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Preface 

When I was writing my dissertation on C. I. Lewis’s epistemology, 
I was struck by his epigram ‘If anything is to be probable, then 
something must be certain’ (An Analysis of Knowledge and Valuation, 
p. 186). 

If Lewis were right about this, it seemed to me, then epistemology 
must indeed take the form of a Cartesian reconstruction, seeking to 
base our merely probable empirical knowledge on some foundation 
of ultimate certainties. And yet Lewis obviously thought that this 
principle, with its profound philosophical implications, could readily 
be established by merely mathematical considerations from the 
theory of probability. While I consider myself to be as ardent an 

admirer of science and mathematics as any good product of the 
American school of hard analytic philosophy, I found it hard to 

believe that the very structure of human knowledge could be dictated 

by relatively trivial mathematical theorems. There must, I thought, 
be something deeper and more philosophical in probability theory 
than I had learned in the course of taking my bachelor’s degree in 
mathematics. And so I walked over to Widener library to check out 
a good book on the specifically philosophical aspects of probability 
theory - and I couldn’t find one! 

I found many good books on the mathematics of probability 
theory, a few on its history, and a handful which discussed the various 

‘interpretations’ of probability, but none which gave a comprehensive 
discussion of the metaphysical and epistemological roots and branches 

which were important to me. In frustration I resolved to write 
the book I could not find. 
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The project has been longer and more arduous than I would have 

wished. I quickly decided that no one interpretation was sufficiently 
dominant to be my single subject and that, indeed, it is very important 
to see how the different theories have varying philosophical assumptions 

and implications. The result is that I had to attempt to 
understand and analyze not just one, but at least four different 
theories of probability. 

In addition to this expansion of my topic, I also discovered that 
my personal commitments were expanding in a way which made it 
difficult to find research time. My university expects faculty to 

distinguish themselves in the three fields of teaching, research, and 
service. Unfortunately, I have found myself unable to do all three - or 

even two - simultaneously and well. In teaching, I am a compulsive 
preparer of lectures, so that when I teach even one or two courses 

my preparation expands to fill all available time. In service, I am 

the chief lobbyist for my union, the United Faculty of Florida, 
American Federation of Teachers, AFL-CIO, and find it necessary 
to devote an entire quarter each year to the Florida legislative 
session - an enjoyable and stimulating activity but one which leaves 
little time for reading and writing. And finally, for research, I have 
found that my personal style of scholarship requires at least an entire 
day of effort, and preferably weeks and months of total immersion, 
before I can get to the stage of putting down even a sentence or 

two. The result is that a research project which should have been 
finished in a couple of years has stretched out longer than I care to 

remember. That I was able to complete it at all is entirely due to 
the support I have received from others to enable me over the years 
to take a summer here, a quarter there, to devote entirely to writing. 

Of those who have made this possible I must thank first the 

University of South Florida, and especially President John Lott 
Brown, Dean David Smith, and Philosophy Chairperson Willis 
Truitt. Their personal kindness and concern for scholarship resulted 
in my getting far more encouragement, support, and release time 
than most union activists expect or receive. 

Among foundations, the Danforth Foundation supported me as 

a Danforth Fellow during those early years at Harvard when I 
encountered this problem and read the basic texts. The National 
Endowment for the Humanities, through its program of Summer 
Seminars for College Teachers provided me with two very enjoyable 
and productive summers, one with Roderick Chisholm at Brown 
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University and the other with Richard Rorty at Princeton. The final 

chapter and editorial revisions were completed under a grant from 
the University of South Florida Foundation, for which I am very 
grateful. 

My philosophical debts are too numerous to recount, as I seem 

to have been working on this project for most of my philosophical 
life. I must, however, mention at least Donald St. Clair, who first 
got me addicted to philosophy at Arkansas Tech; Roderick Firth, 
Israel Scheffler, Rogers Albritton, John Rawls, and (especially) Hilary 
Putnam of the Harvard faculty, all of whom have belied the claim 
that eminent scholars care only for their own work and have no 

time for students and younger philosophers; Bob Schultz, Paul 
Gomberg, and Howard Rolston who taught me how to ‘talk 

philosophy’ as graduate students; and my colleagues at the University 
of South Florida - especially Willis Truitt and Bruce Silver - 

who have helped me ‘do philosophy’ as a professor. 
From other fields, I am grateful for the assistance of David Stroud 

in physics and Sandy Turner in mathematics. 
Ted Honderich, the general editor of this series, was the source 

of useful practical advice and much-needed psychic support and 

encouragement. David Godwin and the editorial staff were kind and 
helpful in leading me through the unfamiliar complexities of preparing 

a manuscript for publication. 
Despite the help of all these good people and institutions, there 

were months when no income was available, days when it scarcely 
seemed worth it to continue, and years and years of unreasonable 
demands on my family. For putting up with all this, and for helping 
me through it, my wife Doris and my daughter Meg deserve the 
greatest share of my love and appreciation. 



I 

What is Probability? 

Style manuals advise us that the proper way to begin a piece of 
expository writing is to introduce and identify clearly the subject of 
our exposition. This would seem, then, to be the appropriate place 
to offer a precise definition of ‘probability.’ Unfortunately, we are 

unable to do so. In fact, one of the major disputes of probability 
theorists is precisely the question of what is to count as an appropriate 
definition of probability; so that if we were to begin this chapter by 
arbitrarily deciding that crucial issue, we should be, like the White 
Queen, living backwards and arriving at our conclusion before we 

conduct our investigation. We shall therefore postpone the question 
of definition, and indicate instead some general outlines of our use 

of the concept, hoping thereby to gain some idea of what we are 

talking about when we talk about probability. 
In daily life we find more frequent use of the adverbial form 

‘probably’ or the adjectival form ‘probable’ than of the substantive 
‘probability.’ This is presumably because ordinary conversation 
generally employs abstract or quantitative ideas to talk about concrete 

physical objects or events. Thus, we are more likely to say Jones 
will probably win the election, than ‘The probability that Jones will 
win the election is high,’ for about the same reasons that we are 

more likely to say ‘There are three apples on the table’ than to say 
‘The number of apples on the table is three.’ The reason is that we 

normally talk about apples instead of numbers and people instead 
of probabilities. 

There are many different ways in which we use these terms in 

ordinary life, and many different propositions and substantives which 

DOI: 10.4324/9781003306993-1
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we modify. In this general class of examples we find such usages as: 

Caesar probably visited Britain. 
The outbreak of a nuclear war is less probable now than it was 

10 or 15 years ago. 
The likely winner is Miss Florida. 
The expanding universe theory is probably true. 
The door is probably locked. 

Even when we fail to use such terms as ‘probable’ or ‘likely’ in a 

sentence, we often consider them as implicit qualifiers and will add 
them on request: 

‘Taxes will go up again next year.’ 
‘That’s not certain.’ 

‘Maybe not, but it’s damn sure probable.’ 
This example is an instance of prediction. Human beings have long 
realized that it is difficult to make accurate statements about the 
future and virtually impossible to make certain ones. One of the 

general guidelines on the use of ‘probability’ that has long been 

recognized is therefore that probability has to do with predicting the 

future. 
Yet by looking back at our list of examples above, we see that 

the Caesar example concerns the past and the door example concerns 

the present, while the expanding universe example is apparently 
timeless. Thus it is not the case that probability is always concerned 
with the future. These examples are analogous to the tax dialogue 
not in being predictive, but in concerning an assertion that is less 
than certain. Perhaps, then, we can say that at least some uses of 
probability involve asserting with less than certainty. 

When we assert something of which we are uncertain, we usually 
do so because we have some evidence which supports the assertion 
although it is not conclusive. For example, 

Since Arkansas beat Texas, they will probably be the Southwest 
Conference champions. 
On the evidence presented to the inquest, I find that the 
probable cause of death was murder. 
Data from Apollo 15 make it more probable that the Moon 
has experienced vulcanism. 

Such usages as these suggest that probability concerns the support 
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of a conclusion by given evidence or the relationship between premises 
and conclusion in a non-deductive argument. 

Just as we do sometimes talk about numbers rather than things, 
it is also true that we sometimes talk about probabilities rather than 
events. Hence, 

The probability of rain tomorrow is 70 per cent. 
The odds on Gluefoot are 20 to 7. 
His chance of failing is greater than one-half. 
The probability that the Moon was formed in its present orbit 
is greater than the probability that it was captured by the 
Earth. 

In such contexts it becomes clear that at least part of the use of the 
term requires that ‘probability’ refers to an abstract quantity or 

number. 

Finally, when we inquire into the nature and origin of such 
numbers, we find that they often are based on the frequency with 
which a property appears in a population. Thus, 

Since 50 per cent of inductees become combat soldiers and 20 
per cent of combat soldiers become casualties, an inductee 
has a 10 per cent chance of becoming a casualty. 
Since 4 of the 52 cards are Aces, the probability of drawing an 

Ace is 1/13. 
Of a thousand men in your age group, 50 die in a given year: 
thus your probability of surviving the year is 0.95. 

These last examples suggest the possibility that a probability is a 

frequency ratio in a population. 
All of these guidelines, restrictions, and rules of usage have some 

bearing on our use of the word ‘probability,’ and must at least be 
considered in any theory of probability if that theory is intended to 

explicate our ordinary usage as well as regulate it. 
C. I. Lewis has said that he could not explain probability to anyone 

who did not already possess a primordial sense of probability. 1 John 

Maynard Keynes has said, in a similar vein, ‘A definition of 
probability is not possible, unless it contents us to define degrees of 
the probability-relation by reference to degrees of rational belief. We 
cannot analyze the probability-relation in terms of simpler ideas.’ 2 

Others have held that a definition is possible, but only in the context 

of developing a theory of probability. Considering the difficulties we 



have met so far, let us see, then, if we can make more progress by 
inquiring about theories of probability rather than definitions 

simpliciter. 

1 What is a Theory of Probability? 

If we consider the theory of probability to be in the same boat as 

most other more or less scientific theories, we shall find it to be a 

philosophically rocky boat indeed, adrift in an uncharted sea. For 

questions about the nature, origin, and justification of theories are 

among the most widely debated issues in Philosophy of Science 

today. It would truly be presumptuous of us to attempt to lay down 
strict general rules to which any theory must accord; yet this need 
not inhibit us from trying to say a few things about what theories 
of probability have traditionally had in common and how they have 
differed and what it would be reasonable to require of future theories. 

We mentioned above that a theory must at least consider the 
various conceptual outlines and linguistic usages which are sanctioned 

by either scientific or ordinary discourse, and it would seem 

appropriate to require that it either incorporate or at least account 

for as many of these pretheoretical instances as possible. 3 This is so 

because otherwise it would not be a theory of probability, but of 
something else. Ideally, the theory should account for all uses of 

‘probability’, but that is far too restrictive a condition to impose. 
Despite the fact that it must be based on the received, standard 

use of ‘probability,’ the avowed aim of a theory of probability is to 

sanction and regulate such uses. If it were not thus prescriptive, it 
would not be a theory of probability, but at best a description of 
current usage. It seems, then, that valid instances of probability 
judgments must agree with our theory, and that the theory is justified 
by its conformity to valid probability judgments. 4 This mutual 
accommodation between a theory and its subject matter is developed 
in Nelson Goodman’s discussion of inductive inference: 5 

The task of formulating rules that define the difference between 
valid and invalid inductive inferences is much like the task of 
defining any term with an established usage. If we set out to 
define the term ‘tree’, we try to compose out of already understood 

words an expression that will apply to the familiar 
objects that standard usage calls trees. A proposal that plainly 



violates either condition is rejected; while a definition that 
meets these tests may be adopted and used to decide cases that 
are not already settled by actual usage. Thus the interplay we 

observed between rules of induction and particular inductive 
inferences is simply an instance of this characteristic dual 
adjustment between definition and usage, whereby the usage 
informs the definition, which in turn guides extension of the 
usage. 

Following this principle, we find that ‘the familiar objects that 
standard usage calls’ probability judgments include above all those 
strictly mathematical relations and manipulations which have come 

to be known as the calculus of probability. This calculus is a system 
for manipulating numbers of a certain type in order to produce more 

numbers of the same type. The calculus was developed piecemeal, 
largely in an attempt to calculate the odds in various games of 
chance. Its general principles have become fairly standard in theories 
of probability, presumably because they capture well our intuitions 
about the relations between probabilities. Despite their historical 
origin as empirical descriptions of games of chance, Reichenbach 6 

and others have shown that such rules as the multiplication law for 
independent events and the addition law for exclusive alternatives 
can be developed rigorously and consistently as an uninterpreted 
axiom system; it is then up to each theory to give an interpretation 
to the calculus which will lead to our familiar probability judgments. 

Whether the calculus derives from experience or is established 

axiomatically or results from a particular definition of ‘probability’, 
the strictest requirement for a theory of probability is that it must 

contain such a calculus in a form which varies little from the standard 
one. 

Given this start, it is obvious that the second requirement is that 
a theory must give an interpretation of the calculus, or a definition 
of ‘probability,’ which will enable us to use that calculus in making 
most of the probability judgments which we do in fact make. 7 

We shall now examine the most important attempts to fulfill these 

requirements with a theory of probability. 

2 Types of Probability Theories 

In this book we will examine four major types of probability theory. 
Some authorities recognize more: I have seen up to eleven different 



senses of ‘probability’ distinguished by an analyst. Most, however, 
recognize fewer. Carnap and Lewis agree there are only two, while 

Nagel accepts three. (These different schemes of classification will 
be discussed in the next section, after the reader is familiar with the 
basic types.) 

These are the four theories with which we will be concerned: 

1 The Classical Theory of Probability (CTP): defines probability 
in terms of ratios of equipossible alternatives. 

2 The A Priori (AP) Theory: defines probability as a measure 

of the logical support for a proposition on given evidence. 
3 The Relative Frequency (RF) Theory: defines probability as 

the (limit of the) relative frequency of appearance of one 

(infinite) class in another. 
4 The Subjectivistic Theory (SUB): defines probability as the 

degree of belief of a given person in a given proposition at a 

specific time. 

Certainly one could make a case for dealing with more (or fewer) 
theories. 

There are two major reasons why I have chosen not to include 
more theories: (1) some, such as Braithwaite’s, Popper’s, and 
Toulmin’s, are not (yet) important enough and have not been 

accepted and used by sufficient numbers of philosophers, mathematicians, 
and statisticians; (2) some, such as Wittgenstein’s and Lewis’s, 

are not distinct enough in their identity but share most features with 
a more important theory which is discussed here. 

On the other hand, I have expanded my coverage beyond the two 

(AP and RF) recommended by Carnap (inter alia) because: (1) The 
Classical theory retains several differences from its descendant, the 
AP theory, and it is also of sufficient historical importance to warrant 
its inclusion in a work of this magnitude. (2) The Subjectivistic theory 
has grown in importance since Carnap’s major work was written 
and has become the preferred view of many (especially Bayesian) 
statisticians and the working model of many experimental psychologists 

and decision theorists. 
On the whole my selection has been made on the grounds that 

these are the most important theories, both historically and theoretically. 
To delete one of them would seriously truncate our subject; 

to add on another would not be proportionately valuable. 



Now let us take a quick introductory overview of the kinds of 
theories and establish their major differences. 

The Classical Theory of Probability (CTP) 

The ‘Classical Theory of Probability’ is a slightly artificial name for 
the views of the founders of the theory of probability. Such men as 

Jacob Bernoulli and Pierre Simon de Laplace were generally not 

developers and adherents of an articulated and self-consistent formal 
system of the type we would today call a theory. Rather they shared 
a common approach and some basic ideas as they constructed the 
mathematical heart of probability theory – the probability calculus. 

For the most part, I have treated this school as a historical entity, 
rather than a current contender for theoretical respectability. To 
that extent the adherents of the CTP are identifiable chronologically, 
as participants in a certain period of the development of our subject. 
Yet there are issues and attitudes involved in the CTP. The body 
of doctrine which constitutes roughly the core of this somewhat 
unstructured theory goes something like this: 

(a) Probability is the ratio of the number of favorable cases to 

the number of all equipossible cases. 

(b) The Principle of Indifference: Events are equipossible if we 

have no reason to prefer or expect one over the other (later: 
if they are coordinate events, symmetrically related to the 
evidence). 

(c) There is no objective chance or indeterminism – probability 
is a measure of our partial ignorance. 

(d) Nevertheless, there are objective rules for generating and 

combining probabilities – it is not just a matter of opinion. 
(e) Repetitive events with fixed probabilities have an expected 

frequency of occurrence (Bernoulli’s Theorem). It may be 
possible to use an observed frequency to infer the fixed but 
unknown probabilities of some events (Bayes’s Theorem, 
Inverse Bernoulli). 

To this day, most gamblers and ordinary folks rely on the CTP 
for those few types of quantitative probability judgments most of us 

make. This is how we know that the probability of an ace is 1/13 



and that we shouldn’t draw to an inside straight. But theory has 
marched on, and now most advanced probabilists prefer one of the 
other theories of probability. 

The A Priori (AP) Theory of Probability 

A theory of probability will be said to be of the a priori type if most 

of the following conditions are met: 

(a) It describes probability as a logical relation between 
statements. 

(b) It considers this relation to be completely determinable by 
the application of logic and the rules of probability to the 
two statements. 

(c) It requires that every ascription of probability must be 
relative to certain evidence. Unqualified ascriptions of 

probability are either elliptical or meaningless. 
(d) It considers every properly derived probability statement to 

be analytic, logically true, and incorrigible. 
(e) It holds that ‘re-evaluation’ or ‘correction’ of a probability 

statement consists actually of its replacement by another 
probability statement which is also logically true but refers 
to different evidence and therefore ascribes a different 
value to the probability relation. 

To a great extent, the a priori theory is the inheritor of the tradition 
of the Classical Theory of Probability. 8 Most notoriously, AP 
theories tend to incorporate some form of the Principle of Indifference 
into their structure. This makes it possible for them to generate 
initial probabilities without the laborious empirical investigations 
required by relative frequency (RF) theories. It also, of course, 
subjects them to the same charges of hocus-pocus and ‘making 
knowledge out of ignorance’ which have bedeviled the CTP. 

AP theorists commonly reply that their discipline is a part of logic, 
showing the evidentiary connection between what we know and 
what we can predict. Seen in this light, they say, their theories tell 
us no more and no less about reality than do formal mathematics 
and deductive logic, which are also a priori. 

In later years, under the influence of Rudolf Carnap, AP theorists 
have spent much of their time seeking to develop a formal inductive 
logic based on the structure of language. 



Relative Frequency (RF) Theories of Probability 

During the middle part of this century the principal opponent of 
AP probability theory has been the view that probability is not some 

logical, abstract connection between words and sentences but rather 
is the actual, empirical rate of occurrence of some feature of the real 
world. This view identifies the probability of occurrence of X with 
the actual relative frequency of occurrence of X in the real world, 
and was developed largely by Richard von Mises and Hans 
Reichenbach and has been especially attractive to scientists and 
actuaries. Generally, a theory is said to be of the relative frequency 
(RF) type if most of the following conditions are met: 

(a) It defines ‘probability’ as ‘the relative frequency of a property 
within a population.’ 

(b) It defines ‘probability’ (in at least some cases) as ‘the limit of 
a relative frequency in an infinite series.’ 

(c) It holds that the probability calculus is an axiomatic 
mathematical tool for dealing with reality – just as arithmetic 

and geometry are. 

(d) It holds that individual probability-statements attribute an 

empirical property to an empirical population. 
(e) It holds, therefore, that although theorems of the probability 

calculus may be analytic, individual probability-statements 
are definitely synthetic, empirical, and factual. 

The fundamental difference between the RF and AP theories is 
that RF probability is an empirical, measurable property of the 
actual physical world, while AP probability is a formal, logical 
property of the way we think and speak about the world. 

The Subjectivistic Theory (SUB) of Probability 

Our final theory of probability is the newcomer to the group. Its 
theoretical development began with Frank P. Ramsey and was 

largely completed by Bruno de Finetti and Leonard J. Savage. The 
principal views of this school are as follows: 

(a) Probability is the degree of belief of a given person in a 

given proposition. 



(b) Probabilities are best established by examining behavior, 
especially betting behavior. 

(c) There are no objective probabilities – or at least this is a 

different and less important sense of ‘probability.’ 
(d) An event has no unique probability. Each individual is 

logically free to set his own values. 

(e) The probability beliefs of a rational individual must be 
consistent and governed by the Calculus of Probability. 

This view of probability turns essentially on the thesis that each 
person’s probability beliefs are ineliminably private, personal, and 
subjective. There cannot be rules (according to SUB) which will tell 
me how strongly to expect the occurrence of X any more than there 
can be rules telling me how much to fear the occurrence of X. Both 
are subjective attitudes, and none of us has the ability or the right 
to tell anyone else what to fear or expect in normal cases. In abnormal 
cases, however, we may have need of therapy. 

Psychological therapy is needed when our fears become excessive, 
incapacitating, neurotic. Probability therapy is needed when our 

expectations are inconsistent (and therefore irrational). 
If we allow ourselves to believe and act upon inconsistent 

probability assessments, we become the losers in an operation known 
as the Dutch Book (a series of bets on an event, at varying odds, 
which guarantee one side a net profit and the other a net loss). By 
studying probability theory we can learn to avoid being victimized 
in this manner. 

It is the peculiar view of de Finetti that the only definite knowledge 
available from probability theory is a form of the Principle of 
Non-contradiction. Once we understand the calculus and know how 
to keep our beliefs consistent, probability theory can tell us nothing 
more about what to believe. It cannot tell us, for example, that the 

probability that this card is an ace is 1/13, because there are no rules 
for determining such a probability and, in fact, there is no such 

objective probability at all to be discovered. Probabilistic reasoning 
is more an art or skill than a science, and the best we can hope for 
is some Counsels of Prudence or Rules of Thumb about reasonable 
ways of arriving at a probability value. 

This is such a truncation of the scope of probability theory that 
many who study SUB have refused to follow de Finetti in this view. 
Those who work in experimental psychology or decision theory, for 



example, often hold that subjectivistic probabilities are one interesting 
phenomenon but are far from exhausting probability theory. 

Many continue to believe in the existence of objective probabilities 
(whether AP or RF) and in the importance of identifying them as 

well as discovering how individuals do behave. But the official 
position of SUB theorists is that all probability phenomena are 

personal, subjectivistic, degrees of belief or expectation. 

3 Schemes of Classification of Theories 

Now that we are familiar with the four basic types of theories to be 
discussed in this book, let us digress a moment to consider other 
ways in which our subject might have been arranged. 

The classification of theories of probability is, like most taxonomies, 
a matter of taste as well as fact, convenience as well as 

correctness. Natural kinds do seem to exist among the theories, but 
their differentia are neither physically nor logically determinate. 
Rather, we have several individual theories characterized by Wittgensteinian 

‘family resemblances.’ One must decide which features are 

most important for speciation as well as which theories ‘really do’ 
possess which features before one can present a completed classification. 

These decisions are certainly debatable and somewhat subjective. 

Yet a classification is necessary. There are too many individual 
theories – even too many major theories – for the average student of 
the subject to attempt to master them all. And taxonomies are not 

just an intellectual economy measure. In stressing similarities and 

identifying differences the taxonomist is forced to decide and 
dramatize which features are important in his field; similar decisions 
on a smaller scale must be made about each theory as it is classified. 
The resulting system, if it is well thought out, can be useful to the 

expert as well as the beginner by identifying contrasts and comparisons, 
consistencies and inconsistencies which might otherwise have 

gone unremarked. 
It might be fun, and even instructive, to attempt a taxonomy of 

taxonomies, showing how different critics have been influenced by 
the same and different considerations in drawing their categories of 

probability theories. Rather than enter upon this topic of second-order 
criticism, I will complete this preliminary chapter by an 



unsystematic description of other classification schemes colored by 
a few remarks in support of my own. 

Carnap’s Grand Dichotomy 

Obviously the simplest way to differentiate a topic is to break it up 
into two parts. Many writers have done this to probability theory, 
though the break is not always found in the same place. 

The most famous of these twofold divisions is that ol Rudolf 

Carnap, who grouped theories according to the underlying concepts 
they sought to explain: 9 

The various theories of probability are attempts at an explication 
of what is regarded as the prescientific concept of 

probability. In fact, however, there are two fundamentally 
different concepts for which the term ‘probability’ is in general 
use. The two concepts are as follows, here distinguished by 
subscripts. 
(i) Probability1 is the degree of confirmation of a hypothesis 

h with respect to an evidence statement e, e.g., an observational 

report. This is a logical semantical concept. A 
sentence about this concept is based, not on observation of 
facts, but on a logical analysis; if it is true, it is L-true 

(analytic). 
(ii) Probability2 is the relative frequency (in the long run) of 

one property of events or things with respect to another. A 
sentence about this concept is factual, empirical. 

This division is simple and plausible and recurs in one form or 

another in many theorists (C. I. Lewis, 10 for example). This distinction 
roughly parallels that between our A Priori (AP) and Relative 

Frequency (RF) groupings. In my doctoral dissertation, I too 

accepted this grand dichotomy and used it in my discussion of 
theories of probability. 11 I have abandoned it in this work for three 
principal reasons: 

1 A more extended and detailed discussion invites and permits 
the treatment of more major types of theories. 

2 Although the Classical Theory of Probability (CTP) resembles 
the AP theory in many respects, it lacks the fundamental 
insight that probability is a matter of logic rather 



than the world, while retaining a historical and 

pedagogical importance of its own. 

3 The Subjectivistic Theory of Probability (SUB) has risen to 

importance since Carnap’s time and doesn’t fit neatly into 
either of his categories. 

Nagel’s Threefold Division 

The International Encyclopedia of Unified Science was part of the 
logical empiricists’ grand design to bring system and order to the 
scientific search for knowledge. One of its major articles was Ernest 
Nagel’s monograph, Principles of the Theory of Probability. 12 In 
this work Nagel identifies three major types of theories of probability, 
which correspond to ‘three major interpretations’ of the term 

‘probability.’ 13 

1 According to the first, a degree of probability measures our 

subjective expectation or strength of belief, and the calculus 
of probability is a branch of combinatorial analysis; this is 
the classical view of the subject, which was held by Laplace 
and is still professed by many mathematicians. It is not 

always clear whether by ‘expectation’ proponents of this view 
understand actual expectations or reasonable expectations. 

2 According to the second, probability is a unique logical 
relation between propositions, analogous to the relation of 
deducibility; its most prominent contemporary supporter is 
the economist Keynes. 

3 According to the third, a degree of probability is the measure 

of the relative frequency with which a property occurs in a 

specified class of elements; this view already appears in 
Aristotle, was proposed by Bolzano and Cournot during the 
last century and further developed by Ellis, Venn, and Peirce, 
and was finally made the basis for a subtle mathematical 
treatment of the subject by von Mises and other contemporary 

writers. 

This system has the advantage of extending Carnap’s simple 
division by incorporating a third category. Unfortunately, Nagel has 

included in this group the characteristics of both our CTP and SUB 
classes of theories. I think there are good reasons for singling out 



‘the classical view of the subject’ but they are not the reasons Nagel 
gives; and I think there are theories according to which probability 
is a measure of ‘our subjective expectation or belief but they are 

the later theories of Ramsey, de Finetti, and Savage rather than the 
earlier theories of Laplace and company. 

14 

Variant Classifications 

While Carnap’s and Nagel’s views are the most prestigious, there 
have been other attempts to classify theories of probability. The 
more recent of these tend to include at least four groups of theories. 
I will touch briefly on some of the most important such classifications. 

Kyburg – The prolific contemporary authority Henry E. Kyburg Jr 
has variously distinguished from three to five types of probability 
theories. In his introduction to Studies in Subjective Probability (1964) 
he notes that ‘There are essentially three types of connection [between 
probabilities and the world] that have been proposed: the empirical, 
the logical, and the subjective.’ 15 

In his later and more comprehensive Probability and Inductive 
Logic, 16 however, Kyburg has extended his scheme backwards to 

incorporate the classical interpretation and forward to add on a fifth 
view, his own ‘Epistemological Interpretation of Probability’. The 
first four are essentially the same as mine (or, rather, mine are 

essentially the same as his; although I have not intentionally lifted 
directly from Kyburg or anyone else, I have certainly profited from 
reading his works) and go far towards establishing this as the 
standard scheme of classification. Whether or not his own theory 
will be justified as a fifth major type only time will decide. 

Good – according to I. J. Good, ‘Each application of a theory of 
probability is made by a communication system that has apparently 
purposive behavior.’ These entities might be men, Martians, or 

machines. ‘One point of the reference to machines is to emphasize 
that subjective probability need not be associated with metaphysical 
problems concerning mind.’ 17 

Considering such entities and their relations to the world, Good 
distinguishes four different types of probability: 18 

(i) Physical probability – exists irrespective of organisms. 



(ii) Psychological probability – values inferred from the 
behavior of entities. 

(iii) Subjective probability – ‘psychological probability modified 
by the attempt to achieve consistency, when a theory of 
probability is used combined with mature judgment.’ 

(iv) Logical probability – the hypothetical subjective probability 
of an infinitely rational being. 

One could plausibly interpret type (i) as being substantially the 
same as our RF, types (ii) and (iii) as representing two aspects of 
SUB, and type (iv) as covering the spheres of CTP and AP. 

Good’s distinctions have the virtue of identifying some different 
metaphysico-epistemological senses of the relation between probability, 

organisms, and the world. 

Von Wright – In various works, G. H. von Wright has employed 
different methods of grouping and describing theories of probability. 
As an example, we can distinguish the following types of interpretations 

according to The Logical Problem of Induction: 19 

A The Frequency interpretation. 
B The ‘Spielraum’ (roughly, ‘range’) interpretation, which 

breaks down into: 
1 The logical Spielraum theory, where probability is a 

ratio of truth-possibilities of a sentence; 
2 The empirical Spielraum theory, where certain atomic 

propositions are shown empirically to be equipossible. 
C Probability as a ‘Grundbegriff’ (fundamental or sui generis 

concept). Keynes, Jeffreys, etc., deny that the concept of 

probability can be exhaustively defined by any of the above 
terms or any like them. 

D Probability as degrees of belief. 

These categories are similar to, but not readily reducible to, ours. 

The AP and CTP classes of theories are here intermingled and 
redivided in a variant fashion. 

Black – In his Encyclopedia of Philosophy article Max Black suggests 
the following classification: 20 

1 Mathematical Dogmatism – No definition of ‘probability’ is 

possible or necessary; probabilists should confine themselves 
to dealing with the mathematical theory. 



2 Classical Theory and the Principle of Indifference. 
3 Logical Theories (Keynes, W. E. Johnson, Carnap, Harold 

Jeffreys). 
4 Frequency Theories – ‘probability is, in all cases, to be identified 

with some suitably defined relative frequency.’ 
5 Subjective Theories – A degree of ‘rectified’ confidence is 

identified with probability, and can vary from person to 

person with no imputation of fault. 

Black’s first category is useful if one’s primary concern is to 

categorize probabilists descriptively. It is, however, useless for our 

purposes, as it represents not a separate view on the philosophical 
foundations of probability theory, but a refusal to construct such a 

view. 
Otherwise this scheme is essentially identical to the one adopted 

here, and, since it appears in the influential Encyclopedia, we may 
hope that something like this will become the standard view. 

Fine – Theories of Probability, by Terence L. Fine, 21 is a technical, 
mathematically oriented discussion of the major theories of probability. 

Since Fine is interested primarily in mathematical, rather 
than philosophical, foundations, he devotes most of his space to 
formal exposition and analysis of axiom systems and statistical 
techniques, with only a limited amount of philosophical analysis. 

When he sets out to classify theories, Fine identifies the following 
types: 22 

1 Axiomatic comparative. 
2 Kolmogorov’s calculus. 
3 The usual relative-frequency theory. 
4 Von Mises’s relative-frequency theory. 
5 The Reichenbach-Salmon relative-frequency theory. 
6 Solomonoff's complexity-based theory. 
7 Laplace’s classical theory. 
8 Jayne’s classical theory. 
9 Koopman’s comparative logical theory. 

10 Carnap’s logical theory. 
11 The De Finetti-Savage subjective-personalistic theory. 

Fine’s list has the virtue of being ‘more extensive’ than ours. In 
some respects and for some purposes it is a fine thing for a list to 



be extensive, comprehensive, even complete. But obviously the limit 
in this direction would be simply to list each and every theory of 
probability. This would be useful as a catalog or a compendium, 
but for theoretical purposes would be at best a prolegomenon to 
the analysis and classification which makes the diverse views 
understandable. 

In search of a clear, simple set of categories I preferred to combine 
Fine’s 3, 4, and 5 into the one RF category, to skip 8 as historically 
and systematically unimportant, etc. Clearly this is not to dispute 
the validity of Fine’s classification, but rather to adopt a different 
program to serve a different purpose. 

4 Conclusion 

For our purposes it is best to deal with four major types of theories: 
the Classical Theory of Probability (CTP), the A Priori (AP), the 
Relative Frequency (RF), and Subjectivistic (SUB) theories. This 
schema has the advantages of paralleling Kyburg’s and Black’s views, 
while usefully extending Carnap’s and correcting Nagel’s. There are 

theoretical and practical considerations which favor the adoption 
of this system, but the choice is largely one of heuristic convenience 
rather than ultimate theoretical import. 

In what follows we will investigate these four types of theories in 
an effort to identify and describe clearly the philosophical foundations 

of each view. We shall be concerned especially with the 

metaphysical question of what probabilities are and the epistemological 
question of how probabilities are known. As usual, these issues 

are intertwined with the question of what probability statements 

mean. 

We will try to begin with no preconceptions or desired findings. 
We will try to avoid imposing a grand unity on the one hand or 

multiplying niggling distinctions on the other. Perhaps at the end 
of our exploration we shall finally be able to answer our introductory 
question, ‘What is Probability?’ 



II 

The Classical Theory 
of Probability 

The earliest attempts to deal with probability, from ancient times 
to the time of Laplace (1749-1827), are generally lumped together 
as the Classical Theory of Probability. This usage is perhaps slightly 
misleading, since it gives far too strong an impression that there 
existed some theory, some unified, consistent definition and explanation 

of probability to which the Classical theorists subscribed. One 
should not be surprised to find that this is not the case, since the 
relevant period includes only the beginning of probability theory 
and the first useful attempts to systematize it. Quite the contrary, 
one might well be surprised at the degree of agreement and systematic 
unity which does exist in the Classical writings. This agreement makes 
it possible to isolate a generally accepted definition of probability 
and some common ways of dealing with it. This body of thought 
was not clearly and systematically articulated by the Classical writers 
themselves (and philosophical analysis and exposition is especially 
lacking) but modern writers have generally agreed on its fundamental 
features so that one might say there now exists a Classical Theory 
of Probability while in Classical times there did not. 

With these mild caveats in mind, then, we shall proceed in the 
usual manner to discuss the Classical Theory of Probability (CTP) 
and its adherents as though an explicit theory existed. 

Since the CTP is normally attributed to a certain group of theorists, 
one might give an extensional definition of Classical Probability 
Theory by naming that group. Perhaps the simplest way of doing 
this is by saying that Classical theorists are those persons who appear 
in I. Todhunter’s great work, A History of the Mathematical Theory 
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The Classical Theory of Probability 

of Probability From the Time of Pascal to That of Laplace. 1 

This is a work that can truly be called monumental. It is large 
and thorough, and, as Keynes said, ‘complete and exact, – a work 
of true learning, beyond criticism.’ 2 It is also, however, dry, overly-technical, 

and somewhat tedious, so that F. N. David has been led 
to remark that ‘Todhunter will rarely be read for pleasure, although 
always for profit, by anyone interested in probability theory.’ 3 

Todhunter will be our basic text in this chapter and will frequently 
be cited rather than the oiiginal sources. I have adopted this course 

because (1) many of the original documents are either rare or 

untranslated and searching them out is a task for the historian of 
probability and inappropriate for this work, (2) the historical and 
theoretical significance of these authors depends not so much on the 
exact original language as on the public impact of a work – and this 

impact is reflected in Todhunter. 
If any reader prefers a more scholarly history of the subject, I 

could do no better than to direct him or her to Todhunter – one 

who rejects the very notion of secondary sources is welcome to 

search out the originals as an exercise in scholarship. For our 

purposes, Todhunter will suffice. 4 

Now that I have disclaimed the title of historian, I will naturally 
proceed to give a historical account of the Classical Theory. 

1 The Prehistory of Probability 

It seems likely that probabilistic reasoning has existed almost as 

long as man has been a rational animal, but no one knows exactly 
when or how it began. As for the more explicit uses of probability 
in games of chance, the earliest probably appeared when savages 
began playing with the astragalus. The astragalus is the small bone 
just above the heel-bone (sometimes called ‘hucklebone,’ or, 
erroneously, ‘knucklebone ) in mammals and is important because 
it has four distinctive sides, or faces upon which it may rest. It can 

therefore be used as a primitive – and very inexact – die for gaming. 
We do not know when it first came to be used for this purpose, but 

archaeologists have found astragali in disproportionate numbers in 
the campsites of prehistoric man. Whether or not it was used for 
gaming in those remote times, we do know that ‘the astragalus was 

certainly in use for board games at the time of the First Dynasty in 
Egypt (c. 3500 B.C.),’ 5 and gaming has been with us ever since. 



The Classical Theory of Probability 
Ancient Times 

Gaming continued throughout the Ancient Greek and Roman era, 
so that Greek soldiers are reputed to have whiled away the tedious 

siege of Troy with various games of chance, and Roman emperors 
such as Augustus (63 B.C.-14 A.D.) and Claudius (10 B.C.-54 
A.D.) are said to have been ‘greatly devoted to dicing.’ 6 

Furthermore, this era marks the beginning of enterprises relying 
on probability such as commercial and life insurance. 7 Still, these 
activities had not yet been put on a sound actuarial basis and no 

systematic discussion of probability or statistics has come down to 
us from this period. 

Italian Renaissance 

With the flowering of the Italian city-states and the rise of capitalism 
and commerce, commercial statistics and actuarial methods were 

developed for the first time. 8 It is also during this period that we 

find the first serious discussions of probability in the works of Fra 
Luca Pacioli (1445-1517?), Celio Calcagnini (1479-1541), and Tartagleà 

(Nicola Fontana) (1500-57). However, these works were 

mainly descriptive and contained little of theoretical interest. 9 

Cardano 

Girolamo Cardano (1501-76) occupies an ambiguous position in 
the history of probability theory. He was an inveterate gambler and 
a controversial man of learning (or plagiarism?) who wrote in or 

around 1525 a manuscript which was published posthumously in 
1663 as Liber de Ludo Aleae (Book on Games of Chance). This book 
contains descriptions of certain games and the first published 
calculations of odds. It is disparaged by Montmort and Todhunter, 10 

but praised by Libri and Maistrov. 11 David goes so far as to say 
that Cardano (or his assistant Ferrari) was the first ‘to introduce the 
idea of combinations, to enumerate all the elements of the fundamental 

probability set, and to notice that if all the elements of this 
set are of equal weight, then the ratio of the number of favorable 
cases to the total number of cases gives a result in accordance with 



experience.’ 12 To the extent that this is true, one might well describe 
Cardano as the father of the Classical Theory of Probability. 

Galileo 

Galileo Galilei (1564-1642) appears in our history for two reasons: 

1 He gave the first recorded calculation of possible outcomes 
with three dice, and 

2 He made some important general remarks on the theory 
of errors. 

However, in the former matter he appears to have functioned as an 

uninterested transmitter of existing knowledge rather than an 

originator 13 and in the latter ‘he did not arrive at a quantitative or 

analytic solution of the problem’ 14 
so he can scarcely be said to be 

of major importance. 

Pascal and Fermat 

Since Laplace’s Essay (1820) 15 it has been conventional to treat the 
calculus of probability as beginning with a correspondence between 
Blaise Pascal (1623-62) and Pierre de Fermat (1601-65) in 1654. 16 

In their letters they discussed some problems which apparently were 

posed to Pascal by the Chevalier de Méré. 17 In solving these problems 
they considerably advanced the application of combinatorics to the 
solution of probability problems, and they made the first recorded 
application of‘Pascal’s Triangle’ (which had appeared before Pascal) 
to the games of chance. 

Although these accomplishments greatly impressed their contemporaries 
and successors, many modern investigators feel that 

Pascal and Fermat have unfairly overshadowed the earlier work of 
Cardano and Galileo, 18 and the later, more systematic, efforts of 

Huygens, 19 and James Bernoulli. 20 

Huygens 

Christianus Huygens (1629-95) published the first systematic treatise 
on probability theory ‘De Rationciniis in Ludo Aleae’ (‘About dice 



games’) in 1657. This work includes the first clear exposition of the 
fundamental principles of the Calculus of Probability, several problems 

and solutions, and the first 21 discussion of the concept of 
mathematical expectation (the mathematical expectation of an event 

is the product of the probability the event will occur and the value, 
gain, or utility of the event to some person). This treatise ‘was warmly 
received by contemporary mathematicians and for nearly half a 

century it was the unique introduction to the theory of probability.’ 22 

The Bernoullis 

Newcomers to the history of probability may well be excused if they 
confuse the various Bernoullis. Not only were there four of some 

importance to the subject: to add to the confusion two of them are 

known by three name variations each. 

By far the most important is James (Jakob, Jacques) Bernoulli 

(1654-1705) who wrote Ars Conjectandi (published 1713), a general 
treatise on probability which also includes the famous ‘Bernoulli 
Theorem’ for predicting probable frequencies of occurrence of 
repetitive events. 

James’s brother, John (Johann, Jean) (1667-1748) was a rather 
unfraternal mathematical rival who did some work on probability 
but achieved nothing of lasting importance. 

Their nephew Nicholas (Nikolaus, Nicolas) (1687-1759), did some 

original work in probability, notably including efforts to apply 
probabilistic calculations to legal problems, but is perhaps best 
remembered for editing the posthumous edition of James’s Ars 
Conjectandi. 

Finally, Daniel (1700-82), the son of John, outstripped his father 
in intellectual fame (especially as the originator of the Bernoulli 
Principle in fluid dynamics) as well as in probability theory. He is 
best remembered for his discussions of the Petersburg Problem 23 

(what should one pay to toss a coin and receive 1 Crown if Heads 
appears on the first toss, 2 if Heads doesn’t appear until the second, 
4 if the third, 8 if the fourth, etc... ?), and his development of the 
notion of ‘moral expectation’ as an attempt to solve that puzzle. 24 

He was also involved in a controversy over the value of smallpox 
inoculation, based on the probable benefits to the individual and 
the community, and did some original work on the law of errors. 



But his greatest theoretical contribution was the development of 
methods for the application of the infinitesimal calculus to probability 

calculations. 
In this, as in most books, the name ‘Bernoulli’ simpliciter applies 

always to James–whom Keynes has called ‘the real founder of 
mathematical probability’ 25 and ‘Bernoulli’s theorem’ refers to his 
famous law (not to Daniel Bernoulli’s principle concerning fluids, 
as happens in some general or scientific works). 26 

Montmort and De Moivre 

The mathematical history of probability theory must devote great 
space to Pierre-Remond de Montmort (1678-1719) and Abraham 
De Moivre (1667-1754) for their technical advances in the calculation 

Figure 1 The Bernoullis 



of probability, but since their work is not philosophically controversial 

we will slight them here. (Others in this category include 
Thomas Simpson (1710-61), Leonhard Euler (1707-83), and Joseph 
L. Lagrange (1736-1813).) 

Bayes 

If ever fame was achieved solely by penning a single equation, it 
was done by Thomas Bayes (1702-61). Although Bayes was well 

enough regarded by his contemporaries to be elected to the Royal 
Society in 1742, he left few written works and little biographical 
material. But in his paper, ‘An Essay Towards Solving a Problem 
in the Doctrine of Chances’ (1763), he presented an equation (later 
generalized by Laplace) which continues to divide scholars into 
hostile camps according as they do or do not ‘accept Bayesian 
statistics.’ 

The form in which this equation is normally given in modern 
texts 27 is: 

upper P left-parenthesis upper H Subscript k Baseline vertical-bar upper A right-parenthesis equals StartFraction upper P left-parenthesis upper A vertical-bar upper H Subscript k Baseline right-parenthesis dot upper P left-parenthesis upper H Subscript k Baseline right-parenthesis Over sigma-summation Underscript j Endscripts upper P left-parenthesis upper A vertical-bar upper H Subscript j Baseline right-parenthesis dot upper P left-parenthesis upper H Subscript j Baseline right-parenthesis EndFraction

where Hk is one of a series, H1,H2,. . . , Hj, of hypothetical ‘causes’ 
of the event A. When the a priori probabilities P(Hj) are known, 
this is a straightforward theorem of the probability calculus. But if 
the a priori probabilities are unknown and one assumes with Bayes 
that they are equiprobable (sometimes called ‘Bayes’s Postulate’), 
one is then engaged in determining the ‘inverse probability’ of causes. 

As an example of how controversial this method is, consider 
Hogben’s vitriolic remarks: 28 

There is no conceivable factual basis for embracing this axiom 
known as Bayes’ postulate; and before he answered to his 
Maker it seems that its author had not convinced himself that 
there is. However, [Richard] Price made it the kingpin of his 
exposition. Whereafter, Laplace embraced it with boyish 
enthusiasm and built on so insecure a foundation a 

superstructure of doctrine usually referred to as that of inverse 

probability. The adjective signifies that the doctrine licenses one 



to draw conclusions about past occurrences. Among other 

exploits, K. Pearson, a modern disciple of Laplace, used it to 

prove that miracles cannot happen. None the less, one must 
concede the historical occurrence of at least one miracle 
inasmuch as many highly intelligent people have been willing to 
subscribe to the doctrine. 28 

We will return to this controversy in the section on the Source 
of Initial Probabilities in Actuarial Cases. 

D’ Alembert’s Dissent 

The most famous nay-sayer in the history of probability was Jean 
d’Alembert (17177-83). It was he who opposed Daniel Bernoulli in 
the controversy over the value of inoculation. He also held these 
heterodox views (summarized by Keynes): 29 

D’Alembert has three main contentions to which in his various 
papers he constantly recurs: 

1 That a probability very small mathematically is really 
zero; 

2 That the probabilities of two successive throws with a die 
are not independent; 

3 That ‘mathematical expectation’ is not properly measured 
by the product of the probability and the prize. 

On all of these points d’Alembert contested against the received 
opinions of his time (and ours). But he may be even better 
remembered for yet another minority opinion of his – that the 

probability of at least one Head in two coin tosses is 2/3. He argued 
this way: Heads will either appear on the first throw (a win, in which 
case the second throw is unnecessary), or it will not occur until the 
second throw (still a win), or it will not occur at all (a loss). So there 
are three cases (H, TH, TT), two of which are favorable, therefore 
the probability is 2/3. 

The opposing (traditional, correct) point of view is that these cases 

are not equiprobable, since the first is really shorthand for the two 

cases HT and HH, both of which are favorable, so that three of the 
four possible outcomes are favorable and the required probability 
is 3/4. 

I presume that Keynes did not include this argument in his list 



because it is no longer regarded as a ‘contention’ but rather as a 

mistake. Thus Maistrov says that ‘d’Alembert’s name appears in the 
literature on probability theory mainly as an example of the fact 
that even certain prominent mathematicians sometimes committed 
errors in solving elementary probabilistic problems.’ 30 

Although d’Alembert’s views have not prevailed, they have found 
occasional advocates and partial adherents of whom the most famous 

early was G. L. Buffon (1707-88) and late was Emile Borel (1871-1956). 

Laplace 

The Classical Theory of Probability reached its zenith in the work 
of Pierre Simon de Laplace (1749-1827). He solved more problems 
and developed more important mathematical tools than any of his 
predecessors. He also gave the most coherent and accessible exposition 

of the theoretical basis of probability calculations that had 
ever been seen. For all these reasons Todhunter could say, ‘on the 
whole the Theory of Probability is more indebted to him than to 

any other mathematician’ 31 and Collier's Encyclopedia has ventured 
to describe him as ‘the founder of the theory of probability.’ 32 

Because of his importance and the scope of his work we will 

frequently take Laplace as the spokesman for the CTP. We will 

begin, for example, with his definition of probability, which has 

perhaps been the most widely read, quoted, and adopted explanation 
of probability ever given. 

2 The Definition of Probability 

The theory of chance consists in reducing all the events of the 
same kind to a certain number of cases equally possible, that is 
to say, to such as we may be equally undecided about in regard 
to their existence, and in determining the number of cases 

favorable to the event whose probability is sought. The ratio of 
this number to that of all the cases possible is the measure of 
this probability, which is thus simply a fraction whose 
numerator is the number of favorable cases and whose 
denominator is the number of all the cases possible. 33 



This statement came to dominate the literature and, for many 
years, the theory of probability. But the definition had been in use 

long before it appeared in Laplace’s Essay in 1820. It had been 
employed by Cardano, and made explicit by James Bernoulli: 34 

In the game of dice for instance, the number of possible cases 

[or throws] is known, since there are as many throws for each 
individual die as it has faces; moreover all these cases are 

equally likely when each face of the die has the same form and 
the weight of the die is uniformly distributed. (There is no reason 

why one face should come up more readily than any other, as 

would happen if the faces were of different shapes or part of the 
die were made of heavier material than the rest.) 
Thus the probability of throwing a Five is 1/6, since there are six 

possible cases (six ways the die can land) of which only one is 
favorable. But the probability of throwing an even number is 1/2 
since three of the six possible cases are ‘favorable’ (2,4, and 6). 
Calculations of this sort are essentially all that is needed to compute 
the odds in elementary games involving dice and cards. Completing 
these calculations, and more elaborate ones of the same kind, 
constituted much of the work of the classical theorists. In these 
efforts they adhered fairly closely to Laplace’s ‘official’ definition. 
When they came to consider various problems in mortality and 
natural science, however, this definition failed them and they tended 
to abandon it (as we shall discuss more fully in the section on the 
Source of Initial Probability in Actuarial Cases). But they did not 

replace the official definition with another in terms of likelihood, 
relative frequency, etc. Instead they just continued to use the word 

‘probability’ as if everyone understood its meaning, while actually 
employing methods and concepts which are clearly inconsistent with 
what they said ‘probability’ meant. As a result of this kind of thing 
Carnap says, ‘it seems to me that there is no one meaning of the 
term “probability” which is applied with perfect consistency throughout 

his work by any of the classical authors.’ 35 Despite this genuine 
ambiguity of usage, there is only one real definition of probability 
in the Classical writers – Laplace’s definition – and that is the one 

we shall refer to as the Classical definition. 
In addition to this definition of probability, however, the Classical 

writers include many explanations and ‘clarifying’ remarks which 
have aroused some controversy. These are the notorious remarks 



by Bernoulli and Laplace (especially) which describe probability as 

representing a ‘degree of belief.’ Because of statements like these, 
some writers such as Kneale and Nagel have described the CTP as 

psychologistic or subjective. 36 While there is certainly some justification 
for this, I hold with Carnap 37 that what is being discussed 

is not the actual, contingent degree of belief, which is a matter for 
empirical, psychological investigation, but rather the justified or 

rational degree of belief, which is a matter of objective logical and 
mathematical fact. Seen in this favorable light, the CTP gives us 

rules for proceeding rationally under conditions of uncertainty; on 

a harsher interpretation, it is a rash and unwarranted attempt to 

found knowledge on ignorance and certainty on a lack of information. 

3 Sources of Initial Probability 

The greatest accomplishment of the CTP is that it first made possible 
the quantification of probability and its mathematical manipulation 
by means of the probability calculus. The calculus endures to this 

day with little revision and is of sufficient importance to secure the 

reputation of those who originated it. But for our purposes the 
calculus is of minor interest since it is common to all major theories. 
In what follows, therefore, we shall not be concerned with the 
mathematical manipulation of probabilities, but with their origin, 
meaning and philosophical significance. In these matters the Classical 
theorists are occasionally confused, inconsistent, or just wrong. The 
reader should try to remember that latter-day criticisms of this sort 

are comparatively cheap and easy when contrasted with the extraordinary 

intellectual feats of the founders of probability theory. The 
bulk of their work is unquestioned and beyond criticism, and without 
it nothing that follows would have been possible. 

In Dice Games 

The cast of a well-made die is the very paradigm of Classical 
probability. It is simple, important to gamblers, easy to understand, 
and, one might think, obvious. Indeed historians of probability have 
sometimes seemed less concerned with how this basic problem was 



solved than with the puzzle of why it was not solved before. As 
noted in our historical sketch, gambling has been with us at least 
since classical antiquity. Yet nowhere in literature does anyone 
calculate the probability of throwing a Five before the fifteenth or 

sixteenth century! How can we account for this extreme lag between 
practice and theory? 

David suggests the explanation is that ‘the philosophic development' 
’ of the time was unsuited to ‘the construction of theoretical 

hypotheses from empirical data.’ 38 Thus Cardano’s calculations, like 
Galileo’s equations of motion, had to wait on the development of 
a Zeitgeist which accepted and even encouraged quantification and 
scientific explanation. 

A dissenting view comes from the Marxist historian L. E. Maistrov 
who says it is a ‘widespread false premise that probability theory 
owes its birth and early development to gambling.’ Instead, he 
emphasizes the connection of probability with ‘other sciences and 
problems’ and especially with ‘the rise of capitalism, when commerce 

and monetary transactions, particularly those connected with actuarial 

operations, were developing and when various new institutions 
were established.’ 39 

If we leave this puzzle to the historians, we can at least say that 
much of the early work in probability was concerned with games 
of chance, and especially with dice (playing cards are a later historical 
development, as well as a more complicated problem). In this early 
work the basic assumption is that each face of the die is equally 
likely to turn up. Since there are six such sides, one of which must 
turn up, the initial probability of each is 1/6. From this initial or a 

priori probability follow most of the early theorems and calculations 
in probability theory. 

It may be that the equiprobability of the different faces was first 
conceived as an empirical hypothesis. 40 But it was not long before 
James Bernoulli developed a rule which was supposed to give a 

method for finding the initial probability in many cases (including 
dice games) and which came to be considered a fundamental part 
of the CTP. This rule was originally called the Principle of Non-Sufficient 

Reason but we shall follow Keynes’s suggestion and refer 
to it as the Principle of Indifference. 41 The fundamental idea is that 
alternatives are always to be judged equiprobable if we have no reason 

to expect or prefer one over another. This principle is the object of 
most of the criticism (and even scorn) which has been directed at 



the CTP. Its unrestricted use seems to imply, for example, that any 
proposition of whose truth or falsity we are ignorant is exactly as 

probable as its negation. Still, the Principle of Indifference is the 
major theoretical justifications for the equiprobability of alternatives 
in dice games and is therefore the principal source of initial 

probability in such cases. 

Now it is an unfortunate fact of life that not all games are fair 
and not all dice are unbiased. What, then shall we say of biased 

dice, where ordinary language would say that the faces are not equally 
probable? Laplace discusses such problems in his Essay with the 
following results. 

First of all, if we know the die is biased but do not know how it 
is biased, we still have no reason to prefer one face over another 
and, by the Principle of Indifference, they remain equally probable. 42 

Second, if we know how and to what extent the die is biased, we 

can use the probability calculus to compute the odds. In the case 

of a biased coin, for example, Laplace says 
43 

In order to submit this matter to calculus let us suppose that 
this inequality increases by a twentieth the probability of 
the simple event which it favors. If this event is heads, its 
probability will be 1/2 plus 1/20 or 11/20, and the probability 
of throwing it twice in succession will be the square of 11/20 or 

121/400. 

He goes on to consider various ways of computing probabilities 
resulting from bias and various devices for reducing the effects of 
the bias. What he does not do is to explain the origin, meaning, or 

justification of the value attributed to the bias. Once this is known, 
all else follows by the simple rules of the calculus – the crux of the 
problem is establishing the original probabilities. We might do this 
by constructing a die to have a certain probability, or we might do 
it by using some sort of inverse method (to be discussed in the next 

section) in order to derive probability from observational data. The 
important point is that neither of these methods is compatible with 
the official structure of the CTP because 

1 The probabilities are not derived from the Principle of 
Indifference, which is often described as the only valid source 

of initial probabilities in the CTP. 
2 Furthermore, there are no equally likely cases here, so there 



can be no ratio of favorable to all possible cases – but this is 
the only official definition of probability. 

In Actuarial Cases 

We have seen that the CTP breaks down when biased dice are 

introduced to the game. In actuarial cases, the official definition of 
probability is almost completely ignored, out-stripped, confounded – 

yet Classical theorists did much to lay the foundations of statistics 
and sound actuarial practice. Here more than anywhere it becomes 
obvious that the concept of probability actually employed by 
Classical theorists is far broader than the official definition laid down 

by Laplace. It might seem appropriate in such cases to develop the 

recurring concept of ‘degree of (rational) belief into a theory which 
is explicitly logical or explicitly subjective. On the other hand, it is 
quite clear that Laplace and Daniel Bernoulli (for example) were 

investigating mortality tables and the incidence of smallpox in an 

attempt to discover some objective facts about the world – facts 
which might very well be described as relative frequencies of 
occurrence. So the Relative Frequency view of probability is also 
foreshadowed in this early work! 

All of this should remind us that Bernoulli and Laplace and their 
ilk were not ‘adherents of the Classical Theory of Probability’ whose 
work was an attempt to apply that theory to reality; rather, they 
were pioneering investigators of the concept of probability who 
developed one part of that concept thoroughly enough for us to call 
it a theory but who also worked on other aspects of the problems. 
When the ‘equiprobable alternatives’ method was practical, they 
preferred to use it, but they freely abandoned it whenever it was 

inapplicable. 
The simplest and most widespread alternative to the Principle of 

Indifference was the use of actuarial tables as a source of initial 

probabilities. The first such useful tables were perhaps the plague 
mortality tabulations prepared by John Graunt of England during 
the Black Death. The Classical theorists used such tables as a source 

of information about what had happened in the past. The values 
thus obtained were then employed as probabilities for future 
occurrences. The simplest justification for this is James Bernoulli’s 
assumption that things in the future will exhibit the same pattern 



as things in the past. 44 A more sophisticated idea is that statistical 
evidence reveals the underlying probability of occurrence for certain 

types of events, since we know that the actual outcomes must be 

proportional to the probability. This is Daniel Bernoulli’s reasoning 
in his discussions of marriage and mortality. Finally Laplace, 
building upon the work of Bayes, developed the notion that observed 
results give us evidence which can be used to compute the probability 
that the underlying probability has a given value within its possible 
range. 

45 In this form the use of mortality tables can almost be forced 
back into the mold of the Principle of Indifference by the following 
reasoning. 

Consider a mortality table for a certain population. An individual 
taken at random might be represented by any one of the entries in 
the table. The Principle of Indifference therefore tells us that it is 
equally probable that he will be represented by any given one or 

the other (since we have no reason to ‘expect’ or ‘prefer’ one over 

the others). Given this initially equal probability distribution, it 
follows that the individual’s probability of death is directly proportional 

to the death-entries in a given year. 
It would seem, then, that the CTP can handle actuarial cases, if 

it is provided with a valid statistical description. So the problem of 
initial probability in these cases is transformed into the problem of 
constructing valid actuarial tables. 

Now Laplace was convinced that if we had mortality tables of 
infinite extent we would have a perfect value for the probability of 
death (since all possible cases would certainly be included). 46 

As our actual tables are obviously finite, however, is it possible 
to assess their accuracy, reliability, or similarity to the ‘true’ table? 
This is where Bayes’s Theorem comes in. 

Suppose we were concerned with only 4 people and we knew that 
3 had died at certain ages while the fourth was still alive. Suppose 
further that there are only 2 mortality tables which can possibly give 
the true probabilities of death for these people, and that table X is 
a priori twice as likely to be true as table Y. In this case we can use 

our a posteriori knowledge of the deaths, together with our a priori 
knowledge of the probability of each table and our knowledge of 
the probability that just this pattern of deaths would occur if X or 

Y were true to calculate the probability that a given table is the 
correct one. 
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we have 

By hypothesis all the quantities on the right are already known, so 

it is easy to compute the probability that table X is the true 

description. The probability for Y could be computed likewise, but 
it is obviously equal to 1 – P (X is true given these deaths). In such 
an ideal situation, Bayes and Laplace can uncontroversially tell us 

the probability that a given mortality table is the true one. 

But again we are slipping away from the official definition of 

probability. It is true that ‘the probability of this sequence of deaths 
if X is true’ can be accommodated by the definition when each person 
is construed as equally likely to correspond to each entry. But 
consider the a priori probability of each table – except for the singular 
case where they are equiprobable, we can find no ‘equally likely 
cases’ on which to base such probability. We are dealing here with 
a pure, undefined sense in which we understand what it means to 

say ‘the probability of Y is 1/3 and of X is 2/3,’ but according to 

the official definition we should not understand this. 
Nevertheless, we resolved earlier not to fret excessively if our 

classical theorists strayed too far from the theory we attribute to 
them. Besides, these same a priori probabilities have been the source 

of enough fretting from another direction to far overshadow our 

definitional quibbling. You see, what Bayes and Laplace did in 
less-than-ideal cases was to assume that all possible causes are a 

priori equiprobable. Such an assumption does guarantee equally 
likely cases (for what it’s worth), but it also seems to many thinkers 
to be completely and totally unjustified. The essence of the quarrel 
about ‘Bayesian statistics’ is not about Bayes’s Theorem at all, but 



about Bayes’s Postulate which asserts this equiprobability of causes. 

Without entering too deeply into the controversy we can just note 
that critics argue that the postulate is mathematically and philosophically 

unjustified and can be shown to lead to wildly incorrect 
‘solutions’ in many cases. But, the Bayesians rejoin, in the first place 
such wild errors are the exception rather than the rule; in the second 

place the magnitude of any error due to the postulate decreases 

rapidly as data accumulate, and in the third place, what else can we 

do in a less than ideal situation where we need to know such a 

probability but the a priori probabilities are unknown – we must 
use the Postulate or just give up. 

So in controversial cases Bayes’s Theorem does not let us ‘go from 
frequencies to probabilities’ but instead proceeds ‘from frequencies 
plus assumptions about a priori probability’ to its conclusion. (The 
Postulate, by the way, closely resembles the Principle of Indifference 
in telling us to treat things as equally probable if we have no reason 

not to. It is therefore subject to the same kind of criticism and 

disparagement as is that Principle.) Furthermore, the conclusion or 

output of Bayes’s Theorem is not ‘probabilities’ simpliciter. Even in 
ideal cases the best we can get is ‘the probability that the probability 
of E is x.’ Thus even a Bayesian should be careful about proclaiming 
the old saw that ‘Bayes’s Theorem lets us go from frequencies to 

probability,’ but it remains true that Bayes’s Theorem is one of the 
most widespread and powerful methods for deriving initial probabilities 

in actuarial cases within the general spirit of the Classical 

Theory of Probability. 

4 Probability of Single Events 

The Classical theory, unlike the Relative Frequency view we will 
examine later, finds no difficulty at all in the notion of the probability 
of a single event. Since we are to compare the number of ways that 
an event can succeed (not ‘has succeeded,’ or ‘will succeed in the 
long run’) to the total number of ways it can occur (ditto), we do 
not require consideration of a series of events in order to develop a 

probability value and thus we have no problem (as the RF theory 
does) in returning from that series to apply the value to a single 
case. Not only is it possible to develop a Classical Probability value 
without appealing to empirical evidence, some critics maintain that 



it is necessary that we do so because the theory has no mechanisms 
for proceeding otherwise and is, in fact, incapable of learning from 
experience (more on this later). 

That Smith will roll a Five 

We have said that this can well be taken as a paradigm case for the 
Classical theory. As Smith prepares to throw the die he knows and 
all of us around the table know that there are six faces on the die 
which may ‘come up,’ and that only one of these is a Five (presuming 
we have checked to ensure that the die is properly imprinted). The 
Principle of Indifference tells us that if we have no reason to expect 
or prefer one of these outcomes, we are to treat them as equally 
probable. As there are six such alternatives, the probability of each 
is 1/6. 

