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PREFACE

When I was writing my dissertation on C. I. Lewis’s epistemology,
I was struck by his epigram ‘If anything is to be probable, then
something must be certain’ (An Analysis of Knowledge and V aluation,
p. 186).

If Lewis were right about this, it seemed to me, then epistemology
must indeed take the form of a Cartesian reconstruction, seeking to
base our merely probable empirical knowledge on some foundation
of ultimate certainties. And yet Lewis obviously thought that this
principle, with its profound philosophical implications, could readily
be established by merely mathematical considerations from the
theory of probability. While I consider myself to be as ardent an
admirer of science and mathematics as any good product of the
American school of hard analytic philosophy, I found it hard to
believe that the very structure of human knowledge could be dictated
by relatively trivial mathematical theorems. There must, I thought,
be something deeper and more philosophical in probability theory
than I had learned in the course of taking my bachelor’s degree in
mathematics. And so I walked over to Widener library to check out
a good book on the specifically philosophical aspects of probability
theory ~ and I couldn’t find one!

I found many good books on the mathematics of probability
theory, a few on its history, and a handful which discussed the various
‘interpretations’ of probability, but none which gave a comprehensive
discussion of the metaphysical and epistemological roots and bran-
ches which were important to me. In frustration I resolved to write
the book I could not find.
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The project has been longer and more arduous than I would have
wished. I quickly decided that no one interpretation was sufficiently
dominant to be my single subject and that, indeed, it is very important
to see how the different theories have varying philosophical assump-
tions and implications. The result is that I had to attempt to
understand and analyze not just one, but at least four different
theories of probability.

In addition to this expansion of my topic, I also discovered that
my personal commitments were expanding in a way which made it
difficult to find research time. My university expects faculty to
distinguish themselves in the three fields of teaching, research, and
service. Unfortunately, I have found myself unable to do all three — or
even two — simultaneously and well. In teaching, I am a compulsive
preparer of lectures, so that when I teach even one or two courses
my preparation expands to fill all available time. In service, I am
the chief lobbyist for my union, the United Faculty of Florida,
American Federation of Teachers, AFL-CIO, and find it necessary
to devote an entire quarter each year to the Florida legislative
session — an enjoyable and stimulating activity but one which leaves
little time for reading and writing. And finally, for research, 1 have
found that my personal style of scholarship requires at least an entire
day of effort, and preferably weeks and months of total immersion,
before 1 can get to the stage of putting down even a sentence or
two. The result is that a research project which should have been
finished in a couple of years has stretched out longer than I care to
remember. That I was able to complete it at all is entirely due to
the support I have received from others to enable me over the years
to take a summer here, a quarter there, to devote entirely to writing.

Of those who have made this possible I must thank first the
University of South Florida, and especially President John Lott
Brown, Dean David Smith, and Philosophy Chairperson Willis
Truitt. Their personal kindness and concern for scholarship resulted
in my getting far more encouragement, support, and release time
than most union activists expect or receive.

Among foundations, the Danforth Foundation supported me as
a Danforth Fellow during those early years at Harvard when I
encountered this problem and read the basic texts. The National
Endowment for the Humanities, through its program of Summer
Seminars for College Teachers provided me with two very enjoyable
and productive summers, one with Roderick Chisholm at Brown
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University and the other with Richard Rorty at Princeton. The final
chapter and editorial revisions were completed under a grant from
the University of South Florida Foundation, for which I am very
grateful.

My philosophical debts are too numerous to recount, as I seem
to have been working on this project for most of my philosophical
life. I must, however, mention at least Donald St. Clair, who first
got me addicted to philosophy at Arkansas Tech; Roderick Firth,
Israel Scheffler, Rogers Albritton, John Rawls, and (especially) Hilary
Putnam of the Harvard faculty, all of whom have belied the claim
that eminent scholars care only for their own work and have no
time for students and younger philosophers; Bob Schultz, Paul
Gomberg, and Howard Rolston who taught me how to ‘talk
philosophy’ as graduate students; and my colleagues at the Univer-
sity of South Florida — especially Willis Truitt and Bruce Silver ~
who have helped me ‘do philosophy’ as a professor.

From other fields, I am grateful for the assistance of David Stroud
in physics and Sandy Turner in mathematics.

Ted Honderich, the general editor of this series, was the source
of useful practical advice and much-needed psychic support and
encouragement. David Godwin and the editorial staff were kind and
helpful in leading me through the unfamiliar complexities of prepar-
ing a manuscript for publication.

Despite the help of all these good people and institutions, there
were months when no income was available, days when it scarcely
seemed worth it to continue, and years and years of unreasonable
demands on my family. For putting up with all this, and for helping
me through it, my wife Doris and my daughter Meg deserve the
greatest share of my love and appreciation.
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I
WHAT IS PROBABILITY?

Style manuals advise us that the proper way to begin a piece of
expository writing is to introduce and identify clearly the subject of
our exposition. This would seem, then, to be the appropriate place
to offer a precise definition of ‘probability.” Unfortunately, we are
unable to do so. In fact, one of the major disputes of probability
theorists is precisely the question of what is to count as an appropriate
definition of probability; so that if we were to begin this chapter by
arbitrarily deciding that crucial issue, we should be, like the White
Queen, living backwards and arriving at our conclusion before we
conduct our investigation. We shall therefore postpone the question
of definition, and indicate instead some general outlines of our use
of the concept, hoping thereby to gain some idea of what we are
talking about when we talk about probability.

In daily life we find more frequent use of the adverbial form
‘probably’ or the adjectival form ‘probable’ than of the substantive
‘probability.” This is presumably because ordinary conversation
generally employs abstract or quantitative ideas to talk about concrete
physical objects or events. Thus, we are more likely to say Jones
will probably win the election, than ‘The probability that Jones will
win the election is high,” for about the same reasons that we are
more likely to say ‘There are three apples on the table’ than to say
‘The number of apples on the table is three.” The reason is that we
normally talk about apples instead of numbers and people instead
of probabilities.

There are many different ways in which we use these terms in
ordinary life, and many different propositions and substantives which
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What is Probability?
we modify. In this general class of examples we find such usages as:

Caesar probably visited Britain.

The outbreak of a nuclear war is less probable now than it was
10 or 15 years ago.

The likely winner is Miss Florida.

The expanding universe theory is probably true.

The door is probably locked.

Even when we fail to use such terms as ‘probable’ or ‘likely’ in a
sentence, we often consider them as implicit qualifiers and will add
them on request:

‘Taxes will go up again next year.’
‘That’s not certain.’
‘Maybe not, but it’s damn sure probable.’

This example is an instance of prediction. Human beings have long
realized that it is difficult to make accurate statements about the
future and virtually impossible to make certain ones. One of the
general guidelines on the use of ‘probability’ that has long been
recognized is therefore that probability has to do with predicting the
future.

Yet by looking back at our list of examples above, we see that
the Caesar example concerns the past and the door example concerns
the present, while the expanding universe example is apparently
timeless. Thus it is not the case that probability is always concerned
with the future. These examples are analogous to the tax dialogue
not in being predictive, but in concerning an assertion that is less
than certain. Perhaps, then, we can say that at least some uses of
probability involve asserting with less than certainty.

When we assert something of which we are uncertain, we usually
do so because we have some evidence which supports the assertion
although it is not conclusive. For example,

Since Arkansas beat Texas, they will probably be the Southwest
Conference champions.

On the evidence presented to the inquest, I find that the
probable cause of death was murder.

Data from Apollo 15 make it more probable that the Moon
has experienced vulcanism.

Such usages as these suggest that probability concerns the support
2
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of aconclusion by given evidence or the relationship between premises
and conclusion in a non-deductive argument.

Just as we do sometimes talk about numbers rather than things,
it is also true that we sometimes talk about probabilities rather than
events. Hence,

The probability of rain tomorrow is 70 per cent.

The odds on Gluefoot are 20 to 7.

His chance of failing is greater than one-half.

The probability that the Moon was formed in its present orbit
is greater than the probability that it was captured by the
Earth.

In such contexts it becomes clear that at least part of the use of the
term requires that ‘probability’ refers to an abstract quantity or
number.

Finally, when we inquire into the nature and origin of such
numbers, we find that they often are based on the frequency with
which a property appears in a population. Thus,

Since 50 per cent of inductees become combat soldiers and 20
per cent of combat soldiers become casualties, an inductee

has a 10 per cent chance of becoming a casualty.

Since 4 of the 52 cards are Aces, the probability of drawing an
Ace is 1/13.

Of a thousand men in your age group, 50 die in a given year:
thus your probability of surviving the year is 0.95.

These last examples suggest the possibility that a probability is a
frequency ratio in a population.

All of these guidelines, restrictions, and rules of usage have some
bearing on our use of the word ‘probability,” and must at least be
considered in any theory of probability if that theory is intended to
explicate our ordinary usage as well as regulate it.

C. 1. Lewis has said that he could not explain probability to anyone
who did not already possess a primordial sense of probability.! John
Maynard Keynes has said, in a similar vein, ‘A definition of
probability is not possible, unless it contents us to define degrees of
the probability-relation by reference to degrees of rational belief. We
cannot analyze the probability-relation in terms of simpler ideas.”
Others have held that a definition is possible, but only in the context
of developing a theory of probability. Considering the difficulties we

3
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have met so far, let us see, then, if we can make more progress by
inquiring about theories of probability rather than definitions
simpliciter.

1 WHAT IS A THEORY OF PROBABILITY?

If we consider the theory of probability to be in the same boat as
most other more or less scientific theories, we shall find it to be a
philosophically rocky boat indeed, adrift in an uncharted sea. For
questions about the nature, origin, and justification of theories are
among the most widely debated issues in Philosophy of Science
today. It would truly be presumptuous of us to attempt to lay down
strict general rules to which any theory must accord; yet this need
not inhibit us from trying to say a few things about what theories
of probability have traditionally had in common and how they have
differed and what it would be reasonable to require of future theories.

We mentioned above that a theory must at least consider the
various conceptual outlines and linguistic usages which are sanc-
tioned by either scientific or ordinary discourse, and it would seem
appropriate to require that it either incorporate or at least account
for as many of these pretheoretical instances as possible.® This is so
because otherwise it would not be a theory of probability, but of
something else. Ideally, the theory should account for all uses of
‘probability’, but that is far too restrictive a condition to impose.

Despite the fact that it must be based on the received, standard
use of ‘probability,’ the avowed aim of a theory of probability is to
sanction and regulate such uses. If it were not thus prescriptive, it
would not be a theory of probability, but at best a description of
current usage. It seems, then, that valid instances of probability
judgments must agree with our theory, and that the theory is justified
by its conformity to valid probability judgments.* This mutual
accommodation between a theory and its subject matter is developed
in Nelson Goodman’s discussion of inductive inference:?

The task of formulating rules that define the difference between
valid and invalid inductive inferences is much like the task of
defining any term with an established usage. If we set out to
define the term ‘tree’, we try to compose out of already under-
stood words an expression that will apply to the familiar
objects that standard usage calls trees. A proposal that plainly

4
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violates either condition is rejected; while a definition that
meets these tests may be adopted and used to decide cases that
are not already settled by actual usage. Thus the interplay we
observed between rules of induction and particular inductive
inferences is simply an instance of this characteristic dual
adjustment between definition and usage, whereby the usage
informs the definition, which in turn guides extension of the
usage.

Following this principle, we find that ‘the familiar objects that
standard usage calls’ probability judgments include above all those
strictly mathematical relations and manipulations which have come
to be known as the calculus of probability. This calculus is a system
for manipulating numbers of a certain type in order to produce more
numbers of the same type. The calculus was developed piecemeal,
largely in an attempt to calculate the odds in various games of
chance. Its general principles have become fairly standard in theories
of probability, presumably because they capture well our intuitions
about the relations between probabilities. Despite their historical
origin as empirical descriptions of games of chance, Reichenbach®
and others have shown that such rules as the multiplication law for
independent events and the addition law for exclusive alternatives
can be developed rigorously and consistently as an uninterpreted
axiom system; it is then up to each theory to give an interpretation
to the calculus which will lead to our familiar probability judgments.

Whether the calculus derives from experience or is established
axiomatically or results from a particular definition of ‘probability’,
the strictest requirement for a theory of probability is that it must
contain such a calculus in a form which varies little from the standard
one.

Given this start, it is obvious that the second requirement is that
a theory must give an interpretation of the calculus, or a definition
of ‘probability,” which will enable us to use that calculus in making
most of the probability judgments which we do in fact make.”

We shall now examine the most important attempts to fulfill these
requirements with a theory of probability.

2 TYPES OF PROBABILITY THEORIES

In this book we will examine four major types of probability theory.
Some authorities recognize more: I have seen up to eleven different

5
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senses of ‘probability’ distinguished by an analyst. Most, however,
recognize fewer. Carnap and Lewis agree there are only two, while
Nagel accepts three. (These different schemes of classification will
be discussed in the next section, after the reader is familiar with the
basic types.)

These are the four theories with which we will be concerned:

1 The Classical Theory of Probability (CTP): defines prob-
ability in terms of ratios of equipossible alternatives.

2 The A Priori (AP) Theory: defines probability as a measure
of the logical support for a proposition on given evidence.

3 The Relative Frequency (RF) Theory: defines probability as
the (limit of the) relative frequency of appearance of one
(infinite) class in another.

4 The Subjectivistic Theory (SUB): defines probability as the
degree of belief of a given person in a given proposition at a
specific time.

Certainly one could make a case for dealing with more (or fewer)
theories.

There are two major reasons why I have chosen not to include
more theories: (1) some, such as Braithwaite’s, Popper’s, and
Toulmin’s, are not (yet) important enough and have not been
accepted and used by sufficient numbers of philosophers, mathemati-
cians, and statisticians; (2) some, such as Wittgenstein’s and Lewis’s,
are not distinct enough in their identity but share most features with
a more important theory which is discussed here.

On the other hand, I have expanded my coverage beyond the two
(AP and RF) recommended by Carnap (inter alia) because: (1) The
Classical theory retains several differences from its descendant, the
AP theory, and it is also of sufficient historical importance to warrant
its inclusion in a work of this magnitude. (2) The Subjectivistic theory
has grown in importance since Carnap’s major work was written
and has become the preferred view of many (especially Bayesian)
statisticians and the working model of many experimental psycho-
logists and decision theorists.

On the whole my selection has been made on the grounds that
these are the most important theories, both historically and theoreti-
cally. To delete one of them would seriously truncate our subject;
to add on another would not be proportionately valuable.
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Now let us take a quick introductory overview of the kinds of
theories and establish their major differences.

The Classical Theory of Probability (CTP)

The ‘Classical Theory of Probability’ is a slightly artificial name for
the views of the founders of the theory of probability. Such men as
Jacob Bernoulli and Pierre Simon de Laplace were generally not
developers and adherents of an articulated and self-consistent formal
system of the type we would today call a theory. Rather they shared
a common approach and some basic ideas as they constructed the
mathematical heart of probability theory — the probability calculus.

For the most part, I have treated this school as a historical entity,
rather than a current contender for theoretical respectability. To
that extent the adherents of the CTP are identifiable chronologically,
as participants in a certain period of the development of our subject.
Yet there are issues and attitudes involved in the CTP. The body
of doctrine which constitutes roughly the core of this somewhat
unstructured theory goes something like this:

(a) Probability is the ratio of the number of favorable cases to
the number of all equipossible cases.

(b) The Principle of Indifference: Events are equipossible if we
have no reason to prefer or expect one over the other (later:
if they are coordinate events, symmetrically related to the
evidence).

(c) There is no objective chance or indeterminism — probability
is a measure of our partial ignorance.

(d) Nevertheless, there are objective rules for generating and
combining probabilities — it is not just a matter of opinion.

(e) Repetitive events with fixed probabilities have an expected
frequency of occurrence (Bernoulli’s Theorem). It may be
possible to use an observed frequency to infer the fixed but
unknown probabilities of some events (Bayes’s Theorem,
Inverse Bernoulli).

To this day, most gamblers and ordinary folks rely on the CTP
for those few types of quantitative probability judgments most of us
make. This is how we know that the probability of an ace is 1/13
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and that we shouldn’t draw to an inside straight. But theory has
marched on, and now most advanced probabilists prefer one of the
other theories of probability.

The A Priori (AP) Theory of Probability

A theory of probability will be said to be of the a priori type if most
of the following conditions are met:

(a) It describes probability as a logical relation between
statements.

(b) It considers this relation to be completely determinable by
the application of logic and the rules of probability to the
two statements.

(c) It requires that every ascription of probability must be
relative to certain evidence. Unqualified ascriptions of
probability are either elliptical or meaningless.

(d) It considers every properly derived probability statement to
be analytic, logically true, and incorrigible.

(e) It holds that ‘re-evaluation’ or ‘correction’ of a probability
statement consists actually of its replacement by another
probability statement which is also logically true but refers
to different evidence and therefore ascribes a different
value to the probability relation.

To a great extent, the a priori theory is the inheritor of the tradition
of the Classical Theory of Probability.® Most notoriously, AP
theories tend to incorporate some form of the Principle of Indifference
into their structure. This makes it possible for them to generate
initial probabilities without the laborious empirical investigations
required by relative frequency (RF) theories. It also, of course,
subjects them to the same charges of hocus-pocus and ‘making
knowledge out of ignorance’ which have bedeviled the CTP.

AP theorists commonly reply that their discipline is a part of logic,
showing the evidentiary connection between what we know and
what we can predict. Seen in this light, they say, their theories tell
us no more and no less about reality than do formal mathematics
and deductive logic, which are also a priori.

In later years, under the influence of Rudolf Carnap, AP theorists
have spent much of their time seeking to develop a formal inductive
logic based on the structure of language.

8
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Relative Frequency (RF) Theories of Probability

During the middle part of this century the principal opponent of
AP probability theory has been the view that probability is not some
logical, abstract connection between words and sentences but rather
is the actual, empirical rate of ocsurrence of some feature of the real
world. This view identifies the probability of occurrence of X with
the actual relative frequency of occurrence of X in the real world,
and was developed largely by Richard von Mises and Hans
Reichenbach and has been especially attractive to scientists and
actuaries. Generally, a theory is said to be of the relative frequency
(RF) type if most of the following conditions are met:

(a) It defines ‘probability’ as ‘the relative frequency of a pro-
perty within a population.’

(b) It defines ‘probability’ (in at least some cases) as ‘the limit of
a relative frequency in an infinite series.’

(c) It holds that the probability calculus is an axiomatic
mathematical tool for dealing with reality — just as arith-
metic and geometry are.

(d) It holds that individual probability-statements attribute an
empirical property to an empirical population.

(e) It holds, therefore, that although theorems of the prob-
ability calculus may be analytic, individual probability-
statements are definitely synthetic, empirical, and factual.

The fundamental difference between the RF and AP theories is
that RF probability is an empirical, measurable property of the
actual physical world, while AP probability is a formal, logical
property of the way we think and speak about the world.

The Subjectivistic Theory (SUB) of Probability

Our final theory of probability is the newcomer to the group. Its
theoretical development began with Frank P. Ramsey and was
largely completed by Bruno de Finetti and Leonard J. Savage. The
principal views of this school are as follows:

(a) Probability is the degree of belief of a given person in a
given proposition.
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(b) Probabilities are best established by examining behavior,
especially betting behavior.

(c) There are no objective probabilities — or at least this is a
different and less important sense of ‘probability.’

(d) An event has no unique probability. Each individual is
logically free to set his own values.

(e) The probability beliefs of a rational individual must be
consistent and governed by the Calculus of Probability.

This view of probability turns essentially on the thesis that each
person’s probability beliefs are ineliminably private, personal, and
subjective. There cannot be rules (according to SUB) which will tell
me how strongly to expect the occurrence of X any more than there
can be rules telling me how much to fear the occurrence of X. Both
are subjective attitudes, and none of us has the ability or the right
to tell anyone else what to fear or expect in normal cases. In abnormal
cases, however, we may have need of therapy.

Psychological therapy is needed when our fears become excessive,
incapacitating, neurotic. Probability therapy is needed when our
expectations are inconsistent (and therefore irrational).

If we allow ourselves to believe and act upon inconsistent
probability assessments, we become the losers in an operation known
as the Dutch Book (a series of bets on an event, at varying odds,
which guarantee one side a net profit and the other a net loss). By
studying probability theory we can learn to avoid being victimized
in this manner.

It is the peculiar view of de Finetti that the only definite knowledge
available from probability theory is a form of the Principle of
Non-contradiction. Once we understand the calculus and know how
to keep our beliefs consistent, probability theory can tell us nothing
more about what to believe. It cannot tell us, for example, that the
probability that this card is an ace is 1/13, because there are no rules
for determining such a probability and, in fact, there is no such
objective probability at all to be discovered. Probabilistic reasoning
is more an art or skill than a science, and the best we can hope for
is some Counsels of Prudence or Rules of Thumb about reasonable
ways of arriving at a probability value.

