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If you begin with Computer Science, you will end with
Philosophy.1



Note

1 “Clicking on the first link in the main text of an
English Wikipedia article, and then repeating the
process for subsequent articles, usually leads to the
Philosophy article. In February 2016, this was true
for 97% of all articles in Wikipedia, an increase from
94.52% in 2011” (“Wikipedia:Getting to Philosophy,”
http://en.wikipedia.org/wiki/Wikipedia:Getting_to_P
hilosophy).
On 9 August 2021, if you began with “Computer
Science,” you would end with “Philosophy” in 11
links: computer science  algorithm 
mathematics  quantity  counting  number 
mathematical object  concept  abstraction 
rule of inference  philosophy of logic 
philosophy.

http://en.wikipedia.org/wiki/Wikipedia:Getting_to_Philosophy


Preface

This is a university‐level introduction to the philosophy of
computer science based on a course that I created at the
University at Buffalo in 2004 and taught from 2004 to 2010
(I retired in 2012). At the time I created the course, there
were few other such courses and virtually no textbooks
(only a few monographs and anthologies). Although there
are now more such courses, there are only a very few
introductory textbooks in the area. My retirement project
was to turn my lecture notes into a book that could be used
as an introduction to the issues and serve as a guide to the
original literature; this book is the result.
The course is described in Rapaport 2005c. The syllabus,
readings, assignments, and website for the last version of
the course are online at http://www.cse.buffalo.edu/
∼rapaport/584/. The Online Resources contain suggested
further readings, in‐class exercises (arguments for analysis,
in addition to the questions at the ends of some of the
chapters), term-paper suggestions, a sample final exam,
advice to the instructor on peer‐editing for the exercises,
and a philosophy of grading.
Many of the books and articles I discuss are available on the
Web. Rather than giving Web addresses (URLs) for them, I
urge interested readers to try a Google (or other) search for
the documents. Books and journal articles can often be
found either by visiting the author's website (e.g. most of
my papers are at https://cse.buffalo.edu/
∼rapaport/papers.html) or by using a search string
consisting of the last name(s) of the author(s) followed by
the title of the document enclosed in quotation marks (For
example, to find Rapaport 2005c, search for “rapaport
“philosophy of computer science””). URLs that I give for

http://www.cse.buffalo.edu/~rapaport/584/
https://cse.buffalo.edu/~rapaport/OR/
http://www.cse.buffalo.edu/~rapaport/OR/A0fr.html
http://www.cse.buffalo.edu/~rapaport/OR/A1positionpapers-wiley.html
http://www.cse.buffalo.edu/~rapaport/OR/A2termpapertopics-wiley.html
http://www.cse.buffalo.edu/~rapaport/OR/A3finalexam-wiley.html
http://www.cse.buffalo.edu/~rapaport/OR/A4instr-man-wiley.html
https://cse.buffalo.edu/~rapaport/papers.html
https://cse.buffalo.edu/~rapaport/papers.html


Web‐only items (or other hard‐to‐find items) were accurate
at the time of writing. Some, however, will change or
disappear. Documents that have disappeared can sometimes
be found at the Internet Archive's Wayback Machine
(https://archive.org/web/). Some documents with no public
URLs may eventually gain them. And, of course, readers
should search the Internet or Wikipedia for any unfamiliar
term or concept.

Sidebars: Sprinkled throughout the book are sidebars in
boxes, like this one. Some are Digressions that clarify or
elaborate on various aspects of the text. Some are
suggestions for Further Reading. Others are
Questions for the reader to consider at that point in the
text. Additional suggested readings, along with student
assignments and an instructor's manual, are in the
Online Resources.

Figure 1 CALVIN AND HOBBES ©2015 Watterson.
Reprinted with permission of ANDREWS MCMEEL SYNDICATION. All rights
reserved.

https://archive.org/web/
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Part I 

Philosophy and Computer

Science

Part I is an introduction to both philosophy and the
philosophy of computer science.



1 

An Introduction to the

Philosophy of Computer Science

Philosophy is often thought of as an activity, which may
have considerable theoretical interest, but which is of
little practical importance. Such a view of philosophy is
… profoundly mistaken. … [P]hilosophical ideas and some
kind of philosophical orientation are necessary for many
quite practical activities. … [L]ooking at the general
question of how far philosophy has influenced the
development of computer science[, m]y own view is that
the influence of philosophy on computer science has
been very great.
—Donald Gillies (2002)
Who would have guessed that the arcane research done
by the small set of mathematicians and philosophers
working on formal logic a century ago would lead to the
development of computing, and ultimately to completely
new industries, and to the reconfiguring of work and life
across the globe?
—Onora O'Neill (2013, p. 8)

There is no such thing as philosophy‐free science, just
science that has been conducted without any
consideration of its underlying philosophical
assumptions.
—Daniel C. Dennett (2013a, p. 20)



1.1 What This Book Is About

My mind does not simply receive impressions. It talks
back to the authors, even the wisest of them, a response
I'm sure they would warmly welcome. It is not possible,
after all, to accept passively everything even the greatest
minds have proposed. One naturally has profound
respect for … [the] heroes of the pantheon of Western
culture; but each made statements flatly contradicted by
views of the others. So I see the literary and
philosophical tradition of our culture not so much as a
storehouse of facts and ideas but rather as a hopefully
endless Great Debate at which one may be not only a
privileged listener but even a modest participant.
—Steve Allen (1989, p. 2), as cited in Madigan, 2014,
p. 46.

As [the logician] Harvey Friedman has suggested, every
morning one should wake up and reflect on the
conceptual and foundational significance of one's work.
—Robert Soare (1999, p. 25)

This book looks at some of the central issues in the
philosophy of computer science. It is not designed to
answer all (or even any) of the philosophical questions that
can be raised about the nature of computing, computers,
and computer science. Rather, it is designed to “bring you
up to speed” on a conversation about these issues – to give
you some background knowledge – so that you can read the
literature for yourself and perhaps become part of the
conversation by contributing your own views.
This book is intended for readers who might know some
philosophy but no computer science, readers who might
know some computer science but no philosophy, and even



readers who know little or nothing about either! So,
although most of the book will be concerned with computer

science, we will begin by asking, what is philosophy?

Then, in Part II, we will begin our inquiry into the
philosophy of computer science by asking, what is

computer science? To answer this, we will need to
consider a series of questions, each of which leads to
another: is computer science a science, a branch of
engineering, some combination of them, or something else
altogether? And to answer those questions, we will need to
ask, what is science? and what is engineering?

We next ask, what does computer science study?

Computers? If so, then what is a computer? Or does it
study computation? If so, then what is computation?

Computations are said to be algorithms, so what is an

algorithm? And what is the Turing Machine model of

algorithmic computation?

In Part III, we will explore the Church‐Turing

Computability Thesis. This is the proposal that our
intuitive notion of computation is completely captured by
the formal notion of Turing Machine computation. But
some have claimed that there are ordinary procedures
(such as recipes) that are not computable by Turing
Machines and that hence refute the Computability Thesis.
So, what is a procedure? (And, for that matter, what is a
recipe?) Others have claimed that the intuitive notion of
computation goes beyond Turing Machine computation; so,
what is such “hypercomputation”?

In Part IV, we explore the nature of computer programs.
Computations are expressed in computer programs, which
are executed by computers, so what is a computer

program? Are computer programs “implementations” of
algorithms? If so, then what is an implementation?



Programs typically have real‐world effects, so how are

programs and computation related to the world? Some
programs, especially in the sciences, are designed to model
or simulate or explain some real‐world phenomenon, so can

programs be considered (scientific) theories?

Programs are usually considered “software,” and
computers are usually considered “hardware,” but what is

the difference between software and hardware?

Computer programs are notorious for having “bugs,” which
are often only found by running the program, so can

computer programs be logically verified before running
them?
Finally, in Part V, we look at two topics. The first is the
philosophy of artificial intelligence (AI): what is AI?
What is the relation of computation to cognition? Can
computers think? Alan Turing, one of the creators of the
field of computation, suggested that the best way to deal
with that question was by using what is now called the
Turing Test. The Chinese Room Argument is a thought
experiment devised by the philosopher John Searle, which
(arguably) shows that the Turing Test won't work.
The other topic is computer ethics. We'll look at two
questions that were not much discussed at the turn of the
century but are now at the forefront of computational
ethical debates: (1) should we trust decisions made by
computers? (Moor, 1979) – a question made urgent by the
advent of automated vehicles and by “deep learning”
algorithms that might be biased; and (2) should we build
“intelligent” computers? Do we have moral obligations
toward robots? Can or should they have moral obligations
toward us?



BoxII

Computer Science Students Take Note: Along the
way, we will look at how philosophers reason and
evaluate logical arguments. ACM/IEEE Computer
Science Curricula 2020 (CC2020) covers precisely these
sorts of argument‐analysis techniques under the
headings of Discrete Structures and Analytical and
Critical Thinking. Many other CC2020 topics also
overlap those in the philosophy of computer science. See
https://www.acm.org/binaries/content/assets/education
/curricula-recommendations/cc2020.pdf.

https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2020.pdf


1.2 What This Book Is Not About

Have I left anything out? Yes! This book is not an attempt
to be an encyclopedic, up‐to‐the‐minute survey of every
important issue in the philosophy of computer science.
Rather, the goal is to give you the background to enable
you to fruitfully explore those issues and to join in the
conversation.
The questions raised earlier and discussed in this book
certainly do not exhaust the philosophy of computer
science. They are merely a series of questions that arise
naturally from our first question: what is computer science?
But there are many other issues in the philosophy of
computer science. Some are included in a topic sometimes
called philosophy of computing. Here are some examples:
consider the ubiquity of computing – your smartphone is a
computer; your car has a computer in it; even some
refrigerators and toasters contain computers. Perhaps
someday your bedroom wall will contain (or even be) a
computer! How will our notion of computing change
because of this ubiquity? Will this be a good or bad thing?
Another topic is the role of the Internet. For instance, Tim
Berners‐Lee, who created the World Wide Web, has argued
that “Web science” should be its own discipline (Berners‐
Lee et al., 2006; Lohr, 2006). And there are many issues
surrounding the social implications of computers in general
and social media on the Internet (and the World Wide Web)
in particular.
Other issues in the philosophy of computer science more
properly fall under the heading of the philosophy of AI. As
noted, we will look at some of these in this book, but there
are many others that we won't cover, even though the



philosophy of AI is a proper subset of the philosophy of
computer science.
Another active field of investigation is the philosophy of

information. As we'll see in Section 3.8, computer science is
sometimes defined as the study of how to process
information, so the philosophy of information is clearly a
close cousin of the philosophy of computer science. But I
don't think either is included in the other; they merely have
a non‐empty intersection. If this is a topic you wish to
explore, take a look at some of the books and essays cited
at the end of Section 3.8.
And we will not discuss (except in passing; see, for
example, Section 9.6.1) analog computation. If you're
interested in this, see the Online Resources for suggested
readings.
Finally, there are a number of philosophers and computer
scientists who have discussed topics related to what I am
calling the philosophy of computer science whom we will
not deal with at all (such as the philosophers Martin
Heidegger and Hubert L. Dreyfus (Dreyfus and Dreyfus,
1980; Dreyfus, 2001) and the computer scientist Terry
Winograd (Winograd and Flores, 1987). An Internet search
(e.g. “Heidegger "computer science"”) will help you track
down information on these thinkers and others not
mentioned in this book. (One philosopher of computer
science [personal communication] calls them the “Dark
Side philosophers” because they tend not to be sympathetic
to computational views of the world!)
But I think the earlier questions will keep us busy for a
while as well as prepare you for examining some of these
other issues. Think of this book as an extended
“infomercial” to bring you up to speed on the computer‐
science–related aspects of a philosophical conversation that

https://cse.buffalo.edu/~rapaport/OR/A0fr01.html#1.2


has been going on for over 2500 years, to enable you to join
in the conversation.
Let's begin …



BoxII

Further Reading: In 2006, responding to a talk that I
gave on the philosophy of computer science, Selmer
Bringsjord (a philosopher and cognitive scientist who
has written extensively on the philosophy of computer
science) said that philosophy of computer science was in
its infancy. This may have been true at the time as a
discipline so called, but there have been philosophical
investigations of computer science and computing since
at least Turing, 1936 (which we'll examine in detail in
Chapter 8), and the philosopher James H. Moor's work
goes back to the 1970s (we'll discuss some of his
writings in Chapters 12 and 17.
In an early undergraduate computer science textbook,
my former colleague Tony Ralston (1971, Section 1.2D,
pp. 6–7) discussed “the philosophical impact of
computers”: he said that questions about such things as
the nature of thinking, intelligence, emotions, intuition,
creativity, consciousness, the relation of mind to brain,
and free will and determinism “are serious questions,
that the advent of computers has, philosophically
speaking, reopened some of these questions and thrown
new light on others, and finally, that the philosophical
significance of these questions provides a worthy
motivation for the study of computer science.”
On social implications, see, especially, Weizenbaum,
1976 and Simon, 1977, the penultimate section of which
(“Man's View of Man”) can be viewed as a response to
Weizenbaum. See also Dembart, 1977 for a summary
and general discussion. For a discussion of the social
implications of the use of computers and the Internet, be
sure to read E.M. Forster's classic short story “The



Machine Stops” (Forster, 1909), which predicted the
Internet and email! (You can easily find versions of it
online.)
See the Online Resources for more on the philosophy of
computer science.

https://cse.buffalo.edu/~rapaport/OR/A0fr01.html#1.1


2 

Philosophy: A Personal View

[T]here are those who have knowledge and those who
have understanding. The first requires memory, the
second philosophy. … Philosophy cannot be taught.
Philosophy is the union of all acquired knowledge and
the genius that applies it …
—Alexandre Dumas (1844, The Count of Monte Cristo,
Ch. 17, pp. 168–169)
Philosophy is the microscope of thought.
—Victor Hugo (1862, Les Misérables, Vol. 5, Book Two,
Ch. II, p. 1262)

Philosophy … works against confusion.
—John Cleese (2012), “[Twenty‐First] Century,”
https://www.apaonline.org/resource/resmgr/John_Clees
e_statements/19_Century.mp3
Consider majoring in philosophy. I did. … [I]t taught me
how to break apart arguments, how to ask the right
questions.
—NPR reporter Scott Simon, quoted in Keith 2014

To the person with the right turn of mind, … all thought
becomes philosophy.
—Eric Schwitzgebel (2012)
Philosophy can be any damn thing you want!
—John Kearns (personal communication, 7 November
2013)

https://www.apaonline.org/resource/resmgr/John_Cleese_statements/19_Century.mp3


2.1 Introduction

[W]e're all doing philosophy all the time. We can't escape
the question of what matters and why: the way we're
living is itself our implicit answer to that question. A
large part of a philosophical training is to make those
implicit answers explicit, and then to examine them
rigorously.
—David Egan (2019)

“What is philosophy?” is a question that is not a proper part
of the philosophy of computer science. But because many
readers may not be familiar with philosophy, I want to
begin our exploration with a brief introduction to how I
think of philosophy and how I would like non‐philosophical
readers who are primarily interested in computer science
to think of it. So, in this chapter, I will give you my

definition of ‘philosophy’ and examine the principal
methodology of philosophy: the evaluation of logical
arguments.



BoxII

Note on Quotation Marks: Many philosophers have
adopted a convention that single quotes are used to
form the name of a word or expression. So, when I write
this:

I am not talking about philosophy! Rather, I am talking
about the 10‐letter word spelled p‐h‐i‐l‐o‐s‐o‐p‐h‐y. This
use of single quotes enables us to distinguish between a
thing that we are talking about and the name or
description that we use to talk about the thing. This is
the difference between Paris (the capital of France) and
‘Paris’ (a five‐letter word). The technical term for this is
the ‘use‐mention distinction’
(http://en.wikipedia.org/wiki/Use-mention_distinction):
we use ‘Paris’ to mention Paris. It is also the difference
between a number (a thing that mathematicians talk
about) and a numeral (a word or symbol that we use to
talk about numbers).
I will use double quotes (1) when I am directly quoting
someone, (2) as “scare quotes” to indicate that I am
using an expression in a special or perhaps unusual way
(as I just did), and (3) to indicate the meaning of a word
or other expression (as in, ‘bachelor’ means
“marriageable male”) (Cole, 1999).
However, in both cases, some publishers (including the
present one) follow a (slightly illogical) style according
to which some punctuation (usually periods and
commas), whether part of the quoted material or not,
must appear inside the quotation marks. I will leave it as

http://en.wikipedia.org/wiki/Use-mention_distinction


an exercise for the reader to determine which
punctuation marks that appear inside quotation marks
logically belong there! (As a warm‐up exercise, is this
sentence,

which obeys the publisher's style, true?)



2.2 A Definition of ‘Philosophy’

When ‘philosophy’ is used informally, in everyday
conversation, it can mean an “outlook,” as when someone
asks you what your “philosophy of life” is. The word
‘philosophical’ can also mean something like “calm,” as
when we say that someone takes bad news “very
philosophically” (i.e. very calmly). Traditionally, philosophy
is the study of “Big Questions” (Section 2.7) such as
metaphysics (what exists?), epistemology (how can we
know what exists?), and ethics (what is “good”?).
In this chapter, I want to explicate the technical sense of
modern, analytic, Western philosophy – a kind of philosophy
that has been done since at least the time of Socrates.
‘Modern philosophy’ is itself a technical term that usually
refers to the kind of philosophy that has been done since
the time of René Descartes (1596–1650, about 400 years
ago) (Nagel, 2016). It is “analytic” in the sense that it is
primarily concerned with the logical analysis of concepts
(rather than literary, poetic, or speculative approaches).
And it is “Western” in the sense that it has been done by
philosophers working primarily in Europe (especially in
Great Britain) and North America – although, of course,
there are very many philosophers who do analytic
philosophy in other areas of the world (and there are many
other kinds of philosophy; see Adamson 2019).
Western philosophy began in ancient Greece. Socrates
(470–399 BCE,1 i.e. around 2500 years ago) was opposed to
the Sophists, a group of teachers who can be caricatured as
an ancient Greek version of “ambulance‐chasing” lawyers,
“purveyors of rhetorical tricks” (McGinn, 2012b). For a fee,
the Sophists were willing to teach anything (whether it was



true or not) to anyone, or to argue anyone's cause (whether
their cause was just or not).
Like the Sophists, Socrates also wanted to teach and argue,
but only to seek wisdom: truth in any field. In fact, the word
‘philosophy’ comes from Greek roots meaning “love of
[philo] wisdom [sophia].” The reason Socrates only sought

wisdom rather than claiming that he had it (as the Sophists
did) was that he believed he didn't have it: he claimed that
he knew he didn't know anything (and that, therefore, he
was actually wiser than those who claimed that they did

know things but who really didn't). As the contemporary
philosopher Kwame Anthony Appiah said, in reply to the
question “How do you think Socrates would conduct
himself at a panel discussion in Manhattan in 2019?”:

You wouldn't be able to get him to make an opening
statement, because he would say, “I don't know
anything.” But as soon as anybody started saying
anything, he'd be asking you to make your arguments
clearer – he'd be challenging your assumptions. He'd
want us to see that the standard stories we tell ourselves
aren't good enough. (Libbey and Appiah, 2019)

Socrates's student Plato (430–347 BCE), in his dialogue
Apology, describes Socrates as playing the role of a
“gadfly,” constantly questioning (and annoying!) people
about the justifications for, and consistency among, their
beliefs, in an effort to find out the truth for himself from
those who considered themselves to be wise (but who
really weren't).
Plato defined ‘philosopher’ (and, by extension, ‘philosophy’)
in Book V of his Republic (line 475c):



The one who feels no distaste in sampling every study,
and who attacks the task of learning gladly and cannot
get enough of it, we shall justly pronounce the lover of
wisdom, the philosopher. (Plato, 1961b, p. 714, my
emphasis)

Adapting this, I define ‘philosophy’ as the personal

search for truth, in any field, by rational means. This
raises several questions:

1. What is “truth”?
2. Why is philosophy only the search for truth? (Can't the

search be successful?)
3. What counts as being “rational”?
4. Why only “personal”? (Why not “universal”?)
5. What does ‘any field’ mean? (Is philosophy really the

study of anything and everything?)
The rest of this chapter explores these questions.2



2.3 What Is Truth?

The study of the nature of truth is another “Big Question”
of philosophy. I cannot hope to do justice to it here, but two
theories of truth will prove useful to keep in mind on our
journey through the philosophy of computer science: the
correspondence theory of truth and the coherence theory of
truth.

2.3.1 Correspondence Theories of

Truth

According to the Oxford English Dictionary (OED;
http://www.oed.com/view/Entry/206884), ‘true’ originally
meant “faithful.” Faithfulness requires two things  and 
such that  is faithful to . On a correspondence theory,
truth is faithfulness of a representation  of some part of
reality to the reality  that it is a representation of. On the
one hand, there are beliefs (or propositions, or sentences);
on the other hand, there is “reality”: a belief (or a
proposition, or a sentence) is true if and only if (“iff”) it
corresponds to reality, i.e. iff it is faithful to, or “matches,”
or accurately represents or describes reality.

http://www.oed.com/view/Entry/206884


BoxII

Terminological Digression: A “belief,” as I am using
that term here, is a mental entity, “implemented” (in
humans) by certain neuron firings. A “sentence” is a
grammatical string of words in some language. And a
“proposition” is the meaning of a sentence. These are all
rough‐and‐ready characterizations; each of these terms
has been the subject of much philosophical analysis. For
further discussion, see Schwitzgebel 2021 on belief,
https://en.wikipedia.org/wiki/Sentence-(linguistics) on
sentences, and McGrath and Frank 2020 on
propositions.

To take a classic example, the three‐word English sentence
‘Snow is white.’ is true iff the stuff in the real world that
precipitates in certain winter weather (i.e. snow) has the
same color as milk (i.e. iff it is white). Put somewhat
paradoxically (but correctly – recall the use‐mention
distinction!), ‘Snow is white.’ is true iff snow is white.
How do we determine whether a sentence (or a belief, or a
proposition) is true? Using a correspondence theory, in
principle, we would have to compare the parts of the
sentence (its words plus its grammatical structure, and
maybe even the context in which it is thought, uttered, or
written) with parts of reality, to see if they correspond. But
how do we access “reality”? How can we do the “pattern
matching” between our beliefs and reality? One answer is
by sense perception (perhaps together with our beliefs
about what we perceive). But sense perception is
notoriously unreliable (think about optical illusions). And
one of the issues in deciding whether our beliefs are true is

https://en.wikipedia.org/wiki/Sentence-(linguistics)


deciding whether our perceptions are accurate (i.e.
whether they match reality).
So we seem to be back to square one, which gives rise to
coherence theories.

2.3.2 Coherence Theories of Truth

According to a coherence theory of truth, a set of
propositions (or beliefs, or sentences) is true iff (1) they are
mutually consistent, and (2) they are supported by, or
consistent with, all available evidence. That is, they
“cohere” with each other and with all evidence. Note that
observation statements (i.e. descriptions of what we
observe in the world around us) are among the claims that
must be mutually consistent, so this is not (necessarily) a
“pie‐in‐the‐sky” theory that doesn't have to relate to the
way things really are. It just says that we don't have to have
independent access to “reality” in order to determine truth.

2.3.3 Correspondence vs. Coherence

Which theory is correct? Well, for one thing, there are more
than two theories: there are several versions of each kind
of theory, and there are other theories of truth that don't
fall under either category. The most important of the other
theories is the “pragmatic” theory of truth (see Glanzberg
2021, Section 3; Misak and Talisse 2019). Here is one
version:

[T]he pragmatic theory of truth … is that a proposition is
true if and only [if] it is useful [i.e. “pragmatic,” or
practical] to believe that proposition. (McGinn, 2015a,
p. 148)

Fortunately, the answer to which kind of theory is correct
(i.e. which kind of theory is – if you will excuse the



expression – true) is beyond our present scope! But note
that the propositions that a correspondence theory says are
true must be mutually consistent (if “reality” is
consistent!), and they must be supported by all available
evidence; i.e. a correspondence theory must “cohere”.
Moreover, if you include both propositions and “reality” in
one large, highly interconnected network (as we will
consider in Sections 16.10.4 and 18.8.3), that network must
also “cohere,” so the propositions that are true according
to a coherence theory of truth should “correspond to” (i.e.
cohere with) reality.
Let's return to the question raised in Section 2.3.1: how can
we decide whether a statement is true? One way we can
determine its truth is syntactically (i.e. in terms of its
grammatical structure only, not in terms of what it means),
by trying to prove it from axioms via rules of inference. It is
important to keep in mind that when you prove a statement
this way, you are not proving that it is true! You are simply
proving that it follows logically from certain other
statements: i.e. that it “coheres” in a certain way with
those statements. But if the starting statements – the
axioms – are true (note that I said “if they are true”; I
haven't told you how to determine their truth value yet),
and if the rules of inference “preserve truth,” then the
statement you prove by means of them – the “theorem” –
will also be true.
Another way we can determine whether a statement is true
is semantically: i.e. in terms of what it means. We can use
truth tables to determine that axioms are true. This, by the
way, is the only way to determine whether an axiom is true,
since, by definition, an axiom cannot be inferred from any
other statements. If it could be so inferred, then it would be
those other statements that would be the real axioms.



But to determine the truth of a statement semantically is
also to use syntax (i.e. symbol manipulation): we
semantically determine the truth value of a complex
proposition by symbol manipulation (via truth tables) of its
atomic constituents. (For more on syntax and semantics,
see Section 18.8.3.) How do we determine the truth value
of an atomic proposition? By seeing if it corresponds to
reality. But how do we do that? By comparing the
proposition with reality: i.e. by seeing if the proposition
coheres with reality.3



BoxII

Digression: What Is a Theorem? When you studied
geometry, you may have studied a version of Euclid's
original presentation of geometry via a modern
interpretation as an axiomatic system. Most branches of
mathematics (and, according to some philosophers,
most branches of science) can be formulated
axiomatically. One begins with a set of “axioms”:
statements that are assumed to be true (or are
considered so obviously true that their truth can be
taken for granted). Then there are “rules of inference”
that tell you how to logically infer other statements from
the axioms in such a way that the inference procedure is
“truth preserving”: if the axioms are true (which they
are, by assumption), then whatever logically follows
from them according to the rules of inference is also
true. (Truth is “preserved” throughout the inference.)
Such statements are called ‘theorems.’
Do truth and proof coincide? A logical system for which
they do is said to be (semantically) “complete”: all truths
are theorems, and all theorems are true. Two such
systems are propositional logic and first‐order logic.
Propositional logic is the logic of sentences, treating
them “atomically” as simply being either true or false
and not having any “parts.” First‐order predicate logic
can be thought of as a kind of “sub‐atomic” logic,
treating sentences as being composed of terms standing
in relations. (See Rapaport, 1992a,b.) However, if you
add axioms for arithmetic to first‐order logic, the
resulting system is not complete; see the Digression on
Gödel's Incompleteness Theorem. (See Sections 2.9, 6.5,
7.4.3.2, 13.2.2, 15.1, and 15.2.1 for more details.)



There are also second‐order logics, modal logics,
relevance logics, and many more (not to mention
varieties of each). Is one of them the “right” logic?
Tharp 1975 asks that question, which can be expressed
as a “thesis” analogous to the Church‐Turing
Computability Thesis: where the Computability Thesis
asks if the formal theory of Turing Machine
computability entirely captures the informal, pre‐
theoretic notion of computability, Tharp asks if there is a
formal logic that entirely captures the informal, pre‐
theoretic notion of logic. We'll return to some of these
issues in Chapter 11.



BoxII

Digression: Gödel's Incompleteness Theorem: Can
any proposition (or its negation) be proved? Given a
proposition , we know that either  is true or else 
is false (i.e. that  is true). So, whichever one is true
should be provable. Is it? Not necessarily!
First, there are propositions whose truth value we don't
know yet. For one example, no one knows (yet) if
Goldbach's Conjecture is true. Goldbach's Conjecture
says that all positive even integers are the sum of two
primes; for example, . For another example,
no one knows (yet) if the Twin Prime Conjecture is true.
The Twin Prime Conjecture says that there are an
infinite number of “twin” primes”: i.e. primes  such
that ; e.g. 2 and 3, 3 and 5, 5 and 7, 9 and 11,
11 and 13, etc.
Second – and much more astounding than our mere
inability so far to prove or disprove any of these
conjectures – there are propositions that are known to

be true but that we can prove that we cannot prove!
This is the essence of Gödel's Incompleteness Theorem.
Stated informally, it asks us to consider proposition G,
which is a slight variation on the Liar Paradox (i.e. the
proposition “This proposition is false”: if it's false, then
it's true; if it's true, then it's false):

(G) This proposition (G) is true but unprovable.
We can assume that G is either true or false. So,
suppose it is false. Then it was wrong when it said that it
was unprovable; so, it is provable. But any provable
proposition has to be true (because valid proofs are
truth‐preserving). That's a contradiction, so our



assumption that it was false was wrong: it isn't false. But
if it isn't false, then it must be true. But if it's true, then
– as it says – it's unprovable. End of story; no paradox!
So, G (more precisely, its formal counterpart) is an
example of a true proposition that cannot be proved.
Moreover, the logician Kurt Gödel showed that some
such propositions are true in the mathematical system
consisting of first‐order predicate logic plus Peano's
axioms for the natural numbers (see Section 7.6.1); i.e.
they are true propositions of arithmetic! For more
information on Gödel and his proof, see Gödel 1931;
Nagel et al. 2001; Hofstadter, 1979; Franzén 2005;
Goldstein 2006.
We'll return to this question, also known as the
“Decision Problem,” beginning in Section 6.5.



2.4 Searching for the Truth

Thinking is, or ought to be, a coolness and a calmness …
—Herman Melville (1851, Moby‐Dick, Ch. 135, p. 419)

Thinking is the hardest work there is, which is the
probable reason why so few engage in it.
—Henry Ford (1928, p. 481)
Thinking does not guarantee that you will not make
mistakes. But not thinking guarantees that you will.
—Leslie Lamport (2015, p. 41)

Let's turn to the second question: why is philosophy only
the search for truth? Can't we find the truth? Perhaps not.

2.4.1 Searching vs. Finding

How does one go about searching for the truth, for
answering questions? There are basically two
complementary methods: (1) thinking hard and
(2) empirical investigation. We'll look at the second of these
in Section 2.5. First, let's focus on thinking hard.
Some have claimed that philosophy is just thinking really
hard about things (Popova, 2012). Such hard thinking
requires “rethinking explicitly what we already believe
implicitly” (Baars, 1997, p. 187). In other words, it's more
than merely expressing one's opinion. It's also different
from empirical investigation:



Philosophy is thinking hard about the most difficult
problems that there are. And you might think scientists
do that too, but there's a certain kind of question whose
difficulty can't be resolved by getting more empirical
evidence. It requires an untangling of presuppositions:
figuring out that our thinking is being driven by ideas we
didn't even realize that we had. And that's what
philosophy is. (David Papineau, quoted in Edmonds and
Warburton 2010, p. xx)

But we may not be able to find the truth, either by thinking
hard or by empirical investigation. The philosopher Colin
McGinn (1989, 1993) discusses the possibility that
limitations of our (present) cognitive abilities may make it
as impossible for us to understand the truth about certain
things (such as the mind‐body problem or the nature of
consciousness) as an ant's cognitive limitations make it
impossible for it to understand calculus. But we may not
have to find the truth. G.E. Lessing (1778, my italics)4 said,

The true value of a man [sic] is not determined by his
possession, supposed or real, of Truth, but rather by his
sincere exertion to get to the Truth. It is not possession

of the Truth, but rather the pursuit of Truth by which he
extends his powers …



BoxII

Digression: ‘[sic]’: The annotation ‘[sic]’ (which is
Latin for “thus” or “so”) is used when an apparent error
or odd usage of a word or phrase is to be blamed on the
original author and not on the person (in this case, me!)
who is quoting the author. For example, here I want to
indicate that it is Lessing who said “the true value of a
man,” where I would have said “the true value of a
person.”

In a similar vein, the mathematician Carl Friedrich Gauss
(1808) said, “It is not knowledge, but the act of learning,
not possession but the act of getting there, which grants
the greatest enjoyment.”

2.4.2 Asking “Why?”

Questions, questions. That's the trouble with philosophy:
you try and fix a problem to make your theory work, and
a whole host of others then come along that you have to
fix as well.
—Helen Beebee (2017)

One reason the search for truth will never end (which is
different from saying that it will not succeed) is that you
can always ask “Why?”; i.e. you can always continue
inquiring. This is

the way philosophy – and philosophers – are[:] Questions
beget questions, and those questions beget another
whole generation of questions. It's questions all the way
down. (Cathcart and Klein, 2007, p. 4)



You can even ask why “Why?” is the most important
question (Everett, 2012, p. 38)! “The main concern of
philosophy is to question and understand very common
ideas that all of us use every day without thinking about
them” (Nagel, 1987, p. 5). This is the reason, perhaps, that
the questions children often ask (especially, “Why?”) are
often deeply philosophical.
The physicist John Wheeler pointed out that the more
questions you answer, the more questions you can ask: “We
live on an island surrounded by a sea of ignorance. As our
island of knowledge grows, so does the shore of our
ignorance”
(https://en.wikiquote.org/wiki/John_Archibald_Wheeler).
And “Philosophy patrols the border [e.g. the shore], trying
to understand how we got there and to conceptualize our
next move” (Soames, 2016). The US economist and social
philosopher Thorstein Veblen said, “The outcome of any
serious research can only be to make two questions grow
where only one grew before” (Veblen, 1908, p. 396).
Asking “Why?” is the principal part of philosophy's “general
role of critically evaluating beliefs” (Colburn, 2000, p. 6)
and “refusing to accept any platitudes or accepted wisdom
without examining it” (Donna Dickenson, in Popova 2012).
As the humorist George Carlin put it,

[It's] not important to get children to read. Children who
wanna read are gonna read. Kids who want to learn to
read [are] going to learn to read. [It's] much more

important to teach children to QUESTION what they

read. Children should be taught to question everything.
(https://georgecarlin.net/bogus/question.html)

Whenever you have a question, either because you do not
understand something or because you are surprised by it or
unsure of it, you should begin to think carefully about it.

https://en.wikiquote.org/wiki/John_Archibald_Wheeler
https://georgecarlin.net/bogus/question.html


And one of the best ways to do this is to ask “Why?”: Why

did the author say that? Why does the author believe it?
Why should I believe it? We can call this “looking
backward” toward reasons. And a related set of questions
are these: What are its implications? What else must be
true if that were true? And should I believe those
implications? Call this “looking forward” to consequences.
Because we can always ask these backward‐ and forward‐
looking questions, we can understand why …

… we should never rest assured that our view, no matter
how well argued and reasoned, amounts to the final
word on any matter. (Goldstein, 2014, p. 396)
This is why philosophy must be argumentative. … Only in
this way can intuitions that have their source in societal
or personal idiosyncrasies be exposed and questioned.
(Goldstein, 2014, p. 39)

The arguments are argued over, typically, by challenging
their assumptions. It is rare that a philosophical argument
will be found to be invalid (i.e. logically incorrect).5 The
most interesting arguments are valid ones, so that the only
concern is over the truth of their “premises”: the reasons
for the conclusion. An argument that is found to be invalid
is usually a source of disappointment – unless the invalidity
points to a missing premise or reveals a flaw in the very
nature of logic itself (an even rarer, but not unknown,
occurrence).

2.4.3 Can There Be Progress in

Philosophy?

Philosophy, n. A route of many roads leading from
nowhere to nothing.
—Ambrose Bierce (1906, p. 157)



If the philosophical search for truth is a never‐ending
process, can we ever make any progress in philosophy?
Mathematics and science, for example, are disciplines that
not only search for the truth but seem to find it; they seem
to make progress in the sense that we know more
mathematics and more science now than we did in the past.
We have well‐confirmed scientific theories, and we have
well‐established mathematical proofs of theorems. But
philosophy doesn't seem to be able to empirically confirm
its theories or prove any theorems. Are the problems that
philosophers investigate unsolvable?
I think there can be, and is, progress in philosophy.
Solutions to problems in philosophy may not be as neat as
they seem to be in mathematics, but in fact, they're not
even that neat in mathematics! This is because solutions to
problems are always conditional; they are based on certain
assumptions. Most mathematical theorems are expressed
as conditional statements: If certain assumptions are made,
or if certain conditions are satisfied, then such‐and‐such
will be the case. In mathematics, those assumptions include
axioms, but axioms can be challenged and modified:
consider the history of non‐Euclidean geometry, which
began by challenging and modifying the Euclidean axiom
known as the Parallel Postulate.



BoxII

Digression: Parallel Postulate: One version of the
Parallel Postulate is this: For any line , and for any
point  not on , there is only one line  such that (1) 

 is on , and (2)   is parallel to . For some of the
history of non‐Euclidean geometries, see
http://mathworld.wolfram.com/ParallelPostulate.html
and http://en.wikipedia.org/wiki/Parallel_postulate.

So, solutions are really parts of larger theories, which
include the assumptions that the solution depends on, as
well as other principles that follow from the solution.
Progress can be made in philosophy (as in other
disciplines) not only by following out the implications of
your beliefs (“forward‐looking” progress) but also by
becoming aware of the assumptions that underlie your
beliefs (“backward‐looking” progress) (Rapaport 1982;
Goldstein 2014, p. 38).
Recall Plato's view of the philosopher as a “gadfly” who
investigates the foundations of, or reasons for, beliefs,
always “spurring” people to ask “What is ?” and “Why?”
This got him in trouble: his claims to be ignorant were
thought (probably correctly) to be somewhat disingenuous.
As a result, he was tried, condemned to death, and
executed. (For the details, read Plato's Apology. On the
“gadfly‐spur” metaphors, see Marshall 2017.) One moral is
that philosophy can be dangerous:

And what is it, according to Plato, that philosophy is
supposed to do? Nothing less than to render violence to
our sense of ourselves and our world, our sense of
ourselves in the world. (Goldstein, 2014, p. 40)

http://mathworld.wolfram.com/ParallelPostulate.html
http://en.wikipedia.org/wiki/Parallel_postulate


Philosophers are the hazmat handlers of the intellectual
world. It is we who stare into the abyss, frequently going
down into it to great depths. This isn't a job for people
who scare easily or even have a tendency to get nervous.
(Eric Dietrich, personal communication, 5 October 2006)

It is violent to have one's assumptions challenged:
[P]hilosophy is difficult because the questions are hard,
and the answers are not obvious. We can only arrive at
satisfactory answers by thinking as rigorously as we can
with the strongest logical and analytical tools at our
disposal.
… I want … [my students] to care more about things like
truth, clear and rigorous thinking, and distinguishing the
truly valuable from the specious.
The way to accomplish these goals is not by
indoctrination. Indoctrination teaches you what to think;
education teaches you how to think. Further, the only
way to teach people how to think is to challenge them
with new and often unsettling ideas and arguments.
… Some people fear that raising such questions and
prompting students to think about them is a dangerous
thing. They are right. As Socrates noted, once you start
asking questions and arguing out the answers, you must
follow the argument wherever it leads, and it might lead
to answers that disturb people or contradict their
ideology. (K.M. Parsons 2015)

So, the whole point of Western philosophy since Socrates
has been to make progress by getting people to think about
their beliefs, to question and challenge them. It is not
(necessarily) to come up with answers to difficult
questions.6



2.4.4 Skepticism

If you can always ask “Why?” – if you can challenge any
claims – then you can be skeptical about everything. Does
philosophy lead to skepticism?7

Skepticism is often denigrated as being irrational. But
there are advantages to always asking questions and being
skeptical: “A skeptical approach to life leads to advances in
all areas of the human condition; while a willingness to
accept that which does not fit into the laws of our world
represents a departure from the search for knowledge”
(Dunning, 2007). Being skeptical doesn't necessarily mean
refraining from having any opinions or beliefs. But it does
mean being willing to question anything and everything
that you read or hear (or think!). (Including questioning
why we should question everything! See
https://ubraga.com/index.php/2021/01/28/question-
everything/.)
Why would you want to do this? So that you can find
reasons for (or against) believing what you read or hear (or
think)! And why is it important to have these reasons? For
one thing, it can make you feel more confident about your
beliefs and the beliefs of others. For another, it can help
you explain your beliefs to others – not necessarily to
convince them that they should believe what you believe
but to help them understand why you believe what you do.
The heart of philosophy is not (necessarily) coming up with
answers but challenging assumptions and forcing you to
think about alternatives (Popper, 1978, Section 4, p. 148).
My father's favorite admonition was “Never make
assumptions.” That is, never assume that something is the
case or that someone is going to do something; rather, try
to find out if it is the case, or ask the person. In other
words, challenge all assumptions. Philosophers, as

https://ubraga.com/index.php/2021/01/28/question-everything/


James Baldwin (1962) said about artists, “cannot and must
not take anything for granted but must drive to the heart of
every answer and expose the question the answer hides.”



2.5 What Is “Rational”?

Rational, adj. Devoid of all delusions save those of
observation, experience and reflection.
—Ambrose Bierce (1906, p. 170)

Active, persistent, and careful consideration of any belief

or supposed form of knowledge in the light of the

grounds that support it, and the further conclusions to

which it tends, constitutes reflective thought.
—John Dewey (1910, p. 6)

Our third question concerns the nature of rationality. Mere

statements (i.e. opinions) by themselves are neither

rational nor irrational. Rather, it is arguments – reasoned
or supported statements – that are capable of being
rational. As the American philosopher John Dewey
suggested, it's not enough to merely think something; you
must also consider reasons for believing it (looking
“backward”), and you must also consider the consequences

of believing it (looking “forward”): Thus, being rational
requires logic.
But there are lots of different (kinds of) logics, so there are
lots of different kinds of logical rationality. And there is
another kind of rationality, which depends on logics of
various kinds but goes beyond them in at least one way:
empirical, or scientific, rationality. Let's begin with these
two kinds of rationality.

2.5.1 Logical Rationality



Philosophy: the ungainly attempt to tackle questions that
come naturally to children, using methods that come
naturally to lawyers.
—David Hills (2007, http://www.stanford.edu/
∼dhills/cv.html)

Deductive Logical Rationality
“Deductive” logic is one kind of logical rationality. Reasons 

 deductively support (or “yield,” or “entail,” or
“imply”) a conclusion  iff  must be true if all of the 
are true. The technical term for this is ‘validity’: a
deductive argument is said to be valid iff it is impossible
for the conclusion to be false while all of the premises are
true. This can be said in a variety of ways: a deductive
argument is valid iff, whenever all of its premises are true,
its conclusion cannot be false. Or: a deductive argument is
valid iff, whenever all of its premises are true, its
conclusion must also be true. Or: a deductive argument is
valid iff the rules of inference that lead from its premises to
its conclusion preserve truth.
For example, the rule of inference called “Modus Ponens”
says that, from  and ‘if , then ,’ you may deductively
infer . Using the symbols ‘ ’ to represent “if… then” and
‘ ’ to represent this truth‐preserving relation between
premises and a conclusion that is deductively supported by
them, the logical notation for Modus Ponens is

For example, let  = “Today is Wednesday.” and let  =
“We are studying philosophy.” So the inference becomes:
“Today is Wednesday. If today is Wednesday, then we are
studying philosophy. Therefore (deductively), we are

http://www.stanford.edu/~dhills/cv.html


studying philosophy.” (For more on Modus Ponens, see
Section 2.9.4.)
There are three somewhat surprising things about validity
(or deductive rationality) that must be pointed out:

1. Any or all of the premises of a valid argument

can be false!

In the characterization of validity, note that the
conditional terms ‘if’ and ‘whenever’ allow for the
possibility that one or more premises are false. So, any
or all of the premises of a deductively valid argument
can be false, as long as if they were to be true, then
the conclusion would also have to be true.

2. The conclusion of a valid argument can be

false!

How can a “truth preserving” rule lead to a false
conclusion? By the principal – familiar to computer
programmers – known as “garbage in, garbage out”: if
one of the  is false, even truth‐preserving rules of
inference can lead to a false .
The conclusion of a valid argument is only true relative

to the truth of its premises (Hempel, 1945, p. 9). What
this means is that you can have a situation in which a
sentence is, let's say, “absolutely” or “independently”
false (or you disagree with it), but it could also be true
relative to some premises.
The premises provide a background “context” in which
to evaluate the conclusion. In other words,  would be

true if all of the  were true. But sometimes the world
might not make the premises true. And then we can't
say anything about the truth of the conclusion.



So, when can we be sure that the conclusion  of a
valid argument is “really” true (and not just
“relatively” true)? The answer is that  is true iff
(1) all of the  are true, and (2) the rules of inference
that lead from the  to  “preserve” truth. Such a
deductive argument is said to be “sound”: i.e. it is valid
and all of its premises are, in fact, true.

3. The premises of a valid argument can be

irrelevant to its conclusion!

But that's not a good idea, because it wouldn't be a
convincing argument. The classic example is that
anything follows deductively from a contradiction:
from the two contradictory propositions ‘ ’
and ‘ ,’ it can be deductively inferred that the
philosopher Bertrand Russell (a noted atheist) is the
Pope.



BoxII

Proof: Let  and  (i.e. “not‐ ”) be the two
premises, let  be the conclusion, and let ‘ ’ represent
inclusive disjunction (“or”). From , we can deductively
infer  by the truth‐preserving rule of Addition (“

‐introduction”). Then, from  and , we can
deductively infer , by the truth‐preserving rule of
Disjunctive Syllogism (“ ‐elimination”). So, in the “Pope
Russell” argument, from ‘ ,’ we can infer that
either  or Russell is the Pope (or both); i.e. we
can infer that at least one of those two propositions is
true. But we have also assumed that one of them is false:

. So it must be the other one that is true.
Therefore, Russell must be the Pope! (But remember
point 2: it doesn't follow from this argument that Russell
is the Pope. All that follows is that Russell would be the
Pope (and so would you!) if  both does and does
not equal 4.) “Relevance” logics are one way of dealing
with this problem; see Anderson and Belnap 1975;
Anderson et al. 1992. For applications of relevance logic
to AI, see Shapiro and Wand 1976; Martins and Shapiro
1988.

Inductive Logical Rationality “Inductive” logic is a
second kind of logical rationality. In one kind of inductive
logic,  iff  is probably true if all of the 
are true. Suppose you have an urn containing over a million
ping‐pong balls, and suppose you remove one of them at
random and observe that it is red. (We can write ‘Red(
)’ to mean “ball number 1 is red.”) What do you think the
chances are that the next ball will also be red? They are
probably not very high. But suppose that the second ball



that you examine is also red. And the third. … And the
999,999th. Now how likely do you think it is that the next
ball will also be red? The chances are probably very high,
so:

Red(  Red(  Red( ).

Unlike deductive inferences, however, inductive ones do
not guarantee the truth of their conclusion. Although it is
not likely, it is quite possible that the millionth ping‐pong
ball will be, say, the only blue one in the urn. (For other
kinds of inductive inferences, see Hawthorne 2021.)

Abductive Logical Rationality A third kind of logical
rationality, “abductive” logic, is sometimes also known as
“inference to the best explanation” or “circumstantial
evidence.” From observation  made at time , and from
a theory  that deductively or inductively entails , one
can abductively infer that  must have been the case at
earlier time . In other words,  is an explanation of why
you have observed . Of course, it is not necessarily a
good, much less the best, explanation, but the more
observations  explains, the better a theory it is. (But what
is a “theory”? We'll delve into that in Section 4.6. For now,
you can think of a theory as just a set of statements that
describe, explain, or predict some phenomenon.) Like
inductive inferences, abductive ones are not deductively
valid and do not guarantee the truth of their conclusion. In
fact, they have the following invalid(!) form, called the
Fallacy of Affirming the Consequent:

.



BoxII

Digression and Further Reading:  is the
“consequent” of the conditional statement ( ).
“Affirming”  as a premise thus “affirms the
consequent.” (We will come back to this in Section
4.8.1.) But if  is true and  is false, then both
premises are true, yet the conclusion ( ) is not.
For the origin of the term ‘abduction’ in the writings of
the American philosopher Charles Sanders Peirce
(pronounced like ‘purse’), see
http://commens.org/dictionary/term/abduction. For
more on abduction, see Douven 2021; Hobbs et al. 1993.

Non‐Monotonic Logical Rationality In AI, a fourth kind
of logical rationality is “non‐monotonic” reasoning, which is
arguably more “psychologically real” than the others. In
monotonic logics (such as deductive logics), once you have
proven that a conclusion  follows from a premise , you
can be assured that it will always so follow. But in non‐
monotonic logic, you might infer conclusion  from
premise  at time , but at later time , you might learn
additional information that entails . In that case, you
must revise your beliefs. For example, you might believe
that birds fly and that Tweety is a bird, from which you
might conclude that Tweety flies. But if you then learn that
Tweety is a penguin, you will need to revise your beliefs.

http://commens.org/dictionary/term/abduction


BoxII

Further Reading: A great deal of work on non‐
monotonic logics has been done by researchers in the
branch of AI called “knowledge representation”; see
Ginsberg 1987; Strasser and Antonelli 2019; and the
bibliography at http://www.cse.buffalo.edu/
∼rapaport/663/F08/nonmono.html.

2.5.2 Scientific Rationality

If philosophy is a search for truth by rational means, what
is the difference between philosophy and science? Is
philosophy worth doing? Or can science answer all of our
questions? Or perhaps science is philosophy! After all,
science is also a search for truth.
I would say that science is philosophy, as long as
experiments and empirical methods are considered
“rational” and yield truth. Physics and psychology, in fact,
used to be branches of philosophy: the full title of Isaac
Newton's Principia – the book that founded modern physics
– was “Mathematical Principles of Natural Philosophy”
(italics added), not “Mathematical Principles of Physics,”
and psychology split off from philosophy only at the turn of
the twentieth century. The philosophers Aristotle (384–
322 BCE, around 2400 years ago) and Kant (1724–1804,
around 250 years ago) wrote physics books. The physicists
Einstein and Mach wrote philosophy.
But scientific methodology is not (entirely) deductive; more
often, it is inductive or abductive. Thus, it yields
conclusions that may be only highly likely and are often the
best we can get. So, if experiments don't count as being

http://www.cse.buffalo.edu/~rapaport/663/F08/nonmono.html


rational, and only deductive logic counts, then science is
not philosophy. And science is also not philosophy, if
philosophy is considered to be the search for universal or
necessary truths: i.e. things that would be true no matter
what results science came up with or what fundamental
assumptions we made.
Turning the tables, we can ask whether philosophy is a
science! Could (should?) philosophy be more scientific (i.e.
experimental) than it is? McGinn (2012a) takes philosophy
to be a science (“a systematically organized body of
knowledge”), in particular what he dubs ‘ontical science’:
“the subject consists of the search for the essences of
things by means of a priori methods” (McGinn, 2012b). He
argues that philosophy is a science just like physics or
mathematics; it is the logical science of concepts (McGinn,
2015b, pp. 87–88). In a similar vein, the philosopher
Timothy Williamson (2020, pp. 4, 82) says, “Like
mathematics, philosophy is a non‐natural science. … As a
systematic, methodical form of inquiry, philosophy is a
science but not a natural science.” (In Chapter 3, we will
see that a similar claim has been made about computer
science.)
There is a relatively recent movement (with some older
antecedents) to have philosophers do scientific (mostly
psychological) experiments in order to find out, among
other things, what “ordinary” people (for example, people
who are not professional philosophers) believe about
certain philosophical topics.
But there is another way that philosophy can be part of a
scientific worldview. The “philosophy naturalized”
movement in contemporary philosophy (championed by the
philosopher Willard Van Orman Quine) sees philosophy as
being on a continuum with science, being aware of, and
making philosophical use of, scientific results. Rather than



being a passive, “armchair” discipline that merely analyzes
what others say and do, philosophy can – and probably
should – be a more active discipline, even helping to
contribute to science (and other disciplines that it thinks
about). It has certainly contributed to computer science:

In early 20th‐century logic, a question arose that was
both mathematical and philosophical: what does it mean
to have a ‘definite method’ for solving a mathematical
problem without need of creativity? To answer the
question, Alan Turing devised an abstract theory of
imaginary universal computing machines. Later, in an
attempt to break German codes during World War II, he
actually built such a machine. Its success helped defeat
Nazism. That was the origin of modern computers, which
have transformed our world. It is hard, or impossible, to
predict in advance what effect a philosophical idea will
have on history. (Williamson, 2020, p. 93)

Philosophers can also be more “practical” in the public
sphere: “The philosophers have only interpreted the world
in various ways; the point is to change it” (Marx, 1845).
(For more on this, see Section 5.6.)8

2.5.3 Computational Rationality

All of the above kinds of rationality seem to have one thing
in common: they are all “declarative.” That is, they are all
concerned with statements (or propositions) that are true
or false. But the philosopher Gilbert Ryle (1945, esp. p. 9)
has argued that there is another kind of rationality, one
that is “procedural” in nature: it has been summarized as
“knowing how” to do something, rather than “knowing
that” something is the case. Given the procedural nature of
computer programs, this suggests that another kind of
rationality might be “computational”:



a third, modern way of testing and establishing scientific
truth – in addition to theory and experiment – is via
simulations, the use of (often large) computers to mimic
nature. It is a synthetic universe in a computer. … If all
of the relevant physical laws are faithfully captured [in
the computer program] then one ends up with an
emulation – a perfect, The Matrix‐like replication of the
physical world in virtual reality. (Heng, 2014, p. 174)

One consideration that this raises is whether this is really a
third way or just a version of logical rationality, perhaps
extended to include computation as a kind of “logic.”9

BoxII

A Look Ahead: We will explore this kind of rationality
in more detail in Sections 3.6.1 and 3.16.3. We'll discuss
computational simulations in Section 14.2, and we'll
return to The Matrix in Section 19.7.

2.5.4 Is It Always Rational to Be

Rational?

Rationality is one of humanity's superpowers. How do we
keep from misusing it?
—Joshua Rothman (2021, p. 25, col. 3)

Is there anything to be said in favor of not being rational?
Suppose you are having trouble deciding between two
apparently equal choices. In the problem from medieval
philosophy known as “Buridan's Ass” (Zupko, 2018), a
donkey placed equidistant between two equally tempting
bales of hay died of starvation because it couldn't decide
between the two of them. My favorite way out of such a



quandary is to imagine tossing a coin and seeing how you
feel about how it lands: if it lands heads up, say, but you
get a sinking feeling when you see that (because you would
rather that it had landed tails up), then you know what you
would have preferred, even if you had “rationally” decided
that both choices were perfectly equally balanced.10

BoxII

Further Reading: See Andrew N. Carpenter's response
to the question “To what extent do philosophers/does
philosophy allow for instinct, or gut feelings?”
(http://www.askphilosophers.org/question/2992).

http://www.askphilosophers.org/question/2992


2.6 Philosophy as a Personal Search

… I'm not trying to change anyone's mind on this
question. I gave that up long ago. I'm simply trying to say
what I think is true.
—Galen Strawson (2012, p. 146)

[M]y purpose is to put my own intellectual home in order
….
—Hilary Putnam (2015)
“The philosophy of every thinker is the more or less
unconscious autobiography of its author,” Nietzsche
observed …
—Clancy Martin (2015)

So far, we have seen why philosophy is the search for truth
by rational means. Why do I say that it is a “personal”
search? The philosopher Hector‐Neri Castañeda said that
philosophy should be done “in the first person, for the first
person” (Rapaport, 2005a). So, philosophy is whatever I am
interested in, as long as I study it in a rational manner and
aim at truth.
There is another way in which philosophy must be a
personal search for truth. As one introductory book puts it,
“the object here is not to give answers … but to introduce
you to the problems in a very preliminary way so that you

can worry about them yourself” (Nagel, 1987, pp. 6–7, my
italics). The point is not to hope that someone else will tell
you the answers to your questions. That would be nice, of
course; but why should you believe them? The point,
rather, is for you to figure out answers for yourself.
It may be objected that your first‐person view on some
topic, no matter how well thought out, is, after all, just your



view. “Such an analysis can be of only parochial interest”
(Strevens, 2019) or might be seriously misleading
(Dennett, 2017, pp. 364–370). Another philosopher, Hilary
Kornblith, agrees:

I believe that the first‐person perspective is just one
perspective among many, and it is wholly undeserving of
the special place which these philosophers would give it.
More than this, this perspective is one which
fundamentally distorts our view of crucial features of our
epistemic situation. Far from lauding the first‐person
perspective, we should seek to overcome its defects.
(Kornblith, 2013, p. 126)

But recall another important feature of philosophy: it is a
conversation. And if you want to contribute to that
conversation, you will have to take others' views into
account, and you will have to allow others to make you
think harder about your own views.
Psychologist William G. Perry, Jr. (1970, 1981) called the
desire for an “Authority” to give you the right answers to
all questions the “Dualistic” stance toward knowledge. But
the Dualist soon realizes that not all questions have
answers that everyone agrees with, and some questions
don't seem to have answers at all (at least, not yet).
Rather than stagnating in a middle stance of “Multiplism”
(a position that says because not all questions have
answers, multiple opinions – proposed answers – are all
equally good), a further stance is that of “Contextual
Relativism”: all proposed answers or opinions can (should!)
be considered – and evaluated! – relative to and in the

context of assumptions, reasons, or evidence that can
support them. This is where philosophy as a rational search
for truth comes in.



And the personal nature of philosophy appears when you
“Commit” to one of these answers and you become
responsible for defending your commitment against
“Challenges.” (This, of course, is [just] more thinking and
analysis – more philosophizing.) That commitment,
however, is a personal one: the computer scientist
Richard W. Hamming's warning about science and
mathematics also holds for philosophy: “we do not appeal
to authority, but rather you are responsible for what you

believe” (Hamming, 1998, p. 650).
It is in this way that philosophy is done “in the first person,
for the first person,” as Castañeda said.

BoxII

Further Reading: For more on Perry's theory, see
https://cse.buffalo.edu/∼rapaport/perry-positions.html.
See also the answer to a question about deciding which
of your own opinions to really believe, at
http://www.askphilosophers.org/question/5563.

https://cse.buffalo.edu/~rapaport/perry-positions.html
http://www.askphilosophers.org/question/5563


2.7 Philosophies of Anything and

Everything

One of the things about philosophy is that you don't have
to give up on any other field. Whatever field there is,
there's a corresponding field of philosophy. … All the
things I wanted to know about I could still study within a
philosophical framework.
—Rebecca Newberger Goldstein, cited in Reese 2014b

[He] is a philosopher, so he's interested in everything …
—David Chalmers (describing the philosopher Andy
Clark), as cited in Cane 2014
It is not really possible to regret being a philosopher if
you have a theoretical (rather than practical or
experiential) orientation to the world, because there are
no boundaries to the theoretical scope of philosophy. For
all X, there is a philosophy of X, which involves the
theoretical investigation into the nature of X. There is
philosophy of mind, philosophy of literature, of sport, of
race, of ethics, of mathematics, of science in general, of
specific sciences such as physics, chemistry and biology;
there is logic and ethics and aesthetics and philosophy of
history and history of philosophy. I can read Plato and
Aristotle and Galileo and Newton and Leibniz and
Darwin and Einstein and John Bell and just be doing my
job. I could get fed up with all that and read Eco and
Foucault and Aristophanes and Shakespeare for a
change and still do perfectly good philosophy.
—Tim Maudlin, cited in Horgan 2018

Our final question concerns the scope of philosophy.
Philosophy studies things that are not studied by any single



discipline, the “Big Questions”: What is truth? What is
beauty? What is good (or just, or moral, or right)? What is
the meaning of life? What is the nature of mind? Or, as the
philosopher Jim Holt put it: “Broadly speaking, philosophy
has three concerns: how the world hangs together, how our
beliefs can be justified, and how to live” (Holt, 2009). The
first of these is metaphysics, the second is epistemology,
and the third is ethics.
Metaphysics tries to “understand the nature of reality in
the broadest sense: what kinds of things and facts
ultimately constitute everything there is” (Nagel, 2016,
p. 77). It tries to answer the question “What is there?” (and
also the question “Why is there anything at all?”).
Here are some computationally relevant metaphysical
issues: Do computer programs that deal with, say, student
records model students? Or are they just dealing with 0s
and 1s? (We'll discuss this in Section 13.2.3.) And, on
perhaps a more fanciful level, could a computer program
model students so well that the “virtual” students in the
program believed that they were real? (If this sounds like
the film The Matrix, see Section 19.7.)
Ontology is the branch of metaphysics concerned with the
objects and kinds of objects that exist according to one's
metaphysical (or even physical) theory, their properties,
and their relations to each other (such as whether some of
them are “sub‐kinds” of others, inheriting their properties
and relations from their “super‐kinds”). Ontology is studied
both by philosophers and by computer scientists. In
software engineering, “object‐oriented” programming
languages are more focused on the kinds of objects that a
program must deal with than with the instructions that
describe their behavior. In AI, ontology is a branch of
knowledge representation that tries to categorize the



objects that a knowledge‐representation theory is
concerned with.11

Epistemology is the study of knowledge and belief:

Epistemology is concerned with the question of how,
since we live, so to speak, inside our heads, we acquire
knowledge of what there is outside our heads. (Simon,
1996a, p. 162)

How do we know what there is? How do we know that
there is anything? What is knowledge (and belief)? Are
there other kinds of knowledge, such as knowing how to do
something (see Section 3.16.3)? Can a computer (or a
robot) be said to have beliefs or knowledge? The branch of
AI called “knowledge representation ” applies philosophical
results in epistemology to issues in AI and computer
science in general, and it has contributed many results to
philosophy as well.12

Ethics tries to answer “What is good?” and “What ought
we to do?” We'll look at some ethical issues arising from
computer science in Chapters 17 and 19.
But the main branches of philosophy go beyond these “big
three”:
Aesthetics (or the philosophy of art) tries to answer
“What is beauty?” and “What is art?” On whether computer
programs, like mathematical theorems or proofs, can be
“beautiful,” see Section 3.16.1.
Logic is the study of good reasoning: What is truth? What
is rationality? Which arguments are good ones? Can logic
be computationally automated? (Recall our discussion in
Section 2.5.)
And of central interest for the philosophy of computer
science, there are numerous “philosophies of”:



Philosophy of language tries to answer “What is
language?” and “What is meaning?” It has large overlaps
with linguistics and with cognitive science (including AI
and computational linguistics).
Philosophy of mind tries to answer “What is ‘the’ mind?”
and “How is it related to the brain?” In Section 12.6, we'll
say more about this “mind‐body problem” and its relation
to the software‐hardware distinction. The philosophy of
mind also investigates whether computers can think (or be
said to think), and it has close ties with cognitive science
and AI, issues that we will take up in Chapter 18.
Philosophy of science tries to answer “What is science?”
“What is a scientific theory?” and “What is a scientific

explanation?” The philosophy of computer science is part of
the philosophy of science. (We will look at the philosophy of
science in Chapter 4.)
In general, for any X, there can be a philosophy of X:
the philosophical investigation of the fundamental
assumptions, methods, and goals of  (including
metaphysical, epistemological, and ethical issues).  can
be anything: biology, education, history, law, physics,
psychology, religion, etc., including, of course, AI and
computer science. The possibility of a philosophy of X for

any X is the main reason philosophy is the rational search

for truth in any field. Philosophy in general, and especially
the philosophy of , are “meta‐disciplines”: in a discipline 

, you think about  (in the discipline of mathematics,
you think about mathematics); but in the philosophy of ,
you think about thinking about X. Even those subjects that
might be purely philosophical (metaphysics, epistemology,
and ethics) have strong links to disciplines like physics,
psychology, and political science, among others.



, by the way, could also be … philosophy! The philosophy
of philosophy, also known as “metaphilosophy,” is
exemplified by this very chapter, which is an investigation
into what philosophy is and how it can be done. Some
people might think the philosophy of philosophy is the
height of “gazing at your navel,” but it's really what's
involved when you think about thinking – and after all, isn't
AI just computational thinking about thinking?
Are there any topics that philosophy doesn't touch on? I'm
sure there are some topics that philosophy hasn't touched
on. But I'm equally sure there are no topics that philosophy
couldn't touch on.13



2.8 Philosophy and Computer Science

[I]f there remain any philosophers who are not familiar
with some of the main developments in artificial
intelligence, it will be fair to accuse them of professional
incompetence, and that to teach courses in philosophy of
mind, epistemology, aesthetics, philosophy of science,
philosophy of language, ethics, metaphysics, and other
main areas of philosophy, without discussing the relevant
aspects of artificial intelligence will be as irresponsible
as giving a degree course in physics which includes no
quantum theory.
—Aaron Sloman (1978, Section 1.2, p. 3)

The previous passage is what convinced me to take some
time off from being a philosopher to learn some AI.
Philosophy and computer science overlap not only in some
topics of common interest (logic, philosophy of mind,
philosophy of language, etc.) but also in methodology: the
ability to find counterexamples; refining problems into
smaller, more manageable ones; seeing implications;
methods of formal logic; etc. (For more philosophical
influences on AI, see McCarthy 1959; McCarthy and Hayes
1969.)
In the next chapter, we'll begin our philosophical
investigation into computer science.



2.9 Appendix: Argument Analysis and

Evaluation

2.9.1 Introduction

In Section 2.2, I said that the methodology of philosophy
involved “rational means” for seeking truth; and in Section
2.5, we looked at different kinds of rational methods. In this
appendix, we'll look more closely at one of those methods –
argument analysis and evaluation – which you will be able to
practice if you do the exercises in the Online Resources.
Perhaps more importantly for some readers, argument
analysis is a topic in Computing Curricula 2020
(https://www.acm.org/binaries/content/assets/education/cu
rricula-recommendations/cc2020.pdf).
Unless you are gullible – willing to believe everything you
read or anything that an authority figure tells you – you
should want to know why you should believe something that
you read or something that you are told. Let's consider how
you might go about doing this.

2.9.2 A Question‐Answer Game

Consider two players,  and , in a question‐answer
game:

Step 1.  asks whether  is true.
Step 2.  responds: “ , because  and .”

Player  has given an argument for conclusion  with
reasons (also called ‘premises’)  and . Note, by the
way, that this use of the word ‘argument’ has nothing
directly to do with the kind of fighting argument that you
might have with your roommate; rather, it's more like the

http://www.cse.buffalo.edu/~rapaport/OR/A1positionpapers-wiley.html
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2020.pdf


legal arguments that lawyers present to a jury. For the sake
of simplicity, I'm assuming that  gives only two reasons
for believing . In a real case, there might be only one
reason (for example, Fred is a computer scientist; therefore,
someone is a computer scientist), or there might be more
than two reasons (for examples, see any of the arguments
for analysis and evaluation in the Online Resources).

Step 3. To be rational,  should analyze or “verify” 
's arguments.  can do this by asking three questions:

(a) Do I believe ? (That is, do I agree with it?)
(b) Do I believe ? (That is, do I agree with it?)
(c) Does  follow validly from  and ?

Strictly speaking, when you're analyzing an argument, you
need to say, for each premise, whether it is or is not true.
But sometimes you don't know; after all, truth is not a
matter of logic, but of correspondence with reality (Section
2.3.1): a sentence is true if and only if it correctly describes
some part of the world. Whether or not you know the truth‐
value of a statement, you usually have some idea of whether
you believe it. Because you can't always or easily tell
whether a sentence is true, we can relax this a bit and say
that sentences can be such that either you agree with them
or you don't. So, when analyzing an argument, you can say
either “This statement is true (or false)” or (more
cautiously) “I think that this statement is true (or false),” or
“I believe (or don't believe) this statement,” or “I agree (or
don't agree) with it.” (Of course, you should also say why

you do or don't agree!) Steps 3a and 3b are “recursive” (see
Section 2.9.4): that is, for each reason ,  could play
another instance of the game, asking  (or someone else!)
whether  is true.  (or the other person) could then give
an argument for conclusion  with new premises  and 
. Clearly, this process could continue. (Recall Section 2.4.2!)

http://www.cse.buffalo.edu/~rapaport/OR/A1positionpapers-wiley.html


To ask whether  follows “validly” from the premises is to
assume that 's argument is a deductive one. For the sake
of simplicity, all (or at least most) of the arguments in the
Online Resources are deductive. But in real life, most
arguments are not completely deductive, or not deductive at
all. So, more generally, in Step 3c,  should ask whether 

 follows rationally from the premises: if it does not follow
deductively, does it follow inductively? Abductively? And so
on.
Unlike Steps 3a and 3b for considering the truth value of
the premises, Step 3c – determining whether the relation

between the premises of an argument and its conclusion is a
rational one – is not similarly recursive, on pain of infinite
regress.

BoxII

Further Reading: The classical source of this
observation is due to Lewis Carroll (of Alice in

Wonderland fame). Carroll was a logician by profession
and wrote a classic philosophy essay on this topic,
involving Achilles and the Tortoise (Carroll, 1895).

Finally, it should be pointed out that the order of doing
these steps is irrelevant.  could first analyze the validity
(or rationality) of the argument and then analyze the truth
value of the premises (i.e. decide whether to agree with
them), rather than the other way round.

Step 4. Having analyzed 's argument,  now has to
evaluate it, by reasoning in one of the following ways;



This process of argument analysis and evaluation is
summarized in the flowchart in Figure 2.1.

2.9.3 Missing Premises

One of the trickiest parts of argument analysis can be
identifying missing premises. Often this is tricky because
the missing premise seems so “obvious” that you're not even
aware that it's missing. But equally often, it's the missing
premise that can make or break an argument.
Here's an example from the “Textual Entailment Challenge,”
a competition for computational‐linguistics researchers
interested in knowledge representation and information
extraction (Dagan et al., 2006; Bar‐Haim et al., 2006;



Giampiccolo et al., 2007). (We'll see real‐life examples in
Sections 3.5, 3.15.2, and 5.5.2.) In a typical challenge, a
system is given one or two premises and a conclusion, and
then it is asked to determine whether the conclusion follows
from the premise. And “follows” is taken fairly liberally to
include all kinds of non‐deductive inference.
Here is an example:

Premise 1 (P):

Bountiful arrived after war's end, sailing into San
Francisco Bay 21 August 1945.

Premise 2:

Bountiful was then assigned as hospital ship at
Yokosuka, Japan, departing San Francisco 1 November
1945.

Conclusion (C): Bountiful reached San Francisco in
August 1945.



Figure 2.1 How to evaluate an argument from premises 
and  to conclusion . The symbol ‘ ’ should be read:
“Does there exist.”

Source: Flowchart by Tom Fadial.



The idea is that the two premises might be sentences from a
news article, and the conclusion is something that a typical
reader of the article might be expected to understand from
reading it.
I hope you can agree that this conclusion does, indeed,
follow from these premises. In fact, it follows from
Premise 1 alone. In this case, Premise 2 is a “distractor.”
But what logical rule of inference allows us to infer  from 

?
 talks of “arrival” and “sailing into,” but  talks only

of “reaching.”
 talks of “San Francisco Bay,” but  talks only of

“San Francisco.”
There are no logical rules that connect these concepts. Most
people, I suspect, would think no such rules would be
needed. After all, isn't it “obvious” that, if you arrive
somewhere, then you have reached it? And isn't it “obvious”
that San Francisco Bay must be in San Francisco?
Well, maybe. But whereas people might know these things,
computers won't, unless we tell them. In other words,
computers need some lexical information and some simple
geographical information. (Instead of telling the computer
these additional facts, we might tell the computer how to
find them.) So, we need to supply some extra premises that
link  with  more closely. These are the “missing
premises.” The argument from  to  is called an
‘enthymeme,’ because the missing premises are “in” (Greek
‘en‐’) the arguer's “mind” (Greek ‘thymos’).
We might flesh out the argument as follows (there are other
ways to do it):



( )  Bountiful arrived after war's end, sailing into San
Francisco Bay
21 August 1945.
( )  If something sails into a place, then it arrives at that
place.
( )   Bountiful arrived at San Francisco Bay 21 August
1945.

In this first step, I've added a missing premise, , and
derived an intermediate conclusion . Hopefully, you agree
that  follows validly (or at least logically in some way, i.e.
rationally) from  and .
We have no way of knowing whether  is true and must, for
the sake of the argument, simply assume that it is true.
(Well, we could look it up, I suppose; but we're not
investigating whether the argument is “sound” (see Section
2.9.4), only if it is “valid”: does  follow from ?)

, on the other hand, doesn't have to be accepted; after
all, we are imposing it on the (unknown) author of the
argument. So, we had better impose something that is likely
to be true.  is offered as part of the meaning of “sail into.”
I won't defend its truth any further here, but if you think it's
not true, then you should either reject the argument or find
a better missing premise.
We might have chosen another missing premise:

( )  If something arrives in a place named ‘  Bay,’
then it arrives at a place named ‘ .’
( )   Bountiful arrived at San Francisco 21 August
1945.

 will follow from  and , but is  true? Can you think
of any bays named ‘  Bay’ that are not located in a place



named ‘ ’? If you can, then we can't use . Let's assume
the worst: then we'll need something more specific, such as:

( )  If something arrives in San Francisco Bay,
then it arrives at San Francisco.

 will follow from  and , and we can easily check the
likely truth of  by looking at a map.
So far, so good. We've now got Bountiful arriving at San
Francisco 21 August 1945. But what we need is Bountiful
“reaching” San Francisco “in” August 1945. So let's add

( )  If something arrives somewhere, then it reaches
that place.

Again, this is proposed as an explication of part of the
meaning of ‘arrive,’ and, in particular, of that part of its
meaning that connects it to .
From  and , we can infer

( )  Bountiful reached San Francisco 21 August 1945.

Are we done? Does  = ? Look at them:

( )  Bountiful reached San Francisco 21 August 1945.
( )    Bountiful reached San Francisco in August 1945.

Think like a computer! . But does  imply ? It
will, if we supply one more missing premise:

( )  If something occurs (on) DATE MONTH YEAR,
then it occurs in MONTH YEAR.

And that's true by virtue of the way (some) people talk. So,
from  and , we can infer  .
The simple argument we started with, ignoring its irrelevant
premise, becomes this rather more elaborate one:



( )  Bountiful arrived after war's end, sailing into San
Francisco Bay
21 August 1945.
( )  If something sails into a place, then it arrives at that
place.
( )   Bountiful arrived at San Francisco Bay 21 August
1945.
( )  If something arrives in a place named ‘  Bay,’
then it arrives at a place named ‘ .’
(or ( )  If something arrives in San Francisco Bay,
then it arrives at San Francisco.)
( )   Bountiful arrived at San Francisco 21 August
1945.
( )  If something arrives somewhere, then it reaches
that place.
( )   Bountiful reached San Francisco 21 August 1945.
( )  If something occurs (on) DATE MONTH YEAR,

then it occurs in MONTH YEAR.
( )   Bountiful reached San Francisco in August 1945.

2.9.4 When Is an Argument a “Good”

Argument?

As we have seen,  needs to do two things to analyze and
evaluate an argument:

1. decide whether the premises are true (i.e. decide
whether to agree with, or believe, the premises), and

2. decide whether the inference (i.e. the reasoning) from
the premises to the conclusion is a valid one.



That is, there are two separate conditions for the
“goodness” of an argument:

1. Factual goodness: are the premises true? (Or do you
believe them?)

2. Logical goodness: is the inference valid? (Or at least
rational in some way?)

Factual goodness – truth – is beyond the scope of logic,
although it is definitely not beyond the scope of deciding
whether to accept the conclusion of an argument. As we saw
in Section 2.3, there are several ways of defining ‘truth’ and
determining whether a premise is true. Two of the most
obvious (although not the simplest to apply!) are
(1) constructing a (good!) argument for a premise whose
truth value is in question and (2) making an empirical
investigation to determine its truth value (for instance,
performing some scientific experiments or doing some kind
of scholarly research).
Logical goodness (for deductive arguments) is called
‘validity.’ I will define this in a moment. But for now, note
that these two conditions must both obtain for an argument
to be “really good”; a “really good” argument is said to be
“sound”:

An argument is sound if and only if it is both valid and
“factually good”: i.e. if and only if both it is valid and all of
its premises really are true.

Just to drive this point home, if the premises and conclusion
of an argument are all true (or if you believe all of them),
that by itself does not make the argument sound (“really
good”). For one thing, your belief in the truth of the
premises might be mistaken. But more importantly, the
argument might not be valid.
And if an argument is valid – even if you have doubts about
some of the premises – that by itself does not make the



argument sound (“really good”). All of its premises also
need to be true; i.e. it needs to be factually good.
So, what does it mean for a (deductive) argument to be
“valid”?

An argument is valid if and only if it is necessarily “truth‐
preserving.”

Here's another way to put it:

And here's still another way to say the same thing:

Note that this has nothing to do with whether any of the
premises actually are true or false; it's a “what if” kind of
situation. Validity only requires that, if the premises were to

be true, then the conclusion would preserve that truth – it
would “inherit” that truth from the premises – and so it
would also (have to) be true.
So you can have an argument with false premises and a
false conclusion that is invalid, and you can have one with
false premises and a false conclusion that is valid. Here's a
valid one:

All cats are fish.
All fish can fly.

 All cats can fly.



In this case, everything's false, but the argument is valid

because it has the form

All s are s.
All s are s.

 All s are s.
and there's no way for a  to be a , and a  to be an ,
without having the  be an . That is, it's impossible that
the premises are true while the conclusion is false.
Here's an invalid one, also with false premises and
conclusion:

All cats are fish.
All cats can fly.

 All fish can fly.

Again, everything's false. However, the argument is invalid

because it has the form

All s are s.
All s are s.

 All s are s.

and arguments of this form can have true premises with
false conclusions. Here is an example:

All cats are mammals.
All cats purr.

 All mammals purr.

So, it's possible for an argument of this form to have true
premises and a false conclusion; hence, it's not valid.
To repeat: validity has nothing to do with the actual truth or
falsity of the premises or conclusion. It only has to do with



the relationship of the conclusion to the premises.
Recall that an argument is sound iff it is valid and all of its
premises are true. Therefore, an argument is unsound iff
either it is invalid or at least one premise is false (or both).
An unsound argument can be valid!
One more point: an argument with inconsistent premises
(i.e. premises that contradict each other) is always valid(!)
because it's impossible for it to have all true premises with a
false conclusion, and that's because it's impossible for it to
have all true premises, period. Of course, such an argument
cannot be sound. (The argument that Bertrand Russell is the
Pope that we saw in Section 2.5.1 is an example of this.)
All of this is fine as far as it goes, but it isn't very helpful in
deciding whether an argument really is valid. How can you
tell if an argument is truth‐preserving? There is a simple,
recursive definition, but to state it, we'll need to be a bit
more precise in how we define an argument.

Definition 1 An argument from propositions to

conclusion  14 a sequence of propositions 
, where  is alleged to follow logically from

the .

Definition 2 An argument  is valid if and only
if each proposition  and conclusion  is either:

(a) a tautology

(b) a premise

(c) or follows validly from previous propositions in the
sequence by one or
more truth‐preserving “rules of inference.”

This needs some commenting!



(a) First, a tautology is a proposition that must always be

true. How can that be? Most tautologies are (uninformative)
“logical truths” such as ‘Either  or not‐ ’ or ‘If , then 
.’ Note that if  is true (or if you believe ), then ‘Either 
or not‐ ’ has to be true (or you are logically obligated to
also believe ‘Either  or not‐ ’); and if  is false, then not‐

 is true, so ‘Either  or not‐ ’ still has to be true (or you
are logically obligated to also believe ‘Either  or not‐ ’).
So, in either case, the disjunction has to be true (or you are
logically obligated to believe it). Similar considerations hold
for ‘If , then .’ Sometimes statements of mathematics
are also considered tautologies. (Whether they are
“informative” or not is an interesting philosophical puzzle;
see Wittgenstein, 1921.)
(b) Second, a premise is one of the initial reasons given for 

 or one of the missing premises added later. Premises, of
course, need not be true, but when evaluating an argument
for validity, we must assume that they are true “for the sake
of the argument.” Of course, if a premise is false, then the
argument is unsound.
Third, clause (c) of Definition 2 might look circular, but it
isn't; rather, it's recursive. A “recursive” definition begins
with “base” cases that give explicit examples of the concept
being defined and then “recursive” cases that define new
occurrences of the concept in terms of previously defined
ones. In fact, this entire definition is recursive. The base
cases of the recursion are the first two clauses: tautologies
must be true, and premises are assumed to be true. The
recursive case consists of “rules of inference,” which are
argument forms that are clearly valid (truth‐preserving)
when analyzed by means of truth tables. (We'll say a lot
more about recursion in Chapter 7.)
So, what are these “primitive” valid argument forms known
as ‘rules of inference’? The most famous is called ‘Modus



Ponens’ (or ‘→‐elimination’):

From 
and ‘If , then ,’
you may validly infer .

Why may you validly infer ? Consider the truth table for ‘If
, then ’:

If , then 
true true true
true false false

false true true
false false true

This says that the conditional proposition “If , then ” is
false in only one circumstance (the boldfaced line of the
truth table): when its “antecedent” ( ) is true and its
“consequent” ( ) is false. In all other circumstances, the
conditional proposition is true. So, if the antecedent of a
conditional is true, and the conditional itself is true, then its
consequent must also be true. (Look at the first line of the
truth table.) Modus Ponens preserves truth.
Another important rule of inference is called ‘Universal
Instantiation’ (or ‘Universal‐Quantifier Elimination’):

From ‘For all , ’ (i.e. for all ,  has property ),
you may validly infer , for any individual  in the
“domain of discourse” (i.e. in the set of things that you
are talking about).

A truth‐table analysis won't help here because this is a rule
of inference for “first‐order predicate logic,” not for
“propositional logic.” The formal definition of truth for first‐
order predicate logic is beyond our scope, but it should be
pretty obvious that if it is true that everything in the domain



of discourse has some property , then it must also be true
that any particular thing in the domain (say, ) has that
property. (For more rules of inference and for the formal
definition of truth in first‐order predicate logic, see any
good introductory logic text or the Further Reading on the
correspondence theory of truth, in Section 2.3.1.)
There are, however, a few terminological points to keep in
mind:

Sentences can only be true or false

(or you can agree or disagree with them).
Arguments (which are sequences of sentences) can be
valid or invalid, and they can be sound or unsound.
Conclusions of arguments (which are sentences) can
follow validly or not follow validly from the premises of
an argument.

Therefore:
Sentences (including premises and conclusions) cannot

be valid, invalid, sound, or unsound (because they are
not arguments).
Arguments cannot be true or false (because they are not
sentences).

2.9.5 Examples of Good and Bad

Arguments

There is only one way to have a sound argument: it must be
valid and have only true premises. But there are lots of ways
to have invalid arguments! More importantly, it is possible
to have an invalid argument whose conclusion is true!
Here's an example:

All birds fly. (true)



Tweety the canary flies.    (true)
Therefore, Tweety is a bird. (true)

This is invalid, even though both of the premises as well as
the conclusion are true (but see Section 18.3.3!): it is
invalid because an argument with the same form can have
true premises and a false conclusion. Here is the form of
that argument:

In English, this argument's form is

For all , if  has property , then  has property .
 has property , and  has property .
  has property .

That is,

For all , if  is a bird, then  flies.
Tweety is a canary, and Tweety flies.
Therefore, Tweety is a bird.

Here's a counterexample – i.e. an argument with this form
that has true premises but a false conclusion:

All birds fly. (true)
Bob the bat flies.          (true)
Therefore, Bob is a bird. (false)

Just having a true conclusion doesn't make an argument
valid. And such an argument doesn't prove its conclusion
(even though the conclusion is true).



At the end of this chapter is a collection of valid (V),
invalid (I), sound (S), and unsound (U) arguments with
different combinations of true (T) and false (F) premises
and conclusions. Make sure you understand why each is
valid, invalid, sound, or unsound.

2.9.6 Summary

To analyze an argument, you must identify its premises and
conclusion and supply any missing premises to help make it
valid. To evaluate the argument, you should then determine
whether it is valid (i.e. truth preserving) and decide
whether you agree with its premises.
If you agree with the premises of a valid argument, then you
are logically obligated to believe its conclusion. If you don't
believe its conclusion, even after your analysis and
evaluation, then you need to revisit both your evaluation of
its validity (maybe you erred in determining its validity) as
well as your agreement with its premises: if you really
disagree with the conclusion of a valid argument, then you
must (logically) disagree with at least one of its premises.
You should be sure to use the technical terms correctly: you
need to distinguish between premises – which can be true

or false (but cannot be “valid,” “invalid,” “sound,” or
“unsound”) – and arguments – which can be valid (if the
argument's conclusion must be true whenever its premises
are true), invalid (i.e. not valid; the argument's conclusion
could be false even if its premises are true), sound (if the
argument is valid and all of its premises are true), or
unsound (i.e. not sound: either invalid or else valid‐with‐at‐
least‐one‐false‐premise) (but cannot be “true” or “false”).
And you should avoid using such non‐technical (hence
ambiguous) terms as ‘correct,’ ‘incorrect,’ ‘right,’ or
‘wrong.’ You also have to be careful about calling a



conclusion “valid,” because that's ambiguous between
meaning you think it's true (and are misusing the word
‘valid’) and meaning you think it follows validly from the
premises.
Perhaps most importantly, keep in mind that often the point
of argumentation is not to convince someone of your
position (something that rarely happens, no matter how
rational we think we are) but to help the other person think
through the issues.

A (1) All pianists are musicians. T
(2) Lang Lang is a pianist. T V S
(3)  Lang Lang is a musician. T

B (1) All pianists are musicians. T
(2) Lang Lang is a musician. T I U
(3)  Lang Lang is a pianist. T

C (1) All musicians are pianists. F
(2) The violinist Itzhak Perlman is a musician. T V U
(3)  Itzhak Perlman is a pianist. F

D (1) All musicians are pianists. F
(2) Itzhak Perlman is a violinist. T I U
(3)  Itzhak Perlman is a pianist. F

E (1) All cats are dogs. F
(2) All dogs are mammals. T V U
(3)  All cats are mammals. T

F (1) All cats are dogs. F
(2) All cats are mammals. T I U
(3)  All dogs are mammals. T

G (1) All cats are dogs. F
(2) Snoopy is a cat. F V U



(3)  Snoopy is a dog. T
H (1) All cats are birds. F

(2) Snoopy is a cat. F I U
(3)  Snoopy is a dog. T

I (1) All cats are birds. F
(2) All birds are dogs. F V U
(3)  All cats are dogs. F

J (1) All cats are birds. F
(2) All dogs are birds. F I U
(3)  All cats are dogs. F

K (1) All cats are mammals. T
(2) All dogs are mammals. T I U
(3)  All cats are dogs. F



Notes

1 ‘BCE’ is the abbreviation for ‘before the common
era’; i.e. BCE years are the “negative” years before
the year 1, which is known as the year 1 CE (for
“common era”).

2 See the Online Resources for further reading on the
nature of philosophy .

3 See the Online Resources for further reading on
theories of truth.

4 Famously paraphrased by Albert Einstein (1940,
p. 492); see O'Toole, 2021b.

5 See Sections 2.5.1, 2.9, and 15.2.1.

6 See the Online Resources for further reading on
progress in philosophy and in science .

7 See http://www.askphilosophers.org/question/5572.

8 See the Online Resources for further reading on
experimental philosophy, naturalistic philosophy, and
science vs. philosophy.

9 See the Online Resources for further reading on
knowing how vs. knowing that.

10 See the Online Resources for further reading on the
limits of rationality .

11 See the Online Resources for further reading on
existence and ontology .

12 See the Online Resources for further reading on
knowledge representation.

https://cse.buffalo.edu/~rapaport/OR/A0fr02.html#2.2
https://cse.buffalo.edu/~rapaport/OR/A0fr02.html#2.3
https://cse.buffalo.edu/~rapaport/OR/A0fr02.html#2.4.3
http://www.askphilosophers.org/question/5572
https://cse.buffalo.edu/~rapaport/OR/A0fr02.html#2.5.2
https://cse.buffalo.edu/~rapaport/OR/A0fr02.html#2.5.3
https://cse.buffalo.edu/~rapaport/OR/A0fr02.html#2.5.4
https://cse.buffalo.edu/~rapaport/OR/A0fr02.html#2.7
https://cse.buffalo.edu/~rapaport/OR/A0fr02.html#2.7


13 See the Online Resources for further reading on
philosophy in general.

14 This symbol means “is by definition.”

https://cse.buffalo.edu/~rapaport/OR/A0fr02.html#2.2


Part II 

Computer Science,

Computers, and

Computation

Part II begins our exploration of the philosophy of
computer science by looking at what computer science is

(Chapter 3). For computer science to be considered either
as a science or as a branch of engineering, we need to
know what science is (Chapter 4) and what engineering

is (Chapter 5). If computer science is a study of computers,
then we need to know what a computer is (Chapters 6
and 9). And if computer science is a study of computation,
then we need to know what an algorithm is (Chapters 7
and 8).



3 

What Is Computer Science?
1

Thanks to those of you who [gave their own] faculty
introductions [to the new graduate students]. For those
who [weren't able to attend], I described your work and
courses myself, and then explained via the Reductionist
Thesis how it all comes down to strings and Turing

machines operating on them.
—Kenneth Regan, email to University at Buffalo
Computer Science & Engineering faculty (27 August
2004); italics added.
The Holy Grail of computer science is to capture the
messy complexity of the natural world and express it
algorithmically.
—Teresa Marrin Nakra, quoted in Davidson, 2006, p. 66.



3.1 Introduction

To define any scholarly discipline is a formidable task.
—Anthony Ralston (1971, p. 1)

The fundamental question of this book is, what is

computer science? Almost all of the other questions we
will be considering flow from this one. (Is it a science? Is it
the science of computers? What is science? What is a
computer? And so on.) In this chapter, we will look at
several definitions of ‘computer science.’ Each definition
raises issues that we will examine in more detail later, so a
final answer (if there is one!) will have to await the end of
the book (Chapter 20). Before we try to answer our
“fundamental” question, it's worth asking some preliminary
ones: What should this discipline be called? Why should we
even bother seeking a definition? What does it mean to give
a definition or to ask what something is?2



3.2 Naming the Discipline

When our discipline was newborn, there was the usual
perplexity as to its proper name.
—Frederick P. Brooks (1996, p. 61)

Should we call the discipline ‘computer science’ (which
seems to assume that it is the science of a certain kind of
machine), or ‘computer engineering’ (which seems to
assume that it is not a science but a branch of
engineering), or ‘computing science’ (which seems to
assume that it is the science of what those machines do), or
‘informatics’ (a name more common in Europe), or
something else altogether?
Until we have an answer to our question, think of the
subject as being called by a 15‐letter word
‘computerscience’ that may have as little to do with
computers or science as ‘cattle’ has to do with cats. To save
space and to suppress presuppositions, I'll often just refer
to it as “CS.”3



3.3 Why Ask What CS Is?

Let's now turn to the question of why we might want a
definition. There are at least two kinds of motivations,
academic ones and philosophical ones. And among the
academic motivations, there are political, pedagogical, and
publicity ones.

Academic Politics

Here is an academic political reason for asking what CS is:
where should a CS department be administratively housed?

Intellectually, this might not matter: after all, a small
school might not even have academic departments, merely
teachers of various subjects. But deciding where to place a
CS department can have political repercussions:

In a purely intellectual sense such jurisdictional
questions are sterile and a waste of time. On the other
hand, they have great importance within the framework
of institutionalized science – e.g., the organization of
universities and of the granting arms of foundations and
the Federal Government. (Forsythe, 1967b, p. 455)

Sometimes a department is housed in a particular school or
college4 only because it is hoped that it will get better
treatment there (more funding, more resources), or only
because it is forced to be there by the administration. It
may have very little, if any, academic or intellectual reason
for being housed where it is. Some possible locations for CS
include

A college or school of arts and sciences, which
typically includes other departments in the humanities,
social sciences, and natural sciences



A college or school of engineering, which typically
includes disciplines such as chemical engineering,
electrical engineering, mechanical engineering, etc.
A college or school of informatics, which might also
include disciplines such as communications, library
science, etc.

Another possibility is that CS should not be (merely) a
department but an entire school or college itself, with its
own dean, and perhaps with its own departments.

Academic Pedagogy

Perhaps a more important academic purpose for asking
what CS is concerns pedagogy: what should be taught in an

introductory CS course?

Should it be a programming course? That is, is CS the
study of programming? Or, worse, should students be led to
think that's what it is? I don't know any computer scientists
who think CS is just the study of programming (Denning et
al., 2017), but the typical introductory course tends to lead
students (and the general public) to think so.
Should it be a computer literacy course? That is, is CS all
about how to use computers?
Should it be a course in the mathematical theory of

computation? That is, is CS the study of computation?
Should it be a course that introduces students to several
different branches of CS, including, perhaps, some of its
history?
And so on.

Academic Publicity



A related part of the academic purpose for asking the
question concerns publicity for prospective students and

the general public: How should a CS department
characterize itself so as to attract good students? How
should the discipline of CS characterize itself so as to
encourage primary‐ or secondary‐school students to
consider it as something to study in college or to consider it
as an occupation? (For more motivations along these lines,
see Denning, 2013, p. 35.) How should the discipline
characterize itself so as to attract more women and
minorities to the field? How should it characterize itself to
the public at large so that ordinary citizens might have a
better understanding of CS?

Philosophical Motivations

Perhaps the academic (and especially political) motivations
for asking what CS is are ultimately of little more than
practical interest. But deep intellectual or philosophical
issues underlie those questions, and this will be the focus of
our investigation: What is CS “really”? Is it like some
other academic discipline? For instance, is it like physics,
or mathematics, or engineering? Or is it “sui generis”?

Digression: ‘sui generis’: ‘Sui generis’ is a Latin
phrase meaning “own kind.” As an analogy, a poodle and
a pit bull are both kinds of dogs. But a wolf is not a dog;
it is its own kind of animal (“sui generis”). Some
biologists believe that dogs are actually a kind of wolf;
others believe that dogs are sui generis.

To illustrate this difference, consider two very different
comments by two Turing Award‐winning computer
scientists (as cited in Gal‐Ezer and Harel, 1998, p. 79).



Marvin Minsky, a co‐founder of artificial intelligence, once
said

Computer science has such intimate relations with so
many other subjects that it is hard to see it as a thing in

itself. (Minsky, 1979, my italics; cf. Forsythe, 1967a,
p. 6)

On the other hand, Juris Hartmanis, a founder of
computational complexity theory, has said

Computer science differs from the known sciences so
deeply that it has to be viewed as a new species among

the sciences. (Hartmanis, 1993, p. 1; my italics; cf.
Hartmanis, 1995a, p. 10)5

So, is CS like something “old,” or is it something “new”?
But we have yet another preliminary question to consider …

The Turing Award: The A.M. Turing Award, given
annually by the Association for Computing Machinery, is
considered the “Nobel Prize” of computer science. See
http://amturing.acm.org/ and Vardi, 2017.

http://amturing.acm.org/


3.4 What Does It Mean to Ask What

Something Is?

It does not make much difference how you divide the
Sciences, for they are one continuous body, like the
ocean.
—Gottfried Wilhelm Leibniz (1685, p. 220)

We will not try to give a few‐line definition of computer
science since no such definition can capture the richness
of this new and dynamic intellectual process, nor can this

be done very well for any other science.
—Juris Hartmanis (1993, p. 5; my italics)

3.4.1 Determining Boundaries

When sharp formulations are offered for concepts that
had been vague, they sometimes result in bizarre rulings
along the edges, bizarre but harmless.
—Willard van Orman Quine (1987, p. 217)

We should quell our desire to draw lines. We don't need
to draw lines.
—Daniel C. Dennett (2013a, p. 241)

A fundamental principle should be kept in mind whenever
you ask what something is, or what kind of thing something
is: There are no sharp boundaries in nature; there are
only continua. A “continuum” (plural = ‘continua’) is like a
line with no gaps in it and hence no natural places to divide
it up. The real‐number line is the best example. Another is
the color spectrum: although we can identify the colors red,
orange, yellow, green, blue, and so on, there are no sharp
(or non‐arbitrary) boundaries where red ends and orange



begins; worse, one culture's “blue” might be another's
“green” (Berlin and Kay, 1969; Grey, 2016). A third
example is the assignment of letter grades to numerical
scores: there is often no natural (or non‐arbitrary) reason
why a score of (say) 75 should be assigned a letter grade of
(say) ‘B ’ while a 74 is a ‘C+’ (Rapaport, 2011).
An apparent counterexample to the lack of sharp
boundaries in nature might be biological species: dogs are
clearly different from cats, and there are no “intermediary”
animals – ones that are not clearly either dogs or else cats.
But both dogs and cats evolved from earlier carnivores (it
is thought that both evolved from a common ancestor some
42 million years ago). If we traveled back in time, we would
not be able to say whether one of those ancestors was a cat
or a dog; in fact, the question wouldn't even make sense.6

Moreover, although logicians and mathematicians like to
define categories in terms of “necessary and sufficient
conditions” for membership, this only works for abstract,
formal categories. For example, we can define a sphere of
radius  and center  as the set of all and only those points
that are  units distant from .

Necessary and Sufficient Conditions: “All” such
points is the “sufficient condition” for being a sphere;
“only” such points is the “necessary condition”:  is a
sphere of radius  at center if and only if  = {  : 
 is a point that is  units distant from  }. That is,  is 
units from only if  is a point on  (i.e. if  is  units
from , then  is a point on ). So, being a point that
is  units from is a sufficient condition for being on 

. And if  is a point on , then  is  units from .
So, being a point that is  units from is a necessary

condition for being on .



However, as philosophers and cognitive scientists have
pointed out, non‐abstract, non‐formal (“real”) categories
usually don't have such precise, defining characteristics.
The most famous example is the philosopher Ludwig
Wittgenstein's unmet challenge to give necessary and
sufficient defining characteristics for something being a
game (Wittgenstein, 1958, Section 66ff). Instead, he
suggested that games (such as solitaire, basketball, chess,
etc.) all share a “family resemblance”: the members of a
family don't necessarily all have the same features in
common (having blue eyes, being tall, etc.) but instead
resemble each other (mother and son, but not father and
son, might have blue eyes; father and son, but not mother
and son, might both be tall, and so on). And the
psychologist Eleanor Rosch has pointed out that even
precisely definable, mathematical categories can have
“blurry” edges: most people consider 3 to be a “better”
example of a prime number than, say, 251, or a robin to be
a “better” example of a bird than an ostrich is.
In his dialogue Phaedrus, Plato suggested that a good
definition should “carve nature at its joints” (Plato, 1961a,
lines 265e–266a). But if “nature” is a continuum, then there
are no “joints.” Hence, we do not “carve nature at its
joints”; rather, we “carve nature” at “joints” that are
usually of our own devising: we impose our own

categories on nature.

But I would not be a good philosopher if I did not
immediately point out that, just as Plato's claim is
controversial, so is this counter‐claim! After all, isn't the
point of science to describe and explain a reality that exists
independently of us and our concepts and categories – i.e.
independently of the “joints” that we “carve” into nature?
(We'll return to the topic of the goal of science in Section
4.4.) And aren't there “natural kinds”? Dogs and cats, after



all, do seem to be kinds of things that are there in nature,
independently of us, no matter how hard it might be to
define them.
Is CS similar to such a “natural kind”? Here, I think the
answer is that it pretty clearly is not. There would be no
academic discipline of CS without humans, and there
probably wouldn't even be any computers without us
(although we'll see some reasons to think otherwise in
Section 9.7).7

Let's consider a few examples of familiar terms whose
definitions are controversial.

‘Planet’

Consider the case of poor Pluto – not Mickey Mouse's dog,
but the satellite of the Sun: it used to be considered a
planet, but now it's not, because it's too small (Lemonick,
2015). I don't mean it is now not a planet because of its
size. Rather, I mean now it is no longer considered a planet
because of its size. Moreover, if it were to continue being
categorized as a planet, then we would have to count as
planets many other small bodies that orbit the Sun,
eventually having to consider all (non‐human‐made) objects
in orbit around the Sun as planets, which almost makes the
term useless, because it would no longer single out some
things (but not others) as being of special interest. To make
matters even worse, the Moon was once considered a
planet! When it was realized that it did not orbit the Sun
directly, it was “demoted.” But curiously, under a proposed
new definition of ‘planet’ (as having an “orbit‐clearing
mass”), it might turn out to be (considered) a planet once
more! (Battersby, 2015).
Note that, in either case, the universe has not changed;
only our descriptions of it have:



Exact definitions are undoubtedly necessary but are
rarely perfect reflections of reality. Any classification or
categorization of reality imposes arbitrary separations on
spectra of experience or objects. (Craver, 2007)

So, depending on how we define ‘planet,’ either something
that we have always considered to be one (Pluto) might
turn out not to be one, or something that we have (usually)
not considered one (the Moon) might turn out to be one!
Typically, when trying to define or “formalize” an informal
notion, one finds that one has excluded some “old” things
(i.e. things that were informally considered to fall under the
notion), and one finds that one has included some “new”
things (i.e. things that one hadn't previously considered to
fall under the notion). Philosopher Ned Block has called the
former kind of position “chauvinism” and the latter position
“liberalism” (Block, 1978, pp. 263, 265–266, 277). When
this happens, we can then either reformulate the definition
or bite the bullet about the inclusions and exclusions. One
attitude toward exclusions is often that of sour grapes: our
intuitions were wrong; those things really weren't Xs after
all. The attitude toward inclusions is sometimes “Wow!
That's right! Those things really are Xs!” Alternatively, a
proposed definition or formalization might be rejected

because of its chauvinism or liberalism.

‘Computation’

The next two cases will be briefer because we will discuss
them in more detail later in the book. The first is the very
notion of ‘computation’ itself: according to the Church‐
Turing Computability Thesis, a mathematical function is
computable if and only if it is computable by a Turing
Machine. This is not necessarily either a definition of
‘computable’ or a mathematical theorem; arguably, it is a
suggestion about what the informal notion of



“computability” should mean. But some philosophers and
computer scientists believe there are functions that are

informally computable but not computable by a Turing
Machine. (We'll discuss these in Chapter 11.)

Terminological Digression: If you don't yet know what
these terms are, be patient; we will begin discussing
them in Chapter 7.
Should ‘machine’ be capitalized in ‘Turing Machine’?
Not capitalizing it suggests that a Turing Machine is a
machine of some kind. But machines are typically
physical objects, whereas a Turing Machine is an
abstract mathematical notion. Capitalizing ‘machine’
turns it into a proper name, allowing us to ask whether a
Turing Machine is or is not a machine without begging
any questions. So I will capitalize ‘Turing Machine’
except in direct quotations.

‘Thinking’

Our final case is the term ‘thinking’: if thinking is
categorized as any process of the kind that cognitive
scientists study – including such things as believing,
consciousness, emotion, language, learning, memory,
perception, planning, problem‐solving, reasoning,
representation, sensation, etc. (Rapaport, 2012b, p. 34) –
then it is (perhaps!) capable of being carried out by a
computer. Some philosophers and computer scientists
accept this way of thinking about thinking and therefore
believe that computers will eventually be able to think
(even if they do not yet do so). Others believe that if
computers can be said to think when you accept this
categorization, then there must be something wrong with
the categorization. (We'll explore this topic in Chapter 18.)



Other Examples: Another example is ‘life’ (Machery,
2012; Allen, 2017, p. 4239). We'll come back to this in
Sections 10.1 and 18.9. Angere, 2017 is another case
study, which shows how even ‘square’ and ‘circle’ may
have counterintuitive definitions, allowing for the
(mathematical) existence of square circles (or round
squares)!

3.4.2 Extensional and Intensional

Definition

An “extensional” definition of a term  is given by
presenting the set of items that are considered s. For
example, we once might have said that  is a planet (of the
Sun) iff  {Mercury, Venus, Earth, Mars, Jupiter, Saturn,
Uranus, Neptune, Pluto}. Now, however, we say that  is a
planet (of the Sun) iff  {Mercury, Venus, Earth, Mars,
Jupiter, Saturn, Uranus, Neptune}. Note that these two
extensional definitions of ‘planet’ are different. For another
example, the (current as of March 2022) extensional
definition of ‘US President’ is {Washington, Adams,
Jefferson, …, Obama, Trump, Biden}.
An “intensional” definition can be given in terms of
necessary and sufficient conditions or in terms of a family
resemblance. For example, an intensional definition of ‘US
President’ might be given by citing Article II of the US
Constitution: roughly,  is US President iff  has been
vested with the executive power of the United States. Note
that this intensional definition holds even if an extensional
definition changes (such as the extensional definition in the
previous paragraph of ‘US President,’ which changes
roughly every four or eight years).



Two concepts can be said to be “extensionally equivalent” if
exactly the same sets of things fall under each concept.
Importantly, two extensionally equivalent concepts can be
(and usually are) “intensionally distinct”; i.e. they really are
different concepts. Here's a mundane example: large
supermarkets these days not only carry groceries but also
pharmaceuticals, greeting cards, hardware, etc. Large
drugstores these days carry not only pharmaceuticals but
also groceries, greeting cards, hardware, etc. And large
“general stores” also carry pretty much the same mix of
products. We tend to think of Walgreens as a drugstore,
Wegmans as a supermarket, and Walmart as a general
store: they are “intensionally distinct.” But because they
sell the same mix of products, they are “extensionally
equivalent.”
Here is an important example from computability theory
(which we'll look at in detail in Chapter 7): recursive
function theory and the theory of Turing Machines are
extensionally equivalent but intensionally distinct. They are
extensionally equivalent because it is mathematically
provable that all functions that are recursive are Turing
computable and vice versa. But they are intensionally
distinct because the former is concerned with a certain way
of defining mathematical functions, while the latter is
concerned with algorithms and computation. From the
point of view of what facts can be proved about functions, it
doesn't matter which formalism is used because they are
extensionally equivalent. Their intensional distinctness
comes into play when one formalism might be easier or
more illuminating to use in a given situation. We'll come
back to this in Section 3.7. (For more on extensions and
intensions, see Rapaport, 2012a.)

