printf("Got lock 2 at %d\n", i);
            }
        },
        [&lock1, &lock2]() 
        { 
            for (int i = 0; ; i++)
            {
                lock2.lock();
                printf("Got lock 2 at %d\n", i);
                lock1.lock();
                printf("Got lock 1 at %d\n", i);
            }
        }
    );
}

This code is a classic example of a deadlock. Each task attempts 
to acquire a lock. The order in which this occurs leads to a cycle that 
eventually results in deadlock. At this point, the application stops 
making progress and there is no more new console output. Once the 
deadlock occurs, click the Break All option on the Debug menu, and 
open the Parallel Tasks window. You’ll see something similar to Figure 
3. Notice that the status of each task is Waiting instead of Running. 
Visual Studio also displays a warning dialog “The process appears to 
be deadlocked (or is not running any user-mode code). All threads 
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have been stopped.” Use the Parallel Tasks window to examine each 
deadlocked task and its call stack to understand why your application 
is deadlocked.  Place the cursor over the Status column to see what 
the task is waiting for. You can also examine the call stacks and iden-
tify the locks, or other wait conditions, that are causing the problem. 

figure 3
Parallel Tasks window showing deadlock

Breakpoints and Memory Allocation
Excessive memory copies can lead to significant performance degra-
dation. Use the debugger to set breakpoints on your class’s copy 
constructor and assignment operators to find unintentional copy and 
assignment operations.

For example, the ImagePipeline sample passes pointers of type 
shared_ptr<ImageInfo> along the pipeline rather than copies of  
the ImageInfo objects. These are too expensive to copy because  
they contain large bitmaps. However, ImageInfo contains an Image 
PerformanceData object that is copied once per image. You can use 
the debugger to verify that no extra copies are being made. Here is 
how to do this. 

Set a breakpoint inside the ImagePerformanceData assignment 
operator in ImagePerformanceData.h and then run the ImagePipeline 
example. You’ll see that an ImagePerformanceData object is only 
assigned once, after it has passed through the pipeline. This occurs 
during the display phase, when the ImagePipelineDlg::OnPaint 
method creates a copy of the final ImagePerformanceData object so 
that the GUI thread has the latest data available to display.

Use the Hit Count feature to count the number of assignments. 
In the Breakpoints window, right-click on the breakpoint and then 
click Hit Count on the shortcut menu. In the Hit Count dialog box, 
select break when the hit count is equal to option from the When 
the breakpoint is hit list. Set the hit count number to 100. Run the 
sample. The debugger stops on the breakpoint after one hundred im-
ages have been processed. Because the number of hits equals the 
number of images processed so far, you know that only one copy was 
made for each image. If there were unintentional copies, you would 
reach the breakpoint after fewer images were processed.   
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You can also declare the copy constructors and assignment op-
erators as private to prevent objects from being unintentionally 
copied. The ImageInfo object has a private copy constructor and as-
signment operator for just this reason.

The Concurrency Visualizer
The profiler included in the Visual Studio 2010 Premium and Ultimate 
editions includes the Concurrency Visualizer. This tool shows how 
parallel code uses resources as it runs: how many cores it uses, how 
threads are distributed among cores, and the activity of each thread. 
This information helps you to confirm that your parallel code is behav-
ing as you intended, and it can help you to diagnose performance 
problems. This appendix uses the Concurrency Visualizer to profile 
the ImagePipeline sample from Chapter 7 on a computer with eight 
logical cores.

The Concurrency Visualizer has two stages: data collection and 
visualization. In the collection stage, you first enable data collection 
and then run your application. In the visualization stage, you examine 
the data you collected. 

You first perform the data collection stage. To do this, you must 
run Visual Studio as an administrator because data collection uses 
kernel-level logging. Open the sample solution in Visual Studio. Click 
Start Performance Analysis on the Visual Studio Debug menu. The 
Performance Wizard begins. Click Concurrency, and then select  
Visualize the behavior of a multithreaded application. The next 
page of the wizard shows the solution that is currently open in Visual 
Studio. Select the project you want to profile, which is Image 
Pipeline. Click Next. The last page of the wizard asks if you want to 
begin profiling after the wizard finishes. This check box is selected by 
default. Click Finish. The Visual Studio profiler window appears and 
indicates that it’s currently profiling. The ImagePipeline sample begins 
to run and opens its GUI window. To maximize processor utilization, 
select the Load Balanced option, and then click Start. In order to 
collect enough data to visualize, let the Images counter on the GUI 
reach at least a hundred. Then click Stop Profiling in the Visual Studio 
profiler window.