This is such a truncation of the scope of probability theory that
many who study SUB have refused to follow de Finetti in this view.
Those who work in experimental psychology or decision theory, for

10
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example, often hold that subjectivistic probabilities are one interest-
ing phenomenon but are far from exhausting probability theory.
Many continue to believe in the existence of objective probabilities
(whether AP or RF) and in the importance of identifying them as
well as discovering how individuals do behave. But the official
position of SUB theorists is that all probability phenomena are
personal, subjectivistic, degrees of belief or expectation.

3 SCHEMES OF CLASSIFICATION OF THEORIES

Now that we are familiar with the four basic types of theories to be
discussed in this book, let us digress a moment to consider other
ways in which our subject might have been arranged.

The classification of theories of probability is, like most taxo-
nomies, a matter of taste as well as fact, convenience as well as
correctness. Natural kinds do seem to exist among the theories, but
their differentia are neither physically nor logically determinate.
Rather, we have several individual theories characterized by Wittgen-
steinian ‘family resemblances.” One must decide which features are
most important for speciation as well as which theories ‘really do’
possess which features before one can present a completed classifica-
tion. These decisions are certainly debatable and somewhat sub-
jective.

Yet a classification is necessary. There are too many individual
theories — even too many major theories — for the average student of
the subject to attempt to master them all. And taxonomies are not
just an intellectual economy measure. In stressing similarities and
identifying differences the taxonomist is forced to decide and
dramatize which features are important in his field ; similar decisions
on a smaller scale must be made about each theory as it is classified.
The resulting system, if it is well thought out, can be useful to the
expert as well as the beginner by identifying contrasts and compari-
sons, consistencies and inconsistencies which might otherwise have
gone unremarked.

It might be fun, and even instructive, to attempt a taxonomy of
taxonomies, showing how different critics have been influenced by
the same and different considerations in drawing their categories of
probability theories. Rather than enter upon this topic of second-
order criticism, I will complete this preliminary chapter by an

11



What is Probability ?

unsystematic description of other classification schemes colored by
a few remarks in support of my own.

Carnap’s Grand Dichotomy

Obviously the simplest way to differentiate a topic is to break it up
into two parts. Many writers have done this to probability theory,
though the break is not always found in the same place.

The most famous of these twofold divisions is that of Rudolf
Carnap, who grouped theories according to the underlying concepts
they sought to explain:®

The various theories of probability are attempts at an expli-
cation of what is regarded as the prescientific concept of
probability. In fact, however, there are two fundamentally
different concepts for which the term ‘probability’ is in general
use. The two concepts are as follows, here distinguished by
subscripts.

(i) Probability, is the degree of confirmation of a hypothesis
h with respect to an evidence statement e, e.g., an obser-
vational report. This is a logical semantical concept. A
sentence about this concept is based, not on observation of
facts, but on a logical analysis; if it is true, it is L-true
(analytic).

(i) Probability, is the relative frequency (in the long run) of
one property of events or things with respect to another. A
sentence about this concept is factual, empirical.

This division is simple and plausible and recurs in one form or
another in many theorists (C. I. Lewis,'° for example). This distinc-
tion roughly parallels that between our A Priori (AP) and Relative
Frequency (RF) groupings. In my doctoral dissertation, I too
accepted this grand dichotomy and used it in my discussion of
theories of probability.'! I have abandoned it in this work for three
principal reasons:

1 A more extended and detailed discussion invites and permits
the treatment of more major types of theories.

2 Although the Classical Theory of Probability (CTP) resembles
the AP theory in many respects, it lacks the fundamental
insight that probability is a matter of logic rather
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than the world, while retaining a historical and
pedagogical importance of its own.

3 The Subjectivistic Theory of Probability (SUB) has risen to
importance since Carnap’s time and doesn’t fit neatly into
either of his categories.

Nagel’s Threefold Division

The International Encyclopedia of Unified Science was part of the
logical empiricists’ grand design to bring system and order to the
scientific search for knowledge. One of its major articles was Ernest
Nagel's monograph, Principles of the Theory of Probability.'? In
this work Nagel identifies three major types of theories of probability,
which correspond to ‘three major interpretations’ of the term
‘probability.’!3

1 According to the first, a degree of probability measures our
subjective expectation or strength of belief, and the calculus
of probability is a branch of combinatorial analysis; this is
the classical view of the subject, which was held by Laplace
and is still professed by many mathematicians. It is not
always clear whether by ‘expectation’ proponents of this view
understand actual expectations or reasonable expectations.

2 According to the second, probability is a unique logical
relation between propositions, analogous to the relation of
deducibility; its most prominent contemporary supporter is
the economist Keynes.

3 According to the third, a degree of probability is the measure
of the relative frequency with which a property occurs in a
specified class of elements; this view already appears in
Aristotle, was proposed by Bolzano and Cournot during the
last century and further developed by Ellis, Venn, and Peirce,
and was finally made the basis for a subtle mathematical
treatment of the subject by von Mises and other contem-
porary writers.

This system has the advantage of extending Carnap’s simple
division by incorporating a third category. Unfortunately, Nagel has
included in this group the characteristics of both our CTP and SUB
classes of theories. I think there are good reasons for singling out
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‘the classical view of the subject’ but they are not the reasons Nagel
gives; and I think there are theories according to which probability
is a measure of ‘our subjective expectation or belief’ but they are
the later theories of Ramsey, de Finetti, and Savage rather than the
earlier theories of Laplace and company.!*

Variant Classifications

While Carnap’s and Nagel’s views are the most prestigious, there
have been other attempts to classify theories of probability. The
more recent of these tend to include at least four groups of theories.
I will touch briefly on some of the most important such classifications.

Kyburg — The prolific contemporary authority Henry E. Kyburg Jr
has variously distinguished from three to five types of probability
theories. In his introduction to Studies in Subjective Probability (1964)
he notes that ‘There are essentially three types of connection [between
probabilities and the world] that have been proposed: the empirical,
the logical, and the subjective.’'3

In his later and more comprehensive Probability and Inductive
Logic,'® however, Kyburg has extended his scheme backwards to
incorporate the classical interpretation and forward to add on a fifth
view, his own ‘Epistemological Interpretation of Probability’. The
first four are essentially the same as mine (or, rather, mine are
essentially the same as his; although I have not intentionally lifted
directly from Kyburg or anyone ¢lse, I have certainly profited from
reading his works) and go far towards establishing this as the
standard scheme of classification. Whether or not his own theory
will be justified as a fifth major type only time will decide.

Good — according to 1. J. Good, ‘Each application of a theory of
probability is made by a communication system that has apparently
purposive behavior.” These entities might be men, Martians, or
machines. ‘One point of the reference to machines is to emphasize
that subjective probability need not be associated with metaphysical
problems concerning mind.!”

Considering such entities and their relations to the world, Good
distinguishes four different types of probability:!'®

(i) Physical probability — exists irrespective of organisms.
14
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(i) Psychological probability — values inferred from the
behavior of entities.

(iii) Subjective probability — ‘psychological probability modified
by the attempt to achieve consistency, when a theory of
probability is used combined with mature judgment.’

(iv) Logical probability - the hypothetical subjective probability
of an infinitely rational being.

One could plausibly interpret type (i) as being substantially the
same as our RF, types (ii) and (iii) as representing two aspects of
SUB, and type (iv) as covering the spheres of CTP and AP.

Good’s distinctions have the virtue of identifying some different
metaphysico-epistemological senses of the relation between prob-
ability, organisms, and the world.

Von Wright — In various works, G. H. von Wright has employed
different methods of grouping and describing theories of probability.
As an example, we can distinguish the following types of interpret-
ations according to The Logical Problem of Induction:*®

A The Frequency interpretation.
B The ‘Spielraum’ (roughly, ‘range’) interpretation, which
breaks down into:
1 The logical Spielraum theory, where probability is a
ratio of truth-possibilities of a sentence;
2 The empirical Spielraum theory, where certain atomic
propositions are shown empirically to be equipossible.
C Probability as a ‘Grundbegriff’ (fundamental or sui generis
concept). Keynes, Jeffreys, etc., deny that the concept of
probability can be exhaustively defined by any of the above
terms or any like them.
D Probability as degrees of belief.

These categories are similar to, but not readily reducible to, ours.
The AP and CTP classes of theories are here intermingled and
redivided in a variant fashion.

Black — In his Encyclopedia of Philosophy article Max Black suggests
the following classification:2°

1 Mathematical Dogmatism — No definition of ‘probability’ is
possible or necessary; probabilists should confine themselves
to dealing with the mathematical theory.
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2 Classical Theory and the Principle of Indifference.

3 Logical Theories (Keynes, W. E. Johnson, Carnap, Harold
Jeffreys).

4 Frequency Theories — ‘probability is, in all cases, to be identi-
fied with some suitably defined relative frequency.’

5 Subjective Theories — A degree of ‘rectified’ confidence is
identified with probability, and can vary from person to
person with no imputation of fault.

Black’s first category is useful if one’s primary concern is to
categorize probabilists descriptively. It is, however, useless for our
purposes, as it represents not a separate view on the philosophical
foundations of probability theory, but a refusal to construct such a
view.

Otherwise this scheme is essentially identical to the one adopted
here, and, since it appears in the influential Encyclopedia, we may
hope that something like this will become the standard view.

Fine — Theories of Probability, by Terence L. Fine,?! is a technical,
mathematically oriented discussion of the major theories of prob-
ability. Since Fine is interested primarily in mathematical, rather
than philosophical, foundations, he devotes most of his space to
formal exposition and analysis of axiom systems and statistical
techniques, with only a limited amount of philosophical analysis.

When he sets out to classify theories, Fine identifies the following
types:2?

1 Axiomatic comparative.
2 Kolmogorov’s calculus.
3 The usual relative-frequency theory.
4 Von Mises’s relative-frequency theory.
S The Reichenbach-Salmon relative-frequency theory.
6 Solomonoff’s complexity-based theory.
7 Laplace’s classical theory.
8 Jayne’s classical theory.
9 Koopman’s comparative logical theory.
10 Carnap’s logical theory.
11 The De Finetti-Savage subjective-personalistic theory.

Fine’s list has the virtue of being ‘more extensive’ than ours. In
some respects and for some purposes it is a fine thing for a list to
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be extensive, comprehensive, even complete. But obviously the limit
in this direction would be simply to list each and every theory of
probability. This would be useful as a catalog or a compendium,
but for theoretical purposes would be at best a prolegomenon to
the analysis and classification which makes the diverse views
understandable.

In search of a clear, simple set of categories I preferred to combine
Fine’s 3, 4, and 5 into the one RF category, to skip 8 as historically
and systematically unimportant, etc. Clearly this is not to dispute
the validity of Fine’s classification, but rather to adopt a different
program to serve a different purpose.

4 CONCLUSION

For our purposes it is best to deal with four major types of theories:
the Classical Theory of Probability (CTP), the A Priori (AP), the
Relative Frequency (RF), and Subjectivistic (SUB) theories. This
schema has the advantages of paralleling Kyburg’s and Black’s views,
while usefully extending Carnap’s and correcting Nagel’s. There are
theoretical and practical considerations which favor the adoption
of this system, but the choice is largely one of heuristic convenience
rather than ultimate theoretical import.

In what follows we will investigate these four types of theories in
an effort to identify and describe clearly the philosophical found-
ations of each view. We shall be concerned especially with the
metaphysical question of what probabilities are and the epistemo-
logical question of how probabilities are known. As usual, these issues
are intertwined with the question of what probability statements
mean.

We will try to begin with no preconceptions or desired findings.
We will try to avoid imposing a grand unity on the one hand or
multiplying niggling distinctions on the other. Perhaps at the end
of our exploration we shall finally be able to answer our introductory
question, “‘What is Probability 7
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I1

THE CLASSICAL THEORY
OF PROBABILITY

The earliest attempts to deal with probability, from ancient times
to the time of Laplace (1749-1827), are generally lumped together
as the Classical Theory of Probability. This usage is perhaps slightly
misleading, since it gives far too strong an impression that there
existed some theory, some unified, consistent definition and explan-
ation of probability to which the Classical theorists subscribed. One
should not be surprised to find that this is not the case, since the
relevant period includes only the beginning of probability theory
and the first useful attempts to systematize it. Quite the contrary,
one might well be surprised at the degree of agreement and systematic
unity which does exist in the Classical writings. This agreement makes
it possible to isolate a generally accepted definition of probability
and some common ways of dealing with it. This body of thought
was not clearly and systematically articulated by the Classical writers
themselves (and philosophical analysis and exposition is especially
lacking) but modern writers have generally agreed on its fundamental
features so that one might say there now exists a Classical Theory
of Probability while in Classical times there did not.

With these mild caveats in mind, then, we shall proceed in the
usual manner to discuss the Classical Theory of Probability (CTP)
and its adherents as though an explicit theory existed.

Since the CTP is normally attributed to a certain group of theorists,
one might give an extensional definition of Classical Probability
Theory by naming that group. Perhaps the simplest way of doing
this is by saying that Classical theorists are those persons who appear
in I. Todhunter’s great work, A History of the Mathematical Theory
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of Probability From the Time of Pascal to That of Laplace.

This is a work that can truly be called monumental. It is large
and thorough, and, as Keynes said, ‘complete and exact, — a work
of true learning, beyond criticism.’? It is also, however, dry, overly-
technical, and somewhat tedious, so that F. N. David has been led
to remark that “Todhunter will rarely be read for pleasure, although
always for profit, by anyone interested in probability theory.”

Todhunter will be our basic text in this chapter and will frequently
be cited rather than the original sources. I have adopted this course
because (1) many of the original documents are either rare or
untranslated and searching them out is a task for the historian of
probability and inappropriate for this work, (2) the historical and
theoretical significance of these authors depends not so much on the
exact original language as on the public impact of a work — and this
impact is reflected in Todhunter.

If any reader prefers a more scholarly history of the subject, I
could do no better than to direct him or her to Todhunter — one
who rejects the very notion of secondary sources is welcome to
search out the originals as an exercise in scholarship. For our
purposes, Todhunter will suffice.*

Now that I have disclaimed the title of historian, I will naturally
proceed to give a historical account of the Classical Theory.

1 THE PREHISTORY OF PROBABILITY

It seems likely that probebilistic reasoning has existed almost as
long as man has been a rational animal, but no one knows exactly
when or how it began. As for the more explicit uses of probability
in games of chance, the earliest probably appeared when savages
began playing with the astragalus. The astragalus is the small bone
just above the heel-bone (sometimes called ‘hucklebone,” or,
erroneously, ‘knucklebone’) in mammals and is important because
it has four distinctive sides or faces upon which it may rest. It can
therefore be used as a primitive — and very inexact — die for gaming.
We do not know when it first came to be used for this purpose, but
archaeologists have found astragali in disproportionate numbers in
the campsites of prehistoric man. Whether or not it was used for
gaming in those remote times, we do know that ‘the astragalus was
certainly in use for board games at the time of the First Dynasty in
Egypt (c. 3500 B.C.),’® and gaming has been with us ever since.
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Ancient Times

Gaming continued throughout the Ancient Greek and Roman era,
so that Greek soldiers are reputed to have whiled away the tedious
siege of Troy with various games of chance, and Roman emperors
such as Augustus (63 B.C.—14 A.D.) and Claudius (10 B.C.-54
A.D)) are said to have been ‘greatly devoted to dicing.’®

Furthermore, this era marks the beginning of enterprises relying
on probability such as commercial and life insurance.” Still, these
activities had not yet been put on a sound actuarial basis and no
systematic discussion of probability or statistics has come down to
us from this period.

Italian Renaissance

With the flowering of the Italian city-states and the rise of capitalism
and commerce, commercial statistics and actuarial methods were
developed for the first time.® It is also during this period that we
find the first serious discussions of probability in the works of Fra
Luca Pacioli (1445-15177), Celio Calcagnini (1479-1541), and Tar-
taglea (Nicola Fontana) (1500-57). However, these works were
mainly descriptive and contained little of theoretical interest.®

Cardano

Girolamo Cardano (1501-76) occupies an ambiguous position in
the history of probability theory. He was an inveterate gambler and
a controversial man of learning (or plagiarism?) who wrote in or
around 1525 & manuscript which was published posthumously in
1663 as Liber de Ludo Aleae (Book on Games of Chance). This book
contains descriptions of certain games and the first published
calculations of odds. It is disparaged by Montmort and Todhunter,'?
but praised by Libri and Maistrov.'' David goes so far as to say
that Cardano (or his assistant Ferrari) was the first ‘to introduce the
idea of combinations, to enumerate all the elements of the funda-
mental probability set, and to notice that if all the elements of this
set are of equal weight, then the ratio of the number of favorable
cases to the total number of cases gives a result in accordance with
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experience.’ 2 To the extent that this is true, one might well describe
Cardano as the father of the Classical Theory of Probability.

Galileo

Galileo Galilei (1564—1642) appears in our history for two reasons:

1 He gave the first recorded calculation of possible outcomes
with three dice, and

2 He made some important general remarks on the theory
of errors.

However, in the former matter he appears to have functioned as an
uninterested transmitter of existing knowledge rather than an
originator'? and in the latter ‘he did not arrive at a quantitative or
analytic solution of the problem’'“ so he can scarcely be said to be
of major importance.

Pascal and Fermat

Since Laplace’s Essay (1820)° it has been conventional to treat the
calculus of probability as beginning with a correspondence between
Blaise Pascal (1623-62) and Pierre de Fermat (1601-65) in 1654.'°
In their letters they discussed some problems which apparently were
posed to Pascal by the Chevalier de Méré.!” In solving these problems
they considerably advanced the application of combinatorics to the
solution of probability problems, and they made the first recorded
application of ‘Pascal’s Triangle’ (which had appeared before Pascal)
to the games of chance.

Although these accomplishments greatly impressed their con-
temporaries and successors, many modern investigators feel that
Pascal and Fermat have unfairly overshadowed the earlier work of
Cardano and Galileo,'® and the later, more systematic, efforts of
Huygens,'® and James Bernoulli.??

Huygens

Christianus Huygens (1629-95) published the first systematic treatise
on probability theory ‘De Rationciniis in Ludo Aleae’ (‘About dice
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games’) in 1657. This work includes the first clear exposition of the
fundamental principles of the Calculus of Probability, several prob-
lems and solutions, and the first?! discussion of the concept of
mathematical expectation (the mathematical expectation of an event
is the product of the probability the event will occur and the value,
gain, or utility of the event to some person). This treatise ‘was warmly
received by contemporary mathematicians and for nearly half a
century it was the unique introduction to the theory of probability.”??

The Bernoullis

Newcomers to the history of probability may well be excused if they
confuse the various Bernoullis. Not only were there four of some
importance to the subject: to add to the confusion two of them are
known by three name variations each.

By far the most important is James (Jakob, Jacques) Bernoulli
(1654—1705) who wrote Ars Conjectandi (published 1713), a general
treatise on probability which also includes the famous ‘Bernoulli
Theorem’ for predicting probable frequencies of occurrence of
repetitive events.

James’s brother, John (Johann, Jean) (1667—-1748) was a rather
unfraternal mathematical rival who did some work on probability
but achieved nothing of lasting importance.

Their nephew Nicholas (Nikolaus, Nicolas) (1687-1759), did some
original work in probability, notably including efforts to apply
probabilistic calculations to legal problems, but is perhaps best
remembered for editing the posthumous edition of James’s Ars
Conjectandi.

Finally, Daniel (1700-82), the son of John, outstripped his father
in intellectual fame (especially as the originator of the Bernoulli
Principle in fluid dynamics) as well as in probability theory. He is
best remembered for his discussions of the Petersburg Problem??
(what should one pay to toss a coin and receive 1 Crown if Heads
appears on the first toss, 2 if Heads doesn’t appear until the second,
4 if the third, 8 if the fourth, etc...?), and his development of the
notion of ‘moral expectation’ as an attempt to solve that puzzle.?*
He was also involved in a controversy over the value of smallpox
inoculation, based on the probable benefits to the individual and
the community, and did some original work on the law of errors.
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But his greatest theoretical contribution was the development of
methods for the application of the infinitesimal calculus to prob-
ability calculations.

In this, as in most books, the name ‘Bernoulli’ simpliciter applies
always to James - whom Keynes has called ‘the real founder of
mathematical probability’>® and ‘Bernoulli’s theorem’ refers to his
famous law (not to Daniel Bernoulli’s principle concerning fluids,
as happens in some general or scientific works).2¢

Montmort and De Moivre

The mathematical history of probability theory must devote great
space to Pierre-Remond de Montmort (1678—1719) and Abraham
De Moivre (1667~1754) for their technical advances in the calculation
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Figure 1 The Bernoullis
23



The Classical Theory of Probability

of probability, but since their work is not philosophically contro-
versial we will slight them here. (Others in this category include
Thomas Simpson (1710~61), Leonhard Euler (1707-83), and Joseph
L. Lagrange (1736-1813).)