An Extensional Definition of CS



To the extent that it is we who impose our categories on
nature, there may be no good answer to the question “What
is CS?” beyond something like “computer science is that
which is taught by computer science departments”
(Abrahams, 1987, p. 472). Perhaps intended more
seriously, the computer scientist Peter J. Denning (2000,
p. 1) defines “The discipline of computer science … [as] the
body of knowledge and practices used by computing
professionals in their work.” But then we can ask, what is it

that computer scientists do? Of course, one can beg that
last question – i.e. argue in a circle – by saying that
computer scientists do computer science! Turing Award
winner Richard W. Hamming (1968, p. 4) suggests
something like this, citing the (humorous) “definition” of
mathematics as “what mathematicians do,” but he goes on
to point out that “there is often no clear, sharp definition of
… [a] field.”

Begging the Question: ‘To beg the question’ is a
slightly archaic term of art in philosophy and debating.
The phrase does not mean “to ask a question” – i.e. to
“beg” in the sense of “to raise or invite” a question. In
debating, a “question” is the topic being debated. ‘To
beg the question’ means: “to request (i.e. “to beg”) that
the topic being debated (i.e. the “question”) be granted

as an assumption in the debate.” That is, it means “to
assume as a premise (“to beg”) the conclusion (“the
question”) that you are arguing for.” A modern synonym
for ‘beg the question’ is ‘argue in a circle.’

Nevertheless, it's worth looking briefly at what computer
scientists do. It has been said that CS is “a sort of spectrum
… with ‘science’ on the one end and ‘engineering’ on the
other” (Parlante, 2005, p. 24), perhaps something like this:



abstract, mathematical theory of computations
abstract, mathematical theory of computational
complexity
abstract, mathematical theory of program development
software engineering
…
operating systems
…
AI
…
computer architecture
…
VLSI
networks
social uses of computing, etc.

But this is less than satisfactory as a definition.

Intensional Definitions of CS

As with most non‐mathematical concepts, there are
probably no necessary and sufficient conditions for being
CS. At best, the various branches of the discipline share
only a family resemblance. We can try to give an
intensional definition by splitting the question of what CS is
into two parts:

1. What is its object? (What does it study or investigate?)
2. What is its methodology? (How does it study those

objects?)
We'll begin with the second.



Is the methodology of CS the same as that of some other
discipline? Or does it have its own distinctive methodology?
If the latter, is its methodology not only unique but also
something brand new? Methodologically, CS has been said
to be (among many other things)

An art form (Knuth, 1974a, p. 670, has said that
programs can be beautiful)
An art and science:

Science is knowledge which we understand so well
that we can teach it to a computer; and if we don't
fully understand something, it is an art to deal with
it. … [T]he process of going from an art to a science
means that we learn how to automate something.
(Knuth, 1974a, p. 668)

A liberal art along the lines of the classical liberal arts
of logic, mathematics, or astronomy (Perlis, 1962;
Lindell, 2001, p. 210)
A branch of mathematics (Dijkstra, 1974; Davis, 1978),
A natural science (McCarthy, 1963; Newell et al., 1967;
Shapiro, 2001)
An empirical study of the artificial (Simon, 1996b)
A combination of science and engineering (Hartmanis,
1993, 1995a; Loui, 1995)
Just engineering (Brooks, 1996)
Or – generically – a “study”

But a study (or a science, or an engineering, or an art,
or …) of what? Is its object the same as that of some other
discipline? Does it study exactly what science, or
engineering, or mathematics, or – for that matter –
psychology or philosophy studies studies? Or does it have



its own, distinctive object of study (computers? algorithms?
information?)? Or does it study something that has never
been studied before? The logician Jon Barwise (1989a)
suggested that we can understand what CS is in terms of
what it “traffics” in. So here's an alphabetical list of some
of the objects that it traffics in:

algorithms, automation, complexity, computers,
information, intelligence, numbers (and other
mathematical objects), problem‐solving, procedures,
processes, programming, symbol strings

This is, of course, only a very partial list. Just as, for any ,
there can be a philosophy of  (see Section 2.7), one can
use computational methods to study pretty much any .
(For some examples, see Reese, 2014a.)
Perhaps advertising blurbs for CS like the ones you find at
university websites should not be taken too seriously. But
the authors of several published essays that try to define
‘computer science’ – all of whom are well‐respected
computer scientists – presumably put a lot of thought into
them. They are worth taking seriously, which is the main
purpose of this chapter.



3.5 CS as the Science of Computers

The first such answer that we will look at comes from three
Turing Award winners: Allen Newell, Alan Perlis, and
Herbert Simon. Here is their definition, presented as the
conclusion of an argument:

Wherever there are phenomena, there can be a science
to describe and explain those phenomena. … There are
computers. Ergo,8computer science is the study of

computers. (Newell et al., 1967, p. 1373, my boldface)
This argument is actually missing two premises (recall
Section 2.9.3). Their two explicit premises only imply that
there can be a science of computers. They do not, by
themselves, imply that there is such a science or that that
science is CS rather than some other discipline. The
missing premises are
(A) There is a science of computers.
(B) There is no other discipline that is the science of
computers besides CS.

3.5.1 Objection: Computers Are Not

Natural

Newell, Perlis, and Simon's first premise is that, for any
phenomenon9 , there can be a science of . An objection
to this that they consider is that this premise holds not for
any phenomenon but only when  is a natural

phenomenon. For example, the computer engineer
Michael C. Loui (1987, p. 175) notes that there are toasters
but no science of toasters. The objection goes on to point
out that computers (like toasters) aren't natural; they are
artifacts. So, it doesn't follow that there can be (much less



that there is) a science of computers. It might still be the
case that there is some other kind of discipline that studies
computers (and toasters!), such as engineering.
The computer scientist Bruce W. Arden (1980, p. 6) also
argues that neither mathematics nor CS is a science,
because its object is not natural phenomena: the object of
mathematics is “human‐produced systems … concerned
with the development of deductive structures,” and the
object of CS is “man‐made” [sic]. But what is CS's object?
Computers? Yes, they're clearly human‐made, and this
leads us back to Newell, Perlis, and Simon's arguments. Or
is it algorithms? Perhaps they're also human‐made in
whatever sense mathematical structures are. But in Section
3.10, we'll look at a claim that algorithms are a special case
of a natural entity (“procedures”).
The computer historian Michael S. Mahoney (2011,
pp. 159–161) rejects this objection that “the computer is an
artifact, not a natural phenomenon” because he thinks
there is no sharp dividing line “between nature and
artifact.” He gives two reasons: (1) We use artifacts to
study nature – “We know about nature through the models
we build of it.” (2) “Artifacts work by the laws of nature,
and by working reveal those laws.” In other words, artifacts
are part of nature. The philosopher Timothy Williamson
(2007, p. 43) makes a similar point about scientific
instruments: “The scientific investigation of [a] physical
quantity widens to include the scientific investigation of its
interaction with our experimental equipment. After all, our
apparatus is part of the same natural world as the primary
topic of our inquiry.” The same could be said about
computers and computation: we use computers and
computational methods to study both computers and
computation. (Mahoney even goes on to suggest that
nature itself might be ultimately computational. We will
explore that idea in Section 9.7.2.)



Newell, Perlis, and Simon's reply to the objection is to deny
the premise that the phenomenon that a science studies
must be natural. They point out that there are sciences of
artifacts; e.g. botanists study hybrid corn.10 In fact, in
1969, Simon published the first edition of his book The

Sciences of the Artificial (Simon, 1996b). And the computer
scientist Donald Knuth (2001, p. 167) has called CS “an
unnatural science [because] [c]omputer science deals with
artificial things, not bound by the constraints of nature.”
The objector might respond that the fact that Simon had to
write an entire book to argue that there could be sciences
of artifacts shows that the objection – that science only
studies natural phenomena – is not obviously false.
Moreover, botanists study mostly natural plants: hybrid
corn is not only not studied by all botanists, it is certainly
not the only thing that botanists study (botany is not
defined as the science of hybrid corn). Are there any
natural phenomena that computer scientists study? As I
have already hinted, we will see a positive answer to this
question in Section 3.10.
But let's not be unfair. There certainly are sciences that
study artifacts in addition to natural phenomena:
ornithologists study both birds (which are natural) and
their nests (which are artifacts); apiologists study both
bees (natural) and their hives (artifacts). On the other
hand, one might argue (a) that beehives and birds' nests
are not human‐made phenomena and (b) that ‘artifact’
should be used to refer not to any manufactured thing (as
opposed to living things), but only to things that are
manufactured by humans: i.e. to things that are not “found
in nature,” so to speak. The obvious objection to this claim
is that it unreasonably singles out humans as being apart
from nature (Figure 3.1).11



3.5.2 Objection: Computers Are Tools,

Not Phenomena

A related objection has to do with the observation that it is
wrong to define a subject by its tools:

The debate over the appropriate place of computing in
grade schools and high schools echoes the debate in
universities decades ago, when computers and software
were initially seen as mere plumbing. And certainly not
something worthy of study in its own right. A department
of computer science? Why not a department of slide
rules? (Lohr, 2008)

And as Hammond (2003) notes, “Theoretical Computer
Science doesn't even use computers, just pencil and
paper.” Newell et al. (1967, p. 1373) also say that
astronomy is the science of stars. And, of course,
telescopes are used to study the stars. But as the computer
scientist Edsger W. Dijkstra is alleged to have said,
“Computer Science is no more about computers than
astronomy is about telescopes” (O'Toole, 2021a). Dijkstra
(1986) also said that calling the discipline ‘computer
science’ “is like referring to surgery as ‘knife science.”’
This may be true, but the problem, of course, is that the
closest term that computer scientists have corresponding
to ‘surgery’ is probably ‘computing,’ and defining
‘computer science’ as the science of computing may be
legitimate but not very clarifying (at least, not without a
further description of computing, preferably not in terms of
computers!). Newell, Perlis, and Simon address this in their
Objection 4: “The computer is such a novel and complex
instrument that its behavior is subsumed under no other
science” (Newell et al., 1967, p. 1374). This is also support
for missing premise B.



But it is also wrong to define a subject without saying what
its tools enable. Even if what Newell, Perlis, and Simon say
about the novelty of computers is true, it can be argued
that a new tool can open up a new science or, at least, a
new scientific paradigm (see Section 4.9): “Paradigm shifts
have often been preceded by ‘a technological or conceptual
invention that gave us a novel ability to see things that
could not be seen before’ ” (Mertens, 2004, p. 196, quoting
Robertson, 2003). Horsman et al. (2017) discuss this at
length, commenting that, “With all due respect to Dijkstra,
… computer science is as much about computers as
astronomy is about telescopes” (p. 31, my italics). In fact,
there once was a science that only studied such a tool –
microscopes!12 It is worth a short digression to look at
“microscopy,” a science that no longer exists!13





Figure 3.1 Artificial vs. Natural.
Source: Abstruse Goose, Artificial. Retrieved from
https://abstrusegoose.com/215.

3.5.3 Digression: The Once‐upon‐a‐

Time Science of Microscopy

… Marcello Malpighi (1628–1694), was a great scientist
whose work had no dogmatic unity.14 He was one of the
first of a new breed of explorers who defined their
mission neither by the doctrine of their master nor by the
subject that they studied. They were no longer
‘Aristotelians’ or ‘Galenists.’ Their eponym, their
mechanical godparent, was some device that extended
their senses and widened their vistas. What gave his
researches coherence was a new instrument. Malpighi
was to be a ‘microscopist,’ and his science was
‘microscopy’ …. His scientific career was held together
not by what he was trying to confirm or to prove, but by
the vehicle which carried him on his voyages of
observation.
—Daniel Boorstin (1983, p. 376)

In a similar fashion, surely15 computers are “device[s] that
[have] extended [our] senses and widened [our] vistas,”
and the science of computer scientists is, well, computer

science. After all, one of the two principal professional
associations is the Association for Computing Machinery

(ACM). What “holds” computer scientists “together … [is]
the vehicle which carrie[s them] on [their] voyages of
observation.”
But this is not necessarily a positive analogy.

https://abstrusegoose.com/215


The applications of computers to a discipline should be
considered properly a part of the natural evolution of the
discipline. … The mass spectrometer has permitted
significant advances in chemistry, but there is no ‘mass
spectrometry science’ devoted to the study of this
instrument. (Loui, 1987, p. 177)

Similarly, the microscope has permitted significant
advances in biology (and many other disciplines), but
arguably, microscopy no longer exists as an independent

science devoted to the study of that instrument or the

things studied with it. Could the same thing happen to
computer science that happened to microscope science? If
so, what would fall under the heading of the things that can
be studied with computers? A dean who oversaw the
Department of Computer Science at my university once
predicted that the same thing would happen to our
department: the computer‐theory researchers would move
into the mathematics department; the AI researchers would
find homes in psychology, linguistics, or philosophy; those
who built new kinds of computers would move (back) into
electrical engineering; and so on. This hasn't happened yet
(although McBride, 2007 suggests that it is already
happening, while Mander, 2007 disagrees). Nor do I
foresee it happening in the near future, if at all. After all, as
the computer scientist George Forsythe pointed out, in
order to teach “nontechnical students” about computers
and computational thinking, “specialists in other technical
fields” about how to use computers as a tool (alongside
“mathematics, English, statistics”), and “computer science
specialists” about how to “lead the future development of
the subject,”



The first major step … is to create a department of
computer science … Without a department, a university
may well acquire a number of computer scientists, but
they will be scattered and relatively ineffective in dealing
with computer science as a whole. (Forsythe, 1967a,
p. 5)

But the breakup of CS into component disciplines is
something to ponder.

3.5.4 Objection: CS Is Just a Branch of

…

The microscopy story is, in fact, close to an objection that
Newell, Perlis, and Simon consider to missing premise B:
perhaps the science of computers is not CS but some other
subject – electrical engineering, or mathematics, or even
psychology. For example, the computer historian Paul
Ceruzzi comes close to saying that CS is identical to
electrical (more precisely, electronic) engineering: it
emerged from electrical engineering (Ceruzzi, 1988,
p. 257), and it “came to define the daily activities of
electrical engineers” (Ceruzzi, 1988, p. 258).
One problem with trying to conclude from this that CS is
(nothing but) electrical engineering is that there are now
other technologies that are beginning to come into use,
such as quantum computing and DNA computing.16

Assuming that those methods achieve some success, it
becomes clear that (and how) CS goes beyond any
particular implementation technique or technology and
becomes a more abstract discipline in its own right. (On
abstraction and implementation, see Chapter 13.) And
Ceruzzi himself declares, “The two did not become
synonymous” (Ceruzzi, 1988, p. 273).



Newell, Perlis, and Simon reply that, although CS does
intersect electrical engineering, mathematics, psychology,
etc., there is no other single discipline that subsumes all

computer‐related phenomena. (This is missing premise B.)
This, however, assumes that CS is a single discipline, a
cohesive whole. Is it? I began my professional university
career in a philosophy department; although certain
branches of philosophy (ethics and history of philosophy,
for instance) were not my specialty, I was expected, and
was able, to participate in philosophical discussions on
these topics and even to teach them. But my colleagues in
CS often do not, and are not expected to, understand the
details of those branches of CS that are far removed from
their own. As a computer scientist specializing in AI, I had
far more in common with colleagues in the philosophy,
psychology, and linguistics departments than I did with my
computer‐science colleagues down the hall who specialized
in, say, computer networks or computer security. (And this
is not just an autobiographical confession on my part; my
colleagues in computer networks and computer security
would be the first to agree that they have more in common
with some of their former colleagues in electrical
engineering than they do with me.) So, perhaps CS is not a
coherent whole. (See the Question for the Reader in
Section 20.2.)

3.5.5 Objection: What about

Algorithms?

The most interesting – and telling – objection to Newell,
Perlis, and Simon's view is that CS is really the study not
(just) of computers but (also) of algorithms: very roughly,
the programs and rules that tell computers what to do.
(We'll devote a great deal of time, beginning with
Chapter 7, to looking at what algorithms and programs are;



at this point, I will just assume that you already have an
idea of what they are and won't try to define them further.)
For example, Bajcsy et al. (1992, p. 1, my italics) explicitly
mention “the (incorrect) assumption that … [CS] is based
solely on the study of a device ….”
What is interesting about this objection is how Newell,
Perlis, and Simon respond: they agree with it! They now
say,

In the definition [of CS as the science of computers],
‘computers’ means … the hardware, their programs or

algorithms, and all that goes along with them.
Computer science is the study of the phenomena

surrounding computers.” (Newell et al., 1967, p. 1374,
my italics and my boldface)

In the end, they even allow that the study of computers may
also be an engineering discipline (Newell et al., 1967,
p. 1374). So, they ultimately water down their definition to
something like this: computer science is the science and

engineering of computers, algorithms, and other related

phenomena.
Readers would be forgiven if they objected that the authors
have changed their definition! But instead of making that
objection, let's turn to an interestingly different, yet
similar, definition due to another celebrated computer
scientist.



3.6 CS Studies Algorithms

Turing Award‐winner Donald Knuth (Roberts, 2018) gave
an apparently different answer to the question of what CS
is:

[C]omputer science is … the study of algorithms.
(Knuth, 1974b, p. 323; my boldface, Knuth's italics)

3.6.1 Only Algorithms?

Knuth cited, approvingly, a statement by Forsythe (1968)
that the central question of CS is, “What can be
automated?” Presumably, a process can be automated – i.e.
done automatically, by a machine, without human
intervention – if it can be expressed as an algorithm. (We'll
return to this in Section 20.3.1; for a book‐length
discussion, see Arden, 1980.) Knuth (1974b, p. 324) even
noted that the name ‘computing science’ might be better
than ‘computer science,’ because the former sounds like
the discipline is the science of what you do with computers
as opposed to the science of the tools themselves.
Knuth pointed out that

a person does not really understand something until he
[sic] teaches it to someone else. Actually a person does
not really understand something until he can teach it to a
computer, i.e. express it as an algorithm. (Knuth, 1974b,
p. 327)

The celebrated cellist Janos Starker once said something
similar: “When you have to explain what you are doing, you
discover what you are really doing” (Fox, 2013). Expressing
something as an algorithm requires “real” understanding



because every step must be spelled out in excruciating
detail:

It is a commonplace that a computer can do anything for
which precise and unambiguous instructions can be
given. (Mahoney, 2011, p. 80)

That is, a computer can do anything for which an algorithm

can be given. After all, isn't an algorithm merely “precise
and unambiguous instructions”? Thought of this way, the
comment is almost trivial. But consider that to give such
instructions (to give an algorithm) is to be able to explicitly
teach the computer (or the executor, more generally) how
to do that thing (Figure 3.2).
But there is a potential limitation to Knuth's theory that we
teach computers how to do something – more specifically,
to the theory that, insofar as CS is the study of what tasks
are computable, it is the study of what tasks are teachable.
The potential limitation is that teaching is explicit or
“conscious.” It is what psychologist and Nobel laureate
Daniel Kahneman (2011, p. 21) has called a “System 2”
task:

System 2 allocates attention to the effortful mental
activities that demand it, including complex
computations. The operations of System 2 are often
associated with the subjective experience of agency,
choice, and concentration.



Figure 3.2 We're awesome at teaching.
Source: XKCD, Progeny. Retrieved from http://xkcd.com/894/.

http://xkcd.com/894/


But there is another algorithmic way of getting a computer
to do something: by training it, either via a connectionist,
neural‐network algorithm or via a statistical, machine‐
learning algorithm. ‘Learning,’ in this sense of ‘machine
learning,’ is different from being explicitly taught. Such
training is implicit or “unconscious.” It is “System 1”
thinking:

System 1 operates automatically and quickly, with little
or no effort and no sense of voluntary control.
(Kahneman, 2011, p. 20)

We, as external, third‐person observers, don't necessarily
consciously or explicitly know how to do a System‐1 task.
Knowing how is not necessarily the same as knowing that

(Section 2.5.3). An example might help to explain the
difference: consider tic‐tac‐toe. A computer (or a human
player) might be programmed – i.e. explicitly “taught” – to
play winning tic‐tac‐toe by using a “conscious” or
“System 2” algorithm that it explicitly follows. Most older
children and adults have been taught a version of this
algorithm (Zobrist, 2000):17



For player X to win or draw (i.e. to not lose), do: begin

Alternatively, a computer can be programmed to learn how

to play winning tic‐tac‐toe in a “System 1” manner without
expressing (or being able to express) that strategy
“consciously” (i.e. in a “System 2” manner). Such a
learning mechanism can be found in Michie, 1974. Briefly,
the computer is “rewarded” for each random move that
leads to a win or draw, and such moves are thus caused to
be made more frequently in future games.18

An algorithm in the form of a System‐1–style artificial
neural network is akin to building into the computer the
ability to do that thing. Such a computer might not be able
to tell us how it was doing it; it would not necessarily have
any “conscious” access to its algorithm. An algorithm in the
form of an explicit machine‐learning program that would
enable the computer to learn how to do that thing is
somewhere in the middle. It would be “conscious” of its
ability to learn but not necessarily of how to do the thing; it
might not necessarily be able to teach someone or



something else how to do it, unless it could observe itself
doing it and develop a theory of how to do it (which theory
would be expressed in a System‐2–style, explicit algorithm).
(We'll return to these issues in Sections 3.11 and 3.16.3; in
Section 12.4.4, when we discuss the difference between
following rules and behaving in accordance with them; and
again in Section 17.2, when we discuss whether computers
can make decisions.)
Let's say for now that something is computable just in case
“precise and unambiguous instructions can be given” for it.
(We'll be more precise and unambiguous(!) in Chapter 7.)
So, the question becomes, what tasks are amenable to
“precise and unambiguous instructions”? Presumably chess
is computable in this sense because there are explicit rules
for how to play chess. (Playing winning chess is a different
matter!) But vision would seem not to be thus computable.
After all, one cannot give “precise and unambiguous
instructions” that would enable someone to see. Yet there
are computer‐vision systems (see
http://aitopics.org/topic/vision for an overview), so vision
does seem to be computable in a different sense: a behavior
is computable if it can be described in terms of such
instructions. The entity that exhibits that behavior naturally
might not use, or be able to use, those instructions in order
to behave that way. But we might be able to give those
instructions to another system that could use them to
exhibit that behavior. For instance, the human brain might
not literally compute in the sense of executing an algorithm
in order to see, but a computer using that algorithm might
be able to exhibit visual behavior. (Whether it “sees,”
phenomenologically, is a philosophical question! See
Section 19.2.) Similarly, the solar system might not be
executing Kepler's laws, but an artificial solar system
might. (We'll look into this issue in Section 9.7.2.)

http://aitopics.org/topic/vision


3.6.2 Or Computers, Too?

Knuth goes on to point out, however, that you need
computers in order to properly study algorithms because
“human beings are not precise enough nor fast enough to
carry out any but the simplest procedures” (Knuth, 1974b,
p. 323). Indeed, he explicitly copies Newell, Perlis, and
Simon's strategy, revising his initial definition to include
computers – i.e. the phenomena “surrounding” algorithms:

When I say that computer science is the study of
algorithms, I am singling out only one of the “phenomena
surrounding computers,” so computer science actually
includes more. (Knuth, 1974b, p. 324)

Does CS have to study computers? (Recall Hammond's
suggestion about pencils [Section 3.5.2].) If so, does that
mean CS really is the study of computers? Let's consider
some similar questions for other disciplines. Do you need a
compass and straightedge to study geometry, or can you
study it just by proving theorems about points, lines, and
angles? After all, the mathematicians David Hilbert (1899)
and Oswald Veblen (1904) wrote completely axiomatic
treatments of geometry without any (significant) mention of
compass or straightedge. Do you need a microscope to
study biology? I doubt that Watson and Crick used one
when they discovered the structure of DNA.19 Do you need

a calculator (or a computer!) to study physics or
mathematics (or does it just help you perform calculations
more quickly and easily)? Even if you do need these tools,
does that make geometry the study of compasses and
straightedges, or physics and mathematics the study of
calculators, or biology the study of microscopes? I think
most people would say that these disciplines are not studies
of those tools. On the other hand, “deep learning”
algorithms do seem to need computers to determine if they



will really do what they are intended to do, and do so in
real time (Lewis‐Kraus, 2016). (We'll return to this in
Section 3.14.)
About 10 years later, Knuth (1985, pp. 170–171) backed off
from the “related phenomena” definition, more
emphatically defining CS as “primarily the study of
algorithms,” because he “think[s] of algorithms as
encompassing the whole range of concepts dealing with
well‐defined processes, including the structure of data that
is being acted upon, as well as the structure of the
sequence of operations being performed,” preferring the
name ‘algorithmics’ for the discipline. Knuth also suggested
that what computer scientists have in common (and what
differentiates them from people in other disciplines) is that
they are all “algorithmic thinkers” (Knuth, 1985, p. 172).
(We will see what this means in Section 3.16.4 and
Chapter 7.)



3.7 Physical Computers vs. Abstract

Algorithms

So far, it may seem that we have two very different
definitions of CS: the study of computers or the study of

algorithms. But just as Newell, Perlis, and Simon said that
CS is the study of computers and related phenomena such

as algorithms, Knuth said that it is the study of algorithms
and related phenomena such as computers! Stated a bit
more bluntly, Newell, Perlis, and Simon's definition comes
down to this: computer science is the science of computers

and algorithms. Knuth's definition comes down to this:
computer science is the study of algorithms and computers.
Ignoring for now the subtle difference between “science”
and “study,” what we have here are extensionally
equivalent but intensionally distinct definitions. They may
approach the discipline from different viewpoints (one from
the viewpoint of a physical tool, one from the viewpoint of
an abstract procedure), but the “bottom line” is the same –
only the emphasis is different.
On the other hand, Arden (1980, p. 9) claims that “the
study of algorithms and the phenomena related to

computers are not coextensive, since there are important
organizational, policy, and nondeterministic aspects of
computing that do not fit the algorithmic mold.” But I don't
think either Newell et al. (1967) or Knuth (1974b) had
those things in mind. And if “phenomena related to
computers” is taken as widely as Arden does, then it
encompasses pretty much everything, thus making any
definition based on such a wide notion virtually useless.
The classical sciences (physics, chemistry, biology, etc.)
also have “important organizational, policy, and



nondeterministic aspects,” but those aren't used in trying
to define what those sciences are about.
So, we now have two (only slightly different) definitions:

1. Computer science is the study of computers (and
related phenomena such as the algorithms that they
execute).

2. Computer science is the study of algorithms (and
related phenomena such as the computers that execute
them).

This strongly suggests that it would be wrong to treat CS
as being primarily about algorithms or primarily about
computers. It is about both. We'll see this more clearly in
Chapter 6 when we trace the parallel histories of
computers (as they evolved from calculating machines) and
computing (as it evolved from the search for a foundation
for mathematics).
But others beg to differ …



3.8 CS Studies Information

Others who have offered definitions of ‘computer science’
say “A plague on both your houses”:20 CS is not the study
of computers or of algorithms but of information:

I consider computer science, in general, to be the art and
science of representing and processing information and,
in particular, processing information with the logical
engines called automatic digital computers. (Forsythe,
1967a, p. 3, my italics)

Denning (1985, p. 16, my italics) defined it as “the body of
knowledge dealing with the design, analysis,
implementation, efficiency, and application of processes

that transform information” (see also Denning et al., 1989,
p. 16). And Barwise (1989a, pp. 386–387) said that
computers are best thought of as “information processors,”
rather than as numerical “calculators” or as “devices which
traffic in formal strings … of meaningless symbols.”
But contrary to Barwise, information processing is arguably
nothing but symbol manipulation: after all, information has
to be expressed in physical symbols, and symbols can be
manipulated independently of their meaning (we'll go into
this in more detail in Sections 16.11.2 and 18.8.3) But
information processing is interpreted symbol manipulation.
Moreover, not all symbol manipulation is necessarily
information in some sense. So perhaps, although computers
may be nothing but symbol manipulators, as Newell and
Simon (1976) argue, it is as information processors that
they have an impact. But what kind of information?
The influential theory of information due to Claude E.
Shannon (1948) is purely “syntactic”; it is not concerned
with the semantic meaning of the information. And the data



structures textbook by Tenenbaum and Augenstein (1981,
p. 6) claims that …

… information itself has no meaning. Any meaning can be
assigned to a particular bit pattern as long as it is done
consistently. It is the interpretation of a bit pattern that
gives it meaning.

(We'll return to their view in Section 13.2.3.)
And why constrain the algorithmic processes to only those
that concern information? The algorithmic processes that
undoubtedly underlie your use of Facebook on your laptop,
tablet, or smartphone may not seem to be related to
“information” in any technical sense. One answer might be
found in an earlier (1963) statement by Forsythe:

Machine‐held strings of binary digits can simulate a
great many kinds of things, of which numbers are just
one kind. For example, they can simulate automobiles on
a freeway, chess pieces, electrons in a box, musical
notes, Russian words, patterns on a paper, human cells,
colors, electrical circuits, and so on. (Forsythe, quoted in
Knuth, 1972b, p. 722; see also Shannon, 1953, especially
p. 1235; Hamming, 1980, pp. 7–8)

(This is an expression of one of the “Great Insights” of CS,
which we will look at in Section 7.4.1.) What's common to
all the items on Forsythe's list, encoded as (and thus
simulated by) bit strings, is the information contained in
them.
But here, the crucial question is, what is information? The
term ‘information’ as many people use it informally has
many meanings: it could refer to Shannon's mathematical
theory of information, or Fred Dretske's (1981) or Kenneth
Sayre's philosophical theories of information (1986), or
several others. And if ‘information’ isn't intended to refer to
some specific theory, then it seems to be merely a vague



synonym for ‘data’ (itself a vague term!). As the
philosopher Michael Rescorla observes, “Lacking
clarification [of the term ‘information’], the description [of
“computation as ‘information processing’ ”] is little more
than an empty slogan” (Rescorla, 2020, Section 6.1). And
the philosopher Gualtiero Piccinini has made the stronger
claim that computation is distinct from information
processing in any sense of ‘information.’ He argues, for
example, that semantic information requires

representation, but computation does not; so, computation
is distinct from semantic information processing (Piccinini,
2015, Ch. 14, Section 3).
It is important to decide what information is, but that would
take us too far afield. As I noted in Section 1.2, the
philosophy of information is really a separate topic from
(but closely related to!) the philosophy of computer
science.21

Question for the Reader: Are there any kinds of
algorithmic processes that manipulate something other

than information? If there aren't, does that make this
use of the term ‘information’ rather meaningless (as
simply applying to everything that computers
manipulate)? On the other hand, if there are, does that
mean defining CS as the study of information is
incorrect? (In Chapter 10, we'll look at some algorithms
that apparently manipulate something other than
information: namely, recipes that manipulate food.)



3.9 CS as a Mathematical Science

The concept of computation is arguably the most
dramatic advance in mathematical thinking of the past
century.
—Dennis J. Frailey (2010, p. 2, my italics)

To the extent that CS studies algorithms and an algorithm
is a mathematical notion, could CS just be a branch of
mathematics? Before we investigate whether CS is a
mathematical science, let's ask another question: is
mathematics even a science at all? As we saw in Section
2.5, sometimes a distinction is made between, on the one
hand, experimental disciplines that investigate the physical
world and, on the other, purely logical disciplines like
mathematics. Let's assume, for the sake of argument, that
mathematics is at least a special kind of science – a
“formal” science – and let's consider whether CS might be
more like mathematics than it is like empirical sciences.



Terminological Digression: ‘Formal’: This is as good
a place as any to discuss the meaning of the word
‘formal,’ as it appears in phrases like ‘formal logic’ or
‘formal science.’ In this use, it relates to “form,”
“shape,” or “structure” and is thus almost synonymous
with ‘syntactic.’ It is not synonymous with words like
‘prim’ or ‘methodical,’ and it has nothing directly to do
with concepts like “a formal dinner party.” It is also not
necessarily to be contrasted with ‘informal’ but rather to
‘contentful.’ See https://www.merriam-
webster.com/dictionary/formal. On “formal” sciences in
general, see
http://en.wikipedia.org/wiki/Formal_science. We will go
into much more detail on formal systems and syntax vs.
semantics in Section 13.2.2.

Turing was a mathematician, and his celebrated 1936
paper that, according to many, created the field of CS was
a successful attempt to solve a mathematical problem:

Turing was born in 1912, and his undergraduate work at
Cambridge during 1931–1934 was primarily
mathematical. Turing machines were judged as a
mathematical interpretation of computational problem

solving; and computing was interpreted as an entirely

mathematical discipline. (Wegner, 2010, p. 2, my italics)
And the theory of computational complexity is also clearly
mathematical, as are other aspects of CS. Dijkstra (1974,
p. 608) argues that “programming [i]s a mathematical
activity.” He doesn't explicitly say that (all) of CS is a
branch of mathematics, but it is quite clear that large
portions of CS – not only programming – can be considered
branches of mathematics. Here is Dijkstra's argument
(Dijkstra, 1974, p. 608):

https://www.merriam-webster.com/dictionary/formal
http://en.wikipedia.org/wiki/Formal_science


1. A discipline  is a mathematical discipline if and only
if 's assertions are:

a. “unusually precise,”
b. “general in the sense that they are applicable to a

large (often infinite) class of instances,” and
c. capable of being reasoned about “with an unusually

high confidence level.”
2. Programming satisfies “characteristics” (1a)–(1c).
3.  Programming is a mathematical discipline.

Dijkstra does not argue for premise (1). He takes the “only
if” half (mathematical disciplines satisfy (1a)–(1c)) as
something that “most of us can agree upon.” And he
implicitly justifies the “if” half (disciplines that satisfy (1a)–
(1c) are mathematical) on the grounds that the objects of
mathematical investigation need not be restricted to such
usual suspects as sets, numbers, functions, shapes, etc.,
because what matters is how objects are studied, not what

they are. However, the question of what mathematics is
(and whether it is a science) is beyond our scope (but see
Benacerraf and Putnam, 1984, Pincock, 2011, Horsten,
2019).
He argues for premise 2 on the grounds that programming
clearly requires extraordinary precision, that programs can
accept a wide range of inputs (and thus are general), and
that contemporary program‐verification techniques are
based on logical reasoning. I can't imagine anyone
seriously disagreeing with this! We will look into program‐
verification techniques in Chapter 15, so let's assume that
programming satisfies 1a and 1c for now.
That leaves characteristic 1b: are programs really general
in the same way that mathematical assertions are? A
typical general mathematical assertion might be something



like this: for any triangle, the sum of its angles is 180
degrees. The generality of mathematical assertions comes
from their being “universally quantified” (“for any  …”). Is
that the kind of generality that programs exhibit? A
program (as we will see more clearly in Chapter 7)
computes a (mathematical) function. Insofar as
mathematical functions are “general,” so are programs.
Consider a simple mathematical function: . If we
universally quantify this,22 we get: . This is
general in the same way that our assertion about triangles
was. An algorithm for computing  might look like this:23

Let  be of type integer;

The “preamble,” which specifies the type of input, plays the
role of the universal quantifier.24 Thus, the program does
seem to be general in the same way that a mathematical
assertion is. So we can agree with Dijkstra about
programming being mathematical.25

Mathematician Steven G. Krantz wrote that “Computer
scientists, physicists, and engineers frequently do not
realize that the technical problems with which they
struggle on a daily basis are mathematics, pure and simple”
(Krantz, 1984, p. 599). As a premise for an argument to the
conclusion that CS is nothing but mathematics, this is
obviously weak: after all, one could also conclude from it
that physics and engineering are nothing but mathematics,
a conclusion that I doubt Krantz would accept and that I am
certain no physicist or engineer would accept.



Let's see if we can strengthen Krantz's premise. Suppose
all the problems a discipline 1 (such as CS) is concerned
with come from discipline 2 (such as mathematics). Does
it follow that 1 is nothing but 2? (Does it follow that CS
is nothing but mathematics?) Here's an analogy: if you
want to express some literary idea, you can write a story or
a poem. Does it follow that prose fiction and poetry are the
same thing? Probably not; rather, prose and poetry are two
different ways of solving the same problem (in our
example, the problem of expressing a certain literary idea).
Similarly, even if both CS and mathematics study the same
problems, they do so in different ways: mathematicians
prove (declarative) theorems; computer scientists express
their solutions algorithmically.
So, perhaps a better contrast between CS and mathematics
is that mathematics makes declarative assertions, whereas
CS is concerned with procedural statements (Loui, 1987,
p. 177; Knuth, 1974a, Section 3; Abelson et al., 1996). But
is that distinction enough to show that CS is not

mathematics? After all, Euclidean geometry – which is
clearly mathematics – is procedural, not declarative. (We
discuss this in further detail in Section 3.16.3.)
There is yet another way to think about the relationship
between mathematics and CS:



I think it is generally agreed that mathematicians have
somewhat different thought processes from physicists,
who have somewhat different thought processes from
chemists, who have somewhat different thought
processes from biologists. Similarly, the respective
“mentalities” of lawyers, poets, playwrights, historians,
linguists, farmers, and so on, seem to be unique. Each of
these groups can probably recognize that other types of
people have a different approach to knowledge; and it
seems likely that a person gravitates to a particular kind
of occupation according to the mode of thought that he
or she grew up with, whenever a choice is possible.
C.P. Snow wrote a famous book about “two cultures,”
scientific vs. humanistic, but in fact there seem to be
many more than two. (Knuth, 1985, p. 171)

There is a saying that, to a hammer, everything looks like a
nail (http://en.wikipedia.org/wiki/Law_of_the_instrument).
This can be taken two ways: as a warning not to look at
things from only one point of view, or as an observation to
the effect that everyone has their own point of view. I take
Knuth's remarks along the latter lines. And, of course, his
eventual observation is that computer scientists look at the
world algorithmically. Given the wide range of different
points of view that he mentions, one conclusion could be
that, just as students are encouraged to study many of
those subjects so as to see the world from those points of
view, so we should add algorithmic thinking – computer
science – to the mix because of its unique point of view.
Knuth, on the other hand, is quite clear that he does not

view CS as a branch of mathematics, or vice versa (Knuth,
1974b, Section 2), primarily because mathematics allows
for infinite searches and infinite sets, whereas CS
presumably does not. But there is no reason in principle
why one couldn't write an algorithm to perform such an

http://en.wikipedia.org/wiki/Law_of_the_instrument


infinite search. The algorithm would never halt, but that is
a physical limitation, not a theoretical one. (We'll return to
infinite processes in Chapters 7 and 8.)26



3.10 CS as a Natural Science of

Procedures

So does nature compute, and does computation actually
predate its invention, or rather discovery, by human
beings? If it is the case, then this would actually lend
credence to the claim that Computer Science is actually
a science and not just and only a branch of engineering.
—Erol Gelenbe (2011, p. 1)

Then there are those who agree that CS is a natural science
but of neither computers, algorithms, nor information.
Stuart C. Shapiro agrees with Newell, Perlis, and Simon
that CS is a science, but he differs on what it is a science
of, siding more with Knuth, but not quite:

Computer Science is a natural science that studies
procedures. (Shapiro, 2001, my boldface)

For Shapiro, CS is a science, which, like any science, has
both theoreticians (who study the limitations on and kinds
of, possible procedures) as well as experimentalists. And,
as Newell and Simon (1976) suggest in their discussion of
empirical results (see Section 3.11), there are
“fundamental principles” of CS as a science. Newell and
Simon cite two: (1) the Physical Symbol System Hypothesis
that a computer “has the necessary and sufficient means
for general intelligent action” (Newell and Simon, 1976,
p. 116, col. 2) and (2) the Heuristic Search Hypothesis that
computers solve problems intelligently by searching
through symbol structures (Newell and Simon, 1976,
p. 120, col. 2). Shapiro cites two others: (3) the Church‐
Turing Computability Thesis to the effect that any
computation can be expressed as a Turing Machine



program and (4) the Böhm‐Jacopini Theorem that codifies
“structured programming.”
And although procedures are not natural objects, they are
measurable natural phenomena, in the same way that
events are not (natural) “objects” but are (natural)
“phenomena.” There are surely some procedures “in
nature,” such as a bird's procedure for building a nest.
Dennett has …

… argued that natural selection is an algorithmic

process, a collection of sorting algorithms that are
themselves composed of generate‐and‐test algorithms
that exploit randomness … in the generation phase, and
some sort of mindless quality‐control testing phase, with
the winners advancing in the tournament by having more
offspring. (Dennett, 2017, p. 43)

And the computer scientist Peter Denning observed that
“Computer science … is the science of information
processes and their interactions with the world,” adding
that “There are many natural information processes”
(Denning, 2005, p. 27, my emphasis). Denning (2007) cites
examples of the “discovery” of “information processes in
the deep structures of many fields”: biology, quantum
physics, economics, management science, and even the arts
and humanities, concluding that “computing is now a
natural science,” not (or no longer?) “a science of the
artificial.” For example, there can be algorithmic (i.e.
computational) theories or models of biological phenomena
such as cells, plants, and evolution (see Section 16.6).27

For Shapiro, procedures include, but are not limited to,
algorithms. Whereas algorithms are typically considered
precise, to halt, and to produce correct solutions, the more
general notion allows for variations on these themes:



1. Procedures (as opposed to algorithms) may be
imprecise, such as in a recipe. Does computer science
really study things like recipes? According to Shapiro
(personal communication), the answer is ‘yes’: an
education in CS should help you write a better
cookbook because it will help you understand the
nature of procedures better! However, Denning (2017,
p. 38) says, “There is no evidence to support this
claim.” (We'll return to recipes in Chapter 10.)28

2. Procedures need not halt: a procedure might go into an
infinite loop either by accident or, more importantly, on
purpose, as in an operating system or a program that
computes the infinite decimal expansion of . (But see
Chapter 8.)

3. Nor do they have to produce a correct solution: a chess
procedure does not always play optimally. (We will
return to these issues in Chapters 7 and 11.)

Moreover, Shapiro says that computer science is not just

concerned with procedures that manipulate abstract

information but also with procedures that are linked to
sensors and effectors that allow computers to “sense and
operate on the world and objects in it” (p. 3, my italics).
The philosopher and AI researcher Aaron Sloman makes a
similar point when he says that one of the “primary
features” of computers (and of brains) is “Coupling to
environment via physical transducers” (Sloman, 2002,
Section 5, #F6, pp. 17–18). This allows for “perceptual
processes that control or modify actions” and “is how
internal information manipulation often leads to external
behaviour.” We'll return to this idea when we discuss
interactive computation (Section 11.8) and the relation of
computers to the world (Section 16.4.1).
Procedures are, or could be, carried out in the real world
by physical agents, which could be biological, mechanical,



electronic, etc. Where do computers come in? According to
Shapiro, a computer is simply “a general‐purpose
procedure‐following machine.” (But does a computer
“follow” a procedure or merely “execute” it? For some
discussion of this, see Dennett, 2017, p. 70; we'll come
back to this in Section 12.4.4.)
So, Shapiro's view seems to be a combination of Knuth's
and Newell, Perlis, and Simon's: CS is the natural science
of procedures and surrounding phenomena such as
computers.



3.11 CS as an Empirical Study

In a classic paper from 1976, Newell and Simon updated
their earlier characterization. Instead of saying that CS is
the science of computers and algorithms, they now said
that it is the “empirical” “study of the phenomena
surrounding computers,” “not just the hardware but the

programmed, living machine” (Newell and Simon, 1976,
pp. 113, 114; my italics).
The reason that they say that CS is not an “experimental”
science is that it doesn't always strictly follow the scientific
(or “experimental”) method. (In Section 4.7, we'll talk more
about what that method is. For an opposing view that CS is
an experimental science, see Plaice, 1995.) CS is, like
experimental sciences, empirical – because programs
running on computers are experiments, though not
necessarily like experiments in other experimental
sciences. For example, often, just one experiment will
suffice to answer a question in CS, whereas in other
sciences, numerous experiments have to be run.
Another difference between computer “science” and other
experimental sciences is that, in CS, the chief objects of
study (the computers and the programs) are not “black
boxes” (Newell and Simon, 1976, p. 114); i.e. most natural
phenomena are things whose internal workings we cannot
see directly but must infer from experiments we perform on
them. But we know exactly how and why computer
programs behave as they do (they are “glass boxes,” so to
speak), because we (not nature) designed and built the
computers and the programs. We can understand them in a
way that we cannot understand more “natural” things.
Although this is the case for “classical” computer
programs, “A neural network, however, was a black box”



(Lewis‐Kraus, 2016, Section 4). (We'll return to this in
Sections 3.14 and 17.6.2.)
A distinction can be made between a procedure and a
process: a procedure might be expressed in a static
computer program or the static way that a computer is
hardwired – a textual or physical implementation of an
abstract algorithm or procedure. A process is a dynamic
entity – the program in the “process” of actually being
executed by the computer. By “programmed, living
machines,” Newell and Simon meant computers that are
actually running programs – not just the static machines
sitting there waiting for someone to use them, nor the
static programs just sitting there on a piece of paper
waiting for someone to load them into the computer, nor

the algorithms just sitting there in someone's mind waiting
for someone to express them in a programming language –
but “processes” that are actually running on a computer.
(We'll look at the program‐process distinction in more
detail in Chapter 12.)
To study “programmed living machines,” we certainly do
need to study the algorithms that they are executing. After
all, we need to know what they are doing; i.e. it seems to be
necessary to know what algorithm a computer is executing.
On the other hand, to study an algorithm, it does not seem
to be necessary to have a computer around that can
execute it or to study the computer that is running it. It can
be helpful and valuable to study the computer and to study
the algorithm actually being run on the computer, but the
mathematical study of algorithms and their computational
complexity doesn't need the computer. That is, the
algorithm can be studied as a mathematical object, using
only mathematical techniques, without necessarily
executing it. It may be very much more convenient, and
even useful, to have a computer handy, as Knuth notes, but



it does not seem to be necessary. If that's so, then it would
seem that algorithms are really the essential object of study
of CS: both views require algorithms, but only one requires
computers.
Can you study computers without studying algorithms?
Compare the study of computers with the study of brains
and the nervous system. Although neuroscience studies
both the anatomy of the brain (its static, physical structure)
and its physiology (its dynamic activity), historically, at
least, it has generally treated the brain as a “black box”: its
parts are typically named or described not in terms of what
they do (their function), but in terms of where they are

located (their structure). For example, the “frontal lobe” is
so‐called because it is in the front of the brain; its functions

include memory, planning, and motivation. The “temporal
lobe” is so‐called because it is near the temples on your
head; its functions include processing sensory input. And
the “occipital lobe” is so‐called because it is near the
occipital bone (itself so‐called because it is “against” (ob‐)
the head (caput)); its functions include visual processing.
(On the function‐structure distinction, see Bechtel and
Abrahamsen, 2005, Section 3.) Of course, modern
neuroscience, especially modern cognitive neuroscience,
well understands that it cannot fully understand the brain
without understanding its processing (its algorithms, if
indeed it executes algorithms) (Dennett, 2017, p. 341).
Only recently have new maps of the brain begun to identify
its regions functionally: i.e. in terms of what the regions do,
rather than where they are located (Zimmer, 2016).
Suppose a person from the nineteenth century found what
we know to be a laptop computer lying in the desert and
tried to figure out what it was, how it worked, and what it
did, with no documentation. They might identify certain
physical features: a keyboard, a screen, internal wiring (if



they were from the nineteenth century, they might describe
these as buttons, glass, and strings), and so on. More likely,
they would describe the device as we do the brain, in terms
of the locations of the parts: an array of button‐like objects
on the lower half, a glass rectangle on the upper half, and
so on. But without knowledge of what the entire system and
each of its parts were supposed to do – what their functions

were – they would be stymied. And that kind of knowledge
about computers requires the study of algorithms. (We'll
return to this in Section 3.14.)29



3.12 CS as Engineering

We have just looked at some reasons for classifying CS as a
science of one kind or another. An alternative is that CS is
not a science at all but a kind of engineering. For now, we
will assume that engineering is, strictly speaking,
something different from science. Again, a clearer answer
to this will have to wait until Chapter 5, where we look
more closely at what engineering is.
Frederick P. Brooks, Jr. – another Turing Award winner,
perhaps best known as a software engineer – says that CS
isn't science because, according to him, it is not concerned
with the “discovery of facts and laws” (Brooks, 1996).
Rather, he argues, CS is “an engineering discipline”:
computer scientists are “toolmakers,” “concerned with
making things” with physical tools such as computers and
with abstract tools such as algorithms, programs, and
software systems for others to use. CS, he says, is
concerned with the usefulness and efficiency of the tools it
makes; it is not, he says, concerned with newness for its
own sake, as scientists are. Here is Brooks's argument:

1. “[A] science is concerned with the discovery of facts
and laws.”
(Brooks, 1996, p. 61, col. 2)

2. “[T]he scientist builds in order to study; the engineer
studies in order to build. (Brooks, 1996, p. 62, col. 1)

3. The purpose of engineering is to build things.
4. Computer scientists “are concerned with making

things, be they computers, algorithms, or software
systems” (Brooks, 1996, p. 62, col. 1).



5.  “the discipline we call ‘computer science’ is in fact
not a science but a synthetic, an engineering,
discipline” (Brooks, 1996, p. 62, col. 1).

The accuracy of premise 1's notion of what science is will
be our concern in Chapter 4. By itself, however, Brooks's
first premise doesn't necessarily rule out CS as a science.
First, computer scientists who study the mathematical
theory of computation certainly seem to be studying
scientific laws. Second, computer scientists like Newell,
Simon, and Shapiro have pointed out that Heuristic Search,
the Physical Symbol System Hypothesis, the Computability
Thesis, and the Böhm‐Jacopini theorem certainly seem to
be scientific theories, facts, or laws. And “Computer
programming is an exact science in that all the properties
of a program and all the consequences of executing it in
any given environment can, in principle, be found out from
the text of the program itself by means of purely deductive
reasoning” (Hoare 1969, p. 576, my italics). (We'll look into
this claim in more detail in Chapter 15.) So, it certainly
seems that at least part of CS is a science. (We'll return to
this in Section 3.15.) We'll assume the truth of the first
premise for the sake of argument (revisiting it in the next
chapter).
The point of the second premise seems to be to set up a
distinction between science and engineering. If a scientist's
goal is to discover facts and laws – i.e. to study rather than
to build – then anything built by the scientist is only built
for that ultimate purpose. But building is the ultimate goal
of engineering, and any studying (or discovery of facts and
laws) that an engineer does along the way to building
something is merely done for that ultimate purpose. For
science, building is a side effect of studying; for
engineering, studying is a side effect of building. Both
scientists and engineers, according to Brooks, build and
study, but each focuses more on one than the other. (Does



this remind you of the algorithms‐vs.‐computers dispute?)
However, not every engineer agrees that the distinction is
as sharp as Brooks suggests: the engineer Henry Petroski
(2008) argues that all scientists are sometimes engineers,
and all engineers are sometimes scientists.
Premise 2 supports premise 3, which is a missing premise
that Brooks does not explicitly state. It defines engineering
as a discipline whose goal is to build things: i.e. a
“synthetic” – as opposed to an “analytic” – discipline. To
analyze is to pull apart; to synthesize is to put together:
“We speak of engineering as concerned with ‘synthesis,’
while science is concerned with ‘analysis’ ” (Simon, 1996b,
p. 4). “Where physical science is commonly regarded as an
analytic discipline that aims to find laws that generate or
explain observed phenomena, CS is predominantly (though
not exclusively) synthetic, in that formalisms and
algorithms are created in order to support specific desired
behaviors” (Hendler et al., 2008, p. 63). Similarly, Arden
(1980, pp. 6–7) argues that engineering is concerned with
“implementation, rather than understanding,” which “is the
best distinction” between engineering and science. And
implementation is surely on the “building” side of the
spectrum (as we'll see in more detail in Chapter 13).
Whether or not Brooks's notion of engineering is accurate
will be our focus in Chapter 5. So, let's assume the truth of
the second and third premises for the sake of argument.
Clearly, if premise 4 is true, then the conclusion will follow
validly (or, at least, it will follow that computer scientists
belong on the engineering side of the science–engineering,
or studying–building, spectrum). So, is it the case that
computer scientists are (only? principally?) concerned with
building or “making things”? And, if so, what kind of
things?



Interestingly, Brooks seems to suggest that computer
scientists don't build computers, even if that's what he says
in premise 4! Here's why: he says that “Even when we build
a computer the computer scientist designs only the
abstract properties – its architecture and implementation.
Electrical, mechanical, and refrigeration engineers design
the realization” (Brooks, 1996, p. 62, col. 1). I think this
passage is a bit confused. (You'll understand why I say that
when we look into the notion of implementation in
Chapter 13. Briefly, I think the “abstract properties” are

the design for the realization; the engineers build the
realization – they don't design it.) But it makes an
interesting point: Brooks seems to be saying that computer
scientists only design abstractions, whereas other (real?)
engineers implement them in reality. This is reminiscent of
the distinction between the relatively abstract
specifications for an algorithm (which typically lack detail)
and its relatively concrete (and highly detailed)
implementation in a computer program (we'll look into this
in Chapter 10). Brooks (following Zemanek, 1971) calls CS
“the engineering of abstract objects”: if engineering is a
discipline that builds, then what CS‐considered‐as‐
engineering builds is implemented abstractions (see
Chapter 13 for further discussion).
In 1977, when he first wrote these words (see Brooks,
1996, p. 61, col. 1), very few people other than scientists,
engineers, business people, and a few educational
institutions had access to computing machines (typically,
large mainframes or only slightly smaller “minicomputers”)
– certainly there were no personal computers (sometimes
these used to be called “microcomputers”) or laptops,
tablets, or smartphones. So, for Brooks, what computer
scientists build, unlike what other engineers build, are not
things for direct human benefit but rather things that in
turn can be used to build such directly beneficial things.



Put more simply, his answer to the question “What is a
computer?” seems to be: a computer is a tool (and a
computer scientist, who makes such tools, is a “toolsmith”)
(Brooks, 1996, p. 62, col. 1).
But much of what he says against CS being considered a
science smacks of a different battle, one between science
and engineering, with scientists belittling engineers.
Brooks takes the opposite position: “as we honor the more
mathematical, abstract, and ‘scientific’ parts of our subject
more, and the practical parts less, we misdirect young and
brilliant minds away from a body of challenging and
important problems that are our peculiar domain, depriving
the problems of the powerful attacks they deserve”
(Brooks, 1996, p. 62, col. 2).
(We'll come back to these issues in Section 5.9, question 2.)



3.13 Science xor Engineering?

So, is CS a science of some kind (natural or otherwise), or
is it not a science at all but some kind of engineering? The
term ‘xor’ in the title of this section refers to the “exclusive‐
or” of propositional logic: the title of this section means
“science or engineering, but not both?” Here, we would be
wise to listen to two skeptics about the exclusivity of this
choice:

Let's remember that there is only one nature – the
division into science and engineering, and subdivision
into physics, chemistry, civil and electrical, is a human
imposition, not a natural one. Indeed, the division is a
human failure; it reflects our limited capacity to

comprehend the whole. That failure impedes our
progress; it builds walls just where the most interesting
nuggets of knowledge may lie. (Wulf, 1995, p. 56; my
italics)
Debates about whether [CS is] science or engineering
can … be counterproductive, since we clearly are both,

neither, and more …(Freeman, 1995, p. 27, my italics)

Let's consider Freeman's three options.



3.14 CS as “Both”

[L]ike electricity, these phenomena [surrounding
computers] belong both to engineering and to science.
—Donald E. Knuth (1974b, p. 324)

Computer science is both a scientific discipline and an
engineering discipline. … The boundary [between “the
division of computer science into theory” (i.e. science)
“and practice” (i.e. engineering)] is a fuzzy one.
—Paul Abrahams (1987, p. 472)

Could CS be both science and engineering – perhaps the
science of computation and the engineering of computers –
i.e. the study of the “programmed living machine”?
It certainly makes no sense to have a computer without a
program: “A computer without a program is just a box with
parts in it” (qFiasco, 2018, p. 38). It doesn't matter
whether the program is hardwired (in the way that a
Turing Machine is; see Section 8.12); i.e. it doesn't matter
whether the computer is a special‐purpose machine that
can only do one task. Nor does it matter whether the
program is a piece of software (like a program inscribed on
a Universal Turing Machine's tape; see Section 8.13); i.e. it
doesn't matter whether the computer is a general‐purpose
machine that can be loaded with different “apps” allowing
the same machine to do many different things.
Without a program, a computer wouldn't be able to do

anything.
But it also makes very little sense to have a program
without a computer to run it on. Yes, you can study the
program mathematically; e.g. you can try to verify it (see
Chapter 15), and you can study its computational



complexity. But what good would it be (for that matter,
what fun would it be) to have, say, a program for passing
the Turing Test that never had an opportunity to pass it?
Hamming said,

Without the [computing] machine almost all of what we
[computer scientists] do would become idle speculation,
hardly different from that of the notorious Scholastics of
the Middle Ages. (Hamming, 1968, p. 5)

So, without a computer, a program wouldn't be able to do

anything.
This is reminiscent of Immanuel Kant's slogan that

Thoughts without content are empty, intuitions without
concepts are blind. … The understanding can intuit
nothing, the senses can think nothing. Only through their
union can knowledge arise. (Kant, 1929, p. 93
(A51/B75))

Similarly, we can say, “Computers without programs are
empty; programs without computers are blind. Only
through the union of a computer with a program can
computational processing arise.”



Philosophical, Historical, and Literary Digression:

In more modern terms, Kant can be understood as
saying that (1) the part of the brain that thinks (“the
understanding”) doesn't sense (“intuit”) the external
world and that (2) the part of the brain (or nervous
system) that senses cannot think. Thoughts have to be
thoughts about something; i.e. they have to have
“content.” “The understanding” provides organizing
principles (“concepts”) in order to think about what is
sensed. “The understanding” by itself doesn't sense the
external world; the senses by themselves don't think.
Only through the “union” of rational thought and
empirical sensation “can knowledge arise.” This was
Kant's way of resolving the opposing views of the nature
of knowledge due to the rationalist philosophers
(Descartes, Leibiniz, and Spinoza) and the empiricist
philosophers (Locke, Berkeley, and Hume). (Recall our
discussion in Section 2.5, of the different kinds of
“rationality.”) For an informal presentation of some of
Kant's ideas, see Cannon, 2013. For a more
philosophically sophisticated introduction, see Rohlf,
2020. For more on what Kant meant by ‘intuition,’ see
http://www.askphilosophers.org/question/204. We'll
return to Kant in Sections 4.4.1 and 15.6.2.
A literary version of ‘computers without programs are
empty’ is the legend of the Golem, a purely material
statue that comes to life when certain Hebrew words are
inscribed on it
(https://www.jewishvirtuallibrary.org/the-golem). As
Ted Chiang's (2002) story “Seventy‐Two Letters”
suggests, the linguistic text can be thought of as the
computer program for a robot.

http://www.askphilosophers.org/question/204
https://www.jewishvirtuallibrary.org/the-golem


So, CS must be both a science (that studies algorithms) and
an engineering discipline (that builds computers). But we
need not be concerned with the two fighting words
‘science’ and ‘engineering,’ because, fortunately, there are
two very convenient terms that encompass both: ‘scientific’
and ‘STEM.’ Surely both natural science and engineering,
as well as “artificial science,” “empirical studies,” many of
the social sciences, and mathematics, are all scientific (as
opposed, say, to the arts and humanities). And, lately, both
the National Science Foundation and the popular press
have taken to referring to “STEM” disciplines – science,
technology, engineering, and mathematics – precisely in
order to have a single term to emphasize their similarities
and interdependence, and to avoid having to try to spell out
differences among them.30

Let's agree for the moment that CS might be both science
and engineering (or, perhaps, can be divided into a science
subdiscipline and an engineering subdiscipline). What
about Freeman's other two options: neither and more? Let's
begin with “more.”



3.15 CS as “More”

Perhaps CS is science together with being something else,
or perhaps CS is engineering plus something else. The
computer scientist Juris Hartmanis takes the first position;
the computer engineer Michael C. Loui takes the second.

3.15.1 CS as a New Kind of Science

[C]omputer science differs from the known sciences so
deeply that it has to be viewed as a new species among
the sciences.
—Juris Hartmanis (1993, p. 1)

Hartmanis comes down on the side of CS being a science,
but it is a “new species among the sciences.” What does it
mean to be a “new species”? A clue comes in Hartmanis's
next sentence:

This view is justified by observing that theory and
experiments in computer science play a different role
and do not follow the classic pattern in physical sciences.
(Hartmanis, 1993, p. 1)

This strongly suggests that CS is not a physical science
(such as physics or biology), and Hartmanis confirms this
suggestion on p. 5: “computer science, though not a

physical science, is indeed a science” (my italics; see also
Hartmanis, 1993, p. 6; Hartmanis, 1995a, p. 11). The non‐
physical sciences are typically taken to include both social
sciences (such as psychology) and formal sciences (such as
mathematics). This seems to put CS either in the same
camp as (either) the social sciences or mathematics or in a
brand‐new camp of its own: i.e. sui generis.



Hartmanis said that he would not define CS (recall the
epigraph to Section 3.4). But immediately after saying that,
he seems to offer a definition:

At the same time, it is clear that the objects of study in

computer science are information and the machines and

systems which process and transmit information. From
this alone, we can see that computer science is
concerned with the abstract subject of information,
which gains reality only when it has a physical
representation, and the man‐made devices which process
the representations of information. The goal of computer
science is to endow these information processing devices
with as much intelligent behavior as possible.
(Hartmanis, 1993, p. 5, my italics; see also Hartmanis,
1995a, p. 10)

Although it may be “clear” to Hartmanis that information,
an “abstract subject,” is (one of) the “objects of study in
computer science,” he does not share his reasons for that
clarity. Since, as we have seen, others seem to disagree
that CS is the study of information, it seems a bit unfair for
Hartmanis not to defend his view. But he cashes out this
promissory note in Hartmanis 1995a (p. 10, my italics),
where he says that “what sets it [i.e. CS] apart from the
other sciences” is that it studies “processes [such as
information processing] that are not directly governed by

physical laws.” And why are they not so governed? Because
“information and its transmission” are “abstract entities”
(Hartmanis, 1995a, p. 8). This makes CS sound very much
like mathematics. That is not unreasonable, given that it
was this aspect of CS that led Hartmanis to his ground‐
breaking work on computational complexity, an almost
purely mathematical area of CS.
But, says Hartmanis, it's not just information that is the
object of study; it's also information‐processing machines:



i.e. computers. Computers, however, don't deal directly
with information, because information is abstract (i.e. non‐
physical). For one thing, this suggests that insofar as CS is
a new species of non‐physical science, it is not a species of
social science: despite its name, the “social” sciences deal
with pretty physical things: societies, people, speech, etc.
So if CS is a science but is neither physical nor social, then
perhaps it is a “formal” science like mathematics.
To say that computers don't deal directly with information
but deal only with “physical … representations of
information” suggests that CS has a split personality: part
of it deals directly with something abstract (information),
and part of it deals directly with something real but that is
(merely?) a representation of that abstraction (hence
dealing indirectly with information). Such real (physical?)
representations are called “implementations.” (These
issues will be the topics of Chapters 13 and 16.)
Here is another reason Hartmanis thinks CS is not a
physical science and probably also not a social science:

[C]omputer science is concentrating more on the how

than the what, which is more the focal point of physical
sciences. In general the how is associated with
engineering, but computer science is not a subfield of
engineering. (Hartmanis, 1993, p. 8; Hartmanis's italics,
my boldface)

But there are two ways to understand “how”: algorithms
are the prime formal entities that codify how to accomplish
some goal. But as Hartmanis quickly notes, engineering is
the prime discipline that is concerned with how to do
things, how to build things. The first kind of “how” is
mathematical and abstract (indeed, it is computational! –
see Sections 3.16.3 and 3.16.4); the second is more
physical. One way to see this as being consistent with



Hartmanis's description of the objects of study of CS is to
say that, insofar as CS studies abstract information, it is
concerned with how to process information (i.e. it is
concerned with algorithms); and insofar as CS studies
computers, it is concerned with how to process
representations (or implementations) of information (i.e. it
is concerned with the physical devices).
But that latter task would seem to be part of engineering
(perhaps, historically, electrical engineering; perhaps, in
the future, quantum‐mechanical or bioinformatic
engineering; certainly computer engineering!). Then why
does he say that “computer science is not a subfield of
engineering”? In fact, he seems to regret this strong
statement, for he next says that “the engineering in our
field has different characterizations than the more classical
practice of engineering” (Hartmanis, 1993, p. 8): so, CS
certainly overlaps engineering, but just as he claims that
CS is a new species of science, he also claims that “it is a
new form of engineering” (Hartmanis, 1993, p. 9). In fact,
he calls it “[s]omewhat facetiously … the engineering of
mathematics”; however, he also says that “we should not
try to draw a sharp line between computer science and
engineering” (Hartmanis, 1993, p. 9).
To sum up so far, Hartmanis views CS as a new species
both of science and of engineering. This is due, in part, to
his view that it has two different objects of study: an
abstraction (namely, information) as well as its
implementations (i.e. the physical representations of
information, typically in strings of symbols). But isn't it also
reasonable to think that, perhaps, there are really two
different (albeit new) disciplines, namely, a new kind of
science and a new kind of engineering? If so, do they
interact in some way more deeply and integratively than,
say, chemistry and chemical engineering, so that it makes
sense to say that “they” are really a single discipline?



Hartmanis suggests two examples that show a two‐way
interaction between these two disciplines (or two halves of
one discipline?): Alan Turing's interest in the mathematical

nature of computation led to his development of real

computers; and John von Neumann's interest in building

computers led to his theoretical development of the
structure of computer architecture (Hartmanis, 1993,
p. 10). The computational logician J. Alan Robinson made
similar observations:

Turing and von Neumann not only played leading roles in
the design and construction of the first working
computers but were also largely responsible for laying
out the general logical foundations for understanding the
computation process, developing computing formalisms,
and initiating the methodology of programming: in short,
for founding computer science as we now know it. …
Of course, no one should underestimate the enormous
importance of the role of engineering in the history of
the computer. Turing and von Neumann did not. They
themselves had a deep and quite expert interest in the
very engineering details from which they were
abstracting, but they knew that the logical role of
computer science is best played in a separate theater.
(Robinson, 1994, pp. 5, 12)

Hartmanis explicitly says that CS is a science and is not

engineering, but his comments imply that it is both. I don't
think he can have it both ways.

3.15.2 CS as a New Kind of

Engineering



Hartmanis calls CS “a new species among the sciences”
…. [I]t would be more accurate to call computer science
a new species of engineering …
—Michael C. Loui (1995, p. 31)

There are two parts to Loui's argument: CS is a kind of
engineering, and it is a new kind. We have already looked
at one argument (Brooks's) for the first part. (For an
analysis of Loui's argument for it, see Rapaport, 2017c,
Section 12.1.) Now let's look at Loui's argument for it being
a new kind of engineering.
Here is his argument for this (Loui, 1995, p. 31, italics
added):

1. “[E]ngineering disciplines have a scientific basis.”
2. “The scientific fundamentals of computer science … are

rooted … in mathematics.”
3. “Computer science is therefore a new kind of

engineering.”
This argument can be made valid by adding two missing
premises:

(A) Mathematics is a branch of science.
(B) No other branch of engineering has mathematics as
its basis.

We are assuming (for now) that CS is a kind of engineering.
From that and premise 1, we can infer that CS (as an
engineering discipline) must have a scientific basis. We
need missing premise A so that we can infer that the basis
of CS (which, by premise 2, is mathematics) is indeed a
scientific one. What about premise B? Although
mathematics can be considered essential to all (other)
branches of engineering, it does appear that the scientific
basis of “traditional engineering disciplines such as



mechanical engineering and electrical engineering” is
physics (Loui, 1987, p. 176), that the scientific basis of
chemical engineering is chemistry, and so on, even though
mathematics is essential to physics, chemistry, etc. Thus,
CS is mathematical engineering – as Hartmanis suggested!
– and therefore differs from all other branches of
engineering.
Both Loui and Hartmanis agree that CS is a new kind of
something or other; each claims that the scientific and
mathematical aspects of it are central; and each claims that
the engineering and machinery aspects of it are also
central. But one calls it ‘science,’ while the other calls it
‘engineering.’ This is reminiscent of the dialogue between
Newell, Perlis, and Simon on the one hand and Knuth on
the other: extensionally equivalent but intensionally
distinct. In fact, toward the end of his essay, Loui says this:
“It is impossible to define a reasonable boundary between
the disciplines of computer science and computer
engineering. They are the same discipline” (Loui, 1987,
p. 178).



3.16 CS as “Neither”

It seems that the broad field of computing (which is
probably a better name than computer science) has
aspects that are similar to many other fields –
mathematics, statistics, logic, natural science, social
science, engineering, linguistics, philosophy, various fine
arts, etc. – and also different from all other fields.
Perhaps, to borrow a phrase from Dijkstra, computing is
a “radical novelty.” Maybe we shouldn't try to shoehorn
computing into any preexisting category. It is just what it
is.
—H. Conrad Cunningham, ACM SIGCSE mailing list
(4 February 2021)

Perhaps CS is something else altogether: an art, or the
study of complexity, or a branch of philosophy, or a way

of thinking, or AI, or magic(!).

3.16.1 CS as Art

Knuth titled his multi‐volume classic The Art of Computer

Programming (Knuth, 1973), defending his use of the word
‘art’ in the title not by saying that all of CS is an art but
that ‘art’ can be applied to, at least, computer
programming. I will let you decide whether CS is an art.
We'll return to this briefly in Section 12.3.2. (Relevant
readings are in the Online Resources .)

3.16.2 CS as the Study of Complexity

https://cse.buffalo.edu/~rapaport/OR/A0fr03.html#3.16.1


[T]he art of programming is the art of organising
complexity, of mastering multitude and avoiding its
bastard chaos as effectively as possible.
—Edsger W. Dijkstra (1972, p. 6)

It has been suggested that CS is the study of complexity –
not just the mathematical subject of “computational
complexity,” which is really more a study of efficiency – but
complexity in general and in all of nature. Ceruzzi (1988,
pp. 268–270) ascribes this to the electrical engineer and
MIT president Jerome Wiesner (1958). But all Wiesner says
is that “Information processing systems are but one facet of
… communication sciences … i.e. the study of …the
problems of organized complexity' ” (quoted in Ceruzzi,
1988, p. 269). Even if computer science is part of a larger
discipline (“communication sciences”?) that studies
complexity, it doesn't follow that CS itself is the study of
complexity. Again, I will let the reader investigate this.
(Relevant readings are in the Online Resources.)

3.16.3 CS as the Philosophy(!) of

Procedures

At least one introductory CS text claims that CS is neither a
science nor the study of computers (Abelson et al., 1996,
“Preface to the First Edition”). Rather, it is what the
authors call ‘procedural epistemology’:

the study of the structure of knowledge from an
imperative point of view, as opposed to the more
declarative point of view taken by classical mathematical
subjects. Mathematics provides a framework for dealing
precisely with notions of “what is.” Computation
provides a framework for dealing precisely with notions
of “how to.” (Italics added.)

https://cse.buffalo.edu/~rapaport/OR/A0fr03.html#3.16.2


Epistemology, recall, is the branch of philosophy that
studies knowledge and belief (Section 2.7).
“How to” is certainly important and interestingly distinct
from “what is.” But is there really a difference between
“how to” and “what is”? Many imperative statements can
equally well be expressed as declarative ones: consider, for
example, Lisp programs, which appear to be merely
declarative definitions of recursive functions. Or consider
that each “  :‐  ” rule of a Prolog program can be
interpreted either procedurally (“to achieve , execute 
”) or declaratively (“  if ”).
Or consider Euclid's Elements, which was originally written
in “how to” form (Toussaint, 1993): to construct an
equilateral triangle using only compass and straightedge,
follow this algorithm
(http://www.perseus.tufts.edu/hopper/text?
doc=Perseus:text:1999.01.0086:book=1:type=Prop:number
=1). Compare: to compute the value of this function using

only the operations of a Turing Machine, follow this
algorithm. (For further discussion of the “to accomplish
goal , do algorithm ” formula, see Section 16.5.) But
today, geometry is expressed in “what is” form: the triangle
that is constructed by following that algorithm is
equilateral: “When Hilbert gave a modern axiomatization of
geometry at the beginning of the present century, he
asserted the bald existence of the line. Euclid, however,
also asserted that it can be constructed” (Goodman, 1987,
Section 4). (We'll return to this topic in Section 10.3.) Note
that the declarative version of a geometry theorem can be
considered a formal proof of the correctness of the
procedural version. This is closely related to the notion of
program verification, which we'll look at in Chapter 15.
Even if procedural language can be intertranslated with
declarative language, the two are surely distinct. And, just

http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.01.0086:book=1:type=Prop:number=1


as surely, CS is concerned with procedures! So, we need to
be clearer about what we mean by ‘procedure’ as well as
phrases like ‘computational thinking ’ and ‘algorithmic
thinking.’

3.16.4 CS as Computational Thinking

A currently popular view is to say that CS is a “way of
thinking':' that “computational,” or “algorithmic,” or
“procedural” thinking – about anything(!) – is what makes
CS unique:

CS is the new “new math,” and people are beginning to
realize that CS, like mathematics, is unique in the sense
that many other disciplines will have to adopt that way of

thinking. It offers a sort of conceptual framework for
other disciplines, and that's fairly new. … Any student
interested in science and technology needs to learn to
think algorithmically. That's the next big thing. (Bernard
Chazelle, interviewed in Anthes, 2006, my italics)

Computer scientist Jeannette Wing's notion of
“computational thinking” (Wing, 2006, echoing Papert,
1980) is thinking in such a way that a problem's solution
“can effectively be carried out by an information‐processing
agent” (Wing, 2010; see also Guzdial, 2011). Here, it is
important not to limit such “agents” to computers but to
include humans (as Wing (2008a, p. 3719) admits).
Five years before Perlis (along with Newell and Simon)
defined CS as the science of computers, he emphasized
what is now called computational thinking:



[T]he purpose of … [a] first course in programming … is
not to teach people how to program a specific computer,
nor is it to teach some new languages. The purpose of a

course in programming is to teach people how to

construct and analyze processes. … The point is not to
teach the students how to use [a particular programming
language, such as] ALGOL, or how to program [a
particular computer, such as] the 704. These are of little
direct value. The point is to make the students construct

complex processes out of simpler ones (and this is
always present in programming) in the hope that the
basic concepts and abilities will rub off. A properly
designed programming course will develop these
abilities better than any other course. (Perlis, 1962,
pp. 209–210, my italics)

Some of the features of computational thinking that various
people have cited include abstraction, hierarchy,
modularity, problem analysis, structured programming, the
syntax and semantics of symbol systems, and debugging
techniques. (Note that all of these are among the methods
for handling complexity!)
Denning (2009, p. 33) also recognizes the importance of
computational thinking. However, he dislikes it as a
definition of CS, primarily on the grounds that it is too
narrow:

Computation is present in nature even when scientists
are not observing it or thinking about it. Computation is
more fundamental than computational thinking. For this
reason alone, computational thinking seems like an
inadequate characterization of computer science.
(Denning, 2009, p. 30)

A second reason Denning thinks defining CS as
computational thinking is too narrow is that there are other



equally important forms of thinking: “design thinking,
logical thinking, scientific thinking, etc.” (Denning et al.,
2017).31

3.16.5 CS as AI

Computation … is the science of how machines can be
made to carry out intellectual processes.
—John McCarthy (1963, p. 1, my italics)

The goal of computer science is to endow these
information processing devices with as much intelligent

behavior as possible.
—Juris Hartmanis (1993, p. 5, my italics) (cf. Hartmanis,
1995a, p. 10)

Computational Intelligence is the manifest destiny of
computer science, the goal, the destination, the final
frontier.
—Edward A. Feigenbaum (2003, p. 39)

These aren't exactly definitions of CS, but they could be
turned into one: computer science – note: CS, not AI! – is
the study of how to make computers “intelligent” and how
to understand cognition computationally.
As we will see in more detail in Chapter 6, the history of
computers supports this: it is a history that began with how
to get machines to do some human thinking (in particular,
certain mathematical calculations) and then more and
more. And (as we will see in Chapter 8) the Turing Machine
model of computation was motivated by how humans

compute: Turing (1936, Section 9) analyzed how humans
compute and then designed what we would now call a
computer program that does the same thing. But the
branch of CS that analyzes how humans perform a task and



then designs computer programs to do the same thing is AI.
So, the Turing Machine was the first AI program! But
defining CS as AI is probably best understood as a special
case of its fundamental task: determining what tasks are
computable.

3.16.6 Is CS Magic?

[T]he computing scientist could not care less about the
specific technology that might be used to realize
machines, be it electronics, optics, pneumatics, or magic.
—Edsger W. Dijkstra (1986)

To engender empathy and create a world using only
words is the closest thing we have to magic.
—Lin‐Manuel Miranda (2016)32

The great science‐fiction author Arthur C. Clarke famously
said that “Any sufficiently advanced technology is
indistinguishable from magic”
(http://en.wikipedia.org/wiki/Clarke's_three_laws). Could it
be that the advanced technology of CS is not only
indistinguishable from magic but really is magic? Not
magic as in tricks, but magic as in Merlin or Harry Potter?
Brooks makes an even stronger claim than Clarke:

http://en.wikipedia.org/wiki/Clarke's_three_laws


The programmer, like the poet, works only slightly
removed from pure thought‐stuff. He [sic] builds castles
in the air, creating by the exertion of the imagination ….
Yet the program construct, unlike the poet's words [or
the magician's spells?], is real in the sense that it moves
and works, producing visible outputs separate from the
construct itself. … The magic of myth and legend has

come true in our time. One types the correct

incantation on a keyboard, and a display screen comes to

life, showing things that never were nor could be.
(Brooks, 1975, pp. 7–8, my boldface).33

What is “magic”? Here's how one anthropologist defines it:
In anthropology, magic generally means beliefs in the
use of symbols to control forces in nature … (Stevens,
1996, p. 721, col. 1)

A definition of magic can be constructed to say
something like the following: Magic involves the human
effort to manipulate the forces of nature directly,
through symbolic communication and without spiritual
assistance. (Stevens, 1996, p. 723, col. 2).34

Clearly, programming involves exactly that kind of use of
symbols. Or, as Abelson and Sussman put it in their
introductory CS text,



A computational process is indeed much like a sorcerer's
idea of a spirit. It cannot be seen or touched. It is not
composed of matter at all. However, it is very real. It can
perform intellectual work. It can answer questions. It can
affect the world by disbursing money at a bank or by
controlling a robot arm in a factory. The programs we

use to conjure processes are like a sorcerer's spells.
They are carefully composed from symbolic expressions
in arcane and esoteric programming languages that
prescribe the tasks we want our processes to perform.
(Abelson et al., 1996, my italics)
(https://web.archive.org/web/20010727165536/https://
mitpress.mit.edu/sicp/full-text/book/book-Z-H-9.html)

How is magic supposed to work? Anthropologist James G.
Frazer (1915) “had suggested that primitive people
imagine magical impulses traveling over distance through
‘a kind of invisible ether’ ” (Stevens, 1996, p. 722, col. 1).
That sounds like a description of electrical currents
running from a keyboard to a CPU, or information traveling
across the Internet, or text messaging. According to
another anthropologist, Bronisław Malinowski,

The magical act involves three components: the formula,
the rite, and the condition of the performer. The rite
consists of three essential features: the dramatic
expression of emotion through gesture and physical
attitude, the use of objects and substances that are
imbued with power by spoken words, and, most
important, the words themselves. (Stevens, 1996, p. 722,
col. 2, my italics; citing Malinowski)

A “wizard,” gesturing with a “wand,” performs a “spell”
consisting of a formula expressed in the words of an arcane
language; the spell has real‐world effects, imbuing objects

with power. We see all of this in computing: programs play

https://web.archive.org/web/20010727165536/https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-9.html


the role of spells; the programmer plays the role of the
wizard; a mouse, trackpad, or touchscreen plays the role of
the wand; programming languages (or, in the case of Siri or
Alexa, English itself) play the role of the arcane language;
and computations are “powered” by “words” with real‐
world effects.
Here is another aspect of the role of symbols in magic:

[A symbol] can take on the qualities of the thing it
represents, and it can take the place of its referent;
indeed, as is evident in religion and magic, the symbol

can become the thing it represents, and in so doing, the
symbol takes on the power of its referent. (Stevens,
1996, p. 724, my italics)

We see this happening in computers when we treat desktop
icons (which are symbols) or the screen output of a
WYSIWYG word processor (such as a page of a Microsoft
Word document) as if they were the very things they
represent. More significantly, we see this in the case of
those computer simulations in which the simulation of
something really is that (kind of) thing: in online banking,
the computational simulation of transferring funds between
accounts is the transferring of funds; digitized signatures
on online Word or PDF documents carry legal weight. And
a National Research Council report (cited by Samuelson et
al., 1994, p. 2324, notes 44, 46; p. 2325, note 47) talks
about user interfaces as “illusions”:

Unlike physical objects, the virtual objects created in
software are not constrained to obey the laws of physics.
… In the desktop metaphor, e.g. the electronic version of
file folders can expand, contract, or reorganize their
contents on demand, quite unlike their physical
counterparts. (Samuelson et al., 1994, p. 2334)

Isn't that magic?



However, there is a difference between computing and “the
magic of myth and legend”: the latter lacks (or at least fails
to specify) any causal (i.e. physical) connection between
incantation and result, whereas computation is quite clear
about the connection – recall the emphasis on algorithms.
Thus, although CS may have the outward appearance of
magic and even accomplish (some of) the things that magic
accomplishes, the way it does it is different. CS has a
method; magic does not. Actually, CS has more in common
with magic tricks than with “real” magic:

“I'm writing a book on magic,” I explain, and I'm asked,
“Real magic?” By real magic people mean miracles,
thaumaturgical acts, and supernatural powers. “No,” I
answer: “Conjuring tricks, not real magic.” Real magic,

in other words, refers to the magic that is not real, while

the magic that is real, that can actually be done, is not

real magic. (Lee Siegel, quoted in Dennett, 2017, p. 318,
my italics)

Magic tricks require intermediary steps that accomplish
the illusions of magic. In a “Rhymes with Orange” comic,35

a student magician waves a wand in front of a math
problem, and the answer magically appears; the student's
teacher says, “No relying on the wand – I want to see how
you arrived at the right answer.” Put another way, magic
does what it does magically; CS does those things
computationally:



Everything going on in the software [of a computer] has
to be physically supported by something going on in the
hardware. Otherwise the computer couldn't do what it
does from the software perspective – it doesn't work by

magic. But usually we don't have to know how the
hardware works – only the engineer and the repairman
do. We can act as though the computer just carries out
the software instructions, period. For all we care, as

long as it works, it might as well be magic.

(Jackendoff, 2012, p. 99, my boldface, italics in original)



3.17 Summary

Is CS a science, a branch of engineering, or something
else? Or all of the above? Does it study computers,
algorithms, information, or something else? Or all of the
above? In the next two chapters, we will look more deeply
at science and engineering. We will then look further into
the nature of computers and algorithms.



3.18 Questions for the Reader

1. Many of the definitions of CS that you can find on
various academic websites are designed with one or
more of the purposes discussed in Section 3.3 in mind.
Link to the websites for various CS departments
(including your own school's!), and make a list of the
different definitions or characterizations of CS that you
find.
Which purposes were they designed for? Do you agree
with them? Do they agree with each other? Are any of
them so different from others that you wonder if they
are really trying to describe the same discipline?

2. In Section 3.14, I said that it makes no – or very little –
sense to have a program without a computer to run it
on. Some of the earliest AI programs (for playing chess)
were executed by hand (Shannon, 1950, Turing, 1953;
https://chessprogramming.wikispaces.com/Turochamp)
. And journalist Steve Lohr (2008) quotes a high‐school
mathematics and CS teacher as saying, “I do feel that
computer science really helps students understand
mathematics … And I would use computers more in
math, if I had access to a computer lab.” That a
computer is useful, but not necessary, is demonstrated
by the “Computer Science Unplugged” project
(http://csunplugged.org/).
So, did these programs “have a computer to run on”?
Were the humans, who hand‐executed them, the
“computers” that these programs “ran on”? When you
debug a computer program, do you do the debugging
by hand?36

3. Forsythe (1967b, p. 454), observed that,

https://chessprogramming.wikispaces.com/Turochamp
http://csunplugged.org/


in the long run the solution of problems in field  on
a computer should belong to field , and CS should
concentrate on finding and explaining the principles
[“the methodology”] of problem solving [with
computers].

Should contributions made by AI researchers to
philosophy or psychology be considered the results of
AI? Or are they philosophical or psychological results
that were only produced or facilitated by
computational techniques?

4. In this chapter, we asked what CS is: Is it a science? A
branch of engineering? Or something else? But we
could also have responded to the question with another
one: Does it matter? Is it the case that, in order for a
discipline to be respectable, it has to be (or claim to
be!) a science? Or is it the case that a discipline's
usefulness is more important? (For instance, whether
or not medicine is a science, perhaps what really
matters is that it is a socially useful activity that draws
upon scientific – and other! – sources.)37

So: does it matter what CS is? And what would it mean
for a discipline to be “useful”?

5. A related (but distinct) question is, what is a computer
scientist? Bill Gasarch considers a number of reasons
why the answer to this question is not straightforward
(https://blog.computationalcomplexity.org/2018/09/wh
at-is-physicist-mathematician.html): Does it depend on
whether the person is in a CS department? Whether the
person's degree is in CS? What the person's research
is? For example, the computer scientist Scott Aaronson
received a prize in physics, yet he insists that he is not
a physicist (Aaronson, 2018).

https://blog.computationalcomplexity.org/2018/09/what-is-physicist-mathematician.html


Read Gasarch's post, and try to offer some answers.
(We'll return to this issue in Section 14.3.4.)



Notes

1  An earlier version of this chapter appears as
Rapaport, 2017c.

2 Philosopher and logician J. Michael Dunn suggested
to me that we might also ask, what does it mean to
ask what does it mean to ask what something is?

3 See the Online Resources for further reading on CS's
names .

4 In the US, colleges and universities are usually
administratively divided into smaller units, variously
known as ‘schools,’ ‘colleges,’ ‘faculties,’ ‘divisions,’
etc., each typically headed by a “dean” and divided
into still smaller units, called ‘departments.’

5 Hartmanis, 1995a covers much of the same ground,
and in many of the same words, as Hartmanis, 1993,
but is more easily accessible, having been published
in a major journal that is widely available online,
rather than in harder‐to‐find conference proceedings.
Moreover, the issue of ACM Computing Surveys

containing Hartmanis, 1995a also contains
commentaries (including, especially, Denning, 1995,
Loui, 1995, Plaice, 1995, Stewart, 1995, Wulf,
1995) and a reply by the author (Hartmanis,
1995b).

6 See https://www.quora.com/Do-cats-and-dogs-have-a-
common-ancestor-If-so-do-we-know-when-they-
started-to-split-off and the Wikipedia article
“Carnivora”
(http://en.wikipedia.org/wiki/Carnivora).

https://cse.buffalo.edu/~rapaport/OR/A0fr03.html#3.2
https://www.quora.com/Do-cats-and-dogs-have-a-common-ancestor-If-so-do-we-know-when-they-started-to-split-off
http://en.wikipedia.org/wiki/Carnivora


7 See the Online Resources for further reading on
Wittgenstein and on categorization .

8 ‘Ergo’ is Latin for “therefore.”

9 By the way, ‘phenomenon’ is the correct singular
term. If you have two or more of them, you have two
or more phenomena.

10 Curiously, they say that it is zoologists who study
hybrid corn!

11 See the Online Resources for further reading on
artifacts.

12 Another “science” of an artifact might be bicycle
science (Wilson and Papadopoulos, 2004). But it's
really not clear if this is a science or a branch of
engineering.

13 Thanks to Stuart C. Shapiro for suggesting this. A
more complete story is told in the Online Resources.

14 That is, Malpighi did not study any single, natural
phenomenon; rather, he studied all phenomena that
are only visible with a microscope.

15 ‘Surely,’ by the way, is a word that any philosopher
should surely(?) take with a grain of salt! (Dennett,
2013a, Ch. 10).

16 See the Online Resources for further reading on
quantum and DNA computing .

17 This “algorithm” is written in informal pseudocode.
Terms in boldface are control structures. Note its
form: to accomplish goal , do algorithm . We'll
return to this in Section 16.5.

https://cse.buffalo.edu/~rapaport/OR/A0fr03.html#3.4.1
https://cse.buffalo.edu/~rapaport/OR/A0fr03.html#3.5.1
https://cse.buffalo.edu/~rapaport/OR/A0fr03.html#3.5.3
https://cse.buffalo.edu/~rapaport/OR/A0fr03.html#3.5.4


18 See the Online Resources for implementations of
Michie's algorithm .

19 However, their collaborator Rosalind Franklin did
use X‐ray machines.

20 Shakespeare, Romeo and Juliet, Act III, scene 1.

21 See the Online Resources for further reading on
information theory .

22 The inverted ‘A’ is logical notation for ‘for all.’

23 The notation ‘ ’ means “assign the value  to
variable (or storage unit) .”

24 Technically, it is a “restricted” universal quantifier
because it specifies the type of the variable. See, e.g.
https://www.encyclopediaofmath.org/index.php/Rest
ricted_quantifier.

25 See the Online Resources for further reading on
Dijkstra.

26 See the Online Resources for further reading on CS
and mathematics.

27 See the Online Resources for further reading on
evolution and natural computation .

28 See the Online Resources for further reading on
recipes.

29 See the Online Resources for further reading on
CS's empirical nature.

30 Nothing should be read into the ordering of the
terms in the acronym: the original acronym was the
less mellifluous ‘SMET’! (See

https://cse.buffalo.edu/~rapaport/OR/A0fr03.html#3.6.1
https://cse.buffalo.edu/~rapaport/OR/A0fr03.html#3.8
https://www.encyclopediaofmath.org/index.php/Restricted_quantifier
https://cse.buffalo.edu/~rapaport/OR/A0fr03.html#3.9
https://cse.buffalo.edu/~rapaport/OR/A0fr03.html#3.9
https://cse.buffalo.edu/~rapaport/OR/A0fr03.html#3.10
https://cse.buffalo.edu/~rapaport/OR/A0fr03.html#3.10
https://cse.buffalo.edu/~rapaport/OR/A0fr03.html#3.11


https://www.nsf.gov/pubs/1998/nsf98128/nsf98128.
pdf.) And educators have been adding the arts to
create ‘STEAM’ (http://stemtosteam.org/). On CS
and art, see Section 3.16.1.

31 See the Online Resources for further reading on
computational thinking.

32

https://www.nytimes.com/2016/04/10/books/review
/lin-manuel-miranda-by-the-book.html

33 For an illustration of “things that never were nor
could be,” see
https://www.google.com/books/edition/From_Animal
s_to_Animats_3/kcMoUj3aIfoC?
hl=en&gbpv=1&printsec=frontcover.

34 For more on definitions of ‘magic,’ see Stairs, 2014.

35 Behind a paywall at
https://comicskingdom.com/rhymes-with-
orange/2017-10-26.

36 Thanks to Stuart C. Shapiro for this suggestion.

37 Thanks to Johan Lammens (personal
communication, 2017) for the observations in this
question.
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4 

Science

Science is the great antidote to the poison of enthusiasm
and superstition.
—Adam Smith (1776, V.1.203)

The most remarkable discovery made by scientists is

science itself. The discovery must be compared in
importance with the invention of cave‐painting and of
writing. Like these earlier human creations, science is an
attempt to control our surroundings by entering into
them and understanding them from inside. And like
them, science has surely made a critical step in human
development which cannot be reversed. We cannot
conceive a future society without science.
—Jacob Bronowski (1958, my italics)

[A] science is an evolving, but never finished,
interpretive system. And fundamental to science … is its
questioning of what it thinks it knows. … Scientific
knowledge … is a system for coming to an
understanding.
—Avron Barr (1985)

Science is all about the fact that we don't know
everything.
Science is the learning process.
—Brian Dunning (2007)



[S]cience is not a collection of truths. It is a continuing
exploration of mysteries.
—Freeman Dyson (2011b, p. 10)



4.1 Introduction

All these processes are very complex, and they tend to
follow the rule that the more you find out about them,
the more you discover that you didn't know …. That is
both the joy and the frustration of science ….
—Gregory L. Murphy (2019, Section 1)

Recall from Chapter 3 that I am referring to computer
science as ‘CS’ so as not to beg any questions about
whether it is a science simply because its name suggests
that it is. Nonetheless, we have seen that one answer to our
principal question – what is CS? – is that it is a science (or
that parts of it are). Some say that it is a science of
computers, some that it is a science of algorithms or
procedures, some that it is a science of information
processing. And, of course, some say that it is not a science
at all but a branch of engineering or something else
entirely. In Chapter 5, we will explore what engineering is
so that we will have more information to help us decide
whether CS is a branch of engineering. In the present
chapter, we will explore what it means to be a science, to
help us decide whether CS is one (or whether parts of it
are).
In keeping with the definition of philosophy as the personal

search for truth by rational means (Section 2.6), I will
provide considerations to help you find and defend an
answer that you like. It is more important for you to
determine an answer for yourself than it is for me to
present you with my view; this is part of what it means to
do philosophy in the first person for the first person. And it
is very important for you to be able to defend your answer;
this is part of what it means to be rational. We will follow
this strategy throughout the rest of the book.



4.2 Science and Non‐Science

According to the OED

(http://www.oed.com/view/Entry/172672), ‘science’
derives from the Latin verb scire, which means “to know.”
(‘Scientist’ was coined by the philosopher William Whewell
in 1834, to parallel ‘artist’;
http://www.oed.com/view/Entry/172698.) But of course,
‘science’ has come to mean much more than “knowledge.”
Let's begin by contrasting ‘science’ with some other terms.
First, of course, science is often opposed to engineering.
Because this will be our focus in Chapter 5, I won't say
more about it here.
Second, science is sometimes opposed to “art,” not only in
the sense of the fine arts (such as painting and music) but
also in the sense of an informal body of experiential
knowledge, or tricks of the trade: information that is the
result of personal experience, perhaps unanalyzable (or, at
least, unanalyzed), and creative. This is “art” in the sense
of “the art of cooking.” By contrast, science is formal,
objective, and systematic. This contrast can be seen in the
titles of two classic texts in CS: Donald Knuth's 1973 The

Art of Computer Programming and David Gries's 1985 The

Science of Programming. The former is a multi‐volume
handbook of different techniques, cataloged by type and
analyzed. The latter is a compendium of formal methods for
program development and verification, an application of
logic to programming. (For a detailed defense of the title of
Knuth's work, see Knuth, 1974a.)
Finally, science is opposed (both semantically and
philosophically) to “pseudo‐science”: any discipline that
masquerades as science but is not science. The problem of
determining the dividing line between “real” science and

http://www.oed.com/view/Entry/172672
http://www.oed.com/view/Entry/172698


“pseudo”‐science is called the ‘demarcation problem.’ For
example, almost everyone will agree that astronomy is a
“real” science and that astrology is not. But what is the
difference between “real” and “pseudo”‐sciences? We will
return to this in Section 4.8, because explaining the
contrast between science and pseudo‐science is part of the
philosophical exploration of what science is.
One might think the philosophy of science would be the
place to go to find out what science is, but philosophers of
science these days seem to be more interested in questions
such as the following (the first two of which are the closest
to our question):

What is a scientific theory?
(Here, the emphasis is on the meaning of the term
‘theory.’)

What is a scientific explanation?
(Here, the emphasis is on the meaning of the term
‘explanation.’)

What is the role of probability in science?
What is the nature of induction? (Why) will the future
resemble the past?
What is a theoretical term? That is, what do the terms
of (scientific) theories mean? Do they necessarily refer
to something in the real world? For example, there
used to be a scientific concept in the theory of heat
called ‘phlogiston,’ but we no longer think this term
refers to anything.
How do scientific theories change? When they do, are
their terms “commensurable” – i.e. do they mean the
same thing in different theories? For example, what is
the relationship between ‘phlogiston’ and ‘heat’? Does
‘atom,’ as used in ancient Greek physics, or even



nineteenth century physics, mean the same as ‘atom’ as
used in twenty‐first century physics?
Are scientific theories “realistic”: do they attempt to
describe the world? Or are they merely “instrumental”?
That is, are they just very good predicting devices that
don't necessarily bear any obvious resemblance to
reality, as sometimes seems to be the case with our
best current theory of physics – namely, quantum
mechanics?

And so on.
These are all interesting and important questions, and it is
likely that a good answer to our question “What is
science?” will depend on answers to many of them. If so,
then a full answer will be well beyond our present scope,
and the interested reader is urged to explore a good book
on the philosophy of science. Here, we will only be able to
consider a few of these questions.1



4.3 Science as Systematic Study

Sir Francis Bacon – a contemporary of Shakespeare who
lived about 400 years ago (1561–1626) –devised one of the
first “scientific methods.” He introduced science as a
systematic study. (So, when you read about computer
scientists who call CS a “study” rather than a “science,”
maybe they are not trying to deny that CS is a science but
are merely using a euphemism.)

[Bacon] told us to ask questions instead of proclaiming
answers, to collect evidence instead of rushing to
judgment, to listen to the voice of nature rather than to
the voice of ancient wisdom. (Dyson, 2011a, p. 26)

He emphasized the importance of “replicability”:

Replicability begins with the idea that science is not
private; researchers who make claims must allow others
to test those claims. (Wainer, 2012, p. 358)

Perhaps science is merely any systematic activity, as
opposed to a chaotic one. There is a computer program
called AlphaBaby, designed to protect your computer from
young children who want to play on the computer but
might accidentally delete all of your files while randomly
hitting keys. AlphaBaby's screen is blank; when a letter or
numeral key is hit, a colorful rendition of that letter or
numeral appears on the screen; when any other key is hit, a
geometric figure or a photograph appears. Most children
hit the keys randomly (“chaotically”) rather than
systematically investigating which keys do what
(“scientifically”).
Timothy Williamson (2011) suggests something similar
when he characterizes the “scientific spirit” as
“emphasizing values like curiosity, honesty, accuracy,



precision and rigor.” And the magician and skeptical
investigator known as The Amazing Randi said, “Science,
after all, is simply a logical, rational and careful
examination of the facts that nature presents to us” (quoted
in Higginbotham, 2014, p. 53, my italics). Although Shapiro
and Denning (Section 3.10), would be happy with the word
‘nature’ here, mathematicians who think of their discipline
as a “formal” science might not be. But I think it can be
eliminated without loss of meaning and still apply to both
mathematics and computer “science.” (For further
discussion of this aspect of science in the context of
whether both philosophy and CS are sciences, see Section
3.18, Question 4.)
Studying something, , systematically includes

finding positive and negative instances of  – things
that are are s and things that are not;
making changes in s or their environment (i.e. doing
experiments);
observing s and the effects of experiments performed
with them;
finding correlations (and perhaps causal relationships)
among s, their behavior, and various aspects of their
environment.



4.4 The Goals of Science

At least three different things have been identified as the
goals of science: description, explanation, and prediction.
They are not independent of each other: at the very least,
you need to be able to describe things in order to explain
them or predict their behavior. But they are distinct: a
theory that predicts doesn't necessarily also explain (for
some examples, see Piccinini, 2015, p. 94).

4.4.1 Description

Ernst Mach was a physicist and philosopher of science who
lived about 130 years ago (1838–1916), at the time when
the atomic theory was being developed. He was influenced
by Einstein's theory of relativity and is probably most
famous for having investigated the speed of sound (which is
now measured in “Mach” numbers).
For Mach, the goal of science was to discover regular
patterns among our sensations to enable the prediction of
future sensations, and then to describe those patterns in an
efficient manner. Scientific theories, he argued, are
(merely) shorthand – or summary – descriptions of how the
world appears to us.
According to one version of the philosophical position
known as “physicalism,” our sensory perception yields
reliable (but corrigible)2 knowledge of ordinary, medium‐
sized physical objects and events. For Mach, because atoms
were not observable, there was no reason to think that they
exist. Perhaps it seems odd to you that a physicist would be
interested in our sensations rather than in the world

outside of our sensations. This makes it sound as if science
should be done “in the first person, for the first person,”



just like philosophy! That's almost correct; many
philosophically oriented scientists at the turn of the last
century believed that science should begin with
observations, and what are observations but our
sensations? Kant distinguished between what he called
‘noumena’ (or “things in themselves,” independent of our
concepts and sensations) and what he called ‘phenomena’
(or things as we perceive and conceive them as filtered
through our conceptual apparatus; recall Section 3.14). He
claimed that we could only have knowledge about
phenomena, not noumena, because we could not get
outside of our first‐person, subjective ways of conceiving
and perceiving the world. This is why some philosophers of
science have argued that sciences such as quantum
mechanics are purely instrumental and only concerned with
prediction, rather than being realistic and concerned with
the way the world “really” is. (We'll come back to this in
Sections 4.4.3 and 4.5, and in Section 15.6.2 when we
discuss the relation of computer programs to the world.)3

4.4.2 Explanation

By contrast, the atomic theory was an attempt to explain

why the physical world appears the way it does.
Explanatory theories are not merely descriptive summaries
of our observations but try to account for them, often by
going beyond observations to include terms that refer to
things (like atoms) that we might not be able to observe
(yet). On this view, the task of science is not, in spite of
Mach, merely to describe the complexity of the world in
simple terms but to explain the world:

This is the task of natural science: to show that the
wonderful is not incomprehensible, to show how it can

be comprehended … . (Simon, 1996b, p. 1, my italics)



One major theory of the nature of scientific explanation is
the philosopher Carl Hempel's Deductive‐Nomological
Theory (Hempel, 1942, 1962). It is “deductive” because the
statement that some object  has property Q is explained
by showing that it can be validly deduced from two
premises: that  has property P and that all Ps are Qs. And
it is “nomological” because the fact that all Ps are Qs is
lawlike or necessary, not accidental: anything that is a P
must be a Q. (This blending of induction and deduction is a
modern development; historically, Bacon [and other
“empiricists,” chiefly in Great Britain] emphasized
experimental “induction and probabilism,” while Descartes
[and other “rationalists,” chiefly on the European
continent] emphasized “deduction and logical certainty”
(Uglow, 2010, p. 31).)
One of the paradoxes of explanation (or the “paradox of
analysis”) is that by showing how something mysterious or
wonderful or complicated is really just a complex structure
of simpler things that are non‐mysterious or mundane, we
lose sight of the original thing that we were trying to
understand or analyze. We will see this again in Section
18.9 when we look at Dennett's notion of Turing's “strange
inversion.” It is also closely related to the notion of
recursion (see Section 7.4.3.2), where complex things are
defined in terms of simpler ones. Herbert Simon demurs:

… the task of natural science … [is] to show how it [the
wonderful] can be comprehended – but not to destroy

wonder. For when we have explained the wonderful,

unmasked the hidden pattern, a new wonder arises at

how complexity was woven out of simplicity. (Simon,
1996b, pp. 1–2, my italics)

So, for instance, the fact – if it is a fact (explored in
Chapter 18) – that non‐cognitive computers can exhibit (or
even merely simulate) cognitive behaviors is itself



something worthy of wonder and further (scientific)
explanation.