During data collection, the performance analyzer takes frequent 
data samples (known as snapshots) that record the state of your run-
ning parallel code. The analyzer also uses Event Tracing for Windows 
(ETW) to collect all context switches and some other relevant events. 
Each data collection run writes several data files, including a .vsp file. 
A single data collection run can write files that are hundreds of  
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megabytes in size. Data collected during separate runs of the same 
program can differ because of uncontrolled factors such as other 
processes running on the same computer.

You can run the visualization stage whenever the data files are 
available. You don’t need to run Visual Studio as an administrator to 
do this. There are several ways to begin visualization. Unless you’ve 
changed the default, visualization automatically starts as soon as data 
collection finishes. Alternatively, you can simply open any .vsp file in 
Visual Studio. If you select the first option, you’ll see a summary re-
port after the data is collected and analyzed. The summary report 
shows the different views that are available. These include a Threads 
view, a CPU Utilization view, and a Cores view. 

Figure 4 shows the Threads view. Each task is executed in a thread. 
The Concurrency Visualizer shows the thread for each task (remember 
that there may be more than one task per thread because of inline 
tasks).

figure 4
Threads view of the Concurrency Visualizer

The Concurrency Visualizer screens contain many details that may 
not be readable in this book’s figures, which are reduced in size and 
are not in full color. The full color screen shots from this appendix are 
available on the CodePlex site at http://parallelpatternscpp.codeplex.
com/. 

The Threads View also contains a couple of other useful features. 
Clicking on different segments of an individual thread activity time-

http://parallelpatternscpp.codeplex.com/
http://parallelpatternscpp.codeplex.com/
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line in the upper part of the screen allows you to see the current stack 
for that activity segment. This allows you to associate code with indi-
vidual activity segments. Clicking on the different activity types in the 
Visible Timeline Profile on the bottom left displays a Profile Report. 
This allows you to discover which functions in your application are 
involved in each activity type for the currently selected portion of the 
timeline. You can also click the Demystify feature to get further help 
on what different colors mean and on other features of the report.

Figure 5 illustrates the CPU Utilization view. The CPU Utilization 
view shows how many logical cores the entire application (all tasks) 
uses, as a function of time. On the computer used for this example, 
there are eight logical cores. Other processes not related to the ap-
plication are also shown as an aggregated total named Other Pro-
cesses. For the application process, there’s a graph that shows how 
many logical cores it’s using at each point in time. To make the pro-
cesses easier to distinguish, the area under each process’s graph ap-
pears in a different color (some colors may not be reproduced accu-
rately in this figure). Some data points show a fraction rather than an 
integer such as 0, 1, or 2, because each point represents an average 
calculated over the sampling interval.

figure 5
Detail of CPU Utilization view

Figure 6 illustrates the Cores view. The Cores view shows how 
the application uses the available cores. There is a timeline for each 
core, with a color-coded band that indicates when each thread is  
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running (a different color indicates each thread.) In this example, be-
tween 0 and 2.5 on the time scale, the application is idle with little or 
no work running on any core. Between 2.5 and 12 the pipeline is filled 
and more tasks are eligible to run than there are cores. Several threads 
alternate on each core and the table beneath the graph shows that 
there is some context switching across cores.

figure 6
Detail of Cores view

Figure 7 illustrates the Threads view. The Threads view shows 
how each thread spends its time. The upper part of the view is a 
timeline with color-coded bands that indicate different types of activity. 
For example, red indicates when the thread is synchronizing (waiting 
for something). In this example, the Threads view initially shows the 
Main Thread and Worker Thread 4708. Later, more threads are added 
to the thread pool as the pipeline starts processing images. Not all 
threads are visible in the view pictured here. (You can hide individual 
threads by right-clicking the view and then clicking Hide). This view 
also shows that the main thread is active throughout; the green-brown 
color indicates user interface activity. Other threads show segments 
of green, denoting execution, red indicating synchronization, and  
yellow for preempted treads.
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figure 7
Detail of Threads view

After 2.5 on the timeline, some pipeline threads execute fre-
quently but others execute almost continuously. There are more 
pipeline threads than cores, so some pipeline threads must alternate 
between running and being preempted.

Scenario Markers
You can use the Scenario library to mark different phases of complex 
applications. The following code shows an example. (The Scenario 
library is a free download on the MSDN® Code Gallery website. For 
more information, see “Scenario Marker Support” on MSDN at http://
msdn.microsoft.com/en-us/library/dd984115.aspx.)