Bayes

If ever fame was achieved solely by penning a single equation, it
was done by Thomas Bayes (1702-61). Although Bayes was well
enough regarded by his contemporaries to be elected to the Royal
Society in 1742, he left few written works and little biographical
material. But in his paper, ‘An Essay Towards Solving a Problem
in the Doctrine of Chances’ (1763), he presented an equation (later
generalized by Laplace) which continues to divide scholars into
hostile camps according as they do or do not ‘accept Bayesian
statistics.’

The form in which this equation is normally given in modern
texts?” is:

_ P(A|H) P(H})

P(H,|4) =
5. P(A|H))-P(H)

where H, is one of a series, H,,H,,..., H;, of hypothetical ‘causes’
of the event 4. When the a priori probabilities P(H;) are known,
this is a straightforward theorem of the probability calculus. But if
the a priori probabilities are unknown and one assumes with Bayes
that they are equiprobable (sometimes called ‘Bayes’s Postulate’),
one is then engaged in determining the ‘inverse probability’ of causes.
As an example of how controversial this method is, consider
Hogben’s vitriolic remarks:?®

There is no conceivable factual basis for embracing this axiom
known as Bayes’ postulate; and before he answered to his
Maker it seems that its author had not convinced himself that
there is. However, [Richard] Price made it the kingpin of his
exposition. Whereafter, Laplace embraced it with boyish
enthusiasm and built on so insecure a foundation a
superstructure of doctrine usually referred to as that of inverse
probability. The adjective signifies that the doctrine licenses one
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to draw conclusions about past occurrences. Among other
exploits, K. Pearson, a modern disciple of Laplace, used it to
prove that miracles cannot happen. None the less, one must
concede the historical occurrence of at least one miracle
inasmuch as many highly intelligent people have been willing to
subscribe to the doctrine.?®

We will return to this controversy in the section on the Source
of Initial Probabilities in Actuarial Cases.

D’Alembert’s Dissent

The most famous nay-sayer in the history of probability was Jean
d’Alembert (17177-83). It was he who opposed Daniel Bernoulli in
the controversy over the value of inoculation. He also held these
heterodox views (summarized by Keynes):°

D’Alembert has three main contentions to which in his various
papers he constantly recurs:
1 That a probability very small mathematically is really
Zero;
2 That the probabilities of two successive throws with a die
are not independent;
3 That ‘mathematical expectation’ is not properly measured
by the product of the probability and the prize.

On all of these points d’Alembert contested against the received
opinions of his time (and ours). But he may be even better
remembered for yet another minority opinion of his — that the
probability of at least one Head in two coin tosses is 2/3. He argued
this way: Heads will either appear on the first throw (a win, in which
case the second throw is unnecessary), or it will not occur until the
second throw (still a win), or it will not occur at all (a loss). So there
are three cases (H, TH, TT), two of which are favorable, therefore
the probability is 2/3.

The opposing (traditional, correct) point of view is that these cases
are not equiprobable, since the first is really shorthand for the two
cases HT and HH, both of which are favorable, so that three of the
four possible outcomes are favorable and the required probability
is 3/4.

I presume that Keynes did not include this argument in his list
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because it is no longer regarded as a ‘contention’ but rather as a
mistake. Thus Maistrov says that ‘d’Alembert’s name appears in the
literature on probability theory mainly as an example of the fact
that even certain prominent mathematicians sometimes committed
errors in solving elementary probabilistic problems.”*°

Although d’Alembert’s views have not prevailed, they have found
occasional advocates and partial adherents of whom the most famous
early was G. L. Buffon (1707-88) and late was Emile Borel (1871-
1956).

Laplace

The Classical Theory of Probability reached its zenith in the work
of Pierre Simon de Laplace (1749-1827). He solved more problems
and developed more important mathematical tools than any of his
predecessors. He also gave the most coherent and accessible ex-
position of the theoretical basis of probability calculations that had
ever been seen. For all these reasons Todhunter could say, ‘on the
whole the Theory of Probability is more indebted to him than to
any other mathematician’3' and Collier’s Encyclopedia has ventured
to describe him as ‘the founder of the theory of probability.’3?

Because of his importance and the scope of his work we will
frequently take Laplace as the spokesman for the CTP. We will
begin, for example, with his definition of probability, which has
perhaps been the most widely read, quoted, and adopted explanation
of probability ever given.

2 THE DEFINITION OF PROBABILITY

The theory of chance consists in reducing all the events of the
same kind to a certain number of cases equally possible, that is
to say, to such as we may be equally undecided about in regard
to their existence, and in determining the number of cases
favorable to the event whose probability is sought. The ratio of
this number to that of all the cases possible is the measure of
this probability, which is thus simply a fraction whose
numerator is the number of favorable cases and whose
denominator is the number of all the cases possible.>?
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This statement came to dominate the literature and, for many
years, the theory of probability. But the definition had been in use
long before it appeared in Laplace’s Essay in 1820. It had been
employed by Cardano, and made explicit by James Bernoulli:**

In the game of dice for instance, the number of possible cases
[or throws] is known, since there are as many throws for each
individual die as it has faces; moreover all these cases are
equally likely when each face of the die has the same form and
the weight of the die is uniformly distributed. (There is no reason
why one face should come up more readily than any other, as
would happen if the faces were of different shapes or part of the
die were made of heavier material than the rest.)

Thus the probability of throwing a Five is 1/6, since there are six
possible cases (six ways the die can land) of which only one is
favorable. But the probability of throwing an even number is 1/2
since three of the six possible cases are favorable’ (2,4, and 6).
Calculations of this sort are essentially all that is needed to compute
the odds in elementary games involving dice and cards. Completing
these calculations, and more elaborate ones of the same kind,
constituted much of the work of the classical theorists. In these
efforts they adhered fairly closely to Laplace’s ‘official’ definition.
When they came to consider various problems in mortality and
natural science, however, this definition failed them and they tended
to abandon it (as we shall discuss more fully in the section on the
Source of Initial Probability in Actuarial Cases). But they did not
replace the official definition with another in terms of likelihood,
relative frequency, etc. Instead they just continued to use the word
‘probability’ as if everyone understood its meaning, while actually
employing methods and concepts which are clearly inconsistent with
what they said ‘probability’ meant. As a result of this kind of thing
Carnap says, ‘it seems to me that there is no one meaning of the
term “probability” which is applied with perfect consistency through-
out his work by any of the classical authors.”*> Despite this genuine
ambiguity of usage, there is only one real definition of probability
in the Classical writers — Laplace’s definition — and that is the one
we shall refer to as the Classical definition.

In addition to this definition of probability, however, the Classical
writers include many explanations and ‘clarifying’ remarks which
have aroused some controversy. These are the notorious remarks
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by Bernoulli and Laplace (especially) which describe probability as
representing a ‘degree of belief.” Because of statements like these,
some writers such as Kneale and Nagel have described the CTP as
psychologistic or subjective.*® While there is certainly some justi-
fication for this, I hold with Carnap®’ that what is being discussed
is not the actual, contingent degree of belief, which is a matter for
empirical, psychological investigation, but rather the justified or
rational degree of belief, which is a matter of objective logical and
mathematical fact. Seen in this favorable light, the CTP gives us
rules for proceeding rationally under conditions of uncertainty; on
a harsher interpretation, it is a rash and unwarranted attempt to
found knowledge on ignorance and certainty on a lack of in-
formation.

3 SOURCES OF INITIAL PROBABILITY

The greatest accomplishment of the CTP is that it first made possible
the quantification of probability and its mathematical manipulation
by means of the probability calculus. The calculus endures to this
day with little revision and is of sufficient importance to secure the
reputation of those who originated it. But for our purposes the
calculus is of minor interest since it is common to all major theories.
In what follows, therefore, we shall not be concerned with the
mathematical manipulation of probabilities, but with their origin,
meaning and philosophical significance. In these matters the Classical
theorists are occasionally confused, inconsistent, or just wrong. The
reader should try to remember that latter-day criticisms of this sort
are comparatively cheap and easy when contrasted with the extra-
ordinary intellectual feats of the founders of probability theory. The
bulk of their work is unquestioned and beyond criticism, and without
it nothing that follows would have been possible.

In Dice Games

The cast of a well-made die is the very paradigm of Classical
probability. It is simple, important to gamblers, easy to understand,
and, one might think, obvious. Indeed historians of probability have
sometimes seemed less concerned with how this basic problem was
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solved than with the puzzle of why it was not solved before. As
noted in our historical sketch, gambling has been with us at least
since classical antiquity. Yet nowhere in literature does anyone
calculate the probability of throwing a Five before the fifteenth or
sixteenth century! How can we account for this extreme lag between
practice and theory?

David suggests the explanation is that ‘the philosophic develop-
ment’ of the time was unsuited to ‘the construction of theoretical
hypotheses from empirical data.’*® Thus Cardano’s calculations, like
Galileo’s equations of motion, had to wait on the development of
a zeitgeist which accepted and even encouraged quantification and
scientific explanation.

A dissenting view comes from the Marxist historian L. E. Maistrov
who says it is a ‘widespread false premise that probability theory
owes its birth and early development to gambling.” Instead, he
emphasizes the connection of probability with ‘other sciences and
problems’ and especially with ‘the rise of capitalism, when commerce
and monetary transactions, particularly those connected with actu-
arial operations, were developing and when various new institutions
were established.”*®

If we leave this puzzle to the historians, we can at least say that
much of the early work in probability was concerned with games
of chance, and especially with dice (playing cards are a later historical
development, as well as a more complicated problem). In this early
work the basic assumption is that each face of the die is equally
likely to turn up. Since there are six such sides, one of which must
turn up, the initial probability of each is 1/6. From this initial or a
priori probability follow most of the early theorems and calculations
in probability theory.

It may be that the equiprobability of the different faces was first
conceived as an empirical hypothesis.*® But it was not Jong before
James Bernoulli developed a rule which was supposed to give a
method for finding the initial probability in many cases (including
dice games) and which came to be considered a fundamental part
of the CTP. This rule was originally called the Principle of Non-
Sufficient Reason but we shall follow Keynes’s suggestion and refer
to it as the Principle of Indifference.*' The fundamental idea is that
alternatives are always to be judged equiprobable if we have no reason
to expect or prefer one over another. This principle is the object of
most of the criticism (and even scorn) which has been directed at
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the CTP. Its unrestricted use seems to imply, for example, that any
proposition of whose truth or falsity we are ignorant is exactly as
probable as its negation. Still, the Principle of Indifference is the
major theoretical justifications for the equiprobability of alternatives
in dice games and is therefore the principal source of initial
probability in such cases.

Now it is an unfortunate fact of life that not all games are fair
and not all dice are unbiased. What, then shall we say of biased
dice, where ordinary language would say that the faces are not equally
probable? Laplace discusses such problems in his Essay with the
following results.

First of all, if we know the die is biased but do not know how it
is biased, we still have no reason to prefer one face over another
and, by the Principle of Indifference, they remain equally probable.*?

Second, if we know how and to what extent the die is biased, we
can use the probability calculus to compute the odds. In the case
of a biased coin, for example, Laplace says*?

In order to submit this matter to calculus let us suppose that
this inequality increases by a twentieth the probability of

the simple event which it favors. If this event is heads, its
probability will be 1/2 plus 1/20 or 11/20, and the probability
of throwing it twice in succession will be the square of 11/20 or
121/400.

He goes on to consider various ways of computing probabilities
resulting from bias and various devices for reducing the effects of
the bias. What he does not do is to explain the origin, meaning, or
justification of the value attributed to the bias. Once this is known,
all else follows by the simple rules of the calculus — the crux of the
problem is establishing the original probabilities. We might do this
by constructing a die to have a certain probability, or we might do
it by using some sort of inverse method (to be discussed in the next
section) in order to derive probability from observational data. The
important point is that neither of these methods is compatible with
the official structure of the CTP because

1 The probabilities are not derived from the Principle of
Indifference, which is often described as the only valid source
of initial probabilities in the CTP,.

2 Furthermore, there are no equally likely cases here, so there
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can be no ratio of favorable to all possible cases — but this is
the only official definition of probability.

In Actuarial Cases

We have seen that the CTP breaks down when biased dice are
introduced to the game. In actuarial cases, the official definition of
probability is almost completely ignored, out-stripped, confounded —
yet Classical theorists did much to lay the foundations of statistics
and sound actuarial practice. Here more than anywhere it becomes
obvious that the concept of probability actually employed by
Classical theorists is far broader than the official definition laid down
by Laplace. It might seem appropriate in such cases to develop the
recurring concept of ‘degree of (rational) belief’ into a theory which
is explicitly logical or explicitly subjective. On the other hand, it is
quite clear that Laplace and Daniel Bernoulli (for example) were
investigating mortality tables and the incidence of smallpox in an
attempt to discover some objective facts about the world — facts
which might very well be described as relative frequencies of
occurrence. So the Relative Frequency view of probability is also
foreshadowed in this early work!

All of this should remind us that Bernoulli and Laplace and their
ilk were not ‘adherents of the Classical Theory of Probability’ whose
work was an attempt to apply that theory to reality; rather, they
were pioneering investigators of the concept of probability who
developed one part of that concept thoroughly enough for us to call
it a theory but who also worked on other aspects of the problems.
When the ‘equiprobable alternatives’ method was practical, they
preferred to use it, but they freely abandoned it whenever it was
inapplicable.

The simplest and most widespread alternative to the Principle of
Indifference was the use of actuarial tables as a source of initial
probabilities. The first such useful tables were perhaps the plague
mortality tabulations prepared by John Graunt of England during
the Black Death. The Classical theorists used such tables as a source
of information about what had happened in the past. The values
thus obtained were then employed as probabilities for future
occurrences. The simplest justification for this is James Bernoulli’s
assumption that things in the future will exhibit the same pattern
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as things in the past.** A more sophisticated idea is that statistical
evidence reveals the underlying probability of occurrence for certain
types of events, since we know that the actual outcomes must be
proportional to the probability. This is Daniel Bernoulli’s reasoning
in his discussions of marriage and mortality. Finally Laplace,
building upon the work of Bayes, developed the notion that observed
results give us evidence which can be used to compute the probability
that the underlying probability has a given value within its possible
range.*® In this form the use of mortality tables can almost be forced
back into the mold of the Principle of Indifference by the following
reasoning.

Consider a mortality table for a certain population. An individual
taken at random might be represented by any one of the entries in
the table. The Principle of Indifference therefore tells us that it is
equally probable that he will be represented by any given one or
the other (since we have no reason to ‘expect’ or ‘prefer’ one over
the others). Given this initially equal probability distribution, it
follows that the individual’s probability of death is directly propor-
tional to the death-entries in a given year.

It would seem, then, that the CTP can handle actuarial cases, if
it is provided with a valid statistical description. So the problem of
initial probability in these cases is transformed into the problem of
constructing valid actuarial tables.

Now Laplace was convinced that if we had mortality tables of
infinite extent we would have a perfect value for the probability of
death (since all possible cases would certainly be included).*®

As our actual tables are obviously finite, however, is it possible
to assess their accuracy, reliability, or similarity to the ‘true’ table?
This is where Bayes’s Theorem comes in.

Suppose we were concerned with only 4 people and we knew that
3 had died at certain ages while the fourth was still alive. Suppose
further that there are only 2 mortality tables which can possibly give
the true probabilities of death for these people, and that table X is
a priori twice as likely to be true as table Y. In this case we can use
our a posteriori knowledge of the deaths, together with our a priori
knowledge of the probability of each table and our knowledge of
the probability that just this pattern of deaths would occur if X or
Y were true to calculate the probability that a given table is the
correct one.
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If we use our earlier statement of Bayes’s Theorem

P(A|H\) P(H,)

P(H,|A) =
Y. P(AlHj) P(H))
:
we have
P (mortality table P(this sequence of P (X is true
X is true cause deaths if X is true)  a priori)
given these ~ [P(this sequence P(Y is trué| (the
deaths) of deaths if . a priori) | + numerator
Y is true) above)

By hypothesis all the quantities on the right are already known, so
it is easy to compute the probability that table X is the true
description. The probability for Y could be computed likewise, but
it is obviously equal to 1 — P (X is true given these deaths). In such
an ideal situation, Bayes and Laplace can uncontroversially tell us
the probability that a given mortality table is the true one.

But again we are slipping away from the official definition of
probability. It is true that ‘the probability of this sequence of deaths
if X is true’ can be accommodated by the definition when each person
is construed as equally likely to correspond to each entry. But
consider the a priori probability of each table — except for the singular
case where they are equiprobable, we can find no ‘equally likely
cases’ on which to base such probability. We are dealing here with
a pure, undefined sense in which we understand what it means to
say ‘the probability of Y is 1/3 and of X is 2/3, but according to
the official definition we should not understand this.

Nevertheless, we resolved earlier not to fret excessively if our
classical theorists strayed too far from the theory we attribute to
them. Besides, these same a priori probabilities have been the source
of enough fretting from another direction to far overshadow our
definitional quibbling. You see, what Bayes and Laplace did in
less-than-ideal cases was to assume that all possible causes are a
priori equiprobable. Such an assumption does guarantee equally
likely cases (for what it’s worth), but it also seems to many thinkers
to be completely and totally unjustified. The essence of the quarrel
about ‘Bayesian statistics’ is not about Bayes’s Theorem at all, but
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about Bayes’s Postulate which asserts this equiprobability of causes.
Without entering too deeply into the controversy we can just note
that critics argue that the postulate is mathematically and philosophi-
cally unjustified and can be shown to lead to wildly incorrect
‘solutions’ in many cases. But, the Bayesians rejoin, in the first place
such wild errors are the exception rather than the rule; in the second
place the magnitude of any error due to the postulate decreases
rapidly as data accumulate, and in the third place, what else can we
do in a less than ideal situation where we need to know such a
probability but the a priori probabilities are unknown — we must
use the Postulate or just give up.

So in controversial cases Bayes’s Theorem does not let us ‘go from
frequencies to probabilities’ but instead proceeds from frequencies
plus assumptions about a priori probability’ to its conclusion. (The
Postulate, by the way, closely resembles the Principle of Indifference
in telling us to treat things as equally probable if we have no reason
not to. It is therefore subject to the same kind of criticism and
disparagement as is that Principle.) Furthermore, the conclusion or
output of Bayes’s Theorem is not ‘probabilities’ simpliciter. Even in
ideal cases the best we can get is ‘the probability that the probability
of E is x.” Thus even a Bayesian should be careful about proclaiming
the old saw that ‘Bayes’s Theorem lets us go from frequencies to
probability,” but it remains true that Bayes’s Theorem is one of the
most widespread and powerful methods for deriving initial proba-
bilities in actuarial cases within the general spirit of the Classical
Theory of Probability.

4 PROBABILITY OF SINGLE EVENTS

The Classical theory, unlike the Relative Frequency view we will
examine later, finds no difficulty at all in the notion of the probability
of a single event. Since we are to compare the number of ways that
an event can succeed (not ‘has succeeded,” or ‘will succeed in the
long run’) to the total number of ways it can occur (ditto), we do
not require consideration of a series of events in order to develop a
probability value and thus we have no problem (as the RF theory
does) in returning from that series to apply the value to a single
case. Not only is it possible to develop a Classical Probability value
without appealing to empirical evidence, some critics maintain that
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it is necessary that we do so because the theory has no mechanisms
for proceeding otherwise and is, in fact, incapable of learning from
experience (more on this later).

That Smith will roll a Five

We have said that this can well be taken as a paradigm case for the
Classical theory. As Smith prepares to throw the die he knows and
all of us around the table know that there are six faces on the die
which may ‘come up,” and that only one of these is a Five (presuming
we have checked to ensure that the die is properly imprinted). The
Principle of Indifference tells us that if we have no reason to expect
or prefer one of these outcomes, we are to treat them as equally
probable. As there are six such alternatives, the probability of each
is 1/6.

The power and simplicity of this reasoning has made this method
almost universal among gamblers and common among laymen. An
astonishing number of extremely complex problems in probability
theory have been solved, and usefully so, by calculations based
entirely on the assumption of equiprobable alternatives. This remark-
able success story may fade from the reader’s mind as we proceed
to develop the inadequacies, confusions, and contradictions involved
in the CTP — try to remember that our strongest ordinary conception
of probability and most of our mathematical successes are based on
just this picture of Smith standing there with an equal chance of
throwing a Five.

But however successful the CTP has been in dealing with normal
dice games, in this rotten world you can be sure that not all dice
are ‘normal’ or ‘fair’ What are we to do about those cases?

Suppose, for example, that as Smith prepares to roll the die Jones
comes by and whispers in your ear, ‘It’s loaded.” Don’t delay, place
your bet to exploit this knowledge and get rich quick!