4.4.3 Prediction

… prediction is always the bottom line. It is what gives
science its empirical content, its link with nature. … This
is not to say that prediction is the purpose of science. It
was once … when science was young and little; for
success in prediction was … the survival value of our
innate standards of subjective similarity. But prediction
is only one purpose among others now. A more
conspicuous purpose is technology, and an overwhelming
one is satisfaction of pure intellectual curiosity – which
may once have had its survival value too.
—Willard van Orman Quine (1987, p. 162)

Mach thought that the job of science was to describe the
world. Einstein “thought the job of physics was to give a
complete and intelligible account of … [the] world” (J. Holt,
2016, p. 50) – i.e. to explain the world. Both scientific
descriptions and explanations of phenomena enable us to
make predictions about their future behavior. This stems,
in part, from the fact that scientific descriptions must be
general or universal in nature: they must hold for all times,
including future times. As the philosopher Moritz Schlick
put it,

For the physicist … the absolutely decisive and essential
thing, is that the equations derived from any data now
also hold good of new data. (Schlick, “Causality in
Contemporary Physics” (1931), quoted in Coffa, 1991,
p. 333; my boldface, Schlick's italics)

Thus, “[t]he ‘essential characteristic’ of a law of nature ‘is
the fulfillment of predictions’ ” (Coffa, 1991, p. 333,



embedded quotations from Schlick).
According to Hempel (1942, Section 4), prediction and
explanation are opposite sides of the same coin. As we saw
in the previous section, to explain an event is to find
(perhaps abductively) one or more “initial conditions”
(usually, earlier events) and one or more general laws such
that the event to be explained can be deduced from them.
For Hempel, to predict an event is to use already‐known
initial conditions and general laws to deduce a future
event:

The customary distinction between explanation and
prediction rests mainly on a pragmatical difference
between the two: While in the case of an explanation, the
final event is known to have happened, and its
determining conditions have to be sought, the situation
is reversed in the case of a prediction: here, the initial
conditions are given, and their “effect” – which, in the
typical case, has not yet taken place – is to be
determined. (Hempel, 1942, p. 38)

But some scientists and philosophers hold that prediction is
the only goal that is important, and that description and
explanation are either not important or impossible to
achieve. One of the main reasons for this comes from
quantum mechanics . Some aspects of quantum mechanics
are so counter‐intuitive that they seem to fail both as
descriptions of reality as we think we know it and as
explanations of that reality: for example, according to
quantum mechanics, objects seem to be spread out rather
than located in a particular place – until we observe them;
there seems to be “spooky” action at a distance (quantum
entanglement); and so on. Yet quantum mechanics is the
most successful scientific theory (so far) in terms of the
predictions it makes. Niels Bohr (one of the founders of
quantum mechanics) said “that quantum mechanics was



meant to be an instrument for predicting our observations,”
neither a description of the world nor an explanation of it
(J. Holt, 2016, p. 50, my italics).4



4.5 Instrumentalism vs. Realism

The explanation‐vs.‐prediction debate underlies another
issue: is there a world to be described or explained? That is,
do scientific theories tell us what the world is “really” like,
or are they just “instruments” for helping us get around in
it? Here's a simplified way of thinking about what a
scientific theory is. We can begin by considering two things:
the world and our beliefs about it (including our
descriptions of it). Those beliefs are theories about what the
world is like. Such theories are scientific if they can be
tested by empirical or rational evidence to see if they are
true (i.e. correspond to what the world is really like). A
theory is confirmed if it can be shown that it is consistent
(or “coheres”) with the way the world really is. And a theory
is refuted if it can be shown that it is not the way the world
really is (that it does not “correspond” to reality).
A picture might help (Figure 4.1)

Figure 4.1 World, Observations, Theory.

Line  (a continuous line) is intended to represent the
world, a continuum. Line   (a line with gaps) is intended to
represent observations that we can make about the world:
some parts of the world we have observed (or we can
observe), and they are represented in  by the line
segments; others we have not observed (or we cannot
observe), and those are the gaps. The solid lines in 
represent things we believe about the world; the gaps
represent things we don't know (yet) about the world. Line 



 is intended to represent a scientific theory about the
world (about line  ); here, the gaps are filled in. Those
fillings‐in are predictions about what the world is like at
those locations where we cannot observe it; they are
guesses (hypotheses) about the world.
Suppose we have an explanatory scientific theory of
something (e.g. atomic theory). Such theories, as we have
seen, often include “unobservables” – terms referring to
things that we have not (yet) observed (e.g. atoms or
quarks) but whose existence would help explain things that
we have observed. One way of looking at this is to think of
an experiment as taking some input (perhaps some change
deliberately made to some entity being studied) and
observing what happens after the experiment is over – the
output of the experiment. Between the input and the output,
something happens, but we don't necessarily know what it
is. It is as if what we are studying is a “black box,” and all
we can observe are its inputs and outputs. A scientific
theory (or, for that matter, a computer algorithm!) can be
viewed as an explanation of what's going on inside the black
box. Can it be viewed merely as a description of what's
going on inside? Probably not, because you can only
describe what you can observe, and, by hypothesis, we can't
observe what's going on inside the black box. Such a theory
will usually involve unobservables structured in various
ways.
Do the unobservables that form part of such an explanatory
theory really exist? If you answer ‘yes,’ then you are a
“realist”; otherwise, you are an “instrumentalist.” A realist
believes in the real existence of explanatory unobservables.
An instrumentalist believes they are merely useful tools (or
“instruments”) for making predictions. The debate between
realism and instrumentalism is as old as science itself.
Galileo (1564–1642) …



… and the Church came to an implicit understanding: if
he would claim his work only as “istoria,” and not as
“dimonstrazione,” the Inquisitors would leave him alone.
The Italian words convey the same ideas as the English
equivalents: a new story about the cosmos to contemplate
for pleasure is fine, a demonstration of the way things
work is not. You could calculate, consider, and even
hypothesize with Copernicus. You just couldn't believe in
him. (Adam Gopnik 2013, p. 107)

In Mach's time, it was not clear how to treat the atomic
theory. Atoms were clearly of instrumental value, but there
was no observable evidence of their existence. But they
were so useful scientifically that it eventually became
unreasonable to deny their existence, and, eventually, they
were observed. In our time, black holes moved from being
“merely” theoretical entities to being considered among the
denizens of the universe, despite not having been observed
directly.
Quantum mechanics poses a similar problem. If the world
really is as quantum mechanics says it is, then the world is
really weird. But quantum mechanics is our best current
theory about how the world is. So, possibly quantum
mechanics is merely a useful calculating tool for scientific
prediction and shouldn't be taken literally as a description
of the real world.



Digression and a Look Ahead: One kind of
instrumentalism is related to “syntactic understanding'.'
There are (at least) two ways to understand something:
(1) you can understand something syntactically in terms
of something else that you are more familiar with, and
(2) you can understand something semantically in terms
of itself, by being very familiar with it directly (Rapaport,
1986, 1995). The physicist Jeremy Bernstein has said
that there is “a misguided but humanly understandable
desire to explain quantum mechanics by something else –
something more familiar. But if you believe in quantum
mechanics there is nothing else” (Bernstein and Holt,
2016, p. 62). On Bernstein's instrumentalist view,
quantum mechanics can only be understood in terms of
itself.
Syntactic understanding (perhaps of the kind that
Bernstein says we have of quantum mechanics) is a
“base case” of understanding. Semantic understanding is
a “recursive” case of understanding. (We'll discuss
recursion in Section 7.4.3.2.) However, other things
might be understandable in terms of quantum
mechanics: recent research in cognitive science suggests
that quantum‐mechanical methods applied at the
macroscopic level might provide better explanations of
certain psychological findings about human cognition
than more “standard” methods (Wang et al., 2013). We'll
return to these two kinds of understanding in Sections
13.2.2 and 18.8.

Can an instrumentalist theory evolve into a realist one?



Though Galileo … wants to convince … [readers] of the
importance of looking for yourself, he also wants to
convince them of the importance of not looking for
yourself. The Copernican system is counterintuitive, he
admits – the Earth certainly doesn't seem to move. It
takes intellectual courage to grasp the argument that it
does. (Adam Gopnik, Adam, 2013, p. 107)

So, just as the Copernican theory, initially proposed merely
as an instrumentalist claim, became a realist‐explanatory
theory, eventually the quantum‐mechanical view of the
world may come to be accepted as a realist description.5



4.6 Scientific Theories

It is important to distinguish between the everyday sense of
‘theory’ and the scientific sense. In the everyday sense, a
“theory” is merely an idea; it may or may not have any
evidence to support it. In this everyday sense, ‘theory’ can
be contrasted with ‘fact.’ In the scientific sense, a “theory”
is a set of statements (1) that describe, explain, or predict
some phenomenon, often formalized mathematically or
logically (or even computationally, as we'll see in
Chapter 14), and (2) that are grounded in empirical or
logical evidence. (The terms ‘theory’ and ‘theorem’ are
etymologically related.) To be “scientific,” a theory must be
accompanied by confirming evidence, and (as we'll see in
Section 4.8) its statements must be precise enough to be
capable of being falsified. The best theory is one that is
(1) consistent, (2) as complete as possible (i.e. explains as
much as possible), and (3) best‐supported by good
evidence.
Anti‐evolutionists (creationists and advocates of “intelligent
design”) sometimes criticize the scientific theory of
evolution as “merely a theory.” Anyone who does so is
confusing the everyday sense (in which ‘theory’ is opposed
to ‘fact’) with the scientific sense. Evolution is a theory in
the scientific sense. (It is also a fact! More precisely, the
world really is as the scientific theory of evolution
describes it.) Gravity, too, is not “just a theory”
(https://www.gocomics.com/nonsequitur/2014/11/07).
The scientific notion of theory comes in (at least) two
varieties: syntactic and semantic. We will have a lot to say
about syntax and semantics in Section 13.2.2. For now, let's
just say that regarding the syntactic approach to scientific
theories,

https://www.gocomics.com/nonsequitur/2014/11/07


a theory was conceived of as an axiomatic theory. That
means, as a set of sentences, defined as the class of
logical consequences of a smaller set, the axioms of that
theory. (van Fraassen, 1989, p. 220)

By contrast, the semantic approach to scientific theories
focuses on the models that interpret those sentences and
“link their terms with their intended domain” (van
Fraassen, 1989, p. 221). Just as there is a syntactic vs. a
semantic view of scientific theories, there is a syntactic vs.
a semantic view of computer programs (see Chapter 16).
We will return to this topic in Chapter 14, where we will
consider whether computer programs can be scientific
theories.6



4.7 “The” Scientific Method

[T]here is no such thing as the scientific method. Case
studies of particular theories in physics, biology, etc.,
have convinced me that no one paradigm can fit all of the
various inquiries that go under the name of ‘science.’
—Hilary Putnam (1987, p. 72)

… “the scientific method” originated[,] not in any field or
practice of science, but in the popular, professional,
industrial, and commercial exploitation of its authority.
This exploitation crucially involved the insistence that
science held an exclusive monopoly on truth, knowledge,
and authority, a monopoly for which “the scientific
method” was a guarantee. … I would call it a feat of
branding equal to “diamonds are forever” or “Coke is it”
… This is not to deny, of course, that the sciences include
procedures of observation, controlled experimentation,
and analysis, and that these procedures are crucial to the
progress of scientific understanding. But no list of four or
five discrete steps can describe them, and they don't
operate … [by] carrying the scientist inexorably toward
transcendent truth.
—Jessica Riskin (2020, pp. 49–50)

People often talk about “the scientific method.” Either there
isn't any such thing (as Putnam said) or there are many

scientific methods (plural) of studying something (Kitcher,
2019): (some) biologists and astronomers use (some)
different methods from (some) physicists. And disciplines
besides the natural sciences (notably mathematics and
engineering but also the social sciences and even many of
the humanities) also use scientific methods (Blachowicz,
2016; Ellerton, 2016).



But let's look at one version of a scientific method, a version
that is interesting in part because it was described by the
mathematician John Kemeny, who was also a computer
scientist. (He was co‐inventor of the BASIC computer
programming language and helped develop time sharing.
He also worked with Einstein and was president of
Dartmouth College.) His book A Philosopher Looks at

Science presents the scientific method as a cyclic procedure
(Kemeny, 1959, Chs. 5, 10). Because cyclic procedures are
called ‘loops’ in computer programming, I will present
Kemeny's version of the scientific method as an infinite loop
(a non‐halting algorithm):
7

Kemeny's version of the scientific method is a loop
consisting of observations, followed by inductive inferences,
followed by deductive predictions, followed by verifications.
(Perhaps a better word than ‘verification’ is ‘confirmation’;
we'll discuss this in Section 4.8.) The scientist begins by



making individual observations of specific objects and
events and describes these in language: object   is
observed to have property P, object   is observed to have
property Q, object  's having property P is observed to be
correlated with object  's having property Q, and so on.
Next, the scientist uses inductive inference to infer from a
series of events of the form P  precedes Q , P  precedes
Q , etc. that whenever any object   has property P, it will
also have property Q. So, the scientist who observes that
object   has property P will deductively infer (i.e. will
predict) that object   will also have property Q – before

observing whether it does. The scientist will then perform
an experiment to see whether Q . If Q  is observed, then
the scientist's theory that  will be verified;
otherwise, the theory will need to be revised in some way
(see Section 2.5.1; we'll discuss this in more detail in
Section 4.8). For Kemeny, an observation is explained by
means of a deduction from a theory, following Hempel's
deductive‐nomological theory (Section 4.4.2).
Finally, according to Kemeny, a discipline is a science if

and only if it follows the scientific method. This rules
out astrology on the grounds that astrologers never verify
their predictions. (Or on the grounds that their predictions
are so vague that they are always trivially verified. See
Section 4.8.)
However, there are at least two other views of the nature of
science that generally agree on the distinctions between
science as opposed to art, engineering, and pseudo‐sciences
such as astrology but that differ on the nature of science
itself: Popper's theory of falsifiability and Kuhn's theory of
scientific revolutions, to which we now turn.8



4.8 Falsifiability

Science is always wrong …. Science can never solve one
problem without raising ten more problems.
—George Bernard Shaw, 1930,
https://quoteinvestigator.com/2021/12/21/science-ten/

4.8.1 Science as Conjectures and

Refutations

According to the philosopher Karl Popper (1902–1994), the
“real” scientific method sees science as a sequence of
conjectures and refutations (Popper, 1953; cf. Popper,
1959 and, on engineering, Popper, 1972):

1. Conjecture a theory (to explain some phenomenon).
2. Compare its predictions with observations

(i.e. perform experiments to test the theory).
3. If an observation differs from a prediction,

  then the theory is refuted (or falsified)
else the theory is confirmed.

It is important to note that ‘confirmed’ does not mean

“true”! Rather, it means we have evidence that is
consistent with the theory (recall the coherence theory of
truth, Section 2.3.2) – i.e. the theory is not yet falsified!
This is because there might be some other explanation for
the predicted observation. Just because a theory  predicts
that some observation  will be made, and that
observation is indeed made, it does not follow that the

https://quoteinvestigator.com/2021/12/21/science-ten/


theory is true! This is because the Fallacy of Affirming the
Consequent (Section 2.5.1) –

A. 
– is an invalid argument. If  is true, but  is false, then
the second premise is still true, so we could have true
premises and a false conclusion. This might also be called
the fallacy of circumstantial evidence, where  is the
circumstantial evidence that could support , but there
might be another theory that also predicts  and that is
true.
So, according to Popper, a theory or statement is

scientific if and only if it is falsifiable. By ‘falsifiable,’
Popper meant something like “capable of being falsified in
principle,” not “capable of being falsified with the
techniques and tools that we now have available to us.”
For Popper, falsifiability also ruled out astrology (and other
superstitions), Freudian psychotherapy, and Marxist
economics as candidates for scientific theories. The reason
Popper claimed that astrology, etc. were only pseudo‐
sciences was that they cannot be falsified because they are
too vague. The vaguer a statement or theory is, the harder
it is to falsify. As the physicist Freeman Dyson once wrote,
“Progress in science is often built on wrong theories that
are later corrected. It is better to be wrong than to be
vague” (Dyson, 2004, p. 16). When I was in college, one of
my friends came into my dorm room, all excited about an
astrology book he had found that, he claimed, was really
accurate. He asked me what day I was born; I said
“September 30.” He flipped the pages of his book, read a
horoscope to me, and asked if it was accurate. I said that it
was. He then smirked and told me that he had read me a
random horoscope, for April 16. The point was that the



horoscope for April 16 was so vague that it also applied to
someone born on September 30!9

4.8.2 The Logic of Falsifiability

It is worthwhile to explore the logic of falsifiability a bit
more. Although the Fallacy of Affirming the Consequent
seems to describe what goes on, it needs to be made more
detailed because it is not the case that scientists deduce
predictions from theories alone. There are usually
background beliefs that are independent of the theory
being tested (e.g. beliefs about the accuracy of one's
laboratory equipment). And one does not usually test a
complete theory  but merely one new hypothesis  that
is being considered as an addition to . So it is not simply
that argument (A) should have as a premise that theory 
predicts observation . Rather, theory  conjoined with

background beliefs , conjoined with the actual hypothesis

 being tested, is supposed to logically predict that  will
be observed:

Suppose  is not observed:

What follows from these two premises? By the rule of
inference called ‘Modus Tollens,’ we can infer

But from this, it follows (by De Morgan's Law) that

That is, either  is false, or  is false, or  is false, or any

combination of them is false. This means if you strongly
believe in your theory  that seems to be inconsistent with



your observation , you do not need to give up . Instead,
you could give up hypothesis , or some part of , or
(some part of) your background beliefs  (e.g. you could
blame your measuring devices as being too inaccurate).
(For a detailed example, see Horsman et al., 2014, Section
5.) As Quine (1951) pointed out, you could even give up the
laws of logic if the rest of your theory has been well
confirmed; this is close to the situation that obtains in
contemporary quantum mechanics with the notion of
“quantum logic.”
However, sometimes you should give up an entire theory.
This is what happens in the case of “scientific revolutions,”
such as (most famously) when Copernicus's theory that the
Earth revolves around the Sun (and not vice versa)
replaced the Ptolemaic theory, small revisions to which
were making it overly complex without significantly
improving it. (See Section 4.9.)10

4.8.3 Problems with Falsifiability

One problem with falsifiability is that not all alleged
pseudo‐sciences are vague. Is astrology really a Popperian
pseudo‐science? Although the popular newspaper style of
astrology no doubt is (on the grounds of vagueness), “real”
astrology, which might be considerably less vague, might
actually turn out to be testable and, presumably, falsified,
hence falsifiable. But that would make it scientific (albeit
false)!
That points to another problem with falsifiability as the
mark of science: Are false statements scientific? This is
related to the “pessimistic meta‐induction” that all
statements of science are false.11 But this isn't quite right:
although it might be the case that any given statement of
science that is currently held to be true may turn out to be
false, it doesn't follow that all such statements are false or



will eventually be found to be false. What does follow is
that all statements of science are provisional:

Newton's laws of gravity, which we all learn in school,
were once thought to be complete and comprehensive.
Now we know that while those laws offer an accurate
understanding of how fast an apple falls from a tree or
how friction helps us take a curve in the road, they are
inadequate to describe the motion of subatomic particles
or the flight of satellites in space. For these, we needed
Einstein's new conceptions.
Einstein's theories did not refute Newton's; they simply
absorbed them into a more comprehensive theory of
gravity and motion. Newton's theory has its place, and it
offers an adequate and accurate description, albeit in a
limited sphere. As Einstein once put it, “The most
beautiful fate of a physical theory is to point the way to
the establishment of a more inclusive theory, in which it
lives as a limiting case.” It is this continuously evolving
nature of knowledge that makes science always
provisional. (Natarajan, 2014, pp. 64–65)



4.9 scientific revolutions

In Section 3.5.2, we talked briefly about “scientific
paradigms.” Thomas Kuhn (1922–1996), a historian of
science, rejected both the classic scientific method and
Popper's falsifiability criterion. Kuhn (1962, Ch. 9) claimed
that the history of science shows that the real scientific
method works as follows:

1. There is a period of “normal” science based on a
“paradigm” – roughly, a generally accepted theory.
During that period of normal science, a Kemeny‐like or
Popper‐like scientific method is in operation. Dyson
(2004, p. 16) refers to the “normal” scientists as
“conservatives … who prefer to lay one brick at a time
on solid ground.”

2. If that paradigmatic theory is challenged often enough,
there will be a “revolution,” and a new theory – a new
paradigm – will be established, completely replacing
the old one. Dyson (2004, p. 16) refers to the
“revolutionaries” as “those who build grand castles in
the air.”

3. A new period of normal science follows, now based on
the new paradigm, and the cycle repeats.

The most celebrated example of a scientific revolution was
the Copernican revolution in astronomy (Kuhn, 1957).
“Normal” science at the time was based on Ptolemy's
“paradigm” of an Earth‐centered theory of the solar
system. But this was so inaccurate that its advocates had to
keep patching it up to make it consistent with observations.
Copernicus's new paradigm – the heliocentric theory that
we now believe – overturned Ptolemy's paradigm. Other
scientific revolutions include those of Newton (who
overthrew Aristotle's physics), Einstein (who overthrew



Newton's), Darwin (whose theory of evolution further
“demoted” humans from the center of the universe),
Watson and Crick (“whose discovery of the … structure of
DNA … changed everything” in biology (Brenner, 2012,
p. 1427)), and Chomsky in linguistics (even though some
linguists and cognitive scientists today think Chomsky was
wrong (Boden, 2006)).12



4.10 Other Alternatives

[T]raditional views about how science is carried out are
often idealized or simplistic. Science proceeds in
anything but a linear and logical fashion.
—Lawrence M. Krauss (2016, p. 85)

Besides the triumvirate of Bacon's or Kemeny's scientific
method, Popper's falsificationism, and Kuhn's scientific
revolutions, there are other approaches to the nature of
science. For instance, the philosopher of science Michael
Polanyi argued in favor of science as being “socially
constructed,” not purely rational or formal (see Kaiser,
2012 for an overview). And the philosopher of science Paul
Feyerabend critiqued the rational view of science from an
“anarchic” point of view (Feyerabend, 1975; Preston,
2020). But exploration of alternatives such as these is
beyond our scope.13



4.11 CS and Science

4.11.1 Is CS a Science?

These are only a handful among many views of what
science is. Is CS a science according to any of them? This is
a question that I will leave to the reader to ponder. But
here are some things to consider:
Does CS follow Kemeny's scientific method? For that
matter, does any science (like physics, chemistry, or
biology) really follow it? Does every science follow it (what
about astronomy or cosmology)? Or is it just an idealized
vision of what scientists are supposed to do?
Is CS scientific in Popper's or Kuhn's sense? Are any parts
of it falsifiable (Popper)? Have there been any revolutions
in CS (Kuhn)? Is there even a current Kuhnian paradigm?
The philosopher Timothy R. Colburn (2000, p. 168) draws
an analogy between (1) the scientific method of
formulating, testing, and (dis)confirming hypotheses and
(2) the problem‐solving method of CS consisting of
formulating, testing, and accepting or rejecting an
algorithm. Besides suggesting that CS is (at least in part)
scientific, this analogizes algorithms to scientific
hypotheses or theories. (See Chapter 14 for further
discussion.) Even if this is just an idealization, does CS
even come close? What kinds of theories are there in CS?
How are they tested? If CS is a science, is it “provisional”?
(Nelson Pole has suggested14 that “if there is a bug lurking
in every moderately complex program, then all programs
are provisional.”) Are any computer‐science theories ever
refuted? Similarly, Denning (2005, p. 28) says that “The
scientific paradigm … is the process of forming hypotheses
and testing them through experiments; successful



hypotheses become models that explain and predict
phenomena in the world.” He goes on to say, “Computing
science follows this paradigm in studying information
processes.” For readers who are studying CS, think about
your own experiences. Do you agree with Denning that CS
follows this scientific method?
Here are two other issues to think about. First, the Church‐
Turing Computability Thesis identifies the informal notion
of computation with formal notions like the Turing Machine
(as we'll see in more detail in Chapters 7 and 8).
“Hypercomputation,” a name given to various claims that
the informal notion of computation goes beyond Turing
Machine computability, could be considered an attempt to
falsify the Computability Thesis (Kaznatcheev, 2014). Or
the hypercomputation challenges to the Computability
Thesis could be examples of Kuhnian revolutionary
paradigmatic challenges to the “normal” science of CS
(Cockshott and Michaelson, 2007, Section 2.5, p. 235). And
Stepney et al., 2005 offer a long list of paradigms that they
think can and should be challenged. Keep this in mind
when you read Chapter 11 on hypercomputation.
Second, two traditions in AI have been logically oriented:
knowledge‐based AI (sometimes called “Good Old‐
Fashioned AI” (GOFAI) Haugeland, 1985); and
connectionist AI, which is based on “artificial neural
networks” instead of on logic. Although the former
dominated AI research in the early days and, arguably, still
has an important role to play (Levesque, 2017, Seabrook,
2019; B.C. Smith, 2019; Landgrebe and Smith, 2021), most
AI now is based on the latter. When three connectionist
researchers (Geoffrey Hinton, Yann LeCun, and Yoshua
Bengio) received the Turing Award, another AI researcher
(Oren Etzioni) said, “What we have seen is nothing short of
a paradigm shift in the science. History turned their way,



and I am in awe” (quoted in Metz, 2019a). Keep this in
mind when you read Chapter 18 on AI.

4.11.2 What Kind of Science Might CS

Be?

What about disciplines like mathematics? Mathematics is
certainly scientific in some sense, but is it a science like
physics or biology? Is CS, perhaps, more like mathematics
than like these (other) sciences? This raises another
question: even if CS is a science, what kind of science is it?
Hempel (1966) distinguished between empirical sciences
and non‐empirical sciences. The former explore, describe,
explain, and predict various occurrences in the world. Such
descriptions or explanations are empirical statements that
need empirical (i.e. experimental) support. The empirical
sciences include the natural sciences (physics, chemistry,
biology, some parts of psychology [e.g. cognitive
psychology], etc.) and the social sciences (other parts of
psychology [e.g. clinical and social psychology], sociology,
anthropology, economics, perhaps political science,
perhaps history, etc.).
The non‐empirical sciences are logic and mathematics.
Their statements don't need empirical support. Yet they are
true and confirmed by empirical evidence (although exactly
how and why this is the case is still a great mystery).
Is CS an empirical science? A non‐empirical science? CS
arose from logic and mathematics. But it also arose from
the development of the computer as a tool to solve logic
and mathematics problems. (We will explore this twin
history of computers and algorithms in Chapter 6.) This
brings it into contact with the empirical world and
empirical concerns such as space and time limitations on
computational efficiency (or “complexity”).



One possible way of adding CS to Hempel's taxonomy is to
take a cue from the fact that psychology doesn't neatly
belong to just the natural or just the social sciences. So,
perhaps CS doesn't neatly belong to just the empirical or
just the non‐empirical sciences, but parts of it belong to
each. And it might even be the case that the non‐empirical
aspects of CS are not simply a third kind of non‐empirical
science, on a par with logic and mathematics, but are
themselves parts of both logic and of mathematics.
Or it might be the case that we are barking up the wrong
tree altogether. What if CS isn't a science at all? This
possibility is what we turn to in the next chapter. 15



4.12 Questions to Think About

1. Hempel's empirical–non‐empirical distinction may be an
arbitrary division of a continuous spectrum (Section 3.4.1):

The history of science is partly the history of an idea that
is by now so familiar that it no longer astounds: the
universe, including our own existence, can be explained
by the interactions of little bits of matter. We scientists

are in the business of discovering the laws that

characterize this matter. We do so, to some extent at
least, by a kind of reduction. The stuff of biology, for
instance, can be reduced to chemistry and the stuff of
chemistry can be reduced to physics. (Orr, 2013, p. 26,
my italics)

This view, sometimes called the “unity of science”
(Oppenheim and Putnam, 1958), can be extended at both
ends of the spectrum that Orr mentions: at one end,

if physics was built on mathematics, so was chemistry
built on physics, biology on chemistry, psychology on
biology, and … sociology … on psychology ….
(Grabiner, 1988, p. 225, citing Comte, 1830, Vol. I, Ch. 2,
Introduction)

At the other end, mathematics is built on logic and set
theory (Quine, 1976) (see Figure 4.2). However, not
everyone thinks this chain of reductions is legitimate
(Fodor, 1974).
Does CS fit into this sequence? If it doesn't, does that mean
it's not part of science? After all, it's not obvious that CS is
“in the business of discovering the laws that characterize …
matter.” Wheeler, 1989 suggests that the universe's matter
consists of information. Then, if you are also willing to say
that CS is the science of information (or of information
processing), you could conclude that it is a (physical)
science.



Figure 4.2 Fields arranged by purity.
Source: http://xkcd.com/435/ Licensed under a Creative Commons
Attribution‐NonCommercial 2.5 License.

2. Read some of the essays cited in the Online Resources
for Section 4.8.1 that have been critical of the scientific
status of disciplines such as Freudian psychoanalysis,
economics (Marxist or otherwise!),16 astrology, etc., and
consider whether the arguments that have been used to
justify or challenge their status as a science can be applied
to CS.

3. The computer scientist and philosopher Amnon H. Eden
(Eden, 2007) seeks to bring clarity to the science‐vs.‐
mathematics‐vs.‐engineering controversy by taking up a
distinction due to the computer scientist Peter Wegner
(1976) among three different “Kuhnian paradigms”: a view
of CS as (1) a “rationalist” or “mathematical” discipline,
(2) a “technocratic” or “technological” discipline, and (3) a
“scientific” discipline. (Tedre and Sutinen, 2008 also
discusses these three paradigms.) Eden then argues in favor
of the scientific paradigm.
But must there be a single paradigm? Are there any
disciplines with multiple paradigms? Does the existence of
multiple paradigms mean there is no unitary discipline of
CS? Or can all the paradigms co‐exist?

http://xkcd.com/435/


4. In Section 2.5.2, we saw that McGinn (2015b) argues that
philosophy is a science just like physics (an empirical
science) or mathematics (a “formal” science), likening it
more to the latter than the former (p. 85). To make his
argument, he offers this characterization of science:

[W]hat distinguishes a discourse as scientific are such
traits as these: rigor, clarity, literalness, organization,
generality (laws or general principles), technicality,
explicitness, public criteria of evaluation, refutability,
hypothesis testing, expansion of common sense (with the
possibility of undermining common sense), inaccessibility
to the layman, theory construction, symbolic articulation,
axiomatic formulation, learned journals, rigorous and
lengthy education, professional societies, and a sense of
apartness from naïve opinion. (McGinn, 2015b, p. 86)

Does CS fit that characterization?



Notes

1 See the Online Resources for further reading on the
philosophy of science.

2 That is, “correctable.”

3 See the Online Resources for further reading on
physicalism and Kant .

4 See the Online Resources for further reading on
quantum mechanics.

5 See the Online Resources for further reading on
instrumentalism vs. realism.

6 See the Online Resources for further reading on
evolution and on scientific theories.

7 This “algorithm” is written in the informal
pseudocode introduced in Ch. 3. Expressions in
{braces} are comments

8 See the Online Resources for further reading on
scientific methods.

9 See the Online Resources for further reading on
pseudo-science, and see the “Calvin and Hobbes”
comic at
http://www.gocomics.com/calvinandhobbes/2012/04
/20.

10 See the Online Resources for further reading on
rules of inference and quantum logic .

11 See the Online Resources for further reading on the
pessimistic meta‐induction.

https://cse.buffalo.edu/~rapaport/OR/A0fr04.html#4.2
https://cse.buffalo.edu/~rapaport/OR/A0fr04.html#4.4.1
https://cse.buffalo.edu/~rapaport/OR/A0fr04.html#4.4.3
https://cse.buffalo.edu/~rapaport/OR/A0fr04.html#4.5
https://cse.buffalo.edu/~rapaport/OR/A0fr04.html#4.6
https://cse.buffalo.edu/~rapaport/OR/A0fr04.html#4.7
https://cse.buffalo.edu/~rapaport/OR/A0fr04.html#4.8
http://www.gocomics.com/calvinandhobbes/2012/04/20
https://cse.buffalo.edu/~rapaport/OR/A0fr04.html#4.8.2
https://cse.buffalo.edu/~rapaport/OR/A0fr04.html#4.8.3


12 See the Online Resources for further reading on
scientific revolutions.

13 See the Online Resources for further reading on
other alternatives.

14 Private communication, 9 March 2015.

15 See the Online Resources for further reading on CS
and science.

16 For non‐Marxist economics, you might consider
Rosenberg, 1994, Leiter, 2004, 2005, 2009, Chetty,
2013.

https://cse.buffalo.edu/~rapaport/OR/A0fr04.html#4.9
https://cse.buffalo.edu/~rapaport/OR/A0fr04.html#4.10
https://cse.buffalo.edu/~rapaport/OR/A0fr04.html#4.11


5 

Engineering

[Engineering is] the art of directing the great sources of
power in nature for the use and convenience of man
[sic].
—Thomas Tredgold, 1828 (cited in Florman, 1994,
p. 175)
Engineering … is a great profession. There is the
fascination of watching a figment of the imagination
emerge through the aid of science to a plan on paper.
Then it moves to realization in stone or metal or energy.
Then it brings jobs and homes to men [sic]. Then it
elevates the standards of living and adds to the comforts
of life. That is the engineer's high privilege.
—Herbert Hoover (1954),1

https://hooverpresidentialfoundation.org/speeches/engin
eering-as-a-profession/

[T]he scientist builds in order to study; the engineer
studies in order to build.
—Frederick P. Brooks (1996, p. 62, col. 1)
[S]cience tries to understand the world, whereas
engineering tries to change it.
—Mark Staples (2015, p. 2)2

https://hooverpresidentialfoundation.org/speeches/engineering-as-a-profession/


5.1 Defining ‘Engineering’

We began by asking what CS is, and we considered that it
might be what it says it is: a science (Chapter 3). So we
then looked at what science is (Chapter 4).
We also considered that CS might be a branch of
engineering; so now it is time to ask what engineering is.
What is the relationship of engineering to science? And
what is the relationship of CS to engineering?
The philosophy of engineering is much less well developed
than the philosophy of science, and, for some reason, there
seem to be fewer attempts to try to define ‘engineering.’
For instance, if you link to various university websites for
schools or departments of engineering, you will rarely find
a definition.
The etymology of ‘engineer’ is of little help. According to
the OED (http://www.oed.com/view/Entry/62225 and
http://www.oed.com/view/Entry/62223), ‘engineer’ comes
from ‘engine’ + ‘‐or’ (where ‘‐or’ means “agent”), and
‘engine,’ in turn, comes from the Latin ‘ingenium,’ which
had multiple meanings, including “natural disposition,”
“mental powers,” and “clever device” – none of which
seems to help: the word has evolved too much for us to be
able to figure out what it means from its origins.
Dictionary definitions are even less helpful than usual.
Actually, dictionary definitions are rarely useful: first,
different dictionaries don't always agree. Second, some are
better than others. Third, dictionaries at best tell you how
people use a term, but if people use a term “incorrectly,”
dictionaries are duty bound to record that.3 Finally,
dictionaries can be misleading: Webster's Ninth New

Collegiate Dictionary (Mish, 1983, p. 259) defined ‘college’

http://www.oed.com/view/Entry/62225
http://www.oed.com/view/Entry/62223


as “a body of clergy living together and supported by a
foundation”! This may once have been true, and may even
still be true in a very limited sense of the term, but why is it
listed as the first definition? The answer is that Merriam‐
Webster dictionaries list definitions in historical order! So,
caution is always advised when citing a dictionary.
Nevertheless, it is instructive to see how that same
dictionary defined ‘engineering’:

1. “The activities or function of an engineer …”
2. “The application of science and mathematics … [to

make] matter and … energy … useful to people …”
We'll come back to the second definition in a moment. As
for the first, it cannot be understood without understanding
‘engineer,’ which is defined thus:

1. “A member of a military group devoted to engineering
work.”

2. “A person … trained in … engineering.”4

Independently of the “military group” condition (see
Section 5.3), both of these definitions of ‘engineer’ require
us to already understand ‘engineering’!
As we saw in Section 3.4.2, Hamming (1968, p. 4) observed
that “the only generally agreed upon definition of
mathematics is ‘Mathematics is what mathematicians do,’
which is followed by ‘Mathematicians are people who do
mathematics.’ “ So this dictionary agrees explicitly with
Hamming: engineering is what engineers do; engineers are
people who do engineering!
Only the second definition of ‘engineering’ in Webster's

Ninth holds out some hope for independent understanding.
Arguably, however, it seems to rule out by definition that
CS is engineering, because it is not at all clear that
computer scientists “apply science and mathematics to



make matter and energy useful.” Some might do that (by a
stretch of meaning), but surely not all do.
According to the National Research Council's Committee
on the Education and Utilization of the Engineer,
engineering is, by their definition,

Business, government, academic, or individual efforts in
which knowledge of mathematical and/or natural
sciences is employed in research, development, design,
manufacturing, systems engineering, or technical
operations with the objective of creating and/or
delivering systems, products, processes, and/or services
of a technical nature and content intended for use.
(Florman, 1994, pp. 174–175)

Even Florman admits that this is a mouthful! Perhaps it can
be simplified to something like this: efforts in which
mathematics and natural science are used to produce
something useful. If so, then is engineering (merely)
applied science?
Michael Davis, a philosopher of engineering, points out that
this definition, because of its vagueness (the overuse of
‘and/or’), includes too much (such as accountants, because
they use mathematics). He does say that it emphasizes
three important “elements” of engineering: (1) the
centrality of mathematics and science, (2) the concern with
the physical world (which might, therefore, rule out
software; but see Section 12.3 on that topic), and (3) the
fact that “unlike science, engineering does not seek to
understand the world but to remake it.” But he goes on to
say that “those three elements … do not define”
engineering. So, at best, they are necessary but not
sufficient conditions (Davis, 1996, p. 98).
Here is another definition‐by‐committee (note the lists of
verbs and nouns):5



Engineering is the knowledge required, and the process

applied, to conceive, design, make, build, operate,
sustain, recycle or retire, something of significant
technical content for a specified purpose; – a concept, a
model, a product, a device, a process a system, a
technology. (Malpas, 2000, p. 31, my italics)

This comes down to much the same thing as others have
said: designing or building useful things. It emphasizes two
aspects of this: one is that the designing or building must
be knowledge‐based. This presumably rules out designing
or building that is based not on scientific knowledge but on
experience alone (what Knuth might call “art”; see Section
4.2). The other aspect is that engineering is a process, in
the sense of “knowing how” to do something (Malpas,
2000, p. 5). This has an algorithmic flair – after all,
algorithms are methods of describing how to do something.
Finally, Henry Petroski (an engineer) notes that we speak
of “the sciences” in the plural (as we do of “the
humanities”) but of engineering in the singular, “even
though there are many” “engineerings” (Petroski, 2005,
p. 304). So determining what engineering is may be as
difficult as determining what CS is. More than for science
or even CS, it seems that engineering is what engineers do.
In Sections 5.3 and 5.4, we will consider a variation on this
theme – that engineering is what engineers study; in
Section 5.5, we will look at what it is that they do.6



5.2 Engineering as Science

The scientist seeks to understand what is; the engineer
seeks to create what never was. —Theodore von Kármán
(cited in Petroski, 2008, my italics)7

Could engineering and science be the same discipline? That
would certainly short‐circuit the debate about whether CS
is one or the other! Citing von Kármán, Petroski (2008)
argued that all scientists are sometimes engineers (e.g.
when they create a new theory that “never was”) and that
all engineers are sometimes scientists (e.g. when they seek
to understand how an existing bridge works). Another
engineer, Samuel C. Florman, also suggested as much
(note the italicized phrase!):

It is generally recognized … that engineering is “the art
or science of making practical application of the
knowledge of pure sciences.” … The engineer uses the
logic of science to achieve practical results. (Florman,
1994, pp. x–xi, my italics)

One philosopher who has tried to explain engineering –
Mario Bunge – also places it among the sciences. First,
along with Kemeny (see Section 4.7), Bunge defines
science as any discipline that applies the scientific method.
Next, he says that there are two kinds of science: pure and
applied. Pure sciences apply the scientific method to
increasing our knowledge of reality (e.g. cell biology).
Applied sciences apply the scientific method to enhancing
our welfare and power (e.g. cancer research). Among the
applied sciences are operations research (mathematics
applied to management), pharmacology (chemistry applied
to biology), and engineering (Bunge, 1974). Given this
taxonomy, CS would not necessarily be a branch of



engineering, although it might be an applied science
alongside engineering. Yet there is a “pure” component of
CS: namely, the mathematical theory of algorithms,
computability, and complexity (Chapter 7).
And Quine said something that suggests engineering might
be a part of science:

I have never viewed prediction as the main purpose of
science, although it was probably the survival value of
the primitive precursor of science in prehistoric times.
The main purposes of science are understanding (of past

as well as future), technology, and control of the

environment. (Quine, 1988, my italics and boldface)
If “technology” can be identified with engineering, then
this puts engineering squarely into the science camp,
rendering the science‐vs.‐engineering debates moot
(although still not eliminating the need to ask what
engineering – or technology – is). (On how technology
might differ from engineering, see Section 5.5.1 and
Bunge, 1974, Fiske, 1989.)



5.3 A Brief History of Engineering

Rather than treat software engineering as a subfield of
CS, I treat it as an element of the set, {Civil Engineering,
Mechanical Engineering, Chemical Engineering,
Electrical Engineering, … }. This is not simply a game of
academic taxonomy, in which we argue about the
parentage or ownership of the field; the important issue

is the content and style of the education.
—David Lorge Parnas (1990, p. 1, my italics)

Michael Davis (1998) offers an insight into what
engineering might be. (See also Davis, 1995a, 1995b–1996,
2009.) He starts with a history of engineering, beginning
some 400 years ago in France, where there were “engines”
– i.e. machines – and “engineers” who worked with them.
These “engineers” were soldiers: either those who used
“engines of war” such as catapults and artillery, or those
who had been carpenters and stonemasons in civilian life
and who continued to ply these trades as soldiers. From
this background comes the expression “railroad engineer”
and such institutions as the US Army Corps of Engineers.
In 1676, the French army created a corps of engineers
(separate from the infantry) who were charged with
military construction. So, at least in seventeenth century
France, an engineer was someone who did whatever it was
that those soldiers did. Forty years later, in 1716, there
were civil engineers: soldiers who built infrastructure (like
bridges and roads) for civilians.
A distinction was drawn between engineers and architects.
At that time, engineers in France were trained at the École
Polytechnique (“Polytechnic School”), a university whose
curriculum began with a year of science and mathematics,



followed gradually by more and more applications to
construction (e.g. of roads), culminating in a specialization.
These engineers were concerned with reliability and other
practical matters. And they were trained as army officers,
and hence (presumably) more disciplined for larger
projects. Architects, on the other hand, were more like
artists, chiefly concerned with aesthetics.
So, at this time, engineering was the application of science
“for the use and convenience of” people and for “improving
the means of production” (Tredgold, as quoted in Davis,
1998, p. 15). Engineering was not science: engineers used

science but didn't create new knowledge. Nor was
engineering applied science: engineers were concerned
with human welfare (and not even with generality and
precision), whereas applied scientists are concerned with
applying their scientific knowledge.



5.4 Conceptions of Engineering

Davis (2011, pp. 31–33) cites four different conceptions of
engineering:

“Engineering as tending engines”: This would
include railroad engineers and building‐superintendent
engineers. Clearly, neither computer scientists nor
software engineers are engineers in this sense, but
neither are electrical, civil, mechanical, or chemical
engineers. (Although perhaps a company's information
technology [IT] staff “tend” computational “engines.”)
“Engineering‐as‐invention‐of‐useful‐objects”:

Davis criticizes this sense as both “too broad”
(including architects and accountants) and
“anachronistic” (applying to inventors of useful objects
before 1700, which is about when the modern sense of
‘engineer’ came into use). Note that this seems to be
the sense of engineering used by many who argue that
CS is engineering; they view engineering as designing
and building useful artifacts.
“Engineering‐as‐discipline”: Here, the issue
concerns “the body of knowledge engineers are
supposed to learn,” which includes “courses concerned
with the material world, such as chemistry and
statistics.” Again, this would seem to rule out both CS
and software engineering on the grounds that neither
needs to know any of the “material” natural sciences
like chemistry or physics (although both software
engineers and computer scientists probably need some
statistics) and both need “to know things other
engineers do not.”



“Engineering‐as‐profession”: This is Davis's favored
sense (argued for in his other writings).

Davis concludes that engineering must be defined by two
things: (1) its professional curriculum (by its specific
knowledge) and (2) a professional commitment to use that
knowledge consistent with a code of ethics. So, rather than
saying that engineering is what engineers do, Davis says
that engineering is what engineers learn and how they
ought (ethically) to use that knowledge. This, of course,
raises the question, what is it that engineers learn? Mark
Staples8 observes that Davis's definition of engineering in
terms of its curriculum “is circular …. How does
engineering knowledge become accepted into engineering
curricula?”
There is another question central to our concerns: is what
engineers learn also something that computer scientists
learn? Here, Davis's explicit argument against software
engineering (currently) being engineering (and his implicit
argument against CS (currently?) being engineering) is
that, although both are professions, neither is (currently)
part of the profession of engineering as it is taught and
licensed in engineering schools. Even CS departments that
are academically housed in engineering schools typically do
not require their students to take “engineering” courses
(Guzdial, 2021), their academic programs are not
accredited in the same way,9 and their graduates are not
required to become “professional engineers” in any legal
senses.



5.5 What Engineers Do

There are two very general tasks that various authors put
forth as what engineers do: they design things, and they
build things.

5.5.1 Engineering as Design

Petroski (2003, p. 206) says that engineering's fundamental
activity is design. And philosopher Carl Mitcham (1994)
distinguishes between the engineer as designer and the
technician or technologist as builder. So, engineering is not
science, because science's fundamental activity is analysis
(Petroski, 2003, p. 207), whereas design and building are
synthesizing activities. Mark Staples10 points out that,
contra Petroski, engineering is more than just design,
because architects also design but are not engineers.
One aspect of design has been picked up by Hamming
(1968). When one designs something, one has to make
choices. Hamming suggests that “science is concerned with
what is possible while engineering is concerned with
choosing, from among the many possible ways, one that
meets a number of often poorly stated economic and
practical objectives.” This fits well with much of the work –
even theoretical work – that is done by computer scientists.
As we saw in Sections 3.6 and 3.7, one definition of CS is
that it is concerned with what can be automated (in the
sense of “computed”). One way of expressing this is as
follows: for what tasks can there be an algorithm that
accomplishes the task? But there can be many algorithms,
all of which accomplish the exact same task. How can we
choose among them? We can ask which ones are more
efficient: Which use less memory (“space”)? Which requires
fewer operations (less “time”)? So, in addition to asking



what can be computed, CS also asks, what can be
computed efficiently? If that is computer engineering, so be
it, but that would put one of the most abstract, theoretical,
and mathematical branches of CS – namely, the theory of
computational complexity – smack dab in the middle of
computer engineering, and that doesn't seem correct.

5.5.2 Engineering as Building

We have seen that many people say that what engineers do
is build or create things. For example, computer scientist
Paul Abrahams (1987, p. 472) argues as follows:

1. Someone who “discover[s] how things work” is a
scientist.

2. Someone who “learn[s] how to build things” is an
engineer.

3. Therefore, “[c]omputer science is both a scientific
discipline and an engineering discipline.”

The conclusion can be made valid by adding two missing
premises:

A. Computer scientists discover how things work.
B. Computer scientists learn how to build things.

Is the argument sound?
As for missing premise A, computer scientists can be said
to discover how things work algorithmically. As for B,
computer scientists can be said to build both software (e.g.
computer programs) and hardware (e.g. computers).
The explicit premises seem to be true. But is premise 1
really true? Is life, or the universe, a “thing”? Do scientists
really try to learn how the kinds of physical objects that
engineers build work (and nothing else)? This seems overly
simplistic. Nevertheless, this “analytic vs. synthetic”



distinction (i.e. a distinction between analyzing – taking
something apart – in order to learn how it works, on the
one hand, and synthesizing – putting things together – in
order to build something, on the other hand) seems to be a
feature of many characterizations of science vs.
engineering.
Concerning premise 2, Petroski (2005, p. 304), says,
“engineering … is an activity that creates things.” Note two
points: first, engineering is creative; this is related to
claims about engineering as designing and building things.
But second, it is an activity, even grammatically: the word
‘engineering’ is a gerund – a word that (as Petroski says)
“expresses … action.” Is science also an activity? Or is
engineering different from science in this respect? Insofar
as science is an activity, it is an activity that produces
“knowledge.” Engineering is an activity that uses that
scientific knowledge to design and build artifacts. Yet one
way to discover how things work is to try to build them; so,
is all engineering a kind of science?



5.6 The Engineering Method

Just as some people speak of a “scientific method,” others
have proposed an “engineering method.” Presumably, just
as ‘science’ can be defined as any discipline that follows
“the scientific method,” so ‘engineering’ can be defined as
any discipline that follows “the engineering method.”
In Section 4.7, we saw one view of the scientific method,
according to which it is a loop that cycles through
observation of facts, induction of general statements,
deduction of future observations, and verification of the
deduced predictions against observations before cycling
back to more observations. Similarly, Robert Malpas (2000)
describes the engineering method both linearly and as a
cycle (Figure 5.1). It begins by inputting a set of
requirements, followed by analysis, then synthesis, then
evaluation and execution, and outputting a solution. The
cycle comes in between the input and the output: the
evaluation and execution cycle back both to the analysis and
to the synthesis, as well as adding to a knowledge base that,
along with a set of resources, interacts with the analysis,
synthesis, and evaluation‐execution.
But neither this nor the scientific method is carved in stone;
both are more like guidelines or even after‐the‐fact
descriptions of behavior rather than rules that must be
slavishly followed. Are “engineering methods” significantly
different from “scientific methods”? Malpas's engineering
method doesn't seem so.



Figure 5.1 Malpas's engineering method (Malpas, 2000,
p. 35).

Source: Malpas, 2000 / Reproduced with permission of the Royal Academy of
Engineering.

Instead of scientific methods, engineering methods, or even
methods used in the humanities, the engineer Billy Vaughn
Koen (2009) seeks a “universal method”: heuristics. Koen
(1988) defines this universal method as

the use of engineering heuristics to cause the best
change in a poorly understood situation within the
available resources. (Koen, 1988, p. 308, my italics)

For Koen



A heuristic is anything that provides a plausible aid or
direction in the solution of a problem but is in the final
analysis … incapable of justification and fallible. It is
anything that is used to guide, discover and reveal a
possible, but not necessarily, correct way to solve a
problem. Though difficult to define, a heuristic has four
characteristics that make it easy to recognize: it does not
guarantee a solution; it may contradict other heuristics; it
reduces the search time for solving a problem; and its
acceptance depends on the immediate context instead of
on an absolute standard. (Koen, 1988, p. 308).

Many other disciplines use heuristics; writers, for example,
are often told to “write simply.” (See Section 5.9,
Question 4.) What makes a heuristic an engineering

heuristic? According to Koen, the first two characteristics
differentiate the use of heuristics from science and
mathematics. So, they demarcate engineering from science
and mathematics. The third and fourth characteristics make
their use more practical than at least some scientific or
mathematical theories.
Koen (1988, p. 309) states “that the engineering strategy

for causing desirable change in an unknown situation within

the available resources and the use of heuristics is an
absolute identity.” First, Koen is saying that what engineers
do is cause changes. This does contrast with science (and
math), whose goal is, presumably, to understand things, not
to change them, and it is consistent with the quote from
Staples cited as an epigraph to this chapter.
Second, Koen's engineering method is not as “formal” as,
say, Malpas's, because it is simply the use of heuristics (“the
engineering strategy” = “the use of heuristics”). But what
kind of heuristics? Much of what Koen says suggests that
the kind of heuristic reasoning used by engineers is akin to
what Herbert Simon called “satisficing”: being satisfied with



having a reasonable answer to a question rather than the
“correct” one. Satisficing is due to what Simon called
“bounded rationality,” which is necessary in practical
situations, given limits (“bounds”) on our time and
knowledge.
Koen's notion of heuristics is akin to informal “rules of
thumb.” But there is a more computational notion: A
heuristic for problem p can be defined as an algorithm for
some other problem , where the solution to  is “good
enough” as a solution to  (Rapaport, 1998, p. 406). Being
“good enough” is, of course, a subjective notion; Oommen
and Rueda (2005, p. 1) call the “good enough” solution “a
sub‐optimal solution that, hopefully, is arbitrarily close to
the optimal.” The idea is also related to Simon's notions: we
might not be able to solve  because of limitations in space,
time, or knowledge, but we might be able to solve 
algorithmically within the required spatio‐temporal‐
epistemic limits. And if the algorithmic solution to  gets
us closer to a solution to , then it is a heuristic solution to 

. So, it is still an algorithm.11



5.7 Software Engineering

In addition to the question of whether CS is a kind of
engineering, there is the question of the nature of software
engineering. Computer scientists (whether or not they
consider themselves to be scientists or engineers) often
consider software engineering as a branch of CS. Courses
in software engineering are often, perhaps even usually,
taught in CS departments. But is software engineering
engineering?
For Davis, software engineering would be (real?)
engineering if and only if there is a professional curriculum
for it, along with a code of professional ethics.
Interestingly, he also suggests that this might not happen
until “real” engineering starts becoming more
computational (Davis, 2011, p. 34).
The software engineer David Parnas has a different take on
CS's relationship to engineering:

Just as the scientific basis of electrical engineering is
primarily physics, the scientific basis of software
engineering is primarily computer science. This paper
contrasts an education in a science with an education in
an engineering discipline based on the same science.
(Parnas, 1990, p. 2).

In other words, software engineering is CS engineering.
There are two interesting implications of this. First, it
suggests that Parnas views CS as a science because he
takes it to be the scientific basis of a branch of engineering.
Second, this view of things is inconsistent with the view
advocated by, for instance, Loui and Hartmanis, who take
CS (or parts of it) as being a kind of engineering whose
scientific basis is primarily mathematics: i.e. as



mathematical engineering (Section 3.15). On the other
hand, one might argue that if software engineering is based
on CS, which, in turn, is based on mathematics, then
software engineering must ultimately be based on
mathematics, too, which suggests that software
engineering would be mathematical‐engineering

engineering!
And that might not be far from the truth, considering that
much of formal software engineering is based on (discrete)
mathematics and logic (such as the formal analysis of
computer programs and their development (Mili et al.,
1986) or the use of program‐verification methods in the
development of programs (Chapter 15). So, is software
engineering unique in being a kind of engineering that is
based on another kind of engineering rather than on a
science? Or is software engineering indeed based on a
science: namely, CS? Parnas quite clearly believes that CS
is a science, not an engineering discipline. Why?
Part of the reason concerns his definition of ‘engineering’:
“Engineers are professionals whose education prepares

them to use mathematics, science, and the technology of
the day, to build products that are important to the safety
and well‐being of the public” (Parnas, 1990, p. 2, my
italics). This echoes Davis's claim about the central role of
education in the nature of being an engineer, as well as
Brooks's (and others') claim that the purpose of
engineering is to use science to build humanly useful
things.
To complete his argument that CS is not engineering,
Parnas needs a premise that states that CS education
doesn't prepare computer scientists to use CS to build
things, or perhaps just that computer scientists don't build
things. (That leaves open the possibility that CS might be a
branch of mathematics or a “technology of the day,” but it's



pretty clear from the first quote that he thinks it is a
science.) This missing premise is the gist of his entire
article. But at least one part of his argument is this: proper
training in software engineering – “designing, building,
testing, and ‘maintaining’ software products” (Parnas,
1990, p. 2) – requires more than a course or two offered in
a CS curriculum. Rather, it requires an “accredited
professional programme … modelled on programmes in
traditional engineering disciplines” (Parnas, 1990, p. 2).12

But we still don't have a clear statement of why he thinks
CS is a science and is not engineering. As for the latter, it's
not engineering because there is no “rigid accreditation
process … [hence, no] well documented ‘core body of
knowledge’ … for computer science” (Parnas, 1990, p. 2).
Such accreditation might be necessary but is surely not
sufficient: one might force such a core body of knowledge
and such an accreditation process on, say, physics, but that
wouldn't make physics an engineering discipline.
Some clarity arises here:

It is clear that two programmes are needed [e.g. both
physics and electrical engineering, or both computer
science and software engineering], not because there are
two areas of science involved [e.g. physics and electrical
engineering], but because there are two very different
career paths. One career path is that of graduates who

will be designing products for others to use. The other

career path is that of graduates who will be studying the

phenomena that interest both groups and extending our

knowledge in this area. (Parnas, 1990, p. 3, my italics)
So: scientists study phenomena and extend knowledge;
engineers design products. So: CS studies phenomena and
extends knowledge; software engineers design software
products. The distinction between science and engineering,



for Parnas, is that between learning and building (Parnas,
1990, p. 4). Note that Parnas agrees with Brooks about the
distinction but draws the opposite conclusion: that CS is
not engineering!13



5.8 CS and Engineering

A science and an engineering discipline can both be about
the same thing. For example, both chemists and chemical
engineers study chemistry. What, then, is the common
object of computer science and computer engineering? Is it
computers? Algorithms? Information? Perhaps computer
science studies algorithms and procedures, whereas
computer engineering studies computers and computer
systems. If so, then who studies the relations between
these, such as “programmed living machines”? (Recall
Section 3.7.)
Trying to distinguish between science and engineering may
be the wrong approach. It is worth recalling W.A. Wulf's
cautionary remarks, which we quoted in Section 3.13:

Let's remember that there is only one nature – the

division into science and engineering … is a human

imposition, not a natural one. Indeed, the division is a
human failure; it reflects our limited capacity to

comprehend the whole. That failure impedes our
progress; it builds walls just where the most interesting
nuggets of knowledge may lie. (Wulf, 1995, p. 56; my
italics)

Is CS a science that tries to understand the world
computationally? Or is it an engineering discipline that
tries to change the world by building computational
artifacts? (Or both? Or neither?) No matter our answer, it
has to be the science or engineering (or whatever) of

something. We have seen at least two possibilities: it
studies computers, or it studies computation (algorithms).
To further explore which of these might be central to CS,



let us begin by asking, “What is a computer?” Later, we will
inquire into what computation is.14



5.9 Questions to Think About

1. Link to various engineering websites, and try to find a
definition of ‘engineer’ or ‘engineering.’ Here are two
good ones to begin with:

a. “What Is Engineering?”
Whiting School of Engineering, Johns Hopkins
University,
http://www.jhu.edu/∼virtlab/index.php

b. “What is engineering and what do engineers do?”
National Academy of Engineering of the National
Academies,
http://www.nae.edu/About/FAQ/20650.aspx

2. In Section 3.12, we saw that Brooks argued that CS
was not a science but a branch of engineering, in part
because the purpose of engineering is to build things,
and that's what computer scientists do.
How would you evaluate his argument now that you
have thought more deeply about what engineering is?

3. Loui (1987, p. 176) said that “The ultimate goal of an
engineering project is a product … that benefits
society,” giving bridges and computer programs as
sample “products.” But not all computer programs
benefit society – think of computer viruses. Presumably,
Loui meant something like “product that is intended to

benefit society.”
But does that mean, then, that a computer
programmer who writes a spreadsheet program is an
engineer (no matter how sloppily the programmer
writes it), whereas a computer programmer who

http://www.jhu.edu/~virtlab/index.php
http://www.nae.edu/About/FAQ/20650.aspx


writes a computer virus is not an engineer (even if the
program was designed according to the best software
engineering principles)?

4. If the central feature of engineering is, say, the
application of scientific (and mathematical) techniques
for producing or building something, then arguably
part of CS is engineering – especially those parts
concerned with building computers and writing
programs. Here's something to think about: just as
(some) computer scientists write programs, journalists
and novelists write essays. Moreover, they use
heuristics, such as “write simply,” “avoid using the
passive voice,” and so on. The engineer Alice W. Pawley
(2009, p. 310, col. 2) makes a similar point concerning
a National Academy of Engineering definition of
engineers as “men and women who create new
products”:

Without knowing how the NAE defines “product,”
one could argue that an academic who writes a book
on how food is portrayed in Victorian novels has
created a product (the book) based on abstract ideas
(theories about the historical display of food).

Are journalists, novelists, and other writers therefore
engineers? Their products are not typically
applications of science and mathematics, so perhaps
they aren't. But might they be considered, say,
language engineers?

5. What phenomena does Parnas think computer
scientists study?

6. Does Parnas consider electrical engineering to be an
“area of science”?

7. Evaluate the validity and soundness of the following
argument:15



a. Engineers are cognitive agents who build artifacts
for some identifiable purpose.

b. Birds build nests for housing their young.
c. Beavers build dams because the sound of rushing

water annoys them.16

d. Computer engineers build computers for
computation.

e.  Birds, beavers, and computer engineers are all
engineers.

8. Evaluate the validity and soundness of the following
argument:

a. Engineers are cognitive agents who build artifacts
for some identifiable purpose and who know what
that purpose is.

b. Birds and beavers do not know why they build nests
and dams, respectively; they are only responding to
biological or evolutionary instincts.

c. Computer engineers do know what the purpose of
computation is.

d.  Computer engineers are engineers, but birds and
beavers are not.



Notes

1 Yes; the 31st President of the United States.

2 Recall that Marx said that philosophers should
change the world, not merely understand it (see
Section 2.5.2). Was Marx proposing a discipline of
“philosophical engineering”?

3 More precisely, if “the meaning” of a word is simply
how people use it (Wittgenstein, 1958, Section 43),
then there might be no such thing as an “incorrect”
use. Many dictionaries take it as their task merely to
record how people use a word, without taking a
stand on whether any of those uses are “incorrect.”

4 For the complete definitions, see Mish, 1983, p. 412
or the updated version at www.merriam-
webster.com.

5 That is, a “klunky” definition designed to be
acceptable to a variety of competing interests. The
standard joke about such definitions is that a camel
is a horse designed by a committee. See
http://en.wikipedia.org/wiki/Design_by_committee.

6 See the Online Resources for further reading on the
philosophy of engineering .

7 Recall Brooks's comment (Section 3.16.6) that
computer programs “show … things that never
were.”

8 Personal communication, 2015.

9 Many of them are accredited, of course, but not as
engineering curricula.

https://www.merriam-webster.com/
http://en.wikipedia.org/wiki/Design_by_committee
https://cse.buffalo.edu/~rapaport/OR/A0fr05.html#5.1


10 Personal communication, 2015.

11 See the Online Resources for further reading on
heuristics .

12 The spelling in this quote is Canadian‐British
spelling. ‘Programme’ is used in the sense of an
“academic program,” not in the sense of a “computer
program.”

13 See the Online Resources for further reading on
software engineering .

14 See the Online Resources for further reading on CS
and engineering .

15 Thanks to Albert Goldfain for questions 7 and 8.

16

https://web.archive.org/web/20110714160115/http:/
/naturealmanac.com/archive/beaver_dams/beaver_d
ams.html

https://cse.buffalo.edu/~rapaport/OR/A0fr05.html#5.6
https://cse.buffalo.edu/~rapaport/OR/A0fr05.html#5.7
https://cse.buffalo.edu/~rapaport/OR/A0fr05.html#5.8
https://web.archive.org/web/20110714160115/http://naturealmanac.com/archive/beaver_dams/beaver_dams.html
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Computers: A Brief History

Let us now return to the analogy of the theoretical
computing machines … It can be shown that a single
special machine of that type can be made to do the work
of all. It could in fact be made to work as a model of any

other machine. The special machine may be called the
universal machine …
—Alan Turing (1947, my italics)
If it should turn out that the basic logics of a machine
designed for the numerical solution of differential
equations coincide with the logics of a machine intended
to make bills for a department store, I would regard this

as the most amazing coincidence I have ever

encountered.
—Howard Aiken (1956, my italics), cited in Martin Davis,
20121

There is no reason for any individual to have a computer
in their home.
—Ken Olsen (1974)2

Many people think that computation is for figuring costs
and charges in a grocery store or gas station.
—Robin K. Hill (2008)



6.1 Introduction

Let us take stock of where we are. We began by asking
what CS is, and we saw that it might be a science, a branch
of engineering, a combination of both, or something else.
To help us answer that question, we then investigated the
nature of science and of engineering.
It is now time to ask, “What is CS the science, or
engineering, or study of?” The subject matter of CS might
be computers (the physical objects that compute) (Newell
et al., 1967). Or it might be computing (the algorithmic
processing that computers do) (Knuth, 1974b). Or, of
course, it might be something else (such as the information
that gets processed; see Sections 3.8 and 3.16). In the next
few chapters, we will begin to examine the first two
options. In this chapter, our focus will be to seek answers
to the question what is a computer? from the history of
computers. In Chapter 9, we will look at some philosophical
issues concerning the nature of computers. Chapters 7
and 8 will investigate computing.



6.2 Would You Like to Be a Computer?

Towards the close of the year 1850, the Author first
formed the design of rectifying the Circle[3] to upwards
of 300 places of decimals. He was fully aware, at that
time, that the accomplishment of his purpose would add
little or nothing to his fame as a Mathematician, though it
might as a Computer; …
—William Shanks (1853), as cited in B. Hayes, 2014a,
p. 342

Let's begin our historical investigation with some
terminology. Some 130 years ago, in the 2 May 1892 issue
of The New York Times, the ad shown in Figure 6.1
appeared.
So, over a century ago, the answer to the question “What is
a computer?” was: a human who computes! In fact, until at
least the 1940s (and probably the 1950s), that was the
meaning of ‘computer.’ When people wanted to talk about a
machine that computed, they would use the phrase
‘computing machine’ or (later) ‘electronic (digital)
computer.’ (In Chapters 8 and 18, when we look at Alan
Turing's foundational papers in CS and AI, this distinction
will be important.) Interestingly, nowadays, when one wants
to talk about a human who computes, we need to use the
phrase ‘human computer’ (Pandya, 2013). In this book, for
the sake of familiarity, I will use the word ‘computer’ for the
machine and the phrase ‘human computer’ for a human who
computes.



Digression on Human Computers: ‘Computer’ in the
human sense was used by some people even in the
1960s, as told in the 2016 film Hidden Figures

(https://en.wikipedia.org/wiki/Hidden_Figures); see also
Bolden, 2016, Natarajan, 2017. For a history of human
computers (most of whom were women), see Lohr, 2001,
Grier, 2005, Skinner, 2006, Thompson, 2019; and the
website “Computer Programming Used to Be Women's
Work” Smart News Blog,
https://www.smithsonianmag.com/smart-
news/computer-programming-used-to-be-womens-work-
718061/. The other kind of human computers, of course,
are mathematicians (of either sex):

Historians might … wonder if mathematicians who
devised algorithms were programmers …. Modern
programmers would … say no because these
algorithms were not encoded for a particular machine.
(Denning and Martell, 2015, p. 83)

But they were! They were encoded for human

computers! Curiously, on the very next page, Denning
and Martell say exactly that:

The women who calculated ballistic tables for the
Army during World War II were also programmers,
although their programs were not instructions for a
machine but for themselves to operate mechanical
calculators. In effect, they were human processing
units.

But why should this be treated merely as a kind of
metaphor? These women were the computers!

https://en.wikipedia.org/wiki/Hidden_Figures
https://www.smithsonianmag.com/smart-news/computer-programming-used-to-be-womens-work-718061/


Figure 6.1 1892 computer ad.
Source: https://dirkvl.info/2011/04/05/48510398 / last accessed 7 June
2022. Public Domain.

https://dirkvl.info/2011/04/05/48510398


6.3 Two Histories of Computers

Just as there are two views of CS as science and as
engineering, there are both scientific and engineering
histories of computers; they begin in parallel, intersect, and
eventually converge. One of these is the engineering

history of building a machine that could compute (or
calculate): i.e. a machine that could duplicate – and
therefore assist, replace, or even supersede – human
computers. The other is the scientific history of providing a
logical foundation for mathematics.
These histories were probably never purely parallel but
more like a tangled web, with at least two human “bridges”
connecting them: the first was a philosopher who lived
about 340 years ago, and the other was a mathematician
who was active much more recently (about 90 years ago) –
Gottfried Wilhelm Leibniz (1646–1716) and Alan Turing
(1912–1954). (There were, of course, other significant
people involved in both histories, as we will see.) Moreover,
both histories begin in ancient Greece, the engineering
history beginning with the need for computational help for
astronomical purposes (including navigation), and the
mathematical‐logical history beginning with Aristotle's
study of logic.4



6.4 The Engineering History

The engineering history concerns the attempt to create
machines that would do certain mathematical
computations. The two main reasons for wanting to do this
seem to be (1) to make life easier and less boring for
humans (let a machine do the work!) and – perhaps of more
importance – (2) to produce computations that are more
accurate (both more precise and with fewer errors) than
those that humans produce. It is worth noting that the goal
of having a machine perform an intellectual task that would
otherwise be done by a human is one of the motivations
underlying AI. In this section, we will only sketch some of
the highlights of the engineering history.
The engineering history to follow focuses only on digital
computers. But “Before electronic calculators, the
mechanical slide rule dominated scientific and engineering
computation” (Stoll, 2006). The slide rule is an analog

calculator!5

6.4.1 Ancient Greece

The attempt to build calculating machines can be traced
back to at least the second century BCE, when a device
now known as the Antikythera Mechanism was constructed.
This device was used to calculate astronomical information,
possibly for use in agriculture or religion. Although the
Antikythera Mechanism was discovered in 1900, a full
understanding of what it was and how it worked was not
figured out until the 2000s (Freeth et al., 2006).6

6.4.2 Seventeenth Century

Calculating Machines



Skipping ahead almost 2000 years to about 350 years ago,
two philosopher‐mathematicians are credited with more
familiar‐looking calculators: Blaise Pascal (1623–1662),
who helped develop the theory of probability, also invented
an adding (and subtracting) machine that worked by means
of a series of connected dials.7 And Leibniz (who invented
calculus almost simultaneously with, but independently of,
Isaac Newton) invented a machine that could add, subtract,
multiply, and divide. As we'll see in Section 6.5, Leibniz
also contributed to the scientific history of computing with
an idea for something he called a “calculus ratiocinator”
(loosely translatable as a “reasoning system”).8

6.4.3 Babbage's Machines

We both went to see the thinking machine (for such it
seems) last Monday.
—Lady Byron (Ada Lovelace's mother), writing in 1833
about Babbage's
Difference Engine (as cited in Stein, 1984, p. 38)

Two of the most famous antecedents of the modern
electronic computer were due to the English
mathematician Charles Babbage, who lived about 190 years
ago (1791–1871). The first machine he designed was the
“Difference Engine” (1821–1832), inspired in part by a
suggestion made by French mathematician Gaspard
de Prony (1755–1839).
De Prony, who later headed France's civil‐engineering
college, needed to construct highly accurate logarithmic
and trigonometric tables for large numbers and was
himself inspired by Adam Smith's 1776 text on economics,
The Wealth of Nations. Smith discussed the notion of the
“division of labor”: the manufacture of pins could be made
more efficient by breaking the job down into smaller units,



with each laborer who worked on one unit becoming an
expert at that one job. De Prony, realizing that it would
take him too long using “difference equations” by hand,9
applied this division of labor to computing the log and trig
tables, using two groups of human computers, each as a
check on the other.
De Prony's technique is essentially what modern computer
programmers call “top‐down design” (Mills, 1971) and
“stepwise refinement” (Wirth, 1971): to accomplish some
task , analyze it into subtasks , each of which
should be easier to do than . This technique can be
repeated: analyze each  into sub‐subtasks ,
and so on, until the smallest sub…subtask is so simple that
it can be done without further instruction (this is an aspect
of “recursion”; see Section 7.6).
It should be noted that, besides its positive effects on
efficiency, the division of labor has negative ones, too: it

would make workers as “stupid and ignorant as it is
possible for a human creature to be.” This was because
no worker needed to know how to make a pin, only how
to do his part in the process of making a pin. (Skidelsky,
2014, p. 35, quoting Adam Smith (1776, Book v, Ch. I,
Part III, Art. II),
https://www.marxists.org/reference/archive/smith-
adam/works/wealth-of-nations/book05/ch01c-2.htm

More recently, several writers have pointed out that very
few of us know every detail about the facts that we know or
the activities that we know how to perform (see, for
example, Dennett, 2017, Ch. 15). So this negative effect
might be unavoidable.
Babbage wanted a machine to replace de Prony's people;
this was to be his Difference Engine. He later conceived of
an “Analytical Engine” (1834–1856), which was intended to

https://www.marxists.org/reference/archive/smith-adam/works/wealth-of-nations/book05/ch01c-2.htm


be a general‐purpose problem‐solver (perhaps more closely
related to Leibniz's goal for his calculus ratiocinator).
Babbage was unable to completely build either machine:
the engineering methods available to him in those days
were simply not up to the precision required. However, he
developed techniques for what we would today call
“programming” these machines, using a nineteenth century
version of punched cards (based on a technique invented
by Joseph Marie Jacquard for use in looms – a sequence of
punched cards constituted a “program” for weaving a
pattern in the cloth on the loom). Working with Babbage,
Lady Ada Lovelace (1815–1852) – daughter of the poet
Lord Byron – wrote a description of how to program the
(yet‐unbuilt) Analytical Engine; she is thus considered the
first computer programmer:

… the important difference between the two machines is
that the Difference Engine followed an unvarying
computational path …, while the Analytical Engine was to
be truly programmable …. (Stein, 1984, p. 49)

This suggests that the relationship between the Difference
Engine and the Analytical Engine was similar to that
between a Turing Machine (which can only compute a
single function) and a Universal Turing Machine (which can
compute any function whose algorithm is stored on its
tape). We'll return to these in Chapters 8 and 9 .10

6.4.4 Electronic Computers

The modern history of electronic, digital computers is itself
rather tangled and the source of many historical and legal
disputes. Here is a brief survey:

1. John Atanasoff (1903–1995) and his student Clifford
Berry (1918–1963), working at Iowa State University,
built the ABC (Atanasoff‐Berry Computer) in 1937–



1942. This may have been the first electronic, digital
computer, but it was not a general‐purpose
(programmable) computer, and it was never completed.
It was, however, the subject of a patent‐infringement
suit, about which more in a moment.

2. Konrad Zuse (1910–1995), in Germany, developed the
Z3 computer in 1941, which was programmable.

3. In 1943, the Colossus computer was developed and
installed at Bletchley Park, England, for use in
cryptography during World War II. Bletchley Park was
where Alan Turing worked on cracking the Nazi's code‐
making machine, the Enigma.11

4. Howard Aiken (1900–1973), inspired by Babbage, built
the Harvard Mark I computer in 1944; it was designed
to compute differential equations. (Recall the Aiken
epigraph at the beginning of this chapter.)

5. After the war, in 1945, Turing decided to try to
implement his “ ‐machine” (what is now called the
‘Turing Machine’; see Section 6.5, and – for more detail
– Chapter 8), and developed the ACE (Automatic
Computing Engine) (Copeland, 1999; Campbell‐Kelly,
2012). It was also around this time that Turing started
thinking about AI and neural networks.

6. John Presper Eckert (1919–1995) and his student John
Mauchly (1907–1980), working at the University of
Pennsylvania, built the ENIAC (Electronic Numerical
Integrator And Computer) in 1946, a general‐purpose –
i.e. programmable – electronic computer. In 1945, with
the collaboration of the mathematician John
von Neumann (1903–1957) – who outlined an
architecture for computers that is still used today –
they began to develop the EDVAC (Electronic Discrete
Variable Automatic Computer), which used binary



arithmetic (rather than decimal). Completed in 1949, it
evolved into the first commercial computer: the
UNIVAC (UNIVersal Automatic Computer). UNIVAC
became famous for predicting, on national TV, the
winner of the 1952 US presidential election. The
company that made UNIVAC evolved into the Sperry
Rand Corporation, which owned the patent rights. The
Honeywell Corporation, a rival computer manufacturer,
successfully sued Sperry Rand in 1973, on the grounds
that Mauchly had visited Atanasoff in 1941 and that it
was Atanasoff and Berry – not Eckert and Mauchly –
who had “invented” the computer, thus vacating Sperry
Rand's patent claims.12

6.4.5 Modern Computers

Where a calculator like ENIAC today is equipped with
18,000 vacuum tubes and weighs 30 tons, computers in
the future may have only 1000 vacuum tubes and
perhaps weigh only 1  tons.

—Popular Mechanics, March 1949 (cited in Meigs, 2012)
A few years ago, one of our daughters looked at a pile of
MacBooks in our living room and asked, “Can you hand me
a computer?” Early computers, however, were large,
cumbersome, and expensive, so there weren't very many of
them (and they couldn't have been “handed” around!):

There are currently over one hundred computers

installed in American universities. Probably two dozen or
more will be added this year. In 1955 the number was
less than twenty‐five. … [C]onsidering the costs involved
in obtaining, maintaining, and expanding these
machines, the universities have done very well in
acquiring hardware with their limited funds. (Perlis,
1962, p. 181, my italics)



Of course, a university with, say, 5000 students now
probably has at least 5000 computers – and probably
double that amount if you include smartphones – not to
mention the computers owned by the universities
themselves! And each one of those 10,000 or more
computers is at least as powerful as, if not more so than,
the 100 of a half‐century ago.
Although the early computers were mostly intended for
military uses,

The basic purpose [of computers at universities], at
present [i.e. in 1962], is to do computations associated
with and supported by university research programs,
largely government financed. … Sad to state, some uses

occur merely because the computer is available, and

seem to have no higher purpose than that.
—Alan J. Perlis (1962, p. 182, my italics)

Today, I wouldn't be surprised if most uses (Candy Crush?
Skype? Facebook? Twitter? Amazon?) of the 10,000
computers at an average contemporary university “have no
higher purpose”! (At this point, you are urged to re‐read
the chronologically ordered epigraphs at the beginning of
this chapter.)
It is also worth noting the simultaneous decrease in size of
computers from the 1940s to now, as well as the increase
in their ease of use: ENIAC needed an entire room for all
the hardware and a team of experts to run it; 40 years
later, a child could use a desktop personal computer; and
less than 40 years after that, infants and toddlers could use
iPads and iPhones. (For illustrations of this, see
https://cse.buffalo.edu/
∼rapaport/111F04/summary.html.)13

https://cse.buffalo.edu/~rapaport/111F04/summary.html


6.5 The Scientific History

Logic's dominant role in the invention of the modern
computer is not widely appreciated. The computer as we
know it today was invented by Turing in 1936, an event
triggered by an important logical discovery announced
by Kurt Gödel in 1930. Gödel's discovery … decisively
affected the outcome of the so‐called Hilbert Program.
Hilbert's goal was to formalize all of mathematics and
then give positive answers to three questions about the
resulting formal system: is it consistent? is it complete?
is it decidable? Gödel found that no sufficiently rich
formal system of mathematics can be both consistent and
complete. In proving this, Gödel invented, and used, a
high‐level symbolic programming language: the
formalism of primitive recursive functions. As part of his
proof, he composed an elegant modular functional
program …. This computational aspect of his work … is
enough to have established Gödel as the first serious
programmer in the modern sense. Gödel's computational
example inspired Turing … [who] disposed of the third of
Hilbert's questions by showing … that the formal system
of mathematics is not decidable. Although his original
computer was only an abstract logical concept, … Turing
became a leader in the design, construction, and
operation of the first real computers.
—J. Alan Robinson (1994, pp. 6–7)14

The scientific history paralleling the engineering history
concerns not the construction of a physical device that
could compute but the logical and mathematical analysis of
computation itself.
This story begins, perhaps, with Leibniz, who not only
constructed a calculating machine, as we have seen, but



also wanted to develop a “calculus ratiocinator”: a
formalism in a universally understood language
(“characteristica universalis”) that would enable its users
to precisely express any possible question and then to
rationally calculate its answer. Leibniz's motto (in Latin)
was: Calculemus! (Let us calculate!). In other words, he
wanted to develop an algebra of thought.
This task was taken up around 180 years later (around 180
years ago) by the English mathematician George Boole
(1815–1864), who developed an algebra of logic, which he
called The Laws of Thought (Boole, 2009).15 This was what
is now called propositional logic. But it lacked a procedure
for determining the truth value of a given (atomic)
statement (recall Section 2.3.1).
Boole's work was extended by the German mathematician
Gottlob Frege (1848–1925, around 130 years ago), who
developed what is now called first‐order logic (or the first‐
order predicate calculus).16 Frege advocated a philosophy
of mathematics called “logicism,” which viewed
mathematics as a branch of logic. Thus, to give a firm
foundation for mathematics, it would be necessary to
provide a system of logic that itself would need no
foundation.
Unfortunately, the English philosopher Bertrand Russell
(1872–1970, around 100 years ago) discovered a problem
while reading the manuscript of Frege's book The

Foundations of Arithmetic. This problem, now known as
Russell's Paradox, concerned the logic of sets: a set that
has as members all and only those sets that do not have
themselves as members would both have itself as a member
and not have itself as a member. This inconsistency in
Frege's foundation for mathematics began a crisis that,
arguably, resulted in the creation of the theory of
computation.



That story continues with work done by the German
mathematician David Hilbert (1862–1943, around 115
years ago), who wanted to set mathematics on a rigorous,
logical foundation, one that would be satisfactory to all
philosophers of mathematics, including “intuitionists” and
“finitists.” (Intuitionists believe that mathematics is a
construction of the human mind and that any mathematical
claim that can only be proved by showing that its
assumption leads to a contradiction should not be accepted.
Finitists believe that only mathematical objects
constructible in a finite number of steps should be allowed
into mathematics.) It is worth quoting Hilbert at length:



Occasionally it happens that we seek … [a] solution [to a
mathematical problem] under insufficient hypotheses or
in an incorrect sense, and for this reason do not succeed.
The problem then arises: to show the impossibility

of the solution under the given hypotheses, or in

the sense contemplated. Such proofs of impossibility
were effected by the ancients, for instance when they
showed that the ratio of the hypotenuse to the side of an
isosceles right triangle is irrational. In later
mathematics, the question as to the impossibility of
certain solutions plays a preeminent part, and we
perceive in this way that old and difficult problems, such
as the proof of the axiom of parallels, the squaring of the
circle, or the solution of equations of the fifth degree by
radicals have finally found fully satisfactory and rigorous
solutions, although in another sense than that originally
intended. It is probably this important fact along with
other philosophical reasons that gives rise to the

conviction (which every mathematician shares, but

which no one has as yet supported by a proof) that

every definite mathematical problem must

necessarily be susceptible of an exact settlement,

either in the form of an actual answer to the

question asked, or by the proof of the impossibility

of its solution and therewith the necessary failure

of all attempts. Take any definite unsolved problem, …
However unapproachable these problems may seem to
us and however helpless we stand before them, we have,
nevertheless, the firm conviction that their solution

must follow by a finite number of purely logical

processes. Is this axiom of the solvability of every

problem a peculiarity characteristic of mathematical
thought alone, or is it possibly a general law inherent in
the nature of the mind, that all questions which it

asks must be answerable? This conviction of the



solvability of every mathematical problem is a powerful
incentive to the worker. We hear within us the perpetual
call: There is the problem. Seek its solution. You can

find it by pure reason, for in mathematics there is

no ignorabimus [“We will not know”]. (Hilbert, 1900,
pp. 444–445, my boldface)

Hilbert proposed the following “decision problem”
(Entscheidungsproblem) for mathematics: to devise a
procedure according to which it can be decided by a finite
number of operations whether a given statement of first‐
order logic is true under all interpretations. Because this
involves truth, it is a semantic notion. But because first‐
order logic is “complete” – the set of truths equals the set
of theorems (recall Section 2.3.3 and footnote 14) – this is
usually restated syntactically, in terms of provability:

By the Entscheidungsproblem of a system of symbolic
logic is here understood the problem to find an effective
method by which, given any expression Q in the notation
of the system, it can be determined whether or not Q is
provable in the system. (Church, 1936a, p. 41, note 6)

We will return to this in Section 8.3. A mathematical
statement that was decidable in this way was also said to
be “effectively computable” or “effectively calculable,”
because one could compute, or calculate, whether or not it
was a theorem in a finite number of steps. (We'll return to
“effectiveness” in Section 7.3.)
Many mathematicians took up Hilbert's challenge: in the
United States, Alonzo Church (1903–1995) developed the
“lambda‐calculus,” claiming that any effectively computable
mathematical function could be computed in the lambda‐
calculus. The Austrian (and later American) logician Kurt
Gödel (1906–1978), who had previously proved the
incompleteness of arithmetic (and thus became the most



respected logician since Aristotle; see footnote 14),
developed the notion of “recursive” functions, which was
also co‐extensive with effectively computable functions.
Emil Post, a Polish‐born American logician (1897–1954),
developed “production systems,” which also capture the
notion of effective computability (Soare, 2009, Section 5.2,
p. 380). And the Russian A.A. Markov (1903–1979)
developed what are now known as Markov algorithms. (We
will look in more detail at some of these systems in
Chapter 7.)
But central to our story was the work of the English
mathematician Alan Turing (1912–1954), who – rather than
trying to develop a mathematical theory of effectively
computable functions in the way that the others
approached the subject – gave an analysis of what human

computers did. Based on that analysis, he developed a
formal, mathematical model of a human computer, which
he called an “ ‐machine,” and which we now call, in his
honor, a Turing Machine. In his classic paper published in
1936, Turing presented his informal analysis of human
computation, his formal definition of an ‐machine, his
claim that functions computable by ‐machines were all
and only the functions that were “effectively computable,”
a (negative) solution to Hilbert's Decision Problem (by
showing that there was a mathematical problem that was
not decidable computationally: namely, the Halting
Problem), a demonstration that a single, “universal,”
Turing Machine could do the work of all other Turing
Machines, and – as if all that were not enough – a proof
that a function was computable by an ‐machine if and
only if it was computable in Church's lambda‐calculus. (To
fully appreciate his accomplishment, be sure to calculate
how old he was in 1936!) We will look at Turing's work in
much greater detail in Chapter 8.



Later, others proved that both Turing's and Church's
methods were also logically equivalent to all of the others:
recursive functions, production systems, Markov
algorithms, etc. Because all of these theories had been
proved to be logically equivalent, this finally convinced
almost everyone that the notion of “effective computability”
(or “algorithm”) had been captured precisely. This is now
known as the Church‐Turing Computability Thesis (which
will be the topic of Part III). Indeed, Gödel himself was not
convinced until he read Turing's paper, because Turing's
was the most intuitive presentation of them all. (But in
Chapters 10 and 11, we will look at the arguments of those
who are still not convinced.)17



6.6 The Histories Converge

… it is really only in von Neumann's collaboration with
the ENIAC team that two quite separate historical
strands came together: the effort to achieve high‐speed,
high‐precision, automatic calculation and the effort to
design a logic machine capable of significant reasoning.
The dual nature of the computer is reflected in its dual
origins: hardware in the sequence of devices that
stretches from the Pascaline to the ENIAC, software in
the series of investigations that reaches from Leibniz's
combinatorics to Turing's abstract machines. Until the
two strands come together in the computer, they belong
to different histories….
—Michael S. Mahoney (2011, p. 26)18

The two histories are nicely “bookended” by Leibniz and
Turing: Leibniz began with constructing a mechanical
arithmetic calculator and later proposed his calculus

ratiocinator. And Turing began with his version of a
calculus ratiocinator – the Turing Machine – and later
constructed an electronic computer (Carpenter and Doran,
1977). (For interesting comments on the interrelations
between the two histories, see von Neumann, 1948.)



6.7 What Is a Computer?

The twin histories suggest different answers to our
question.

6.7.1 An Engineering Answer

If computers can be defined “historically,” then they are
machines which (i) perform calculations with numbers,
(ii) manipulate or process data (information), and (iii)
control continuous processes or discrete devices … in
real time or pseudo real time. (Martin Davis, 1977,
p. 1096)

Note that (ii) can be considered a generalization of (i)
because numbers are a kind of data and because
performing calculations with numbers is a kind of
manipulation of data. And, because being continuous or
being discrete pretty much exhausts all possibilities,
criterion (iii) doesn't really seem to add much. So this
characterization comes down to (ii) alone: a computer is a

machine that manipulates or processes data (information).
Or does it? One possible interpretation of clause (iii) is that
the output of a computer need not be limited to data but
might include instructions to other “processes … or
devices”: i.e. real‐world effects. (We'll look into this in
Chapter 16.)
According to Martin Davis (1977, pp. 1096–1097),
computers had evolved to have the following “key
characteristics” (perhaps among others):

“Digital operation”: This focuses on only the discrete
aspect of (iii).



“Stored program capability”: This is understood as
“the notion that the instructions for the computer be
written in the same form as the data being used by the
computer” and is attributed to von Neumann. (We will
return to this issue in Section 9.3.2.)
“Self‐regulatory or self‐controlling capability”:

This is not merely the automaticity of any machine but
seems to include the ideas of feedback and “automatic
modifiable stored programs.”
“Automatic operation”: This is singled out from the
previous characteristic because of its emphasis on
operating “independently of human operators and
human intervention.”
“Reliance on electronics”: This is admitted to be
somewhat parochial in the sense that electronic
computers were, in 1977, the dominant way of
implementing them, but Davis recognized that other
kinds of computers would eventually exist. (Recall
Section 3.5.4.)

So, ignoring the last item and merging the previous two, we
come down to a version of our previous characterization: a
(modern) computer is an automatic, digital, stored‐program

machine for manipulating data or information.
What is the nature of the “information” that is
manipulated? Davis said that it is numbers. But numbers
are abstract entities not susceptible to (or capable of)
physical manipulation. So, are computers machines that
(somehow) manipulate non‐physical (abstract) numbers?
Or are they machines that manipulate physical (concrete)
numerals – i.e. physical symbols that represent numbers?
There are actually two contrasts to be made: the first
contrasts numbers with numerals. The second contrasts



numbers and numerals in particular with symbols more

generally.
The first contrast is closely related to issues in the
philosophy of mathematics. Is mathematics itself more
concerned with numerals than with numbers, or the other
way around? “Formalists” and “nominalists” suggest that it
is only the symbols for numbers that we really deal with.
“Platonists” suggest that it is numbers that are our real
concern, but at least some of them admit that the only way
that we can directly manipulate numbers is via numerals –
although some Platonists, including Gödel, suggest that we
have a kind of perceptual ability, called ‘intuition,’ that
allows us to access numbers directly. There are also related
questions about whether numbers exist and, if so, what
they are. But these issues are beyond our scope. (For more
on the philosophy of mathematics, see the suggested
readings in Section 3.9.)
Even if humans can “intuit” numbers, computers pretty
clearly have to deal with them via numerals. So, “The
mathematicians and engineers then [in the 1950s]
responsible for computers [who] insisted that computers
only processed numbers – that the great thing was that
instructions could be translated into numbers” (Newell,
1980, p. 137) were probably wrong.
But even if we modify such a claim so that we replace
numbers by numerals, we are faced with the second
contrast given previously. Do computers only manipulate
numerals (or numbers)? What about all the things you use
your personal computers for (not to mention your
smartphones) – how many of them involve numerals (or
numbers)? An answer to that question will depend in part
on how we interpret the symbols that a computer deals
with. Certainly there are ways to build computers that,
apparently, can deal with more than merely numerical



symbols. The Lisp machines of the 1980s are prime
examples: their fundamental symbols were Lisp lists.19 But
insofar as any computer is ultimately constructed from
physical switches that are in either an “on” or “off”
position, we are left with a symbol system that is binary –
hence numerical – in nature. Whether we consider these
symbols to be numerals or not may be more a matter of
taste or convenience than anything more metaphysical. We
will return to some of these issues in Section 7.4.1 and
Chapter 16.

6.7.2 A Scientific Answer

If the engineering history suggests that a computer is an
automatic, digital, stored‐program machine for
manipulating data or information, what does the scientific
history suggest? Is a computer merely a physical
implementation of a Turing Machine? But Turing Machines
are hopelessly inefficient and cumbersome (“register”
machines, another Turing‐equivalent model of computation,
are closer to modern computers; see Section 9.3.1). As
Perlis has observed,

What is the difference between a Turing machine and the
modern computer? It's the same as that between
Hillary's ascent of Everest and the establishment of a
Hilton hotel on its peak. (“Epigrams in Programming,”
http://www.cs.yale.edu/homes/perlis-alan/quotes.html)

To clarify some of this, it will be necessary for us to look
more closely at the nature of “effective computation” and
“algorithms,” which we will do in the next chapter. Armed
with the results of that investigation, we will return to the
question of what a computer is (from a philosophical point
of view), in Chapter 9.

http://www.cs.yale.edu/homes/perlis-alan/quotes.html


Notes

1 However, five years before Aiken said this, the Lyons
tea company in Great Britain became the first
company to computerize its operations (Martin,
2008).

2 For the citation and history of this quote, see
https://quoteinvestigator.com/2017/09/14/home-
computer/. That website offers an interesting
alternative interpretation: home computers might
not be needed if there are home terminals: i.e. if
what is now called “cloud computing” becomes
ubiquitous.

3 “Rectifying” – or “squaring” – the circle is the
Euclidean‐geometry problem of constructing a
square with the same area as a circle using only
compass and straightedge. It is logically impossible
to do so. We'll return to such impossibility proofs in
Section 6.5.

4 See the Online Resources for further reading on
computer history .

5 See the Online Resources for further reading on the
engineering history .

6 See the Online Resources for further reading on the
Antikythera Mechanism .

7 I wish I still had the plastic one that I bought in a
New York City candy store in the 1950s!

8 See the Online Resources for further reading on
Pascal, Leibniz, and other early calculating

https://quoteinvestigator.com/2017/09/14/home-computer/
https://cse.buffalo.edu/~rapaport/OR/A0fr06.html#6.3
https://cse.buffalo.edu/~rapaport/OR/A0fr06.html#6.4
https://cse.buffalo.edu/~rapaport/OR/A0fr06.html#6.4.1
https://cse.buffalo.edu/~rapaport/OR/A0fr06.html#6.4.2


machines.

9 Difference equations are a discrete‐mathematical
counterpart to differential equations. They involve
taking successive differences of sequences of
numbers.

10 See the Online Resources for further reading on
Babbage, Lovelace, Adam Smith, and de Prony.

11 See the Online Resources for further reading on
Colossus and Enigma .

12 See the Online Resources for further reading on
Atanasoff, the ENIAC-ABC controversy, and
von Neumann.

13 See the Online Resources for further reading on
modern computers .

14 Roughly, a formal system is “consistent” if no false

propositions can be proved within it, and it is
“complete” if every true proposition can be proved
within it. What Gödel “found” was that if arithmetic
is consistent, then it is incomplete, because an
arithmetical version of the English sentence “This
sentence is unprovable” is true but unprovable. For
more on Gödel, see the Digression in Section 2.3.3
on whether any proposition can be proved. We will
discuss “primitive recursive functions” in Section
7.6. For a discussion of the relationship between
Gödel's theorems and Turing Machines, see
Feferman, 2011, Rapaport, 2021.

15 Interesting historical aside: Boole's great‐great‐
grandson is Turing Award winner and AI researcher
Geoffrey Hinton.

https://cse.buffalo.edu/~rapaport/OR/A0fr06.html#6.4.2
https://cse.buffalo.edu/~rapaport/OR/A0fr06.html#6.4.3
https://cse.buffalo.edu/~rapaport/OR/A0fr06.html#6.4.4
https://cse.buffalo.edu/~rapaport/OR/A0fr06.html#6.4.4
https://cse.buffalo.edu/~rapaport/OR/A0fr06.html#6.4.5


16 None of these things called ‘calculus’ (plural:
‘calculi’) are related to the differential or integral
calculus. ‘Calculus’ just means “system for
calculation.”

17 See the Online Resources for further reading on the
scientific-mathematical history.

18 Mahoney, 2011, p. 88, also emphasizes the fact that
these histories “converged” but were not
“coincident.”

19 Lisp is a programming language whose principal
data structure is a “linked list.” See e.g.
S.C. Shapiro, 1992b.

https://cse.buffalo.edu/~rapaport/OR/A0fr06.html#6.5


7 

Algorithms and Computability

Thou must learne the Alphabet, to wit, the order of the
Letters as they stand. … Nowe if the word, which thou
art desirous to finde, begin with (a) then looke in the
beginning of this Table, but if with (v) looke towards the
end. Againe, if thy word beginne with (ca) looke in the
beginning of the letter (c) but if with (cu) then looke
toward the end of that letter. And so of all the rest. &c.
—Robert Cawdrey, A Table Alphabeticall, conteyning and

teaching the true writing, and understanding of hard

usuall English wordes (1604), cited in Gleick, 2008,
p. 78.
This nation is built on the notion that the rules restrain
our behavior ….
—New York Times, 2006

Algorithmic behavior existed long before there was an
algorithm (Figure 7.1).
—Janice Min, quoted in Rutenberg, 2019



7.1 Introduction

[C]omputer science is not really that much about
computers. What computer science is mostly about is
computation, a certain kind of process such as sorting a
list of numbers, compressing an audio file, or removing
red‐eye from a digital picture. The process is typically
carried out by an electronic computer of course, but it
might also be carried out by a person or by a mechanical
device of some sort.
The hypothesis underlying AI … is that ordinary thinking
… is also a computational process, and one that can be
studied without too much regard for who or what is doing
the thinking.
—Hector J. Levesque (2017, pp. ix–x)

We have been examining two questions: (1) Is CS a science
(or something else)? And (2) what is its subject matter? Is
the subject of CS computers: (physical) devices that
compute – or is it computing: the algorithmic processes that
computers do? (Or perhaps it studies something else, such
as information or information processing.) What computers
are is intimately related to what they do. That is why our
investigation is moving back and forth between these two
topics.
In the previous chapter, we began our investigation into
what computers are by looking at their history. In this
chapter and the next, we ask what computing is. Then we
will be in a better position to return to our question of what
a computer is, looking at it from a philosophical, rather than
a historical, point of view. And after that, we will return to
the question of what computing is, again looking at some
philosophical issues before returning to our fundamental
question: what is CS?



Figure 7.1 BABY BLUES ©2004 Baby Blues Bros LLC. Dist.
By ANDREWS MCMEEL SYNDICATION.

Reprinted with permission. All rights reserved.



7.2 Functions and Computation

The question before us – what is computation? – is at
least as old as computer science. It is one of those
questions that will never be fully settled because new
discoveries and maturing understandings constantly lead
to new insights and questions about existing models. It is
like the fundamental questions in other fields – for
example, “what is life?” in biology and “what are the
fundamental forces?” in physics – that will never be fully
resolved. Engaging with the question is more valuable
than finding a definitive answer.—Peter J. Denning
(2010, p. 2)

To understand computation, we first need to understand
what a function is. The English word ‘function’ has at least
two very different meanings: the ordinary, everyday

meaning is, roughly, “purpose.” Instead of asking, “What is
the purpose of this button?” we might say, “What is the
function of this button?” To ask for the function – i.e. the
purpose – of something is to ask what it does or what it is
for. We'll return to this “teleological” meaning in Chapter
16. In this chapter, we will be interested in its
mathematical meaning, as when we say that some
“dependent variable” is a function of – i.e. depends on –
some “independent variable.”1

7.2.1 Mathematical Functions

Many introductory textbooks define a mathematical
function as an “assignment” or “mapping” of inputs (the
“independent variables”) to outputs (also called “values” or
“dependent variables”). But I have never seen a definition
of ‘assignment.’ Such an “assignment” is not quite the
same thing as an assignment of a value to a variable in a



programming language or in a system of logic. A better
term might be ‘association’: an output is associated with an
input. A much more rigorous way of defining a function is
to give a definition based on set theory, thus explicating the
notion of “association.” There are two ways to do this:
“extensionally” and “intensionally” (recall Section 3.4.2).

Historical Digression: The mathematical sense of the
word was initiated by Leibniz and was an extension of its
teleological meaning. Euler defined a function as what I
call a ‘formula’:

A function of a variable quantity is an analytical
expression of some kind composed from that variable
quantity and from constant numbers or magnitudes.
—Leonhard Euler (1748, p. 7),
http://www.17centurymaths.com/contents/euler/intro
ductiontoanalysisvolone/ch1vol1.pdf

For the history of the word, see the OED entry on the
noun ‘function’ in its mathematical sense (sense 5;
http://www.oed.com/view/Entry/75476). On the history
of the concept, see O'Connor and Robertson, 2005.

7.2.2 Functions Described

Extensionally

A binary relation is a set of ordered pairs of elements from
two sets. (The “two” sets can be the same one; you can
have a binary relation among the members of a single set.)
A function described extensionally is a set of input‐output
pairs such that no two of them have the same input (or first
element). That is, it is a special kind of binary relation in
which no two distinct members of the relation have the
same first element (but different second elements). That is,

http://www.17centurymaths.com/contents/euler/introductiontoanalysisvolone/ch1vol1.pdf
http://www.oed.com/view/Entry/75476


the input (or independent variable) of a function must
always have the same output (or dependent variable). As a
rule of thumb, a binary relation is a function if “same input
implies same output.”
Because we are considering a binary relation as a set of
ordered pairs, let's write each member of a binary relation
from  to  as an ordered pair , where  and 

. In mathematical English, here is the precise way to
say what a function is:2

Let  be sets. (Possibly, .)
Then is a function from to 

1.  is a binary relation from  to ,
and



Mathematical Digression: In clause 2, keep in mind
that  might be the same as ! The best way to think
about these sequences of “for all” (or “universally
quantified”) statements is this: imagine that sets are
bags containing their members. (a) “For all ”
means: put your hand in bag , remove a (randomly
chosen) member, look at it to see what it is, and return

it to the bag. (b) “For all ” means: put your hand
in bag , remove a (randomly chosen) member, look at
it to see what it is, and return it to the bag. Finally,
(c) “For all ” means exactly the same thing as in
case (b), which means, in turn, that  in step (c) might
be the same member of  that you removed but then

replaced in step (b); you might simply have picked it out
twice.

Here are some examples of functions in this extensional
sense:

1. 

Using “functional” notation – where (input) = output
– this is sometimes
written 

2. 
This is sometimes written 

3. Here is a finite function (i.e. a function with a finite
number of members – remember: a function is a set, so
it has members):



The idea behind  is this:

 prints ‘hello’, if the input is ‘yes’;
 prints ‘goodbye’, if the input is ‘no’;

and  prints ‘sorry’, if the input is neither ‘yes’ nor
‘no’.

4. Here is a partial function (i.e. a function that has no
outputs for some possible inputs):

Here,  has no output; we say that  is
undefined.

5. Another example of a partial function is

Here, (‘yeah’), (‘nope’), and (‘computer’) are all
undefined.

A function defined extensionally associates or relates its
inputs to its outputs but does not show how to transform an
input into an output. For that, we need a “formula” or an
“algorithm” (but these are not the same thing, as we will
soon see).



Mathematical Digression: Here are some terms that
we will need later:

1. A function is “one‐to‐one” (or “injective”)  if two
of its outputs are the same, then their inputs must
have been the same (or: if two inputs differ, then
their outputs differ). For example,  is a
one‐to‐one function. However,  is
not a one‐to‐one function (it is, however, a “two‐to‐
one” function).

2. A function is “onto” (or “surjective”)  everything

in the set of possible outputs “came from”
something in the set of possible inputs. For example,

 is an onto function. However, the previous
one‐to‐one function  is not an onto function if its
inputs are restricted to non‐negative numbers,
because 0 is not the result of adding 1 to any non‐
negative number, so it is not in the set of actual
outputs.

3. A function is a “one‐to‐one correspondence” (or
“bijective”)  it is both one‐to‐one and onto. For
example, the previous onto function  is also one‐
to‐one.

For more formal definitions and examples, see
http://www.cse.buffalo.edu/
∼rapaport/191/F10/lecturenotes-20101103.html.

7.2.3 Functions Described

Intensionally

http://www.cse.buffalo.edu/~rapaport/191/F10/lecturenotes-20101103.html


Editor: We are making this communication intentionally
short to leave as much room as possible for the answers.
1. Please define “Algorithm.” 2. Please define “Formula.”
3. Please state the difference. T. WANGSNESS,
J. FRANKLIN TRW Systems, Redondo Beach, California

(Wangsness and Franklin, 1966).3

Sometimes, functions are described “intensionally” by
formulas. But – unlike an extensional description – this is
not a unique way to describe them because two different
formulas can describe the same function. Here are some
examples (using the same or similar function names from
Section 7.2.2):

1. 

2. 
3. 

Note that  and  use two different formulas to
describe the same function;
i.e. , even though their formulas are different.

Question for the Reader: How would you state the
fact that the two formulas are different? Note that
you cannot do this by saying “

.”

4. 

5. if , then .



6. The next function takes as input a year  and outputs
an ordered pair consisting of the month  and day 
that Easter falls on in year  (Stewart, 2001):

A function described extensionally is like a black box; we
know the inputs and outputs but not how they are related.
A function described intensionally via a formula is less
opaque and gives us more understanding of the
relationship between the input and the outputs.4

A function described intensionally via an algorithm –
roughly, a set of instructions for computing the output of
the function – gives us even more understanding, not only
telling us what the relationship is but also giving explicit
instructions on how to make the conversion from input to
output. Although formulas may look a lot like algorithms,
they are not the same thing. Consider, for example, the
formula ‘ ’: without an explicit statement of a rule
telling you whether to multiply first or to add first, there is
no way of knowing whether the number expressed by that
formula is 30 or 22. Such a rule, however, would be part of
an algorithm telling you how to calculate the value of the
formula.