The power and simplicity of this reasoning has made this method 
almost universal among gamblers and common among laymen. An 
astonishing number of extremely complex problems in probability 
theory have been solved, and usefully so, by calculations based 
entirely on the assumption of equiprobable alternatives. This remarkable 

success story may fade from the reader’s mind as we proceed 
to develop the inadequacies, confusions, and contradictions involved 
in the CTP – try to remember that our strongest ordinary conception 
of probability and most of our mathematical successes are based on 

just this picture of Smith standing there with an equal chance of 
throwing a Five. 

But however successful the CTP has been in dealing with normal 
dice games, in this rotten world you can be sure that not all dice 
are ‘normal’ or ‘fair.’ What are we to do about those cases? 

Suppose, for example, that as Smith prepares to roll the die Jones 
comes by and whispers in your ear, ‘It’s loaded.’ Don’t delay, place 
your bet to exploit this knowledge and get rich quick! 

But how? What shall we bet on? Does Jones mean Smith has 

slipped in a loaded die and we should bet with him on the Five? 
Or does he mean that the house is crooked and we should always 
bet against the shooter? Or has Jones himself loaded the die intending 
to make a side bet on the Three? What are we to do? 

As we saw above, the bare knowledge that the die is a loaded has 
no effect at all on the probability that Smith will throw a Five! 



Unless we know which number is weighted we still have no reason 

to prefer one over the other and must continue to regard them as 

equally probable. (It is clear that in some sense we now know that 
they are not ‘really’ equiprobable – this problem will be discussed 
in the section on Absolute Probability.) 

So for the innocent Smith the probability of a Five is 1/6, and 
since our guilty knowledge is insufficient it remains the same for us. 

But what about Jones? Suppose he knows how the die is loaded; 
what can the CTP do for him ? If he knows the extent of the influence 
of the loading, he can plug it into the calculus and generate a 

probability as Laplace did in the quotation above. 47 If he does not 

already know the extent of the influence of the loading but only its 
direction, there is no formal way for the CTP to compute the 
probability. Indeed there is no way even to describe it in the official 
theory, since alternatives are no longer equally probable. Here again 
the Classical theorists’ understanding and use of the concept of 
probability outstrips our official definition. But here Jones cannot 
use Bayes’s Theorem to help him out, since we are talking about 
a single throw of the die, and he has not the time to collect 
evidence. 

Still, the CTP can advise Jones on what to do. Since the time of 
Huygens the Classical theorists (and almost everyone else) have 
employed the concept of the mathematical expectation of an event 
and have assumed it to be a rule of rationality that one should 
maximize that expectation. If each number pays off equally, the 
difference in the expected value of each is directly and only 
proportional to that number’s probability of occurrence. Since Jones 
knows which number has the highest probability of occurrence, he 

ipso facto knows which one has the highest expected value and, to 

be rational, should bet on that number. 
Detesters of triviality may feel it no credit to a theory that it uses 

big words and complicated mathematics to tell someone to bet on 

the loaded number. A little reflection should show, however, that 
there are many cases in which one should not bet on the loaded 

number (if the payoffs are disproportionate, for instance, or some 

outcomes are naturally more probable than even a loaded number, 
or if combinations and negative bets are more lucrative, etc.). As the 
situation increases in complexity, even keen common sense and 
natural ability will soon feel the need for assistance from the 
mathematical structure developed for Smith’s improbable Five. 



That Smith will be elected Mayor 

Detractors of the Classical theory in general and the Principle of 
Indifference in particular have often argued that the probability in 
a dice game is not based on our ignorance of any distinguishing 
features of the die faces, but rather on our knowledge, based on 

collective experience, that Five comes up 1/6 of the time. This point 
is partially rebutted by our discussion of a die that is known to be 
biased but not in any particular direction. Here we can be sure that 
Five will not come up with the normally observed relative frequency – 

it appears either more or less frequently than one sixth of the time. 
And yet the fair bet, in this state of ignorance before the first roll, 
is based on a probability of 1/6 (5 to 1 odds). 

Perhaps the critics will respond that past experience has shown 
that each side of a die gets loaded with approximately the same 

frequency as the others, so that again our judgment is based on 

experience rather than ignorance. But whatever reasonableness this 
argument might have when applied to dice games vanishes when we 

consider a unique, single election. 
If Smith, Jones and Robinson are running for mayor, it is quite 

clear that the CTP can give us a precise numerical value for the 
probability that Smith will be elected – but only if we know nothing 
at all about the election and the candidates. Once we acquire 
knowledge of the age, race, sex, occupation, party, etc. of the 
candidates, we become less able to assign definite values to the 
probability (though it might be quite clear which values increase 
and which decrease from the original 1/3). 

The reason, of course, is that the Principle of Indifference allows 
(requires) us to treat the alternatives as equally probable so long as 

we have no evidence to the contrary. Using this ignorance as our 

justification, we should accept any bet offered by equally ignorant 
persons (or devices, mechanisms, situations) at odds better than 2 
to 1. The amazing thing, which so impressed Quetelet and Poisson, 
is that if we act on such ignorance repeatedly we can be almost 
certain of being right one-third of the time (Bernoulli’s theorem) 
while this certainty is not readily available to any other method 
(some selection procedures give sub-random success in some situations 

– as if you always pick the Socialist Workers’ Party candidate 
in Mississippi elections). 

This ‘knowledge from ignorance’ has been the most controversial 



claim of the CTP. We shall examine both sides in later sections of 
this chapter – for now, remember that Smith’s probability of being 
elected mayor is an excellent example of it. 

5 Probability of Repetitive Kinds of Events 

The Classical theory makes no use of series and repetitive events in 
its definition of probability and in its clearest applications, but CTP 
theorists have been interested in repetitive and actuarial processes 
since the very early stages of theorizing. The most famous tools 
which they developed for dealing with such problems are Bernoulli’s 
Theorem, Bayes’s Rule, and Laplace’s Rule of Succession. 

That a Dice Throw will be Five 

We saw above that the Principle of Indifference gives a probability 
of 1/6 that a single throw will be a Five. Now let us consider a series 
of 100 such throws – how many can we expect to be Fives? Common 
sense (and fairly simple calculation) tells us that the most likely 
number is 17 (1/6 x 100 = 16.666) and that we should ‘expect’ it to 
be ‘fairly close’ to that value. In particular, the probability that the 
number of Fives will be between 14 and 20 inclusive (17 + 3) will be 

approximately 0.65. Let us call the number of Fives in a series of N 
throws S (for success, a common usage). Then, in our example, 
N = 100 and we computed the probability that S = 17 ± 3. The 
number of successes, S, divided by the number of trials, N, gives the 

frequency of success (strictly, the relative frequency of success, since 
S is called the absolute frequency of success) and we shall call this 
F. Thus we were calculating also the probability that F = 0.17 + 0.03. 
Now suppose that we increase the sample size to 1,000. The same 

frequency of success F will be represented by a number of successes 

S, between 140 and 200. But now the probability of S falling in this 
range is 0.99. 

Bernoulli’s Limit Theorem says that continuing to increase the 
sample size N will cause the probability that F will fall within the 
desired range to continue to approach 1, and that it can be made 
to approach 1 as closely as we wish for any desired range of success 

no matter how narrow. 48 
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where F is the relative frequency of success, p is the probability of 
success in each individual trial (which must be independent, by the 
way), E is any fixed degree of variation we choose, and N is the 
number of trials. 

The Classical theorists and their successors have claimed that this 
theorem demonstrates that simple probabilities will be realized in 
experience as relative frequencies. Thus the probability 1/6 of a Five 
on a single throw guarantees that in a sufficiently long series of 
throws the relative frequency of Fives will be very close to 1/6. 

That is how the CTP deals with series of events. It is not an 

uncontroversial method and we shall present several criticisms of it 
in the appropriate section, but it has led to considerable practical 
success and is certainly not to be dismissed out of hand. 

That a Thirty-year-old will get Married 

When we ask the probability that a bachelor will marry this year, 
it seems there are only two alternatives: he will or he won’t. If we 

knew nothing further about the matter and if we were very liberal 
in our use of the Principle of Indifference it might be that we would 
treat these alternatives as equiprobable and call the probability 1/2. 

But of course we know that the general probability of marriage 
is not as high as 1/2 and only a few extremists will apply the Principle 
of Indifference to a statement and its negation. So what can we do 
here? 

As we indicated above, 49 what the Classical theorists did was to 

use Bayes’s Rule in some cases and to consider actuarial tables as 

direct sources of probability in other cases. 
50 A complete theoretical 

justification on classical lines can be provided for these methods 

only in the extremely unlikely case where we know an actuarial table 
is complete and accurate or where we know all the possible 
alternative tables and the a priori probability that each is true. 

Despite this gap between theory and practice, these methods were 

effective enough to guarantee profits to the early insurance companies 
and respectability to the early statisticians. 



But there is another method for dealing with successive events 
which has gained even more notoriety than Bayes’s Rule or the 
Principle of Indifference – that is Laplace’s Rule of Succession. As 
stated in the Essay: 'Thus we find that an event having occurred 

successively any number of times, the probability that it will happen 
again the next time is equal to this number increased by unity divided 
by the same number, increased by two units.’ 51 

After N successes in a row, then, the probability of success on the 
next trial is 

upper P equals StartFraction upper N plus 1 Over upper N plus 2 EndFraction period

Laplace derives this rule from a version of Bayes’s Rule plus some 

assumptions. The import of the assumptions is that there must be 
an infinite (at least very large) number of possible constitutions of 
the universe of discourse with each one being equally probable. The 
rule is sound, for example, when we pick one urn out of a series 
exhibiting every possible combination of red and white balls, then 
draw N balls (with replacement), all of which happen to be red. The 

probability 52 that the next ball will be red is then 
StartFraction upper N plus 1 Over upper N plus 2 EndFraction period

The application which Laplace himself made of the rule was to 

calculate the probability of tomorrow’s sunrise: ‘Placing the most 
ancient epoch of history at five thousand years ago or at 1,826,213 
days, and the sun having risen constantly in the interval at each 
revolution of twenty-four hours, it is a bet of 1,826,214 to one that 
it will rise again tomorrow.' 53 

This example has been criticized for its historical data (why 5,000 
years? Aren’t we surer of tomorrow’s sunrise than of one that long 
ago?) and its metaphysical assumptions (Is the universe really like 
an urn with all compositions equally possible?). The general application 

of the rule has been further criticized on the grounds that it 
leads to absurdities (If the first person I meet today is red-haired 
and deaf the probability that the second person I meet will be 
red-haired and deaf is 2/3) and contradictions (If I have met 2 red 
cars, 3 white cars, and 4 black cars, the probability that the next 
will be red is 3/11, white 4/11 and black 5/11, for a total probability 
of 12/11). 



6 Absolute Probability 

In the Classical theory there is no clear notion corresponding to our 

idea of absolute probability. It is evident that probability can be 
relative, as when one person’s knowledge of his poker hand gives 
him a probability for drawing an ace different from that computed 
by his neighbor. In such cases probability is relative to our 

knowledge – in cases using the Principle of Indifference one might 
say that probability is relative to our ignorance. In either case, 

probability is apparently not empirical, it has to do with our beliefs 
(the psychological interpretation) or rational methods of inference 
(the logical interpretation) but not with any empirical property of 

things. 
On the whole the logical interpretation seems to be the most 

justified, since it can account for the talk about degrees of belief and 
the precise rules which are supposed to govern everyone’s probability 
conclusions. 54 On this view, the most reasonable interpretation for 
the absolute probability of event E would be ‘the probability we 

would assign to E if we possessed all relevant evidence and all 

necessary mental abilities.’ But Laplace’s demon and several remarks 
of Bernoulli’s 55 show that this limiting case is one of certainty: in 
such an ideal situation we would know if E would happen or not. 

In accordance with this interpretation of the CTP, therefore, the 
absolute probability of every meaningful proposition must be either 
1 or 0. 

It should be noted that many passages in Classical writings do 
suggest an empirical rather than a logical definition. Most notable, 
perhaps, is that the official definition refers to the number of ways 
in which an event can happen, rather than the number of ways we 

think (or should think) it can happen. Also, Classical writers 

frequently speak of ‘unknown’ probability, which should not exist 
in a logical or subjectivist interpretation. Most frequent of these is 
the unknown composition of an urn; true actuarial tables are also 
said to be unknown and just ‘approached’ by existing tables. 
Considerations of this sort just might move one to think that the 
CTP includes a notion of physical or empirical probability. Even if 
this is the case, however, the thoroughgoing determinism which we 

shall presently discuss requires that for any individual event it either 
will certainly happen or will certainly not happen. Even on this interpretation, 

then, the absolute probability of E must be either 1 or 0. 



7 Physical Chance 

The Classical theorists were determinists. They wrote, for the most 

part, in the grip of Newton’s clock-like cosmology which so 

dominated European thought in that period. They were convinced 
that the events in nature were links in a causal chain, so that each 
one is determined by those which precede it and, in its turn, helps 
provide ‘Sufficient Reason’ for events to follow. 

This determinism occurs clearly and explicitly as early as Bernoulli 

(‘everything in the world occurs for definite reasons and in definite 

conformity with law...’) 56 and Montmort (‘nothing depends on 

chance... all things are regulated according to certain laws...’). 57 

But there is one statement of the determinist thesis which is so 

compelling in its imagery and so powerful a summation of determinist 
thought that it can nearly stand alone as an expression of that 
metaphysical view. I am speaking, of course, of Laplace’s demon: 58 

We ought then to regard the present state of the universe as the 
effect of its anterior state and as the cause of the one which is 
to follow. Given for one instant an intelligence which could 

comprehend all the forces by which nature is animated and the 
respective situation of the beings who compose it – an intelligence 

sufficiently vast to submit these data to analysis – it 
would embrace in the same formula the movements of the 
greatest bodies of the universe and those of the lightest atom; 
for it, nothing would be uncertain and the future, as the past, 
would be present to its eyes. 

Stated in simpler materialistic terms: If the Demon knew the 

position and momentum (etc.) of every particle in the universe at a 

given time, he could in principle predict or retrodict every event in 
the history of the universe. This is the type of determinism strongly 
suggested by Newton’s Laws of Motion, which successfully described 
and predicted the motion of the planets and claimed also to deal 
with microcosmic events. Some think this view should perish with 
the physics that inspired it, so that indeterminism and Free Will are 

swept into office along with Relativity Theory and Quantum 
Mechanics. 59 But at the time of Laplace, Newtonian cosmology 
ruled Science and determinism was au courant. 

In a deterministic world a chance event cannot be one which ‘might 
happen one way or the other,’ since all events will happen in an 



exactly specified manner. Chance, then, must be a psychological or 

epistemological, rather than a physical, phenomenon. This is the 
official position of the CTP, that when we talk about chance we are 

referring to our inability to predict events, not to any genuine 
randomness or indeterminacy in the events themselves. This, I think, 
is as clear and definite a doctrine as one can find in the CTP. 

Of much less importance, but of some interest, are later attempts 
to specify within this deterministic framework some type of events 

which are peculiarly ‘chance’ events and are especially suitable for 
treatment by the calculus of probability. Poincare, for example, 
emphasizes events which have a multitude of causes or which are 

such that slight differences in initial conditions lead to great 
differences in the eventual outcome (the toss of a coin, for example, 
or the roll of a die). Cournot, on the other hand, finds the essence 

of chance in the convergence of independent causal chains, so that 
there may be a perfectly good causal explanation for a worker’s 
dropping a brick from the top of a building and there may be an 

equally good cause for my walking along a certain sidewalk on a 

given afternoon, but if these causal chains come together in such a 

way that the brick ‘happens’ to land on my head, we are much less 
ready to give an ‘explanation’ of this event and are inclined to think 
it was due to ‘chance’ or ‘bad luck’. As Keynes notes, however, even 

such attempts to define chance took place in a deterministic context, 
so that there really was no such thing as pure physical chance in 
the universe of the CTP. 

We have, then, a world in which everything is predictable – in 

principle. But when we live out our lives we see that predictability 
in principle cuts no wood and draws no water: what we need is 

predictability in practice. Perhaps Laplace’s demon could tell us if 
our cow will get sick or not, but we can’t tell. We are surrounded 
by events whose causes are obscure, unknown, or incalculable; it is 
beyond our ability to predict them. But even though predictability 
in principle vanishes when we turn to individual events, it reappears 
when we consider mass or repetitive events! If Laplace cannot tell 
us whether one cow will get sick or not, he can tell us how many 
sick cows to expect in a given year. And if the herd is large enough 
and conditions are relatively stable, we can use his prediction to 
make money on the farm. 

This predictability en masse is the source of the vast profits of 
insurance companies. It was also the source of the rather excessive 



enthusiasm for probability theory conceived by Poisson and Quetelet, 
who found in the Law of Large Numbers a most remarkable 

uniformity extending to all human endeavors and all parts of nature. 

In a later section we will detail some criticisms of the CTP’s treatment 

of the Law of Large Numbers. Yet it cannot be denied that a 

considerable practical advance occurred when the Classical theorists 

pointed out Nature’s tendency to operate with stable frequencies 
and normal distributions. It is interesting to note that the kind of 

predictability thereby introduced would be exactly the same even if 
the world really were ruled by ‘random chance’ rather than rigid 
determinism. It is therefore perhaps not quite as strong an argument 
for lawlike uniformity in the world as Poisson and Quetelet thought. 
Still, it is also in accord with the official position of the CTP, that 
all events are determined and there is no such thing as physical 
chance. 

8 The Metaphysical Status of P 

For the most part, Classical theorists held that probability is not a 

genuine part of metaphysical reality but is a human invention cleverly 
designed to assist us in making rational choices when we have less 
than complete information. This interpretation especially accords 
with their frequent remarks that probability is a measure of our 

ignorance, or a product of it. It likewise fits with the uniform 
determinism which is assumed to govern the universe. In such a 

Newtonian-clockwork universe, there is no such thing as probability 
– it has no metaphysical reality at all. 
I think these reasons are sufficient for us to conclude that there 

is no constituent part of the universe which can be called ‘probability’ 
in the sense of ‘going one way or the other,’ ‘depending on chance,’ 
etc. Yet there remain two ways in which real features of the universe 
are involved in probability: (1) in cases like urn and dice problems, 
the constitution of the urn and the number of faces on the die 
determine the probabilities – and these are physical (hence, metaphysical) 

realities; (2) events like infant mortality do occur in nearly 
fixed frequencies over long stretches of time, so that we can and do 
base probabilities on real properties of collections of real events. 

In the first of these cases, let us consider the urn problem. Suppose 
there is an urn before us which we know is either urn A, with 2 red 



and 2 white balls, or urn B, with 4 white balls, Our probability of 
drawing a red ball is then 1/4. 

P(A) = 1/2 = P(B) 

P(R/A) = 1/2 

P(R/B) = 0 

P(R) = [P(R/A) x P(A)] + [P(R/B) x P(B)] 
= [1/2 x 1/2] + [0 x 1/2] 
= 1/4 + 0 

= 1/4 

But, if Jones knows that we are facing urn A, he knows that our 

probability of drawing a red is ‘really’ 1/2. This is what Laplace 
often calls an ‘unknown’ probability, and it seems to be a feature, 
not of our knowledge, but of the urn’s true composition. It seems 

to be a metaphysically ‘real’ probability, while the earlier one seems 

only relative to our ignorance. 
This, however, is only an illusion, based on the fact that Jones 

has better information than we do and therefore seems closer to 

reality. Yet his probability is just as much based on ignorance as 

our own. He knows that there are 2 red and 2 white balls in the 
urn but he doesn’t know which we will pick, so he assesses the 
probability at 1/2. 

Now suppose another person, Smith, comes into the room, and 
Smith knows we will pick a red. Then the probability for him is 1, 
and Jones’s probability no longer seems like the real thing. 

Smith, of course, is Laplace’s demon, capable of knowing all future 
facts about the universe – and there are such facts to be known! We 
must, therefore, be deceived when we think there are ‘real’ probabilities 

other than the degenerate ones of 1 and 0. But wherein lies 
the deception? 

I think the answer is that the probabilities which we normally 
think of as ‘real’ are those which are predicated on the best knowledge 
normally available to human beings. We normally know how many 
faces a die has and whether or not it’s loaded, but we don’t normally 
know precisely how it will be thrown, what air currents will affect 
it, etc. And we certainly do not normally know how it will land. 
Therefore the best state of knowledge we can normally achieve tells 



us that the probability of a Five is 1/6. A half-smart demon, 
or a very good dice manipulator, might know that this time the 

probability is ‘really’ O – it all depends on your state of knowledge. 
Since the paradigm case for human knowledge of an urn problem 
involves complete knowledge of the composition of the urn but not 

complete knowledge of which ball will be chosen, it is perfectly 
natural that the paradigm probability (for us) is that probability 
which can be computed using that paradigm knowledge. Therefore 
the composition of the urn determines a probability value which is 

special to us, but not necessarily special to the universe. (In fact, if 
the Classical theorists are right in their picture of a deterministic 

universe, our ‘real’ probabilities, determined by the composition of 
the urns, are necessarily false if they are not 1 or 0.) 

Turning now to our second problem, probabilities are sometimes 

thought to be real because they are based on real frequencies. Let 
us take it as given that there are fixed frequencies of death and the 
like which have been established in the past and which we know, 
by some ‘valid’ form of induction, can be counted on to continue 
in the near future. Does this establish that there are metaphysically 
real probabilities? 

Well, first of all, it establishes that there are metaphysically real 
relative frequencies, even real frequencies of future occurrences (this, 
incidentally, agrees well with the CTP’s deterministic metaphysics). 
To a frequency theorist, that is sufficient to establish that there are 

real probabilities. But to the CTP, probability is not a frequency 
(despite occasional confusions and unclarity in the writings, we take 
this to be the official position). Instead, probabilities are based on 

the existence of computable equiprobable alternatives. 
I have suggested above that the use of mortality tables is 

theoretically justified in the CTP by the fact that we are equally 
likely to be represented by a favorable as by an unfavorable entry, 
so that the ratio of favorable entries to all entries constitutes our 

probability of survival. Now let us suppose that the death frequency 
of white males of my age group in Florida is 0.02 per year, and that 
this frequency is stable for groups as small as 1,000. It is then possible 
to construct a mortality table containing 20 unfavorable entries and 
980 favorable entries, knowing that I am represented by one of the 
entries in this ‘real’ mortality table but not knowing which one. We 
can then know that 20 of this group of real people will die, and the 

Principle of Indifference tells us that there is a 0.02 probability that 



I will be one of them. This is, ex hypothesi, a probability based on 

reality – but is it a ‘real’ probability? 
According to the CTP, it is the probability of my death if I have 

no reason to ‘prefer’ one or the other alternative (not in the sense 

of a death wish but in the sense of a rational expectation). Now it 
happens that I know that I drive a sports car and I know that sports 
car drivers are slightly more likely to die than Cadillac drivers or 

pedestrians. Therefore my ‘real’ probability of death, based on this 
knowledge, is slightly greater than 0.02. On the other hand, I am 

healthy, educated, very well fed, and receive good (socialized) medical 
care. Therefore my ‘real’ probability of death is somewhat less than 
before. In principle, each of these complications produces a changed 
but calculable probability of death (assuming each is associated with 
a stable frequency). But which is my ‘real’ probability of death ? We 
normally think that the ‘best’ probability is that which is based on 

the ‘most’ knowledge. But Bernoulli and Laplace insist that in the 
pursuit of knowledge the limiting case is – certainty. Again, Laplace’s 
demon knows whether I’m to die or not and there’s an end to 

speculation. In their universe, I either will or will not die, and there’s 
no such thing as a ‘real’ probability of my death. 

If there are stable frequencies in nature, as we assumed, that fact 
allows us to predict future mass events with near certainty. It also 
gives us grounds for computing probabilities which are valuable 
(some more so than others). But even though the facts are real, the 
probabilities are always relative to our knowledge (which cases are 

equiprobable to us?). Therefore, metaphysically real frequencies do 
not determine metaphysically real probabilities, mortality tables and 
‘unknown probabilities’ notwithstanding. 

9 The Epistemological Status of P 

It would be stretching the matter only a little to say that, for the 
classical theorists, probability is an epistemological phenomenon. 
That is to say, probability is not some feature of the world, which 
we seek to discover, but rather it is a way of dealing with the world, 
based solely on our own knowledge and mental faculties, and helping 
us to project the future out of our descriptions of the present. It is, 
according to Bernoulli and Laplace, a substitute for exact knowledge 

– since knowledge is the very subject of epistemology, pre- 



sumably its substitute is likewise epistemological. 
The curiously unepistemological feature of Classical probability 

is that it notoriously bases its projections on ignorance rather than 
knowledge. This is especially true of the Principle of Indifference, 
which has been said to require ‘an equal distribution of ignorance’ 
in order to assign numerical values to probabilities. Remember the 

mayor’s race we described above, where we knew the probability of 
Smith’s winning only if we knew nothing at all about the race – when 
we learned something significant, we lost our ability to give exact 
odds. This is the kind of ‘knowledge out of ignorance’ situation 
which has attracted many thinkers and repelled many more. It seems 

to denigrate careful investigation and collection of information and 

rely instead on mathematical mumbo-jumbo to produce as if by 
magic the exact probability of occurrence of something we may never 

have experienced. 
As one might expect, the critics have somewhat overstated the 

case here. It is not just our ignorance that is important, Laplace 
says, ‘Probability is relative, in part to this ignorance, in part to our 

knowledge.’ 60 In order to deal with the (somewhat uncharacteristic) 
probabilities of death, for example, it is clear that a statistical 
investigation must first create a mortality table. In the simpler case 

of a dice game, our first task is to identify the equiprobable 
alternatives. But in acquiring this little bit of knowledge the CTP 
encounters a major epistemological problem: How do we justify the 
belief that all faces of the dice are equally probable to turn up? 

This question is of fundamental theoretical importance because, 
as I shall argue throughout the book, there is little controversy about 
how to deal with established probabilities. All theories share in 
common the calculus of probability, they differ primarily on (1) the 
definition of ‘probability,’ and (2) the method of establishing initial 
probabilities. 

Now if we know the faces of the die are equally likely to come 

up, and if we know that one and only one must come up, it is 
mathematically necessary that the probability of each be exactly 1/6. 
But how do we come by that first bit of knowledge? 

Relative frequentists and other critics of the CTP argue that we 

learn the equiprobability of the faces the same way we learn other 
empirical facts – through experience. Generations of gamblers have 
carefully noted the fall of the dice, and generations of dice makers 
have labored to insure that the gamblers have seen each face equally 



often. That, claim the critics, is how we know the faces are equally 
probable. 

Not so, say the Classical theorists, the faces are equally probable 
because Bernoulli’s Principle of Indifference (Principle of Non-Sufficient 

Reason) tells us to treat equipossible alternatives as equally 
probable if we have no reason to treat them otherwise. 

But now our epistemological problem has become two problems: 
how can we identify equipossible alternatives, and how can we justify 
the Principle of Indifference itself? The first of these questions will 
be prominent in the section devoted to criticism of the CTP, so I 
will now pass it by to deal with the second. 

The Principle of Indifference has never been argued for to nearly 
the extent it has been argued against. The Classical theorists 
themselves seem hardly to have felt a justification necessary. They 
were concerned with developing and expounding a system which 
worked. Philosophical analysis, criticism, and defence naturally came 

later. The most notable defenders of the Principle among later 
thinkers were Keynes and Carnap. Each of them decried the 
unrestricted and uncritical use of the Principle which had led to 

excesses and contradictions in the past and each modified, restricted, 
and generally prettied up the Principle before incorporating it in his 
own system. In the end, Keynes relied on our direct intuition to show 
us the truth of the Principle, while Carnap appealed to its simplicity 
and the fact that it worked well in practice. If Laplace had felt called 

upon to justify the Principle, I’m sure he would have approved of 
all three of these considerations, but I really think that he thought 
it was just obvious. After all, what other value could you reasonably 
assign to the probability of rolling a Five if you had no reason to 

expect one face or the other? It just has to be 1/6. 
For my own part, I think the Principle becomes more plausible 

when it is clearly removed from the idea of the probability of 
occurrence of an event and explicated instead in terms of the notion 
of a random guess. I will explore this idea further after I present the 
main criticisms of the Principle in the next to the last section of this 

chapter. 

10 Rationality of Probability Behaviour 

In addition to developing the calculus of probabilities, the Classical 
theorists also formulated two other ideas which are of major 



importance to the general study of rationality: the concept of 
Mathematical Expectation, and the Principle of the Diminishing 
Marginal Utility of Wealth. 

The first of these we have attributed to Huygens (despite Keynes’s 
pressing of the Leibniz claim, see note 21 to chapter II ). It has become 
so well known that most readers will be familiar with it already, but 
it is always well to review things and ensure that we are talking 
about the same concept. 

The Mathematical Expectation of an event is the product of the 

probability of the event and its value (sometimes, utility) to an 

individual. 

ME(A) = P(A) x V(A) 

This, of course, is nothing more than a definition. The Principle of 
Rationality which makes it important is: Whenever alternative 
actions are possible, select the one which maximizes mathematical 

expectation. 
There are a few problems with this rule. Some claim it over-emphasizes 

utility and acquisitiveness. Many think that situations 
exist or can be invented in which the rule violates our rational 
intuitions. (Should a poor person choose a one-in-a-thousand chance 
of winning a million dollars over a 90 per cent probability of getting 
$ 1,000?) Still, it has been one of the most durable and widely-accepted 
of all principles of rationality. 

The other idea, that a given amount of money is worth less to a 

rich man than to a poor man, was explicitly stated by Daniel 
Bernoulli in his attempts to solve the Petersburg Problem. In that 
instance he formulated a mathematical measure called ‘Moral Hope’ 
(or ‘Moral Expectation’) which purported to show exactly how much 
a given increase of wealth would benefit an individual with given 
resources. 

Even ignoring the details of D. Bernoulli’s argument, it seems 

intuitively clear to most people that the beggar places greater value 
on a quarter than the rich man does. 61 We can capture this general 
notion by saying that the value one places on an increment of wealth 
is inversely proportional to one’s current wealth. 

Now let us imagine two persons gambling in a fair game, where 
each begins with a stake of 100 units. Any outcome except a draw 
will result in a disparity between the final sums. Suppose A wins 30 
units from B. Then A’s gain is proportional to 30/130 while B’s loss 



is proportional to 30/70. Thus, after the game, the amount transferred 
looks larger to the loser than to the winner. But it would be irrational 
to engage in an activity where one risks more than he stands to gain 
on equal chances. I would not bet my 30/70 against your 30/130 on 

the toss of a fair coin – that would be unfair odds. But the outcome 
of any fair game will always exhibit this property, that the loser’s 
relative loss is always greater than his corresponding possible gain. 
Thus all gambling is shown to be irrational, since most games promise 
even less than a fair return. As Laplace says 

62 

It results similarly that at the fairest game the loss is always 
greater than the gain.... We can judge by this of the immorality 

of games in which the sum hoped for is below this 
product. They subsist only by false reasonings and by the 
cupidity which they excite and which, leading the people to 

sacrifice their necessaries to chimerical hopes whose improbability 
they are not in condition to appreciate, are the source of 

an infinity of evils. 

This conclusion is much more typical of the Classical theorists than 
one would have thought. We tend to picture them as eagerly working 
out the odds in order to excel at the widespread gambling in decadent 
aristocratic society. In fact, however, they were generally opposed 
to gambling, treating it only as an item of mathematical interest. 
Besides Laplace and D. Bernoulli, de Méré and Montmort remarked 
on the wastefulness of gambling, 63 and Cardano seems to have been 
the only inveterate gambler of the bunch. 64 

But even if the classical investigation led to the conclusion that 

gambling is irrational, it was, after all, probability theory which 
made it possible to demonstrate this. So it has advanced our 

rationality at least in this respect. (Montmort 65 cites the example 
of a lottery operator who, lacking a knowledge of probability, offered 
the public terms unfavorable to himself – alas, we are beyond that 
now.) 

In the end, of course, probability theory has found so many 
applications that we can scarcely question the rationality of its use. 

At the time of the CTP, however, the only major practical successes 

were in gambling and insurance. Otherwise the principal virtue 
claimed for probability was that it was a codification of common 

sense, extending what we had always agreed with into areas where 

things were unclear. Laplace put it thus: 66 



It is seen in this essay that the theory of probabilities is at 

bottom only common sense reduced to calculus; it makes us 

appreciate with exactitude that which exact minds feel by a sort 

of instinct without being able ofttimes to give a reason for it. It 
leaves no arbitrariness in the choice of opinions and sides to be 
taken; and by its use can always be determined the most 

advantageous choice, thereby it supplements most happily the 

ignorance and the weakness of the human mind... there is no 

science more worthy of our meditations. 

11 Chief Criticisms 

It is well that this section is called ‘chief criticisms’, since it would 

require most of the book to attempt to list all the criticisms that 
have been directed at the CTP. We will try to impose some order 
on this mass by discussing them under the following headings: 

1 Criticisms of the Principle of Indifference. 
2 The limited application of the CTP. 
3 Criticisms of inverse probability. 
4 Theoretical ambiguity in the CTP. 
5 CTP not tied to the real world of experience. 

Criticisms of the Principle of Indifference 

This is probably the most popular of our five areas of criticism; 
virtually every author who has written on the philosophical theory 
of probability in modern times has taken a shot or two at the 
Principle of Indifference. 67 

The Principle is variously formulated and variously attributed 
(principally to Bernoulli and Laplace) but is generally held to be 
central to the definition of probability and the determination of 
initial probabilities in the CTP. 

Generally speaking, the Classical theorists begin with equiprobable 
alternatives and define probability as the ratio of those which 

are favorable to the total set. But, as Reichenbach notes, ‘even if the 
degree of probability can be reduced to equiprobability, the problem 
is only shifted to this concept. All the difficulties of the so-called a 



priori determination of probability therefore, center around this 
issue.’ 68 

The principal ‘difficulty’ with the definition is that it seems to be 
glaringly circular. After all, ‘equiprobable’ is normally construed as 

meaning ‘having an equal probability’ – but ‘probability’ is the very 
word we are trying to define. 

Now Laplace can avoid this circularity by trying to give ‘equiprobable' 
some sense of its own, with no dependence on probability. 69 

This he does by requiring that the equiprobable alternatives meet 
two criteria: (1) they must be ‘equally possible,’ and (2) they must 

be ‘such as we may be equally undecided about in regard to their 
existence.’ 70 

We hasten to add that ‘equally possible’ likewise must have a 

sense which is not parasitic on the concept of probability if the 
original definition is to avoid vicious circularity. It seems that Laplace 
meant that equipossible alternatives are those which are on the same 

logical level and can be subdivided in the same ways. Thus Four 
and Three are equipossible dice throws, while ‘Two or less’ and 
‘More than Two’ are not, since the latter cases consist of two and 
four sub-cases respectively. 71 This requirement will be of interest 
later when we consider alternatives like Six or not-Six, and Red or 

Blue or Green. 
The other requirement, that we be ‘equally undecided’ about the 

alternatives, has been a source of even greater difficulty. 
To begin with, it is evident that this phrase must not refer to some 

actual state of indecision, else the CTP would reduce to a psychologistic 
subjectivism which is clearly not the intent of its framers. 

Someone might well be undecided about whether a crap-shooter is 
more likely to roll a Seven or a Three – the point is that he should 
not be undecided. But if the stricture is to refer to some logical or 

empirical (non-psychological) feature of the situation, what are we 

to take it to mean? 
One possibility is that we might mean that we have no evidence 

whatsoever regarding the possible outcomes. But, as C. I. Lewis 

suggests, ‘it should be doubted whether that kind of case can occur,’ 72 

since almost everything which can be described has some relation 
to past experience. 

A better interpretation is that we are equally undecided about 

alternatives when they are ‘symmetrically related to the body of the 
evidence.' 73 It would then be all right to know something about the 



alternatives, as long as that knowledge did not allow us to distinguish 
between them. 

But of course we can distinguish between the alternatives: a Five 
has more pips than a Three, and a Heart and Club have different 
colors. In fact, Leibniz would tell us that there must be some difference 
between the alternatives, else they would be identical (Principle of 
the Identity of Indiscernibles). 

So our requirement must be amended to allow some differences. 
This will be all right so long as the differences are not relevant to 

the problem. But this solution is also unacceptable, because ‘if 
“relevance” is defined in terms of “probable”, the circle in the Laplacian 
definition is once more patent; while if judgments of relevance are 

based on definite empirical knowledge, the ground is cut from under 
the basic assumption of the Laplacian point of view.’ 74 

The problem is that we want to be able to say that the color of 
a racing car, for example, is irrelevant to its chance of winning, while 
the size of its engine is very important. But it should be clear that 
no general rule can be formulated for distinctions like this, and 
empiricists would argue that all particular rules are in fact based 

upon experience rather than a priori logic. The identification of 

equiprobable cases then seems to be a matter of induction from 

experience rather than prediction from ignorance. 75 Whenever 
experience has shown that there are good grounds for treating certain 
alternatives as equiprobable (as in dice and card games especially) 
it is perfectly reasonable to use the Principle of Indifference as a rule 
of thumb for computing initial probabilities. But in such cases the 
Principle is no longer theoretically fundamental (experience is) and 
it must be abandoned if future experience gives us grounds for 
doubting that equiprobability obtains. 

In addition to general theoretical questions about the Principle 
of Indifference, there are also many problems, difficulties, and even 

contradictions in its application. 
Two of the simplest counter-examples turn upon the problem of 

dividing up alternatives. First, if we are about to throw a die, we 

might throw a Five or we might not throw a Five. Since we are 

undecided about the alternatives, the Principle of Indifference might 
seem to require us to treat them as equally probable. Obviously this 
criticism turns on the notion of equipossible cases and is invalid if 
the defenders of the Principle succeed in making that concept clear 
and workable. 



The second counter-example is somewhat similar. Suppose we are 

about to draw a ball of unknown color from an urn with unknown 
contents. It seems that we have no more reason to expect the ball 
to be Red than not, so the probability would seem to be 1/2 that it 
is Red. But of course the same reasoning applies to Green and to 

Blue, so that P(Red) = 1/2, P(Green) = 1/2, P(Blue) = 1/2. But this 
gives us a total probability of 11/2 in violation of the basic rule that 
probabilities must add to 1. 

Again the problem seems to be that the alternatives are not 

equipossible because there are more ways to be non-Red than to be 
Red. But what if we are asking about the probability that Martians 
(or other extraterrestrials) are friendly? Are there more ways to be 
friendly or unfriendly (especially if you're a Martian)? Doesn’t it 
seem that there is equipossibility between these alternatives? And 
aren’t we equally undecided about them? Doesn’t it follow from the 
Principle that they are equiprobable? But then we have the extraordinary 

conclusion that we know the probability that Martians are 

friendly is exactly 1/2! Do we know any such thing? 
It seems that equipossibihty may eliminate puzzles when we can 

specify ‘ultimate properties’ and ‘different ways of being X', but for 
all those propositions that do not allow such distinctions, if we know 
nothing about them, then they are just as likely to be true as false! 
Many have thought this conclusion absurd and a major criticism 
of the Principle of Indifference. 

Besides simple negation, there are other ways of creating alternatives 
which may or may not be equiprobable. One of the most 

famous of these is Bertrand’s Box. 76 

Consider a Box or chest which has three drawers. We know that 
one contains two gold coins, one contains two silver coins, and the 
third contains one gold and one silver coin. Suppose we pick a 

drawer at random and blindly withdraw a coin which turns out to 

be gold. What is the probability that the other coin is gold? 
Solution I: Since a gold coin was drawn, we must have chosen 

either the first or the third drawer, but we have no reason to prefer 
either, therefore the probability is 1/2. 

Solution II: We have either drawn the single gold coin in drawer 
three, or the first gold coin in drawer one, or the second gold coin 
in drawer one. Of the three possibilities, the latter two are favorable. 
Therefore the probability is 2/3. 77 

Here we have different applications of the Principle of Indifference, 



depending on different specifications of the alternatives and resulting 
in different values for the probability. It is not immediately evident 
to most people which is the preferred solution (the second) because 
it is not immediately obvious that the gold coin is a stronger indicator 
of the first drawer than of the third. This example at the very least 
shows that much more care must be taken in specifying alternatives 
than is generally assumed. 

An even more complex problem in the application of the Principle 
of Indifference arises when we consider problems involving continuous 

variations or ‘geometrical’ probability. 
By far the most famous of these is Bertrand’s Paradox. The 

problem is: for a given circle, what is the probability that a random 
chord is longer than the side of an inscribed equilateral triangle? 

At least three different solutions are possible. 
1 If one attends to the end-points of the random chord and 

computes their possible location, the resulting probability is 

1/3. 
2 If one attends to the location of the chord’s mid-point along 

the length of the diameter which bisects it, the probability is 
1/2. 

3 Finally, if one asks whether the mid-point of the chord does 
or does not fall within a concentric circle of appropriate 
diameter, the probability seems to be 1/4. 

This example is like Bertrand’s Box Paradox in that the difficulty 
turns on the specification of the relevant alternatives. It differs in 
that there is no ‘preferred’ solution to the problem as stated. However, 
Kneale (whose discussion of the paradox we have followed here) has 
pointed out that the problem does become determinate if we specify 
the method of selecting the ‘random’ chord. Then we find out that 
(1) is appropriate for spinning a spinner twice, (2) is appropriate for 
sliding a ruled glass plate along the surface, and (3) gives the correct 
result if we let a raindrop determine the midpoint. 78 

So again we have found that a problem can be resolved with more 

complete information and more careful thought. But now let us 

consider a paradox which is genuinely irresolvable because it involves 
attributes which vary continuously. This is the problem of volume 
and density which Keynes attributes to von Kries. 79 

Suppose we know that the specific volume (volume per unit mass) 
of a substance lies somewhere between 1 and 3. The Principle of 



Indifference then indicates that it is just as likely to be between 1 
and 2 as between 2 and 3, so the probability of each of these 
alternatives is 1/2. 

Specific density (mass per unit volume) is the reciprocal of specific 
volume. Thus our initial condition requires that the specific density 
lie somewhere between 1 and 1/3. If we apply the Principle of 
Indifference to equal intervals on this scale, we find that there is an 

equal probability of 1/2 that the specific density will lie between 1 
and 2/3 and that it will be between 2/3 and 1/3. But since the relation 
is reciprocal, these values correspond to a specific volume ranging 
between 1 and 11/2, and 11/2 and 3 with equal probability, contrary 
to our original calculations. 

Other, similar, paradoxes can be generated by the fact that it is 
not possible for x2 to be evenly distributed in a domain if x is, and 
vice versa. 80 

We may say, then, that the Principle of Indifference just will not 
work reliably on problems involving continuums or an infinity of 
alternatives – what has traditionally been called geometric probability. 

Our final objection to the Principle of Indifference is that we cannot 

get knowledge from ignorance 81 and no matter how carefully we 

specify alternatives, ‘there is in fact no logical relation between the 
number of alternative ways in which a coin can fall and the frequency 
with which these alternatives in fact occur.’ 82 

It seems quite clear that if we are ignorant of the outcome then 
we are (indeed) ignorant of the outcome and that counting alternatives 

in such a case will not tell us (in the absence of some 

information) what the true probability of occurrence of an event will 
be. But much of the CTP is not directed towards empirical knowledge 
of events – rather it is intended as a guide to action under conditions 
of uncertainty. I contend, therefore, that what the Principle of 
Indifference measures, and measures correctly, is not the probability 
that an event will occur, but rather the probability that a random 

guess about an event will be correct. 
If we arbitrarily bet on a horse in a field of n horses, for example, 

we should not think that the odds of that horse winning are 1/n, for 
in general that will be false and certainly its odds of winning are 

more determined by the quality of horses in the field than by their 

quantity. What the Principle of Indifference does tell us – and rightly 
so – is that we should figure the odds that we have picked the winner 



to be 1/n, and bet on that expectation. There are two distinct activities 
here: the horse race, and the random guess. The odds for success in 
the horse race are determined by such empirical factors as jockeys, 
track conditions, and equine excellence. But experience has taught 
us that the odds of success in a truly random guess depend only on 

the number of favorable outcomes compared to the total number 
of alternatives. Notice that this success ratio is suggested by the 

phrase ‘random guess’ with its implication that each alternative 
stands an equal chance of being chosen. Curiously enough, experience 
has also taught us that the guess need not be random in this strict 
sense. When Americans are placed in a situation where they must 

go to the right or left, they show a marked preference for the right. 
I do not know (or know if it is known) whether this preference is 
due to the right-handedness of the majority (as seems likely) or the 
English reading direction (as I have seen suggested) or even the 
right-wing political orientation of the majority (as my radical friends 
might conclude, since they think politics determine all human 

activity). But the important thing is that, in practice, such guesses 
are successful about 50 per cent of the time even though ‘right' is 

guessed most frequently (just as coin-calls are about 50 per cent 

successful although calls of ‘heads’ predominate). It appears that the 

only requirement we need impose on a random guess is that the 

principle of selection employed (such as color, identification number, 
etc.), if any, must have no bearing on the success of the chosen 
alternative. This definition of ‘random’ is practically identical to that 
employed in von Mises’s requirement of randomness in a collective. 
It is generally an empirical question whether a guess is random in 
this sense (perhaps red cars do win more races, because people who 
drive red cars are more reckless than others). Nevertheless, the idea 
is common enough that most people know what it means to make 
a random choice in this sense, and, indeed, many of us have developed 
principles of choice which are designed to be random (‘Eeenie, meenie, 
minie, moe...’). I think, therefore, that the concept of random guess 
is an effective concept, in the sense that we seldom make mistakes 
in its application. All our past experience joins with the logical 
arguments to support the contention that the probability of success 

in a random guess is given by the Principle of Indifference. I think 
this is the underlying truth which has accounted for the historical 
acceptance of that principle. The logical and empirical difficulties 
which have so discredited the Principle of Indifference are due entirely 



to the fact that so many have confused the probability of choosing 
a success with the probability of being one. 

The Limited Application of the CTP 

If we are correct in arguing that the Principle of Indifference is 
primarily adapted to random guessing between clearly defined 
alternatives, we should not be surprised to find that it can be 

employed usefully in only a comparatively few situations. 
We have already found, for example, that the application of the 

Principle can be ambiguous and inconsistent in some cases, and that 
it seems to break down completely in cases involving geometric 
probability. 

Another area where the CTP breaks down, Kyburg points out, 
is irrational probabilities: 83 

There are also probability problems in physics and mathematics 
which lead to irrational numbers as probabilities. These 
probabilities (e.g. 6/&#x0415;2 for the probability that an integer 
selected at random is prime) cannot be regarded as ratios of 
numbers of alternatives for the simple reason that irrational 
numbers cannot be regarded as ratios of integers at all. 

In addition, our discussion of mortality tables and actuarial 
problems has shown that interpreting a person as equiprobably 
represented by each entry in a table is a possible but rather strained 
way of trying to stretch the theory to fit a desired application. If we 

have to invent hypothetical charts for all stable frequencies and try 
to make these charts as complete and comprehensive as possible, 
our statisticians will be working overtime. And we still have the 

problem of making sense of mortality charts of future deaths. On 
the whole, it seems that von Mises was justified in the following 
criticism of Classical authors: 84 

When the authors have arrived at the stage where something 
must be said about the probability of death, they have 
forgotten that all their laws and theorems are based on a 

definition of probability founded only on equally likely cases. 

The authors pass, as if it were a matter of no importance, from 
the consideration of a priori probabilities to the discussion of 
cases where the probability is not known a priori but has to be 



found a posteriori by determining the frequency of the different 
attributes in a sufficiently long series of experiments. With 
extraordinary intrepidity all the theorems proved for 
probabilities of the first kind are assumed to be valid for those 
of the second kind. 

Von Mises is perhaps overly snide, since the theorems of the 
calculus developed by the Classical theorists do hold for the frequency 
interpretation, but he is certainly correct in pointing out the gaping 
theoretical chasm ignored by the CTP. We might conclude, then, 
that the solutions worked out in this type of case by the CTP were 

correct, but unjustified. 
It is even clearer that the CTP cannot deal with loaded dice and 

coins in a way consistent with its theoretical foundations. If we know 
that a die is loaded in favor of a Five, we must conclude that the 
alternatives are still equipossible, since they are on the same logical 
level and can be subdivided only in the same way, if at all. But the 
alternatives are no longer equiprobable, since we are no longer equally 
undecided as to which will appear. On a strict interpretation of the 
CTP (one which takes the Principle of Indifference as the only source 

of initial probabilities) there is no probability here, since there are 

no equally probable alternatives. (We shall speak in the next 
subsection about Laplace’s, Bernoulli’s, and Bayes’s attempts to 
finesse this difficulty by using inverse probability.) 

In fact, any application of probability theory or use of the terms 

‘probably,’ ‘probability,’ ‘chance,’ ‘odds,’ etc., which is not based on 

equiprobable alternatives is a deviation from the strict CTP. This 

obviously includes most of our casual talk (‘I’ll probably fail the 

exam’), much of our gambling (‘The odds on Gluefoot are 20 to 1'), 
and much of our commercial and scientific activity (‘The probable 
error is 2 per cent’). A strict Classical theorist is left with very little 
to work on, primarily cards and dice. 

Even the application to cases like cards and dice, of course, requires 
empirical assumptions and hidden rules. In particular, we must 
assume that the dice are ‘fair’. But 'fair’ dice are defined as those 
which give results consistent with the Classical Theory and the 

Principle of Indifference. 85 It is not surprising therefore – indeed it 
is analytic – that fair dice act as predicted. The difficult thing is 
identifying fair dice (or other alternatives) in the real world. 

On the whole, there are not many important situations where 



equiprobable alternatives present themselves. James Bernoulli recognized 
this in 1705 when he wrote: 86 

In the game of dice, for instance, the number of possible cases 

(or throws) is known . . . . But what mortal, I ask, could ascertain 
the number of diseases, counting all possible cases, that 

afflict the human body in every one of the many parts and at 

every age, and say how much more likely one disease is to be 
fatal than another . . . . These and similar forecasts depend on 

factors that are completely obscure, and which constantly 
deceive our senses by the endless complexity of their interrelationships, 

so that it would be quite pointless to attempt to 

proceed along this road. 

The other road that Bernoulli opened with his theorem is intended 
to be a pathway to probabilities that are not based on the 
identification a priori of equiprobable alternatives, but are instead 
derived from experience by the method known as inverse probability. 

Criticisms of Inverse Probability 
Bernoulli’s method for establishing probabilities a posteriori is 

commonly called the Inverse Bernoulli method, or the Inversion of 
Bernoulli’s Theorem, because it is based on that more fundamental 
principle which bears his name. The basic theorem itself has been 
the source of a good deal of confusion, so we will try to clear up 
some of the problems concerning it before we proceed to its inversion. 

The central idea of Bernoulli’s Theorem is that a repetitive event 

whose probability of occurrence is p on each of N possible independent 
occasions will exhibit a frequency of occurrence f that falls in 

the range p±e, with a probability of P. The value of P for fixed 

population N depends on the allowable variation, e; but P is also 

directly dependent on N, and will continue to approach 1 as N 
increases. (Bernoulli’s Limit Theorem says it can be made to 

approach closer to 1 than any arbitrary value, d, if the population 
is increased sufficiently.) 

The contested claim for this theorem is that it allows the CTP to 

predict relative frequencies and to derive probabilities from observed 
frequencies. 

There are two possible situations here: (1) The initial probability 
p is known, (2) p is unknown. 



If p is known, the probability calculus and other general mathematical 
laws are sufficient to justify the calculation of the final 

probability. (Some minor restrictions are imposed by the method 
of approximation actually employed, but these problems are mathematical 

rather than philosophical.) Unfortunately, not everyone has 

always remembered that even this final value remains only a 

probability. There has been a serious misconception from time to 

time that Bernoulli’s Theorem actually established a frequency of 
occurrence (f ± e) which will be observed in experience. 87 We must 

remember that the theorem is nothing more than a part of the 

probability calculus, and that it shares with most other parts of that 
calculus the form ‘If probability A is x, then probability B is y.’ In 
the normal application, probability A is the ‘initial’ probability of a 

given result in a repeatable empirical trial. Probability B is then the 

probability that the relative frequency of such a result will fall within 
a certain range. But probability B is not itself a relative frequency. 
Those who think that Bernoulli’s Theorem ‘goes from probabilities 
to frequencies’ are therefore mistaken – it goes from probabilities of 

independent events to probabilities of frequencies of such events. 88 

If this rather elementary error is avoided, there yet remains some 

question about just how the theorem relates to actual events. Von 

Mises, for example, criticizes Bernoulli on the grounds that either 
his theorem is purely arithmetical, and thus about numbers rather 
than the world, or else it is empirical because of the assumption of the 
postulates of the frequency interpretation. 

He explains the mathematical basis of Bernoulli’s Theorem (or 
the Law of Large Numbers) somewhat as follows. Let us represent 
the result of a coin toss by ‘0’ for Heads and '1' for Tails. Then the 
result of a series of 100 tosses corresponds to one member of the 
set of all 100-digit numbers consisting of only '1’s and ‘0’s. There 
are exactly 2100 such numbers. 89 

Considered in this light, Bernoulli’s Theorem is seen to have the 
following arithmetical content: 90 

Let us write down, in order of the magnitudes, all 2n numbers 
which can be written by means of 0’s and l’s containing up to n 

figures. The proportion of numbers containing from 0.49n to 
0.51 n zeros (assuming e = +0.1) increases steadily with an 

increase in n. 

This proposition is purely arithmetical: it says something 



about certain numbers and their properties. The statement has 
nothing to do with the result of a single or repeated sequence of 
1000 actual observations and says nothing about the distribution 

of 1’s and 0’s in such an experimental sequence. The 
proposition does not lead to any conclusions concerning 
empirical sequences of observations as long as we adopt a 

definition of probability which is concerned only with the 
relative number of favourable and unfavourable cases, and 
states nothing about the relation between probability and 
relative frequency. 

Von Mises thus concludes that the arithmetical derivation of this 
mathematical theorem has no bearing on the truth or falsity of 
Poisson’s proposition which he also called the Law of Large 
Numbers. That is the empirical proposition whose content is roughly 
that the relative frequencies of certain empirical events tend towards 
limiting values as the sequence is extended. This ‘Law of Large 
Numbers’ is not and cannot be proved mathematically. Rather it is 
the first postulate of von Mises’s probability theory. 

Finally, von Mises demonstrates that the Bernoulli-Poisson Theorem 
(the mathematical Law of Large Numbers) indeed can be derived 

in a way that says something about probability and the world, rather 
than merely number theory, but not so simply as Poisson thought: 91 

The correct derivation of the Poisson Theorem based on the 

frequency definition of probability requires not only the 

assumption of the existence of limiting values but also that of 

complete randomness of the results. This condition is 
formulated in our second postulate imposed on collectives. 

Since this derivation requires the assumption of the postulates of 
the relative frequency theory of probability, it follows that the Law 
of Large Numbers cannot be used by Classical theorists as a bridge 
from their theoretical structure to the use of empirical frequencies 
in probability calculations. 

The essence of this criticism is that if we start out by saying There 
are this many possible ways E can occur...,’ we will get from 
Bernoulli’s theorem a conclusion that says There are this many 
possible ways the frequency can occur . . . .’ But according to von 

Mises (and Nagel) such an expression says nothing about how 
frequently something will occur. If we wish this latter (useful) 



information instead, we must begin with something like ‘E occurs a 

certain percentage of the time..., which is not at all a statement of 
Classical probability. (This point will recur near the end of this 

section.) Before passing on to the inversion of the Theorem, we will 

briefly note two fairly common errors which arise in connection with 
the Theorem itself and which James R. Newman has ably corrected. 

The first of these is the belief that the number of successes will 

get closer and closer to Np as N increases. In fact, the proportionate 
difference decreases, but the (probable) absolute difference increases. 
If we go from 1,000 trials to 10,000 trials, it is true that it becomes 
more probable that the number of successes falls between 0.491N and 
0.511N (say). But the probability that it will fall within 0.50N ± 10 
decreases. 92 

The second, and somewhat similar, illusion is that Bernoulli’s 
Theorem guarantees the doctrine of ‘the maturity of chances.’ This 
ancient illusion (sometimes called ‘the law of averages’) makes 
gamblers believe that a long run of Heads is more likely to be 
followed by a Tail than a Head because ‘long runs are unlikely’ and 
‘it’s got to balance out.’ But, as Newman reminds us: 

93 

Bernoulli’s Theorem is itself the sole ground for expecting a 

particular proportion of heads in the cointossing game, and it is 
an essential condition of the theorem that the trial be independent, 
i.e., without influence on each other. It is patently 
foolish, then, to invoke the theorem that sets out from the 
premise that the probability of a head at every toss is 1/2, to 

prove that the probability is less than 1/2 after a consecutive 
run of heads. Yet this is the muddleheaded idea underlying all 
gambling systems. 

Now let us turn to our second possible case, where we are to use 

the inverse of Bernoulli’s Theorem to derive an unknown initial 

probability. If p is not known, the question arises whether the theorem 
enables us to calculate either p or P, or both. Clearly P cannot be 
calculated alone, since it only has a value for a given p and e. 

However, if we have a given sample, with observed relative frequency 
G, we can hypothesize a value of p, compute e (e = p — G) and thus 
compute a value for P. This tells us what probability there is of 

observing such a sample if the original probability is p. Classicists, 
Apriorists, and some Frequentists like Reichenbach take this as an 

indication of the probability that p is the original probability and 



accept or reject the hypothesis if P is very high or low. This process 
is known as the Inversion of Bernoulli’s Theorem and is accepted 
as meaningful by all schools. 

But all this really tells us is that the observed sequence would 
have been very improbable, e.g., if the original probability had a 
certain value. That gives us some reason to doubt that the original 
probability did have that value, but it certainly doesn’t preclude it. 

The usual method is to continue applying the inverse Bernoulli 
method to different values of p until it is established which value 
makes P a maximum. (That is, which of the possible values of p 
makes the observed event more probable than do the others.) This 
is then said to be the most probable value for p. (For simple cases, 
the most probable value of p = G.) 

It is this most probable value which Laplace and Bernoulli 
sometimes treated as ‘the value of the initial probability given by 
the inverse of Bernoulli’s Theorem.’ But this is far too strong a 

construal. Even if this value would make the observed events ‘less 
unlikely,’ it may itself be sufficiently unlikely to override any 
presumption in its favor. For example, if we observe 20 tries on a 

roulette wheel in a reputable casino and find only 6 Reds, Bernoulli’s 
Theorem will suggest that the wheel might be biased, since the 

hypothesis of fairness would allow only a 0.037 probability of this 
occurrence, while a bias of 0.30 Red would give 0.192 as the 

probability of this series, which is greater by a factor of 5. Yet we 

know it is very unlikely that a reputable casino would stoop to 

biasing the wheel (especially in this manner, which doesn’t stand to 

benefit them at all), and ‘innocent’ imperfections or normal wear 

tend to favor numbers, not colors (which are evenly distributed on 

the wheel). It is much more reasonable, then, to reject the ‘most 

probable’ value selected by Bernoulli’s Theorem, in favor of the a 

priori more probable thesis of a mildly unusual result on a fair wheel. 
This kind of criticism is basically the same as that applied to 

Bayes’s Rule by its detractors. It is impossible, they say, to arrive 
at any mathematically sound value for p unless we know already 
the a priori probabilities that p takes on this, that, or the other value. 
Such a case is then mathematically soluble, but it is also extremely 
rare. In most cases the Bayesians are shooting in the dark by hunch 
while the anti-Bayesians refuse to do so. Whether this method kills 

enough bears to justify the waste of ammunition is, I think, the 

ultimate problem in the justification of Bayesian methods. Like most 



pragmatic problems, it doesn’t admit of a simple solution. Clearly 
the inverse methods do often give us useful information, and clearly 
there are situations where it is reasonable to act on their output as 

the best available guide to action if action is required. Just as clearly, 
it would be foolish to go around betting that every coin or roulette 
wheel which shows a slight run must be biased, or that most professors 
must be Anglicans because two of the three we have met have been. 

The methods of inverse probability, like most of the methods of 

probability theory, are important and valuable because they can 

sometimes aid our common sense and our intellects in deciding on 

a course of action. They become pernicious only when they seek to 

replace, rather than aid, those traditional sources of wisdom. 

Theoretical Ambiguity in the CTP 

We have already had occasion to mention the difficulty in establishing 

exactly what the CTP is, what its definitions and assertions are, 
and so on. This difficulty arises partly from the fact that early writers 
had neither the training nor the inclination to specify exactly what 

they meant in every case. But, it seems, it is also partly due to the 
fact that neither the group nor any individual had worked out a 

systematic and coherent theory of what probability is. Indeed, many 
of the problems and contradictions which we find in the CTP had 
not yet been thought of, so it is natural that they should not have 
been dealt with satisfactorily. We are left, then, with the problem of 
interpreting their assertions in a way which yields a systematic theory 
compatible with their uses of ‘probability’. It may not be possible 
to do this because either their assertions or their implied theory may 
be inconsistent. It also may not be possible to do this because no 

formal theory can account for all the normal uses of ‘probability’. 
(This is a possibility we leave open throughout the book, to be 
discussed in the final chapter.) It certainly would be unwise and 
unjust to apply to these pioneers the harsh requirements of logical 
completeness and consistency we impose on contemporaries. Nevertheless, 

I think we can identify a definite theory in the Classical 
writings. 

The first problem of interpretation is whether the CTP views 
probability as subjective and psychological, or whether it finds an 

objective ground for the concept. 



Nagel is inclined to classify the CTP as subjectivist, because of 
the many references to ‘degrees of belief and ‘degrees of certainty.’ 94 

Carnap, however, gives a much more convincing argument to the 
effect that the Classical authors never use the term ‘probability’ in 
the way that we would call subjectivistic, but always assume there 
is one right answer, valid for everyone (or, at least, for everyone 
sharing the same information). Nowhere in their writings do they 
imply or accept the possibility that two equally rational persons, 
possessed of the same information, might legitimately arrive at 
different probability values. This situation – crucially implied by the 
subjectivist theory – is completely foreign to the beliefs and methods 
of the Classical theory. I therefore agree with Carnap that the CTP 
envisions some objective conception of probability. 95 

Having reached this conclusion, we may proceed with Carnap to 
ask if this objective concept is logical or empirical. (A priori theories 
are objective and logical, relative frequency theories are objective 
and empirical. The difference is that the latter views each probability 
as a contingent feature of the external world, while the former does 
not.) 

The principal arguments for the empirical interpretation are (1) 
references to ‘unknown probabilities,’ and (2) the tendency to slide 
imperceptibly from ‘probabilities’ to ‘frequency of occurrence.’ 

‘Unknown’ probabilities are inconsistent with a theory which 
makes probability a measure of some logical relation between 

propositions. (We always ‘know’ these probabilities, in principle, just 
as we always ‘know’ whether proposition X implies proposition Y.) 
Yet Laplace et al. frequently speak of unknown probabilities and 
their most probable values, as if such probabilities were analogous 
to mass, conductivity, and other unknown empirical properties of 
things. 

I trust that the sections on ‘Absolute probability,’ ‘Physical chance,’ 
‘The metaphysical status of P,’ and ‘The epistemological status of 
P’ have made clear my position that the classical theorists do 
not recognize any real, independent, chance in the world. They 
are determinists. There is no such thing as ‘the real but unknown 

probability that X will occur.’ Either X certainly will occur, or it 

certainly will not. Instead I have argued that there are certain types 
of descriptions of the world which are often employed and which 
have strongly associated probability values. If we knew, for example, 
that one-fourth of the balls in the urn are red, we would know that 



‘the’ probability of drawing a red ball is 0.25. It is my contention 
that many of the Classical theorists’ references to ‘unknown probabilities' 

are just improperly worded references to unknown constitutions 
and proportions which are empirical properties commonly 

associated with certain probability values. But a probability is not 
a constitution, and therefore talk of unknown probabilities is merely 
loose and not inconsistent talk. 