But how? What shall we bet on? Does Jones mean Smith has
slipped in a loaded die and we should bet with him on the Five?
Or does he mean that the house is crooked and we should always
bet against the shooter ? Or has Jones himself loaded the die intending
to make a side bet on the Three? What are we to do?

As we saw above, the bare knowledge that the die is a loaded has
no effect at all on the probability that Smith will throw a Five!
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Unless we know which number is weighted we still have no reason
to prefer one over the other and must continue to regard them as
equally probable. (It is clear that in some sense we now know that
they are not ‘really’ equiprobable — this problem will be discussed
in the section on Absolute Probability.)

So for the innocent Smith the probability of a Five is 1/6, and
since our guilty knowledge is insufficient it remains the same for us.
But what about Jones? Suppose he knows how the die is loaded;
what can the CTP do for him? If he knows the extent of the influence
of the loading, he can plug it into the calculus and generate a
probability as Laplace did in the quotation above.*” If he does not
already know the extent of the influence of the loading but only its
direction, there is no formal way for the CTP to compute the
probability. Indeed there is no way even to describe it in the official
theory, since alternatives are no longer equally probable. Here again
the Classical theorists’ understanding and use of the concept of
probability outstrips our official definition. But here Jones cannot
use Bayes’s Theorem to help him out, since we are talking about
a single throw of the die, and he has not the time to collect
evidence.

Still, the CTP can advise Jones on what to do. Since the time of
Huygens the Classical theorists (and almost everyone else) have
employed the concept of the mathematical expectation of an event
and have assumed it to be a rule of rationality that one should
maximize that expectation. If each number pays off equally, the
difference in the expected value of each is directly and only
proportional to that number’s probability of occurrence. Since Jones
knows which number has the highest probability of occurrence, he
ipso facto knows which one has the highest expected value and, to
be rational, should bet on that number.

Detesters of triviality may feel it no credit to a theory that it uses
big words and complicated mathematics to tell someone to bet on
the loaded number. A little reflection should show, however, that
there are many cases in which one should not bet on the loaded
number (if the payoffs are disproportionate, for instance, or some
outcomes are naturally more probable than even a loaded number,
or if combinations and negative bets are more lucrative, etc.). As the
situation increases in complexity, even keen common sense and
natural ability will soon feel the need for assistance from the
mathematical structure developed for Smith’s improbable Five.
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That Smith will be elected Mayor

Detractors of the Classical theory in general and the Principle of
Indifference in particular have often argued that the probability in
a dice game is not based on our ignorance of any distinguishing
features of the die faces, but rather on our knowledge, based on
collective experience, that Five comes up 1/6 of the time. This point
is partially rebutted by our discussion of a die that is known to be
biased but not in any particular direction. Here we can be sure that
Five will not come up with the normally observed relative frequency —
it appears either more or less frequently than one sixth of the time.
And yet the fair bet, in this state of ignorance before the first roll,
is based on a probability of 1/6 (5 to 1 odds).

Perhaps the critics will respond that past experience has shown
that each side of a die gets loaded with approximately the same
frequency as the others, so that again our judgment is based on
experience rather than ignorance. But whatever reasonableness this
argument might have when applied to dice games vanishes when we
consider a unique, single election.

If Smith, Jones and Robinson are running for mayor, it is quite
clear that the CTP can give us a precise numerical value for the
probability that Smith will be elected — but only if we know nothing
at all about the election and the candidates. Once we acquire
knowledge of the age, race, sex, occupation, party, etc. of the
candidates, we become less able to assign definite values to the
probability (though it might be quite clear which values increase
and which decrease from the original 1/3).

The reason, of course, is that the Principle of Indifference allows
(requires) us to treat the alternatives as equally probable so long as
we have no evidence to the contrary. Using this ignorance as our
justification, we should accept any bet offered by equally ignorant
persons (or devices, mechanisms, situations) at odds better than 2
to 1. The amazing thing, which so impressed Quetelet and Poisson,
is that if we act on such ignorance repeatedly we can be almost
certain of being right one-third of the time (Bernoulli’s theorem)
while this certainty is not readily available to any other method
(some selection procedures give sub-random success in some situ-
ations — as if you always pick the Socialist Workers’ Party candidate
in Mississippi elections).

This ‘knowledge from ignorance’ has been the most controversial
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claim of the CTP. We shall examine both sides in later sections of
this chapter — for now, remember that Smith’s probability of being
elected mayor is an excellent example of it.

5 PROBABILITY OF REPETITIVE KINDS OF EVENTS

The Classical theory makes no use of series and repetitive events in
its definition of probability and in its clearest applications, but CTP
theorists have been interested in repetitive and actuarial processes
since the very early stages of theorizing. The most famous tools
which they developed for dealing with such problems are Bernoulli’s
Theorem, Bayes’s Rule, and Laplace’s Rule of Succession.

That a Dice Throw will be Five

We saw above that the Principle of Indifference gives a probability
of 1/6 that a single throw will be a Five. Now let us consider a series
of 100 such throws — how many can we expect to be Fives? Common
sense (and fairly simple calculation) tells us that the most likely
number is 17 (1/6 x 100 = 16.666) and that we should ‘expect’ it to
be ‘fairly close’ to that value. In particular, the probability that the
number of Fives will be between 14 and 20 inclusive (17 + 3) will be
approximately 0.65. Let us call the number of Fives in a series of N
throws S (for success, a common usage). Then, in our example,
N =100 and we computed the probability that S=17 +3. The
number of successes, S, divided by the number of trials, N, gives the
frequency of success (strictly, the relative frequency of success, since
S is called the absolute frequency of success) and we shall call this
F. Thus we were calculating also the probability that F = 0.17 + 0.03.
Now suppose that we increase the sample size to 1,000. The same
frequency of success F will be represented by a number of successes
S, between 140 and 200. But now the probability of S falling in this
range is 0.99.

Bernoulli’s Limit Theorem says that continuing to increase the
sample size N will cause the probability that F will fall within the
desired range to continue to approach 1, and that it can be made
to approach 1 as closely as we wish for any desired range of success
no matter how narrow.*®
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In symbols,
Lim P(|[Np~ F|<E)=1
N—= oo

where F is the relative frequency of success, p is the probability of
success in each individual trial (which must be independent, by the
way), E is any fixed degree of variation we choose, and N is the
number of trials.

The Classical theorists and their successors have claimed that this
theorem demonstrates that simple probabilities will be realized in
experience as relative frequencies. Thus the probability 1/6 of a Five
on a single throw guarantees that in a sufficiently long series of
throws the relative frequency of Fives will be very close to 1/6.

That is how the CTP deals with series of events. It is not an
uncontroversial method and we shall present several criticisms of it
in the appropriate section, but it has led to considerable practical
success and is certainly not to be dismissed out of hand.

That a Thirty-year-old will get Married

When we ask the probability that a bachelor will marry this year,
it seems there are only two alternatives: he will or he won’t. If we
knew nothing further about the matter and if we were very liberal
in our use of the Principle of Indifference it might be that we would
treat these alternatives as equiprobable and call the probability 1/2.

But of course we know that the general probability of marriage
is not as high as 1/2 and only a few extremists will apply the Principle
of Indifference to a statement and its negation. So what can we do
here?

As we indicated above,*® what the Classical theorists did was to
use Bayes’s Rule in some cases and to consider actuarial tables as
direct sources of probability in other cases.’® A complete theoretical
justification on classical lines can be provided for these methods
only in the extremely unlikely case where we know an actuarial table
is complete and accurate or where we know all the possible
alternative tables and the a priori probability that each is true.
Despite this gap between theory and practice, these methods were
effective enough to guarantee profits to the early insurance companies
and respectability to the early statisticians.
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But there is another method for dealing with successive events
which has gained even more notoriety than Bayes’s Rule or the
Principle of Indifference - that is Laplace’s Rule of Succession. As
stated in the Essay: ‘Thus we find that an event having occurred
successively any number of times, the probability that it will happen
again the next time is equal to this number increased by unity divided
by the same number, increased by two units.’>!

After N successes in a row, then, the probability of success on the
next trial is

N+1
P=——.
N+2

Laplace derives this rule from a version of Bayes’s Rule plus some
assumptions. The import of the assumptions is that there must be
an infinite (at least very large) number of possible constitutions of
the universe of discourse with each one being equally probable. The
rule is sound, for example, when we pick one urn out of a series
exhibiting every possible combination of red and white balls, then
draw N balls (with replacement), all of which happen to be red. The
probability®? that the next ball will be red is then

N+1
N+2
The application which Laplace himself made of the rule was to
calculate the probability of tomorrow’s sunrise: ‘Placing the most
ancient epoch of history at five thousand years ago or at 1,826,213
days, and the sun having risen constantly in the interval at each
revolution of twenty-four hours, it is a bet of 1,826,214 to one that
it will rise again tomorrow.3
This example has been criticized for its historical data (why 5,000
years? Aren’t we surer of tomorrow’s sunrise than of one that long
ago?) and its metaphysical assumptions (Is the universe really like
an urn with all compositions equally possible?). The general appli-
cation of the rule has been further criticized on the grounds that it
leads to absurdities (If the first person I meet today is red-haired
and deaf the probability that the second person I meet will be
red-haired and deaf is 2/3) and contradictions (If I have met 2 red
cars, 3 white cars, and 4 black cars, the probability that the next
will be red is 3/11, white 4/11 and black 5/11, for a total probability
of 12/11).
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6 ABSOLUTE PROBABILITY

In the Classical theory there is no clear notion corresponding to our
idea of absolute probability. It is evident that probability can be
relative, as when one person’s knowledge of his poker hand gives
him a probability for drawing an ace different from that computed
by his neighbor. In such cases probability is relative to our
knowledge — in cases using the Principle of Indifference one might
say that probability is relative to our ignorance. In either case,
probability is apparently not empirical, it has to do with our beliefs
(the psychological interpretation) or rational methods of inference
(the logical interpretation) but not with any empirical property of
things.

On the whole the logical interpretation seems to be the most
justified, since it can account for the talk about degrees of belief and
the precise rules which are supposed to govern everyone’s probability
conclusions.>* On this view, the most reasonable interpretation for
the absolute probability of event E would be ‘the probability we
would assign to E if we possessed all relevant evidence and all
necessary mental abilities.” But Laplace’s demon and several remarks
of Bernoulli’s®> show that this limiting case is one of certainty: in
such an ideal situation we would know if E would happen or not.
In accordance with this interpretation of the CTP, therefore, the
absolute probability of every meaningful proposition must be either
1orO.

It should be noted that many passages in Classical writings do
suggest an empirical rather than a logical definition. Most notable,
perhaps, is that the official definition refers to the number of ways
in which an event can happen, rather than the number of ways we
think (or should think) it can happen. Also, Classical writers
frequently speak of ‘unknown’ probability, which should not exist
in a logical or subjectivist interpretation. Most frequent of these is
the unknown composition of an urn; true actuarial tables are also
said to be unknown and just ‘approached’ by existing tables.
Considerations of this sort just might move one to think that the
CTP includes a notion of physical or empirical probability. Even if
this is the case, however, the thoroughgoing determinism which we
shall presently discuss requires that for any individual event it either
will certainly happen or will certainly not happen. Even on this inter-
pretation, then, the absolute probability of E must be either 1 or 0.
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7 PHYSICAL CHANCE

The Classical theorists were determinists. They wrote, for the most
part, in the grip of Newton’s clock-like cosmology which so
dominated European thought in that period. They were convinced
that the events in nature were links in a causal chain, so that each
one is determined by those which precede it and, in its turn, helps
provide ‘Sufficient Reason’ for events to follow.

This determinism occurs clearly and explicitly as early as Bernoulli
(‘everything in the world occurs for definite reasons and in definite
conformity with law...)’¢ and Montmort (‘nothing depends on
chance... all things are regulated according to certain laws...).>’
But there is one statement of the determinist thesis which is so
compelling in its imagery and so powerful a summation of determinist
thought that it can nearly stand alone as an expression of that
metaphysical view. I am speaking, of course, of Laplace’s demon:>®

We ought then to regard the present state of the universe as the
effect of its anterior state and as the cause of the one which is
to follow. Given for one instant an intelligence which could
comprehend all the forces by which nature is animated and the
respective situation of the beings who compose it — an in-
telligence sufficiently vast to submit these data to analysis — it
would embrace in the same formula the movements of the
greatest bodies of the universe and those of the lightest atom,;
for it, nothing would be uncertain and the future, as the past,
would be present to its eyes.

Stated in simpler materialistic terms: If the Demon knew the
position and momentum (etc.) of every particle in the universe at a
given time, he could in principle predict or retrodict every event in
the history of the universe. This is the type of determinism strongly
suggested by Newton’s Laws of Motion, which successfully described
and predicted the motion of the planets and claimed also to deal
with microcosmic events. Some think this view should perish with
the physics that inspired it, so that indeterminism and Free Will are
swept into office along with Relativity Theory and Quantum
Mechanics.*® But at the time of Laplace, Newtonian cosmology
ruled Science and determinism was au courant.

In a deterministic world a chance event cannot be one which ‘might
happen one way or the other,” since all events will happen in an
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exactly specified manner. Chance, then, must be a psychological or
epistemological, rather than a physical, phenomenon. This is the
official position of the CTP, that when we talk about chance we are
referring to our inability to predict events, not to any genuine
randomness or indeterminacy in the events themselves. This, I think,
is as clear and definite a doctrine as one can find in the CTP.

Of much less importance, but of some interest, are later attempts
to specify within this deterministic framework some type of events
which are peculiarly ‘chance’ events and are especially suitable for
treatment by the calculus of probability. Poincare, for example,
emphasizes events which have a multitude of causes or which are
such that slight differences in initial conditions lead to great
differences in the eventual outcome (the toss of a coin, for example,
or the roll of a die). Cournot, on the other hand, finds the essence
of chance in the convergence of independent causal chains, so that
there may be a perfectly good causal explanation for a worker’s
dropping a brick from the top of a building and there may be an
equally good cause for my walking along a certain sidewalk on a
given afternoon, but if these causal chains come together in such a
way that the brick ‘happens’ to land on my head, we are much less
ready to give an ‘explanation’ of this event and are inclined to think
it was due to ‘chance’ or ‘bad luck’. As Keynes notes, however, even
such attempts to define chance took place in a deterministic context,
so that there really was no such thing as pure physical chance in
the universe of the CTP.

We have, then, a world in which everything is predictable — in
principle. But when we live out our lives we see that predictability
in principle cuts no wood and draws no water: what we need is
predictability in practice. Perhaps Laplace’s demon could tell us if
our cow will get sick or not, but we can’t tell. We are surrounded
by events whose causes are obscure, unknown, or incalculable; it is
beyond our ability to predict them. But even though predictability
in principle vanishes when we turn to individual events, it reappears
when we consider mass or repetitive events! If Laplace cannot tell
us whether one cow will get sick or not, he can tell us how many
sick cows to expect in a given year. And if the herd is large enough
and conditions are relatively stable, we can use his prediction to
make money on the farm.

This predictability en masse is the source of the vast profits of
insurance companies. It was also the source of the rather excessive
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enthusiasm for probability theory conceived by Poisson and Quete-
let, who found in the Law of Large Numbers a most remarkable
uniformity extending to all human endeavors and all parts of nature.
In a later section we will detail some criticisms of the CTP’s treatment
of the Law of Large Numbers. Yet it cannot be denied that a
considerable practical advance occurred when the Classical theorists
pointed out Nature’s tendency to operate with stable frequencies
and normal distributions. It is interesting to note that the kind of
predictability thereby introduced would be exactly the same even if
the world really were ruled by ‘random chance’ rather than rigid
determinism, It is therefore perhaps not quite as strong an argument
for lawlike uniformity in the world as Poisson and Quetelet thought.
Still, it is also in accord with the official position of the CTP, that
all events are determined and there is no such thing as physical
chance.

8 THE METAPHYSICAL STATUS OF P

For the most part, Classical theorists held that probability is not a
genuine part of metaphysical reality but is a human invention cleverly
designed to assist us in making rational choices when we have less
than complete information. This interpretation especially accords
with their frequent remarks that probability is a measure of our
ignorance, or a product of it. It likewise fits with the uniform
determinism which is assumed to govern the universe. In such a
Newtonian-clockwork universe, there is no such thing as prob-
ability — it has no metaphysical reality at all.

I think these reasons are sufficient for us to conclude that there
is no constituent part of the universe which can be called ‘probability’
in the sense of ‘going one way or the other,” ‘depending on chance,
etc. Yet there remain two ways in which real features of the universe
are involved in probability: (1) in cases like urn and dice problems,
the constitution of the urn and the number of faces on the die
determine the probabilities — and these are physical (hence, meta-
physical) realities; (2) events like infant mortality do occur in nearly
fixed frequencies over long stretches of time, so that we can and do
base probabilities on real properties of collections of real events.

In the first of these cases, let us consider the urn problem. Suppose
there is an urn before us which we know is either urn A, with 2 red
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and 2 white balls, or urn B, with 4 white balls, Our probability of
drawing a red ball is then 1/4.

P(A)=1/2 = P(B)
P(R/A) =1/2
P(R/B)=0
P(R) = [P(R/A) x P(4)] + [P(R/B) x P(B)]
=[1/2 x 1/2] + [0 x 1/2]
=1/4+0
=1/4

But, if Jones knows that we are facing urn 4, he knows that our
probability of drawing a red is ‘really’ 1/2. This is what Laplace
often calls an ‘unknown’ probability, and it seems to be a feature,
not of our knowledge, but of the urn’s true composition. It seems
to be a metaphysically ‘real’ probability, while the earlier one seems
only relative to our ignorance.

This, however, is only an illusion, based on the fact that Jones
has better information than we do and therefore seems closer to
reality. Yet his probability is just as much based on ignorance as
our own. He knows that there are 2 red and 2 white balls in the
urn but he doesn’t know which we will pick, so he assesses the
probability at 1/2.

Now suppose another person, Smith, comes into the room, and
Smith knows we will pick a red. Then the probability for him is 1,
and Jones’s probability no longer seems like the real thing.

Smith, of course, is Laplace’s demon, capable of knowing all future
facts about the universe — and there are such facts to be known! We
must, therefore, be deceived when we think there are ‘real’ prob-
abilities other than the degenerate ones of 1 and 0. But wherein lies
the deception?

I think the answer is that the probabilities which we normally
think of as ‘real’ are those which are predicated on the best knowledge
normally available to human beings. We normally know how many
faces a die has and whether or not it’s loaded, but we don’t normally
know precisely how it will be thrown, what air currents will affect
it, etc. And we certainly do not normally know how it will land.
Therefore the best state of knowledge we can normally achieve tells
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us that the probability of a Five is 1/6. A half-smart demon,
or a very good dice manipulator, might know that this time the
probability is ‘really’ O — it all depends on your state of knowledge.
Since the paradigm case for human knowledge of an urn problem
involves complete knowledge of the composition of the urn but not
complete knowledge of which ball will be chosen, it is perfectly
natural that the paradigm probability (for us) is that probability
which can be computed using that paradigm knowledge. Therefore
the composition of the urn determines a probability value which is
special to us, but not necessarily special to the universe. (In fact, if
the Classical theorists are right in their picture of a deterministic
universe, our ‘real’ probabilities, determined by the composition of
the urns, are necessarily false if they are not 1 or 0.)

Turning now to our second problem, probabilities are sometimes
thought to be real because they are based on real frequencies. Let
us take it as given that there are fixed frequencies of death and the
like which have been established in the past and which we know,
by some ‘valid’ form of induction, can be counted on to continue
in the near future. Does this establish that there are metaphysically
real probabilities?

Well, first of all, it establishes that there are metaphysically real
relative frequencies, even real frequencies of future occurrences (this,
incidentally, agrees well with the CTP’s deterministic metaphysics).
To a frequency theorist, that is sufficient to establish that there are
real probabilities. But to the CTP, probability is not a frequency
(despite occasional confusions and unclarity in the writings, we take
this to be the official position). Instead, probabilities are based on
the existence of computable equiprobable alternatives.

I have suggested above that the use of mortality tables is
theoretically justified in the CTP by the fact that we are equally
likely to be represented by a favorable as by an unfavorable entry,
so that the ratio of favorable entries to all entries constitutes our
probability of survival. Now let us suppose that the death frequency
of white males of my age group in Florida is 0.02 per year, and that
this frequency is stable for groups as small as 1,000. It is then possible
to construct a mortality table containing 20 unfavorable entries and
980 favorable entries, knowing that I am represented by one of the
entries in this ‘real’ mortality table but not knowing which one. We
can then know that 20 of this group of real people will die, and the
Principle of Indifference tells us that there is a 0.02 probability that
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I will be one of them. This is, ex hypothesi, a probability based on
reality — but is it a ‘real’ probability?