#include “Scenario.h”

// ...

shared_ptr<Scenario> myScenario = shared_ptr<Scenario>(new
Scenario());
myScenario->Begin(0, L”Main Calculation”);

// Main Calculation Phase...

myScenario->End();

These markers will be displayed in all three views. They appear as 
a band across the top and bottom of the timeline. Move the mouse 
over the band to see the marker name. You can see an example of this 
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later on in Figure 11. Don’t use too many markers as they can easily 
overwhelm the visualization and make it hard to read. The tool may 
hide some markers to improve visibility. You can use the zoom feature 
to increase the magnification and see the hidden markers for a spe-
cific section of the view.

Visual Patterns
The patterns discussed in this book focus primarily on ways to express 
potential parallelism. However, there are other types of patterns that 
are useful in parallel development. The human mind is very good at 
recognizing visual patterns, and the Concurrency Visualizer takes ad-
vantage of this. You can learn to identify some common visual pat-
terns that occur when an application has specific performance prob-
lems. This section describes visual patterns that will help you to 
recognize and fix oversubscription, lock contention, and load imbal-
ances.

More examples of common patterns indicating poorly behaved 
parallel applications are discussed on MSDN. See the “Further Read-
ing” section for more information. You can also access this content 
from a link in the Hints tab in the Threads view. As seen earlier, Figure 
4 shows the link in this tab.

Oversubscription
Oversubscription occurs when there are more threads than logical 
processors to run them. Oversubscription can cause poor perfor-
mance because of the high number of context switches, each of which 
takes some processing time and which can decrease the benefits 
provided by memory caches.

Oversubscription is easy to recognize in the Concurrency Visual-
izer because it causes large numbers of yellow regions in the profiler 
trace. Yellow means that a thread was preempted (the thread was 
switched out). When profiled, the following code yields a quintes-
sential depiction of oversubscription.

void Oversubscription()
{
  task_group tasks;

  for (unsigned int p = 0; p < (GetProcessorCount() * 4); p++)
  {
    tasks.run([]()
    {
      // Oversubscribe in an exception safe manner
      scoped_oversubcription_token oversubscribe;
      // Do work 
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      delay(1000000000);
    });
  }
  tasks.wait();
}

Figure 8 illustrates the Threads view from one run of this function 
on a system with eight logical cores. It produces a very distinct pattern.

figure 8
Threads view that shows oversubscription

Lock Contention and Serialization
Contention occurs when a thread attempts to acquire a lock that is 
held by another thread. In many cases, this results in the second thread 
blocking until the lock is released. The Threads view of the Concur-
rency Visualizer depicts blocking in red. It is often a sign of decreased 
performance. In extreme cases, an application can be fully serialized 
by one or more locks, even though multiple threads are being used. 
You can see this in Figure 9, where the narrow bright green areas 
representing execution only appear in one worker thread at a time. In 
such cases, the performance may be much worse than in a conven-
tional, serial version of the application.

The following LockContention method produces a lock convoy, 
which leads to significant lock contention and serialization of the 
program even though multiple threads are in use. A lock convoy is a 
performance problem that occurs when multiple threads contend for 
a frequently shared resource.

void LockContention()
{
  task_group tasks;
  reader_writer_lock lock;
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  for (unsigned int p = 0; p < GetProcessorCount(); p++)
  {
    tasks.run([&lock]() 
    {
      for (int i = 0; i < 10; i++)
      {
        // Do work
        delay(100000);
 
        // Do protected work
        lock.lock();
        delay(100000000);
        lock.unlock();
      }
    });
  }
  tasks.wait();
}

Figure 9 illustrates the pattern this code produced in the Threads 
view of the Concurrency Visualizer.

figure 9
Threads view showing lock convoy
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Clicking on one of the Synchronization (red) blocks highlights it 
and also indicates which thread blocked it. You can examine the stack 
of the unblocking thread by clicking the Unblocking stack tab. This 
allows you to see the call stack of the thread that unblocked the 
blocked thread. In this example, the maroon block on thread 1428 
indicates that it was waiting for thread 7400, which was executing a 
call to the ThreadProxy::SwitchTo method. After thread 1428 is un-
blocked it continues to execute and is displayed as a green block in 
the Threads view. You can click on any red synchronization block to 
examine its unblocking stack, if one is available. When examining call 
stacks, remember that you can quickly view the source by double-
clicking on the stack frame. This allows you to associate segments on 
the Thread view with the code that was executing during that seg-
ment.