It is somewhat more difficult to maintain this interpretation in 
actuarial cases, because these often include no unknown distribution 
of equiprobable alternatives to be associated with the relevant 
probabilities. The problem dissolves if we are willing to take seriously 
Laplace’s notion of a perfect table of mortality, since this will 

represent our unknown distribution. If we remain uneasy about the 
matter, it is not because of our distrust of unknown probabilities 
but because it is questionable whether the CTP can properly embrace 
any frequency-related probabilities at all – known or unknown. This 
difficulty therefore merges into the second one. 

There is no blinkering the fact that the CTP just is muddled about 
frequencies. The close empirical association between frequencies and 
probabilities, together with the enticing prospects of Bayes’s and 
Bernoulli’s theorems, led to a confusion of these concepts which is 
quite natural but also, as von Mises noted, theoretically deplorable. 

It may be possible to develop a logical theory of probability which 
deals successfully and consistently with empirical frequencies. 
Certainly Keynes and Carnap made great progress in distinguishing 
the two concepts and clarifying the relation between them. It is 
tempting to graft their results onto the earlier rootstock of the 
Classical theory. But just as we should not be too harsh, so also we 

must avoid indulgence. We therefore absolve the CTP of the charge 
that it is or (ambiguously) might be subjectivistic, but agree with 
von Mises and Carnap that it fails to distinguish the logical from 
the empirical in the crucial area of relative frequencies. It is to that 
extent reprehensibly ambiguous. 

CTP not tied to the Real World of Experience 

The final, and, to some extent, all-inclusive, criticism of the CTP is 
that it is purely a theoretical construction not based on the reality 
of experience. 



It is clear that the greatest achievement of the CTP – the calculus 
of probabilities – is an abstract mathematical object. Even the 
controversial theorems of Bernoulli and Bayes are, in their pure 
form, a part of the mathematical skeleton common to all theories 
of probability. But the worth of probability theory is not (entirely) 
based on its abstract mathematical virtues – the role of a theory of 
probability is to apply those mathematics to the world, and it is 
here that controversy arises. 

We might start by saying that the CTP applies to fair dice, unbiased 
coins, etc. But, as Ayer pointed out, 96 if we define fair dice as those 
which give results conforming to the predictions of the CTP, we 

obviously have an analytic (and therefore circular) proposition. On 
the standard view, analytic assertions are not about the real world 
at all, but are matters of logic and definition. We must instead find 
some non-analytic criteria of application for the theory. 

The most famous way of attempting this is to apply the Principle 
of Indifference. In its unrestricted form, this leads to puzzles, 
unintuitive results, and even contradictions. Even in its purified form, 
moreover, the Principle remains subject to the criticism that it either 
is not tied to experience at all or else it is demonstrably false. Nagel, 
von Mises, and Reichenbach especially argue that the abstract, logical 
specification of alternatives does not and cannot determine what 
will actually happen in experience. (The most obvious example is 
the biased die, where the alternatives are exactly the same but the 
frequency of occurrence and therefore (?) the probability are different 
from the fair die.) Such critics argue that, since indistinguishable 
alternatives are not always equiprobable, we need some other way 
to tie probabilities to experience. 

In our discussion of the Principle of Indifference, we have already 
covered the problem of the non-empirical origin of Classical probabilities; 

now we shall examine the charge that they are even further 
removed from experience because they are unverifiable and unchangeable. 

First, it is claimed that Classical probability statements are 

unverifiable because their definition, and therefore their content, says 

nothing about the world. To say that the probability of Heads is 

1/2 is to make an assertion of one’s ignorance of any way to choose 
between Heads and Tails – it is not to say that Heads will come up 
half the time, so it is irrevelant whether Heads does come up half 
the time or not. 



The first rejoinder that springs to mind for most defenders of the 
CTP is to argue that they do have ways of verifying probability 
statements – Bernoulli’s Theorem can give us strong evidence for or 

against probability values. 
Here I must agree with Nagel that this is not an allowable escape: 

Bernoulli’s Theorem equivocates on ‘probability’. The first, or initial, 

‘probability’ is defined in terms of equiprobable alternatives – by the 
time the final ‘probability’ is reached it is treated as a frequency (or, 
perhaps, likelihood) of occurrence. The CTP cannot have it both 

ways – it must abandon one of these uses or tie them together 
somehow. 

I think the reason the Classical theorists did not see this theoretical 
error is that, for them, 'probability’ and ‘likelihood of occurrence’ 
already were tied together, semantically if not theoretically. For them 
it was part of the meaning (perhaps the central part) of ‘probability’ 
that it describes something’s chance of occurrence. When Laplace 
put forth his famous ‘definition’, I contend, he was actually formulating 

an explicit criterion for probabilities, or a rule for establishing 
initial probabilities – he was not trying to define ‘probability’ because 

everyone knew what it meant already, and theorists of that time 
didn’t bother to define words in current usage. 

To say all this, however, is merely to excuse the Classical theorists 
by pointing out that it was a very natural error to make – it does 
nothing to rectify the error. It is my view that the a priori (logical) 
school of probability developed in large part as an attempt to purify 
and correct the Classical theory. Carnap, for example, attacked the 
verification problem by arguing for logical, rather than empirical, 
verification. 97 I think that ultimately this is the only way to go for 
a justification of the Classical position, but it requires extending and 
modifying the CTP so much that it practically loses its identity and 
merges into the A Priori Theory. We will therefore stick with the 
Classical notion that probabilities are verified when events conform 
to the predictions of Bernoulli’s Theorem. 

Now for the charge that Classical probabilities are unchangeable. 
This is of course based on the fact that the definition admits of no 

way of taking account of future experience. If the die has six sides, 
the probability of a Five is 1/6 and remains so no matter how often 
Five shows in the future. 

First, a tu quoque rejoinder: relative frequency probabilities also 
‘don’t change.’ They are fixed and immutable (if they exist). Only 



our estimates of those probabilities can be modified by experience, 
and the RF theorists imply otherwise only because they have 
muddied epistemological categories. (More on this in the RF 
chapters.) 

Second, the Classical response turns on the overlooked phrase ‘to 
such as we may be equally undecided about’ in Laplace’s definition. 
While this condition is initially fulfilled for a biased die, even a brief 
stretch of experience might make that indecision unequal, and a 

longer stretch, formalized by Bernoulli or Bayes, might make the 
evidence overwhelming and even tell us what the true probability is. 

Obviously this response is subject to the types of criticism we have 
raised above. However, it is, I think, what the Classical theorists 
would say, and it should stand or fall in that respect. 

As a final response to this criticism I would like to present a 

modern example where the Principle of Indifference was first applied, 
and then revised in its application. The subject of this famous example 
is the development of the Bose-Einstein statistics. Feller describes it 
thus: 98 

Consider a mechanical system of r indistinguishable particles. 
In statistical mechanics it is usual to subdivide the phase space 
into a large number, n, of small regions or cells so that each 

particle is assigned one cell. 99 In this way the state of the entire 

system is described in terms of a random distribution of the r 

particles in n cells. Offhand it would seem that (at least with an 

appropriate definition of the n cells) all nr arrangements should 
have equal probabilities. If this is true, the physicist speaks of 
Maxwell-Boltzmann statistics (the term ‘statistics’ is here used in 
a sense peculiar to physics). Numerous attempts have been 
made to prove that physical particles behave in accordance 
with Maxwell-Boltzmann statistics, but modern theory has 
shown beyond doubt that this statistics does not apply to any 
known particles: in no case are all nr arrangements 
approximately equally probable. Two different probability 
models have been introduced, and each describes satisfactorily 
the behaviour of one type of particle. The justification of either 
model depends on its success. Neither claims universality, and it 
is possible that some day a third model may be introduced for 
certain kinds of particles. 

Remember that we are here concerned only with indis- 



tinguishable particles. We have r particles and n cells. By Bose- 
Einstein statistics we mean that only distinguishable arrangements 
are considered and that each is assigned probability 1/Arn 
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It is shown in statistical mechanics that this assumption holds 
true for photons, nuclei, and atoms containing an even number 
of elementary particles. 
Another model, the Fermi-Dirac statistics, 100 which assumes ‘(1) 

it is impossible for two or more particles to be in the same cell, and 

(2) all distinguishable arrangements satisfying the first condition have 

equal probabilities', is found to apply 
to electrons, neutrons, and protons. We have here an instructive 

example of the impossibility of selecting or justifying 
probability models by a priori arguments. In fact no pure 
reasoning could tell that photons and protons would not obey 
the same probability laws. 

It is perhaps misleading of Feller to suggest that no theoretical 
considerations could conceivably have dictated the Bose-Einstein 
statistics and that they necessarily had to be discovered by a kind 
of ‘cut-and-try’ empiricism. Actually there is a way of theoretically 
accounting for the new statistics. That way is found in a new 

conception of physical reality which began to develop shortly after 
Einstein’s paper (and partially as a result of it) and came to be known 
as quantum mechanics. One of the leading proponents of the new 

mechanics, Max Born, has this to say of Einstein’s statistics: 101 

I cannot see how the Bose-Einstein counting of equally 
probable cases can be justified without the conceptions of 

quantum mechanics. There a state of equal particles is 
described not by noting their individual position and momenta, 
but by a symmetric wave function containing the co-ordinates 
as arguments; this represents clearly only one state and has to 
be counted once. A group of equal particles, even if they are 

perfectly alike, can still be distributed between two boxes in 
many ways – you may not be able to distinguish between them 
individually but that does not affect their being individuals. 
Although arguments of this kind are more metaphysical than 



physical, the use of a symmetric wave function as representation 
of a state seems to me preferable. This way of thinking has 
moreover led to the other case of gas degeneracy, discovered by 
Fermi and Dirac, where the wave function is skew, and to a 

host of physical consequences confirmed by experiment. 
So, according to Born, the seemingly capricious and inexplicable 

probability behavior of fundamental particles is in fact a consequence 
of the theory of quantum mechanics. Of course, even this deducibility 
does not negate Feller’s contention (which I support) that the test 
of a probability model is its pragmatic success and our inductive 
conclusion about its future success. But notice that the new statistics, 
the Bose-Einstein model, is also an application of the Principle of 
Indifference for the computation of probabilities – the empirical 
question is merely whether state- or structure-descriptions are to be 
treated as equiprobable. 102 We see then that it is possible to revise 
or even replace Classical models. They are not as unalterable as 

critics would have us believe. The critics, however, are right in 

claiming that the CTP contains no explicit and theoretically satisfactory 
procedure for effecting such changes. 

12 Chief Virtues 

I would like to speak first of the virtues of the founders of the 
Classical Theory of Probability. We must remember that they were 

not just developing a theory of probability, they were making the 
very first efforts to treat probability in a rigorous mathematical 
fashion. It is true they made a few blunders and left us a few theoretical 
muddles, and one can even argue that their basic rule, the Principle 
of Indifference, is unacceptable. But these quibbles and shortcomings 
are far outweighed by their astonishing accomplishments. Remember 
that the calculus of probability, the fundamental mathematical 
structure of all probability theory, was created ex nihilo by these 
thinkers. Their brilliance is attested by the fact that this calculus 
remains virtually unchanged to the present day, and is still accepted 
by every major theory of probability. 

But if the Classical theorists’ chief claims to fame are as trailblazers 
and as the developers of mathematical methods, we must hasten to 

add that their theory hasn’t done all that badly either. Its two great 
virtues are its simplicity and its pragmatic success. Undoubtedly 



more people have used its methods than those of all the other theories 
combined. (Put another way, there are more card players (CTP) than 
there are logicians (AP), scientists and actuaries (RF), and psychologists 

(SUB) combined.) 
Whenever we are interested in cases that have readily distinguishable 

alternatives that are equiprobable, the CTP readily gives answers 

of immediate practical value. Furthermore, if one is not bothered 

by theoretical niceties, it is possible to follow the Bernoullis, Bayes, 
and Laplace into ever-widening areas of application that also allow 

pragmatic success, even if they depart somewhat from the pure 
definition. 

Indeed, as the Bose-Einstein example shows, a creative reinterpretation 
of the basic alternatives can often change failures into successes. 

Finally, we should note the extraordinary success and longevity of 
the CTP’s definition of probability. Subsequent theorists have 
attacked the CTP vigorously and offered various alternative theories. 

Kyburg has even claimed that the Classical theory has ‘long been 
abandoned among philosophers and reflective mathematicians.’ 103 

This may well be so. But evidently not everyone falls in these exalted 

categories, for consider these recent definitions: 

Probability. The ratio of the number of ways in which an event 
can occur in a specified form to the total number of ways in 
which the event can occur. 

104 

Probability, Mathematical. If an event can happen in a ways 
and fail in b ways, and, except for the numerical difference 
between a and b, is as likely to happen as to fail, the mathematical 

probability of its happening is a/(a + b) and of its 

failing, b/(a + b). 105 

The Classical definition lives! And as long as human beings 
continue to face situations where the outcome is unknown but the 
alternatives are all felt to have an equal chance of occurrence – as 

long, in short, as we continue to gamble at dice and cards – the 
Classical Theory of Probability will continue to be the working 
theory of the ordinary person. 



III 

A Priori Theories 
of Probability 

In this chapter we will discuss a priori (AP) theories in general, with 
exemplary excursions into particular theories. We will be concerned 
with (1) basic ideas of AP theories, (2) chief criticisms of such theories, 
and, finally, to end on a positive note, (3) chief virtues of AP theories. 
We will deal primarily with the theories of Keynes and Carnap, but, 
in the main, our remarks are applicable to most other AP or ‘logical’ 
theories (Jeffreys, Koopman, Kemeny, Hintikka, etc.) as well. 

1 Basic Ideas of a Priori Theories 

It seems to me that the basic ideas which all AP theories of probability 
share are chiefly three: 

1 Probabilities are known (or determined) a priori, not by 
(purely) empirical means. 

2 Probability is a logical relation between sentences (propositions, 
events, properties, predicates). 

3 A probability is always relative to given evidence only. 

The first point is of course the most important characteristic of 
a priori theories and the one which gives them their name. It is what 

distinguishes them most strongly from the relative frequency or 

‘empirical’ school. 1 It is also what occasions the single greatest 
objection to them: How can a priori principles do probability 
theory’s practical work of predicting the future in the real world? 

Again, it is the source of their greatest single advantage – they can 

DOI: 10.4324/9781003306993-3



A Priori Theories of Probability 
establish probabilities without the necessity of waiting for a very 
(infinitely?) long sequence of repetitive empirical events. 

The second of our basic ideas, like the first, is so central to AP 
theories that it has generated a name for them: ‘Logical Theories 
of Probability.’ As interest has grown in the inductive logics of 

Carnap, Kemeny, Hintikka, et al, this term has been more and more 

commonly used for such theories. I agree that it is a suitable, 
descriptive name for this sub-class of a priori theories. I object, 
however, to its extension to theories of the Keynesian variety, because 
there the initial probabilities are not obtained from quantitative 
logistic systems but from a priori intuition aided by the Principle 
of Indifference. 2 My objection is not fervid, however, and if the 

philosophical tide continues to flow towards empiricism in general 
but away from the dogmas of logical positivism, I foresee a time 
when ‘a priori’ will become a general pejorative and I too shall 
abandon it. Of course the important point here is that these theories 
do define probability as a logical relation – not whether that fact is 
sufficient to warrant a label. 

This concern with logic was motivated in Carnap’s case, apparently, 
by a conscious desire for an inductive logic (more than by a 

need to account for the probability calculus, for example). He had 
earlier accepted RF theories as adequate for scientific probability – 

not until he engaged in logical research did he shift his allegiance 
to AP theories (or, rather, divide it between the two). Keynes, on 

the other hand, seems to have set out looking for the nature of 

probability and then ‘discovered’ that it is a matter of logic. 
The two also disagreed on the relation between deductive logic 

and probability. Carnap took the (normal) position that probability 
theory results from adding probability rules (c-functions) to the 
ordinary deductive logic, thereby increasing its power and range. 
Keynes, however, thought probability theory was the basic theory 
of inference – deductive logic is merely that degenerate case where 
all probabilities are 1 or 0. 

Our third basic idea is that AP theories recognize probabilities 
relative to given evidence only. Many RF theorists consider this to 

be a grave defect in AP theories, rendering a probability subordinate 
to the state of our knowledge and therefore odiously ‘subjective’. 
Their theories, they maintain, deal with the real probability, which 
is objectively determined and not relative to anything. There is a 

sense in which this claim for RF theories is true and a sense in which 



A Priori Theories of Probability 
it is false – we shall discuss this problem in the chapter on Relative 
Frequency theories below. Our present concern is with the AP 
theories, and in this context evidence-dependence is seen as a virtue 
rather than a defect. It is a necessary consequence of the fact that 
probability is defined as a relation between a proposition and some 

evidence for that proposition. 

2 Chief Proponents 

There are many people who have proposed or are still proposing 
theories of this general type. I have chosen to concentrate on Keynes 
and Carnap because they are the intellectual giants of the group 
and their theories are the most seminal, philosophical, wide-ranging, 
and fully developed. 

John Maynard Keynes (1883-1946), British economist and man of 
letters, was ‘one of the creators of the modern world.’ 3 His theoretical 
contributions to political economy are familiar to everyone as an 

important part of the rationale for the ever-increasing government 
intervention in non-communist economies. His practical contributions 

to the British Treasury and to international monetary 
conferences such as Bretton Woods are well known to at least 
economists and historians. What is less well known is that philosophy 
was Keynes’s earliest love. He studied it under G. E. Moore and 
Bertrand Russell as an undergraduate at Cambridge while earning 
his degree in mathematics. During his subsequent employment with 
the India Company, Keynes combined these fields in a thorough 
review of probability and induction. This resulted in a dissertation 
which earned Keynes a fellowship in King’s College and allowed 
him to return to Cambridge as a philosopher. He was persuaded to 

teach in the Economics faculty instead, and subsequently made that 
field his chief intellectual interest, so his brief career as a philosopher 
culminated in the publication of an expanded version of his dissertation 

as A Treatise on Probability. 4 This one work established Keynes 
as the authority of his time on probability theory, and maintains 
his reputation today as a leading spokesman for the a priori (AP) 
interpretation of probability. 

Keynes was the first self-conscious apriorist in probability theory. 
He asserted emphatically that probability is a logical relation 
between propositions and, according to Carnap, was the first to 



perceive and emphasize the fact that such probabilities are inherently 
relative to given evidence and to nothing else. 5 

Such assertions, and the philosophical argumentation which 

supports them, constitute Keynes’s most famous and significant 
contributions to the development of probability theory. His derivation 

of theorems in the probability calculus represented at best a 

mild improvement over his predecessors and is not historically 
important. His attempted revision of the Principle of Indifference is 

frequently referred to and generally considered to be an improvement, 
but it does not attack the fundamental question whether any 

such principle can be a legitimate source of initial probabilities. Thus 

Keynes is seldom cited for these achievements. Instead, he finds his 

place as the pre-eminent representative of a priori probability theory, 
and when he is discussed by philosophers it is usually in this role 
as the embodiment and spokesman of a priori probability rather 
than as the source of some particular argument or theorem (in 
contrast to Bernoulli or Bayes, for example). 

Rudolf Carnap (1891-1970) was ‘the most prominent representative 
of the logical empiricist, or logical positivist, school in the 

philosophy of science and logic.’ 6 His early training in physics led 
him to accept the relative frequency (RF) theory of probability, 7 but 
his name is now more associated with his later development of AP 

probability theory as a form of quantitative inductive logic. 
Carnap’s AP theory is of a piece with his notable work in the 

related fields of logic, syntax, semantics, and formal languages. It is 
impossible to convey fully the nature of his system of a priori 
probability without requiring or providing some grounding in the 
concepts and formalizations he employs. At least a hundred pages 
of his Logical Foundations of Probability 8 

are devoted to just this 

preliminary spadework – the task is obviously beyond us here. 
Therefore we shall barely sketch in the particular system he develops 
and concentrate primarily upon his philosophical discussions of the 
nature of probability theory in general and the justification of his 
own theory in particular. 

3 Definition of Probability 

In developing a definition of probability, Keynes began with the 
conscious fundamental principle that probability is a logical relation 



between propositions and systematically discussed the justification 
for and consequences of this view. This imbued his work with a 

unity and philosophical cohesiveness not found in his predecessors. 
We shall begin by quoting his own statement of his basic position: 9 

The terms certain and probable describe the various degrees of 
rational belief about a proposition which different amounts of 
knowledge authorise us to entertain. All propositions are true 
or false, but the knowledge we have of them depends on our 

circumstances; and while it is often convenient to speak of 

propositions as certain or probable, this expresses strictly a 

relationship in which they stand to a corpus of knowledge, 
actual or hypothetical, and not a characteristic of the 
propositions in themselves. A proposition is capable at the 
same time of varying degrees of this relationship, depending 
upon the knowledge to which it is related, so that it is without 
significance to call a proposition probable unless we specify the 
knowledge to which we are relating it. 
Here we have at once the two themes most frequently associated 

with Keynes’s name: that probability is a logical relation between 

propositions, and that all probabilities are relative to given knowledge. 
These must not be confused with the subjectivist thesis which 

had frequently appeared in earlier works on probability (and which 
led to Nagel’s construal of the essence of Classical probability) to 
the effect that probability is a measure of our partial belief in a 

proposition and that all probabilities are relative to our knowledge. 
Keynes is opposed to such psychologisms (though he occasionally 
slips into one himself) and sees the probability-relation as an objective 
logical relation. ‘A proposition,’ he says, ‘is not probable because 
we think it so.’ 10 Rather it is probable or improbable with respect 
to given evidence whether we recognize it or not, depending only on 

whether the logical relation obtains or not. 

Keynes symbolizes this logical probability-relation between a 

proposition a, and evidence (or hypothesis) h, as a/h. He prefers this 
symbol over the more traditional ‘P', because 

The value of the symbol a/h, which represents what is called by 
other writers ‘the probability of a,’ lies in the fact that it 
contains explicit reference to the data to which the probability 
relates the conclusion, and avoids the numerous errors which 
have arisen out of the omission for this reference. 11 



The probability symbol is allowed to take on numerical values 
and enter into mathematical formulae, so that it is meaningful to 

say, for instance, 'a/h = x,’ or '3(a/h) = 3x.’ But Keynes does not 

require that every probability possess a definite numerical value. He 
argues that not all probabilities are measurable and not all pairs of 
probabilities are comparable. In his system, it is not true that the 
numerical values of some probabilities are merely unknown. Instead, 
he contends that when we speak of unknown probabilities we really 
refer to the values which we would arrive at if we had more evidence 
or if we were more skilled at computation; but by his rules those 
values are different from the present probability. This is so because 
Keynes thinks the present probability is the result of applying the 
principles of human rationality to the present evidence. If either of 
these factors were to be changed, he contends, we would be talking 
about a different probability-relation. Also, since the rules and the 
available evidence do not generate numerically definite probabilities 
in many cases, we must conclude that some probabilities are 

non-measurable and non-comparable. 12 The expression ‘a/h’ can 

therefore not generally be treated as the name of a number subject 
to such mathematical laws as are based on the comparability of 
numbers. 

Thus far, Keynes has told us that probability is a logical relation 
and introduced a symbol for it. Now if we knew which relation it is 
and how to decide its value, 13 we would have a working definition 
of ‘probability.’ But Keynes not only fails to help us in this, he denies 
that it can be done: 14 

A definition of probability is not possible, unless it contents us 

to define degrees of the probability-relation by reference to 

degrees of rational belief. We cannot analyse the probability-relation 
in terms of simpler ideas. As soon as we have passed 

from the logic of implication and the categories of knowledge, 
ignorance, and rational belief, we are paying attention to a new 

logical relation in which, although it is logical, we were not 

previously interested, and which cannot be explained or defined 
in terms of our previous notions 

Even though Keynes tosses aside ‘degree of rational belief’ as an 

apparently unworthy definition, in the remainder of his work he 
treats ‘degree of justified rational belief’ as being, if not equivalent. 



at least co-extensive (cause and effect, perhaps, or ground and 
consequent). This must suffice, in lieu of a definition, as an indication 
of the qualitative nature of the probability-relation: it is a logical 
or epistemological (certainly non-empirical) quality possessed by two 

propositions (or sets of propositions) whereby the second warrants 
some degree of rational belief in the first. Now let us consider what 
are these degrees of rational belief, and how are they determined? 
By learning to apply the probability-relation we can hope to gain 
further insight into its nature. 

Keynes has said already that ‘The terms certain and probable 
describe the various degrees of rational belief about a proposition 
which different amounts of knowledge authorise us to entertain.’ 15 

As we might have expected, certainty represents one extreme on the 
scale; the other extreme is called ‘impossibility.’ 16 To maintain 
Keynes’s consistency, we obviously must interpret ‘impossibility’ in 
the logical sense of ‘self-contradiction’ or the epistemological sense 

of ‘negative certainty’ – it is not physical, scientific, or empirical 
impossibility which is involved here. (This point will occur later, as 

part of a basic criticism of AP theories.) 
The extremes are familiar enough. The middle ground is the 

peculiar province of probability – as opposed to deduction – in 
Keynes’s scheme of logical relations. How, then, do we assign values 
to the middle ground? 

According to Keynes, our knowledge of the middle ground is not 

epistemologically different from our knowledge of the extremes – in 
both cases we have ‘direct knowledge’ which is based on ‘direct 
acquaintance’ with logical relations. 17 

Keynes says of probability relations what so many have said of 
deductive logical relations, that they are a fundamental source of 
our knowledge, directly available to our intuition, which neither can 

nor should be referred to anything else as their source or justification. 
We shall return to this epistemological theory later in this chapter, 18 

for now we are concerned with the question of the source of initial 

probabilities in Keynes’s theory, and we will accept ‘intuition’ or 

‘direct knowledge’ as the general answer to that question. 
But if we ask the more specific question, ‘What is the source of 

the numerical values which are operated on by the probability 
calculus?’ we receive a more detailed and intriguing answer: the 

Principle of Indifference. 



It is here that Keynes most clearly illustrates the true continuity 
of probability theory running from the Classical theories through 
his own: 19 

It has always been agreed that a numerical measure can 

actually be obtained in those cases only in which a reduction 
to a set of exclusive and exhaustive equiprobable alternatives 
is practicable. 
Thus Keynes accepts the classical First Principle that numerical 

probabilities are only obtainable as the ratio of favorable cases to 

all equiprobable cases. He feels that his predecessors had not erred 
in taking the Principle of Indifference as the fundamental source of 
initial probabilities; rather their errors had been that (1) they had 
failed to formulate the Principle correctly, complete with the 
restrictive conditions of relevance and symmetry, and (2) they had 
sought to apply the Principle in many cases where it was inapplicable. 

The fact that the Principle of Indifference is not universally applicable 
Keynes takes as a consequence and reinforcement of his independent 
arguments that not all probabilities are numerical (they would 

be numerical, if the Principle of Indifference could be used in every 
case). He thinks that he has rehabilitated the Principle by requiring 
that the alternatives be ultimate and symmetrically related to all 
relevant evidence. Rather than stop to criticize his formulation I will 
only note that I share Lewis’s suspicion (which we shall discuss later) 
that if one knows enough to be sure that these conditions are fulfilled, 
one most likely has sufficient empirical evidence to assign the 
probability on some basis other than indifference. In his review of 

Keynes, Lewis said only this, 20 

The reappearance of that bête noir of clear thinking, the 
Principle of Indifference, comes as something of a surprise. But 

the treatment given obviates the worst objections. Whether it 
obviates them all is a complex and difficult question. 
The basic charges against the Principle of Indifference are that 

logic alone (without evidence) can say nothing about our contingent 
world (while some probability statements clearly do) and that no 

justification is given or possible for the assumption that the members 
of a logical division are equally likely to occur. Such serious challenges 
are raised by Reichenbach, Nagel, and Lewis and will be discussed 
later. They are mentioned here only to show that Keynes has at best 



achieved a technical revision which eliminates (at least some) logical 
contradictions and other absurdities from the implications of the 
Principle – he has not fundamentally altered its theoretical position 
as the source of all numerical probabilities nor justified its basic 
presuppositions. 

Carnap’s definition of a priori probability follows closely the basic 
Keynesian insight that probability is a logical relation between 
assertions. In the spirit of modern logic, however, he refined this 
definition to make probability a mathematical relation between 
sentences in a formal language. And while he did most of his 

important foundational work on this theory, he did not think it 
exhausted the field of probability theory. 

We have already mentioned the fact that Carnap explicitly 
recognizes the difference between the types of theories of probability. 
A priori (AP) theories he calls ‘probability1’; relative frequency (RF) 
theories ‘probability2.’ What makes him unique among the major 
theorists is that he not only recognizes both, he embraces both. He 
believes that the two theories of probability address themselves to 

different explicanda; thus he is able to accept each as valid without 

striking a direct contradiction. This would seem to justify one in 

classifying Carnap either as an apriorist or a frequentist or both. 
(In fact, Nagel does include Carnap in a list of frequentists. 21 This 
was correct at the time, 1939, but Carnap’s major work came later 
and has made reclassification necessary.) Nevertheless, I feel it 
appropriate to include him in this discussion of AP theories while 
ignoring him in the RF sections, because Carnap himself emphasized 
the former aspect of probability over the latter, and because his AP 

theory has been far more fecund in leading to subsequent developments 
in probability and inductive logic. 

Carnap’s principal work in the field – Logical Foundations of 
Probability – first appeared in 1950. His original intention was to 

produce a two-volume work: the first to deal with probability and 
establish a suitable system or theory; the second to use that theory 
as a foundation for the development of a system of inductive logic. 
The first volume concentrated on AP probabilities because Carnap 
thought this to be the only acceptable foundation for inductive logic. 
This preference, which runs throughout the book, appears in the 
very first paragraph of the Preface: 22 

The theory here developed is characterized by the following 



basic conceptions: (1) all inductive reasoning, in the wide sense 

of nondemonstrative reasoning, is reasoning in terms of probability; 
(2) hence inductive logic, the theory of the principles of 

inductive reasoning, is the same as probability logic; (3) the 

concept of probability on which inductive logic is to be based is 
a logical relation between two statements or propositions; it is 
the degree of confirmation of a hypothesis (or conclusion) on 

the basis of some given evidence (or premises); (4) the so-called 

frequency concept of probability, as used in statistical investigations, 
is an important scientific concept in its own right, 

but it is not suitable as the basic concept of inductive logic; (5) 
all principles and theorems of inductive logic are analytic; (6) 
hence the validity of inductive reasoning is not dependent upon 
any synthetic presuppositions like the much debated principle 
of the uniformity of the world. 

Following Carnap’s lead, we shall also concentrate on his views 

concerning AP probability. These views are first introduced as being 
part of an historical school of thought: 23 

My conception of logical probability (called ‘probability in 
this book) has some basic features in common with those of 
other authors, e.g., John Maynard Keynes, Frank P. Ramsey, 
Harold Jeffreys, Bruno De Finetti, B. O. Koopman, Georg 
Henrik von Wright, I. J. Good and Leonard J. Savage, to 

mention only the names more widely known. All these conception 

share the following features. They are different from 
the frequency conception (‘probability2’ in this book). They 
emphasize the relativity of probability with respect to the 
evidence. (For this reason, some of the authors call their 
conception ‘subjective’; however, this term does not seem quite 
appropriate for logical probability....) Further, the numerical 
probability of an unknown possible event can be regarded as a 

fair betting quotient. And, finally, if logical relations (e.g., 
logical implication or incompatibility) hold between given 
propositions, then their probabilities must, according to these 
conceptions, satisfy certain conditions (usually laid down by 
axioms) in order to assure the rationality of the beliefs and the 
actions, e.g., bets, based upon these probabilities. 

There follows a considerable discussion of how various views are 



properly categorized as AP or RF, objective or subjective. Then 
Carnap begins to explain 24 his probability! on the basis that 

The probability1 of a hypothesis h with respect to given evidence 
e represents 

(A) a measure of the evidential support given to h by e; 
(B) a fair betting quotient; 
(C) an estimate of relative frequency. 

(A) is a concept which is primarily due to Keynes. (B) had been 
central to probability theory since the classical school became 
interested in games of chance. (C) represents a new way of looking 
at the matter, as well as a potential connection between AP and RF 
probabilities similar to the estimate theory of probability which 
Lewis had ‘developed independently’ 25 four years earlier. But there 
is some reason for holding that (C) is not fundamental to Carnap’s 
view at all, because in many cases where Carnap speaks of probability1 

being the estimate of a relative frequency, he uses ‘estimate’ 
in a technical sense which he explicitly defines: 26 

The estimate (more explicitly, the probability1-mean estimate) of 
the unknown value of a magnitude with respect to a given 
e = 

df the probability1-mean, that is, the sum of the products 
formed by multiplying each of the possible values of the 
magnitude with the probability! of its occurrence with respect 
to e. 

Now this fixed meaning of ‘estimate’ gives us a definite rule for 
arriving at a probability in the sense of ‘estimate of a frequency,’ 
which would seem to make it simple to calculate probabilities. Indeed, 
the mathematical manipulation required is precisely the same as that 
employed in computing the familiar ‘mathematical expectation’ of 
an event – what could be simpler? The catch, of course, is that 
calculation of the estimated value of the frequency requires prior 
knowledge of the probability1 for each possible value of the 

magnitude. But once we have this information prediction of the 

probable value of the magnitude is a mere exercise in probability 
calculus. What is crucial is how the initial probabilities are obtained, 
and in this procedure it is not done by estimating a frequency, but 
by a logical computation within a formal language. We therefore 
conclude that the estimate rule is not fundamental 27 to Carnap’s 
theory and need not detain us here. (We shall, however, later discuss 



some other of Carnap’s methods for predicting frequencies which 
do not depend upon prior probabilities – these are the methods of 
statistical inference.) 

We noted above that an adequate description of Carnap’s system 
is too large a task to attempt here. What we will try to accomplish, 
however, is to display enough of the nature of his system of 
probability1 so that its fundamental philosophical assumptions are 

clear. 
According to Carnap, probability1 is a measure of the partial 

inclusion of the range of one sentence in that of another. Thus it 
resembles probability2 in being ‘the ratio of partial inclusion of one 

class in another.’ That is why the concepts are so similar and so 

often confused. Yet they are far from the same: 

there remains this fundamental difference: for probability2 the 

partial inclusion is a factual matter, and hence the value of 

probability2 is established empirically; on the other hand, 
probability1 concerns partial inclusion of ranges, which is of a 

purely logical nature. 28 

Let us set aside some of Carnap’s technical machinery by making 
the rough and ready translation ‘The range of a sentence is the 
number of possible worlds in which it is true’ (after a language is 

specified, of course). The idea is that, given adequate descriptions of 
the possible worlds, only a semantic, non-empirical investigation is 
required to establish the range of a sentence. Now if we follow 
Carnap’s proposal that the confirmation (probability) function be the 
ratio of some measure of the worlds in which both evidence and 
hypothesis hold, divided by the measure of those in which the 
evidence holds, we get this result: Probability is the ratio of the 
measure of favorable cases to the measure of all possible cases. This 
last, of course, is almost identical to the traditional concept of 

probability, as developed by Laplace and Bernoulli and transmitted 
by Keynes. Carnap’s theory differs from the Classical theory, though, 
in that measure-functions, and hence confirmation-functions, assign 
a ‘weight’ to each possible world, and such weights are not necessarily 
equal. In the end, however, the particular measure-function, m*, and 
confirmation-function, c*, which Carnap prefers are based on a form 
of equiprobability. 

In Logical Foundations of Probability (referred to hereafter as 

LFP) Carnap developed his system for a restricted class of very 



simple languages, which he calls the languages L. These consist of 
a finite number of independent one-place predicates (naming properties) 

applied to a specific number of individual constants (naming 
individuals) or variables, and the usual logical connectives. If we use 

'π' to symbolize the number of predicates (an unfortunate but now 

well-established convention of Carnap’s) and ‘N’ for the number of 
individuals, the individual languages receive names of the general 
form ' a '. Since predicates and individuals are independent and 

logically indistinguishable, it doesn’t matter for our purposes which 
2 predicates and 4 individuals occur in a language L24 – the logical, 
inductive, and probabilistic features of any such language are 

identical. In fact, all finite languages behave similarly – it is only 
when we allow an infinite number of individuals (in the languages 
a ) that we have to beware of logical peculiarities. 

Now consider the simple language L22. We will use the two 

predicates ‘M’ and ‘N,’ and the two individual constants ‘a’ and ‘b,’ 
and develop Carnap’s system for this elementary case. 

The fundamental concept of Carnap’s inductive logic is the notion 
of a state-description. A state-description is a sentence (or class of 
sentences, for a ,) which completely describes a state of the world 

by affirming or denying each property of each individual. In Carnap’s 
words: 29 

A state-description for a system L in the sense indicated must 

state for every individual of L and for every property designated 
by a primitive predicate of L whether or not this 

individual has this property. 

It is heuristically helpful to think of these state-descriptions as 

characterizing possible worlds. A world in which a is M would be 
different from a world in which a is – M. Similarly for all possible 
combinations of individuals and properties. For any finite system it 
is always possible (in principle) to list many state-descriptions. Here is 
such a list for our L22. 

1 Ma & Na & Mb & Nb 
2 Ma & Na & Mb & – Nb 
2 Ma & Na & – Mb & Nb 
4 Ma & Na & – Mb & – Nb 

5 Ma & – Na & Mb & Nb 

9 – Ma & Na & Mb & Nb 
10 – Ma & Na & Mb & – Nb 

11 – Ma & Na & – Mb & Nb 

12 – Ma & Na & – Mb & 
– Nb 

13 – Ma & – Na & Mb & Nb 



6 Ma & – Na & Mb & – Nb 

7 Ma & – Na & – Mb & Nb 

8 Ma & – Na & – Mb & 
– Nb 

14 – Ma & – Na & Mb & 
– Nb 

15 – Ma & – Na & – Mb & 
Nb 

16 – Ma & – Na & – Mb & 
– Nb. 

We shall use ‘Z’ as the general name for state-descriptions, and 
‘Zi’ as the individual names (so that ‘Z1' names the first item in our 

list, ‘Z2’ the second, etc.). 30 

We next introduce the notion of the range of a sentence. If h is a 

sentence of L, the range, R, of h is the class of all state-descriptions, 
Z, in which h holds. If h is Ma & Na in our example, then R(h) = {Z1 
& Z2 & Z3 & Z4}. The meaning of a sentence is determined by its 

range, 
31 and deductive logic is construed as part of the rules of 

ranges. ((Ma & Na) &#x2283; Na, for example, means that R(Ma & Na) is 
a subclass of R(Na), which is {Z1 & Z2 & Z3 & Z9 & Z10 & Zll 
& Z12}.) 32 Using these two concepts, the simplest course would 
seem to be to define the probability of h on evidence e in terms of 
a ratio between the number of Zs in the range of h & e and the 
number of Zs in the range of h alone. This is the basic idea that was 

obscurely suggested by Wittgenstein in the Tractatus 33 and serves 

as the common notion in what Von Wright 34 calls the ‘spielraum’ 
(=‘range’) school of probability theorists. 

Unfortunately, this approach leads to the undesirable result that 
inductive logic would not allow us to learn from experience. To see 

that this is so, we will develop this method first, and then the method 
Carnap is inclined to adopt. 

To begin with the general case, the degree of confirmation, q, of 
a hypothesis, h, on evidence, e, will be symbolized as ‘c(h, e) = q.' 
Since our fundamental idea is to compare the weight of h & e to 
the weight of e (favorable cases to all possible cases, given that e is 

true) we define 35 

c times left-parenthesis h times comma e right-parenthesis equals StartFraction m times left-parenthesis e ampersand h right-parenthesis Over m times left-parenthesis e right-parenthesis EndFraction

where m is an unspecified function giving the weight of a sentence. 
Thus specification of a confirmation function (called a ‘c-function’) 
is achieved by the prior choice of a means of weighting sentences, 
which Carnap calls a ‘measure-function’ (or ‘m-function,’ for short). 



Returning now to the particular case, the first and obvious 
suggestion is that the weight of a sentence should be the proportion 
of possible worlds in which it is true. In Carnap’s system, this means 

that the measure of h would be the number of state-descriptions in 
which it is true, z(h), divided by the total number of state-descriptions, 
z, in L: 36 

m Superscript dagger Baseline left-parenthesis h right-parenthesis equals StartFraction z left-parenthesis h right-parenthesis Over z EndFraction period

The confirmation-function based on this measure-function would 
be: 

c Superscript dagger Baseline left-parenthesis h comma e right-parenthesis equals StartFraction m Superscript dagger Baseline left-parenthesis e ampersand h right-parenthesis Over m Superscript dagger Baseline left-parenthesis e right-parenthesis EndFraction period

If h is Na and e is Ma & Na, as above, m&#x2020;(h) is equal to the 
number of Zs in the range of Na divided by z 

m Superscript dagger Baseline left-parenthesis h right-parenthesis equals StartFraction z left-parenthesis h right-parenthesis Over z EndFraction equals StartFraction 8 Over 1 6 EndFraction equals 1 slash 2 period

Similarly, 
m Superscript dagger Baseline left-parenthesis e right-parenthesis equals StartFraction z left-parenthesis e right-parenthesis Over z EndFraction equals StartFraction 4 Over 1 6 EndFraction equals 1 slash 4

and 
m Superscript dagger Baseline left-parenthesis e ampersand h right-parenthesis equals StartFraction z left-parenthesis e ampersand h right-parenthesis Over z EndFraction equals StartFraction 4 Over 1 6 EndFraction equals 1 slash 4 period

Finally, 
c Superscript dagger Baseline left-parenthesis h comma e right-parenthesis equals StartFraction m Superscript dagger Baseline left-parenthesis e ampersand h right-parenthesis Over m Superscript dagger Baseline left-parenthesis e right-parenthesis EndFraction equals StartFraction 1 slash 4 Over 1 slash 4 EndFraction equals 1 period

This result is very satisfactory: since Ma & Na implies Na, we 

naturally wish c(Na, Ma & Na) to be 1, but of course, giving 
satisfactory results for deductive relations is hardly sufficient for a 

function to be used in inductive logic. So now let’s try some induction. 
Suppose we are trying to predict whether the individual b will be 

both M & N. If we have no empirical evidence at all, the best we 

can do is to determine the null (a priori, antecedent, initial) 
confirmation based on logical ranges alone. Let Mb & Nb be h. The 



evidence, e, in this case is replaced by the object-language symbol 
‘t’ (for ‘tautology’) which holds in every Z. Thus we have 

c Superscript dagger Baseline left-parenthesis h comma e right-parenthesis equals c Superscript dagger Baseline left-parenthesis h comma t right-parenthesis equals StartFraction m Superscript dagger Baseline left-parenthesis t ampersand h right-parenthesis Over m Superscript dagger Baseline left-parenthesis t right-parenthesis EndFraction equals StartFraction m Superscript dagger Baseline left-parenthesis h right-parenthesis Over 1 EndFraction equals StartFraction z left-parenthesis h right-parenthesis Over z EndFraction equals StartFraction 4 Over 1 6 EndFraction equals one-fourth period

Now suppose we acquire some evidence, e' which tells us that the 
other object in our universe, a, is both M and N. In this case 

c Superscript dagger Baseline left-parenthesis h comma e prime right-parenthesis equals StartFraction m Superscript dagger Baseline left-parenthesis e prime epsilon ̸ times h right-parenthesis Over m Superscript dagger Baseline left-parenthesis e prime right-parenthesis EndFraction equals StartFraction z left-parenthesis e prime ampersand h right-parenthesis slash z Over z left-parenthesis e prime right-parenthesis slash z EndFraction equals StartFraction z left-parenthesis e prime ampersand h right-parenthesis Over z left-parenthesis e prime right-parenthesis EndFraction equals one-half period

But this is the same value we had before, so our evidence has not 

changed our assessment of the odds in the slightest. 
This result holds for all systems, not just our simple L22. Even if 

we had found 100 individuals possessing M & N with no exceptions, 
the probability that the 101st would be M & N would remain equal 
to the original value of 1/4. In general, then, c&#x2020; is defective as a 

confirmation-function because it fails to learn from experience in a 

very important way. 
37 Carnap has rejected c&#x2020; for this reason and 

constructed another confirmation-function, c*, which we will consider 

now. 

The new c-function, c*, no longer considers all state-descriptions 
to be created equal. Instead, it introduces a definite bias towards 
uniformity by favoring more homogeneous state-descriptions with 
greater weight than that given to hodgepodges, potpourris, and 
random collections. To accomplish this, Carnap first introduces the 
notion of a structure-description. The technical definition is: 38 

j is the structure-description corresponding to Zi (or, Zi, belongs 
to the structure-description j) in LN = df Zi is a Z in LN, and j is 
the disjunction of all Z which are isomorphic to Zi arranged in 
lexicographical order. 

Two Zs are isomorphic if and only if one can be derived from the 
other by merely exchanging some individuals for others by means 

of a one-to-one correlation. Our Z3 and Z9 are isomorphic, because 
if ‘a’ and 'b' are interchanged in Z3, and the result reordered according 
to the (assumed) lexicographical rules of the system, the result is 
identically Z9. These state-descriptions exhibit a similar structure, 
because each consists of one individual which is both M & N, and 
another which is N but not M. Thus we can specify a structure- 



description according to the method of the definition: 

STRx = Z3 &#x2228; Z9 

or by naming any one state-description in the STR 

the STR corresponding to Z3 

or by specifying how many individuals exhibit each possible combination 

of properties 

one M & N and one – M & N. 

We can think of these as alternative ways of specifying the structure 

(arrangement, pattern) of the universe, since they specify how many 
of each type will exist, but not who will be what. (As ‘The club will 
have one President, two Vice Presidents, and a Secretary-Treasurer’ 
specifies the structure of an organization.) 

Now the idea of c* is to treat each of these structures as 

equiprobable. In our L22, the number, z, of state-descriptions is 16, 
but the number, T, of structure-descriptions is only 10. 

STR1 = Z1 
STR2 = Z2 &#x2228; Z5 
STR3 = Z3 &#x2228; Z9 
STR4 = Z4 &#x2228; Z13 
STR5 = Z6 

STR6 = Z7 &#x2228; Z10 
STR7 = Z8 &#x2228; Z14 
STR8 = Z11 
STR9 = Z12 &#x2228; Z15 
STR10 = Z16 

If we treat each of these structure-descriptions as equiprobable, 
then the measure of each = 1/T = 1/10. If m* (STR1) = 1/10, then 

m*(Z1) = 1/10. But the weight of STR2 must be distributed between 
two state-descriptions, Z2 & Z5. Carnap chooses to distribute the 
weight equally within structure-description, so m*(Z2) = m*(Z5) = 

1/20, and in general 
m asterisk left-parenthesis upper Z i right-parenthesis equals d f StartFraction 1 Over upper T period times normal z Subscript i Baseline Subscript Baseline EndFraction

where zi is the number of Zs isomorphic to Zi. The weight of a 

proposition will of course be the sum of the weights of the structure 

descriptions in which it is true. 

Now let us return to the inductive problem we ran for c&#x2020; and see 

if c* does any better. Our hypothesis, h, is Mb & Nb. The 



null-confirmation is 
c asterisk left-parenthesis h comma t right-parenthesis equals StartFraction m asterisk left-parenthesis t ampersand h right-parenthesis Over m asterisk left-parenthesis t right-parenthesis EndFraction equals m asterisk left-parenthesis h right-parenthesis equals StartFraction 1 Over 1 0 period z 1 EndFraction plus StartFraction 1 Over 1 0 period z 5 EndFraction plus StartFraction 1 Over 1 0 period z 9 EndFraction plus StartFraction 1 Over 1 0 period z Subscript 1 times 3 Baseline EndFraction 1 slash 10 plus 1 slash 20 plus 1 slash 20 plus 1 slash 20 equals 5 slash 20 equals 1 slash 4 period

So the null-confirmation c* is equal to c&#x2020;. But now suppose we again 
learn Ma & Na. Then 

c asterisk left-parenthesis h comma e right-parenthesis equals StartFraction m asterisk left-parenthesis e ampersand h right-parenthesis Over m asterisk left-parenthesis e right-parenthesis EndFraction equals StartFraction m asterisk left-parenthesis upper Z Baseline 1 right-parenthesis Over m asterisk left-parenthesis upper Z Baseline 1 right-parenthesis plus m asterisk left-parenthesis upper Z Baseline 2 right-parenthesis plus m asterisk left-parenthesis upper Z Baseline 3 right-parenthesis plus m asterisk left-parenthesis upper Z Baseline 4 right-parenthesis EndFraction StartFraction 1 slash 1 0 Over 1 slash 10 plus 1 slash 20 plus 1 slash 20 plus 1 slash 2 0 EndFraction equals 1 slash 10 times 2 0 slash 5 equals 2 slash 5 period

This means that the function c* does increase in value when the 

quaesitum property is empirically widespread. Since it also leads to 

other results of which Carnap approves, he settles on c* as the proper 
function for inductive logic. 39 

4 The Source of Initial Probabilities 

Intuition is the principal source of probabilities for Keynes, and 

logical calculation is the source for Carnap. Keynes allows the 

Principle of Indifference to be the generator of specific numerical 

values, while Carnap is more receptive to the use of frequency values 
as probability values. Otherwise the two systems are quite similar 
in spirit. 

In Dice Games 

For Keynes, as for the CTP, the Principle of Indifference is applied 
directly in cases like dice games and other games of chance. It tells 
us that the numerical values of the probabilities are equal, and the 
calculus of probability then enables us to make the usual mathematical 

predictions. These traditional cases thus receive a traditional 
treatment based on a revised version of the First Principle of Classical 
Probability. 

In our example of the dice game, Keynes recommends the same 

procedure as did Laplace: first identify the equipossible alternatives, 



then assign them equal probabilities and use the calculus of probability 
to make predictions. Thus, 1, 2, 3, 4, 5, and 6 are the alternatives 

(here Keynes adds the caution that we must be sure that 

they are ultimate alternatives, i.e., that none of them can be split up 
into sub-alternatives of the same type). Assigning equal probabilities 
gives each a value of 1/6. Thus the initial probability of throwing a 

Five is 1/6. (Keynes further requires that all our evidence be 
symmetrical – that we have no evidence favoring one outcome which 
is not matched by similar evidence for every other alternative.) 

Like the Classical theorists and Lord Keynes, Carnap believes it 
is possible to assign an a priori value to the probability of rolling 
a Five, even if neither this nor any other die has ever been rolled. 
But this is not to be done using the Principle of Indifference, which 
Carnap rejects because it leads to contradictions. Instead, the 
probability is derived from the confirmation-function, using the 
tautology, t, as evidence. This initial probability, in the absence of 
any empirical knowledge, is called the ‘null-confirmation of h.’ But 
the function c* always assigns equal null-confirmations to coordinate 
descriptions, 40 

so we still have P(5) = 1/6. An added virtue of 
Carnap’s AP theory, however, is that it can also learn from 
experience. Thus, if we have any empirical evidence at all, such as 

previous rolls of this or other dice, or physical properties of this die 

(together with lawlike statements concerning the effects of such 

properties on dice rolls, to ‘connect them up’) we can in principle 
incorporate such evidence in our calculations. (It is currently practical 
to include only information about a small number of rolls of this 
or other dice.) 

Besides the null-confirmation and the probability based on general 
evidence, a third type of initial AP probability is based on frequencies 
as evidence. Carnap calls these ‘inductive inferences,’ but ‘statistical 
inferences’ is probably a more descriptive and familiar name. If we 

know the relative frequency of a property in a sample and seek the 

probability that a member of the sample has that property, we are 

engaged in direct inductive inference. In the present case, though, we 

desire a predictive inductive inference, since the event in question (the 
next roll) is not included in the sample (past rolls). Carnap’s rule for 
predictive inference includes consideration of both logical and 
empirical factors but is a priori in the sense that any result of a 

mathematically correct calculation is valid and does not depend on 

the state of the universe for its truth or its verification. We will 



discuss this rule and its application when we consider in the next 

section the probability that a 30-year-old man will get married. 
The final source of initial probabilities in a dice game is the relative 

frequency of Fives in throws of this die considered as a probability2 
(RF probability). Carnap thinks that we are sometimes justified in 
identifying the probability of a Five with (the limit of) this frequency, 
even though we can never know (with certainty) what that frequency is. 
He, himself, has criticized RF theory quite effectively, but he still 
thinks it is all right in its place. Unfortunately, LFP has little to say 
about what that place is. The most he says for RF probabilities is 
that our lack of knowledge of frequency limits is not a decisive 
criticism, since we don’t require certainty of scientific hypotheses. 41 

Whether this defense is adequate will be discussed in the chapter on 

RF theories. For now we merely note that Carnap does think the 
RF theory can generate initial probabilities for dice games in some 

circumstances, while the various methods of AP probability can 

generate such values in any circumstances. 

Actuarial Cases 

While Keynes has rightly been perceived as one of the leading 
opponents of the RF school of probability theory, it is false to 

assume, as modern writers on probability sometimes do, that he 
therefore rejected any use of frequencies in probabilistic arguments. 

Consider, for example, the many actuarial cases where frequencies 
are centrally important. As a practicing economist, Keynes clearly 
cannot dismiss such cases as uninformative and worthless. On the 

contrary, he says that ‘it is undoubtedly the case that many valuable 

judgments in probability are partly based on a knowledge of 
statistical frequencies, and that many more can be held with some 

plausibility, to be indirectly derived from them....’ 42 But such 
judgments are generally not based on the Principle of Indifference – 

how then can they be justified? 
Keynes gives us one clear answer and hints at a more obscure 

one. The more obscure answer is that our knowledge of frequencies 
is part of our knowledge of the world and must therefore be 
considered in making certain probability judgments. The idea seems 

to be that my perception of the (non-numerical) probability that the 
next car I see will be a Cadillac is based on (or at least influenced 



by) the frequency with which I have seen Cadillacs in the past. To 
be more precise, the frequency with which I have seen Cadillacs in 
the past is part of my evidence h, and what I directly perceive is the 
probability relation a/h between the evidence and the proposition 
a, that the next car I see will be a Cadillac. The probability in this 
example cannot be numerical in any theory, since the relevant 
frequency is not given numerically, but even if it were known to be 
precisely 0.05, the probability could not be identified with the 
frequency, and might not even be numerically equal to it. There 
might, for example, be other facts in h, such as the fact that I am 

in a certain neighborhood, which would tend to increase or diminish 
the probability. Indeed, it is always possible that the probability 
may not equal the frequency, since ‘an event may possess more than 
one frequency, and... we must decide which of these to prefer on 

extraneous grounds.’ 43 (In this case, possible reference frequencies 
include the frequency with which I have seen Cadillacs in the past 
year, or ten years, or in this State, or the frequency with which 
Cadillacs have been produced, or sold, or sold in this State, or....) 
The best we can do by this obscure method is to let frequencies 
exert an ‘appropriate’ influence on our probability judgments. 

In the cases where good statistical information is available, 
however, Keynes gives us a clearer method of statistical induction. 
This method relies heavily on his theory of induction. To discuss 
that theory in detail would take us too far afield, but its principal 
ideas 44 

are: 

1 Induction is based on probability, which is fundamental. 
2 Good inductions depend on Analogy – especially increased 

negative analogy – rather than simple enumeration. 
3 No induction can increase the probability of a proposition 

unless it has some antecedent (a priori) probability. 
4 The sources of these antecedent probabilities are Analogy, the 

presumption that what we take to be true has thereby some 

probability of being true, and the Principle of Limited 
Independent Variety. 45 

By using induction correctly we can make it very probable that 
certain Laws of Nature (Generalizations) hold in all cases. We can 

also make it very probable that certain statistical associations 
(Correlations) found in past experience will continue to hold in the 
future. We cannot just assume that all frequencies will continue at 



their present value (as Reichenbach does, for example), but in many 
cases we have sound inductive reasons for expecting them to. 46 

For example, suppose we are trying to establish (S): The chance 
of a male birth is m. 

47 Assume that data have been collected from 
all over the world, showing that the overall frequency of male births 
is m. This is not sufficient to establish (S) for England, since m might 
be no more than the average value of birthrates that vary widely 
around the world. (A world-wide frequency of death among infants, 
for example, would be very misleading if applied to England.) In 

order to have a strong inductive case for (S), we must try to establish 
that variations in time and place are irrelevant. To do this, we break 
the data down into sub-series which give frequencies of birth in 
different times and places. If these values do not diverge significantly 
from m, we have much better justification for expecting (S) to hold 
in all cases. 48 

The conclusion of an inductive argument such as this is that the 

probability – a/h – of the proposition, a: Male births will occur in 
the frequency m – is relatively high on the basis of all available 
evidence – h – including the fact that such births have occurred in 
the past in the frequency m. 

Since Carnap accepts the RF theory as a legitimate form of 

probability, it is much simpler to just treat actuarial cases as problems 
in RF probability. Furthermore, as the frequency data become more 

extensive, the AP method of Predictive Inductive Inference converges 
to the observed value of the frequency as a limit. So although it is 

always possible to interpret probabilities in such cases as AP 

probabilities, it is much simpler and just as effective for Carnap to 
derive them by equating them to the observed relative frequency. 

5 Probability of Single Events 

One of the great advantages of the AP theory over the Classical 

theory and over such frequentist theories as von Mises’ is that it 
can give a theoretical justification to our ordinary practice of 
estimating the probability of a unique event, in the absence of 
equipossible alternatives. 

If Mr Smith is running for mayor again, and we still wish to know 
his probability of success, Keynes assures us that we are asking a 

meaningful question which can usually be answered. All we have to 



do, according to Keynes, is to assess all the relevant information 
(judgments of relevance are of great importance to Keynes – they 
are a major reason why no universal algorithm for determining 
initial probabilities is possible), and then perceive the probability-relation 

a/h between that evidence h and the proposition, a, that 
Smith will win. 

Now we will ordinarily not be able to intuit a numerical probability 
in this case. Even if we know the number of possible outcomes (= the 
number of candidates), it is most unlikely that our evidence for each 
and all of them will be equal and symmetrical. Therefore, under 
Keynes’s restrictions, we may not apply the Principle of Indifference, 
and consequently precise numerical values cannot be obtained. What 
we may be able to do, however, is to make a comparative judgment 
such as ‘a/h is more than 1/2 but less than 3/4.’ In some cases our 

intuitions will be strong and precise enough to make this a fairly 
narrow range, but in many other cases we can do little better than 
sav there is ‘some probability’ that Smith will win. 

Carnap is willing to go much further in this case. His and similar 
systems are the only type of probability theories which claim that 
every event has a unique, interpersonal, numerically definite probability 

on given evidence which is (almost) always theoretically 
obtainable by calculation. Only they are audacious enough to claim 
that the probability that Smith will be elected mayor (based on what 
we know) is a potentially calculable real number between 0 and 1. 
To obtain this real number by the principal method of Carnap’s 
inductive logic, we must first analyze the structure of a language 
powerful enough to describe all relevant evidence. Then we take the 
sum of the m* values for the state-descriptions in which the evidence 
is true and Smith is elected mayor, and divide it by the sum of the 
measures of all state-descriptions in which the evidence is true. This 

gives us the confirmation on the given evidence of the hypothesis 
that Smith will win. 

This method can require an enormous amount of calculation. For 
the purposes of our example, we will limit the universe to three 
people: Smith (‘s’), Brown (‘b’), and Jones (‘j'), and only three 
properties, those of being: Radical (denoted by the predicate ‘R’), a 

Vietnam veteran (‘V’), and Mayor (‘M’). 49 So our language is L . 
At this level, we have already 512 possible state-descriptions. 
(Increasing either parameter by 1 would put us over z = 4000.) 

Assume that we know Smith is a radical Vietnam veteran and we 



are interested in his chances of becoming mayor. If we start our list 
of state-descriptions like this: 

Z1 = Rs & Vs & Ms & Rb & Vb & Mb & Rj & Vj & Mj 

Z2 = Rs & Vs & Ms & Rb & Vb & Mb & Rj & Vj & – Mj 
Z3 = Rs & Vs & Ms & Rb & Vb & Mb & Rj & – Vj & Mj 

ringing changes from right to left, we need only run through the 
first 128 Zs to list all those in which e(='Rs & Vs’) is true. (See, it’s 

getting simpler already!) Next, we must assign weights to these 

state-descriptions. Z1 is obviously unique, since any rearrangement 
of the individuals results again in Z1 after lexical re-ordering. For 
Z2 through Z8, ‘s’ and ‘b’ have identical properties, so only by 
substituting for ‘j' can we make significant changes. This means that 
z2, 3,...,8 = 3 (remember that zi is the number of state-descriptions 
isomorphic to Zi). But in the most common case each individual 
will have a different set of properties and there will be 6 ways in 
which the individuals can be rearranged into different state-descriptions 

having the same structure. Therefore the most common zi is 6. 
Now we must laboriously sum up the measures for each state-description 

m asterisk left-parenthesis e right-parenthesis equals normal upper Sigma Underscript i equals 1 Overscript 128 Endscripts StartFraction 1 Over upper T period times z Subscript i Baseline EndFraction period

Fortunately, a table 50 of Carnap’s tells us that the number of 

structure-descriptions, T, in L is 120, so we don’t have to enumerate 

them. Regularities in the table of state-descriptions also simplify the 

computation, so it is not too difficult to arrive at a value of 180/720 
for m*(e). 

Since we have cleverly arranged our table of state-descriptions to 

change from the right, we can know that only in the first 64 Zs will 
‘Rs & Vs & Ms' be true. The somewhat easier calculation of m* 
(e.h) gives 90/720. 

Finally, 
c asterisk left-parenthesis h comma e right-parenthesis equals StartFraction m asterisk left-parenthesis e ampersand h right-parenthesis Over m asterisk left-parenthesis e right-parenthesis EndFraction equals StartFraction 9 0 slash 7 2 0 Over 180 slash 7 2 0 EndFraction equals one-half period

But this value, 1/2, is exactly the same as the initial or null probability 
that ‘s’ is ‘M.’ 51 So it seems that our knowledge that Smith is a 

radical Vietnam veteran has not at all affected the probability of his 
election. Does that strike you as a bit counter-intuitive? If so, you 



are no doubt being influenced by the fact that such properties are 

relevant to one’s chances of being elected mayor. But this fact is 
not contained in our evidence – we know nothing of who is and is 
not elected mayor and what their properties might be. We can’t 
learn from experience about mayors until we have at least some 

experience with mayors. 
Suppose we continue our investigation and find that the next city 

over elected a radical Vietnam veteran named Jones as mayor last 

year. This adds ‘Rj & Vj & Mj to our evidence, which we will now call 
‘e & j.’ Its range, R(e & j), includes Z1, 9, 17, 25,..., 121 while R(e & j & h) 
takes only the first half of these. If we were still using m&#x2020;, and counting 
each state-description equally, we would again get 1/2 as our 

probability. But m* gives greater weight to those Zs exhibiting 
homogeneity, so the Zs in R(e & j & h) which attribute similarity to ‘s’ 
and ‘j’ count more than those other Zs which say they are different. As 
a result, 
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This shows that the odds that Smith will be elected improve if we 

know that someone with similar properties has already been elected. 
Such similarities influence our thinking so frequently and so strongly 
that Carnap has given us another method, the Inference by Analogy, 
to quickly compute the confirmation gained when they occur. Before 
we develop that method, we must introduce two more technical 
terms. 

A Q-predicate (Q1, Q2, Q3,...) is an abbreviation for an expression 
which is ‘either the conjunctive predicate expression containing all 

[predicates] in their alphabetical order ('P1 P2'...'PN') or is formed 
from this expression by replacing some of the [predicates] with their 
negations.’ 52 

Our system L33 has the following Q-predicates: 
Q1 = R & V & M 

Q2 = R & V & – M 

Q3 = R & – V & M 

Q4 = R & – V & – M 

Q5 = – R & V & M 

Q6 = – R & V & – M 

Q7 = – R & – V & M 

Q8 = – R & – V & – M. 