According to the CTP, it is the probability of my death if I have
no reason to ‘prefer’ one or the other alternative (not in the sense
of a death wish but in the sense of a rational expectation). Now it
happens that I know that I drive a sports car and I know that sports
car drivers are slightly more likely to die than Cadillac drivers or
pedestrians. Therefore my ‘real’ probability of death, based on this
knowledge, is slightly greater than 0.02. On the other hand, 1 am
healthy, educated, very well fed, and receive good (socialized) medical
care. Therefore my ‘real’ probability of death is somewhat less than
before. In principle, each of these complications produces a changed
but calculable probability of death (assuming each is associated with
a stable frequency). But which is my ‘real’ probability of death? We
normally think that the ‘best’ probability is that which is based on
the ‘most’ knowledge. But Bernoulli and Laplace insist that in the
pursuit of knowledge the limiting case is — certainty. Again, Laplace’s
demon knows whether I'm to die or not and there’s an end to
speculation. In their universe, I either will or will not die, and there’s
no such thing as a ‘real’ probability of my death.

If there are stable frequencies in nature, as we assumed, that fact
allows us to predict future mass events with near certainty. It also
gives us grounds for computing probabilities which are valuable
(some more so than others). But even though the facts are real, the
probabilities are always relative to our knowledge (which cases are
equiprobable to us?). Therefore, metaphysically real frequencies do
not determine metaphysically real probabilities, mortality tables and
‘anknown probabilities’ notwithstanding.

9 THE EPISTEMOLOGICAL STATUS OF P

It would be stretching the matter only a little to say that, for the
classical theorists, probability is an epistemological phenomenon.
That is to say, probability is not some feature of the world, which
we seek to discover, but rather it is a way of dealing with the world,
based solely on our own knowledge and mental faculties, and helping
us to project the future out of our descriptions of the present. It is,
according to Bernoulli and Laplace, a substitute for exact know-
ledge — since knowledge is the very subject of epistemology, pre-
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sumably its substitute is likewise epistemological.

The curiously unepistemological feature of Classical probability
is that it notoriously bases its projections on ignorance rather than
knowledge. This is especially true of the Principle of Indifference,
which has been said to require ‘an equal distribution of ignorance’
in order to assign numerical values to probabilities. Remember the
mayor’s race we described above, where we knew the probability of
Smith’s winning only if we knew nothing at all about the race — when
we learned something significant, we lost our ability to give exact
odds. This is the kind of ‘knowledge out of ignorance’ situation
which has attracted many thinkers and repelled many more. It seems
to denigrate careful investigation and collection of information and
rely instead on mathematical mumbo-jumbo to produce as if by
magic the exact probability of occurrence of something we may never
have experienced.

As one might expect, the critics have somewhat overstated the
case here. It is not just our ignorance that is important, Laplace
says, ‘Probability is relative, in part to this ignorance, in part to our
knowledge.’®® In order to deal with the (somewhat uncharacteristic)
probabilities of death, for example, it is clear that a statistical
investigation must first create a mortality table. In the simpler case
of a dice game, our first task is to identify the equiprobable
alternatives. But in acquiring this little bit of knowledge the CTP
encounters a major epistemological problem: How do we justify the
belief that all faces of the dice are equally probable to turn up?

This question is of fundamental theoretical importance because,
as I shall argue throughout the book, there is little controversy about
how to deal with established probabilities. All theories share in
common the calculus of probability, they differ primarily on (1) the
definition of ‘probability,” and (2) the method of establishing initial
probabilities.

Now if we know the faces of the die are equally likely to come
up, and if we know that one and only one must come up, it is
mathematically necessary that the probability of each be exactly 1/6.
But how do we come by that first bit of knowledge?

Relative frequentists and other critics of the CTP argue that we
learn the equiprobability of the faces the same way we learn other
empirical facts — through experience. Generations of gamblers have
carefully noted the fall of the dice, and generations of dice makers
have labored to insure that the gamblers have seen each face equally
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often. That, claim the critics, is how we know the faces are equally
probable.

Not so, say the Classical theorists, the faces are equally probable
because Bernoulli’s Principle of Indifference (Principle of Non-
Sufficient Reason) tells us to treat equipossible alternatives as equally
probable if we have no reason to treat them otherwise.

But now our epistemological problem has become two problems:
how can we identify equipossible alternatives, and how can we justify
the Principle of Indifference itself? The first of these questions will
be prominent in the section devoted to criticism of the CTP, so 1
will now pass it by to deal with the second.

The Principle of Indifference has never been argued for to nearly
the extent it has been argued against. The Classical theorists
themselves seem hardly to have felt a justification necessary. They
were concerned with developing and expounding a system which
worked. Philosophical analysis, criticism, and defence naturally came
later. The most notable defenders of the Principle among later
thinkers were Keynes and Carnap. Each of them decried the
unrestricted and uncritical use of the Principle which had led to
excesses and contradictions in the past and each modified, restricted,
and generally prettied up the Principle before incorporating it in his
own system. In the end, Keynes relied on our direct intuition to show
us the truth of the Principle, while Carnap appealed to its simplicity
and the fact that it worked well in practice. If Laplace had felt called
upon to justify the Principle, I'm sure he would have approved of
all three of these considerations, but I really think that he thought
it was just obvious. After all, what other value could you reasonably
assign to the probability of rolling a Five if you had no reason to
expect one face or the other? It just has to be 1/6.

For my own part, I think the Principle becomes more plausible
when it is clearly removed from the idea of the probability of
occurrence of an event and explicated instead in terms of the notion
of a random guess. I will explore this idea further after I present the
main criticisms of the Principle in the next to the last section of this

chapter.

10 RATIONALITY OF PROBABILITY BEHAVIOUR

In addition to developing the calculus of probabilities, the Classical
theorists also formulated two other ideas which are of major
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importance to the general study of rationality: the concept of
Mathematical Expectation, and the Principle of the Diminishing
Marginal Utility of Wealth.

The first of these we have attributed to Huygens (despite Keynes’s
pressing of the Leibniz claim, see note 21 to chapter II). It has become
so well known that most readers will be familiar with it already, but
it is always well to review things and ensure that we are talking
about the same concept.

The Mathematical Expectation of an event is the product of the
probability of the event and its value (sometimes, utility) to an
individual.

ME(A4) = P(A) x V(A)

This, of course, is nothing more than a definition. The Principle of
Rationality which makes it important is: Whenever alternative
actions are possible, select the one which maximizes mathematical
expectation.

There are a few problems with this rule. Some claim it over-
emphasizes utility and acquisitiveness. Many think that situations
exist or can be invented in which the rule violates our rational
intuitions. (Should a poor person choose a one-in-a-thousand chance
of winning a million dollars over a 90 per cent probability of getting
$1,0007) Still, it has been one of the most durable and widely-accepted
of all principles of rationality.

The other idea, that a given amount of money is worth less to a
rich man than to a poor man, was explicitly stated by Daniel
Bernoulli in his attempts to solve the Petersburg Problem. In that
instance he formulated a mathematical measure called ‘Moral Hope’
(or “‘Moral Expectation’) which purported to show exactly how much
a given increase of wealth would benefit an individual with given
resources.

Even ignoring the details of D. Bernoulli’s argument, it seems
intuitively clear to most people that the beggar places greater value
on a quarter than the rich man does.®* We can capture this general
notion by saying that the value one places on an increment of wealth
is inversely proportional to one’s current wealth.

Now let us imagine two persons gambling in a fair game, where
each begins with a stake of 100 units. Any outcome except a draw
will result in a disparity between the final sums. Suppose A wins 30
units from B. Then A’s gain is proportional to 30/130 while B’s loss
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is proportional to 30/70. Thus, after the game, the amount transferred
looks larger to the loser than to the winner. But it would be irrational
to engage in an activity where one risks more than he stands to gain
on equal chances. I would not bet my 30/70 against your 30/130 on
the toss of a fair coin — that would be unfair odds. But the outcome
of any fair game will always exhibit this property, that the loser’s
relative loss is always greater than his corresponding possible gain.
Thus all gambling is shown to be irrational, since most games promise
even less than a fair return. As Laplace says®?

It results similarly that at the fairest game the loss is always
greater than the gain.... We can judge by this of the immo-
rality of games in which the sum hoped for is below this
product. They subsist only by false reasonings and by the
cupidity which they excite and which, leading the people to
sacrifice their necessaries to chimerical hopes whose improb-
ability they are not in condition to appreciate, are the source of
an infinity of evils.

This conclusion is much more typical of the Classical theorists than
one would have thought. We tend to picture them as eagerly working
out the odds in order to excel at the widespread gambling in decadent
aristocratic society. In fact, however, they were generally opposed
to gambling, treating it only as an item of mathematical interest.
Besides Laplace and D. Bernoulli, de Méré and Montmort remarked
on the wastefulness of gambling,®® and Cardano seems to have been
the only inveterate gambler of the bunch.®*

But even if the classical investigation led to the conclusion that
gambling is irrational, it was, after all, probability theory which
made it possible to demonstrate this. So it has advanced our
rationality at least in this respect. (Montmort®® cites the example
of a lottery operator who, lacking a knowledge of probability, offered
the public terms unfavorable to himself — alas, we are beyond that
now.)

In the end, of course, probability theory has found so many
applications that we can scarcely question the rationality of its use.
At the time of the CTP, however, the only major practical successes
were in gambling and insurance. Otherwise the principal virtue
claimed for probability was that it was a codification of common
sense, extending what we had always agreed with into areas where
things were unclear. Laplace put it thus:¢
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It is seen in this essay that the theory of probabilities is at
bottom only common sense reduced to calculus; it makes us
appreciate with exactitude that which exact minds feel by a sort
of instinct without being able ofttimes to give a reason for it. It
leaves no arbitrariness in the choice of opinions and sides to be
taken; and by its use can always be determined the most
advantageous choice, thereby it supplements most happily the
ignorance and the weakness of the human mind ... there is no
science more worthy of our meditations.

11 CHIEF CRITICISMS

It is well that this section is called ‘chief criticisms’, since it would
require most of the book to attempt to list all the criticisms that
have been directed at the CTP. We will try to impose some order
on this mass by discussing them under the following headings:

1 Criticisms of the Principle of Indifference.

2 The limited application of the CTP.

3 Criticisms of inverse probability.

4 Theoretical ambiguity in the CTP.

5 CTP not tied to the real world of experience.

Criticisms of the Principle of Indifference

This is probably the most popular of our five areas of criticism;
virtually every author who has written on the philosophical theory
of probability in modern times has taken a shot or two at the
Principle of Indifference.®’

The Principle is variously formulated and variously attributed
(principally to Bernoulli and Laplace) but is generally held to be
central to the definition of probability and the determination of
initial probabilities in the CTP.

Generally speaking, the Classical theorists begin with equiprob-
able alternatives and define probability as the ratio of those which
are favorable to the total set. But, as Reichenbach notes, ‘even if the
degree of probability can be reduced to equiprobability, the problem
1s only shifted to this concept. All the difficulties of the so-called a
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priori determination of probability therefore, center around this
issue.’*®

The principal ‘difficulty’ with the definition is that it seems to be
glaringly circular. After all, ‘equiprobable’ is normally construed as
meaning ‘having an equal probability’ — but ‘probability’ is the very
word we are trying to define.

Now Laplace can avoid this circularity by trying to give ‘equiprob-
able’ some sense of its own, with no dependence on probability.®®
This he does by requiring that the equiprobable alternatives meet
two criteria: (1) they must be ‘equally possible, and (2) they must
be ‘such as we may be equally undecided about in regard to their
existence.’”?

We hasten to add that ‘equally possible’ likewise must have a
sense which is not parasitic on the concept of probability if the
original definition is to avoid vicious circularity. It seems that Laplace
meant that equipossible alternatives are those which are on the same
logical level and can be subdivided in the same ways. Thus Four
and Three are equipossible dice throws, while “Two or less’ and
‘More than Two’ are not, since the latter cases consist of two and
four sub-cases respectively.”! This requirement will be of interest
later when we consider alternatives like Six or not-Six, and Red or
Blue or Green.

The other requirement, that we be ‘equally undecided’ about the
alternatives, has been a source of even greater difficulty.

To begin with, it is evident that this phrase must not refer to some
actual state of indecision, else the CTP would reduce to a psycho-
logistic subjectivism which is clearly not the intent of its framers.
Someone might well be undecided about whether a crap-shooter is
more likely to roll a Seven or a Three — the point is that he should
not be undecided. But if the stricture is to refer to some logical or
empirical (non-psychological) feature of the situation, what are we
to take it to mean?

One possibility is that we might mean that we have no evidence
whatsoever regarding the possible outcomes. But, as C.1. Lewis
suggests, ‘it should be doubted whether that kind of case can occur,’”?
since almost everything which can be described has some relation
to past experience.

A better interpretation is that we are equally undecided about
alternatives when they are ‘symmetrically related to the body of the
evidence.”* It would then be all right to know something about the
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alternatives, as long as that knowledge did not allow us to distinguish
between them.

But of course we can distinguish between the alternatives: a Five
has more pips than a Three, and a Heart and Club have different
colors. In fact, Leibniz would tell us that there must be some difference
between the alternatives, else they would be identical (Principle of
the Identity of Indiscernibles).

So our requirement must be amended to allow some differences.
This will be all right so long as the differences are not relevant to
the problem. But this solution is also unacceptable, because ‘if
“relevance” is defined in terms of “probable”, the circle in the Laplacian
definition is once more patent; while if judgments of relevance are
based on definite empirical knowledge, the ground is cut from under
the basic assumption of the Laplacian point of view.'’*

The problem is that we want to be able to say that the color of
a racing car, for example, is irrelevant to its chance of winning, while
the size of its engine is very important. But it should be clear that
no general rule can be formulated for distinctions like this, and
empiricists would argue that all particular rules are in fact based
upon experience rather than a priori logic. The identification of
equiprobable cases then seems to be a matter of induction from
experience rather than prediction from ignorance.”> Whenever
experience has shown that there are good grounds for treating certain
alternatives as equiprobable (as in dice and card games especially)
it is perfectly reasonable to use the Principle of Indifference as a rule
of thumb for computing initial probabilities. But in such cases the
Principle is no longer theoretically fundamental (experience is) and
it must be abandoned if future experience gives us grounds for
doubting that equiprobability obtains.

In addition to general theoretical questions about the Principle
of Indifference, there are also many problems, difficulties, and even
contradictions in its application.

Two of the simplest counter-examples turn upon the problem of
dividing up alternatives. First, if we are about to throw a die, we
might throw a Five or we might not throw a Five. Since we are
undecided about the alternatives, the Principle of Indifference might
seem to require us to treat them as equally probable. Obviously this
criticism turns on the notion of equipossible cases and is invalid if
the defenders of the Principle succeed in making that concept clear
and workable.
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The second counter-example is somewhat similar. Suppose we are
about to draw a ball of unknown color from an urn with unknown
contents. It seems that we have no more reason to expect the ball
to be Red than not, so the probability would seem to be 1/2 that it
is Red. But of course the same reasoning applies to Green and to
Blue, so that P(Red)=1/2, P(Green)=1/2, P(Blue) = 1/2. But this
gives us a total probability of 11/2 in violation of the basic rule that
probabilities must add to 1.

Again the problem seems to be that the alternatives are not
equipossible because there are more ways to be non-Red than to be
Red. But what if we are asking about the probability that Martians
(or other extraterrestrials) are friendly? Are there more ways to be
friendly or unfriendly (especially if you're a Martian)? Doesn’t it
seem that there is equipossibility between these alternatives? And
aren’t we equally undecided about them? Doesn't it follow from the
Principle that they are equiprobable? But then we have the extra-
ordinary conclusion that we know the probability that Martians are
friendly is exactly 1/2! Do we know any such thing?

It seems that equipossibility may eliminate puzzles when we can
specify ‘ultimate properties’ and ‘different ways of being X, but for
all those propositions that do not allow such distinctions, if we know
nothing about them, then they are just as likely to be true as false!
Many have thought this conclusion absurd and a major criticism
of the Principle of Indifference.

Besides simple negation, there are other ways of creating alter-
natives which may or may not be equiprobable. One of the most
famous of these is Bertrand’s Box.”®

Consider a Box or chest which has three drawers. We know that
one contains two gold coins, one contains two silver coins, and the
third contains one gold and one silver coin. Suppose we pick a
drawer at random and blindly withdraw a coin which turns out to
be gold. What is the probability that the other coin is gold?

Solution I: Since a gold coin was drawn, we must have chosen
either the first or the third drawer, but we have no reason to prefer
either, therefore the probability is 1/2.

Solution 11: We have either drawn the single gold coin in drawer
three, or the first gold coin in drawer one, or the second gold coin
in drawer one. Of the three possibilities, the latter two are favorable.
Therefore the probability is 2/3.77

Here we have different applications of the Principle of Indifference,
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depending on different specifications of the alternatives and resulting
in different values for the probability. It is not immediately evident
to most people which is the preferred solution (the second) because
it is not immediately obvious that the gold coin is a stronger indicator
of the first drawer than of the third. This example at the very least
shows that much more care must be taken in specifying alternatives
than is generally assumed.

An even more complex problem in the application of the Principle
of Indifference arises when we consider problems involving con-
tinuous variations or ‘geometrical’ probability.

By far the most famous of these is Bertrand’s Paradox. The
problem is: for a given circle, what is the probability that a random
chord is longer than the side of an inscribed equilateral triangle?

At least three different solutions are possible.

1 If one attends to the end-points of the random chord and
computes their possible location, the resulting probability is
1/3.

2 If one attends to the location of the chord’s mid-point along
the length of the diameter which bisects it, the probability is
1/2.

3 Finally, if one asks whether the mid-point of the chord does
or does not fall within a concentric circle of appropriate
diameter, the probability seems to be 1/4.

This example is like Bertrand’s Box Paradox in that the difficulty
turns on the specification of the relevant alternatives. It differs in
that there is no ‘preferred’ solution to the problem as stated. However,
Kneale (whose discussion of the paradox we have followed here) has
pointed out that the problem does become determinate if we specify
the method of selecting the ‘random’ chord. Then we find out that
(1) is appropriate for spinning a spinner twice, (2) is appropriate for
sliding a ruled glass plate along the surface, and (3) gives the correct
result if we let a raindrop determine the midpoint.”®

So again we have found that a problem can be resolved with more
complete information and more careful thought. But now let us
consider a paradox which is genuinely irresolvable because it involves
attributes which vary continuously. This is the problem of volume
and density which Keynes attributes to von Kries.”?

Suppose we know that the specific volume (volume per unit mass)
of a substance lies somewhere between 1 and 3. The Principle of
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Indifference then indicates that it is just as likely to be between 1
and 2 as between 2 and 3, so the probability of each of these
alternatives is 1/2.

Specific density (mass per unit volume) is the reciprocal of specific
volume. Thus our initial condition requires that the specific density
lie somewhere between 1 and 1/3. If we apply the Principle of
Indifference to equal intervals on this scale, we find that there is an
equal probability of 1/2 that the specific density will lie between 1
and 2/3 and that it will be between 2/3 and 1/3. But since the relation
is reciprocal, these values correspond to a specific volume ranging
between 1 and 11/2, and 11/2 and 3 with equal probability, contrary
to our original calculations.

Other, similar, paradoxes can be generated by the fact that it is
not possible for x? to be evenly distributed in a domain if x is, and
vice versa.8?

We may say, then, that the Principle of Indifference just will not
work reliably on problems involving continuums or an infinity of
alternatives — what has traditionally been called geometric prob-
ability.

Our final objection to the Principle of Indifference is that we cannot
get knowledge from ignorance®! and no matter how carefully we
specify alternatives, ‘there is in fact no logical relation between the
number of alternative ways in which a coin can fall and the frequency
with which these alternatives in fact occur.’®?

It seems quite clear that if we are ignorant of the outcome then
we are (indeed) ignorant of the outcome and that counting alter-
natives in such a case will not tell us (in the absence of some
information) what the true probability of occurrence of an event will
be. But much of the CTP is not directed towards empirical knowledge
of events — rather it is intended as a guide to action under conditions
of uncertainty. I contend, therefore, that what the Principle of
Indifference measures, and measures correctly, is not the probability
that an event will occur, but rather the probability that a random
guess about an event will be correct.