Load Imbalance
A load imbalance occurs when work is unevenly distributed across all 
the threads that are involved in a parallel operation. Load imbalances 
mean that the system is underutilized because some threads or cores 
are idle while others finish processing the operation. The visual pat-
tern produced by a load imbalance is recognizable in several of the 
Concurrency Visualizer views. The following code creates a load im-
balance.

void LoadImbalance()
{
  const int loadFactor = 20;

  parallel_for_fixed(0, 100000, [loadFactor](int i)
  {
    // Do work
    delay(i, loadFactor);
  });
}

Although most of the parallelism support in the PPL uses dy-
namic partitioning to apportion work to a pool of tasks, the parallel 
_for_fixed method included in concrt_extras.h, which is available at 
http://code.msdn.microsoft.com/concrtextras, uses fixed partitioning 
of iterations, without range stealing. The code example shown here, 
when run on a system with eight logical cores, causes elements [0, 
12499] to be processed by one task, elements [12500, 24999] to be 
processed by another task, and so on, through the entire range. The 
body of the workload iterates from 0 to the current index value, 
which means that the amount of work to be done is proportional to 
the index. Workers that process lower ranges will have significantly 
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less work to do than the workers that process the upper ranges. As a 
consequence, the tasks for each sub-range finish at different times. 
This load imbalance is an inefficient use of the processors. Figure 10, 
which is the CPU Utilization view in the Concurrency Visualizer,  
illustrates this.

figure 10
CPU view that shows a load imbalance

When the LoadImbalance method begins to execute, all eight 
logical cores on the system are being used. However, after a period of 
time, usage drops as each core completes its work. This yields a stair-
step pattern, as threads are dropped after they complete their portion 
of the work. The Threads view confirms this analysis. Figure 11 illus-
trates the Threads view.

figure 11
Threads view that shows a load imbalance
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The Threads view shows that after completing a portion of the 
work, the worker threads were idle while they waited for the Main 
Thread, 7136, to complete the remaining work. The example is a con-
sole application and, in this case, the runtime used the main thread to 
run one of the tasks.

Further Reading
The Parallel Performance Analysis blog at MSDN discusses many tech-
niques for analyzing your code and includes many examples. MSDN 
also provides information about the Scenario library.

Parallel Development in Visual Studio 2010 blog on MSDN: 
http://blogs.msdn.com/b/visualizeparallel/.

“Concurrency Visualizer” on MSDN: 
http://msdn.microsoft.com/en-us/library/dd537632.aspx.

“Performance Tuning with the Concurrency Visualizer in Visual 
Studio 2010” on MSDN: 
http://msdn.microsoft.com/en-us/magazine/ee336027.aspx.

Scenario Home Page on MSDN: 
http://code.msdn.microsoft.com/scenario.

The Parallel Tasks and Parallel Stacks windows, and other 
features of the debugger to support parallel programming: 
http://www.danielmoth.com/Blog/Parallel-Debugging.aspx 
http://msdn.microsoft.com/en-us/library/ms164746.aspx.

“Debugging Task-Based Parallel Applications in Visual Studio 
2010” on MSDN: 
http://msdn.microsoft.com/en-us/magazine/ee410778.aspx. 

Common Patterns for Poorly-Behaved Multithreaded  
Applications: 
http://msdn.microsoft.com/en-us/library/ee329530.aspx.

Improve Debugging And Performance Tuning With ETW: 
http://msdn.microsoft.com/en-us/magazine/cc163437.aspx.

 

http://blogs.msdn.com/b/visualizeparallel/
http://code.msdn.microsoft.com/scenario
http://www.danielmoth.com/Blog/Parallel-Debugging.aspx
http://msdn.microsoft.com/en-us/library/ms164746.aspx
http://msdn.microsoft.com/en-us/magazine/ee410778.aspx
http://msdn.microsoft.com/en-us/library/ee329530.aspx
http://msdn.microsoft.com/en-us/magazine/cc163437.aspx
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Technology OverviewAppendix C

Appendix C describes some of the parallel computing resources  
offered by Microsoft® that are not covered in this book. The “Further 
Reading” section includes URLs for websites that have more informa-
tion. Figure 1 illustrates the different offerings and how they are  
related.

figure 1
Microsoft parallel programming resources

This book covers the Parallel Patterns and Asynchronous Agents 
libraries. These libraries use the native Concurrency Runtime, which 
includes a task scheduler and a resource manager that execute native 
parallel workloads on multicore architectures. 