Or consider the formula ‘ ’: should you first calculate 
 and then add 1 to it? Or should you store 1 somewhere

(say, by writing it on a piece of paper), then calculate ,
and finally add  to 1? And how should you calculate ?
Take 2, and then multiply it by ? Or take , and then
multiply it by 2? One of these might be easier to do than
the other; for instance,  might take only 1 step,
whereas  might take 999 steps. Of course, the
commutative laws of addition and multiplication tell us
that, in this case, as far as the output is concerned, it
doesn't matter in which order you compute the value of the
formula; however, one of these algorithms might be more
efficient than the other. In any case, here we have a clear
case of only one formula but at least two (and possibly four)
distinct algorithms.
Perhaps an even clearer example is function  – the one
that tells you when Easter occurs. I dare you to try to use
this formula to find out when Easter will occur next year!
Where would you even begin? To use it, you would need an
algorithm such as the one at http://tinyurl.com/yb9jvbpl (or
http://techsupt.winbatch.com/webcgi/webbatch.exe?
techsupt/nftechsupt.web+WinBatch/How∼To+Easter∼find
er.txt. If neither of these links works, do the following: link
to http://techsupt.winbatch.com/ and then search for
“Easter finder.”) (A related matter is knowing whether the
formula is even correct! We'll explore this issue in Chapter
15.)5

Some functions expressed as formulas might be seen as
containing an implicit algorithm for how to compute them:

http://tinyurl.com/yb9jvbpl
http://techsupt.winbatch.com/webcgi/webbatch.exe?techsupt/nftechsupt.web+WinBatch/How~To+Easter~finder.txt
http://techsupt.winbatch.com/


[A] term in the series for arctan 1/5 can be written either
as  or as . Mathematically these
expressions are identical, but they imply different
computations. In the first case you multiply and divide
long decimal fractions; in the second you build a large
integer and then take its reciprocal. (B. Hayes, 2014a,
p. 344)

But these formulas can only be interpreted as algorithms
with additional information about the order of operations
(roughly, do things in innermost parentheses first, then do
exponentiations, then multiplication and division from left
to right, then addition and subtraction from left to right).
Functions describable by formulas are not the only kind of
functions. There are functions that lack formulas for
computing them. For example, “table look‐up” functions
are essentially extensional functions for which the only way
to identify the correct output for a given input is to look it
up in a table (rather than to compute it); usually, this is the
case when there is no lawlike pattern relating the inputs
and the outputs. Of course, there are non‐computable
functions, such as the Halting Problem (to be discussed in
Section 7.7). And there are random functions. (For more on
this, see Chaitin, 2005.)
One of the central purposes – perhaps the central question
– of CS is to figure out which functions do have algorithms
for computing them! This includes “non‐mathematical”
functions, such as the (human) cognitive “functions” that
take as input sensory information from the environment
and produce as output (human, cognitive) behavior. To
express this another way, the subfield of CS known as AI
can be considered to have as its purpose figuring out which
such cognitive functions are computable.



Digression: Algorithm vs. Formula – The Answer.

The published answers to the question asked in the
epigraph to this section are Huber, 1966, Knuth, 1966.
Knuth's answer is a commentary on Huber's. Huber's
answer, roughly, is that an algorithm is a set of
instructions for computing the value of a function by
“executing” (or carrying out, or following) the
instructions, whereas a formula is an expression
describing the value of a function; it can be “evaluated”
(i.e. the value of the function can be determined from
the formula) but not executed (because a formula does
not come equipped with an algorithm for telling you how

to evaluate it). In a sense, a formula is “static,” whereas
an algorithm is (potentially) “dynamic.” See also
B. Hayes, 2006, p. 204, cols. 2–3, and Chater and
Oaksford, 2013, p. 1172. I have collected lots of
examples of informal algorithms (not all of them serious
ones ) at http://www.cse.buffalo.edu/
∼rapaport/584/whatisanalg.html.

7.2.4 Function “Machines”

Sometimes, functions are characterized as “machines” that
accept input into a “black box” with a “crank” that
mysteriously transforms the input into an output. In
Figure 7.2,  is a machine into which you put ; you then
turn a crank (clockwise, let's suppose),  grinds away at
the input by means of some mysterious mechanism, and
finally the machine outputs  (i.e. ). But this view of a
function as being something “active” or “dynamic” that
changes something is incorrect.6

Despite what you may have been told elsewhere (I was told
this in high school), this “machine” is NOT what a function

http://www.cse.buffalo.edu/~rapaport/584/whatisanalg.html


is! A function, as we saw in Section 7.2.2, is merely the set

of input‐output pairs. So, what is the machine? It is a

computer! And the mysterious “gears” hidden inside the
black box implement an algorithm that computes the
function.



Figure 7.2 A function “machine”  that transforms input 
into output .

Source: Author's drawing.

Interestingly, Gödel made this observation in the 1930s in
an unpublished paper!



[Turing] has shown that the computable functions
defined in this way [i.e. in terms of Turing Machines] are
exactly those for which you can construct a machine with
a finite number of parts which will do the following
thing. If you write down any number , …,  on a slip
of paper and put the slip into the machine and turn the
crank, then after a finite number of turns the machine
will stop and the value of the function for the argument 

, …,  will be printed on the paper. (Gödel, 1938,
p. 168)

So, the machine pictured in Figure 7.2 is a Turing Machine!
And the problem with this machine metaphor for a
function, as we will see, is that not all functions can be
computed by algorithms; i.e. there are functions for which
there are no such “function machines.”

7.2.5 Computable Functions

We can combine the two central concepts of function and
algorithm as follows:

A function is computable means, roughly, that there is
an “algorithm” that computes f. (Cf. Church, 1936b,
pp. 356, 358.)

This is only a rough definition or characterization because,
for one thing, we haven't yet defined ‘algorithm.’ But using
our informal characterization of an algorithm from Section
7.2.3, it makes sense to define a function as being
computable if we can … well … compute it! So:

A function is computable iff there is an algorithm 
such that, for all inputs .

That is, a function  is computable by an algorithm  if
both  and  have the same input‐output “behavior” (i.e.



if both define the same binary relation, or set of input‐
output pairs). Moreover,  must specify how 's inputs
and outputs are related. A function only shows its input‐
output pairs but is silent about how they are related. A
formula for a function does show how they are related but
is silent about how to use that relationship to transform the
input into the output. That is done by an algorithm for that
function: a procedure, or a mechanism, or a set of
intermediate steps or instructions that transforms the input
into the output; it shows you explicitly how to find the
output by starting with the input – how to get from the
input to the output. Algorithms shouldn't be magic or
merely arbitrary.7

It seems easy enough to give examples of algorithms for
some of the functions listed earlier:

1. 

2. 



3. 
4. For , see the English algorithm in Stewart, 2001

or the computer program online at the URL given in
Section 7.2.3. Note that even though that algorithm
may not be easy to follow, it is certainly much easier
than trying to compute the output of  from the
formula. (For one thing, the algorithm tells you where
to begin!)

5. 
Note that Algorithm  doesn't tell you what to do if 

, because there is no “else”‐clause. So, what would
happen if you input 0? Because the algorithm is silent
about what to do in this case, anything might happen! If it
were implemented on a real computer, it would probably



“hang” (i.e. do nothing), or crash, or go into an infinite
loop.

Question for the Reader: The philosopher Richard
Montague (1960, p. 433) suggested that – for a more
general notion of computation than a mere Turing
Machine (one that would apply to both digital and
analog computation) – a computer needs an output
signal that indicates when the computation is finished.
As we will see in Chapter 8, in Turing's theory of
computation, the machine simply halts.
How do you know that a machine has halted rather than
merely being in an infinite loop? What is the difference
between a program halting and a program hanging?

Good programming technique would require that the
program be rewritten to make it “total” instead of “partial,”
perhaps with an error handler like this:



Question for the Reader: Is  merely a different
algorithm for function , or is it really an algorithm for
a different function (call it )? We'll return to this
puzzle in Section 15.1.

But our notion of algorithm is still a rough one. Can it be
made more precise?



7.3 ‘Algorithm’ Made Precise8

The meaning of the word algorithm, like the meaning of
most other words commonly used in the English
language, is somewhat vague. In order to have a theory of

algorithms, we need a mathematically precise definition
of an algorithm. However, in giving such a precise
definition, we run the risk of not reflecting exactly the
intuitive notion behind the word. —Gabor T. Herman
(1983, p. 57)

7.3.1 Ancient Algorithms

Before anyone attempted to define ‘algorithm,’ many
algorithms were in use by mathematicians – e.g. ancient
Babylonian procedures for finding lengths and for
computing compound interest (Knuth, 1972a), Euclid's
procedures for construction of geometric objects by
compass and straightedge (Toussaint, 1993), and Euclid's
algorithm for computing the greatest common divisor of two
integers. And algorithms were also used by ordinary people
– e.g. the algorithms for simple arithmetic with Hindu‐
Arabic numerals (Robertson, 1979). In fact, the original,
eponymous use of the word referred to those arithmetic
rules as devised by Abū ‘Abdallāh Mu ammad ibn Mūsā Al‐
Khwārizm , a Persian mathematician who lived around
1200 years ago (780–850 CE). ‘Algorithm’ is merely a
corruption of what looks as if it might be his last name: ‘Al‐
Khwarizmi’ really just means something like “the person
who comes from Khwarizm,” a lake that is now known as
the Aral Sea (Knuth, 1985, p. 171).9

7.3.2 “Effectiveness”



When David Hilbert investigated the foundations of
mathematics, his followers began to try to make the notion
of algorithm precise, beginning with discussions of
“effectively calculable,” a phrase first used by Jacques
Herbrand in 1931 (Gandy, 1988, p. 68) and later taken up
by Alonzo Church (1936b) and his student Stephen Kleene
(1952) but left largely undefined, at least in print.10

J. Barkley Rosser (another of Church's students) made an
effort to clarify the contribution of the modifier ‘effective’:

“Effective method” is here used in the rather special
sense of a method each step of which is [1] precisely

predetermined and which is [2] certain to produce the

answer [3] in a finite number of steps. (Rosser, 1939,
p. 55, my italics and enumeration)

But what, exactly, does ‘precisely predetermined’ mean?
And does ‘finite number of steps’ mean (a) that the written
statement of the algorithm has a finite number of
instructions or (b) that when executing them, only a finite
number of tasks must be performed? In other words, what
gets counted: written steps or executed instructions? One
written step – “for  to 100 do ” – can
result in 100 executed instructions. And one written step –
“while true do ” – can even result in infinitely
many executed instructions! Here is what Hilbert had to say
about finiteness:



It remains to discuss briefly what general requirements
may be justly laid down for the solution of a mathematical
problem. I should say first of all, this: that it shall be
possible to establish the correctness of the solution by
means of a finite number of steps based upon a finite
number of hypotheses which are implied in the statement
of the problem and which must always be exactly
formulated. This requirement of logical deduction by
means of a finite number of processes is simply the
requirement of rigor in reasoning. (Hilbert, 1900,
pp. 440–441)

7.3.3 Three Attempts at Precision

Much later, after Turing's, Church's, Gödel's, and Post's
precise formulations and during the age of computers and
computer programming, slightly less vague, though still
informal, characterizations were given by A.A. Markov,
Stephen Kleene, and Donald Knuth.

Markov

According to Markov (1960, p. 1), an algorithm is a
“computational process” satisfying three (informal)
properties:

a. The presence of a precise prescription, leaving no
possibility of arbitrary choice, and in the known sense
generally understood – the algorithm is determined.

b. The possibility of starting from original given objects,
which can vary within known limits – applicability of the
algorithm.

c. The tendency of the algorithm to obtain a certain result,
finally obtained for appropriate original given objects –
the effectiveness of the algorithm.



These are a bit obscure: being “determined” may be akin to
Rosser's “precisely predetermined.” But what about
“applicability”? Perhaps this simply means an algorithm
must not be limited to converting one specific input to an
output but must be more general. And Markov's notion of
“effectiveness” seems restricted to only the second part of
Rosser's notion: namely, that of “producing the answer.”
There is no mention of finiteness unless that is implied by
being computational.

Kleene

In a 1995 essay, Kleene wrote:

[a] … a method for answering any one of a given infinite
class of questions … is given by a set of rules or
instructions, describing a procedure that works as
follows. [b] After the procedure has been described,
[then] if we select any question from the class, the
procedure will then tell us how to perform successive
steps, so that after a finite number of them we will have
the answer to the question selected. [c] In particular,
immediately after selecting the question from the class,
the rules or instructions will tell us what step to perform
first, unless the answer to the question selected is
immediate. [d] After our performing any step to which the
procedure has led us, the rules or instructions will either

enable us to recognize that now we have the answer
before us and to read it off, or else that we do not yet
have the answer before us, in which case they will tell us
what step to perform next. [e] In performing the steps,
we simply follow the instructions like robots; no ingenuity
or mathematical invention is required of us. (Kleene,
1995, p. 18, my enumeration)

So, for Kleene in 1995, an algorithm (informally) is:



a. A set of rules or instructions that describes a procedure.
The procedure is one thing; its description is another:
the latter is a set of imperative sentences.

b. Given a class of questions , a procedure  for
answering any member of , and any :  gives
a finite sequence of steps (described by its rules) that
answers . So, the finiteness occurs in the execution of 

 (not necessarily in  itself). And  does not
depend on , only on , which suggests, first, that the
algorithm must be general and not restricted to a single
question. (An algorithm for answering ‘ ’ must
also be able to answer all questions of the form ‘

’.) Second, it suggests that an algorithm has a
goal, purpose, or teleological “function.” That is, the
algorithm must not just be a set of instructions that
happens to answer the questions in ; it must be
designed for that purpose, because it depends on what 

 is. (We'll investigate this important issue in Chapter
16.)

c. The algorithm takes question  as input, and either
outputs 's answer (“base case”) or outputs the first
step to answer  (“recursive case”).11

d. If it is the “recursive case,” then, presumably,  has
been reduced to a simpler question, and the process
repeats until the answer is produced as a base case.
Moreover, the answer is immediately recognizable. That
does not necessarily require an intelligent mind to
recognize it. It could be merely that the algorithm halts
with a message that the output is, indeed, the answer.
In other words, the output is of the form “the answer to 

 is , where  is the answer and the algorithm halts,
or  is a one‐step‐simpler question and then the
algorithm tells us what the next step is.” In a so‐called
“trial‐and‐error machine” (to be discussed in Section



11.10), the output is of the form “my current guess is
that the answer to  is , and then the algorithm tells
us what the next step is.” (We'll see such an algorithm
in Section 7.7.)

e. The algorithm is complete or independent in the sense
that it contains all information for executing the steps.
We, the executor, do not (have to) supply anything else.
In particular, we do not (have to) accept any further,
unknown, or unforeseen input from any other source
(i.e. no “oracle” or interaction with the external world).
We'll return to these ideas in Chapters 11 and 16.

Knuth

Donald Knuth goes into considerably more detail, albeit still
informally (Knuth, 1973, “Basic Concepts: Section 1.1:
Algorithms,” pp. xiv–9, esp. pp. 1–9). He says that an
algorithm is “a finite set of rules which gives a sequence of
operations for solving a specific type of problem,” with “five
important features” (Knuth, 1973, p. 4):

1) Finiteness. An algorithm must always terminate after
a finite number of steps. (Knuth, 1973, p. 4)

Note the double finiteness: a finite number of rules in the
text of the algorithm and a finite number of steps to be
carried out. Moreover, algorithms must halt. (Halting is not
guaranteed by finiteness; see point 5.)
Interestingly, Knuth also says that an algorithm is a finite

“computational method,” where a “computational method,”
more generally, is a “procedure,” which only has the next
four features (Knuth, 1973, p. 4).12

2) Definiteness. Each step … must be precisely defined;
the actions to be carried out must be rigorously and
unambiguously specified …” (Knuth, 1973, p. 5).



This seems to be Knuth's analogue of the “precision” that
Rosser and Markov mention. The best examples often come
from the humor that they engender:
Precision: In a “Zits” comic strip from 14 March 2009,
teenage Jeremy's mother hands him his laundered clothes,
saying “Take these clothes. Carry them in your hands and
walk in that direction until you come to the stairs. Make a 

 right turn. Walk up 22 steps. Turn right, and then enter
the first room you come to. Put the clothes somewhere
within those four walls.” Her husband comments, “You don't
leave a lot of room for interpretation, do you?” to which she
replies, “After picking up several tons of laundry off that
stairway, I've learned to be specific.” (We'll return to this
example in Section 10.5 and to this issue in Section 16.7.)
Detail: In a “Hagar the Horrible” comic strip from 1992,
Helga asks Lucky Eddie to take out the garbage. He doesn't
return, so Helga goes outside to find him still holding the
garbage. She realizes that she has to add detail: “Now
empty the garbage into the barrel and come back inside.”
And Figure 7.3 is a real‐life example of an ambiguous
instruction.

3) Input. An algorithm has zero or more inputs …”
(Knuth, 1973, p. 5).

Curiously, only Knuth and Markov seem to mention this
explicitly, with Markov's “applicability” property suggesting
that there must be at least one input. Why does Knuth say
zero or more? If algorithms are procedures for computing
functions, and if functions are sets of input‐output pairs,
then wouldn't an algorithm always have to have input?
Presumably, Knuth wants to allow for the possibility of a
program that simply outputs some information. Perhaps
Knuth has in mind the possibility of the input being
internally stored in the computer rather than having to be



obtained from the external environment. An example of
this13 would be an algorithm for computing the th digit in
the decimal expansion of a real number: there do not need
to be any explicit inputs; the algorithm can just generate
each digit in turn. Or perhaps this is how constant functions
(functions whose output is constant, no matter what their
input is) are handled. (We'll return to this in Section 11.8.1.)
It is worth noting, however, that Hartmanis and Stearns,
1965, p. 288 – the founding document of the field of
computational complexity – allows their multi‐tape Turing
Machines to have at most one tape, which is an output‐only
tape; there need not be any input tapes. And, if there is only
at most one output tape, there need not be any input or
output at all! However, Knuth disagrees (see the next
point).



Figure 7.3 A real‐life example of an ambiguous instruction.
Whose head should be removed?
https://www.shopyourway.com/energizer-6v-led-utility-
lantern/162752012.

4) Output. An algorithm has one or more outputs …”
(Knuth, 1973, p. 5).

That there must be at least one output echoes Rosser's
property [2] (“certain to produce the answer”) and Markov's
notion (c) of “effectiveness” (“a certain result”). But Knuth
characterizes outputs as “quantities which have a specified
relation to the inputs” (Knuth, 1973, p. 5): The “relation”

https://www.shopyourway.com/energizer-6v-led-utility-lantern/162752012


would no doubt be the functional relation between inputs
and outputs, but if there is no input, what kind of a relation
would the output be in? (Cf. Copeland and Shagrir, 2011,
pp. 230–231.)
Others have noted that, while neither inputs nor outputs are
necessary, they are certainly useful:

There remains, however, the necessity of getting the
original definitory information from outside into the
device, and also of getting the final information, the
results, from the device to the outside. (von Neumann,
1945, Section 2.6, p. 3).
Do computations have to have inputs and outputs? The
mathematical resources of computability theory can be
used to define ‘computations’ that lack inputs, outputs, or
both. But the computations that are generally relevant for
applications are computations with both inputs and
outputs. (Piccinini, 2011, p. 741, note 11)

The computer has to have something to work on (“definitory
information,” or input), and it has to let the human user
know what it has computed (“the final information, the
results,” or output). It shouldn't just sit there silently
computing. In other words, there has to be input and output
if the computer is not to be “solipsistic.”

Philosophical Digression: Solipsism is, roughly, the
view that I am the only thing that exists, or that I (or my
mind) cannot have knowledge of the external world. So,
a computer with no input or output would only have
“knowledge” of things “inside” itself. See Thornton,
2004, Avramides, 2020. We'll return to solipsism in
Section 11.8.4.



Newell has suggested that there must be input iff there is
output:

Read is the companion process to write, each being
necessary to make the other useful. Read only obtains
what was put into expressions by write at an earlier time;
and a write operation whose result is never read

subsequently might as well not have happened. (Newell,
1980, p. 163)

However, there are circumstances where read would take
input from the external world, not necessarily from previous
output. And the last clause suggests that while output is not
necessary, it is certainly useful! Of course, a partial function
(Section 7.2.2) will lack outputs for those inputs for which it
is undefined.

5) Effectiveness. … All of the operations to be performed
in the algorithm must be sufficiently basic that they can
in principle be done exactly and in a finite length of time
by a man [sic] using pencil and paper. (Knuth, 1973, p. 6)

Note, first, how the term ‘effective’ has many different
meanings among all these characterizations of “algorithm,”
ranging from it being an unexplained term, through being
synonymous with ‘algorithm,’ to naming very particular –
and very different – properties of algorithms.
Second, it is not clear how Knuth's notion of effectiveness
differs from his notion of definiteness. Both seem to have to
do with the preciseness of the operations.
Third, Knuth brings in another notion of finiteness:
finiteness in time. Note that an instruction to carry out an
infinite sequence of steps in a finite time could be
accomplished by doing each step twice as fast as the
previous step; or each step might only take a finite amount
of time, but the number of steps required might take longer
than the expected life of the universe, as in computing a



perfect, non‐losing strategy in chess (Zobrist, 2000, p. 367).
These may have interesting theoretical implications
(explored in Section 11.5) but do not seem very practical.
Knuth (1973, p. 7) observes that “we want good algorithms
in some loosely defined aesthetic sense. One criterion of
goodness is the length of time taken to perform the
algorithm ….”
Finally, the “gold standard” of “a [hu]man using pencil and
paper” seems clearly to be an allusion to Turing's analysis
(Turing, 1936), which we will examine in great detail in the
next chapter.

Summary

We can summarize these informal observations as follows:
An algorithm for executor  to accomplish goal  is

1. a procedure , i.e. a finite set (or sequence) of
statements (or rules, or instructions), such that each
statement  is:

a. composed of a finite number of symbols (or
uninterpreted marks) from a finite alphabet

b. and unambiguous for  – i.e.
i.  knows how to do 

ii.  can do 
iii.  can be done in a finite amount of time
iv. and, after doing ,  knows what to do next –

2.  takes a finite amount of time (i.e.  halts),
3. and  ends with  accomplished.

The important thing to note is that the more one tries to
make precise these informal requirements for something to
be an algorithm, the more one recapitulates Turing's



motivation for the formulation of a Turing Machine. In
Chapter 8, we will look at exactly what Turing did.
But first we are going to look at five great insights of CS.



7.4 Five Great Insights of CS

This section presents five great insights of CS. The first
three help make precise the vague notion of algorithm that
we have been looking at. The fourth links the vague notion
with a precise one. Together, they define the smallest
possible language in which you can write any procedure for
any computer. (And by ‘computer’ here, I merely mean
anything – machine or human – that can execute an
algorithm.) The fifth brings in engineering concerns.

7.4.1 Insight 1: Representation

… he came to us knowing yes and no, and those can go a
long way once you find the right questions. —
George R.R. Martin, 2011, p. 432

The first great insight is this:

All the information about any computable problem

can be represented using only two nouns, e.g. ‘0’

and ‘1.’

Here are some of the people who contributed to this
insight:

Sir Francis Bacon, around 1605, developed an encoding
of the alphabet by any objects “capable of a twofold
difference.”14 Bacon used ‘a’ and ‘b,’ but he also
suggested that coding could be done “by Bells, by
Trumpets, by Lights and Torches, by the report of
Muskets, and any instruments of like natures”
(http://home.hiwaay.net/
∼paul/bacon/advancement/book6ch1.html). And, of
course, once you've represented the alphabet in a
binary coding, then anything capable of being

http://home.hiwaay.net/~paul/bacon/advancement/book6ch1.html


represented in text can be similarly encoded (Quine,
1987, “Universal Library,” pp. 223–235,
https://urbigenous.net/library/universal_library.html).
Leibniz gave an “Explanation of Binary Arithmetic” in
1703 (http://www.leibniz-translations.com/binary.htm).
Famously, Samuel F.B. Morse not only invented the
telegraph but also (following in Bacon's footsteps)
developed his eponymous binary code in the mid‐1800s
(http://en.wikipedia.org/wiki/Morse_code). Arguably,
however, Morse code (traditionally conceived as having
only two symbols, “dot” and “dash”) is not strictly
binary because there are “blanks,” or time lapses,
between those symbols (Gleick, 2011, p. 20, footnote;
Bernhardt, 2016, p. 29).
Going beyond language, the philosopher Frank P.
Ramsey, in a 1929 essay on “a language for discussing
… facts” – perhaps something like Leibniz's
characteristica universalis (Section 6.5) – suggested
that “all [of the terms of the language] may be best
symbolized by numbers. For instance, colours have a
structure, in which any given colour may be assigned a
place by three numbers …. Even smells may be so

treated …” (Ramsey, 1929, pp. 101–102, my italics).
(For more examples, see http://www.cse.buffalo.edu/
∼rapaport/111F04/greatidea1.html.)
In 1936, as we will see in Chapter 8, Turing made
essential use of ‘0’ and ‘1’ in the development of Turing
Machines.
Finally, the next year, Claude Shannon (in his
development of the mathematical theory of
information) used “The symbol 0 … to represent … a
closed circuit, and the symbol 1 … to represent … an
open circuit” (Shannon, 1937, p. 4) and then showed

https://urbigenous.net/library/universal_library.html
http://www.leibniz-translations.com/binary.htm
http://en.wikipedia.org/wiki/Morse_code
http://www.cse.buffalo.edu/~rapaport/111F04/greatidea1.html


how propositional logic could be used to represent such
circuits. Moreover,

Up until … [the time of publication of Shannon's
“Mathematical Theory of Communication” (Shannon,
1948)], everyone thought that communication was
involved in trying to find ways of communicating
written language, spoken language, pictures, video,
and all of these different things – that all of these
would require different ways of communicating.
Claude said no, you can turn all of them into binary

digits. And then you can find ways of communicating
the binary digits. (Robert Gallager, quoted in Soni
and Goodman, 2017)

There is nothing special about the symbols ‘0’ and ‘1.’ As
Bacon emphasized, any other bistable15 pair suffices, as
long as they can flip‐flop between two easily
distinguishable states, such as the numbers 0 and 1,
“on/off,” “magnetized/de‐magnetized,” “high voltage/low
voltage,” etc. Strictly speaking, these can be used to
represent discrete things; continuous things can be
approximated to any desired degree, however.
This limitation to two nouns is not necessary: Turing's
original theory had no restriction on how many symbols
there were. There were only restrictions on the nature of
the symbols (they couldn't be too “close” to each other; i.e.
they had to be distinguishable) and that there be only
finitely many. And some early computers used decimal
notation. But if we want to have a minimal language for
computation, having only two symbols suffices, and making
them ‘0’ and ‘1’ (rather than, say, ‘a’ and ‘b’ – not to
mention “the report of Muskets”!) is mathematically

convenient.16



7.4.2 Insight 2: Processing

Turing is also responsible for providing the verbs of our
minimal language. Our second great insight is this:

Every algorithm can be expressed in a language for a
computer (namely, a Turing Machine) consisting of

an arbitrarily long, paper tape divided into squares
(like a roll of toilet paper, except you never run out
(Weizenbaum, 1976)),

with a read/write head,
whose only nouns are ‘0’ and ‘1,’
and whose only five verbs (or basic instructions)

are:

1. move‐left‐1‐square

2. move‐right‐1‐square

3. print‐0‐at‐current‐square

4. print‐1‐at‐current‐square

5. erase‐current‐square

The exact verbs depend on the model of Turing Machine.17

The two “move” instructions could be combined into a
single verb that takes a direct object (i.e. a function that
takes a single input): move(location). And the “print” and
“erase” instructions could be combined into another single
transitive verb: print(symbol), where “symbol” could be
either ‘0,’ ‘1,’ or ‘blank’ (here, erasing would be modeled
by printing a blank). In Section 8.12, we'll see Turing do
something similar.



Digression: Erasing. Wang, 1957, p. 80, notes that

there are many things which we can do when we
permit erasing but which we cannot do otherwise.
Erasing is dispensable only in the sense that all
functions which are computable with erasing are also
computable without erasing. For example, if we
permit erasing, … only the … answer appears on the
tape at the end of the operation, everything else
having been erased.

Deciding how to count the number of verbs is an
interesting question. In the previous formulation, do we
have three nouns (‘0,’ ‘1,’ ‘blank’) and only one transitive
verb (‘print(symbol)’)? Or do we have only two nouns (‘0,’
‘1’) but two verbs (‘print(symbol),’ ‘erase’)? Gurevich
(1999, pp. 99–100) points out that

at one step, a Turing machine may change its control
state, print a symbol at the current tape cell[,] and move
its head. … One may claim that every Turing machine
performs only one action at a time, but that action [can]
have several parts. The number of parts is in the eye of
the beholder. You counted three parts. I can count four
parts by requiring that the old symbol is erased before
the new symbol is printed. Also, the new symbol may be
composed, e.g. ‘12’. Printing a composed symbol can be
a composed action all by itself.

And Fortnow (2018) suggests that there are four verbs:
move left, move right, read, write. In any case, we can
certainly get by with only two (slightly complex) verbs or
five (slightly simpler) verbs (or six, if you include “read”).
But either version is pretty small.18

7.4.3 Insight 3: Structure



7.4.3.1 Structured Programming (I)

We have two nouns and only two or three verbs. Now we
need some grammatical rules to enable us to put them
together. The software‐engineering concept of “structured
programming” does the trick. This is a style of
programming that avoids the use of the ‘go to’ command:
In early programming languages, programmers found it
useful to “go to” – or “jump” to – another location in the
program, sometimes with the ability to return to where the
program jumped from (but not always). This resulted in
what was sometimes called “spaghetti code,” because if
you looked at a flowchart of the program, it consisted of
long, intertwined strands of code that were hard to read
and harder to ensure that they were correct. Edsger W.
Dijkstra (1968) wrote a letter to the editor of the
Communications of the ACM, headlined “Go To Statement
Considered Harmful,” arguing against the use of such
statements. This resulted in an attempt to better
“structure” computer programs so that the use of ‘go to’
could be minimized: Corrado Böhm and Giuseppe Jacopini
showed how it could be completely eliminated (Böhm and
Jacopini, 1966; Harel, 1980). This gives rise to the third
insight (and the third item needed to form our language):

Only three rules of grammar are needed to combine

any set of basic instructions (verbs) into more

complex ones:

1. sequence: first do this; then do that
2. selection (or choice):



3. repetition (or looping): while such‐&‐such is the case
do this
… where “this” and “that” can be any of the basic
instructions, or any complex instruction created by
application of any grammatical rule.

Dijkstra, 1972, esp. Section 7, is the classic discussion of
structured programming based on sequence, selection, and
repetition, along with top‐down design and stepwise
refinement, with several examples worked out in detail.19

7.4.3.2 Digression – Recursive Definitions

This third insight can be thought of as a “recursive”
definition of “instruction.”
A recursive definition of some concept  consists of two
parts. The first part, called the “base case,” gives you some
explicit examples of . These are not just any old examples
but are considered the simplest or most basic (“atomic”)
instances of  – the building blocks from which all other,
more complex (“molecular”) instances of  can be
constructed.
The second part of a recursive definition of  consists of
rules (algorithms!) that tell you how to construct those
more complex instances of . But these rules don't simply
tell you how to construct the complex instances from just
the base cases. Rather, they tell you how to construct the
complex instances of  from any instances of  that have

already been constructed. The first complex instances, of
course, will be constructed directly from the base cases.
But others, even more complex, will be constructed from
the ones that were constructed directly from the base
cases, and so on. What makes such a definition “recursive”
is that simpler instances of  “recur” in the definitions of
more complex instances.



So, the base case of a recursive definition tells you how to
begin. And the recursive case tells you how to continue.
Recursive definitions can be found outside of CS. Here are
two examples:

1. According to some branches of Judaism, a person  is
Jewish if (a)   was converted to Judaism (base case) or
(b)  's mother was Jewish (recursive case).

2. “Organisms originate either through synthesis of non‐
living materials [base case] or through reproduction,
either sexual or asexual [recursive case]”
(Northcott and Piccinini, 2018, p. 2).

Recursive definitions sometimes seem to be circular: After
all, we seem to be defining instances of  in terms of
instances of ! But really we are defining “new” (more
complex) instances of  in terms of other, “older” (i.e.
already constructed), simpler instances of , which is not
circular at all. (It would only be circular if the base cases

were somehow defined in terms of themselves. But they are
not “defined”; they are given, by fiat.)
So, the structural insight above is a recursive definition of
the notion of an “instruction”: the base cases of the
recursion are the primitive verbs of the Turing Machine
(‘move(location)’ and ‘print(symbol)’), and the recursive
cases are given by sequence, selection, and repetition.
Here are two analogies. (1) A crossword puzzle can be
solved recursively: begin by filling in those words (or
phrases) whose answers you know (for example, a 10‐letter
word for “first president of the US”). Recursive steps
consist in using these “axioms” to “prove theorems”: i.e. to
use the letters from already‐filled‐in answers as additional
clues (or “premises”) for new words. This analogy needs to
be taken with a grain of salt, however: some answers that
you might know “axiomatically” might also be filled in as



“provable theorems.” On the other hand, even formal
systems can have different axiomatizations, such that an
axiom of one formalization might be a theorem of another.
(What about “cheating” in the sense of looking up an
answer? That's an appeal to an “oracle”; see Section 11.9.)
(2) Jigsaw puzzles can be solved recursively: the base case
of the recursion consists in building the frame. A recursive
step is to form a “molecular” piece that consists of two
“atomic” pieces that fit together. Further recursions consist
of finding two molecular pieces that fit together.

7.4.3.3 Structured Programming (II)

There are optional, additional instructions and grammatical
rules:

An explicit “halt” instruction: This is not strictly
necessary, because it can always be simulated by
having the program execute a command that does
nothing and does not have a “next” step. We will see
such a program when we look at Turing Machines in
Chapter 8. However, a “halt” instruction can sometimes
make a program simpler or more elegant.
An “exit” instruction: This allows a program to exit
from a loop under certain conditions before the body of
the loop is completed. Again, this can provide simplicity
or elegance.

Abstraction: A structured programming
language … must provide a mechanism whereby
the language can be extended to contain the
abstractions which the user requires. A language
containing such a mechanism can be viewed as a
general‐purpose, indefinitely‐high‐level language.
(Liskov and Zilles, 1974, p. 51)

Two varieties of abstraction are worth noting:



1. Procedural abstraction (named procedures): Define
new (typically, complex) actions by giving a single
name to a (complex) action. This is very powerful in
terms of human readability and comprehension, and
even in terms of machine efficiency.20

2. Abstract data types: Procedural abstraction allows the
programmer to define new verbs in terms of “old” ones.
A related technique is the use of abstract data types,
which allows the programmer to define new nouns in
terms of “old” ones (Liskov and Zilles, 1974; Aho et al.,
1983). Moreover, as is especially clear in object‐
oriented programming, new “nouns” require new
“verbs”:

[A] consequence of the concept of abstract data
types is that most of the abstract operations in a
program will belong to the sets of operations
characterizing abstract types. (Liskov and Zilles,
1974, p. 52)

We'll return to abstraction in Chapter 13.20

Recursion: Recursion can be an elegant replacement
for repetition: a recursive instruction tells you how to
compute the output value of a function in terms of
previously computed output values instead of in terms
of its input value. Of course, the base case (i.e. the
output value of the function for its initial input) has to
be given to you in a kind of table‐lookup. (We'll look at
recursion more closely in Section 7.6.)

7.4.4 Insight 4: The Church‐Turing

Computability Thesis

We now have our language: any algorithm for any
computable problem can be expressed in this language (for



a Turing Machine) that consists of the two nouns ‘0’ and
‘1,’ two (or three) verbs (‘move(location),’ ‘print(symbol),’
erase), and the three grammatical rules of sequence,
selection, and repetition.
But is it a minimal language? In other words, is that really
all that is needed? Can your interaction with, say, a
spreadsheet program or Facebook be expressed in this
simple (if not “simple‐minded”!) language? There's no
doubt that a spreadsheet program written in this language
would be very long, very hard to read, and perhaps
inefficient. But that's not the point. The question is, could it
be done? And the answer is our next great insight. In one
word, ‘yes’:

Nothing besides our two nouns, two (or three)

verbs, and three grammar rules is necessary.

Such a statement, as part of a recursive definition, is
sometimes called a “closure” clause
(http://faculty.washington.edu/keyt/InductiveDefinitions.pd
f). Here is another way to put this:

The informal notion of computability can be

identified with (anything logically equivalent to)

Turing Machine computability.

That is, an algorithm is definable as a program expressible
in (anything equivalent to) our minimal language.
This idea was almost simultaneously put forth both by
Church (1936b) in terms of his lambda calculus (see
Section 6.5) and by Turing (1936). Consequently, some
people call it ‘Church's Thesis’; others call it ‘Turing's
Thesis’; and, as you might expect, some call it ‘the Church‐
Turing Thesis,’ in part because Turing proved that Church's
lambda calculus is logically equivalent to Turing Machines.
For this reason, Robert Soare (2009) has advocated calling

http://faculty.washington.edu/keyt/InductiveDefinitions.pdf


it, more simply and more neutrally, the ‘Computability
Thesis.’
But it is only a proposed definition or explication of
‘computable’ or ‘algorithm’: it proposes to identify an
informal, intuitive notion of effective computability or
algorithm with a formal, mathematically precise notion of
(anything logically equivalent to) a Turing Machine. (To be
clear, I have not given such a formal, mathematically
precise notion yet; we'll get closer in Section 7.6.)22

How do we know that Turing Machine computability
captures (all of) the intuitive notion(s) of effective
computability? After all, there are other analyses of
computation, such as Church's lambda calculus. There are
two reasons for preferring Turing's over Church's: first,
Turing's is easier to understand, because it follows from his
analysis of how humans compute. Second – and this is
“merely” an appeal to authority – Gödel preferred Turing's
analysis, not only to Church's but also to his own!23

Church's lambda calculus (which John McCarthy later used
as the basis of the Lisp programming language) had as its
basic, or atomic, steps formal operations on function
formulas that some people – Gödel in particular – did not
find to be intuitively computable. The same could be said
even for Gödel's own theory of recursive functions. But
Turing's basic operations were, by design, simple things
that any human could easily do: put a mark at specific
location on a piece of paper, and shift attention to a
different location.
The lambda calculus and Turing Machines are not the only
theories of computation. Here is a list of some others:

Post Machines are like Turing Machines but treat the
tape as a queue
(https://en.wikipedia.org/wiki/Post%E2%80%93Turing
_machine).

https://en.wikipedia.org/wiki/Post%E2%80%93Turing_machine


Markov algorithms were later used as the basis of the
Snobol programming language
(https://en.wikipedia.org/wiki/Markov_algorithm).
Post productions were later used as the basis of
production systems in AI (Post, 1941, 1943; Soare,
2012, p. 3293).
Herbrand‐Gödel recursion equations were later
used as the basis of the Algol family of programming
languages (see Section 7.6).

‐recursive functions (see Section 7.6).
register machines (Shepherdson and Sturgis, 1963).
Any programming language including, besides those
already mentioned, Pascal, C, C+, Java, etc.

However, languages like HTML don't count, because they
are not “Turing‐complete” – i.e. not logically equivalent to a
Turing Machine – usually because they lack one or more of
the three grammar rules. Such languages are weaker than
the language for Turing Machines. (The question of
whether there are models of computation that are stronger

than Turing Machines is the topic of Chapter 11.)
There are two major reasons to believe the Computability
Thesis:

1. Logical evidence:
All of the formalisms that have been proposed as
precise, mathematical analyses of computability are
not only logically equivalent (i.e. any function that is
computable according to one analysis is also
computable according to each of the others) but also
constructively equivalent (i.e. they are inter‐
compilable, in the sense that you can write a computer
program that will translate (or compile) a program in

https://en.wikipedia.org/wiki/Markov_algorithm


any of these languages into an equivalent program in
any of the others).24 Here is how Turing expressed it
in a paper published the year after his magnum
opus:25

Several definitions have been given to express an
exact meaning corresponding to the intuitive idea of
‘effective calculability’ as applied for instance to
functions of positive integers. The purpose of the
present paper is to show that the computable
functions introduced by the author are identical with
the ‐definable functions of Church and the general
recursive functions due to Herbrand and Gödel and
developed by Kleene. It is shown that every ‐
definable function is computable and that every
computable function is general recursive. … If these
results are taken in conjunction with an already
available proof that every general recursive function
is ‐definable we shall have the required
equivalence of computability with ‐definability ….
The identification of ‘effectively calculable’ functions
with computable functions is possibly more

convincing than an identification with the ‐
definable or general recursive functions. For those
who take this view the formal proof of equivalence
provides a justification for Church's calculus, and
allows the ‘machines’ which generate computable
functions to be replaced by the more convenient ‐
definitions. (Turing, 1937, p. 153, my italics).26

2. Empirical evidence:
All algorithms that have been devised so far can be
expressed as Turing Machines; i.e. there are no known
intuitively effective‐computable algorithms that are not
Turing Machine computable.



But this has not stopped some philosophers and computer
scientists from challenging the Computability Thesis. Some
have advocated forms of computation that “exceed” Turing
Machine computability. We will explore these options in
Chapters 10 and 11.
Can the Computability Thesis be proved? Most scholars say
‘no,’ because any attempt to prove it mathematically would
require that the informal notion of computability be
formalized for the purposes of the proof. Then you could
prove that that formalization was logically equivalent to
Turing Machines. But how would you prove that that
formalization was “correct”? This leads to an infinite
regress.27

7.4.5 Insight 5: Implementation

The final insight is this:28

The first three insights can be physically

implemented …

That is, Turing Machines can be physically implemented.
And, presumably, such a physical implementation would be
a computer. This was what Turing attempted when he
designed the ACE (recall Section 6.4.4).
In fact, not only can the previous insights be physically
implemented, but they can be physically implemented

… using only one kind of “logic gate”:

either a NOR‐gate or a NAND‐gate.29 “Nor” and “nand” are
connectives of propositional logic, each of which suffices by
itself in the sense that all other connectives (“not,” “and,”
“or,” “if‐then,” etc.) can be defined in terms of them.
Typically, however (as Tedre pointed out), real computers



use several different kinds of gates, for the sake of
efficiency.
Moreover, as we have seen, there does not appear to be
any limitation on the “medium” of implementation: most
computers today are implemented electronically, but there
is work on DNA, optical, etc., computers, and there have
even been some built out of Tinker Toys
(http://www.computerhistory.org/collections/catalog/X39.8
1).
This brings in the engineering aspect of CS. But it also
brings limitations imposed by physical reality: limitations of
space, time, memory, etc. Issues concerning what is
feasibly or efficiently computable in practice (as opposed to
what is theoretically computable in principle) – complexity
theory, worst‐case analyses, etc. – and issues concerning
the use of heuristics come in here.
Turing Award‐winner Alan Kay divides this insight into a
“triple whammy of computing”:

1. Matter can be made to remember, discriminate, decide
and do

2. Matter can remember descriptions and interpret and
act on them

3. Matter can hold and interpret and act on descriptions
that describe anything that matter can do. (Guzdial and
Kay, 2010)

He later suggests that the third item is the most
“powerful,” followed by the first and then the second, and
that issues about the limits of computability and multiple
realizability are implicit in these. (We'll return to physical
computation in Chapter 16.)30

http://www.computerhistory.org/collections/catalog/X39.81


7.5 Structured Programming31

Structured programming eliminates the “go to” command
in favor of our three grammar rules. Let's see how this can
be done.
We can begin with a (recursive) definition of ‘structured
program’: as with all recursive definitions, we need to give
a base case (consisting of two “basic programs”) and a
recursive case (consisting of four “program constructors”).
We will use the capital and lowercase Greek letters ‘pi’ (

) to represent programs.

7.5.1 Basic Programs

There are two kinds of basic structured programs:
1. The empty program  = begin end. is a basic

structured program.
2. Let  be a “primitive operation” that is (informally)

computable.
Then the 1‐operation program  = begin  end. is a
basic structured program.

Note that this definition does not specify which operations
are primitive; they will vary with the programming
language. One example might be an assignment statement
(which will have the form “ ,” where  is a variable
and  is a value that is assigned to ). Another might be
the print and move operations of a Turing Machine.
Structured programming could also be applied to a
language whose primitive operations are not informally
computable. Presumably, however, we want our algorithms
to be “computation preserving” in the same way that we



want the rules of inference of a logic to be truth‐preserving.
Thus, just as a logic's axioms should be true, the primitive
operations should be (at least informally) “computable.” As
we will see in Chapter 8, Turing spends a lot of time
justifying his choice of primitive operations.
Compare the situation with Euclidean geometry: if the
primitive operations are limited to those executable using
only compass and straightedge, then an angle cannot be
trisected. But of course, if the primitive operations also
include measurement of an angle using a protractor, then
calculating one‐third of an angle's measured size will do
the trick. (We'll return to this in Section 11.4.)
That means structured programming is a style of
programming, not a particular programming language. It is
a style that can be used with any programming language.

7.5.2 Program Constructors

The recursive case for structured programs specifies how
to construct more complex programs from simpler ones.
The simplest ones, of course, are the basic programs: the
empty program and the one‐operation programs. So, in
good recursive fashion, we begin by constructing slightly
more complex programs from these. Once we have both the
basic programs and the slightly more complex programs
constructed from them, we can combine them – using the
recursive constructs that follow – to form even more
complex ones, using these techniques:
Let ,  be (simple or complex) programs, each of which
contains exactly one occurrence of end.
Let  be a “Boolean test.” (A Boolean test, such as “ ,”
is sometimes called a ‘propositional function’ or ‘open
sentence.’32 The essential feature of a Boolean test is that it
is a function whose output value is “true” or else is “false.” 



 must also be [informally] computable, and, again, Turing
spends a lot of time justifying his choices of tests.)
And let  be an integer‐valued variable.
Then the following are also (more complex) structured
programs:

1.  = begin  end. is a (complex) structured
program.
Such a  is the “linear concatenation” of  followed
by . It is Böhm and Jacopini's “sequence” grammar
rule.

2. 
is a (complex) structured program.
Such a  is a “conditional branch”: if  is true, then 

 is executed; if  is false, then  is executed. It is
Böhm and Jacopini's “selection” grammar rule.

3. 
is a (complex) structured program.
Such a  is a “count loop” (or “for‐loop,” or “bounded
loop”): the simpler program  is repeatedly executed
while (i.e. as long as) the Boolean test “ ” is true



(i.e. until it becomes false). Eventually it will become
false, because each time the loop is executed,  is
decremented by 1, so eventually  must become equal
to 0. Thus, an infinite loop is avoided. This is one kind
of Böhm and Jacopini's “repetition” grammar rule.

4. 
is a (complex) structured program.
Such a  is a “while‐loop” (or “free” loop, or
“unbounded” loop): The simpler program  is
repeatedly executed while (i.e. as long as) the Boolean
test  is true (i.e. until  is false). Note that unlike
the case of a count loop, a while loop can be an infinite
loop, because there is no built‐in guarantee that  will
eventually become false (because, in turn, there is no
restriction on what  can be, as long as it is a Boolean
test). In particular, if  is the constantly‐true test
“true” – or a constantly true test such as “1=1” – then
the loop will be guaranteed to be infinite. This is a
more powerful version of repetition.

7.5.3 Classification of Structured

Programs

We can classify structured programs based on the previous
recursive definition:

1.  is a count‐program

(or a “for‐program,” or a “bounded‐loop program”) 

a.  is a basic program, or
b.  is constructed from count‐programs by:



• linear concatenation, or
• conditional branching, or
• count looping

c. Nothing else is a count‐program.
2.  is a while‐program

(or a “free‐loop program,” or an “unbounded‐loop
program”) 
a.  is a basic program, or
b.  is constructed from while‐programs by:

• linear concatenation, or
• conditional branching, or
• count‐looping, or
• while‐looping

c. Nothing else is a while‐program.
The inclusion of count‐loop programs in construction‐
clause (b) for while‐programs is not strictly needed,
because all count‐loops are while‐loops (just let the  of a
while‐loop be “ ” and let the  of the while‐loop be the
linear concatenation of some other  followed by “

”). So count‐programs are a proper subclass of
while‐programs: while‐programs include all count‐
programs plus programs constructed from while‐loops that
are not also count‐loops.



7.6 Recursive Functions

Now let's look at one of the classic analyses of computable
functions: a recursive definition of non‐negative integer functions
that are intuitively computable – i.e. functions whose inputs are
non‐negative integers, also known as “natural numbers.” But first,
what is a “natural number”?

7.6.1 A Recursive Definition of Natural

Numbers

Extensionally, the set  of natural numbers = .
Intensionally, they are the numbers defined (recursively!) by
Peano's axioms.33

P1 Base case: 
That is, 0 is a natural number.

P2 Recursive case:
If , then ,
where  is a one‐to‐one function from  to  such that 

.
 is called “the successor of .” So, the recursive case says

that every natural number has a successor that is also a natural
number. The fact that  is a function means each  has
only one successor. The fact that  is one‐to‐onemeans no two

natural numbers have the same successor. And the fact that 0
is not the successor of any natural number means both that 
is not an “onto” function and that 0 is the “first” natural
number.

P3 Closure clause: nothing else is a natural number.
We now have a set of natural numbers

and, as is usually done, we let , etc.
The closure clause guarantees that there are no other natural
numbers besides 0 and its successors: suppose there were an 



 that was neither 0 nor a successor of 0, nor a successor
of any of 0's successors. Without the closure clause, such an 
could be used to start a “second” natural‐number sequence: 

 So, the closure clause ensures that no
proper superset of  is also a set of natural numbers. Thus, in
a sense,  is “bounded from above.” But we also want to
“bound” it from below; i.e. we want to say that  is the
smallest set satisfying P1–P3. We do that with one more axiom:

P4 Consider an allegedly proper (hence, smaller) subset M of 
.
Suppose
1. 

and that
2. for all , if , then .

Then .
Stated thus, P4 is the axiom that underlies the logical rule of
inference known as “mathematical induction”:

From the fact that 0 has a certain property M
(i.e. if 0 is a member of the class of things that have property
M), and

from the fact that, for any natural number , if  has the
property M, then its successor also has property M,
then it may be inferred that all natural numbers have that
property.34

7.6.2 Recursive Definitions of Recursive

Functions

There are various kinds of recursive functions. To define them, we
once again begin with “basic” functions that are informally
computable, and then we recursively construct more complex
functions from them. In this section, we will define these basic
functions and the ways they can be combined. In the next section,
we will define the various kinds of recursive functions.

1. Basic functions:



Let .

a. Successor: 
That is,  is the successor of . You should check to
see that  satisfies Peano's axiom P2.

b. Predecessor: , where

  

The odd‐looking arithmetic operator is a “minus” sign with
a dot over it, sometimes called “monus.” So, the
predecessor of  is , except for , which is its
own predecessor.

c. Projection:35 

That is,  picks out the th item from a sequence of 
items.

The basic functions (a)–(c) intuitively correspond to the basic
operations of a Turing Machine: (a) the successor function
corresponds to move(right), (b) the predecessor function
corresponds to move(left) (where you cannot move any further
to the left than the beginning of the Turing Machine tape), and
(c) the projection function corresponds to reading the current
square of the tape.36



Digression: An alternative to predecessor as a basic
function is the family of constant functions 
for each  (Kleene, 1952, p. 219; Soare, 2009, Section
15.2, p. 397; Soare, 2016, p. 229).
Both predecessor and monus can be defined recursively:
Where , let

and let

For more details, see
https://en.wikipedia.org/wiki/Monus#Natural_numbers.
And while we're at it, we can define addition recursively, too:

2. Function constructors:

Let  be (basic or complex) recursive functions.
Then the following are also (complex) recursive functions:
a.  is defined from  bygeneralized composition 

This can be made a bit easier to read by using the symbol 
 for the sequence . If we do this, then

generalized composition can be written as follows:

which can be further simplified to

https://en.wikipedia.org/wiki/Monus#Natural_numbers


Note that  – called “function composition” – is
sometimes written ‘ .’ So, roughly, if  and  are
recursive functions, then so is their (generalized)
composition . This is analogous to structured
programming's notion of linear concatenation (i.e.
sequencing): first compute ; then compute .

b.  is defined from  by conditional definition 

Using our simplified notation, we can write this as

This is analogous to structured programming's notion of
conditional branch (i.e. selection): if a Boolean test (in this
case, “ ”) is true, then compute , else compute .
(Note, by the way, that “ ” can be written: 

.)

c.  is defined from  by primitive recursion 

Using our simplified notation, this becomes

Note, first, that the “ ” case is the base case and the “
” case is the recursive case. Second, note that this

combines conditional definition with a computation of 
based on 's value for its previous output. This is the
essence of recursive definitions of functions: instead of



computing the function's output based on its current input,
the output is computed on the basis of the function's
previous output (Allen, 2001). This is analogous to
structured programming's notion of a count‐loop: while 

, decrement  and then compute .

d.  is defined from  by while‐recursion 

Again, using our simplified notation, this can be written as

This is analogous to structured programming's notion of a
while‐loop (i.e. repetition): while a Boolean test (in this
case, “ ”) is true, compute , and loop back to
continue computing , but when the test becomes false,
then compute .



An Example of a Function Defined by While‐

Recursion:

The Fibonacci sequence is

where each term after the first two terms is computed as
the sum of the previous two terms. This can be stated
recursively:

• The first two terms of the sequence are 0 and 1.
• Each subsequent term in the sequence is the sum of
the previous two terms.

This can be defined using while‐recursion as follows:

We can make this look a bit more like the official
definition of while‐recursion by taking 
and . In other
words, the two base cases of  are projection functions,
and the recursive case uses the predecessor function
twice (the second time, it is the predecessor of the
predecessor).

e.  is defined from  by the ‐operator [pronounced: “mu”‐
operator] 

where:
 



This is a complicated notion but one well worth getting an
intuitive understanding of. It may help to know that it is
sometimes called “unbounded search” (Soare, 2012,
p. 3284).
Let me first introduce a useful notation. If  has a value
– i.e. if it is defined (in other words, if an algorithm that
computes  halts) – then we will write . And, if  is
undefined – i.e. if it is only a “partial” function (in other
words, if an algorithm for computing  goes into an infinite
loop) – then we will write .
Now, using our simplified notation, consider the sequence

Suppose each of the first  terms of this sequence halts
with a non‐zero value, but thereafter each term halts with
value 0; that is,



The ‐operator gives us a description of that smallest or
“min”imal  (i.e. the first  in the sequence) for which 
halts with value 0. So the definition of  says, roughly,

 is the smallest  for which  has a
non‐0 value for each , but for which , if
such a  exists;
otherwise (i.e. if no such  exists),  is
undefined.

So,  is defined from  by the ‐operator if you can
compute  by computing the smallest  for which 

.

If  is intuitively computable, then, to compute , we just
have to compute  for each successive natural number

 until we find . So definition by ‐operator is also
intuitively computable.

7.6.3 Classification of Recursive Functions

Given these definitions, we can now classify computable functions:
1.  is a while‐recursive function 

a.  is a basic function, or

b.  is defined from while‐recursive functions by
i. generalized composition, or

ii. conditional definition, or
iii. while‐recursion

c. Nothing else is while‐recursive.
This is the essence of the Böhm‐Jacopini Theorem: any
computer program (i.e. any algorithm for any computable
function) can be written using only the three rules of grammar:
sequence (generalized composition), selection (conditional
definition), and repetition (while‐recursion).



2.  is a primitive‐recursive function 

a.  is a basic function, or

b.  is defined from primitive‐recursive functions by
i. generalized composition, or

ii. primitive recursion
c. Nothing else is primitive‐recursive.

The primitive‐recursive functions and the while‐recursive

functions overlap: both include the basic functions and
functions defined by generalized composition (sequencing).
The primitive‐recursive functions also include the functions
defined by primitive recursion (a combination of selection and
count‐loops), but nothing else.
The while‐recursive functions include (along with the basic
functions and generalized composition) functions defined by
conditional definition (selection) and those defined by while‐
recursion (while‐loops).

3.  is a partial‐recursive function 

a.  is a basic function, or

b.  is defined from partial‐recursive functions by

i. generalized composition, or
ii. primitive recursion, or
iii. the ‐operator

c. Nothing else is partial‐recursive.
4.  is a recursive function 

a.  is partial‐recursive, and

b.  is a total function
(i.e. defined for all elements of its domain)



Terminology: Unfortunately, the terminology varies with the
author. For example, primitive recursive functions were initially
called just “recursive functions.” Now it is the while‐recursive
functions that are usually just called “recursive functions,” or
sometimes “general recursive functions” (to distinguish them
from the primitive recursive functions). And partial recursive
functions are sometimes called “ ‐recursive functions”
(because they are the primitive recursive functions augmented
by the ‐operator). For the history of this and some
clarification, see Soare, 2009, Sections 2.3–2.4, p. 373–373; and
Section 15.2, pp. 396–397; and
http://mathworld.wolfram.com/RecursiveFunction.html.

How are all of these notions related? First, here are the
relationships among the various kinds of recursive functions: as we
saw, there is an overlap between the primitive‐recursive functions
and the while‐recursive functions, with the basic functions and the
functions defined by generalized composition in their intersection.
The partial‐recursive functions are a superset of the primitive‐

recursive functions: the partial‐recursive functions consist of the
primitive‐recursive functions together with the functions defined
with the ‐operator.
The recursive functions are a subset of the partial‐recursive

functions: the recursive functions are the partial‐recursive functions
that are also total functions.
Second, here is how the recursive functions and the computable

functions are related:

 is primitive‐recursive if and only if  is count‐program‐

computable.
 is partial‐recursive iff  is while‐program‐computable.

And both of partial‐recursive and while‐program‐computable

functions are logically equivalent to being Turing Machine

computable, lambda‐definable, Markov‐algorithmic, etc.

http://mathworld.wolfram.com/RecursiveFunction.html


7.7 Non‐Computable Functions

7.7.1 The Halting Problem

You can build an organ which can do anything that can
be done, but you cannot build an organ which tells you
whether it can be done.
—John von Neumann (1966), cited in Dyson, 2012a.

Have we left anything out? That is, are there any other
functions besides these? Yes! The “Halting Problem”
provides an example of a non‐computable function: i.e. a
function that cannot be defined using any of the
mechanisms of Section 7.6.

Digression on Non‐Computable Functions: On the
history of the Halting Problem, see the Digression at the
end of Section 8.9.6.
The Halting Function is not the only non‐computable
function. Two other famous non‐computable functions
are Hilbert's 10th Problem (Martin Davis, 1978) and the
Busy Beaver function (Radó, 1962). In fact, there are
infinitely many non‐computable functions. There are also
infinitely many computable functions but “only”
countably infinitely many, whereas there are
uncountably infinitely many non‐computable functions.
(See the Online Resources for further reading.)

Recall that a function is computable if and only if there is
an algorithm (i.e. a computer program) that computes it.
So, the Halting Problem asks whether there is an algorithm

(e.g. a program for a Turing Machine) – call it the “Halting

https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.7.1


Algorithm,”  – that computes the following function 
 (call it the “Halting Function”):
 takes as input both

1. an algorithm (or computer program) 
(which we can suppose takes an integer as input),
and

2. 's input 
(which would be an integer),

and  outputs
“halts,” if  halts on 
“loops,” if  loops on .

A formula for  is

And our question is, is there an algorithm  that
computes ? Can we write such a program?
In terms of the “function machine” from Section 7.2.4, we
are asking whether there is a “function machine” (i.e. a
computer) whose internal “mechanism” (i.e. whose
program) is . When you input the pair  to this

“function machine” and turn its “crank,” it should output
“halts” if another function machine (namely, the function
machine for ) successfully outputs a value when you give
it input , and it should output “loops” if the function
machine for  goes into an infinite loop and never outputs
any final answer. (It may, however, output some messages,
but it never halts with an answer to .)



Here's another way to think about this:  is a kind of
“super”‐machine that takes as input not only an integer 
but also another machine . When you turn 's “crank,” 

 first feeds  to , and then  turns 's “crank.” If 
 detects that  has successfully output a value, then 
 outputs “halts”; otherwise,  outputs “loops.”

This would be very useful for introductory computer‐
programming teachers or software engineers in general!
After all, one thing you never want in a computer program
is an unintentional infinite loop. Sometimes, you might
want an intentional one, however: you don't want an
automated teller machine to halt – you do want it to behave
in an infinite loop so that it is always ready to accept new
input from a new customer. And you don't want a program
that calculates the infinite decimal expansion of  to halt.
However, it would be very useful to have a single handy
program that could quickly check to see if any program
that someone writes has an infinite loop in it. But no such
program can be written! The function that  would have
to implement is not computable. It can be proved that the
assumption that it is computable leads to a contradiction.
“The reason, essentially, is that the scope of the task covers
all computer programs, including the program of the

very computer attempting the task” (Copeland, 2017,
p. 61, original italics, my boldface).
It is important to be clear that it can be possible to write a
program that will check if another program has an infinite
loop. In other words, given a program , there might be
another program  that will check whether  – but not
necessarily any other program – has an infinite loop. What
cannot be done is this: to write a single program  that
will take any program C whatsoever and tell you whether 

 will halt or not.37



Note that we can't answer the question whether  halts on
 by just running  on : if it halts, we know that it halts.

But if it loops, how would we know that it loops? After all, it
might just be taking a long time to halt.
There are two ways that we might try to write :

1. You can imagine that  works as follows:
 gives  its input  and then runs  on .

If  halts on , then  outputs “halts”;
otherwise,  outputs “loops.”

So, we might write  as follows:

This matches our formula for function .
2. But here's another way to write :

“Trial‐and‐error” programs like  will prove useful in our
later discussion of hypercomputation (Chapter 11). But this
approach won't work here because we're going to need to
convert our program for  to another program called ,
and  can't be converted that way, as we'll see. More



importantly,  doesn't really do the required job: it
doesn't give us a definitive answer to the question of
whether  halts, because its initial answer is not really
“loops,” but something like “hasn't halted yet.”
The answer to our question about whether such an
algorithm  exists or can be written is negative: there is
no program for . In other words,  is a non‐
computable function. Note that it is a function: there exists
a perfectly good set of input‐output pairs that satisfies the
extensional definition of ‘function’ and looks like this:

The next section sketches a proof that  is not
computable. The proof takes the form of a “reductio ad

absurdum” argument. So, our proof will assume that  is
computable and derive a contradiction. If an assumption
implies a contradiction, then – because no contradiction
can be true – the assumption must have been wrong. So,
our assumption that  is computable will be shown to be
false.

Logical Digression: A “reductio ad absurdum”
argument is one that “reduces” a claim to “absurdity” in
order to refute the claim. If you want to show that a
claim  is false, the strategy is to assume – “for the sake
of the argument” – that  is true and then derive a
contradiction  (i.e. an “absurdity”) from it. If you can
thus show that , then – because you know that 

 is the case (after all,  is a contradiction, hence
false; so  must be true) – you can conclude that ,
thus refuting . The rule of inference that sanctions this
is “Modus Tollens”; see Section 4.8.2.



7.7.2 Proof Sketch that H Is Not

Computable

Step 1

Assume that function  is computable.
So, there is an algorithm  that computes function .

Now consider another algorithm, , that is just like
algorithm , except that

if  halts on , then  loops

(Remember: if  halts on , then, by 's definition, 
 does not loop, because  outputs “halts” and

then halts.)
and

if  loops on , then  outputs “loops” and halts (just
like  does).

Here is how we might write , corresponding to the
version of  that we called ‘ ’ earlier:

Here, ‘true’ is a Boolean test that is always true. (As we
noted earlier, you could replace it by something like ‘1=1,’
which is also always true.)

Note that we cannot write a version of  that might look
like this:



Why not? Because if  halts, the only output we will ever
see is the message that says  loops! That initial, incorrect
guess is never revised. So, we'll stick with  (i.e. with 
) and with  (i.e. with ).

Note that if  exists, so does . That is, we can turn 
into  as follows: if  were to output “halts,” then let 

 go into an infinite loop. That is, replace 's “output
‘halts’ ” by 's infinite loop. This is important because we
are going to show that, in fact,  does not exist; hence,
neither does .

Step 2

Returning to our proof sketch, the next step is to code  as
a number so it can be treated as input to itself.
What? Why do that? Because this is the way to simulate the
idea of putting the  “machine” into the  machine and
then having the  machine “turn” 's “crank.”
So, how do you “code” a program as a number? This is an
insight due to Kurt Gödel. To code any text (including a
computer program) as a number in such a way that you
could also decode it, begin by coding each symbol in the
text as a unique number (e.g. using the ASCII code).
Suppose these numbers, in order, are ,
where  codes the first symbol in the text,  codes the
second, …, and  codes the last symbol.



Then compute the following number:

where  is the th prime number and where the th
factor in this product is the th prime number raised to the

th power.
By the “Fundamental Theorem of Arithmetic”
(http://mathworld.wolfram.com/FundamentalTheoremofAri
thmetic.html), the number that is the value of this product
can be uniquely factored, so those exponents can be
recovered, and then they can be decoded to yield the
original text. (Turing has an even simpler way to code
symbols; we'll discuss his version in detail in Section 8.12.)
38

Step 3

Now consider . This step is called
“diagonalization.” It looks like a form of self‐reference,
because it looks as if we are letting  take itself as input to
itself – but actually  will take its own Gödel number as
input. That is, suppose you (1) code up program  as a
Gödel number, (2) use it as input to the program  itself
(after all, the Gödel number of  is an integer, and thus it
is in the domain of the function that  computes, so it is a
legal input for ), and (3) let  do its job on that pair of
inputs.
By the definition of :

1. if program  halts on input , then  loops;

and

2. if program  loops on input , then  halts

and outputs “loops.”

http://mathworld.wolfram.com/FundamentalTheoremofArithmetic.html


Step 4

Now code  by a Gödel number! And consider 
. This is another instance of diagonalization.

Again, it may look like some kind of self‐reference, but it
really isn't, because the first occurrence of ‘ ’ names an
algorithm, but the second and third occurrences are just
numbers that happen to be the code for that algorithm.39

In other words, (1) code up  by a Gödel number, (2) use
it as input to the program  itself, and then (3) let  do
its job on that pair of inputs.
Again, by the definition of :

1. if program  halts on input , then 
loops;

and

2. if program  loops on input , then 
halts and outputs “loops.”

Final Result

But  outputting “loops” in clause (2) means  halts!

So, if  halts (outputting “loops”), then – by clause (1) – it
loops. And if  loops, then – by clause (2) – it halts. In
other words, it loops if and only if it halts; i.e. it does loop if
and only if it does not loop!
But that's a contradiction!

So, there is no such program as . But that means there
is no such program as . In other words, the Halting

Function  is not computable.



7.8 Summary

Let's take stock of where we are. We asked whether CS is
the science of computing (rather than the science of
computers). To answer that, we asked what computing, or
computation, is. We have now seen one answer to that
question: computation is the process of executing an
algorithm to determine the output value of a function, given
an input value. We have seen how to make this informal
notion precise, and we have also seen that it is an
“interesting” notion in the sense that not all functions are
computable.
But this was a temporary interruption of our study of the
history of computers and computing. In the next chapter,
we will return to that history by examining Alan Turing's
formulation of computability. 40



7.9 Questions for the Reader

1. To the lists of features of algorithms in Section 7.3,
Gurevich, 2012, p. 4, adds “isolation”:

Computation is self‐contained. No oracle is
consulted, and nobody interferes with the
computation either during a computation step or in
between steps. The whole computation of the
algorithm is determined by the initial state.

a. Is this related to Markov's “being determined”
feature, or Kleene's “followed … like robots”
feature, or Knuth's “definiteness” feature?

b. Does “isolation” mean a program that asks for input
from the external world (or from a user, who, of
course, is in the external world!) is not doing
computation? (We'll discuss this in Chapters 11 and
16, but you should start thinking about it now.)

2. Gurevich has another “constraint”: “Computation is
symbolic (or digital, symbol‐pushing)” (p. 4). That is,
computation is syntactic. (See Section 16.9 for a
discussion of what that means.)
Does that mean computation is not mathematical
(because mathematics is about numbers, not
numerals)? Does it mean computers cannot have real‐
world effects? (We'll return to these topics in Chapter
16.)

3. Vardi, 2012 argues that Turing Machines are not
models of algorithms:



[C]onflating algorithms with Turing machines is a
misreading of Turing's 1936 paper …. Turing's aim
was to define computability, not algorithms. His
paper argued that every function on natural numbers
that can be computed by a human computer … can
also be computed by a Turing machine. There is no
claim in the paper that Turing machines offer a
general model for algorithms.

Do you agree?
4. Harry Collins described an “experimenter's regress”:

[Y]ou can say an experiment has truly been
replicated only if the replication gets the same result
as the original, a conclusion which makes replication
pointless. Avoiding this, and agreeing that a
replication counts as “the same procedure” even
when it gets a different result, requires recognising
the role of tacit knowledge and judgment in
experiments. (The Economist, 2013)

Let's consider an experiment as a mathematical binary
relation whose input is, say, the experimental setup
and whose output is the result of the experiment. In
that case, if a replication of the experiment always
gets the same result, then the relation is a function.
Can scientific experiments be considered
(mathematical) functions? In that case, does it make
any sense to replicate an experiment in order to
confirm it?

5. Piccinini, 2020a, p. 13, says that “non‐digital
computation [such as takes place in the brain via spike
trains] is different from digital computation in that its
vehicles are different from strings of digits.” (See also
Piccinini, 2007a.) Is it the case that everything can be



represented in binary? Can what the spike trains do be
done (simulated?) by binary digits?

6. Should other verbs be added to the Processing Insight?
Is “read” a verb on a par with the ones cited? (Is “read”
even needed?) Should Boolean tests be included as
verbs?

7. In Section 2.5.1, we saw that a theorem is true only
relative to the truth of the premises of its proof. And in
Section 7.5.1, we saw that computation was similar:

Computability is a relative notion, not an absolute
one. All computation, classical or otherwise, takes
place relative to some set or other or primitive
capabilities. The primitives specified by Turing in
1936 occupy no privileged position. One may ask
whether a function is computable relative to these
primitives or to some superset of them.
(Copeland, 1997, p. 707; see also Copeland and
Sylvan, 1999, pp. 46–47)

In Section 7.5, definition (2), I said that primitive
operations had to be computable, at least in an
informal sense. After all, there we were trying to
define what it meant to be computable. But another
way to proceed would be to say that primitive
operations are computable by definition.
But does this allow anything to be a primitive
operation, even something that really shouldn't be
(informally) computable? What if the primitive
operation is, in fact, non‐computable? Could we have a
kind of “computation” in which the recursive portions
are based on a non‐computable (set of) primitive
operation(s)? (We'll return to these ideas in Section
11.9.) 41



8. A research question:

… every physical process instantiates a computation

insofar as it progresses from state to state according
to dynamics prescribed by the laws of physics, i.e. by
systems of differential equations. (Fekete and
Edelman, 2011, p. 808)

This suggests the following very odd and very liberal
definition: something is a computation  it is a
progression from state to state that obeys a differential
equation. This definition is liberal because it seems to
go beyond the limitations of a Turing Machine‐like
algorithm. That's not necessarily bad; for one thing, it
subsumes both analog and discrete computations
under one rubric.
Are Turing Machine algorithms describable by
differential equations?



Notes

1 See the Online Resources for the etymologies of some
of these terms .

2 The notation ‘ ’ should be read as “means by
definition.”

3 For the published answers, see the Further Reading
box at the end of this section.

4 See the Online Resources for further reading on this
point.

5 I created this formula by working backward from the
algorithm given in Stewart, 2001, so it's quite
possible that I introduced a typographical error!
Even if I didn't, I am assuming the algorithm in
Stewart, 2001 is correct. And that could be a big
assumption.

6 See http://www.askphilosophers.org/question/1877.

7 Except possibly in the “base case,” where the
“algorithm” is so simple or basic that it consists
merely in giving you the output directly, without any
intermediate processing. (See Section 7.4.3.2 for an
explanation of “base case.”)

8 This section is adapted from Rapaport, 2012b,
Appendix.

9 See the Online Resources for further reading on Al-
Khwarizmi .

10 See the Online Resources for further reading on
‘effective.’

https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.2
https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.2.3
http://www.askphilosophers.org/question/1877
https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.3.1
https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.3.2


11 See Section 7.4.3.2 for an explanation of these
scare‐quoted terms.

12 See the Online Resources for further reading on
algorithms vs. procedures .

13 Which Matti Tedre reminded me of (personal
communication, 2018).

14 Bacon, Advancement of Learning,
http://home.hiwaay.net/
∼paul/bacon/advancement/book6ch1.html; for
discussion, see Cerf, 2015, p. 7.

15 That is, something that can be in precisely one of
two states.

16 See the Online Resources for further reading on
binary representation .

16 The ones cited here are taken from John Case's
model described in Schagrin et al., 1985, Appendix
B, http://www.cse.buffalo.edu/
∼rapaport/Papers/schagrinetal85-
TuringMachines.pdf.

17 See the Online Resources for another minimal set of
operations .

18 See the Online Resources for further reading on the
structure insight .

19 “As Alfred North Whitehead wrote, ‘Civilisation
advances by extending the number of important
operations which we can perform without thinking
about them.’ ” (B. Hayes, 2014b, p. 22).

20 See the Online Resources for further reading on
abstraction .

https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.3.3
http://home.hiwaay.net/~paul/bacon/advancement/book6ch1.html
https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.4.1
http://www.cse.buffalo.edu/~rapaport/Papers/schagrinetal85-TuringMachines.pdf
https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.4.2
https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.4.3
https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.4.3


21 Or see the Online Resources for Insight 4.

22 See the Online Resources for further reading on this
point.

23 I am indebted to my former colleague John Case's
lectures (SUNY Buffalo, ca. 1983) on the theory of
computation for this phrasing.

24 In the following quote, ‘ ’ is the lowercase Greek
letter “lambda.”

25 See the Online Resources for further reading on
Turing Machine equivalents .

26 See the Online Resources for further reading on the
Computability Thesis .

27 First suggested to me by Peter Denning (personal
communication, 2014).

28 As Matti Tedre (personal communication, 2018)
pointed out to me.

29 See the Online Resources for further reading on
physical computation .

31 The material in this section and the next is based on
lectures given by John Case at SUNY Buffalo around
1983, which in turn were based on Clark and Cowell,
1976.

30 It is a “propositional function” because it can be
thought of as a function whose input is a proposition
and whose output is a truth value. It is an “open
sentence” in the sense that it contains a variable
instead of a constant. (In English, that would be a
pronoun instead of a proper name.)

https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.4.4
https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.4.4
https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.4.4
https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.4.4
https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.4.5


31 See the Online Resources for further reading on
Peano's axioms .

32 For further discussion of P4, see
http://www.cse.buffalo.edu/
∼rapaport/191/F10/lecturenotes-20101110.html.

33 Sometimes called ‘identity’ (Kleene, 1952, p. 220;
Soare, 2012, p. 3280; Soare, 2016, p. 229).

34 We'll return to this analogy in Section 8.10.2. An
analogous comparison in the context of “register
machines” is made in Shepherdson and Sturgis,
1963, p. 220.

35 See the Online Resources for more on the difference
between these two kinds of halting programs.

36 See the Online Resources for further reading on
Gödel numbering.

37 My notation here, cumbersome as it is(!), is
nonetheless rather informal but – I hope – clearer
than it would be if I tried to be even more formally
precise.

38 See the Online Resources for further reading on
computability.

39 See the Online Resources for further reading on
“relative computability.”

https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.6.1
http://www.cse.buffalo.edu/~rapaport/191/F10/lecturenotes-20101110.html
https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.7.1
https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.7.1
https://cse.buffalo.edu/~rapaport/OR/A0fr07.html
https://cse.buffalo.edu/~rapaport/OR/A0fr07.html#7.9


8 

Turing's Analysis of

Computation

[A] human calculator, provided with pencil and paper
and explicit instructions, can be regarded as a kind of
Turing machine.
—Alonzo Church (1937)

Turing's ‘Machines.’ These machines are humans who
calculate.
—Ludwig Wittgenstein (late 1940s), in Wittgenstein,
1980, p. 191e, Section 1096

[Wittgenstein's] quotation, though insightful, is
somewhat confusingly put. Better would have been:
these machines are Turing's mechanical model of
humans who calculate.
—Saul A. Kripke (2013, p. 96, footnote 12)
Why … did Wittgenstein not make the converse point
that ‘Turing's humans are really machines that
calculate’?
—S.G. Shanker (1987, p. 619)



8.1 Introduction

What Turing did around 1936 was to give a cogent and
complete logical analysis of the notion of “computation.”
Thus it was that although people have been computing
for centuries, it has only been since 1936 that we have
possessed a satisfactory answer to the question: “What is
a computation?”
—Martin Davis (1978, p. 241)

In this chapter, we continue our look at the nature of
computation. If there is a single document that could be
called the foundational document of CS, it would be Alan
Mathison Turing's 1936 article “On Computable Numbers,
with an Application to the Entscheidungsproblem,” which
appeared in the journal Proceedings of the London

Mathematical Society, Series 2. In this paper, Turing (who
was only about 24 years old at the time) accomplished (at
least) five major goals:

1. He gave what is considered the clearest and most
convincing mathematical analysis of computation (what
is now called, in his honor, a “Turing Machine”).

2. He proved that there were some functions that were
not computable, thus showing that computation was
not a trivial property.

3. He proved that the Turing Machine analysis of
computation was logically equivalent to Church's
lambda‐calculus analysis of computation.

4. He formulated a “universal” Turing Machine, which is a
mathematical version of a programmable computer.

5. And (as I suggested in Section 3.16.5) he wrote the first
AI program.



Thus, arguably, in this paper, he created the modern
discipline of CS.
Because this paper was so important and so influential, it is
well worth reading. Fortunately, although parts of it are
tough going (and it contains some errors),1 much of it is
very clearly written. It is not so much that the “tough”
parts are difficult or hard to understand, but they are full of
nitty‐gritty details that have to be slogged through.
Fortunately, Turing has a subtle sense of humor, too.
In this chapter, I will provide a guide to reading parts of
Turing's paper slowly and carefully by actively thinking
about them.2 We will concentrate on the informal
expository parts and some of the technical parts. Those are,
of course, of interest but are rather difficult to follow and
incorrect in some parts, and most can be skimmed on a
first reading. In particular, we will concentrate on Turing's
Sections 1–6, studying the simple examples of Turing
Machines carefully (you can skim the complex ones); and
Section 9, part I, which elaborates on what it is that a
human computer does. We will look briefly at Section 7,
which describes the Universal Turing Machine, and Section
8, which describes the Halting Problem. (You can skim
these sections; but please note: that's ‘skim,’ not ‘skip’!)



8.2 Slow and Active Reading

One of the best ways to read is to read slowly and actively.
This is especially true when you are reading a technical
paper, and even more especially when you are reading
mathematics. Reading slowly and actively means
(1) reading each sentence slowly, (2) thinking about it
actively, and (3) making sure you understand it before
reading the next sentence.
One way to make sure you understand it is to ask yourself
why the author said it or why it might be true. (Recall
Section 2.4.2 on the importance of asking “why.”) If you
don't understand it (after reading it slowly and actively),
then you should reread all of the previous sentences to
make sure you really understood them. Whenever you come
to a sentence that you really don't understand, you should
ask someone to help you understand it.
Of course, it could also be the case that you don't
understand a passage because it isn't true, or doesn't
follow from what has been said, or is confused in some way
– and not because it's somehow your fault that you don't
understand it! When you read, imagine that what you're
reading is like a computer program and you are the
computer that has to understand it. Except, of course,
you're an independently intelligent computer, and, if you
don't understand something, you can challenge what you
read. In other words, treat reading as an attempt to
“debug” what the author wrote! (On the value of slow and
active reading in general, see https://cse.buffalo.edu/
∼rapaport/howtostudy.html#readactively.)

https://cse.buffalo.edu/~rapaport/howtostudy.html#readactively


8.3 Title: “The

Entscheidungsproblem”

The last word of the title – ‘Entscheidungsproblem’ – is a
German noun that (as we saw in Section 6.5) was well
known to mathematicians in the 1930s; ‘Entscheidung’
means “decision,” ‘‐s’ represents the possessive,3 and
‘problem’ means “problem.” So, an Entscheidungsproblem
is a decision problem, and the Decision Problem was the
problem of finding an algorithm that would (a) take two
things as input: (1) a formal logic  and (2) a proposition 

 in the language for that logic, and that would (b) output
either ‘yes,’ if  was a theorem of that logic, or else ‘no,’
if  was a theorem of that logic (i.e. if  was not a
theorem of ). In other words, the Decision Problem was
the problem of finding a general algorithm for deciding
whether any given proposition was a theorem.
Wouldn't that be nice? Mathematics could be completely
automated: given any mathematical proposition, one could
apply this general algorithm to it, and you would be able to
know if it were a theorem or not. Turing was fascinated by
this problem, and he solved it in the negative by showing
that no such algorithm existed. We've already seen how: he
showed that there was at least one problem (the Halting
Problem) for which there was no such algorithm. Along the
way, he invented CS!



8.4 Paragraph 1

8.4.1 “ ‘Computable’ Numbers”

Let's turn to the first sentence of the first paragraph:

The “computable” numbers may be described briefly as
the real numbers whose expressions as a decimal are
calculable by finite means.
(Turing, 1936, paragraph 1, sentence 1, p. 230, my
italics)4

And let's consider the italicized phrases:
“Computable”: The word ‘computable’ occurs in
quotes here because Turing is using it in an informal,
intuitive sense. It is the sense that he will make
mathematically precise in the rest of the paper.
Real numbers: Real numbers are all of the numbers
on the continuous number line, consisting of

1. the rational numbers, which consist of:
(a) the integers, which – in turn – consist of
i. the (non‐negative) natural numbers (0, 1, 2,
… ), and
ii. the negative natural numbers ( ),
and
(b) all other numbers that can be expressed as
a ratio of integers
– i.e. fractions

and



2. the irrational numbers (i.e. those numbers that
cannot be expressed as a ratio of integers, such as 

, etc.).

But the real numbers do not include the “complex”
numbers, such as .

Every real number can be expressed “as a decimal,”
i.e. in decimal notation. For instance:

1 = 1.0 = 1.00 = 1.000 (etc.)

 = 0.5 = 0.50 = 0.500 = 0.5000 (etc.)

 = 0.33333…

 = 0.142857142857…

These are all rational numbers and examples of
“repeating” decimals. But the reals also include the
irrational numbers, which have non‐repeating
decimals, such as:

Finitely calculable: Given a real number, is there an
algorithm for computing its decimal representation? If
so, then its “decimal [is] calculable by finite means”
(because algorithms must be finite, as we saw in
Section 7.3).

8.4.2 “Written By a Machine”

Now, if we were really going to do a slow (and active!)
reading, we would next move on to sentence 2. But in the
interests of keeping this chapter shorter than a full book



(and so as not to repeat everything in Petzold, 2008), we'll
skip to the last sentence of the paragraph:

According to my definition, a number is computable if its
decimal can be written down by a machine. (para 1., last
sent., p. 230, my italics.)

This is probably best understood as an alternative way of
expressing the first sentence: to be “calculable by finite
means” is to be capable of being “written down by a
machine.” Perhaps the latter way of putting it extends the
notion a bit, because it suggests that if a number is
calculable by finite means, then that calculation can be
done automatically: i.e. by a machine – without human
intervention. And that, after all, was the goal of all of those
who tried to build calculators or computing machines, as
we saw in Chapter 6. So, Turing's goal in this paper is to
give a mathematical analysis of what can be accomplished
by any such machine (and then to apply the results of this
analysis to solving the Decision Problem).

Question to Think About: As we'll see later, a Turing
Machine is an abstract mathematical notion, not a real,
physical device. Robin Gandy – Turing's only Ph.D.
student – argued “that Turing's analysis of computation
by a human being does not apply directly to mechanical
devices” (Gandy, 1980). (Commentaries on what has
become known as “Gandy's Thesis” include Sieg and
Byrnes, 1999 (which simplifies and generalizes Gandy's
paper); Israel, 2002, Shagrir, 2002.)
In Turing's sentence discussed in this section, is he
referring to physical machines or to Turing Machines?



8.5 Paragraph 2

8.5.1 “Naturally Regarded as

Computable”

In §§9, 10 I give some arguments with the intention of
showing that the computable numbers include all numbers
which could naturally be regarded as computable. (para. 2,
sent. 1, p. 230, my italics.)
We will look at some of those arguments later, but right
now, let's focus on the phrase ‘naturally be regarded as
computable.’ This refers to the same informal, intuitive,
pre‐theoretical notion of computation that his quoted use of
‘computable’ referred to in the first sentence. It is the
sense in which Hilbert wondered about which
mathematical problems were decidable, the sense in which
people used the phrase “effective computation,” the sense
in which people used the word ‘algorithm,’ and so on. It is
the sense in which people (mathematicians, in particular)
can compute.
However, the first occurrence of ‘computable’ in this
sentence refers to the formal notion that Turing will
present. Thus, this sentence is an expression of Turing's
computability thesis.

8.5.2 “Definable Numbers”

Once again, we'll skip to the last sentence of the
paragraph:



The computable numbers do not, however, include all
definable numbers, and an example is given of a
definable number which is not computable.
(para. 2, last sent., p. 230, my italics)

It is much more interesting if not all functions – or numbers
– are computable. Any property that everything has is not
especially interesting. But if there is a property that only

some things have (and others lack), then we can begin to
categorize those things and thus learn something more
about them.
So Turing is promising to show us that computability is an
interesting (because not a universal) property. And he's not
going to do that by giving us some abstract argument;
rather, he's actually going to show us a non‐computable
number (and, presumably, show us why it's not
computable). We've already seen what this is: it's the
(Gödel) number for an algorithm (a Turing Machine) for the
Halting Problem.



8.6 Section 1, Paragraph 1:

“Computing Machines”

Let's move on to Turing's Section 1, “Computing
Machines.” We'll look at the first paragraph and then jump
to Turing's Section 9 before returning to this section.
Here is the first paragraph of Section 1:

We have said that the computable numbers are those
whose decimals are calculable by finite means. This
requires rather more explicit definition. No real attempt
will be made to justify the definitions given until we
reach §9. (Section 1, para. 1, p. 231.)

This is why we will jump to that section in a moment. But
first let's continue with the present paragraph:

For the present I shall only say that the justification [of
the definitions] lies in the fact that the human memory is

necessarily limited. (Section 1, para. 1, p. 231, my
italics.)

Turing's point – following Hilbert – is that we humans do
not have infinite means at our disposal. We all eventually
die, and we cannot work infinitely fast, so the number of
calculations we can make in a single lifetime is finite.
But how big is “finite”? Let's suppose, for the sake of
argument, that a typical human (named ‘Pat’) lives as long
as 100 years. And let's suppose that from the time Pat is
born until the time Pat dies, Pat does nothing but compute.
Obviously, this is highly unrealistic, but I want to estimate
the maximum number of computations that a typical human
could perform. The actual number will, of course, be far
fewer. How long does a computation performed by a human
take? Let's suppose that the simplest possible computation



is computing the successor of a natural number, and let's
suppose it takes as long as 1 second. In Pat's lifetime,
approximately 3,153,600,000 successors can be computed
(because that's approximately the number of seconds in
100 years). Are there any problems that would require
more than that number of computations? Yes! It has been
estimated that the number of possible moves in a chess
game is , which is about  times as large as the
largest number of computations that a human could
possibly perform. In other words, we humans are not only
finite, we are very finite!
But computer scientists and mathematicians tend to ignore
such human limitations and pay attention only to the
mathematical notion of finiteness. Even the mathematical
notion, which is quite a bit larger than the actual human
notion (for more on this, see Knuth, 2001), is still smaller
than infinity, so the computable numbers, as Turing defines
them, include quite a bit.



8.7 Section 9: “The Extent of the

Computable Numbers”

8.7.1 Turing's Computability Thesis

I want to skip now to Turing's Section 9, “The Extent of the
Computable Numbers,” because this section contains the
most fascinating part of Turing's analysis. We'll return to
his Section 1 later. He begins as follows:

No attempt has yet been made [in Turing's article] to
show that the “computable” numbers include all
numbers which would naturally be regarded as
computable. (Section 9, para. 1, p. 249, my italics.)

Again, Turing is comparing two notions of computability:
the technical notion (signified by the first occurrence of the
word ‘computable’ – in “scare quotes”) and the informal or
“natural” notion. He is going to argue that the first includes
the second. Presumably, it is more obvious that the second
(the “natural” notion) includes the first (the technical
notion): i.e. that if a number is technically computable, then
it is “naturally” computable. The less obvious inclusion is
the one that is more in need of support, that if a number is
“naturally” computable, then it is technically computable.
What kind of argument would help convince us of this?
Turing says,

All arguments which can be given are bound to be,
fundamentally, appeals to intuition, and for this reason
rather unsatisfactory mathematically. (Section 9, para. 1,
p. 249.)

Why is this so? Because one of the two notions – the
“natural” one – is informal. Thus, no formal, logical
argument can be based on it. This is why the Computability



Thesis (i.e. Turing's thesis) is a thesis and not a theorem –
it is not something formally provable. Nonetheless, Turing
will give us “appeals to intuition,” i.e. informal arguments,
in fact, three kinds, as he says in the next paragraph:

The arguments which I shall use are of three kinds.
(a) A direct appeal to intuition.
(b) A proof of the equivalence of two definitions (in
case the new definition has a greater intuitive
appeal).
(c) Giving examples of large classes of numbers
which are computable.
(Section 9, para. 2, p. 249.)

In this chapter, we will only look at (a), his direct appeal to
intuition.
Let's return to the last sentence of paragraph 1:

The real question at issue is “What are the possible
processes which can be carried out in computing a
number?” (Section 9, para. 1, p. 249.)

If Turing can answer this question, even informally, then he
may be able to come up with a formal notion that captures
the informal one. That is his “direct appeal to intuition.”

8.7.2 “Writing Symbols on Paper”

Turing notes about “Type (a)” – the “direct appeal to
intuition” – that “this argument is only an elaboration of the
ideas of §1” (p. 249). This is why we have made this
digression to Turing's Section 9 from his Section 1; when
we return to his Section 1, we will see that it summarizes
his Section 9.



The first part of the answer to the question, “What are the
possible processes which can be carried out in computing a
number?” – i.e. the first intuition about “natural”
computation – is this:

Computing is normally done by writing certain symbols
on paper.
(Section 9(I), para. 1, p. 249.)

So, we need to be able to write symbols on paper. Is this
true? What kind of symbols? And what kind of paper?

Is It True?

Is computing normally done by writing symbols on paper?
We who live in the twenty‐first century might think this is
obviously false: computers don't have to write symbols on
paper in order to do their job. They do have to write
symbols when we ask the computer to print a document,
but they don't when we are watching a YouTube video. But
remember that Turing is analyzing the “natural” notion of
computing: the kind of computing that humans do. This
includes arithmetic computations, and those typically are

done by writing symbols on paper (or, perhaps, by
imagining that we are writing symbols on paper, as when
we do a computation “in our head”).

What Kind of Paper?

We may suppose this paper is divided into squares like a
child's arithmetic book. (Section 9(I), para. 1, p. 249.)

In other words, we can use graph paper! Presumably, we
can put one symbol into each square of the graph paper.
So, for example, if we're going to write down the symbols
for computing the sum of 43 and 87, we could write it like
this:



1
4 3

+ 8 7
1 3 0

We write ‘43’ in two squares, and then we write ‘+87’ in
three squares beneath this, aligning the ones and tens
columns. To perform the computation, we compute the sum
of 7 and 3 and write it as follows: the ones place of the sum
(‘0’) is written below ‘7’ in the ones column, and the tens
place of the sum (‘1’) is “carried” to the square above the
tens place of ‘43.’ Then the sum of 1, 4, and 8 is computed
and written as follows: the ones place of that sum – namely,
‘3’ (which is the tens place of the sum of 43 and 87) – is
written below ‘8’ in the tens column. Then the tens place of
that sum – namely, ‘1’ (which is the hundreds place of the
sum of 43 and 87) – is written in the square to the left of
that ‘3.’ As we have just seen, Turing notes that …

In elementary arithmetic the two‐dimensional character
of the paper is sometimes used. But such a use is always
avoidable, and I think that it will be agreed that the two‐
dimensional character of paper is no essential of
computation. (Section 9(I), para. 1, p. 249.)

In other words, we could have just as well (if not just as
easily) written the computation something like this:

1 4 3 + 8 7 = 1 3 0

Here, we begin by writing the problem ‘43+87’ in five
successive squares, followed, perhaps, by an equal sign.
And we can write the answer in the squares following the
equal sign, writing the carried ‘1’ in an empty square
somewhere else, clearly separated (here, by a blank
square) from the problem. So, the use of two‐dimensional



graph paper has been avoided (at the cost of some extra
bookkeeping). As a consequence, Turing can say:

I assume then that the computation is carried out on
one‐dimensional paper, i.e. on a tape divided into

squares. (Section 9(I), para. 1, p. 249, my boldface.)
We now have our paper on which we can write our
symbols: the famous tape of what will become a Turing
Machine! Note, though, that Turing has not yet said
anything about the length of the tape; at this point, it could
be finite.5

It is, perhaps, worth noting that the tape doesn't have to be
this simple. As Kleene observed (although Shagrir, 2022,
pp. 38–39 disagrees!),

[T]he computer is [not] restricted to taking an ant's eye
view of its work, squinting at the symbol on one square
at a time. … [T]he Turing‐machine squares can
correspond to whole sheets of paper. If we employ sheets
ruled into 20 columns and 30 lines, and authorize 99
primary symbols, there are  possible
square conditions, and we are at the opposite extreme.
The schoolboy [sic] doing arithmetic on  by 12” sheets
of ruled paper would never need, and could never utilize,
all this variety.
Another representation of a Turing machine tape is as a
stack of IBM cards, each card regarded as a single
square for the machine. (Kleene, 1995, p. 26)

What Kind of Symbols?

I shall also suppose that the number of symbols which

may be printed is finite. (Section 9(I), para. 1, p. 249, my
italics.)



This is the first item that Turing has put a limitation on.
Actually, Turing is a bit ambiguous here: there might be
infinitely many different kinds of symbols, but we're only
allowed to print a finite number of them. Or there might
only be a finite number of different kinds of symbols – with
a further vagueness about how many of them we can print:
if the tape is finite, then we can only print a finite number
of the finite amount of symbols, but if the tape is infinite,
we could print infinitely many of the finite amount of
symbols. But it is clear from what he says next that he
means there are only a finite number of different kinds of
symbols.
Why finite? Because

If we were to allow an infinity of symbols, then there
would be symbols differing to an arbitrarily small extent.
(Section 9(I), para. 1, p. 249.)

There are two things to consider here: Why would this be
the case? And why does it matter? The answer to both of
these questions is easy: if the human who is doing the
computation has to be able to identify and distinguish
among infinitely many symbols, surely some of them may
get confused, especially if they look a lot alike! Would they
have to look alike? A footnote at this point suggests why
the answer is ‘yes’:

If we regard a symbol as literally printed on a square we
may suppose that the square is . The
symbol is defined as a set of points in this square, viz.
the set occupied by printer's ink. (Section 9(I), para. 1,
p. 249, footnote.)

That is, we may suppose that the square is, say, 1 cm by
1 cm. Any symbol has to be printed in this space. Imagine
that each symbol consists of very tiny points of ink. To be
able to print infinitely many different kinds of symbols in



such a square, some of them are going to differ from others
by just a single point of ink, and any two such symbols are
going to “differ to an arbitrarily small extent” and, thus, be
impossible for a human to distinguish. So, “the number of
symbols which may be printed” must be finite in order for
the human to be able to easily read them.
Is this really a limitation?

The effect of this restriction of the number of symbols is
not very serious.
(Section 9(I), para. 1, p. 249.)

Why not? Because

It is always possible to use sequences of symbols in the
place of single symbols. Thus an Arabic numeral such as
17 or 999999999999999 is normally treated as a single
symbol. Similarly in any European language words are
treated as single symbols … (Section 9(I), para. 1,
pp. 249–250.)

In other words, the familiar idea of treating a sequence of
symbols (a “string” of symbols, as mathematicians
sometimes say) as if it were a single symbol allows us to
construct as many symbols as we want from a finite
number of building blocks. That is, the rules of place‐value
notation (for Arabic numerals) and spelling (for words in
European languages) – i.e. rules that tell us how to
“concatenate” our symbols (to string them together) – give
us an arbitrarily large number (although still finite!) of
symbols.
What about non‐European languages? Turing makes a
(possibly politically incorrect) comment:

… (Chinese, however, attempts to have an enumerable
infinity of symbols). (Section 9(I), para. 1, p. 250.)



Chinese writing is pictographic and thus would seem to
allow for symbols that run the risk of differing by an
arbitrarily small extent, or, at least, that do not have to be
constructed from a finite set of elementary symbols. As
Turing also notes, using a finite number of basic symbols
and rules for constructing complex symbols from them does
not necessarily avoid the problem of not being able to
identify or differentiate them:

The differences from our point of view between the
single and compound symbols is that the compound
symbols, if they are too lengthy, cannot be observed at
one glance. This is in accordance with experience. We
cannot tell at a glance whether 9999999999999999 and
999999999999999 are the same. (Section 9(I), para. 1,
p. 250.)

And probably you can't, either! So doesn't this mean, even
with a finite number of symbols, that we're no better off
than with infinitely many? Although Turing doesn't say so,
we can solve this problem using the techniques he's given
us: don't try to write 15 or 16 occurrences of ‘9’ inside one,
tiny square – write each ‘9’ in a separate square! And then
count them to decide which sequence of them contains 15
and which contains 16, which is exactly how you “can tell …
whether 9999999999999999 and 999999999999999 are
the same.”
Incidentally, Kleene (1995, p. 19) observes that Turing's
emphasis on not allowing “an infinity of symbols” that
“differ … to an arbitrarily small extent” marks the
distinction between “digital computation rather than
analog computation.”
The other thing that Turing leaves unspecified here is the
minimum number of elementary symbols we need. The
answer, as we saw in Section 7.4.1, is two (they could be a



blank and ‘1,’ or ‘0’ and ‘1,’ or any other two symbols).
Turing himself will use a few more (just as we did in our
addition example, allowing for the 10 single‐digit numerals
together with ‘+’ and ‘=’).

8.7.3 States of Mind

So, let's assume that, to compute, we only need a one‐
dimensional tape divided into squares and a finite number
of symbols (minimally, two). What else?

(*) The behaviour of the computer at any moment is
determined by the symbols which he is observing, and
his “state of mind” at that moment. (Section 9(I),
para. 2, p. 250, my label and italics.)

I have always found this to be one of the most astounding
and puzzling sentences! ‘computer’? ‘he’? ‘his’? But it is
only astounding or puzzling to those of us who live in the
late twentieth/early twenty‐first century, when computers
are machines, not humans! Recall the ad from the 1892
New York Times for a (human) computer (Section 6.1). In
1936, when Turing was writing this article, computers were

still humans, not machines. So, throughout this paper,
whenever Turing uses the word ‘computer,’ he means a
human whose job it is to compute. I strongly recommend
replacing (in your mind's ear, so to speak) each occurrence
of the word ‘computer’ in this paper with the word ‘clerk.’6

So, “the behavior of the clerk at any moment is determined
by the symbols which he [or she!] is observing.” In other
words, the clerk decides what to do next by looking at the
symbols, and which symbols the clerk looks at partially

determines what the clerk will do. Why do I say ‘partially’?
Because the clerk also needs to know what to do with them:
if the clerk is looking at two numerals, should they be
added? Subtracted? Compared? The other information that



the clerk needs is his or her “state of mind.” What is that?
Let's hold off on answering that question till we see what
else Turing has to say.

We may suppose that there is a bound B to the number

of symbols or squares which the computer [the clerk!]

can observe at one moment. If he[!] wishes to observe
more, he must use successive observations. (Section 9(I),
para. 2, p. 250, my italics.)

This is the second kind of finiteness: we have a finite
number of different kinds of symbols and a finite number of
them that can be observed at any given time. This upper
bound  can be quite small; in fact,  in most formal,
mathematical presentations of Turing Machines. But Turing
is allowing for  to be large enough that the clerk can read
a single word without having to spell it out letter by letter,
or a single numeral without having to count the number of
its digits (presumably, the length of ‘9999999999999999’
exceeds any reasonable  for humans). “Successive
observations” will require the clerk to be able to move his
or her eyes one square at a time to the left or right.

We will also suppose that the number of states of mind

which need to be taken into account is finite. (Section
9(I), para. 2, p. 250, my italics.)

Here, we have a third kind of finiteness. But we still don't
know exactly what a “state of mind” is. Turing does tell us
that:

If we admitted an infinity of states of mind, some of them
will be “arbitrarily close” and will be confused. (Section
9(I), para. 2, p. 250.)

– just as is the case with the number of symbols. And he
also tells us that “the use of more complicated states of
mind can be avoided by writing more symbols on the tape”



(p. 250), but why that is the case is not at all obvious at this
point. Keep in mind, however, that we have jumped ahead
from Turing's Section 1, so perhaps something that he said
between then and now would have clarified this.
Nevertheless, let's see what we can figure out. (For more
on the notion of bounds, see Sieg, 2006, p. 16.)

8.7.4 Operations

So, a clerk who is going to compute needs only a (possibly
finite) tape divided into squares and a finite number of
different kinds of symbols; the clerk can look at only a
bounded number of them at a time; and the clerk can be in
only a finite number of “states of mind” at a time.
Moreover, what the clerk can do (the clerk's “behavior”) is
determined by the observed symbols and his or her “state
of mind.”
What kinds of behaviors can the clerk perform?

Let us imagine the operations performed by the
computer [the clerk] to be split up into “simple

operations” which are so elementary that it is not easy to
imagine them further divided. (Section 9(I), para. 3,
p. 250, my italics.)

These are going to be the basic operations, the ones that all
other operations will be constructed from. What could they
be? This is an important question, because this will be the
heart of computation.

Every such operation consists of some change of the

physical system consisting of the computer [the clerk]
and his[!] tape. (Section 9(I), para. 3, p. 250, my italics.)

So, what “changes of the physical system” can the clerk
make? The only things that can be changed are the clerk's
state of mind (i.e. the clerk can change his or her mind, so



to speak) and the tape, which would mean changing a
symbol on the tape or changing which symbol is being
observed. What else could there be? That's all we have to
manipulate: the clerk, the tape, and the symbols. And all
we've been told so far is that the clerk can write a symbol
on the tape or observe one that's already written. Turing
makes this clear in the next sentence:

We know the state of the system if we know the
sequence of symbols on the tape, which of these are
observed by the computer [by the clerk] (possibly with a
special order), and the state of mind of the computer [of
the clerk]. (Section 9(I), para. 3, p. 250.)

The “physical system” is the clerk, the tape, and the
symbols. The only things we can know, or need to know,
are

which symbols are on the tape,
where they are (their “sequence”),
which are being observed and in which order (the clerk
might be looking from left to right, from right to left,
and so on), and
what the clerk's (still mysterious) “state of mind” is.

Here is the first “simple operation”:

We may suppose that in a simple operation not more
than one symbol is altered. Any other changes can be
split up into simple changes of this kind.
(Section 9(I), para. 3, p. 250, my italics.)

Altering a single symbol in a single square is a “simple”
operation, i.e. a “basic” operation (or “basic program” in
the sense of our discussion in Chapter 7). Alterations of
sequences of symbols can be accomplished by altering the
single symbols in the sequence. How do you alter a symbol?



You replace it with another one; i.e. you write down a
(possibly different) symbol. (And perhaps you are allowed
to erase a symbol, but that can be thought of as writing a
special “blank” symbol, ‘ .’) However, the ability to erase
has a downside: it destroys information, making it difficult,
if not impossible, to reverse a computation (B. Hayes,
2014b, p. 23; recall Section 7.4.2).
Which symbols can be altered? If the clerk is looking at the
symbol in the first square, can the clerk alter the symbol in
the 15th square? Yes, but only by first observing the 15th
square and then changing it:

The situation in regard to the squares whose symbols
may be altered in this way is the same as in regard to the
observed squares. We may, therefore, without loss of
generality, assume that the squares whose symbols are
changed are always “observed” squares. (Section 9(I),
para. 3, p.  250.)

But wait a minute! If the clerk has to be able to find the
15th square, isn't that a kind of operation?

8.7.5 Another “Simple Operation”

Yes:

Besides these changes of symbols, the simple operations
must include changes of distribution of observed
squares. The new observed squares must be immediately
recognisable by the computer [by the clerk]. (Section
9(I), para. 4, p. 250.)

And how does the clerk do that? Is “finding the 15th
square” a “simple” operation? Maybe. How about “finding
the 9999999999999999th square”? No:



I think it is reasonable to suppose that they can only be
squares whose distance from the closest of the
immediately previously observed squares does not
exceed a certain fixed amount. Let us say that each of
the new observed squares is within  squares of an
immediately previously observed square. (Section 9(I),
para. 4, p. 250.)

So here we have a fourth kind of boundedness or finiteness:
the clerk can only look a certain bounded distance away.
How far can the distance be? Some plausible lengths are
the length of a typical word or small numeral (so  could
equal ). The minimum is, of course, one square (taking 

). So, another “simple” operation is looking one
square to the left or to the right (and, of course, the ability
to repeat that operation, so that the clerk can, eventually,
find the 15th or 9999999999999999th square).

8.7.6 “Immediate Recognisability”

What about a different kind of candidate for a “simple”
operation – “find a square that contains the special symbol 

”:
In connection with “immediate recognisability,” it may
be thought that there are other kinds of square which
are immediately recognisable. In particular, squares
marked by special symbols might be taken as
immediately recognisable. Now if these squares are
marked only by single symbols there can be only a finite
number of them, and we should not upset our theory by
adjoining these marked squares to the observed squares.
(Section 9(I), para. 5, pp. 250–251.)

So, Turing allows such an operation as being “simple,”
because it doesn't violate the finiteness limitations. But he
doesn't have to allow it. How would the clerk be able to find



the only square that contains the special symbol 
(assuming that there is one)? By first observing the current
square. If  isn't on that square, then observe the next
square to the left. If  isn't on that square, then observe
the square to the right of the first one (by observing the
square two squares to the right of the current one). And so
on, moving back and forth, until a square with  is found.
What if the clerk needs to find a sequence of squares
marked with a sequence of special symbols?