A Q-predicate is the most complete possible description of an 

individual. It tells of him whether or not he has each property 
expressible in the language. 53 



The very last technical notion we require (Hurrah! Hurrah!) is 
that of the width of a predicate. 

Every self-consistent predicate expression is equivalent to the 
disjunction of some number, w, of Q-predicates. w is the width of 
that predicate. 54 

In our system, ‘R’ has width 4, since it is equivalent to Q1 &#x2228; Q2 &#x2228; 

Q3 &#x2228; Q4, ‘R & – V' has width 2 (Q3 &#x2228; Q4), and so on. 

Returning now to the Inference by Analogy, let M1 be the 
conjunction of all the properties Smith and Jones have in common 

(M1 = R & V). Then w1 is the width of this expression (w1 = 2). 
Similarly, let M2 be the conjunction of all properties that Jones is 
known to have (M2 = R & V & M). The width of M2 is w2 (= 1). 
Then the confirmation of h by M1 (s) (= our previous evidence e) 
and M2(j) (= our additional evidence j) is 55 
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The reader can see that this is a much simpler way to calculate 
Smith’s chances, if the entire evidence is contained in the analogy. 
Otherwise the longer method of c* must be used. 

Finally, if we have sufficient statistical information about mayoral 
elections to establish the relative frequency with which ‘people like 
Smith’ have been elected mayor, we may be able to use a Predictive 
Inductive Inference 56 

or even a direct RF interpretation of the 

frequency as the probability. By speaking of Smith’s election as a 

‘unique event,’ however, we intend to express our interest in cases 

where such recorded repetitions have not occurred, so we will pursue 
these possibilities no further. Instead, we will briefly consider our 

other example of a single event, the next throw of a die. 
We said in the previous section that Carnap’s system assigns a 

probability of 1/6 to Smith’s rolling a Five on the next throw of a 

die if there is no relevant empirical evidence. So far, he agrees with 
Keynes and the Classical theorists (assuming our relevant evidence 
is equal and symmetrical with respect to all ultimate alternatives – 

Keynes). But if there has been even one throw of a die recorded, the 

probability changes to 1/7 (if that throw was not a Five) or 2/7 (if 
it was). 57 In general, c* is so sensitive to empirical evidence that the 
results of experience quickly outweigh the initial influence of logical 
ranges. Carnap’s AP probability is very empirical indeed in its 
willingness to base judgments on past experience – but it is still an 



a priori method because (1) it will give a probability value in the 
absence of any evidence (and especially in the presence of evidence 
other than frequencies), and (2) any value correctly derived by this 
method does not depend on and is not refutable by any experience 
whatever. 58 

Because of this emphasis on past experience and because of the 
agreement between the null-confirmation 1/6 and the results of past 
experiments with many dice, we always take the value of 1/6 as the 
probability of rolling a Five until experience shows that this die 
differs from the norm. If a series of rolls of this die gives us some 

empirical evidence of any sort, the Requirement of Total Evidence 
tells us to include that evidence in our calculation. Since c* is sensitive 
to past experience, the new evidence will alter P(5) if the relative 
frequency has diverged from 1/6. The probability of rolling a Five 
with a biased die will fairly quickly depart from 1/6 and converge 
on the observed frequency. This enables Carnap to claim that his 
system deals satisfactorily with cases where the simple ‘fairness’ 
assumptions of the Classical Theory are violated. 

6 Probability of Repetitive Kinds of Events 

The probability that a man will marry in his thirtieth year, which 
we have been using as one of our examples of repetitive events, is 
of the type where Carnap would undoubtedly accept an RF 

probability (his probability2) as satisfactory. It is characterized by 
voluminous statistical data, showing considerable uniformity in 
population sub-groups, and exhibiting a relative frequency other 
than 0 or 1. In such cases, Carnap’s inductive methods converge to 
the observed value of the relative frequency, so it is much simpler 
to just identify the probability with the relative frequency. But since 
this chapter is concerned with AP rather than RF probability, I 

propose to ignore probability2 (which Carnap hardly discusses 

himself) and instead illustrate Carnap’s and Keynes’s a priori 
methods of establishing the probability. 

If we have a value for the relative frequency of marriage in an 

observed sample of 30-year-old males, rf = St/S, then the probability 
that a 30-year-old male inside the sample will be married in his 
thirtieth year is called a direct inference and both Carnap and Keynes 
agree it is si/s. But if we are concerned with a particular 30-year-old 



man outside the sample (as we usually are, in such cases), then what 
we seek is a singular predictive inference which Carnap defines as: 

c asterisk left-parenthesis h times comma e right-parenthesis equals StartFraction s Subscript i Baseline Subscript Baseline plus w Subscript i Baseline Subscript Baseline Over s plus k EndFraction

where w1 is the width of the predicate 'Mi' (‘married in 30th year’ in 
this case) and k is the number of Q-predicates in L. In this case, 
since the problem is very simple, we get the value (si + 1)/(s + 2) for 
the relative frequency. This, of course, is identically equal to Laplace’s 
Rule of Succession, but in more complex cases it is not. Suppose, 
for example, we wished to know the probability that our 30-year-old 
was both married and disinherited (‘MD’) in the same year. The 
width of MD is again 1, but k is 4. The desired value is thus 

(si + 1)/(s + 4). In general, Carnap’s probability for this hypothesis 
starts with the a priori (or ‘null’) prediction w/k, based on the logical 
width of a property, and then is more and more influenced by 
observations. As the number of observations becomes very large (in 
comparison to the complexity of the language) the probability 
approaches the observed relative frequency as a limit. 

In this particular example, let us restrict ourselves to a universe 

of 30-year-olds and the single property of being married (or not). 
The width, w1( of the predicate ‘M1' (married) is 1. The number of 
Q-predicates, k, is 2 (for ‘M1x’,‘ – M1 x'). Thus the initial probability 
of h('M1 x’) is 
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as is usual for such predicates in simple systems. Now suppose we 

observe four such men and find one of them is married. Then the 
relative frequency of marriage is 1/4, but 
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If we continue to observe the same relative frequency in larger 
samples, say 1,000 out of 4,000, we find 

c asterisk left-parenthesis h comma e prime right-parenthesis equals StartFraction s 1 plus w 1 Over s plus k EndFraction equals StartFraction 1 comma 0 00 plus 1 Over 4 comma 0 00 plus 2 EndFraction equals StartFraction 1 comma 0 0 1 Over 4 comma 0 0 2 EndFraction asymptotically-equals one-fourth period

The value of c* can be brought as close to the relative frequency as 

desired by continued observation. 



Thus far we may seem to have been cheating a bit, since the 

singular predictive inference gives the probability of occurrence of 
a single event (this man’s getting married) rather than the probability 
of a repetitive kind of event (any such man’s getting married). In 

reality, though, we have almost completed the task of establishing 
the a priori probability of a repetitive kind of event as the estimate 
of a relative frequency in a population, because Carnap identifies 
these values: 59 

Let e be any (non-L-false) evidence, M any molecular property, 
b an individual and K any class of individuals not mentioned in 
e, and h the hypothesis to the effect that b is M, then the 
estimate (probability1-mean) of the relative frequency of M in 
K is equal to the probability1 of h on e. 

In our example, the estimate of the relative frequency of marriage 
among 30-year-olds equals the confirmation of the prediction that 
an individual 30-year-old will get married, and therefore approaches 
the observed relative frequency as the sample size increases. (A more 

general formula, for the probability of a particular frequency in a 

population of a definite size, appears on p. 568 of LFP.) 
In the direct inference case, Keynes would agree that the probability 

that a man taken at random will marry during his thirtieth 
year is equal to the frequency, f, with which similar men have married 
in the past, provided that we have a strong statistical induction, with 
good negative analogy as well as many enumerated instances. 

The basic justification for deriving probabilities from frequencies 
is that if we know the relative frequency of a property, M, in a finite 
series, S, is equal to f, then f is the proportion of favorable to 

unfavorable cases. To speak of a ‘random member’ of S is to say 
in different words that ‘we have no reason to prefer one alternative 
over another’ or ‘the evidence is equal and symmetric with respect 
to the ultimate alternatives.’ But these are just the necessary and 
sufficient conditions for the application of the Principle of Indifference, 

so that in this case, ‘by a straightforward application of the 

Principle of Indifference we have p = f’ 60 (where p is the probability 
that a random member of S will have the property M). 

Keynes thus has a sound theoretical account of the simplest type 
of statistical problem, sampling from a known population. But when 
we go on to more varied statistical problems we encounter difficulties. 

Keynes identifies two types of problems: 61 



1 The statistical problem of attempting to establish the true 
relative frequency when we ordinarily are given only selections 
from the series involved, not the entire series. 

2 The inductive problem of arguing from the frequencies in the 
known series to the frequency in the desired series. 

It is difficult to see how the Principle of Indifference can carry us 

far toward a solution of these and other advanced statistical 

problems, and, indeed, Keynes presses no further. In the example of 
the marriage, therefore, the most we can say is that good, varied, 
statistical evidence will give a very high probability that the value 
of p is very close to f (always remembering that we are talking 
about a random man of thirty and not some definite individual). 

In the other type of repetitive event, where we are concerned with 
the probability that a (some, any) throw of a die will be a Five, 
Keynes reverts to the Classical solution of Indifference. He does, 
however, caution us that the total evidence must be symmetric, and 
the frequency of Fives thrown so far by this die is part of that 
evidence. The probability 1/6 is not based on the evidence concerning 
past frequencies, it is based on the Principle of Indifference. The 
only reason for checking past performance is to make sure that 
application of the Principle is not precluded by asymmetrical 
evidence (evidence of bias). 

Indeed, Keynes has nothing but scorn for attempts to base 

probabilities on empirical, a posteriori observations when a priori 
methods are available, or attempts to confirm or deny probabilistic 
conclusions by empirical test. He mentions, 62 

as a curiosity, ‘the 

enormously extensive investigations of the Swiss astronomer Wolf 
who ‘recorded altogether... in the course of his life 280,000 results 
of tossing individual dice.’ Most of the results were close to theoretical 
expectations, but in one experiment of 20,000 tosses the a priori 
predictions were violated considerably. Could this be an empirical 
disproof of some element of probability theory? No, says Keynes, 63 

because 

The explanation of this is easily found; for the records of the 
relative frequency of each face show that the dice must have 
been very irregular, the six face of the white die, for example, 
falling 38 per cent more often than the four face of the same 

die. This, then, is the sole conclusion of these immensely 
laborious experiments, – that Wolfs dice were very ill made. 



I invite the reader to reflect seriously on this whimsical example, 
for it illuminates one of the central features of a priori probability 
which has perplexed many people in the past – the theory is never 

wrong and neither it nor any of its predictions can be refuted by 
experience. 

The simplest reason for this unassailability, which Keynes appeals 
to in laughing off Wolfs experiment, is common to Classical theories 
as well. It is that all statements and predictions concerning games 
of chance assume that the game is fair. They are generally worded, 
‘For an unbiased die, the probability of... ’ or ‘Given a well-shuffled 
deck,... ’ If these qualifying phrases are not explicitly present, they 
will always be invoked as ‘implicit assumptions’ or ‘basic conditions 
for the application of the theory’ when things go wrong. If the 
qualifiers are explicit, the entire prediction has the form ‘If the dice 
are fair, then the probability of a five is 1/6.’ In conventional symbols: 

(1) p &#x2283; q. 

Now suppose we run the experiment and the prediction fails, i.e., 
we discover that – q is true. We now have two alternatives, we can 

either abandon (1), or we can declare that p is false. The theorist of 
course prefers to say that p is false. Is that a legitimate move or is 
he just refusing to accept the recalcitrant evidence? 

It depends, obviously, on what we mean by ‘fair dice.’ If this were 

an empirical theory, ‘fair dice’ might refer to certain physical features 
of regularity, uniform density, etc. But for a priori theories in general, 
as A. J. Ayer says, ‘A true coin, or a true die, is simply defined as 

one that yields results which are in accordance with the a priori 
calculus of chances. But then all these judgments become mathematical 

truisms.’ 64 It should be clear to the reader that no empirical 
evidence can ever refute a mathematical truism. 65 It follows, then, 
that any die which fails to perform as expected is per definition 
‘unfair’, and the probability that a (fair) dice throw will yield a Five 
remains as determined by the Principle of Indifference. 

In the problem of predicting the throws of Five with a given die, 
Carnap’s system has the advantage that it can deal with either fair 
or biased dice. The problem can be treated in the same way as the 
marriage example, although presumably the initial probability will 
be somewhat more reliable. This reliability is based on the nature 
of dice rather than any feature of Carnap’s system. Since dice are 

(normally) designed to exhibit an empirical division in the same 



proportion as the logical division of predicates describing dice results, 
we should not be surprised by the regularity with which they do so. 

Any deviation from this regularity will be detected by c*, and the 

probability for the type of event (a Five) will alter just as the 

probability of a single event did in the previous section, since the 
two probabilities are, on Carnap’s view, identical. 

7 Physical Chance and Absolute Probability 

Keynes was writing in the cheerfully deterministic time before the 

ascendancy of quantum mechanics. Neither he nor those he criticizes 
‘wish to question the determinist character of natural order...,, 66 

but all wish to give some sense to the phrase ‘objective chance.’ 

Keynes discusses, 67 for example, Cournot’s theory that objective 
chance results from the convergence of independent series of events 
and Poincare’s theory that objective chance arises when slight 
variations in the same cause result in great variations in the effect. 
He notes that such definitions as these mean that the real source of 

‘objective chance’ is our own ignorance or inability to perceive and 

analyze complex and varied causal chains. This shows, he says, 
68 

that ‘objective chance’ is really just a sub-species of‘subjective chance’ 

(= Keynes’s own AP probability). In this spirit, he offers the following 
definition, 69 which is intended to pick out those situations (such as 

dice games) where we are most inclined to think of some objective 
chance in operation: 

an event is due to objective chance if in order to predict it, or 

to prefer it to alternatives, at present equiprobable, with any 
high degree of probability, it would be necessary to know a 

great many more facts of existence about it than we actually do 

know, and if the addition of a wide knowledge of general 
principles would be little use. 

This disposes of objective or physical chance – Keynes does not 
think that the universe is so constructed that some things happen 
‘by chance alone.’ He is a classical determinist in his physics. 

Carnap, of course, was thoroughly familiar with modern challenges 
to Newtonian mechanism. How does he feel on the question of 
physical probability? Is there a value P(X) which obtains in the real 
world and measures the chance that an event, X, will occur, or is 



there no randomness in nature? (A terminological point which 
concerns Carnap: a series of events or numbers is random if the 
constituents of the series are not related by any laws whereby the 
value of one determines or influences the value of another and there 
is no external law or process which determines them: 70 the same 

series is disordered if there are relatively few universal laws which 
apply to it, or, less stringently, if there is relatively little similarity 
or functional ordering of the individuals. Thus, 8888 is a highly 
ordered number, but it may yet be a random number if produced by 
a random number generator, while 3.14159 is a comparatively 
disordered number but hardly ever occurs randomly. Carnap contends 

that many statisticians and scientists confuse disorder with 
randomness.) 71 

LFP makes no pronouncement on the concept of physical 
probability. In it, Carnap has nothing to say about determinism or 

pure chance, so to be true to our intended restriction to that volume, 
we should perhaps just say that we don't know what Carnap thought. 
But a few remarks might be helpful, none the less. 

First, it is clear that there can be no objective or physical 
probability if ‘probability’ is understood as Carnap’s ‘probability1,’ 
since this latter is a property of pairs of sentences rather than a 

property of empirical objects. It should be equally clear that accepting 
this terminological restriction has no bearing on whether or not 

every event in the universe is fully determined by previous events 
and universal laws. 

Second, the universe of LFP has been described as ‘unchanging' 72 

since the individuals cannot be ordered in space-time and since the 
specification of the true state-description determines the facts once 

and for all. This might be taken to mean that nothing happens by 
chance since, indeed, nothing happens. I reject this interpretation 
for two reasons: (1) Carnap never intended the languages L to be 

adequate for science, and any defects they have should not be 

interpreted as necessarily applying to the universe (he surely did not 
intend the restrictions on L to mean, e.g., that all properties are 

independent in real life), (2) whether or not some events do occur 

partly by chance, so that ‘red at x, y, z, t1’ probabilifies ‘red at x, y, z, t2' 
but no description of the former sort, together with general laws, 
implies the second description, an extensionally complete description 
of the history of the universe need only include both sentences, not 

any causal or logical connections between them. State-descriptions 



are intended to tell only what is the case, not why it is the case. The 
fact that the true state-description assigns Green to a space-time 
point in my vicinity does not mean that that point could not have 
been Red, or had no chance of being Red, or was determined or 

fated to be Green – it means only that that point is Green (in the 
omnitemporal sense of ‘is’). 

Third, in his ‘Intellectual autobiography’ Carnap describes his 

early ideal of a system of physics as a Laplacian determinism which 
allows calculation of a complete description of the universe at any 
time-point, provided such descriptions are known for two arbitrary 
time-points. 73 The autobiography does not say whether his later 
work in quantum mechanics led him to abandon this ideal or whether 
his friend Einstein influenced him to retain it; all we know is that 
for at least part of his life, Carnap was a determinist. 

Of course the question of physical chance is a metaphysical/cosmological 
problem, on which a logical theorist need not have an opinion. 

But its logical or mathematical correlate is the notion of absolute 

probability. Surprisingly, Keynes and Carnap both are willing to 

speak (guardedly) of the absolute probability of something. 
Ordinarily one would think that ‘the absolute probability of X' 

would stand in contrast to ‘the relative probability of X' so that the 
latter is dependent on some evidence while the former is not. But 
the inherently relational nature of AP probability makes it meaningless 

to talk about probabilities in this abstract fashion. 

It is as useless, therefore, to say ‘b is probable’ as it would be to 

say ‘b is equal,’ or ‘b is greater than,’ and as unwarranted to 

conclude that because a makes b probable, therefore a and c 

together make b probable, as to argue that because a is less 
than b, therefore a and c together are less than b. 74 

AP probabilities always vary with the evidence just as distance 
varies with the starting-point (‘How far is China?’ ‘From where?’). 
But what happens when one has collected all available evidence? 
Then, Keynes thinks, one does indeed have the probability of X. He 
does not even require that we include all possible evidence, merely 
all evidence now known to us. 

If h specifies the Universe of Reference, i.e. if its group comprehends 
the whole of our knowledge, p/h is called the absolute 

probability of p, or (for short) the probability of p; and if p/h = 1 



and h specifies any real [i.e., known to be true] group, p is 
said to be absolutely certain or (for short) certain. 15 

Carnap is in complete agreement with Keynes’s dictum that 
probability is always relative to some evidence. There is likewise no 

room in his system for an absolute probability independent of any 
evidence and he identifies the absolute probability of X with the 
probability all things considered. 

There is, however, a role – and a very special role indeed – for 
probabilities which are independent of any empirical evidence. These 
are called ‘null-confirmations’ by Carnap. In other systems they 
might be labelled ‘initial’ or ‘a priori’ probabilities. One of their 
functions is to enable Carnap to specify the probability of any given 
sentence in a language system, based solely on considerations of 

logical range. This is an accomplishment peculiar to Carnap’s system 
(and others similar) of AP probability, which already makes it more 

powerful than most. But it has another consequence which might 
be of even greater practical importance – it guarantees that initial 
probabilities are always attainable for the application of Bayes’s 
Theorem. 

The use of Bayes’s Theorem (or the ‘inverse’ of Bernoulli’s 
Theorem) to convert relative frequencies into probabilities has been 
a bone of contention among probability theorists throughout the 
history of the field. In a cogent and detailed argument, 76 Keynes 
had sought greatly to curtail applications of such formulae on the 

grounds that one almost never possesses the required numerically 
definite values for the initial probabilities. Carnap agrees that such 
prior probabilities are required for the application of the theorem, 
and further agrees that most other systems of probability are 

incapable of generating them. 77 But in his system , c*(h, e) is always 
computable (for finite systems), whatever h and e might be. Thus, it 
seems that Bayes’s Theorem will be applicable in many of those 
cases where Keynes had disallowed it. 78 

But useful as null-confirmations are, they are not what Carnap 
would mean by ‘the probability of X.’ We might be inclined to say 
that there is no meaning for this phrase in Carnap’s system – and 
in one respect this is so. Clearly every hypothesis, X, has a vast 

(perhaps infinite) number of different probabilities based on the many 
different possible sets of evidence e,e',e", etc. Nothing in the system 
distinguishes any one value over any other. Therefore we are unable 



to identify the probability of X. But isn’t this, after all, what we truly 
were seeking? 79 

It is true that nothing in the formal system Carnap constructs 

gives any preference to one of these probabilities over another, but 
it does not follow that we therefore have no idea which to choose. 
If I am interested in the probability that it will rain tomorrow (h), 
and I choose to evaluate it on the basis of evidence (e) that the 
Premier of China loves eggs, Carnap’s system will (ideally) give me 

a definite numerical value for c(h, e). If I choose to act on this value, 
I will break no formal rules of inductive logic, but I will be acting 
rather foolishly. 

The foolishness of my act arises here from the fact that I am acting 
on evidence which is irrelevant to my problem and ignoring evidence 
which is relevant. The concept of Relevance of Evidence is a difficult 
one – it seems likely that there can be no general rules for determining 
in advance which evidence is relevant and which is not. The usual 
‘definition’ of Relevance is something like ‘A sentence (or event, etc.) 
A, is relevant to another sentence (etc.), X, if and only if A is not 

stochastically independent of X.’ 80 But stochastic independence of 
A and X means only that P(X) = P(X | A), that is, the probability of 
X given the fact (or knowledge, or assumption) of A is no different 
from the original probability of X. 81 This obviously gets us no 

forrarder, since the whole point of asking about the relevance of A 
is to decide whether or nor we should include it in our calculation 
of P(X). If deciding the relevance requires us to calculate P(X) and 
P(X | A) and see if they are equal, it would have been simpler to just 
go ahead and include A in the evidence to begin with. If A is 

stochastically independent of X it will have no effect on the calculated 
value of P(X); if it is not independent (and therefore it is relevant) 
we must be careful not to leave it out. Therefore we should include 
A in our evidence. But the same argument applies to every sentence 

which is known to be true but not known to be stochastically 
independent of X. Does that mean we must include in the evidence 
everything that we know? 

That is precisely what it means, according to Carnap. To ensure 

against errors of omission when we calculate P(X), we must take 
our total knowledge as evidence. This is what he calls the 

Requirement of total evidence: in the application of inductive 
logic to a given knowledge situation, the total evidence 



available must be taken as basis for determining the degree 
of confirmation. 82 

This requirement (which he attributes to Bernoulli, Keynes, and 
Peirce, and finds sadly lacking in Laplace) is ‘not a rule of inductive 
logic but of the methodology of induction..., 83 Thus we select one 

of the many possible values of P(X) not according to some principle 
in a formal system but in deference to a rule which guarantees the 
inclusion of every relevant sentence which is known. The result is 
what Carnap calls ‘the probability of X’ (although this is not a 

prominent phrase in Carnap – he prefers to stress the relativity of 

probability to given evidence, e, and then let e be everything we 

know). 
But Ayer’s argument can be pushed one step further. Even if we 

agree that the requirement of total evidence is a reasonable guarantee 
that we will achieve the probability of X, relative to everything we 

know, this is still no reason for thinking that it is or even 

approximates the probability of X in the real world, and that, again, 
is the real point of the game. The aim of probability theory is not 
to tell us things about logic and propositions and evidence but to 
enable us to predict what will probably happen in the real world. 

Carnap does not specifically answer this objection, but I think we 

can construct a reasonable reply from his general attitude and by 
analogy to the remarks he made about abstraction. 84 

It is a fundamental principle of rationality (at least for empiricists) 
that one should base one’s actions and judgments on ‘the facts’. 
But we must not be misled by the ambiguity of this latter phrase. 
It is true that it sometimes has the ontological meaning ‘the facts as 

they really are,’ which refers to the true (description of the) state of 
the universe. It is these facts which ultimately determine the success 

or failure of our actions. If we ‘acted on’ these facts, we could indeed 
maximize our chance of success. But how is one to ‘act upon’ the 
true state of the universe? Empiricists generally agree that most, if 
not all, of our empirical knowledge is at best probable – we have 
no certain grasp of the true state of the universe. What we do have 
is knowledge of ‘the facts’ in the epistemological sense of ‘the facts 
as we know them,’ which consists of those of our empirical beliefs 
which are most highly warranted. We can ‘act upon’ these ‘facts,’ 
since they are known to us and can enter into our deliberations. 
But acting on these facts may or may not maximize our chances of 



success. That depends ultimately upon how much congruence there 
is between ‘the facts as we know them’ and ‘the facts as they really 
are.’ It is one of the chief difficulties of the human condition that 
‘the facts’ which would save us are unattainable and ‘the facts’ which 
we can acquire give no guarantee of success. 

It should be obvious by now that this is not a difficulty peculiar 
to Carnap’s probability theory. The answer to the question ‘Why 
should we act on a probability based on our evidence only, which 

may or may not correspond to the value in the real world?’ is that 
we are always constrained to act on our evidence only and hope that 
it corresponds to the real world. It would be irrational to do 
otherwise. Even if one could give good metaphysical sense to ‘the 
probability of X,' all that we could ever act upon would be ‘the 
value we think, based on what we know, is probably the probability 
of X'. The RF school and Ayer tend to ignore this unfortunate fact 
in their search for the objective probability of X. 

8 The Metaphysical Status of P 

If P is a probability statement in an a priori system, it is held to 
have no metaphysical import at all. It is ‘not a question of facts’ 85 

but a purely formal statement which, if true, is L-true (logically true; 
the ‘L’ does not refer to the languages L). 86 It is ‘independent of the 
contingency of facts because it does not say anything about facts.’ 87 

We are to construe it like '(A & B) &#x2283; A', which is true and can be 
known to be so whatever the state of the universe might be. 

Here Carnap is in complete agreement with Lord Keynes – indeed 
this attitude can be considered the defining feature of AP (or ‘logical’) 
theories of probability. The essential point is that a probability 
determination is a logical relation between sentences (or, for Keynes, 
propositions) and says nothing about the world. If it is true, it is 
logically true and can never be falsified. 

For Keynes there is, however, one metaphysical presupposition 
behind a probability statement, P, or, more precisely, there is a 

metaphysical ground of P’s validity. This ground or basis of P’s 
truth is the existence, in its present form, of the human mind. Keynes 
explicitly denies that probability-relations are objective in the sense 

that any rational being would agree to them. Instead he says that 
they are ‘the degree of probability to which those logical processes 



lead, of which our minds are capable...,' 88 There would be no point 
in trying to escape this restriction because 

If we do not take this view of probability, if we do not limit it 
in this way and make it, to this extent, relative to human 
powers, we are altogether adrift in the unknown; for we cannot 
ever know what degree of probability would be justified by the 
perception of logical relations which we are, and must always 
be, incapable of comprehending. 89 

The validity of P depends, therefore, in a very Kantian sense, on 

the constitution of the human mind. We might even press the analogy 
further by saying that the validity of individual probability-relations 
depends upon the nature of our perception (cf. Kant’s ‘Forms of 
Intuitions’), while the validity of the probability calculus depends 
upon the nature of our reason (cf. the ‘Categories of the Understanding'). 

Now, we might ask ourselves, since Keynes’s probability-relation 
is based on the nature of human beings, like Kant’s famous principles, 
is it also, like those principles, supposed to be regulative of all possible 
human experience? That is to say, can we know a priori that all 
possible experience will conform to the probability calculus and our 

perceptions of probability? This is a complex and difficult question 
which Keynes doesn’t address directly. It may help if we distinguish 
some different senses in which the question might be intended. 

First, if we intend to ask whether it is a metaphysical necessity 
that a is true whenever a/h is very high the answer is ‘no.’ 90 This is 
so because of the generally accepted fact that even a very probable 
event need not occur, 

91 and also because the probability of a is only 
asserted relative to the evidence h, and if some other factor, h' is 
involved, a/h·h' might be very small. 

If we ask whether a must always occur when a/h = 1 and h is 
known to be true (a tautology, perhaps) Keynes’s answer seems to 
be ‘yes.’ At least he says of such a proposition that it is certain. 92 

Now ‘certain’ is, by standard usage, an epistemological term, whose 

metaphysical correlate (usually) is ‘necessary.’ Keynes does not assert, 
but we may reasonably attribute to him, the common view that the 
occurrence of any event described by a certain proposition is 
necessary. If Keynes would accept this principle, then his answer to 
this question would clearly be ‘yes.’ 

Again, if we ask whether the world is such that the entire 



proposition ‘a/h = p' is true whenever we are warranted in believing 
it, the answer is ‘yes.’ In this case, however, it is trivially ‘yes.’ Since 
a probability statement says nothing about the world, it is compatible 
with any metaphysical reality whatsoever. 

Finally, if we ask whether the world is such that ‘a/h = p’ might 
ever be falsified when applied to the world, the answer is indeterminate. 
It is, indeed, precisely parallel to asking whether ‘2 + 2 = 4’ can ever 

fail in practice, and this is clearly not a question to which a general 
answer can be given. If the interpretation is ‘When 2 things are put 
with 2 other things you have 4 things together in one place’ then it 
can indeed fail in experience. For miscible liquids, 2 quarts of this 
put with 2 quarts of that result in somewhat less than 4 quarts 
altogether. If every two objects in the universe were ‘miscible’ with 

every other object in a fixed ratio, it seems quite reasonable to think 
that applied or practical arithmetic might be quite different. (I leave 
it to the reader’s intuitions to decide whether such a universe ‘fails 
to obey the laws of addition,’ or, even worse, ‘falsifies’ them.) 
Keynes thinks that the utility but not the validity of both addition 
and probability theory depend upon the state of the universe. Thus, 93 

If there were no repetition of detail in the universe, induction 
would have no utility. If there were only a single object in the 
universe, the laws of addition would have no utility. But the 

processes of induction and addition would remain reasonable. 

It seems, then, to be a contingent metaphysical fact that the 
universe obeys the principles of probability theory. There is only 
one correct system of probability (in whatever sense of ‘is’ makes 
sense). Its pragmatic value, but not its truth, depends upon the state 
of the universe. 

Carnap nearly agrees with this in LFP, but in his later writings 
(especially The Continuum of Inductive Methods) he tends to abandon 
the single function c* in favor of a continuum of possible inductive 
methods, characterized by the parameter λ (which can be taken as 

a measure of ‘degree of caution in drawing inferences’). Thus we 

have the task of choosing our inductive method before (during? 
after?) our attack on the problem. On what grounds do we make 
this choice? 

In LFP, when Carnap was still defending c* as the only proper 
confirmation-function, he set about it this way: 94 



We shall discuss various definitions for concepts of degree of 
confirmation or requirements for such definitions. We shall see 

that it is often hardly possible to judge the plausibility of 
definitions or requirements, that is, their adequacy for an 

explication of probability1, by merely inspecting the definitions 
themselves. The judgement is rather to be based on an investigation 

of the consequences to which the definitions or 

requirements lead. Thus, the plausibility of a definition is 
judged by the plausibility of the theorems derived from it; and 
this in turn can often be judged in the easiest way by studying 
concrete numerical examples. 
The idea of judging c-functions by their consequences might well 

lead one to think that Carnap adopts a pragmatic attitude towards 
the assessment of probability systems. This is not quite the case. 

When he sets out to evaluate the consequences of the system, he 
doesn’t ask whether they lead to success in practice, as a pragmatist 
would; nor does he ask if these consequences are in agreement with 
reality, as a correspondence theorist might. Instead, he asks whether 
they correspond to our intuitive judgments on the matter. Applying 
this same method to the choice between whole systems of inductive 

logic, Carnap later writes: 95 

It seems to me that the reasons to be given for accepting any 
axiom of inductive logic have the following characteristic 
features...: 

(11) (a) The reasons are based upon our intuitive judgments 
concerning inductive validity, i.e., concerning inductive 

rationality of practical decisions (e.g., about 
bets). 

Therefore: 
(b) It is impossible to give a purely deductive justification 

of induction. 
(c) The reasons are a priori. 

Carnap’s method of justifying (or even just choosing) a system of 

probability seems to lead us ultimately back to the same bedrock 
as Keynes’s did – human beings have intuitions about probabilities 
and any satisfactory system for the formalization of probability must 

conform to those intuitions. 
This result could have been anticipated, perhaps, by reflecting on 



Carnap’s aim in LFP. It is his intention, he says, to give an explication 
of terms like ‘degree of confirmation’ and ‘probability.’ 96 

Since the primary requirement for an explication is similarity to 
the term explicated, 97 it follows that the primary requirement of a 

theory of (AP) probability is that it conform to the existing ideas, 
practices, and intuitions of human beings in matters of probability. 
The fact that such a theory also conforms to the external world (by 
leading, e.g., to success in betting or in estimating empirical frequencies) 

is surprising only if we fail to reflect that (1) the world to which 
it conforms is the world as perceived by that same human mind, 
not (necessarily) the noumenal world, and (2) those ideas, practices, 
and intuitions were themselves evolved (God-given, developed) for 
the specific purpose of successfully dealing with the world in just 
such situations. So far as the human mind successfully represents 
reality, and so far as a theory of probability successfully represents 
human intuitions and judgments, just so far will the theory conform 
to reality. But the primary aim of AP theories of probability is to 

conform to the mind and not the world. 98 

9 The Epistemological Status of P 

Our probable knowledge, like the rest of our knowledge, is fundamentally 
based on intuition, according to Keynes’s epistemology. 

All our knowledge is divided by Keynes into that which is direct 
and that which comes from argument. 99 There are three sources of 
direct knowledge (Keynes seems to prefer ‘direct knowledge’ and 
‘direct acquaintance’ to ‘intuition’): 100 

1 We experience our own sensations. 
2 We understand ideas and meanings. 
3 We perceive ‘facts or characteristics or relations of sense-data 

or meanings 

One of the most important types of things with which we are 

directly acquainted through perception is the logical relation between 
two propositions. If we have direct knowledge of R, it may happen 
that we will also have direct knowledge of ‘R &#x2228; S’, in which case we 

will have ‘indirect knowledge,’ or ‘knowledge by argument’ (rather 
than by acquaintance) of S. But modus ponens is not the most basic of 
these relations – that honor goes to the probability relation a/h = p. 
For Keynes, ‘the laws of inference are the laws of probability,... the 



former is a particular case of the latter.’ 101 Here, for example, modus 

ponens is just the special case where a/h = 1. 
Some among these relations of probability are so general and so 

fundamental that they constitute a body of axioms and theorems 
which correspond to the traditional Laws of Thought, but go beyond 
those Laws ‘in dealing at the same time with the laws of probable, 
as well as of necessary, inference.’ 102 Chapter XII is devoted to 

setting forth this select body, which is capable of generating all formal 
truths of inference. All of these relations are known through direct 

acquaintance and suffice for formal logic and probability theory, 
but if we wish to include Induction as a branch of probable reasoning, 
we require one more principle, with a somewhat different epistemological 

basis. 
The required principle, which Keynes called the Inductive Hypothesis, 

has come to be known as the Principle of Limited Independent 
Variety. 103 It asserts that, in the relevant universe of discourse, all 
differences between objects arise from a finite number of generator 
properties, or, to put it another way, ‘that the amount of variety in 
the universe is limited in such a way that there is no one object so 

complex that its qualities fall into an infinite number of independent 
groups...., 104 This principle assures us that every empirical generalisation, 

or statistical correlation, has at least some finite probability 
a priori. Once this initial probability is established, we can use what 
is basically a variation on Bayes’s Theorem, together with consideration 

of analogy, to increase the probability through experience. 
The Principle of Limited Independent Variety is first introduced 

as a logically necessary presupposition for the validity of induction, 
but Keynes then goes on to argue that it is a justifiable assumption 
on grounds that closely resemble Kant’s notion of synthetic a priori 
truths. It is known, he says, in the same way that we know the 

Principle of the Uniformity of Nature and the Law of Causation. 105 

Such knowledge is synthetic because it goes beyond ‘what may be 

regarded as an expression or description of the meaning or sensation 

apprehended by us.’ 106 The principles are not strictly a priori because 
we cannot know in advance ‘that [they] would be equally applicable 
to all possible objects.’ 107 But when we have at least some experience 
of phenomenal objects, ‘we have a direct assurance that in their 
case... the assumption is legitimate. We are capable, that is to say, 
of direct synthetic knowledge about the nature of the objects of our 

experience.’ 108 



In the end it seems that, while Kant’s synthetic a priori knowledge 
derives from reflecting on and thinking about our forms of knowledge 
and intuition, the principles that Keynes accepts are just a product 
of one of our forms of knowledge. We have the faculty to know 
such non-inductive generalizations about experience, and there’s an 

end on’t. 

Returning now to lower level probability judgments, we find that 
some are derived through the probability calculus and are therefore 
known by argument; but of course the probability calculus generates 
no probabilities unless at least some probabilities are available as 

data, and these initial probabilities must be known directly. Many 
philosophers have balked at Keynes’s assumption that we somehow 
have the faculty of directly perceiving probability relations. Keynes 
himself did not seem particularly concerned to identify or analyze 
the faculty, or justify his belief in it. Hilary Putnam has suggested 
that Keynes’s lack of concern over assuming such a faculty is a 

direct result of his earlier deep acceptance of G. E. Moore’s ethical 
theories. 109 Whatever the reason, it just is the case that Keynes 
assumes throughout his work and never tries to explain or justify 
an innate human ability to perceive the probability relation between 
propositions. 

Not even Keynes, however, was extreme enough in his intuitionism 
to think that we could always and easily determine an exact numerical 

probability for any proposition on any body of evidence. Instead, 
he asserted his famous doctrine that some probabilities are non-numerical 

and some non-comparative. Perhaps the best way to 

substantiate this claim is to examine our own intuitions. I think, for 

example, that there is some probability that the Dean will resign. 
But I can certainly not specify a numerical probability value for that 
event. And if I am asked whether I think it more likely that the 
Dean will resign or that the new library will open on time, I will be 
unable to answer. 110 

There is, however, one class of cases in which we do perceive 
definite numerical probabilities. This is the class of cases where the 

Principle of Indifference can be applied. Besides renaming the 

Principle of Insufficient Reason, Keynes also revised and restricted 
it. He sought to avoid paradoxes by requiring the alternatives to be 
ultimate rather than divisible, and he sought to avoid mistakes by 
requiring that all relevant evidence be symmetrical with respect to 

the alternatives. In these – and only in these – cases we can confident- 



ly apply the Principle of Indifference to arrive at precise knowledge 
of the equiprobability of the alternatives. 

Again the epistemologist who wishes a justification of principles 
will be disappointed. Keynes makes no effort to explain why 
symmetrically-evident alternatives must occur with equal frequency 
or even to explain why we must think that they do so. He seems to 

believe it self-evident that some version of the Principle of Indifference 
is essential to probability theory. His only concern is to find a version 
which is both useful and reliable, and it is to this that he devotes 
his attention. 

But even with the restrictions and refinements Keynes added to 
the Principle, it is not sufficient by itself to generate the initial 

probabilities without depending on direct perception. Nor will any 
other rule be able to do this: ‘there is little likelihood of our 

discovering a method of recognising particular probabilities, without 

any assistance whatever from intuition or direct judgement.’ 111 The 
reason for this is that we must rely upon direct judgment to tell us 

when the Principle is applicable. For example, in a dice game we 

know that the six faces of the die are different – they are located in 
different places and they have different patterns of dots painted on 

them. Thus we have asymmetrical evidence for each side and the 

Principle may not be applied – unless we can eliminate the differences 
as irrelevant. But we have no rule for identifying irrelevant considerations, 

so we must make a direct judgment in this case. But in every 
case there is some difference between the alternatives (cf. Leibniz’s 

Principle of the Identity of Indiscernibles), so it follows that in every 
case we must make some judgment of relevance in deciding whether 
to apply the Principle. 112 

When all of these conditions are fulfilled, and we apply the 

Principle of Indifference, it serves as an aid or tool for our intuition, 
enabling us directly to perceive the proposition (a/h) = x.' Since this 

knowledge is direct, it is also certain, 113 but it is generally only 
knowledge about a and not knowledge of a. Only in the case where 
x = 1 can we be said to have knowledge of a, but when we manage 
this, our knowledge is certain. 114 An obvious precondition of the 

certainty of a is that the evidence itself, h, must also be known. 
Indeed, Keynes imposes this restriction on all probability implications. 115 

It is allowed that h may contain some ‘secondary propositions' 
– statements of probability-relations, like ‘a/h = p’ – but it is 

required that these and all other members of h be known. To be 



known, such statements must be true and not just probable. It 
follows, then, that all our probable knowledge is based on some 

certainty. Keynes’s system does not allow us to conclude anything 
from a proposition if our degree of rational belief in it is less than 
certainty. 116 

I assume then that only true propositions can be known, that 
the term ‘probable knowledge’ ought to be replaced by the term 

‘probable degree of rational belief,’ and that a probable degree 
of rational belief cannot arise directly but only as the result of 
an argument, out of the knowledge, that is to say, of a secondary 

proposition asserting some logical probability-relation in 
which the object of the belief stands to some known proposition. 

With arguments, if they exist, the ultimate premisses of 
which are known in some other manner than that described 
above, such as might be called ‘probable knowledge,’ my theory 
is not adequate to deal without modification. 

The spirit of all this is very similar to C. I. Lewis’s epistemology, 
and I think it likely that if Keynes had constructed a complete 
epistemological system, its similarities to Lewis’s would have been 
far more pronounced than its differences. 

Carnap’s epistemological views, on the other hand, are much more 

like the Logical Positivists’. 
If P is a statement within Carnap’s system of probability which 

has the form c*(h, e) = p (for a given language, L) the question of P’s 
truth (and likewise our knowledge of it) is a purely semantic question. 
The c-function is effective in the sense that if we completely grasp 
the structure of L, and the meanings of its terms (and the rules of 
deductive logic and the c-function) we can always decide whether 
or not P is true by strictly a priori means (provided the system is 
finite). This means that P is ‘L-determinate’ (i.e., its truth or falsity 
is a logical question) and, if true, it is L-true. 

It follows from all of this that any c*-statement will be agreed to 

by all competent investigators who take the trouble to investigate 
it – a considerable epistemological virtue. 

But there are agreements and then there are agreements. In 

particular, I can agree that P, but deny that the probability of h is 

p. (This point is clearly and exhaustively analyzed in A. W. Burks’s 
essay ‘On the significance of Carnap’s system of inductive logic for 



the philosophy of induction,’ 117 from which the following argument 
borrows heavily.) 

If I believe that the probability of h is p, I will normally be willing 
to act on that belief. For example, I will be willing to bet on h at 

any odds equal to or better than p:( 1 – p). 
But if I accept a different measure function, say m&#x2020; or adopt some 

other theory of probability entirely, I may argue that the probability 
of h is really q – even though I agree that P is true a priori 
(logico-mathematically). 

So a particular proposition, P, may be well-founded and completely 
warranted within Carnap’s system, but its acceptance as a fact 

about the world will still depend on our epistemic attitude towards 
the system as a whole. Here Carnap argues that: 

1 We clearly do have a concept of logical probability. 
2 Although imperfect, c* is the best explication of that concept 

yet developed. 
If we accept these premises, Carnap thinks, then we should agree 

that all c*-statements are sufficiently warranted until and unless 
someone develops a better system of quantitative inductive logic. 

The epistemological status of P is therefore analogous to that of 
a theorem in a system of geometry – it is logically true within the 
system, but one must present evidence to justify the conclusion that 
it applies to reality. The difference between the two is that the ‘reality’ 
to which a geometrical statement must apply is physical, while a 

probability statement is intended by Carnap to apply to our 

inductive intuitions and behavior. 

10 The Rationality of Probability Behavior 

Keynes is concerned with delimiting and organizing the kinds of 
probability behavior which are rational, but he evidently sees no 

possibility at all that the entire enterprise might be misguided. On 
the very first page of Chapter I he says that ‘in the actual exercise 
of reason we do not wait on certainty, or deem it irrational to depend 
on a doubtful argument.’ 118 He continues this attitude throughout 
the book, asking always which beliefs are rational and which 
fallacious, but never seeking to explain the nature of rationality in 

general. 



Keynes’s attitude is partly explained by his epistemology. Our 
knowledge of the rules of probability is direct knowledge and it is 

epistemically prior to the rules of deductive logic. If we take deductive 

logic as the paradigm of rationality (as people were still doing in 

Keynes’s day) it would be illegitimate to use that logic against its 
own foundations. Therefore the rationality of probability theory is 

beyond question – it is more fundamental than our method of 

questioning it. 
As noted above, 119 there is one passage in which Keynes admits 

that the utility of probability behavior depends on the nature of the 
universe, but he denies that its rationality does! It follows from this 
that probability theory would be rational even if it were not useful. 
Clearly Keynes is using the word ‘rational’ to mean something much 
more like ‘in accordance with the Laws of Thought’ than like ‘leading 
to success in practice.’ But on this definition it is analytic that 

probability theory is rational, since the Laws of Thought are the 
laws of probability theory. 

The reader will note that I have equivocated by starting out to 

talk about probability behavior and ending up talking about 
probability theory. The former is my concern, but Keynes deals only 
with the latter. In his work on probability, Keynes is far more 

the son of his father the logician than of his mother, the Mayor of 
Cambridge. He is concerned with theory, not action. Perhaps the 
best interpolation of his views on action would be that in this world 
it is (contingently) wiser and more conducive to success to act on 

rational beliefs, and probability theory tells us which beliefs are 

rational. 
We have examined already Carnap’s argument that c*-statements 

are warranted because they are the best available probability 
statements. But do we really need probability statements – can 

Carnap show that our probability behavior is rational or, what 
might be the same, that it will lead to success in practice? 

Obviously he can’t show that any one action taken on the basis 
of probability will succeed, since the very concept itself involves 
some possibility of failure. But it would be sufficient if he could show 
that in the long run, X will be successful if he acts on probability. 120 

If X could know this, then he would clearly be justified in 
following the inductive method. It is clear that the truth of [this 
hypothesis of success] is not logically necessary but depends on 



the contingency of facts. Statements like [this] which assert 
success in the long run for the inductive method would be true 
if the world as a whole had a certain character of uniformity to 
the effect, roughly speaking, that a kind of events which have 
occurred in the past very frequently under certain conditions 
will under the same conditions occur very frequently in the 
future. 

Thus induction (and probability behavior) is certainly justified if 
the world is uniform. But we have said that X need not have a 

guarantee of success for his individual action to be rationally justified. 
By the same token, Carnap argues, we need not be certain of the 

uniformity of the world for induction (and probability-behavior) to 
be rationally justified. It is sufficient to establish that there is some 

probability that nature is uniform. Many theorists argue that even 

this much cannot be established, since it is an empirical statement 
and could only be justified if we presupposed the method of induction. 
But, for Carnap, all statements of AP probability are analytic, 
including this one. It is in fact possible to establish by logic alone 
that the hypothesis of the uniformity of nature is very probable (on 
the accumulated total evidence) and that X therefore has a probability 

of success in the long run. Thus X is justified in his probability 
behavior. 

Now this appears to be a justification of induction by showing 
something about the nature of the world: that it is probably uniform. 
But there are a couple of catches. Catch number one is that if we 

accept probable uniformity because Carnap has established it 
analytically, then all we have accepted is a logical relation between 
a set of evidence and a conclusion. But such an analytic a priori 
statement can say nothing about the world – how then can it give 
X an assurance of success in the real world? Carnap’s reply is that 
it cannot: ‘it is not possible to give X an assurance of success even 

in the long run, but only of the probability of success, as in [the 
statement above]; and this statement is itself analytic.’ 121 

Why should X act on the basis of a purely analytic statement? 

Well, says Carnap, for the same reason he acts on an ordinary 
probability statement, like the one that it is probably going to rain 
tomorrow. In the first place, X has more than just the analytic 
statement – he has also the empirical evidence mentioned in it. In 

the second place, 122 



it is reasonable for him to take suitable action; for example, to 

take his umbrella or to bet on rain rather than non-rain. For a 

practical decision is reasonable if it is made according to the 

probabilities with respect to the available evidence, even if it 
turns out to be not successful. Going back to the general 
problem, it is reasonable for X to take the general decision 
of determining all his specific decisions with the help of the 
inductive method, because the uniformity of the world is 

probable and therefore his success in the long run is probable 
on the basis of his evidence, even though he may find at the 
end of his life that he actually was not successful and that his 

competitor who made his decisions in accordance not with 

probabilities but with arbitrary whims was actually successful. 

So far as I can see, this amounts to saying that X is rationally 
justified in his behavior because it is reasonable to act on probabilities, 

including the Big Probability that Nature is Uniform. But if we 

knew why it was reasonable to act on probabilities we wouldn’t 
have this problem in the first place. Thus, the first catch is that if 
we accept the probable uniformity of nature as analytic, we have no 

reason for acting on that probability except Carnap’s bald assertion 
that it is reasonable to do so. 

So much for catch number one – now for Catch-22 (Catch-22 is, 
of course, inescapable and all-embracing: ‘There’s just one catch, 
and that’s Catch-22.’ 123 ) We have been arguing above about whether 
or not Carnap succeeds in justifying probability-behavior by merely 
establishing that the probable uniformity of nature is analytic. But 
whether or not this is a reasonable procedure, must we agree that 
he has established that nature is probably uniform? How does one 

go about this? 
Well, first, we must codify all available empirical evidence and the 

hypothesis of high uniformity, then we compute the c*-confirmation 
of the hypothesis given the evidence. Carnap asserts that this value 
will be high enough, though it would be reasonable to balk at that 
assertion (if the hypothesis were stated as a universal law, for example, 
its confirmation would necessarily tend towards 0 as a limit 124 ). But 
even if we accept that the value of c* is high, we need not necessarily 
accept that the probability of h is high (vide the previous section). 
Thus Carnap has at most shown that probability-behavior is rational 



if we first accept his theory of probability. Catch-22 is that this 

justification, like so many others, requires us first to assume what 
we are setting out to prove. It is, in short, viciously circular. 

So much for Carnap’s views in LFP. I have quoted them rather 
extensively, in the process of criticizing them, because he says later 
that he was not attempting a justification at all! Instead, the section 
from which we have quoted is said to have been ‘mistaken’ for such 
a justification because of his ‘misleading’ use of the word ‘justification..' 125 

In ‘Replies and expositions,’ Carnap agrees with Burks’s 
assertion 126 that the controversial section had dealt only with the 
‘internal’ question of the c*-confirmation of the uniformity hypothesis, 

while the justification of induction (or the selection of a c-function) 
is an ‘external’ question which cannot properly be answered by such 
a method. On this latter question, Carnap claims, he ‘said next to 

nothing’ in LFP, 127 Even in ‘Replies and expositions’ he refuses to 
take up the general problem, saying only that such a justification 
will not require general synthetic propositions about the nature of 
the world because ‘questions of rationality are purely a priori’ 128 in 
the sense that rational procedures are justified only by showing that 

they conform to our intuitive notion of rationality – not by showing 
they conform to the nature of the world (see above, ‘The metaphysical 
status of P’). In a sense there can be no question about the rationality 
of probability-behavior in general, just as there can be no question 
about the rationality of rational behavior in general. The only 
question is whether certain theories or types of actions conform to 
our a priori standards of rationality. Carnap thinks that actions 
based on the c* (or similar) system of quantitative inductive logic 
do conform to those standards, but he chooses not to argue this 

systematically. He does, however, present a rather extensive argument 
intended to show that AP theories of probability are far superior 

to RF theories as a ‘guide to life,’ which can be taken to mean that 
action based on AP probability is at least more rational than that 
based on RF probability. 

In his argument, Carnap says that a statement of probability2 
(= RF probability), while having the advantage of saying something 
about the world and hence being empirically meaningful, suffers the 

disadvantage of all empirical statements in being sometimes false, 
often unknown, and never certain. Probability1 (= AP probability), 
on the other hand, is analytic and therefore knowable with certainty, 



but says nothing about the world. Yet Carnap maintains that it can 

and should act as a guide for action. In an analogy with estimates 
of other kinds, he says 

129 

Practical decisions of a man are often dependent upon values of 
certain magnitudes for the things in his environment. If he 
does not know the exact value, he has to base his decision on an 

estimate. This estimate is given in a statement of the form: ‘The 
estimate for the magnitude in question with respect to such 
and such observational results is so and so.’ This statement is 
purely analytic. Nevertheless it may serve as a basis for the decision. 
It cannot, of course, do so by itself, since it has no factual content; 

but it may do so in combination with the observational 
results to which it refers. 

Now clearly Carnap is correct in saying that from the evidence 

together with the estimate statement we cannot infer the actual value 
of the magnitude. Why then do we act as if we knew that value? 
We seem to act in accordance with some rule of the sort that I call 
the Rule of Estimation: 

RE: When a magnitude is unknown, assume it to be (posit) that 
value indicated by the rules of estimation and all available 
evidence. 

Those who do not care for rules of action might prefer merely to 

give arguments justifying ‘estimation behavior’ as rational. Such an 

argument must say something about the nature of the world and 

something about the rules of estimation. It should be clear that what 
makes an estimate more or less useful is not the depth of its 
analyticity, but the extent of agreement between the rules of its 
derivation and the external world. If we chose to estimate the true 
value of a quantity, X, by the sum of the squares of the observed 
instances, Xi, rather than by their arithmetic mean, we would still 
have an analytic estimate, but one that would be thoroughly useless. 
Thus Carnap’s own analogy is strongly suggestive that any concept 
of probability – analytic or not – stands in need of a justification by 
some uniformity principle or by a Reichenbachian or other pragmatic 
areument. 

Although Carnap sees there is a problem here, he thinks of it as 

a problem in the application of probability only. He in fact discusses 
many possible rules, similar in form to my RE, for the application 



of probability! to practice. He concludes that the optimum rule for 
action is 130 

Rule R5. Among the possible actions choose that for which 
the estimate of the resulting utility is a maximum, 

where the value of an action is its mathematical expectation and its 

utility is calculable according to Bernoulli’s Law of Utility. 
It is Carnap’s position that ‘It may be assumed that the present 

rule or a similar one using likewise inductive concepts like 
probability!, estimate, etc., would be adequate as a “guide of life”, 
that is, as an explicatum for the vague concept of a reasonable 
decision’ 131 provided that adequate methods for the quantitative 
determination of probabilities and utilities were available. 

Now this rule (and most other rules for the same purpose) depends 
fundamentally upon the notion of a mathematical expectation. But 

Carnap has a rather compelling argument to the effect that a 

definition of ‘mathematical expectation’ which is based on probability2 
is considerably different from the historical meaning of that 

term. As originally developed, the expectation function was intended 
to serve as a guide to action by projecting an expected value for 
each alternative course on the basis of present evidence. What Carnap 
calls the c-mean estimate of a value will still serve that purpose. But 
a ‘mathematical expectation’ based on concepts of probability2 (RF 
probability) is somewhat different. Such a value is characterized by 
a dependence not on the evidence but on the facts. In any empirical 
situation, it is quite likely that a person will not know what the 
correct value is: thus it hardly seems appropriate to call it his 
‘expectation’ or to urge it as a guide for his action. Perhaps it would 
be acceptable to call it his ‘objective expectation,’ since it is based 
on the actual values and frequencies of the situation (this would be 

particularly appropriate if we agree that there is such a thing as the 

probability of X), but to avoid unnecessary proliferation of terms, 
we shall adopt Carnap’s convention and refer to the two concepts 
as ‘expectation1’ (Carnap’s c-mean estimate, or, generally, a priori 
expectation) and ‘expectation2' (any relative frequency expectation). 132 

It is clear that an expectation2 cannot be used as a guide 
to life, since it is generally not known at the time of decision. 
Expectation1 must be used instead. Thus probability1 (AP probability) 

is the only appropriate guide for life, and behavior based on 

it is more rational than that based on probability2 (RF probability). 



11 Chief Criticisms of a Priori Theories 

The strongest single criticism against AP theories is that the number 
of logically possible outcomes in no way determines the probability 

of one of these outcomes in the real world – no merely logical 
division can tell us what will probably happen in the future. 

This is, of course, the same objection that was raised most strongly 
against the classical conception of probability. The reader may be 
understandably surprised to find it recurring here, since Keynes and 

Carnap both disavow the unrestricted application of the Principle 
of Indifference which characterized the Classical school. But 
remember that despite his restrictions and revisions, Keynes ended 

up retaining the Principle of Indifference as the only legitimate source 

of numerical initial probabilities. Thus, even if he had succeeded in 
resolving every internal paradox, contradiction, and absurdity which 
can be squeezed out of the Principle, he could still be criticized on 

the grounds that it is a fundamentally invalid method. 
It might require a closer look to see that Carnap is likewise subject 

to this attack, since he explicitly rejects the Principle of Indifference 
on the grounds that it ‘leads sometimes to quite absurd results and 
in its strongest form even to contradiction....’ 133 But Carnap’s 
preferred function for degree of confirmation, c*, in the end declares 
that every structure-description is equally likely and within the 
structure every state-description is equally likely. Carnap denies that 
this assignment is based on or justified by the Principle of In-difference, 

but the effect is the same – probabilities are determined 
by counting (two stages of) equipossible cases. If the objection is 
valid in its particular form, that counting possible cases (equally) 
gives us no valid measure of probability, then it tells against Carnap 
as much as against Keynes and the Classical theorists. And of course, 
if it is valid in its general form, that no merely logical division can 

determine probabilities, it discredits every possible AP theory. 
The basic response to this criticism is that AP probability deals 

with propositions and properties, not things. It doesn’t prescribe to 
the world because it doesn’t say anything about the world But of 
the many possible a priori probability systems, some will resemble 
rather closely the relationship between natural events – just as some 

systems of deductive logic and some parts of mathematics resemble 
the structure of the world. When this happens, we have a tool to 
use in experience – a partial model of the world. If we then wish to 



know the consequences of a real event, we ask the system for the 
modelled consequence in deductive logic, mathematics, and probability 

theory. We then correlate the modelled consequences with 
another real event, and act on that expectation. Evolutionary and 
pragmatic adjustments in these systems have brought two of them 
into very close agreement with the world – it is now our task to 

systematize and refine our probability intuitions to bring them also 
into agreement with reality. 

Besides this general response, there is also a rather forceful ad 
hominem response. Most of these criticisms of AP theories are 

advanced by people who claim to be ‘scientific’ and ‘empirical’ in 
their outlooks – RF theorists and working scientists and statisticians 
especially – and who therefore claim to oppose anything a priori as 

anti-empirical. Yet these very same people will heartily praise 
mathematical modelling as a tool – perhaps the most important 
tool – of science! So far as I can see there are three chief reasons 

why these people reject the attempt to build a mathematical model 
of induction: (1) they think they already have an adequate enough 
model in the RF theory of probability, (2) they find it very difficult 
to accept such ‘counter-intuitive’ results as ‘The initial (null) probability, 

that a man is a leper is 1/2,’ because (3) they persist in 

taking such probability statements as saying something about the 
world. 

The adequacy of RF theories will be examined later. On the 
‘counter-intuitive’ statement, the first necessity is for a sympathetic 
understanding of what it means. Properly rephrased, it says only 
that the logical width of the predicate ‘leper’ is 1/2 that of the 

predicate ‘man.’ It does not mean that we should reasonably expect 
half of the men we meet to be lepers. If this is not sufficient to remove 

the difficulty, we should remember Carnap’s warning that ‘isolated 
intuitive judgments are very often unreliable....[intuitive] judgments 

are more useful if they are made, not on isolated points, but 
in the context of the tentative construction of a system.’ 134 Those of 
us who remember our undergraduate doubts about material implication 

should be sympathetic to this rejoinder. Intuitions are 

immensely valuable, but they can be misleading. No pragmatically 
successful algorithm should be rejected just because parts of it are 

counter-intuitive. 
The point of these arguments is that empiricists should beware 

of a knee-jerk rejection of everything ‘a priori’ based on unhappy 



experiences with rationalistic metaphysics. The abstract formal 
systems of logic and mathematics have served us faithfully – the 
abstract formal systems of AP probability should be given a chance 
to do so as well. 

So much for the major objection to a priorism as such. 
The second general objection to AP theories is that they are 

odiously subjective because they recognize probabilities relative to 

given evidence only. Many RF theorists consider this to be a grave 
defect in AP theories, rendering a probability subordinate to the 
state of knowledge. Their theories, they maintain, deal with the real 
probability, which is objectively determined and not relative to 

anything. 
Both Keynes and Carnap explicitly denied the charge of subjectivity. 

To say that probabilities are subjective is to say that they 
depend on people’s thoughts – this is what both deny. But to say 
that probability is a logical relation between evidence and conclusion 
is to say that it has something to do with people’s thoughts. For AP 

theorists, probability theory has a regulative relation to people’s 
thoughts – it doesn’t describe the way they actually do think, it 
describes how they must think if they are to think correctly. Since 
this still has to do with thinking, Carnap is willing to call it a qualified 
psychologism, 135 but both he and Keynes stress that it is nevertheless 
objective in precisely the way that rules of logic and mathematics 
are. 'P(A &#x2228; B) = P(A) + P(B) – P(A & B)’ is just as true as ‘2 + 3 = 

3 + 2’ and whether or not Bob Schultz believes it has no effect at 

all. A thing is not probable, says Keynes, because we think it so. 

But even if we grant that AP theories are not ‘subjective’ in the 

simple, straightforward way that Subjectivist Theories of Probability 
are, doesn’t the evidence-relative feature make them more subjective 
than the RF theories, which recognize one and only one empirically 
determined value independent of the state of our evidence? In one 

sense this is obviously and significantly true. The aim of RF theories 
is a complete description of certain repetitive aspects of empirical 
reality. The aim of AP theories is a complete description of the 
(actual? optimal?) method used by human beings for probability 
inferences. Clearly the latter is more anthropocentric than the former, 
and, to that extent, more ‘subjective.’ 

Again, each simple statement of RF probability purports to assert 
a fact about the empirical world, while no AP statement does so. 

This makes it more objective if (but only if) we would also say, for 



example, that a statement of descriptive biology is more objective 
than a statement of theoretical mathematics. 

Finally, it might be supposed that AP theories are more subjective 
because they make the probability of an event, E, dependent upon 
the state of our knowledge, while RF theories do not. This is false. 
For any event, E, there are many AP probabilities of its occurrence, 
each relative to a given evidence statement but none relative to human 
knowledge. Our problem in dealing with E is to select the most 

appropriate of these probability statements to use as a basis for 
action. This selection does indeed depend upon the state of our 

knowledge and the keenness of our judgment, but the probability 
itself does not. 

The situation with RF theories is almost precisely parallel. There 
are many real RF probabilities of E, depending on the choice of a 

reference class. 136 This choice is likewise dependent on the state of 
our knowledge and the keenness of our judgment. So far there is 
no difference between the two. Now suppose we have selected our 

reference class (parallel to choosing the evidence-set in AP theories). 
We have indeed picked out a single value for the probability of E, 
but we don’t know what that value is 137 (whereas we do know the 
AP probability determined by e). The only way we could possibly 
know that value is if we had a complete description of the reference 
class, or at least a precise value for the relative frequency of occurrence 

of things like E in the reference class. In the first case, the probability 
is known to be either 1 or 0 by either theory. In the second case, 
where the frequency is known but not the particulars, Carnap’s 
Direct Inductive Inference (and Keynes’s methods, in some cases) 
would give precisely the same value to the probability. In either 
theory, the value of P(E) is not determined by the state of our 

knowledge (the AP probability is determined by a logical relation; 
the RF probability is determined by an empirical frequency) but it 
is only accessible to the RF theorist at a given level of knowledge 
and is equally accessible to the AP theorist at the same level of 

knowledge. So far no difference. 
Now we come to the more usual case. Suppose we have identified 

our reference class (chosen our evidence set) and thereby singled out 

‘the’ probability of X. This probability is known to the AP theorist, 
since it involves only logico-mathematical calculations. But it is 

usually not known to the RF theorist! He can’t know what the 
relative frequency is unless the series has exhausted itself. For most 



series this is not the case and for infinite series it is never the case. 