The Microsoft Visual C#®, Visual Basic®, and Parallel LINQ 
(PLINQ) languages ship with the Microsoft Visual Studio® 2010 de-
velopment system. These languages use the Task Parallel Library (TPL) 
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to support parallelism. The F# language also ships with Visual Studio. 
It exposes a more functional approach to parallelism than the other 
languages, and it emphasizes immutable data types. However, the F# 
runtime libraries build on and integrate with TPL, and the F# Power-
Pack includes parallelization support that is built on top of PLINQ. 
How to develop parallel applications that use the Microsoft .NET 
Framework 4, TPL, and PLINQ is covered in the companion to this 
book, Parallel Programming with Microsoft .NET. Another library, Reac-
tive Extensions (Rx), allows you to use observable collections to 
compose asynchronous and event-based programs.

The Accelerator API (not shown in the diagram) provides a func-
tional programming model for implementing array-processing opera-
tions.  Accelerator handles all the details of parallelizing and running 
the computation on the selected target processor, which includes 
graphics processing units and multicore CPUs. The Accelerator API is 
largely processor independent so, with only minor changes, the same 
array-processing code can run on any supported processor.

Visual Studio 2010 contains several tools for debugging and pro-
filing parallel applications. For examples of how to use them, see Ap-
pendix B, “Debugging and Profiling Parallel Applications.” You can also 
use the CHESS tools from Microsoft Research to detect bugs in your 
parallel code.

CHESS and Accelerator are incubation or research projects and 
Microsoft has made no commitment to ship them. However, they 
contain many new ideas and approaches that will interest anyone who 
has read this far in the book. You’re encouraged to download them, 
evaluate them, and provide the respective teams with feedback.

DryadLINQ is a programming environment for writing large-scale 
data parallel applications that run on High Performance Computing 
(HPC) clusters. DryadLINQ combines two important pieces of Micro-
soft technology: the Dryad distributed execution engine and the .NET 
Language Integrated Query (LINQ).

All of the above technologies, with the exception of DryadLINQ, 
are largely for parallelism on a single computer. Windows HPC Server 
targets clusters of servers and supports scale-out across many com-
puters. Although the technologies are very different for clustered 
computing, some of the fundamental patterns discussed in this book, 
such as Parallel Tasks and Parallel Aggregation, are still applicable.

http://research.microsoft.com/en-us/projects/dryad/default.aspx
http://msdn2.microsoft.com/en-us/netframework/aa904594.aspx
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Further Reading
The MSDN® Parallel Computing Developer Center covers parallel 
development on both the managed and native concurrency runtimes, 
as well as the Visual Studio 2010 tools that support writing parallel 
programs. For more information, see:

http://msdn.microsoft.com/concurrency.

For information about F#, including the language reference and walk-
throughs, see the Microsoft F# Developer Center at:

http://msdn.microsoft.com/fsharp.

Windows HPC Server 2008 R2 product information and developer 
resources are available on the Windows HPC Server site at: 

http://www.microsoft.com/hpc.

A Community Technology Preview (CTP) of DryadLINQ is available 
for download at:

http://technet.microsoft.com/library/ee815854(WS.10).aspx. 

Details of the Accelerator project are available at:

http://research.microsoft.com/accelerator.

Descriptions and downloads for Rx are available at:

http://msdn.microsoft.com/en-us/data/gg577609.

CHESS is a Microsoft DevLabs project, and is available at:

http://msdn.microsoft.com/devlabs.

A more in-depth overview of possible future directions for support of 
parallel programming in Visual Studio can be found in Stephen Toub’s 
talk at TechEd Europe 2010 at:

http://www.msteched.com/2010/Europe/DEV208.

 
 

 
 

http://msdn.microsoft.com/concurrency
http://msdn.microsoft.com/fsharp
http://www.microsoft.com/hpc
http://research.microsoft.com/accelerator
http://msdn.microsoft.com/en-us/data/gg577609
http://msdn.microsoft.com/devlabs
http://www.msteched.com/2010/Europe/DEV208
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Glossary

agent. See asynchronous agent.

aggregation. To combine multiple data items into a single result.

alpha blending. Merging different images into a single image by 
superimposing them in semitransparent layers.

associative operation. A binary operation is associative if, for a 
sequence of operations, the order in which the operations are 
performed does not change the result. For example (a + b) + c = a + 
(b + c).

asynchronous. An operation that that does not block the current 
thread of control when the operation starts. 

asynchronous agent. A software component that works asynchro-
nously with other agents as part of a larger computation. Often 
shortened to agent.

asynchronous pipeline. A pipeline in which tasks are only created 
when data becomes available.

background thread. A thread that stops when a process shuts 
down. A running background thread does not keep a process 
running. Threads in the thread pool are background threads. Com-
pare to foreground thread.

barrier. A synchronization point where all participating threads must 
stop and wait until every thread reaches it. 

block. To pause execution while waiting for some event or condi-
tion.

captured variable. A variable defined outside a lambda expression 
that is used in the lambda expression. The lambda expression can 
update the captured variable.