If, on the other hand, they [i.e. the squares marked by
special symbols] are marked by a sequence of symbols,
we cannot regard the process of recognition as a simple
process. (Section 9(I), para. 5, p. 251.)

I won't follow Turing's illustration of how this can be done.
Suffice it to say that it is similar to what I just sketched out
as a way of avoiding having to include “finding a special
square” as a “simple” operation, and Turing admits as
much:

If in spite of this it is still thought that there are other
“immediately recognisable” squares, it does not upset my
contention so long as these squares can be found by
some process of which my type of machine is capable.
(Section 9(I), para. 5, p. 251.)

In other words, other apparently “simple” operations that
can be analyzed into some combination of the simplest
operations of writing a symbol and observing are
acceptable. It is worth noting that this can be interpreted
as a claim that “subroutines” can be thought of as single
operations – this is the “procedural abstraction” or “named
procedure” operation discussed in Section 7.4.3.3.

8.7.7 Summary of Operations



Turing now summarizes his analysis of the minimum that a
human computer (a “clerk”) needs to be able to do in order
to compute:

The simple operations must therefore include:
(a) Changes of the symbol on one of the observed
squares.
(b) Changes of one of the squares observed to
another square within  squares of one of the
previously observed squares.

It may be that some of these changes necessarily involve
a change of state of mind. The most general single
operation must therefore be taken to be one of the
following:

(A) A possible change ( ) of symbol together with a
possible change of state of mind.
(B) A possible change ( ) of observed squares,
together with a possible change of state of mind.
(Section 9(I), para. 6, p. 251.)

In other words, the two basic operations are ( ) to write a
symbol on the tape (and to change your “state of mind”)
and ( ) to look somewhere else on the tape (and to change
your “state of mind”). That's it: writing and looking! Well,
and “changing your state of mind,” which we haven't yet
clarified but will, next.

8.7.8 “States of Mind”

Conditions and Actions

How does the clerk know which of these two things
(writing or looking) to do? Turing's next remark tells us:



The operation actually performed is determined, as has
been suggested on p. 250, by the state of mind of the
computer [i.e. of the clerk] and the observed symbols. In
particular, they determine the state of mind of the
computer [i.e. of the clerk] after the operation is carried
out. (Section 9(I), para. 7, p. 251, my italics.)

The passage on p. 250 that Turing is referring to is the one
that I marked ‘(*)’ and called ‘astounding’ earlier; it says
roughly the same thing as the present passage. So, what
Turing is saying here is that the clerk should

first consider his or her state of mind and where he or
she is currently looking on the paper – i.e. consider the
current condition of the clerk and the paper,
then decide what to do next
(either write something there or look somewhere else)
– i.e. perform an action,
and

finally, change his or her state of mind.
Of course, after doing that, the clerk is in a (possibly) new
condition – a (possibly) new state of mind and looking at a
(possibly) new location on the paper – which means the
clerk is ready to do the next thing.

States of Mind, Clarified

Now, think about a typical computer program, especially an
old‐fashioned one, such as those written in (early versions
of) Basic or Fortran, where each line of the program has a
line number and a statement to be executed (a
“command”). The computer (here I mean the machine, not
a clerk!) starts at the first line number, executes the
command, and then (typically) moves to the next line
number. In “atypical” cases, the command might be a



“jump” or “go to” command, which causes the computer to
move to a different line number. At whatever line number
the computer has moved to after executing the first
command, it executes the command at that new line
number. And so on.
But if you compare this description with Turing's, you will
see that what corresponds to the line number of a program

is Turing's notion of a “state of mind”! What corresponds to
the currently observed symbol? It is the current input to
the program! (Or, perhaps slightly more accurately, it is
the current state of all “switches” or registers.)
So, let's paraphrase Turing's description of the basic
operation that a clerk performs when computing. We'll
write the paraphrase in terms of a computer program that
the clerk is following:

The operation performed is determined by the current
line number of the program and the current input. The
simple operations are: (a) print a symbol and (b) move 1
square left or right on the tape (which is tantamount to
accepting new input), followed by changing to a new line
number.

We can also say this in a slightly different way:

If the current line number is  and the current input is 
,

then print or move (or both) and go to line .
And a program for such a computer will consist of lines of
“code” that look like this:



8.7.9 Turing Machines, Turing's

Thesis, and AI

The Turing Machine

I said earlier that passage (*) was “astounding”; here is its
sequel:

We may now construct a machine to do the work of this
computer.
(Section 9(I), para. 8, p. 251, my italics.)

Remember: a “computer” (for Turing) is not a machine but
a human clerk who computes. And what Turing is now
saying is that the human can be replaced by a machine: i.e.
by what we now call a computer (a mechanical device).
This sentence marks the end of Turing's analysis of what a
human computer does and the beginning of his
mathematical construction of a mechanical computer that
can do what the human does. His description of it here is
very compact; it begins as follows:

To each state of mind of the computer [of the clerk!]
corresponds an
“ ‐configuration” of the machine. (Section 9(I), para. 8,
p. 251.)

So, an ‐configuration is something in the machine that
corresponds to a clerk's “state of mind”; it is a line number
of a program.7 But considering modern computers and



programs, programs are separate from the computers that
run them, so what could Turing mean when he says that an 

‐configuration belongs to a machine? He means the
machine is “hardwired” (as we would now say) to execute
exactly one program (exactly one algorithm). Being
hardwired, no separate program needs to be written out; it
is already “compiled” into the machine. It is the “gears” of
the “function machine” of Section 7.2.4. A “Turing
Machine” can do one and only one thing; it can compute
one and only one function, using an algorithm that is
hardwired into it.
Turing continues:

The machine scans  squares corresponding to the 
squares observed by the computer. (Section 9(I), para. 8,
p. 251, my italics.)

In more modern language, the computer scans  squares
corresponding to the  squares observed by the clerk. The
clerk is limited to observing a maximum of  squares on
the tape, as we saw earlier (in an earlier quote from
p. 250). The machine analogue of that is to read, or “scan,” 

 squares.
Turing continues:

In any move the machine can change a symbol on a
scanned square or can change any one of the scanned
squares to another square distant not more than 
squares from one of the other scanned squares. Section
9(I), para. 8, pp. 251–252.)

In other words, the machine (the Turing Machine, or
modern hardwired computer) can pay attention to 
squares at a time, and each line of its program allows it to
print a new symbol on any of those squares or move to any
other square that is no more than  squares away from any



of the  squares. Modern treatments simplify this: the
machine is scanning a single square ( ), and each line
of its program allows it to print a new symbol on that
square or to move one square ( ) to its left or right (or
both print and move).
Which “move” should the machine make?

The move which is done, and the succeeding
configuration, [i.e. the next ‐configuration; i.e. the
next step in the algorithm], are determined by the
scanned symbol and the [current] ‐configuration.
(Section 9(I), para. 8, p. 252.)

That is, the move that the machine should make, as well as
the next ‐configuration (i.e. the next step in the
algorithm) are determined by the currently scanned symbol
and the current ‐configuration. Or, put in terms of
computer programs, the instruction on the current line
number together with the current input together determine
what to do now (print, move, or both) and what to do next

(which instruction to carry out next).

Digression: When we think of a machine that prints on
a tape, we usually think of the tape as moving through a
stationary machine. But in the case of the Turing
Machine, it is the machine that moves, not the tape! The
reason for this is simple: the machine is simulating the
actions of a human computer, who writes on different
parts of a piece of paper – it is the human who moves,
not the paper.

Turing's (Computability) Thesis



The machines just described do not differ very
essentially from computing machines as defined in §2,
and corresponding to any machine of this type a
computing machine can be constructed to compute the
same sequence, that is to say the sequence computed by
the computer. (Section 9(I), para. 8, p. 252.)

As for the first clause, please recall that we are in the
middle of a very long digression in which we have skipped
ahead to Turing's Section 9 from Turing's Section 1; we
have not yet read Turing's Section 2. When we do, we will
see a more detailed version of the machines that Turing has
just described for us here in Section 9.
The next clause is a bit ambiguous. When Turing says “any
machine of this type,” is he referring to the machines of
Section 9 or the machines of Section 2? It probably doesn't
matter, because he has said that the two kinds of machines
“do not differ very essentially” from each other. But I think
he is, in fact, referring to the machines of Section 9;
“computing machines” are the ones that are “defined in
Section 2.”
The last phrase is of more significance: these
(“computing”) machines (of Turing's Section 2) “compute
the same sequence … computed by the” clerk. In other
words, whatever a human clerk can do, these machines can
also do. What a human clerk can do (i.e. which sequences,
or functions, a human clerk can compute) is captured by
the informal notion of algorithm or computation. “These
machines” are a formal counterpart of that informal notion.
So this last phrase is a statement of Turing's Thesis (i.e. the
Computability Thesis).
What about the other direction? Can a human clerk do
everything that one of these machines can do? Or are these
machines in some way more powerful than humans? I think
the answer should be fairly obvious: given the way the



machines are constructed on the basis of what it is that
humans can do, surely a human could follow one of the
programs for these machines. So humans can do everything
that one of the machines can do, and – by Turing's Thesis –
these machines can do everything that humans can do
(well, everything that is computable in the informal sense).
But these are contentious matters, and we will return to
them when we consider the controversies surrounding
hypercomputation (Chapter 11) and AI (Chapter 18).

Turing Machines as AI Programs

As we have seen, in order to investigate the
Entscheidungsproblem,

… Turing asked in the historical context in which he
found himself the pertinent question: namely, what are
the possible processes a human being can carry out
(when computing a number or, equivalently, determining
algorithmically the value of a number theoretic
function)? (Sieg, 2000, p. 6; original italics, my boldface)

That is,

Turing machines appear [in Turing's paper] as a result, a
codification, of his analysis of calculations by humans.
(Gandy, 1988, p. 82)

This strategy underlies much of CS, as Alan Perlis
observed:

The intent [of a first computer science course should be]
to reveal, through … examples, how analysis of some
intuitively performed human tasks leads to mechanical

algorithms accomplishable by a machine. (Perlis, 1962,
p. 189, my italics)

But not just CS in general. The branch of CS that analyzes
how humans perform a task and then designs computer



programs to do the same thing is AI; so, in Section 9,
Turing has developed the first AI program! After all, he
showed that human computation is mathematically
computable; i.e. he showed that a certain kind of human
cognitive process was computable – and that's one of the
definitions of AI.
One of the founders of AI, John McCarthy, made a similar
observation:

The subject of computation is essentially that of artificial
intelligence since the development of computation is in
the direction of making machines carry out ever more
complex and sophisticated processes, i.e. to behave as
intelligently as possible. (McCarthy, 1963, Section 4.2,
p. 38).

This follows from McCarthy's earlier definition (see Section
3.16.5) of computation as the science of how to get
machines to carry out intellectual processes.
Turing was not unaware of this aspect of his work:

One way of setting about our task of building a ‘thinking
machine’ would be to take a man [sic] as a whole and to
try to replace all the parts of him by machinery. (Turing,
1948, p. 420, as cited in Proudfoot and Copeland, 2012,
p. 2)

But that's almost exactly what Turing's analysis of human
computation in his 1936 paper does (at least in part): it
takes a human's computational abilities and “replaces”
them by (abstract) machinery.



8.8 “Computing Machines”

We have come to the end of our digression into Turing's
Section 9. Let's return to his Section 1, “Computing
Machines.”

8.8.1 “Man” and “Machine”

In paragraph 2, Turing gives a more detailed presentation
of his abstract computing machine, the outcome of his
detailed analysis from Section 9 of human computing. He
begins as follows:

We may compare a man in the process of computing a
real number to a machine which is only capable of a
finite number of conditions  which will be
called “ ‐configurations.” (Section 1, para. 2, p. 231.)

Why “may” we do this? Turing will give his justification in
his Section 9, which we have just finished studying. By a
“man,” Turing of course means a human, not merely a male
human. And, as we have already seen, an ‐configuration
is a line of a computer program, i.e. a step in an algorithm.
Here, Turing is saying that each such algorithm has a finite
number (namely, ) of steps, each labeled . Put
otherwise, (human, or informal) computation can be
“compared to” (and, by Turing's Thesis, identified with) a
finite algorithm.
What else is needed?

The machine is supplied with a “tape” (the analogue of
paper) running through it, and divided into sections
(called “squares”) each capable of bearing a “symbol.”
(Section 1, para. 2, p. 231.)



There are a couple of things to note here. First, from our
study of Turing's Section 9, we know why this is the case
and what, exactly, the tape, squares, and symbols are
supposed to be and why they are the way they are. But
second, why does he put those three words in “scare
quotes”? There are two possible answers. I suspect that the
real answer is that Turing hasn't, at this point in his paper,
explained in detail what they are; that comes later, in his
Section 9.
But there is also a mathematical or logical reason: in
Turing's formal notion of a computing machine, the
concepts of “tape,” “squares,” and “symbols” are really
undefined (or primitive) terms in exactly the same way that
‘point,’ ‘line,’ and ‘plane’ are undefined (or primitive) terms
in Euclidean plane geometry. As Hilbert famously observed,
“One must be able to say at all times – instead of points,
lines, and planes – tables, chairs, and beer mugs.” So, here,
too, one must be able to say at all times – instead of tapes,
squares, and symbols – tables, chairs, and beer mugs. (But
I'll use place settings instead of chairs; it will make more
sense, as you will see.) A Turing Machine, we might say,
must have a table.8 Each table must have a sequence of
place settings associated with it (so we must be able to talk
about the th place setting at a table). And each place
setting can have a beer mug on it; there might be different
kinds of beer mugs, but they have to be able to be
distinguished from each other so we don't confuse them. In
other words, it is the logical or mathematical structure of

a computing machine that matters, not what it is made of.
So, a “tape” doesn't have to be made of paper (it could be a
table), a “square” doesn't have to be a regular quadrilateral
that is physically part of the “tape” (it could be a place
setting at a table), and “symbols” only have to be such that
a “square” can “bear” one (e.g. a numeral can be written



on a square of the tape, or a beer mug can be placed at a
place setting belonging to a table).9

Turing continues:

At any moment there is just one square, say the ‐th,
bearing the symbol  which is “in the machine.” We
may call this square the “scanned square.”
(Section 1, para. 2, p. 231.)

First, ‘ ’ is just the capital letter ‘ ’ in a font called
“German Fraktur” or “black letter.” It's a bit hard to read,
so I will replace it with ‘ ’ in what follows (even when
quoting Turing).
Note, second, that this seems to be a slight simplification of
his Section 9 analysis, with . Second, being “in the
machine” might be another undefined (or primitive) term
merely indicating a relationship between the machine and
something else. But what?

Grammatical Digression: Turing's lack of punctuation
allows for some ambiguity. On the one hand, if ‘which’
had been preceded by a comma, then “which is ‘in the
machine’ ” would have been a “non‐restrictive relative
clause” that refers to the square. On the other hand,
with no comma, the “which” clause is a “restrictive”
relative clause modifying ‘symbol .’ (On relative
clauses, see “ ‘Which’ vs. ‘that’ ” at
http://www.cse.buffalo.edu/
∼rapaport/howtowrite.html#whichVthat.)

The “something else” might be the scanned square, or it
might be the symbol (whatever it is, ‘0,’ ‘1,’ or a beer mug)
that is in the machine. I think it is the former, from remarks
that he makes next:

http://www.cse.buffalo.edu/~rapaport/howtowrite.html#whichVthat


The symbol on the scanned square may be called the
“scanned symbol.” The “scanned symbol” is the only one
of which the machine is, so to speak, “directly aware.”
(Section 1, para. 2, p. 231.)

Here, Turing's scare quotes around ‘directly aware,’
together with the hedge ‘so to speak,’ clearly indicate that
he is not intending to anthropomorphize his machine. His
machines are not really “aware” of anything; only humans
can really be “aware” of things. But the machine analogue
of human awareness is: being a scanned symbol. There is
nothing anthropomorphic about that: either a square is
being scanned (perhaps a light is shining on a particular
place setting at the table) or it isn't, and either there is a
symbol on the scanned square (there is a beer mug at the
lighted place setting) or there isn't.

However, by altering its ‐configuration the machine
can effectively remember some of the symbols which it
has “seen” (scanned) previously. (Section 1, para. 2,
p. 231.)

What does this mean? Let's try to paraphrase it: “By
altering the line number of its program, the computing
machine can effectively …” – can effectively do what? It can
“remember previously scanned symbols.” This is to be
contrasted with the currently scanned symbol. How does
the machine “remember” by altering a line number? Well,
how would it “remember” what symbol was on, say, the
third square if it's now on the fourth square? It would have
to move left one square and scan the symbol that's there.
To do that, it would have to have an instruction to move
left. And to do that, it would need to go to that instruction,
which is just another way of saying that it would have to
“alter its ‐configuration.”10



The possible behaviour of the machine at any moment is
determined by the

‐configuration  and the scanned symbol .
(Section 1, para. 2, p. 231, my italics.)

It is only a possible behavior, because a given line of a
program is only executed when control has passed to that
line. If it is not being executed at a given moment, then it is
only possible behavior, not actual behavior. The machine's 

‐configuration is the analogue of a line number of a
program, and the scanned symbol is the analogue of the
machine's input. (We'll return to this in Section 8.9.1,
below, and Chapters 11 and 16.)

This pair  will be called the “configuration”: thus
the configuration determines the possible behaviour of
the machine. (Section 1, para. 2, p. 231.)

Giving a single name (‘configuration’) to the combination of
the ‐configuration and the currently scanned symbol
reinforces the idea that the ‐configuration alone is an
analogue of a line number and that this combination is the
condition (or antecedent) of a conditional statement (a
condition‐action pair): line  begins, “if the currently
scanned symbol is , then …,” or “if the current
instruction is the one on line and if the currently
scanned symbol is , then ….”
What follows the ‘then’? That is, what should the machine
do if the condition is satisfied?



In some of the configurations in which the scanned
square is blank (i.e. bears no symbol) the machine
writes down a new symbol on the scanned square: in
other configurations it erases the scanned symbol. The
machine may also change the square which is being
scanned, but only by shifting it one place to right or left.
In addition to any of these operations the m‐

configuration may be changed.
(Section 1, para. 2, p. 231, my boldface)

So, we have five operations:
1. write a new symbol
2. erase the scanned symbol
3. shift 1 square left
4. shift 1 square right
5. change ‐configuration.

There are four things to note:
a. The symbols are left unspecified (which is why we can

feel free to add a “blank” symbol), although, as we have
seen, they can be limited to just ‘0’ and ‘1’ (and maybe
also ‘ ’).

b. Turing has, again, simplified his Section 9 analysis,
letting .

c. “Change ‐configuration” is essentially a “jump” or
“go to” instruction.

d. There is no “halt” command. (In Section 8.9.5, we will
see why this is not needed.)

Turing next clarifies what symbols are needed. Recall that
the kind of computation that Turing is interested in is the
computation of the decimal of a real number.



Some of the symbols written down will form the
sequence of figures which is the decimal of the real
number which is being computed. The others are just
rough notes to “assist the memory.” It will only be these
rough notes which will be liable to erasure. (Section 1,
para. 2, pp. 231–232.)

So, either we need symbols for the 10 Arabic numerals (if
we write the real number in decimal notation) or we only
need symbols for the 2 binary numerals (if we write the
real number in binary notation). Any other symbols are
merely used for bookkeeping, and they (and only they) can
be erased afterward, leaving a “clean” tape with only the
answer on it.
There is one more thing to keep in mind: every real number
(in decimal notation)11 has an infinite sequence of digits to
the right of the decimal point, even if it is an integer or (a
non‐integer) rational number, which are typically written
with either no digits, or a finite number of digits, in the
decimal expansion (1, 1.0, 2.5, etc.). If the number is an
integer, this is an infinite sequence of ‘0’s; for example, 

 (which I will abbreviate as ). If
the number is rational, this is an infinite sequence of some
repeating subsequence; for example:

And if the number is irrational, this is an infinite, non‐

repeating sequence; for example:



This means one of Turing's computing machines should
never halt when computing (i.e. writing out) the decimal of
a real number. It should only halt if it is writing down a
finite sequence, and it can do this in two ways: it can write
down the finite sequence and then halt. Or it can write
down the finite sequence and then go into an infinite loop
(either rewriting the last digit over and over in the same
square, or just looping in a do‐nothing operation such as
the empty program).

8.8.2 Closure Clause: Turing's Thesis

Finally,

It is my contention that these operations include all those
which are used in the computation of a number. (Section
1, para. 3, p. 232.)

This is another statement of Turing's version of the
Computability Thesis: to compute, all you have to do is
arrange the operations of writing and shifting in a certain
way. The way they are arranged – what is now called “the
control structure of a computer program” – is controlled by
the “configuration” and the change in ‐configuration (or,
in modern structured programming, by Böhm and
Jacopini's three control structures (i.e. grammar rules) of
sequence, selection, and while‐repetition). For Turing, it
goes unsaid that all computation can be reduced to the
computation of a number; this is the insight we discussed
in Section 7.4.1 that all the information about any
computable problem can be represented using only ‘0’ and
‘1’; hence, any information – including pictures and sounds
– can be represented numerically. (But it is also important
to realize that this kind of universal binary representation
of information doesn't have to be thought of as a number,
because the two symbols don't have to be ‘0’ and ‘1’!)



8.9 Section 2: “Definitions”

We are now ready to look at the section in which Turing's
“computing machines” are defined.

8.9.1 “Automatic Machines”

Turing begins by giving us a sequence of definitions. The
first is the most famous:

If at each stage the motion of a machine (in the sense of
Section 1) is completely determined by the configuration,
we shall call the machine an “automatic machine” (or ‐
machine). (“Automatic machines,” para. 1, p. 232.)

Turing may have called such a machine an ‘ ‐machine.’ We

now call them – in his honor – ‘Turing Machines.’ (Alonzo
Church (1937) seems to have been the first person to use
this term, in his review of Turing's paper.)
Clearly, such a machine's “motion” (or behavior) is at least
partly determined by its configuration (i.e. by its ‐
configuration, or line number, together with its currently
scanned symbol). Might it be determined by anything else?
For all that Turing has said so far, maybe such a machine's
human operator could “help” it along by moving the tape
for it, or by writing something on the tape. This definition
rules that out by limiting our consideration to such
machines whose “motion” “is completely determined by the
configuration.” So, a human operator is not allowed to
“help” it in any way: no cheating allowed!

8.9.2 “Choice Machines”

What about machines that do get outside help?



For some purposes we might use machines (choice
machines or ‐machines) whose motion is only partially
determined by the configuration (hence the use of the
word “possible” in Section 1). When such a machine
reaches one of these ambiguous configurations, it cannot
go on until some arbitrary choice has been made by an
external operator. (“Automatic machines,” para. 2,
p. 232.)

Turing's explanation of the use of ‘possible’ may be slightly
different from mine. But I think they are consistent. In the
previous statements, Turing used ‘possible’ to limit the kind
of operations that a Turing Machine could perform. Here,
he is introducing a kind of machine that has another kind of
possible operation: writing, moving, or changing ‐
configuration not as the result of an explicit instruction but

as the result of a “choice … made by an external operator.”
Note that this external operator doesn't have to be a

human; it could be another Turing Machine! Such ‐
machines – which allow for external (or “interactive”) input
– are closely related to “oracle” machines, which Turing
introduced in his doctoral dissertation. We will return to
this in Chapter 11.

8.9.3 “Computing Machines”

Turing gives us some more definitions:
If an ‐machine prints two kinds of symbols, of which
the first kind (called figures) consists entirely of 0 and 1
(the others being called symbols of the second kind),
then the machine will be called a computing machine.
(“Computing machines,” para. 1, p. 232.)

The principal definition here is that of ‘computing
machine,’ a special case of an ‐ (or Turing) machine that
outputs its results as a binary numeral (in accordance with



the Representation insight of Section 7.4.1). Here, Turing
is simplifying his Section 9 analysis of human computation,
restricting the symbols to ‘0’ and ‘1.’ Well, not quite,
because he also allows “symbols of the second kind,” used
for bookkeeping purposes or intermediate computations.
However, any symbol of the second kind could be replaced
– at the computational cost of more processing – by
sequences of ‘0’s and ‘1’s.
Turing continues:

If the machine is supplied with a blank tape and set in
motion, starting from the correct initial ‐configuration,
the subsequence of the symbols printed by it which are
of the first kind will be called the sequence computed by

the machine.
(“Computing machines,” para. 1, p. 232.)

Here, he seems to be allowing for some of the symbols of
the second kind to remain on the tape, so that only a
subsequence of the printed output constitutes the result of
the computation. In other words, these secondary symbols
need not be erased. One way to think of this is to compare
it to the way we write decimal numerals greater than 999:
namely, with the punctuation aid of non‐numerical symbols
(“of the second kind”). In the United States, for example,
they are the ‘comma’ and a ‘decimal point’: 1,234,567.89
In the previous paragraph, I almost wrote, “to remain on
the tape after the computation halts.” But does it halt? It
can't – because every real number has an infinite decimal
part! The secondary symbols could still be erased, during
the computation; that's not of great significance (obviously,
it's easier to not erase them and to just ignore them). The
important point to remember is that computations of
decimal representations of real numbers never halt. We'll
return to this in a moment.



One more small point that simplifies matters:

The real number whose expression as a binary decimal is
obtained by prefacing this sequence by a decimal point is
called the number computed by the machine.
(“Computing machines,” para. 1, p. 232.)

What about the part of the expression that is to the left of
the decimal point? It looks as if the only numbers that
Turing is interested in computing are the reals between 0
and 1 (presumably including 0 but excluding 1).12 Does this
matter? Not really; first, all reals can be mapped to this
interval, and, second, any other real can be computed
simply by computing its “non‐decimal” part in the same
way. Restricting our attention to this subset of the reals
simplifies the discussion without loss of generality. (We'll
return to this in Section 8.9.7.)

8.9.4 “Complete Configurations”

Two more definitions:

At any stage of the motion of the machine, the number of
the scanned square, the complete sequence of all
symbols on the tape, and the ‐configuration will be
said to describe the complete configuration at that stage.
The changes of the machine and tape between
successive complete configurations will be called the
moves of the machine. (“Computing machines,” para. 2,
p. 232.)

Three points to note: first, “at any stage of the motion of
the machine” only a finite number of symbols will have
been printed, so it is perfectly legitimate to speak of “the
complete sequence of all symbols on the tape” even though
every real number has infinitely many numerals after the
decimal point.



Second, the sequence of all symbols on the tape probably
includes all occurrences of ‘ ’ that do not occur after the
last non‐blank square (i.e. that do occur before the last
non‐blank square); otherwise, there would be no way to
distinguish the sequence  from the sequence 

.
Third, we now have three notions called ‘configurations’;
let's summarize them for convenience:

1. ‐configuration = line number, , of a program for a
Turing Machine.

2. Configuration = the pair: ,
where  is the symbol on the currently scanned
square, .

3. Complete configuration = the triple:
, the sequence of all symbols on the tape,13 .

8.9.5 “Circular and Circle‐Free

Machines”

We now come to what I have found to be one of the most
puzzling sections of Turing's paper. It begins with the
following definitions:

If a computing machine never writes down more than a
finite number of symbols of the first kind, it will be called
circular. Otherwise it is said to be circle‐free. (para. 1,
p. 233.)

Let's take this slowly: a computing machine is a Turing
Machine that only prints a binary representation of a real
number together with a few symbols of the second kind. If
such a machine “never writes down more than a finite
number of” ‘0’s and ‘1’s, then, trivially, it has only written



down a finite number of such symbols. That means it has

halted! And in that case, Turing wants to call it ‘circular’!
But to my ears, at least, ‘circular’ sounds like ‘looping,’
which, in turn, sounds like it means “not halting.”
And if it does write down more than a finite number of ‘0’s
and ‘1’s, then, trivially, it writes down infinitely many of
them. That means it does not halt! In that case, Turing
wants to call it ‘circle‐free’! But that sounds like ‘loop‐free,’
which, in turn, sounds like it means it does halt. Other
commentators have made the same observation:

In Turing's terminology, circularity means that the
machine never writes down more than a finite number of
symbols (halting behaviour). A non‐circular machine is a
machine that never halts and keeps printing digits of
some computable sequence of numbers. (De Mol and
Primiero, 2015, pp. 197–198, footnote 11)

What's going on? Before looking ahead to see if, or how,
Turing clarifies this, here's one guess: the only way a
Turing Machine can print a finite number of “figures”
(Turing's name for ‘0’ and ‘1’) and still “be circular” (which
I am interpreting to mean “loop”) is for it to keep repeating
printing – i.e. to “overprint” – some or all of them: i.e. for it
to “circle back” and print some of them over and over
again. (In this case, no “halt” instruction is needed!)
And the only way a Turing Machine can print infinitely
many “figures” and also be “circle‐free” is for it to
continually print new figures to the right of the previous
one that it printed (and thus not “circle back” to a previous
square, overprinting it with the same symbol that's on it).
Is that what Turing has in mind? Let's see.

8.9.6 “Circular” Machines



The next paragraph says,

A machine will be circular if it reaches a configuration
from which there is no possible move or if it goes on
moving, and possibly printing symbols of the second
kind, but cannot print any more symbols of the first kind.
The significance of the term “circular” will be explained
in Section 8. (para. 2, p. 233.)

The first sentence is rather long; let's take it phrase by
phrase: “A machine will be circular” – i.e. will print out only
a finite number of figures – “if [Case 1] it reaches a
configuration from which there is no possible move ….”
That is, it will be circular if it reaches a line number  and
a currently scanned symbol  from which there is no
possible move. How could that be? Easy: if there's no line
of the program of the form “Line : If currently scanned
symbol = then ….” In that case, the machine stops,14

because there's no instruction telling it to do anything.15

That's even more paradoxical than my earlier
interpretation; here, he is clearly saying that a machine is
circular if it halts! Of course, if you are the operator of a
Turing Machine and you are only looking at the tape (and
not at the machinery), would you be able to tell the
difference between a machine that was printing the same
symbol over and over again on the same square and a
machine that was doing nothing?16 Probably not. So, from
an external, behavioral point of view, these would seem to
amount to the same thing.
But Turing goes on: a machine will also be circular “… if
[Case 2] it goes on moving, and possibly printing [only]
symbols of the second kind” but not printing any more
“figures.” Here, the crucial point is that the machine does
not halt but goes on moving. It might or might not print
anything, but if it does, it only prints secondary symbols. So



we have the following possibilities: a machine that keeps on
moving, spewing out square after square of blank tape; or a
machine that keeps on moving, occasionally printing a
secondary symbol. In either case, it has only printed a finite

number of figures. Because it has, therefore, not printed an
infinite decimal representation of a real number, it has, for
all practical purposes, halted – at least in the sense that it
has finished its task, though it has not succeeded in
computing a real number.
Once again, a machine is circular if it halts (for all practical
purposes; it's still working but just not doing anything
significant). This isn't what I had in mind in my earlier
interpretation. But it does seem to be quite clear, no matter
how you interpret what Turing says, that he means that a
circular machine is one that does not compute a real

number, either by halting or by continuing on but doing
nothing useful (not computing a real number). Machines
that do compute real numbers are “circle‐free,” but they
must also never halt; they must loop forever, in modern
terms, but continually do useful work (computing digits of
the decimal expansion of a real number):

A machine that computes a real number in this sense
was called circle‐free; one that does not (because it
never prints more than a finite number of 0s and 1s) was
called circular. (Davis, 1995c, p. 141)

In other words, a “good” Turing Machine is a “circle‐free”
one that does not halt and that continually computes a real
number. This seems to be contrary to modern terminology
and the standard analysis of “algorithms” that we saw in
Section 7.3. And how does this fit in with Turing's claim at
the beginning of his paper that “the ‘computable’ numbers
may be described briefly as the real numbers whose
expressions as a decimal are calculable by finite means”
(my italics)? The only way I can see to make these two



claims consistent is to interpret “by finite means” to refer
to the number of steps in an algorithm, or the amount of
time needed to carry out one step, or the number of
operations needed to carry out one step (in case any of the
steps are not just basic operations). It cannot mean, as we
have just seen, that the entire task can be completed in a
finite amount of time (see Section 11.5) or that it would
necessarily halt.
Finally, what about the allusion to Turing's Section 8
(uninformatively titled “Application of the Diagonal
Process”)? In that section, which we will not investigate,
Turing proves that the Halting Problem is not computable
(more precisely, that a Gödel‐like number of a program for
a problem akin to the Halting Problem is not a computable
number). And, pretty obviously, his proof is a little bit
different from the one that we sketched in Section 7.7
because of the difference between our modern idea that
only Turing Machines that halt are “good” and Turing's
idea that only Turing Machines that are circle‐free are
“good.”



Digression: A Possible Explanation of ‘Circular’: It
is interesting to note that, in French, ‘circular’ would
normally be translated as ‘circulaire.’ Turing wrote a
summary of his 1936 paper in French. In that document,
instead of calling machines that halted without
computing a real number ‘circulaire,’ he called them
‘méchant’ – ‘malicious’! Perhaps he was having second
thoughts about the term ‘circular’ and wanted
something more perspicuous. For more information on
the French summary, see Corry, 2017.
For more on “circularity,” see Petzold, 2008, Ch. 10,
who notes, by the way, that the concept of “halting” was
introduced into the modern literature by Martin Davis
(Petzold, 2008, p. 179), “despite the fact that Turing's
original machines never halt!” (Petzold, 2008, p. 329).
Here is a slightly different observation:

The halting theorem is often attributed to Turing in
his 1936 paper. In fact, Turing did not discuss the
halting problem, which was introduced by Martin
Davis in about 1952. (Copeland and Proudfoot, 2010,
p. 248, col. 2)

This is clarified in Bernhardt, 2016:



The halting problem is probably the most well‐known
undecidable decision problem. However, this is not
the problem that Turing described in his paper.
As Turing described his machines, they did not have
accept states [i.e. they did not halt]. They were
designed to compute real numbers and so would
never stop if computing an irrational number. The
notion of a Turing machine was changed [from
Turing's original ‐machines] to include accept states
by Stephen Kleene and Martin Davis. Once you had
this new formulation of a Turing machine, you could
consider the halting problem. Davis [1958] gave the
halting problem its name. (Bernhardt, 2016, pp. 120–
121; see also p. 142)

For an analysis of these notions in modern terms, see
van Leeuwen and Wiedermann, 2013.

8.9.7 “Computable Sequences and

Numbers”

Here are Turing's final definitions from this section. First:

A sequence is said to be computable if it can be
computed by a circle‐free machine. (p. 233, my italics.)

Although this is presented as a definition of ‘computable
sequence,’ it can, in fact, be understood as another
statement of the Computability Thesis. Being “computable
by a circle‐free machine” is a very precise mathematical
concept. In this definition, I think Turing is best understood
as suggesting that this precise concept should replace the
informal notion of being “computable.” Alternatively,
Turing is saying here that he will use the word
‘computable’ in this very precise way.



Next:

A number is computable if it differs by an integer from
the number computed by a circle‐free machine. (p. 233,
my italics.)

Circle‐free machines compute (by printing out) a sequence
of figures (a sequence of ‘0’s and ‘1’s). Such a sequence
can be considered a decimal (actually, a binary)
representation of a number between 0 and 1 (including 0
but not including 1). Here, Turing is saying that any real
number can be said to be computable if it has the same
decimal part (i.e. the same part after the decimal point) of
a number representable as a computable sequence of
figures. So, for instance,  differs by the
integer 3 from the number 0.1415926535…, which is
computable by a circle‐free Turing Machine; hence,  is
also computable.



8.10 Section 3: “Examples of

Computing Machines”

We are now ready to look at some “real” Turing Machines –
more precisely, “computing machines,” which, recall, are
“automatic” ‐machines that print only figures (‘0,’ ‘1’) and
maybe symbols of the second kind. Hence, they compute
real numbers. Turing gives us two examples, which we will
look at in detail.

8.10.1 Example I

A machine can be constructed to compute the sequence
010101….
(Section 3(I), para. 1, p. 233.)

Actually, as we will see, it prints

What real number is this? First, note that it is a rational

number of the form . Treated as being written in binary
notation, it ; treated as being written in decimal
notation, it .

The machine is to have the four ‐configurations “ ,” “
,” “ ,” “ ” and is capable of printing “0” and “1.”
(p. 233.)

The four line numbers are (in more legible italic font): , ,
, .



The behaviour of the machine is described in the
following table in which “ ” means “the machine moves
so that it scans the square immediately on the right of the
one it was scanning previously.” Similarly for “ .” “ ”
means “the scanned symbol is erased” and “ ” stands for
“prints.” (p. 233.)

This is clear enough. Note that it is the Turing Machine that
moves, not the tape! As we noted in Section 8.7.9, when you
do a calculation with pencil and paper, your hand moves;
the paper doesn't! Of course, a pencil is really only an
output device that prints and erases (recall the epigraph to
Section 8.13).17 To turn it into a full‐fledged computer (or,
at least, a physical Turing Machine), you need to add eyes
(for input), hands (for moving left and right), and a mind
(for “states of mind”).
Before going on with this paragraph, let's look at the
“table.”18 In later writings by others, such tables are
sometimes called ‘machine tables’; they are computer

programs for Turing Machines, written in a “Turing
Machine programming language” for which Turing is now
giving us the syntax and semantics.19

However, it is important to keep in mind that the Turing
Machine does not “consult” this table to decide what to do.
We humans would consult it in order to simulate the Turing
Machine's behavior. But the Turing Machine itself simply
behaves in accordance with that table, not by following it.
The table should be thought of as a mathematical‐English
description of the way that the Turing Machine is
“hardwired” to behave. (We'll revisit this idea in Sections
10.4 and 12.4.4.)
Here's the table, written a bit more legibly than in Turing's
paper:

Configuration Behaviour



m‐config. symbol operations final m‐config.
b None P0, R c

c None R e

e None P1, R f

f None R b

This program consists of four lines. It is important to note
that it is a set of lines, not a sequence: the order in which
the lines are written down in the table (or “program”) is
irrelevant; there will never be any ambiguity as to which
line is to be executed. Perhaps a better way of saying this is:
there will never be any ambiguity as to which line is
“causing” the Turing Machine to move.
Each line consists of two principal parts: a “configuration”
and a “behavior.” Each configuration, as you may recall,
consists of two parts: an ‐configuration (or line number)
and a symbol (namely, the currently scanned symbol). Each
behavior consists also of two parts: an “operation” (one or
more of , , , or ) and a “final ‐configuration” (i.e.
the next line number to be executed).

This table (and all succeeding tables of the same kind) is
to be understood to mean that for a configuration

described in the first two columns the operations in the

third column are carried out successively, and the

machine then goes over into the m‐configuration

described in the last column. (p. 233, my italics.)

That is, each line of the program should be understood as
follows: “Under the conditions described by the
configuration, do the operation and then go to the
instruction at the final ‐configuration.” Or, to use Turing's
other terminology: “If your current state of mind is the one
listed in the current ‐configuration, and if the symbol on
the current square being scanned is the one in the symbol



column, then do the operation and change your state of
mind to the one in the final m‐configuration column.”
A further qualification:

When the second column [i.e. the symbol column] is left
blank, it is understood that the behaviour of the third and
fourth columns applies for any symbol and for no symbol.
(p. 233.)

That is the situation we have in this first example, where
‘None’ is the entry in each row of the symbol column. So the
only condition determining the behavior of this Turing
Machine is its current “state of mind,” i.e. its current line
number.
Finally, we need to know what the initial situation is:

The machine starts in the ‐configuration  with a
blank tape. (p. 233.)

Perhaps ‘ ’ stands for “begin,” with subsequent “states of
mind” (in alphabetical as well as sequential order) being , 

, and  (‘ ’ for “final”? What happened to ‘ ’?).
Let's trace this program. We start with a blank tape, which I
will show as follows:

We are in state .
Looking at the table, we see that if we are in state , then
(because any symbol that might be on the tape is
irrelevant), we should do the sequence of operations ,  .
Turing hasn't told us what ‘ ’ means, but because ‘ ’
means “print,” it's pretty obvious that this means “print 0 on
the currently scanned square.”
Note, too, that he hasn't told us which square is currently
being scanned! It probably doesn't matter, because all



squares on the tape are blank. If the tape is infinite (or
endless) in both directions, then each square is
indistinguishable from any other square, at least until
something is printed on one square. However, it's worth
thinking about some of the options: one possibility is that
we are scanning the first, or leftmost, square; this is the
most likely option and the one that I will assume in what
follows. But another possibility is that we are scanning some
other square somewhere in the “middle” of the tape. That
probably doesn't matter, because Turing only told us that it
would compute the sequence ‘010101…’; he didn't say
where it would be computed!
There is one further possibility, not very different from the
previous one: the tape might not have a “first” square – it
might be infinite in both directions! Thus, we need to
consider something that Turing hasn't mentioned: how long
is the tape? As far as I can tell, Turing is silent in this paper
about the length of the tape. For all that he has told us, it
could be infinitely long. In fact, the informal ways that
Turing Machines are usually introduced often talk about an
“infinite” tape. But many mathematicians and philosophers
(not to mention engineers!) are not overly fond of actual
infinities. The more mathematically precise way to describe
it is as an “arbitrarily long” tape. That is, the tape is as long
as you need it to be. For most computations (the ones that
really do halt with a correct answer), the tape will be finite.
Since no real machine can print out an infinitely long
decimal, no real machine will require an infinite tape,
either. In real life, you can only print out a finite initial
segment of the decimal part of a real number; i.e. it will
always be an approximation, but you can make the
approximation as close as you want by just printing out a
few more numbers. So instead of saying that the tape is
infinitely long, we can say that, at any moment, the tape
only has a finite number of squares, but there is no limit to



the number of extra squares we are allowed to add on at
one (or maybe both) ends. (As my former teacher and
colleague John Case used to put it, if we run out of squares,
we can always go to an office‐supply store, buy some extra
squares, and staple them onto our tape!) People don't have
infinite memory, and neither do Turing Machines or,
certainly, real computers. The major difference between
Turing Machines, on the one hand, and people and real
computers, on the other hand, is that Turing Machines can
have a tape (or a memory) that is as large as you need,
while people and real computers are limited.
So, let's now show our initial tape as follows, where the
currently scanned square is underlined:

Performing the two operations on line  converts our initial
tape to this one

and puts us in state . That is, we next execute the
instruction on line .
Looking at line , we see that, no matter what symbol is on
the current square (it is, in fact, blank), we should simply
move right one more square and change our mind to . So
now our tape will look like this:

Because we are now in state , we look at line  of the
program, which tells us that, no matter what, if anything, is
on the current square, print ‘1’ there, move right again, and
go into state . So our tape becomes



Now we are in state , and looking at line , we see that we
merely move right once again, yielding

And we go back into state . But that starts this cycle all
over again; we are indeed in an infinite loop! One more
cycle through this turns our tape into

Clearly, repeated cycles through this infinitely looping
program will yield a tape consisting entirely of the infinite
sequence 010101… with blank squares separating each
square with a symbol printed on it:

Can this program be written differently?
If (contrary to the description in §1) we allow the letters 

 to appear more than once in the operations column
we can simplify the table considerably.
(Section 3(I), para. 2, p. 234.)

In “the description in §1” (p. 231), Turing allowed the
machine to “change the square which is being scanned, but
only by shifting it one place to right or left” (my italics).
Now, he is allowing the machine to move more than one
place to the right or left; this is accomplished by allowing a
sequence of moves. Here is the modified program:



Note that there is only one ‐configuration (i.e. only one
line number); another way to think about this is that the
program has only one instruction. Turing would say that this
machine never changes its state of mind. But that one
instruction is, of course, more complex than the previous
ones. This one is what would now be called a ‘case’
statement: in case there is no current symbol, print 0; in
case the current symbol = 0, move right two squares and
print 1; and in case the current symbol = 1, move right two
squares and print 0 – and, in all cases, remain in the same
state of mind.

Exercises for the Reader:

1. I urge you to try to follow this version of the
program, both for practice in reading such programs
and to convince yourself that it has the same
behavior as the first one.

2. Another interesting exercise is to write a program for
a Turing Machine that will print the sequence
010101… without intervening blank squares.

So, our machine has “compute[d] the sequence 010101….”
Or has it? It has certainly written down that sequence. Is
that the same thing as “computing” it?
And here is another question: earlier, I said that 010101…
was the binary representation of  and the decimal

representation of . Have we just computed  in base 2? Or
 in base 10?

Even if you are inclined to answer ‘yes’ to the question of
whether writing is the same as computing, you might be
more inclined to answer ‘no’ to the question of whether we
have computed  in base 2 or  in base 10. Although



Turing may have a convincing reason (in his Section 9) to
say that computing consists of nothing more than writing
down symbols, surely there has to be more to it than that;
surely just writing down symbols is only part of computing.
The other parts have to do with which symbols get written
down, in what order, and for what reason. If I asked you to
compute the decimal representation of , how would you
know that you were supposed to write down 010101…?
Surely, that is the heart of computation. Or is it? (We'll
return to this in Sections 13.3, 16.2, and 16.4.6.)
At this point, however, we should give Turing the benefit of
the doubt. After all, he did not say that we were going to
compute , only that we were going to “compute”
010101…, and, after all, “computing” that sequence really
just is writing it down; it's a trivial, or basic, or elementary,
or primitive computation (choose your favorite adjective).
Moreover, arguably, Turing only showed us this trivial
example so that we could clearly see the format of his
Turing Machine programs before getting a more complex
example.
Before turning to such a more complex program, let's
consider the syntax (specifically, the grammatical structure)
of these programs a bit more. Each line of the program has
the following general form

where
1.  is an initial (or Beginning) ‐configuration (a line

number).
2.  is the symbol on the currently scanned square

(possibly a blank).



3.  is an operation (or a sequence of operations) to be
performed (where the operations are , , , , and
where  is any legally allowed symbol).20

4.  is a final (or Ending) ‐configuration.
And the semantics (i.e. the meaning or interpretation) of
this program line is:

8.10.2 Example II, Paragraph 1

We now come to “a slightly more difficult example”:

As a slightly more difficult example we can construct a
machine to compute the sequence
001011011101111011111…. (Section 3(II), para. 1,
p. 234.)

First, note that the sequence to be computed consists of the
subsequences

That is, it is a sequence beginning with ‘0,’ followed by the
numbers 1, 2, 3, 4, 5, … written in base 1 (i.e. as “tally
strokes”) – with each term separated by a ‘0.’



But this seems very disappointing! It seems that this “more
difficult” computation is still just writing down some
symbols without “computing” anything. Perhaps. But note
that what is being written down (or “computed”) here are
the natural numbers. This program will begin counting,
starting with 0, then the successor of 0, the successor of
that, and so on. But as we saw in Section 7.6, the successor
function is one of the basic recursive functions: i.e. one of
the basic computable functions.
Being able to (merely!) write down the successor of any
number, being able to (merely!) write down the predecessor

of any non‐0 number, and being able to find a given term in
a sequence of numbers are the only basic recursive (or
computable) functions. Turing's “slightly more difficult
example” will show us how to compute the first of these.
Devising a Turing Machine program for computing the
predecessor of the natural number  should simply require
us to take a numeral represented as a sequence of 
occurrences of ‘1’ and erase the last one. Devising a Turing
Machine program for computing the th term in a sequence
of  symbols should simply require us to move a certain
number of squares in some direction to find the term (or,
say, the first square of a sequence of squares that
represents the term, if the term is complex enough to have
to be represented by a sequence of squares).
And any other recursive function can be constructed from
these basic functions by generalized composition
(sequencing), conditional definition (selection), and while‐
recursion (repetition), which are just “control structures”
for how to find a path (so to speak) through a Turing
Machine program – i.e. ways to organize the sequence of 
‐configurations that the Turing Machine should go through.
So, it looks as if computation really is nothing more

than writing things down, moving around (on a tape),



and doing so in an order that will produce a desired

result! As historian Michael Mahoney suggested, the
shortest description of Turing's accomplishment might be
that Turing

showed that any computation can be described in terms
of a machine shifting among a finite number of states in
response to a sequence of symbols read and written one
at a time on a potentially infinite tape. (Mahoney, 2011,
p. 79)

We'll return to this idea in Section 9.5.
Let's now look at this “slightly more difficult” program:

The machine is to be capable of five ‐configurations,
viz., “ ”, “ ”, “ ”, “ ”, “ ” and of printing
“&ip.schwa;”, “ ”, “0”, “1”,
(Section 3(II), para. 1, p. 234, substituting italics for
German Fraktur letters)

The first two printable symbols are going to be used only for
bookkeeping purposes.21 So, once again, Turing is really
restricting himself to binary notation for the important
information.
Continuing:

The first three symbols on the tape will be
“&ip.schwa;&ip.schwa;0”; the other figures follow on
alternate squares. (Section 3(II), para. 1, p. 234, my
italics.)

It may sound as if Turing is saying that the tape comes with
some pre‐printed information. But when we see the
program, we will see that, in fact, the first instruction has us
print ‘&ip.schwa;&ip.schwa;0’ on the first three squares
before beginning the “real” computation. Had the tape come
with pre‐printed information, perhaps it could have been



considered “innate” knowledge,22 although a less cognitive
description could simply have been that the manufacturer of
the tape had simplified our life, knowing that the first thing
that the program does to a completely blank tape is to print
‘&ip.schwa;&ip.schwa;0’ on the first three squares before
beginning the ‘real’ computation. Because that only has to
be done once, it might have been simpler to consider it pre‐
printed on the tape.
Note that Turing calls these ‘symbols’ in the first clause and
then talks about ‘figures’ in the second clause. Figures, you
may recall from Section 8.9.3, are the numerals ‘0’ and ‘1.’
So, Turing seems to be saying that all subsequent
occurrences of ‘0’ and ‘1’ will occur on “alternate squares.”
What happens on the other squares? He tells us:

On the intermediate squares we never print anything but
“ .” These letters serve to “keep the place” for us and
are erased when we have finished with them. We also
arrange that in the sequence of figures on alternate
squares there shall be no blanks.
(Section 3(II), para. 1, p. 234.)

It sounds as if the final tape will begin with
‘&ip.schwa;&ip.schwa;0’; during the computation,
subsequent squares will have ‘0’ or ‘1’ interspersed with ‘
’; and at the end of the computation, those subsequent
squares will only have ‘0’ or ‘1,’ and no blanks. Of course, at
the end, we could go back and erase the initial occurrences
of ‘&ip.schwa;’, so there would only be “figures” and no
other symbols.
Here is the program:

Configuration Behaviour

m‐

config.
symbol operations final m‐

config.



b P&ip.schwa;, R, P&ip.schwa;,
R, P0, R, R, P0, L, L

o

o 1 R, Px, L, L, L o

0 q

q Any (0 or
1)

R, R q

None P1, L p

p x E, R q

&ip.schwa; R f

None L, L p

f Any R, R f

None P0, L, L o

I think it will be helpful to restate this program in a more
readable format:
b 

o 



q 

p 



f 

Note that no line of the program ends with the machine
changing its state of mind to ‐configuration . So that
line of the program, which is the one that initializes the tape
with ‘∂∂0’ on the first three squares, is only executed once.
Note also that whenever an instruction ends with a
command to stay in the same ‐configuration (i.e. to go to



that very same line), we are in a loop. A structured version
of the program would use a while…do control structure,
instead.
There are some odd things to consider in lines : What
happens if the machine is in state  but the current symbol
is not a “figure”? What happens in state  if the current
symbol is ‘∂’ or ‘ ’? And what happens in state  if the
current symbol is a “figure”? Turing doesn't specify what
should happen in these cases. One possibility is that he has
already determined that none of these cases could occur.
Still, modern software engineering practice would
recommend that an error message be printed out in those
cases. In general, in a computer program, when a situation
occurs for which the program does not specify what should
happen, anything is legally allowed to happen, and there is
no way to predict what will happen: “garbage in, garbage
out.”

8.10.3 Example II, Paragraph 2

Turing goes on “to illustrate the working of this machine”
with “a table … of the first few complete configurations”
(p. 234.) Recall that a “complete configuration” consists of
information about which square is currently being scanned,
the sequence of all symbols on the tape, and the line
number of the instruction currently being executed. Rather
than use Turing's format, I will continue to use the format
that I used for Example I, adding the line number at the
beginning, using underscoring to indicate the currently
scanned square, and assuming that any squares not shown
are blank; any blank square that is between two non‐blank
squares (if there are any) will be indicated by our symbol
for a blank that has been made visible: . You are urged to
compare my trace of this program with Turing's.



So, we begin with a blank tape. What is the machine's initial
state of mind, its initial ‐configuration? Turing has
forgotten to tell us! But it is fairly obvious that  is the
initial ‐configuration, and, presumably, we are scanning
the leftmost square (or, if the tape is infinite in both
directions, then we are scanning any arbitrary square), and,
of course, all squares are blank:

The initial instruction tells us to print &ip.schwa;, move
right, print another &ip.schwa;, move right again, print 0,
move right two more squares, print another 0, move two
squares back to the left, and go into state . After doing
this sequence of primitive operations, our complete
configuration looks like this:



Digression on Notation: To help you in reading
Turing's paper, my notation for the initial situation
should be compared with his. Here is his:

He has an invisible blank, followed by a colon, with the 
‐configuration ‘ ’ underneath the (invisible) blank,

marking the currently scanned square.
Instead, I have ‘ :’ preceding a sequence of (visible)
blanks, the first one of which is marked as being the
scanned square.
Turing then shows the second configuration:

Turing has two occurrences of ‘∂’ followed by two ‘0’s
that are separated by an (invisible) blank, with the ‐
configuration ‘ ’ underneath the currently scanned
square (which contains the first ‘0’), followed by a colon
to mark the end of this complete configuration.
Instead, I have ‘ :’ preceding a sequence consisting of
the two occurrences of ‘&ip.schwa;,’ followed by a ‘0’
that is marked as being the scanned square, followed by
a (visible) blank, followed by the second ‘0.’

We are now in ‐configuration , and the currently
scanned square contains ‘0,’ so the second case (i.e. the
bottom row) of this second instruction tells us merely to go
into state . The “operations” column is left empty, so there
is no operation to perform. It is worth noting that although
there does not always have to be an operation to perform,



there does always have to be a final state to go into: i.e. a

next instruction to perform. So, the tape looks exactly as it
did before, except that the machine is now in state :

Because the machine is now in state  and still scanning a
‘0,’ the first case (i.e. the top row) of this third instruction
tells us to move two squares to the right but to stay in state 

. So the tape now looks like this:

Because the machine is still in state  and still scanning a
‘0’ (although the currently scanned square is different), we
perform the same (third) instruction, moving two more
squares to the right and staying in state :

The machine is still in state , but now there is no scanned
symbol, so the second case (bottom line) of the third
instruction is executed, resulting in a ‘1’ being printed on
the current square, and the machine moves left, going into
state .
Whenever the machine is in state  and scanning a blank
(as it is now), the third case (last line) of the fourth
instruction is executed, so the machine moves two squares
to the left and stays in state :

Now the machine is in state  scanning a blank, so the
same instruction is executed: it moves two more squares to
the left and continues in state :



But now it is the second case (middle line) of the fourth
instruction that is executed, so the machine moves right and
goes into state :

When in state  scanning any symbol (but not a blank), the
machine moves two squares to the right, staying in :

Again, it moves two squares to the right, staying in :

And again:

But now it executes the second case of the last instruction,
printing ‘0,’ moving two squares to the left, and returning to
state :

Now, for the first time, the machine executes the first case
of the second instruction, moving right, printing ‘ ,’ moving
three squares to the left but staying in :

At this point, you will be forgiven if you have gotten lost in
the “woods,” having paid attention only to the individual
“trees” and not seeing the bigger picture.23 Recall that we



are trying to count – to produce the sequence
0, 1, 11, 111, … with ‘0’s between each term:

We started with a blank tape

and we now have a tape that looks like this:

Clearly, we are going to have to continue tracing the
program before we can see the pattern that we are
expecting; Turing, however, ends his tracing at this point.
But we shall continue; however, I will only show the
complete configurations without spelling out the
instructions (doing that is left to the reader). Here goes,
continuing from where we left off:

Hopefully, now you can see the desired pattern beginning to
emerge. The occurrences of ‘ ’ get erased, and what's left



is the desired sequence but with blank squares between
each term and with two leading occurrences of ‘&ip.schwa;’.
You can see from the program that there is no instruction
that will erase those ‘&ip.schwa;’s; the only instructions
that pay any attention to a ‘&ip.schwa;’ are (1) the second
case of ‐configuration , which only tells the machine to
move right and to go into state ; and (2) the first case of 

‐configuration , which, when scanning any symbol,
simply moves two squares to the right (but in fact, that
configuration will never occur!).
In the third paragraph, Turing makes some remarks about
various notation conventions that he has adopted, but we
will ignore these, because we are almost finished with our
slow reading. I do want to point out some other highlights,
however.



8.11 Section 4: “Abbreviated Tables”

In this section, Turing introduces some concepts that are
central to programming and software engineering.

There are certain types of process used by nearly all
machines, and these, in some machines, are used in
many connections. These processes include copying
down sequences of symbols, comparing sequences,
erasing all symbols of a given form, etc. (Section 4,
para. 1, p. 235.)

In other words, certain sequences of instructions occur
repeatedly in different programs and can be thought of as
being single “processes”: copying, comparing, erasing, etc.
Turing continues:

Where such processes are concerned we can abbreviate
the tables for the ‐configurations considerably by the
use of “skeleton tables.” (Section 4, para. 1, p. 235.)

The idea is that skeleton tables are descriptions of more
complex sequences of instructions that are given a single
name. This is the idea behind “subroutines” (or “named
procedures”) and “macros” in modern computer
programming. (Recall Section 7.4.3.3.) If you have a
sequence of instructions that accomplishes what might
better be thought of as a single task (e.g. copying a
sequence of symbols), and if you have to repeat this
sequence many times throughout the program, it is more
convenient (for the human writer or reader of the
program!) to write this sequence down only once, give it a
name, and then refer to it by that name whenever it is
needed. There is one small complication: each time this
named abbreviation is needed, it might require that parts
of it refer to squares or symbols on the tape that will vary



depending on the current configuration, so the one
occurrence of this named sequence in the program might
need to have variables in it:

In skeleton tables there appear capital German letters
and small Greek letters. These are of the nature of
“variables.” By replacing each capital German letter
throughout by an ‐configuration and each small Greek
letter by a symbol, we obtain the table for an ‐
configuration. (Section 4, para. 1, pp. 235–236.)

Of course, whether one uses capital German letters, small
Greek letters, or something more legible or easier to type is
an unimportant implementation detail. The important point
is this:

The skeleton tables are to be regarded as nothing but
abbreviations: they are not essential. (Section 4, para. 2,
p. 236.)



8.12 Section 5: “Enumeration of

Computable Sequences”

Another highlight of Turing's paper that is worth pointing
out occurs in his Section 5: a way to convert every program
for a Turing Machine into a number. Let me be a bit more
precise about this before seeing how Turing does it.
First, it is important to note that, for Turing, there really is
no difference between one of his ‐machines (i.e. a Turing
Machine) and the program for it. Turing Machines are
“hardwired” to perform exactly one task, as specified in the
program (the “table,” or “machine table”) for it. So,
converting a program to a number is the same as
converting a Turing Machine to a number. Second,
“converting to a number” – i.e. assigning a number to an
object – really means you are counting. So, in this section,
Turing shows that you can count Turing Machines by
assigning a number to each one. Third, if you can count
Turing Machines, then you can only have a countable
number of them. But there are uncountably many real
numbers, so there will be some real numbers that are not
computable! (Recall our Section 7.7.1.)
Here is how Turing counts Turing Machines. First (using
the lowercase Greek letter “gamma,” ):

A computable sequence  is determined by a description
of a machine which computes . Thus the sequence
001011011101111… is determined by the table on
p. 234, and, in fact, any computable sequence is capable
of being described in terms of such a table. (Section 5,
para. 1, p. 239)

“A description of a machine” is one of the tables such as
those we have been looking at; i.e. it is a computer



program for a Turing Machine.
But as we have also seen, it is possible to write these tables
in various ways. So, before we can count them, we need to
make sure we don't count any twice because we have
confused two different ways of writing the same table with
being two different tables. Consequently:

It will be useful to put these tables into a kind of
standard form.
(Section 5, para. 2, p. 239.)

The first step in doing this is to be consistent about the
number of separate operations that can appear in the
“operations” column of one of these tables. Note that in the
two programs we have looked at, we have seen examples in
which there were as few as 0 operations and as many as 10
(not to mention the variations possible with skeleton
tables). So:

In the first place let us suppose that the table is given in
the same form as the first table, e.g. I on p. 233. [See our
Section 8.10.] That is to say, that the entry in the
operations column is always of one of the forms 

 or no entry at
all. The table can always be put into this form by
introducing more ‐configurations.
(Section 5, para. 2, p. 239.)

In other words, the operation in the operations column will
be exactly one of:



erase
erase and then move right
erase and then move left
print symbol 
print  and then move right
print  and then move left
(where ‘ ’ is a variable ranging over all the possible
symbols
in a given program)
move right
move left
do nothing

“Introducing more ‐configurations” merely means a
single instruction such as

can be replaced by two instructions:

where ‘ ’ is a new ‐configuration not appearing in the
original program. Put otherwise, a single instruction
consisting of a sequence of operations can be replaced by a
sequence of instructions, each consisting of a single

operation. (For convenience, presumably, Turing allows
pairs of operations, where the first member of the pair is
either  or  and the second is either  or . So a single
instruction consisting of a sequence of (pairs of) operations



can be replaced by a sequence of instructions, each
consisting of a single operation or a single such pair.)
Numbering begins as follows:

Now let us give numbers to the ‐configurations, calling
them  as in §1. The initial ‐configuration is
always to be called . (Section 5, para. 2, p. 239.)

So, each ‐configuration's number is written as a
subscript on the letter ‘ .’
The numbering continues:

We also give numbers to the symbols  and, in
particular,
blank = . (Section 5, para. 2, pp. 239–
240.)

So, each symbol's number is written as a subscript on the
letter ‘ .’ Note that Turing singles out three symbols for
special treatment: ‘0,’ ‘1,’ and what I have been writing as 

. (Turing is finally making the blank visible.)
At this point, we have the beginnings of our “standard
forms,” sometimes called ‘normal’ forms (which Turing
labels ):

The lines of the table are now [one] of [the following
three] form[s]

(Section 5, para. 2, p. 240.)



The three “normal forms” are
 ‐configuration  = if currently scanned symbol

is ,

 ‐configuration  = if currently scanned symbol
is ,

 ‐configuration  = if currently scanned symbol
is ,

As Turing notes in the following passage (which I will not
quote but merely summarize), erasing ( ) is now going to
be interpreted as printing a blank ( ), and a line in which
the currently scanned symbol is  and the operation is
merely to move right or left is now going to be interpreted
as overprinting the very same symbol ( ) and then
moving. So, all instructions require printing something –
either a visible symbol or a blank symbol – and then either
moving or not moving. As Turing notes,



In this way we reduce each line of the table to a line of
one of the forms . (Section 5, para. 3,
p. 240.)

Turing simplifies even further, eliminating the ‘print’
command and retaining only the symbol to be printed. After
all, if all commands involve printing something, you don't
need to write down ‘ ’; you only need to write down what
you're printing. So each instruction can be simplified to a 5‐
tuple consisting of the initial ‐configuration, the
currently scanned symbol (and there will always be one,
even if the “symbol” is blank, because the blank has been
replaced by ‘ ’), the symbol to be printed (again, there
will always be one, even if it's the blank), and the final ‐
configuration:

From each line of form ( ) let us form an expression 
; from each line of form ( ) we form an

expression ; and from each line of form ( )
we form an expression . (Section 5, para. 4,
p. 240.)

Presumably,  means something like “no move.” A slightly
more general interpretation is that not only do we always
print something (even if it's a blank), but we also always
move somewhere, except that sometimes we “move” to our
current location. This standardization is consistent with our
earlier observation (in Section 7.4.2) that the only two
verbs that are needed are ‘print(symbol)’ and
‘move(location).’
Next:

Let us write down all expressions so formed from the
table for the machine and separate them by semi‐colons.
In this way we obtain a complete description of the
machine. (Section 5, para. 5, p. 240.)



Turing's point here is that the set of instructions can be
replaced by a single string of 5‐tuples separated by
semicolons. There are two observations to make. First,
because the machine table is a set of instructions, there
could (in principle) be several different strings (i.e.
descriptions) for each such set, because strings are
sequences of symbols. Second, Turing has here introduced
the now‐standard notion of using a semicolon to separate
lines of a program; however, this is not quite the same
thing as the convention of using a semicolon to signal
sequencing, because the instructions of a Turing Machine
program are not an ordered sequence of instructions (even
if, whenever they are written down, they have to be written
down in some order).
So, Turing has developed a standard encoding of the lines
of a program: an ‐configuration encoded as  (forget
about , , etc.), a pair of symbols encoded as  (the
first being the scanned input, the second being the printed
output; again, forget about things like ‘0,’ ‘1,’ ‘ ,’ etc.), a
symbol (either , , or ) encoding the location to be
moved to, and another ‐configuration encoded as .
Next, he gives an encoding of these standardized codes:

In this description we shall replace  by the letter “ ”
followed by the letter “ ” repeated  times, and  by “

” followed by “ ” repeated  times.
(Section 5, para. 5, p. 240.)

Before seeing why he does this, let's make sure we
understand what he is doing. The only allowable ‐
configuration symbols in an instruction are: , for
some  that is the number of the final instruction. What
really matters are, first, that each instruction can be
assumed to begin and end with an ‐configuration symbol,
and, second, which one it is, which can be determined by



the subscript on . In this new encoding, “ ” simply
marks the beginning of an item in the 5‐tuple, and the 
occurrences of letter ‘ ’ encode the subscript. Similarly,
the only allowable symbols are: , for some  that
is the number of the last symbol in the alphabet of symbols.
Here, what really matters are, first, that in each instruction
the second and third items in the 5‐tuple can be assumed to
be symbols (including a visible blank!), and, second, which
ones they are, which can be determined by the subscript on

. In our new encoding, “ ” again marks the beginning
the next item in the 5‐tuple, and the  occurrences of ‘ ’
encode the subscript.
Turing then explains that

This new description of the machine may be called the
standard description (S.D). It is made up entirely from
the letters “ ”, “ ”, “ ”, “ ”, “ ”, “ ”, and from “;”.
(Section 5, para. 5, p. 240.)

So, for example, this two‐line program

will be encoded by an S.D consisting of this 38‐character
string:

The next step in numbering consists in replacing these
symbols by numerals:



If finally we replace “ ” by “1”, “ ” by “2”, “ ” by “3”,
“ ” by “4”, “ ” by “5”, “ ” by “6”, “ ” by “7” we shall
have a description of the machine in the form of an
arabic [sic] numeral. The integer represented by this
numeral may be called a description number (D.N) of the
machine. (Section 5, para. 6, p. 240)

Just as Gödel numbering is one way to create a number
corresponding to a string, “Turing numbering” is another.
The D.N of the machine in our previous example is this
numeral:

31113232222531111173111113222234311111

which, written in the usual notation with commas, is
31,113,232,222,531,111,173,111,113,222,234,311,111

or, in words, 31 undecillion, 113 decillion, 232 nonillion,
222 octillion, 531 septillion, 111 sextillion, 173 quintillion,
111 quadrillion, 113 trillion, 222 billion, 234 million, 311
thousand, one hundred eleven. That is the “Turing number”
of our 2‐line program!
Turing observes that:

The D.N determine the S.D and the structure of the
machine uniquely. The machine whose D.N is  may be
described as . (Section 5, para. 6, pp. 240–242.)

Clearly, given a D.N, it is trivial to decode it back into an
S.D in only one way. Equally clearly (and almost as
trivially), the S.D can be decoded back into a program in
only one way. Hence, “the structure of the machine”
encoded by the D.N is “determine[d] … uniquely” by the
D.N. However, because of the possibility of writing a
program for a machine in different ways (permuting the
order of the instructions), two different D.Ns might
correspond to the same machine, so there will in general be



distinct numbers  (i.e. ) such that 
. That is, “the” Turing Machine whose number =  might
be the same machine as the one whose number = ; a
given Turing Machine might have two different numbers.
Alternatively, we could consider that we have here two
different machines that have exactly the same input‐output
behavior and that execute exactly the same algorithm. Even
in that latter case, where we have more machines than in
the former case, the machines are enumerable; i.e. we can
count them.
Can we also count the sequences that they compute? Yes;
Turing explains why (with Turing's explanation in italics
and my comments interpolated in brackets):

To each computable sequence [i.e. to each sequence that
is printed to the tape of a Turing Machine] there

corresponds at least one description number [we have
just seen why there might be more than one], while to no

description number does there correspond more than

one computable sequence [i.e. each machine prints out
exactly one sequence; there is no way a given machine
could print out two different sequences, because the
behavior of each machine is completely determined by its
program, and no program allows for any arbitrary, free,
or random “choices” that could vary what gets printed on
the tape]. The computable sequences and numbers

[remember: every sequence corresponds to a unique
number.24] are therefore enumerable [i.e. countable].
(Section 5, para. 7, p. 241)

Next, on p. 241, Turing shows how to compute the D.N of
program I (the one that printed the sequence ). And he
gives a D.N without telling the reader what program
corresponds to it. (Exercise for the reader: decode it!)
Finally, he alludes to the Halting Problem:



A number which is a description number of a circle‐free
machine will be called a satisfactory number. In §8 it is
shown that there can be no general process for
determining whether a given number is satisfactory or
not. (Section 5, para. 10, p. 241.)

A “satisfactory” number is the number of a circle‐free
Turing Machine, i.e. a Turing Machine that never halts and
that does compute the infinite decimal representation of a
real number. That is, a “satisfactory” number is the number
of a Turing Machine for a computable number. So, in
Turing's Section 8, he is going to show that there is “no
general process” – i.e. no Turing Machine that can decide
(by computing) – “whether a given number is satisfactory”:
i.e. whether a given number is the number of a circle‐free

Turing Machine. It is easy to determine if a given number is
the number of a Turing Machine: just decode it, and see if
the result is a syntactically correct Turing Machine
program. But even if it is a syntactically correct Turing
Machine program, there will be no way to decide (i.e. to
compute) whether it halts or not. (Remember: for Turing,
halting is bad, not halting is good; in modern presentations
of computing theory, halting is good, not halting is
(generally considered to be)25 bad.)



8.13 Section 6: “The Universal

Computing Machine”

A man provided with paper, pencil, and rubber [eraser],
and subject to strict discipline, is in effect a universal
machine.
—Alan Turing (1948, p. 416)26

In fact we have been universal computers ever since the
age we could follow instructions.
—Chris Bernhardt (2016, p. 12)

Although Turing's Section 6 is at least one of, if not the

most important section of Turing's paper, we will only look
at it briefly in this chapter. You are encouraged to consult
Petzold, 2008 for aid in reading it in detail.
Turing begins with this claim:

It is possible to invent a single machine which can be
used to compute any computable sequence. (Section 6,
para. 1, p. 241.)

Instead of needing as many Turing Machines as there are
computable numbers, we only need one. Recall that our
first “great insight” was that all information can be
represented using only ‘0’ and ‘1’ (Section 7.4.1). That
means all information we would want to compute with – not
only numbers but language, images, sounds, etc. – can be
represented by a sequence of ‘0’s and ‘1’s: i.e. as a
computable number (in binary notation). So, Turing's claim
is that there is a single machine that can be used to
compute anything that is computable.
Most of you own a physical implementation of one. Indeed,
most of you own several, some of which are small enough



to be carried in your pocket! They are made by Apple, Dell,
et al., and they come in the form of laptop computers,
smartphones, etc. They are general‐purpose,
programmable computers.

If this [single] machine  is supplied with a tape on the
beginning of which is written the S.D of some computing
machine , then  will compute the same sequence as 

. (pp. 241–242)
Your laptop or smartphone is a physical implementation of
one of these s. A program or “app” that you download to
it is an S.D (written in a different programming language
than Turing's) of a Turing Machine that does only what that
program or “app” does. The computer or smartphone that
runs that program or “app,” however, can also run other
programs – in fact, many of them. That's what makes it
“universal”:

But to do all the things a smartphone can do without
buying one, … [a] consumer would need to buy the
following: A cellphone …. A mobile e‐mail reader …. A
music player …. A point‐and‐shoot camera …. A
camcorder …. A GPS unit …. A portable DVD player …. A
voice recorder …. A watch …. A calculator …. In a

smartphone, all those devices are reduced to software.
(Grobart, 2011, my italics)

A Turing Machine is to a Universal Turing Machine as a
music box is to a player piano: a music box (or Turing
Machine) can only play (or execute) the tune (or program)
that is hardwired into it. Player pianos (or Universal Turing
Machines) can play (or execute) any tune (or program) that
is encoded on its piano‐roll (or tape).



Digression: Here's a related question: “Why is a player
piano not a computer?” (Kanat‐Alexander, 2008).
Alternatively, when is a Universal Turing Machine a
player piano? The “instructions” on the piano roll cause
certain keys to be played; you can think of each key as a
Turing Machine tape cell, with “play” or “don't play”
analogous to “print‐one” or “print‐zero.” One difference
is that a player piano would be a parallel machine,
because you can play chords. For discussion of the
music‐box analogy, see Sloman, 2002.

How does Turing's universal computer work? Pretty much
the same way a modern computer works. Just as a program
(an “app”) is stored somewhere in the computer's memory,
the S.D of a Turing Machine is written at the beginning of
the universal machine's tape. The operating system of the
computer fetches (i.e. reads) an instruction and executes it
(i.e. “simulates its behavior” (Dewdney, 1989, p. 315)) and
then repeats this “fetch‐execute” cycle until there is no
next instruction. Similarly, the single program for the
universal machine fetches the first instruction on its tape,
executes it, and then repeats this cycle until there is no
next instruction on its tape.
The details of how it does that are fascinating but beyond
our present scope.27 However, here is one way to think
about this: suppose we have two tapes. Tape 1 will be the
one we have been discussing so far, containing input (the
symbols being scanned) and output (the symbols being
printed). Tape 2 will contain the computer's program, with
each square representing a “state of mind.” The computer
can be thought of as starting in a square on Tape 2,
executing the instruction in that square (by reading from,
and writing to, a square on Tape 1 and then moving to
a(nother) square on Tape 1), and then moving to a(nother)



square on Tape 2, and repeating this “fetch‐execute” loop.
In reality, Turing Machines only have one tape, and the
instructions are not written anywhere; rather, they are
“hardwired” into the Turing Machine. Any written version
of them is (merely) a description of the Turing Machine's
behavior (or of its “wiring diagram”). But if we encode
Tape 2 on a portion of Tape 1, then we have a “stored‐
program” – or universal – computer.28



8.14 The Rest of Turing's Paper

Sections 1–5 of Turing's paper cover the nature of
computation, defining it precisely and stating what is now
called “Turing's (computability) thesis.” Sections 6 and 7 of
Turing's paper cover the universal machine. Section  8
covers the Halting Problem.
We have already examined Section 9 in detail; that was the
section in which Turing analyzed how humans compute and
then designed a computer program that would do the same
thing.
Section 10 shows how it can be that many numbers that
one might think are not computable are, in fact,
computable. Section  11 proves that Hilbert's
Entscheidungsproblem “can have no solution” (p. 259). And
the Appendix proves that Turing's notion of computation is
logically equivalent to Church's.
Except for modern developments and some engineering‐
oriented aspects of CS, one could create an undergraduate
degree program in CS based solely on this one paper that
Turing wrote in 1936!
(See the Online Resources for further information on
Turing, including dramatizations, his legacy, and
implementations.)

https://cse.buffalo.edu/~rapaport/OR/A0fr08.html#8.14


Notes

1 Some of which Turing himself corrected (Turing,
1938). For a more complete “debugging,” see
Davies, 1999.

2 See the Online Resources for another slow reading of
Turing's paper.

3 Just as in English, so ‘Entscheidungs’ means
“decision's.”

4 In the rest of this chapter, all quotations are from
Turing, 1936 unless otherwise noted and will be
identified only by section, paragraph, and page
numbers of the original version, occasionally with my
interpolations in brackets. All quotations are
reprinted with permission of the publisher.

5 See the Online Resources for further reading on
writing symbols on paper.

6 To be able to use a word that sounds like ‘computer’
without the twenty‐first century implication that it is
something like a Mac or a PC, some writers, such as
Sieg (1994), use the nonce word ‘computor’ to mean
a human who computes. I prefer to call them ‘clerks.’
And, of course, despite Turing's use of male
pronouns, the clerk could be of any gender (as many
of them were in subsequent decades; recall Section
6.2).

7 Why ‘ ’? It could stand for ‘man,’ on the grounds
that this is a machine analogue of a (hu)man's state
of mind; or it could stand for ‘mental,’ on the
grounds that it is an analogue of a state of mind. But

https://cse.buffalo.edu/~rapaport/OR/A0fr08.html#8.1
https://cse.buffalo.edu/~rapaport/OR/A0fr08.html#8.7.2


I think it most likely stands for ‘machine,’ because it
is a configuration, or state, of a machine. Of course,
Turing might have intended it to be ambiguous
among all these options.

8 The kind with four legs, not a “machine table”!

9 See the Online Resources for further reading on
Hilbert's idea .

10 See the Online Resources for further discussion of
this passage.

11 Similar remarks can be made for binary notation.

12 Or possibly including 1, if it is written as .

13 As described in our previous paragraph.

14 At this point, I cannot resist recommending, once
again, that you read E.M. Forster's wonderfully
prescient, 1909(!) short story, “The Machine Stops.”

15 Another possibility is that line  says, If currently
scanned symbol = , then go to line . In that
case, the machine never stops, because it forever
loops (circles?) back to the same line.

16 The machine described in the text and the machine
described in the previous footnote have this
property.

17 A “Rhymes with Orange” cartoon from 11/19/2009
suggests that the pencil point is the cursor, the
eraser is the delete key, and it can be rebooted with
a pencil sharpener.

18 Not to be confused with our table of place settings
and beer mugs from Section 8.8.1!

https://cse.buffalo.edu/~rapaport/OR/A0fr08.html#8.8.1
https://cse.buffalo.edu/~rapaport/OR/A0fr08.html#8.8.1


19 That is, the grammar and meaning; see Sections
9.4.3, 13.1.1.

20 In our first program, the only symbols were ‘0’ and
‘1’; we will see others in subsequent examples.

21 The inverted ‘e’ is called a ‘&ip.schwa;’; it is used in
phonetics to represent the sound “uh,” as in ‘but.’
Turing uses it merely as a bookkeeping symbol with
no meaning.

22 That is, knowledge that it was “born” with (or, to
use another metaphor, knowledge that is
“hardwired”). For more on innate knowledge, see
Samet and Zaitchik, 2017.

23 My apologies for the mixed metaphor.

24 Although, because of a curiosity of decimal
representation, some numbers correspond to more
than one sequence. The classic example is that 

.

25 But see Chapter 11!

26 Compare the epigraph from Church at the
beginning of this chapter.

27 But see the further readings in the Online
Resources .

28 Any two‐tape Turing Machine is equivalent to a one‐
tape Turing Machine (Dewdney, 1989, Ch. 28).

https://cse.buffalo.edu/~rapaport/OR/A0fr08.html#8.13


9 

Computers: A Philosophical

Perspective
1

What is computation? By virtue of what is something a

computer? Why do we say a slide rule is a computer but

an egg beater is not? These are … the philosophical
questions of computer science, inasmuch as they query
foundational issues that are typically glossed over as
researchers get on with their projects.
—Patricia S. Churchland & Terrence J. Sejnowski (1992,
p. 61, italics added)
… everyone who taps at a keyboard, opening a
spreadsheet or a word‐processing program, is working
on an incarnation of a Turing Machine …
—Time magazine, 29 March 1999, cited in M.D. Davis,
2006a, p. 125



9.1 What Is a Computer?

Around 1980, a professor brought a keyboard, a television‐
sized monitor, and a dial‐up telephone modem to a
programming class to demonstrate some computer
programs. One student asked if that's all a computer was:
an electric typewriter hooked up to a TV and a telephone!2

In this chapter, armed with the results of our previous
investigations into the history of computers and the nature
of computation, we return to the question of what a
computer is. Of course, as we saw in Section 6.2, the
earliest computers were humans! (To the extent that CS is
the study of computers, does that mean it is, at least in
part, a study of what humans are?) Note, however, that one
of the questions we will be looking at is whether the brain
is a computer, so perhaps the issue of humans as
computers has only been reformulated. In any case, when
the question is asked today, it is generally assumed to refer
to computing machines, and that is primarily the way we
will understand it in this chapter.
According to AI pioneer Arthur L. Samuel, in a 1953 article
introducing computers to radio engineers who might not
have been familiar with them,

a computer … can be looked at from two different angles,
which Professor Hartree has called the “anatomical” and
the “physiological,” that is, “of what is it made?” and
“how does it tick?” (Samuel, 1953, p. 1223, citing
Hartree, 1949, p. 56)

Samuel then goes on to describe the anatomy in terms of
things like magnetic cores and vacuum tubes. Clearly, the
anatomy has changed since then, so defining ‘computer’
“anatomically” in such terms doesn't seem to be the right
way to go: it's too changeable. What's needed is a



“physiological” – or functional – definition. At the very
least, we might say that a computer is a physical

machine (where, perhaps, it doesn't matter too much what
it is made of)3that is, perhaps, designed (i.e. engineered)
to compute (i.e. to do computations) and that, perhaps,

interacts with the world.
But does a computer have to be a “machine”? Does it have
to be “engineered”? If the brain is a computer, then it
would seem that computers could be biological entities
(which, arguably, are not machines)4 that evolved (which,
arguably, means they were not engineered). (At least, not
engineered by humans. Dennett (2017) would say that they
were engineered – by Mother Nature using the natural‐
selection algorithm.) So, we will also ask whether the brain
is a computer.
But is it even correct to limit a computer to a physical
device? Aren't Turing Machines computers? Should we
distinguish a “real” computer from a mathematical
abstraction such as a Turing Machine? But arguably, my
iMac – which is surely a computer if anything is – isn't a
Turing Machine; rather, it can be modeled by a (Universal)
Turing Machine. And to the extent that Turing Machines
don't interact with the world, so much the worse for them
as a model of what a computer is. (But see Section 11.8 on
interaction.)5

But what about a “virtual” computer? According to Denning
and Martell (2015, p. 212), “A virtual machine is a
simulation of one computer by another. The idea comes
from the simulation principle behind Alan Turing's
Universal Machine.” That is, a virtual machine is a (usually
single‐purpose) Turing Machine that is simulated by a
Universal Turing Machine. Let  be a Turing Machine. Let 

 be a Universal Turing Machine. Encode all Turing
Machines using, say, Turing's coding scheme. Then encode 



's code onto 's tape, along with 's data, and let 
simulate . As Copeland (1998, p. 153) says, “the universal
machine will perform every operation that  will, in the
same order as  (although interspersed with sequences of
operations not performed by ).” The virtual  machine is a
software version (a software implementation?) of the
hardware  machine.
Of course, nothing prevents the Turing Machine that is
being simulated by the Universal Turing Machine from
itself being a Universal Turing Machine! For example, for
an introductory course I once taught, I wrote a very simple
Pascal program that added two integers. This program was
compiled (i.e. implemented) using the “P88 Assembly
Language Simulator” – a virtual machine whose
programming language was “P88 Assembly Language,” a
very simple assembly language designed for instructional
purposes (Biermann, 1990). That assembly language was
written (i.e. implemented) in another virtual machine6

whose programming language was a dialect of Pascal
called MacPascal, which was, in turn, implemented in
MacOS assembly language, which was implemented in the
machine language that was implemented on a physical
Mac II computer (Rapaport, 2005b). Note that, ultimately,
there is a physical substrate in these cases.

Question for the Reader: When two integers are input
to my original Pascal program and their sum is output,
“where” does the actual addition take place? Is it my
Pascal program that adds the two integers? Or is it
“really” the Mac II computer that adds them? Or is it
one (or all?) of the intermediate implementations?

If the purpose of computers is to compute, what kind of
computations do they perform? Are they restricted to
mathematical computations? Is that really a restriction?



The binary‐representation insight (Section 7.4.1) suggests
that any (computable) information can be represented as a
binary numeral; hence, any computation on such
information could be considered a mathematical
computation.
And what about the difference between a “hardwired”
Turing Machine that can only compute one thing and a
“programmable” Universal Turing Machine that can
compute anything that is computable? And is a
“programmable” computer the same as a “stored‐program”
computer? Or what about the difference between a real,
physical computer that can only compute whatever is
practically computable (i.e. subject to reasonable space and
time constraints) and an abstract, Universal Turing
Machine that is not thus constrained?
And what about Churchland and Sejnowski's egg beaters?
Or rocks? Surely they are not computers. Or are they? In
short, what is a computer?



9.2 Informal Definitions

9.2.1 Reference‐Book Definitions

If you ask a random person what a computer is, they might
try to describe their laptop. If you look up ‘computer’ in a
reference book,7 you will find things like this (from the
Encyclopedia of Computer Science):

A digital computer is a machine that will accept data and
information presented to it in a discrete form, carry out
arithmetic and logical operations on this data, and then
supply the required results in an acceptable form.
(Morris and Reilly, 2000, p. 539)

Or this (from the OED,
http://www.oed.com/view/Entry/37975):
computer, .

1. A person who makes calculations or computations; a
calculator, a reckoner; spec[ifically,] a person employed
to make calculations in an observatory, in surveying,
etc. Now chiefly hist[orical]. [earliest citation dated
1613]

2. A device or machine for performing or facilitating
calculation. [earliest citation dated 1869]

3. An electronic device (or system of devices) which is
used to store, manipulate, and communicate
information, perform complex calculations, or control
or regulate other devices or machines, and is capable of
receiving information (data) and of processing it in
accordance with variable procedural instructions
(programs or software); esp[ecially] a small, self‐
contained one for individual use in the home or

http://www.oed.com/view/Entry/37975


workplace, used esp. for handling text, images, music,
and video, accessing and using the Internet,
communicating with other people (e.g. by means of
email), and playing games. [earliest citation dated
1945]

We'll come back to these in Section 9.2.5.

9.2.2 John von Neumann's Definition

In his “First Draft Report on the EDVAC,” which – along
with Turing's 1936 paper – may be taken as one of the
founding documents of computer science, John
von Neumann gives the following definition:

An automatic computing system is a (usually highly
composite) device, which can carry out instructions to
perform calculations of a considerable order of
complexity …. … The instructions … must be given to the
device in absolutely exhaustive detail. They include all
numerical information which is required to solve the
problem under consideration …. All these procedures
require the use of some code to express … the problem
…, as well as the necessary numerical material …. [T]he
device … must be able to carry them out completely and
without any need for further intelligent human
intervention. At the end of the required operations the
device must record the results again in one of the forms
referred to above. (von Neumann, 1945, Section 1.0,
p. 1)

Other comments (in this section of von Neumann, 1945, as
well as later, in Section 5.0 [pp. 6ff]) indicate that the code
should be binary and hence that the computer is a “digital”
device (Section 1.0, p. 1). This definition hews closely to
being a physical implementation of a Turing Machine, with
clear allusions to the required algorithmic nature of the



instructions, and with a requirement that there be both
input and output (recall Section 7.3).

9.2.3 Arthur Samuel's Definition

Samuel's “physiological” – or functional – definition of a
computer is this:

an information or data processing device which accepts

data in one form and delivers it in an altered form.
(Samuel, 1953, p. 1223, my italics)

This seems to be a very high‐level description – perhaps too

high a level: it omits any mention of computation or
algorithms. It does mention that the “delivered” data must
have been “processed” from the “accepted” data by the
“device”; so it's not just a function that relates the two
forms of data – it's more of a function machine. But there's
no specification of the kind of processing it does.
Partly because of this, and on purpose, it also doesn't
distinguish between analog and digital computers. Samuel
resolves this by adding the modifier ‘digital,’ commenting
that “Any operation which can be reduced to arithmetic or
to simple logic can be handled by such a machine. There
does not seem to be any theoretical limit to the types of
problems which can be handled in this way” (Samuel, 1953,
p. 1224) – a nod, perhaps, to our binary‐representation
insight (Section 7.4.1). Still, this doesn't limit the
processing to algorithmic processing. It does, however,
allow the brain to be considered a computer: “when the
human operator performs a reasonably complicated
numerical calculation he [sic]8 is forcing his brain to act as
a digital computer” (Samuel, 1953, p. 1224).9

A bit later (p. 1225), he does say that the processing must
be governed by rules; this gets closer to the notion of an



algorithm, although he (so far) puts no constraints on the
rules. It is only after he discusses the control unit of the
computer and its programming (pp. 1226ff) that he talks
about the kinds of control structures (loops, etc.) involved
with algorithms. So, perhaps we could put all of this
together and say that, for Samuel, a (digital) computer is a
physical device that algorithmically processes digital data.
Further on, he adds the need for input and output devices
(p. 1226). Are these really needed? Are they part of the
abstract, mathematical model of a computer – namely, a
Turing Machine? Your first reaction might be to say that
the tape serves as both input and output device. But the
tape is an integral part of the Turing Machine; it is really
more like the set of internal switches of a physical
computer, whereas physical computers normally have input
and output devices (think of keyboards and monitors) as
separate, additional components: the Mac Mini, for
example, is sold without a keyboard or monitor. This is
related to the necessity (or lack thereof!) of inputs and
outputs that we discussed in Section 7.3.3. A computer
with no input‐output devices can only do batch processing
of pre‐stored data (if that – the Mac Mini can't do anything
if there's no way to tell it to start doing something).
Computers that interact with the external world require
input‐output devices, and that raises the question of their
relationship to Turing Machines (a discussion that we will
begin in Chapter 10). Briefly, interacting computers that
halt or have only computable input are simulable by Turing
Machines; interacting computers with non‐computable
input are equivalent to Turing's oracle machines, which we
will look at in Section 11.9.

9.2.4 Martin Davis's Characterization



The computer scientist Martin Davis (2000, pp. 366–367)
suggests (but does not explicitly endorse) the idea that a
computer is simply any device that “carries out” an
algorithm. Of course, this depends on what ‘carries out’
means: surely it has to include as part of its meaning that
the internal mechanism of the device must operate in
accordance with – must behave exactly like – one of the
logically equivalent mathematical models of computation.
Surely any computer does that. But is anything that does
that a computer? Can a computer be defined (merely) as a
set of registers with contents or switches with settings? If
they are binary switches, each is either on or off;
computation changes the contents (the settings). Do some
of the register contents or switch settings have to be
interpreted as data, some as program, and the rest as
irrelevant (and some as output?). Who (or what) does the
interpreting?

9.2.5 Summary

One common thread in such definitions (ignoring the ones
that are only of historical interest) is that computers are

1. devices or machines …
2. … that take input (data, information),
3. process it (manipulate, operate, calculate, or compute

with it) …
4. … in accordance with instructions (a program),
5. and then output a result (presumably, more data or

information but also including control of another
device).

There are some other features that are usually associated
with “computers”: the kind we are interested in must be, or
typically are



Automatic: There is no human intervention (beyond,
perhaps, writing the program). Of course, the Holy
Grail of programming is to have self‐programmed
computers, possibly to include having the “desire” or
“intention” to program themselves (as in science
fiction). Humans might also supply the input or read
the output, but that hardly qualifies as “intervention.”
(We will explore “intervention” – in the guise of
“interactive” computing – in Section 11.8.)
General purpose: A computer must be capable of any

processing that is “algorithmic” by means of a suitable
program. This is the heart of Turing's universal
machine. Recall that a Turing Machine “runs” only one

program. The Universal Turing Machine is also a
Turing Machine, so it, too, also runs only one program:
namely, the fetch‐execute cycle that enables the
simulation of another (i.e. any other) single‐program
Turing Machine.
Physically efficient: Many lists of computer features
say that computers are electronic. But that is a matter
of “anatomy.” Modern computers are, as a matter of
fact, electronic, but there is work on quantum
computers, optical computers
(https://en.wikipedia.org/wiki/Optical_computing),
DNA computers, etc.10 So, being electronic is not
essential. The crucial (“physiological”) property is,
rather, to be constructed in such a way as to allow for
high processing speeds or other kinds of physical
efficiencies. Turing (1950, Section 4, p. 439) noted this
point:

https://en.wikipedia.org/wiki/Optical_computing


Importance is often attached to the fact that modern
digital computers are electrical …. Since Babbage's
machine was not electrical, and since all digital
computers are in a sense equivalent, we see that this
use of electricity cannot be of theoretical
importance. Of course electricity usually comes in
where fast signalling is concerned, so that it is not
surprising that we find it in [digital computers] ….
The feature of using electricity is thus seen to be
only a very superficial similarity.

digital: Computers should process information
expressed in a discrete, symbolic form (typically alpha‐
numeric form, but perhaps also including graphical
form). The contrast is typically with being “analog,”
where information is represented by means of
continuous physical quantities.
algorithmic: What about the “calculations,” the
“arithmetic and logical operations”? Presumably, these
need to be algorithmic, although neither the OED nor
the Encyclopedia of Computer Science definition says
so. And it would seem that the authors of those
definitions have in mind calculations or operations such
as addition, subtraction, etc.; maybe solving differential
equations; Boolean operations involving conjunction,
disjunction, etc.; and so on. These require the data to
be numeric (for math) or propositional (or truth‐
functional – for Boolean and logical operations), at least
in some “ultimate” sense: that is, any other data
(pictorial, etc.) must be encoded as numeric or
propositional or needs to allow for other kinds of
operations.

There are clear cases of things that are computers, both
digital and analog. For example, Macs, PCs, etc. are clear
cases of digital computers. And slide rules and certain



machines at various universities are clear cases of analog
computers. However, these may be mostly of historical
interest, don't seem to be programmable – i.e. universal, in
Turing's sense – and seem to be outside the historical
development explored in Chapter 6.
And there seem to be clear cases of things that are not

computers: I would guess that most people would not
consider egg beaters, rocks, walls, ice cubes, or solid
blocks of plastic to be computers (note that I said ‘most’
people!). And there are even clear cases of devices for
which it might be said that it is not clear whether, or in
what sense, they are computers, such as Atanasoff and
Berry's ABC: recall the patent lawsuit discussed in Section
6.4.4.
So: What is a computer? What is the relation of a computer
to a Turing Machine and to a Universal Turing Machine? Is
the (human) brain a computer? Is your smartphone a
computer? Could a rock or a wall be considered a
computer? Might anything be a computer? Might
everything – such as the universe itself – be a computer? Or
are some of these just badly formed questions?11



9.3 Computers, Turing Machines, and

Universal Turing Machines

All modern general‐purpose digital computers are
physical embodiments of the same logical abstraction[:]
Turing's universal machine.
—J. Alan Robinson (1994, pp. 4–5)

9.3.1 Computers as Turing Machines

Let's try our hand at a more formal definition of ‘computer.’
An obvious candidate for such a definition is this:

(DC0) A computer is any physical device that

computes.

Because a Turing Machine is a mathematical model of what
it means to compute, we can make this a bit more precise:

(DC1) A computer is an implementation of a

Turing Machine.

A Turing Machine, as we have seen, is an abstract,
mathematical structure. We will explore the meaning of
‘implementation’ in Chapter 13. For now, it suffices to say
that an implementation of an abstract object is (usually) a
physical object that satisfies the definition of the abstract
one. (The hedge word ‘usually’ is there to allow for the
possibility of non‐physical – or “virtual” – software
implementations of a Turing Machine.) So, a physical
object that satisfies the definition of a Turing Machine
would be an “implementation” of one. Of course, no
physical object can satisfy that definition if part of the
definition requires it to be “perfect” in the following sense:



A Turing machine is like an actual digital computing
machine, except that (1) it is error free (i.e. it always
does what its table says it should do), and (2) by its
access to an unlimited tape it is unhampered by any
bound on the quantity of its storage of information or
“memory.” (Kleene, 1995, p. 27)

The type‐(1) limitation of “real” Turing Machines – being
error free – does not obviate the need for program
verification (see Chapter 15). Even an “ideal” Turing
Machine could be poorly programmed.
The type‐(2) limitation of a “real” (physical) Turing
Machine is not a very serious one, given (a) the option of
always buying another square and (b) the fact that no
computation could require an actual infinity of squares
(else it would not be a finite computation). The more
significant type‐(2) limitation is that some computations
might require more squares than there could be in the
universe (as is the case with NP computations such as
playing perfect chess; see Section 20.3.2).
So let's modify our definition to take care of this:

(DC2)A computer is a “practical” implementation

of a Turing Machine

where, adapting Turing's terminology, ‘practical’ is
intended to allow for those physical limitations:



If we take the properties of the universal [Turing]
machine in combination with the fact that the machine
processes and rule of thumb processes [i.e. algorithmic
processes] are synonymous we may say that the
universal machine is one which, when supplied with the
appropriate instructions, can be made to do any rule of
thumb process. This feature is paralleled in digital
computing machines such as the ACE. They are in fact
practical versions of the universal machine. (Turing,
1947, p. 383, my italics)

Let's now consider two questions:
Is a Turing Machine a computer?
Is a Mac (or a PC, or any other real computer) a
practical implementation of a Turing Machine?

The first question we can dismiss fairly quickly: Turing
Machines are not physical objects, so they can't be
computers. A Turing Machine is, of course, a mathematical
model of a computer. (But a virtual, software
implementation of a Turing Machine is, arguably, a
computer.)
The second question is trickier. Strictly speaking, the
answer is ‘no,’ because Macs (and PCs, etc.) don't behave
the way Turing Machines do. They actually behave more
like another mathematical model of computation: a register
machine. Register machines, however, are logically
equivalent to Turing Machines; they are just another
mathematical model of computation (Shepherdson and
Sturgis, 1963). Moreover, other logically equivalent models
of computation are even further removed from Turing
Machines or register machines: How might a computer
based on recursive functions work? Or one based on the
lambda calculus? (Think of Lisp Machines.) This suggests a
further refinement to our definition:



(DC3)A computer is a practical implementation of

anything logically equivalent to a Turing Machine.

There is another problem, however: computers, in any
informal sense of the term (think laptop or even mainframe
computer), are programmable. Turing Machines are not!
But Universal Turing Machines are! The ability to store a
program on a Universal Turing Machine's tape makes it
programmable; i.e. the Universal Turing Machine can be
changed from simulating the behavior of one Turing
Machine to simulating the behavior of a different one. A
computer in the modern sense of the term really means a
programmable computer, so here is a slightly better
definition:

(DC4)A (programmable) computer is a practical

implementation of anything logically equivalent to

a Universal Turing Machine.

(There will be some further refinements later.)

9.3.2 Stored Program vs.

Programmable

A program need not be stored physically in the computer: It
could “control” the computer via a wireless connection
from a different location. The ability to store a program in
the computer along with the data allows for the program to
change itself. Moreover, a hardwired, non‐universal
computer could be programmed by rewiring it. (This
assumes that the wires are manipulable. We'll return to this
point in Section 12.3.) That's how early mainframe
computers (like ENIAC) were programmed. So, this raises
another question: what exactly is a “stored‐program”
computer, and does it differ from a “programmable”
computer?



In my experience, the phrase ‘stored program’ refers to the
idea that a computer's program can be stored in the
computer itself (e.g. on a Turing Machine's tape) and
changed, either by storing a different program or by
modifying the program itself (perhaps while it is being
executed, and perhaps being (self‐)modified by the
program itself). However, when I asked a colleague12 “Who
first came up with the notion of ‘stored program’ ” (fully
expecting him to say either Turing or von Neumann), he
replied – quite reasonably – “Jacquard” (see Section 6.4.3).
On this understanding, the phrase ‘stored‐program
computer’ becomes key to understanding the difference
between software and hardware (or programmed vs.
hardwired computer) – see Chapter 12 for more on this –
and becomes a way of viewing the nature of the Universal
Turing Machine.
Here is von Neumann on the concept:

If the device [the “very high speed automatic digital
computing system” (Section 1.0, p. 1)] is to be elastic,
that is as nearly as possible all purpose, then a
distinction must be made between the specific
instructions given for and defining a particular problem,
and the general control organs which see to it that these
instructions – no matter what they are – are carried out.
The former must be stored in some way… the latter are
represented by definite operating parts of the device. By
the central control we mean this latter function only ….
(von Neumann, 1945, Section 2.3, p. 2; italics in original,
my boldface)

The “specific instructions” seem clearly to refer to a
specific Turing Machine's program as encoded on the tape
of a Universal Turing Machine. The “central control” seems
clearly to refer to the Universal Turing Machine's fetch‐



execute program. So, if this is what is meant by “stored
program,” it pretty clearly refers to the that a Universal
Turing Machine works.
Vardi (2013) defines ‘stored‐program’ in terms of “uniform
handling of programs and data,” which he says can be
“traced back to Gödel's arithmetization of provability.”
(Copeland (2013) objects to this; Vardi, 2017 replies.) The
commonality between both ideas is that of representing two
different things in the same notation: both Randell's and
Vardi's programs and data can be represented by ‘0’s and
‘1’s; both logic and arithmetic can be represented by
numbers (or numerals; indeed, by ‘0’s and ‘1’s!). And
insofar as the brain might be a computer, it is worth noting
that it, too, represents everything in a single “notation”:
neuron firings (Piccinini, 2020b, pp. 213–214).
There is a second aspect of this commonality – storing both
data and program (represented in the same notation) in the

same place: programs and data can be stored in different
sections of a single Turing Machine tape; arithmetical
operations can be applied to both numbers and logical
propositions; and all neuron firings are in the brain. If we
reserve ‘stored program’ to refer to Vardi's commonality, it
certainly seems to describe the principal feature of a
Universal Turing Machine (even if Turing shouldn't be
credited with the invention of the commonality). Clearly, a
stored‐program computer is programmable. Are all
programmable computers stored‐program computers?13

In the next three sections, we will look at three recent
attempts in the philosophical literature to define
‘computer.’ In Section 9.7, we will briefly consider two non‐
standard, alleged examples of computers: brains and the
universe itself.



9.4 John Searle's

“Pancomputationalism”: Everything

Is a Computer

9.4.1 Searle's Argument

John Searle's presidential address to the American
Philosophical Association, “Is the Brain a Digital
Computer?” (Searle, 1990),14 covers a lot of ground and
makes a lot of points about the nature of computers, the
nature of the brain, the nature of cognition, and the
relationships among them. In this section, we are going to
focus on what Searle says about the nature of computers,
with only a few side glances at the other issues.
Here is Searle's argument relevant to our main question
about what a computer is:

1. Computers are described in terms of 0s and 1s.
(See Searle, 1990, p. 26; Searle, 1992, pp. 207–208.)

2. Therefore, being a computer is a syntactic property.
(See Searle, 1990, p. 26; Searle, 1992, pp. 207.)

3. Therefore, being a computer is not an “intrinsic”
property of physical objects.
(See Searle, 1990, pp. 27–28; Searle, 1992, p. 210.)

4. Therefore, we can ascribe the property of being a
computer to any object.
(See Searle, 1990, p. 26; Searle, 1992, p. 208.)

5. Therefore, everything is a computer.
(See Searle, 1990, p. 26; Searle, 1992, p. 208.)



Of course, this doesn't quite answer our question, “What is
a computer?” Rather, the interpretation and truth value of
1–5 will depend on what Searle thinks a computer is. Let's
look at exactly what Searle says about these claims.