But presumably he must assign some value to P(E), in the interest 
of action. The value he selects will be totally dependent on our 

experience of the initial segment of the series – how else could he 
arrive at a value? Therefore the RF probabilities used in practice 
are (almost) never the true values determined by Nature, but 
approximations only, which are entirely dependent upon the state 
of our knowledge. Whether this counts as a strong objection to RF 
theories will be discussed later 138 

– we brought it up here only to 

demonstrate that the sense in which the AP value of P(E) is dependent 
on human knowledge is not a peculiar subjectivist defect in that 

theory, but is the same sense in which most of our empirical 
knowledge of the world, including especially the RF value for P(E), 
is dependent on past human experience. 

Another general criticism of AP theories is that they are never 

falsified by experience and hence can never learn from experience. 
We mentioned earlier the presumption originating with CTP and 

generally carried over in Keynes that methods based on the Principle 
of Indifference work when and only when conditions are standard 
(the dice are fair, etc.). 

A broader general explanation is that AP probabilities are never 

refuted by experience because they are indissolubly linked to the 
evidence on which they are based. 

Suppose someone hands us a die and asks us the probability of 
rolling a Five. Using AP theories (or almost any other) we would 
naturally reply that P(5) = 1/6. Now we roll the die 100 times and 
invariably get a Three. Haven’t we been proven wrong? 

The RF theorist who had (perhaps inappropriately) agreed that 

P(5) = 1/6 must indeed now admit that he had been mistaken before, 
but now (he claims), he knows that P(5) = 0. But a careful a priorist 
would originally have said ‘P(5, e) = 1/6.’ Now he will say ‘P(5, e') = 0.’ 
The first statement asserts that the probability of a Five is 1/6 on 

the originally available evidence, e; the second, that the probability 
is 0 on the evidence, e', available after the series of rolls. Both 
statements are true and can be uttered at any time without being 
mistaken. As it happens, we are interested in and rely on one before 
the experiment and the other after, but that does not mean experience 
has falsified either one. It means that experience has made interesting 
and important an equation that had previously been uninteresting 
and unimportant, as happens continually in applied mathematics. 



At most we can say that experience has taught us that our earlier 

knowledge was misleading as a base for prediction – something 
which happens with regrettable frequency in all human endeavors. 
It remains true that the probability based on what we knew then was 

1/6 and that fact cannot be altered. 
These three criticisms – that logic is useless for prediction, that 

AP theories are subjective, and that they cannot learn from ex- 

perience – are the main general objections raised against AP theories. 
Now let us look briefly at some specific criticisms of Keynes and 
Carnap. 

If the number one criticism against Keynes is that he does employ 
the Principle of Indifference, the number two criticism might be that 
he only employs it – he frequently says that numerical probabilities 
can be obtained only where the Principle is applicable. This means 

that such cases as biased dice, and, especially, actuarial cases with 
regular frequencies, cannot be adequately covered by Keynes’s 
theory. This is a point that we saw told heavily against the Classical 
theory. Keynes tried to solve this problem by developing his methods 
of statistical induction. These methods have been largely ignored, 
and, I think, deservedly so. The essential spirit of Keynes is that all 

probabilities are non-numerical, and many non-comparative, except 
in those cases where it is legitimate to apply the Principle of 
Indifference. 

Besides this shortcoming, Keynes is also dated epistemologically. 
Few philosophers of the present Anglo-American generation have 
much sympathy for a system in which axioms are part of the a priori 
laws of thought and even particular probability judgments are based 
on some form of direct perception or intuition. 

These criticisms have been partially responsible for the decline in 
acceptance of Keynes’s views, but in a very real sense I think that 
Keynes has not so much waned as been eclipsed. Those philosophers 
who are inclined towards a priori theories now find a much greater 
center of attraction in the astonishingly creative work of Rudolf 
Carnap. The fact that Carnap’s system is flawed is, as Kemeny 
says, 

139 
or less importance than the fact that a system of quantitative 

inductive logic has actually been constructed. The urge to tinker 
with the system (or try to outdo it with a better one) has proven to 
be strong and widespread among logicians. Even Hilary Putnam, 
who has his doubts about the entire enterprise and thinks it is 

demonstrably impossible to construct a ‘best possible’ algorithm for 



induction 140 has taken the time to contribute an improvement to 

Carnap’s system. 
141 

After the general objections to any a priori theory, the most 

frequently heard complaint about Carnap’s theory is that it makes 

probability language-dependent, and, at least in the present form, 
dependent on very inadequate languages at that. 

To forestall a possible confusion, let me remark that some 

measure-functions are affected by language-changes outside the 

range of the immediate evidence and hypothesis while some are not. 

The first group might well be thought to be language-dependent in 
a more invidious sense than the second. But in both cases the value 
of the c-function is determined solely by the structure of the language: 
its number of structure-descriptions, the range of its predicates, etc. 

It is this more general language-dependence that is the point of the 
most interesting objections, not the sensitivity of some measure-functions 

to external changes. 
To continue then with the main point. Carnap’s system bases 

probabilities in the language rather than in the world – is this 
reasonable or mistaken? 

In LFP, Carnap sought to mitigate this problem by requiring that 
the language of inductive logic be completely adequate for describing 
the world, thus, in effect, reducing the gap between fact and language. 
He states this 142 as the 

requirement of completeness: the set of the [predicates] in a 

system L must be sufficient for expressing every qualitative 
attribute of the individuals in the universe of L, that is, every 
respect in which two positions in this universe may be found by 
observation to differ qualitatively. 
This requirement has the effect of fixing the number of predicates 

in L. As a result, although c-values are still determined by the 
language, they are not subject to any variation in the language, 
because variation is no longer allowed. Furthermore, the number of 
predicates is determined by the nature of the universe – probabilities 
are indeed connected to the real world, though only indirectly. 

But even if this requirement abates somewhat the language-dependence 
of c, the cure, as Ernest Nagel suggests, 143 

may be no 

improvement on the disease: 

Unless we do have good reasons for fixing the number of 
primitive predicates in a complete set, we cannot, even in 



principle, calculate the value of c* for non-trivial cases, so that 
the inductive logic based on c* is simply inapplicable. But the 
assumption that a complete set of primitives contains a given 
number π of predicates is not a truth of logic; it is at best a 

logically contingent hypothesis which can be accepted only on 

the basis of empirical evidence. The assumption is not a logical 
truth, for it in effect asserts that the universe exhibits exactly π 

elementary and irreducible qualitative traits, into which all 
other traits found in nature are analyzable without remainder. 
It is an assumption which would be contradicted by the 
discovery of some hitherto unnoted property of things (e.g. an 

odor or distinct type of physical force) that is not explicitly 
analyzable in terms of the assumed set of basic traits_it is 
difficult to avoid the conclusion that the assumption that we 

have, or some day shall have, a complete set of primitive 
predicates is thoroughly unrealistic and that in consequence an 

inductive logic based on that assumption is a form of science 
fiction. 

Criticisms of this sort, plus his own intuitions, led Carnap to be 
unsatisfied with the requirement of completeness, but he could not 

dispense with it until later, with Kemeny, he developed an inductive 
logic of somewhat different type, in which the number of predicates 
need not be fixed. This later system is beyond our present scope; 
but even if it eliminates the requirement of completeness and the 
dire consequences Nagel attributes to it (‘science fiction,’ indeed!), 
it still remains true that probability values are established by features 
of the language rather than features of the empirical world. (We 
make throughout the simplifying but false assumption that language 
is not part of the empirical world.) Can this be tolerated? Can we 

hope to say anything about future experience by merely counting 
linguistic divisions? 

At this point we almost seem to have reduced the ‘language-dependent' 
objection to the ‘anti-a-priori’ objection above, because 

if we consider our language to be part of our logic, objecting to 

grounding probabilities in language amounts to objecting to grounding 
them in logic (if we instead abandon our simplifying assumption 

and consider language to be part of the world rather than part of 

logic, it follows that a language-dependent probability theory is 

based on the real world). Then the parallel solution is: language- 



dependent theories are useful if and only if the language in question 
closely resembles the real world 144 (and the non-linguistic or 

additional features of the system such as the axioms are adequate, 
of course). 

This leads naturally to the next objection: even if language-dependence 
is not bad per se, the languages for which Carnap (and 

others) have defined c-functions are childishly simple, artificial in 
nature, and woefully inadequate for the development of modern 
science. 

This objection must be admitted, so far as it goes. But look how 
much can be accomplished with even these ‘childishly simple’ 
languages! All of the results of the Classical theory (and Keynes’s 
quantitative theory) are immediately available. Any statistical frequency 

of simple property coincidence adequate for RF theory will 
give an (almost) identical value in Carnap’s theory. So the theory 
successfully accomplishes most of what its rivals can do (whether 
it can do everything the RF theory can do is still a matter of technical 
debate). In addition, it promises to formalize the judgments of 
probability and induction which we make every day on the basis of 
evidence which is unsatisfactory for other types of theories. That it 
is still a long way from accomplishing all of its goals is a fact. But, 
as Putnam says, 

145 ‘who in 1850 could have anticipated the evolution 
of deductive logic in the next hundred years?’ Perhaps the child-like 
simplicity of the languages L should not be overly stressed in 
criticizing Carnap’s system since it is, after all, a mere child in length 
of historical development. And, to paraphrase Dr Johnson, ‘The 
amazing thing is not how good or ill a quantitative inductive logic 
he constructs, the amazing thing is that he constructs one at all.’ 

Another objection which Carnap says has led many ‘empiricists’ 
(presumably logical positivists) to reject AP probability theory is 
that the theory seems to give rise to unverifiable sentences. An example 
is ‘On the available meteorological evidence, the probability that it 
will rain tomorrow is 1/5.’ We can verify that it will rain tomorrow 

(or not) by observation tomorrow, but there is in principle nothing 
we could observe which would verify that the probability of rain is 
1/5. Therefore the statement violates the Verification Theory of 
Meaning and is meaningless. 

Carnap agrees that this sentence cannot be verified by the 
impossible observation of 1/5 rain tomorrow, or by any other 
empirical observation. But, he says, the same is true for the sentence 



‘If there will be rain and wind tomorrow then there will be rain 
tomorrow.’ Here, again, no observation of tomorrow’s (hypothetical) 
rain is necessary or even relevant for verification of what is 
asserted – because what is asserted is not a fact about rain tomorrow 
but a fact about the logical relations between sentences. Statements 
of inductive logic, like those of deductive, are verified by logical 
rather than empirical investigation. If this characteristic is not 

sufficiently deplorable to reject deductive logic, why should it cause 

us to give up inductive logic? The objector apparently fails to 
understand either what is being asserted in such singular predictions 
or the grounds of such an assertion. 146 

Still another objection to Carnap’s method is that we can’t possibly 
quantify all of the factors which enter into inductive judgments – 

especially such amorphous factors as analogy and variety. Ernest 
Nagel especially presses this argument – see Principles of the Theory 
of Probability, pp. 68 ff., for example – and Carnap admits its 
seriousness. 

Actually, Carnap does have a method – the method of Inference 
by Analogy – for measuring the confirmatory effect of positive 
analogies. It is the principle of Negative Analogy, or Variety of 
Instances, which remains to be systematically represented. The basic 
idea of negative analogy is perhaps best given by example. If our 

hypothesis is that all animals which have hearts also have kidneys, 
we will normally think it better confirmed by successful examination 
of a dog and a gorilla than by examination of two dogs. Each time 
we add a new species to our list, that varied instance counts for 
more than a repetitive one. What we lack is a means for saying how 
much more varied evidence should count. Nagel thinks such a measure 

cannot be satisfactorily constructed. Carnap thinks it can but we 

just haven’t had time to do it. Considering the relative success Carnap 
had with positive analogy, I see no reason to doubt that his successors 

could eventually develop some intuitively appealing measure of 
negative analogy. To do this also for such factors as simplicity, 
agreement with established theories, fertility in new predictions, etc., 
is indeed a soberingly difficult problem, but it does not seem to be 
a priori impossible to develop these measures. Whether it will be 
practically impossible, or whether they would in turn make inductive 
calculations so complex as to be practically impossible are questions 
which cannot yet be answered with authority – each must judge 
according to his own lights. 



A. J. Ayer has repeatedly objected to AP theories on the grounds 
that what we really want is P(h), not P(h, e). I discussed this objection 
and replied at some length in the first part of the section ‘Absolute 
probability and physical chance,’ and will not rehash the matter 
here. But in the course of his argument against relative probabilities, 
Ayer raises another objection against logical probabilities in 

general: 147 if all are equally valid, how do we choose one to act on? 

For, if we are presented only with a stock of necessary facts to 

the effect that certain statements, or groups of statements, 
bear logical relations to each other in virtue solely of their meaning, 

I do not see what reason there could be for differentiating 
between the items of this stock as bases for action. 

If we leave aside the question of the rationality of acting on a 

priori truths in general, and focus instead on the question of which 
a priori truth to act upon, as Ayer seems to intend in this passage, 
the resulting problem is at best a methodological difficulty – certainly 
it is no insuperable bar to action. At first one may be dazzled by 
Ayer’s image of an infinite array of a priori truths, each valid for all 
time and each a candidate for the honor of guiding our action 
(‘Choose me!’ ‘No, choose me!’). But a little reflection reveals that 
the situation is no different from that in mathematics or deductive 
logic. If we wanted to know how many pieces of fruit are in a sack 
containing three apples and two oranges, we might stand transfixed 
in awe at the infinitude of valid mathematical principles at our 

command. And if we wished to know whether all red apples are 

apples we might profess our inability to choose from the vast ‘stock 
of necessary truths’ which constitutes deductive logic. But anyone 
who actually hesitates in such cases must be lost indeed. The fact 
is that it is usually quite obvious which a priori principle is relevant 
in a particular case. That it is not always quite obvious is a fortunate 
circumstance which guarantees the continued employment of 
logicians and mathematicians; but it certainly is no reason for 
abandoning logic or mathematics. 

Similarly, in the selection of an AP probability statement, we 

sometimes use something as simple as the assumption that a certain 
die is fair as our evidence. We sometimes consider everything known 
about a certain situation, and we often focus on items which we 

take to be especially relevant. It is no doubt true that there can be 
no one algorithm for arriving at well-founded judgments of applied 



probability, but this defect applies equally to any theory of probability 
(or mathematics or logic or science) and is no special criticism 

of AP interpretations. 
If one wishes to be more specific in one’s criticism, there are many 

possible objections which can be raised against c* as a particular 
c-function, such as the much-lamented fact that a universal statement 
in an infinite universe always receives zero confirmation: all predicates 

must be independent of each other; we must have names for 
all individuals; values of c* may be unreasonable if there are many 
predicates, and so on. Some of these problems have been overcome 

by the work of Kemeny, Putnam, Hintikka, Bar-Hillel, et al, and 
by such later works of Carnap’s as The Continuum of Inductive 
Methods, ‘Replies and expositions,’ and Studies in Inductive Logic 
and Probability. Readers who are interested in these technical details 
should study the works in the bibliography. 148 Whether or not c* 
suffers from irremediable technical difficulties is not the kind of 
problem which concerns us here. Instead, let us consider the much 
more intriguing question of whether there is a best possible c-function 

– whether we can in principle ever hope to develop a 

confirmation-function which does the best possible job of generating 
probabilities. Hilary Putnam has argued that we cannot. 

Putnam’s argument 
149 is of the general type which logicians call 

a ‘diagonal argument.’ Put very simply, it asserts that if we have a 

c-function, c, developed for a language adequate for science (including, 
especially, sequential enumeration of individuals or events) 

then it is always possible to construct a world in which c fails. (‘If 
N is the first point at which Red is predicted, let N be black. If 
N + M is the next point... let N + M be black.’) This sounds a bit 
like cheating to some non-logicians, since we, in effect, ask what c 

is going to predict before we decide what the real world is going to 

be like, then decide in a way to contradict c. It is a rather malicious 
selection of worlds, but it is a selection of a possible world, and the 
fact that such a world is possible shows that c will not invariably 
lead to success. Furthermore it is possible to construct another 
function, c', which duplicates all the successes of c and succeeds in 

predicting redness (‘N is red if c predicts N is not-red’). Thus c' is 
‘better’ than c in this world. But the diagonal method can then be 
applied to c' to show that there must be a better method, c" which 
succeeds in at least one world where c' would fail. Since the method 
is quite general, we arrive at the conclusion that there can be no one 



best c-function for all possible worlds. Since we don’t know which of 
the possible worlds we live in, it follows immediately that it is logically 
impossible to establish one best c-function even for our own world. 

In his published reply to Putnam, 150 Carnap rejects the conclusion 
and attacks Putnam’s definition of a criterion of ‘success’, but I think 
he fails completely to respond to the intuitive notion. In the preface 
to LFP he admits 151 that for every c-function, c, there is always 
some world in which another function is better. There is even, for 
any given function, at least one world in which that function is better 
than c. But Carnap thinks 152 

we can reasonably judge between 
functions on practical grounds: 

Suppose, for example, that in comparing two given inductive 
methods we find that the number of those state-descriptions in 
which the second method is more successful is a million times 
as large as the number of those in which the first method is 
more successful. Then it may well be that this result would 
influence us against regarding the first method as more 

adequate than the second and against choosing the first in 

preference to the second for determining our practical decisions 
in the actual world, whose total structure is not known to us 

and for which we therefore cannot know which of the two 

inductive methods would be more successful in the long run. 

But suppose Carnap’s first method, c1 is more successful N times, 
while c2 is more successful 1,000,000 N times. Putnam’s argument 
is that he can always construct c3 which is more successful in at 
least 1,000,000 N + 1 worlds. (Make c3 identical to c2 for the first 
1,000,000 N worlds, construct world 1,000,000 N + 1 in which c2’s 
predictions in some series are always false, and c3 detects that fact 
and predicts accordingly.) 

I happen to agree with Putnam s claim. In fact, I used a very 
similar (though non-general) argument against Reichenbach’s justification 

of induction in my dissertation. 153 But the fact that such 
worlds can always be logically constructed gives me only the faintest 
of fears that they are real. Thus, they have almost no effect on my 
attitude on induction. There is no need to fear that we will make 
infinitely many important mistakes by embracing the wrong c-function, 

because nobody (or certainly not everyone) is so devoted 
to a method that he always sticks with it despite a uniform lack of 
success. 



If we put the objection another way, Putnam has shown that it 
is always logically possible to improve upon a c-function, therefore 
we can always be sure that we don’t have the best. But not having 
the best is seldom a good reason for not having any. My car is 
imperfect, but I don’t eschew automobiles. If someone develops a 

system of quantitative inductive logic which simply and adequately 
reproduces our intuitions except where it demonstrably improves 
upon them, I will not restrain myself until a ‘perfect’ system comes 

along, and neither will Putnam if I know him at all well. 
One final objection which Arthur W. Burks has raised may be 

appealing to linguistic or ordinary language philosophers. It is just 
that ‘there is an important difference in meaning between “probability” 
and “c*” in belief contexts.’ 154 This difference, to which we have 
already alluded, is that one who is acquainted with Carnap’s work 
and is logically competent might be able to compute c*-values, while 

disputing that they have anything to do with probability. He might, 
for example, agree that c*(h, e) = r, while denying that P(h) = r [or 
even P(h,e) = r]. 

This difference in meaning, Burks suggests, might be accounted 
for by the fact that c* is intended as an explication, rather than an 

analytic definition, of ‘probability’ and that it can therefore quite 
properly differ in meaning. 

A final reply, of the ‘So’s your old lady’ or tu quoque type, would 
be that none of the major theories of probability offers definitions 
that are equivalent in meaning to the ordinary word ‘probability’, 
and thus AP probability is not especially discredited by its failure 
to do so. 

12 Chief Virtues of a Priori Theories 

Richard von Mises spoke contemptuously of Classical theories of 

probability because they apply to at most a very small fraction of 
real situations. All biased dice and actuarial situations seem forever 

beyond their ken. But even adding von Mises’ long empirical series 
to the Classical fair games of chance doesn’t exhaust the universe, 
or even the everyday application of‘probability’. It is the great virtue 
of the AP interpretation that it claims to cover every case in which 
we do (or might) think of the probability of something (though 
Keynes’s version will generally not give us a number for the 



probability). This virtue is partially shared only by the Subjectivist 
Theory, among the major contenders. It gives credence to Carnap’s 
contention that AP theories come closest to explicating ‘probability’ 
in the fullness of its meaning. 

Carnap claims that the word ‘probability’ has historically referred 
to the explicandum probability! and this explicandum is normally 
explicated by an a priori theory of probability. 155 Probability2 ‘goes 
back not more than about a hundred years.’ 156 It originated when 
the estimate of a frequency – a valid probability1 concept – became 
confused with the frequency itself and the word ‘probability’ was 

incorrectly applied to the latter. This gives AP theorists an historical 
basis for their claim that RF theories are not theories of probability. 
Nevertheless, much of the serious writing on probability during this 

century has been done by mathematicians, statisticians, and scientists 
who are using the word ‘probability’ to refer to relative frequency 
in a population. This body of usage is so considerable and so 

intellectually respectable that it is no longer plausible to argue that 
such people are simply misusing the word ‘probability.’ Thus we 

cannot ignore probability2 in a discussion of probability, but we can 

recognize that probability1 takes historical and et ymological precedence 
over it. 

I have argued above that the chief distinction between theories 
of probability is in the definition of ‘probability’ and the resultant 
method for obtaining initial probabilities (once these are available, 
their manipulation by means of the probability calculus varies little 
from theory to theory). The AP theory, then, asserts that these initial 
probabilities exist in far greater profusion than its rivals allow – but 
this means that the calculus of probability will be much more widely 
applicable than its rivals allow. Therefore we can say that AP theories 

expand the domain of the probability calculus. 
Furthermore, this definition and method lead to the result that 

every probability, if it can be known at all, can be known now. We 
have only to consult our intuition or perform some calculations to 

determine what any probability is. This means that we can know 
the probability of an event before it (or a series of similar events) 
has occurred. AP probability, therefore, is a much more comprehensive 

guide to life. 
But not only can each probability value be known in advance, it 

can also be known precisely. That is, if we agree on some effective 
AP method, a probability value determined by that method is the 



true value, by definition. An RF theorist, on the other hand, can 

never know if his measurements have given him the true value of the 

frequency, nor can he establish any algorithm which will guarantee 
to do so. AP theories have the advantage, then, that, if a theory is 
accepted, the measurement problem is solved. 

The final major advantage of AP probability is that it makes 
inductive logic possible. By specifying a confirmation-measure between 

sentences which can vary from contradiction to implication, 
AP theories allow us to talk about evidentiary relations which are 

less than conclusive. This is something no other theory can do. 157 

It is true that at present these virtues are more potential than 
actual. It cannot be said that many practicing statisticians or 

handicappers compute probabilities by counting predicates in a 

language. Whether anyone ever will do so remains to be seen. But 
at least the first steps have been taken. As Kemeny says: 

158 

Carnap has taken this fundamental problem, of the method by 
which inductions are reasonably performed, out of the stage of 
fruitless debate, and he has shown us the way to constructive 
research. He himself achieved the first important result in this 
research. Therefore, we must class Carnap’s contribution to the 

problem of induction among the greatest achievements of 
modern Philosophy. 



IV 

Relative Frequency 
Theories of Probability 

The major leading opponent of the A Priori theory of probability 
is the Relative Frequency (RF) theory. 

While Nagel is willing to trace its roots back to antiquity (‘this 
view already appears in Aristotle, was proposed by Bolzano and 
Cournot during the last century and further developed by Ellis, 
Venn, and Peirce, and was finally made the basis for a subtle 
mathematical treatment of the subject by von Mises and other 
contemporary writers’), 1 the safer course is to credit John Venn with 
the first serious proposal to identify probability with a relative 
frequency (1886) and Richard von Mises with the first systematic 
development of that theoretical position (1928). 2 Hans Reichenbach 
is perhaps the most philosophical of the frequentists and may fairly 
be taken as the prototypical RF theorist. 

1 Basic Ideas 

The most important basic idea of the RF theory is the metaphysical 
asertion that (1) a probability value is a measure of an empirical, 
objective, physical fact about the external world. This is directly 
contrary to the doctrine of the a priori theories (and, to some extent, 
the Classical theory) which contend that probability is a logical 
feature of certain situations or their descriptions. It is even more 

violently opposed to the subjectivistic thesis that probability is an 

index of human beliefs or attitudes. It is intended, indeed, to make 
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Relative Frequency Theories of Probability 

probability theory either a part of descriptive physical science (von 
Mises) or, at least, a part of the theoretical structure of physical 
science (Reichenbach). 

From this fundamental conception of probability as an objective 
property of the world follows immediately RF probability’s second 
basic principle: (2) A probability value is never relative to any 
evidence but is uniquely determined by the nature of the real world 
(the fact of the matter; the state of affairs which obtains, etc.). 

Like the first principle, this idea stands in direct contrast to the 
a priorists, who assert that every probability statement must contain 
essential reference to the evidence and the subjectivists who contend 
that such statements must refer essentially to the human being who 
believes them. This is, of course, a necessary consequence or 

elaboration of the fundamental principle: since probability is an 

objective property (like mass, they say, or magnetism) it cannot be 
the case that human beliefs (whether factual evidence or subjective 
attitudes) can have any influence whatsoever on its value. So much 
is clear from an analysis of the basic concept. 

The third RF principle is: (3) All probabilities can be known a 

posteriori only. Again the principle flows smoothly from the basic 
conception of probability as a property of the physical world. All 
empiricists agree that such properties are knowable a posteriori only. 
Even philosophers who accept the possibility of synthetic a priori 
knowledge generally think that particular physical properties are 

contingent and therefore only knowable a posteriori. For example, 
we may know a priori that an object will have a Euclidean shape 
and that it cannot be red and blue all over, but we cannot know a 

priori what shape it will have or which color it will be. It follows 
that if such philosophers accept the definition of probability as the 
relative frequency with which one contingent property is associated 
with another contingent (and independent) property, they must 

likewise agree that such probability values can only be known a 

posteriori (we ignore the limiting values of 1 and 0 for the sake of 
simplicity). 

Many RF theorists claim that this epistemological principle places 
probability theory squarely on a par with physical science as the 
less than certain but useful and generally reliable ideal of knowledge 
about the external world. Critics have urged as epistemological 
consequences of RF theory that not only can such probabilities not 
be certainly known, they cannot even be known to exist, and 



Relative Frequency Theories of Probability 

hypotheses concerning their values are neither confirmable nor 

disconfirmable. 

2 Definition of Probability 

At the beginning of his philosophical work, Probability, Statistics, 
and Truth, Richard von Mises follows the traditional method of 
citing several uses of ‘probability’ and quoting several definitions for 
that term. However, he soon makes it clear that he does not plan 
to accommodate such definitions. ‘Let us now consider,’ he says, ‘a 

way by which we may arrive at a better definition of probability 
than that given in the dictionaries, which is so obviously unsatisfactory 

for our purpose.’ 3 

The method von Mises chooses to employ he calls ‘the scientific 
method of developing new concepts.’ 4 It has two characteristic 
features: 

in the first place, the content of a concept is not derived from 
the meaning popularly given to a word, and it is therefore 

independent of current usage. Instead, the concept is first 
established and its boundaries are purposely circumscribed, and 
a word, as a suitable kind of label, is affixed later. In the second 

place, the value of a concept is not gauged by its correspondence 
with some usual group of notions, but only by its 

usefulness for further scientific development, and so, indirectly, 
for everyday affairs. 

This process is so nearly independent of ordinary language and 
results in concepts which are so new or different that ‘The person who 
arrives at a new scientific concept may be inclined to invent a new 

name for it.’ 5 Quite likely he will choose a related classical or foreign 
term for his concept to emphasize its independence from the 

colloquial term. One gathers that von Mises would like to do the same 

for ‘probability,’ and is stopped only by the paucity of all languages on 

this subject: 6 

it is unfortunate that most languages have no specific word for 
probability in its scientific sense but only popular terms like 
Wahrscheinlichkeit, probability, probability. However, no term 
has been invented and, naturally, it is quite possible for a 

scientific concept to exist without having a special name. This is 



the case with many of the most important concepts of 
mechanics which are hidden behind such ordinary words as 

force, mass, work, etc. All the same, I do feel that many laymen, 
and even some professionals in the field of mechanics, would 
understand these concepts more clearly if they had Latin names 

rather than names taken from everyday usage. 

Thus Carnap is wrong if he thinks von Mises is unaware that he 
is changing the meaning of ‘probability.’ Furthermore, he is aware 

that (at least part of) the ordinary meaning which he is rejecting is 
the ‘logical relation’ type of probability, which Carnap associates 
with probability1. 7 

It is brought out repeatedly in this book that the word 
‘probability’ has a meaning in everyday language that is 
different from its quantitative meaning in probability calculus. 
Some authors with metaphysical leanings have sought to build 
a separate theory on this other meaning of the word. Such 
attempts, namely the study of questions of reliability or 

plausibility of judgments, of propositions and systems of 

propositions, are justified as long as they remain within certain 
limits. However, as soon as numerical values are attributed to 

these plausibilities and used in calculation, one has either to 

accept the frequency definition of probability (as is done by 
some authors) or fall back on an apriori standpoint based on 

equally likely cases (as is done by others). The stated purpose of 
these investigations is to create a theory of induction or 

‘inductive logic.’ According to the basic viewpoint of this book, 
the theory of probability in its application to reality is itself an 

inductive science; its results and formulas cannot serve to found 
the inductive process as such, much less to provide numerical 
values for the plausibility of any other branch of inductive 
science, say the general theory of relativity. 8 

So von Mises has rejected the probability1/a priori type of theory 
and forbidden the employment of probabilities in such logical uses 

as ‘questions of reliability or plausibility.’ What, then, remains in 
the scope of the concept? 

Von Mises proposes to restrict probability theory to such special 
problems as games of chance, social mass phenomena (especially 
insurance and actuarial problems), and statistical treatments of 



mechanical and physical phenomena. Such cases share a common 

feature which he thinks crucial; ‘we find events repeating themselves 
again and again. They are mass phenomena or repetitive events.’ 9 

Individual or infrequent events, however, clearly do not possess this 
repetitive character, and are thus beyond the scope of probability 
theory. 10 

We state here explicitly: The rational concept of probability, 
which is the only basis of probability calculus, applies only to 

problems in which either the same event repeats itself again and 

again, or a great number of uniform elements are involved at 
the same time. Using the language of physics, we may say that 
in order to apply the theory of probability we must have a 

practically unlimited sequence of uniform observations. 

This restriction of the applicability of probability theory is formalized 
in the fundamental notion of a collective. 

The term ‘collective’, von Mises says ‘denotes a sequence of uniform 
events or processes which differ by certain observable attributes, say, 
colours, numbers, or anything else.’ 11 His examples show that a 

collective must be large and he seems to require that it be based on 

some natural kind or similarity. 
After thus defining (somewhat vaguely and ostensively, to be sure) 

the term ‘collective,’ he continues 

The principle which underlies the whole of our treatment of the 

probability problem is that a collective must exist before we 

begin to speak of probability. The definition of probability which 
we shall give is only concerned with ‘the probability of encountering 

a certain attribute in a given collective. . . .' It is 
essential for the theory of probability that experience has shown 
that in the game of dice, as in all the other mass phenomena 
which we have mentioned, the relative frequencies of certain 
attributes become more and more stable as the number of 
observations is increased. . 

. 12 

Let us now add further precision to our previous definition 
of the collective. We will say that a collective is a mass phenomenon 

or a repetitive event, or, simply, a long sequence of 
observations for which there are sufficient reasons to believe 
that the relative frequency of the observed attribute would tend 
to a limit if the observations were indefinitely continued. This 



limit will be called the probability of the attribute considered 
within the given collective. 13 

Von Mises adds one more restriction to his definition because of 
the existence of regular processes (the example he gives is a succession 
of large milestones and smaller 1/10-mile markers) which also have 

frequencies that tend to a limit after sufficient observation. These 

processes are rejected as being non-random. The concept of randomness 
in von Mises’s theory requires that all relative frequencies in 

a random collection must remain the same if a subset is selected on 

the sole basis of place in the series. This independence of order is 
then included in the final definition of a proper collective: 14 

A collective appropriate for the application of the theory of 
probability must fulfill two conditions. First, the relative 

frequencies of the attribute must possess limiting values. 

Second, these limiting values must remain the same in all 

partial sequences which may be selected from the original one 

in any arbitrary way. 

The final definition of probability is thus: The probability of an 

attribute is the limit of the relative frequency with which it appears 
in a random collective. Now that we have a definition of the 
fundamental concept, probability, and of its theoretical ground, the 
collective, development of the theory continues with the specification 
of its mathematical laws – the probability calculus. 

Von Mises contends that all of probability calculus arises from 
four simple operations, just as all of algebra arises from addition, 
subtraction, multiplication and division. To specify or justify the 
calculus, therefore, one need only specify or justify these basic 
operations. They are: 15 

1 Selection – In which a partial sequence is derived from the 

original sequence by place selection. Attributes and probabilities 
remain the same in the new collective as in the old. 

(Example: if we only count dice throws immediately following 
an Ace, the probability of a Five is unchanged at 1/6.) 

2 Mixing – Two or more attributes are ‘mixed’ (combined) into 
a single attribute whose probability is the sum of their 
individual probabilities. (The probability that a dice throw is 
either Three or an even number is 1/6 + 1/2 = 2/3.) 

3 Partition – In which a new collective is specified by a selec- 



tion of attributes (rather than place numbers, as in Selection). 
The new frequencies are obtained by dividing each old 
probability by the sum of the probabilities of all selected 
attributes. (Example: The chance that an odd dice throw is a 

Three. The initial probability of a Three is 1/6. The sum of 
the probabilities of odd numbers is 1/2. 1/6 ÷ 1/2 = 1/3.) 

4 Combination – In which a new collective is formed by the 
simultaneous sampling of two independent collectives. The 
distribution of elements (ordered pairs) in the new collectives 
is obtained by multiplying the probabilities of each original 
element in the initial collectives. (The probability of a Five on 

a red die and an even number on a green is 1/6 × 1/2 = 1/12.) 
We can now consider ourselves to be in possession of a full-blown 

theory, because we have a series of mathematical laws which establish 
the relations between the fundamental entities of the theory. (Not 
unexpectedly, those laws are substantially identical to the valid 
theorems derivable in a priori probability calculi.) Indeed, it is an 

interpreted theory, since its basic terms (‘probability,’ ‘collective’) 
have been linked to the real world by what Hans Reichenbach has 
called ‘coordinating definitions.’ This is the first formal development 
of the RF theory of probability. 

Reichenbach’s more fully developed, modern RF theory is based 
on a slightly modified version of von Mises’ definition of probability: 

In order to develop the frequency interpretation we define 
probability as the limit of a frequency within an infinite 
sequence. . . 

. . . the relative frequency Fn(A, B) is defined by 
upper F Superscript n Baseline Superscript Baseline left-parenthesis upper A comma upper B right-parenthesis equals StartFraction upper N Superscript n Baseline left-parenthesis upper A dot upper B right-parenthesis Over upper N Superscript n Baseline left-parenthesis upper A right-parenthesis EndFraction

[i.e., the number of ordered pairs from a sequence which belong 
to the common class A & B divided by the number of sequence 
elements which belong to A]. 

With the help of the concept of relative frequency, the frequency 
interpretation of the concept of probability may be formulated: 

If for a sequence pair xiyi the relative frequency Fn(A, B) goes 
toward a limit p for n→∞, the limit p is called the probability 
from A to B within the sequence pair. In other words, the 



following coordinative definition is introduced: 
upper P left-parenthesis upper A comma upper B right-parenthesis equals limit Underscript n right-arrow infinity Endscripts upper F Subscript n Baseline Subscript Baseline left-parenthesis upper A comma upper B right-parenthesis

No further statement is required concerning the properties of 
probability sequences. In particular, randomness. . . need not be 
postulated. 16 

Thus Reichenbach’s theory differs from von Mises’s in that it 
purports to deal with all types of sequences (collectives) rather than 

merely random sequences. Reichenbach contends that von Mises’s 
Axiom of Randomness is unnecessary and imposes an undesirable 
limitation of the scope of probability theory. 17 He further differs in 

considering both the concept of absolute probability and the 
probability of a single event to be meaningful and capable of 
interpretation by the frequency theory (see below). 

Reichenbach agrees with Carnap that the statements of the 
probability calculus are merely tautological implications of the 
axioms and 'The question whether the individual probability statement 

is true or false, then, is not a problem of the calculus. . . .' 18 

Thus, in the use of the probability calculus: 

We assume the existence of some probability implications to be 

given; and we deal only with the question of how to derive 
new probability implications from the given ones. This 
operation exhausts the purpose of the probability calculus. 19 

Reichenbach, further, does not think (as von Mises claims to think) 
that the probability calculus is based on a generalization of past 
empirical data. He explicitly regards the calculus as an axiomatic 
mathematical system. 

In his construction of the formalism of the probability calculus, 
Reichenbach employs four axioms. 20 

1 Axiom of univocality – Each probability implication has only 
one numerical value. 

2 Axiom of normalization – Logical implications imply 
probability-implications of degree 1; all probabilities are 

non-negative numbers. 
3 Axiom of addition for exclusive events. 

4 Axiom of multiplication for relative probabilities and 

independent events. 



Let us suppose that all standard probability laws can be derived 
from these axioms. Then if we wish to apply the calculus to some 

part of reality, we need only assume that the axioms are true of that 
part when they are interpreted by coordinating definitions. But 
Reichenbach has gone even further in reducing our assumptions – he 
has demonstrated that these axioms are true, and tautologically true, 
whenever the frequency interpretation is employed. That is to say, 
if symbols like ‘P(A, B)' are replaced in the axioms by phrases like 
‘the limit of the relative frequency of A’s which are also B’s as the 
number of A’s increases without bound,’ then the axioms become 
relatively simple arithmetical statements about the properties of 
limits in infinite sequences. Those statements are such that they can 

be shown to be true using only the axioms required for arithmetic 
and deductive logic. 

Here Reichenbach has done consciously what von Mises did 
unwittingly; he has deduced the probability calculus from his 
definitions of ‘probability,’ ‘relative frequency,’ ‘sequence,’ and ‘limit.’ 
The result is not, as von Mises thought, that the laws of the 

probability calculus have been shown to be supported by empirical 
generalization, but rather, as Reichenbach asserted, that the calculus 
is shown to be applicable wherever the frequency interpretation 
applies to reality. Or, in other words, we can know that every 
statement licensed by the probability calculus is certainly true if we 

only know that every ‘P’ refers to an existing limit of an infinite 

sequence. The rest is simple mathematics. 
The definition of ‘P (A,B)' in terms of the limit of a relative 

frequency has therefore greatly simplified the metaphysical interpretation 
and mathematical treatment of probability statements if it is 

strictly adhered to. That is, we can plainly understand (and usually 
agree with) someone who says ‘The limit of the relative frequency 
of A's which are B’s is p and the limit with which A’s are C’s is q; 
since no B's are C’s, I conclude that the limit with which A’s are 

either B’s or C’s, is equal to the sum of p and q.' If the same statement 

is changed from the assertoric to the hypothetical mode (‘If the 

limit. . . then I conclude. . .’), we can always agree with it, since it 

merely express a mathematical truism. Now this is clearly not all 

that any speaker ever intends to assert by a probability statement. 

Even worse – it is not all that Reichenbach intends to assert by it! 
He has given us, for example, another definition of ‘P (A, B)’ in The 



Theory of Probability, when he first sets out to explain what 
probability statements are. 

21 

Probability statements. . . have the character of an implication; 
they contain a first term and a second term, and the relation of 
probability is asserted to hold between these terms. This 
relation may be called probability implication. It is represented 
by the symbol 

This is the only new symbol that the probability calculus adds 
to the symbols of the calculus of logic. Its connection with 
logical implication is indicated by the form of the symbol: a bar 
is drawn across the sign of logical implication. Whereas the 
logical implication corresponds to statements of the kind, ‘If a 

is true, then b is true,’ the probability implication expresses 
statements of the kind, ‘If a is true, then b is probable to the 

degree of p.'. . . The probability statement is a general implication 
between statements concerning a class membership of the 

elements of certain given sequences. 

Finally, the ‘P-notation’ is introduced so that (with certain 
restrictions concerning the empty class as reference class) we can 

talk about the numerical value, p, by writing ‘P (A, B) = p.’ 
Now this definition of ‘P (A, B)' in terms of a ‘probability 

implication’ is quite different from that in terms of frequency limits. 
It is clearly intended merely to relate to symbol ‘P (A, B)' to the word 

‘probable’ or ‘probability’ so that the subsequent definition of ‘P 

(A, B)' will be part of a theory of probability, but in fact it says 
already something about the meaning of ‘probability.’ Furthermore, 
what it says is, in general, false. 

I refer the reader to what Carnap said about formulating probability 
statements in the ‘if – then’ form (Logical Foundations of 

Probability, pp. 30-33). Briefly, the point is this: Assume P (A, B) = p. 
Let 'A' be ‘is consumptive’ and ‘B’ be ‘will die within the year.’ Let 
‘A’ be true of Willis Ray Surrett. Translating 'P (A,B) = p’ into a 

probability implication, we get the general form: 22 

(X)[A(X) a B(X)]. 
By Universal Instantiation we get 



A(Willis Ray Surrett) a B(Willis Ray Surrett). 

According to what Reichenbach has said, this means 

If Willis Ray Surrett is consumptive, then the probability that 
he will die within the year is p. 

Now Sgt Surrett is a friend of mine, and I happen to know that 
he is in fact consumptive. Therefore, we use modus ponens, 
[(p ⊃ q) · p] ⊃ q, to conclude: The probability that Willis Ray Surrett 
will die within the year is p’ where ‘p’ will subsequently be defined 
as the limit of the relative frequency with which consumptives die 
within the year. 

Now the conclusion is in fact false, since Ray Surrett is a young 
and quite healthy chap who happens to have a very mild and easily 
controlled case of tuberculosis. His chances of surviving the year are 

far better than those of consumptives in general. What has gone 
wrong here? 

The problem is in the attempt to define probability relations in 
terms of implications. The essence of an implication is that once the 
antecedent is true it can be dropped as unnecessary and the 
consequent can be asserted alone (either categorically or, as 

Reichenbach thinks, as probably true). But Carnap and Reichenbach 

agree that no probability can be stated alone – they must always be 
relative to some reference class. Therefore the relation between 
membership in the reference class and membership in the quaesitum 
class cannot be any form of implication. 

Now the point of all this lengthy excursus is not just that 
Reichenbach has made a quite common error in trying to explain 
the probability relation. The point is that this error arose when he 
tried to tie the clearly defined mathematical symbol ‘P (A, B)' to the 
word ‘probability’ and its use in ordinary talk about probability 
relations. In all that follows, therefore, we must be constantly aware 

of the following points arising from Reichenbach’s definition of 

probability: 
1 It is unquestionably true that the limit S of rf’s in infinite 

sequences obey the mathematical laws normally included in 
the probability calculus. 

2 Therefore there is no logical or mathematical problem in the 
manipulation and transformation of these limit values 
according to those laws. 



3 Calling these values ‘probabilities’ raises no problems about 
these values or their manipulations. 

4 Saying that all probabilities are limits of frequencies is quite 
a different matter and raises such points as 

(a) Probabilities are frequently known; are limits? 
(b) Some sequences have no limits; do some events have no 

probability? 
(c) What meaning applies to the probability of single events? 
(d) Does ‘probability’ always mean ‘limit of relative 

frequency?’ 
5 We must therefore be very careful to determine when 

Reichenbach is unquestionably talking about uncontroversial 
mathematical truths and when he is talking about controversial 

interpretations of words like ‘probability.’ 

3 Source of Initial Probabilities 

The theory of probability as a limit of the relative frequency of 
occurrence outlined in the previous section, which we have attributed 
to von Mises, stands in rather surprising contrast to his repeated 
assertion that it is no part of the probability theorist’s job to 

determine initial probability values. 23 That function is left entirely 
to the statistician. 

Instead, von Mises seems to believe 24 that all probability theory 
can do is to derive new probabilities from old ones: 

A great number of popular and more or less serious objections 
to the theory of probability disappear at once when we 

recognize that the exclusive purpose of this theory is to determine, 
from the given probabilities in a number of initial collectives, 
the probabilities in a new collective derived from the initial 
ones . . . . A probability can only be determined from the knowledge 

of other probabilities on which it depends. 
Now the derivation of new probabilities from old ones is the task 

of the calculus of probability – a well-known and generally agreed 
upon branch of pure mathematics. It is true that there are alternative 
formalizations of the calculus, using different axioms and notations, 
but each of these includes the same basic notions and generates the 

same set of fundamental theorems. 
And while it is certainly true that there remain problems to be 



solved in the development of this branch of pure mathematics, von 

Mises’s book is not famous for its solutions to such problems. Quite 
the contrary. While von Mises did do some original and widely 
recognized work on the mathematics of indefinite series, his place 
in probability theory, and especially the fame of Probability, Statistics, 

and Truth, are secured by what he said about the interpretation, 
the meaning, the application, and the justification of probability 
theory – in short, his greatest achievement was his definition of 

‘probability’ and his explanation of the source of initial probabilities. 
Odd that a man’s fame should rest on something which he denied 
he was doing! 

The fact is that, despite his disclaimers, von Mises did tell us where 
to look for initial probabilities and did so in a way that differed 
from traditional theories and started a new version of probability 
theory. He abandoned equiprobable cases in favor of the relative 
frequency in an empirical series. His apparent downgrading of the 
role of initial probabilities is, I think, an accident of history and 

biography which happened somewhat as follows. 
Von Mises was closely associated with the Vienna Circle during 

the exciting years of the early development of scientific empiricism. 
He was no doubt affected by the intense debate about the nature 

and function of scientific theories. As a mathematician himself, he 
presumably took great interest in Reichenbach’s seminal works on 

the nature of geometry. 25 In fact, I submit that von Mises probably 
thought he was doing for probability theory what Reichenbach had 
done for geometry. A strict parellelism between the two would require 
von Mises to exhibit probability theory as a pure mathematical 

theory whose validity is independent of any contact with the real 
world. He could never bring himself to do this, since he also wanted 
to think of probability theory as an inductive science, firmly grounded 
on empirical facts. 26 But he could and did adopt the notion that 
the pure theorist is unconcerned with the source of his data. In fact 
he does so by explicit analogy to the role of the geometer: 

27 

The geometer does not ask how the lengths of the two sides 
and the magnitude of the angle have been measured; the source 

from which these initial elements of the problem are taken lies 
outside the scope of the geometrical problem itself. This may be 
the business of the surveyor, who, in his turn, may have to use 

many geometrical considerations in his work. We shall find an 



exact analogy to these relations in the interdependence of 
statistics and probability. 
If von Mises had strictly followed his own analogy, he would have 

produced only a relatively undistinguished axiomatization of the 
probability calculus. Fortunately for us, he did not merely abandon 
to the statisticians the task of obtaining initial probabilities, he told 
them how to do it. Specifically, he told them not to count equiprobable 

cases, etc., but instead to obtain the limit of a relative 
frequency in a random empirical sequence. Reichenbach and all 
other RF theorists agree that this is the way to establish initial 
probabilities. 

This directive to statisticians is of fundamental importance. It 
abolishes at one stroke every probability theory (practically) from 
Pascal to Keynes. But it also poses a new and perplexing problem: 
How does one establish the limiting value of a relative frequency in 
an infinite empirical sequence? 

In Dice Games 

RF theorists generally reject the methods and explanations developed 
in the CTP and the AP theory of probability. 

Against the Principle of Indifference, von Mises has argued that 
when we are ignorant we can say nothing about probabilities 28 and 
when we can give probabilities it is because we have knowledge of 
some frequency. 29 

Against the general idea of a logical theory of probability, 
Reichenbach declared that ‘Logic cannot supply a probability metric; 
only experience and observation can inform us about degrees of 
probability or about the equality of such degrees.’ 30 And again, ‘there 
is no a priori ascertainment of a degree of probability; a probability 
metric can be determined only a posteriori.’ 31 

It follows that our method of establishing initial probabilities in 
dice games must depart from the traditional method of counting 
equipossible cases and a new procedure must be established. For 
von Mises, that procedure is quite straightforward: initial probabilities 

in dice games are established by counting relative frequencies. 
The traditional, equal, values are well established by historical 
observation and may normally be used without extensive counting. 
If ‘unusual’ results occur repeatedly in some game it is prudent to 



treat it as a special case which requires the establishing of an initial 
probability by counting a frequency. Even biased dice are predictable 
by this method. 

Reichenbach offers a more detailed analysis: 32 

There are three possible ways for a posteriori establishment of a 

probability metric: 
1 Degrees of probability can be directly ascertained through 

induction by enumeration (statistical probabilities). 
2 A probability metric can be inferred deductively from 

known probabilities (deduced probabilities). 
3 A probability metric can be inferred by means of general 

inductive methods from known observational data (hypothetical 
probabilities). 

These three methods, however, are not equally applicable in every 
situation. ‘For primitive knowledge – a state of knowledge that does 
not include a knowledge of probabilities – the rule of induction is 
the only instrument for the ascertainment of probabilities.' 33 

In advanced knowledge probabilities can also be ascertained by 
methods 2 and 3 above. But first we shall look at the basic method 
for establishing initial probabilities, the Rule of Induction (by 
enumeration). 34 

RULE OF INDUCTION. If an initial section of n elements of a 

sequence xi is given, resulting in the frequency fn, and if, 
furthermore, nothing is known about the probability of the 
second level for the occurrence of a certain limit p, we posit 
that the frequency fi(i > n) will approach a limit p within fn + δ 
when the sequence is continued. 

To apply this rule to our example of a dice game we must first 
decide what we wish to take as the reference class (throws of this 

die) and what is to be the quaesitum property (Five uppermost). 
Then we start throwing the die and counting the Fives. At any time 

thereafter, we posit 35 that the ultimate limit of the frequency (which 
is the same as the probability) will be equal to the heretofore observed 
relative frequency (within a small but unspecified range of uncertainty 
δ). 

This rule has come to be known as the Straight Rule for Induction, 
because it is so straightforward and because it implies that any graph 
of the future values of the relative frequency will be a straight (and 



level) line. As formulated by Reichenbach, it has no lower limit on 

the number of required observations. It follows, therefore, that after 
the first throw has been observed we must conclude that the 
probability of a Five in the long run is equal to 1 or 0, depending 
on whether that throw was or was not a Five. This strikes many 
people (including Carnap) as being counter-intuitive. Likewise, after 
the second throw, we will be abjured to act as if the probability of 
a Five is 1, or 1/2, or 0, depending on the first two results. But as 

the number of observed throws, N, increases, it becomes less and 
less counter-intuitive to identify the probability with the observed 
frequency value. After 100 throws, for example, with 18 recorded 
Fives, we might still be inclined to think that the probability is 
‘really’ 1/6 and that 0.18 is only an approximation which is slightly 
off because of the smallness of the sample. But after 10,000 throws, 
if Five has occurred 4,999 times, even the most hidebound a priorist 
will be willing to admit that this is not a ‘normal’ die and that the 
‘best estimate’ of the probability is ‘around one-half.' Perhaps the 
chief practical problem in establishing initial probabilities by the 
Rule of Induction is deciding how many observations is ‘enough.’ 

Fortunately for those of us who like to gamble, it is no longer 
necessary to sit down and record hundreds of dice throws before 

getting into a crap game. The reason is, of course, that we are no 

longer in a state of ‘primitive knowledge.’ We are therefore entitled 
to use the last two of Reichenbach's methods in determining 
probabilities. 

As an example of the method of 'deduced probabilities,’ suppose 
we know that each of two dice has a 1/6 probability of showing a 

Five. By a straightforward application of the probability calculus 
we may deduce that the probability of a Double Five is equal to 1/36. 

For ‘hypothetical probabilities,’ suppose a player in our crap game 
requests a new pair of dice. From our previous experience with 
other dice (and with the honesty of the gambling establishment), it 
is reasonable for us to infer that the probability of a Five on one 

of the new dice is also 1/6. This is clearly not a deductively valid 
conclusion, but has the slightly problematic and generally reliable 
nature of other well-founded inductive conclusions. 

These two methods, as illustrated, can give us probability values 
to act on, but they are not, strictly speaking, initial probabilities. In 

each case, we must already know the value of some probabilities 
before we can apply the methods. We conclude, therefore, that the 



only source of initial probabilities in Reichenbach’s system is the 

application of the Rule of Induction to observed empirical sequences. 

In Actuarial Cases 

By actuarial case we mean one in which a fairly sizeable body of 
statistical information exists. This includes the frequencies and data 
of the physical sciences, as well as the more traditional actuarial 

examples from insurance and the social sciences. Such cases constitute 
a paradigm case for RF theory because: 

1 They exhibit stable relative frequencies which have been 
found to be excellent guides to future occurrences. 

2 No other established method works nearly so well in these 

important cases. 

If we wish to know probabilities of death or marriage, or to predict 
rates of radioactive decay or distributions of stellar magnitudes, the 

proper, indeed the only satisfactory, way of proceeding, according 
to the RF theorists is to perform a straightforward inference from an 

observed relative frequency to a probability of equal numerical value. 
The process is as follows: 

First, identify the collective (von Mises) or reference class 
(Reichenbach). Remember that the collective of 40-year-old men and 
the collective of 40-year-old men in New York are not identical and 

may exhibit properties with different frequencies. Decide which group 
you are really concerned with. 

Second, look up the relative frequency of the property among 
recorded members of the collective. If 40,000 individuals are in the 
records and 4,000 of them have the property, the relative frequency 
is 0.10. 

Third, check to see if this value is stable over time and subgroups. 
(Here von Mises shares Keynes’s respect for Lexis’s tests for 

significant dispersion.) 
Fourth, accept any stable value as the limit of the relative 

frequency of occurrence – and hence the probability – of the property 
in the collective. 

This is basically the Straight Rule, hedged around with a few 

safeguards. By requiring large samples and testing for randomness 
and super- or sub-normal dispersion von Mises hopes that we can 



escape many of the difficulties of that rule. But his and Reichenbach’s 
fundamental inductive philosophy is the same: observed regularities 
in experience will continue with present frequency values. 

This method has worked for insurance companies for years, and 
would have worked for gamblers had they not preferred the simpler 
method of uniform distribution. It represents perhaps the greatest 
advantage of the RF school over the Classical – it allows us to 

generate initial probabilities in cases where no equiprobable alternatives 
exist. 

In summary, then, initial probabilities in actuarial cases are 

established by simply counting the relative frequency of the property 
in the reference class and accepting that as the limiting value of the 
frequency, which is also the probability. 

4 The Probability of a Single Event 

According to von Mises, there is no such thing as the probability 
of a single event. For example, 36 

When we speak of the ‘probability of death,’ the exact meaning 
of this expression can be defined in the following way only. We 
must not think of an individual, but of a certain class as a whole, 
e.g., ‘all insured men forty-one years old living in a given 
country and not engaged in certain dangerous occupations.’ A 

probability of death is attached to the class of men or to 

another class that can be defined in a similar way. We can say 
nothing about the probability of death of an individual even if 
we know his condition of life and health in detail. The phrase 
‘probability of death,’ when it refers to a single person, has no 

meaning at all for us. 

This is the obvious, and the usual, position of most RF theorists, 
but Reichenbach is different because he thinks the RF theory is 

applicable even to single events. According to him, the frequency 
interpretation deals with individual cases by means of a posit. Rather 
than asserting the most probable alternative as true, we posit it by 
behaving as though it were true. ‘A posit is a statement with which 
we deal as true, although the truth value is unknown.’ 

In order to act rationally, we should always make those posits 
which would be most successful if repeated infinitely. Thus we should 



posit that alternative which would appear with the greatest relative 

frequency in an extended sequence, which is the same as to say that 
we should always act on the most probable alternative (in the RF 

sense). In this way a statement about an individual probability is 
seen as an ‘elliptic mode of speech’ which acquires a ‘fictitious 

meaning’ by a transfer of meaning from the general to the particular 
case. The adoption of the fictitious meaning is justifiable, not for 
cognitive reasons, but ‘because it serves the purpose of action to 
deal with such statements as meaningful.’ 37 

What is most important about Reichenbach’s view is that it 
involves the introduction of a new sense of the term ‘probability.’ 
We cannot avoid von Mises’ contention that, if ‘probability’ is defined 
as ‘limit of relative frequency in a series,’ it just is meaningless to 

speak of the probability of an individual event. Reichenbach is well 
aware of this, but he is also committed to making the frequency 
interpretation do for all uses of ‘probability.’ The result is his 
insistence on such terms as ‘elliptic,’ ‘derivative,’ and ‘fictitious’ in 
order to explain how such statements are meaningful in a different 
way but don’t have a different meaning. This seems to be an 

equivocation. If the term ‘probability’ has a meaning in statements 

of individual events and if that meaning is not ‘relative frequency’ 
then it is a different meaning and Reichenbach should say so. 

That Smith will roll a Five 

The fictitious transfer of meaning from the sequence to the individual, 
which Reichenbach believes sufficient to give ‘meaning’ to individual 
probability statements, does not proceed from a sequence of events 
to a single event but from a sequence of propositions to a single 
proposition. This involves a shift in the way of conceiving probability, 
from a property of (sequences of) events to a property of (sequences 
of) propositions. Reichenbach credits George Boole with first 
recognizing the possibility of this alternative interpretation, 38 but 
the blame is entirely Reichenbach’s for choosing to call it the ‘logical 
interpretation of probability’ in contrast to the ‘object interpretation 
of probability.’ 39 Perhaps ‘blame’ is too harsh a word, since in 
Reichenbach’s time there did not exist the present extensive use of 
‘logical’ to refer to the type of probability theory which I call ‘a 
priori’ (although Karl Popper spoke of ‘the logical interpretation of 
probability’ in the modern sense in his Logik der Forschung 40 



published the very same year as The Theory of Probability). Still, 
it is certainly confusing now, since the phrase has acquired a fixed 
meaning different from Reichenbach’s. To avoid this confusion, I 
will use ‘propositional interpretation’ where Reichenbach uses 

‘logical interpretation’ to show that the things which are probable 
are linguistic rather than physical. 

Briefly, the propositional interpretation identifies ‘probability’ 
with ‘truth-frequency in a sequence of proposition.’ In our present 
example, one sequence of propositions hzi ('zi is a throw of this die’) 
is determined as true or false by a sequence of events xi which either 
are or are not throws of a die. Another sequence, f xi (‘This is a 

Five’) is determined as true or false by a sequence of events which 
either are or are not groupings of Five pips. The frequency 
interpretation is constructed by counting the number of true 

propositions ‘f xi’ within the sub-sequence selected by true propositions 
‘hzi.’ 41 Thus if we say of each throw ‘This is a Five’ we shall 

have a sequence of propositions, some of which have ‘true’ and some 

‘false’ as their truth-value. The probability of ‘This is a Five’ is equal 
to the limit of the relative frequency with which ‘true’ occurs in that 
sequence. So far the propositional interpretation is isomorphic to 
the object interpretation. 

Now if we consider the individual proposition ‘This is a Five’ 
corresponding to the single event which is Smith’s next roll of the 
die, we can maintain that proposition ‘only in the sense of a posit’ 42 

since we do not yet know if it is true or false, but we can transfer 
to that posit the probability value obtained for the sequence as a 

whole. That value is then said to be the weight of the posit: ‘the 
probability of the single case, therefore, is regarded, in the [propositional] 

interpretation, as the weight of a posit. A posit the weight 
of which is known is called an appraised posit.’ 43 

The concept of appraised posits is further elaborated by Reichenbach 
into an entire system of multi-valued probability logic. The 

development of this system is an intriguing intellectual exercise. It 
starts with a formalistic conception of logic as a whole and models 
itself somewhat after modal logic. It issues in a set of ‘truth tables’ 
which specify the probability values of combinations of statement 

sequences when the probability values of the sequences themselves 
are given. This logic of statement sequences is then transformed into 
a ‘fictitious transfer of the truth properties of propositional sequences 

to individual propositions.' 44 



But despite the impressiveness and logical rigor of Reichenbach’s 
systematic development of his logic, it is easy to see that the basic 
task is the transformation of the probability calculus from a system 
dealing with properties of objects to a system dealing with properties 
of propositions. His system differs essentially from Carnap’s and 
Keynes’s only in the assertion that the probability of a propositional 
sequence is defined by the frequency of truth of the propositions 
within the sequence and the probability of an individual statement 

is a fictitious transfer of the truth properties (i.e., probability) of some 

sequence. 
A peculiar characteristic of Reichenbach’s system is that although 

he starts by replacing the traditional, alternative truth-values of ‘true’ 
and ‘false’ by the infinitely divisible scale of probabilities from 0 to 

1, he ends up with a system in which the only allowable assertions 
are those with a probability of 1. By using a device called ‘quantitative 
negation’ it is possible to assert the equivalent of ‘A has a probability 
of p’ and to do so in the form of a statement which itself has a 

probability of 1. But this differs from asserting the probability-statement 
as true only in the same way that ‘true’ and ‘having a 

probability of 1’ differ. 
Carnap has argued 45 that Reichenbach’s attempt to replace truth 

values with probability values is misguided because 

these views are based on a lack of distinction between ‘true’ on 

the one hand, and ‘known to be true’, ‘absolutely certain’, 
‘completely verified’, ‘confirmed to the maximum degree’, 
‘having the probability1 1’, on the other. The concept expressed 
by the latter phrases in their strictest sense is indeed an 

absolutistic concept that should be replaced by the concept of 

probability with its continuous scale of degrees. Both these 
concepts refer to given evidence; the concept of truth, however, 
does not and this is seen to be of an entirely different nature, 
and, hence, values of probability! are fundamentally different 
from truth-values. 

Since Reichenbach only allows assertion of sentences with probability 
1 and uses only modus ponens for his rule of inference, it is hard 

to see how its logical scope could differ from Carnap’s system where 
all probability statements are true (analytic) and modus ponens is the 
rule of inference. It is only the attempt to interpret the system in 
terms of relative frequencies of truth which is different. 



I agree with Carnap’s criticism and conclude that the system of 
‘many valued probability logic’ rests on a confusion and is less radical 
an innovation than Reichenbach thought. For von Mises, of course, 
the entire discussion is pointless, since there is no such thing as the 
probability of individual events. 

That Smith will be elected Mayor 

I have reversed the order of presentation of our running examples 
of single events because, for Reichenbach at least, the probability of 
being elected mayor depends on the theoretical analysis used for 
dice games – and then goes on to difficulties of its own. Therefore, 
it is convenient to begin this discussion by accepting Reichenbach’s 
explanation of how a single event like the throw of a die receives a 

probability in his theory. Then we must try to apply this method 
to Smith’s chances of being elected mayor. 

The fundamental difficulty in problems of this type is the identification 
of suitable reference and quaesitum classes. This is commonly 

called the ‘problem of the reference class.’ 
Suppose we start with the most general possible reference class, 

inhabitants of this city. Then our probability seems to be something 
like 1/50,000, since each election chooses only one of the 50,000 
inhabitants of the city. By adding the information that Smith is male, 
we can reduce the odds to something like 1/30,000, if his city follows 
the American chauvinist tradition of rarely electing female mayors. 
But now we run into a difficulty: should our fudge factor for sex be 
based on the historical rate of election of women in this city, or the 
historical rate for the country as a whole or the near-present rate 

of one or the other ? Reichenbach’s rule of thumb – select the 
narrowest class for which reliable statistics exist – would seem to 

indicate that statistics for this individual city would be preferable. 
But, as it happens, the US is currently experiencing a major increase 
in the political activity (and success) of women. This factor should 

certainly be included in our calculations – perhaps by using near-present 

statistics for the country as a whole. Even so, it is unlikely 
that any numerical factor directly based on past experience could 

adequately reflect the extent of the improvement in a woman’s chance 
of being elected now or in the future. Such statistics inevitably lag 
behind reality – the difficulty is to identify those which lag behind 



the least. Difficulties of this kind apply to the selection of all statistical 
factors (Republicans may be increasing in the South while decreasing 
nationally – which data do we use for Louisville?). 