154 glossary

cluster. A parallel computing system composed of multiple comput-
ers connected by a network, not multiple cores in a single physical 
processor.

closure. A lambda expression that captures variables from an 
enclosing lexical scope.

commutative operation. A binary operation is commutative if 
changing the order of the operands does not change the result.  
For example, a + b = b + a. Examples of commutative operations  
are scalar addition and scalar multiplication.

concurrency. Programming with multiple activities at the same time. 
Concurrency enables programs to respond promptly to external 
stimuli; its goal is to reduce latency. Concurrency can be imple-
mented with asynchronous operations or with threads, where it  
is expected that threads will take turns executing on processors. 
Compare to parallelism.

concurrency safe. When a block of code can be run on multiple 
cores simultaneously without introducing errors.

Concurrency Visualizer. An addition to the Microsoft® Visual 
Studio® development system’s profiler that collects and displays 
information about the execution and performance of parallel 
programs.

context switch. When one thread stops executing on a processor 
and a different thread resumes. Excessive context switching can 
occur when processors are oversubscribed and can result in poor 
performance.

control flow. A basis for coordination whereby tasks execute 
according to the steps of an algorithm, as in a parallel loop.

control-flow agent. Agents whose run methods contain sequential 
loops that process incoming values from a messaging block.

cooperative blocking. A programming idiom whereby the current 
context waits for a resource to become available or for a signal to 
occur. The task scheduler is notified when a cooperative blocking 
operation occurs. Compare with non-cooperative blocking.

cooperative cancellation.  A programming idiom that uses coopera-
tive blocking to implement operations that are capable of being 
canceled before they are completed.

cooperative context switch. When a worker thread becomes 
blocked as a result of a cooperative blocking operation.  
See cooperative blocking.
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coordination. Arranging for tasks to work together to ensure a 
correct outcome. Coordination can be based on data flow or  
control flow.

core. The part of a physical processor that executes instructions. 
Most recent physical processor models have more than one core,  
so they can execute tasks in parallel.

data flow. A basis for coordination where tasks execute when data 
becomes available, as in a pipeline or task graph. Compare to control 
flow.

data parallelism. A form of parallel processing whereby the same 
computation executes in parallel on different data. Data parallelism 
is supported in the Parallel Patterns Library (PPL) by the parallel_for 
and parallel_for_each functions.  Compare to task parallelism.

data partitioning. Dividing a collection of data into parts, in order 
to use data parallelism.

data race. When more than one concurrent thread reads and 
updates a variable without synchronization.

deadlock. When execution stops and cannot resume because the 
system is waiting for a condition that cannot occur. Threads can 
deadlock when one holds resources that another needs. Compare  
to livelock.

decomposition. To break a problem into smaller parts. For parallel 
processing, decomposition can be by data or by task.

degree of parallelism. The number of parallel tasks that may 
execute concurrently at any one time.

dependency. When one operation uses the results of another.  
When there is a dependency between operations, they cannot  
run in parallel. Compare to independent.

double-checked locking. Process in which one first tests a condi-
tion, then, only if the condition is true, acquires a lock and tests the 
same condition again, this time to determine whether to update 
shared data. This maneuver can often avoid the expensive operation 
of acquiring a lock when it will not be useful.

dynamic partitioning. Data partitioning whereby the parts are 
selected as the parallel tasks execute. Compare to static partitioning.

enhanced locality mode. When a scheduler tries to execute related 
tasks in batches.
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foreground thread. A thread that keeps a process running. After all 
its foreground threads stop, the process shuts down. Compare to 
background thread.

fork/join. A parallel computing pattern that uses task parallelism. 
Fork occurs when tasks start; join occurs when all tasks finish.

forward progress mode. When a scheduler executes one pending 
task from each of its schedule groups in round-robin fashion.

future. A task that returns a value.

function object. See functor.

functor. A language feature that allows an instance of a class to be 
invoked as though it were a function. In C++ functors are defined as 
a class with a definition for operator().

granularity. The quantity of data in a partition or work in a task. 
Equivalently, the number of data partitions or tasks. A coarse level 
of granularity has a few large partitions or tasks; a fine level of 
granularity has many small partitions or tasks.

hardware thread. An execution pipeline on a core. Simultaneous 
multithreading (also sometimes known as hyperthreading) enables 
more than one hardware thread to execute on a single core. Each 
hardware thread is considered a separate logical processor.