If we arbitrarily bet on a horse in a field of n horses, for example,
we should not think that the odds of that horse winning are 1/n, for
in general that will be false and certainly its odds of winning are
more determined by the quality of horses in the field than by their
quantity. What the Principle of Indifference does tell us — and rightly
so — is that we should figure the odds that we have picked the winner
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to be 1/n, and bet on that expectation. There are two distinct activities
here: the horse race, and the random guess. The odds for success in
the horse race are determined by such empirical factors as jockeys,
track conditions, and equine excellence. But experience has taught
us that the odds of success in a truly random guess depend only on
the number of favorable outcomes compared to the total number
of alternatives. Notice that this success ratio is suggested by the
phrase ‘random guess’ with its implication that each alternative
stands an equal chance of being chosen. Curiously enough, experience
has also taught us that the guess need not be random in this strict
sense. When Americans are placed in a situation where they must
go to the right or left, they show a marked preference for the right.
I do not know (or know if it is known) whether this preference is
due to the right-handedness of the majority (as seems likely) or the
English reading direction (as I have seen suggested) or even the
right-wing political orientation of the majority (as my radical friends
might conclude, since they think politics determine all human
activity). But the important thing is that, in practice, such guesses
are successful about 50 per cent of the time even though ‘right’ is
guessed most frequently (just as coin-calls are about 50 per cent
successful although calls of ‘heads’ predominate). It appears that the
only requirement we need impose on a random guess is that the
principle of selection employed (such as color, identification number,
etc.), if any, must have no bearing on the success of the chosen
alternative. This definition of ‘random’ is practically identical to that
employed in von Mises’s requirement of randomness in a collective.
It is generally an empirical question whether a guess is random in
this sense (perhaps red cars do win more races, because people who
drive red cars are more reckless than others). Nevertheless, the idea
is common enough that most people know what it means to make
arandom choice in this sense, and, indeed, many of us have developed
principles of choice which are designed to be random (‘Eeenie, meenie,
minie, moe..."). I think, therefore, that the concept of random guess
is an effective concept, in the sense that we seldom make mistakes
in its application. All our past experience joins with the logical
arguments to support the contention that the probability of success
in a random guess is given by the Principle of Indifference. I think
this is the underlying truth which has accounted for the historical
acceptance of that principle. The logical and empirical difficulties
which have so discredited the Principle of Indifference are due entirely
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to the fact that so many have confused the probability of choosing
a success with the probability of being one.

The Limited Application of the CTP

If we are correct in arguing that the Principle of Indifference is
primarily adapted to random guessing between clearly defined
alternatives, we should not be surprised to find that it can be
employed usefully in only a comparatively few situations.

We have already found, for example, that the application of the
Principle can be ambiguous and inconsistent in some cases, and that
it seems to break down completely in cases involving geometric
probability.

Another area where the CTP breaks down, Kyburg points out,
is irrational probabilities:®?

There are also probability problems in physics and mathematics
which lead to irrational numbers as probabilities. These
probabilities (e.g. 6/n* for the probability that an integer
selected at random is prime) cannot be regarded as ratios of
numbers of alternatives for the simple reason that irrational
numbers cannot be regarded as ratios of integers at all.

In addition, our discussion of mortality tables and actuarial
problems has shown that interpreting a person as equiprobably
represented by each entry in a table is a possible but rather strained
way of trying to stretch the theory to fit a desired application. If we
have to invent hypothetical charts for all stable frequencies and try
to make these charts as complete and comprehensive as possible,
our statisticians will be working overtime. And we still have the
problem of making sense of mortality charts of future deaths. On
the whole, it seems that von Mises was justified in the following
criticism of Classical authors:®*

When the authors have arrived at the stage where something
must be said about the probability of death, they have
forgotten that all their laws and theorems are based on a
definition of probability founded only on equally likely cases.
The authors pass, as if it were a matter of no importance, from
the consideration of a priori probabilities to the discussion of
cases where the probability is not known a priori but has to be
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found a posteriori by determining the frequency of the different
attributes in a sufficiently long series of experiments. With
extraordinary intrepidity all the theorems proved for
probabilities of the first kind are assumed to be valid for those
of the second kind.

Von Mises is perhaps overly snide, since the theorems of the
calculus developed by the Classical theorists do hold for the frequency
interpretation, but he is certainly correct in pointing out the gaping
theoretical chasm ignored by the CTP. We might conclude, then,
that the solutions worked out in this type of case by the CTP were
correct, but unjustified.

It is even clearer that the CTP cannot deal with loaded dice and
coins in a way consistent with its theoretical foundations. If we know
that a die is loaded in favor of a Five, we must conclude that the
alternatives are still equipossible, since they are on the same logical
level and can be subdivided only in the same way, if at all. But the
alternatives are no longer equiprobable, since we are no longer equally
undecided as to which will appear. On a strict interpretation of the
CTP (one which takes the Principle of Indifference as the only source
of initial probabilities) there is no probability here, since there are
no equally probable alternatives. (We shall speak in the next
subsection about Laplace’s, Bernoulli’s, and Bayes’s attempts to
finesse this difficulty by using inverse probability.)

In fact, any application of probability theory or use of the terms
‘probably,” ‘probability,’ ‘chance,’ ‘odds,” etc., which is not based on
equiprobable alternatives is a deviation from the strict CTP. This
obviously includes most of our casual talk (‘T'll probably fail the
exam’), much of our gambling (‘The odds on Gluefoot are 20 to 1°),
and much of our commercial and scientific activity (‘The probable
error is 2 per cent’). A strict Classical theorist is left with very little
to work on, primarily cards and dice.

Even the application to cases like cards and dice, of course, requires
empirical assumptions and hidden rules. In particular, we must
assume that the dice are fair’. But ‘fair’ dice are defined as those
which give results consistent with the Classical Theory and the
Principle of Indifference.®® It is not surprising therefore — indeed it
is analytic — that fair dice act as predicted. The difficult thing is
identifying fair dice (or other alternatives) in the real world.

On the whole, there are not many important situations where
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equiprobable alternatives present themselves. James Bernoulli recog-
nized this in 1705 when he wrote:®°

In the game of dice, for instance, the number of possible cases
(or throws) is known.... But what mortal, I ask, could ascer-
tain the number of diseases, counting all possible cases, that
afflict the human body in every one of the many parts and at
every age, and say how much more likely one disease is to be
fatal than another.... These and similar forecasts depend on
factors that are completely obscure, and which constantly
deceive our senses by the endless complexity of their inter-
relationships, so that it would be quite pointless to attempt to
proceed along this road.

The other road that Bernoulli opened with his theorem is intended
to be a pathway to probabilities that are not based on the
identification a priori of equiprobable alternatives, but are instead
derived from experience by the method known as inverse probability.

Criticisms of Inverse Probability

Bernoulli’s method for establishing probabilities a posteriori is
commonly called the Inverse Bernoulli method, or the Inversion of
Bernoulli’s Theorem, because it is based on that more fundamental
principle which bears his name. The basic theorem itself has been
the source of a good deal of confusion, so we will try to clear up
some of the problems concerning it before we proceed to its inversion.

The central idea of Bernoulli’s Theorem is that a repetitive event
whose probability of occurrence is p on each of N possible indepen-
dent occasions will exhibit a frequency of occurrence f that falls in
the range p + e, with a probability of P. The value of P for fixed
population N depends on the allowable variation, e; but P is also
directly dependent on N, and will continue to approach 1 as N
increases. (Bernoulli’s Limit Theorem says it can be made to
approach closer to 1 than any arbitrary value, d, if the population
is increased sufficiently.)

The contested claim for this theorem is that it allows the CTP to
predict relative frequencies and to derive probabilities from observed
frequencies.

There are two possible situations here: (1) The initial probability
p is known, (2) p is unknown.
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If p is known, the probability calculus and other general math-
ematical laws are sufficient to justify the calculation of the final
probability. (Some minor restrictions are imposed by the method
of approximation actually employed, but these problems are math-
ematical rather than philosophical.) Unfortunately, not everyone has
always remembered that even this final value remains only a
probability. There has been a serious misconception from time to
time that Bernoulli’s Theorem actually established a frequency of
occurrence (f + e) which will be observed in experience.?’” We must
remember that the theorem is nothing more than a part of the
probability calculus, and that it shares with most other parts of that
calculus the form ‘If probability 4 is x, then probability B is y.” In
the normal application, probability A4 is the ‘initial’ probability of a
given result in a repeatable empirical trial. Probability B is then the
probability that the relative frequency of such a result will fall within
a certain range. But probability B is not itself a relative frequency.
Those who think that Bernoulli’s Theorem ‘goes from probabilities
to frequencies’ are therefore mistaken — it goes from probabilities of
independent events to probabilities of frequencies of such events.®®

If this rather elementary error is avoided, there yet remains some
question about just how the theorem relates to actual events. Von
Mises, for example, criticizes Bernoulli on the grounds that either
his theorem is purely arithmetical, and thus about numbers rather
than the world, or else it is empirical because of the assumption of the
postulates of the frequency interpretation.

He explains the mathematical basis of Bernoulli’'s Theorem (or
the Law of Large Numbers) somewhat as follows. Let us represent
the result of a coin toss by ‘0’ for Heads and ‘1’ for Tails. Then the
result of a series of 100 tosses corresponds to one member of the
set of all 100-digit numbers consisting of only ‘I’s and ‘0’s. There
are exactly 2'°° such numbers.®®

Considered in this light, Bernoulli’s Theorem is seen to have the
following arithmetical content:*°

Let us write down, in order of the magnitudes, all 2" numbers
which can be written by means of 0’s and 1’s containing up to n
figures. The proportion of numbers containing from 0.49x to
0.51n zeros (assuming e = + 0.1) increases steadily with an
increase in n.

This proposition is purely arithmetical: it says something
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about certain numbers and their properties. The statement has
nothing to do with the result of a single or repeated sequence of
1000 actual observations and says nothing about the distri-
bution of 1’s and 0’s in such an experimental sequence. The
proposition does not lead to any conclusions concerning
empirical sequences of observations as long as we adopt a
definition of probability which is concerned only with the
relative number of favourable and unfavourable cases, and
states nothing about the relation between probability and
relative frequency.

Von Mises thus concludes that the arithmetical derivation of this
mathematical theorem has no bearing on the truth or falsity of
Poisson’s proposition which he also called the Law of Large
Numbers. That is the empirical proposition whose content is roughly
that the relative frequencies of certain empirical events tend towards
limiting values as the sequence is extended. This ‘Law of Large
Numbers’ is not and cannot be proved mathematically. Rather it is
the first postulate of von Mises’s probability theory.

Finally, von Mises demonstrates that the Bernoulli-Poisson Theo-
rem (the mathematical Law of Large Numbers) indeed can be derived
in a way that says something about probability and the world, rather
than merely number theory, but not so simply as Poisson thought:*!

The correct derivation of the Poisson Theorem based on the
frequency definition of probability requires not only the
assumption of the existence of limiting values but also that of
complete randomness of the results. This condition is
formulated in our second postulate imposed on collectives.

Since this derivation requires the assumption of the postulates of
the relative frequency theory of probability, it follows that the Law
of Large Numbers cannot be used by Classical theorists as a bridge
from their theoretical structure to the use of empirical frequencies
in probability calculations.

The essence of this criticism is that if we start out by saying ‘There
are this many possible ways E can occur...,” we will get from
Bernoulli’s theorem a conclusion that says ‘There are this many
possible ways the frequency can occur....” But according to von
Mises (and Nagel) such an expression says nothing about how
frequently something will occur. If we wish this latter (useful)
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information instead, we must begin with something like ‘E occurs a
certain percentage of the time...,” which is not at all a statement of
Classical probability. (This point will recur near the end of this
section.) Before passing on to the inversion of the Theorem, we will
briefly note two fairly common errors which arise in connection with
the Theorem itself and which James R. Newman has ably corrected.

The first of these is the belief that the number of successes will
get closer and closer to Np as N increases. In fact, the proportionate
difference decreases, but the (probable) absolute difference increases.
If we go from 1,000 trials to 10,000 trials, it is true that it becomes
more probable that the number of successes falls between 0.49N and
0.51N (say). But the probability that it will fall within 0.50N + 10
decreases.®*

The second, and somewhat similar, illusion is that Bernoulli’s
Theorem guarantees the doctrine of ‘the maturity of chances.” This
ancient illusion (sometimes called ‘the law of averages’) makes
gamblers believe that a long run of Heads is more likely to be
followed by a Tail than a Head because ‘long runs are unlikely’ and
‘it’s got to balance out.” But, as Newman reminds us:”3

Bernoulli’s Theorem is itself the sole ground for expecting a
particular proportion of heads in the cointossing game, and it is
an essential condition of the theorem that the trial be independent,
i.e., without influence on each other. It is patently

foolish, then, to invoke the theorem that sets out from the
premise that the probability of a head at every toss is 1/2, to
prove that the probability is less than 1/2 after a consecutive
run of heads. Yet this is the muddleheaded idea underlying all
gambling systems.

Now let us turn to our second possible case, where we are to use
the inverse of Bernoulli’'s Theorem to derive an unknown initial
probability. If pis not known, the question arises whether the theorem
enables us to calculate either p or P, or both. Clearly P cannot be
calculated alone, since it only has a value for a given p and e.
However, if we have a given sample, with observed relative frequency
G, we can hypothesize a value of p, compute e (¢ = p — G) and thus
compute a value for P. This tells us what probability there is of
observing such a sample if the original probability is p. Classicists,
Apriorists, and some Frequentists like Reichenbach take this as an
indication of the probability that p is the original probability and
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accept or reject the hypothesis if P is very high or low. This process
is known as the Inversion of Bernoulli’s Theorem and is accepted
as meaningful by all schools.

But all this really tells us is that the observed sequence would
have been very improbable, e.g., if the original probability had a
certain value. That gives us some reason to doubt that the original
probability did have that value, but it certainly doesn’t preclude it.

The usual method is to continue applying the inverse Bernoulli
method to different values of p until it is established which value
makes P a maximum. (That is, which of the possible values of p
makes the observed event more probable than do the others.) This
is then said to be the most probable value for p. (For simple cases,
the most probable value of p = G.)

It is this most probable value which Laplace and Bernoulli
sometimes treated as ‘the value of the initial probability given by
the inverse of Bernoulli’s Theorem.” But this is far too strong a
construal. Even if this value would make the observed events ‘less
unlikely,” it may itself be sufficiently unlikely to override any
presumption in its favor. For example, if we observe 20 tries on a
roulette wheel in a reputable casino and find only 6 Reds, Bernoulli’s
Theorem will suggest that the wheel might be biased, since the
hypothesis of fairness would allow only a 0.037 probability of this
occurrence, while a bias of 0.30 Red would give 0.192 as the
probability of this series, which is greater by a factor of 5. Yet we
know it is very unlikely that a reputable casino would stoop to
biasing the wheel (especially in this manner, which doesn’t stand to
benefit them at all), and ‘innocent’ imperfections or normal wear
tend to favor numbers, not colors (which are evenly distributed on
the wheel). It is much more reasonable, then, to reject the ‘most
probable’ value selected by Bernoulli’s Theorem, in favor of the a
priori more probable thesis of a mildly unusual result on a fair wheel.

This kind of criticism is basically the same as that applied to
Bayes’s Rule by its detractors. It is impossible, they say, to arrive
at any mathematically sound value for p unless we know already
the a priori probabilities that p takes on this, that, or the other value.
Such a case is then mathematically soluble, but it is also extremely
rare. In most cases the Bayesians are shooting in the dark by hunch
while the anti-Bayesians refuse to do so. Whether this method kills
enough bears to justify the waste of ammunition is, I think, the
ultimate problem in the justification of Bayesian methods. Like most
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pragmatic problems, it doesn’t admit of a simple solution. Clearly
the inverse methods do often give us useful information, and clearly
there are situations where it is reasonable to act on their output as
the best available guide to action if action is required. Just as clearly,
it would be foolish to go around betting that every coin or roulette
wheel which shows a slight run must be biased, or that most professors
must be Anglicans because two of the three we have met have been.
The methods of inverse probability, like most of the methods of
probability theory, are important and valuable because they can
sometimes aid our common sense and our intellects in deciding on
a course of action. They become pernicious only when they seek to
replace, rather than aid, those traditional sources of wisdom.

Theoretical Ambiguity in the CTP

We have already had occasion to mention the difficulty in establish-
ing exactly what the CTP is, what its definitions and assertions are,
and so on. This difficulty arises partly from the fact that early writers
had neither the training nor the inclination to specify exactly what
they meant in every case. But, it seems, it is also partly due to the
fact that neither the group nor any individual had worked out a
systematic and coherent theory of what probability is. Indeed, many
of the problems and contradictions which we find in the CTP had
not yet been thought of, so it is natural that they should not have
been dealt with satisfactorily. We are left, then, with the problem of
interpreting their assertions in a way which yields a systematic theory
compatible with their uses of ‘probability’. It may not be possible
to do this because either their assertions or their implied theory may
be inconsistent. It also may not be possible to do this because no
formal theory can account for all the normal uses of ‘probability’.
(This is a possibility we leave open throughout the book, to be
discussed in the final chapter.) It certainly would be unwise and
unjust to apply to these pioneers the harsh requirements of logical
completeness and consistency we impose on contemporaries. Never-
theless, I think we can identify a definite theory in the Classical
writings.

The first problem of interpretation is whether the CTP views
probability as subjective and psychological, or whether it finds an
objective ground for the concept. '
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Nagel is inclined to classify the CTP as subjectivist, because of
the many references to ‘degrees of belief” and ‘degrees of certainty.’**
Carnap, however, gives a much more convincing argument to the
effect that the Classical authors never use the term ‘probability’ in
the way that we would call subjectivistic, but always assume there
is one right answer, valid for everyone (or, at least, for everyone
sharing the same information). Nowhere in their writings do they
imply or accept the possibility that two equally rational persons,
possessed of the same information, might legitimately arrive at
different probability values. This situation - crucially implied by the
subjectivist theory — is completely foreign to the beliefs and methods
of the Classical theory. I therefore agree with Carnap that the CTP
envisions some objective conception of probability.®*

Having reached this conclusion, we may proceed with Carnap to
ask if this objective concept is logical or empirical. (A priori theories
are objective and logical, relative frequency theories are objective
and empirical. The difference is that the latter views each probability
as a contingent feature of the external world, while the former does
not.)

The principal arguments for the empirical interpretation are (1)
references to ‘unknown probabilities,” and (2) the tendency to slide
imperceptibly from ‘probabilities’ to ‘frequency of occurrence.’

‘Unknown’ probabilities are inconsistent with a theory which
makes probability a measure of some logical relation between
propositions. (We always ‘know’ these probabilities, in principle, just
as we always ‘know’ whether proposition X implies proposition Y.)
Yet Laplace et al. frequently speak of unknown probabilities and
their most probable values, as if such probabilities were analogous
to mass, conductivity, and other unknown empirical properties of
things.

I trust that the sections on ‘Absolute probability,” ‘Physical chance,’
‘The metaphysical status of P, and ‘The epistemological status of
P’ have made clear my position that the classical theorists do
not recognize any real, independent, chance in the world. They
are determinists. There is no such thing as ‘the real but unknown
probability that X will occur.” Either X certainly will occur, or it
certainly will not. Instead I have argued that there are certain types
of descriptions of the world which are often employed and which
have strongly associated probability values. If we knew, for example,
that one-fourth of the balls in the urn are red, we would know that
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‘the’ probability of drawing a red ball is 0.25. It is my contention
that many of the Classical theorists’ references to ‘unknown prob-
abilities’ are just improperly worded references to unknown constitu-
tions and proportions which are empirical properties commonly
associated with certain probability values. But a probability is not
a constitution, and therefore talk of unknown probabilities is merely
loose and not inconsistent talk.

It is somewhat more difficult to maintain this interpretation in
actuarial cases, because these often include no unknown distribution
of equiprobable alternatives to be associated with the relevant
probabilities. The problem dissolves if we are willing to take seriously
Laplace’s notion of a perfect table of mortality, since this will
represent our unknown distribution. If we remain uneasy about the
matter, it is not because of our distrust of unknown probabilities
but because it is questionable whether the CTP can properly embrace
any frequency-related probabilities at all — known or unknown. This
difficulty therefore merges into the second one.

There is no blinkering the fact that the CTP just is muddled about
frequencies. The close empirical association between frequencies and
probabilities, together with the enticing prospects of Bayes’s and
Bernoulli’s theorems, led to a confusion of these concepts which is
quite natural but also, as von Mises noted, theoretically deplorable.

It may be possible to develop a logical theory of probability which
deals successfully and consistently with empirical frequencies.
Certainly Keynes and Carnap made great progress in distinguishing
the two concepts and clarifying the relation between them. It is
tempting to graft their results onto the earlier rootstock of the
Classical theory. But just as we should not be too harsh, so also we
must avoid indulgence. We therefore absolve the CTP of the charge
that it is or (ambiguously) might be subjectivistic, but agree with
von Mises and Carnap that it fails to distinguish the logical from
the empirical in the crucial area of relative frequencies. It is to that
extent reprehensibly ambiguous.

CTP not tied to the Real World of Experience

The final, and, to some extent, all-inclusive, criticism of the CTP is
that it is purely a theoretical construction not based on the reality
of experience.
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It is clear that the greatest achievement of the CTP — the calculus
of probabilities -is an abstract mathematical object. Even the
controversial theorems of Bernoulli and Bayes are, in their pure
form, a part of the mathematical skeleton common to all theories
of probability. But the worth of probability theory is not (entirely)
based on its abstract mathematical virtues — the role of a theory of
probability is to apply those mathematics to the world, and it is
here that controversy arises.