It may be that in some cases we have no reliable statistics which 
are obviously relevant. If Smith is, for example, a Liechtensteinian 

immigrant who was converted to Buddhism and who is running 
against a red-headed, left-handed mushroom farmer who has 

changed parties twice, it is difficult to see how we could appeal to 

statistics for a reliable prediction. Some single events may be so 

qualitatively rare that there are no important empirical series which 
can be used as predictors. 

A final difficulty in Reichenbach’s theory is that for some possible 
single events there may not be a probability at all. 46 

When a die is thrown upon a table, it is possible that a sudden 
thunderbolt may happen simultaneously; but such a statement 

of possibility does not mean that a probability implication 
exists between the two events. I do not wish to say that the 
probability is very small; I mean, rather, that it is not permissible 

to assert a definite regularity with respect to the occurrence 

of thunder when the die is thrown repeatedly. The 
illustration will make it clear that the existence of a probability 
cannot be inferred from the possibility of an event. 

‘The existence of a probability,’ in Reichenbach’s system, is 

completely dependent upon the existence of a limit of a relative 

frequency in an infinite series. He thinks this is a reasonable 

assumption, in many cases, because investigation has revealed a 

striking regularity in many empirical series. But even Reichenbach 
does not think all empirical series must tend to a limit (we know 
some mathematical series do not). At least some identifiable series 
may have no limits – from which it follows that some (possible) 
empirical events may have no (defined) probability. 

The reader may find it strange to think that there is no probability 
that this throw of the die may be accompanied by a thunderbolt 
(remember this is not the same as saying there is a zero probability), 
but he should remember that this is not unique to Reichenbach’s 
system, nor is it a necessarily fatal flaw. It is true that Carnap would 
argue for the existence of a determinate (on given evidence) and in 
principle computable probability in this case, but Keynes would say 
that, though real, the probability is indeterminate. And von Mises 



would deny that any single event has a probability. So the mere 

failure to specify a determinate value for the probability of a lightning 
bolt accompanying a dice throw need not be a defect in a probability 
theory. But Reichenbach is not just aiming at a probability theory. 
He is trying to convince us that his RF conception of probability 
is completely adequate to capture all uses of the concept probability. 
If our intuitions tell us that every possible event does have some 

probability, then we must conclude that Reichenbach has failed in 
his aim. 

5 Probability of Repetitive Kinds of Events 

Here we have the heart of RF theory. A relative frequency is 
essentially a property of a repeatable kind of event, and all of the 
unqualified successes of RF probability theory have dealt with such 
kinds of events. We will find here, or nowhere, the reasons for 

preferring RF theories. 

That a thirty-year-old Man will get Married 

This case can be taken as a paradigm of RF theory. If we keep in 
mind that we are referring to a (some) thirty-year-old man, or the 
class of thirty-year-old men, but definitely not a particular, individual 
man, we can see that this example has the following favorable 
features: 

1 There exists a known, stable frequency of occurrence in the 
class. By checking the marriage records throughout the US 
we can establish that of every 1,000 men single at their 
thirtieth birthday, 50 (say) marry before their thirty-first. 

2 The property is random in the class. If we pick out every 7th 
such man, we still find 5 per cent marrying during the year. 
The same is true for those whose last name starts with a ‘C’ 
or an ‘L.’ Within acceptable limits, it is also invariant with 
geographical location. (This randomness or insensitivity to 

place selections is necessary to make the class suitable as a 

collective for von Mises.) 
3 The property is suitable for treatment by the probability 

calculus. For example, the probability that such a man either 



marries or does not marry is 0.05 + 0.95 = 1 (Unit Sum). The 

probability that he marries or has a name beginning with 
‘L’ is (say) 0.05 + 0.02 = 0.07 (Addition Rule), while the 
probability that he marries and has a name beginning with 
‘L’ is 0.05 × 0.02 = 0.0010 (Multiplication Rule). 

4 There is sound empirical evidence for the probability statement 
'P(M30) = 0.05.’ This evidence consists of marriage 

records, personal observations, etc. The frequency has 
remained stable for years (we will suppose) and no sub-group 
has unexpectedly varied from the relative frequency 0.05. 

5 The probability statement 'P(M30) = 0.05’ leads (and has led) 
to success in predicting and controlling the future. Anyone 
who doubts the value of such statements should try to 
determine the total assets of insurance companies in America. 
This astonishing sum has been accumulated through skillful 
and successful prediction of the behaviour of large groups of 

people. Although insurance companies might have no interest 
in this specific example, governmental bureaucrats, demographers, 

and sellers of wedding apparel will. 
6 The example admits of no interpretation in terms of equiprobable 

alternatives. Classical theory could not deal with it at 
all. Keynes could only deal with it by invoking an intuitive 
probability that the observed frequency will continue, and 
this intuitive probability, since it is not based on the principle 
of indifference, could not be numerically precise. The ability 
to deal with such cases is, I repeat, the greatest virtue of the 
RF theory of probability. 

Now it would seem that this example, or others which share most 

of these six characteristics, would be perfectly suited for the application 
of RF theory. Unfortunately, the case is not as simple as it 

appears. 
Let us suppose, to exhibit this problem, that the probability of a 

30-year-old man’s getting married is 0.05 and that we know that it 
is. We have therefore waived all metaphysical and epistemological 
difficulties about the existence of a limiting value and our ability to 

discern that value. 
We are now in possession of a known-to-be-true probability 

statement, ‘P(M30) = 0.005.' Now that we have it, what can we do with 
it? 



Von Mises has explicitly forbidden us to use it to assess the 
likelihood that a thirty-year-old like Jack Warndof will get married 
this year. Such attributions of probability of individual events is 
meaningless and not to be condoned under any circumstance. 47 

Clearly, then, what von Mises intends us to do is to apply it to 

groups. Suppose we say that we can predict, using the theory of 
probability, that approximately five of the 100 thirty-year-old 
bachelors in Jack’s Law School class will get married this year. 
Unfortunately, this is also not acceptable to von Mises. All that the 

probability statement says is that a certain proportion of the infinite 
collective of thirty-year-olds has the property of getting married. 
This has no more implication for any small group of thirty-year-olds 
than it has for any individual. The proportion of 0.05 marriages on 

the whole is perfectly compatible with any value whatsoever for this 
group of 100. Therefore we can say nothing about the composition 
of Jack’s law class. 

At this point it is traditional for theorists from Poisson on to 
invoke the Bernoulli-Poisson Theorem, or the Law of Large 
Numbers as it is often called. We explained this theorem, together 
with von Mises’s criticism of it, in the section on chief criticisms of 
Classical theories. 48 One of the points von Mises repeatedly makes 
is that neither his theory nor the Law of Large Numbers says 
anything about the composition of any small group. 

49 

It is essential to remember that the theory predicts not the 
exact result of a single sequence of observations but the out- 
come of the great majority of identical experiments (each 
experiment consisting of a large sequence of observations), 
repeated a very large number of times. 

This means, of course, that nothing is to be gained here by invoking 
the Law of Large Numbers, since 100 is far too small a number. 
Again we must increase the size of the group with which we are 

dealing. 
Let us next take the group of all thirty-year-old bachelors in 

America. Surely we can say that approximately 5 per cent of them 
will get married this year? Well, not quite. 

If the group is large enough (and we shall finally assume that it 
is), von Mises’s theory and the Law of Large Numbers imply that 

there is a very high probability that 5 per cent will get married next 

year. This is the basis of the success of insurance companies. If an 



insurance company insures groups of 100 on the assumption that 5 
members of the group will get married, and if the number of groups 
gets very large, then there is a very high probability that the 
assumption will be vindicated by an actual frequency of occurrence 

which is very close to 0.05. The import of Bernoulli’s Theorem is 
that this ‘probability of vindication’ can be brought arbitrarily close 
to 1 by continually increasing the number of groups insured. 

But a probability of vindication (like a probability of occurrence) 
gives us no license, on von Mises’s view, to think that we will be 
vindicated (x will occur) this time. All we can say is that if the 
insurance company repeats this massive experiment an infinite 
number of times, then a very high proportion of those repetitions 
will be successful. We cannot say anything about this particular large 
set of insurance policies. So even insurance companies are disbarred 
from actually applying RF theory. What has gone wrong? 

We started out trying to apply a probability statement to an 

individual. As expected, von Mises told us that wouldn’t work. The 
same result applied to small groups of individuals. But von Mises 
and the Law of Large Numbers seemed to promise us that we could 
apply probability directly to large groups of events. 

That turned out to be not quite the case; instead, we had to deal 
with large numbers of repetitions of large groups of events. Even at 

this level, all we can say is that it is ‘very probable’ or ‘almost always 
occurs’ that such a hughmongous group has a certain characteristic. 
It should be obvious by now that an infinite regress occurs whenever 
we try to apply the theory. Each successive application of the Law 
of Large Numbers leads only to another (very high) probability. But 
a probability statement by definition applies only to an infinite 
sequence and says nothing about the composition of any finite 
sub-sequence. 50 Therefore we arrive at our first proposition: 

(1) No RF probability statement, strictly speaking, says anything 
about any finite event, group of events, or series. 

This is obviously not a satisfactory way of looking at things. Our 
interest in the infinite series of 30-year-olds is not primarily a 

theoretical concern about the nature of infinite series, it is a practical 
concern about the fate of real, finite groups of people. A probability 
theory which gave us no help at all in dealing with our finite world 
would have few adherents. Therefore we must reduce the stringency 
of our interpretation, in order to make some application possible. 



One way of trying to get around this problem is to say that if the 
limit of the frequency is 0.05, and if we act as if 5 per cent of real, 
finite thirty-year-olds get married, we will be right in the long run. 

This is a characteristically Reichenbachian thesis, which we will 
discuss later – the two best replies to it are, first: if ‘the long run’ 
refers to any finite length of time, it is false that we have any guarantee 
of success, and second: if it refers to an infinitely long run, then, as 

Keynes said, ‘in the long run we shall all be dead.’ 
Von Mises more typically ignores the problem rather than trying 

to solve it. He sometimes slips insensibly from ‘it is very probable 
that’ to ‘the majority will be.’ He is always ready to make the illicit 
transition from RF probability to the ‘likelihood of occurrence’ which 
he had originally tried to dispense with – or worse, to a certainty 
of occurrence which is unjustified on any (standard) theory. 

But our intention was to relax the stringency of our interpretation. 
Aren’t most of us actually willing to agree that the Law of Large 
Numbers works very well in practice and that certain distributions 
of repetitive events really are very likely in the long run? Suppose 
we agree, then, that the theory can be applied to large but finite 
numbers of repetitive events. Let us agree, for example, that if we 

take all American thirty-year-olds in random groups of 1,000, it is 
very probable that the vast majority of these groups will have 
approximately 50 who get married. We further agree that it is 
reasonable to act on this probability (after all, that’s how insurance 
companies get rich). 

Now consider the event, Et, which consists of the marriage-distribution 
of thirty-year-old American males at the present time, 

and the property, S, of being approximately equal to the distribution 
of the previous paragraph. We argued earlier that the strict meaning 
of the RF probability-statement above is that in an infinite sequence 
of Et’s almost all have the property S. Our current stipulation 
amounts to saying that this high probability in the long run also 

applies to the single event Et. It is very probable that Et has the 
property S and it is rational to act on the probability. But Et's being 
S is a single event out of an infinite sequence – it’s true that Et is 

very complex and embraces a huge number of individual elements, 
but it is in principle no different from getting a seven on the next 

pair of dice (perhaps getting a sum greater than 101 on a roll of 100 
dice would be a better example, since the probability of Et being S 
is quite high). 



From all of this we come up with our second proposition: 

(2) If RF theory is applicable to any finite group of events, it is 

applicable to single events. 

Originally we expected to agree with von Mises that RF probability 
finds its principal (only?) application in cases like the marriage 

prospects of thirty-year-olds as a class. Our careful analysis of the 

logic of the matter, however, leads to the surprising conclusion that 
the theory is strictly not applicable to any finite group, and if the 
stringency is relaxed it is applicable to single events as well. 

That a Dice Throw will be Five 

RF theorists believe that probability in a dice game is exactly the 
same as every other manifestation of probability – it is a property 
occurring in a random infinite sequence with a relative frequency 
that tends towards a limiting value. It is pragmatically valuable and 
interesting but of no theoretical importance that a well-made die 
has the same limiting frequency of occurrence for each of its faces. 
Clearly this is so because fairness is the principal design criterion 
for (most) dice, not because it has six possible outcomes of which 
we are equally ignorant. 

The 'fair die’ was prominent in the development of the Classical 

theory, and continued to be of some importance in theories of a 

priori (AP) probability. With von Mises, however, the unfair, biased, 
or loaded die comes into its own. 

It was a minor scandal of earlier theories that they purported to 

predict future events with accuracy so long as we were ignorant or 

had only symmetrical information about the alternatives, but as 

soon as we learned that one alternative was more likely than the 
others, the old theories became unable to say anything about the 
future. This leads to the paradox that if we wish to predict the future 
we do better not to gather information, lest we violate the conditions 
of the theory. 

No empiricist could stand for any such attitude; and of course 

beginning to engage in a game will start the flow of information, so 

we know people will not remain for long in a state of ‘equal 
ignorance.’ If they pass from that state to a state of‘equal knowledge,’ 
all remains well. The Principle of Indifference can be employed with 



even greater confidence if we have positive experience confirming 
the equiprobability of the alternatives. But if our newly acquired 
knowledge begins to indicate that one dice face is more common 

than the others, what are we to do? 
Some early theorists tried to construct alternative models, retaining 

some form of equiprobability. We might, for example, identify 
three equiprobable alternatives: the first is a Five, the second is a 

Two or Three, and the third is a One, Four, or Six. Besides being 
arbitrary and ad hoc, such models work even moderately well only 
in cases with fairly regular frequency distribution – they certainly 
are not a satisfactory general solution to the problem. 

Von Mises, however, could argue that his theory did constitute a 

general solution, since it could satisfactorily deal with both fair and 
loaded dice, with no special assumptions or ad hoc models required. 
All one has to do is collect evidence by observing the die and then 
project the relative frequency of each side’s occurrence into the future. 
This will give one usable probability values whether the die is loaded 
or not. 

Of course the same application problems are found in the dice 
game as in the above sections. We still are told that probability 
statements apply only to very large samples and never to single 
events. This may seem reasonable as a partial explanation of why 
large casinos can count on a regular income but individual gamblers 
cannot. It seems strange or even ludicrous, however, if it means that 
a man who wishes to risk it all on one throw of the dice can get no 

help from probability theory in deciding whether to bet on a Seven 
or on Snake Eyes. 

6 Absolute Probability and Physical Chance 

Reichenbach introduces the term ‘absolute probability’ and specifies 
its meaning as follows: 51 

The probability P(B) [ = d f P(A ⋁ A,B)] may be called an 

absolute probability, in contradistinction to the relative probabhilities 
so far considered. An absolute probability can be 

regarded as a relative probability the reference class of which is 

the universal class. 

No analogous idea exists in von Mises’ theory. For him, when we 



speak of the probability of B, we are implicitly referring to an 

appropriate and limited reference class (collective) rather than 
explicitly referring to the universal class. We have already discussed 
his argument that there is no such thing as the probability that 
Mr Smith will die in the new year because Mr Smith belongs to 

many different collectives, each of which may have a different 

death-frequency. 52 It is likewise true that there is no such thing as 

an intrinsically improbable single event. Consider, for example, what 
he has to say about an ‘unusual’ lottery number winning the prize: 53 

The event that the first prize will fall to ticket No. 400,000 has, 
in itself, no ‘probability’ at all. A collective has to be defined 
before the word probability acquires definite meaning. 

Here our surprise at this ‘improbable event’ is due to the fact that 
one ticket which exhibits a very rare property in one collective (a 
winning ticket in a collective of lottery tickets) also exhibits a very 
rare property in another collective (a number ending in 5 zeros in 
a collective of numbers). To put von Mises’s point another way, 
getting a ‘round’ number and getting a winning lottery ticket are 

rare but independent events. One would indeed be foolish to bet 
that the number he will draw will be both ‘round’ and a ‘winner,’ 
since the odds would be the product of the two small probabilities. 
But if one has a ‘round’ number, one would be equally foolish to 

throw it away in the belief that such numbers never win, since, of 
course, they win as frequently as any other number in a fair lottery. 
When someone holding such a ticket does indeed win we think of 
it as a rare event. But it is not the event that is rare, but its properties. 
The ticket with which we are concerned has two rare properties: 
being a winning ticket and having a round number. But it also has 
properties which are not rare, such as rectangularity, redness, having 
4 for the first number, being sold in New York, etc. If we were 

concerned with these properties, considered in their proper collectives, 
the event would not be rare at all. Since the rarity of an event 

depends on the rarity of its properties, and the rarity of a property 
depends upon the collective in which it is being considered, the only 
use of ‘the probability of X' is to refer to the probability of a specified 
property in a specified collective. There is no such thing as the 
probability of an event. 

Keynes did specify a sense for the phrase ‘the absolute probability 
of p,’ remember, when he said: 54 



If h specifies the Universe of Reference, i.e., if its group comprehends 
the whole of our knowledge, p/h is called the absolute 

probability of p, or (for short) the probability of p; and if p/h = 

1 and h specifies any real [i.e., known to be true] group, p is 
said to be absolutely certain or (for short) certain. 

This definition of Keynes’s does capture one concept to which we 

may be referring when we speak of ‘the absolute probability of P' 

or simply 'the probability of P.' This concept is the probability of P 
relative to everything we know, or in light of all relevant evidence. 

There is another sense, though, especially common to scientists 
and metaphysicians, which differs from this and is not captured by 
Keynes. This is the notion of the real probability of P, or the 
probability determined by what is true of the universe and not by 
what is known. It is said to measure the actual chance, or likelihood, 
that an event will occur. 

It would seem that Reichenbach’s definition is addressed to this 
latter sense, because his reference class is not our body of knowledge 
but the actual universe – everything which is either A or not-A. 

Indeed, the very definition of probability used by Reichenbach 
requires that the absolute probability be an objective fact, independent 

of our knowledge and dependent on the nature of the real 
world. But what do we have when we have this absolute probability? 
Well, if we substitute into Reichenbach’s definition, we find that we 

have the number of things which satisfy B divided by the number 
of things which satisfy A or not-A (or rather, the limit of this ratio 
as the population expands to infinity). This is useful information if 
we wish to know how many B's there are (or ever will be) in the 
universe, and how many other things; but does it really tell us what 
the probability of B-dom is? If we ask for the absolute probability 
of the existence of telepathic communication devices, are we satisfied 
when told that 0 is the ratio of the number of such devices (or any 
finite class of things) to the infinite (?) number of things in the 
universe? Surely that doesn’t answer our question! And if we ask 
for the absolute probability that we shall encounter the department 
chairman today, and that request is answered by the ratio of such 
encounters to the number of events in the universe (again zero), we 

are at a loss for something to say. The problem seems to be specifying 
what counts as a relevant thing but not as a B – that is, the 
specification of some reference class to give meaning to our query. 



But when we do specify such a class, we have left absolute probability 
and are again dealing with relative probability. Perhaps there is no 

way to make sense of ‘absolute probability’ in objective terms! But 
let us look to see how Reichenbach uses his concept, how he deals 
with absolute probabilities. 

He doesn’t. 
After giving his definition, he notes that if a sequence is ‘compact’ 

in some class A (i.e., every member of the sequence is a member of 
A) then A is the equivalent of the universal class (A ⋁ Ā) for that 
sequence. Thus when we use A as the reference class for determining 
the probability of B, [P(A, B)] we may omit reference to A and speak 
directly of the (absolute) probability of B[P(B)]. In other words, the 

only use Reichenbach makes of his definition of absolute probability 
is to authorize us not to state the reference class in a limited universe 
of discourse. What it would mean to do this in an unlimited universe 
is never explored. 

This notion of suppressing the evidence or restrictions in a limited 
universe of discourse (‘The probability of drawing an Ace is 1/13’) 
has been common to probability theory since its inception; even 

von Mises allows this. We must conclude that despite Reichenbach’s 
talk of absolute probabilities he has not introduced a potentially 
fruitful new concept (whereas Keynes’s concept is meaningful, for 

example). 
It would seem fairer to the spirit of Reichenbach’s theory to ignore 

his brief remarks on ‘absolute probability’ and instead to concentrate 
on his continued insistence that all probabilities are relative since 
they essentially involve the frequency of some property in some 

reference class. 55 It is both true and important that Reichenbach 
denies that any ‘absolute probabilities’ can be given which are not 

relative to some reference class. 
But the rejection of absolute probabilities in this sense emphatically 

does not mean that Reichenbach thinks probabilities are in any way 
relative to human knowledge. Quite the contrary – he completely 
agrees with von Mises’s thesis that probabilities are objective 
properties of the physical world and like mass and length obtain 

completely independently of human language or knowledge. 56 

If the reference class is stated, the probability of an attribute is 
objectively determined, though we may be mistaken in the 
numerical value we assume for it on the basis of inductions. 



The probability of death for men 21 years old concerns a 

frequency that holds for events of nature and has nothing to do 
with our knowledge about them, nor is it changed by the fact 
that the death probability is higher in the narrower class of 
tuberculous men of the same age. 

The interesting thing about such ‘objective properties’ is that it 
follows that every probability is an unchanging physical fact about 
the universe. If there is a limiting value to the relative frequency of 
occurrence of red giants in the stellar population, there can be only 
one such value, determined by the entire history of the universe. 
This value has nothing to do with human beings, their language, or 

their knowledge. In this sense we may wish to say that RF 
probabilities are more nearly absolute than AP probabilities. 

It is unlikely that RF theorists would be happy with this talk of 
absolute, unchanging RF probabilities. One of the virtues which 
they profess for their theory is that it can learn from experience and 
can change, for example, the probability that a die will yield a Five, 
while Classical theories especially cannot take note of experience. 
Here I think the RF theorists are guilty of confusing our judgment, 
belief, or estimate of the probability with the probability itself. For 

example, at one place 57 
von Mises talks about how we establish a 

figure for the probability of death among 40-year-olds and then 
about how the figure might change: 

no figure of this kind, however exact at the moment of its 
determination, can remain valid forever. The same is true for all 

physical data. The scientists determine the acceleration due to 

gravity at a certain place on the surface of the earth, and 
continue to use this value until a new determination happens to 

reveal a change in it; local differences are treated in the same 

way. 

But there are two reasons why scientists might be led to change 
their figures: 

1 More precise measurement might give a closer approximation 
to the true value of G. 

2 Physical changes in the earth might cause a change in the 
true value of G. 

Of these, only the first can apply to a probability, for if a limit 
exists to any empirical frequency, it will remain always the same. 



No amount of divergence in the observed value up to any finite 
point can alter the fact that the series will eventually 'correct' itself 
and converge on the final value. We must be clear, as von Mises is 
not in this passage, that the only values that can change are our 

estimates or opinions or beliefs about what the true probabilities 
are – the probabilities themselves as von Mises defines them are 

eternally immutable if they exist. The reason for this fundamental 
difference is that probabilities are not like ordinary physical properties 

even on von Mises’ theory, because (1) they refer to classes of 
individuals, properties, or events, and (2) these classes are defined 
as extending into the infinite future. Since all future events of type 
A are included in the limit process, none of those events can change 
the limit. Therefore no future event or series of events can change 
a present probability. 

Now we take up the question of physical chance. There is nothing 
in the RF theory itself to settle this question one way or the other. 
Von Mises clearly believes in the existence of physical chance in the 
sense that he thinks a Laplacean determinism is unobtainable. It is 
less obvious whether he thinks this is due to the practical difficulties 
of such predictions or whether he thinks the world is so undetermined 
that it is not even in principle predictable. That question would 
perhaps be answered if we knew whether or not there are empirical 
sequences which meet his requirement of randomness. Such sequences 

might seem to fulfill our ordinary criteria for chance or 

random processes. 
It is clear that von Mises thinks there are such sequences, and 

that they represent both the subject-matter and the justification of 
his theory of probability. Games of chance and actuarial regularities 
are examples he cites again and again. 

It is less clear, though, whether he thinks such sequences are in 

principle unpredictable, because they are ‘truly’ random processes, 
or whether, like Poincare, he thinks only that they are unpredictable, 
in practice because of the minute observations and vast calculations 
which would be required to achieve reliable solutions. The earlier 

reference to ‘an easily recognizable law' might tend to support the 
latter interpretation. There is also rather extensive discussion of and 

support for Poincaré’s notion that the ‘chance’ in ‘chance mechanisms' 

arises from small causes which produce large effects, 58 

which is often used to explain why prediction is impossible in a 

deterministic world. 



Other passages, however, affirm the alternative interpretation. On 
page 26 he introduces a ‘Principle of the Impossibility of a Gambling 
System' which asserts that there is no ‘selection principle’ which can 

pick out in advance the successes in a random sequence of trials. 
This Principle is explicitly analogous to the Law of the Conservation 
of Energy, and its forbidding of a gambling system is said to be 
similar to the impossibility of a perpetual motion machine. The 
unpredictability thus seems to be theoretically and not just practically 
ineliminable. 

This interpretation receives further and, I think, decisive support 
from the final part of the book, where von Mises discusses statistical 
physics and the rise of quantum mechanics. 59 He comes to the 
conclusion that the inexact, statistical nature of all measurement 
and the restrictions of the Heisenberg Uncertainty Relations together 
show that the precise data required by classical determinism are in 

principle unobtainable. 60 As a result, he urges that we renounce the 
‘prejudice' of determinism and either modify or abandon the notion 
of causality. 

From all of this we may conclude that von Mises believes in the 
existence of physical chance in the ordinary sense we have been 
using even if we have doubts about the theoretical adequacy of the 
grounds of his belief. 

Two final points about this matter. First, the existence of physical 
chance is taken to be contingent and the Principle which guarantees 
it is merely an empirical generalization, very far-reaching and 
extremely well supported by experience but devoid of self-evidence 
and insusceptible of deductive proof. In this, as in other matters, 
von Mises is a properly anti-metaphysical Logical Positivist. There 
are no necessary truths about his physical universe. 

Second, the requirement of randomness as formulated by von 

Mises has been found unsatisfactory by most subsequent theorists. 61 

For one thing, it rules out every empirical sequence if applied strictly 
enough, because there is always a method of selecting the successes 

in an empirical sequence, namely, any method or formula which in 
fact happens to pick out the relevant place numbers, even if it is 

only a list of those numbers. It is true that such methods are generally 
unknown to us and at any given time cannot be expected to have 
continued success in the future. But this argument again seems to 

indicate that the impossibility of prediction is practical only, rather 
than theoretical. 



I think it would be a misapprehension to take this technical 
criticism as having any metaphysical significance for the following 
reasons. Von Mises has said that a series is random if there exists 
no selection system which would pick out a subset with a different 
limit of the RF. His critics have argued that such a method always 
exists, even if it usually is only an enumeration of the subset, rather 
than a constructive generation of it. But to say that there is a variant 
subset is to say only that the collective is not homogeneous. And 
to say that there is a true description of that subset is no more 

metaphysically (or pragmatically) significant than the corresponding 
assertion that there ‘is’ a true description of the future course of the 
universe. This latter assertion is clearly compatible with indeterminism 

(if one thinks the true description is not yet distinguished 
or selected from the class of all possible descriptions), or theoretical 
determinism (if one thinks the true description can be ascertained, 
at least in part and theoretically in toto, by investigation in the 

present and near future). Analogously, the fact that we know 
beforehand that we will be able to describe the subset after its 
occurrence (and therefore that such a description ‘exists’) has no 

bearing on the question of whether the sequence is random or 

deterministic. 
Reichenbach’s theory is also compatible with the Laplacean notion 

that probabilities (here, frequency summaries) are useful ways of 

overcoming our inability to grasp successfully the true determinism 
in the world. This latter alternative is suggested by Reichenbach’s 
analysis of randomness, for example, which concludes that von Mises 
was wrong in taking randomness as a necessary condition for the 

application of probability theory. Instead, he specifically says that 
the impredictability of a roulette wheel springs from our inability 
adequately to observe and extrapolate the physical data. ‘But this 
is true only in view of the limited abilities of human observers,’ he 

says, ‘Laplace’s superman’ would not be subject to such ‘psychological 
randomness.’ 

From this we may conclude that the world is predictable rather 
than random. However, this conclusion validly applies only to 

Reichenbach’s view of the macroscopic world. In the world of 
subatomic physics, Reichenbach thinks that the randomness of events 

is a genuine property of the physical world. Because of this, 
probability has replaced causality in modern physics to the point 
that it is now essential to the correct description of realty. The 



apparent discrepancy between microscopic randomness and macroscopic 

determinism is dissolved by the Law of the Compensation of 
the Dispersion. This general statistical law is based on the principle 
that 'for non-vanishing dispersions, the linear dispersion of the sum 

is smaller than the sum of the linear dispersions.’ As a result of this 
mathematical feature, a large deviation by one individual in one 

direction is often balanced or compensated by an equal deviation 
of another individual in the opposite direction. This is why businesses 
can rely on ‘average sales' in their calculations. But in the microscopic 
world the number of individuals is so large in comparison to the 
possible deviations that such ensembles exhibit regular behavior 
with virtual certainty. This compensation guarantees predictability 
despite the general randomness espoused by quantum mechanics. 
Thus there is genuine randomness, but most probability predictions 
are, like Laplace’s, substitutes for unattainable but intrinsically 
possible deterministic predictions. 

7 Metaphysical Status of P 

In von Mises’s theory an elementary probability statement is said 
to be an ordinary scientific statement of a physical fact, just like 
statements of specific weights, masses, etc. Our knowledge of such 
statements is obtained through normal, inductive science; 62 their 
truth depends upon the contingent nature of the universe. If we let 
P be 'The probability that a star is a red giant is 0.02,’ then we learn 
the truth of P through astronomical observations and its truth means 

that the (pseudo-) infinite sequence of stars contains red giants in a 

proportion that approaches 0.02 as a limit. 63 

Many people object to this theory on the grounds that limit 
statements are not like ‘ordinary’ scientific statements at all and 
their (meta-) physical interpretation presents difficulties not found in 
statements like S: The specific weight of this wood is 0.08. But von 

Mises thinks that P is like S, not because there is an obvious and 

simple physical interpretation of P, but because even statements like 
S are limit statements. He says: 

64 

I have mentioned on many occasions that all the results of our 

calculations [of probability] lead to statements which apply 
only to infinite sequences. . . . It might thus appear that our 

theory could never be tested experimentally. 



This difficulty, however, is exactly the same as that which 
occurs in all applications of science. 

As an example, suppose we wished to verify experimentally the 
statement S, above. We would naturally measure out a volume of 
the wood and weigh it. But von Mises says this is not sufficient 
because 

the weight of only a finite volume of the substance can be 
determined in this way. The value of the specific weight, i.e., the 
limit of the ratio weight/volume for an infinitely small volume, 
remains uncertain just as the value of a probability derived 
from the relative frequency in a finite sequence of observations 
remains uncertain. One might even go so far as to say that 

specific weight does not exist at all, because the atomic theory 
of matter makes impossible the transition to the limit of an 

infinitely small homogeneous volume. 65 

I am not too happy with this argument because when I took 

College Physics, specific weight was defined as the weight per unit 
volume, with no limiting process involved or implied. My (possibly 
outdated) physics texts and dictionaries still define it that way. But 
we need not pursue this question because von Mises goes on to 
consider the meaning and possible verification of ‘the indication of 
the weight of a certain finite volume of matter,’ which, for unit 
volume, is (roughly) equivalent to my definition of specific weight 
sans limit. Even this statement, he says, is not as transparently 
meaningful as we might think. 

as soon as we begin to think about a really exact test of such a 

statement, we run into a number of conditions which cannot 
even be formulated in an exact way. For instance, the weighing 
has to be carried out under a known air pressure, and this 
notion of air pressure is in turn founded on the concept of a 

limit. 66 

He later goes on to argue that all physical measurements must 
'form collectives’ because macroscopic objects are only statistical 
collections of particles while microscopic objects are governed by 
Heisenberg’s Uncertainty Relations. Therefore exact measurements 
are always impossible and only limiting processes are appropriate 
in physics. 



The purpose of this entire argument (which is of the ad hominem 

subspecies known as tu quoque or as some call it, ‘so’s your old 
lady’) is to show that all physical statements require the notions of 
limit and infinite series in their interpretations, and therefore RF 

probabilities are no worse off than other statements in this regard. 
This line of attack obviously turns heavily on the verificationist (or 
operationalist) tenet that the meaning of a physical statement (or 
quantity) depends on how it is verified (or measured) in practice. 
Those who accept this principle will presumably be convinced, while 
those who reject it may continue to believe that there is a significant 
difference in meaning between statements which explicitly refer to 
the limiting value of a relative frequency in an infinite series and 
those which do not. 

Whatever the difficulties of interpretation and verification, it is 
clear that P is intended to be an empirical statement which says 
something about the physical universe in exactly the same way as 

other statements of scientific fact. Because of this, von Mises 
repeatedly asserts that his is an empirical theory which is properly 
based on observation. This essential empiricism can be seen in one 

last statement of his concerning probability in dice games: 
67 

The probability of a 6 is a physical property of a given die and 
is a property analogous to its mass, specific heat, or electrical 
resistance. 

In discussing Reichenbach’s views on this topic, it is essential to 

keep in mind the distinction between abstract, theoretical statements 
and statements of the applied or interpreted system. After all, 
Reichenbach probably did more to elucidate and emphasize this 
distinction than any other modern philosopher (with Carl Hempel 
and Ernest Nagel as possible exceptions). Therefore we shall speak 
here of two kinds of statements, rather than the familiar, all-inclusive 
'P' for probability statements. We shall use ‘PT’ to refer to statements 

of Probability Theory, that is, those axioms and their consequences 
which constitute Reichenbach’s version of the probability calculus. 
The term ‘PA’ will stand for ‘Probability Application’ and will 
represent all those statements which assert a real probability value. 
This distinction should be familiar to everyone who has read any 
philosophy of science and readily understood by anyone who grasps 
the difference between pure and applied mathematics. 

As might be expected, the two types of statements have different 



metaphysical status. The first group, PT, includes a body of invented 
axioms designed to possess fecundity in the generation of deductive 

consequences. It would be idle to pretend that such axioms are not 

suggested by empirical considerations or that they are not intended 
to produce a system of one kind rather than another. But the 
important thing to recognize about the system of statements PT is 
that it is a formal system in the now familiar logico-mathematical 
sense of being a deductively closed system resulting from a specified 
set of axioms, definitions, and undefined terms. As such, it says 

nothing about the physical world. Every statement PT is a tautology 
in the sense that its truth is guaranteed by the laws of logic and the 

probability axioms. Reichenbach rejected von Mises’s claim that the 

probability calculus arises by induction from observation as do the 
laws of natural science – rather, he saw it as resembling a system of 
geometry, whose axioms and consequences may or may not have a 

reasonable interpretation in the real world. 68 

But Reichenbach’s axioms do not stand in splendid isolation, 
governing an independent realm. Instead, he shows that they follow 

logically from the mathematical theory of infinite sequences. That 
is to say, if one stipulates that probabilities are to be interpreted as 

limits of relative frequencies, then the axioms and theorems of the 

probability calculus become ordinary mathematical truths. It is an 

important consequence of Reichenbach’s theory, therefore, that the 
system PT is not just whimsical but has the same assertability as 

higher mathematics. Still, we must remember that Reichenbach has 
himself insisted that the truths of mathematics are analytic and 
therefore metaphysically empty. Probability statements of the PT 

type say nothing about the existence or properties of any real object 
and therefore have no metaphysical significance. 

Quite the contrary is the case for the applied probability statements, 
PA. 

As should be evident by now, Reichenbach thinks that the formal 
system PT is important because, when applied to the world, it helps 
us derive new synthetic truths from old ones. It functions exactly 
like the formal systems of arithmetic and geometry, as can be seen 

by the following examples: 
A1 I am putting 2 apples in the bag. 
A2 There were already 2 apples in the bag. 
A3 2 + 2 = 4. 



A4 There are now 4 apples in the bag. 
G1 This piece of land is a right triangle. 
G2 This side is 3 km long and that one is 4 km long. 
G3 Pythagorean Theorem: a2 + b2 = c2. 
G4 The other side must be 5 km long. 

P1 The probability of drawing an Ace is 1/13. 
P2 The probability of drawing a Ten is 1/13. 
P3 For independent events, P (A ⋁ B) = P(A) + P(B). 
P4 The probability of drawing an Ace or a Ten is 2/13. 
Under the standard interpretation, A3 is an analytic truth of 

arithmetic and G3 an analytic truth of Euclidean geometry. In 
Reichenbach’s system, P3 is an analytic truth of the probability 
calculus. None of these says anything about reality. 

Statements A1 and A2 are statements of applied arithmetic. They 
are synthetic assertions that certain real things have certain numerical 
properties. For Reichenbach, P1 and P2 have the same synthetic 
status. They assert that the empirical sequence of card draws includes 
draws of Aces and Tens with relative frequencies which will each 

approach 1/13 as a limit if the sequence is indefinitely extended. 
Such statements may be either true or false, and their truth or falsity 
is determined by facts in the real world rather than facts about 
language and logic. They are therefore synthetic propositions. (The 
reader may reasonably have doubts about the synthetic status of 
statements about card games. If so, one could replace the example 

with one about death frequencies which are clearly contingent 
empirical facts.) 

Finally, statements A4, G4, and P4 are synthetic statements which 
are asserted as the consequences of their respective premises. It is 

important that they be synthetic, because the entire pragmatic 
function, the practical purpose, of arithmetic, geometry and probability 

theory is to enable us to arrive at previously unrealized truths 
about the world. 

Now synthetic statements do have metaphysical import: they claim 
to be true descriptions of some part of reality. In particular, P4 
claims that the ratio of successful draws to this straight will eventually 
average out to (approximately) 2/13. 69 By knowing this, we are better 

equipped to assess our prospects and apportion our assets. Applied 
probability (PA) statements help us to deal with the future by 



describing the general proportions which will obtain in future events. 

There remain difficult questions about the application of this general 
knowledge to particular circumstances, but few will deny that 
knowledge of the broad outlines and proportions of the future is 
better than no knowledge at all. PA statements are thus important 
because they claim to describe physical reality. 

At the risk of confusing the issue a bit, I would like to remind 
the reader that statements about the probability of single events 

should not be interpreted as asserting some claim about the nature 
or description of such events. They are, after all, not genuine 
statements at all, but pseudo-statements. When I claim that the 
probability of my filling this straight is 2/13, I do not mean to imply 
that the future event is somehow metaphysically indeterminate or 

undetermined or possessed of any specific property. The real content 
of my assertion (according to Reichenbach) is that if I posit or act 

upon the belief that I will fill the straight, and if I repeatedly do so 

each time such an occasion arises, then the ratio of my successes in 
the long run will be 2/13. I have no way of knowing if this draw 
will be one of those successes or not, and my statement should 
therefore not be construed as applying to just this draw, but rather 
as an implicit description of the series of all such draws. When 
reinterpreted in this manner, statements about the probability of 
single events can be seen to be disguised statements about proportional 

distributions in the real world and therefore have the same 

metaphysical import as any PA statement. If interpreted literally, 
however, they are strictly nonsensical and make no metaphysical 
claim. 

Finally, we should consider the metaphysical significance of 
Reichenbach's system as a whole and its application to reality. The 
reduction of the probability axioms to truths about the mathematical 
properties of infinite series has shown, according to Reichenbach, 
that the application of his probability theory to the world is justified 
if and only if the Rule of Induction is. We will return to this claim 
in the section on the Rationality of Probability Behavior. For now 

we are interested only in what is being claimed, not whether the 
claim is justified. 

The fundamental assumption, principle, foundation, or justification 
of Reichenbach’s system is the proposition that the empirical 

world is characterized by systematic regularities which disclose 
themselves in empirical sequences. That is, at least some sequences 



of events (and therefore observations) in the real world do tend to 
stabilize in certain proportions. This is obviously a metaphysical 
claim of the first magnitude. It is similar to the traditional principles 
that Nature is Uniform and The Future Will Resemble the Past. 
The important differences are that (1) Reichenbach describes the 
uniformities as being equivalent to the existence of limits for empirical 
sequences, and (2) the uniformity is asserted hypothetically only. 

The first of these points allows for the metaphysical indeterminism 
of particular events while asserting that there can still be detectable 
regularities in nature. The second says that we can never know or 

justifiably assert that reality is uniform in this sense, but Reichenbach 
claims, if we have any hope for success in dealing with the world, 
we can attain that success by assuming regularity and acting 
accordingly. If there is no regularity, we are foredoomed to failure 
anyway, but if there is regularity (and the observation of portions of 
such sequences suggests that there is) then the RF probability theory 
will eventually disclose that regularity and lead to success in practice. 

8 The Epistemological Status of P 

Von Mises has repeatedly stated that his is an empirical theory, and 

denigrated the apriorists for their rationalistic approach of establishing 
laws of probability by logical considerations rather than 

through observation and experiment. He gives this picture of how 
a probability theory should function: 70 

Like all the other natural sciences, the theory of probability 
starts from observations, orders them, classifies them, derives 
from them certain basic concepts and laws and, finally, by 
means of the usual and universally applicable logic, draws 
conclusions which can be tested by comparison with experimental 

results. In other words, in our view the theory of probability 
is a normal science, distinguished by a special subject and not 

by a special method of reasoning. 
That certainly represents a traditional description of the nature 

of an empirical science. Unfortunately, it does not jibe with von 

Mises’s detailed description of how his theory is to be tied to 

experience. 
In the first place, remember that he argues that the establishment 



of initial probabilities is not part of the task of a probability theory 
(while I have argued that it is the most important such task), that 
only the manipulation of such data is proper to probability theory. 
In the second place, the laws of his theory are not derived from 
observation, but deduced from his premises. Thus neither the data 
nor the laws of the theory are necessarily empirical. 

To support the first contention, we will briefly review what von 

Mises had to say about initial data. For example: 71 

In a problem of probability calculus, the data as well as the 
results are probabilities. 
This is an unexceptional remark which points up the purely 

mathematical character of the probability calculus – it accounts for 
the widespread agreement among divergent theories on the question 
of what can be done once initial probabilities are established. But 
von Mises goes much further than the others – he applies these 
restrictions to the entire theory of probability. 

A great number of popular and more or less serious objections 
to the theory of probability disappear at once when we recognize 

that the exclusive purpose of this theory is to determine, 
from the given probabilities in a number of initial collectives, 
the probabilities in a new collective derived from the initial 

ones. 72 

The task of the theory of probability is to derive new collectives 
and their distributions from given distributions in one or more 

initial collectives. The special case of a uniform distribution of 

probabilities in the original collective ('equally probable’ cases) 
plays no exceptional role in our theory. 73 

The task of calculating the original probabilities is assigned to 
statistics. Von Mises draws a specific analogy between the statistician's 

duty to furnish probabilities for the probability theorist to 

operate on and the surveyor's responsibility to provide initial 
measurements for the geometer to use in his calculations. In each 
case the calculations will proceed according to fixed rules and arrive 
at a ‘correct’ answer regardless of the degree of reliability of the 
original data. 

I think this demonstrates that von Mises’s theory does not include 
any workable procedure for calculating initial probabilities, nor even 



any effective rule that they must be empirically determined (statisticians, 
too, can be apriorists; indeed, some would argue that when 

they ascribe a limit to an infinite empirical series they must be 
apriorists, as the data alone are always insufficient for the conclusion). 

So it is not the case that von Mises’s version of the RF theory is 
empirical in the sense that its data (initial probabilities) must be 
based on experience. It remains only to substantiate our claim that 
the laws of the theory (the probability calculus) are also not ‘based 
on observation.’ In this matter, we are in complete agreement with 
Carnap: 74 

Mises has repeatedly stated. . . that his theory of probability is 

empirical, is a branch of the natural sciences like physics. 
However, his theorems, although referring to mass phenomena, 
are quite obviously purely analytic; the proofs of these theorems 

(in distinction to examples of application) make use only 
of logicomathematical methods, in addition to his definition of 
‘probability’, and not of any observational results concerning 
mass phenomena. Therefore his theory belongs to pure mathematics, 

not to physics. This point has been discussed in detail 
and completely clarified by F. Waismann. . . 

Indeed the only place in which I have found von Mises referring 
to observational and experimental evidence in support of his theory 
is in his attempt to show that his assumption of the existence of 
limits is a reasonable one. As the ‘experimental basis’ and justification 
for this theory, von Mises cites the enormous documentation of 
Monte Carlo and other such gambling houses, which shows that 
each game always tends to a limit, together with the similar results 
of state lotteries. He concludes: 75 

We thus see that the hypothesis of the existence of limiting 
values of the relative frequencies is well corroborated by a large 
mass of experience with actual games of chance. Only processes 
to which this hypothesis applies form the subject of our subsequent 

discussion. 

The question of which processes do fulfill the hypothesis is one 

that cannot generally be settled on either an empirical or a theoretical 
basis. It is a problem in the application of probability theory. For 

particular processes, there are three possible solutions. (1) The process 
is governed by an obvious causal or mathematical regularity which 



makes it predictable. This case is excluded from von Mises’s theory 
by the randomness condition. (2) The process is defined as purely 
random or possessing a definite probability which makes it statistically 

but not individually predictable. This case is treated identically 
by von Mises and the apriorists, since only the probability calculus 
is involved. (3) The process is not known to have a governing 
probability or causal mechanism but has thus far exhibited statistical 

regularity. Von Mises says we can deal with this case by assuming 
it has a limit which is ascertainable by the statistical results. 

If, in the later course of experience, we find the process repeatedly 
and significantly violating the prediction of the theory, it does not 

falsify the theory. Instead, says von Mises, ‘it would indicate that 
this sequence of observation does not satisfy the conditions of a 

collective.’ 76 (Isn’t this reminiscent of Keynes’s rejection of Wolf’s 

experiments on the grounds that his dice must not have been ‘fair’?) 
If any of this involves the empirical justification of probability 

laws, it is not glaringly obvious. The laws are deduced from von 

Mises’ definitions and axioms. 77 The application of the laws is 
doubtful in particular cases, and is generally justified only by the 
perceived fact that many processes have thus far exhibited marked 
statistical regularity. The assumption that they and similiar processes 
will continue to exhibit such regularity in the future is not logically 
superior to the use of ‘The future will resemble the past’ and other 
uniformity principles to justify induction. In particular, this justification-by-regularity 

applies just as well to successful a priori 
theories and inductive logics as it does to von Mises’s RF theory. 

If the initial data of von Mises’s probability theory are not 

necessarily empirical but logico-mathematical, does there remain any 
sense in which it is proper to describe this theory as epistemologically 
empirical? 

I think that we can answer this question affirmatively, as von 

Mises clearly wishes, if we again judiciously ignore what he said 
about the theoretical irrelevance of initial probabilities. If we stress 
instead his argument that initial probabilities cannot be based on 

logical considerations (and especially not on the equal distribution 
of our ignorance) but must result from actual observations over a 

period of time, it is clear that such statements are indeed empirical. 
If we allow, as is usual, that the property of being empirical is 
hereditary through both inductive and deductive inference, then all 
subsequent probability statements which are based upon the initial 



ones must also be empirical. But this includes virtually all the 
statements made by probability theory except the axioms and 
theorems and their analytic consequences. A large part of von Mises’ 
theory, therefore, can properly be called ‘empirical.’ 

There is even, I think, a sense in which the axioms and theorems 
themselves might be described as ‘empirical.’ This is the sense in 
which a theory may be described as empirical if it is intended to be 
modelled in experience, or, even better, if at least one empirical model 
exists which successfully approximates the behavior of the theoretical 
entities. I take it that the proper use of von Mises’s examples of 
games of chance, actuarial statistics, and physical processes is to 
show that his theory is empirical in this sense. But now we must be 
careful, because the Classical and AP theories are nearly as empirical 

– in this attenuated sense – as RF theories are, because they 
too have successful models in experience (though perhaps not as 

many models). In this sense any mathematical formalism which 
successfully deals with concrete reality can be described as empirical 

– even deductive logic, perhaps. It would be better, I think, 
if we base von Mises's claim to empiricism not on this characteristic 
of his theory (it is really a property of the probability calculus in 

abstracto, anyway) but upon the fact that initial probabilities are 

based upon empirical, rather than logical or intuitive, considerations. 
In discussing Reichenbach’s views, we shall continue to emphasize 

the difference between those statements of probability theory (PT) 
such as the laws and the calculus of probability, and those statements 
of probability applications (PA) which assert the value of a probability 

in the real world. As one might expect from the metaphysical 
differences discussed above, the two types of statements also (consequently) 

have significantly different epistemological status. To put 
it briefly in philosophical jargon, PT statements are analytic a priori 
while PA statements are synthetic a posteriori. 

The PT statements are analytic because they are deductive 

consequences of the mathematical laws of infinite sequences, which 
in turn (we assume with Reichenbach) are derivable from ordinary 
deductive logic. They are therefore logical truths – hence analytic. 

Most philosophers would agree that analytic truths can be known 
a priori (i.e., that their warrant or verification does not depend on 

the nature of experience or reality) since they deal only in logicolinguistic 
relations and say nothing about the world. In Reichenbach's 

words: 78 



[the] axioms of the calculus of probability follow tautologically 
from the frequency interpretation. Therefore, if probability is 
regarded as meaning the limit of a relative frequency, the 
validity of probability laws is guaranteed by deductive logic. 
This result is of major importance for the epistemological 
critique of probability statements. . . . Now the assertability of 
theorems of deductive logic is based on the fact that logical 
formulas are empty, that they do not anticipate properties of 
the physical world. In the same sense, therefore, theorems of 
probability must be regarded as empty when applied to relative 
frequencies. The theorems constitute mere transformations of 
probability expressions into others, without any addition as to 

content. . . . That, none the less, the conclusions of probability 
transformations can be new, in the psychological sense, is 
obvious to the logician who is familiar with the twofold nature 
of tautologies as logically empty but full of psychological 
content. 

Now Reichenbach thinks that the truths of logic and mathematics 
are ‘certain’ 79 and ‘necessarily true.’ 80 Therefore we conclude that 
the epistemological status of probability statements of the PT type 
is that they are among our greatest certainties, possessing the full 
and compelling epistemological warrant of deductive logic and 
mathematics. 

Unfortunately, things are not quite so satisfactory for PA statements 
in Reichenbach’s theory. You will recall that these statements 

assert the existence of some probability values in the world. They 
are therefore clearly synthetic, since their predicates are not ‘contained 

in’ their subjects but ‘add to’ them informatively. (‘The 
probability of death in the 30th year’ does not mean the same as 

‘0.005’ or necessarily equal it. The statement that it is 0.005 is therefore 
a synthetic statement.) 

I think it is fair to say that most philosophers in the Anglo-American 
tradition reject the possibility of synthetic a priori knowledge. 

But even those who insist on the existence of some synthetic 
a priori knowledge – even Kant – will not claim that our knowledge 
of death frequencies is a candidate for that honor. So we may 
conclude that our knowledge of Reichenbachian probabilities must 
be a posteriori, as well as (or because) synthetic. This is, of course, 
the same broad classification which includes all our scientific 



knowledge, our common-sense beliefs about the world around us, 
and, in general, any of that great mass of knowledge that is ‘based 
on experience’ rather than logically derived. 

This is not bad company for PA to be in. After all, empiricists 
have long been claiming that all important knowledge is in this class, 
and that most of it is highly reliable (even certain, some say, for 
some parts). But so far we have not come to the real difficulty – all 
synthetic a posteriori statements are not created epistemologically 
equal, and Reichenbach’s PA statements suffer from a particular 
built-in problem common to von Mises’ and other RF systems: 
infinity. 

We are asked to believe that the meaning of the statement 'The 

probability that a star is a red giant is 0.05’ is that the relative 
frequency of red giants among observed stars approaches 0.05 as a 

limit when the number of observed stars approaches infinity. Suppose 
we do accept it as an analysis of meaning. On what grounds would 
we ever accept it as a matter of fact. One doesn’t just ‘look to see’ 
what properties an infinite empirical sequence has. Nor can one 

analyze the properties by a recursive enumeration of the series; while 
this is possible for mathematical series, it is naturally impossible for 

empirical series. This difficulty is so great that it counts as one of 
the major criticisms of RF theories in general, and will be discussed 
later. Here we will merely present Reichenbach’s position about the 

epistemological status of PA. 
Reichenbach accepts as true the proposition that all PA statements 

are synthetic and hence not provable by means of the calculus 
alone, 81 that the limit of an extensionally (empirically) given sequence 
is not verifiable, 82 and that in any given case we may be mistaken 
in our belief about the numerical value of a probability. 83 But none 

of this discourages him, because he thinks it just shows that 

probability beliefs are like all other scientific beliefs in being less 
than certain but inductively well-founded. Indeed, the case can be 

put even more strongly: the assumption that an observed rf will 
continue in the future is not just inductively well-founded, it is 

induction. 

we cannot know, strictly speaking, towards what limit such a 

sequence will proceed. We assume, however, that the observed 
frequency will persist, within certain limits of exactness, for the 
infinite rest of the sequence. This inference, which is called 



inductive inference, leads to very difficult logical problems; and 
it will be one of the most important problems of this investigation 

to find a satisfactory explanation of the inference. 84 

The upshot of Reichenbach’s explanation is that PA statements 
are obtained by using the Rule of Induction. It follows, then, 

that they are epistemologically well-founded if, and only if, that Rule 
is. We address this problem in the following section. 

9 Rationality of Probability Behavior 

Von Mises has little to say about the rationality of probability 
behavior. This is apparently because he thinks of himself in the role 
of scientist rather than philosopher; his goal is a true description of 
the world; what we do with it is our business. 

Indeed, there is some doubt about how one could act on von 

Mises’ description of the world. He warns us against applying the 

theory to any particular case, and I have argued above that there 
is no clearly satisfactory way in which it can be applied to multiple 
but finite groups. 

Despite these difficulties of interpretation, it seems clear that von 

Mises’ attitude is that it is rational to act on the best possible 
description of the world and that his theory is a great improvement 
over earlier versions and gives very good predictions indeed. Therefore 

it is rational to act on his RF theory of probability. 
Reichenbach, on the other hand, has devoted a good deal of 

thought to this question and has in fact developed one of the most 

important arguments in favor of the rationality of probability 
behavior, to which we now turn. 

While Reichenbach describes many complex statistical and probabilistic 
models for use in a state of ‘advanced knowledge,’ we need 

not worry about these complications. In the end, all such elaborations 
are based upon the simple method of induction by enumeration, 
and are justified if, and only if, this method is justified in a state of 

‘primitive knowledge.’ 85 

Induction by simple enumeration is said to proceed according to 
the 

RULE OF INDUCTION. If an initial section of n elements of 
a sequence xi is given, resulting in the frequency fn, and if, 



furthermore, nothing is known about the probability of the 
second level for the occurrence of a certain limit p, we posit that 
the frequency fi(i > n) will approach a limit p within fn ± δ when 
the sequence is continued. 86 

This is, of course, the Straight Rule of Induction, advising us 

always to assume that an observed series will continue to exhibit 
the same relative frequency. This rule is so fundamental to 

Reichenbach’s theory that he describes it as the only non-analytic 
assumption required for the validity of probability theory. He 
contends that the rest of the RF interpretation of probability follows 
logically from the assumption of this rule and the definition of 
probability in terms of relative frequency. We can therefore say that, 
for Reichenbach, probability behavior is rational if and only if the 
Rule of Induction is justified. 

Now clearly Reichenbach doesn’t think that the Rule of Induction 
is justified in the sense that each application of the rule must lead 
to a correct answer. It is perfectly plain that application to the same 

series at different times will yield different values for the projected 
frequency (posits) unless the series is absolutely homogeneous. But 
‘[it] is not the use of an individual [posit] but the progressive use 

of the total set that can be shown to be advisable; such progressive 
use will lead to a prediction of the frequency if there is a limit to a 

frequency.' 87 

That is to say, if we toss a coin once, and get Heads, we posit 
that the frequency of Heads is 1. After a second toss, we posit 1/2. 
Then 2/3, 3/4, 3/5, 3/6, 4/7, 4/8, etc. If this series has a limit (say 1/2) 
we must eventually reach an event number, N, beyond which the 

posited value differs from the true value by no more than an 

arbitrarily small amount. 88 

For Reichenbach, the existence of limits to empirical sequences is 
a necessary condition for the predictability of experience. (It is also 
a sufficient condition if one employs the Rule of Induction.) Thus, 
success in predicting the future is possible only if at least some 

empirical series have limits. But if they do have limits, then it is a 

mathematical certainty that the Rule of Induction must eventually 
discover those limits and thereby succeed in predicting the future. 
We therefore have reached Reichenbach’s famous Pragmatic 
Vindication of Induction: Use of the Rule of Induction will lead to 

success in predicting the future, if success is attainable at all. 



This is called a ‘pragmatic vindication’ rather than a ‘justification’ 
of induction because it does not claim that induction will lead to 
success. Indeed, Reichenbach asserts that we cannot prove that the 
success of induction is necessary – or even probable. 89 All we can 

show is that it will succeed if anything will. But this is sufficient (in 
the absence of any clearly better method) to justify the use of 
induction as rational. We are like a sick man whose only hope is a 

difficult operation. We cannot be sure it will save us, but since it 
will lead to health if anything will, it is rational to submit to the 
operation. 

But is it our only hope? 
I have used the example of the operation precisely because many 

people reject its logic. ‘What about miracles?’ they say. Or faith-healing? 
Or spontaneous remission? What if your diagnosis is in 

error? In the extreme case of the Christian Scientists, it will be 
claimed that not only is the method of faith a practical alternative 
to the operation, it is also morally obligatory. These considerations 
force us to consider the analogous possibility in epistemology: Might 
there be alternatives to the Rule of Induction? 

Reichenbach considers the possibility that an alternative might 
exist. As the simplest and most forceful example, he talks about a 

Seer who foretells the future with great accuracy. This certainly 
seems to be a better way than induction. But, says Reichenbach, if 
the Seer continues to outdo us with great consistency, induction will 
take note of that fact and will tell us to listen to the Seer. It will, in 
effect, discover a new regularity in the world that will serve as a 

valuable guide to the future. Thus, again, induction will have led to 
success where success is possible. 

Now I think Reichenbach’s argument is powerful and very 
suggestive, but I do not think, as he did, that it is a decisive 
demonstration that induction will lead to success wherever success 

is possible. 
To expand a bit on the above possibility, let us assume that the 

human brain is inherently capable of understanding and interacting 
with the world in either of two mutually exclusive ways. The first 
can be our Western, scientific, approach of understanding the world 
by induction and directly influencing only our bodies. The second 
is suggested by the type of thing we categorize as mystical, magical, 
or intuitive, but we will assume it possesses a far greater efficacy 
than generally imagined, so that it is possible for an ordinary person 



who follows this course of development to arrive at a direct, 
non-inductive, understanding of the universe and directly to affect 
any physical thing (telekinesis, miracles) or mental entity (telepathy, 
'voices’) in the universe. 

We now assume that the ‘branching’ of the alternative courses of 
development occurs sometime in late childhood, when a person has 
a fair acquaintance with the concepts of ‘evidence’ and ‘scientific 
procedure’ and also some familiarity with ghost stories, ESP, 
miracles, and ‘acting on faith and intuition.’ Those few who choose 
the non-inductive route (or just drift into it) we can imagine as 

constituting a marvelously happy and powerful but invisible subculture. 
They have chosen not only not to inform us of their methods, 

but actually to prevent our acquiring any significant evidence of their 
blissful existence (a few ghost stories, flying saucers, and religious 
fanatics are harmless, and may furnish an acceptable level of 
‘recruitment,’ but no ‘scientific’ evidence is ever allowed). 

Thus we have a situation where induction is not the optimal 
procedure for dealing with the world. It can even be the worst 

procedure if The Others intervene to ward off the really calamitous 
results of irrational activity during the time when fools and children 
are ‘setting’ in the non-inductive mode of development; for a time 

they will be less successful than we (so that our evidence is always 
that they are wrong) but after they survive that period of unhappiness, 
they so far outstrip us that we can say that the worst thing that can 

happen to a kid is for him to get hooked on the mild pleasures of 
induction at the expense of his eternal happiness. 

Finally, let us suppose that the world is such that it is not 

characterized by the widespread existence of limits to empirical 
frequencies. Then most of our inductive knowledge will gradually 
break down, the hopes of scientific optimism will never be realized, 
and most of mankind will forever suffer poverty, hunger, and 

ignorance. The Others continue to succeed with their non-linear 

projections of the future; inductivists continue to fail with the Straight 
Rule. 

In this fictitious world of ours there are two key frustrations to 

ordinary induction. The first challenges Reichenbach’s assumption 
that prediction of an empirical series is only possible if that series 
has a limit. Interestingly enough, Reichenbach immediately gives up 
this presumption and withdraws to his second line of defense. If 
there were a non-inductive method that could lead to success in 



such cases, he argues, the use of such a method would itself generate 
a success-frequency which could be detected by induction and 

subsequently adopted by the inductivist. Hence his famous claim 
that induction will lead to success in prediction if success is possible. 

But all that needs to be done to refute this claim is to build into 
our worst-case (diagonal) argument a provision which frustrates the 
one induction which could tell the inductivist to abandon induction. 
In our argument, this second frustration is the fact that the Seers 
are clandestine, so that success is available to each individual but 
that fact is never revealed by induction. A more traditional situation 

might have Descartes’s demon gleefully falsifying the evidence every 
time an inductivist gets close to understanding. Or a fundamentalist 
Christian’s God might build into his universe false evidence of the 
value of science, in order to test the faith of believers by tempting 
them with never-quite-fulfilled promises of scientific success. 

Any number of worlds, in fact, can be imagined where it is not 

true that the Straight Rule of Induction will lead to success in 

prediction if success is possible. The only essential elements are (1) 
limits don’t generally exist, so the Straight Rule is not generally 
successful, (2) an alternative method exists which is successful, and 

(3) some feature of the world prevents induction from discovering 
the alternative method. 

This argument might be viewed as an extension of Putnam’s 
diagonal argument against best-possible inductive mechanisms 
(although this is not in fact how the argument developed). 

Putnam, you will recall, argued that given any c-function one 

could always design a world and a second c-function which does a 

better job in that world than did the original. I am arguing that 

given this particular inductive method (the Straight Rule), one can 

always design a world in which some alternative (perhaps non-inductive) 

method works while this one does not and also make that 
fact undetectable by the Straight Rule. If even one such world can 

be constructed – no matter how malicious and ad hoc our 

procedure – then we have refuted Reichenbach’s claim that the 
Straight Rule will always lead to success if success is possible. 

Reichenbach is correct that we do not appear to live in such a 

world, but, in the first place, the evidence may be rigged, as above, 
and, in the second place, it is only a contingent truth if we do not. 
It is certainly not logically true that induction will lead us to 
a successful means of dealing with the world if such a means exists. 



It may not even lead to any success in predicting the future, for if 
They allow only random success for induction and accept for 
Initiation only those who, for three years or so, employ some 

unproductive, non-inductive method which seems to yield them no 

success at any time, induction will lead to no general success and 
one major error in predicting the future, and will continue to support 
its own employment, or at least not reject it (because the ‘evidence’ 
is that it is at least as good as the ‘unproductive’ method). It is 
therefore logically possible that man can have free will and the ability 
to affect his future and a way to achieve success in predicting that 
future, while induction is not that way. 

We must conclude that the pragmatic justification of induction 
fails in its attempt to demonstrate that the inductive method must 
lead to success, if success is attainable. 