9.4.2 Computers Are Described in

Terms of 0s and 1s

Taken literally, he is saying that computers are described
in terms of certain numbers. Instead, he might have said
that computers are described in terms of the numerals ‘0’
and ‘1.’ Keep this distinction in mind as we discuss Searle's
argument (recall Section 6.7.1). After briefly describing
Turing Machines as devices that can perform the actions of
printing ‘0’ or ‘1’ on a tape and of moving left or right on
the tape, depending on conditions specified in their
program, Searle says this:

If you open up your home computer you are most
unlikely to find any ‘0’s and ‘1’s or even a tape. But this
does not really matter for the definition. To find out if an
object is really a digital computer, it turns out that we do
not actually have to look for ‘0’s and ‘1’s, etc.; rather we
just have to look for something that we could treat as or
count as or could be used to function as ‘0’s and ‘1’s.
(Searle, 1990, p. 25, my boldface, Searle's italics; Searle,
1992, p. 206)

So, according to Searle, a computer is a physical object
that can be described as a Turing Machine. Recall from
Section 8.8.1 that anything that satisfies the definition of a
Turing Machine is a Turing Machine, whether it has a
paper tape divided into squares with the symbols ‘0’ or ‘1’
printed on them or whether it is a table and placemats with
beer mugs on them. All we need is to be able to “treat”



some part of the physical object as playing the role of the
Turing Machine's ‘0’s and ‘1’s. So far, so good.
Or is it? Is your home computer really a Turing Machine?
Or is it a device whose behavior is “merely” logically

equivalent to that of a Turing Machine? That is, is it a
device that can compute all and only the functions that a
Turing Machine can compute, even if it does so differently
from the way a Turing Machine does? Recall that there are
lots of different mathematical models of computation:
Turing Machines and recursive functions are the two we
have looked at. Suppose someone builds a computer that
operates in terms of recursive functions instead of in terms
of a Turing Machine. That is, it can compute successors,
predecessors, and projection functions, and it can combine
these using generalized composition, conditional definition,
and while‐recursion, instead of printing ‘0’s and ‘1’s,
moving left and right, and combining these using “go to”
instructions (changing from one ‐configuration to
another). These two computers (the Turing Machine
computer and the recursive‐function computer), as well as
your home computer (with a “von Neumann” architecture,
whose method of computation uses the primitive machine‐
language instructions and control structures of, say, an
Intel chip), are all logically equivalent to a Turing Machine
in the sense of having the same input‐output behavior, but
their internal behaviors are radically different. To use a
terminology from an earlier chapter, we can ask, are
recursive‐function computers, Turing Machines, Macs, and
PCs not only extensionally equivalent but also intensionally

equivalent? Can we really describe the recursive‐function
computer and your home computer in terms of a Turing
Machine's ‘0’s and ‘1’s? Or are we limited to showing that
anything that the recursive‐function computer and your
home computer can compute can also be computed by a



Turing Machine (and vice versa) – but not necessarily in
the same way?
Here is an analogy to help you see the issue: consider
translating between French and English. To say in French
that it is snowing – i.e. to convey in French the same
information that ‘It is snowing’ conveys in English – you
say, Il neige. To say that ‘il’ means “it” and ‘neige’ means
“is snowing” is very much (perhaps exactly) like describing
the recursive‐function machine's behavior (analogous to
the French sentence) using ‘0’s and ‘1’s (analogous to the
English sentence).
But here is a different example: in English, if someone says,
‘Thank you,’ you might reply, ‘You're welcome.’ In French,
if someone says Merci, you might reply: Je vous en prie.
Does ‘merci’ “mean” (the same as) ‘thank you’? Does ‘Je
vous en prie’ “mean” (the same as) ‘You're welcome’? Have
we translated the English into French in the way we might
“translate” a recursive‐function algorithm into a Turing
Machine's ‘0’s and ‘1’s? Not really: although ‘merci’ is used

in much the same way in French that ‘thank you’ is used in
English, there is no part of ‘merci’ that means (the same
as) ‘thank’ or ‘you’; and the literal translation of ‘je vous en

prie’ is something like ‘I pray that of you.’ There is a way of
communicating the same information in both French and
English, but the phrases used are not literally inter‐
translatable.
So, something might be a computer without being
“described in terms of ‘0’s and ‘1’s,” depending on exactly
what you mean by ‘described in terms of.’ Perhaps Searle
should have said something like this: computers are
described in terms of the primitive elements of the
mathematical model of computation that they implement.
But let's grant him the benefit of the doubt and continue
looking at his argument.



9.4.3 Being a Computer Is a Syntactic

Property

Let's suppose, for the sake of argument, that computers are
described in terms of ‘0’s and ‘1’s. Syntax is the study of
the properties of, and relations among, symbols or
uninterpreted marks on paper (or on some other medium);
a rough synonym is ‘symbol manipulation’ (see Section
16.9). Note that numerals are symbols; numbers aren't. So,
such a description of a computer is syntactic. This term
(which pertains to symbols, words, grammar, etc.) is
usually contrasted with ‘semantic’ (which pertains to
meaning), and Searle emphasizes that contrast early in his
essay when he says that “syntax is not the same as, nor is it
by itself sufficient for, semantics” (Searle, 1990, p. 21). But
now Searle uses the term ‘syntactic’ as a contrast to being
physical. Just as there are many ways to be computable
(Turing Machines, recursive functions, lambda‐calculus,
etc.) – all of which are equivalent – so there are many ways
to be a carburetor. “A carburetor … is a device that blends
air and fuel for internal combustion engines”
(http://en.wikipedia.org/wiki/Carburetor), but it doesn't

matter what it is made of, as long as it can perform that
blending “function” (purpose). “[C]arburetors can be made
of brass or steel” (Searle, 1990, p. 26); they are “multiply
realizable” – that is, you can “realize” (or make) one in
“multiple” (or different) ways. They “are defined in terms of
the production of certain physical effects” (Searle, 1990,
p. 26).

But the class of computers is defined syntactically in
terms of the assignment of ‘0’s and ‘1’s. (Searle, 1990,
p. 26, Searle's italics, my boldface; Searle, 1992, p. 207)

In other words, if something is defined in terms of symbols,
like ‘0’s and ‘1’s, then it is defined in terms of syntax, not in

http://en.wikipedia.org/wiki/Carburetor


terms of what it is physically made of (its “anatomy”).
Hence, being a computer is a syntactic property, not a
physical property. It is a property that something has by
virtue of … of what? There are two possibilities, given what
Searle has said. First, perhaps being a computer is a
property that something has by virtue of what it does, its

function or purpose (its “physiology”). Second, perhaps
being a computer is a property that something has by
virtue of what someone says that it does, how it is

described. But what something actually does may be
different from what someone says it does.
Does Searle think something is a computer by virtue of its
function or by virtue of its syntax? Recall our thought
experiment from Section 3.11: suppose you find a black box
with a keyboard and a screen in the desert, and by
experimenting with it, you determine that it displays on its
screen the greatest common divisor (GCD) of two numbers
that you type into it. It certainly seems to function as a
computer (as a Turing Machine for computing GCDs). And
you can probably describe it in terms of ‘0’s and ‘1’s, so you
can also say that it is a computer. It seems that if
something functions as a computer, you can describe it in

terms of ‘0’s and ‘1’s.
What about the converse? If you can describe something in
terms of ‘0’s and ‘1’s, does it function as a computer?
Suppose the black box's behavior is inscrutable: the
symbols on the keys are unrecognizable, and the symbols
displayed on the screen don't seem to be related in any
obvious way to the input symbols. But suppose someone
manages to invent an interpretation of the symbols in terms
of which the box's behavior can be described as computing
GCDs. Is “computing GCDs” really what it does? Might it
not have been created by some extraterrestrials solely for
the purpose of entertaining their young with displays of



pretty pictures (meaningless symbols), and it is only by the
most convoluted (and maybe not always successful)
interpretation that it can be described as computing GCDs?
You might think the box's function is more important for
determining what it is. Searle thinks our ability to describe

it syntactically is more important! After all, whether or not
the box was intended by its creators to compute GCDs or
entertain toddlers, if it can be accurately described as
computing GCDs, then, in fact, it computes GCDs (as well
as, perhaps, entertaining toddlers with pretty pictures).
Here is an alternative view of this:

Suppose that a student is successfully doing an exercise
in a recursive function theory course which consists in
implementing a certain Turing Machine program. There
is then no reductionism involved in saying that he [sic] is
carrying out a Turing Machine program. He intends to
be carrying out a Turing Machine program. … Now
suppose that, unbeknownst to the student, the Turing
Machine program he is carrying out is an
implementation of the Euclidean algorithm [for
computing GCDs]. His instructor, looking at the pages of
more or less meaningless computations handed in by the
student, can tell from them that the greatest common
divisor of 24 and 56 is 8. The student, not knowing the
purpose of the machine instructions he is carrying out,
cannot draw the same conclusion from his own work. I
suggest that the instructor, but not the student, should
be described as carrying out the Euclidean algorithm.
(This is a version … of Searle's Chinese room argument
… )15 (Goodman, 1987, p. 484)

Again, let's grant this point to Searle. He then goes on to
warn us:
But this has two consequences which might be disastrous:



1. The same principle that implies multiple realizability
would seem to imply universal realizability. If
computation is defined in terms of the assignment of
syntax then everything would be a digital computer,
because any object whatever could have syntactical
ascriptions made to it. You could describe anything in
terms of ‘0’s and ‘1’s.

2. Worse yet, syntax is not intrinsic to physics. The
ascription of syntactical properties is always relative to
an agent or observer who treats certain physical
phenomena as syntactical.
(Searle, 1990, p. 26; Searle, 1992, pp. 207–208)

Let's take these in reverse order.

9.4.4 Being a Computer Is Not an

Intrinsic Property of Physical Objects

According to Searle, being a computer is not an intrinsic
property of physical objects, because being a computer is a
syntactic property, and “syntax is not intrinsic to physics.”
What does that mean, and why does Searle think it is true?
What is an “intrinsic” property? Searle doesn't tell us,
although he gives some examples:16

[G]reen leaves intrinsically perform photosynthesis[;] …
hearts intrinsically pump blood. It is not a matter of us
arbitrarily or “conventionally” assigning the word
“pump” to hearts or “photosynthesis” to leaves. There is
an actual fact of the matter. (Searle, 1990, p. 26; Searle,
1992, p. 208)

So, perhaps “intrinsic” properties are properties that
something “really” has as opposed to merely being said to
have, much the way our black box in the previous section



may or may not “really” compute GCDs but can be said to
compute them. But what does it mean to “really” have a
property? As you might expect, the philosophical analysis of
“intrinsic” properties is controversial. Perhaps the simplest
characterization is this: an entity  has a property 
intrinsically if  has  “independently of the nature of its
environment” (Figdor, 2009, p. 3, footnote 3).
Why does Searle think syntax is not “intrinsic” to physics?
Because “ ‘syntax’ is not the name of a physical feature,
like mass or gravity. … [S]yntax is essentially an observer
relative notion” (Searle, 1990, p. 27; Searle, 1992, p. 209).
I think that what Searle is saying here is that we can
analyze physical objects in different ways, no one of which
is “privileged” or “more correct”; i.e. we can carve nature
into different joints in different ways. On some such
carvings, we might count an object as a computer; on
others, we wouldn't. By contrast, an object has mass
independently of how it is described: having mass is not

relative to an observer; hence, it is intrinsic. How its mass
is measured is relative to an observer.
But couldn't being a computer be something like that?
There may be lots of different ways to measure mass, but
an object always has a certain quantity of mass, no matter
whether you measure it in grams or other units. In the
same way, there may be lots of different ways to measure
length, but an object always has a certain length, whether
you measure it in centimeters or inches. Similarly, an
object (natural or artifactual) will have a certain structure,
whether you describe it as a computer or something else. If
that structure satisfies the definition of a Turing Machine,
then it is a Turing Machine, no matter how anyone
describes it.17

Searle anticipates this reply:



[S]omeone might claim that the notions of “syntax” and
“symbols” are just a manner of speaking and that what
we are really interested in is the existence of systems
with discrete physical phenomena and state transitions
between them. On this view we don't really need ‘0’s and
‘1’s; they are just a convenient shorthand. (Searle, 1990,
p. 27; Searle, 1992, p. 210)

Compare this to my previous example: someone might
claim that specific units of measurement are just a manner
of speaking and that what we are really interested in is the
actual length of an object; on this view, we don't really
need centimeters or inches; they are just a convenient
shorthand.
Searle replies:

But I believe, this move is no help. A physical state of a

system is a computational state only relative to the

assignment to that state of some computational

role, function, or interpretation. The same problem
arises without ‘0’s and ‘1’s because notions such as
computation, algorithm and program do not name
intrinsic physical features of systems. Computational
states are not discovered within the physics, they are
assigned to the physics.
(Searle, 1990, p. 27, my boldface, Searle's italics; Searle,
1992, p. 210)

But this just repeats his earlier claim; it gives no new
reason to believe it. He continues to insist that being a
computer is more like “inches” than like length.
So, we must ask again: why does Searle think syntax is not
intrinsic to physics? Perhaps if a property is intrinsic to
some object, that object can only have the property in one
way. For instance, color is presumably not intrinsic to an



object, because an object might have different colors
depending on the conditions under which it is perceived.
But the physical structure of an object that causes it to
reflect a certain wavelength of light is always the same;
that physical structure is intrinsic. On this view, here is a
reason syntax might not be intrinsic: the syntax of an object
is, roughly, its abstract structure.18 But an object might be
able to be understood in terms of several different abstract
structures (and this might be the case whether or not
human observers assign those structures to the object). If
an object has no unique syntactic structure, then syntax is
not intrinsic to it. But if an object has (or can be assigned)
a syntax of a certain kind, then it does have that syntax
even if it also has another one. And if, under one of those
syntaxes, the object is a computer, then it is a computer.
But that leads to Searle's next point.

9.4.5 We Can Ascribe the Property of

Being a Computer to Any Object

There is some slippage in the move from “syntax is not
intrinsic to physics” to “we can ascribe the property of
being a computer to any object.” Even if syntax is not
intrinsic to the physical structure of an object (perhaps
because a given object might have several different
syntactic structures), why must it be the case that any

object can be ascribed the syntax of being a computer?
One reason might be this: every object has (or can be
ascribed) every syntax. That seems to be a very strong
claim. To refute it, however, all we would need to do is to
find an object  and a syntax  such that  lacks (or
cannot be ascribed) . One possible place to look would be
for an  whose “size” in some sense is smaller than the
“size” of some . I will leave this as an exercise for the



reader: if you can find such  and , then I think you can
block Searle's argument at this point.
Here is another reason any object might be able to be
ascribed the syntax of being a computer: there might be
something special about the syntax of being a computer –
i.e. about the formal structure of Turing Machines – that
does allow it to be ascribed to (or found in) any object. This
may be a bit more plausible than the previous reason. After
all, Turing Machines are fairly simple. Again, to refute the
claim, we would need to find an object  such that 
lacks (or cannot be ascribed) the syntax of a Turing
Machine. Again, I will leave this as an exercise for the
reader, but we will return to it later (when we look at the
nature of “implementation” in Chapter 13). Searle thinks
we cannot find such an object.

9.4.6 Everything Is a Computer

Unlike computers, ordinary rocks are not sold in
computer stores and are usually not taken to perform
computations. Why? What do computers have that rocks
lack, such that computers compute and rocks don't? (If
indeed they don't?) … A good account of computing
mechanisms should entail that paradigmatic examples of
computing mechanisms, such as digital computers,
calculators, both Universal and non‐universal Turing
Machines, and finite state automata, compute. … A good
account of computing mechanisms should entail that all
paradigmatic examples of non‐computing mechanisms
and systems, such as planetary systems, hurricanes, and
digestive systems, don't perform computations.
(Piccinini, 2015, pp. 7, 12)

We can ascribe the property of being a computer to any
object if and only if everything is a computer:



Thus for example the wall behind my back is right now
implementing the Wordstar program, because there is
some pattern of molecule movements which is
isomorphic with the formal structure of Wordstar.
(Searle, 1990, p. 27; Searle, 1992, pp. 208–209)

Searle does not offer a detailed argument for how this
might be the case, but other philosophers have done so,
and in Chapter 13, we will explore how they think it can be
done. Let's assume for the moment that it can be done.
In that case, things are not good, because this trivializes
the notion of being a computer. If everything has some
property , then  isn't a very interesting property: such a
property doesn't help us categorize the world, so it doesn't
help us understand the world:

[A]n objection to Turing's analysis… is that although
Turing's account may be necessary it is not sufficient. If
it is taken to be sufficient then too many entities turn out
to be computers. The objection carries an embarrassing
implication for computational theories of mind: such
theories are devoid of empirical content. If virtually
anything meets the requirements for being a
computational system then wherein lies the explanatory
force of the claim that the brain is such a system?
(Copeland, 1996, Section 1, p. 335)

“Turing's analysis” is, roughly, that  is a computer iff  is
a (physical) implementation of a Turing Machine. (Recall
DC0–DC4 from Section 9.3.1.) To say that this “account” is
“necessary” means if  is a computer, then it is an
implementation of a Turing Machine. That seems
innocuous. To say it is a “sufficient” account is to say that if

 is an implementation of a Turing Machine, then it is a
computer. This is allegedly problematic, because, allegedly,
anything can be gerrymandered to make it an



implementation of a Turing Machine; hence, anything is a
computer (including, for uninteresting reasons, the brain).
How might we respond to this situation? One way is to bite
the bullet and accept that, under some description, any
object (even the wall behind me) can be considered a
computer. And not just some specific computer, such as a
Turing Machine that executes the WordStar program:

[I]f the wall is implementing Wordstar then if it is a big
enough wall it is implementing any program, including
any program implemented in the brain. (Searle, 1990,
p. 27; Searle, 1992, p. 209)

If a big enough wall implements any program, then it
implements the Universal Turing Machine!
But perhaps this is OK. After all, there is a difference
between an “intended” interpretation of something and a
“gerrymandered” interpretation. For instance, the intended
interpretation of Peano's axioms for the natural numbers is
the sequence . There are also many other
“natural” interpretations, such as I, II, III, , or 

, or , and so on. As
Chris Swoyer (1991, p. 504, note 26) notes, “According to
structuralism, any countably infinite (recursive) set can be
arranged to form an ‐sequence that can play the role of
the natural numbers. It is the structure common to all such
sequences, rather than the particular objects which any
happens to contain, that is important for arithmetic.” But
extremely contorted ones, such as a(n infinite) sequence of
all numeral names in French arranged alphabetically, are
hardly “good” examples. Admittedly, they are examples of
natural numbers, but not very useful ones. (For further
discussion, see Benacerraf, 1965, White, 1974.)
A better reply to Searle, however, is to say that he's wrong:
some things are not computers. Despite what he said in the



last passage quoted previously, the wall behind me is not a
Universal Turing Machine; I really cannot use it to post to
my Facebook account or write a letter, much less add 
. It is an empirical question whether something actually
behaves as a computer. And the same goes for other
syntactic structures. Consider the formal definition of a
mathematical group:

A group  a set of objects (e.g. integers) that is closed
under an associative binary operation (e.g. addition),
that has an identity element (e.g. 0), and is such that
every element of the set has an inverse (e.g. in the case
of integer , its inverse is ).

Not every set is a group. Similarly, there is no reason to
believe that everything is a Turing Machine.

In order for the system to be used to compute the
addition function these causal relations have to hold at a

certain level of grain, a level that is determined by the
discriminative abilities of the user. That is why … no
money is to be made trying to sell a rock as a calculator.
Even if (per mirabile)[19] there happens to be a set of
state‐types at the quantum‐mechanical level whose
causal relations do mirror the formal structure of the
addition function, microphysical changes at the quantum
level are not discriminable by human users, hence
human users could not use such a system to add. (God,
in a playful mood, could use the rock to add.)
(Egan, 2012, p. 46)

Chalmers (2012, pp. 215–216) makes much the same point:



On my account, a pool table will certainly implement
various a[bstract]‐computations and perform various
c[oncrete]‐computations. It will probably not implement
interesting computations such as algorithms for vector
addition, but it will at least implement a few multi‐state
automata and the like. These computations will not be of
much explanatory use in understanding the activity of
playing pool, in part because so much of interest in pool
are not organizationally invariant and therefore involve
more than computational structure.

In other words, even if Searle's wall implements WordStar,
we wouldn't be able to use it as such.

Let's take stock of where we are. Presumably, computers
are things that compute. Computing is the process that
Turing Machines give a precise description for. That is,
computing is what Turing Machines do. And what Turing
Machines do is to move around in a discrete fashion and
print discrete marks on discrete sections of the space in
which they move around. So, a computer is a device –
presumably, a physical device – that does that. Searle
agrees that computing is what Turing Machines do, and he
seems to agree that computers are devices that compute.
He also believes that everything is a computer; more
precisely, he believes that everything can be described as a
computer (because that's what it means to be a computer).
And we've also seen reason to think he might be wrong
about that last point.
In the next two sections, we look at two other views about
what a computer is. (We will consider other responses to
Searle's argument in Chapter 13.)



9.5 Patrick Hayes: Computers as

Magic Paper

Let's keep straight three intertwined issues we have been
looking at:

1. What is a computer?
2. Is the brain a computer?
3. Is everything a computer?

Our principal concern is with the first question. Once we
have an answer to that, we can try to answer the others. As
we've just seen, Searle thinks a computer is anything that
is (or can be described as) a Turing Machine, that
everything is (or can be described as) a computer, and,
therefore, that the brain is a computer, but only trivially so,
and not in any interesting sense.
The AI researcher Patrick J. Hayes (1997) gives a different
definition – in fact, two of them. Here's the first:

Definition H1 By “computer” I mean a machine which

performs computations, or which computes. (Hayes, 1997,
p. 390, my italics)

A full understanding of this requires a definition of
‘computation’; this will be clarified in his second definition.
But there are a few points to note about this first one.
First, he prefaces it by saying

First, I take it as simply obvious both that computers
exist and that not everything is a computer, so that,
contra Searle, the concept of “computer” is not vacuous.
(Hayes, 1997, p. 390)



So, there are (1) machines that compute (i.e. there are
things that are machines‐that‐compute), and there are
(2) things that are not machines‐that‐compute. Note
that (2) can be true in two ways: there might be
(2a) machines that don't compute, or there might be
(2b) things that do compute but aren't machines. Searle
disputes the first possibility because he thinks everything
(including, therefore, any machine) computes. But contrary
to what Hayes says, Searle would probably agree with the
second possibility, because, after all, he thinks everything
(including, therefore, anything that is not a machine)
computes! Searle's example of the wall that implements (or
that can be interpreted as implementing) WordStar would
be such a non‐machine that computes. So, for Hayes's
notion to contradict Searle, it must be that Hayes believes
there are machines that do not compute. Perhaps a
dishwasher is a machine that doesn't compute anything.20

Are Hayes's two “obvious” points to be understood as
criteria of adequacy for any definition – criteria Hayes
thinks need no argument (i.e. as something like “axioms”)?
Or are they intended to be more like “theorems” that follow
from his first definition? If it's the former, then there is no
interesting debate between Searle and Hayes; one simply
denies what the other argues for. If it's the latter, then
Hayes needs to provide arguments or examples to support
his position.
A second thing to note about Hayes's definition is that he
says a computer “performs computations,” not “can

perform computations.” Strictly speaking, your laptop when
it is turned off is not a computer by this definition, because
it is not performing any computation. And, as Hayes
observes,



On this understanding, a Turing machine is not a
computer, but a mathematical abstraction of a certain
kind of computer. (Hayes, 1997, p. 390)

What about Searle's wall that implements WordStar? There
are two ways to think about how the wall might implement
WordStar. First, it might do so statically simply by virtue of
there being a way to map every part of the WordStar
program to some aspect of the molecular or subatomic
structure of the wall. In that case, Hayes could well argue
that the wall is not a WordStar computer, because it is not
computing (even if it might be able to). But the wall might
implement WordStar dynamically; in fact, that is why
Searle thinks the wall implements WordStar …

… because there is some pattern of molecule movements

which is isomorphic with the formal structure of
Wordstar. (Searle, 1990, p. 27, my italics; Searle, 1992,
pp. 208–209)

But a pattern of movements suggests that Searle thinks the
wall is computing, so it is a computer!
Hayes's second definition is a bit more precise, and it is,
presumably, his “official” one:

Definition H2 [F]ocus on the memory. A computer's
memory contains patterns … which are stable but labile
[i.e. changeable], and it has the rather special property that
changes to the patterns are under the control of other
patterns: i.e. some of them describe changes to be made to
others; and when they do, the memory changes those
patterns in the way described by the first ones. … A
computer is a machine which is so constructed that

patterns can be put in it, and when they are, the changes

they describe will in fact occur to them. If it were paper, it
would be “magic paper” on which writing might



spontaneously change, or new writing appear. (Hayes,
1997, p. 393, my italics)

There is a subtle difference between Hayes's two
definitions, which highlights an ambiguity in Searle's
presentation. Recall the distinction between a Turing
Machine and a Universal Turing Machine: both Turing
Machines and Universal Turing Machines are hardwired
and compute only a single function. The Turing Machine
computes whichever function is encoded in its machine
table; it cannot compute anything else. But the one
function, hardwired into its machine table, that a Universal
Turing Machine computes is the fetch‐execute function that
takes as input a program and its data and outputs the
result of executing that program on that data. In that way,
a Universal Turing Machine (besides computing the fetch‐
execute cycle) can (in a different way) compute any
computable function as long as a Turing Machine program
for that function is encoded and stored on the Universal
Turing Machine's tape. The Universal Turing Machine is
programmable in the sense that the input program can be
varied, not that its hardwired program can be.
Definition H1 seems to include physical Turing Machines
(but, as Hayes noted, not abstract ones), because, after all,
they compute (at least, when they are turned on and
running). Definition H2 seems to exclude them, because
the second definition requires patterns that describe
changes to other patterns. That first kind of pattern is a
stored program; the second kind is the data that the
program operates on. So, Definition H2 is for a Universal

Turing Machine.
Here is the ambiguity in Searle's presentation: is Searle's
wall a Turing Machine or a Universal Turing Machine? On
Searle's view, WordStar is a Turing Machine, so the wall
must be a Turing Machine, too. So, the wall is not a



computer in Definition H2. Could a wall (or a rock, or some
other suitably large or complex physical object other than
something like a PC or a Mac) be a Universal Turing
Machine? My guess is that Searle would say “yes,” but it is
hard to see how one would actually go about programming
it.
The “magic paper” aspect of Definition H2 focuses, as
Hayes notes, on the memory: i.e. on the tape. It is as if you
were looking at a Universal Turing Machine, but all you
saw was the tape, not the read‐write head or its states ( ‐
configurations) or its mechanism. If you watched the
Universal Turing Machine compute, you would see the
patterns (the ‘0’s and ‘1’s) on the tape “magically” change.
(This would be something like looking at an animation of
the successive states of the Turing Machine tape in Section
8.10.3.)
A slightly different version of the “magic paper” idea is
Alan Kay's third “computing whammy” (see Section 7.4.5):

Matter can hold and interpret and act on descriptions
that describe anything that matter can do. (Guzdial and
Kay, 2010)

The idea of a computer as magic paper or magic matter
may seem a bit fantastic. But there are more down‐to‐earth
ways of thinking about this. Philosopher Richmond
Thomason has said that

… all that a program can do between receiving an input
and producing an output is to change variable
assignments … (Thomason, 2003, p. 328; cf. Lamport,
2011, p. 6)

If programs tell a computer how to change the assignments
of values to variables, then a computer is a (physical)
device that changes the contents of register cells (the
register cells that are the physical implementations of the



variables in the program). This is really just another
version of Turing's machines, if you consider the tape
squares to be the register cells.
Similarly, Stuart C. Shapiro points out that

a computer is a device consisting of a vast number of
connected switches. … [T]he switch settings both
determine the operation of the device and can be
changed by the operation of the device. (Shapiro, 2001,
p. 3)

What is a “switch”? Here is a nice description from
Samuel's 1953 article:

To bring the discussion down to earth let us consider the
ordinary electric light switch in your home. This is by
definition a switch. It enables one to direct electric
current to a lighting fixture at will. Usually there is a
detent mechanism 21 which enables the switch to
remember what it is supposed to be doing so that once
you turn the lights on they will remain on. It therefore
has a memory. It is also a binary, or perhaps we should
say a bistable device. By way of contrast, the ordinary
telegrapher's key is a switch without memory since the
key will remain down only as long as it is depressed by
the operator's hand. But the light switch and the
telegraph key are binary devices, that is, they have but
two operating states. (Samuel, 1953, p. 1225)

So, a switch is a physical implementation of a Turing
Machine's tape cell, which can also be “in two states” (i.e.
have one of two symbols printed on it) and also has a
“memory” (i.e. once a symbol is printed on a cell, it remains
there until it is changed). Hayes's magic‐paper patterns are
just Shapiro's switch‐settings or Thomason's variable
assignments.22



Does this definition satisfy Hayes's two criteria? Surely
such machines exist. I wrote this book on one of them. And
surely not everything is such a machine: at least on the face
of it, the stapler on my desk is not such “magic paper.”
Searle, I would imagine, would say that we might see it as
such magic paper if we looked at it closely enough and in
just the right way. And so the difference between Searle
and Hayes seems to be in how one is supposed to look at
candidates for being a computer: do we look at them as we
normally do? In that case, not everything is a computer. Or
do we squint our eyes and look at them closely in a certain
way? In that case, perhaps we could see that everything
could be considered a computer. Isn't that a rather odd way
of thinking about things?
What about the brain? Is it a computer in the sense of
“magic paper” (or magic matter)? If Hayes's “patterns” are
understood as patterns of neuron firings, then, because
surely some patterns of neuron firings cause changes in
other such patterns, I think Hayes would consider the brain
to be a computer.



9.6 Gualtiero Piccinini: Computers as

Digital String Manipulators

In a series of three papers, the philosopher Gualtiero
Piccinini has offered an analysis of what a computer is
(Piccinini, 2007b, c, 2008) (see also Piccinini, 2015). It is
more precise than Hayes's, because it talks about how the
magic paper performs its tricks. And it is less universal
than Searle's, because Piccinini doesn't think everything is
a computer.
Unfortunately, there are two slightly different definitions to
be found in Piccinini's papers:23

Definition P1 The mathematical theory of how to generate
output strings from input strings in accordance with
general rules that apply to all input strings and depend on
the inputs (and sometimes internal states) for their
application is called computability theory. Within
computability theory, the activity of manipulating strings of
digits in this way is called computation. Any system that

performs this kind of activity is a computing system

properly so called. (Piccinini, 2007b, p. 108, my italics)

Definition P2 [A]ny system whose correct mechanistic

explanation ascribes to it the function of generating output

strings from input strings (and possibly internal states), in

accordance with a general rule that applies to all strings

and depends on the input strings (and possibly internal

states) for its application, is a computing mechanism. The
mechanism's ability to perform computations is explained
mechanistically in terms of its components, their functions,
and their organization. (Piccinini, 2007c, p. 516, my italics)



These are almost the same, but there is a subtle difference
between them.

9.6.1 Definition P1

Let's begin with Definition P1. It implies that a computer is
any “system” (presumably, a physical device, because only
something physical can actively “perform” an action) that
manipulates strings of digits: i.e. that “generate[s] output
strings from input strings in accordance with general rules
that apply to all input strings and [that] depend on the
inputs (and sometimes internal states) for their
application.” What kind of “general rule”? Piccinini (2008,
p. 37) uses the term ‘algorithm’ instead of ‘general rule.’
This is consistent with the view that a computer is a Turing
Machine and explicates Hayes's “magic trick” as being an
algorithm.
The crucial point, according to Piccinini, is that the inputs
and outputs must be strings of digits. This is the significant
difference between (digital) computers and “analog”
computers: the former manipulate strings of digits; the
latter manipulate “real variables.” Piccinini explicates the
difference between digits and real variables as follows:

A digit is a particular [i.e. a particular object or
component of a device] or a discrete state of a particular,
discrete in the sense that it belongs to one (and only one)
of a finite number of types. … A string of digits is a
concatenation of digits: namely, a structure that is
individuated by the types of digits that compose it, their
number, and their ordering (i.e. which digit token is first,
which is its successor, and so on). (Piccinini, 2007b,
p. 107)24

Piccinini (2007c, p. 510) observes that a digit is analogous
to a letter of an alphabet, so digits are like Turing's



symbols that can be printed on a Turing Machine's tape. On
the other hand,

real variables are physical magnitudes that (i) vary over
time, (ii) (are assumed to) take a continuous range of

values within certain bounds, and (iii) (are assumed to)
vary continuously over time. Examples of real variables
include the rate of rotation of a mechanical shaft and the
voltage level in an electrical wire. (Piccinini, 2008, p. 48)

So far, so good. Neither Searle nor Hayes should be upset
with this characterization.

9.6.2 Definition P2

But Piccinini's second definition adds a curious phrase. This
definition implies that a computer is any system “whose
correct mechanistic explanation ascribes to it the function
of” manipulating digit strings according to algorithms.
What is the import of that extra phrase?
It certainly seems as if this is a weaker definition. In fact, it
sounds a bit Searlean, because it makes it appear as if it is
not the case that a computer is an algorithmic, digit‐string
manipulator, but rather that it is anything that can be so
described by some kind of “mechanistic explanation.” And
that sounds as if being a computer is something “external”
and not “intrinsic.”
So let's consider what Piccinini has in mind here. He says,

Roughly, a mechanistic explanation involves a partition
of a mechanism into parts, an assignment of functions
and organization to those parts, and a statement that a
mechanism's capacities are due to the way the parts and
their functions are organized. (Piccinini, 2007c, p. 502)

As we will see in more detail in Section 18.8.3, syntax in its
most general sense is the study of the properties of a



collection of objects and the relations among them. If a
“mechanism” is considered a collection of its parts, then
Piccinini's notion of a mechanistic explanation sounds a lot
like a description of the mechanism's “syntax.” But syntax,
you will recall, is what Searle says is not intrinsic to a
system (or a mechanism).
So how is Piccinini going to avoid a Searlean “slippery
slope” and deny that everything is a computer? One way he
tries to do this is by suggesting that even if a system can be
analyzed syntactically in different ways, only one of those
ways will help us understand the system's behavior:

Mechanistic descriptions are sometimes said to be
perspectival, in the sense that the same component or
activity may be seen as part of different mechanisms
depending on which phenomenon is being explained ….
For instance, the heart may be said to be for pumping
blood as part of an explanation of blood circulation, or it
may be said to be for generating rhythmic noises as part
of an explanation of physicians who diagnose patients by
listening to their hearts. This kind of perspectivalism
does not trivialize mechanistic descriptions. Once we fix
the phenomenon to be explained, the question of what
explains the phenomenon has an objective answer. This
applies to computations as well as other capacities of
mechanisms. A heart makes the same noises regardless
of whether a physician is interested in hearing it or
anyone is interested in explaining medical diagnosis.
(Piccinini, 2007c, p. 516)

Let's try to apply this to Searle's “WordStar wall”: from one
perspective, the wall is just a wall; from another, according
to Searle, it can be taken as an implementation of
WordStar. Compare this to Piccinini's claim that, from one
perspective, a heart is a pump, and from another, it is a
noisemaker. If you're a doctor interested in hearing the



heart's noises, you'll consider the heart a noisemaker. If
you're a doctor interested in making a medical diagnosis,
you'll consider it a pump. Similarly, if you're a house
painter, say, you'll consider the wall a flat surface to be
colored, but if you're Searle, you'll try to consider it a
computer program. (Although I don't think you'll be very
successful in using it to write a term paper!)



9.7 What Else Might Be a Computer?

So, what is a computer? It would seem that almost all
proposed definitions agree on at least the following:

Computers are physical devices.
They interact with other physical devices in the world.
They algorithmically manipulate (physical) symbols
(strings of digits), converting some into others.
They are physical implementations of (Universal) Turing
Machines in the sense that their input‐output behavior
is logically equivalent to that of a (Universal) Turing
Machine (even though the details of their processing
might not be). A slight modification of this might be
necessary to avoid the possibility that a physical device
might be considered a computer even if it doesn't
compute: we probably want to rule out “real magic,” for
instance.

Does such a definition include too much? Let's assume for a
moment that something like Piccinini's reply to Searle
carries the day, so it makes sense to say that not everything
is a computer. Still, might there be some things that
intuitively aren't computers but that turn out to be
computers given even our narrow characterization?
This is always a possibility. As we saw in Section 3.4.1, any
time you try to make an informal concept precise, you run
the risk of including some things under the precise concept
that didn't (seem to) fall under the informal concept. You
also run the risk of excluding some things that did. One way
to react to this situation is to reject the formalization or
refine it so as to minimize or eliminate the “erroneous”
inclusions and exclusions. But another reaction is to bite the
bullet and agree to the new inclusions and exclusions: for



instance, you might even come to see that something you
didn't think was a computer really was one.
In this section, we'll consider two things that may – or may
not! – turn out to be computers: the brain and the universe.

9.7.1 Is a Brain a Computer?

What we [McCulloch and Pitts] thought we were doing …
was treating the brain as a Turing machine ….
—Warren McCulloch, in von Neumann, 1948

[I]t is conceivable … that brain physiology would advance
so far that it would be known with empirical certainty

1. that the brain suffices for the explanation of all mental
phenomena and is a machine in the sense of Turing;

2. that such and such is the precise anatomical structure
and physiological functioning of the part of the brain
which performs mathematical thinking.

—Kurt Gödel, 1951; cited in Feferman, 2006, p. 14625

It is the current aim to replace, as far as possible, the
human brain by an electronic digital computer.
—Grace Murray Hopper (1952, p. 243)

The human brain may also be accurately considered to be
a symbol manipulator. That the physical mechanism for
the representation of symbols are the electrochemical
impulses associated with neural activity is irrelevant in
this context. The important fact is that these impulses are
representations of external symbols analogous to the
representation of external symbols by the electronic …
devices inside a digital computer. —Anthony Ralston
(1971, p. 4)



Many people have claimed that the (human) brain is a
computer. Searle thinks it is, but only because he thinks
everything is a computer. But perhaps there is a more
interesting way in which the brain is a computer. Certainly,
contemporary computational cognitive science uses
computers as at least a metaphor for the brain. Before
computers came along, there were many other physical
metaphors for the brain: the brain was considered like a
telephone system or like a plumbing system.
In fact, “computationalism” is sometimes taken to be the
view that the brain (or the mind) is a computer, or that the
brain (or the mind) computes, or that brain (or mental)
states and processes are computational states and
processes:

The basic idea of the computer model of the mind is that
the mind is the program and the brain the hardware of a
computational system.
(Searle, 1990, p. 21; Searle, 1992, p. 200)
The core idea of cognitive science is that our brains are a
kind of computer …. Psychologists try to find out exactly
what kinds of programs our brains use, and how our
brains implement those programs. (Alison Gopnik 2009,
p. 43)

Computationalism … is the view that the functional
organization of the brain (or any other functionally
equivalent system) is computational, or that neural states
are computational states. (Piccinini, 2010, p. 271; see
also pp. 277–278)

But if one of the essential features of a computer is that it
carries out computable processes by computing rather than
(say) by some biological but non‐computational technique,
then it's at least logically possible that the brain is not a
computer even if brain processes are computable.



How can this be? A process is computable if and only if
there is an algorithm (or a system of algorithms) that
specifies how that process can be carried out. But it is
logically possible for a process to be computable in this
sense without actually being computed. Here are some
examples:

1. Someone might come up with a computational theory of
the behavior of the stock market, yet the actual stock
market's behavior might be determined by the
individual decisions made by individual investors and
not by anyone or anything executing an algorithm. That
is, the behavior might be computable even if it is not
computational.26

2. Calculations done by slide rules are done by analog
means, yet the calculations themselves are clearly
computable. Analog computations are not normally
considered Turing Machine computations.

3. Another example might be the brain itself. Piccinini
(2007a, 2020b) has argued that neuron firings (more
specifically, “spike trains” – i.e. sequences of “action
potential” – in groups of neurons) are not representable
as digit strings. But because Piccinini believes a device
is not a “digital” computer unless it manipulates digit
strings, and because it is generally considered that
human cognition is implemented by neuron firings, it
follows that the brain's cognitive functioning – even if
computable – is not accomplished by digital
computation. Yet if cognitive functions are computable
(as contemporary cognitive science suggests – see
Edelman, 2008a), then there would still be algorithms
that compute cognition, even if the brain doesn't do it
that way.27

The philosopher David Chalmers puts the point this way:



Is the brain a [programmable] computer … ? Arguably.
For a start, the brain can be “programmed” to implement
various computations by the laborious means of conscious
serial rule‐following; but this is a fairly incidental ability.
On a different level, it might be argued that learning
provides a certain kind of programmability and
parameter‐setting, but this is a sufficiently indirect kind
of parameter‐setting that it might be argued that it does
not qualify. In any case, the question is quite unimportant
for our purposes. What counts is that the brain
implements various complex computations, not that it is a
computer. (Chalmers, 1993, Section 2.2, especially
p. 336)

Two interesting points are made here. The first is that the
brain can simulate a Turing Machine “by … conscious serial
rule‐following.” The second is the last sentence: what really
matters is that the brain can have input‐output behavior
that is computable, not that it “is” a computer. To say that it
is a computer raises the question of what kind of computer
it is: A Turing Machine? A register machine? Something sui

generis? And these questions seem to be of less interest
than the fact that its behavior is computable.
Still, if the brain computes in some way (or “implements
computations”), and if a computer is, by definition,
something that computes, then we might still wonder if the
brain is some kind of computer. As I once read somewhere,
“The best current explanation of how a brain could
instantiate this kind of system of rules and representations
is that it is a kind of computer.” Thus, we have here the
makings of an abductive argument (i.e. a scientific
hypothesis) that the brain is a computer. (Recall Section
2.5.1.) Note that this is a much more reasonable argument
than Searle's or than trying to model the brain as, say, a
Turing Machine.28



9.7.2 Is the Universe a Computer?

Might the universe itself be a computer?29 Consider
Kepler's laws of planetary motion. Are they just a
computable theory that describes the behavior of the solar
system? If so, then a computer that calculates with them
might be said to simulate the solar system in the same way
any kind of program might be said to simulate a physical (or
biological, or economic) process, or in the same way an AI
program might be said to simulate a cognitive process.
(We'll return to this idea in Section 14.2 and Section 18.11,
question 1.)

Figure 9.1

Source: Abstruse Goose, The Ultimate. Retrieved from
https://abstrusegoose.com/219.

https://abstrusegoose.com/219


Or does the solar system itself compute Kepler's laws? If so,
then the solar system would seem to be a (special‐purpose)
computer (i.e. a kind of Turing Machine):

A computation is a process that establishes a mapping
among some symbolic domains. … Because it involves
symbols, this definition is very broad: a system
instantiates a computation if its dynamics can be
interpreted (by another process) as establishing the right
kind of mapping.
Under this definition, a stone rolling down a hillside
computes its position and velocity in exactly the same
sense that my notebook computes the position and the
velocity of the mouse cursor on the screen (they just
happen to be instantiating different symbolic mappings).
Indeed, the universe in its entirety also instantiates a
computation, albeit one that goes to waste for the lack of
any process external to it that would make sense of what
it is up to. (Edelman, 2008b, pp. 182–183)

After all, if “biological computation is a process that occurs
in nature, not merely in computer simulations of nature”
(Mitchell, 2011, p. 2), then it is at least not unreasonable
that the solar system computes Kepler's Laws:



Going further along the path of nature, suppose that we
have a detailed mathematical model of some physical
process such as—say—a chemical reaction; clearly we can
either organise the reaction in the laboratory and observe
the outcome, or we can set up the mathematical model of
the reaction on a computer either as the numerical
solution of a system of equations, or as a Montecarlo
simulation, and we can then observe the outcome. We can
all agree that when we “run the reaction” on the
computer either as a numerical solution or a Montecarlo
simulation, we are dealing with a computation.
But why then not also consider that the laboratory
experiment itself is after all only a “computational
analogue” of the numerical computer experiment! In fact,
the laboratory experiment will be a mixed analogue and
digital phenomenon because of the actual discrete
number of molecules involved, even though we may not
know their number exactly. In this case, the “hardware”
used for the computation are the molecules and the
physical environment that they are placed in, while the
software is also inscribed in the different molecules
species that are involved in the reaction, via their
propensities to react with each other ….
(Gelenbe, 2011, pp. 3–4)

This second possibility does not necessarily follow from the
first. As we just saw in the case of the brain, there might be
a computational theory of some phenomenon – i.e. the
phenomenon might be computable – but the phenomenon
itself need not be produced computationally.



Indeed, computational algorithms are so powerful that

they can simulate virtually any phenomena, without

proving anything about the computational nature of the

actual mechanisms underlying these phenomena.
Computational algorithms generate a perfect description
of the rotation of the planets around the sun, although the
solar system does not compute in any way. In order to be
considered as providing a model of the mechanisms
actually involved, and not only a simulation of the end‐
product of mechanisms acting at a different level,
computational models have to perform better than
alternative, noncomputational explanations.
(Perruchet and Vinter, 2002, Section 1.3.4, p. 300, my
italics)

Nevertheless, could it be the case that our solar system is
computing Kepler's laws? Arguments along these lines have
been put forth by Stephen Wolfram and Seth Lloyd.30

Wolfram's Argument

Wolfram, developer of the Mathematica computer program,
argues as follows (Wolfram, 2002):

1. Nature is discrete.
2. Therefore, possibly it is a cellular automaton.
3. There are cellular automata that are equivalent to a
Turing Machine.
4. Therefore, possibly the universe is a computer.

There are a number of problems with this argument. First,
why should we believe that nature (i.e. the universe) is
discrete? Presumably because quantum mechanics says it is
(J.A. Wheeler, 1989, p. 314). Some distinguished physicists
deny this (Weinberg, 2002), but some distinguished
mathematicians give a computational reason for it (Chaitin,



2005, 2006). For those of us who are not physicists able to
take a stand on this issue, Wolfram's conclusion has to be
conditional: if the universe is discrete, then possibly it is a
computer.
So let's suppose (for the sake of argument) that nature is
discrete. Might it be a “cellular automaton”? The easiest
way to think of a cellular automaton is as a two‐dimensional
Turing Machine tape for which the symbol in any cell is a
function of the symbols in neighboring cells. But of course,
even if a discrete universe might be a cellular automaton, it
need not be. If it isn't, the argument stops here. But if it is,
then – because the third premise is mathematically true –
the conclusion follows validly from the premises. Premise 2
is the one most in need of justification. But even if all of the
premises and (hence) the conclusion are true, it is not clear
what philosophical consequences we are supposed to draw
from this.31

Lloyd's Argument

Whereas Wolfram takes a “digital” approach, Seth Lloyd
(writing with Y. Jack Ng, 2004) also argues that the
universe is a computer because nature is discrete, but he
takes a “quantum” approach (Piccinini and Anderson,
2020). Lloyd argues as follows:

1. Nature is discrete. (This is “the central maxim of
quantum mechanics” (p. 54).)

2. In particular, elementary particles have a “spin axis”
that can be in one of two directions.

3.  They encode a bit.
4.  Elementary particles store bits of information.
5. Interactions between particles can flip the spin axis;



this transforms the stored data – i.e. these interactions
are operations on the data.

6.  (Because any physical system stores and processes
information,)
all physical systems are computers.

7. In particular, a rock is a computer.
8. Also, the entire universe is a computer.

Premise 1 matches Wolfram's fundamental premise and
would seem to be a necessity for anything to be considered
a digital computer. The next four premises also underlie
quantum computing.
But the most serious problem with Lloyd's argument as
presented here is premise 6. Is the processing sufficient to
be considered to be Turing Machine–equivalent
computation? Perhaps; after all, it seems that all that is
happening is that cells change from 0s to 1s and vice versa.
But that's not all that's involved in computing. (Or is it? Isn't
that what Hayes's magic‐paper hypothesis says?) What
about the control structures – the grammar – of the
computation?
And although Lloyd wants to conclude that everything in the
universe (including the universe itself!) is a computer, note
that this is not exactly the same as Searle's version of that
claim. For Searle, everything can be interpreted as any

computer program. For Lloyd, anything is a computer,
“although they may not accept input or give output in a
form that is meaningful to humans” (p. 55). So, for Lloyd,
it's not a matter of interpretation. Moreover, “analyzing the
universe in terms of bits and bytes does not replace
analyzing it in conventional terms such as force and energy”
(p. 54). It's not clear what the import of that is: does he
mean the computer analysis is irrelevant? Probably not: “it
does uncover new and surprising facts” (p. 54), although he



is vague (in the 2004 general‐audience magazine article) on
what those “facts” are. Does he mean there are different
ways to understand a given object? An object could be
understood as a computer or as an object subject to the
laws of physics. That is true, but unsurprising: animals, for
instance, can be understood as physical objects satisfying
the laws of quantum mechanics as well as being understood
as biological objects. Does he mean force and energy can, or
should, be understood in terms of the underlying
computational nature of physical objects? He doesn't say.
But Lloyd does end with a speculation on what it is that the
universe is computing: namely, itself! Or, as he puts it,
“computation is existence” (p. 61). As mystical as this
sounds, does it mean anything different from the claim that
the solar system computes Kepler's Law?
And here's an interesting puzzle for Lloyd's view, relating it
to issues concerning whether a computer must halt (recall
our earlier discussion in Chapters 7 and 8):

[A]ssuming the universe is computing its own evolution
…, does it have a finite lifetime or not? If it is infinite,
then its self‐computation won't get done; it never
produces an answer …. Hence, it does not qualify as a
computation. (Borbely, 2005, p. 15)

Of course, Turing – as we saw in Section 8.9.5 – would not
have considered this to be a problem: don't forget that his
original ‐machines only computed the decimal expansions
of real numbers by not halting! 32



9.8 Conclusion

So, finally, what is a computer?
At a bare minimum, we might say that a (programmable)
computer is a practical implementation (including a virtual
implementation) of anything logically equivalent to a
Universal Turing Machine (DC4). Most of the definitions we
have discussed might best be viewed as focusing on exactly
what is meant by ‘implementation’ or which entities count
as such implementations. This is something we will return
to in Chapter 13.
Two kinds of (alleged) computers are not obviously
included in this sort of definition: analog computers and
“hypercomputers.” Because most philosophical discussions
focus on “digital” computers as opposed to analog ones, I
have not considered analog computers here. By
‘hypercomputer,’ I have in mind any physical
implementation (assuming there are any) of anything
capable of “hypercomputation”: i.e. anything capable of
“going beyond the Turing limit”; i.e. anything that
“violates” the Church‐Turing Computability Thesis. The
topics of hypercomputation and counterexamples to the
Computability Thesis will be discussed in Chapters 10 and
11.
But one way to incorporate these other models of
computation into a unified definition of ‘computer’ might be
this:

(DC5)A computer is any practical implementation

of anything that is logically equivalent to at least

a Universal Turing Machine.

In other words, if something can compute at least all
Turing‐computable functions33 but might also be able to



perform analog computations or hypercomputations, then
it, too, is a computer.
A possible objection to this is that an adding machine, or a
calculator, or a machine designed to do only sub‐Turing
computation, such as a physical implementation of a finite
automaton, has at least some claim to being called a
‘computer.’ So another way to incorporate all such models
is to go one step beyond our DC5 to

(DC6)A computer is a practical implementation of

some model of computation.

Indeed, Piccinini (2018, p. 2) has more recently offered a
definition along these lines. He defines ‘computation’ as
“the processing of medium independent vehicles by a
functional mechanism in accordance with a rule.” (See
Piccinini, 2015, Ch. 7, for argumentation and more details.)
This, of course, is a definition of ‘computation,’ not
‘computer.’ But we can turn it inside out to get this:

Definition P3 A computer is a functional mechanism that
processes medium‐independent vehicles in accordance with
a rule.

Piccinini explicitly cites as an advantage of this very broad
definition its inclusion of “not only digital but also analog
and other unconventional types of computation” (p. 3) –
including hypercomputation. But Piccinini (2015, Chs. 15 &
16) also distinguishes between the “mathematical” Church‐
Turing Computability Thesis and a “modest physical”
thesis: “Any function that is physically computable is
Turing‐computable” (Piccinini, 2015, p. 264), and he
argues that it is an “open empirical question” (p. 273)
whether hypercomputers are possible (although he doubts
they are). (See also Duwell, 2021.)
Recall Stuart C. Shapiro's definition, cited in Section 3.10:



[T]he computer is a general‐purpose procedure‐following
machine.
(Shapiro, 2001, p. 2)

Given his broad characterization of ‘procedure,’ this fits
with DC6. My only hesitation with these last three
definitions is that they seem to be a bit too vague in their
generosity, leaving all the work to the meaning of
‘computation’ or ‘procedure’ or ‘rule.’ But maybe that's
exactly right. Despite its engineering history and despite its
name, perhaps “computer science” is best viewed as the
scientific study of computation, not (just) computers.
Determining how computation can be done physically tells
us what a computer is.

With these preliminary remarks about the nature of CS,
computers, and computation as background, it is now time
to look at some challenges to the Church‐Turing
Computability Thesis, which is the topic of the next part of
the book.



9.9 Questions for the Reader

1. (This exercise was developed by Albert Goldfain.)
a. The following arguments are interesting to think

about in relation to the question whether
everything a computer. Try to evaluate them.
Argument 1

P1 A Turing Machine is a model of computation
based on what a single human (i.e. a clerk)
does.
P2 Finite automata and push‐down automata
are mathematical models of computation that
recognize regular languages and context‐free
languages, respectively.
P3 Recognizing strings in a languages is also
something individual humans do.
C1  Turing Machines, finite automata, and
push‐down automata are all models of
computation based on the abilities of
individuals.

Argument 2

John Conway's “Game of Life” is a cellular‐
automaton model of a society (albeit a very
simplistic one):34

P1 The Game of Life can be implemented in
Java.
P2 Any Java program is reducible to a Turing
Machine program.
C1  The Game of Life is Turing‐computable.



Argument 3

P1 The Game of Life can be thought of as a
model of computation.
P2 The Game of Life is a model of the abilities
of a society.
P3 The abilities of a society exceed those of an
individual.
C1  The abilities of a model of computation
based on a society will exceed the abilities of a
model based on the abilities of an individual.
C2  It is not the case that every Turing
Machine program could be translated to a
Game‐of‐Life “computation.”

b. Some of the arguments in Exercise 1 may have
missing premises! To determine whether the Game
of Life might be a model of computation, do a
Google search using the two phrases
“game of life” “turing machine.”

c. Given an integer input (remember, everything can
be encoded as an integer), how could this integer
be represented as live cells on an initial grid? How
might “stable” structures (remember, a  grid
has three neighbors each) be used as “memory”?
How would an output be represented?

d. Can Turing Machine programs be reduced to Game
of Life computations?

2. Recall our discussion in Section 6.4.3 of Jacquard's
looms.



Modern programmers would say … [that Jacquard]
loom programs are not computer programs: looms
could not compute mathematical functions.
(Denning and Martell, 2015, p. 83)

Looms might not have been computers, but could they
have been? Even if we accept the definition of a
computer (program) as one that computes
mathematical functions, does it follow that Jacquard
looms could not be computers? Could bits be
implemented as patterns in looms?

3. Which physical processes are computing processes?
Are all physical processes computations?35 Of course, if
a physical process is a computation, then presumably
the physical object carrying out that process is a
computer. Does this amount to saying that all physical
objects that carry out processes are computers?

4. Consider this argument, adapted from Fekete and
Edelman, 2011:

a. A process is a computation iff it operates on
representations.

b. All physical processes can represent.
c.  All physical processes are computations.

Keep in mind that even if all physical processes can
represent, it does not follow that they all do represent.
(Or does that suggest that “computing is in the eye of
the beholder. If a rock heating up in the sun is not
taken as a representer, then it is not computing, but if
I use how hot it is to do something else, then the hot
rock is representing and so computing.”36) Another
consideration is this: computation is done over
uninterpreted marks. Whether those marks represent
anything is a separate matter. I might choose to



interpret them as representing something; or the
computational system itself might choose to
(self‐?)interpret them as representing something (see
Schweizer, 2017).
Is this argument sound? Does this argument
adequately represent Fekete and Edelman's actual
argument? (See Section 7.9, #8.)

5. Is a (physical) implementation of a computation itself a
computation?37

(See our discussion of implementation in Chapter 13.)
6. Never mind the name change – the Apple TV and

iPhone are computers to the core. (Gruber, 2007)
Are devices such as these computers? Choose one or
more definitions of ‘computer’ and see if Apple TVs,
iPhones, etc., are computers based on those
definitions.

7. In Section 9.5, I considered whether a dishwasher
might be a computer. What about a tree? According to
César Hidalgo,

A tree … is a computer that knows in which direction
to grow its roots and leaves. Trees know when to
turn genes on and off to fight parasites, when to
sprout or shed their leaves and how to harvest
carbon from the air via photosynthesis. As a
computer, a tree begets order in the macrostructure
of its branches and the microstructures of its cells.
We often fail to acknowledge trees as computers, but
the fact is that trees contribute to the growth of
information in our planet because they compute.
(Hidalgo, 2015, p. 75).

But what is his argument here? He doesn't seem to
have a definition of ‘computer.’ Except for the last



three words of this quotation, one might think his
definition would be something like “a computer is an
information‐processing machine.” Then his argument
might go as follows: trees are information‐processing
machines (because they “contribute to the growth of
information”); hence, they are computers. But those
last three words suggest that his argument goes the
other way: that trees are computers; hence, they
contribute to the growth of information.
So, are dishwashers computers? Is a tree a computer?
Is the human race a computer? (On the last question,
see the interview with Hidalgo in O'Neill, 2015.)

8. It seems to be correct to say that a real, physical
computer such as your laptop is not a Turing Machine,
on the grounds that real, physical computers are finite
devices (finite memory, etc.), whereas Turing Machines
are infinite (infinite, or at least arbitrarily long, tape,
etc.).
But could it be a finite‐state machine? After all, a
finite‐state machine is … well … finite!
At least one computer scientist has denied this:

Another obvious distinction that is worth making
explicit … is the distinction between computers
(which include laptops and iPads) on the one hand
and their mathematical models on the other hand.
Strictly speaking, then, it is wrong to say that:

A computer is a finite state machine.

Once again, this is like speaking about a
mathematical model (the finite state machine) as if it
coincides with reality (the computer). (Daylight,
2016, p. 14)



But consider this mathematical definition of a “graph”
(paraphrased from
https://en.wikipedia.org/wiki/Graph_(discrete_mathem
atics)):

… a graph is an ordered pair  comprising a
set  of vertices … together with a set  of edges …
which are … [unordered pairs of members] of  (i.e.
an edge is associated with two vertices, and the
association takes the form of the unordered pair of
the vertices).

Now consider a real‐world computer network
consisting of a set  of computers and a set  of
pairs of computers that are networked to each other.
Is that computer network a graph? Or is it only
modeled as a graph?
Similarly, could we say that a real, physical computer
is a finite‐state machine if it satisfies the definition of
one? It may also have other properties that the
(mathematical) definition of finite‐state machine lacks.
For example, the computer might be made of plastic
and silicon; the definition of a finite‐state machine is
silent about any requirements for physical
composition:

… equating a laptop with a universal Turing Machine
is problematic, not primarily because the former is
finite and the latter is infinite, but because the
former moves when you push it and smells when you
burn it while the latter can neither be displaced nor
destroyed. (Daylight, 2016, p. 118)

But all properties of finite‐state machines will hold for
physical computers, even if there are properties of
physical computers that do not hold for finite‐state
machines (such as ringing – or failing to ring! – a real

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)


bell if its program has a ‘BEEP’ command). (We'll have
more to say about that kind of command in Sections
15.4.1 and 15.5.)



Notes

1 An earlier draft of this chapter appeared as Rapaport,
2018.

2 See the “Agnes” comic at
http://www.gocomics.com/agnes/2013/3/7 for a
similar idea.

3 A computer probably could not be made out of, say,
oatmeal.

4 Although Marvin Minsky famously said that the brain
was a “meat machine” (O'Toole, 2020).

5 Thanks to my colleague Stuart C. Shapiro for many of
these points.

6 See the Online Resources for further reading on
virtual machines.

7 Our caution in Section 5.1 about dictionary
definitions also holds for encyclopedias!

8 The use of the male gender here is balanced by
Samuel's earlier statement that computers have
“advantages in terms of the reductions in clerical
manpower and woman power” (Samuel, 1953,
p. 1223, my italics).

9 Compare the quotation from Chalmers, 1993 at the
end of Section 9.7.1.

10 See the Online Resources for Ch. 3 for further
reading on quantum and DNA computing .

11 See the Online Resources for further reading on the
nature of computers.

http://www.gocomics.com/agnes/2013/3/7
https://cse.buffalo.edu/~rapaport/OR/A0fr09.html#9.1
https://cse.buffalo.edu/~rapaport/OR/A0fr03.html#3.5.4
https://cse.buffalo.edu/~rapaport/OR/A0fr09.html#9.1


12 Stuart C. Shapiro, personal communication,
7 November 2013.

13 See the Online Resources for further reading on the
meaning of ‘stored program.’

14 Searle, 1990 was reprinted with a few changes as
Chapter 9 of Searle, 1992.

15 We will discuss the Chinese Room Argument in
Section 18.6.

16 See the Online Resources for further reading on
intrinsic properties .

17 See the Online Resources for further reading on
mass and length .

18 See Sections 13.2, 16.9, and 18.8.3 for further
discussion of this point.

19 I.e. miraculously.

20 A dishwasher might, however, be described by a
(non‐computable?) function that takes dirty dishes as
input and returns clean ones as output. Aaronson,
2012 considers (semi‐humorously) a “toaster‐
enhanced Turing machine.” See Shagrir, 2022,
pp. 89, 95 for discussion. We'll return to dishwashers
in Section 12.4.5.

21 A “detent” is “a catch in a machine that prevents
motion until released”
(https://www.google.com/search?q=detent).

22 See the Online Resources for further reading on
computers as switch-setters .

23 We'll see a third definition in Section 9.8.

https://cse.buffalo.edu/~rapaport/OR/A0fr09.html#9.3.2
https://cse.buffalo.edu/~rapaport/OR/A0fr09.html#9.4.4
https://cse.buffalo.edu/~rapaport/OR/A0fr09.html#9.4.4
https://www.google.com/search?q=detent
https://cse.buffalo.edu/~rapaport/OR/A0fr09.html#9.5


24 In the other two papers in his trilogy, Piccinini gives
slightly different characterizations of what a digit is,
but these need not concern us here; see Piccinini,
2007c, p. 510; Piccinini, 2008, p. 34.

25 For commentary, see Sieg, 2007, Section 2.

26 At least, this was true before the advent of
algorithmic trading, as James Graham Maw
reminded me (personal communication, 23
November 2021); see Fortnow, 2022, p. 83.

27 Piccinini (2020b) actually takes a slightly different
view: he generalizes the notion of “computation” to
include digital Turing Machine computation, analog
computation, and neural computation (which he
argues is neither digital nor analog), among others.
On this view, the brain's cognitive functioning is
computed – not digitally, but neurally.

28 See the Online Resources for further reading on the
brain as a computer .

29 In addition to the cartoon in Figure 9.1, see also the
satirical Google‐like search page “Is the Universe a
Computer?” http://abstrusegoose.com/115 (best
viewed online!).

30 See the Online Resources for further reading on the
solar system as a computer.

31 See the Online Resources for further reading on
cellular automata and on Wolfram.

32 See the Online Resources for further reading on
Lloyd .

https://cse.buffalo.edu/~rapaport/OR/A0fr09.html#9.7.1
http://abstrusegoose.com/115
https://cse.buffalo.edu/~rapaport/OR/A0fr09.html#9.7.2
https://cse.buffalo.edu/~rapaport/OR/A0fr09.html#9.7.2
https://cse.buffalo.edu/~rapaport/OR/A0fr09.html#9.7.2


33 For convenience, from now on we will use the
expression ‘Turing‐computable’ to mean “computable
by anything logically equivalent to a Turing
Machine”: that is, anything computable according to
the classical theory of computability or recursive
functions.

34 See
http://en.wikipedia.org/wiki/Conway_Game_of_Life
for the rules of this game.

35 Thanks to Russ Abbott and Eric Dietrich for
suggesting these questions.

36 Dietrich, personal communication, 28 June 2015.

37 Also due to Dietrich.

http://en.wikipedia.org/wiki/Conway_Game_of_Life


Part III 

The Church‐Turing

Computability Thesis

We introduced the Church‐Turing Computability Thesis as
the claim that the informal notion of computability can be
identified with any of the logically equivalent formal

notions of Turing Machine computability, lambda‐calculus
computability, general recursive function computability,
etc.
Here is Turing's (1939, p. 166) formulation of it (together
with his footnote):



A function is said to be “effectively calculable” if its
values can be found by some purely mechanical process.
Although it is fairly easy to get an intuitive grasp of this
idea, it is nevertheless desirable to have some more
definite, mathematically expressible definition. Such a
definition was first given by Gödel at Princeton in 1934
…. These functions were described as “general
recursive” by Gödel. We shall not be much concerned
here with this particular definition. Another definition of
effective calculability has been given by Church …, who
identifies it with ‐definability. The author has recently
suggested a definition corresponding more closely to the
intuitive idea …. It was stated above that “a function is
effectively calculable if its values can be found by some
purely mechanical process.” We may take this statement
literally, understanding by a purely mechanical process
one which could be carried out by a machine. It is
possible to give a mathematical description, in a certain
normal form, of the structures of these machines. The
development of these ideas leads to the author's
definition of a computable function, and to an
identification of  with effective
calculability. It is not difficult, though somewhat
laborious, to prove that these three definitions are
equivalent ….

 We shall use the expression “computable function” to
mean a function calculable by a machine, and we let
“effectively calculable” refer to the intuitive idea without
particular identification with any one of these definitions.
We do not restrict the values taken by a computable
function to be natural numbers; we may for instance
have computable propositional functions.

Recall from Chapter 4 that Popper claimed sciences must
be “falsifiable” and that Kuhn claimed sciences are subject



to “revolutions.” Is the Computability Thesis falsifiable? In
Chapter 10, we will look at two challenges to the
Computability Thesis having to do with the nature of such
real‐life procedures as recipes. In Chapter 11, we will look
at some arguments to the effect that there are forms of
computation that go “beyond” Turing Machine
computation. Do such forms of computation constitute a
Kuhnian revolution in CS?



10 

Procedures

I believe that history will record that around the mid
twentieth century many classical problems of philosophy
and psychology were transformed by a new notion of
process: that of a symbolic or computational process.
—Zenon Pylyshyn (1992, p. 4)



10.1 Introduction

Algorithms – including procedures and recipes – can fail for
many reasons. They can omit crucial steps: in an “Agnes”
comic, Agnes's recipe for buttered saltines is

1. Get some crackers
2. Butter them
3. Arrange on platter

After her friend comments that they are chewy, Agnes
adds:

Author's note … in recipe number one, insert the step
“unwrap saltines” between step one and two.
(http://www.gocomics.com/agnes/2011/11/7)

They can fail to be specific enough (or they can make too
many assumptions). (Recall the Hagar comic strip
described in Section 7.3.3.) They can be highly context
dependent or ambiguous (recall the first instruction in
Figure 7.3),1, and so on. The general theme of the next few
chapters is to challenge various parts of the informal
definition of ‘algorithm’:

Does it have to be finite?
Does it have to be “effective”? (Does it have to halt?
Does it have to solve the problem? What about
heuristics?)
Does it have to be unambiguous or precisely described?
(What about recipes?)

In this chapter, we will look at one kind of objection to the
Computability Thesis: namely, that there is a more general
notion – the notion of a “procedure.” The objection takes
the form of claiming that there are “procedures” that are

http://www.gocomics.com/agnes/2011/11/7


computable in the informal sense but that are not

computable by Turing Machines.



10.2 The Church‐Turing Computability

Thesis

The [Church‐Turing] thesis was a great step toward
understanding algorithms, but it did not solve the
problem [of] what an algorithm is.
—Andreas Blass and Yuri Gurevich (2003, p. 2)

Recall from Section 7.4.4, that “Church's Thesis” is,
roughly, the claim that the informal notion of “algorithm”
or “effective computation” is equivalent to (or is completely
captured by, or can be completely analyzed in terms of)
Church's lambda calculus. More precisely,

Definition 2.1. Church's Thesis (First Version,

unpublished, 1934).

A function is effectively calculable if and only if it is ‐
definable.
(Soare, 2009, p. 372)

Later, Church reformulated it in terms of recursive
functions:

Definition 2.2. Church's Thesis [1936].

A function on the positive integers is effectively
calculable if and only if it is
recursive. (Soare, 2009, p. 372; cf. Section 11.1, p. 389)

And “Turing's Thesis” is, roughly, the claim that the
informal notion of “algorithm” or “computability” is
equivalent to (or completely captured by, or can be
completely analyzed in terms of) the notion of a Turing
Machine. We saw several versions of Turing's Thesis in
Chapter 8.2 Here is Robert I. Soare's version:



Definition 3.1. Turing's Thesis [1936].

A function is intuitively computable (effectively
calculable) if and only if it is computable by a Turing
machine …. (Soare, 2009, p. 373)

Turing proved that Church's lambda calculus was logically
equivalent to his own ‐machines. That is, he proved that
any function that was computable by the lambda calculus
was also computable by a Turing Machine (more precisely,
that any lambda computation could be “compiled” into a
Turing machine) and vice versa – that any function that was
computable by a Turing Machine was also computable by
the lambda calculus (so that the lambda calculus and
Turing Machines were inter‐compilable). Consequently,
their theses are often combined under the name the
“Church‐Turing Thesis.”
There are other, less well‐known computability theses. One
is Emil Post's version:

Definition 5.1. [Post's Thesis, 1943, 1944].

A nonempty set is effectively enumerable (listable in the
intuitive sense) iff it is recursively enumerable (the
range of a recursive function) or equivalently iff it is
generated by a (normal) production system. (Soare,
2009, p. 380)

This may look a bit different from Church's and Turing's
versions, but as Soare (2009, p. 380) notes,

Since recursively enumerable sets are equidefinable with
partial computable functions … Post's Thesis is
equivalent to Turing's Thesis.

Consequently, Soare (2009, Section 12) has argued that the
thesis should be called simply the “Computability Thesis,”
on the grounds that – given the equivalence of all
mathematical models of computation (Church's, Turing's,



Gödel's, Post's, etc.) – there are really many such theses
and hence no reason to single out one or two names, any
more than we would refer to the calculus as ‘the Newton
calculus’ or ‘the Leibniz calculus.’
On the other hand, an interesting argument to the effect
that Church's Thesis should be distinguished from Turing's
Thesis has been given by Michael Rescorla (2007):
Church's Thesis asserts that intuitively computable
number‐theoretic functions are recursive. Turing's Thesis
asserts that intuitively computable string‐theoretic

functions are Turing‐computable. We can only combine
these into a Church‐Turing Computability Thesis by adding
a requirement that there be a computable semantic
interpretation function between strings and numbers.
However, Sieg (2000) first analyzes the (informal)
“calculability of number‐theoretic functions” into
calculability by humans “satisfying boundedness and
locality conditions”; that, in turn, is analyzed into
“computability by string machine”; finally, the latter is
analyzed into computability by a Turing Machine. Sieg
identifies “Turing's thesis” as the analysis of the first of
these by the last.
The Computability Thesis, in any of its various forms, states
that the informal notion of effective computation (or
algorithm, or whatever) is equivalent to the formal notion
of a Turing Machine program (or a lambda‐definable
function, or a recursive function, or whatever). The
arguments in favor of the Computability Thesis are
generally of two forms (Section 7.4.4). (1) All known
informal algorithms are Turing‐computable. (This puts it
positively. To put it negatively, no one has yet found a
universally convincing example3 of an informally
computable function that is not also Turing‐computable.)



(2) All of the formal, mathematical versions of computation
are logically equivalent to each other.
It has also been argued that the Computability Thesis
cannot be formally proved because one “side” of it is
informal and hence not capable of being part of a formal
proof. Dershowitz and Gurevich (2008) have suggested that
the thesis is capable of being proved, by providing a set of
formal “postulates” for the informal notion and then
proving that Turing machines satisfy those postulates.
Although this is an interesting exercise, it is not obvious
that this proves the Computability Thesis. Rather, it seems
to replace that Thesis with a new one: namely, that the
informal notion is indeed captured by the formal postulates.
But that thesis likewise cannot be proved for the same
reason the Computability Thesis cannot: to prove it would
require using an informal notion that cannot be part of a
formal proof.
Others have argued that neither (1) nor (2) is even a non‐
deductively good argument for the Computability Thesis.
Against (1), it can be argued that just because all known

informal algorithms are Turing‐computable, it does not
follow that all informal algorithms are. After all, just
because Aristotle's theory of physics lasted for some 2000
years until Newton came along, it did not follow that
Aristotle's physics was correct; and just because Newton's
theory lasted for some 200 years until Einstein came along,
it did not follow that Newton's theory was correct. So,
there is no inductive reason to think the Computability
Thesis is correct any more than there is to think Einstein's
theory is. (As to whether any scientific theory is “correct,”
on the grounds that they are all only falsifiable, see Section
4.8.2.)
But perhaps the Computability Thesis is neither a formally
unprovable “thesis” nor a formally provable one, but



something else altogether. In fact, Church called his
statement of what we now name “Church's Thesis” “a
definition of effective calculability” (as Turing did in 1939).
It is worth quoting in full, including parts of his important
footnote 3:

The purpose of the present paper is to propose a
definition of effective  which is thought to
correspond satisfactorily to the somewhat vague intuitive
notion in terms of which problems of this class are often
stated, and to show, by means of an example, that not
every problem of this class is solvable.
3 … this definition of effective calculability can be stated
in either of two equivalent forms, (1) that a function of
positive integers shall be called effectively calculable if it
is ‐definable …, (2) that a function of positive integers
shall be called effectively calculable if it is recursive ….
And the proof of equivalence of the two notions is due
chiefly to Kleene, … the present author and to J.B. Rosser
…. The proposal to identify these notions with the
intuitive notion of effective calculability is first made in
the present paper ….
… The fact … that two such widely different and (in the
opinion of the author) equally natural definitions of
effective calculability turn out to be equivalent adds to
the strength of the reasons adduced below for believing
that they constitute as general a characterization of this
notion as is consistent with the usual intuitive
understanding of it. (Church, 1936b, p. 346)

Definitions, of course, are not susceptible to proof.
Rather than considering it a definition, the philosopher and
logician Richard Montague (1960, p. 430) viewed the
Thesis as an explication of the informal notion of “effective
calculability” or “algorithm.” An “explication” is the



replacement of an informal or vague term with a formal
and more precise one. (The concept is due to the
philosopher Rudolf Carnap (1956, pp. 7–8).) In a similar
vein, the mathematician and logician Elliott Mendelson
(1990, p. 229) calls the Thesis a “rational reconstruction”
(a term also due to Carnap): “a precise, scientific concept
that is offered as an equivalent of a prescientific, intuitive,
imprecise notion.” Mendelson goes on to argue that the
Computability Thesis has the same status as the definition
of a function as a certain set of ordered pairs (see Section
7.2) or as other (formal) definitions of (informal)
mathematical concepts (logical validity, Tarski's definition
of truth, the ‐  definition of limits, etc.). Mendelson then
claims that “it is completely unwarranted to say that
C[hurch's] T[hesis] is unprovable just because it states an
equivalence between a vague, imprecise notion … and a
precise mathematical notion” (Mendelson, 1990, p. 232).
One reason he gives is that both sides of the equivalence
are equally vague! He points out that “the concept of set is
no clearer than that of function.” Another is that the
argument that all Turing Machine programs are
(informally) computable is considered a proof, yet it
involves a vague, informal concept. (Note that it is the
converse claim that all informally computable functions are
Turing‐computable that is usually considered incapable of
proof on these grounds.)
It's worth comparing the formal explication of the informal
notion of algorithm as a Turing Machine (or recursive
functions, etc.) with other attempts to define informal
concepts in scientific terms. As with any attempt at a
formal explication of an informal concept (as we discussed
in Sections 3.4 and 9.2), there is never any guarantee that
the formal explanation will satisfactorily capture the
informal notion (usually because the informal notion is
informal, vague, or “fuzzy”). The formal explication might



include some things that are, pre‐theoretically at least, not
obviously included in the informal concept, and it might
exclude some things that are, pre‐theoretically, included.
Many of the attempts to show that there is something
wrong with the Computability Thesis fall along these lines.4

Question for the Reader: As we noted in Section 3.4.1,
‘life’ is one of these terms. One difference between the
two cases is this: there are many non‐equivalent
scientific definitions of ‘life.’ But in the case of
‘algorithm,’ there are many equivalent formalizations:
Turing Machines, recursive functions, lambda
calculations, etc.
What might have been the status of the informal notion
if these had not turned out to be equivalent?



10.3 What Is a Procedure?

Herbert Simon (1962, p. 479) offers two kinds of
descriptions of phenomena in the world: state descriptions
and process descriptions:

The former characterize the world as sensed; they
provide the criteria for identifying objects …. The latter
characterize the world as acted upon; they provide the
means for producing or generating objects having the
desired characteristics.

The “desired characteristics” to be produced are,
presumably, given by a state description. His example of a
state description is “A circle is the locus of all points
equidistant from a given point”; his example of a process
description is “To construct a circle, rotate a compass with
one arm fixed until the other arm has returned to its
starting point.” (Recall our discussion in Section 3.16.3 of
Euclid's Elements, which was originally written in terms of
“process descriptions.”) Process descriptions describe
procedures.
State descriptions seem to be part of “science,” whereas
process descriptions seem to be part of “engineering” and
certainly part of “computational thinking.” Consider this
related claim of Rescorla (2014b, Section 2, p. 1279):

To formulate … [Euclid's GCD algorithm], Knuth uses
natural language augmented with some mathematical
symbols. For most of human history, this was basically
the only way to formulate mechanical instructions. The
computer revolution marked the advent of rigorous
computational formalisms, which allow one to state
mechanical instructions in a precise, unambiguous,
canonical way.



In other words, CS developed formal methods for making
the notion and expression of procedures mathematically
precise. That's what makes it a science of procedures.
Stuart C. Shapiro's (2001) more general notion of
“procedure” (Section 3.10) characterizes “ ‘procedure’ as
the most general term for the way ‘of going about the
accomplishment of something,’ ” citing the Merriam‐
Webster Third New International Dictionary.5 This includes
serial algorithms as well as parallel algorithms (which are
not “step by step,” or serial), operating systems (which
don't halt), heuristics (which “are not guaranteed to
produce the correct answer”), musical scores (which are
open to interpretation by individual performers), and
recipes (which are also open to interpretation as well as
being notoriously vague, as we will see later in this
chapter). Thus, Turing Machines (or Turing Machine
programs) – that is, (serial) algorithms as analyzed in
Section 7.3 – are only a special case of procedures. In this
chapter, we are focusing on this more general notion of
‘procedure.’

Some philosophers have challenged the Computability
Thesis, arguing that there are things that are intuitively
algorithms but that are not Turing Machines. In this
section, we will look at two of these, due to the
philosophers Carol Cleland and Beth Preston. Interestingly,
both focus on recipes, although for slightly different
reasons – Cleland on the fact that recipes are carried out in
the real world, and Preston on the fact that they are vague
and open to interpretation by chefs.



10.4 Carol Cleland: Some Effective

Procedures Are Not Turing Machines

In a series of papers, Carol Cleland has argued that there
are effective procedures that are not Turing Machines
(Cleland, 1993, 1995, 2001, 2002, 2004). By ‘effective
procedure,’ she means (1) a “mundane” procedure (i.e. an
ordinary, everyday, or “quotidian” one) that (2) generates a
causal process (i.e. a procedure that physically causes (or
“effects”) a change in the world).

Terminological Digression: There may be an
unintentional pun here. As we have seen, the word
‘effective’ as used in the phrase ‘effective procedure’ is
a semi‐technical term that is roughly synonymous with
‘algorithmic.’ On the other hand, the verb ‘to effect,’ as
used in the phrase “to effect a change (in something),”
is roughly synonymous with the verbs ‘to produce’ and
‘to cause,’ and it is not directly related to ‘effective’ in
the algorithmic sense.
And just to make things more confusing, ‘effect’ is also a
noun meaning “the result of a cause.” Worse, there are a
verb and a noun spelled slightly differently but
pronounced almost the same: ‘affect’! For the difference
between the verb ‘to effect’ and the noun ‘an effect,’ as
well as the similar‐sounding verb and noun ‘affect,’ see
Rapaport, 2013, Section 4.2.0, “affect vs. effect”.

According to Cleland, there are three ways to understand
the Computability Thesis:

1. It applies only to (mathematical) functions of integers
(or, possibly, also to anything representable by – i.e.
codable into – integers).



2. It applies to all (mathematical) functions (including
real‐valued functions).

3. It also applies to the production of mental and physical
phenomena, such as is envisaged in AI or robotics.

She agrees that it cannot be proved but that it can be
falsified by exhibiting an intuitively effective procedure,
“but not in Turing's sense,” that is “more powerful” than a
Turing Machine (Cleland, 1993, p. 285, my italics).
Presumably, the qualification “but not in Turing's sense”
simply means it must be intuitively effective yet not capable
of being carried out by a Turing Machine, because, after
all, that's what Turing thought his ‐machines could do:
namely, carry out any intuitively effective procedure.
But she also suggests another sense in which the
Computability Thesis might be falsifiable: by exhibiting a
procedure that is intuitively effective in Turing's sense yet
is not Turing‐computable. In other words, there might be
two different kinds of counterexamples to the
Computability Thesis: if Turing were alive, (1) we could
show him an intuitively effective procedure that we claim is
not Turing‐computable, and he might agree; or (2) we
could show him a procedure, and either he would not agree
that it was intuitively effective (thus denying that it was a
possible counterexample) or he could show that, indeed, it
was Turing‐computable (showing how it is not a
counterexample at all). Cleland seems to be opting for (1).
Curiously, however, she goes on to say that her “mundane
procedures” are going to be effective “in Turing's sense”
(Cleland, 1993, p. 286)! In any case, they differ from
Turing‐computable procedures by being causal. (‘Causal’ in
this context is roughly synonymous with ‘physical.’ When
reading Cleland's article, you should continually ask
yourself two questions: Are her “mundane procedures”



causal? Are Turing Machines not causal?) Here is a
reconstruction of her argument, with comments after some
of the premises:

1. A “procedure” is a specification of something to be

followed (Cleland, 1993, p. 287).
This includes recipes as well as computer programs. Her
characterization of a procedure as something to be
followed puts a focus on imperatives: you can follow an
instruction that says, “Do this!” But there are other ways to
characterize procedures. For example, Shapiro (2001)
describes a procedure as a way to do something. But his
focus is on the goal or end product; the way to do it – the
way to accomplish that goal – might be to evaluate a
function or to determine the truth value of a proposition,
not necessarily to “follow” an imperative command.
You should also recall (from Section 8.10) that Turing
Machines don't normally “follow” any instructions! The
Turing Machine table is a description of the Turing
Machine, but it is not something that the Turing Machine
consults and then executes. That only happens in a
Universal Turing Machine. But in that case, there are two
different programs to consider: the program encoded on
the Universal Turing Machine's tape is consulted and
followed. But the fetch‐execute procedure that constitutes
the Universal Turing Machine's machine table is not

consulted or followed.
The relationship between the stored program and the fetch‐
execute program gives rise to several interesting issues in
epistemology and the philosophy of AI: is there any sense in
which the “blindly executed” fetch‐execute cycle “knows”
what it is doing when it “follows” the program on the tape?
(Recall the passage cited in Section 9.4.3 from Nicolas D.
Goodman.) Does an AI program “understand” what it does?
(Should it? Could it?) We'll examine these issues in Section



18.9 when we discuss what Daniel C. Dennett (2013b) has
called “Turing's ‘Strange Inversion of Reasoning.’ ”

2. To say that a “mundane” procedure is “effective”
means, by definition, that following it always results in
a certain kind of outcome (Cleland, 1993, p. 291).

The semi‐technical notion of “effective” as it is used in the
theory of computation is, as we have seen (Section 7.3),
somewhat ambiguous. Cleland notes (1993, p. 291) that
Marvin Minsky (1967) calls an algorithm ‘effective’ if it is
“precisely described.” And Church (1936b, pp. 50ff; cf.
p. 357) calls an algorithm ‘effective’ if there is a formal
system that takes a formal analogue of the algorithm's
input, precisely manipulates it, and yields a formal
analogue of its output. Church's notion seems to combine
aspects of both Minsky's and Cleland's notions.
A non‐terminating program (either one that erroneously
goes into an infinite loop or one that computes all the digits
in the decimal expansion of a real number) can be
“effective” at each step even though it never halts. (We'll
return to this in Section 11.8.)

3. The steps of a recipe can be precisely described
(hence, they can be effective in Minsky's sense).
(Cleland, 1993, p. 292).

This is certainly a controversial claim. Note that recipes
can be notoriously vague, whereas computer programs
must be excruciatingly precise:

How do you know when a thing “just begins to boil”?
How can you be sure that the milk has scorched but not
burned? Or touch something too hot to touch, or tell firm
peaks from stiff peaks? How do you define “chopped”?
(Adam Gopnik 2009, p. 106; cf. Sheraton, 1981)

We will explore this in more detail in Section 10.5.



4. A procedure is effective for producing a specific
output. For example, a procedure for producing fire or
a procedure for producing hollandaise sauce might not
be effective for producing chocolate. (Cleland, 1993,
p. 293).

In other words, being effective (better: being “effective
for”) is not a property of a procedure but a relation

between a procedure and a kind of output. This might seem
to be reasonable, but a procedure for producing the truth
table for conjunction might also be effective for producing
the truth table for disjunction by suitably reinterpreting the
symbols. (See the following “Digression on Conjunction and
Disjunction.”)



Digression on Conjunction and Disjunction:

Here is a truth table for the conjunction of two
propositions,  and , using ‘0’ to represent “false”
and ‘1’ to represent “true”:

( )

0 0 0
0 1 0
1 0 0
1 1 1

Note that in the third column – which represents the
conjunction of the first two columns – there are three
‘0’s and one ‘1,’ which occurs only in the line where both
inputs are ‘1.’
And here is the analogous truth table for disjunction:

( )

0 0 0
0 1 1
1 0 1
1 1 1

Note that the third column has three ‘1’s and only one
‘0,’ which occurs only in the line where both inputs are
‘0.’
Now suppose, instead, that we use ‘0’ to represent
“true” and ‘1’ to represent “false.” (John Case always
did this in his theory of computation lectures!) Then the
first table represents disjunction, and the second one
represents conjunction!



Similar points are made by Peacocke, 1995, Section 1,
p. 231; Shagrir, 2001; and Sprevak, 2010, Section 3.3,
pp. 268–269. We'll return to this in Section 16.2.

Here are some more examples. A procedure that is
effective for simulating a battle in a war might also be
effective for simulating a particular game of chess (Fodor,
1978, p. 232). Or a procedure that is effective for
computing with a mathematical lattice might also be
effective for computing with a chemical lattice. (See
Section 16.2.) And an ottoman (or a “pouf”) could be (used
as) either a seat or a table, yet, of course, seats and tables
are usually considered mutually exclusive classes. And,
most famously, certain well‐known images can be used to
represent either a duck or a rabbit. In cases such as these,
the notion of effectiveness might not be the same as
Church's, because of the possibility of interpreting the
output differently. How important to the notions of
(intuitively) effective computation and formal computation
is the interpretation of the output symbols? We will explore
these issues in more detail in Section 16.4.

5. The effectiveness of a recipe for producing
hollandaise sauce depends on causal processes in the
actual world, and these causal processes are
independent of the recipe (the mundane procedure)
(Cleland, 1993, p. 294).

Suppose we have an algorithm (a recipe) that takes eggs,
butter, and lemon juice as input and tells us to mix them.
Suppose that on Earth, the output – the result of mixing
those ingredients – is an emulsion: i.e. hollandaise sauce.
And suppose that on the Moon, mixing them does not result
in an emulsion, so no hollandaise sauce is output (instead,
the output is a messy mixture of eggs, butter, and lemon
juice).



6. Therefore, mundane processes can be effective for a
given output  in the actual world yet not be effective
for  in some other possible world. (Cleland, 1993,
pp. 293–294).

This is also plausible. Consider a “blocks‐world” computer
program that instructs a robot how to pick up blocks and
move them onto or off of other blocks (Winston, 1977). I
once saw a live demo of such a program. Unfortunately, the
robot failed to pick up one of the blocks that was not
correctly placed, yet the program continued to execute
“perfectly” even though the output was not what was
intended. (See Rapaport, 1995, p. 62. A similar situation is
discussed in Dennett, 1987, Ch. 5, “Beyond Belief,” p. 172.
We'll return to this example in Section 16.2.)

7. Turing Machines are equally effective in all possible
worlds, because they are causally inert. (Cleland, 1993,
p. 294).

But here we have a potential equivocation on ‘effective.’
Turing Machines are effective in the sense of being step‐by‐
step algorithms that are precisely specified, but they are
not necessarily effective for an intended output : it
depends on the interpretation of  in the possible world!

8. Therefore, there are mundane procedures (such as
recipes for hollandaise sauce) that can produce
hollandaise sauce because they result in appropriate
causal processes, but there are no Turing Machines
that can produce hollandaise sauce, because Turing
Machines are purely formal and therefore causally
inert. QED (Cleland, 1993, p. 295).

To the objection that physical implementations of Turing
Machines could be causally “ert” (so to speak),6 Cleland
replies as follows (p. 294): a Turing Machine's “actions” are
not physical actions but action‐kinds; therefore, they are



causally inert. An embodied (implemented?) Turing
Machine does act: embodied action‐kinds are causal
actions. But that has nothing to do with their being an
(abstract) Turing Machine. Alternatively, a Turing
Machine's ‘0’‐‘1’ outputs can be interpreted by a device
that does have causal effects, such as a light switch or
thermostat.
Perhaps a procedure or algorithm that is “effective for ”
is better understood as an algorithm simpliciter. In the
actual world, it does . In some other possible world,
perhaps it does  ( ). In yet another possible world,
perhaps it does nothing (or loops forever). And so on. For
example,

… if we represent the natural number n by a string of n
consecutive 1s, and start the program with the read‐
write head scanning the leftmost 1 of the string, then the
program,

 1 1 R 
 0 1 R 

will scroll the head to the right across the input string,
then add a single ‘1’ to the end. It can, therefore, be
taken to compute the successor function. (Aizawa, 2010,
p. 229)

But if the environment (the tape) is not a string of  ‘1’s
followed by a ‘0,’ then this does not compute the successor
function. Compare this to Cleland's hollandaise sauce
recipe being executed on the Moon. Hence, mundane
procedures are interpreted Turing Machine programs, so
they are computable.
Aaron Sloman (2002, Section 3.2) makes a useful
distinction between “internal” and “external” processes:
the former “include manipulation of cogs, levers, pulleys,



strings, etc.” The latter “include movements or
rearrangements of various kinds of physical objects.” So, a
computer on Earth that is programmed to make hollandaise
sauce and one on the Moon that is identically programmed
will have the same internal processes but different external
ones (because of differences in the external environment).
A related distinction was made by linguist Noam Chomsky
between competence (“an ideal” language user's
“knowledge of his [sic] language”) and performance (“the
actual use of language in concrete situations”) (Chomsky,
1965, pp. 3–4). A computer might be competent to make
hollandaise because of its internal processes yet fail to do
so because of performance limitations due to external

environmental limitations.
Does the ability of a machine to do something that is not
Turing‐computable mean it can compute something that is
not Turing‐computable? What does physical performance
have to do with computation? Surely we want to say that
whatever a robot can do is computable, even if that
includes cooking. But surely that's because of the “internal”
processes, not the “external” ones.

… Turing machines are not so relevant [to AI]
intrinsically as machines that are designed from the start
to have interfaces to external sensors and motors with
which they can interact online, unlike Turing machines
which at least in their main form are totally self
contained, and are designed primarily to run in ballistic
mode once set up with an initial machine table and tape
configuration. (Sloman, 2002, Section 4.2)

This seems to be a distinction between abstract Turing
Machines and robots. And Cleland's arguments seem more
relevant to robots than to Turing Machines and hence have
nothing really to say about the Computability Thesis (which
only concerns Turing Machines and their equivalents).



Indeed, Copeland and Sylvan (1999, p. 46) (see also
Copeland, 1997) distinguish between two interpretations of
the Computability Thesis. The one that they claim was
actually stated by Church and by Turing “concerned the
functions that are in principle computable by an idealised

human being unaided by machinery.” This one, they claim,
is correct. The other interpretation is “that the class of
well‐defined computations is exhausted by the
computations that can be carried out by Turing machines.”
So, one possible objection to Cleland is that cooking (for
example) is not something that can be carried out by “an
idealized human being unaided by machinery,” and hence
the failure of a hollandaise sauce recipe on the Moon is
irrelevant to the correct interpretation of the Computability
Thesis.
Compare Cleland's hollandaise sauce example with the
following: suppose we have an algorithm (a recipe) that
tells us to mix eggs, butter, and lemon juice until an

emulsion is produced and that outputs hollandaise sauce.
In the actual world, an emulsion is indeed produced, and
hollandaise sauce is output. But on the Moon, this
algorithm goes into an infinite loop; nothing (and, in
particular, no hollandaise sauce) is ever output.
One problem with this is that the “until” clause (“until an
emulsion is produced”) is not clearly algorithmic. How
would the computer tell if an emulsion has been produced?
This is not a clearly algorithmic, Boolean condition whose
truth value can be determined by the computer simply by
checking one of its switch settings (i.e. a value stored in
some variable). It would need sensors to determine what
the external world is like. But that is a form of interactive

computing, which we'll discuss in Section 11.8.7



10.5 Beth Preston: Recipes,

Algorithms, and Specifications

Introductory computer science courses often use the
analogy of recipes to explain what algorithms are. Recipes
are clearly procedures of some kind. But are recipes really
good models of algorithms? Cleland has assumed that they
are.
Beth Preston (2013) has a different take. She is interested
in the nature of artifacts and how they are produced (or
implemented) from plans (such as blueprints). Compare
this to how a program (which is like a plan) is actually
executed.
According to Preston, the classical view of production is
that of “centralized control.” The etymology of the word
‘control’ is of interest here: ‘to control’ originally meant “to
check or verify (originally by comparison with a duplicate
register) ….” (OED,
http://www.oed.com/view/Entry/40563). The “duplicate
register” was a “counter‐roll”; to control something
originally meant to faithfully copy it for the sake of
verification or to regulate it. So, to implement a plan is to
copy an abstract design into reality: i.e. to control it. (For
more on this idea of verification by comparison, see the
discussion of the relation between syntax and semantics in
Section 18.8.3.)
A “mental design” of an artifact to be produced first exists
in someone's mind. This mental design “specifies all the
relevant features of the” artifact to be produced (the
“copy”) (Preston, 2013, p. 30) “along with a set of
instructions for construction” (Preston, 2013, p. 39). Then
the “actual construction” of the artifact (i.e. the copying of
the mental design) …

http://www.oed.com/view/Entry/40563


… is a process that faithfully follows the instructions of
the construction plan, and by so doing reproduces in a
material medium the features of the product specified in
the design. This faithful copying relationship between
the design and construction phases of production is the
control aspect of the model. (Preston, 2013, pp. 30–31)

Compare the way in which a program controls the
operations and output of a computer.
But there is a problem: a “faithful copy” requires that …

… all relevant features of the product [the artifact] be
specified in the design …. In other words, the design is
ideally supposed to be an algorithm (effective procedure)
for realizing both the construction process and the
product. (Preston, 2013, p. 39, my italics)

According to Preston, however, recipes show that this ideal
model isn't realistic.
Preston (2013, p. 40) argues that recipes differ from
algorithms in being open to interpretation (recall the “Zits”
comic described in Section 7.3.3). First, recipes leave
details open (e.g. details about ingredients, which play the
same role in recipes that data structures do in programs).
And they do this in several ways: for one thing, they
provide for alternatives – e.g. use “either sour cream or
yogurt.” But couldn't a recipe, or a program for that
matter, simply call for a data‐analogue of a typed variable
or subroutine here? The recipe might call not for sour
cream or yogurt but instead for a “fermented milk
product.” In any case, non‐deterministic algorithms also
provide for alternatives: in an ordinary “if” statement,
when more than one Boolean condition is satisfied, the first
one is executed. In a “guarded if” statement, it doesn't
matter which one is executed (Gries, 1985, Ch. 10). Here is
an example of a non‐deterministic procedure for computing



the absolute value of  using a “guarded if” control
structure:

if then return ;
if then return ;

In this case, if , it does not matter which line of the
program is executed. In such procedures, a detail is left
open, yet we still have an algorithm. Or consider a program
that simply says to input an integer, without specifying
anything else about the integer. (As a magician might say,
“Think of a number, any number …”). This could still be an
algorithm. (Or maybe not! See Section 11.8.)
Next, recipes specify some ingredients generically: e.g.
“use frosting,” without specifying what kind of frosting. But
compare typed variables or named subroutines. It does not
matter how the subroutine works; all that matters is its
input‐output behavior (what it does). And it doesn't matter
what value the variable takes, as long as it is of the correct
type. Typed variables and named subroutines are
“generic,” yet they appear in algorithms.
And recipes provide for optional ingredients: e.g. “use
chopped nuts if desired.” But compare any conditional
statement in a program that is based on user input. (On the
other hand – as noted earlier – user input may raise issues
for interactive computing; again, see Section 11.8.)
Second, recipes leave construction steps (= control
structure?) open. For instance, the order of steps is not
necessarily specified (at best, a partial order is given): e.g.
“add the rest” of the ingredients, where no order for adding
is given for “the rest of the ingredients.” However, compare
non‐deterministic statements, such as the guarded‐if
command in the earlier example, or programs written in
languages like Lisp, where the order of the functions in the



program is not related in any way to the order in which
they are evaluated when the program is executed. (A Lisp
program is an (unordered) set of functions, not a(n
ordered) sequence of instructions.)
Third, in recipes, some necessary steps (e.g. “put these
cookies on a baking sheet before baking them”) can be
omitted (i.e. go unmentioned). Should the baking sheet be
greased? A knowledgeable chef would know whether it has
to be, so a recipe written for such a chef need not mention
the obvious. But the same kind of thing can occur in a
program, with preconditions that are assumed but not
spelled out, or details hidden in a subroutine. (Perhaps “put
cookies on baking sheet” is a call to a subroutine of the
form “grease baking sheet; put cookies on it.”)
Finally, recipes can provide alternative ways to do
something: e.g. ''roll in powdered sugar …'&c.acute; or
“shake in bag with powdered sugar …‘˙’ Again, non‐
determinism is similar, as are subroutines: to say “multiply 

 and ” is not to specify how; to say “coat in powdered
sugar” is not to specify whether this should be done by
rolling or shaking.
Preston claims that the cook (i.e. the CPU) is expected to
do some of the design work, to supply the missing parts.
So, not everything is in the design. She claims that cooks
don't faithfully follow recipes; instead, they improvise, as
jazz or rock musicians do. They can even change other
(“fixed”) parts of the recipe because of their background
knowledge, based on experience. For example, they can
substitute walnuts for pecans in a recipe for pecan pie.
Therefore, the constructor or executor is typically
intelligent, in contrast to an unintelligent CPU (or the
“unintelligent” fetch‐execute cycle of a Universal Turing
Machine).



But here is a different interpretation of Preston's analysis:
she offers the centralized control model as a description of
an algorithm together with a CPU that produces a process

(i.e. an algorithm being executed). But her theory of
collaborative improvisation might better describe an earlier
stage in the production of a process: namely, the
production of an algorithm by a programmer from a
specification. That is, although the execution of an
algorithm might well be modeled as centralized control,
nevertheless the development of an algorithm by a
programmer from a specification might well be
improvisatory and collaborative, precisely because
specifications – like recipes – can be vague and open to
interpretation. So, recipes are more like design

specifications for computer programs than they are like
algorithms. In fact, my counterexamples to differentiate
between algorithms and recipes just show that either

recipes are high‐level programs requiring implementation
in a lower level or recipes are specifications.8



10.6 Summary

So, are there good reasons for seriously doubting the
Computability Thesis? We have just seen two candidates:
Cleland argues that certain “mundane procedures” are
effectively computable but not Turing‐computable, and
Preston suggests that certain recipe‐like procedures of the
sort typically cited as examples of effective procedures are
not really algorithmic.
But against Cleland's example, we have seen that there
may be a concern in how one determines what the proper
output of an algorithm is, or, to put it another way, in
determining the problem an algorithm is supposed to solve.
Consider the recipe for hollandaise sauce that, when
correctly executed on Earth, produces hollandaise sauce
but does not do so when correctly executed on the Moon.
Does it follow that that recipe is therefore not Turing‐
computable? It would seem to be Turing‐computable on
Earth but not on the Moon. Or is it Turing‐computable
simpliciter (e.g. no matter where it is executed), but
conditions having nothing to do with the algorithm or
recipe itself conspire to make it unsuccessful as a recipe for

hollandaise sauce on the Moon? Is the algorithm or recipe
itself any different? (We'll come back to this issue
beginning in Section 16.3.)
And against Preston's example, we have seen that recipes
are, perhaps, more like specifications for algorithms than
they are like algorithms.
It can be argued that even though the common theme
underlying the equivalence of Turing Machines – lambda
definability, recursive functions, etc. – is “robust” and of
great mathematical interest, that is not reason enough to
think there might not be any other theory of effective



computation. In the next chapter, we will look at such
potential counterexamples to the Computability Thesis.

I will close this chapter with one last version of the Thesis
(not to be taken too seriously!):

The Church‐Turing Thesis: A problem is computable just
in case it wants to be solved. (Anonymous undergraduate
student in the author's course, CSE 111, “Great Ideas in
Computer Science,” 2000)9



10.7 Questions for the Reader

1. It is often said that Turing's analysis of computation
provides a characterization of what an algorithm is.
However, our analysis of algorithms in Section 7.3.3 did
not mention anything about computation or
mathematical functions. The same is true about our
presentation in Section 7.5 of structured programming,
which defined a basic program as either the empty
program or one with a single “primitive operation” that
was left unspecified.
What is the relationship between algorithms thus

understood and computation? Are the two concepts

identical? That is, are all algorithms computable, and

are all computations algorithms?

To help you think about this, consider a recipe that is
fully and explicitly spelled out in complete detail,
leaving nothing to the imagination or interpretation of
the chef (i.e. the recipe's executor). Another example
is Landesman, 2021, which suggests some primitive
paper‐folding operations for origami. Suppose a fully
specified algorithm is provided for folding a crane out
of a square sheet of paper using something like
Landesman's primitive operations. (Perhaps it is a
computer program for an origami robot.)
Are these algorithms? Are they computations? Is the
fact that their primitive operations are neither Turing's
“move” and “print” nor recursive‐function theory's
successor, predecessor, and projection mean they are
not computations? Or does the fact that, according to
the binary Representation Insight of Section 7.4.1,
anything – hence any primitive operation of cooking or



paper folding – can be represented by binary numerals
mean they are computations or are computable?

2. This follow‐up question is aimed at having you think
about issues that will be discussed in more detail in
Chapters 14 and 16:
Suppose that recipes and origami are computable
procedures (as suggested in the previous question) on
the grounds that computations using binary numerals
can represent (or be interpreted as) their primitive
operations.
Does that mean representation or interpretation is
essential to computation? Does it mean (all?) computer
programs model what they deal with?



Notes

1 For more humorous versions of algorithms, see the
cartoons archived at http://www.cse.buffalo.edu/
∼rapaport/510/alg-cartoons.html

2 Sections 8.4.1, 8.7.1, 8.7.9, 8.8.2, and 8.9.7.

3 There are many examples, but none are universally
convincing.

4 See the Online Resources for further reading on the
Computability Thesis .

5 http://www.merriam-
webster.com/dictionary/procedure

6 ‘Inert’ comes from the Latin prefix ‘in‐,’ meaning
“not,” and the Latin ‘artem,’ meaning “skill.” So if
‘inert’ means “lacking causal power,” then perhaps
the non‐word ‘ert’ could mean “having causal
power”; see the OED's entry on ‘inert,’
http://www.oed.com/view/Entry/94999.

7 See the Online Resources for further reading on
Cleland's arguments .

8 See the Online Resources for further reading on
Preston's ideas.

9 http://www.cse.buffalo.edu/∼rapaport/111F04.html

http://www.cse.buffalo.edu/~rapaport/510/alg-cartoons.html
https://cse.buffalo.edu/~rapaport/OR/A0fr10.html#10.2
http://www.merriam-webster.com/dictionary/procedure
http://www.oed.com/view/Entry/94999
https://cse.buffalo.edu/~rapaport/OR/A0fr10.html#10.4
https://cse.buffalo.edu/~rapaport/OR/A0fr10.html#10.5
http://www.cse.buffalo.edu/~rapaport/111F04.html


11 

Hypercomputation

Speculation that there may be physical processes – and
so, potentially, machine‐operations – whose behaviour
cannot be simulated by the universal Turing machine of
1936 stretches back over a number of decades. Could a
machine, or natural system, deserving the name
‘hypercomputer’ really exist? Indeed, is the mind – or the
brain – some form of hypercomputer?
—B. Jack Copeland (2002, p. 462)
We now know both that hypercomputation (or super‐
recursive computation) is mathematically well‐
understood, and that it provides a theory that according
to some accounts for some real‐life computation … [is]
better than the standard theory of computation at and
below the “Turing Limit.” … [S]ince it's mathematically
possible that human minds are hypercomputers, such
minds are in fact hypercomputers.
—Selmer Bringsjord & Konstantine Arkoudas (2004,
p. 167)

The editors have kindly invited me to write an
introduction to this special issue devoted to
“hypercomputation” despite their perfect awareness of
my belief that there is no such subject.
—Martin D. Davis (2006c, p. 4)



Church, Gödel, and Turing defined … [computation] in
terms of mathematical functions … Today, I believe we
are breaking out of the era where only algorithmic
processes are included in the term computation.
—Dennis J. Frailey (2010, p. 2)

Nobody would be fired from a computer science
department for axiomatizing analog computation or
hypercomputation. Both are still in [the] purview of
computer science.
—Marcin Miłkowski (2018, Section 3.2)



11.1 Introduction

We have seen that it can be argued that (1) CS includes
(among other things) the systematic study of computing,
(2) computing is the mathematical study of computational

algorithms, and (3) such algorithms are best understood
mathematically in terms of Turing Machines (or anything
logically equivalent to them).
But are computations best understood that way?
Just as Euclidean geometry is a mathematical theory about
what geometrical constructions are possible by a human
using only compass and straightedge, so Turing‐
computation is a mathematical theory about what functions
are computable by a human using only paper and pencil:1

In simplest terms an effective procedure would appear to
be one that does not transcend our computational
abilities. (Shanker, 1987, p. 628, my italics)

But just as there are geometrical constructions that are
possible using other means (e.g. angle trisection by use of a
protractor), hypercomputation concerns whether there are
functions that are “computable” by other means.
Let's first consider different kinds of “computation.” We
have already distinguished between analog and discrete (or
digital) computation (Sections 6.4.2 and 9.2). Within the
latter, we can distinguish several “levels” of computation.
Several models of computation are weaker than Turing
Machine computation; let's call them “sub‐Turing
computation”:2 In Sections 7.5 and 7.6, we looked at
primitive recursion and count‐programs. But there are
models that are even weaker than those: informally, a finite

automaton is a machine that only



moves from left to right on a finite input tape …. [It] will
have only one opportunity to scan each square in its
motion from left to right, [and] nothing will be gained by
permitting the device to “print” new symbols on its tape
…. Thus, a finite automaton can be thought of as a very
limited computing device which, after reading a string of
symbols on the input tape, either accepts the input or
rejects it, depending upon the state the machine is in
when it has finished reading the tape. (Davis and
Weyuker, 1983, pp. 149–150)

Turing Machine computation (or any logically equivalent
model of computation) is at the “top” of these levels. A
reasonable question to ask is whether there are levels
“above” it: Is there such a thing as “super”‐Turing
computation? If so, how would it affect the Computability
Thesis? After all, that thesis says that any (informal) notion
of “computation” is equivalent to Turing computation. Sub‐
Turing computation can be performed by Turing Machines
simply by not using all the “power” of Turing Machines. But
if super‐Turing computation can do “more” than classical
Turing computation – perhaps even just using Turing
Machines – might that be a counterexample to the
Computability Thesis?
Recall our discussion of Kuhn's philosophy of science
(Section 4.9): to the extent that the Church‐Turing
Computability Thesis is the standard “paradigm” in CS,
rejection of it could be considered a Kuhnian revolutionary
challenge to “normal” CS (Stepney et al., 2005; Cockshott
and Michaelson, 2007, Section 2.5, p. 235). We saw in the
previous chapter that it can be argued that there might be
“procedures” that are not computable by a Turing Machine.
But of course, this depends on what is meant by
‘procedure.’ Recall that several computer scientists
distinguish between “algorithms,” which must halt, and
“procedures,” which need not (Hopcroft and Ullman, 1969,



p. 2; Knuth, 1973, p. 4; S.C. Shapiro, 2001). Hopcroft and
Ullman (1969, p. 80, my italics) also characterize “Church's
hypothesis” as the claim “that any process which could
naturally be called a procedure can be realized by a Turing
machine.” Since procedures in their sense need not halt,
Turing Machines need not either.
Thus, two ways to generalize the notion of computation are
changing the primitive operations and relaxing one or more
of the constraints on the notion of “algorithm.” In this
chapter, we continue our look at procedures that are
allegedly not computable by a Turing Machine.