hyperthreading. See simultaneous multithreading.

immutable. Property of data that means it cannot be modified after 
it’s created. For example, strings provided by some libraries are 
immutable. Compare to mutable.

immutable type. A type whose instances are immutable. Its in-
stances are purely functional data structures.

independent. When one operation does not use the results of 
another. Independent operations can execute in parallel. Compare to 
dependency.

kernel mode. The mode of execution in which the Microsoft 
Windows® kernel runs and has full access to all resources. Compare 
to user mode.

lambda expression. An anonymous function that can capture 
variables from its enclosing lexical scope.

livelock. When execution continues but does not make progress 
toward its goal. Compare to deadlock.
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load balancing. When similar amounts of work are assigned to 
different tasks so that the available processors are used efficiently. 
Compare to load imbalance.

load imbalance. When different amounts of work are assigned to 
different tasks so that some tasks don’t have enough work to do, 
and the available processors are not used efficiently. Compare to 
load balancing.

lock. A synchronization mechanism that ensures that only one 
thread can execute a particular section of code at a time. 

lock convoy. When multiple tasks contend repeatedly for the  
same lock. Frequent failures to acquire the lock can result in poor 
performance.

manycore. Multicore, usually with more than eight logical  
processors.

map. A parallel computation where multiple tasks independently 
perform the same transformation on different data. An example  
of data parallelism.

map/reduce. A parallel programming pattern where a data parallel 
phase (map) is followed by an aggregation phase (reduce).

memory barrier. A machine instruction that enforces an ordering 
constraint on memory operations. Memory operations that precede 
the barrier are guaranteed to occur before operations that follow 
the barrier.

multicore. Having more than one core, able to execute parallel tasks. 
Most recent physical processor models are multicore.

multiplicity. The number of times an element occurs in a multiset.

multiset. An unordered collection that may contain duplicates.  
Each element in the collection is associated with a multiplicity (or 
count) that indicates how many times it occurs. Compare to set.

multiset union. An operation that combines multisets by merging 
their elements and adding the multiplicities of each element.

mutable. Property of data that means that it can be modified after 
it is created. Not to be confused with the C++ mutable keyword. 
Compare to immutable.

mutable type. A type whose instances are mutable.

nested parallelism. When one parallel programming construct 
appears within another. 
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node. A computer in a cluster.

nonblocking algorithm. An algorithm that allows multiple tasks to 
make progress on a problem without ever blocking each other. 

noncooperative blocking. Lower-level blocking operations that are 
provided by the operating system. The task scheduler is unaware of 
noncooperative blocking; to the scheduler, the blocked tasks are 
indistinguishable from running tasks. See cooperative blocking.

NUMA (non-uniform memory access). A computer memory 
architecture in which memory access time depends on the memory 
location relative to a processor. 

object graph. A data structure consisting of objects that reference 
each other. Object graphs are often of shared mutable data that can 
complicate parallel programming.

overlapped I/O. I/O operations that proceed (or wait) while other 
tasks are executing.

oversubscription. When there are more threads than processors 
available to run them. Oversubscription can result in poor perfor-
mance because time is spent context switching.

parallelism. Programming with multiple threads, when it is expected 
that threads will execute at the same time on multiple processors. 
Its goal is to increase throughput. Compare to concurrency.

partitioning. Dividing data into parts in order to use data parallel-
ism.

physical processor. A processor chip, also known as a package or 
socket. Most recent physical processor models have more than one 
core and more than one logical processor per core.

pipeline. A series of producer/consumers, where each one consumes 
the output produced by its predecessor.

priority inversion. When a lower-priority thread runs while a 
higher-priority thread waits. This can occur when the lower-priority 
thread holds a resource that the higher-priority thread requires.

process. A running application. Processes can run in parallel and are 
isolated from one another (they usually do not share data). A process 
can include several (or many) threads or tasks Compare to thread, 
task.

processor affinity mask. A bit mask that tells the scheduler which 
processor(s) a thread should be run on.
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profiler. A tool that collects and displays information for perfor-
mance analysis. The Concurrency Visualizer is a profiler for  
concurrent and parallel programs.

pure function. A function (or method or operation) that has no side 
effects (does not update any data nor produce any output) and 
returns only a value.

purely functional data structure. A data structure that can only  
be accessed by pure functions. An instance of an immutable type.

race. When the outcome of a computation depends on which 
statement executes first, but the order of execution is not con-
trolled or synchronized.

race condition. A situation in which the observable behavior of  
a program depends on the order in which parallel operations  
complete. Race conditions are usually errors; good programming 
practices prevent them.