We might start by saying that the CTP applies to fair dice, unbiased
coins, etc. But, as Ayer pointed out,’® if we define fair dice as those
which give results conforming to the predictions of the CTP, we
obviously have an analytic (and therefore circular) proposition. On
the standard view, analytic assertions are not about the real world
at all, but are matters of logic and definition. We must instead find
some non-analytic criteria of application for the theory.

The most famous way of attempting this is to apply the Principle
of Indifference. In its unrestricted form, this leads to puzzles,
unintuitive results, and even contradictions. Even in its purified form,
moreover, the Principle remains subject to the criticism that it either
is not tied to experience at all or else it is demonstrably false. Nagel,
von Mises, and Reichenbach especially argue that the abstract, logical
specification of alternatives does not and cannot determine what
will actually happen in experience. {The most obvious example is
the biased die, where the alternatives are exactly the same but the
frequency of occurrence and therefore (?) the probability are different
from the fair die.) Such critics argue that, since indistinguishable
alternatives are not always equiprobable, we need some other way
to tie probabilities to experience.

In our discussion of the Principle of Indifference, we have already
covered the problem of the non-empirical origin of Classical prob-
abilities; now we shall examine the charge that they are even further
removed from experience because they are unverifiable and un-
changeable.

First, it is claimed that Classical probability statements are
unverifiable because their definition, and therefore their content, says
nothing about the world. To say that the probability of Heads is
1/2 is to make an assertion of one’s ignorance of any way to choose
between Heads and Tails — it is not to say that Heads will come up
half the time, so it is irrevelant whether Heads does come up half
the time or not.
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The first rejoinder that springs to mind for most defenders of the
CTP is to argue that they do have ways of verifying probability
statements — Bernoulli’s Theorem can give us strong evidence for or
against probability values.

Here I must agree with Nagel that this is not an allowable escape:
Bernoulli’s Theorem equivocates on ‘probability’. The first, or initial.
‘probability’ is defined in terms of equiprobable alternatives — by the
time the final ‘probability’ is reached it is treated as a frequency (or,
perhaps, likelihood) of occurrence. The CTP cannot have it both
ways — it must abandon one of these uses or tie them together
somehow.

I think the reason the Classical theorists did not see this theoretical
error is that, for them, ‘probability’ and ‘likelihood of occurrence’
already were tied together, semantically if not theoretically. For them
it was part of the meaning (perhaps the central part) of ‘probability’
that it describes something’s chance of occurrence. When Laplace
put forth his famous ‘definition’, I contend, he was actually formulat-
ing an explicit criterion for probabilities, or a rule for establishing
initial probabilities — he was not trying to define ‘probability’ because
everyone knew what it meant already, and theorists of that time
didn’t bother to define words in current usage.

To say all this, however, is merely to excuse the Classical theorists
by pointing out that it was a very natural error to make — it does
nothing to rectify the error. It is my view that the a priori (logical)
school of probability developed in large part as an attempt to purify
and correct the Classical theory. Carnap, for example, attacked the
verification problem by arguing for logical, rather than empirical,
verification.®” I think that ultimately this is the only way to go for
a justification of the Classical position, but it requires extending and
modifying the CTP so much that it practically loses its identity and
merges into the A Priori Theory. We will therefore stick with the
Classical notion that probabilities are verified when events conform
to the predictions of Bernoulli’s Theorem.

Now for the charge that Classical probabilities are unchangeable.
This is of course based on the fact that the definition admits of no
way of taking account of future experience. If the die has six sides,
the probability of a Five is 1/6 and remains so no matter how often
Five shows in the future.

First, a tu quoque rejoinder: relative frequency probabilities also
‘don’t change.’ They are fixed and immutable (if they exist). Only
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our estimates of those probabilities can be modified by experience,
and the RF theorists imply otherwise only because they have
muddied epistemological categories. (More on this in the RF
chapters.)

Second, the Classical response turns on the overlooked phrase ‘to
such as we may be equally undecided about’ in Laplace’s definition.
While this condition is initially fulfilled for a biased die, even a brief
stretch of experience might make that indecision unequal, and a
longer stretch, formalized by Bernoulli or Bayes, might make the
evidence overwhelming and even tell us what the true probability is.

Obviously this response is subject to the types of criticism we have
raised above. However, it is, I think, what the Classical theorists
would say, and it should stand or fall in that respect.

As a final response to this criticism I would like to present a
modern example where the Principle of Indifference was first applied,
and then revised in its application. The subject of this famous example
is the development of the Bose-Einstein statistics. Feller describes it
thus:?®

Consider a mechanical system of r indistinguishable particles.
In statistical mechanics it is usual to subdivide the phase space
into a large number, n, of small regions or cells so that each
particle is assigned one cell.”® In this way the state of the entire
system is described in terms of a random distribution of the r
particles in n cells. Offhand it would seem that (at least with an
appropriate definition of the » cells) all " arrangements should
have equal probabilities. If this is true, the physicist speaks of
Maxwell-Boltzmann statistics (the term ‘statistics’ is here used in
a sense peculiar to physics). Numerous attempts have been
made to prove that physical particles behave in accordance
with Maxwell-Boltzmann statistics, but modern theory has
shown beyond doubt that this statistics does not apply to any
known particles: in no case are all n” arrangements
approximately equally probable. Two different probability
models have been introduced, and each describes satisfactorily
the behaviour of one type of particle. The justification of either
model depends on its success. Neither claims universality, and it
is possible that some day a third model may be introduced for
certain kinds of particles.

Remember that we are here concerned only with indis-
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tinguishable particles. We have r particles and n cells. By Bose-
Einstein statistics we mean that only distinguishable arrangements
are considered and that each is assigned probability 1/A,,

4 = n+r—1>_(n+r—1)(n+r—2)...n
A O A A T 2 DU (e | S
It is shown in statistical mechanics that this assumption holds

true for photons, nuclei, and atoms containing an even number
of elementary particles.

Another model, the Fermi-Dirac statistics,'°® which assumes (1)
it is impossible for two or more particles to be in the same cell, and
(2) all distinguishable arrangements satisfying the first condition have
equal probabilities’, is found to apply

to electrons, neutrons, and protons. We have here an instructive
example of the impossibility of selecting or justifying
probability models by a priori arguments. In fact no pure
reasoning could tell that photons and protons would not obey
the same probability laws.

It is perhaps misleading of Feller to suggest that no theoretical
considerations could conceivably have dictated the Bose-Einstein
statistics and that they necessarily had to be discovered by a kind
of ‘cut-and-try’ empiricism. Actually there is a way of theoretically
accounting for the new statistics. That way is found in a new
conception of physical reality which began to develop shortly after
Einstein’s paper (and partially as a result of it) and came to be known
as quantum mechanics. One of the leading proponents of the new

mechanics, Max Born, has this to say of Einstein’s statistics:'!

I cannot see how the Bose-Einstein counting of equally
probable cases can be justified without the conceptions of
quantum mechanics. There a state of equal particles is
described not by noting their individual position and momenta,
but by a symmetric wave function containing the co-ordinates
as arguments; this represents clearly only one state and has to
be counted once. A group of equal particles, even if they are
perfectly alike, can still be distributed between two boxes in
many ways — you may not be able to distinguish between them
individually but that does not affect their being individuals.
Although arguments of this kind are more metaphysical than

72



The Classical Theory of Probability

physical. the use of a symmetric wave function as representation
of a state seems to me preferable. This way of thinking has
moreover led to the other case of gas degeneracy, discovered by
Fermi and Dirac, where the wave function is skew, and to a
host of physical consequences confirmed by experiment.

So, according to Rorn, the seemingly capricious and inexplicable
probability behavior of fundamental particles is in fact a consequence
of the theory of quantum mechanics. Of course, even this deducibility
does not negate Feller’s contention (which I support) that the test
of a probability model is its pragmatic success and our inductive
conclusion about its future success. But notice that the new statistics,
the Bose-Einstein model, is also an application of the Principle of
Indifference for the computation of probabilities — the empirical
question is merely whether state- or structure-descriptions are to be
treated as equiprobable.’°? We see then that it is possible to revise
or even replace Classical models. They are not as unalterable as
critics would have us believe. The critics, however, are right in
claiming that the CTP contains no explicit and theoretically satis-
factory procedure for effecting such changes.

12 CHIEF VIRTUES

1 would like to speak first of the virtues of the founders of the
Classical Theory of Probability. We must remember that they were
not just developing a theory of probability, they were making the
very first efforts to treat probability in a rigorous mathematical
fashion. It is true they made a few blunders and left us a few theoretical
muddles, and one can even argue that their basic rule, the Principle
of Indifference, is unacceptable. But these quibbles and shortcomings
are far outweighed by their astonishing accomplishments. Remember
that the calculus of probability, the fundamental mathematical
structure of all probability theory, was created ex nihilo by these
thinkers. Their brilliance is attested by the fact that this calculus
remains virtually unchanged to the present day, and is still accepted
by every major theory of probability.

But if the Classical theorists’ chief claims to fame are as trailblazers
and as the developers of mathematical methods, we must hasten to
add that their theory hasn’t done all that badly either. Its two great
virtues are its simplicity and its pragmatic success. Undoubtedly
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more people have used its methods than those of all the other theories
combined. (Put another way, there are more card players (CTP) than
there are logicians (AP), scientists and actuaries (RF), and psy-
chologists (SUB) combined.)

Whenever we are interested in cases that have readily distinguish-
able alternatives that are equiprobable, the CTP readily gives answers
of immediate practical value. Furthermore, if one is not bothered
by theoretical niceties, it is possible to follow the Bernoullis, Bayes,
and Laplace into ever-widening areas of application that also allow
pragmatic success, even if they depart somewhat from the pure
definition.

Indeed, as the Bose-Einstein example shows, a creative reinterpret-
ation of the basic alternatives can often change failures into successes.
Finally, we should note the extraordinary success and longevity of
the CTP’s definition of probability. Subsequent theorists have
attacked the CTP vigorously and offered various alternative theories.
Kyburg has even claimed that the Classical theory has ‘long been
abandoned among philosophers and reflective mathematicians.” 3
This may well be so. But evidently not everyone falls in these exalted
categories, for consider these recent definitions:

Probability. The ratio of the number of ways in which an event
can occur in a specified form to the total number of ways in
which the event can occur.'®*

Probability, Mathematical. If an event can happen in a ways
and fail in b ways, and, except for the numerical difference
between a and b, is as likely to happen as to fail, the mathe-
matical probability of its happening is a/(a + b) and of its
failing, b/(a + b).**3

The Classical definition lives! And as long as human beings
continue to face situations where the outcome is unknown but the
alternatives are all felt to have an equal chance of occurrence — as
long, in short, as we continue to gamble at dice and cards — the
Classical Theory of Probability will continue to be the working
theory of the ordinary person.
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II1

A PRIORI THEORIES
OF PROBABILITY

In this chapter we will discuss a priori (AP) theories in general, with
exemplary excursions into particular theories. We will be concerned
with (1) basic ideas of AP theories, (2) chief criticisms of such theories,
and, finally, to end on a positive note, (3) chief virtues of AP theories.
We will deal primarily with the theories of Keynes and Carnap, but,
in the main, our remarks are applicable to most other AP or ‘logical’
theories (Jeffreys, Koopman, Kemeny, Hintikka, etc.) as well.

1 BASIC IDEAS OF A PRIORI THEORIES

It seems to me that the basic ideas which all AP theories of probability
share are chiefly three:

1 Probabilities are known (or determined) a priori, not by
(purely) empirical means.

2 Probability is a logical relation between sentences (pro-
positions, events, properties, predicates).

3 A probability is always relative to given evidence only.

The first point is of course the most important characteristic of
a priori theories and the one which gives them their name. It is what
distinguishes them most strongly from the relative frequency or
‘empirical’ school.’ It is also what occasions the single greatest
objection to them: How can a priori principles do probability
theory’s practical work of predicting the future in the real world?
Again, it is the source of their greatest single advantage — they can
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establish probabilities without the necessity of waiting for a very
(infinitely ?) long sequence of repetitive empirical events.

The second of our basic ideas, like the first, is so central to AP
theories that it has generated a name for them: ‘Logical Theories
of Probability.’ As interest has grown in the inductive logics of
Carnap, Kemeny, Hintikka, et al., this term has been more and more
commonly used for such theories. I agree that it is a suitable,
descriptive name for this sub-class of a priori theories. I object,
however, to its extension to theories of the Keynesian variety, because
there the initial probabilities are not obtained from quantitative
logistic systems but from a priori intuition aided by the Principle
of Indifference.> My objection is not fervid, however, and if the
philosophical tide continues to flow towards empiricism in general
but away from the dogmas of logical positivism, I foresee a time
when ‘a priori’ will become a general pejorative and I too shall
abandon it. Of course the important point here is that these theories
do define probability as a logical relation — not whether that fact is
sufficient to warrant a label.

This concern with logic was motivated in Carnap’s case, appar-
ently, by a conscious desire for an inductive logic (more than by a
need to account for the probability calculus, for example). He had
earlier accepted RF theories as adequate for scientific probability —
not until he engaged in logical research did he shift his allegiance
to AP theories (or, rather, divide it between the two). Keynes, on
the other hand, seems to have set out looking for the nature of
probability and then ‘discovered’ that it is a matter of logic.

The two also disagreed on the relation between deductive logic
and probability. Carnap took the (normal) position that probability
theory results from adding probability rules (c-functions) to the
ordinary deductive logic, thereby increasing its power and range.
Keynes, however, thought probability theory was the basic theory
of inference — deductive logic is merely that degenerate case where
all probabilities are 1 or 0.

Our third basic idea is that AP theories recognize probabilities
relative to given evidence only. Many RF theorists consider this to
be a grave defect in AP theories, rendering a probability subordinate
to the state of our knowledge and therefore odiously ‘subjective’.
Their theories, they maintain, deal with the real probability, which
is objectively determined and not relative to anything. There is a
sense in which this claim for RF theories is true and a sense in which
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it is false — we shall discuss this problem in the chapter on Relative
Frequency theories below. Our present concern is with the AP
theories, and in this context evidence-dependence is seen as a virtue
rather than a defect. It is a necessary consequence of the fact that
probability is defined as a relation between a proposition and some
evidence for that proposition.

2 CHIEF PROPONENTS

There are many people who have proposed or are still proposing
theories of this general type. I have chosen to concentrate on Keynes
and Carnap because they are the intellectual giants of the group
and their theories are the most seminal, philosophical, wide-ranging,
and fully developed.

John Maynard Keynes (1883~1946), British economist and man of
letters, was ‘one of the creators of the modern world.”® His theoretical
contributions to political economy are familiar to everyone as an
important part of the rationale for the ever-increasing government
intervention in non-communist economies. His practical contri-
butions to the British Treasury and to international monetary
conferences such as Bretton Woods are well known to at least
economists and historians. What is less well known is that philosophy
was Keynes’s earliest love. He studied it under G. E. Moore and
Bertrand Russell as an undergraduate at Cambridge while earning
his degree in mathematics. During his subsequent employment with
the India Company, Keynes combined these fields in a thorough
review of probability and induction. This resulted in a dissertation
which earned Keynes a fellowship in King’s College and allowed
him to return to Cambridge as a philosopher. He was persuaded to
teach in the Economics faculty instead, and subsequently made that
field his chief intellectual interest, so his brief career as a philosopher
culminated in the publication of an expanded version of his dissert-
ation as A Treatise on Probability.* This one work established Keynes
as the authority of his time on probability theory, and maintains
his reputation today as a leading spokesman for the a priori (AP)
interpretation of probability.

Keynes was the first self-conscious apriorist in probability theory.
He asserted emphatically that probability is a logical relation
between propositions and, according to Carnap, was the first to
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perceive and emphasize the fact that such probabilities are inherently
relative to given evidence and to nothing else.’

Such assertions, and the philosophical argumentation which
supports them, constitute Keynes’s most famous and significant
contributions to the development of probability theory. His deriva-
tion of theorems in the probability calculus represented at best a
mild improvement over his predecessors and is not historically
important. His attempted revision of the Principle of Indifference is
frequently referred to and generally considered to be an improve-
ment, but it does not attack the fundamental question whether any
such principle can be a legitimate source of initial probabilities. Thus
Keynes is seldom cited for these achievements. Instead, he finds his
place as the pre-eminent representative of a priori probability theory,
and when he is discussed by philosophers it is usually in this role
as the embodiment and spokesman of a priori probability rather
than as the source of some particular argument or theorem (in
contrast to Bernoulli or Bayes, for example).

Rudolf Carnap (1891-1970) was ‘the most prominent represent-
ative of the logical empiricist, or logical positivist, school in the
philosophy of science and logic.”® His early training in physics led
him to accept the relative frequency (RF) theory of probability,” but
his name is now more associated with his later development of AP
probability theory as a form of quantitative inductive logic.

Carnap’s AP theory is of a piece with his notable work in the
related fields of logic, syntax, semantics, and formal languages. It is
impossible to convey fully the nature of his system of a priori
probability without requiring or providing some grounding in the
concepts and formalizations he employs. At least a hundred pages
of his Logical Foundations of Probability® are devoted to just this
preliminary spadework — the task is obviously beyond us here.
Therefore we shall barely sketch in the particular system he develops
and concentrate primarily upon his philosophical discussions of the
nature of probability theory in general and the justification of his
own theory in particular.

3 DEFINITION OF PROBABILITY

In developing a definition of probability, Keynes began with the
conscious fundamental principle that probability is a logical relation
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between propositions and systematically discussed the justification
for and consequences of this view. This imbued his work with a
unity and philosophical cohesiveness not found in his predecessors.
We shall begin by quoting his own statement of his basic position:®

The terms certain and probable describe the various degrees of
rational belief about a proposition which different amounts of
knowledge authorise us to entertain. All propositions are true
or false, but the knowledge we have of them depends on our
circumstances; and while it is often convenient to speak of
propositions as certain or probable, this expresses strictly a
relationship in which they stand to a corpus of knowledge,
actual or hypothetical, and not a characteristic of the
propositions in themselves. A proposition is capable at the
same time of varying degrees of this relationship, depending
upon the knowledge to which it is related, so that it is without
significance to call a proposition probable unless we specify the
knowledge to which we are relating it.

Here we have at once the two themes most frequently associated
with Keynes’s name: that probability is a logical relation between
propositions, and that all probabilities are relative to given know-
ledge. These must not be confused with the subjectivist thesis which
had frequently appeared in earlier works on probability (and which
led to Nagel’s construal of the essence of Classical probability) to
the effect that probability is a measure of our partial belief in a
proposition and that all probabilities are relative to our knowledge.
Keynes is opposed to such psychologisms (though he occasionally
slips into one himself) and sees the probability-relation as an objective
logical relation. ‘A proposition,” he says, ‘is not probable because
we think it so.'® Rather it is probable or improbable with respect
to given evidence whether we recognize it or not, depending only on
whether the logical relation obtains or not.

Keynes symbolizes this logical probability-relation between a
proposition a, and evidence (or hypothesis) h, as a/h. He prefers this
symbol over the more traditional ‘P’, because

The value of the symbol a/h, which represents what is called by
other writers ‘the probability of a,” lies in the fact that it
contains explicit reference to the data to which the probability
relates the conclusion, and avoids the numerous errors which
have arisen out of the omission for this reference.!!
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The probability symbol is allowed to take on numerical values
and enter into mathematical formulae, so that it is meaningful to
say, for instance, ‘a/h =x, or ‘3(a/h) =3x.” But Keynes does not
require that every probability possess a definite numerical value. He
argues that not all probabilities are measurable and not all pairs of
probabilities are comparable. In his system, it is not true that the
numerical values of some probabilities are merely unknown. Instead,
he contends that when we speak of unknown probabilities we really
refer to the values which we would arrive at if’ we had more evidence
or if we were more skilled at computation; but by his rules those
values are different from the present probability. This is so because
Keynes thinks the present probability is the result of applying the
principles of human rationality to the present evidence. If either of
these factors were to be changed, he contends, we would be talking
about a different probability-relation. Also, since the rules and the
available evidence do not generate numerically definite probabilities
in many cases, we must conclude that some probabilities are
non-measurable and non-comparable.'? The expression ‘a/k’ can
therefore not generally be treated as the name of a number subject
to such mathematical laws as are based on the comparability of
numbers.