What we can say of induction is that it seems to work well, and 
our understanding of it shows that it is so constructed as to be 
successful if the nature of the world is not radically different, in 

peculiar ways, from what we take it to be. While this is not enough 
to insure that induction is necessarily effective, it may well be enough 
to convince us of the rationality of acting on the Rule of Induction. 
As Reichenbach says: 

90 

a man’s actions can be guided only by his knowledge of the 
world, and not by unknown features of the world; if we have 
to decide whether his actions are reasonable we have to ask 
whether they are reasonable in relation to what he knows. 

Surely we can say that, on the basis of what we know, the Rule 
of Induction has a strong advantage over any other practical 
methodology we might employ. This plea for the reasonableness of 
induction will not meet the standards most impose on any ‘justification' 

of induction, but it will remain true that most reasonable 
people act inductively. 

10 Chief Criticisms of RF Theories 

We will begin by discussing that cluster of related criticisms 
concerning what might be called the epistemological difficulties of 
RF theories. Three major ideas seem to be involved in these 
criticisms: 



1 RF probabilities can never be known. 
2 RF probabilities can never be known to exist. 
3 A putative RF probability value is neither confirmable nor 

disconfirmable. 

These ideas are interrelated and not really distinct, but it will suit 
our analytic purpose to attempt to discuss each in turn. 

To begin with the first one, there is an obvious sense in which 
an RF probability statement would be just as unknowable as any 
other (ordinary) empirical description of the world. RF theorists 
accept this lack of certainty and even delight in it. It shows, they 
say, that RF probability statements are just like statements about 
an object’s mass (a favorite comparison). Such statements are 

inherently uncertain because they describe the real world, but this 
lack of certainty is no bar to the value of scientific statements nor 

even to their accuracy. We admit that our value for the mass of the 
moon may be wrong, but we think it is better than earlier values, 
that it is very likely correct to within a tolerable limit of accuracy, 
and that it is pragmatically sound and eminently reasonable to act 
on such values even if there is a non-vanishing chance that they may 
be wrong. 
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We may take it that the fact that RF statements cannot be known 
with certainty merely because they are empirical is recognized and 

accepted by most RF theorists but is not considered an objection 
any more than it is an objection to any empirical science. If this 
were the extent of the criticism, RF theorists would seem justified 
in shrugging it off as the whining of metaphysicians in search of 

apodictic certainty. But this is not the extent of the criticism. While 
the critics do, of course, believe that RF statements are subject to 
the generalized uncertainty of all empirical statements, they further 
contend that RF statements are subject to a qualitatively different 
and far more debilitating uncertainty which derives from their 

peculiar nature as limit statements. 

Consider the difference between the statement that the mass of 
the Moon is X and the statement that the probability that a star 
will be a red giant is P. The first statement is justified by an 

accumulation of measurements using the best instruments we can 

construct within the context of the best theories of reality we have 
at hand. We are prepared to admit, on the one hand, that there 
might have been measurement error, either in our instruments or in 



our use of them, or, on the other hand, that a theoretical advance 
such as Einstein’s might lead us to revise our notions about what 
mass is and therefore about what the moon’s mass is. In these two 

principal ways, I think, we are prepared to admit that our value, X, 
might be mistaken, even beyond the prescribed limits of accuracy. 

92 

What we are not prepared to admit is that our measurements might 
be exactly correct and our theory impeccably reliable and we might 
still have a significantly wrong value. 

But now consider the statement that the probability that a star 
will be a red giant is P. This statement is likewise based on our 

measurements of the world – it is therefore subject to the same doubts 
concerning measurement error and theoretical adequacy as is the 
first. Let us assume that no difficulty exists in either category, that 
we have correctly and precisely examined 100,000 stars of which 
precisely 10,000 have been correctly identified as red giants. We 
therefore assert (or, as Reichenbach prefers, ‘posit’) that P = 0.10. 

Now suppose we continue to observe new stars, either those we 

‘haven’t got around to’ before or more distant ones newly apparent 
to improved telescopes. We might find that the relative frequency of 
red giants in the newer observations is greater than that in the 
old – say 0.20. If the trend continues in this direction, after an 

additional 100,000 observations we will have discovered 20,000 new 

red giants. The overall relative frequency of observed red giants has 
thus become 0.15. If we now agree that this value is experimentally 
and theoretically correct, we are forced to admit that our earlier 
value for P contained an error of 50 per cent even though no 

experimental or theoretical error was involved. It is inconceivable (save 
in the sense that Descartes’ demon is conceivable) that we would 
ever come to admit that our present belief about the mass of the 
moon is in error by a factor of 0.5 even though no theoretical or 

observational error had been committed. 93 

The difference here is that properties such as the mass of a body 
or its color or velocity are contingent properties of individuals, while 
RF probability values are contingent properties of infinite sequences 
of individuals (or events). By ‘contingent’ I mean that we have no 

way of knowing in advance (a priori) just what value the property 
has (either qualitatively or quantitatively). Leaving aside predictions 
based on cosmological theories, let us agree that the mass of the 
moon and the frequency of red giant stars are alike contingent in 
that we can have no good idea of their values until we look and see. 



Now to ‘look and see’ what the mass of the moon is, we do such 
things as measure its orbit, its influence on space probes, its 
perturbations by other heavenly bodies, the readings of spring-scale 
weights of standard masses on its surface, etc. In a sense it is possible 
to continue this sequence of measurements indefinitely, averaging 
the results anew each time, and therefore ‘refining’ the value for ever 

and ever. 
94 But if such future observations give significantly different 

values for X they are held to be inconsistent with the earlier 
measurements, and one or the other (or both) must be explained 
away as resulting from measurement or theoretical error. In short, 
a reasonable and finite number of measurements can establish the 
value of ordinary physical properties so convincingly that any 
significant revision must include an acknowledgment of previous 
error. (How many times must we look at one star, for example, before 
we take as established that it is a red giant?) 

But RF probabilities are not properties of individuals. They 
purport to describe infinite sequences of individuals. How can we 

hope to justify or establish a statement like this? 
Well, first we ‘look and see’ what property individual A has. Then 

we look and see what property individual B has, etc., etc. Now each 
examination of an individual includes all and only the epistemological 
difficulties of establishing what property an individual possesses (e.g., 
the mass of the moon, or whether this star is a red giant). But we 

can never examine every member of an infinite collection. Therefore, 
at any given time our value for P will be based on a sub-sequence 
of observations which may contain a great number of individuals 
but which is always finite. But the value of a relative frequency 
established by any finite sub-sequence is compatible with any value 
whatsoever of the limit of the relative frequency in the entire infinite 
sequence. 

This is a mathematical fact which is apparent to anyone who 
reflects on the nature of infinite sequences. 

95 In our example about 
red giants we saw how the value of P could be increased 50 per cent 

by doubling the number of observations. Obviously that could 
likewise be increased (or decreased) significantly by an additional 
500,000 observations. And if we consider what is ex hypothesi a 

contingent property, it is clear that the ‘final’ value of the relative 

frequency could be anything at all, no matter what we have observed 
in a relatively insignificant sample – and any finite sample of an 

infinite collection is always relatively insignificant! 



We see, then, wherein consists the difference between RF probabilities 
and ‘ordinary’ physical properties. In the latter case we admit 

that we might revise our value – but only if we are convinced that 
there is some error in present measurements. In the case of an infinite 
sequence, however, we might have done everything exactly right up 
to this point and still be way off the mark for the ‘true’ value. An 
RF statement therefore contains an ineliminable uncertainty which 
is not epistemologically similar to that of ordinary statements of the 
physical sciences and should not be dismissed as trivial. 

Now we pass on to the second claim of the critics: that RF 
probability values cannot even be known to exist. We will discuss 
this point only briefly because it is unintelligible to those who don’t 
understand limits and infinite series and obvious to those who do. 

Briefly, a series is said to have a limit, L, if for any small value, d, 
there exists a point in the series identified by the integer N after 
which the value of the series never deviates from L by more than d, 
no matter how much further in the series one goes. 

Take for example the mathematical series specified by 
upper S Subscript upper N Baseline equals 1 plus StartFraction 1 Over upper N plus 1 EndFraction

the first members of which are 

2, 11/2, 11/3, 11/4, 11/5, 11/6, . . . 

and the graph of which is 

This series is said to approach 1 as a limit because if you specify 
any small but finite value d, I can identify a point in the series after 
which |1 – SN| is always less than d. If you say d = 0.55, then N = 1. 
For d = 0.23, N = 4, and so on. In this case, we can know that the 
series approaches a limit because the series is intensionally given (or 
defined mathematically). 96 The rules of mathematics suffice to 



guarantee the properties of the series, including the existence of a 

limit. Therefore we can be sure of the existence of the limit and even 

of its value. 
But RF probability statements deal with empirical sequences which 

can only be given extensionally (that is, by specifying which 
individuals are members but not what their properties are), not 

intensionally. For example, the series of stars (or observations of 

stars) is specified in a way that doesn’t tell us whether a given star 

will be a red giant, or even how many will be. If the relative frequency 
of red giants is considered as a sequence, therefore, there is no a 

priori method of determining if the sequence even has a limit, much 
less what it will be. 

In fact, the only sequences which we know do have limits are 

those which are defined in a priori mathematics. But, as C. I. Lewis 
says, the frequentists can take no comfort from the existence of these 
limits to infinite mathematical series. For even if an empirical series 
has closely approximated such a mathematical series over an initial 
stretch, it is under no compulsion to do so in the future, and certainly 
not through the entirety of an infinite future extension. The unwarranted 

use of mathematical series in the place of empirical ones 

is a ‘besetting fallacy’ of the frequentists. 97 

Furthermore, there exist mathematical series of which we know 
that they do not have limits (all divergent series, for example). What 
if empirical series really imitate these series? In our astronomical 
example, for instance, it may be that the proportion of red giant 
stars in the universe is subject to temporal variations of such a nature 
that their relative frequency of appearance does not approach a 

limit. If this is so, then we are not just subject to a quantitative error 

when we say ‘The probability that a star is a red giant is 0.09’ – we 

are literally talking nonsense. For if the series does not approach a 

limit in the long run, there is never a probability of the RF type at 

any point of the series. The statement is very likely inaccurate (since 
I just made it up); but could anyone convince a working astronomer 
that it might even be meaningless and there might be no probability 
that a star is a red giant? What would it mean to say that there is 
no probability that a star is a red giant when we know that many 
are red giants? This would clearly be disanalogous to the question 
of what is the mass of the moon, where we are prepared to believe 
that we may have the wrong value, but deny that there might be no 

value. 



Reichenbach responds to this criticism by arguing that at least 
some series must have limits if the world is to be predictable in the 
long run, and our only hope of success lies in acting as if the world 
is predictable. But of course short-range predictability could give us 

all the success we finite humans could hope for without the existence 
of limits, and merely ‘next-case’ predictability – making possible 
eduction to particulars, but not induction to laws – would serve 

well enough to keep the community going. 
Returning now to the question of what the value of a limit 

is – assuming it does exist – our third version of the epistemological 
difficulty holds that if P is a statement asserting that a certain RF 
probability has a certain value, then P is both unverifiable and 
unfalsifiable. This is very nearly a restatement of the first formulation 

– that the limit cannot be known – but our emphasis here will 
be somewhat different. 

First, P is unverifiable. This point is made by many critics of RF 

theory, 98 and is, indeed, admitted by Reichenbach: 99 

With respect to intensionally given probability sequences of an 

infinite length, statements expressing a frequency interpretation 
have the usual meaning of mathematical all-statements and 
existential statements; like the latter, they are strictly verifiable. 
With respect to extensionally given probability sequences of an 

infinite length, however, statements expressing a frequency 
interpretation are not verifiable. 

These two statement-types parallel the distinction we made 
earlier 100 between PT (theoretical) and PA (applied) statements. The 
former class is verifiable a priori, by the laws of logic and mathematics, 

but they say nothing about the world. All statements about 
probability values in the world are PA statements (according to me) 
and given extensionally only (according to Reichenbach) and therefore 

never completely verifiable. 
If an empiricist adhered to the strict interpretation of the Logical 

Positivists’ Verification Theory of Meaning, he would be forced to 

abandon RF theory as being meaningless because not completely 
verifiable in experience. But most empiricists have relinquished the 
strict verification theory in favor of some more tolerant method, 
such as Carnap’s Confirmability Principle. Perhaps we can do the 
same with RF statements. That is to say, even though we admit it 
is impossible completely to verify P (since it refers to a class stretching 



infinitely far into the future), isn’t it possible to collect enough 
evidence to make P probable? No, says Lewis, 101 because 

If we apply this same [RF] interpretation to the probability 
that ‘P’ has probability a/b, then it must appear that there is no 

certainty but only a probability that “‘P’ has probability a/b" is 
probable. And so on. Thus when confronted with the general 
problem how we are to elicit or express the cognitive status of 
beliefs which have some justification but are less than completely 

certain, we find that the empirical interpretation of their 

probability would not provide a solution but only the beginning 
of a perpetual stutter. 

If we had an independent, a priori, inductive logic such as Carnap’s, 
we might be able to say ‘It is (AP) probable that P (RF statement) 
is true.’ But if we restrict ourselves, as Reichenbach does, to the RF 

interpretation of probability in all circumstances, it is not clear that 
there is any way in which we can justifiably argue that P itself is 
probable. 102 

Let me re-emphasize this point, because some proponents of the 
RF theory have tended to shrug off this criticism as being excessive 
attention to the relatively cheap and easy verificationist argument 
and as being solved or eliminated by turning to confirmation theory 
or rules of acceptability. But such epistemological maneuvers do not 

solve the theoretical problem at all (although they may be useful to 

the social scientist or applied mathematician who is seeking practical 
guidance about how to judge probabilities.) The reason is that 
confirmation theories or acceptance rules are themselves probabilistic 

in nature; they don’t guarantee ‘success’ each time but only 
rationality over the long haul. Now if these rules are to be justified 
theoretically (as opposed to remaining practical rules of thumb), they 
must be treated in the context of some theory of probability or 

induction. If that meta-theory is a priori in nature, then Carnap is 

right in claiming that AP theory is conceptually more basic than 
RF theory (contra Reichenbach), but if the meta-theory is itself an 

RF theory, then we raise at the second level the very same 

epistemological difficulties we encountered at the first level and we 

have Lewis’s ‘perpetual stutter.’ So invoking confirmability rather 
than verifiability, while it improves the practical situation (by 
allowing action on less than conclusive evidence, e.g.), does not alter 
the theoretical situation one bit. 



Finally, then, suppose that we abandon confirmability as well and 
try the falsifiability criterion of meaning. 103 Perhaps P shares the 
property of most universal generalizations of being never verifiable 
but at least conclusively falsifiable through modus tollens. 104 

Unfortunately, this is not the case. The attractiveness of falsification 
consists in the fact that a single example suffices to falsify 

a generalization like ‘All stars are red giants.’ We could never in 
principle find enough red giants to guarantee the truth of this 
statement, even if every star we examined for a thousand years turned 
out to be a red giant. But if we found just one star that was not a 

red giant, we could know conclusively that the general law was false. 
But now suppose we consider P – ‘The probability that a star is 

a red giant is 0.09.’ Our earlier discussion purported to show that 
nothing could ever conclusively verify this statement (because a 

stretch of ever so many observations exhibiting a relative frequency 
of exactly 0.09 is logically compatible with any value whatsoever for 
the actual limit, if there even is a limit). A strictly parallel argument 
will show that it is also the case that no finite sample can ever 

conclusively falsify an RF probability statement (since it is compatible 
with any value whatsoever. . . etc.). 

Consider an analogy. Suppose the president of our university 
claims that we are in compliance with federal anti-discrimination 
regulations because 0.09 of our students are black. ‘But,’ says a 

visiting Congressman, ‘I just saw two of your students in the hall 
and they were both white.’ What can we make of this besides gross 
stupidity? Surely such a small sample can’t be seriously intended as 

a falsification! 
Now suppose I assert our astronomical statement P and the 

chairman of the Astronomy Department gently but firmly disagrees. 
‘After all,’ he says, ‘we have examined over 3 million stars and have 

consistently found 0.18 of them to be red giants.’ 
As it happens, 3,000,000/∞ is a smaller fraction than 2/18,000. 

Therefore the astronomer’s sample is proportionately smaller than 

the Congressman’s! If it would be absurd to consider the latter to 

be a falsification, on what grounds could we claim that the former is? 
I think there are two chief reasons why we intuitively reject one 

‘falsification’ and tend to accept the other. First, we think that the 

Congressman has failed to make any effort to examine readily 
available data that would greatly increase his sample size, and 

presumably I, being no astronomer, have done the same. Second, 



we reasonably assume that both the astronomer and the university 
president have much larger sample sizes than their antagonists – thus 
falsification attempts fail against larger samples and succeed against 
smaller ones. 

To vitiate these intuitive epistemological responses, suppose my 
rejoinder to the astronomer is ‘Oh yes, I know that, but my brother 
is in charge of processing data from the new orbiting astronomical 

observatory on his company’s giant scientific computer and he just 
told me that the newest and most remarkable result is that by 
doubling our sphere of observation we have found that more distant 
stars exhibit a considerably different distribution along the stellar 
sequence. In other words, I have examined six million stars (by 
proxy) and found only 9 per cent to be red giants.’ 

Now do you think that the astronomer’s true statement about his 
research constitutes a falsification of P? Or even that he will continue 
to think that it is? The reason we were at first inclined to accept it 
as a refutation of P is that it seemed to embody the best scientific 

opinion based on the greatest amount of data. The fact that we are 

willing to change our opinion under the new circumstances clearly 
shows that the astronomer’s evidence does not contradict P at all – the 
two are perfectly consistent. Therefore ‘the best available astronomical 

evidence’ can never logically falsify P. 
But every RF statement concerns an infinite population of which 

only a small portion has been examined. Therefore no RF statement 
can ever be conclusively falsified by any (finite) amount of 
evidence. 

We have reached a curious epistemological position. Scientists 
and empiricists embrace RF probability theory because they want 

to tie probability to the real world and make probability statements 

just like other scientific statements. But if these people also embrace 
the traditional empiricist position that all meaningful statements 

must be either (a) a priori truths of language, logic, and mathematics, 
or (b) empirically verifiable/confirmable/falsifiable, then it seems to 
follow that RF statements are meaningless, while AP probability 
statements may be meaningful, if it can be shown that they properly 
fit into the first category. This is the heart of the epistemological 
difficulty of RF probability theory. 

After the epistemological argument, perhaps the most common 

objection to RF theory is that it changes, ignores, distorts or limits 
the meaning of the word ‘probability.’ Keynes says: 

105 



It is the obvious, as well as the correct, criticism of such a 

theory, that the identification of probability with statistical 
frequency is a very grave departure from the established use of 
words; for it clearly excludes a great number of judgements 
which are generally believed to deal with probability. 

This objection is barely open to Classical theorists, since RF theory 
can deal with all the same types of events that they can, plus others 
besides (biased dice, death probabilities, etc.). The only real possibility 
for Classical criticism is that RF theorists have eliminated 
probabilities for single events – von Mises explicitly did so, while 
Reichenbach attempts to preserve a ‘fictitious’ meaning in such cases. 

But the most important uses of Classical probability (speaking as a 

poker player) are just such statements of single-case probability ('The 
probability of filling this inside straight is 4/47 while the probability 
of improving my pair is 18/47 so I’ll draw to the pair’). After all, a 

gambler doesn’t really care about general statistical relations. He 
wants to know what his odds are this time, and (some) RF theories 
refuse to tell him that. They therefore fail to capture one of the most 

important uses of ‘probability’ by Classical standards. 
A priori (AP) theorists can press this claim with much greater 

force, since their theories account for the same uses as the Classical 
theory plus the uses of the RF theory plus a great deal more. In 
Keynes’s view, every time we use a word like ‘probability’ or 

‘probably’ or ‘likely’, we are referring to a simple property open to 

our intuition and dealt with by the theory of probability. According 
to Carnap, every such statement is related to the evidence for it by 
logico-mathematico-linguistic relations which (usually) allow us to 

compute its confirmation by that evidence. Thus both AP theories 
deal with all uses of the word ‘probability.’ RF theory, however, 
ignores not just single-event probabilities but also all evidentiary 
statements of less than certainty (‘On the evidence, he is probably 
guilty’), all speculation about the future (‘The Cardinals will probably 
win the pennant’), or about unknown facts (‘Probably 75 per cent 

of all Russians are religious’), and, in general, any case in which it 
is not possible to speak directly about one infinite class as a subset 
of another. 

Many people who raise this objection do not intend to attack the 
value of appealing to frequencies in some cases. They wish only to 

point out that success in the limited area of scientific and actuarial 



cases is no good reason for RF theory to claim to be the whole of 

probability theory. 
Another ‘criticism’ that is often raised against RF theory is more 

in the nature of a tu quoque response to RF charges of relativity in 
AP theory: the criticism, namely, that RF theory makes all probabilities 

relative to a reference class. When RF theorists claim that they 
are not interested in what the probability of X is relative to some 

evidence set or other but only the probability of X, it is natural and 
appropriate for the apriorist to reply (‘So’s your old lady’) ‘But your 
theory likewise does not specify absolute, independent probabilities, 
only probabilities relative to some reference class or other. So get 
off our backs!’ 

Now I think this ‘criticism’ both does and does not succeed, and 
I think that only a little careful analysis will be required to distinguish 
its successes from its failures. 

First, it succeeds in knocking down any RF theorist who thinks 
that his theory does, while the AP theory does not, establish real, 
absolute values for ‘the probability ol X independent of other 
considerations.’ It is just not possible for an RF theorist to give the 

probability of being an A as such, he can only give the probability 
that a B is an A, or the probability of A in a specified reference class 

(collective). The very definition of RF probability requires that there 
be a denominator (reference) class as well as a numerator (quaesitum) 
class in order to specify a frequency and, thereby, a probability. Any 
RF theorist who fails to realize this is subject to a grievous error. 

(It is not, incidentally, an error committed by either von Mises or 

Reichenbach, both of whom recognized this dependence.) 
Second, this ‘criticism’ does not just point out a feature of RF 

probability, it recognizes a genuine difficulty. In our discussion of 
Reichenbach’s theory we have already dealt with the problems of 

selecting reference classes and sample sizes. 106 (Briefly, if 50 per cent 

of all college graduates but 20 per cent of all churchgoers drink 
alcohol, what is the probability that Sam Jones, a churchgoing college 
graduate, drinks?) This selection is important, because the probability 
value changes with the nature and size and even the order of the 
reference class. 107 And it is difficult because there is no theoretical 
rule which determines the selection in an unambiguous manner. (I 
judge Reichenbach’s admonition always to select the smallest class 
for which reliable statistics exist to be a helpful rule of thumb which 
cannot cover all situations; see above, pp. 165-6.) To this extent, 



the criticism does indeed identify a problem in RF theory. 
But my third point is that this problem is not peculiar to RF 

probability theory, since it occurs in some guise in each of the other 
two theories which we have discussed, as well. In the Classical theory, 
it amounts to the problem of specifying equiprobable alternatives. 
In AP theories, it is the problem of specifying the hypothesis and 
the evidence and selecting the correct language for doing so. 

In the example of the churchgoing college graduate, Classical 
theory is almost useless. If we assumed that each predicate was an 

independent Bernoullian property with Yes or No equally likely, 
then the chance of being a college graduate is 1/2, the chance of 
being a churchgoer is 1/2, and the chance of being a drinker is 1/2. 
Thus, by multiplication of probabilities, the probability that anyone 
is a religious drinker with a degree is 1/8. But if we know or discover 
that Sam Jones is a churchgoing college graduate, the probability 
that he is a drinker reverts to 1/2. 

A better alternative is to assume that churchgoing and being a 

college graduate are independent properties with the stated probabilities 
and then to use the method of the composition of chances to 

‘average’ the two probabilities so that a is the 

probability that Sam Jones is a drinker. 
The pure or 'null' AP probability (Carnap) that Jones is a drinker 

is constructed exactly like the first Classical method and likewise 
leads to the probability of 1/2. If the evidence is expanded to include 
the known facts and the independence assumption is otherwise 
retained, the AP method again agrees with the Classical that 7/20 
of all churchgoing graduates are drinkers. 

Now these methods have proceeded by simplifying assumptions 
which allow them to attain their definite numerical solutions. But 
the RF theorist could also solve the problem if he made these 

assumptions. That is, if one series of churchgoers containing 20 per 
cent drinkers is merged equally with another series of college 
graduates containing 50 per cent drinkers to give a third series which 
is 50 per cent college graduates and 50 per cent churchgoers, the 
final series will contain 35 per cent (7/20) drinkers. Thus the same 

assumptions lead to the same solution. The difference is that the RF 
theorist hopes to avoid such a priori assumptions while the AP and 
Classical theorists are more likely to accept them. The important 
point is that the answer cannot be obtained in either case without 



these assumptions and it can be attained in either case if they are 

accepted. 
It might be argued that the other theories are superior to the RF 

theory because they build the assumptions into the theory and 

thereby directly sanction the answer while the RF theorist can only 
obtain it by making ad hoc additions to his theory. This is certainly 
a difference between the theories, but it is clearly debatable whether 
it is an advantage for one or the other. It is perfectly possible for an 

RF theorist to respond that in this instance – as in most – the 

independence assumption is more likely to be false and misleading 
than advantageous. 

It is not, of course, obvious just how the assumption might go 

wrong. A pro-religion, pro-education observer might argue that 
educated believers more clearly understand and more reliably obey 
the injunctions of their religion so that their lapses will be less 

frequent than those of their ignorant brothers, amounting to a total 
of perhaps 10 per cent drinkers. Anti-religious/pro-education 
observers might argue that education leads one away from religion 
(thereby ‘liberating’ him) so that those educated church members 
are there for social rather than religious reasons and will reflect the 
drinking probability of the unchurched, 50 per cent. A real cynic 
might hold that any educated person hypocritical enough to go to 

church probably possesses other vices as well and might therefore 
be more likely to drink than his educated unchurched peers. The 
possible arguments and combinations are numberless. There is no 

obvious way of deciding which of them is correct, but they certainly 
conspire to make it seem unlikely that there is no interrelation 
between the properties. Therefore, the RF theorist might argue, we 

are much better advised to withhold judgment until we can examine 
the facts than to acquiesce in an automatic and simple-minded 
assumption of independence. 

I do not claim to have settled this dispute one way or the other. 
I do hope I have made clear why the RF theorist’s problem of 
identifying a reference class is not necessarily either unique or 

debilitating to his theory. 
My third point is that it is not the case that RF and AP theories 

are ‘relative’ in the same way. The usual complaint about AP theories 
is that they make probabilities relative to human knowledge. Now 
this may or may not be a sound objection (the rejoinder is that 
probability, like deductive logic, is an objective relation between 



propositions which obtains completely independently of psychological 
vagaries). But it is certainly different from saying that RF 

probabilities are always relative to empirical and objective reference 
classes. If the RF criticism of the apriorist is correct, then its teeth 
are not drawn by showing that the RF theory has a different kind 
of relativity. We must then take further thought to determine 
which – if either – form of relativity is discrediting. 

To sum up, RF theories do indeed make probabilities relative to 
reference classes, but it is not at all obvious that this is a peculiar 
or incapacitating property of those theories; it might very well be 
that such 'relativity’ is an essential part of our concept of probability 
and not be eliminated by any good theory. 

Our next criticism of relative frequency (RF) theories is that they 
are irrelevant to any actual events. This contention is somewhat 
ironic, since one of the arguments for moving from a priori (AP) to 
RF theories has been that the latter are more ‘scientific’, realistic, 
empirical, and tied to the real world than the idealistic, formal systems 
of the AP theorists. Now the argument seems to be reversed. 

The major reason for holding that RF theories are irrelevant to 
real world events is that they define probability in terms of infinite 
series and no such infinite series exist (at least not within human 

experience). All real events are finite and limited. We are never 

concerned with questions like ‘What proportion of Sevens will occur 

in an infinite number of rolls of these dice?’ but rather with ‘What 
are the chances of throwing a Seven this time (or before I make my 
point)?’ or, at most, ‘If I always bet on Seven (throughout my life) 
what are my odds of winning?’ 

In my discussion of single events I argued that von Mises’ theory 
is clearly not applicable to such events and that Reichenbach can 

only apply his theory by an extension which clearly violates his 

original definition of ‘probability’. I will not repeat myself in detail 
at this point, but the reader should recall the gist: if probability is 
the limit of a frequency in an infinite population then probability is 
not the chance or likelihood that this event (or finite series) will have 
a certain property. The definitions simply do not mean the same. 

Since we never experience infinite series, it follows that RF probabilities 
are never directly relevant to human experience. 108 

Why have the ‘empirical’ RF theorists settled on a concept which 
by definition is never apprehensible in human experience? Carnap 
and Kneale, in slightly varying ways, have argued that RF theory 



involves a confusion. Kneale has argued that, like the ‘constancy’ 
theory of natural law, RF theory confuses the evidence with what 
it evidences. 109 Carnap suggests a confusion between a frequency 
and the estimate of a frequency. 110 

Kneale’s point is this. Suppose there is a ‘probability’ (in the 
ordinary, intuitive sense) of 1/6 that a die will show a Five. One of 
the reasonably expected consequences of this is that is that a fairly 
long series of rolls with that die will consist of approximately 
one-sixth Fives (Bernoulli’s Theorem and the various Laws of Large 
Numbers formalize this expectation). 

Now suppose we observe a long series of rolls and Fives instead 
appear two-thirds of the time. Surprised, we try again, and again, 
and each time the frequency of Fives centers around 2/3. This seems 

to give us evidence that the probability of a Five is not 1/6 but 2/3. 
(Bayes’s Theorem is approximately a measure of how good this 
evidence is. That it cannot be conclusive should be apparent from 
the earlier discussion of the non-confirmability and non-disconfirmability 

of RF probabilities.) After enough Fives have shown in this 
manner, nearly everyone would agree that the die is biased (especially 
if the discussion came not in the context of competing theories of 

probability but during a high-rolling crap game where they were 

expected to ‘put their money where their mouth is’). 
Thus a well-established frequency is good evidence that a probability 

does not have a certain (originally expected) value and good 
evidence that it does have a certain (different) value. It is such good 
evidence that in practical matters it quickly outweighs and overrides 
‘merely theoretical’ or ‘a priori’ considerations. Hence its popularity 
with scientists and businessmen. (It seldom interests gamblers since 
their devices are intentionally constructed to conform to the much 
simpler Laplacean system of equiprobable alternatives.) 

Indeed, in cases where new properties or combinations of properties 
are being investigated we may have no good way of calculating 

probabilities in advance. All we can do is ‘look and see’ what the 

frequency is. Repeated experiences like these have shown that many 
probabilities can be established by investigating frequencies which 
cannot be established by counting equiprobable cases a priori and 
cannot even be incorporated in such a schema after the facts are 

known. Thus the classical definition was found to be inadequate in 

many situations and was abandoned. All that was left was the 



frequency which had demonstrated its importance as evidence. In 

many cases, frequency was the only criterion which worked, and it 
seemed to work in most cases. What could be simpler than to identify 
the probability and the frequency? 

This identification may very well be an instance of the Wittgensteinian 
mistake of confusing the criterion with the concept, 111 but it 

will serve just as well to treat it in Kneale’s terms as confusing the 
evidence with what it evidences. 

Remember, we started with the assumption that the die had a 

certain probability of showing a Five. The frequency was important 
as evidence that it was really a different probability. This was its 
only importance! Suppose we discovered that the evidence had been 
faked, or mistakenly reported, or caused by some eliminable outside 
force. Would we not say that the frequency was ‘caused by’ something 
else and not good evidence of the probability at all? And if a ‘good 
die’ were rolled in such peculiar circumstances throughout its entire 
(fairly short) life, and then destroyed, would we not say that the 
(simple, natural, initial) probability of throwing a Five with that die 
was 1/6 even though the relative frequency of Fives in fact had 
turned out to be 2/3 ? This is because the frequency is only evidence 
for the probability. Normally it is very good evidence, but sometimes 
it can be ‘explained away.’ But if it can ever be ‘explained away’ it 
cannot be the probability. Hence Kneale’s argument that RF theories 
confuse the evidence (the frequencey) with what it evidences (the 
probability). 

Carnap’s complaint is somewhat different. He accepts the identification 
of the probability with the relative frequency in certain cases 

(he calls this ‘probability2’). But he protests when Reichenbach goes 
on to apply this concept to judging the ‘weight’ (probability1, 
confirmation) of an unknown proposition. Here Carnap agrees that 
it can be useful to speak of the ‘truth-frequency’ of the proposition 
(i.e., the percent of its normal applications when it will be true). But 
it is a mistake to identify the probability with the actual truth-frequency, 

since this is ex hypothesi unknown to us and can be of 
no help in our present efforts. What we actually want is an estimate 

of that frequency, based on our best available evidence. That is, we 

are seeking guidance as to how we should act with respect to a 

certain proposition. If we could know how often it will be true 

throughout the infinite future, that would surely be a great help. But 



for contingent propositions such knowledge is clearly beyond 
us – the best we can do is to appraise the evidence and conscientiously 
guess at the truth-frequency. 

This leads to two related criticisms: that RF probability does not 

change with experience and that it is unsuited as a ‘guide of life.’ 
The reader may be surprised that I cite 'learning from experience’ 

as a difficulty with RF theory, since its advocates have long claimed 
that one of its chief virtues is the way it is ‘tied to the real world’ 
rather than based on ‘a priori rationalism.’ The difficulty is that RF 

probabilities, while tied to the real world, are not tied to human 
experience of the real world. 

For example, the probability that a star is a red giant is equal by 
definition to the relative frequency with which such giants appear 
among stars in the entire history of the universe. This number, if it 
exists, has one and only one value which is eternally constant. It is 
an objective fact which is unaffected by human knowledge, beliefs, 
hopes, or experience. 

The peculiar consequence is that it is always false to say such 
things as, ‘The probability that the Red Sox will win the pennant is 

greatly diminished by their loss of Fred Lynn,’ since it is either false 
that there is such a probability or, if there is, it can neither be 
increased nor diminished by anything at all. 

Such eternal changelessness may not confuse scientists, since they 
are generally willing to admit that when they adjust probabilities 
they are changing only an estimate or accepted value rather than 

asserting a change in the objective value. (This is likewise true of 
most other scientific changes, like changes in the value of ‘the mass 

of the moon.’ A disanalogy: There might be a real change in the 
mass of the moon, if it were hit by a sizeable planetoid, but it is 
impossible for there to be a real change in the probability of such 
a collision.) But in ordinary life we often talk of increased 

probabilities, better odds, ‘more likely than before,’ etc. If the RF 
theory is taken literally, all such talk must be abandoned as false, 
since probabilities never change. 

Eternal unchangeability and unaccessibility are also part of the 
reason that Carnap claims RF theory is unsuitable as a ‘guide of 
life.’ This point was discussed in some detail in the section of the 
AP chapter which dealt with the rationality of probability behavior. 
The fundamental argument is that one cannot use an unknown 
quantity as a guide, and RF probabilities are either completely 



unknown or at least ‘less knowable’ than the computed values of 
AP probabilities. 

A similar argument can of course be made to show that RF 

probability cannot serve as an inductive logic. 
A reverse twist of this criticism is that to the extent that the RF 

theory embodies truth, it is logical, analytic, a priori. Specifically, 
the axioms and theorems of the calculus, which alone are free from 
dispute as part of the theory, are developed by von Mises unwittingly 
and by Reichenbach consciously as a formal axiomatic system – a 

part of pure mathematics, not of science. 112 

Finally, I would like to remind the reader that the strongest 
objections to RF theory are its epistemological difficulties and its 

inapplicability to many uses of ‘Probability’. But not to be overlooked 
is Keynes’s ‘reputed rejoinder concerning the practical value of the 

long run justification,’ that is, ‘in the long run we shall all be dead.’ 113 

11 Chief Virtues of Relative 
Frequency Theories 

I believe that there were two main reasons for the considerable 
success the RF theory had in gaining adherents – one was psychological 

and the other practical. 
The psychological reason was the RF theory’s claim to be 

‘scientific’. Clearly it was better suited to the tenor of modern times 
to appeal to ‘empirical evidence’ and ‘scientific observation’ in 
establishing initial probabilities than to use the old AP method of 
laws of rationality and intuitive equiprobability. Indeed, for empirically 

oriented people, it was difficult to resist the appeal of the theory 
which located probabilities in the objects themselves and claimed 
they were discoverable by the normal methods of science – especially 
when the only clear alternative theories made probability a feature 
of our attitude toward things, or, at best, a logical feature of our 

descriptions of things. In the context of the ‘Rise of Scientific 
Philosophy’ 114 it seemed natural and appropriate to adopt a 

‘scientific’ theory of probability. 
But of course this psychological appeal was not sufficient in itself. 

Few philosophers and even fewer scientists would subscribe to a 

theory for psychological or metaphysical reasons unless the theory 
worked and worked well, and this the RF theory certainly did. 



The use of frequency theories of probability made it possible for 
the first time to deal with cases like biased dice, probabilities of 
death, and statistical dispersions of stellar magnitudes. In short, the 
RF theory greatly expanded the number and types of cases with 
which probability theory could deal. (It might not be carping to 

point out that adherents of the new view generally continued to use 

the old methods, consciously or not, in cases where those methods 
had proven themselves.) As it happens, this expansion tended to shift 
the emphasis away from the traditional games of chance and towards 
the problems of actuarial and scientific statistics (I do not mean to 

imply that this shift is accidental). Thus the successes of the RF 
method tended to reinforce its theoretical claim to be ‘scientific’ and 
its psychological appeal to the admirers of science. No wonder it 
was embraced by so many scientists and mathematicians, and 
continues to appeal to many. 



V 

The Subjectivistic Theory 
of Probability 

The subjectivistic theory of probability (SUB) identifies probability 
as the actual degree of belief in a given proposition held by some 

real individual at some specific time. Contrary to the usual pattern 
of scientific intellectual progress, the subjectivistic theory of probability 

has generally been developed after the objectivistic. 
It is true that certain remarks about ‘degrees of confidence’ found 

in such early pioneers as Bernoulli and Laplace have led some 

researchers to catalog them as subjectivistic, or to criticize them as 

psychologistic’, 1 but I have argued above 2 that this misconstrues 
their basically objectivistic classical theory. Instead, the first 
subjectivistic theory is generally held to be Frank P. Ramsey’s essay 
'Truth and probability’ 3 (1931), which is self-consciously and 

intentionally subjectivistic in its insistence that probability measures the 
actual degree of belief of an individual. Ramsey also deserves the 
credit for showing how these degrees of belief can be compared and 
measured by studying betting behavior. Unfortunately, Ramsey’s 
early death kept him from systematically elaborating his theory (or 
abandoning it, as one brief note suggested he might). 4 The principal 
developer, defender, and disciple of subjectivistic probability theory 
has, therefore, been Bruno de Finetti. De Finetti’s friend and ally in 
the English-speaking world has been Leonard J. Savage. Together 
they made known (and somewhat respectable) the idea that there is 
no such thing as objective probability, only degrees of belief. 

The subjectivistic theory has also been used in practical applications. 
The area which we call ‘decision theory’ relies on probability 

considerations in many cases. For some of these, it is sufficient to 
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The Subjectivistic Theory of Probability 
postulate that the agent has some ideally adequate knowledge of 
objective probabilities. But in actual experiments some researchers 
(such as Davidson, Suppes and Siegel) 5 have found it necessary or 

advantageous to consider actual degrees of belief, and to attempt to 
measure them. 

In statistics, subjectivistic theories of probability have sanctioned 

widespread use of Bayes’s Theorem (for reasons to be explained 
later) and have thus helped give rise to what is somewhat misleadingly 
called ‘Bayesian statistics.’ This school has grown steadily in the last 
few decades and it now seems that subjectivistic probability, though 
it is not sweeping away other contenders, is well established as a 

legitimate concept with at least some significant applications. 

1 Definition of Probability 

We have mentioned already the subjectivistic definition of probability 
as the degree of belief of a given person at a given time. This is 

the fundamental idea which distinguishes it from all other theories: 

probability is not objective, but depends essentially on someone's 
beliefs. Subjectivist theorists therefore deny that other theories of 
probability refer to anything at all. In de Finetti’s emphatic slogan: 6 

Probability Does Not Exist 

Usually the basic idea is restricted, so that not just any degree of 
belief can be counted as a probability. Additional requirements are: 

1 Measurement – the term ‘degree of belief' is only fully 
meaningful when one has specified how it is to be measured or 

obtained. 
2 Coherence – Not just any degree of belief is admissible. Each 

person's set of degrees of belief in various propositions must 

agree with or conform to each other in a certain way. 

The first point is stressed by both Ramsey and de Finetti. Ramsey 
argues that probability cannot be simply identified with ‘the felt 
intensity of a belief' because (1) it is too difficult to quantify the 
intensity of feelings, and (2) strong feelings are not always associated 
with strong beliefs, as when we take things for granted. 7 

It is thus necessary to abandon felt intensity in favor of some 

other property of the belief. Both Ramsey and de Finetti favor a 
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behavioristic approach in which the degree of belief is identified with 
the person’s willingness to act on the proposition. This willingness 
to act can then be measured by observing behavior, especially in 
betting situations, which must be of a specific type in order to 

guarantee uniformity and comparability, and to avoid such complications 
as the diminishing marginal utility of money. The finished 

concept is thus ‘operational’, according to de Finetti, 8 and Ramsey 
says it resembles Einstein’s concept of a time interval in that its 
precise meaning depends on how we specify that it is to be measured. 9 

The second restriction, ‘coherence,’ is the normative or regulative 
part of the theory. It is not enough to have different degrees of belief 
in P and not-P, we are told, we must also see to it that these degrees 
of belief do not conflict in a certain way. 

Suppose, for example, John’s belief that Gluefoot will win has the 

degree 3/4 and his belief that Gluefoot will lose has the degree 2/3. 
No formal contradiction exists, since no logically incompatible 
propositions are involved. Neither is it a psychological impossibility 
(as some have claimed it is psychologically impossible to believe P 
and not-P simultaneously, e.g.) as we shall now demonstrate. 

If we adopt the betting method of determining degrees of belief, 
John’s belief of 3/4 means that he will bet 3 of his dollars against 
one of mine that Gluefoot will win. But his belief of 2/3 requires 
that he also bet 2 of his dollars against one of mine that Gluefoot 
will not win. Most of us would not make such a pair of bets, of 
course, because they guarantee that John will lose money no matter 

what the outcome of the race. If Gluefoot wins, John wins a dollar 
on the first bet and loses 2 on the second, while in the other case 

he loses 3 on the first bet and wins only one on the second. In such 
a situation, gamblers would say I have made a ‘Dutch Book’ against 
John, a situation much to be deplored. But deplore it as we will, 
people do sometimes allow Dutch Books to be made against them. 

Usually it is because they are inattentive or confused, or do not 

understand the numbers involved, but sometimes they are just 
‘stupid’ or ‘irrational.’ 

The cardinal rule of subjectivistic probability is that one should 
not be irrational in just this way. The surprising result (which I. J. 
Good calls the Dutch Book Theorem) is that conforming to the 
probability calculus is a necessary and sufficient condition of 

avoiding the possibility of a Dutch Book. In the example just cited, 
the difficulty is that John’s degrees of belief do not add up to one. 



This violates the fundamental principle which de Finetti calls the 
theorem of total probabilites: ‘in a complete class of incompatible 
events, the sum of the probabilities must be equal to 1.' 10 This 
theorem can be deduced from the requirement that one avoid the 

possibility of a Dutch Book, or, as the subjectivists put it, that one’s 
beliefs be coherent. 11 

It is important to note that subjectivists do not think everyone’s 
beliefs are coherent in this sense. What they are saying is that anyone 
who wishes to be ‘consistent’ or ‘rational’ in a certain heuristic sense 

must have coherent beliefs and will ipso facto conform to the 

probability calculus. Beyond this, each person is free to have whatever 

degrees of belief he or she chooses, and for any given set of 

propositions, an infinity of coherent probability distributions are 

possible. The freedom to believe what you will, subject only to the 
broad restraints of rationality, is a key feature of subjectivistic 
probability. 

2 Sources of Initial Probabilities 

Since a probability is nothing more than the degree of belief of a 

given person in a proposition, it exists only when someone has a 

belief, and it is established by determining what the degree of that 
belief is. Generally, subjectivists have tended to act as if each of us 

has an opinion about everything, because there are always some 

odds at which we will make a bet on any contingent proposition or 

event. 12 

When we ask for the source of initial probabilities we might intend 
either of these questions: 

1 How do we establish a value for the degree of belief S has in 
P? 

2 What is the source, cause, or explanation of the degree of 
belief which S has in P? 

The answer usually given to the first is ‘By a carefully conducted 
series of small comparative wagers.’ 

The answer to the second is ‘It might be anything, but there are 

regularities.’ 
Now let us examine these in more detail. 



In Dice Games 

The probability for S that P (a Three will show on the die) is defined 
as S's degree of belief that P. If we wish to know what this value is, 
we could just ask S. But since people sometimes lie or suffer from 
selfdelusion, or may just be poor estimators of probability, a more 

reliable and ‘scientific’ method is to observe S’s behavior – especially 
what he bets on P and what odds he requires. Experimental 
psychologists and decision theorists have developed methods for 

establishing personal probabilities, which are of considerable interest. 
When the experimenters used a four-sided die, for instance, they 

found some subjects had a strong tendency to require odds greater 
than 3 to 1, though the ‘objective probability’ was clearly intended 
to be 1/4. 13 Also, the subjects exhibited behavior which seemed to 
be based on the old fallacy called the Maturity of Chance. Whenever 
a side appeared several times in succession, the subjective probability 
of that side ‘would temporarily decrease for most subjects.’ 14 (This 
attitude is particularly intriguing, since most theories claim that no 

adjustment should be made, and some claim we should increase the 

probabilities.) 
By using these methods – setting up a series of bets and comparing 

them – we can establish to what extent S is willing to act on P. Or 
we can ask him. Or we can lead him to the crap table and see how 
he bets. In these ways we can establish what the initial probability is. 

But why is the initial probability what it is? The second sense of 
our question about the source of initial probabilities is, ‘What gives 
rise to, or accounts for, the probabilities we establish?’ 

Most of us think the probability of throwing a Three is 1/6. For 

many of us, the source of this belief is the voice of authority (Uncle 
Fred, the black sheep of the family) or just general enculturation. 
However, some have actually thought it through or worked it out 

for ourselves. In these cases, de Finetti says, the important thing is 
the judgment that all faces are equally probable. If this judgment is 
made, and if we are to have coherent beliefs (as he says we must) it 
is clear that 6 equal probabilities which sum to 1 must each equal 
1/6. 15 As to why we judge things to be equally probable, we can 

only say that we have a general tendency to do so and that 
considerations of symmetry weigh heavily in particular cases. 

Furthermore, we have a great store of experience with ‘fair’ dice, and 



we know that they are generally manufactured with the express aim 
of making the sides equally probable. 

Given all this, it is little wonder that we tend to assign the value 

1/6 to the probability of throwing a Three. But subjectivistic 
probability theories do not tie us to that value. They share with the 
relative frequency (RF) theories the ability to deal with biased or 

irregular dice. If a die persists in throwing a large number of Threes 
we are free to raise our subjective probability of P. The subjectivist 
thus has an advantage over the Classical theorist in a crooked dice 
game, because he is free to adjust his probabilities. But there are 

and can be no rules telling the subjectivist when or even in what 
direction to adjust his probabilities. The same freedom (license?) 
which enables him to adapt to the crooked dice game also legitimizes 
the fallacy of the Maturity of Chances and any superstition or 

irrational preference the individual might have. In a subjective 
assessment of probabilities, any factor is relevant which the individual 
takes to be so, and any (coherent) value is just as good as any 
other. 

In Actuarial Cases 

Even in the most abstruse cases where computers and statisticians 
labor collectively over arcane and complex formulas, we must 

remember that in the end a probability is just one person’s opinion. 
The complicated statistical laws that are taught in universities are, 

according to Savage, just elaborate reformulations of the coherency 
reguirements. 16 The amassing of huge bodies of data and the 
compulsive plotting of graphs and frequencies can be accounted for, 
according to de Finetti, by the simple psychological fact that we 

generally expect frequencies to continue, 17 
or to put words in his 

mouth, we count and measure the present because we expect the 
future to resemble the past. 

Most non-statisticians would be surprised to learn how many 
statistical issues and decisions depend on taste rather than logic and 
are decided by such psychological considerations as simplicity, ease 

of computation, appeals to authority, and intuitive approval rather 
than by rigorous mathematical proof. 

As a true American pragmatist, I would also like to point out 



how much of statistics is justified and accepted simply because it 
works. The businessman evaluating production and the scientist 
estimating probable errors may be swayed by the simplicity of a 

technique but, in the end, they will use the methods which best serve 

their purposes, regardless of mathematical pedigrees. Nearly all of 
applied statistics – and other forms of applied mathematics – was 

developed for practical reasons. We are interested in it because it 
works. Its working may be grounded in a deep metaphysical 
correspondence between mathematics and the world, or it may just 
be a lucky coincidence. In either case we would continue to study 
and develop applied statistics because of its great practical 
importance. The same is true of statistical probability (as de Finetti 
should have said, but didn’t). We accept certain ways of computing 
probabilities just because we like them – but we like them because 
they work. The selection procedure is indeed based on our desires 
and feelings, but that doesn’t mean it is irrational. 

Subjectivistic theories can account for actuarial probability by 
these two arguments: much of it is just mathematical elaboration 
of the coherency requirement; the rest is just a matter of taste. But 
beyond this, the subjectivist viewpoint actually expands the range 
of statistical probability, by allowing much greater use of Bayes’s 
Theorem. 

Some objectivists have called for a greatly restricted employment 
of Bayes’s Theorem because the Hj factors, which are called initial 

probabilities, in the formula are generally not known, If we have no 

measured frequencies (in the RF view) or computed values (in the 
a priori and Classical views) for these we have no values to plug 
into the formula and thus should expect no answer. 

But on de Finetti’s view there are no objective probabilities at 

all; hence, a fortiori, there are no unknown objective probabilities. 
If we wish to know the value of H5, for example we just ask ourselves 
what it is. (If we wish to be careful, we could conduct a series of 

comparative wagers.) Once we establish a (subjective) value for H1 
through Hj, we are free to compute the desired probability. 

Objectivists recoil in horror from this procedure, since the output 
will be ‘tainted’ by the subjectivity of the input. But for the 
subjectivist, all probabilities are subjective so that is certainly no 

reason for rejecting Bayesian methods. Furthermore, once the feeling 
of repugnance is overcome, the subjectivist thinks he can offer the 



objectivist good reasons for accepting the procedure. In most cases 

which involve a good deal of data or empirical evidence, it can be 
shown that the initial subjective values of the prior probabilities are 

‘swamped' by the accumulation of objective data and play rapidly 
declining roles in determining the answer. 18 The solution, then, can 

be made as ‘objective’ as one pleases – all you have to use the 

subjective values for is to ‘get started.’ 
Bayesian statistics is a growing field, whose techniques are applied 

in many areas. Of the polemics raised against it, few have argued 
that it does not work, or that it in fact gives the wrong answer most 

of the time. No, the objection to the Bayesian method is that it is 
not justified, since it doesn’t conform to the particular theory of 

probability (usually an RF theory) held by the critic. But the Bayesian 
method is justified in the framework of subjectivistic probability. 
Because of this the concepts have become so intermingled that for 

many scholars ‘Bayesian’ and ‘subjectivistic’ have come to be 
synonymous. The reader should recall, however, that objectivist 
theories do sanction the application of Bayes’s Theorem in those 
cases where the initial probabilities are known, so not all Bayesian 
solutions are subjectivistic. Otherwise, the terminological confusion 
is of no great importance. 

There is another way in which the subjectivistic theory claims to 

have an advantage over objectivistic statistics. You may recall from 
our discussion of RF theories the problem of the reference class: If 
10 per cent of American Indians and 30 per cent of physicians drink 
Scotch, what is the probability that an Indian physician does? We 
concluded at the time that rules of thumb might help, but there can 

be no general principle establishing which is the 'correct’ reference 
class or how the two should be merged. Now de Finetti and company 
claim that the problem of the reference class is solved (or at least 
dissolved) by the simple recognition that selection of the reference 
set is always arbitrary. 19 The objectivist found it puzzling because 
he was blinded by the ‘prejudice’ that there must be some true or 

objective value of the probability, if only he could figure out how 
to compute it. The subjectivist, however, recognizes that his opinion 
is the final authority, and is free to consider or ignore any data 
about any classes whatsoever. There is no correct reference class 
since there is no correct probability. This is so even for those highly 
uniform occurrences which objectivists call ‘repetitive events’ – but 
that’s a problem for subsequent sections. 



3 Probability of Single Events 

SUB shares with the a priori theory the advantage that it permits 
us to speak of the probability of any event whatsoever, simple or 

compound, unique or repetitive. If someone has an opinion on the 
matter, that opinion has a degree of belief, and the event therefore 
has a probability. 

That Smith will be elected Mayor 

It is on this example that the subjectivistic theory of probability 
really shines. The Classical and RF theories lead to the embarrassing 
conclusion that there is no probability that Smith will be elected. 
Anyone who reads the papers in an election year knows that this 
supposedly non-existent value is not only treated by most people as 

real, it is the subject of a great deal of discussion, controversy, and 
difference of opinion. The a priori theory does somewhat better by 
admitting that the probability exists, but it too abandons the field 
when it comes to setting up a value. The enormous complexity of 
the situation and of ordinary language make calculation impossible. 

SUB seems closest to common sense in allowing straightforward 
talk about the probability that Smith will win. 20 After all, any event 
we can have an opinion about is an event we can attribute 
probabilities to in ordinary discourse. 

The difficulty, however, is that SUB does not allow for just one 

value of the probability – there can be as many probabilities as there 
are opinions. The editorialists who think they are in disagreement 
about Smith’s chances really are not at all. There is no such thing 
as ‘Smith’s chances’ to disagree about. There is the Star's opinion of 
Smith’s chances and the Journal's opinion of Smith’s chances, but 
like my taste for apples and yours for oranges, these are not 

contradictory opinions about a matter of fact, but non-disputable 
differences of taste. 

There is an obvious parallel here between subjectivistic theories 
of probability and emotivist (or non-cognitivist) theories of ethics. 
If we take Stevenson 21 as the spokesman for the emotivists and 
consider a parallel dispute about whether Smith is (will be) a ‘good’ 
mayor, we have the following situation: 

1 There is no ‘matter of fact’ about whether or not Smith is a 

good mayor. 



2 When I say ‘Smith is a good mayor’ I am expressing my 
emotive approval of Smith. 

3 When you say ‘Smith is a bad mayor’ you are expressing 
your emotive disapproval of Smith. 

4 You could win the argument by showing that my views are 

logically inconsistent – no other argument is decisive. 
5 You might win the argument by showing I am mistaken 

about the facts – some disagreements in attitude are rooted in 

disagreements in belief. 
6 It is possible that we might agree on all the facts and still 

legitimately disagree on Smith’s moral worth. 

Now if we quickly make the appropriate changes, we have a 

subjectivistic discussion of the probability that Smith will be elected 

mayor. 
1 There is no ‘matter of fact’ about the probability that Smith 

will be elected. 
2 When I say ‘Smith’s probability of election is 0.6’ I am 

expressing my degree of belief that Smith will be elected. 
3 When you say ‘Smith’s probability of election is 0.3’ you are 

expressing your degree of belief that Smith will be elected. 
4 You could win the argument by showing that my views are 

incoherent – no other argument is decisive. 
5 You might win the argument by showing I am mistaken 

about the facts – some differences in degrees of belief are 

rooted in differences of belief about the facts. 
6 It is possible that we might agree on all the facts and still 

legitimately disagree on the probability that Smith will be 
elected. 

The striking similarity between these theories is of course due to 

the fact that each takes a concept which is normally held to be 

objectively present in the world and reinterprets it as a subjective 
attitude of the mind. Not surprisingly, both are vulnerable to the 

general criticisms that can be levelled at subjectivism, as we shall 
see in the penultimate section. 

That Smith will roll a Five 

Assessments of this probability generally agree, which accounts for 
the popularity of books on probability theory. But they sometimes 



disagree, which accounts for the popularity of crap games. What the 
subjectivistic theory cannot do is tell us how to arrive at the correct 
assessment. 

Consider someone who is forced to wager on whether or not 

Smith will roll a Five. De Finetti has said 22 he doesn’t intend to 

explain why it will or will not be a Five, but he also has said nothing 
that will guide him in his choice! The only normative advice the 
subjectivist offers is the injunction that our beliefs should be coherent. 
It is admirable and remarkable that this one bit of guidance forces 
us to accept and obey the calculus of probabilites. But remember, 
I have argued that the calculus is of little interest to us because it 
tells us nothing about what probabilities are or how to measure 

them. So far, no help. 
Now subjectivism does try to explain what probabilities are: they 

are the degrees of belief that real persons have in propositions. 
Suppose, then, we tell our bettor that the probability that Smith will 
roll a Five is equal to (identical to) the degree to which he (the bettor) 
believes Smith will roll a Five. We have cast him back upon his own 

resources, then, with no advice except to do what he thinks 
best. 

The Classical theory told him how to judge his chances: divide 
the number of favorable possibilities by the total number of possible 
outcomes to get a probability of 1/6. This advice is very helpful and 
successful until someone slips in a loaded die. 

The RF theory can deal even with this latter contingency: count 
the frequency of successes in the past and project that relative 
frequency as the probability of Fives in the future. That’s good when 
a lot of evidence is available, useless on the first roll. Still, it’s better 
than nothing, and nothing is what you get from the subjectivists. 

Let me say it again, since it slips past most people who fasten on 

other debatable or deplorable aspects of subjectivism: SUB gives no 

advice at all on how any initial probabilities should be obtained! 
All it does is argue that each of us should obey the probability 
calculus. But if our bettor should repeatedly bet large amounts of 

money that Smith would throw a Five and give the explanation that 
he was sure he would win because the probability of a Five is 0.9 
and if years of this losing enterprise laid waste his large fortune and 
left his family destitute, then we still could not accuse him of acting 
unwisely, After all, if acting on probabilities is ever rational, it is 
surely rational for a wealthy man to bet on a probability of 0.9. And 



according to the subjectivistic theory of probability, the probability 
was always 0.9 because he said it was. 

I can see already the pained expression on the faces of the 

subjectivists who want to explain to me about long series, Bernoulli 
trials, and Bayes’s Theorem. The bettor would be irrational, they 
say, since his belief that the probability was 0.9 is incoherent with 
the universal belief that events with a probability of 0.9 don’t persist 
in failing 84 per cent of the time, and a careful attention to the 
results would convince him that he should alter his view of the 

probability of Fives. 

My first response to this depends on a point I have made before; 
it is not impossible for repeated trials of a 0.9 probable event to result 
in 84 per cent failures, it is just very improbable. The Law of Large 
Numbers tells us that the odds are 9999 . . . to 1 against it, for long 
runs, so that it would take incredible bad luck for it to happen. But 
of course our bettor believes he is having incredible bad luck!! His 
beliefs are, therefore, as consistent and coherent as anyone’s. 

My second response is that consideration of past failures might 
convince him that the probability in the past had been around 0.16. 
Even so, it would be neither inconsistent nor incoherent for him to 

say each time that the probability of the next throw being a Five is 
0.9, since SUB gives no rule for connecting past experience to present 
probabilities, and allows him to continue using any value he chooses. 
In fact, de Finetti’s theory might encourage him to act this way, 
since he says explicitly that there are no such things as repetitive 
events, a point we will now discuss. 

4 Probability of Repetitive Kinds of Events 

As a matter of terminology and principle, de Finetti refuses to talk 
about repetitive events. A probability is the degree of our belief in 
an event (proposition) and that belief is not tied down by any 
similarity properties, class membership, or other objective features 
of the event. If we think the probability of Heads on this toss is 1/2, 
it is still perfectly all right to think that the probability on the next 

toss is 1/3. There need not be any fixed probability, because each 
event is an individual and must be judged as such – not as part of 
a set. 

As de Finetti puts it, statistical events are never ‘identical’, they 



are at best ‘analogous.’ 23 A more picturesque expression of the same 

sentiment was made by the folk humorist Brother Dave Gardner, 24 

who complained about ‘folks who say “Let’s do this agin sumtime”' 
on the grounds that 

‘You cain’t do that.’ 
‘What?’ 
‘Again.’ 
'!??!' 

‘You can do somthin simular, but you cain’t do that again. 
Once it’s gone, it’s gone.’ 

Nevertheless, it is obvious that people do treat certain classes of 
events collectively, and de Finetti tries to explain how this works in 
his system. 

That a Thirty-Year-Old will get Married 

The purest subjective judgment is our estimation of the probability 
that this thirty-year-old, say Jack Warndof, will get married. It is 
obvious to everyone who knows Jack that he is a special case, a 

unique individual – indeed, an oddball. The probability that he will 
get married depends on his peculiar circumstances and his unusual 

personality and has little to do with statistics from the Bureau of 
the Census. 

This example shows the appeal of SUB in dealing with individual 
cases, a virtue we discussed in an earlier section. But, for all his 
individuality, Jack really is one of the thirty-year-olds who make up 
the classes, frequencies and percentages of the census bureau. What 
can we say about this collective aspect of his existence? 

First of all, it is arbitrary which collective we concern ourselves 
with. We may wonder about any of the groups to which Jack belongs 
or we may, as the title of this section suggests, treat only his age as 

relevant. (De Finetti repeatedly stressed that objective probabilities 
are impossible in part because judgments of relevance are ineliminably 

subjective.) But once we have selected the reference class, there 
is a natural tendency to assume that the frequency of marriage for 
that group will continue to be fairly stable. This remains an 

unexplained psychological fact: 

A rich enough experience leads us always to consider as 



probable future frequencies or distributions close to those 
which have been observed. 25 

Finally, we must remember that even a firm faith that 12 per cent 
of thirty-year-olds will continue to marry each year does not commit 
us to believing that the probability that Jack or any other 
thirty-year-old will marry is 0.12. There is no formal, theoretical, connection 
between frequencies and probabilites at all in this system. Frequencies 
may influence our subjective assessment, but they need not determine 
it. 

That a Dice Throw will be Five 

Now that I have stressed so heavily the subjectivists’ view that there 
are no repetitive events, the reader is no doubt wondering if we must 

give up Bernoulli’s Theorem, the Laws of Large Numbers, and other 
formulas which depend on constant probabilities. The answer is that 

although we are not required to treat any series of events as 

equiprobable, we are free to do so if we choose. 
Rather than talk about equiprobable or Bernoullian events, de 

Finetti introduces the term ‘exchangeability’ and defines it as 

follows: 26 

A collection of events is said to be exchangeable if the 
probability W h that h of them occur, depends only on h and not on 

the particular events chosen. 

In all those cases where objectivists insist upon the equiprobability 
of repetitive events, subjectivists are free to judge a set of events to 

be exchangeable. Obviously, exchangeable events will obey the same 

logic and mathematics as those repetitive events earlier banished 
from the fold. The advantage of the new terminology is that it permits 
us to describe the situation without introducing constant, objective 
probabilities. If a person judges a set of events to be exchangeable 
and of a certain subjective probability, then the coherence requirement 

forces him to make the same predictions about groups and 
series of occurrences as objectivists would make using Bernoulli’s 
Theorem. 27 

As it happens, most of us do judge events like dice throws and 
draws of a card to be exchangeable, because of our long shared 
experience and because of considerations of symmetry. We are 



therefore in a position to use calculations of this sort quite frequently. 
The subjectivist difference is that no one is ever forced to accept 
these calculations, since we are always free to vary our attitude about 
any or all or the events. The fundamental reality remains the 
individual’s opinion about an individual event. 

5 Absolute Probability and Physical Chance 

All is subjective – nothing is absolute. 
In a system which defines probability as the individual’s degree 

of belief in a proposition, it is obvious that there can be no one 

answer to ‘what is the probability of X?' There are as many answers 

as there are beliefs, and no answer is better than any other (coherent) 
answer, since the individual is theoretically free to hold any opinion 
whatsoever. 