recursive decomposition. In parallel programming, refers to the  
situation in which the tasks themselves can start more tasks.

reduce. A kind of aggregation whereby data is combined by an 
operation that is associative, which often makes it possible to 
perform much of the reduction in parallel.

round robin. A scheduling algorithm whereby each thread is given 
its turn to run in a fixed order in a repeating cycle, so that during 
each cycle, each thread runs once.

runnable context. A thread that was previously interrupted by a 
cooperative blocking operation but is now unblocked and ready  
to resume its work.

scalable. A parallel computation whose performance improves  
when more processors are available is said to be scalable.

schedule group. An internal data structure used by the scheduler 
that represents a queue of pending tasks.

semaphore. A synchronization mechanism that ensures that not 
more than a specified number of threads can execute a particular 
section of code at a time. Compare to lock.

serialize. To run in sequence, not in parallel.

set. An unordered collection without duplicates. Compare to 
multiset.

shared data. Data used by more than one thread. Read/write access 
to mutable shared data requires synchronization.
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single-threaded data type. A type that is not thread-safe. It cannot 
be accessed by multiple threads unless there is additional synchroni-
zation in user code.

simultaneous multithreading (SMT). A technique for executing 
multiple threads on a single core.

socket. Physical processor.

speculative execution. To execute tasks even though their results 
may not be needed.

static partitioning. Data partitioning whereby the parts are selected 
before the program executes. Compare to dynamic partitioning.

sentinel value. A user-defined value that acts as an end-of-file-
token.

synchronization. Coordinating the actions of threads to ensure  
a correct outcome. A lock is an example of a synchronization  
mechanism.

task. A parallelizable unit of work. A task executes in a thread, but  
is not the same as a thread; it is at a higher level of abstraction.  
Tasks are recommended for parallel programming with the PPL  
and Asynchronous Agents libraries. Compare to thread, process.

task graph. Can be seen as a directed graph when tasks provide 
results that are the inputs to other tasks. The nodes are tasks, and 
the arcs are values that act as inputs and outputs of the tasks.

task group. A group of tasks that are either waited on or cancelled 
together. The task_group class is thread-safe. 

task inlining. When more than one task executes in a single thread 
concurrently due to one task requesting that the other task run 
synchronously at the current point of execution.

task parallelism. A form of parallel processing whereby different 
computations execute in parallel on different data. Compare to  
data parallelism.

thread. An executing sequence of statements. Several (or many) 
threads can run within a single process. Threads are not isolated;  
all the threads in a process share data. A thread can run a task,  
but is not the same as a task; it is at a lower level of abstraction.  
Compare to process, task.

thread affinity. When certain operations must only be performed 
by a particular thread. 
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thread pool. A collection of threads managed by the system that are 
used to avoid the overhead of creating and disposing threads. 

thread safe. See concurrency safe.

thread starvation. When tasks are unable to run because there are 
no virtual processor objects available to run them in the scheduler.

thread-local state. Variables that are accessed by only one thread. 
No locking or other synchronization is needed to safely access 
thread-local state. The combinable<T> class is a recommended way 
to establish thread-local state when using the PPL and Asynchro-
nous Agents libraries. 

thread-safe. A type that can be used concurrently by multiple 
threads, without requiring additional synchronization in user code.  
A thread-safe type ensures that its data can be accessed by only  
one thread at a time, and its operations are atomic with respect to 
multiple threads. Compare to single-threaded data type.

torn read. When reading a variable requires more than one machine 
instruction, and another task writes to the variable between the 
read instructions. Compare to torn write.

torn write. When writing a variable requires more than one machine 
instruction, and another task reads the variable between the write 
instructions. Compare to torn read.

two-step dance. To signal an event while holding a lock, when the 
waking thread needs to acquire that lock. It will wake only to find 
that it must wait again. This can cause context switching and poor 
performance.

undersubscription. When there are fewer tasks than there are 
processors available to run them, so processors remain idle.

user mode. The mode in which user applications run but have 
restricted access to resources. Compare to kernel mode.

virtual core. Logical processor.

volatile. A keyword that tells the C++ compiler that a field can  
be modified by multiple threads, the operating system, or other 
hardware.

work functions. The arguments to parallel_invoke or  
task_group::run.

work stealing. When a thread executes a task queued for another 
thread, in order to remain busy.
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call messaging block, 86
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cooperative blocking, 31-33
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coordination, 3
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CorrectCaseAgent class, 90-91
CPU Utilization view, 139
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event::wait method, 33
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