Thus far, Keynes has told us that probability is a logical relation
and introduced a symbol for it. Now if we knew which relation it is
and how to decide its value,'® we would have a working definition
of ‘probability.” But Keynes not only fails to help us in this, he denies
that it can be done:!*

A definition of probability is not possible, unless it contents us
to define degrees of the probability-relation by reference to
degrees of rational belief. We cannot analyse the probability-
relation in terms of simpler ideas. As soon as we have passed
from the logic of implication and the categories of knowledge,
ignorance, and rational belief, we are paying attention to a new
logical relation in which, although it is logical, we were not
previously interested, and which cannot be explained or defined
in terms of our previous notions

Even though Keynes tosses aside ‘degree of rational belief” as an
apparently unworthy definition. in the remainder of his work he
treats ‘degree of justified rational belief” as being. if not equivalent,
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at least co-extensive (cause and effect, perhaps, or ground and
consequent). This must suffice, in lieu of a definition, as an indication
of the qualitative nature of the probability-relation: it is a logical
or epistemological (certainly non-empirical) quality possessed by two
propositions (or sets of propositions) whereby the second warrants
some degree of rational belief in the first. Now let us consider what
are these degrees of rational belief, and how are they determined?
By learning to apply the probability-relation we can hope to gain
further insight into its nature.

Keynes has said already that ‘The terms certain and probable
describe the various degrees of rational belief about a proposition
which different amounts of knowledge authorise us to entertain.’*?
As we might have expected, certainty represents one extreme on the
scale; the other extreme is called ‘impossibility.’'® To maintain
Keynes’s consistency, we obviously must interpret ‘impossibility’ in
the logical sense of ‘self-contradiction’ or the epistemological sense
of ‘negative certainty’ —it is not physical, scientific, or empirical
impossibility which is involved here. (This point will occur later, as
part of a basic criticism of AP theories.)

The extremes are familiar enough. The middle ground is the
peculiar province of probability —as opposed to deduction —in
Keynes’s scheme of logical relations. How, then, do we assign values
to the middle ground?

According to Keynes, our knowledge of the middle ground is not
epistemologically different from our knowledge of the extremes — in
both cases we have ‘direct knowledge’ which is based on ‘direct
acquaintance’ with logical relations.!”

Keynes says of probability relations what so many have said of
deductive logical relations, that they are a fundamental source of
our knowledge, directly available to our intuition, which neither can
nor should be referred to anything else as their source or justification.
We shall return to this epistemological theory later in this chapter,'®
for now we are concerned with the question of the source of initial
probabilities in Keynes’s theory, and we will accept ‘intuition’ or
‘direct knowledge’ as the general answer to that question.

But if we ask the more specific question, “What is the source of
the numerical values which are operated on by the probability
calculus? we receive a more detailed and intriguing answer: the
Principle of Indifference.
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It is here that Keynes most clearly illustrates the true continuity
of probability theory running from the Classical theories through
his own:!°

It has always been agreed that a numerical measure can
actually be obtained in those cases only in which a reduction
to a set of exclusive and exhaustive equiprobable alternatives
is practicable.

Thus Keynes accepts the classical First Principle that numerical
probabilities are only obtainable as the ratio of favorable cases to
all equiprobable cases. He feels that his predecessors had not erred
in taking the Principle of Indifference as the fundamental source of
initial probabilities; rather their errors had been that (1) they had
failed to formulate the Principle correctly, complete with the
restrictive conditions of relevance and symmetry, and (2) they had
sought to apply the Principle in many cases where it was inapplicable.

The fact that the Principle of Indifference is not universally appli-
cable Keynes takes as a consequence and reinforcement of his indepen-
dent arguments that not all probabilities are numerical (they would
be numerical, if the Principle of Indifference could be used in every
case). He thinks that he has rehabilitated the Principle by requiring
that the alternatives be ultimate and symmetrically related to all
relevant evidence. Rather than stop to criticize his formulation I will
only note that I share Lewis’s suspicion (which we shall discuss later)
that if one knows enough to be sure that these conditions are fulfilled,
one most likely has sufficient empirical evidence to assign the
probability on some basis other than indifference. In his review of
Keynes, Lewis said only this,?°

The reappearance of that béte noir of clear thinking, the
Principle of Indifference, comes as something of a surprise. But
the treatment given obviates the worst objections. Whether it
obviates them all is a complex and difficult question.

The basic charges against the Principle of Indifference are that
logic alone (without evidence) can say nothing about our contingent
world (while some probability statements clearly do) and that no
justification is given or possible for the assumption that the members
of a logical division are equally likely to occur. Such serious challenges
are raised by Reichenbach, Nagel, and Lewis and will be discussed
later. They are mentioned here only to show that Keynes has at best
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achieved a technical revision which eliminates (at least some) logical
contradictions and other absurdities from the implications of the
Principle — he has not fundamentally altered its theoretical position
as the source of all numerical probabilities nor justified its basic
presuppositions.

Carnap’s definition of a priori probability follows closely the basic
Keynesian insight that probability is a logical relation between
assertions. In the spirit of modern logic, however, he refined this
definition to make probability a mathematical relation between
sentences in a formal language. And while he did most of his
important foundational work on this theory, he did not think it
exhausted the field of probability theory.

We have already mentioned the fact that Carnap explicitly
recognizes the difference between the types of theories of probability.
A priori (AP) theories he calls ‘probability,’; relative frequency (RF)
theories ‘probability,.” What makes him unique among the major
theorists is that he not only recognizes both, he embraces both. He
believes that the two theories of probability address themselves to
different explicanda; thus he is able to accept each as valid without
striking a direct contradiction. This would seem to justify one in
classifying Carnap either as an apriorist or a frequentist or both.
(In fact, Nagel does include Carnap in a list of frequentists.?* This
was correct at the time, 1939, but Carnap’s major work came later
and has made reclassification necessary.) Nevertheless, I feel it
appropriate to include him in this discussion of AP theories while
ignoring him in the RF sections, because Carnap himself emphasized
the former aspect of probability over the latter, and because his AP
theory has been far more fecund in leading to subsequent develop-
ments in probability and inductive logic.

Carnap’s principal work in the field — Logical Foundations of
Probability —first appeared in 1950. His original intention was to
produce a two-volume work: the first to deal with probability and
establish a suitable system or theory; the second to use that theory
as a foundation for the development of a system of inductive logic.
The first volume concentrated on AP probabilities because Carnap
thought this to be the only acceptable foundation for inductive logic.
This preference, which runs throughout the book, appears in the
very first paragraph of the Preface:*?

The theory here developed is characterized by the following
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basic conceptions: (1) all inductive reasoning, in the wide sense
of nondemonstrative reasoning, is reasoning in terms of prob-
ability; (2) hence inductive logic, the theory of the principles of
inductive reasoning, is the same as probability logic; (3) the
concept of probability on which inductive logic is to be based is
a logical relation between two statements or propositions; it is
the degree of confirmation of a hypothesis (or conclusion) on
the basis of some given evidence (or premises); (4) the so-called
frequency concept of probability, as used in statistical in-
vestigations, is an important scientific concept in its own right,
but it is not suitable as the basic concept of inductive logic; (5)
all principles and theorems of inductive logic are analytic; (6)
hence the validity of inductive reasoning is not dependent upon
any synthetic presuppositions like the much debated principle
of the uniformity of the world.

Following Carnap’s lead, we shall also concentrate on his views
concerning AP probability. These views are first introduced as being
part of an historical school of thought:*?

My conception of logical probability (called ‘probability,” in
this book) has some basic features in common with those of
other authors, e.g., John Maynard Keynes, Frank P. Ramsey,
Harold Jeffreys, Bruno De Finetti, B. O. Koopman, Georg
Henrik von Wright, L. J. Good and Leonard J. Savage, to
mention only the names more widely known. All these con-
ceptions share the following features. They are different from
the frequency conception (‘probability,’ in this book). They
empbhasize the relativity of probability with respect to the
evidence. (For this reason, some of the authors call their
conception ‘subjective’; however, this term does not seem quite
appropriate for logical probability....) Further, the numerical
probability of an unknown possible event can be regarded as a
fair betting quotient. And, finally, if logical relations (e.g.,
logical implication or incompatibility) hold between given
propositions, then their probabilities must, according to these
conceptions, satisfy certain conditions (usually laid down by
axioms) in order to assure the rationality of the beliefs and the
actions, e.g., bets, based upon these probabilities.

There follows a considerable discussion of how various views are
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properly categorized as AP or RF, objective or subjective. Then
Carnap begins to explain* his probability, on the basis that

The probability, of a hypothesis h with respect to given evi-
dence e represents
(A) a measure of the evidential support given to h by e;
(B) a fair betting quotient;
(C) an estimate of relative frequency.

(A) is a concept which is primarily due to Keynes. (B) had been
central to probability theory since the classical school became
interested in games of chance. (C) represents a new way of looking
at the matter, as well as a potential connection between AP and RF
probabilities similar to the estimate theory of probability which
Lewis had ‘developed independently’?® four years earlier. But there
is some reason for holding that (C) is not fundamental to Carnap’s
view at all, because in many cases where Carnap speaks of prob-
ability, being the estimate of a relative frequency, he uses ‘estimate’
in a technical sense which he explicitly defines:2®

The estimate (more explicitly, the probability,-mean estimate) of
the unknown value of a magnitude with respect to a given
e=;; the probability, -mean, that is, the sum of the products
formed by multiplying each of the possible values of the
magnitude with the probability, of its occurrence with respect
to e.

Now this fixed meaning of ‘estimate’ gives us a definite rule for
arriving at a probability in the sense of ‘estimate of a frequency,
which would seem to make it simple to calculate probabilities. Indeed,
the mathematical manipulation required is precisely the same as that
employed in computing the familiar ‘mathematical expectation’ of
an event — what could be simpler? The catch, of course, is that
calculation of the estimated value of the frequency requires prior
knowledge of the probability, for each possible value of the
magnitude. But once we have this information prediction of the
probable value of the magnitude is a mere exercise in probability
calculus. What is crucial is how the initial probabilities are obtained,
and in this procedure it is not done by estimating a frequency, but
by a logical computation within a formal language. We therefore
conclude that the estimate rule is not fundamental?’ to Carnap’s
theory and need not detain us here. (We shall, however, later discuss
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some other of Carnap’s methods for predicting frequencies which
do not depend upon prior probabilities — these are the methods of
statistical inference.)

We noted above that an adequate description of Carnap’s system
is too large a task to attempt here. What we will try to accomplish,
however, is to display enough of the nature of his system of
probability, so that its fundamental philosophical assumptions are
clear.

According to Carnap, probability, is a measure of the partial
inclusion of the range of one sentence in that of another. Thus it
resembles probability, in being ‘the ratio of partial inclusion of one
class in another.” That is why the concepts are so similar and so
often confused. Yet they are far from the same:

there remains this fundamental difference: for probability, the
partial inclusion is a factual matter, and hence the value of
probability, is established empirically; on the other hand,
probability, concerns partial inclusion of ranges, which is of a
purely logical nature.?®

Let us set aside some of Carnap’s technical machinery by making
the rough and ready translation ‘The range of a sentence is the
number of possible worlds in which it is true’ (after a language is
specified, of course). The idea is that, given adequate descriptions of
the possible worlds, only a semantic, non-empirical investigation is
required to establish the range of a sentence. Now if we follow
Carnap’s proposal that the confirmation (probability) function be the
ratio of some measure of the worlds in which both evidence and
hypothesis hold, divided by the measure of those in which the
evidence holds, we get this result: Probability is the ratio of the
measure of favorable cases to the measure of all possible cases. This
last, of course, is almost identical to the traditional concept of
probability, as developed by Laplace and Bernoulli and transmitted
by Keynes. Carnap’s theory differs from the Classical theory, though,
in that measure-functions, and hence confirmation-functions, assign
a ‘weight’ to each possible world, and such weights are not necessarily
equal. In the end, however, the particular measure-function, m*, and
confirmation-function, ¢*, which Carnap prefers are based on a form
of equiprobability.

In Logical Foundations of Probability (referred to hereafter as
LFP) Carnap developed his system for a restricted class of very
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simple languages, which he calls the languages L. These consist of
a finite number of independent one-place predicates (naming pro-
perties) applied to a specific number of individual constants (naming
individuals) or variables, and the usual logical connectives. If we use
‘m’ to symbolize the number of predicates (an unfortunate but now
well-established convention of Carnap’s) and ‘N’ for the number of
individuals, the individual languages receive names of the general
form ‘LY . Since predicates and individuals are independent and
logically indistinguishable, it doesn’t matter for our purposes which
2 predicates and 4 individuals occur in a language L?, — the logical,
inductive, and probabilistic features of any such language are
identical. In fact, all finite languages behave similarly — it is only
when we allow an infinite number of individuals (in the languages
L%) that we have to beware of logical peculiarities.

Now consider the simple language L?,. We will use the two
predicates ‘M’ and ‘N,” and the two individual constants ‘a’ and ‘b,
and develop Carnap’s system for this elementary case.

The fundamental concept of Carnap’s inductive logic is the notion
of a state-description. A state-description is a sentence (or class of
sentences, for L7) which completely describes a state of the world
by affirming or denying each property of each individual. In Carnap’s

words:?°

A state-description for a system L in the sense indicated must
state for every individual of L and for every property desig-
nated by a primitive predicate of L whether or not this
individual has this property.

It is heuristically helpful to think of these state-descriptions as
characterizing possible worlds. A world in which a is M would be
different from a world in which a is — M. Similarly for all possible
combinations of individuals and properties. For any finite system it
is always possible (in principle) to list many state-descriptions. Here is
such a list for our L?,.

1 Ma & Na & Mb & Nb 9 —Ma & Na & Mb & Nb
2 Ma & Na & Mb & —Nb 10 —Ma & Na & Mb & —Nb
3 Ma & Na & —Mb & Nb 11 —Ma & Na & —Mb & Nb
4 Ma & Na & ~Mb& —Nb 12 —Ma& Na& —Mb &

. —Nb
5 Ma & —Na & Mb & Nb 13 —Ma & —Na & Mb & Nb
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6 Ma& —Na& Mb& —Nb 14 —Ma & —Na & Mb &

—Nb
7 Ma& —Na & ~Mb& Nb 15 ~Ma& —~Na& —Mb &
Nb
8 Ma& —Na & —Mb & 16 —Ma & —Na& —Mb &
—Nb — Nb.

We shall use ‘Z’ as the general name for state-descriptions, and
‘Z; as the individual names (so that ‘Z,;’ names the first item in our
list, ‘Z,’ the second, etc.).>°

We next introduce the notion of the range of a sentence. If his a
sentence of L, the range, R, of h is the class of all state-descriptions,
Z, in which h holds. If his Ma & Na in our example, then R(h) = {Z1
& Z2 & 7Z3 & Z4}. The meaning of a sentence is determined by its
range,*! and deductive logic is construed as part of the rules of
ranges. (Ma & Na)> Na, for example, means that R(Ma & Na) is
a subclass of R(Na), which is {Z1 & Z2 & Z3 & 79 & Z10 & Z11
& Z12}.)*% Using these two concepts, the simplest course would
seem to be to define the probability of & on evidence e in terms of
a ratio between the number of Zs in the range of h & e and the
number of Zs in the range of 4 alone. This is the basic idea that was
obscurely suggested by Wittgenstein in the Tractatus®® and serves
as the common notion in what Von Wright# calls the ‘spielraum’
(= ‘range’) school of probability theorists.

Unfortunately, this approach leads to the undesirable result that
inductive logic would not allow us to learn from experience. To see
that this is so, we will develop this method first, and then the method
Carnap is inclined to adopt.

To begin with the general case, the degree of confirmation, g, of
a hypothesis, h, on evidence, e, will be symbolized as ‘c(h,e) =g’
Since our fundamental idea is to compare the weight of & & e to
the weight of e (favorable cases to all possible cases, given that e is
true) we define®®

m(e & h)

c(h, e)= me)

where m is an unspecified function giving the weight of a sentence.
Thus specification of a confirmation function (called a ‘c-function’)
is achieved by the prior choice of a means of weighting sentences,
which Carnap calls a ‘measure-function’ (or ‘m-function,” for short).
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Returning now to the particular case, the first and obvious
suggestion is that the weight of a sentence should be the proportion
of possible worlds in which it is true. In Carnap’s system, this means
that the measure of h would be the number of state-descriptions in
which it3 is true, z(h), divided by the total number of state-descriptions,
z,in L:

_4n

z

m'(h)
The confirmation-function based on this measure-function would
be:
mi(e & h)
m'e)

If his Na and e is Ma & Na, as above, m'(h) is equal to the
number of Zs in the range of Na divided by z

c'(he)=

T(h)—%h)—%= 1/2
Similarly,
m'(e) _A9_ 1% =1/4
and
mi( &h)—z(ezih)——l%— 1/4
Finally,

m'(e&h) _1/4 |

Ct(h,€)=W——1/4— .

This result is very satisfactory: since Ma & Na implies Na, we
naturally wish ¢(Na, Ma & Na) to be 1, but of course, giving
satisfactory results for deductive relations is hardly sufficient for a
function to be used in inductive logic. So now let’s try some induction.

Suppose we are trying to predict whether the individual b will be
both M & N. If we have no empirical evidence at all, the best we
can do is to determine the null (a priori, antecedent, initial)
confirmation based on logical ranges alone. Let Mb & Nb be h. The
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evidence, e, in this case is replaced by the object-language symbol
‘¢’ (for ‘tautology’) which holds in every Z. Thus we have
t 1
o) =c'(h =" L&W W) _B)_ 4 _1
m'(¢) 1 z 16 4
Now suppose we acquire some evidence, ¢’ which tells us that the
other object in our universe, a, is both M and N. In this case
; mi(e'dh) z(e'&h)/z ze'&h) 1
c'(he)y=—7—= - = — =,
m'(e’) z(e")/z z(e’) 2
But this is the same value we had before, so our evidence has not
changed our assessment of the odds in the slightest.

This result holds for all systems, not just our simple L2,. Even if
we had found 100 individuals possessing M & N with no exceptions,
the probability that the 101st would be M & N would remain equal
to the original value of 1/4. In general, then, ¢’ is defective as a
confirmation-function because it fails to learn from experience in a
very important way.?” Carnap has rejected c¢' for this reason and
constructed another confirmation-function, ¢*, which we will con-
sider now.

The new c-function, c*, no longer considers all state-descriptions
to be created equal. Instead, it introduces a definite bias towards
uniformity by favoring more homogeneous state-descriptions with
greater weight than that given to hodgepodges, potpourris, and
random collections. To accomplish this, Carnap first introduces the
notion of a structure-description. The technical definition is:*®

J 18 the structure-description corresponding to Z; (or, Z, belongs
to the structure-description j) in Ly =, rZ;isaZin Ly, and j is
the disjunction of all Z which are isomorphic to Z; arranged in
lexicographical order.

Two Zs are isomorphic if and only if one can be derived from the
other by merely exchanging some individuals for others by means
of a one-to-one correlation. Our Z3 and Z9 are isomorphic, because
if ‘@’ and ‘b’ are interchanged in Z3, and the result reordered according
to the (assumed) lexicographical rules of the system, the result is
identically Z9. These state-descriptions exhibit a similar structure,
because each consists of one individual which is both M & N, and
another which is N but not M. Thus we can specify a structure-
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description according to the method of the definition:
STRx =Z3 v Z9
or by naming any one state-description in the STR
the STR corresponding to Z3

or by specifying how many individuals exhibit each possible com-
bination of properties

one M & N and one — M & N.

We can think of these as alternative ways of specifying the structure
(arrangement, pattern) of the universe, since they specify how many
of each type will exist, but not who will be what. (As ‘The club will
have one President, two Vice Presidents, and a Secretary-Treasurer’
specifies the structure of an organization.)

Now the idea of ¢* is to treat each of these structures as
equiprobable. In our L?,, the number, z, of state-descriptions is 16,
but the number, T, of structure-descriptions is only 10.

STR1=2Z1 STR6 =Z7 v Z10
STR2=2Z2 v Z5 STR7=28 v Z14
STR3=2Z3 v Z9 STR8 =Z11

STR4 =24 v Z13 STRY =Z12 v Z15
STRS = Z6 STR10=Z16

If we treat each of these structure-descriptions as equiprobable,
then the measure of each =1/T=1/10. If m* (STR1)=1/10, then
m*(Z1) = 1/10. But the weight of STR2 must be distributed between
two state-descriptions, Z2 & Z5. Carnap chooses to distribute the
weight equally within structure-description, so m*(Z2) = m*(Z5) =
1/20, and in general

1

* 1) — E—
m*(Zi) = dfT.zl-
where z; is the number of Zs isomorphic to Zi. The weight of a
proposition will of course be the sum of the weights of the structure
descriptions in which it is true.

Now let us return to the inductive problem we ran for ¢! and see
if ¢* does any better. Our hypothesis, h, is Mb & Nb. The
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null-confirmation is

m*(t&h) 1 ! ! !
* e = * h ES
c (h’ t) m*(t) m ( ) 10,21 + 10.25 + 10.29 + 10-213

=1/10 + 1/20 + 1/20 + 1/20 = 5/20 = 1/4.
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