11.2 Generic Computation

Are there other kinds of computation besides Turing
computation? Piccinini says “yes”: there are analog, neural,
and generic computation (Piccinini, 2020a, 2020b). He
defines ‘generic computation’ as “the processing of medium
independent vehicles by a functional mechanism in
accordance with a rule” (Piccinini, 2018, p. 2; see Piccinini,
2015, Ch. 7 and Piccinini, 2020b, Ch. 6 for argumentation
and details). And he explicitly cites as an advantage of this
very broad definition its inclusion of “not only digital but
also analog and other unconventional types of
computation” (p. 3) – including hypercomputation. But
Piccinini (2015, Chs. 15 & 16) also distinguishes between
the “mathematical” Church‐Turing Computability Thesis
and a “modest physical” thesis: “Any function that is
physically computable is Turing‐computable” (Piccinini,
2015, p. 264), and he argues that it is an “open empirical
question” (p. 273) whether hypercomputers are possible
(although he doubts that they are). For an overview, see
Piccinini and Maley, 2021.



11.3 Non‐Euclidean Geometries and

“Non‐Turing Computations”

Hypercomputation might be compared to non‐Euclidean
geometries. There are two relevant features of Euclidean
geometry. One concerns the axioms. As we saw in Section
2.4.3, replacing Euclid's “parallel postulate” with a
different one yielded several varieties of “non‐Euclidean”
geometries. But all such geometries – Euclidean and non‐
Euclidean – maintained another feature:

[W]hether a procedure literally ‘can in the most general
sense be carried out’ … depend[s] only on the execution

of its atomic tasks. (Webb, 1980, p. 224, original italics)
Many interesting questions in “procedural” (as opposed to
axiomatic) geometry concern which geometrical figures
can be constructed solely with operations enabled by
certain basic devices. (Recall our earlier discussions in
Sections 3.16.3 and 7.5.) The standard devices, of course,
are compass and straightedge – more precisely, collapsible

compass and unruled straightedge. (A collapsible compass
is the familiar one that allows you to draw circles of
different radii. A straightedge is a ruler without markings
of inches or centimeters.) But different systems of
geometry can be studied that allow for measuring devices.
Famously, an angle cannot be trisected using only compass
and straightedge. This is an impossibility proof on a par
with the Halting Problem.
However, if you allow a measuring device (such as a
protractor), angle trisection is trivial (Sloman, 2020). And
as we will see, if you allow a hypercomputer, the Halting
Problem can be solved! (But Martin Davis, 1978, p. 255
disagrees!) Moreover, just as there are alternative



primitive operations for Turing‐like machines, there are
alternative primitive operations for geometry: a collapsible
compass can be replaced with a fixed compass. (On this,
see
http://en.wikipedia.org/wiki/Compass_equivalence:theorem
.)
The idea behind hypercomputation is similar: what do you
get if you relax or change some of Turing's restrictions on
what is (humanly) computable? Turing computation is a
mathematical model of human computation. Are there
“non‐Turing computations”? Many say “yes,” as we will see.
Instead of calling these ‘computation,’ Martin Davis (2006c,
p. 4) calls them “computation‐like process[es].” I will try to
reserve the term ‘compute’ and its cognates for Turing
computation and will use “scare quotes” to signal any kind
of processing that is potentially “non‐Turing computation.”
I will also use them to refer to the informal notion that is
the subject of the Computability Thesis.

http://en.wikipedia.org/wiki/Compass_equivalence:theorem


11.4 Hypercomputation

In a series of papers, the logician and philosopher B. Jack
Copeland (along with several co‐authors) has suggested
that CS “is outgrowing its traditional foundations” (such as
Turing's analysis of computation) and has called for “a ‐
century overhaul of that classical analysis” (Copeland et al.,
2016, pp. 34, 36), contrasting Turing computation with
“hypercomputation” (Copeland, 2002, p. 461): the former is
a computation of “functions or numbers … with paper and
pencil in a finite number of steps by a human clerk working
effectively.” ‘Hypercomputation’ is “the computation of
functions or numbers that cannot be computed in the sense
of Turing (1936).” If hypercomputable functions or
numbers cannot be computed by a Turing Machine, can
they be “computed” at all, and, if so, how? Copeland (2002)
and Copeland and Sylvan (2000, Section 8.1, esp. pp. 190–
191) cite the following possibilities, among others.
First, the constraint of data as symbols on paper could be
relaxed. For example, Cleland's “mundane” hollandaise‐
sauce recipe that we looked at in the previous chapter does
not take symbols as either input or output. Instead, the
inputs are certain food ingredients, and the output is a
certain food preparation. Indeed, any computer‐controlled
physical process – including robotics – seems to relax this
symbolic constraint.
Second, the primitive operations of the “computation”
might not be executable by a human working alone, in the
way that Turing's 1936 paper described. Here, there seem
to be at least two options: one is that the human might
need help that can only be given by a machine capable of
doing something that a human could not do even in
principle. This might include a relaxation of the constraints



about a finite number of steps or a finite amount of time, or
working with what Copeland and Sylvan (2000, p. 190) call
“newer physics.” (See Section 11.5.)
The other is that the human might need help in the form of
information that is not pre‐stored on the tape: this might
include allowing data to be supplied during the
computation, rather than requiring it all to be pre‐stored on
the Turing Machine tape. This is what happens in
“interactive” computing and in Turing's “oracle” machines.
(See Sections 11.8 and 11.9.)
Copeland and Sylvan also identify two kinds of relativity:
“logical” relativity concerns the use of non‐classical logics,
such as relevance logics (see Section 2.5.1). Copeland and
Sylvan (2000) suggest that these might lead to
hypercomputation. Perhaps; but it is certainly the case that
classical computers can compute using relevance logics
(Shapiro and Rapaport, 1987; Martins and Shapiro, 1988).
“Resource” relativity includes “relativity in procedures,
methods or in the devices available for computing.” This
includes the “newer physics” and oracle machines just
mentioned. It also includes analog computing. “Relativity in
procedures” might include different basic operations or
instructions (in much the same way that different
geometric systems might go “beyond” straightedge and
compass). Does such procedural relativity necessarily go
beyond (or below) Turing computability? We'll look at this
in more detail in Section 11.9.
Several basic questions need to be considered: Hilbert's
original constraints (finiteness, etc.) seem to require
“computation” to be humanly possible computation. So, are

hypercomputers really alternative models of humanly

effective procedures? (And does ‘effective’ need to mean
“humanly effective”?) Are hypercomputers



counterexamples to the Computability Thesis? Or are they
just other models of Turing computation? Or are they
models of a more general notion of “computation”: i.e.
nevertheless consistent with the Computability Thesis?
How realistic are hypercomputers? Can they physically
exist? Finally, is the mind or brain a hypercomputer (rather
than a Turing Machine computer)?
In the rest of this chapter, we'll survey a few of these
systems.3



11.5 “Newer Physics”

Hypercomputers

According to a 1992 paper, a computer operating in a
Malament‐Hogarth spacetime or in orbit around a
rotating black hole could theoretically perform non‐
Turing computations.
(http://en.wikipedia.org/wiki/Hypercomputation)

As we have seen, Turing's model of computation is based
on what humans can do. Yet it is an idealized human whom
Turing modeled, e.g. one that has no limits on space (recall
that the tape is infinite, or at least arbitrarily large).
Cleland (2004, p. 212) points out that, in that case, one
could allow other idealizations, such as no limits on speed
of computation. Copeland (1998, p. 150) agrees: “Neither
Turing nor Post, in their descriptions of the devices we now
call Turing machines, made much mention of time …. They
listed the primitive operations that their devices perform …
but they made no mention of the duration of each primitive
operation.”
If we relax temporal restrictions that would limit humans,
then we could devise a machine that could calculate each
digit of a real number's decimal expansion in half the time
of the previous digit's calculation. A “Zeus machine” is a
Turing Machine that “accelerates” this way: each step is
executed in half the time of the previous step (Boolos and
Jeffrey, 1974). Thus, an infinite calculation, including the
Halting Problem, could be computed in a finite amount of
time. However, as Bertrand Russell (1936, p. 143) observed
of a very similar example, although this is not logically
impossible, it is “medically” impossible! And Scott
Aaronson (2018, Slide 19) has observed that it is physically
impossible for another reason:

http://en.wikipedia.org/wiki/Hypercomputation


[O]nce you get down to the Planck time of  seconds,
you'd need so much energy to run your computer that
fast that, according to our best current theories, you'd
exceed what's called the Schwarzschild radius, and your
computer would collapse to a black hole. You don't want
that to happen.

So, we might choose to ignore or reject Zeus machines on
the grounds that they are “medically” and physically
impossible. After all, no physical, and certainly no
biological, device can really accelerate that way. But then,
by parity of reasoning, should we reject ordinary Turing
Machines on the grounds that they, too, are physically
impossible, because, after all no (physical) device can
really have an infinite tape or even an arbitrarily
extendable tape? If so, and if an abstract Turing Machine is
mathematically possible, then surely so is an (equally
abstract) accelerating Turing Machine. That would make a
Zeus machine at least as plausible as a Turing Machine.
But what about the physics of the actual world – relativity
theory and quantum mechanics? The relativistic
hypercomputer described in the epigraph seems far‐
fetched and certainly not practical. Here is what Aaronson
(2018, Slides 18, 20) has to say about these:



We can also base computers on that other great theory
of the twentieth century, relativity! The idea here is
simple: you start your computer working on some really
hard problem, and leave it on earth. Then you get on a
spaceship and accelerate to close to the speed of light.
When you get back to earth, billions of years have passed
on Earth and all your friends are long dead, but at least
you've got the answer to your computational problem. I
don't know why more people don't try it!
So OK, how about the TIME TRAVEL COMPUTER! The
idea here is that, by creating a loop in time – a so‐called
“closed timelike curve” – you could force the universe to
solve some incredibly hard computational problem, just
because that's the only way to avoid a Grandfather
Paradox and keep the laws of physics consistent. It
would be like if you went back in time, and you told
Shakespeare what plays he was going to write, and then
he wrote them, and then you knew what the plays were
because he wrote them … like, DUDE.

As for quantum computation, the issue is whether it allows
for the “computation” of non–Turing‐computable functions
or merely makes the computation of Turing‐computable
functions more efficient, perhaps by efficiently computing
NP problems (Folger, 2016; Aaronson, 2018).4



11.6 Analog Recurrent Neural

Networks

A slightly different model of hypercomputation is that of
Hava T. Siegelmann (1995). She proposed a “possibly
realizable” “analog shift map” or “analog recurrent neural
network” – a “highly chaotic dynamical system … which has
computational power beyond the Turing limit (super‐
Turing); it computes exactly like neural networks and
analog machines” (p. 545, my italics).
Two questions to think about in trying to understand her
proposal are (1) what, if anything, neural networks and
analog computers might have in common, and (2) how
neural networks are different from Turing Machines. As to
(1), recall that Piccinini (2020b) thinks neural
“computation” is distinct from both Turing‐ and analog
computation. And as to (2), if neural‐network computations
are implemented on ordinary computers, whose behavior is
completely analyzable in terms of Turing Machines, how
would something that “computes exactly like neural
networks” be a hypercomputer? More importantly, Martin
Davis (2004, pp. 8–9) shows how “the non‐computability
that Siegelmann gets from her neural nets is nothing more
than the non‐computability she has built into them.”



11.7 Objections to Hypercomputation

Indeed, Davis (2004, 2006c) thinks that most of these
hypercomputers are either wrong‐headed or just plain silly,
essentially likening them to the “garbage in/garbage out”
principle, which says that if you allow for incorrect input,
you should expect incorrect output. Similarly, according to
Davis, if you allow for non‐computable input to a
hypercomputer, you should expect to be able to get non‐
computable output. Davis (as we will see) argues that all
examples of hypercomputation involve non‐computable
input.
Along the same lines, Scott Aaronson (2012) argues against
hypercomputation via a parallel argument that because
Turing Machines can't toast bread, a toaster‐enhanced
Turing Machine that “allows bread as a possible input and
includes toasting it as a primitive operation” would be more
powerful than a classic Turing Machine. (Recall Cleland's
argument (Section 10.4): is a Turing Machine that can
produce hollandaise sauce more powerful than a classic
Turing Machine?)



11.8 Interactive Computation

11.8.1 “Internal” vs. “External”

Inputs

Let's turn from physically impossible or unrealistic
machines to ones that we actually deal with on a daily basis.
Recall our discussion in Section 7.3.3 about whether an
algorithm can have zero inputs. I suggested that a program
to generate the decimal expansion of a real number might
not require any explicit inputs. In Chapter 8, we saw Turing
discuss just such algorithms. But do such algorithms really
have no inputs? It might be better to say that there is an
ambiguity in what counts as an input. After all, a program
that generates the decimal expansion of a real number
doesn't need any input from the external world, but –
because any function considered a set of ordered pairs must
have an input in the sense of being the first member of each

such pair – there is always an “internal” input in that sense.
A program that has no external inputs would still have
“internal” inputs in the functional sense. “Interactive”
computation concerns programs that do have external
inputs.

11.8.2 Batch vs. Online Processing

Computing with no external inputs is sometimes called
“batch” processing or “computational” programs. And
computing with external inputs is sometimes called “online”
processing or “reactive” programs. Soare, 2009, Section
1.3, p. 370, discusses the batch‐online distinction; Amir
Pnueli (2002, lecture1.pdf), defines a “computational
program” as one that is “Run in order to produce a final
result on termination,” and he defines



Reactive systems … [as those] whose role is to maintain
an ongoing interaction with their environment rather
than produce some final value upon termination. Typical
examples of reactive systems are air traffic control
system[s], programs controlling mechanical devices such
as a train, a plane, or ongoing processes such as a
nuclear reactor.

“Batch” or “computational” processing can be understood
as the behavior of a Turing Machine (including a Universal
Turing Machine):

The classic models of computation are analogous to
minds without bodies. For Turing's machine, a calculation
begins with a problem on its tape, and ends with an
answer there. … How the initial tape … is input, and how
the final one is output, are questions neither asked nor
answered. These theories conform to the practice of
batch computing. (Wadler, 1997, pp. 240–241)

“Online” or “reactive” processing has several varieties, all
of which involve interaction with the external world – the
world outside of the computer: A computer might have
access to a (changeable) “offline” database: it might
interact with the external world via sensors or effectors (or
both, of course – recall Shapiro's observations in Section
3.10); it might interact with another computer; it might
interact with a human – or any combination of these.5

Arguably, even “batch‐processing” Turing Machines have
perceptors and effectors in the sense of having a read‐write
head. But these are really internal to the Turing Machine
and don't necessarily “reach out” to the external world.
However,



a computer linked with a human mind is a more powerful
tool than an unassisted human mind. One hope of many
computer scientists is to demonstrate … that the
computer/human team can actually accomplish far more
than a human alone. (Forsythe, 1967a, p. 3, col. 2).

One might also ask whether such a “computer/human team”
could accomplish far more than a computer alone, say by
interacting with the computer while it is computing (Lohr,
2013; Steed, 2013):

[H]umans are fundamentally social animals. This insures
our survival: organisms working together can do so much
more than organisms working apart or in parallel. The
greatest challenge for A.I. is … the lack of attention to
teaming intelligence that would allow the pairing of
humans' remarkable predictive powers with A.I.'s
superior bottom‐up analysis of data. (Vera, 2018)

Here is the rest of what Wadler has to say:
Today, computing scientists face their own version of the
mind‐body problem: how can virtual software interact
with the real world? In the beginning, we merely wanted
computers to extend our minds: to calculate trajectories,
to sum finances, and to recall addresses. But as time
passed, we also wanted computers to extend our bodies:
to guide missiles, to link telephones, and to proffer
menus. … Eventually, interactive models of computation
emerged, analogous to minds in bodies. … A single input
at initiation and a single output at termination are now
superseded by multiple inputs and outputs distributed in
time and space. These theories conform to the practice of
interactive computing. Interaction is the mind‐body
problem of computing.6 (Wadler, 1997, pp. 240–241)

Weizenbaum (1976, Ch. 5, p. 135) interestingly
distinguishes between “computers” and “robots,” where the



latter (but not the former) “have perceptors … and
effectors.” So, are interactive computers – “robots,” in
Weizenbaum's sense – hypercomputers?

11.8.3 Peter Wegner: Interaction Is

Not Turing‐Computable

Peter Wegner (1997) argues that “interaction machines” are
strictly more powerful than Turing Machines. Wegner
(1995, p. 45) identifies interaction machines with oracle
machines (which we'll look at in Section 11.9) and with
“modeling reactive processes” (citing Pneuli).
Interaction relaxes one of the “constraints” on Turing's
analysis of computation: that of being “Isolated[:]

Computation is self‐contained. No oracle is consulted, and
nobody interferes with the computation either during a
computation step or in between steps. The whole
computation of the algorithm is determined by the initial
state” (Gurevich, 2012, p. 4). This certainly suggests that
interactive computation is not Turing computation. On the
other hand, it could also be interpreted to mean merely that
computation must be “mechanical” or “automatic,” and
surely this could include the “mechanical” or “automatic”
use of input from an external source (including an oracle).7

For example, Prasse and Rittgen (1998, p. 359) consider a
program such as the following:



They say of a program such as this,
Neglecting input/output, each iteration can be
interpreted as a computation performed by a Turing
machine. However, the influence of the (unknown) user
input on the control flow makes it hard to determine what
overall function is computed by this procedure (or if the
procedure can be seen as a computation at all). … The
input will be determined only at run‐time. The overall
function is derived by integrating the user into the
computation, thus closing the system. It is evident that
Turing machines cannot model this behavior directly due
to the missing input/output operations. Therefore, we
need models that take into account inputs and outputs at
run‐time to describe computer systems adequately.
(Prasse and Rittgen, 1998, p. 359)



BoxII

Question for the Reader: We could easily write a
Turing Machine program that would be a version of this
while‐loop. Consider such a Turing Machine with a tape
that is initialized with all of the input (a sequence of s
and s, encoded appropriately). This Turing Machine
clearly is (or executes) an algorithm in the classical
sense. Now consider a Turing Machine with the same
program (the same machine table), but with an initially
blank tape and a user who inscribes appropriate s and 

s on the tape just before each step of the program is

executed (so the Turing Machine is not “waiting” for user
input, but the input is inscribed on the tape just in time).
Is there a mathematical difference between these two
Turing Machines? Is there anything in Turing, 1936 that
rules this out?

Interestingly, Prasse and Rittgen's point is that this does not

violate the Computability Thesis, despite Wegner's
interpretation:



Interaction machines are defined as Turing machines
with input and output. Therefore, their internal behavior
and expressiveness do not differ from that of equivalent
Turing machines. Though Wegner leaves open the
question of how the input/output mechanism works, it
can be assumed that input and output involve only data
transport, without any computational capabilities.
Therefore, the interaction machine itself does not possess
greater computational power than a Turing machine.
However, through communication, the computational
capabilities of other machines can be utilized. Interaction
can then be interpreted as a (subroutine) call.
(Prasse and Rittgen, 1998, p. 361)

Wegner and Goldin disagree and suggest that Turing
disagreed, too: they discuss “Turing's assertion [in Turing,
1936] that TMs have limited power and that choice
machines, which extend TMs to interactive computation,
represent a distinct form of computing not modeled by TMs”
(Wegner and Goldin, 2006, p. 28, col. 1). So, what is a
“choice” machine, and how does it differ from a Turing
Machine?
Along with his (utomatic)‐machines (now called ‘Turing
Machines’), Turing (1936) introduced (hoice) machines.
As we saw in Section 8.9.1, ‐machines are Turing
Machines that allow for “ambiguous configurations.” Recall
from Section 8.8.1 that a “configuration” is a line number
together with the currently read symbol; in other words, it
is the “condition” part of the condition‐action expression of
a Turing Machine instruction. So, an “ambiguous
configuration” is a “condition” with more than one possible
“action.” In a ‐machine, “an external operator” makes an
“arbitrary choice” for the next action (Turing, 1936, p. 232;
see our Section 8.9.1).
However,



The ‘Choice Machines’ from Turing's paper are just what
we now call nondeterministic Turing machines. In …
[Turing, 1936, p. 252, footnote  ], Turing showed that
the choice machines can be simulated by traditional
Turing machines, contradicting Wegner and Goldin's
claim that Turing asserted his machines have limited
power. (Fortnow, 2006).

Thus, ‐machines (or non‐deterministic Turing Machines)
are no more powerful than deterministic Turing Machines,
so they don't provide counterexamples to the Computability
Thesis.
Fortnow (2006) notes that there is a difference between
modeling and simulating. Neither of these terms have
universally accepted definitions, but we can say that one
way for system  to simulate system  is simply for their
input‐output behaviors to match (in other words, for  and 

 to compute the same function, although possibly in
different ways). And one way for  to model (or emulate) 

 is for their internal behaviors to match as well: i.e. for 
to simulate  and for their algorithms to match (in other
words, for  and  to compute the same function in the

same way). (We'll discuss simulation in more detail in
Section 14.2.) If the only way for a Turing Machine to
simulate a ‐machine is by pre‐storing the possible inputs,
it is arguably not modeling it. The non‐interactive Turing
Machine with pre‐stored input (what Soare (2009, Sections
1.3, 9) notes is essentially a “batch” processor) can simulate

the interactive system even if it does not model it. Perhaps
this is Wegner and Goldin's point. Yet another pair of terms
can illuminate the relationship: an interactive Turing
Machine may be extensionally equivalent to one with all
input pre‐stored, but it is not intensionally equivalent
(Section 3.4.2).8



Fortnow (2006) goes on to point out that Turing Machines
also only simulate but don't model many other kinds of
computation, such as “random‐access memory, machines
that alter their own programs, multiple processors,
nondeterministic, probabilistic or quantum computation.”
However, “Everything computable by these and other
seemingly more powerful models can also be computed by
the lowly one‐tape Turing machine. That is the beauty of the
Church‐Turing thesis.” The Church‐Turing Computability
Thesis “doesn't try to explain how computation can happen,
just that when computation happens it must happen in a
way computable by a Turing machine” (Fortnow, 2006, my
italics).
It is important to keep in mind that when there are two
input‐output–equivalent ways to do something, it still might
be the case that one of those ways has an advantage over
the other for certain purposes. For example, no one would
want to program an airline reservation system using the
programming language of a Turing Machine! Rather, a high‐
level language (Java?, C++?, etc.) would be much more
efficient. Similarly, it is easier to prove theorems about an
axiomatic system of logic that has only one rule of inference
(usually modus ponens), but it is easier to prove theorems in
a natural‐deduction system of logic, which has many rules of
inference (usually at least two for each logical connective),
even if both systems are logically equivalent. (See Section
15.4 for more on the difference between axiomatic and
natural‐deduction systems of logic.)

11.8.4 Can Interaction Be Simulated

by a Non‐Interactive Turing Machine?

11.8.4.1 The Power of Interaction



Nevertheless, interaction is indeed ubiquitous and powerful.
Consider, for example, the following observation by Donald
Knuth:

I can design a program that never crashes if I don't give
the user any options. And if I allow the user to choose
from only a small number of options, limited to things
that appear on a menu, I can be sure that nothing
anomalous will happen, because each option can be
foreseen in advance and its effects can be checked. But if
I give the user the ability to write programs that will
combine with my own program, all hell might break loose.
(Knuth, 2001, pp. 189–190)

That is, a program does not have to pre‐store all possible
inputs. Here is how Herbert Simon put it, commenting on
the objection to AI that …

… “computers can only do what you program them to do.”
That is correct. The behavior of a computer at any
specific moment is completely determined by the contents
of its memory and the symbols that are input to it at that
moment. This does not mean that the programmer must
anticipate and prescribe in the program the precise
course of its behavior. … [W]hat actions actually transpire
depends on the successive states of the machine and its

inputs at each stage of the process – neither of which
need be envisioned in advance either by the programmer
or by the machine. (Simon, 1977, p. 1187, my italics)

And those inputs are a function of the computer's
interactions with the external world!
(The objection to AI that Simon quoted is a version of the
“Lovelace objection,” which we'll examine in more detail in
Section 18.4.)

11.8.4.2 Simulating a Halting Interaction Machine



Let's consider Fortnow's position first: if an interaction
machine halts, then it can be simulated by a Universal
Turing Machine by pre‐storing all of its inputs. Here's why.
In the theory of Turing computation, there is a theorem
called the S‐m‐n Theorem. Before stating it, let me
introduce some notation: first, recall from Section 8.12 that
Turing Machines are enumerable – they can be counted. (In
fact, they are “recursively” – i.e. computably – enumerable.)
So, let ‘ ’ represent the th Turing Machine (in some
numbering scheme for Turing Machines), and let 
represent its input. Here is the S‐m‐n Theorem:

This says that there exists a Turing Machine   (i.e. a
function  that is computable by a Turing Machine) that has
the following property: for any three natural numbers ,
the following is true: the th Turing Machine, when given
both y and z as inputs, produces the same output that the 

th Turing Machine does when given only  as input.
But what is ? It is a Turing Machine that already has 

 and  “pre‐stored” on its tape!
Here is another way to say this: first, enumerate all of the
Turing Machines, and let  be the th Turing Machine.
Suppose it takes two inputs:  and  (another way to say
this is that its single input is the ordered pair ). Then
there exists another Turing Machine  – i.e. we can find
another Turing Machine that depends on 's (two) inputs
(and the dependence is itself a Turing‐computable function, 

) – such that  is input‐output–equivalent to  when 
 is fixed, and which is such that  is a Turing Machine

with  (i.e. with part of 's input) stored internally as data.

Here is an example of these two kinds of Turing Machines,
with a program for  on the left and a program for 



 on the right:

In other words, any Turing Machine that takes input  from
the external world (or as user input) can be simulated by a
different Turing Machine that has  pre‐stored on its tape.
That is, data can be stored algorithmically in programs; the
data need not be input from the external world.9 The Turing
Machine that interacts with the external world can be
simulated by a different Turing Machine that doesn't. So, an
interaction machine that halts is no more powerful than an
ordinary, non‐interacting Turing Machine.
But keep in mind the comment at the end of Section 11.8.3
about relative advantages: the interaction machine might be
more useful in practice; the non‐interacting machine might
be easier to prove theorems about.10

So, any interactive program that halts could, in principle, be
shown to be logically equivalent to a non‐interactive
program. That is, any interactive program that halts can be
simulated by an “ordinary” Turing Machine by pre‐storing
the external input:



An interactive system is a system that interacts with the
environment via its input/output behavior. The
environment of the system is generally identified with the
components which do not belong to it. Therefore, an
interactive system can be referred to as an open system
because it depends on external information to fulfil its
task. If the external resources are integrated into the

system, the system no longer interacts with the

environment and we get a new, closed system. So, the
difference between open and closed systems ‘lies in the
eye of the beholder.’ (Prasse and Rittgen, 1998, p. 359,
col. 1, my italics; Teuscher and Sipper, 2002, p. 24, make
a similar observation)

The catch is that you need to know “in advance” what the
external input is going to be. Halting is important here,
because once the interactive machine halts, all of its inputs
are known and can then be pre‐stored on the simulating
machine's tape. But the S‐m‐n Theorem does say that once
you know what that input is, you need only an ordinary
Turing Machine, not an interactive hypercomputer.



BoxII

Philosophical Digression: “Solipsism,” as defined by
Bertrand Russell (1927, p. 398), is “the view that from
the events which I experience there is no valid method of
inferring the character, or even the existence, of events
which I do not experience.” It is occasionally parodied as
the view that I am the only thing that exists; you are all
figments of my imagination. Note that you cannot make
the same claim, because, after all, if solipsism is true,
then you don't exist! There's a story that at a lecture
Bertrand Russell once gave on solipsism, someone in the
audience commented that it was such a good theory, why
didn't more people believe it? Actually, solipsism is not
really the claim that only I exist. Rather, it is the claim
that I live in a world of my own, completely cut off from
the external world, and so do you. This is reminiscent of
the philosopher Gottfried Leibniz's “monads” (Leibniz,
1714, https://en.wikipedia.org/wiki/Monadology), but
that's beyond our present scope.
“Methodological solipsism” is a view in the philosophy of
mind and of cognitive science that says that to
understand the “psychology” of a cognitive agent, it is
not necessary to specify the details of the external world
in which the agent is situated and that impinge on the
agent's sense organs. This is not to deny that there is
such a world or such sensory input – hence the qualifier
‘methodological.’ Rather, it is to acknowledge (or
assume) that all that is of interest psychologically or
cognitively can be studied from the surface inward, so to
speak (Putnam, 1975; Fodor, 1980). That is, cognition
can be studied by acting as if the brain (or the mind) only
does “batch processing.” (We'll come back to this in
Sections 16.11 and 18.8.2.)

https://en.wikipedia.org/wiki/Monadology


Consider an AI system that can understand and generate
natural‐language and that gets its input from the
external world (i.e. from a user). The point of
methodological solipsism is that we could simulate this
by building in the input (assuming a finite input). Indeed,
this can be done for any partial recursive function,
according to the S‐m‐n Theorem. If we understood
methodological solipsism as the S‐m‐n Theorem, we
would have an argument for methodological solipsism
from the theory of computation!

10.8.4.3 Simulating a Non‐Halting Interaction Machine

But suppose our interaction machine does not halt – not
because of a pernicious infinite loop, but (say) because it is
running an operating system or an automated teller
machine; such machines only halt when they are broken or
being repaired:

Interactive computing. Many systems, such as
operating systems, Web servers, and the Internet itself,
are designed to run indefinitely and not halt. Halting is an
abnormal event for these systems. The traditional
definition of computation is tied to algorithms, which halt.
Execution sequences of machines running indefinitely
seem to violate the definition. (Denning, 2010, p. 5, my
italics)

But even Turing's original Turing Machines didn't halt: they
computed infinite decimals, after all! The central idea
behind the Halting Problem is to find an algorithm that
distinguishes between programs that halt and those that
don't. Whether halting is a Good Thing is independent of
that. Of course, any stage in the process is a finite (i.e.
halting) computation. (Recall Prasse and Rittgen's first
sentence, quoted on p. 326.) Even Turing's computation of



reals is a (non‐halting) sequence of halting computations of
successive terms of the decimal expansion.
There are two non‐halting cases to consider. In the first
case, the unending input stream is a number computable by
a Universal Turing Machine. In this case, the interaction
machine can also be simulated by a Universal Turing
Machine. Hence, interaction in this case also does not go
beyond the Computability Thesis, because – being
computable – the inputs are “knowable” – i.e. computable –
“in advance.” So, instead of pre‐storing the individual
inputs, we can simply pre‐store a copy of the program that
generates those inputs.
In the second case, suppose not only that the Turing
Machine does not halt but also that the unending input
stream is not computable by a Turing Machine. Then the
interaction machine would seem to be a hypercomputer. It
is only this situation – where the input is non‐computable
(hence, not knowable in advance, even in principle) – that
we have hypercomputation (recall Martin Davis's objection,
Section 11.7). But is it? Or is this just an oracle machine?
We will see in Section 11.9 why it is not obvious that oracle‐
machine computation is “hyper” in any interesting sense,
either.
Why might such a non‐halting, non‐computable interaction
machine be a hypercomputer? Its input stream might be
random. Truly random numbers are not computable
(Church, 1940; Chaitin, 2006). But de Leeuw et al., 1956
showed that “the computing power of Turing machines
provided with a random number generator … could compute
only functions that are already computable by ordinary
Turing machines” (Davis, 2004, p. 14). Even if not random,
the input stream of such an interaction machine might be
non‐computable. According to Copeland and Sylvan (1999,
p. 51), “A coupled Turing machine is the result of coupling a



Turing machine to its environment via one or more input
channels. Each channel supplies a stream of symbols to the
tape as the machine operates.” They give a simple proof
(p. 52) that there is a coupled Turing Machine “that cannot
be simulated by the universal Turing machine.” However,
the proof involves an oracle that supplies a non‐Turing
computable real number, so their example falls prey to
Davis's objection.11



11.9 Oracle Computation

Let us suppose that we are supplied with some
unspecified means of solving number‐theoretic problems;
a kind of oracle as it were. We shall not go any further
into the nature of this oracle apart from saying that it
cannot be a machine. With the help of the oracle we
could form a new kind of machine (call them ‐
machines), having as one of its fundamental processes
that of solving a given number‐theoretic problem. More
definitely these machines are to behave in this way. The
moves of the machine are determined as usual by a table
except in the case of moves from a certain internal
configuration . If the machine is in the internal
configuration  and if the sequence of symbols marked
with  is then the well‐formed formula A, then the
machine goes into the internal configuration  or 
according as it is or is not true that A is dual. The
decision as to which is the case is referred to the oracle.
—Alan Turing (1939, pp. 172–173)12

An (racle)‐machine is a Turing Machine that can
“interrogate an ‘oracle’ (external database) during the
computation” (Soare, 2009, Section 1.3, p. 370) to
determine its action (including its next configuration).
Moreover, the database “cannot be a machine” (Turing,
1939, p. 173). If it were a “machine” – presumably an ‐
machine – then its behavior would be computable, and vice
versa.



BoxII

Historical Digression: Oracle machines were first
described in Turing's Ph.D. dissertation at Princeton,
which was completed in 1938 and which he began after

his classic 1936 paper was published; Church was his
dissertation advisor. His dissertation can be read online
at http://www.dcc.fc.up.pt/∼acm/turing-phd.pdf; it was
published as Turing, 1939, from which this section's
epigraph was taken.

However, if the choice made by the oracle were

computable, then ‐machines could be considered a special
case of ‐machines. If interaction is best modeled by an
oracle machine, then Wegner and Goldin are incorrect
about choice machines being the ones that “extend” Turing
Machines “to interactive computing” (see Section 11.8.3).
In fact, according to Martin Davis (1958, pp. 20–24), Turing
Machines “deal … only with closed computations. However,
it is easy to imagine a machine that halts a computation at
various times and requests additional information.” He then
discusses relative computation and ‐machines in the form
of Turing Machines that can ask whether a given integer is
an element of a given set, observing that “This provides a
Turing machine with a means of communication with ‘the
external world.’ ”
The external database is a “black box” that could contain
the answers to questions that are not computable by an
ordinary Turing ‐machine. If a function  is computable
by an ‐machine whose oracle outputs the value of a (non–
Turing‐computable) function , then it is said that  is
computable relative to .

http://www.dcc.fc.up.pt/~acm/turing-phd.pdf


The computer scientist Solomon Feferman (1992, p. 340,
footnote 8) said this: “Several people have suggested to me
that interactive computation exemplifies Turing's ‘oracle’ in
practice. While I agree that the comparison is apt, I don't
see how to state the relationship more precisely.” However,
Bertil Ekdahl (1999) has a nice example that illustrates
how interactive computing is modeled by ‐machines and
relative computability. The essence of the example
considers a simplified version of an airline‐reservation
program. Such a program is a standard example of the kind
of interactive program that Wegner claims is not Turing
computable, yet it is not obviously an ‐machine, because
it does not obviously ask an oracle for the solution to a non‐
computable problem. Suppose our simplified reservation
program is this:

Ekdahl observes that although writing the passenger and
destination information on the input tape is computable
“and can equally well be done by another Turing machine,”
when our reservation program then “ ‘asks’ for two new”
inputs, “which [inputs are] going to [be written] on the
tape is not a recursive process. … So, the input of
[passenger and destination] can be regarded as a question
to an oracle. An oracle answers questions known in
advance but the answers are not possible to reckon in
advance” (Ekdahl, 1999, Section 3, pp. 262–263, italics in
original; my boldface). Here, the “oracle” is the
reservations agent!
Conceivably, the “computation‐like process” performed by
the physics‐challenging machines described in Section 11.5



can also be simulated (if not modeled) by oracle machines.
So, the hypercomputation question seems to come down to
whether ‐machines violate the Computability Thesis. Let's
look at them a bit more closely.
Feferman (1992, p. 321) notes that ‐machines can be
“generalized to that of a ‐machine for any set .” Instead
of Turing Machines, Feferman discusses the logically
equivalent register machines of Shepherdson and Sturgis,
1963 (Section 9.3.1). Briefly, a register machine consists of
“registers” (storage units), each of which can contain a
natural number. In Feferman's version (1992, p. 316), for
each register , the machine has four basic operations:

1.  (i.e. set  to 0)
2.  (i.e. increment )
3. if , then  (i.e. decrement non‐0 )

4. if , then go to instruction else go to instruction 

To turn this into a ‐machine, we add one more kind of
operation (p. 321):

5. if , then else 
In other words, a ‐machine is an ‐machine: a Turing
Machine together with a set  that plays the role of the
oracle. The machine's program can consult oracle  to see
if it contains some value . The fifth operation puts a 1 or
a 0 into register  if the oracle tells it whether the value 

.
Essentially, this adds primitive operations to those of a
Turing Machine (or a register machine) (Dean, 2020,
Def 3.8). If these operations can be simulated by the
standard primitive operations of the Turing Machine, then
we haven't increased its power, only its expressivity,



essentially by the use of named subroutines. (Recall Prasse
and Rittgen's observation that “interaction can … be
interpreted as a (subroutine) call.”) Turing's ‐machines
are of this type; the call to a (possibly non‐computable)
oracle is simply a call to a (possibly non‐computable)
subroutine. So, as Prasse and Rittgen say, “the machine
itself” is just a Turing Machine. And as Davis would say, if a
non‐computable input is encoded in , then a non‐
computable output can be encoded on its tape. If 
contains the answers to problems not solvable by the
Turing Machine, then of course we have increased the
machine's power.
But does that provide a counterexample to the
Computability Thesis?
In fact, Feferman (1992, pp. 339–340) observes that the
“built‐in functions” of “actual computers” (e.g. the
primitive recursive functions or the primitive operations of
a Turing Machine) are “given by a ‘black box’ – which is
just another name for an ‘oracle’ – and a program to
compute a function  from one or more of these” built‐in
functions “is really an algorithm for computation of 
relative to” those built‐in functions.
To say that a set  is Turing computable from (or “Turing
reducible to”) a set  (written: ) is to say that 
iff the ‐machine outputs 1 when its input is  (where
output 1 means “yes, ”). Davis (2006b, p. 1218) notes
that where  and  are sets of natural numbers, if ,
and “if  is itself a computable set, then nothing new
happens; in such a case  just means  is
computable. But if  is non‐computable, then interesting
things happen.”13 According to Davis (2006c), one of the
uninteresting things, of course, is that  will then turn out
to be non‐computable. The interesting things have to do
with “degrees” of non‐computability: “can one non‐



computable set be more non‐computable than another?”
(Davis, 2006b, p. 1218).
What does that mean? Recall that Gödel's Incompleteness
Theorem shows that there is a true statement of arithmetic
that cannot be proved from Peano's axioms. What if we add
that statement as a new axiom? Then we can construct a
different true statement of arithmetic that cannot be
proved from this new set of axioms. And we can continue in
this matter, constructing ever more powerful theories of
arithmetic with no end. Turing's dissertation and invention
of oracles essentially applied the same kind of logic to
computability. Consequently, Feferman (1992, p. 321)
observes that

the arguments for the Church‐Turing Thesis lead one
strongly to accept a relativized version: (C‐T)r [a set] 
is effectively computable from [a set]  if (and only if) 

.

Feferman then says that “Turing reducibility gives the most
general concept of relative effective computability”
(p. 321). And here is Feferman on the crucial matter:

Uniform global recursion provides a much more realistic
picture of computing over finite data structures than the
absolute computability picture, for finite data bases are
constantly being updated. As examples, we may consider
… airline reservation systems. (Feferman, 1992, p. 342)

He does, however, go on to say that “while notions of
relativized (as compared to absolute) computability theory
are essentially involved in actual hardware and software
design, the bulk of methods and results of recursion theory
have so far proved to be irrelevant to practice” (Feferman,
1992, p. 343). That certainly is congenial to Wegner's
complaints.



On the other hand, Feferman (1992, p. 315) also claims
that “notions of relative (rather than absolute)
computability” (i.e. notions based on Turing's ‐machines
rather than on his ‐machines) have “primary significance
for practice” and that these relative notions are to be
understood as “generalization[s] … of computability [and
“of the Church‐Turing Thesis”] to arbitrary structures.” So
this seems to fly in the face of Wegner's claims that
interaction is something new while agreeing with the
substance of his claims that interaction is more central to
modern computing than Turing Machines are.
Soare agrees:

Almost all the results in theoretical computability use
relative reducibility and ‐machines rather than ‐
machines and most computing processes in the real
world are potentially online or interactive. Therefore, we
argue that Turing ‐machines, relative computability,
and online computing are the most important concepts in
the subject, more so than Turing ‐machines and
standard computable functions since they are special
cases of the former and are presented first only for
pedagogical clarity to beginning students. (Soare, 2009,
Abstract, p. 368)

This is an interesting passage, because it could be
interpreted by hypercomputation advocates as supporting
their position and by anti‐hypercomputationalists as
supporting theirs! In fact, a later comment in the same
paper suggests the pro‐hypercomputational reading:



The original implementations of computing devices were
generally offline devices such as calculators or batch
processing devices. However, in recent years the
implementations have been increasingly online
computing devices which can access or interact with
some external database or other device. The Turing ‐
machine is a better model to study them because the
Turing ‐machine lacks this online capacity. (Soare,
2009, Section 9, p. 387)

He also says (referring to Turing, 1939 and Post, 1943),
The theory of relative computability developed by Turing
and Post and the ‐machines provide a precise
mathematical framework for database [or interactive] or
online computing just as Turing ‐machines provide one
for offline computing processes such as batch
processing. (Soare, 2009, Section 1.3, pp. 370–371).

And he notes that oracles can model both client‐server
interaction as well as communication with the Web.
However, the interesting point is that all of these are
extensions of Turing Machines, not entirely new notions.
More importantly, Soare does not disparage, object to, or
try to “refute” the Computability Thesis; rather, he
celebrates it (Soare, 2009, Section 12). This certainly
suggests that some of the things that Copeland and Wegner
say about hypercomputation are a bit hyperbolic; it
suggests that both the kind of hypercomputation that takes
non‐computable input (supplied by an oracle) to produce
non‐computable output as well as the kind that is
interactive are both well‐studied and simple extensions of
classical computation theory.
Soare's basic point on this topic seems to be this:



Conclusion 14.3 The subject is primarily about
incomputable objects not computable ones, and has been
since the 1930's. The single most important concept is
that of relative computability to relate incomputable
objects. (Soare, 2009, Section 14, p. 395)

Turing's oracle machine was developed by Post into
Turing reducibility …. It is the most important concept in
computability theory. Today, the notion of a local
machine interacting with a remote database or remote
machine is central to practical computing. (Soare, 2012,
p. 3290)

This is certainly in the spirit of hypercomputation without
denigrating the Computability Thesis.14



11.10 Trial‐and‐Error Computation

11.10.1 Introduction

There is one more candidate for hypercomputation that is
worth looking at for its intrinsic interest. It goes under
many names: “trial‐and‐error computation,” “inductive
inference,” “Putnam‐Gold machines,” and “limit
computation.” Here, the “constraint” that is relaxed is that
we change our interpretation of what counts as the output
of the “computation.”
Here is how Putnam introduced “trial and error predicates.”
First, a “predicate” can be thought of as a Boolean‐valued
function. Next, as in Section 7.6.2, we'll let the notation 
represent an ‐tuple of variables , for some .
Then (paraphrasing Putnam, 1965, p. 49) a predicate  is a
trial and error predicate  there is a computable function

 such that for every ,

and

where

Function  takes as input  natural numbers ( s plus
one ), and it outputs a natural number. Each value of  (

) will, in general, yield a different value for ,
but at some point (at , in fact), no matter how large 



gets,  will remain constant with value . In other words,
no matter what initial value (or values) the function  takes,
the predicate  is true (or false) iff, in the “limit” (i.e. at 
or “beyond”), the function  (or ). That is, “the
eventual value of”  is 1 or 0 (Welch, 2007, p. 770).
Putnam “modifies” the notion of Turing computability …

… by (1) allowing the procedure to “change its mind” any
finite number of times (in terms of Turing Machines: we
visualize the machine as being given an integer (or an ‐
tuple of integers) as input. The machine then “prints out”
a finite sequence of “yesses” and “nos.” The last “yes” or
“no” is always to be the correct answer.); and (2) we give
up the requirement that it be possible to tell (effectively)
if the computation has terminated[.] I.e. if the machine
has most recently printed “yes,” then we know that the
integer put in as input must be in the set unless the

machine is going to change its mind; but we have no
procedure for telling whether the machine will change its
mind or not.
The sets for which there exist decision procedures in this
widened sense are decidable by “empirical” means – for,
if we always “posit” that the most recently generated
answer is correct, we will make a finite number of
mistakes, but we will eventually get the correct answer.
(Note, however, that even if we have gotten to the correct
answer (the end of the finite sequence) we are never sure

that we have the correct answer.) (Putnam, 1965, p. 49)
In general, a trial‐and‐error machine is a Turing Machine
with input  that outputs a sequence of responses such that
it is the last output that is “the” desired output of the
machine (rather than the first, or only, output). But you
don't allow any way to tell effectively if you've actually
achieved the desired output: i.e. if the machine has really



halted. The philosopher and psychologist William James
once said, in a very different context, that …

… the faith that truth exists, and that our minds can find
it, may be held in two ways. We may talk of the empiricist

way and of the absolutist way of believing in truth. The
absolutists in this matter say that we not only can attain
to knowing truth, but we can know when we have
attained to knowing it; whilst the empiricists think that
although we may attain it, we cannot infallibly know
when. To know is one thing, and to know for certain that

we know is another. (James, 1897, Section V, p. 465)
To paraphrase James,

The faith that a problem has a computable (or
algorithmic) solution exists, and that our computers can
find it, may be held in two ways. We may talk of the trial‐
and‐error way and of the Turing‐algorithmic way of
solving a problem. The Turing algorithmists in this matter
say that we (or Turing Machines) not only can solve
computable problems, but we can know when we (or
they) have solved them; while the trial‐and‐error
hypercomputationalists think that although we (or our
computers) may solve them, we cannot infallibly know
when. For a computer to produce a solution is one thing,
and for us to know for certain that it has done so is
another.

Recall from Section 8.9.3 that Turing called the marks
printed by a Turing Machine that were not to be taken as
output “symbols of the second kind,” used only for
bookkeeping. Peter Kugel (1986) takes up this distinction:



We distinguish an output from a result. An output is
anything  [“an idealized general‐purpose computing
machine”] prints, whereas a result is a selection, from
among the things it prints, that we agree to pay attention
to. … The difference between a computing procedure and
a trial and error procedure is this[:] When we run  [
running under program ] as a computing procedure, we
count its first output as its result. When we run it as a
trial and error procedure, we count its last output as its
result. (Kugel, 1986, pp. 139–140).

In a similar vein, Kugel (2002) notes that a distinction can
be made between a Turing Machine and Turing machinery.
Sub‐Turing computation, although not requiring all the
power of a Turing Machine, can be accomplished using
Turing machinery. As Hintikka and Mutanen (1997, p. 175)
put it, “there is more than one sense in which the same
idealized hardware [i.e. Turing machinery] can be used to
compute a function.” (Here, ‘compute’ does not refer to
Turing computation, because trial‐and‐error computability
“is wider than recursivity.”)
In a Turing Machine, the first output is the result of its
computation. But there is nothing preventing the use of
Turing machinery and taking the last output of its operation
as its result. You can't say that the operation of such Turing
machinery is computation if you accept the Computability
Thesis, which identifies computation with the operation of a
Turing Machine. But if a trial‐and‐error machine could do
super‐Turing “computation,” then it would be a
hypercomputer that uses Turing machinery (and would not
require “newer physics”).
Recall our discussion of the Halting Problem. In Section
7.7.1, we contrasted two alleged algorithms for determining
whether a program  halts on input :



Algorithm  can be converted to the self‐referential 
and thereby used to show that the Halting Problem is not
Turing computable (Step 1 of our proof sketch). But 
could not be so converted. It is an example of a trial‐and‐
error procedure: it makes an initial guess about the desired
output and then keeps running program  on a number of
“trials.” If the trials produce “errors” or don't come up with
a desired response, then continue to run more trials.
As Hintikka and Mutanen (1997, p. 181) note, the Halting
Problem algorithm in its trial‐and‐error form is not
computable, “even though it is obviously mechanically
determined in a perfectly natural sense.” They also note
that this “perfectly natural sense” is part of the informal
notion of computation that the Computability Thesis asserts
is identical to Turing computation, and hence they conclude
that the Computability Thesis “is not valid” (p. 180).
Actually, they're a bit more cautious, claiming that the
informal notion is “ambiguous”: “We doubt that our
pretheoretical ideas of mechanical calculability are so sharp
as to allow for only one explication” (p. 180).
So, a trial‐and‐error machine uses Turing machinery to
perform hypercomputations. However, trial‐and‐error
computation is equivalent to computations by ‐machines
that solve the halting problem!



If the computation is to determine whether or not a
natural number  as input belongs to some set , then it
turns out that sets for which such “trial and error”
computation is available are exactly those … that are
computable relative to … an oracle that provides correct
answers to queries concerning whether a given Turing
machine … will eventually halt. (Martin Davis, 2006a,
p. 128)

So, trial‐and‐error computation falls prey to the same
objections as other forms of hypercomputation. However,
because trial‐and‐error computation only requires an
ordinary, physically plausible Turing Machine and no
special oracle, it does have some other uses, which are
worth looking at. Whether these are legitimate kinds of
hypercomputation is something left for you to decide! 15

11.10.2 Does “Intelligence” Require

Trial‐and‐Error Machines?

A trial‐and‐error machine can “compute” the uncomputable,
but we can't reliably use the result. But what if we have to?
When we learn to speak, we don't wait (we can't wait) until
we fully understand our language before we start (before
we have to start) to use it. Similarly, when we reason or
make plans, we must also draw conclusions or act on the
basis of incomplete information. Herbert Simon (1996a)
called this “satisficing” or “bounded rationality” (Section
5.6).
One of the claims of hypercomputationalists is that some
phenomena that are not Turing computable are (or might
be) “computable” in some extended sense. And one of these
phenomena is “intelligence,” or cognition. Siegelman's
version that we looked at in Section 11.5, based on neural
networks, is one of these. Another, based on trial‐and‐error
computation, is what we will look at now.



BoxII

Terminological Digression: ‘Intelligence’ is the term
that many people use – including, famously, Turing
(1950) – and it is enshrined in the phrase ‘artificial
intelligence.’ However, I prefer the more general term
‘cognition,’ because the concept that both terms attempt
to capture has little or nothing to do with “intelligence”
in the sense of IQ tests. So, when you see the words
‘intelligence’ or ‘intelligent’ in the following, try
substituting ‘cognition’ or ‘cognitive’ to see whether the
meaning differs. In Chapter 18 (especially Section
18.2.2), we'll go into much more detail on what I prefer
to call “computational cognition.”

Kugel (2002) argues that AI will be possible using digital
computers – and not require fancy quantum computers or
other kinds of non‐digital computers – by using those digital
computers in only a non–Turing‐computational way. He
begins his argument by observing that intelligence in
general, and artificial intelligence in particular, requires
“initiative,” which he roughly identifies with the absence of
“discipline,” defined, in turn, as the ability to follow orders.
(This is reminiscent of Beth Preston's views on
improvisation, which we discussed in Section 10.5.) Thus,
perhaps, intelligence and AI require the ability to break
rules! Computation, on the other hand, requires such
“discipline” (after all, as we have seen, computation
certainly includes the ability to follow orders or, at least, to
behave in accordance with orders).
Moreover, Kugel argues that Turing made the same point.
But did he? Kugel quotes the following sentence:



Intelligent behaviour presumably consists in a departure

from the completely disciplined behaviour involved in
computation, but a rather slight one, which does not give
rise to random behaviour, or to pointless repetitive loops.
(Turing, 1950, p. 459, my italics)

However, the larger context of this passage makes it clear
that Turing is thinking of a learning machine. So the “slight
departure” he refers to is not so much a lack of discipline as
it is the Universal Turing Machine's ability to change its
behavior: i.e. to change the software that it is running. It
can't change its hardware (i.e. its fetch‐execute cycle). But
because the program a Universal Turing Machine is
executing is inscribed on the same tape it can print on, the
Universal Turing Machine can change that program! There
is no difference between a program stored on the tape and
the data also stored on the tape. (There is a difference, of
course, between a hardwired program and data.)
This is not to say that computing is not enough for
intelligence. Turing (1947) claimed that infallible entities
could not be intelligent but that fallibility allows for
intelligence:

… fair play must be given to the machine. Instead of it
sometimes giving no answer we could arrange that it
gives occasional wrong answers. But the human
mathematician would likewise make blunders when trying
out new techniques. It is easy for us to regard these
blunders as not counting and give him another chance,
but the machine would probably be allowed no mercy. In
other words then, if a machine is expected to be infallible,

it cannot also be intelligent. There are several
mathematical theorems which say almost exactly that.
(Turing, 1947, p. 394, my italics)

A few years later, Turing said something similar:



[O]ne can show that however the machine [i.e. a
computer] is constructed there are bound to be cases
where the machine fails to give an answer [to a
mathematical question], but a mathematician would be
able to. On the other hand, the machine has certain
advantages over the mathematician. Whatever it does can
be relied upon, assuming no mechanical ‘breakdown,’
whereas the mathematician makes a certain proportion of
mistakes. I believe that this danger of the mathematician
making mistakes is an unavoidable corollary of his [sic]
power of sometimes hitting upon an entirely new method.
(Turing, 1951b, p. 256)



BoxII

Digression: It's not obvious what Turing was alluding to
when he said, “there are bound to be cases where the
machine fails to give an answer, but a mathematician
would be able to.” One possibility is that he's referring to
Gödel's Incompleteness Theorem (see Section 6.5,
footnote 14). If a Turing Machine is programmed to
prove theorems in Peano arithmetic, then, by Gödel's
theorem, there will be a true statement of arithmetic that
it cannot prove to be a theorem – i.e. to which it “fails to
give an answer” in one sense. A human mathematician,
however, could show by other means (but not prove as a
theorem!) that the undecidable statement was true – i.e.
the human “would be able to” give an answer to the
mathematical question, in a different sense. That is,
there are two ways to “give an answer”: an answer can
be given by “syntactically proving a theorem” or by
“semantically showing a statement to be true.” For more
on syntax vs. semantics, see Section 18.8.3. For more on
the mathematical abilities of humans vs. machines, see
the Online Resources.

This gives support to Kugel's claims about fallibility. Such
trade‐offs are common: for example, as Gödel showed,
certain formal arithmetic systems can be either consistent
(infallible?) or complete (truthful?), but not both. An
analogy is this: in the early days of cable TV (the late
1970s), there were typically two sources of information
about what shows were on: TV Guide magazine and the
local newspaper. The former was “consistent” or “infallible”
in the sense that everything it said was on TV was, indeed,
on TV; but it was incomplete, because it did not list any
cable TV shows. The local newspaper, on the other hand,

https://cse.buffalo.edu/~rapaport/OR/A0fr11.html#11.10.2


was “complete” in the sense that it included all broadcast as
well as all cable TV shows, but it was “inconsistent” or
“fallible” because it also erroneously included shows that
were not on TV or cable (but there was no way of knowing
which was which except by being disappointed when an
advertised show was not actually on).
But the context of Turing's essays strongly suggests that
what Turing had in mind was the ability of both human
mathematicians and computers to learn from their mistakes,
so to speak, and to develop new methods for solving
problems – i.e. to change their “software.” Turing (1947,
p. 394) observes that this might come about by “allow[ing
the computer] to have contact with human beings in order
that it may adapt itself to their standards,” perhaps
achieving such interaction through playing chess with
humans.
In a later passage, Turing suggests “one feature that …
should be incorporated in the machines, and that is a
‘random element’ ” (p. 259). This turns the computer into a
kind of interactive ‐machine that “would result in the
behaviour of the machine not being by any means
completely determined by the experiences to which it was
subjected” (p. 259), suggesting that Turing realized it would
make it a kind of hypercomputer but, presumably, one that
would be only (small) extension of a Turing Machine.



BoxII

Question for the Reader: Wouldn't the “random
element” be one of “the experiences to which it was
subjected”? If so, wouldn't the machine's behavior be
completely determined by its experiences, even though
the experiences would not be predictable and hence not
simulatable by an ordinary Turing Machine?

Kugel next argues that Turing computation does not suffice
for intelligence, on the grounds that if it did, such an AI
agent would not be able to survive! Suppose (by way of
reductio) that Turing computation did suffice for
intelligence. And suppose a mind is a Universal Turing
Machine with “instincts” (i.e. with some built‐in programs)
and is capable of learning (i.e. capable of computing new
programs). To learn (i.e. to compute a new program), it
could either compute a total computable program (i.e. one
defined on all inputs) or compute a partial computable
program (i.e. one that is undefined on some inputs).
Next, Kugel defines a total machine to be one that computes
only total computable functions and a universal machine to
be one that computes all total computable functions and,
presumably, all partial computable functions. Is a Universal
Turing Machine “total” or “universal” in Kugel's sense?
According to Kugel, it can't be both: the set of total
computable functions is enumerable ( ). Let  be a
program that computes , and let  be a program
(machine?) that runs each . Next, let  compute .
Then  is a total computable function, but it is not among
the , and hence it is not computed by . That is, if 
computes only total functions, then it can't compute all of
them (Kugel, 2002, p. 577, note 6).



According to Kugel, a Universal Turing Machine is a
“universal” machine (so it also computes partial functions).
If the mind is a Universal Turing Machine, then there are
partial functions whose values it can't compute for some
inputs. And this, says Kugel would be detrimental to
survival. If the mind were total, then there would be
functions that it couldn't compute at all (namely, partial
ones). This would be equally detrimental.
But, says Kugel, there is a third option: let the mind be a
Universal Turing Machine with “pre‐computed” or “default”
values for those undefined inputs. Such a machine is not a
Turing Machine; it is a trial‐and‐error machine, because it
relies on intermediate outputs when it can't wait for a final
result. That is, it “satisfices,” because its “rationality” is
“bounded,” as Simon might have put it. In other words,
hypercomputation in the form of trial‐and‐error
computation, according to Kugel, is necessary for
cognition.16

11.10.3 Inductive Inference

Is there a specific aspect of cognition that is not Turing
computable but that is trial‐and‐error computable?
Arguably, yes: language learning.
Language learning is an example of learning a function from
its values. Such learning is called “computational learning
theory” or “inductive inference.” Given the initial outputs of
a function  –  – try to infer (or guess, or
compute, or “compute”) what function  is. This is an
abstract way of describing the problem that a child faces
when learning its native language:  is the parts of the
language that the child has heard up to time , and  is the
grammar of the language.



Is learning a language computable (or hypercomputable)?
Trial‐and‐error machines are appropriate to model this.
E. Mark Gold investigated the conditions under which a
class of languages could be said to be “learnable.” Gold,
1965 presents the mathematics behind trial‐and‐error
machines:

A class of problems is called decidable if there is an
algorithm which will give the answer to any problem of
the class after a finite length of time. The purpose of this
paper is to discuss the classes of problems that can be
solved by infinitely long decision procedures in the
following sense: An algorithm is given which, for any
problem of the class, generates an infinitely long
sequence of guesses. The problem will be said to be
solved in the limit if, after some finite point in the
sequence, all the guesses are correct and the same …
(From the abstract, my italics.)17



11.11 Summary

There are many kinds of sub‐Turing, or “hypo‐,”
computation. So, if there is any serious super‐Turing, or
“hyper‐,” computation, that would put classical, Turing
computation somewhere in the middle. And no one
disagrees that it holds a central place, given the
equivalence of Turing Machines to recursive functions to
lambda calculation to Post‐production systems, etc., and
also given its modeling of human computing and its relation
to Hilbert's Entscheidungsproblem.
Hypercomputation seems to come in two “flavors”: what I'll
call “weird” hypercomputation and what I'll call “plausible”
hypercomputation (to use “neutral” terms!). In the former
category, I'll put “medically impossible” Zeus machines,
relativistic machines that can only exist near black holes,
etc. In the latter category, I'll put trial‐and‐error machines,
interactive machines, and ‐machines; ‐machines are
clearly a plausible extension of Turing Machines, as even
Turing knew.
Only the “plausible” kinds of hypercomputation seem
useful. But both interaction machines and trial‐and‐error
machines seem to be only minor extensions of the Turing
analysis of computation, and their behavior is well
understood and modelable by Turing's ‐machines
together with the notion of relative computability. Indeed,
when you think of it (and as Feferman (1992, pp. 339–340)
pointed out), all notions of computability are relative to
(1) what counts as a primitive operation or basic function
and (2) what count as the ways to combine them to create
other operations and functions.
Two things make Turing Machines (and their logical
equivalents) central. The first is their power – they are



provably more powerful than “hypocomputational” models.
The second is the fact that the different models of
(classical) computation are logically equivalent to each
other. Except for the physically “weird” hypercomputers,
all other “plausible” models of hypercomputation not only
can be seen as minimal (and natural) generalizations of the
Turing Machine model but also are all logically equivalent
to Turing's ‐machines. And the main “problem” with those
is Davis's “non‐computable in”–“non‐computable out”
principle.
We might even suggest a generalized Computability Thesis:

A function is “computable” iff it is computable by an ‐
machine.

Recall that Turing explicitly required that the oracle
“cannot” be a Turing Machine. But if we relax this
constraint, then when the oracle is Turing computable, this
generalized thesis is just the classical one. When the oracle
is not Turing computable, we can have non–Turing‐
computable – i.e. “hypercomputable” – output, but only at
the cost of non‐computable input. However, we can analyze
different degrees of uncomputability, as Davis, Feferman,
Soare, and many others have noted.

O‐machines show us that not all that is studied in
computation theory is Turing‐equivalent. (Aizawa, 2010,
p. 230)

But note the subtle difference between saying this and
saying something like “all computation is equivalent to
Turing computation” (which is a version of the
Computability Thesis).
Fortnow (2010) nicely refutes three of the major arguments
in favor of hypercomputation (including analog
computation). Of most interest to us is this passage,



inspired by Turing's comment that “The real question at
issue is ‘What are the possible processes which can be
carried out in computing a number?’ ” (Turing, 1936,
Section 9, p. 249; see Section 8.7.2):

Computation is about process, about the transitions
made from one state of the machine to another.
Computation is not about the input and the output,
point A and point B, but the journey. Turing uses the
computable numbers as a way to analyze the power and
limitations of computation but they do not reflect
computation itself. You can feed a Turing machine an
infinite digits [sic] of a real number …, have computers
interact with each other …, or have a computer that
perform an infinite series of tasks … but in all these

cases the process remains the same, each step following

Turing's model. … So yes Virginia, the Earth is round,
man has walked on the moon, Elvis is dead and
everything computable is computable by a Turing

machine. (Fortnow, 2010, pp. 3, 5, my italics)
Robert Soare makes a similar observation:



Indeed, we claim that the common conception of
mechanical procedure and algorithm envisioned over this
period is exactly what Turing's computor [i.e. what we
called the “clerk” in Section 8.7.3, footnote 6] captures.
This may be viewed as roughly analogous to Euclidean
geometry or Newtonian physics capturing a large part of
everyday geometry or physics, but not necessarily all
conceivable parts. Here, Turing has captured the notion
of a function computable by a mechanical procedure, and
as yet there is no evidence for any kind of computability

which is not included under this concept. If it existed,

such evidence would not affect Turing's thesis about

mechanical computability any more than hyperbolic

geometry or Einsteinian physics refutes the laws of

Euclidean geometry or Newtonian physics. Each simply

describes a different part of the universe. (Soare, 1999,
pp. 9–10, my italics)

Perhaps the issue is not so much whether it is possible to
compute the uncomputable (by extending or weakening the
notion of Turing computation) but whether it is practical to
do so. Davis (2006a, p. 126) finds this to be ironic:

… computer scientists have had to struggle with the all‐
too‐evident fact that from a practical point of view,
Turing computability does not suffice. … With these [NP‐
complete] problems Turing computability doesn't help
because, in each case, the number of steps required by
the best algorithms available grows exponentially with
the length of the input, making their use in practice
problematical. How strange that despite this clear
evidence that computability alone does not suffice for
practical purposes, a movement has developed under the
banner of “hypercomputation” proposing the practicality
of computing the non‐computable.



11.12 Questions for the Reader

1. “There are things … bees can do that humans cannot
and vice versa” (Sloman, 2002, Section 3.3). Does that
mean bees can do non‐computable tasks? Or does ‘do’
mean something different from ‘compute,’ such as
physical performance? If “doing” is different from
“computing,” how does that affect Cleland's arguments
(see Section 10.4) against the Computability Thesis?

2. If you don't allow physically impossible computations,
black‐hole computations, etc., can interactive
computation make the Halting Problem “computable”?
Put another way, the Halting Problem is not classically
computable; is it interactively “computable”?

3. The ‐body problem is the problem of how to compute
the behavior of  objects in space. For example, the 2‐
body problem concerns the relation of the Earth to the
Sun (or to the Moon). The 3‐body problem concerns the
relation of Earth, Sun, and Moon. And so on. Brian
Hayes (2015, esp. pp. 92–93) has suggested that one
technique for simulating solutions to the ‐body
problem is to use an ordinary computer linked to a
graphics processing unit that is far more powerful than
the ordinary computer. Is such a combination like a
Turing Machine with an oracle?

4. As we will see in Section 18.3, the Turing Test is
interactive. If interaction is not modeled by Turing
Machines, how does that affect Turing's arguments
about “computing machinery and intelligence”? (If you
are not yet familiar with the Turing Test, you might
want to come back to this question after reading
Section 18.3.)



5. There is a large philosophical literature on “extended
cognition” – the view that the mind can extend beyond
the boundaries of the skin to include aspects of the
external world (Clark and Chalmers, 1998; Rowlands et
al., 2020). And in Chapter 16, we will discuss a similar
topic: “wide” computing. How might these issues relate
to interactive computing?

6. You will probably need to study the mathematics of ‐
machines, Turing reducibility, etc., in order to give a
proper answer to this question and the next, but they
are worth thinking about. As I have presented it,
oracles seem to play several possibly distinct roles.
They can be considered subroutine calls. They can be
considered input sources. And they can be considered
“miraculous sources of unknowable facts” (at least,
unknowable in advance).
Do oracles really play all these roles? Are these roles
really all distinct? And what does this conflation of
roles say about my proposed “generalized
Computability Thesis” in Section 11.11?18

7. As presented in Soare, 2016, p. 52, an oracle machine
consists, in part, of a Turing Machine together with

an extra ‘read only’ tape, called the oracle tape, upon
which is written the characteristic function of some
set , called oracle, whose symbols … cannot be

printed over ….
Evaluate the following apparent paradox:
a. Interactive computing involves inputting

information from, and outputting information to,
the external world.

b. An oracle machine models interactive computing.
c. It is the oracle that models the external world.



d. Therefore, the oracle machine must be able to
modify the oracle.

e. But by definition, the oracle is not modifiable by the
Turing machine (because it is read‐only).



Notes

1 See the Online Resources for an application of this
idea to origami.

2 Sub‐Turing systems are sometimes referred to as
“hypocomputation” (from the Greek root ‘hypo,’
meaning “under”; ‘hyper’ means “over”). See the
Online Resources for further reading.

3 See the Online Resources for further reading on
hypercomputation .

4 See the Online Resources for further reading on Zeus
machines, quantum hypercomputation, and
relativistic computation.

5 See the Online Resources for further reading on such
systems.

6 On the mind‐body problem of philosophy, see
Sections 2.7 and 12.6.

7 See the Online Resources for further reading on
“isolation.”

8 Stuart C. Shapiro, personal communication.

9 In our statement of the S‐m‐n Theorem, the variable 
 is also being input from the external world, but it

is only there for technical reasons required for the
proof of the theorem in the most general case. In
practice,  can also be pre‐stored on the tape or
even omitted.

10 See the Online Resources for further reading on the
S-m-n Theorem.
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11 See the Online Resources for further reading on
interactive computing .

12 Here is Turing's explanation of some of the
technical terms in this passage: “Every number‐
theoretic theorem is equivalent to a statement of the
form ‘A(n) is convertible to 2 for every W.F.F. n
representing a positive integer,’ A being a W.F.F.
determined by the theorem; the property of A here
asserted will be described briefly as ‘A is dual’ ”
(p. 170). “Convertibility” is an equivalence relation in
Church's lambda calculus.

13 Knuth's expression for a similar situation is “all hell
might break loose” (Knuth, 2001, pp. 189–190).

14 See the Online Resources for further reading on
oracle machines .

15 See the Online Resources for further reading on
trial-and-error computation.

16 See the Online Resources for further reading on
Kugel's views.

17 See the Online Resources for further reading on
inductive inference .

18 Thanks to Robin K. Hill (personal correspondence)
for raising this issue and for the quoted phrase.
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Part IV 

Computer Programs

In Part II, we looked at the nature of computer science,
computers, and algorithms, and in Part III, we looked a bit
further at algorithms, focusing on challenges to the
Computability Thesis.
In Part IV, we will look at computer programs – linguistic
implementations of algorithms.

Chapter 12 will look at the relations between
algorithms and programs and between software and
hardware.
Chapter 13 investigates the nature of the
implementation relation.
In line with the possibility that CS is a science,
Chapter 14 will ask whether computer programs can be
considered scientific theories.
And in line with the possibility that CS is a
mathematical science, Chapter 15 will look at whether
computer programs are mathematical objects that can
be logically proved to be “correct.”
Finally, in Chapter 16, we will consider the important
topic of the relation between computer programs and
the real world that they operate and act in, along with
some discussion of the nature of syntax (symbol
manipulation) and semantics (meaning).



12 

Software and Hardware

program: /n./ 1. A magic spell cast over a computer
allowing it to turn one's input into error messages. 2. An
exercise in experimental epistemology. 3. A form of art,
ostensibly intended for the instruction of computers,
which is nevertheless almost inevitably a failure if other
programmers can't understand it.
—The Jargon Lexicon,
http://www.jargon.net/jargonfile/p/program.html
A program is fundamentally a transformation of one
computer into another ….
—Joseph Weizenbaum (1972, p. 610)

http://www.jargon.net/jargonfile/p/program.html


12.1 The Nature of Computer

Programs

We have explored what an algorithm is; we are now going
to look at computer programs. In the course of the next few
chapters, we will consider these questions:

 What is a computer program?
 Do computer programs “implement” algorithms?
 What is the nature of implementation?
 What are “software” and “hardware,” and how are

they related?
 Can (some) computer programs be considered to be

scientific theories?
 Are programs mathematical entities susceptible to

mathematical proofs?
Typically, one tends to consider a computer program as an
expression, in some language, of an algorithm. The
language is typically a programming language such as Java,
Lisp, or Fortran. And a programming language is typically
required to be “Turing complete,” i.e. to be able to express
the primitive operations of a Turing Machine, together with
all three of the Böhm‐Jacopini “grammar” rules: sequence,
selection, and while‐loops, as discussed in §7.4.3. So,
“computer languages,” such as HTML, that lack one or
more of these “control structures” are not “programming

languages” in this sense.
An algorithm is something more “abstract,” whereas a
program that expresses it (or “implements” it in language)
is something more “concrete.” A program is more concrete
than an algorithm in two ways: first, a program is a



physical object, either written on paper or “hardwired” in a
computer. Perhaps the relationship between an algorithm
and a program is something like the relationship between a
number and a numeral: just as the number “two” can be
expressed with many different numerals (such as ‘2’ or ‘II’)
and many different words (such as ‘two,’ ‘deux,’ or ‘zwei’),
so a single algorithm, such as the algorithm for binary
search, can be expressed in many different programming
languages.
In fact, we can't really talk about algorithms (or numbers)
without using some kind of language, so maybe there really
aren't any of these abstract things called ‘algorithms’ (or
numbers!), just words for them. This is an ontological view
in philosophy called ‘nominalism.’ “Platonists” believe that
mathematics deals with numbers – abstract entities that
exist in a “Platonic” realm that is more perfect than, and
independent of, the real world (Linnebo, 2018).
“Nominalists,” on the other hand, deny the existence of
abstract numbers, and hold that mathematics deals only
with numerals – real marks on paper, for instance (Bueno,
2020). Maybe only programs exist, some of which might be
written in programming languages that can be directly
used to cause a computer to execute the program (or
execute the algorithm?), and some of which might be
written in a natural language, such as English. (The
nominalist can still talk about “algorithms,” understanding
them as computer programs. However, ask yourself
whether a nominalist can still talk about numbers,
understood as numerals: after all, there are infinitely many
numbers, but only finitely many numerals.)
The second way a program is more concrete than an
algorithm is that a program is more detailed. Where an
algorithm might simply specify how to perform a binary
search, a binary‐search program for a particular computer
would have to spell out the details of how that search



would be physically implemented in that computer. (We'll
have more to say about implementation in Chapter 13.)
In the early days of computers, programs were not typically
expressed in programming languages; rather they were
“hardwired” into the computer or certain physical switches
were set in certain ways. These programs were physical
parts of the computer's hardware, not texts. The program
could be changed by re‐wiring the computer (perhaps by
re‐setting the switches). Yet computer programs are
typically considered “software,” not “hardware,” so was
such wiring (or switch‐setting) a computer program?
And what about a program written on a piece of paper?
Does it differ from the very same program written on a
computer file? The former just sits there doing nothing. So
does the latter, but the latter can be used as input to other
programs on the computer that will use the information in
the program to “set the switches” so that the computer can
execute the program. But is the medium on which the
program is written the only difference between these two
programs?1



12.2 Programs and Algorithms

In §7.2, we saw that a function defined extensionally as a
set of input‐output pairs satisfying the same‐input/same‐
output constraint could be “implemented” – made more
precise or more explicit – by many different functions
defined intensionally by a formula, each of which is a
description of the relationship between the input and the
output. Thus, for example, the function 

 can be implemented by the
formula  or by the formula , etc.

We also saw that a formula could be implemented by many
different algorithms, each of which spells out the
intermediate steps that compute the output according to
the formula. Thus, for example, the formula  could be
computed by either of the following algorithms:

And the formula  could be computed by either of these
algorithms:



And so on. Thus, our original function  could be computed
by any one of those four algorithms, among infinitely many
others.
One way to consider the relationship between algorithms
and programs is to continue this chain of implementations:
an algorithm can be implemented by a computer program
written in a high‐level computer programming language.
That program can then be implemented in assembly
language (which is computer‐specific and provides more
detail). The assembly‐language program, in turn, can be
implemented in machine language. And finally, the
machine‐language program can be implemented in
hardware by “hardwiring” a computer – or, in more modern
terminology, by using a chip designed to perform that
function. Arguably, the static, hardwired program is
implemented by the dynamic process that is created when
the computer executes “the” program.2

Both algorithms and programs are normally considered
“software,” and physical implementations of them in a
computer are normally considered to be “hardware.” But
what exactly is software, and how can it be distinguished
from hardware? Many authors use ‘program’ and ‘software’
as synonyms. But if we view a program as an
implementation of an algorithm (in some medium such as
language or the switch settings of a computer), and if we
view software as contrasted with hardware, it's not obvious
that programs and software are exactly the same thing.
Programs can be expressed on paper in a programming
language, which seems like software. But they can also be
hardwired in a physical computer, which seems like
hardware. And ‘software’ is not usually defined in terms of
algorithms.



12.3 Software, Programs, and

Hardware

12.3.1 Etymology of ‘Software’

The earliest use of the word ‘software’ in its modern sense
has been traced back to the mathematician John W. Tukey
(1958, p. 2):

Today the “software” comprising the carefully planned
interpretive routines, compilers, and other aspects of
automative [sic] programming are at least as important
to the modern electronic calculator as its “hardware” of
tubes, transistors, wires, tapes and the like.

But the word is older than Tukey's use of it: The earliest
cited use (in 1782, according to the OED)3 is for textiles
and fabrics – literally “soft wares.” A later use, dating to
1850, equated it with “vegetable and animal matters –
everything that will decompose” in the realm of “rubbish‐
tip pickers” (F.R. Shapiro, 2000, p. 69).4 And two years
before Tukey's paper, Richard B. Carhart (1956, p. 149)
equated software with the people who operate a computer
system, and the computer system was identified as the
hardware (programs or other modern notions of software
were not mentioned). (On the history of software, see
Mahoney, 2011, Ch. 13.)

12.3.2 Software and Music

Is Bach's written score to the Art of the Fugue, perhaps
with a human interpreter thrown in, the software of an
organ?
—Peter Suber (1988, p. 90)



Tukey's use of the term strongly suggests that the things
that count as software are more abstract than the things
that count as hardware. Amnon H. Eden (2005, Slide 36)
considers software “as a cognitive artefact: software is
conceived and designed at a level of abstraction higher
than the programming language.” Using a concept very
similar to Eden's, Nurbay Irmak (2012) argues that
software is an “abstract artifact,” likening it to another
abstract or cognitive artifact: musical works (§2, pp. 65ff).
There are close similarities. For instance, a Turing Machine
(or any hardwired computer that can perform only one
task) is like a music box that can play only one tune,
whereas a player piano is like a Universal Turing Machine,
capable of playing any tune encoded on its “piano roll.”
One difference between software and music that Irmak
points out concerns “a change or a revision on a musical
work once composed” (p. 67). This raises some interesting
questions: recall our brief discussion of the relationships
between software and improvisational music in §10.5. How
should musical adaptations or jazzy versions of a piece of
music be characterized? What about different players'
interpretations? One pianist's version of, say, Bach's
Goldberg Variations will sound very different from
another's, yet, presumably, they are using the same
“software.” Are there analogies to these with respect to
computer software? 5

12.3.3 The Dual Nature of Programs

Our first main issue concerns the dual nature of programs:
they can be considered both text and machine, both
software and hardware. To clarify this dual nature,
consider this problem:



… Bruce Schneier authored a book entitled Applied

Cryptography, which discusses many commonly used
ciphers and included source code for a number of
algorithms. The State Department decided that the book
was freely exportable because it had been openly
published but refused permission for export of a floppy
disk containing the same source code printed in the
book. The book's appendices on disk are apparently
munitions legally indistinguishable from a cluster bomb
or laser‐guided missile. … [The] disk cannot legally leave
the country, even though the original book has long since
passed overseas and all the code in it is available on the
Internet. (Wallich, 1997, p. 42)6

How can a program written on paper be considered a
different thing from the very same program “written” on a
floppy disk? What if the paper that the program was
written on was Hayes's “magic paper” (§9.5)? But isn't that
similar to what a floppy disk is, at least, when it is being
“read” by a computer?
Is the machine‐table “program” of a Turing Machine
software, or is it hardware? It certainly seems to be
“hardwired”; it is the Turing Machine, not a separable part
of one. If you think that it is a kind of category mistake to
talk about whether an abstract, mathematical entity such
as a Turing Machine can have software or hardware, then
consider this: suppose you have a physical implementation
of a Turing Machine: a hardwired, single‐purpose, physical
computer that (let's say) does nothing but accept two
integers as input and produces their sum as output. Is the
program that runs this adder software or hardware?
Because the machine table of such a (physical
implementation of a) Turing Machine is not written down
anywhere but is part of the (physical) mechanism of the



machine, it certainly seems to be more like hardware than
software.
Is the machine table of a Universal Turing Machine (i.e. its
fetch‐execute cycle) software or hardware? What about the
program that is stored on its tape? By the logic of the
previous paragraph, its fetch‐execute machine table would
be hardware, and its stored program would be software.
Again, if you prefer to limit the discussion to physical
computers, then consider a smartphone, one of whose apps
is a calculator that can add two integers. Not only can the
calculator do other mathematical operations, the
smartphone itself can do many other things (play music,
take pictures, make phone calls, etc.), and it can download
new apps that will allow it to do many other things. So it
can be considered a physical implementation of a Universal
Turing Machine. By our previous reasoning, the program
that is the smartphone's adder (calculator) is software, and
the program that allows the smartphone to do all of these
things is hardware.

12.3.4 Copyright vs. Patent

Computers don't work the way some legal documents
and court precedents say they do. —“PolR”, 2009

Another aspect of the dual nature of programs is this:
considered software, a program is (arguably)
copyrightable. Considered as hardware, a program is
(arguably) patentable. Yet nothing can be both copyrighted
and patented!
According to a brochure published by the US Copyright
Office (my italics):



Copyright is a form of protection provided by the laws of
the United States[7] to the authors of “original works of
authorship” that are fixed in a tangible form of
expression. An original work of authorship is a work that
is independently created by a human author and
possesses at least some minimal degree of creativity. A
work is “fixed” when it is captured … in a sufficiently
permanent medium such that the work can be perceived,
reproduced, or communicated for more than a short
time. … Examples of copyrightable works include
[l]iterary works … computer programs … can be

registered as “literary works”; … Copyright does not
protect [i]deas, procedures, methods, systems,
processes, concepts, principles, or discoveries …
(“Copyright Basics,” September 2017,
https://www.copyright.gov/circs/circ01.pdf)

If a computer program is an implementation of an
algorithm in the medium of text, then, as a text, it is a
“literary work,” hence copyrightable. Why “literary”? After
all, they don't seem to read like novels! But all that
‘literary’ means in this context is that they can be written
and read. Presumably, however, the abstract algorithm is
not copyrightable because it is an “idea,” “procedure,” or
“method.”
And here is a definition of ‘patent’ from the US Patent and
Trademark Office's website (https://www.uspto.gov/):

https://www.copyright.gov/circs/circ01.pdf
https://www.uspto.gov/


A patent for an invention is the grant of a property right
to the inventor … “… to exclude others from making,
using, offering for sale, or selling” the invention in the
United States or “importing” the invention into the
United States. … Utility patents may be granted to
anyone who invents or discovers any new and useful
process, machine, article of manufacture, or composition
of matter, or any new and useful improvement thereof; …
(https://www.uspto.gov/patents/basics/patent‐process‐
overview#step3)8

On the website for utility patents, we find this:

Specification

The specification is a written description of the invention
…. For inventions involving computer programming,
computer program listings may be submitted as part of
the specification ….
(“Nonprovisional (Utility) Patent Application Filing
Guide,” https://www.uspto.gov/patents-getting-
started/patent-basics/types-patent-
applications/nonprovisional-utility-patent)

This suggests that what is patentable is the “process” or
“machine” specified by a computer program. But
copyrightable programs can be “performed,” i.e. executed,
just like lectures, plays, movies, or music. The relation of a
program to a process (i.e. a program being executed; see
§3.11) is similar to the relation of a script to a performance
of a play or a showing of a movie, of a musical score to a
musical performance, or (perhaps) of a set of slides to a
delivery of a lecture. Yet processes are not copyrightable;
they are patentable.
If software, generally speaking, is copyrightable (but not
patentable), and if hardware, generally speaking, is

https://www.uspto.gov/patents/basics/patent%E2%80%90process%E2%80%90overview#step3
https://www.uspto.gov/patents-getting-started/patent-basics/types-patent-applications/nonprovisional-utility-patent


patentable (but not copyrightable), what about a virtual
machine, which is a software implementation of a piece of
hardware? Pamela Samuelson, Randall Davis, Mitchell D.
Kapor, and J.J. Reichman (1994, p. 2324) argue “that
programs should be viewed as virtual machines.”9

They argue against the appropriateness of copyright law
(Samuelson et al., 1994, p. 2350):

1. “computer programs are machines whose medium of
construction is text”

2. “Copyright law does not protect the behavior of
physical machines (nor their internal construction)”

3.  “program behavior … is unprotectable by copyright
law on account of its functionality” (p. 2351).

But far from arguing that programs, because not
copyrightable, should be patentable, they also think that
patentability is inappropriate:

The predominantly functional nature of program
behavior and other industrial design aspects of programs
precludes copyright protection, while the incremental
nature of innovation in software largely precludes patent
protection.
(Samuelson et al., 1994, p. 2333)

They offer two arguments against patentability. Here is the
first (p. 2345):

1. Patents are given for “methods of achieving results,”
2. Patents are not given “for results themselves.”
3. “It is … possible to produce functionally

indistinguishable program behaviors through use of
more than one method.”



4.  A patent could be given for one method of producing
a result, but that would not “prevent the use of another
method.”

5. If it is the result, not the method, that is the “principal
source of value” of a program, then the patent on the
one method would not protect the result produced by
the other method

And here is their second argument against patentability
(p. 2346):

1. “Patent law requires an inventive advance over the
prior art”

2. But the innovations in “functional program behavior,
user interfaces, and the industrial design of programs
… are typically of an incremental sort.”

3.  Programs do not fall under patent law.
A similar analysis to the effect that neither copyright nor
patent seems appropriate for computer programs was
offered by Allen Newell. In a paper written for a law
journal, Newell (1986) argues that the “conceptual models”
of algorithms and their uses are “broken,” i.e. that they are
“inadequate” for discussions involving patents (and
copyrights). Newell's bottom line is that there are two
intellectual tasks: a computer‐scientific and philosophical

task is to devise good models (“ontologies”) of algorithms
and other computer‐scientific items. A legal task is to
devise good legal structures to protect these computational
items:



I think fixing the models is an important intellectual task.
It will be difficult. The concepts that are being jumbled
together – methods, processes, mental steps, abstraction,
algorithms, procedures, determinism – ramify throughout
the social and economic fabric …. The task is to get …
new models. There is a fertile field to be plowed here, to
understand what models might work for the law. It is a
job for lawyers and, importantly, theoretical computer
scientists. It could also use some philosophers of

computation, if we could ever grow some. (Newell,
1986, p. 1035, my boldface)

Readers of this book, take note!10

In the next three sections, we will look at what three
philosophers have had to say about software: James H.
Moor (1978) argues that software is changeable. Peter
Suber (1988) argues that it is pure syntax. And Timothy
Colburn (1999, 2000, Ch. 12) argues that it is a concrete

abstraction. Keep in mind that they may be assuming that
software and computer programs are the same things.



12.4 Moor: Software Is Changeable

12.4.1 Levels of Understanding

For very many phenomena, a single entity can be viewed
from multiple perspectives (sometimes called “levels” or
“stances”). Dennett (1971) suggested that a chess‐playing
computer or its computer program can be understood in
three different ways:
First, from the physical stance, its behavior can be
predicted or explained on the basis of its physical
construction together with physical laws. Thus, we might
say that it made (or failed to make) a certain move because
logic gates #5, #7, and #8 were open or because transistor
#41 was defective.
Second, from the design stance, its behavior can be
predicted or explained based on information or
assumptions about how it was designed or how it is
expected to behave, assuming that it was designed to
behave that way and isn't malfunctioning. Thus, we might
say that it made (or failed to make) a certain move because
line #73 of its program has an if‐then‐else statement with
an infinite loop.
Third, from the intentional stance, its behavior can be
predicted or explained based on the language of “folk
psychology”: ordinary people's informal (and not
necessarily scientific) theories of why people behave the
way they do, expressed in the language of beliefs, desires,
and intentions. For instance, I might explain your behavior
by saying that (a) you desired a piece of chocolate, (b) you
believed that someone would give you chocolate if you
asked them for it, so (c) you formed the intention of asking
me for some chocolate. Similarly, we might say that the



chess‐playing computer made a certain move because (a) it
desired to put my king in check, (b) it believed that moving
its knight to a certain square would put my king in check,
and so (c) it formed the intention of moving its knight to
that position.
Each of these “stances” has different advantages for
dealing with the chess‐playing computer: if the computer is
physically broken, the physical stance can help us repair it.
If the computer is playing poorly, then the design stance
can help us debug its program. If I am playing chess
against the computer, then the intentional stance can help
me figure out a way to beat it.
According to Moor (1978, p. 213), both computers and
computer programs “can be understood on two levels”:
they can be understood as physical objects, subject to the
laws of physics, electronics, and so on. A computer disk
containing a program would be a clear example of this
level. But they can also be understood on a symbolic level:
a computer can be considered a calculating device, and a
computer program can be considered a set of instructions.
The text of the computer program that is engraved on the
disk would be a clear example of this level. Moor's two
levels – the physical and the symbolic – are close to
Dennett's physical and design “stances.”11

12.4.2 Programs Are Relative to

Computers

Moor offers a definition of ‘computer program’ that is
intended to be neutral with respect to the different stances
of the software‐hardware duality:



a computer program is a set of instructions which a
computer can follow (or at least there is an
acknowledged effective procedure for putting them into
a form which the computer can follow) to perform an
activity. (Moor, 1978, p. 214)

Let's make this a bit more explicit to highlight its principal
features:

Definition M1:

Let  be a computer.
Let  be a set of instructions.
Let  be an activity.
Then S is a computer program for C to do A 

1. there is an effective procedure for putting  in a
form …
2. … that  can “follow” …
3. … in order to perform .

In this definition, being a computer program is not simply a
property of some set of instructions. Rather, it is a ternary

relation among a set of instructions, a computer, and an
activity. In §7.3.3, we briefly looked at the role of an
algorithm's purpose, and we will examine it in more detail
beginning in §16.3. But here, I just want to focus on the
role of the computer, so we'll (temporarily) ignore clause 3
and take a computer program as a binary relation between
a set of instructions and a computer.
As a binary relation, a set of instructions that is a computer
program for one computer might not be a computer
program for a different computer, perhaps because the
second one lacks an effective procedure for knowing how to
“follow” it: one computer's program might be another's



noise. For instance, the Microsoft Word program that is
written for an iMac computer running MacOS X differs
from the Microsoft Word program that is written for a PC
running Windows, because the underlying computers use
different operating systems and different machine
languages. This would be so even if the “look and feel” of
the two programs (i.e. what the user sees on the screen
and how the user interacts with the program) were
identical.
But what are the “instructions,” and what does it mean to
“follow” them?

12.4.3 Instructions

Presumably, the instructions must be algorithmic, though
Moor does not explicitly say so. Is the set of instructions
physical, i.e. hardwired? Or are the instructions written in
some language? Could they be drawn, instead – perhaps as
a flowchart? Could they be spoken? Here, Moor's answer
seems to be that it doesn't matter, as long as there is a way
for the computer to “interpret” or “understand” the
instructions and thus carry them out. (In §12.5, we will see
that Suber makes a similar point.) Importantly, the “way”
that the computer “interprets” the instructions must itself
be a computable function (“an effective procedure for
putting them into a form which the computer can follow”).
Otherwise, it might require some kind of “built‐in,” non‐
computable method of “understanding” what it is doing.



BoxII

Terminological Digression: When I say that the
computer has to “interpret” the instructions, I simply
mean the computer has, somehow, to be able to convert
the symbols that are part of the program into actions
that it performs on its “switches.” This is different from
the distinction in CS between “interpreted” and
“compiled” programs. A “compiled” program is
translated into the computer's machine language all at
once, and then the computer executes the machine‐
language version of the program, in much the same way
that an entire book might be translated from one
language to another. By contrast, an “interpreted”
program is translated step by step into the computer's
machine language, and the computer executes each step
before translating the next one, in much the same way
that a UN “simultaneous translator” translates a speech
sentence by sentence while the speaker is giving it. In
both cases, the computer is “interpreting” –
understanding – the instructions in the sense in which I
used that word in the previous paragraph.

12.4.4 “Following Instructions.”

Moor says that computers “follow instructions.” And we
saw in §9.8 that Stuart C. Shapiro defined a computer as “a
general‐purpose procedure‐following machine” (Shapiro,
2001, p. 2, my italics). But does a computer “follow”
instructions? Or does it merely behave in accordance with

them?



It is common to differentiate between satisfying a rule
and following a rule (cf. Searle (1980); Wittgenstein
(1958, §§185–242)). To satisfy a rule is simply to behave
in such a way that fits the description of the rule –
merely to conform behaviour to the rule. It is in this
sense that the motion of the planets satisfy [sic] the rules
embodied by classical physics. On the other hand,
following a rule implies a causal link between the rule
and some behaviour, and moreover that the rule is an
intentional object. … [M]erely satisfying a rule is not
sufficient for following the rule. (Chow, 2015, p. 1000)

Compare the human use of natural language: when we
speak or write, do we “follow” the rules of grammar in the
sense of consulting them (even if unconsciously) before
generating our speech or writing? Or does it make more
sense to say that the rules of grammar merely describe our
linguistic behavior? We probably do both, though the latter
predominates:

We learn from psycholinguistics that … [understanding
language] involves subconscious, subpersonal,
automatic, extraordinarily fast processing [i.e. what we
referred to as “System 1” in §3.6.1], and that is mostly all

that it involves …. Where understanding is difficult – e.g.
with multiple center embedding [“A mouse that a cat
that a dog chased caught ate cheese”] – it may be helped
by “central processor,” relatively slow reasoning, leading
to a conscious judgment about … [an] utterance. But
such high‐level processes are a very small part of
language understanding. (Devitt and Porot, 2018, p. 9,
italics in original)12

Note, however, that a computer programmed to understand
and generate natural language might, in fact, speak or
write by explicitly following rules of grammar that are
encoded in its suite of natural‐language‐processing



programs (Stuart C. Shapiro 1989; Shapiro and Rapaport
1991, 1995; Jurafsky and Martin 2000).13 We have also
seen a similar question when we considered whether the
solar system “follows” Kepler's laws of planetary motion or
whether the planets' movements are merely best described

by Kepler's laws (§9.7.2).
Turing Machines – as models of hardwired, single‐purpose
computers – merely behave in accordance with their
machine table. They don't “consult” those “instructions”
and then “follow” them. On the other hand, Universal

Turing Machines – as models of programmable, general‐
purpose computers – can be said to “follow” instructions.
Behaving in accordance with their fetch‐execute machine
table, they do “consult” the instructions stored on their
tape, and follow them.

BoxII

Question for the Reader: Suppose that a Universal
Turing Machine (or your Mac or PC) is running a
program that adds two integers. What is it doing? Is it
adding two integers? Or is it carrying out a fetch‐
execute cycle? Or is it doing both? Or is it doing one by

doing the other? And what exactly does it mean to do
one thing “by” doing another?

Searle (1969, §2.5) identifies a related distinction
concerning the instructions or rules themselves: roughly,
constitutive rules determine or define the behavior of some
system, whereas regulative rules “regulate antecedently or
independently existing forms of behavior” (p. 33). For
example, the rules of grammar that linguists discover about
the natural languages that we speak are constitutive rules;
they are descriptive of the “innate” rules that we “execute”



or use unconsciously, such as “Declarative sentences of
English consist of a noun phrase followed by a verb
phrase.” The explicit rules of grammar that we have to
learn in school (or that “grammar Nazis” insist that we
should “follow”) are regulative rules; they recommend (or
insist upon) a way to do things – e.g. “Prepositions should
not be used to end sentences with.” In the theory of
computation, the program for a Turing Machine is a
constitutive rule. Because the program for a Universal

Turing Machine is its fetch‐execute cycle, that program is a
constitutive rule; but the program (the software) inscribed
on its tape that a Universal Turing Machine is “following” is
a regulative rule.14

12.4.5 Moor's Definitions of

‘Software’ and ‘Hardware.’

Next, Moor distinguishes between software and hardware.
The informal and traditional distinction is that a computer
program is “software” and a computer is “hardware.” But
this raises the problem of whether the “wiring” in a
hardwired computer is hardware (because it involves
physical wires) or software (because it is the computer's
program). And, of course, it gives rise to the problem
mentioned by Wallich, cited in §12.3.3. So, Moor suggests a
better set of definitions:

For a given person and computer system the software
will be those programs which can be run on the
computer system and which contain instructions the
person can change, and the hardware will be that part of
the computer system which is not software. (Moor, 1978,
p. 215)

Again, let's make this a bit more explicit to highlight its
features:



Definition M2:

Let  be a computer.
Let  be a person (perhaps 's programmer).
Let  be some entity (possibly a part of ).
Then S is software for  and  

1.  is a computer program for  (to perform some
activity ) and
2.  is changeable by .

and H is hardware for C and P 
1.  is (a physical) part of , and
2.  is not software for  and .

That is, a physical part of a computer will be hardware for a
person and that computer if either it is not a computer
program for that computer or it is not changeable by that
person.
Note that being software is a ternary relation among a
computer program, a person, and a computer.15 It is not a
simple property such that something either is, or else it
isn't, software. In other words, software is in the eye of the
beholder: one person's or one computer's software might
be another's hardware!
These definitions seem to allow for the following
possibilities: first, consider a computer program  written
in Java that runs on my computer. Even if  is changeable
by the programmer who wrote it or the lab technician who
operates the computer – and therefore software for that
person – it will be hardware for me if I don't know Java or
don't have access to the program so that I could change it.



Second, if a programmer can “rewire” a computer (or
directly set its “switches”), then that computer's program is
software, even if it is a physical part of the computer:
Hardware can be software (and vice versa)!
Later writers have made similar observations: Frank Vahid
(2003, p. 27, original italics, my boldface) notes that, in the
early days of computing, “the frequently changing

programs, or software, became distinguished from the
unchanging hardware on which they ran.” Vahid suggests
that “the processors, memories, and buses – what we
previously considered a system's unchangeable hardware –
can actually be quite soft” (p. 32). What he seems to mean
by this is that embedded systems – “hidden computing
systems [that] drive the electronic products around us”
(p. 27) – can be swapped for others in the larger systems
that they are components of, thus becoming “changeable”
in much the way that software is normally considered. But
this seems to just be the same as the old rewiring of the
early days of programming (except that, instead of
changing the wires or switches, it is entire, but miniature,
computers that are changed).
On Moor's definition, the machine table of a Turing
Machine – even though we sometimes think of it as the
Turing Machine's “program” – is part of its hardware,
because it is not changeable: were it to be changed
(somehow), we would have a different Turing Machine. It is
probably best to think of a Turing Machine's machine table,
not as a program written in a Turing Machine
programming language such as we used in Chapter 8, but
as the way that the “gears” of the Turing Machine are
arranged so that it behaves the way that it does. This is
what Samuel (1953, pp. 1226–1227) called “fixed
programming”:



By fixed programming we mean the kind of programming
which controls your automatic dishwasher for example.
Here the sequence of operations is fixed and built into
the wiring of the control or sequencing unit. Once
started, the dishwasher will proceed through a regular
series of operations, washing, rinsing and drying. Of
course, if one wished, one could change the wiring to
alter the program.

Note, however, that modern dishwashers allow for some
“programming” by pushbuttons that can alter its
operations. But perhaps this is more like interactive
computing (§11.8)! (And recall §9.5.)



12.5 Suber: Software Is Pattern

Peter Suber (1988, p. 94) says that he will “use ‘program’
and ‘software’ interchangeably.” This is unfortunate
because it seems to beg the question about whether all
programs are software. In what follows, we will ignore this
(up to a point, as you will see), and simply try to
understand what he means by ‘software.’ His definition is
straightforward and rather different from Moor's:

[S]oftware is pattern per se, or syntactical form ….
(Suber, 1988, online abstract)

What does he mean by this, and why does he think that it is
true? Here is his argument:

1. “Software patterns … are essentially expressed as
arrays of symbols – or texts.”
(Suber, 1988, §2 (“Digital and Analog Patterns”),
p. 91)

That is, all software is a text, which he calls a “digital
pattern.” If we think of software as a computer program
written in a programming language or even expressed as
arrays of ‘0's and ‘1's, this is plausible. But what about
hardwired programs? He might say that they are not
software. But he might also say that because there is no
significant difference between an array of ‘0's and ‘1's and
an array of switches in one of two positions, even such a
hardwired program is a text. (But see premise 7.)

2. “The important feature of digital patterns here is …
their formal articulation of parts ….” (Suber, 1988, §2,
p. 91)

By ‘formal articulation,’ I will assume that he means
“syntax.” So, all texts have a syntax. But do they? An array



of ‘0's and ‘1's that corresponds to the binary expression of
the decimal part of a real number arguably has a syntax.
But what about a random array? Of course, if the syntax of
an array is just the properties and relations of its elements
(recall §9.4.3), then even a random array has a syntax.

3. “Each joint of articulation carries information for any
machine designed to read it.” (Suber, 1988, §2, p. 91)

So, the syntax of digital patterns can convey information
for appropriate readers. This is close to clause 2 of Moor's
Definition M1: Computers have to be able to “follow” their
programs, and, to do that, a computer must be able to read

its program.
4. The Noiseless Principle: “some order may be made of
any set of data points; every formal expression has at
least one interpretation. … [N]o pattern is noise to all
possible machines and languages.” (Suber, 1988, §3
(“First Formulation”), p. 94)

This seems to be equivalent to premise 3: if “every joint of
articulation carries information,” then “no pattern is noise,”
and vice versa.

5.  The executability of software is a function of its
syntax, the language that it is written in, and of the
machine that runs it. (Suber, 1988, §4 (“Executability”),
especially p. 97)

This follows from the previous premises: All software is a
text; each text has a(t least one) syntax; each syntax has a(t
least one) interpretation. A machine designed to
“understand” that syntax can execute that software. Suber
hypothesizes that all software must be readable and
executable. Here, he is arguing that any text is executable
given an appropriate syntax for it and the right language
and machine to interpret that syntax.



6. Software is readable if and only if (1) it has a
“physical representation … that suits the machine that
is to read it” and (2) it is “in ‘machine language.”’
(Suber, 1988, §5 (“Readability”), p. 98)

This seems to come down to the same thing as saying that
there must be a machine that is capable of reading it. Just
as I can't read something written in invisible ink and in
Mandarin (because I can neither see it nor parse it even if I
could see it), so the machine has to be able to “see” the
text, and it has to be able to understand it. Perhaps this is
best taken as a definition of ‘readable.’ In any case, it does
not seem to add anything over and above the previous
conclusion.

7. The Sensible Principle: “any pattern can be
physically embodied.” (Suber, 1988, §5, p. 100)

So, even if hardwired programs are not “texts” (as we
wondered in premise 1), they are “physical embodiments”
of texts.

8. The Digital Principle: any “pattern” – i.e. any text,
including an analog pattern – “can be reproduced by a
digital pattern to an arbitrary degree of accuracy.”
(Suber, 1988, §6 (“Pattern Per Se Again”), p. 91)
9.  Any text is readable. (Follows from the Sensible
and the Digital Principles.)
10.  Any text is executable. (Follows from line 5 and
premise 6, clause (2).)

But you should ask yourself how a text that does not
contain any instructions might be executable. ‘Instructions’
and ‘executable’ might not be the best terms here. Some
programming languages speak, instead, of “functions”
(Lisp) or “clauses” (Prolog) that are “evaluated.” The



question to be asked is how a text that is not an algorithm

(such as this chapter, perhaps) might be “executable.”
11.  Any text is software.