One early writer, Emile Borel, who is sometimes classified as a 

subjectivist, did try to give some sense to ‘objective probability’ by 
saying that it referred to ‘the probability which is common to the 
judgments of all the best informed persons, that is to say, the persons 
possessing all the information that it is humanly possible to possess 
at the time of the [judgment].’ 28 These probabilities are like physical 
constants in that scientists agree on their present value but may 

change them in the future light of ‘the progress of physical-chemical 
theory.’ 29 

Since Borel was writing before Ramsey and de Finetti, and is less 
than explicit and consistent in his subjectivism, I think we can safely 
dismiss his view as non-standard. (Alternatively, we could say that 
anyone who has that view of physical constants doesn’t understand 
the word ‘objective’ anyway.) 

Savage and de Finetti are more definite and consistent in their 
views and, for them, objective probabilities are an illusion, a 

superstition. 30 De Finetti, indeed, delights in pointing out that even 

in ‘objectivistic’ systems there is no such thing as ‘the probability of 
X,' since the choice of a reference class is always arbitrary and the 
amount of evidence is always insufficient. Furthermore, if ‘objective’ 
is taken to mean ‘capable of being judged true or false on the basis 
of a well-determined observation which is at least conceptually 
possible,’ 31 then statements of subjective probability are even more 

objective than their RF counterparts, since one can gather sufficient 
evidence to confirm or refute them. 



Of course a completely confirmed objectively true statement about 
a subjective probability would deal with an individual’s degree of 
belief in X, not with X itself. It would be ‘the probability of X for 
S' not ‘the absolute probability of X.’ For this latter concept there 
is no place at all in the subjectivistic scheme of things. 

As to physical chance, de Finetti, at least, is unwilling to pass 
judgment. It is not just that we are unsure about the answer to the 
determinism/indeterminism dispute, but, more importantly, he sees 

the question as irrelevant to probability theory, 
because, whatever the explanation of the uncertainty might 
be..., the sole concrete fact which is beyond dispute is that 
someone... feels himself in a state of uncertainty, and has to 

decide on and adopt some point of view as a basis for 

previsions and related decisions. 32 

The nature of the physical universe is a question for cosmologists 
and metaphysicians – subjectivistic probability theory will work in 
either case. 

6 The Metaphysical Status of P 

The basic fact is that P is an assertion about someone’s mind, not 

about the event or proposition which is the formal subject of P. If 
I say ‘Gluefoot’s probability of winning is 0.6’ the subjectivists agree 
that the content of this sentence is the assertion (perhaps the 
expression) of my own degree of belief in Gluefoot’s winning. Since, 
as we would normally say, my belief could be well- or ill-founded, 
in agreement or disagreement with the facts, etc., it is clear that an 

expression or assertion of that belief has no necessary connection 
to the facts. It is not ‘objective' in the root sense of being about or 

dependent upon the objects in the world, but is rather subjective in 
the sense of being about or dependent upon the psychological subject. 

Obviously the exact metaphysical status of P depends on one’s 
views about the mind/body problem. If some version of the identity 
theory is true, then these statements, which seem to be about horses, 
are really about beliefs, which in turn are really certain states of the 
central nervous system (or whatever). Thus the ultimate reality which 
determines P’s truth is physical. Alternatively, if some version of 
dualism or idealism is true, my statement about Gluefoot depends 



for its truth upon the existence of a certain mental state of affairs, 
namely my belief of the appropriate degree. 

This metaphysical adaptability is captured by de Finetti’s assertion 
that a probability is nothing but an opinion, 33 and thus has whatever 
ontological status an opinion does. But it is put even more forcefully 
and graphically by I. J. Good who argues that we need not get 
involved in ‘metaphysical problems concerning mind’ because 
subjective probability can occur in any ‘communication system that has 
apparently purposive behavior,’ including ‘Martians or machines.’ 34 

The essential feature is that probabilities are not tied to external 

reality, but depend entirely on whatever internal realities one 

sanctions in one’s metaphysics. 

7 The Epistemological Status of P 

In assessing the epistemological status of P, we need to distinguish 
two main concerns: 

1 How do we know P? That is, how can observers establish the 

degree of S’s belief in X? 
2 On what is P founded? That is, what steps, procedures, and 

processes go into forming S’s belief and can they be comparatively 
evaluated? 

Addressing the first of these concerns, the simplest way to establish 
what S believes is just to ask S. If S is honest, helpful, and good at 

introspection, he might be able to tell us precisely what degree of 
belief he has in X, and we would be justified in believing him. 

Unfortunately, we are not all good introspectors. As Freud and 
others have shown us, we are seldom aware of all our motives, 
attitudes, and beliefs. And even if S knows the degree of his own 

belief, many motives, fears, or incompetencies might prevent his 

conveying that knowledge to us. 

For all these reasons, most subjectivists have agreed that the best 

way to establish P is not to ask S, but to observe his behavior. 
Since the time of Ramsey, the usually advocated method has been 

the study of betting behavior. There are many advantages to this 
method, but perhaps the most important are 

(a) It is in the subject’s interest to act on his own best judgment, 
thus reducing deception and inattention; 



(b) It is possible to manipulate and compare the bets in such a 

way that the degree of belief (if stable) is revealed with 
considerable quantitative precision. 

Experimental psychologists and others have devoted a good deal 
of time and energy to establishing procedures which are useful and 

precise and reduce the influence of such factors as the diminishing 
marginal utility of money and a like or dislike for gambling as such. 
These studies have shown that most people do have fairly stable 

degrees of belief which can be ascertained without too much 
trouble – at least in a laboratory situation. 

Turning now to our other problem, how does S form his opinion? 
What factors shape his belief, and how can the process be evaluated ? 
There are two levels to the answer to these questions. 

First of all, the theory itself sets no limits and imposes no rules 
on anyone’s opinions, save only that we must maintain coherence. 

Otherwise, we are in principle free to believe any proposition to any 
degree whatsoever. The theory is epistemologically neutral, or devoid 
of content. Like formal logic, it tells us that if we believe certain 

things, we must believe certain others, but the choice of premises is 
always up to us (for reasons such as this, Ramsey has joined many 
non-subjectivists in suggesting that probability theory should be 
‘taken as a branch of logic, the logic of partial belief and inconclusive 
argument’ 35 ). 

Although the theory itself says nothing about the source and 

justification of our beliefs, that does not mean there is nothing to 

be said. De Finetti, in a descriptive vein, talks about various factors 
which shape our opinions. Shared experience, constant frequencies, 
common character traits, a concern for symmetry and an acceptance 
of the opinions of others all conspire to account for that vast body 
of shared opinion about probabilities. What others thought betokened 

an objective regularity, de Finetti reinterprets in terms of 
psychological regularity. 

Finally, as to the normative question, what can we say about the 
merits of different probability appraisals? Clearly the theoretical 
answer is ‘nothing’. One probability is just as good as another in 
the eyes of the theory, provided both are coherent. But obviously 
one probability is not just as good as another. Some bets, plans, 
decisions are better than others. In a game like ‘Go’ the rules leave 
us free to use any strategy we like, but some strategies are more 



productive than others. In the game of life, likewise, the rules of the 
probability calculus leave us free to make any probability assessment 
we choose, but some are reasonable, some not. De Finetti makes 
some attempt to indicate the kinds of things we should consider in 
judging probabilities, 36 but always refuses to allow any general rule 
of assessment. Ramsey, on the other hand, is willing to say that a 

judgment is praiseworthy if it comes from a ‘good habit.’ 
Thus given a single opinion, we can only praise or blame it on 

the ground of truth or falsity: given a habit of certain form, we can 

praise or blame it accordingly as the degree of belief it produces is 
near or far from the actual proportion in which the habit leads to 
truth. We can then praise or blame opinions derivatively from our 

praise or blame of the habits that produce them. 37 

The final answer, then, seems to be the pragmatic one that an 

appraisal is good if it leads to success in practice, and a method for 

picking winners is good if it picks winners. Since there are no objective 
probabilities to be conformed to, our judgment must be based on 

practical results rather than correspondence to reality. The epistemology 
of P runs rather more towards the Pragmatic than the 

Correspondence Theory of Truth. 

8 The Rationality of Probability Behavior 

Experience teaches us that in many situations individuals must act 

under conditions of uncertainty about the present, the future, and 
the consequences of their actions. Much of the theory of probability 
is aimed at explaining, formalizing, rationalizing such behavior. The 
RF and AP theories tell us where to look for information, how to 

calculate probabilities, and what conclusions we must reach. The 
subjective theory is less overbearing: it doesn’t tell one what to do 
at all, it only tells one what one must not do, namely violate the 
rules of coherence which make up the calculus of probability. 

Although it is thus clearly normative, subjectivistic probability 
theory does not seek to be authoritarian or moralistic. 

The ‘one must’ is to be understood as ‘one must if one wishes to 
avoid these particular objective consequences.’ It is not to be taken 
as an obligation that someone means to impose from the outside, 
nor as an assertion that our evaluations are always automatically 
coherent. 38 



The force of the coherency requirement springs from the logic of 
rational choice. If ‘choice’ and ‘desirable’ are to make any sense at 

all, it must not be rational to choose the least desirable alternative. 39 

But if one accepts a Dutch Book, one is choosing a certain loss 

(losses are by definition undesirable) and is therefore acting 
irrationally. 

The point of coherency requirements is to keep us from acting 
the fool by thwarting our own desires. We remain free to desire what 
we will, and to estimate probabilities as we choose. All we must do 
is be consistent in our desires and expectations. 

Subjectivistic probability theory is, like deductive logic, a minimal 
standard of rationality. 

9 Chief Criticisms of Subjectivistic Theories 

The most basic criticism of subjectivistic probability is that it confuses 

feeling with fact. 
It is both true and important that people have different opinions 

about Gluefoot’s chance of winning (that’s what makes a horse race). 
Experimental psychologists have done much good work in starting 
to sort out the probability and utility functions people ‘act as if 

they have, and the evidence supports what professional gamblers 
could have told us all along: people have different ideas about the 
odds, most of them pretty good, some downright stupid. The 

particular kind of stupidity which consists in accepting a ‘Dutch 
Book’ or ‘sure loss’ gladdens the heart of the grifter and the 
conman – but it’s not what supports the gambler! Few of us are so 

soft a mark that we accept certain losses. But many of us believe in 
the maturity of odds, betting a martingale, or drawing to an inside 
straight. The gambler doesn’t cheat or deceive us, and we need not 

be incoherent fools to lose our money – the gambler understands 
the odds and plays the percentage and, in the end, will always take 
our money because the odds are real. 

If your sainted mother suddenly started giving 4 to 1 odds on the 
toss of a fair coin, you would be well advised to protect your 
inheritance by urging her to stop, because she will certainly lose in 
the long run. But according to the subjectivistic theory of probability 
there are no grounds for criticism at all in this case. If she thinks 
the probability of heads is 0.2, then the probability of heads is 0.2 



and there’s an end on it. There are no objective probabilities to 

invoke; there are no facts to be considered; there is no counsel to 

be gained from probability theory. 
Surely this is mistaken. The poor woman will lose her money, not 

because I think so or you think so, but because it really is a fact 
that a fair coin will almost certainly show Heads in more than 20 
per cent of a long run of tosses. Emphasis on the psychological fact 
of diverse opinions blinkers the ordinary fact that some things really 
are more probable than others. To flout this ordinary fact is not the 
same kind of irrationality as having incoherent opinions or believing 
P and not-P, but it is irrational none the less, just as it is irrational 
to ignore any obvious fact about the world. 

It might be said in defense of the subjectivists that they don’t deny 
the irrationality of Mama’s behavior, they just deny that probability 
theory as such can correct it. But what discipline can help us assess 

likelihoods and probable outcomes, if not probability theory? When 
subjectivistic theorists refuse to tell us how to assess initial probabilities 

they are ‘copping out,’ in the current slang. They are leaving us 

with only the calculus of probability as a minimal guide to rationality. 
Now the probability calculus is very important – indeed it is common 

to all theories of probability. But that very universality means that 
it cannot be used to individuate theories. As I have repeatedly argued, 
the true test of a theory is how it defines ‘probability’ and how it 
establishes initial probabilities. Subjectivistic probability theory 
tells us that probabilities are degrees of belief and are established 
by psychological investigations. 

This is a psychologism. 
A psychologism is the mistaking of a belief or opinion for a fact 

or objective condition, or the other way round. In logic, it is 

psychologistic to talk about beliefs and laws of thought rather than 

objective deductive relationships. In probability theory, it is psychologistic 
to confuse people’s beliefs and behavior with the objective 

grounds of those beliefs. It is false that the probability of Heads is 
what Mama thinks it is, and that is why she is losing her money. 
Her opinion is deplorable because it is wrong; but it could not be 
‘wrong’ unless there were some ‘right’ to compare it to, and that 
must be objective probability. 

If de Finetti were right in his assertion that objective probability 
does not exist, then we would indeed be free to believe anything we 

chose, with whatever degree of confidence we felt, because it would 



not matter what we believed. But it does matter what we believe (as 
Mama’s incipient bankruptcy demonstrates), therefore de Finetti 
must be mistaken (modus tollens). 

The probabilities which guide our lives are as ‘real and earnest’ 
as life itself. They are not matters of whim or opinion. The physician 
does not accept the patient’s 'degree of belief' that the tumor is 

benign; the astronomer does not ask the janitor for the probability 
that a cepheid variable will go nova. These probabilities are 

‘objective’ in a way which makes ‘subjective’ a pejorative. They are 

objective in a way which shows that subjective probabilities could 
never serve as a basis for science. Scientists must always assume that 
there is a ‘fact of the matter’ which scientific investigation pursues 
and which scientific opinions approximate more or less correctly 
according as they are better or worse opinions. But de Finetti’s 
dictum would have it that there is no ‘fact of the matter’ in probability 
cases and therefore that all opinions are on an equal footing. This 
cuts at the very root of thought and removes the whole point of the 
scientific enterprise. No, subjectivistic probability will not do for 
science. 

Finally, to mitigate the criticism somewhat, we should agree that 
it is sometimes valuable and important to enquire into what people 
think rather than what is the case. In deciding whether to vote for 
Betty Castor or Julian Lane, it is important to ask which is the 
better person or will be the better legislator. But in predicting the 
Castor-Lane outcome, it is at least as important to ask what people 
think about the qualifications and desirability of each. 

In like manner, opinions about probability can be a proper object 
of study for experimental psychologists. The findings of such 
researchers as Davidson, Suppes and Siegel give us valuable information 

about what people think is the probable outcome of casting a 

four-sided die. But they do not (except incidentally) tell us what is 
the probable outcome of such a cast. 40 In learning such things we 

learn about people, not probabilities. The fundamental mistake of 
the subjectivists lies in confusing the two. 

10 Chief Virtues of Subjectivistic Theories 

Despite its fundamental misconception, subjectivistic probability 
theory has at least four virtues: 



1 It accommodates talk of the probability of individual events. 
2 It expands the field of possible applications of Bayes’s 

Theorem. 
3 It has made contributions to the growth of decision theory 

and psychological knowledge. 
4 It shows clearly why we must act on the probability calculus 

to be rational. 

First, consider the problem of unique events, which we have 
referred to throughout this book. Savage offers an example: 41 

on no ordinary objectivistic view would it be meaningful, let 
alone true, to say that on the basis of the available evidence it 
is very improbable, though not impossible, that France will 
become a monarchy within the next decade... The personalistic 
view claims, however, to analyze such statements in terms of 
mathematical probability, and it considers them important in 
science and other human activities. 

This is indeed a telling point against RF theories and others which 
reject isolated probabilities. 42 It is a sin against ordinary language 
to deny the meaningfulness of such assertions, and merely an evasion 
to say that they must involve some concept other than probability. 
Whether or not subjectivism succeeds in dealing with the problem, 
the reader must decide for himself, but surely it is better to try to 

explain it rather than sweeping it under the rug. 
Second, subjectivism sanctions and justifies a type of statistical 

inference which has proven useful though controversial. Bayesian 
statisticians have given us many fruitful and accurate calculations. 
Their opponents have argued that whatever the results, the methods 
are theoretically unsound. Practicing statisticians, operational 
researchers, and cut-and-try mathematicians have gone ahead and 
done it anyway, without regard to theoretical niceties. Now many 
of these thinkers are sliding into subjectivism. Since the theory 
justifies a desirable method, the theory becomes desirable. 

The success of Bayesian methods is understandable. Mathematically, 
it makes little difference what values we plug into Bayes’s 

formula as initial probabilities. What is not easy to explain is the 
theoretical justification for pulling such figures out of a Bayesian 
bowler. If subjectivism continues to be the only theory which allows 
people to do what they really want to do anyhow, there will be a 



powerful incentive for its continued growth, despite its manifest 
disadvantages. 

Third, the interest in SUB has been an added stimulus for research 
into decision theory and the like. As Carnap puts it, the subjectivistic 
theory is ‘of importance for the theory of human behavior, hence 
for psychology, sociology, economics, etc.’ 43 Evidently this value is 
not unique to SUB, since researchers who do not deny the existence 
of objective probability (such as Davidson, Suppes, and Siegel) 
engage in the very same kind of experiments as those who deny it 
(such as de Finetti). It would seem, then, that this virtue is more 

heuristic than theoretical. 
Finally, it seems to me that no theory does a better job of explaining 

why we should accept the probability calculus. It is all very well for 

Kolmogorov to derive the calculus from clear and self-evident 

axioms, or for Reichenbach to show that it follows from the 
mathematics of infinite series, but I think that most of us gain a 

greater conviction when shown that otherwise a sharpie could turn 
us into certain losers. Many of us are hostile to mathematics, but 
no one wants to be a sucker! 



VI 

Conclusion 

The purpose of this chapter is to present my own views on the nature 
of probability’s philosophical foundations, now that I have tried 
earnestly to present the major alternative theories as clearly and 
objectively as possible. 

Let me begin with a few remarks about foundations, explications, 
and reductions. 

As Quine has noted, one who seeks the foundations of mathematics 

engages in an effort which is dubious from the beginning, for ‘Where 
might he find foundations half so firm as what he wants to found?’ 1 

I think it is manifestly evident – if a bit humbling – that no merely 
theoretical or philosophical discourse could bring down and eliminate 

an established mathematical practice unless some alternative 
means are suggested for doing what has been getting done. Hence, 
we need have little fear of finding that probability theory rests on 

shaky foundations, or even none at all; for the response of the 
practicing mathematician will surely be a shrug of the shoulders and 
continued use of probability theory. In fact, many mathematicians 
and philosophers already take the view that probability neither has 
nor needs any philosophical foundations – it is an uninterpreted part 
of formal measure theory which we use whenever we find it 
convenient, informative, practical. Such people get on very well in 
probability theory, and have even written quite good textbooks, 
despite their professed inability to explain what they are talking 
about and their lack of interest in trying to find out. 

Nevertheless, many will continue the search. There is in human 
beings an endless well of curiosity, an urge to ask ‘Why is this so?’ 
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Conclusion 

and ‘What does that really mean?’ When people of this bent 
encounter probability theory they always ask ‘But what is probability 
theory and why does it work?’ This book is an exposition and 
analysis of the major attempts to answer such questions. We have 
seen philosophers attack the problem in many ways, but in the end 
each has offered some definition, reduction, or explication of the 
concept of probability itself. This is obviously the key, for since the 
time of Kolmogorov it has been clear that all our theorems and 
calculations can be reduced to a set of basic axioms employing only 
one undefined notion, that of probability itself. 

Our major problem, then, is the definition, reduction, or explication 
of the term ‘probability.’ 

The art of defining terms can be divided broadly into two 
somewhat different activities. One can find a definition of the 
descriptive/lexicographic sort, or one can give a definition of the 

prescriptive/stipulative sort. The former activity is of genuine linguistic 
and historical interest, but it cannot be expected to generate 

important philosophical truths no matter what the shallower of the 

ordinary language philosophers would like to believe. A typical 
example of the latter would be the CTP’s official definition of 

‘probability’ as the ratio of all favorable to all equipossible cases. 

The notorious problem of giving ‘equipossible’ sufficient sense to 
make the definition both non-vacuous and non-circular is a good 
example of the difficulties attending any effort to reduce our confusion 
by giving definitions. Because of such difficulties, philosophers such 
as Keynes and Lewis have held that ‘probability’ is sui generis and 
undefinable. We have a notion of probability (whether linguistic or 

intuitive), but we cannot hope to break out of the circle of synonyms 
to explain that concept because it doesn’t depend on anything else 
for its force and validity. Whether or not this is so, we certainly 
have been unable to agree on a definition of ‘probability’ which 
comes anywhere near to meeting our philosophical needs. 

An alternative foundational maneuver is to seek to reduce the 
problematic theory or concept to some more basic theory or concept 
which we hope will be better understood. This notion of reduction 

gained great currency among the Logical Positivists and has been 
the object of considerable philosophical attention. Briefly, we may 
say that one theory is reduced to another when every concept of 
the original theory can be definitionally connected to some concept(s) 
of the reducing theory, and every law contained in the original theory 
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can be replaced by an empirically identical law in the reducing 
theory. In the happiest situations, the reducing theory will be clear 
and unproblematic, but even if this is not the case, it is commonly 
held that gains in theoretical unity and ontological economy which 
can be achieved by this procedure are sufficiently valuable to justify 
the effort. 

Clearly the best example of an attempted reduction in our subject 
is Reichenbach’s effort to reduce the theory of probability to the 

theory of relative frequencies in infinite series. He contended that 
such a reduction enabled us to say in the clear language of 
mathematics whatever we had wanted to say in the fuzzy language 
of probability, and to solve the application problem by showing that 
probability theory is applicable if and only if there exists an infinite 
series leading to a limit. Unfortunately, this reduction severely 
truncates probability theory, by ruling out of court those efforts to 

apply probability to single cases or even to finite populations. It 
also has severe epistemological and metaphysical difficulties. Still, it 
remains the one attempted reduction which has met with considerable 

acceptance and continues to satisfy the foundational urges of 

many philosophers, mathematicians, and scientists. 
An explication of a concept is a little more than a definition, a 

little less than a reduction. It seeks a definition indeed, but one which 
lies between the lexicographer’s descriptive definition and the pure 
theorist’s stipulative one. An explication should be faithful to 
standard usage, while at the same time making it more precise and 
understandable. As Nelson Goodman puts it 2 

If we set out to define the term ‘tree’, we try to compose out of 

already understood words an expression that will apply to the 
familiar objects that standard usage calls trees, and that will 
not apply to objects that standard usage refuses to call trees. A 
proposal that plainly violates either condition is rejected; while 
a definition that meets these tests may be adopted and used to 
decide cases that are not already settled by actual usage .... 

[There is a] characteristic dual adjustment between definition 
and usage, whereby the usage informs the definition, which 
in turn guides extension of the usage. 
Rudolf Carnap sees himself as engaged in explication of this kind : 3 

By an explication we understand the transformation of an 

inexact prescientific concept, the explicandum, into an exact 



concept, the explicatum. The explicatum must fulfill the requirements 
of similarity to the explicandum, exactness, fruitfulness, 

and simplicity. 
If a foundational effort were to succeed in achieving an explication 

of this sort, it would provide us with a clearer conceptualization of 

probability, which would encompass most existing usages and guide 
our future determinations. 

Do any of our suggested theories count as adequate definitions, 
reductions, or explications of probability? Let us begin our attempt 
to answer this question by dealing first with a theory I hold to be 

completely unsatisfactory. 
The subjectivistic theory of probability (SUB) just will not do. 
An adequate view of probability theory must, I think, be a realistic 

one; not in the sense that probabilities must be eternal Platonic 

objects, but in the sense that Putnam describes and attributes to 

Dummett : 4 

I am indebted to Michael Dummett for the following very 

simple and elegant formulation of realism: A realist (with 
respect to a given theory or discourse) holds that (1) the 
sentences of that theory or discourse are true or false; and (2) 
that what makes them true or false is something external – that 
is to say, it is not (in general) our sense data, actual or potential, 

or the structure of our minds, or our language, etc. Notice 

that, on this formulation, it is possible to be a realist with 

respect to mathematical discourse without committing oneself 
to the existence of ‘mathematical objects’. The question of 
realism, as Kreisel long ago put it, is the question of the 

objectivity of mathematics and not the question of the existence 
of mathematical objects. 
In the case of probability theory, if Smith says the probability of 

throwing a Five is 1/6, and Jones say it is 1/2, their dispute is just 
as genuine and the correct answer is just as objective as if they were 

directly arguing about whether or not the die is physically loaded. 
The one who is right – the one who knows the real probability – not 

only possesses the epistemological virtue of knowing the truth, he 
also has the practical advantage of being in a position to improve 
his economic situation at the expense of the other fellow. It is the 
fatal flaw of the subjectivistic theory that it pretends that one person’s 



probability is just as good as the other’s and that no objective 
consideration can choose between them, when it is perfectly plain 
that one will lose his shirt because he is wrong about the probability. 

It is of course true that each person has various opinions about 

probability, and it is useful for the SUB theorists to identify the 
minimal conditions that each must obey in order for those views to 

be consistent. But as Putnam has also pointed out, 5 we ask more 

of mathematical systems than mere consistency; we ask also that 
they truly describe the world. 

Thus far we have not settled on a view of probability. It may be 
metaphysical or epistemological, physical or conceptual. We have 

only established that it must appeal to some standard of truth or 

objectivity outside the opinions of humans. 
Now let us dispose of the Classical theory. 
To oversimplify brutally: what the CTP amounts to is the 

discovery and elaboration of the most important rule of thumb in 

probability theory, the Principle of Indifference. 
As I indicated earlier, I think the fundamental successes of the 

Principle of Indifference are due to the fact that its application tends 
to have the features of a Random Guess. This accounts for the 
puzzling fact that the Principle works best in a situation of ignorance; 
it is not that the universe conforms itself to our expectations, it is 

just that our probability of success in a random guess is a fixed and 

equal-valued function of the alternatives we judge to be equipossible, 
whether or not those alternatives are equiprobable in some objective 
sense. It is not the occurrence of the events which need be equiprobable 

for the Principle to hold, but the occurrence of successful 

guessing. (This situation has been obscured by the fact that 
many of the most important uses of probability theory involve 
alternatives which are, or are intended to be, equiprobable, so that the 

Principle of Indifference tends to be externalized and reified – this is 
an understandable but regrettable error.) 

Again let me say that the Classical theorists were intellectual 
giants, and I would never wish to denigrate their accomplishments. 
I am only arguing that most of their writing was non-philosophical, 
and their one great insight is not a philosophical explanation of 
what probability is, but a practical rule for evaluating and acting 
on probabilities. It is a tremendous rule, but it won’t do as a theory. 
(It will do very nicely as a part of a theory, of course, and is in fact 
compatible with either of the remaining types, since the justification 



of a random guess can be either a logical a priori insight or 

calculation, or the observed fact that random guesses exhibit a stable 
frequency of success.) 

Now we come down to the great theoretical divide. We are left 
with only two major players on the field – the a priori and the relative 
frequency theories. At this point there is so much to be said for and 
so many supporters of each view that it would be perfectly reasonable 
just to accept them both. Carnap, of course, does just that, with his 
view that probability1 and probability2 are two different concepts, 
two different equally valid explicanda for probability theory, and 
that in normal usage the term ‘probability’ is ambiguous between 
them unless made clear by context. In a similar fashion, Hacking 
speaks of epistemic and aleatory probabilities. 6 And others have 
held that it is not possible to combine in one theory the two equally 
valid views of probability as an ‘outer’ property of things and events 
and as an ‘inner’ property of propositions and knowledge. Let me 

say a few words about this problem. 
First off, I think that it is philosophically useful (or, better, 

analytically useful) to distinguish senses of terms and shadings of 

meanings. It helps us to get clearer on what we’re talking about and 
to understand the variations in what others are talking about. But 
it is a nobler philosophical goal and a far sounder scientific goal to 

unify our meanings, fix the significance of our terms, and bring order 
out of chaos. I therefore think that we cannot tolerate ambiguity – 
even systematic ambiguity – in so crucial a term as ‘probability.’ 
Instead, I think it would be more helpful if we view ‘probability’ as 

what Putnam calls a ‘law-cluster term’. 7 A law-cluster term is one 

which enters into several different laws, deriving part of its significance 
from each. Consequently, there can be no unchangeable 

analytic definitions of such terms, as shifts in the direction of science 
will magnify the importance of some ‘definitions,’ invalidate others. 
(This is how ‘Atoms are indivisible particles’ and ‘Whales are the 
biggest fish in the sea’ began as analytic definitions of simple terms, 
evolved into laws involving law-cluster terms, and finally became 
falsehoods as the other laws became both more important than and 

incompatible with these statements.) 
I will go further – not only is ‘probability’ a law-cluster term like 

‘atom,’ it is, like ‘gravity,’ a term in a state of flux and tension, in 
search of a paradigm. In the case of ‘gravity,’ it may be that we will 
plump for the view that gravity is (something like) the curvature of 



the space-time metric which occurs in the vicinity of masses and 
which therefore causes such masses to tend to move closer (be closer ?) 
together. If so, all sentences beginning ‘Gravity is a (the) force ...’ 
which were once true – perhaps even analytically true(?) – will then 
be false. 

Now in the case of probability, I think that the purpose of 
probability theory is to bring the degree of uncertainty in our world 
view as much as possible into congruence with the uncertainty in 
the empirical world. I use the word ‘uncertainty’ here because it 

conveys much of the traditional notion of probability, but also 
because it is now in just the state of physical vs. epistemological 
indecision that probability theory languishes in (witness the Copenhagen 

Interpretation of the Heisenberg Uncertainty Relations 8 ). 
For those who insist on a definition, I suppose I would start with 

‘Probability is the measure of uncertainty in a given part of our 

description of the world.’ But this is not a complete definition. It is 
rather the kind of thing that John Rawls would call a concept of 
probability – a rather vague, ambiguous, or, especially, underdetermined 

notion which then achieves specificity by the introduction of 
a conception of probability. 9 The concept is normally compatible 
pairwise with each of two or more conceptions which are mutually 
incompatible. Thus, to accept the definition of a concept is just to 
set the terms of our true problem, which is to specify the best 
conception. 

And this is just the situation I find probability theory to be in. If 
we accept my definition of the concept of probability – the measure 

of uncertainty in a given part of our description of the world – it is 

immediately obvious that such uncertainty could be the result of the 

incompleteness and inadequacy of our knowledge, or it could be the 
result of randomness or indeterminism in the world itself. Many of 
the laws invoking the term ‘probability’ are concerned with one type 
of uncertainty, many are concerned with the other, and some are 

not clearly one or the other. 
It is important, but not sufficient, to distinguish these conceptions 

of probability. Eliminating confusions and equivocations is a 

necessary prolegomenon to finding the truth – but it does not 

constitute finding the truth. That is why I reject any principle of 
tolerance which says that different theories should be ‘equally’ 
accepted. The aim is not to distinguish different conceptions but to 
find the best (true?) conception. Since the aim of probability is to 



bring the uncertainty in our descriptions as much as possible into 
congruence with the uncertainty in the world, it seems to me that 
the most important question in probability theory is the physical/metaphysical/cosmological 

question 'Is there genuine chance or 

randomness in the world?’ 
This question lies at the conceptual heart of probability theory 

because if it is answered in the negative we need deal with only one 

type of uncertainty (roughly, epistemological uncertainty), while if 
it is answered in the affirmative, we must also deal with physical 
chance. If the latter is true, we might be forced back to Carnap’s 
two explicanda (in which case we need even stronger verbal 

differentiation than his probability1/probability2), or we might yet 
hope for a unified theory dealing with some common element in 
each. In either case, it would be conceptually quite different from 

just trying to develop a system of partial belief or judgment in a 

world of deterministic regularity and fixed truth values. 10 

Strangely enough, the grand division between AP and RF theories 
does not turn precisely on this important point. Although von Mises 
originally insisted on a form of ‘randomness’, subsequent RF theorists 
have developed rules and techniques which lead to success or failure 
quite independently of whether or not true randomness exists. At 
the same time, their official position implies that there can be no such 
thing as the probability that an individual radioactive atom will 
decay in the next ten minutes, even if such an event turns out to be 
the purest possible case of genuine physical chance. 

And so I must finally reject the RF interpretation of probability. 
Basically I accept the charge that RF theorists in practice confuse 
the evidence for a probability and the manifestation of a probability 
(both of which are frequently frequencies) with the fact of the 
probability itself. Whatever probability might be, it is surely not the 
limit of a relative frequency in an infinite series of empirical events. 
In the first place, there may not be any such series at all (if the 
universe is finite, as seems quite possible). But any theory which 

implies that there may not be probabilities is surely false, because 
it is quite plain that there are probabilities (again, not in the Platonic 
sense of eternal universal objects but in the Putnamian sense that 
probability theory works). In the second place, an adequate theory 
of probability must deal with the large number of contexts where 
probability applies to individual events or evidentiary relationships 



between propositions (and not in the strained and fictitious sense 

that Reichenbach tries to invoke). 
In the end, I think that probability theory is a part of logico-mathematics 

which lies far closer to the ‘a priori’ end of the spectrum, 
nestling up against deductive logic and geometry, than to the ‘relative 
frequency’ end, in bed with insurance companies and quantum 
mechanics. But Keynes is too intuitive and Carnap too abstract to 

capture exactly what I mean. 

I share the Harvard view of theory and the a priori, conceived in 
C. I. Lewis’s conceptual theory of the a priori, tempered by the 
fire of Quine’s, White’s, and Kuhn’s searching challenges, and 
brought to maturity in Putnam’s philosophy of mathematics and 
Rawls’s ethics. I hold no statements or principles to be eternal and 
unrevisable, and no ‘facts’ to be brute and incorrigible. Yet it does 
matter what we believe, and truth is both preferable to error and 
attainable by human beings, because there is a real world out there 
to which we must conform our theories or suffer the consequences. 

In the case of probability theory, the anti-foundationalist mathematicians 
are correct that Kolmogorov’s axiomatization and the 

theorems derivable therefrom are at least as secure as number 
theory – they need no peculiarly mathematical foundation. And 
those who worry only about the practicalities of the matter can 

cheerfully say of probability theory what Putnam said of the 
differential and integral calculus: The point is that the real justification 

of the calculus is its success – its success in mathematics, 
and its success in physical science’ 11 – probability theory needs no 

further pragmatic foundation. But the point Putnam intended to 

make was not just the anti-Platonic one that mathematics could be 

quasi-empirical and need not depend on eternal objects; he also 
wanted to stress the genuinely realistic position that some mathematical 

theories – like some physical theories – are better than 
others. Some are true and some are false (of each type) and we must 

look to the world to see which is which, no matter how consistent 
and elegant they may be. 

So now we see the other connection I wish to establish: probability 
theory is closer to logic than von Mises would have it, but logic is 

closer to science than Keynes ever dreamed. 
My paradigm case of good probabilism is that of the Bose–Einstein 

statistics. Bose and Einstein made up an a priori model, using, in 



fact, the Classical rule of thumb to distribute particles among 
state-descriptions. But then they checked their mathematical theory 
against reality, using, in fact, the relative frequency of distributions 
as evidence of what the probability really was. And they discovered 
that their model applied to some particles but not to all. Finally, 
Born’s quantum-theoretical analysis gave a physicalistic difference 
between those which did and those which did not obey Bose–Einstein 
statistics. 

Probability theory is intended as a mathematical description of 
the world. Its goal is to bring the uncertainty in our world view as 

closely as possible into congruence with the uncertainty in the world. 
Our mathematicians have done a great job of constructing and 

elaborating mathematical systems and theorems towards that end. 
Our scientists have made considerable progress in discovering which 
physical systems obey which models. But no adequate philosophical 
explication of probability theory exists as yet, nor can one do so 

until we learn a good deal more logic and a good deal more physics 
than we presently know. We may never be sure we have it right, 
perhaps, until we possess a general theory of rationality and know 
for certain whether or not God plays dice with the Universe. 
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member of the family can be predicated of an individual (‘red’ or ‘green’ 
but not both, for example). John Kemeny discusses the application of 
this method to the throw of a die in Section IV of ‘Carnap on probability 
and induction.’ 

41 LFP, p. 501. 
42 Treatise, p. 108. 
43 Ibid ., p. 98. 
44 Ibid ., chs XVIII-XXII. 
45 The ‘Principle of Limited Independent Variety’ is a modern name for 

what Keynes himself called the ‘Inductive Hypothesis’ which basically 
asserts that the relevant system is finite, from which it follows that any 
two properties have some finite a priori probability of being associated 
with each other. 

46 ‘Let the reader be clear about this. To argue from the mere fact that a 

given event has occurred invariably in a thousand instances under 

observation, without any analysis of the circumstances accompanying 
the individual instances, that it is likely to occur invariably in future 
instances, is a feeble inductive argument, because it takes no account 
of the Analogy.’ Treatise, p. 407. 

47 This example is discussed on p. 397 of the Treatise. 
48 Keynes approves of and partially adopts the methods of W. Lexis for 

evaluating significant dispersion. Treatise, ch. XXXII. 
49 To meet LFP’s requirement of independence, it will be necessary to 



assume that the individuals live in different cities, so that the election of 
one as mayor won’t preclude the simultaneous election of the others. 
(Alternatively, ‘M’ could be ‘elected Mayor at some time.’) 

50 T35-2c, LFP, p. 139. 
51 To see this quickly, change the lexical ordering of the Zs so that ‘Ms’ is 

the first atomic sentence. Then ‘Ms’ is true in the first 256 Zs, 't' is true in 
all 512 Zs, and, since the Zs are symmetrically weighted, m*(Ms, t) is 1/2. 

52 LFP, p. 125. 
53 This gives us an additional method of specifying structure-descriptions. 

STR1 = 3Q1, STR2 = 2Q1 & 1Q2, etc. This is the method of Q-numbers. 
(LFP, pp. 134-7.) 

54 LFP, p. 127. 
55 This method is described on p. 569 of LFP. 
56 See next section on ‘Probability of repetitive kinds of events.’ 
57 Given extreme simplifying assumptions and modifying c* for one family 

of predicates. 
58 See below, pp. 132-3. 
59 LFP, p. 171. 
60 Treatise, p. 413. 
61 Ibid ., p.414. 
62 Ibid ., p. 362. 
63 Ibid ., p. 363. 
64 A. J. Ayer, Probability and Evidence , p. 28. 
65 I have expounded on Keynes’s reply to Wolf because it seems to me to 

illustrate a vital point concerning a priori theories in general. But in fact 
there are at least two other reasons why subsequent evidence cannot 
refute the a priori assignment of probabilities. The reader might try to 

identify these before we discuss them in the section on common features 
of AP theories. 

66 Treatise, pp. 286-7. 
67 Ibid ., pp. 283-7. 
68 Ibid ., p. 286. 
69 Ibid ., p. 289. 
70 The definition frequently found in scientific and mathematical texts, 

whereby a phenomenon is said to be random if and only if it is 
pragmatically impossible for us to predict it is practically and even 

epistemologically adequate, but of course it has no metaphysical 
significance. 

71 See ‘Intellectual autobiography,’ in P. A. Schilpp (ed.), The Philosophy 
of Rudolf Carnap, pp. 75-6, for Carnap’s hints concerning his un- 

published work in this area. The above definitions are illustrative only 
and not intended precisely to represent Carnap’s views. 

72 Ayer, op. cit ., p. 39. 
73 Schilpp, op. cit ., p. 15. 
74 Treatise, pp. 6-7. 
75 Ibid ., pp. 130-1. 
76 Ibid ., ch. XXXI. 
77 LFP, p. 332. 



78 Carnap endorses this procedure on p. 84 of The Continuum of Inductive 
Methods. 

79 A. J. Ayer has claimed that it is and has pressed the argument especially 
strongly in Probability and Evidence and ‘The conception of probability 
as a logical relation,’ 1957, pp. 12-17. The latter essay is reprinted in 
M. H. Foster and M. L. Martin (eds), Probability, Confirmation, and 
Simplicity, where, on pp. 20-1, the editors discuss Ayer’s criticism and 
recommend essentially the reply I present here. 

80 Both Keynes and Carnap define relevance in this way (although neither 
uses the statistician’s term ‘stochastic independence’). See Treatise, 
pp. 55, 146f., and LFP, p. 348. 

81 N. Arley and K. R. Buch, Introduction to the Theory of Probability and 
Statistics, p. 19. 

82 LFP, p. 211, sic. 
83 Idem. 
84 Ibid ., pp. 208-19 
85 Ibid ., p. 20. 
86 Foster and Martin, op. cit ., p. 37. 
87 LFP, p. 30. 
88 Treatise, p. 32. 
89 Ibid ., pp. 32-3. 
90 Ibid ., p. 245. 
91 I say ‘generally accepted’ because such heterodox theorists as Condorcet 

and Borel argue that very probable events do always occur and that very 
small probabilities are really equal to zero. 

92 Treatise, p. 131. 
93 Ibid , p. 245. 
94 LFP, pp. 149-50. 
95 Schilpp, op. cit ., p. 978. 
96 LFP, p. 2. In ‘My basic conceptions of probability and induction’ he 

further delimits his aim as ‘an explication of the concept of logical 
probability ...’. Schilpp, op. cit ., p. 967. 

97 LFP, p. 5. 
98 It should be noted that there are reasonable grounds for alternative 

interpretations of Carnap’s views. By concentrating on The Continuum 

of Inductive Methods and certain passages of LFP, it is possible to view 

Carnap as espousing the pragmatic justification of inductive methods. 
This approach is taken by J. W. Lenz in his article ‘Carnap on defining 
“degree of confirmation”,’ which was written before the publication of 
the Schilpp volume. In it, Lenz emphasizes ‘performance’ as the criterion 
of choice for inductive methods, and notes that we cannot know that a c- 

function will perform well in the future, we can only predict that it will do 
so, and such prediction requires c or some other inductive method to be 
assumed. We can know that c has performed well in the past, but this is 
no guarantee for the future unless we again assume an inductive rule. 
Notice that these difficulties are avoided if our requirement is that c 

agrees with our intuitions, since we always appeal only to present 
intuitions. 



99 Treatise, p. 3. 
100 Ibid ., p. 12. 
101 Ibid ., p. 131. 
102 Ibid ., p. 133. 
103 This phrase almost appears in Keynes, when, on p. 261 of Treatise, he 

writes in lower case about ‘the hypothesis of the limitation of independent 
variety’ when he is clearly referring to the Inductive 

Hypothesis. 
104 Treatise, p. 258. 
105 Ibid ., p. 263. 
106 Idem. 
107 Ibid ., p. 262. 
108 Ibid ., p.264. 
109 Putnam’s suggestion was in a private conversation. It is strongly 

supported by Keynes's acknowledgment of Moore’s influence in the 
Preface to Treatise (p.v) and especially by his description of the 
overwhelming effect of Moore's system on his beliefs as an under- 

graduate, which is to be found in the charming 'My early beliefs,’ in 
Two Memoirs, p. 93 where he says of Moore: ‘The large part played 
by considerations of probability in his theory of right conduct was, 

indeed, an important contributory cause to my spending all the leisure 
of many years on the study of that subject: I was writing under the 
joint influence of Moore’s Principia Ethica and Russell’s Principia 
Mathematica.' 

110 Another argument in favor of Keynes’s position develops out of his 
discussion of ‘unknown probabilities.’ See above, p. 80. 

111 Treatise, p. 52. 
112 Modern readers may well be familiar with Ludwig Wittgenstein’s 

discussion of rule-governed behavior and the application of rules in his 
Philosophical Investigations. It is possible that resemblances between the 
arguments are due to the friendship between the two, but it is hard to say 
who might have influenced whom, since Wittgenstein came to 

Cambridge after the first draft but before the publication of the revised 
version of Treatise. 

113 Treatise, p. 16. 
114 Ibid ., pp. 15-16. 
115 Ibid ., pp. 16-17. 
116 Ibid ., p. 17. 
117 A. W. Burks, ‘On the significance of Carnap’s system of inductive logic 

for the philosophy of induction,’ in Schilpp, op. cit ., pp. 739-59. 
118 Treatise, p. 3. 
119 In ‘The metaphysical status of P,’ above. 
120 LFP, p. 178. 
121 Ibid ., p. 181. 
122 Idem, emphasis added. 
123 I cannot cite the precise location of this quote in Joseph Heller’s Catch- 

22, because all three of my copies of that excellent book have been ripped 
off. If any among you don’t grasp the allusion, you have a deprived 



cultural background and should take immediate steps to get the book 
yourself and find out about it. 

124 Carnap agrees that this is a result of the definition of c*, but thinks it 
acceptable, since instance-confirmation can be used for general laws. 

125 R. Carnap, ‘Replies and expositions’, in Schilpp, op. cit ., p. 982. 
126 In Section VI of A. Burks, op. cit . Carnap’s agreement is at pp. 982-3 of 

Schilpp, op. cit . 
127 In Schilpp, op. cit ., p. 981. 
128 Ibid ., p. 983. 
129 LFP, p. 250. 
130 Ibid ., p. 269. 
131 Ibid ., p. 278. 
132 Ibid ., pp. 528-30. 
133 Ibid ., p. 518. See also p. 343. 
134 R. Carnap, ‘Replies and expositions,’ in Schilpp, op. cit ., p. 994. 
135 As opposed to a pure or garden variety psychologism, which occurs 

‘where the problems themselves are of an objective nature but the 
descriptions by which the author intends to give a general characterization 

of the problems are framed in subjectivist, psychological terms 

(like “thinking”)...,’ LFP, p. 39. 
136 This point is discussed in some detail in the next chapter, ‘Relative 

frequency theories of probability.’ Briefly: if 40 per cent of heavy 
smokers but only 30 per cent of churchgoers die before 60, what is the 
probability that Smith will die before 60 if he is a churchgoing heavy 
smoker? No general solution to this problem exists. 

137 Since in most cases the series has not yet exhausted itself, we cannot 
know in advance what the relative frequency in the reference class will be 
in the end. 

138 In the section ‘Chief criticisms of relative frequency theories.’ 
139 J. Kemeny, op. cit ., secs V & VI passim. 
140 See below, pp. 139ff. 
141 H. Putnam, ‘A definition of degree of confirmation for very rich 

languages,' pp. 58-62. 
142 LFP, p. 74. 
143 E. Nagel, ‘Carnap’s theory of induction,’ in Schilpp, op. cit ., p. 792. 
144 I do not wish to claim that ‘sentences resemble facts’ any more or any less 

than I wish to claim that vector diagrams resemble natural forces. It is 
useful representation that is at issue – not structural similarity or 

aesthetic resemblance. 
145 Putnam, radio lecture titled ‘Probability and confirmation.’ 
146 Carnap’s discussion of this objection, which I have substantially 

reproduced here, is in LFP, pp. 30-1. 
147 A. J. Ayer in Foster and Martin, op. cit ., p. 73. 
148 It might be best to start with Henry A. Kyburg, ‘Recent work in inductive 

logic,’ pp. 249-87, for an overview of the situation and a more extensive 
bibliography. 

149 H. Putnam “‘Degree of confirmation” and inductive logic,’ in Schilpp, 
op. cit ., and in the radio lecture ‘Probability and confirmation.’ 



150 R. Carnap, ‘Replies and expositions,’ in Schilpp. op. cit ., pp. 983-9 
151 LFP, p. x. 

152 Ibid . 
153 R. Weatherford, ‘Probability and certainty in C. I. Lewis’s 

epistemology.’ 
154 Burks, op. cit ., p. 746. 
155 LFP, pp. 182-3. 
156 Ibid ., p. 183. 
157 Hans Reichenbach tries, in The Theory of Probability, to develop a 

system of probability inference based on the notion of truth frequencies, 
but I find it unsuccessful for reasons to be given in the next chapter. 

158 J. Kemeny, op. cit ., p. 737. 

IV Relative Frequency 
Theories of Probability 

1 E. Nagel, Principles of the Theory of Probability, p. 19. Hereafter cited 
as Principles. 

2 This view is shared by R. Carnap, Logical Foundations of Probability , 
1950 edn, p. 28 (hereafter cited as LFP), and H. E. Kyburg, Probability 
and Inductive Logic , p. 52, but H. Reichenbach mentions Poisson and 
Boole in lieu of Venn in his The Theory of Probability, p. 68 (hereafter 
cited as TOP). 

3 R. von Mises, Probability, Statistics, and Truth , p. 3. Hereafter cited as 

PST. 
4 PST, p. 4 
5 Ibid . 
6 Ibid . No italicization or single quotes in original. 
7 Ibid ., p. ix. 
8 Ibid . 
9 Ibid ., p. 10. 

10 Ibid ., p. 11. 
11 Ibid ., p. 12. 
12 Ibid . 
13 Ibid ., p. 15. 
14 Ibid ., pp. 24-5. 
15 Ibid ., pp. 39-57, summarized. Von Mises would probably prefer to use 

probability values other than 1/6, to show that the rules are not based on 

the Principle of Indifference but apply also to biased dice. I chose to use 

the more familiar value to facilitate understanding of the operations 
themselves. 

16 TOP, pp. 68-9. 
17 Ibid ., p. 132. 
18 Ibid ., p. 70. 
19 Ibid ., p. 52. 
20 These are explained on pp. 53-67 of TOP. 
21 Ibid ., pp. 45-6. 



22 Ibid ., p. 48. 
23 See especially PST, pp. 31-3. 
24 Ibid ., p. 32. 
25 H. Reichenbach, Axiomatik der relativistischen Raum-Zeit-Lehre, 

Braunschweig, 1924, and Philosophic der Raum-Zeit-Lehre, Berlin and 
Leipzig, 1928. 

26 PST, pp. 31-2. 
27 Ibid ., pp. vii, 31. 
28 Ibid ., p. 30. 
29 Ibid ., pp. 75, 77, 80. 
30 TOP, p. 444. 
31 Ibid ., p. 359, emphasis in original. 
32 Ibid . 
33 Ibid ., p. 364. 
34 Ibid ., p. 446. The parallelism between Reichenbach’s system and the 

system of Carnap and Lewis is so marked that Carnap has said: ‘It seems 

to me that it would be more in accord with Reichenbach’s own analysis if 
his concept of weight were identified [not with relative frequency but] 
instead with the estimate of relative frequency. If Reichenbach’s theory is 
modified in this one respect, our conceptions would agree in all 
fundamental points.’ (LFP, p. 176.) 

35 ‘A posit is a statement with which we deal as true, although the truth 
value is unknown.’ (TOP, p. 373.) 

36 PST, p. 11. 
37 TOP, p. 377. 
38 G. Boole, The Laws of Thought, London, 1854, p. 247. 
39 TOP, p. 378 
40 K. Popper, Logik der Forschung. 
41 TOP, p. 395. 
42 Ibid ., p. 378. 
43 Ibid ., pp. 378-9. 
44 Ibid ., p. 409. 
45 LFP, p. 1. 
46 TOP, p. 71. 
47 On pp. 17-18 of PST he calls such an application ‘utter nonsense.’ 
48 See above, pp. 52-73. 
49 PST, p. 199. 
50 Von Mises sometimes gives the impression that he thinks his condition 

of randomness prevents the occurrence of very unusual runs or 

distributions (PST, pp. 111-15, for example). It does indeed exclude 
certain sequences which would otherwise violate the Law of Large 
Numbers (such as the sequences of pp. 111-12 based on a square root 

table). But the randomness condition only forbids certain types of infinite 
sub-sequences. If the first million runs of the scintillation experiment 
gave the frequency 0.999, and the remaining infinite repetitions gave 
0.211, the series would approach 0.211 as a limit and would remain 
random according to the definition, because any infinite (‘extended 
indefinitely’) sub-sequence which includes all of the first million experi- 



merits will find those 0.999 values swamped by another million, then a 

quadrillion, then a decillion, then an infinity of repetitions giving 0.211 as 

the frequency. It follows, then, that no extreme of ‘strangeness’ in any 
finite sub-sequence is forbidden by the condition of randomness. 

51 TOP, p. 106. 
52 The argument appears on pp. 17-18 of PST. 
53 PST, p. 19. 
54 J. M. Keynes, A Treatise on Probability , pp. 130-1. Hereafter cited as 

Treatise. 
55 On p. 71 of TOP, for example, he says that traditional mathematical talk 

about ‘the relative probability of C with respect to B ... does not seem 

advisable because all probabilities are relative ....’ 

56 TOP, p. 375. 
57 PST, p. 17 
58 Ibid ., pp. 177-83. 
59 Ibid ., pp. 202-20. 
60 I have argued elsewhere (in my Bechtel Prize Essay, ‘The Heisenberg 

uncertainty relations’), that quantum mechanics does not imply this. 
61 Although many feel that Abraham Wald’s ‘Die Widerspruchsfreiheit 

des Kollektivbegriffs der Wahrscheinlichkeitsrechnung’ [Ergebnisse 
math. Kolloquium, 8(1937), pp. 38-72] obviates the worst difficulties 
with the concept, it is not generally considered essential. 

62 PST, pp. vii, 31. 
63 This is what it means if one accepts the correspondence theory of truth, 

or Tarski's semantic concept. For a pragmatist, the truth of P would 
mean that we could count on future experience being such that ‘acting 
on’ P would lead to ‘success in practice.’ I would like to say what it means 

for someone who accepts the coherence theory of truth, but I have never 

understood how such a theory can escape solipsism. Such considerations 
as these properly arise when one uses our simplistic method (What are 

the metaphysical implications of P? Well, what must reality be like if P is 
true?). It could well be argued that passing from problems of meaning to 

problems of truth need not constitute an advance. Our interest, however, 
is not so much in arriving at metaphysical knowledge as it is in 
understanding probability concepts and their metaphysical implications. 

For this I think a rough and ready correspondence theory of 
truth should suffice. 

64 PST, p. 84. 
65 Ibid . 
66 Ibid ., p. 85. 
67 Ibid ., p. 14. Strictly speaking this statement is false even in von Mises’ 

system, for a probability is not a property of a die or any other material 
object. It is a property of a collective of (in this case) repetitive simple 
events, the castings of this die. Nevertheless, it is clear that the 
probability is an empirical quality which is based on physical facts (in 
particular, it is based upon the physical constitution of this die, and, to a 

lesser extent, the environment in which it is rolled) and is manifested in 
the physical universe. 



68 This discussion is primarily based on sections 66 and 67 of TOP. 
69 Actually 8/47, since I have already seen 5 cards which are neither Aces 

nor Tens, but we will ignore this refinement. 
70 PST, p. 31. 
71 Ibid ., p. 33. 
72 Ibid ., p. 32. 
73 Ibid ., p. 65. 
74 LFP, p. 34. The Waismann paper is ‘Logische Analyse des 

Wahrscheinlichkeitsbegriffs,’ Erkenntnis, I, 1930-1, pp. 228-48. 
75 PST, p. 16. 
76 Ibid ., p. 142. 
77 This is explicitly recognized on p. 103 of PST. Nagel notes that no special 

axioms are required; an RF theory can be deduced from any axioms 
adequate for real number theory (including limits). See Principles, p. 38. 

78 TOP, p. 350. 
79 Ibid ., p. 3. 
80 Ibid ., p. 12. 
81 Ibid ., p. 52. 
82 Ibid ., pp. 343-4. 
83 Ibid ., p. 375. 
84 Ibid ., p. 70. 
85 Ibid ., pp. 429-33. 
86 Ibid ., p. 446. 
87 Ibid ., p. 460. 
88 Much time and effort has been wasted by contemporary scholars in an 

unfortunate debate about whether or not this is true. Critics of the RF 
theory have pressed the point that, for any N, however large, it is always 
possible that the series might begin to diverge after N, and, since there 
remains an infinite portion of the series, this divergence can always 
outweigh the finite segment up to N, so that the relative frequency will 
diverge from P as much as you like. Supporters of the RF position 
respond that they do not mean you can pick an N which marks a 

convergence point, only that if the series converges to a limit it is 
logically necessary that there be a convergence point. 

Here I think the supporters are clearly right in their mathematical 
logic, but the attackers succeed in making the pragmatic point that we 

can’t be sure of attaining convergence in any finite stretch of experience, 
however long it might be, even if we know a limit exists. 

89 TOP, p.479. 
90 H. Reichenbach, ‘On the justification of induction,’ p. 98. 
91 This justification of RF statements as scientific is particularly clear in 

Carnap, LFP, p. 501, but it is also present throughout Reichenbach’s 
TOP and Nagel’s Principles. 

92 Students of Hilary Putnam will realize that I am ignoring the difficulties 
that he (and others, such as Carl Hempel) raised about Auxiliary 
Statements and their role in science. In this case, however, I think we can 

safely conflate AS with theoretical statements, without any significant 
logical error. 



93 Here again I treat disruptive forces, over-simplifications, and other of 
Putnam’s auxiliary statements as examples of theoretical error, though I 
quite agree they are not in general the same. 

94 Von Mises has an interesting but unpersuasive argument to the effect 
that all physical properties are therefore equivalent to the limit of a 

relative frequency in an infinite series. See the last chapter of PST. 
95 It is explicitly mentioned by T. L. Fine, Theories of Probability , p. 103; 

Kyburg, op. cit ., p. 45; A. J. Ayer, Probability and Evidence , p. 48; and 
even Reichenbach, TOP, p. 352. 

96 For the difference between intensionally and extensionally given sequences, 
see TOP, pp. 339-40. 

97 C. I. Lewis, An Analysis of Knowledge and Valuation , 1962 edn, p. 283. 
Hereafter AKV. 

98 Discussions of this or parallel points occur in W. Kneale, Probability and 
Induction , p. 42; Ayer, op. cit ., pp. 47-50; Nagel, Principles, p. 52; and 
Lewis, AKV, p. 288. 

99 TOP, p. 343. A similar statement appears on p. 344. 
100 In the section entitled ‘The epistemological status of P.’ 
101 AKV, p. 289. 
102 Reichenbach of course holds that this is not necessary since P is not 

asserted as probable nor even as true but as a posit justified by the Rule 
of Induction. 

103 This is commonly attributed to Sir Karl Popper, but he himself insisted 
that he understood falsifiability as a criterion of demarcation between 
science and non-science, rather than a standard of meaningfulness. The 
misconstrual has none the less become a standard alternative to the 
Logical Positivists’ verification criterion of meaning. 

104 Modus tollens is a valid form of deductive inference: 

P implies Q 
Q is false 

Therefore P is also false. 

105 Treatise, p. 95. 
106 See above, pp. 165-6. 
107 For details, see Fine, op. cit ., pp. 93-102; Keynes, Treatise, pp. 102-3, 

167; Ayer, op. cit ., pp. 44-7, 51, etc. 

108 Arguments of this general type, or related criticisms, can be found in 
Fine, op. cit ., pp. 103 and 239; Kneale, op. cit ., p. 165; and Kyburg, op. 
cit ., p. 50. 

109 Kneale, op. cit ., p. 194. 
110 LFP, p. 176. Other criticisms of RF theory are also raised in this section. 
111 See L. Wittgenstein, Philosophical Investigations, for this distinction and 

the complex relationships between criteria, concepts, and meanings. 
112 See above, pp. 149ff., and LFP, p. 34. 
113 Fine, op. cit ., p. 103. 
114 Reichenbach describes and praises this movement in The Rise of 

Scientific Philosophy. 



V The Subjectivistic Theory of Probability 

1 See, for example, E. Nagel, Principles of the Theory of Probability, 
passim. 

2 In chapter II, ‘The classical theory of probability.’ 
3 F. Ramsey, ‘Truth and probability,’ in The Foundations of Mathematics 

and Other Logical Essays. 
4 Ibid , pp. 256-7. 
5 D. Davidson, P. Suppes, and S. Siegel, Decision Making: An 

Experimental Approach. 
6 B. de Finetti, Theory of Probability: A Critical Introductory Treatment, 

p. x. Emphasis in original. Hereafter cited as Theory. 
7 Ramsey, op. cit ., p. 1. 
8 B. de Finetti, Probability, Induction, and Statistics: The Art of Guessing , 

p. xiv. 
9 Ramsey, op. cit ., p. 167. 

10 B. de Finetti, ‘Foresight: Its Logical Laws, Its Subjective Sources,’ p. 104. 
Hereafter cited as Foresight. 

11 Ibid ., p. 103. 
12 Even our own death (life-insurance), but not, perhaps, the immediate and 

absolute end of the universe. 
13 Davidson, Suppes, and Siegel, op. cit ., p. 75. The authors also cite similar 

findings in another team’s experiments, and contrary evidence in a third 
investigation. (A four-sided die has two ends rounded off, so that only 
four sides can ‘come up.’) 

14 Ibid ., p. 54. 
15 Foresight, p. 101. 
16 L. Savage, ‘The foundations of statistics reconsidered,’ 1964 rep., p. 180. 

That this is true can be seen by reflecting that ‘laws’ of statistics are 

deductive consequences of the axioms of the probability calculus, which 
we have already said are equivalent to the coherency condition. 

17 Foresight, p. 116. 
18 H. Jeffreys, Scientific Inference , p. 34. 
19 Foresight, p. 115. 
20 De Finetti actually uses the outcome of an election as one of his 

examples, Theory, p. 59. 
21 Charles L. Stevenson, Ethics and Language . 

22 Theory, p. 218. 
23 De Finetti, Probability, Induction, and Statistics, p. 154. 
24 Approximate rendition from memory of Brother Dave Gardner. 
25 Foresight, p. 142. 
26 De Finetti, Probability, Induction, and Statistics, p. 229. 
27 Ibid ., p. 212. 
28 E. Borel, ‘Apropos of a Treatise on Probability,’ in Kyburg and Smokier, 

op. cit ., p. 50. 
29 Idem. 
30 De Finetti, Probability, Induction and Statistics, p. vi. 
31 Theory, p. 6, paraphrased. 



32 Ibid ., p. 218. 
33 Foresight, pp. 149, 154. 
34 I. J. Good, ‘Subjective probability as the measure of a non-measurable 

set,’ p. 319. 
35 Ramsey, op. cit ., p. 157. 
36 Theory, ch. 5. 
37 Ramsey, op. cit ., p. 196. 
38 Theory, p. 72. 
39 The mistake of psychological hedonism lies not in this principle, which is 

tautological, but in the principle that only pleasure is desirable, which is 
false. 

40 Nor did they intend to do so. They clearly and explicitly noted that their 
investigations were independent of and had no bearing on questions of 
objective probability ( op. cit ., p. 11). 

41 L. J. Savage, The Foundations of Statistics , pp. 61-2. 
42 This criticism appears also in the chapter on RF theories, above. 
43 R. Carnap, Logical Foundations of Probability , 1950 edn, p. 51. 

VI Conclusion 

1 W. V. O. Quine, ‘Foundations of mathematics,’ p. 24. 
2 N. Goodman, Fact, Fiction, and Forecast , p. 66. 
3 R. Carnap, Logical Foundations of Probability , 1950 edn, p. 1. 
4 H. Putnam, ‘What is mathematical truth?,' pp. 69-70. 
5 Ibid ., pp. 73-4. 
6 ‘[There is an] essential duality of probability, which is both epistemic 

and aleatory. Aleatory probabilities have to do with the physical state of 
coins or mortal humans. Epistemic probabilities concern our knowledge.' 

I. Hacking, The Emergence of Probability , pp. 122-3. 
7 H. Putnam, ‘The analytic and the synthetic,’ pp. 378-9. 
8 For my views on this, see my Bechtel Prize Essay, ‘The Heisenberg 

uncertainty relations.’ 
9 For the distinction between a general concept and more specific 

conceptions, see J. Rawls, A Theory of Justice , pp. 5-6. 
10 I think the ‘likelihood’ approach to probability theory now being 

developed has the virtue of emphasizing the long-neglected problem of 
physical chance by its attempts to tie probability to actual experimental 
chance set-ups. I have not covered that view because it seems to me to be 
quite unsuccessful in what it is attempting to do and it is in any case too 

new and undeveloped to count as a major theory – perhaps in a later 
edition it will warrant inclusion. In any case I’m glad the problem is 
being addressed. 

11 H. Putnam, ‘What is mathematical truth?,’ p. 66. 
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