There are two things to note here. First, recall premise 1.
All software is text. Suber seems to have argued from that
premise to its converse. So “software” and “text” are the
same thing. Second, you might ask yourself how this relates
to Searle's claim that everything is a computer!
Suber also notes that “software is portable”: “one can run
the same piece on this machine and then on that machine”
(Suber, 1988, §7 (“Liftability”), p. 103). Moreover, because
it is essentially unembodied text, software “can be ported
from one substratum to another. It is liftable” (Suber, 1988,
§7, pp. 103–104). And it is “alterable” (Suber, 1988, §8
(“The Softness of Software”), p. 105). These are what
distinguish it from hardware (Suber, 1988, §8). Alterability,
of course, is what Moor cites as the essence of software.
For Suber, that seems to follow from its being “pattern per

se.”
Does Suber really mean every text is software – even
random bits or “noise”? He claims that “software patterns
do not carry their own meanings” (Suber, 1988, §6, p. 103).
In other words, they are purely formal syntax, meaningless
marks, symbols with no intrinsic meanings. If a computer
can give meaning to a text, then it can read and execute it,
according to Suber. But can any text be given a meaning by
some computer? Yes, according to the Noiseless Principle.
We can summarize Suber's argument as follows: software
is text. As such, it has syntax but no intrinsic semantics.
For to be “meaningful” – readable and executable – it has to
be interpreted by something else (e.g. a computer) that can
ascribe meaning to it (and that can execute its
instructions). What about texts that are not programs (or



not intended to be programs)? Consider a text such as this
book or random noise. If there is a device that can ascribe
some meaning to such a text, then it, too, is readable and
has the potential to be executable. (But what would it mean
to “execute” the chapter you are now reading?)
But texts need to be interpreted by a suitable computer:
“They need only make a fruitful match with another pattern
(embodied in a machine) [which] we create” (Suber, 1988,
§6, p. 103, my italics). So, software is pure syntax and
needs another piece of syntax to interpret it.
How can one piece of syntax “interpret” another? Recall
from §9.4.3 that syntax is the study of the properties of, and
relations among, symbols or uninterpreted marks. Roughly,
semantics is the study of meaning, and – again, roughly – to
say that a piece of syntax has a meaning is to say that it is
related to that meaning.16 In this view, semantics is the
study of the relations between two sets of entities: the
syntactic objects and their meanings. But the meanings
have their own properties and relations; i.e. the meanings
also have a syntax. So the syntax of the meanings can
“interpret” the syntax of the software.
This is not far from Moor's definition: Both Moor and Suber
require someone (or something) to interpret the syntax.
Could a hardwired program and a written program both be
software, perhaps because they have the same syntactic
form? I think the answer is ‘yes.’ Here is a possible
refinement: software is a pattern that is readable and
executable by a machine. This is roughly Moor's definition
of a computer program. But for Suber, all patterns are
readable and executable. The bottom line is that Suber's
notion of software is closer to Moor's notion of a computer
program. The idea that software is pure syntax is consistent
with the claim of Tenenbaum and Augenstein, 1981, p. 6,



that information has no meaning; recall their statement
cited in §3.8. We'll come back to this idea in §13.2.3.



12.6 Colburn: Software Is a Concrete

Abstraction

Finally, Timothy R. Colburn (1999, 2000, Ch. 12) argues
that software is not “a machine made out of text.” Thus, he
would probably disagree with Hayes's definition of a
computer as “magic paper.” Colburn says this because he
believes there is a difference between software's “medium
of description” and its “medium of execution.” The former
is the text in a formal language (something relatively
abstract). The latter consists of circuits and semi‐
conductors (which are concrete). Consequently, Colburn
says that software is a “concrete abstraction.”
But is this a single thing (a “concrete abstraction”) or two
things: (1) something that is abstract: a “medium of
description” and (2) something else that is concrete: a
“medium of execution”? Colburn borrows the phrase from
the title of an introductory CS textbook (Hailperin et al.,
1999), which doesn't define it. All that Hailperin et al. say
is that abstractions can be thought of “as actual concrete
objects,” and they give as an example a word processor,
which they describe as an abstraction that is “merely [a]
convenient way of describing patterns of electrical activity”
and a “thing that we can buy, sell, copy, and use” (p. ix).
Part of Colburn's goal is to explicate this notion of a thing
that can be both abstract and concrete. To do so, he offers
several analogies to positions that philosophers have taken
on the mind‐body problem (see §2.7), so we might call this
the “abstract‐program/concrete‐program problem.” (See
https://people.umass.edu/ffeldman/ChisholmMemorial.htm
for an illustration of these positions.)
Consider various theories of monism, views that there is
only one kind of thing: either minds or else brains, but not

https://people.umass.edu/ffeldman/ChisholmMemorial.htm


both. The view that there are only minds is called
‘idealism,’ associated primarily with the philosopher
George Berkeley (1685–1783). The view that there are only
brains is called ‘materialism’ or ‘physicalism.’ Similarly, a
monist with respect to software might hold that either
software is abstract or else it is concrete, but it cannot be
both. According to Colburn, no matter how strong the
arguments for, say, materialism might be as the best
answer so far to the mind‐body problem, monism as a
solution to the abstract‐concrete problem fails to account
for its dual nature.
So let's consider various theories of dualism, views that
there are both minds and brains. In the mind‐body problem,
there are several versions of dualism, differing in how they
explain the relationship between minds and brains. The
most famous version is called ‘interactionism,’ due to
Descartes. This says that (1) there are minds (non‐physical
substances that think and obey only psychological laws);
(2) there are brains (substances that are physically
extended in space and that obey only physical and
biological laws); and (3) minds and brains interact. The
problem for interactionism as a solution to the mind‐body
problem is that there is no good explanation of how they
interact. After all, one is physical and the other isn't. So you
can't give a physical explanation of how they would
interact, because the laws of physics don't apply to the
mind. And you can't give a psychological explanation of
how they interact, because the laws of psychology don't
apply to the brain (according to Cartesian interactionism).
Similarly, according to Colburn, when applied to the
abstract‐concrete problem, an interactionist perspective
fails to account for the relation between abstractions and
concrete things, presumably because the relations
themselves are either abstract, in which case they don't
apply to concrete things, or they are concrete and, so, don't



apply to abstractions. (There is, however, a possible way
out, which we will explore in depth in Chapter 13: namely,
perhaps the relationship between them is one of
implementation, or semantic interpretation, not unlike
Suber's theory.)
A theory intermediate between monism and dualism is
called the ‘dual‐aspect’ theory, due to Baruch Spinoza
(1632–1677). Here, instead of saying that there are two
different kinds of “substance,” mental substance and
physical substance, it is said that there is a single, more
fundamental kind of substance of which minds and brains
are two different “aspects.” (For Spinoza, this more
fundamental substance – which he believed had more than
just the two aspects that we humans are cognizant of – was
“nature,” which he identified with God.) As a solution to the
abstract‐concrete problem, Colburn points out that we
would need some way to characterize that more
fundamental underlying “substance,” and he doesn't think
any is forthcoming. Again, however, one alternative
possibility is to think of how a single abstraction can have
multiple implementations.17 Yet another alternative is a
dual property view: certain physical objects (in particular,
brains) can have both physical and psychological properties

(Chalmers, 1996).
Finally, another family of dualisms is known as
‘parallelism’: there are minds, there are brains, and they
are not identical (hence this is dualistic). But they do not

interact. Rather, they operate in parallel, and so there is no
puzzle about interaction. One version of parallelism
(‘occasionalism’) says that God makes sure that, on every
“occasion” when there appears to be interaction, every
mental event corresponds to a parallel brain event (this
keeps God awfully busy on very small matters!).



Another version (“pre‐established harmony”) seems to be
Colburn's favored version. This says that God initially set
things up so that minds and their brains work in parallel,
much in the way that two clocks can keep the same time,
even though neither causally influences the other. That
way, God does not have to keep track of things once they
have been set in motion. For Colburn, this seems to mean
implementation of an algorithm as a textual program
parallels its implementation in the hardware of a physical
computer:

For the abstract/concrete problem we can replace God
by the programmer who, on the one hand, by his [sic]
casting of an algorithm in program text, describes a
world of multiplying matrices, or resizing windows, or
even processor registers; but on the other hand, by his
act of typing, compiling, assembling, and link‐loading, he
causes a sequence of physical state changes that
electronically mirrors his abstract world. (Colburn, 1999,
p. 17, my italics)

He puts this slightly differently in Colburn, 2000, p. 208
(my italics), where he says that the “sequence of physical
state changes … structurally matches his abstract world,”
and he adds that “the abstract world of the computer
programmer can be thought of as ticking along in
preestablished synchrony with the microscopic physical
events within the machine.” The idea that the textual
program and the physical state changes share a common
structure is consistent with a view that a single abstraction
can have two “parallel” implementations. But it is hard to
imagine that the textual program (or even the abstract
algorithm) can “tick along,” because text – unlike the
physical events – is static, not dynamic: it doesn't “tick.”
A more modern take on the mind‐body problem (not
considered by Colburn) is “functionalism.” Roughly, this is



the view that certain abilities or purposes (teleological
“functions”) of the brain are mental and are describable by
the laws of psychology in addition to the laws of physics
and biology (Putnam, 1960, Fodor, 1968b; Block, 1995,
§11.5; Levin, 2021). Rather than taking a position on the
existence (or “ontological status”) of something called “the
mind,” functionalism holds that what makes certain brain
activity mental in addition to being physical is the role it
plays – its “function” – in the overall activity of the brain or
the person.



12.7 Summary

Algorithms – which are abstract – can be implemented as
programs (i.e. as texts written in a computer‐programming
language). Programs, in turn, can be implemented as part
of the hardware of a computer. A given algorithm can be
implemented differently in different programs, and a
program can be implemented differently in different
computers. Both Suber's and Colburn's theories of software
focus on this implementational aspect. Moor's theory
focuses on the changeability of software. Presumably, the
more abstract an entity is, the easier it is to change it. So
the software‐hardware distinction may be more of a
continuum than something with a sharp boundary.
Moreover, you can't really talk about a program or software
by itself, but you have to bring in the computer or other
entity that interprets it: programs and software are
relational notions.18

We need to explore the notion of implementation in more
detail, which we will do in the next chapter.



12.8 Questions for the Reader

1. Turing's work clearly showed the extensive
interchangeability of hardware and software in
computing.
—Juris Hartmanis (1993, p. 11)

Tanenbaum, 2006, p. 8, points out that hardware and
software are “logically equivalent” in the sense that
anything doable in hardware is doable in software, and
vice versa. Similar or analogous cases of such logical
equivalence of distinct things are Turing Machines, the
lambda‐calculus, and recursive functions. Also, such an
equivalent‐but‐different situation corresponds to the
intensional‐extensional distinction: two intensionally
distinct things can be extensionally identical.
How does this equivalence or “interchangeability”
relate to Moor's or Colburn's definitions of software
and hardware?

2. Academically and professionally, computer
engineering took charge of the hardware, while
computer science concerned itself with the software
….
—Michael Sean Mahoney (2011, p. 108)

If software and hardware cannot easily be
distinguished, does that mean neither can computer
engineering and computer science?

3. Find a (short) article on the mind‐body problem (e.g.
the Wikipedia article at
http://en.wikipedia.org/wiki/Mind-body_problem).
Replace all words like ‘mind,’ ‘mental,’ etc., with words
relating to ‘software’; and replace all words like ‘body,’

http://en.wikipedia.org/wiki/Mind-body_problem


‘brain,’ etc., with words like ‘hardware,’ ‘computer,’
etc. Discuss whether your new paraphrased article
makes sense and what this says about the similarities
(or differences) between the mind‐body problem and
the software‐hardware problem.19

4. Recall from §11.8.2 that Wadler (1997, pp. 240–241)
said that “Interaction is the mind‐body problem of
computing.” He was not referring to the kind of
interaction that Descartes's dualism requires; rather,
he was referring to computers that interact with the
real world or with an oracle, such as we discussed in
Chapter 11.
Nevertheless, how do the various positions on the
mind‐body problem relate to Wadler's observation?

5. Recall the discussion in §12.3.2 on the relationship of
software to music, art, and literature.
What do you think Moor or Suber might say about it?
Would Moor disagree? After all, art is not usually
changeable. Would Suber be more sympathetic? And
what about Colburn? Are any art forms “concrete
abstractions”?

6. Do you think that “pre‐established harmony” explicates
“concrete abstraction”? Is the mind a “concrete
abstraction”?

7. What would a functional solution to the abstract‐
concrete problem look like? Might we say that some
hardware functions as a computer program?



Notes

1 See the Online Resources for further reading on the
nature of programs and programming.

2 See the Online Resources for further reading on
programs and algorithms.

3 http://www.oed.com/view/Entry/183938; see also
http://www.historyofinformation.com/expanded.php?
id=936.

4 Insofar as decomposition is a form of changeability,
this is consistent with Moor's definition of ‘software,’
as we will see in §12.4.5!

5 See the Online Resources for further reading on
software and art .

6 The case is discussed at length in Colburn, 1999,
2000.

7 Title 17, US Code,
https://www.copyright.gov/title17/.

8 The relevant laws are the US Constitution, Article I,
§8; and various laws cited at
https://www.uspto.gov/web/offices/pac/mpep/consol
idated_laws.pdf. See also “Computer Systems Based
on Specific Computational Models,”
https://www.uspto.gov/web/patents/classification/cp
c/pdf/cpc-definition-G06N.pdf.

9 This essay is from a special issue of the Columbia

Law Review on the legal protection of computer
programs. A summary version appears as Davis et

https://cse.buffalo.edu/~rapaport/OR/A0fr12.html#12.1
https://cse.buffalo.edu/~rapaport/OR/A0fr12.html#12.2
http://www.oed.com/view/Entry/183938
http://www.historyofinformation.com/expanded.php?id=936
https://cse.buffalo.edu/~rapaport/OR/A0fr12.html#12.3.2
https://www.copyright.gov/title17/
https://www.uspto.gov/web/offices/pac/mpep/consolidated_laws.pdf
https://www.uspto.gov/web/patents/classification/cpc/pdf/cpc-definition-G06N.pdf


al., 1996. Other articles in that special issue
elaborate on, or reply to, Samuelson et al. (1994).

10 See the Online Resources for further reading on
legal protection of programs .

11 See the Online Resources for further reading on
Dennett's intentional stance.

12 See the Online Resources for further information on
center embedding .

13 And see our discussion in §18.6 of Searle's Chinese
Room Argument.

14 See the Online Resources for further reading on
following instructions .

15 It is a quaternary relation, if we include activity .

16 That's a controversial claim among philosophers.
Some philosophers deny the existence of things that
are meanings. Others would say that the meaning of
a piece of syntax is the role that it plays in the
language that it is part of. We'll discuss this further
in §13.1.2.

17 See the Online Resources for some examples.

18 See the Online Resources for further reading on the
software-hardware distinction.

19 Thanks to James Geller for this idea.
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https://cse.buffalo.edu/~rapaport/OR/A0fr12.html#12.6
https://cse.buffalo.edu/~rapaport/OR/A0fr12.html#12.5


13 

Implementation
1

“I wish to God these calculations had been executed by
steam!”
—Charles Babbage (1821), quoted in Swade 1993, p. 86.
[W]hy wasn't Mark I an electronic device? Again, the
answer is money. It was going to take a lot of money.
Thousands and thousands of parts! It was very clear that
this thing could be done with electronic parts, too, using
the techniques of the digital counters that had been
made with vacuum tubes, just a few years before I
started, for counting cosmic rays. But what it comes
down to is this: if Monroe [Calculating Machine Co.] had
decided to pay the bill, this thing would have been made
out of mechanical parts. If RCA had been interested, it
might have been electronic. And it was made out of
tabulating machine parts because IBM was willing to pay
the bill.
—Howard H. Aiken (quoted by I. Bernard Cohen in
Chase 1980, p. 200)

… Darwin discovered the fundamental algorithm of
evolution by natural selection, an abstract structure that
can be implemented or “realized” in different materials
or media.
—Daniel C. Dennett (2017, p. 138)



13.1 Introduction

On the one hand, we have a very elegant set of
mathematical results ranging from Turing's theorem to
Church's thesis to recursive function theory. On the
other hand, we have an impressive set of electronic
devices which we use every day. Since we have such
advanced mathematics and such good electronics, we
assume that somehow somebody must have done the

basic philosophical work of connecting the mathematics

to the electronics. But as far as I can tell that is not the

case. On the contrary, we are in a peculiar situation
where there is little theoretical agreement among the

practitioners on such absolutely fundamental questions

as, What exactly is a digital computer? What exactly is a
symbol? What exactly is a computational process? Under

what physical conditions exactly are two systems

implementing the same program? —John Searle (1990,
p. 25, my italics)

The concept of “implementation” has appeared in nearly
every chapter so far. So, what is an implementation?

13.1.1 Implementation vs.

Abstraction

Let's begin by contrasting “implementation” with
“abstraction.” Abstractions are usually thought of as being
non‐physical; the opposite is usually said to be something
that is “concrete.” But more generally, something is
abstract if it omits some details:



What we desire from an abstraction is a mechanism
which permits the expression of relevant details and the
suppression of irrelevant details. (Liskov and Zilles,
1974, p. 51)

And precisely because abstractions omit details, they are
also more general than something that has those details
filled in. The more details that are omitted, the more
abstract and the more general something is. For example,
“geology” is (etymologically) the study of the Earth and its
physical structure, and “selenology” is (etymologically) the
study of the Moon and its physical structure (Clarke, 1951,
p. 42). If you abstract away from the particular heavenly
body that is being studied (Earth or Moon), the result
would be a more general science that studies the physical
structure of a(n unspecified) heavenly body (even if it
might still be called ‘geology’; we'll return to this idea in
Section 18.3.3).
When you fill in some of the details that were omitted in an
abstraction, you get an implementation of the abstraction.
Indeed, the word ‘implement’ comes from a Latin word
meaning “to fill up, to complete.”2 Importantly, an
implementation does not have to be “concrete”; it can itself
be abstract if it doesn't fill in all the details. As Rosenblueth
and Wiener (1945, p. 320) put it, implementation (what
they call ‘embodiment’) is the “converse” of abstraction.
But I think it is better to say that an implementation and
the abstraction that it implements lie along a spectrum.
Rosenblueth and Wiener observe that in order to
understand some part of the complex universe, scientists
replace it “by a model of similar but simpler structure”
(p. 316) – this is the technique of abstraction. Thus,
another mark of being an abstraction is to be simpler than
what it's an abstraction of; what it's an abstraction of (in
this case, a part of the universe) will have “extra” features.



These extra features might be quite important ones that are
being ignored merely temporarily or for the sake of
expediency, or they might be “noise” – irrelevant details, or
details that arise from the medium of implementation. In
such cases, the extra features that are not in the
abstraction are often referred to as “implementation‐
dependent details.” For example, Rescorla (2014b, Section
2, p. 1280) says, “A physical system usually has many
notable properties besides those encoded by our
computational model: colors, shapes, sizes, and so on.”
There are, according to Rosenblueth and Wiener, two kinds
of models: formal and material, both of which are
abstractions (p. 316). Formal models are like mathematical
models: they are formal symbol systems expressed in
formal languages and understood in terms of their syntax.
Recall from Section 9.4.1 that syntax, in its most general
form, can be understood as the study of the properties of,
and the relations among, the symbols of a language; e.g.
the syntax of a language is its grammar. Let's call a formal
system that is understood in terms of its syntax a “syntactic
domain.”
Material – i.e. physical – models, however, are more like
scale models (p. 317) than like symbol systems. Because
such models omit some details (e.g. scale models are
smaller and usually made of different materials than what
they are models of), they are “abstract” even though they
are “concrete,” or physical. But a material model can also
be “more elaborate” than that which it models (p. 318).
This suggests that “implementation‐dependent details” –
i.e. parts of the model that are not (or are not intended to
be) representations of the complex system – are ignored.
For instance, the physical matter that the model is made of,
or imperfections in it, would be ignored: one does not infer
from a plastic scale model of the solar system that the solar



system is made of plastic, nor from a globe that the Earth
has writing on it.3

Typically, implementations are physical “realizations” or
“embodiments” of non‐physical “abstractions.” That is,
implementation is typically understood as a relation
between an abstract specification and a concrete, physical
entity or process. But a real, physical airplane could be
considered an implementation of a physical scale model
“of” it. The former is complete in all details – it really flies
and carries passengers – but the scale model, even though
physical, lacks these abilities.

13.1.2 Implementations as Role

Players

There can be multiple different implementations of a single
abstraction: some merely fill in more or different details,
but others might do so using different (usually physical)
“stuff” – different media. For example, in the fairy tale, the
three little pigs can be thought of as having used a single
abstract blueprint to build three different versions of the
“same” house out of three different materials (in three
different media): straw, sticks, and bricks.
So, abstractions can be “multiply realized” – implemented
in more than one way, just as many different actors can
play the same role in different productions
(implementations!) of the same play. Hamlet is a role;
Richard Burton occupied that role in the 1964 Broadway
production of Hamlet, and Laurence Olivier occupied it in
the 1948 film. Alternatively, we could say that Burton and
Olivier “implemented” Hamlet in the “medium” of human
being (and a drawing of Hamlet implements Hamlet in the
medium of an animated cartoon version of the play).



The implementation‐abstraction distinction is also mirrored
in the “occupant”‐“role” distinction made in functionalist
theories of the mind (Lycan, 1990, p. 77). According to
those theories, mental states and processes are “functional
roles” played – or implemented – by neuron firings in brains
(or perhaps computational states and processes in AI
computer programs; we'll come back to this idea in Section
19.2).
And mathematical “structuralists” have argued that
numbers are not “things” (existing in some Platonic heaven
somewhere) but are more like “roles” in a mathematical
structure (defined, say, by Peano's axioms) that can be
“played” by many different things, such as different sets,
Arabic numerals, etc. (Benacerraf, 1965). Recall our brief
mention in Section 9.4.6 of structuralism: the natural
numbers can be considered a “role” that can be “played” by
any “countably infinite (recursive) set … arranged to form
an ‐sequence” (Swoyer, 1991, p. 504, note 26). In the
rest of that passage, Swoyer goes on to say that “a concrete
realization [i.e. an implementation of the natural numbers]
would be obtained by adding a domain of individuals and
assigning them as extensions [i.e. as semantic
interpretations] to the properties and relations in the
structure.” In other words, an implementation of the
natural numbers is the same as a semantic interpretation of
them.

13.1.3 Abstract Data Types

Computer scientists also use the term ‘implementation’ to
refer to the relation between an abstract data type and its
“implementation” or “representation” by an abstract data
structure in a programming language:



An abstract data type defines a class of abstract objects
which is completely characterized by the operations
available on those objects. This means that an abstract
data type can be defined by defining the characterizing
operations for that type.
(Liskov and Zilles, 1974, p. 51)

So, an abstract data type is a kind of abstract noun – an
indefinite description of the form “an entity that can
perform actions , and that actions 
can be performed on,” where the  are new, abstract
“verbs.” The data structures that satisfy such a description
are implementations of the abstract data type.
Although it is not entirely abstract, a data structure is also
not entirely physical: it is part of the software, not the
hardware. Moreover, one abstract data type could even be
implemented in a different abstract data type. Some
programming languages, such as Lisp, do not have stacks
as a built‐in data structure. So, a programmer who wants to
write a Lisp program that requires the use of stacks must
find a substitute. In Lisp, whose only built‐in data structure
is a linked list, the stack would have to be built out of a
linked list: stacks in Lisp can be implemented by linked
lists. Here's how:
First, a stack is a particular kind of abstract data type,
often thought of as consisting of a set of items structured
like an ordinary, physical stack of cafeteria trays: new
items are added to the stack by “pushing” them on “top,”
and items can be removed from the stack only by “popping”
them from the top. Thus, to define a stack, one needs (i) a
way of referring to its top and (ii) operations for pushing
new items onto the top and popping items off the top. That,
more or less (mostly less, since this is informal), is a stack
defined as an abstract data type.



Second, a linked list (‘list,’ for short) is itself an abstract
data type. It is a sequence of items whose three basic
operations are

1. , which returns the first element on the list ,
2. , which returns a list consisting of all the original

items except the first,
and

3. ‐ , which recursively constructs a list by
putting item  at the beginning of list .

Finally, a stack  can be implemented as a list , where 
, ‐ , and 

returns  and redefines the list to be .
As another example of an “abstract implementation,”
consider a top‐down‐design, stepwise‐refinement (i.e. a
recursive development) of a computer program (Section
6.4.3): each level (each refinement) is an abstract
implementation of the previous, higher‐level one. Each of
the more detailed implementation levels is less abstract
than the previous one. A “concrete implementation” would
be an implementation in a physical medium.

BoxII

Question for the Reader: Could this be related to what
Colburn might have had in mind when he talked about a
“concrete abstraction”? (Recall our discussion in Section
12.6.)

13.1.4 The Structure of

Implementation



So, abstractions omit details and can be thought of as roles.
Implementations fill in some of those details and can be
thought of as things that play the role specified by the
abstraction. Some implementations may add
“implementation‐dependent” details that do not belong to
the abstraction. For example, Hamlet's age is not specified
in Shakespeare's play: he was supposed to be a college
student, but Burton was about 39 when he played the role,
and Olivier was about 41; their real ages are
implementation‐dependent details. Furthermore, there can
be multiple implementations of a given abstraction, which
differ in the “stuff” that the implementation is made of.
(That “stuff” is also an implementation‐dependent detail.)
To sum up, implementation is best thought of as a three‐
place relation:

 is an implementation in medium  of abstraction .
And there are two fundamental principles concerning this
relation:

Implementation Principle I: For every
implementation , there is an abstraction  such that 

 implements .
Implementation Principle II: For every abstraction 

, there can be more than one implementation of .
Principle I actually follows from the nature of the three‐
place relation; Principle II is a generalization of the
principle of “multiple realizability” (Bickle, 2020). (We will
return to these two principles in Section 18.7.2.)
In the next two sections, we will look at two theories that
spell out more of the details about the nature of
implementation. One will use the relation between syntax
and semantics to illuminate implementation. The other, due



to David Chalmers, was designed to reply to Searle's (1990)
pancomputationalism (Section 9.4).



13.2 Implementation as Semantic

Interpretation

A theory of implementation tells us which conditions the
physical system needs to satisfy for it to implement the
computation. Such a theory gives us the truth conditions

of claims about computational implementation. This

serves not only as a semantic theory but also to
explicate the concept (or concepts) of computational
implementation as they appear in the computational
sciences.
—Mark Sprevak (2018, Section 2, original italics, my
boldface)

13.2.1 What Kind of Relation Is

Implementation?

One main point of the previous section is that not all
examples of implementation concern the implementation of
something abstract by something concrete: One abstract
thing can implement another abstract thing, and one
concrete thing can implement another concrete thing. What
we need is a more general notion. There are several
candidates:

Individuation: This is the relation between the lowest
level of a genus‐species tree (such as “cat” or “human”)
and individual cats or humans: for example, my son's
cats Billy and Phoebe “individuate” the species Felis

catus; both my son and Socrates “individuate” the
species “human.” Individuation seems to be a kind of
implementation: we could say that Billy and Phoebe are
implementations of Felix catus. But not all cases of
implementation are individuations.



Instantiation: This is the relation between a specific
instance of something and the kind of thing it is: for
example, the specific redness of my notebook cover is
an instance of the color “red.” Instantiation seems to be
a kind of implementation: we could say that the specific
instance of red that is my notebook's color is an
implementation of the (abstract) color “red.” But not all
implementations are instantiations.
Exemplification: This is the relation between a
(physical) object and a property that it has: for
example, Bertrand Russell exemplifies the property of
being a philosopher. Exemplification seems to be a kind
of implementation: we could say that Bertrand Russell
is an implementation of a philosopher. But not all
implementations are exemplifications.
Reduction: This is the relation between a higher‐level
object and the lower‐level objects that it is made of: for
example, water is reducible to a molecule consisting of
two atoms of hydrogen and one atom of oxygen, or,
perhaps, the emotion of anger is reducible to a certain
combination of neuron firings. This kind of reduction4

seems to be a kind of implementation: we could say
that water is implemented by O or that my anger is
implemented by certain neuron firings in my brain and
nervous system. But not all implementations are
reductions.

Each of these may be implementations, but not vice versa.
In other words, implementation is a more general notion
than any of these. But all of them can be viewed as
semantic interpretations. (For more details and
argumentation, see Rapaport, 1999, 2005b.)5

Let  be an “abstraction”: i.e. something that omits certain
details, spells out a role to be played, or is a generalization



of the notion of an abstract data type. Abstractions would
be characterized by their properties, including their
constituents and properties (and the relations among the
constituents). Thus, abstractions would be characterized by
their “syntax.” And let  be any abstract or concrete
“medium.” Then we can say that

 is an implementation in medium  of abstraction 
iff

 is a semantic interpretation in semantic domain  of
syntactic domain .

Implementation  could be either an abstraction itself or
something concrete, depending on .
And as we have seen, there could be a sequence of
implementations (or what Brian Cantwell Smith (1987)
calls a “correspondence continuum”; for discussion, see
Rapaport, 1995, Section 2): a stack can be implemented by
a linked list, which in turn could be implemented in the
programming language Pascal, which in turn could be
implemented (i.e. compiled into) some machine language 
, which in turn could be implemented on my Mac computer.
(We saw this same phenomenon in a related situation in
Section 9.1. Sloman, 1998, Section 2, p. 2, makes the same
point about what he calls “implementation layers.”) But it
could also be more than a mere sequence of
implementations, because there could be a tree of
implementations. The very same linked list could be
implemented in Java as well as in Pascal, and the Java and
Pascal programs could be implemented in other machine
languages on other kinds of computers.
The ideas that abstractions can implement other
abstractions and that there can be “continua” of
implementations are a consequence of what the



philosopher William G. Lycan (1990, p. 78), refers to as the
“relativity” of implementation:

… “software”/“hardware” talk encourages the idea of a
bipartite Nature, divided into two levels, roughly the
physiochemical and the (supervenient) “functional” or
higher‐organizational – as against reality, which is a
multiple hierarchy of levels of nature …. See Nature as
hierarchically organized in this way, and the
“function”/“structure” distinction goes relative:
something is a role as opposed to an occupant, a
functional state as opposed to a realizer, or vice versa,
only modulo a designated level of nature.

13.2.2 Semantic Interpretation

If implementations are semantic interpretations, we need
to understand the nature of a semantic interpretation. We'll
begin with the notion of a “formal system.”

13.2.2.1 Formal Systems

[T]he formal character of [a] system … makes it possible
to abstract from the meaning of the symbols and to
regard the proving of theorems (of formal logic) as a
game played with marks on paper according to a certain

arbitrary set of rules.
—Alonzo Church (1933, p. 842, my italics)

Formal systems are sometimes called “symbol systems,”
“theories” (understood as a set of sentences), or “formal
languages.” A formal system consists of

1. Primitive (or atomic) “symbols” (sometimes called
“tokens” or “markers,” which can be thought of as
being like the playing pieces in a board game).



Axioms are assumed to have no interpretation or meaning;
hence my use of the term ‘marker,’ rather than ‘symbol,’
which many writers use to mean a marker plus its meaning
(as when we say, “a wedding ring is a symbol for marriage”
(Levesque, 2017, p. 108, my italics). The race car token in
Monopoly isn't interpreted as a race car in the game; it's
just a token that happens to be race‐car shaped to
distinguish it from the token that is top‐hat shaped. (And
the top‐hat token isn't interpreted as a top hat in the game:
even if you think it makes sense for a race car to travel
around the Monopoly board, it makes no sense for a top hat
to do so!) Examples of such atomic markers include the
letters of an alphabet, (some of) the vocabulary of a
language, (possibly) neuron firings, or even states of a
computation.

2. (Recursive) rules for forming new (complex, or
molecular) markers, sometimes called ‘well‐formed
formulas’ (wffs) – i.e. grammatically correct formulas –
from “old” markers (that is, from previously formed
markers), beginning with the atomic markers as the
basic “building blocks.”

These rules might be spelling rules (if the atomic markers
are alphabet letters), or grammar rules (if the atomic
markers are words), or bundles of synchronous neuron
firings (if the atomic markers are single neuron firings).
The molecular markers can be thought of as “strings” (i.e.
sequences of atomic markers), or words (if the atomic
markers are letters), or sentences (if the atomic markers
are words).

3. Axioms: a “distinguished” subset of wffs (i.e. one that
is singled out for a special purpose).

These are optional. Geometry considered as a formal
system has axioms. But English considered as a formal



system (Montague, 1970) doesn't need them, nor do
natural‐deduction systems of logic (see Section 15.2.1).

4. Recursive rules (called ‘rules of inference’ or
‘transformation rules’) for forming (“proving”) new wffs
(called ‘theorems’) from old ones (usually, but not
always, beginning with the axioms).

13.2.2.2 Syntax

The “syntax” of such a system is the study of the properties

of the markers of the system and the relations among them
(but not any relations between the markers and anything
external to the system). Among these (internal) relations
are the “grammatical” relations, which specify which
strings of markers are well formed (according to the rules
of grammar), and the “proof‐theoretic” (or “logical”)
relations, which specify which sequences of wffs are proofs
of theorems (i.e. which wffs are derivable by means of the
rules of inference).
Here is an analogy: consider a new kind of toy system
consisting of Lego‐like blocks that can be used to construct
Transformer monsters.6 The basic Lego blocks are the
primitive markers of this system. Transformer monsters
that are built from Lego blocks are the wffs of the system.
And the sequences of moves that transform the monsters
into trucks (and back again) are the proofs of theorems.
Turing Machines can be viewed as (implementations of)
formal systems: Roughly, (1) the atomic markers
correspond to the ‘0's and ‘1's of a Turing Machine, (2) the
wffs correspond to the sequences of ‘0's and ‘1's on the
tape during a computation, (3) the axioms correspond to
the initial string of ‘0's and ‘1's on the tape, and (4) the
recursive rules of inference correspond to the instructions
for the Turing Machine.7



13.2.2.3 Semantic Interpretation

An important fact about a formal system and its syntax is
that there is no mention of truth, meaning, reference, or
any other “semantic” notion. These are all relations
between the markers of a formal system and things that are
external to the system. Semantic relations are not part of
the formal system. They are also not part of the system of
things that are outside of the formal system!8 We came
across this idea in Section 8.8.1, when we discussed
Hilbert's claim that geometry could be as much about
tables, chairs, and beer mugs as about points, lines, and
planes. Tenenbaum and Augenstein (1981, p. 1), note that
“the concept of information in computer science is similar
to the concepts of point, line, and plane in geometry – they
are all undefined terms about which statements can be
made but which cannot be explained in terms of more
elementary concepts.”
But sometimes we want to “understand” a formal system.
As we saw in Section 4.5, there are two ways to do that
(Rapaport, 1986, 1995). One way is to understand the
system in terms of itself – to become familiar with the
system's syntax. This can be called “syntactic
understanding.” Another way is to understand the system
in terms of another system that we already understand.
This can be called “semantic understanding”:

Material models [i.e. semantic interpretations] … may
assist the scientist in replacing a phenomenon in an
unfamiliar field by one in a field in which he [sic] is more

at home. (Rosenblueth and Wiener, 1945, p. 317, my
italics)

The “semantics” of a formal system is the study of the
relations between the markers of the system (on the one
hand) and something else (on the other hand). The



“something else” might be what the markers “represent,”
or what they “mean,” or what they “refer to,” or what they
“name,” or what they “describe.” Or it might be “the
world.” If the formal system is a language, then semantics
studies the relations between, on the one hand, the words
and sentences of the language, and on the other hand, their
meanings. If the formal system is a (scientific) theory, then
semantics studies the relations between the markers of the
theory and the world – the world that the theory is a theory
of. (We'll come back to this theme in the next chapter,
when we consider whether (some) computer programs are
scientific theories.)
Semantics, in general, requires three things:

1. A syntactic domain; call it ‘SYN’ – typically, but not
necessarily, a formal system.
2. A semantic domain; call it ‘SEM’ – characterized by
an “ontology.”

An ontology is, roughly, a theory or description of the
things in the semantic domain. It can be understood as a
(syntactic!) theory of the semantic domain, in the sense
that it specifies (a) the parts of the semantic domain (its
members, categories, etc.) and (b) their properties and
relationships (structural, as well as inferential or logical).

3. A semantic interpretation mapping from SYN to
SEM.

SEM is a “model” or “interpretation” of SYN; SYN is a
“theory” or a “description” of SEM:

Physical system  realizes/implements computational
model  just in case [c]omputational model 
accurately describes physical system . (Rescorla,
2014b, p. 1278, my italics)



Here are several examples of semantic domains that are
implementations of syntactic domains:

SYNTAX SEMANTICS
algorithms are implemented

by
computer programs

(in language )
computer
programs

are implemented
by

computational
processes

(in language ) (on machine )
abstract data
types

are implemented
by

data structures

(in language )
musical scores are implemented

by
performances

(by musicians)
play scripts are implemented

by
performances

(by actors)
blueprints are implemented

by
buildings

(made of wood, bricks,
etc.)

formal theories are implemented
by

(set‐theoretic) models



BoxII

Digression: Syntax, Semantics, and Puzzles: We can
illustrate the difference between syntax and semantics
by means of jigsaw puzzles. The typical jigsaw puzzle
that one can buy in a store consists of a (usually
rectangular) piece of heavy cardboard or wood that has
a picture printed on it and has been “jigsawed” into
pieces. Each piece has a distinct shape and a fragment
of the original picture on it. Furthermore, the shapes of
the pieces are such that they can be put together in
(usually) only one way. In other words, any two pieces
are completely unrelated in terms of their shape, or they
are such that they fit together to form part of the
completed puzzle. A map of the United States can be
used as an example of this “fitting together”: the
boundaries (i.e. the shape) of New York State and
Pennsylvania fit together across New York's southern
boundary and Pennsylvania's northern boundary, but
New York and California are unrelated in this way.
These properties (shapes and picture fragments) and
relations (fitting together) constitute the syntax of the
puzzle.
The pieces are usually stored in a box that has a copy of
the picture on it (put together, but without the
boundaries of the pieces indicated). The picture can be
thought of as a semantic interpretation of the pieces.
The object of the puzzle is to put the pieces back
together again to (re‐)form the picture. There are at
least two distinct ways to do this:

Syntactically: One way is to pay attention only to
the syntax of the pieces. In a rectangular puzzle, one
strategy is to first find the outer boundary pieces,



each of which has at least one straight edge, and
then to fit them together to form the “frame” of the
puzzle. Next, one would try to find pieces that fit
either in terms of their shape or in terms of the
pattern (picture fragment) on it. This method makes
no use of the completed picture as shown on the
box. If that picture is understood as a semantic
interpretation of the pieces, then this syntactic
method of solving the puzzle makes no use of
semantics.
Semantically: But by using the semantic
information of the picture on the box, one can solve
the puzzle solely by matching the patterns on the
pieces with the picture on the box and then placing
the pieces together according to that external
semantic information.

Of course, typically, one uses both techniques. But the
point I want to make is that this is a nice example of the
difference between syntax and semantics.

13.2.3 Two Modes of Understanding

Semantic understanding is a two‐way street. Typically, we
already understand SEM; thus, we can use SEM to help us
understand SYN. For example, knowing something about
the history and culture of an ancient civilization can help us
understand its written language. But we can also use SYN
to understand SEM. For example, language and scientific
theories expressed in language enable us to describe and
understand the world (as we discussed in Chapter 4).
Rosenblueth and Wiener (1945, p. 317) observe that in the
eighteenth and nineteenth centuries, mechanical models
were used to understand electrical problems, but in the
twentieth century, electrical models were used to



understand mechanical problems! Swoyer (1991, p. 482)
notes that a semantic interpretation of a language is a
mapping “from the syntax to the semantics” (from SYN to
SEM). But in note 27 (p. 504), he observes that in other
structural representations, the mapping “runs in the
opposite direction”: from SEM to SYN, to use our
terminology. And Horsman et al., 2014, 2017 use notions
like these to analyze the relation between physical and
abstract computation.
Data types are another example. In Section 13.1.3, we said
that an abstract data type can be implemented by a data
structure:

A data type is an abstract concept defined by a set of
logical properties. Once such an abstract data type is
defined and the legal operations involving that type are
specified, we may implement that data type …. An
implementation may be a hardware implementation, in
which the circuitry necessary to perform the required
operations is designed and constructed as part of a
computer. Or it may be a software implementation, in
which a program consisting of already existing hardware
instructions is written to interpret bit strings in the
desired fashion and to perform the required operations.
(Tenenbaum and Augenstein, 1981, p. 8)

But an abstract data type can itself be viewed as an
implementation:



A method of interpreting a bit pattern is often called a
data type. …
… a type is a method for interpreting a portion of
memory. When a variable identifier is declared as being
of a certain type, we are saying that the identifier refers
to a certain portion of memory and that the contents of
that memory are to be interpreted according to the
pattern defined by the type. (Tenenbaum and
Augenstein, 1981, pp. 6, 45)

What matters is the existence of a mapping; its direction is
a matter of which system is being used to understand the
other. The crucial issue is which system (SYN or SEM) is
antecedently understood. One person's antecedently
understood domain is another's in need of understanding.
The antecedently understood domain can be viewed as an
implementation of the domain that needs to be understood.
So, (typically) SEM is an implementation of SYN. But
sometimes SYN is best understood as an implementation of
SEM.



BoxII

Digression: A Recursive Definition of

Understanding: We can combine the two kinds of
understanding into a recursive definition of
‘understand.’ After all, if one understands a domain
semantically in terms of an antecedently understood
domain, we might wonder how that antecedently
understood domain is understood. If it is understood in
terms of yet another antecedently understood domain,
we run the risk of an infinite regress, unless there is one
domain that is understood in terms of itself, rather than
in terms of another domain. But if a domain is going to
be understood in terms of itself, it would have to be
understood in terms only of its properties and internal
relations, and that means it would have to be
understood syntactically. So the base case of
understanding is to understand something syntactically
– in terms of itself. The recursive case of understanding
is to understand something semantically, in terms of
something else that is already understood. (See
Rapaport, 1995 for further discussion. Linnebo and
Pettigrew, 2011 introduce a notion of “conceptual
autonomy”: a theory “  has conceptual autonomy with
respect to  if it is possible to understand  without
first understanding notions that belong to ” (Assadian
and Buijsman, 2019, p. 566). Using this terminology, we
could say that syntactic understanding is conceptually
autonomous with respect to semantic understanding,
but not vice versa.)

Consider a program written in a high‐level programming
language. Suppose the program has a data structure called
a “person record” containing information about (i.e. a



representation of) a person, something like the record in
two Bloom County comic strips
(https://www.gocomics.com/bloomcounty/2010/08/06 and
https://www.gocomics.com/bloomcounty/2010/08/09). In
the first strip, a young computer hacker deletes “all traces
of” his father “from the files of the I.R.S.,” at which point
his father disappears. (And the hacker says, “Even the
breathtaking political, philosophical and religious
implications of this are dwarfed by the breathtaking
implications of explaining this to Mom.”) In the second
strip, the hacker enters the following into his computer:

Enter new record: “Howard L. Jones, Age 36. Height 6ft.
Race: Black. Soc. Sec.# 003‐15‐9003. Serial# 66‐77‐
1140. License# 3476140. Duck‐hunting permit# 78103.

– at which point his father pops back into existence.
So, Howard L. Jones's record looks something like this:

(person-record: 

  (name "Howard L. Jones") 

  (age 36) 

  (height (feet 6)) 

  (race Black) 

  (ssn 003-15-9003) 

  (serial-number 66-77-1140) 

  (license-number 3476140) 

  (duck-hunting-permit 78103)

 ) 

 

This is merely a piece of syntax: a sequence of markers.
You and I reading it might think it represents a person
named ‘Howard L. Jones’ whose age is 36, whose height is
6 feet, and so on. But as far as the computer (program) is
concerned, this record might just as well look like this
(McDermott, 1980):

https://www.gocomics.com/bloomcounty/2010/08/06
https://www.gocomics.com/bloomcounty/2010/08/09


(PR: 

  (g100 n456) 

  (g101 36) 

  (g102 (u7 6))) 

  (g103 r7) 

  (g104 003159003) 

  (g105 66771140) 

  (g106 3476140) 

  (g107 78103) 

 ) 

 

And in fact, the machine‐language version of this record
does look much like this (Colburn, 1999, p. 8). As long as
the program ‘knows’ how to input new data, how to
compute with these data, and how to output the results in a
humanly readable form, it really doesn't matter what the
data look like to us. That is, as long as the relationships
among the symbols are well specified, it doesn't matter – as
far as computing is concerned – how those symbols are
related to other symbols that might be meaningful to us.
That is why it is syntax, not semantics.
Now, there are at least two ways in which this piece of
syntax could be implemented. One implementation, of
course, might be Jones himself in the real world:9 a person
named ‘Howard L. Jones’ who is 36 years old, etc. Jones –
the real person – implements that data structure; he is also
a semantic interpretation of it.
Another implementation is the way in which that data
structure is actually represented in the computer's machine
language. That is, when the program containing that data
structure is compiled into a particular computer's machine
language, that data structure will be represented in some
other data structure expressed in that machine language.
That will actually be another piece of syntax. And that
machine‐language syntax will be an implementation of our
original data structure.



But when that machine‐language program is being
executed by the computer, some region of the computer's
memory will be allocated to that data structure (to the
computer's representation of Jones, if you will), which will
probably be an array of ‘0's and ‘1's – more precisely, of
bits in memory. These bits will be yet another
implementation of the original data structure as well as an
implementation of the machine‐language data structure.

BoxII

Question for Discussion: What is the relation between
the human (Jones himself) and this region of the
computer's memory? Does the memory location
“simulate” Jones? (Do bits simulate people?) Does the
memory location implement Jones? (Do bits implement

people?) Also: the ‘0's and ‘1's in memory can be
thought of as the ‘0's and ‘1's on a Turing Machine tape,
and Jones can be thought of as an interpretation of that
Turing Machine tape. Now, recall from Section 10.4
what Cleland said about the difference between Turing
Machine programs and mundane procedures: the former
can be understood independently of any real‐world
interpretation (i.e. they can be understood purely
syntactically, to use the current terminology) –
understood in the sense that we can describe the
computation in purely ‘0’/‘1’ terms. (Can we? Don't we
at least have to interpret the ‘0's and ‘1's in terms of a
machine‐language data structure, interpretable in turn
in terms of a high‐level programming language data
structure, which is interpretable, in turn, in terms of the
real‐world Jones?) Mundane procedures, on the other
hand, must be understood in terms of the real world (i.e.
the causal world) that they are manipulating.



13.3 Chalmers's Theory of

Implementation

13.3.1 Introduction

It is one thing to spell out the general structure of
implementation as we did in Section 13.1 and another to
suggest that the notion of semantic interpretation is a good
way to understand what implementation is, as we did in
Section 13.2.2. But we still need a more detailed theory of
implementation: what is the nature of the relation between
an abstraction and one of its implementations?
One reason we need such a theory is to refute Searle's
(1990) claim that “any given [physical] system can be seen
to implement any computation if interpreted appropriately”
(Chalmers, 1993, p. 325, my italics). David Chalmers's
(1993) essay, “A Computational Foundation for the Study of
Cognition” concerns both implementation and cognition;
here, we will focus only on what he has to say about
implementation.
One of his claims is that we need a “bridge” between the
abstract theory of computation and physical systems that
“implement” them. Besides ‘bridge,’ other phrases that he
mentions as synonyms for ‘implement’ are: ‘realize’ (i.e.
make real)10 and ‘described by,’ as in this passage:

Certainly, I think that when a physical system implements
an a‐computation [i.e. a computation abstractly
conceived], the a‐computation can be seen as a
description of it. (Chalmers, 2012, p. 215)

That is, the physical system that implements the abstract
computation is described by that computation. (Here,
Chalmers seems to agree with Rescorla, Section 13.2.2.)



13.3.2 An Analysis of Chalmers's

Theory

According to the simplest version of Chalmers's theory of
implementation,

A physical system implements a given computation when
the causal structure of the physical system mirrors the
formal structure of the computation. (Chalmers, 1993,
p. 326)

Almost every word of this needs clarification! For
convenience, let  be a “physical system,” and let  be a
“computation”:

What kind of physical system is ? It need not be a
computer, according to Chalmers.
What kind of computation is ? Is it merely an abstract
algorithm? Is it more specifically a Turing Machine
program? In any case, it would seem to be something
that is more or less abstract (because it has a “formal
structure”; recall our discussion in Section 3.9 of the
meaning of ‘formal’).
What is a “formal structure”?
What is a “causal structure”?
What does ‘when’ mean? Is this intended to be just a
sufficient condition (“when”), or is it supposed to be a
stronger biconditional (“when and only when”)?
And the most important question: what does ‘mirror’
mean?

So, here is Chalmers's “more detail[ed]” version (1993,
p. 326, my interpolated numerals), which begins to answer
some of these questions:



A physical system implements a given computation when
there exists [1] a grouping of physical states of the
system into state‐types and [5a] a one‐to‐one mapping
from formal states of the computation to physical state‐
types, such that [3] formal states related by an abstract
state‐transition relation are mapped [5b] onto physical
state‐types [2] related by a [4] corresponding causal
state‐transition relation.

Let me try to clarify this. (The numerals I inserted into the
previous passage correspond to the following list.)
According to Chalmers,  implements  when (and maybe
only when)

1. the physical states of  can be grouped into
(physical‐)state types,11

2. the physical‐state types of  are related by a causal

state‐transition relation,
3. the formal states of  are related by an abstract state‐

transition relation,
4. the abstract state‐transition relation of  corresponds

to the causal state‐transition relation of , and
5. there is (a) a 1–1 and (b) onto map from the formal

states of  to the physical‐state types of .
We still need some clarification. We have already defined
“1–1” and “onto” maps in Section 7.2.2. A state is “formal” if
it's part of the abstract – i.e. non‐physical – computation ,
and a state is “causal” if it's part of the physical system :
here, ‘formal’ just means “abstract,” and ‘causal’ just means
“physical.” But what are abstract and causal “state‐
transition relations”? And what does ‘correspond’ mean?
Figure 13.1 may help make some of this clear. In this figure,
the physical system  is represented as a set of dots, each
of which represents a physical state of . These dots are



partitioned into subsets of dots: i.e. subsets containing the
physical states. Each subset represents a state‐type: i.e. a
set of states that are all of the same type. (That takes care
of part 1 of Chalmers's account.)

Figure 13.1 A pictorial representation of Chalmers's
analysis of implementation; see the text for explanation.

Source: Author's drawing.

The computation  is also represented as a set of dots.
Here, each dot represents one of 's formal states. The
arrows that point from the dots in  (i.e. from 's formal
states) to the subsets of dots in  (i.e. to the state‐types in 

) represent the 1–1 map from  to . To make it a 1–1
map, each formal state of  must map to a distinct physical
state‐type of . (That takes care of part 5a of Chalmers's
account.)



The arrows in set  represent the abstract state‐transition
relation among 's formal states (that's part 3). And the
arrows in set  among 's subsets represent the causal
state‐transition relation among 's state‐types (that's
part 2). Finally, because 's formal states are mapped onto 

's physical‐state types, the 1–1 map is a 1–1
correspondence (this is part 5b).
Chalmers (1993, p. 326) seems to be aware of the two‐sided
nature of understanding. As we have seen, he says that 
implements  when there is an isomorphism from  to ;
yet on the very next page, he says that  implements a
finite‐state automaton  if there is a mapping from  to 

! (Of course, the mapping is a 1–1 correspondence, and
therefore it has an inverse!)
Chalmers also says that 's abstract state‐transition
relations “correspond” to 's causal state‐transition
relations. I take it that this means the 1–1 correspondence is
a “homomorphism”: i.e. a structure‐preserving map (that's
part 4). Because the map is also “onto,” it is an
“isomorphism.” (An isomorphism is a structure‐ or “shape”‐
preserving 1–1 correspondence.) So,  and  have the
same structure.



BoxII

Digression: Homomorphism: Suppose  are
entities that stand in relation . Then a function  is a
homomorphism 

. That is, if the
 are related by some relation , and if that

relationship is mapped by , then the image of 
 will be the image of  applied to the

images of the . That's what it means to preserve
structure.

We can then say that a physical system (e.g. a process) 
implements an abstract computation  (e.g. a Turing
Machine or a less‐powerful finite automaton [recall Section
11.1]) or a “combinatorial‐state automaton” (see the next
Digression) if and only if there is a “reliably causal”
isomorphism . (‘Reliably’ perhaps means
something like “no physical breakdowns”; see Chapter 15.)
Such an  is a relation between an abstract, computational
model and something in the real, physical, causal world.
This  is 1–1 and onto – a structure‐preserving isomorphism
such that the abstract, input‐output and processing
relations in  correspond to reliably causal processes in .
Michael Rescorla (2013, Section 1, p. 682) dubs Chalmers's
view of implementation “structuralism about computational
implementation.” It is the fact that the structure of the
physical system matches (“mirrors,” in Chalmers's terms;
more precisely, is isomorphic to) the structure of the
computational system that matters. Note that  can be
viewed as a semantic interpretation of , and  can be
viewed as a description of .



BoxII

Digression: Combinatorial‐State Automata:

According to Chalmers (1993, p. 328),

Simple finite‐state automata are unsatisfactory for
many purposes, due to the monadic nature of their
states. The states in most computational formalisms
have a combinatorial structure: a cell pattern in a
cellular automaton, a combination of tape‐state and
head‐state in a Turing machine, variables and
registers in a Pascal program, and so on. All this can
be accommodated within the framework of
combinatorial‐state automata …, which differ from …
[finite automata] only in that an internal state is
specified not by a monadic label , but by a vector [

]. The elements of this vector can be
thought of as the components of the overall state, such
as the cells in a cellular automaton or the tape‐squares
in a Turing machine.

See the rest of Chalmers, 1993, Section 2.1, for more
details.

Three things follow from this analysis. First, every physical
system implements some computation. That is, for every
physical system , there is some computation  such that 

 implements . Does this make the notion of computation
vacuous? No, because the fact that some  implements
some  is not necessarily the reason why  is the kind of
physical process that it is. (But in the case of cognition, it
might be the reason! We'll come back to this in Chapter 18.)
But second, not every physical system implements any given
computation. That is, it is not the case that for every  and



for every ,  implements . That is, there is some  and
there is some  such that  does not implement 
(because there are computations that cannot be mapped
isomorphically to ). For example, it is highly unlikely that
the wall behind me implements WordStar, because the
computation is too complex.
Finally, a single physical system can implement more than

one computation. That is, for any , there might be two
different computations  such that  implements
both  and . For example, my computer, right this
minute as I type this, is implementing the “vi” text‐
processing program as well as a clock, PowerPoint, and
several other computer programs (“apps”), because each of
these computations map to different parts of . (We'll see
other examples in Section 16.2; recall Section 10.4.)

13.3.3 Rescorla's Analysis of

Chalmers's Theory

There is one aspect of Chalmers's analysis that we have not
yet considered: “when” vs. “only when.” Taken literally,
Chalmers has offered only a sufficient condition for  being
an implementation of : when (i.e. “if”) there is a 1–1
correspondence from  to  as described previously, then 

 implements . But is this also a necessary condition – is 
 an implementation of  only when (i.e. only if) there is

such a 1–1 correspondence? (That is, when (or if)  is an
implementation of , then there is such a 1–1
correspondence.)
Interestingly, Rescorla (2013) agrees that such structural
identity is necessary for a physical system to implement a
computation, but he denies that it is sufficient! That is,
although any physical system that implements a
computation must have the same structure as the



computation, there are (according to Rescorla) physical
systems that have the same structure as certain
computations but are not implementations of them (Section
1, p. 683). This is because semantic “relations to the social
environment sometimes help determine whether a physical
system realizes a computation” (Abstract, p. 681). The key
word here is ‘sometimes’: “On my position, the
implementation conditions for some but not all
computational models essentially involve semantic
properties” (Section 2, p. 684).
Roughly, the issue concerns the “intentionality” of
implementation: must  somehow be “intended” (by
whom?) to implement ? Or could  be, so to speak, an
“accidental” implementation of ?12 (Recall our discussion
in Section 3.4.1 of “chauvinism” vs. “liberalism” when trying
to formalize informal notions.) In that case, Rescorla might
say that  wasn't really an implementation of . But
Rescorla's position is rather more subtle. A year earlier, he
had said:

Mathematical models of computation, such as the Turing
machine, are abstract entities. They do not exist in space
or time, and they do not participate in causal relations.
Under suitable circumstances, a physical system
implements or physically realizes an abstract
computational model. Some philosophers hold that a
physical system implements a computational model only if
the system has semantic or representational properties
[… Ladyman 2009]. Call this the semantic view of

computational implementation. In contrast, [Chalmers
1994; Piccinini, 2006], and others deny any essential tie
between semantics and physical computation. I agree

with Chalmers and Piccinini. (Rescorla, 2012a, Section
2.1, p. 705, my italics)



But in Rescorla, 2013, p. 684, after reciting the semantic
and non‐semantic passage just quoted in almost the same
words, he says that he “reject[s] both the semantic and the
non‐semantic views of computational implementation” (my
italics). We will investigate this issue in more detail in
Chapter 16. But in Rescorla, 2013, he provides a
“counterexample to the non‐semantic view” (Section 1,
p. 684): an example of a physical implementation that – he
claims – requires a representational (i.e. a semantic)
feature. (It is not enough to find an implementation that
merely has a semantics; there are plenty of those, because a
semantic interpretation can always be given to one.) One
example that he gives is a Scheme program for Euclid's
algorithm for computing GCDs (Section 4, p. 686):

(define (gcd a b) 

   (if (= b 0) 

     a 

     (gcd b (remainder a b)))) 

 

This is a recursive algorithm that we can paraphrase in
English as follows:

Rescorla points out that “To do that, the machine must

represent numbers. Thus, the Scheme program contains
content‐involving instructions …” (Section 4, p. 687, my
italics). A “content‐involving instruction is specified, at least
partly, in semantic or representational terms” (Section 3,
p. 685; he borrows this notion from Peacocke, 1995). So, the
Scheme program is specified in semantic terms (specifically,
it is specified in terms of integers). Therefore, if a physical
system is going to implement the program, that physical



system must represent integers; i.e. it requires semantics.
Hence, “The Scheme program is a counter‐example to the
non‐semantic view of computational implementation”
(Section 4, p. 687).
I can see that the machine does represent numbers (or can
be interpreted as representing them). But why does he say
that it must represent them? I can even see that for an
agent to use such a physical computer to compute GCDs,
the agent must interpret the computer as representing
numbers. But surely an agent could use this computer,
implementing this program, to print out interesting patterns
of uninterpreted markers. (Recall the computer‐in‐the‐
desert of Section 3.11.)
To respond to this kind of worry, Rescorla asks us to
consider two copies of this machine, calling them  and 

. The former uses base‐10 notation; the latter uses base‐
13. When each is given the input pair of numerals

(‘115,’ ‘20’), each outputs the numeral ‘5.’ But only the
former computes the GCD of the numbers 115 and 20. (The
latter was given the integers 187 and 26 as inputs; but their
GCD is 1.) So  implements the program, but  does
not; yet they are identical physical computers.
One possible response to this is that the semantics lies in
the user's interpretation of the inputs and outputs, not in
the physical machine. Thus, one could say that both
machines do implement the program but that it is the user's
interpretation of the inputs, the outputs, and the program's
symbols that makes all the difference. After all, consider the
following Scheme program:

(define (MYSTERY a b) 

   (if (= b 0) 

     a 

     (MYSTERY b (remainder a b)))) 

 



If we are using base‐10 notation, we can interpret
‘MYSTERY’ as GCD; if we are using base‐13 notation, we
might either be able to interpret ‘MYSTERY’ as some other
numerical function or not be able to interpret it at all. In
either case, our two computers both implement the
MYSTERY program.
One possible conclusion to draw from this is that any role
semantics has to play is not at the level of the abstract
computation, but rather at the level of the physical
implementation. Rescorla's response to this might be
incorporated in these remarks:

The program's formal structure does not even begin to fix
a unique semantic interpretation. Implementing the
program requires more than instantiating a causal
structure that mirrors relevant formal structure.
(Rescorla, 2013, Section 4, p. 688)

I agree with the first sentence: we can interpret the
MYSTERY program in many ways. I disagree with the term
‘requires’ in the second sentence: I would say that
implementing the program only requires “instantiating the
mirroring causal structure.” But I would go on to say that if
one wanted to use the physical implementation to compute
GCDs, then one would, indeed, be required to do something
extra: namely, to provide a base‐10 interpretation of the
inputs and outputs (and an interpretation of ‘MYSTERY’ as
GCD).
In fact, Rescorla agrees that the semantic interpretation of
‘MYSTERY’ as GCD is required: “there is more to a program
than meaningless signs. The signs have an intended
interpretation …” (Section 4, p. 689). But it is notoriously
hard (some would say logically impossible)13 to pin down
what “the intended interpretation” of any formal system is.
We will return to this debate and Rescorla's example in
Chapter 16.



BoxII

Questions to Consider:

1. Are the inputs to the Euclidean GCD algorithm
numerals (like ‘10’) or numbers (like 10 or 13)?
(Note that the base‐10 numeral ‘10’ represents the
number 10, but the base‐13 numeral ‘10’ represents
the number 13.)

2. What about the inputs to a computer program
written in Scheme that implements the Euclidean
algorithm: are its inputs numerals or numbers? It
may help to consider this analogous question: is the
input to a word‐processing program the letter ‘a’ or
an electronic signal or ASCII‐code representing ‘a’?

Rescorla (2012b, p. 12; italics in original) gives another
example of semantic computation, in the sense of a
computation that requires numbers, not (merely) numerals:



A register machine contains a set of memory locations,
called registers. A program governs the evolution of
register states. The program may individuate register
states syntactically. For instance, it may describe the
machine as storing numerals in registers, and it may
dictate how to manipulate those syntactic items.
Alternatively, the program may individuate register states
representationally. Indeed, the first register machine in
the published literature models computation over natural

numbers [Shepherdson and Sturgis 1963, p. 219]. A
program for this numerical register machine contains
instructions to execute elementary arithmetical
operations, such as add 1 or subtract 1. A physical system
implements the program only if [it] can execute the
relevant arithmetical operations. A physical system
executes arithmetical operations only if it bears
appropriate representational relations to numbers. Thus,
a physical system implements a numerical register
machine program only if it bears appropriate
representational relations to numbers. Notably, a
numerical register machine program ignores how the
physical system represent[s] numbers. It applies whether
the system's numerical notation is unary, binary, decimal,
etc. The program characterizes internal states
representationally (e.g. a numeral that represents the

number 20 is stored in a certain memory location) rather
than syntactically (e.g. decimal numeral “20” is stored in

a certain memory location). It individuates computational
states through denotational relations to natural numbers.
It contains mechanical rules (e.g. add 1) that characterize
computational states through their numerical
denotations.

I agree that this is a semantic computation. Note that it is
not a Turing Machine (which would be a purely syntactic
computation). And note that there cannot be a physical



“numerical register machine” – i.e. a register machine that
manipulates numbers, not numerals – only a syntactic one.
This is not because there are no numbers, but because (if
numbers do exist) they are not physical!
These are important questions, and we will return to them
in Chapter 16. But first we need to look at two issues
concerning the nature of computer programs: in the next
chapter, we'll consider whether any computer programs can
be considered scientific theories. Then, in Chapter 15, we'll
discuss whether computer programs can be “verified” (or
proved “correct”).14



Notes

1 Portions of this chapter are adapted from Rapaport
1999, 2005b.

2 For more on the etymology of ‘implement,’ see
Rapaport, 1999, Section 2, pp. 110–111; and Section
4, pp. 115–116.

3 A “Family Circus” comic from 26 July 1991 shows
little Billy looking at a globe and asking, “Does the
real world have writing all over it?”

4 There are others; see Goodman, 1987, p. 480, and
Dennett, 1995, Ch. 3, Section 5, for useful
discussions.

5 See the Online Resources for further reading on
implementation as semantic interpretation .

6 Transformers are toys that convert from trucks to
robots, and back again. A Lego version wouldn't be a
very practical real toy, because things made out of
Lego blocks tend to fall apart. This is a thought
experiment, not a real one!

7 See the Online Resources for further reading on
syntax, semantics, and formal systems .

8 They play a role not unlike that of the “interaction”
between a mind and a body, as discussed in Section
12.6.

9 Yes, I'm aware that this Jones is a cartoon character
and hence not a real person!

https://cse.buffalo.edu/~rapaport/OR/A0fr13.html#13.2
https://cse.buffalo.edu/~rapaport/OR/A0fr13.html#13.2.2


10 Note, however, that all realizations are
implementations, but not vice versa. A realization
makes an abstraction “real” (e.g. physical). An
implementation fills in all details, but the
implementation might still be abstract. The notions
of implementation and abstraction are relative terms
(Section 13.2.1).

11 A word on punctuation. Chalmers calls them
‘physical state‐types.’ This looks as if he is talking
about “state‐types” that are “physical.” But he is
really talking about “types” of 's “physical states.”
In other words, ‘‐types’ has wide scope over ‘physical
state,’ even though it doesn't look like that. So, I
prefer to call them ‘physical‐state types’ – note the
position of the hyphen, which I think clarifies that no
matter how you hyphenate it, what's being discussed
are “types of physical states.” The types themselves
are not physical; “types” are collections of things, so
they are abstract, even though the things they are
collections of are physical.

12 Perhaps in the same way that a fictional character
might only “coincidentally resemble” a real person
(Kripke, 2011, pp. 56, 72).

13 In part because of something called the Löwenheim‐
Skolem Theorem. For discussion, see Suber, 1997b.

14 See the Online Resources for further reading on
Chalmers and implementation .

https://cse.buffalo.edu/~rapaport/OR/A0fr13.html#13.3


14 

Computer Programs as

Scientific Theories

[W]ithin ten years most theories in psychology will take
the form of computer programs, or of qualitative
statements about the characteristics of computer
programs.
—Herbert A. Simon and Allen Newell (1958, pp. 7–8)
… what's a [scientific] theory? It's a computer program
for predicting [calculating] observations. And the
statement that the simplest theory is best translates into
saying that a concise computer program constitutes the
best theory.
—Gregory Chaitin (2005, pp. 170, 175, 188; Chaitin's
words in brackets)



14.1 Introduction

I haven't formalized my theory of belief revision, but I
have an algorithm that does it.
—Frances L. Johnson (personal communication, February
2004)

The issue raised in this epigraph (from a former graduate
student in my department) is whether an algorithm or a
computer program – both of which are pretty formal,
precise things – is different from a formal theory. Some
might say that her algorithm is her theory. Others might
say that they are distinct things and that her algorithm
(merely) expresses – or implements – her theory. Roger
Schank – an AI researcher famous for taking a “scruffy”
(i.e. non‐formal) approach to AI – used formal algorithms to
express his non‐formal theories. That sounds paradoxical.
Does it really make sense to say that you don't have a
formal theory of something if you do have a formal
algorithm that implements your (perhaps informal) theory?
We have seen that algorithms are implemented in computer
programs. If implementation is semantic interpretation (as
I suggested in Section 13.2), then computer programs are
semantic interpretations of algorithms in the medium of
some programming language. However, some philosophers
have argued that computer programs are theories; yet
theories are more like abstractions than they are like
implementations. After all, if an algorithm (merely)
expresses a theory, then a theory is akin to an abstract
idea, as in our discussion of copyrights in Section 12.3.4.
And others have argued that computer programs are
simulations or models of real‐world situations, which
sounds more like an implementation than an abstraction.



In Section 4.6, we briefly discussed the nature of scientific
theories. In this chapter, we will look further into the
nature of theories, models, and simulations and whether
programs are scientific theories. And we will begin an
investigation into the relation of a program to that which it
models or simulates. (We'll continue it in Chapter 16.)



14.2 Simulations

Computer simulations have introduced some strange
problems into reality.
—Sherry Turkle, quoted in Shieh and Turkle, 2009

Simulations are sometimes contrasted with “emulations.”
And sometimes a simulation is taken to be an “imitation.”
Let's look at these distinctions.

14.2.1 Simulation vs. Emulation

There is no standard, agreed‐upon definition of either
‘simulation’ or ‘emulation.’ This sort of situation occurs
unfortunately all too frequently. Therefore, it is always
important for you to try to find out how a person is using
such terms before deciding whether to agree with what
they say about them.
Here is a paraphrase of one definition of ‘simulate,’ from
the Encyclopedia of Computer Science (R.D. Smith, 2000):

simulates  means (roughly):  is a real or imagined
system, and  is a model of , and we experiment with 

 in order to understand .
This is only a rough definition, because it does not say what
is meant by ‘system,’ ‘model,’ or ‘understand,’ not to
mention ‘real,’ ‘imagined,’ or ‘experiment’! Typically, a
computer program ( ) is said to simulate some real‐world
situation  when program  stands in for y: that is, when 

 is a model of situation . If we want to understand
situation y, we can do so by experimenting with program x.
In the terminology of Section 13.2.3, presumably the
program is antecedently understood – at least it is more
understandable than the situation it simulates, because it is



designed by someone. (We'll discuss an exception to this in
Chapter 17.) Perhaps the program is easier to deal with or
manipulate than the real‐world situation. In an extreme
case,  simulates  if and only if  and  have the same
input‐output behavior, but they might differ greatly in some
of the details of how they work.
And, paraphrasing another Encyclopedia of Computer

Science definition (Habib, 2000), let's say that

emulates  means (roughly)

either:
 and  are computer systems, and  interprets and

executes 's instruction set by implementing 's
operation codes in 's hardware – i.e. hardware  is
implemented as a virtual machine on ,1

or:
 is some software feature, and  is some hardware

feature, and  simulates , doing what  does
“exactly” as  does it.

In general,  emulates  if and only if  and  have the
same input‐output behavior (  simulates ) and  also
uses the same algorithms and data structures as .
It is unlikely that being a simulation and being an
emulation are completely distinct notions. More likely they
are the ends of a spectrum, in the middle of which are s
and s that differ in the level of detail of the algorithms
and data structures that  uses to do 's job. At the “pure”
simulation end of the spectrum, only 's and 's external,
input‐output behaviors agree; at the “pure” emulation end,
all of their internal behaviors also agree. Perhaps, then, the
only pure example of an emulation of  would be  itself!
Perhaps, even, there is no real distinction between



simulation and emulation except the degree of faithfulness
to what is being simulated or emulated.

Questions for the Reader:

1. Does a Universal Turing Machine that is executing a
program for some algorithm  simulate or emulate

a (dedicated) Turing Machine for ?
2. Is that Universal Turing Machine “really” executing 

, or is it “merely” simulating or emulating it?

14.2.2 Simulation vs. Imitation

In many cases,  is only an imagined situation, whereas 
is always something real. On the other hand, it is often said
that  is “merely” a simulation, which suggests that  is
real but  is not. That is, the word ‘simulation’ has a
connotation of “imitation” or “unreal.” For example, it is
often argued that a simulation of a hurricane is not a real
hurricane, or that a simulation of digestion is not real
digestion.
But there are cases where a simulation is the real thing.
(Or should such simulations be called ‘emulations’?) For
example, although a scale model of the Statue of Liberty is
not the real Statue of Liberty, a scale model of a scale
model (of the Statue of Liberty) is itself a scale model (of
the Statue of Liberty). A Xerox copy or PDF or faxed copy
of a document is that document, even for legal purposes
(although perhaps not for historical purposes;2 see
Korsmeyer, 2012). Some philosophers and computational
cognitive scientists have argued that a computational
simulation of cognition really is cognition (Edelman, 2008a;
Rapaport, 2012b). In general, it seems, a simulation of
informationis that information.



There are also cases where it is difficult or impossible to
tell if something is a simulation or not, such as Nick
Bostrom's (2003) argument that “we are almost certainly
living in a [Matrix‐like] computer simulation” (see Sections
9.7.2 and 19.7). After all, if a program could be a scientific
theory, then the process that comes into being when the
program is executed could be a model of what the program
is a theory of. And if some models are the kind of thing that
they model, then a simulation of the real world could be a
real world.3

14.2.3 Models

… computational models are better able to describe
many aspects of the universe better than any other
models we know. All scientific theories can, e.g. be
modeled by programs.
—Donald E. Knuth (2001, p. 168)

Simulations and semantic theories are sometimes said to be
“models.” So, what is a model?
The notion of model is associated with what I have called
“The Muddle of the Model in the Middle” (Wartofsky, 1966,
1979; Rapaport, 1995). There are two different uses of the
term ‘model’: it can be used to refer to a syntactic domain,
as in the phrase ‘mathematical model’ of a real‐world
situation. And it can be used to refer to a semantic domain,
as in the phrase ‘set‐theoretic model’ of a mathematical
theory. And, of course, there is the real‐world situation that
both of them refer to in some way. The “muddle” concerns
the relationships among these.
We saw the dual nature of models in Section 13.2.3, when
we briefly considered what Brian Cantwell Smith (1987)
called a “correspondence continuum” (Section 13.2.1):
scientists typically begin with data that they then interpret



or model using a formal theory; so, the data are the
syntactic domain in need of understanding, and the formal
theory is a semantic domain in terms of which it can be
understood. The formal theory can then be modeled set‐
theoretically or mathematically; the formal theory now
becomes the syntactic domain, and the set‐theoretic or
mathematical model is its semantic domain. But that set‐
theoretic or mathematical model can be interpreted by
some real‐world phenomenon; so, the model is now the
syntactic domain, and the real world is the semantic
domain. To close the circle, that real‐world phenomenon
consists of the same kind of data that we started with!
(Recall the example in Section 13.2.3 of person records and
persons.) Hence my phrase “the muddle of the model in the

middle.”
(For more on models, and an argument that computing is
modeling, see Shagrir, 2022, Ch. 9.)

14.2.4 Theories

Recall our discussion in Section 4.6 of the term ‘theory.’
When people say in ordinary language that something is a
“theory,” they often mean it is mere speculation, that it
isn't necessarily true. But scientists and philosophers use
the word ‘theory’ in a more technical sense.
This is one reason people who believe in the “theory” of
evolution and those who don't are often talking at cross
purposes, with the former saying that evolution is a true,
scientific theory:



Referring to biological evolution as a theory for the
purpose of contesting it would be counterproductive,
since scientists only grant the status of theory to well‐
tested ideas. (Terry Holliday, Kentucky education
commissioner, 2011; cited in Science 337 (24 August
2012): 897)

and the latter saying that if it is only a theory – if, that is, it
is mere speculation – then it might not be true:

The theory of evolution is a theory, and essentially the
theory of evolution is not science – Darwin made it up.
(Ben Waide, Kentucky state representative, 2011; cited
in Science 337 (24 August 2012): 897)

They are using the word in very different senses.
Further complicating the issue, there are at least two views
within the philosophy of science about what scientific
theories are:
On the syntactic approach to theories (due to a group of
philosophers known as the “Logical Positivists”; see Uebel,
2021), a theory is an abstract description of some situation
(which usually is, but need not be, a real‐world situation)
expressed in a formal language with an axiomatic
structure. That is, a theory is a formal system (see Section
13.2.2). Such a “theory” is typically considered a set of
sentences (linguistic expressions, well‐formed formulas)
that describe a situation or that codify (scientific) laws
about a situation. (This is the main sense in which the
theory of evolution is a “theory.”) Such a description, of
course, must be expressed in some language. Typically, the
theory is expressed in a formal, axiomatic language that is
semantically interpreted by rules linking the sentences to
“observable” phenomena. These phenomena either are
directly observable – either by unaided vision or with the
help of devices such as microscopes and telescopes – or are



theoretical terms (such as ‘electron’) that are definable in
terms of directly observable phenomena (such as a vapor
trail in a cloud chamber).
On the semantic approach to theories (due largely to the
philosopher Patrick Suppes; see Frigg and Hartmann,
2020), theories are the set‐theoretic models of an axiomatic
formal system. Such models are isomorphic to the real‐
world situation being modeled. (Weaker semantic views of
theories see them as “state spaces”
(http://en.wikipedia.org/wiki/State_space) or “prototypes”
(http://en.wikipedia.org/wiki/Prototype), which are merely
“similar” to the real‐world situation.) A theory viewed
semantically can clearly resemble a simulation (or an
emulation).
No one seems to deny that computer programs can be
simulations or models. But can they be theories?

http://en.wikipedia.org/wiki/State_space
http://en.wikipedia.org/wiki/Prototype


14.3 Computer Programs Are

Theories

14.3.1 Introduction

In Section 9.7, we asked whether there can be a
“computational theory” of some phenomenon, such as the
stock market or the brain. Presumably, a computational
theory of  is expressed as a computer program.
Several computational cognitive scientists have claimed
that (some) computer programs are theories, in the sense
that the programming languages in which they are written
are languages for theories and the programs are ways to
express theories. The clearest statement of this comes from
Herbert Simon and Allen Newell:

Computer programs can be written that use
nonnumerical symbol manipulating processes to perform
tasks which, in humans, require thinking and learning. …
These programs can be regarded as theories, in a

completely literal sense, of the corresponding human

processes. These theories are testable in a number of
ways: among them, by comparing the symbolic behavior
of a computer so programmed with the symbolic
behavior of a human subject when both are performing
the same problem‐solving or thinking tasks. (Simon and
Newell, 1962, p. 97, my italics)

Others have said similar things:



There is a well established list of advantages that
[computer] programs bring to a theorist: they
concentrate the mind marvelously; they transform
mysticism into information processing, forcing the
theorist to make intuitions explicit and to translate vague
terminology into concrete proposals; they provide a
secure test of the consistency of a theory and thereby
allow complicated interactive components to be safely
assembled; they are “working models” whose behavior
can be directly compared with human performance. Yet,
many research workers look on the idea of developing

their theories in the form of computer programs with
considerable suspicion. The reason … [i]n part … derives
from the fact that any large‐scale program intended to
model cognition inevitably incorporates components that
lack psychological plausibility …. The remedy … is not to
abandon computer programs, but to make a clear

distinction between a program and the theory that it is

intended to model. (Johnson‐Laird, 1981, pp. 185–186,
my italics)

[T]he … requirement – that we be able to implement [a
cognitive] process in terms of an actual, running
program that exhibits tokens of the behaviors in
question, under the appropriate circumstances – has far‐
reaching consequences. One of the clearest advantages
of expressing a cognitive‐process model in the form of a

computer program is, it provides a remarkable
intellectual prosthetic for dealing with complexity and
for exploring both the entailments of a large set of
proposed principles and their interactions. (Pylyshyn,
1984, p. 76, my italics):



[T]heories of mind should be expressed in a form that

can be modelled in a computer program. A theory may
fail to satisfy this criterion for several reasons: it may be
radically incomplete; it may rely on a process that is not
computable; it may be inconsistent, incoherent, or, like a
mystical doctrine, take so much for granted that it is
understood only by its adherents. These flaws are not
always so obvious. Students of the mind do not always
know that they do not know what they are talking about.
The surest way to find out is to try to devise a computer
program that models the theory. (Johnson‐Laird, 1988,
p. 52, my italics):

The basic idea is that a theory must be expressed in some

language. As an old saying has it, “How can I know what I
think till I see what I say?” (Wallas, 1926, p. 54). If you
don't express a theory in a language, how do you know
what it is? And if you don't write down your theory in some
language, no one can evaluate it. Scientific theories, in this
view, are sets of sentences. And the sentences have to be in
some language: some theories are expressed in a natural
language such as English, some in the language of
mathematics, some in the language of formal logic, some in
the language of statistics and probability. The claim here is
that some theories can be expressed in a programming

language.
One advantage of expressing a theory as a computer
program is that all details must be filled in. That is, a
computer program must be a full “implementation” of the
theory. Of course, there will be implementation‐dependent
details. There is certainly a difference between a theory
and the part of the world that it is a theory of. One such
difference is this:



Why should theories of all kinds make irrelevant
statements – possess properties not shared by the
situations they model? The reason is clearest in the case
of electromechanical analogues. To operate at all, they
have to obey electromechanical laws – they have to be
made of something – and at a sufficiently microscopic
level these laws will not mirror anything in the reality
being pictured. If such analogies serve at all as theories
of the phenomena, it is only at a sufficiently high level of
aggregation. (Simon and Newell, 1956, p. 74)

For another example, if the theory is expressed in Java,
there will be details of Java that are irrelevant to the theory
itself. This is an unavoidable problem arising whenever an
abstraction is implemented. It is only at a more abstract
level (“a sufficiently high level of aggregation”) that we can
say an implementation and a corresponding abstract theory
are “the same.” So, one must try to ensure that such details
are indeed irrelevant. One way to do so is to make sure two
computer programs expressing the same theory but are
written in two different programming languages – with
different implementation‐dependent details – have the
same input‐output, algorithmic, and data‐structure
behavior: i.e. that they fully emulate each other.4

In some of the passages quoted earlier, programs were said
to be models rather than theories. Arguably, however, this
is another advantage of expressing a theory as a computer
program: you can run the program to see how it behaves
and what predictions it makes. So, in a sense, the theory

becomes its own model and can be used to test itself. As
Joseph Weizenbaum (1976, pp. 144–145) says,



… theories are texts. Texts are written in a language.
Computer languages are languages too, and theories
may be written in them. … Theories written in the form
of computer programs are ordinary theories as seen from
one point of view. … But the computer program has the
advantage [over “a set of mathematical equations” or
even a theory written in English] not only that it may be
understood by anyone suitable trained in its language, …
but that it may also be run on a computer. … A theory
written in the form of a computer program is thus both a
theory and, when placed on a computer and run, a model
to which the theory applies.

Let's look at three explicit arguments for the conclusion
that computer programs can be scientific theories – two
due to Herbert Simon, and one from the Supreme Court.

14.3.2 Simon and Newell's Argument

from Analogies

An analogue  of a thing  is a thing different from  but
similar, parallel, or in some way equivalent (but not equal
or identical) to . Analogues, in this sense – and this
spelling – are related to analogies.



Spelling Digression: ‘Analog’ – spelled without the ‘ue’
– is the typical (American) spelling for a mathematically
continuous concept, usually contrasted with ‘discrete.’
The distinction between the two kinds of “analog(ue)s”
may not be a sharp one. Simon and Newell, 1956, p. 71,
suggest that analog computers (my spelling, not theirs!)
work by creating analogues (again, my spelling) of the
phenomenon they “represent.” For more on analogy, see
Hofstadter and Sander, 2013.

Simon and Newell, 1956 argued as follows: first, “All
theories are analogies, and all analogies are theories”
(p. 82). That is,
1.  is a theory of  iff  is an analogue of  .
More precisely, the content of a theory of  is identical to
the content of an analogue of . The only difference
between them is the way in which they are expressed. We
could equally well say that a syntactic theory of  (e.g. a
verbal or mathematical theory of ) is an analogue of 
(p. 75). In fact, their argument only needs the right‐to‐left
direction of this premise: all analogies are theories.
Next, a digital “computer is programed [sic] to carry out
the arithmetic computations called for in … [a]
mathematical theory. Thus, the computer is an analogue for
the arithmetic process” (p. 71; see also pp. 79–82). That is,

2. (Some) computer programs are analogies.
3.  (Some) computer programs are theories.

But what kind of theory is a computer program? According
to Simon and Newell, a theory is a set of statements, but
those statements could be



verbal: “Consumption increases linearly with income,
but less than proportionately” (p. 69),
mathematical: “ ” (p. 70,
col. 1),
or

analog:

The idea that the flows of goods and money in an
economy are somehow analogical to liquid flows is an
old one. There now exists a hydraulic mechanism …
one part of which is so arranged that, when the level
of the colored water in one tube is made to rise, the
level in a second tube rises …, but less than
proportionately. I cannot “state” this theory here,
since its statement is not in words but in water.
(p. 70)

Presumably they would classify programming languages as
being of the mathematical kind, from which it would follow
that computer programs are theories expressed in that
language. Alternatively, there seems to be no reason not to
admit a fourth kind of theory: namely, one expressed
computationally, e.g. in procedural language.
One reason theories expressed as computer programs may
be better than theories expressed in mathematics or
English (“verbally”) has to do with the idea that such
computational theories are analogies:



… what is the particular value of the computer analogy?
Why not work directly toward a mathematical (or verbal)
theory of human problem‐solving processes without
troubling about electronic computers? … it is at least
possible, and perhaps even plausible, that we are dealing
here with systems of such complexity that we have a
greater chance of building a theory by way of the
computer program than by a direct attempt at
mathematical formulation. (p. 81)

Note first that they seem to consider (some) computer
programs as analogy theories, not mathematical theories!
Second, computation is perhaps the best way of managing
complexity (as we saw in Section 3.16.2).
There are two advantages of expressing a theory in a
programming language. “First, we would experiment with
various modifications of the … program to see how closely
we could simulate in detail the observable phenomena”
(pp. 81–82). In other words, we can run the program to see
how it behaves – to see how good a theory it is – and we
can then modify the program (and then run the modified
version) to make it a better theory.
Second, the program can (or, at least, should) be written in
such a way that it explains what it is doing: “The computer,
however complex its over‐all program, could be programed
[sic] to report, in accurate detail, a description of any part
of its own computing processes in which we might be
interested” (p. 82). This, of course, can make it easier not
only to debug and improve the program but also to correct
and improve the theory. The ability – and the desirability –
of a program to explain its own behavior is also important
for the ethical use of computer programs; we'll return to
this in Section 17.6.2.



14.3.3 Simon's Argument from

Prediction

In a later essay, Simon said

These programs, which predict each successive step in
behavior as a function of the current state of the
memories together with the current inputs, are theories,
quite analogous to the differential equation systems of
the physical sciences. (Simon, 1996a, pp. 161–162)

An argument for the claim that (some) computer programs
are scientific theories can, perhaps, be constructed from
this:

1. Differential equation systems of the physical sciences
predict successive steps in physical processes as a
function of the current state together with the current
inputs.

2. Anything that allows prediction (of successive steps in
some process as a function of the current state
together with the current inputs) is a theory.

3.  Differential equation systems are theories (in
physics).

4. Cognitive computer programs predict successive steps
in human cognitive behavior as a function of the
current state of the memories together with the current
inputs.

5.  (Cognitive) computer programs are theories (in
psychology).

The point is that the reason we consider differential
equation systems to be theories – namely, their predictive
power (Section 4.4.3) – is the same reason we should
consider computer programs (cognitive ones in particular,
but other kinds of programs as well) to be theories.



Well, maybe not all computer programs. Arguably, a
computer program for adding two numbers or computing
income tax is not a theory. But maybe they should be
considered theories expressed computationally: a theory of
addition in the first case, a theory of taxation in the second!
Simon believes that computer programs are simultaneously
both theories and simulations:

Thus the digital computer provided both a means
(program) for stating precise theories of cognition and a
means (simulation, using these programs) for testing the
degree of correspondence between the predictions of
theory and actual human behavior. (Simon, 1996a,
p. 160)

Thus, for Simon, computer programs are a very special
kind of theory. Not only are they statements, but they are
simultaneously models – instances of the very thing they
describe. Well, perhaps not quite: they only become such
instances when they are being executed. This duality gives
them the ability to be self‐testing theories. And their
precision gives them the ability to pay attention to details
in a way that theories expressed in English (and perhaps
even theories expressed in mathematics) lack.
Simon hedges a bit, however:

… a program was analogous to a system of differential
(or difference) equations, hence could express a dynamic
theory. (Simon, 1996a, p. 161, my italics)

So, is it the case that a program is a theory? Or is merely
the case that a program expresses a theory? Perhaps this
distinction is unimportant. After all, it hardly seems to
matter whether a system of equations is a theory or merely
expresses a theory. (The distinction is roughly akin to that
between a sentence and the proposition it expresses.)5



14.3.4 Daubert vs. Merrell‐Dow

As we have seen, there are several questions to consider:
What is a computational theory (of )? Is it a theory? A
scientific theory?
Daubert v. Merrell‐Dow Pharmaceuticals, Inc.
(http://openjurist.org/509/us/579) was a 1993 Supreme
Court case “determining the standard for admitting expert
testimony in federal courts.” (See
https://en.wikipedia.org/wiki/Daubert_v._Merrell_Dow_Pha
rmaceuticals,_Inc. for an overview.)6 My colleague
Sargur N. Srihari recommended Daubert to me after his
experience being called as an expert witness on
handwriting analysis, on the grounds that his computer
programs that could recognize handwriting were scientific
theories of handwriting analysis.
Presumably, a computer scientist is an expert on CS. But is
a computer scientist who writes a computer program about
(or who develops a computational theory of)  (where 
CS) thereby an expert on ? Or must that computer
scientist become, or work with, an expert on ? (Recall
question 5 in Section 3.18 about who counts as being a
computer scientist.)
Two points that we have considered about the nature of
science and engineering were (1) Popper's view that a
statement was scientific to the extent that it was falsifiable
(Section 4.8.1) and (2) Simon's views about bounded
rationality (Section 5.6). These are nicely summarized in
three comments in Daubert:

http://openjurist.org/509/us/579
https://en.wikipedia.org/wiki/Daubert_v._Merrell_Dow_Pharmaceuticals,_Inc


… scientists do not assert that they know what is
immutably ‘true’ – they are committed to searching for
new, temporary theories to explain, as best they can,
phenomena. (Brief for Nicolaas Bloembergen et al. as
Amici Curiae 9, cited in Daubert at II.B.24 in the online
version, my italics)

Science is not an encyclopedic body of knowledge about
the universe. Instead, it represents a process for
proposing and refining theoretical explanations about
the world that are subject to further testing and
refinement. (Brief for American Association for the
Advancement of Science and the National Academy of
Sciences as Amici Curiae 7–8, cited in Daubert at II.B.24)
… there are important differences between the quest for
truth in the courtroom and the quest for truth in the
laboratory. Scientific conclusions are subject to
perpetual revision. Law, on the other hand, must resolve
disputes finally and quickly. (Daubert, at III.35)

Supreme Court Justice Harry Blackmun, writing in Daubert
at II.B.24 and citing the first two of these quotes, stated
that “in order to qualify as ‘scientific knowledge,’ an
inference or assertion must be derived by the scientific
method.” So, if a computer program that can, say, identify
handwriting is a good scientific theory of handwriting, is its
creator a scientific expert on handwriting?
There are two concerns with this: first, a computer
program that can identify handwriting need not be a good
scientific theory of handwriting. It might be a “lucky guess”
not based on any scientific theory, or it might not even
work very well outside carefully selected samples. Second,
even if it is based on a scientific theory of handwriting and
works well on arbitrary samples, the programmer need
only be a good interpreter of the theory, not necessarily a



good handwriting scientist. However, if a computer
scientist studies the nature of handwriting and develops a
scientific theory of it that is then expressed in a computer
program capable of, say, identifying handwriting, then it
would seem to be the case that that computer scientist is
(also) a scientific expert in handwriting.
Blackmun, writing in Daubert at II.C.28, suggests four tests
of “whether a theory or technique is scientific knowledge.”
Note that this could include a computer program as a
“technique,” whether or not such programs are (scientific)
theories:

Testability (and falsifiability) (II.C.28): Computer
programs would seem to be scientific on these grounds
because they can be tested and possibly falsified by
simply running the program on a wide variety of data to
see if it behaves as expected.
Peer review (II.C.29): Surely a computer program can
(and should!) be peer reviewed.
Error rate (II.C.30): It's not immediately clear what
Blackmun might have in mind here, but perhaps it's
something like this: a scientific theory's predictions
should be within a reasonable margin of error. To take
a perhaps overly simplistic example, a polling error of 

 points is not a very accurate (“scientific”)
measurement, nor is a measurement error of 

 inches if made with an ordinary
wooden ruler. In any case, surely a computer program's
errors should be “reasonable.”
General acceptance (II.C.31): A computer program
that is not based on a “generally accepted” scientific
theory or on “generally accepted” scientific principles
would not be considered scientific.



Whether or not Blackmun's four criteria are complete or
adequate is not the point here. The more general point is
that whatever criteria are held to be essential to a theory

being considered scientific should also apply to computer
programs that are under consideration.7



14.4 Computer Programs Aren't

Theories

However, philosophers James Moor (1978, Section 4) and
Paul Thagard (1984) argue that computer programs are not

theories, on the grounds that they are neither sets of
(declarative) sentences nor set‐theoretic models of axiom
systems.

14.4.1 Moor's Objections

Moor (1978, pp. 219–220) says that computer models
simulate phenomena in the real world and that models
“help [us] understand and test theories.” He also warns
that

computer scientists often speak as if there is no
distinction among programs, models, and theories; and
discussions slide easily from programs to models and
from models to theories. (p. 220)

There is no question that this is the case, as might be clear
from our earlier discussion, but what picture does Moor
himself provide? Presumably a theory is a kind of
description of part of the real world. A model helps us
understand the theory; hence it only indirectly helps us
understand the world. Yet a (computer) model is said to
simulate the world. Here is one way to make sense of this:
a theory is a syntactic domain that has two semantic
interpretations – one semantic domain is the real world; the
other is a (computer) model of the real world. Presumably
the computer model is easier to understand (and to
manipulate) than the real world, which is why it can help us
test the theory.



This is consistent with what Moor says next:

One can have a theory, i.e., a set of laws used to explain
and predict a set of events, without having a model
except for the subject matter itself. Also, one can have a
model of a given subject matter, i.e., a set of objects or
processes which have an isomorphism with some portion
of the subject matter, without having a theory about the
subject matter. (p. 220)

So, for Moor, there are three independent things: a portion
of the real world (the “subject matter”); a theory about the
real world, which offers explanations, predictions, and
(presumably) descriptions of (a portion of) the real world;
and a model of the real world, which could be a set‐
theoretic object that is isomorphic to (a portion of) the real
world. But if the theory describes the real world, then it
also describes a model that is isomorphic to the real world.
That's why I said the syntactic domain that is the theory
has both the real world and the model of the real world as
two semantic interpretations of it.
Now, what about computer programs as models? Moor says
that a computer model “is … more than just a computer
program” (p. 220, my italics): to turn a computer program
into a computer model, he says, you need a semantic
interpretation function between the program and the
portion of the real world it is modeling. I think that makes
sense: the program is merely a syntactic object; the parts of
the program need not “wear their meanings on their
sleeve,” so to speak. We saw this in Section 13.2.3 when we
noted that a “person record” that had slots for things like
“name” and “age” (hence “obviously” modeling a real
person – at least, “obviously” to a user of the program)
would work just as well as a “PR” record that had slots
unobviously labeled ‘g100’ or ‘g101.’ To know that such a
computer program modeled a person, one would have to



know that ‘g100’ was to be semantically interpreted as a
name and that its value (n456, in our example) was to be
semantically interpreted as the name ‘Howard L. Jones.’
So far, so good. But Moor goes on to say that it is a “myth”
that a computer program that is a model of a real‐world
phenomenon is therefore a theory of that phenomenon:

The model/theory myth occurs in computer science when
the model/theory distinction is blurred so that
programming a computer to generate a model of a given
subject matter is taken as tantamount to producing a
theory about the subject matter or at the very least an
embodiment of a theory. (pp. 220–221)

One of his reasons for this conclusion that programs are
not theories is that “The theory must be statable
independently of the computer model” (p. 221). He has
already marked the distinction between a theory, a
program, and a model. And he allows that programs can be
models (of the world) if they have a semantic interpretation
in terms of the world.
But why couldn't a program also be a theory? Theories, for
Moor, must explain and predict. Wouldn't a computer
program be able to do that? Suppose we want to have a
scientific understanding of some portion of the real world
in which we observe that certain causes always have
certain effects. Suppose we have a computer program in
which computer analogues of those causes always
computationally yield computer analogues of those effects.
Would not the program itself explain how this occurs? And
would we not be able to use the program to make
predictions about future effects from future causes? More
to the point, why would we need a separate

(“independent”) “set of laws” (presumably expressed in
declarative sentences)?



Another reason that Moor offers for why a computer
program that successfully models the real world is not
thereby a theory of the world is that the program might be
“ad hoc” (p. 221). He gives as an example Joseph
Weizenbaum's Eliza program that simulates a Rogerian
psychotherapist not by embodying a theory of Rogerian
psychotherapy, but by “superficial analysis of semantic and
syntactic cues” (p. 221). But at most, that shows that not
all computer programs are theories. The question of
whether a computer program can be a theory remains
open.
A third reason he provides is this:

The program will be a collection of instructions which
are not true or false, but the theory will be a collection of
statements which are true or false.
(pp. 221–222, my italics)

And this, I think, is his real reason for arguing that
programs are not theories: they are procedural, not
declarative. They tell you how to do things, not how things
are. But why must theories be declarative? Recall our
earlier discussion in Section 3.16.3 of procedural vs.
declarative language. There, we saw not only that those
two kinds of language can (often) be intertranslatable but
also – more to the point – that the statements of
programming languages such as Prolog can be interpreted
both procedurally and declaratively. Arguably, a declarative
theory expressed in Prolog would also be a computer
program.

14.4.2 Thagard's Objections

Thagard (1984) argues that on both the “syntactic” and the
“semantic” conceptions of what a theory is, computer
programs are not theories. He also argues that programs



are not “models.” Rather, “a program is a simulation of a
model which approximates to a theory” (p. 77, my italics).
So, in Thagard's view, we have

= some aspect of the real word
= a theory about 
= a model of 
= a program that simulates 

On the syntactic theory of theories, a theory is a set of
sentences (perhaps expressed as a formal system with
axioms). On the semantic theory of theories, “theories are
definitions of kinds of systems” (p. 77). Presumably he will
argue that a program is neither a set of sentences nor a
definition (of a kind of system). He has not yet said what a
“model” is.
Along with Moor, Thagard argues that because programs
are sets of instructions, which do not have truth values and
hence are not sentences, programs cannot be theories in
the syntactic sense (pp. 77–78). We have just seen a
problem with this. Let's consider it further.
Suppose we are looking for a buried treasure. I might say,
“I have a theory about where the treasure is buried: walk
three paces north, turn left, walk five paces, and then dig.
I'll bet you find the treasure.” Is this not a theory? I
suppose Thagard might say it isn't. But isn't there a
sentential theory that is associated with it – perhaps
something like “The treasure is buried at a location that is
three paces north and five paces west of our current
location”? Doesn't my original algorithm for finding the
treasure carry the same information as this theory, merely
expressing it differently? The argument that Thagard
makes that programs can't be theories because they are not
sets of declarative sentences just seems parochial. They are



surely sets of (imperative) statements that have the
additional benefit that they can become an instance of what
they describe (alternatively: that they can control a device
that becomes an instance of what they describe).
Thagard (1984, p. 78) considers a model to be “a set‐
theoretic interpretation of the sentences in a [syntactic]
theory …. … a system of things … which provide an
interpretation of the sentences.” But “a program is not … a
system of things, nor does it … provide an interpretation for
anything.” Hence, a program is not a model. But a program
being executed – a process – can be considered a system of
(virtual) things that are interpretations of data structures
in the program. If a process might be a model, then why
couldn't the program be a theory?
On the semantic or “structuralist” (p. 78) view of theories,
a theory “is a definition of a kind of natural system” (p. 79).
Given some scientific laws (which, presumably, are
declarative, truth‐functional sentences, perhaps expressed
in the language of mathematics), we would say that
something is a certain kind of natural system “if and only if
it is a system of objects satisfying” those laws. The system
is defined as being something that satisfies those laws. But
this seems very close to what a model is. In fact, Thagard
says that a “real system  is a system of the kind defined
by the theory ” (p. 79). But how is that different from
saying that  is an implementation of (i.e. a model of) ?
Thagard's response is that, first, “a program simulates a
system: it does not define a system” and that, second,
programs contain “a host of characteristics which we know
to be extraneous” to the real system that they are supposed
to be like (p. 79). He says this because simulations aren't
definitions: a simulation of the solar system, to use his
example, doesn't define the solar system. (Recall Section
9.7.2.) This seems reasonable, but it also seems to support



the idea that a process (not necessarily a program) is a
model and hence that a program would be a theory.
As for the problem of implementation‐dependent details,
Thagard says that

if our program [for some aspect of human cognition] is
written in LISP, it consists of a series of definitions of
functions. The purpose of writing those functions is not
to suggest that the brain actually uses them, but to
simulate at a higher level the operation of more complex
processes such as image … processing. (p. 80)

In other words, the real system that is being simulated
(modeled?) by the program (process?) need not have Lisp
functions. But as he notes, it will have “complex processes”
that do the same thing as the Lisp functions. But isn't this
also true of any theory compared to the real system it is a
theory of? A theory of cognitive behavior expressed in
declarative sentences will have, say, English words in it,
but the brain doesn't. A similar point is made by Paul
Humphreys (1990, p. 501):

>
Inasmuch as the simulation has abstracted from the
material content of the system being simulated, has
employed various simplifications in the model, and uses
only the mathematical form, it obviously and trivially
differs from the ‘real thing,’ but in the respect, there is
no difference between simulations and any other kind of
mathematical model ….

Thagard does admit that he “shall take models to be like
theories (on the semantic conception) as being definitions
of kinds of systems” (p. 80). And he notes that “a model
contains specifications which are known to be false of the
target real system” – i.e. implementation‐dependent
details! According to Thagard, the problem with this is that



if you try to make a prediction about the real system based
on the model, you might erroneously make it based on one
of these implementation‐dependent details (pp. 80–81). But
that seems to be a problem endemic to any model (or any
theory, for that matter).
If you make a prediction that turns out to be false, you may
have to change your theory or your model. Perhaps you
have to eliminate that implementation‐dependent detail.
But others will always crop up; otherwise, your theory or
model will not merely describe or simulate the real system;
it will be the real system. But there are well‐known reasons
why a life‐sized map of a country is not a very good map!
(We'll return to this in Section 15.6.2.)
However, Thagard's final summary is not really the
wholesale rejection of programs as theories that it might
first appear to be. It is more subtle:

a program , when executed on a computer, provides a
simulation of a system of a kind defined by a model ,
where  defines systems which are crude versions of
the systems defined by a theory , and the set of
systems defined by  is intended to include the real
system . (p. 82)

I can live with this: both  and  are implementations of 
.



Notes

1 On emulation as simulation by a virtual machine, see
Denning and Martell, 2015, p. 212.

2 Unless a PDF is the original document!

3 See the Online Resources for further reading on
simulation .

4 In alternative terminology, by implementing the
theory in two different programming languages, you
“divide out” the irrelevant implementation‐
dependent details (Rapaport, 1999, Section 3.2;
Rapaport, 2005b, p. 395).

5 See the Online Resources for further reading on
Simon's views .

6 The period at the end of ‘Inc.’ is part of the URL.

7 See the Online Resources for further reading on
computer programs as scientific theories.

https://cse.buffalo.edu/~rapaport/OR/A0fr14.html#14.2
https://cse.buffalo.edu/~rapaport/OR/A0fr14.html#14.3.3
https://cse.buffalo.edu/~rapaport/OR/A0fr14.html


15 

Computer Programs as

Mathematical Objects

Mechanical computers should, Babbage thought, offer a
means to eliminate at a stroke all the sources of mistakes
in mathematical tables. … A printed record could … be
generated …, thereby eliminating every opportunity for
the genesis of errors. … Babbage boasted that his
machines would produce the correct result or would jam
but that they would never deceive.
—Doron D. Swade (1993, pp. 86–87)
We talk as if these parts [of a machine] could only move
in this way, as if they could not do anything else. How is
this – do we forget the possibility of their bending,
breaking off, melting, and so on?
—Ludwig Wittgenstein (1958, Section 193)

Present‐day computers are amazing pieces of equipment,
but most amazing of all are the uncertain grounds on
account of which we attach any validity to their output. It
starts already with our belief that the hardware functions
properly.
—Edsger W. Dijkstra (1972, p. 3)
The history of program verification … has now expanded
to be about nothing less than the nature of the
relationship between abstract logical systems and the
physical world.
—Selmer Bringsjord (2015, p. 265)



15.1 Introduction

Whether or not CS in its entirety is (nothing but) a
mathematical or formal science (as we considered in
Section 3.9), aspects of it certainly are mathematical: the
theory of computation, computational complexity, and,
arguably, programming languages and computer programs.
In this chapter, we will examine one of the ways in which
programs can be treated as mathematical objects about
which theorems can be proved.

15.1.1 Bugs and Intended Behavior

The Halting Problem (Section 7.7) tells us that it is not
possible to have a single computer program that can tell us
in advance whether any given computer program will halt.
However, given a specific computer program, there might
be ways of determining whether that particular program
will halt. What about other problems that computer
programs might have? It would be useful to be able to know
in advance whether a given computer program will work.
But what does it mean to say that a program “works”? It
could mean the program successfully transforms its input
into output in the sense that when you start it up, it
finishes. It could mean the program not only finishes but
also has no logical “bugs” (such as dividing by 0 or having
an unintended infinite loop) that would cause it to “crash.”
It could mean the program it not only finishes without bugs
but yields the correct output. It could mean the program
not only finishes without bugs or incorrect output but also
does what it was intended to do.1

On the TV cooking competition “Chopped,” chefs are
sometimes eliminated from competition because they tell
the judges that the dish they just prepared is, say, a



puttanesca, but the judge says it isn't, on the grounds that
it includes some ingredient that it shouldn't (or vice versa).
Yet the dish might be delicious. Had the chef not said that
it was a puttanesca, the chef might not have been chopped.
Does it matter what the chef calls the dish? Is a delicious
dish unsuccessful because it has a misleading name? A
similar problem can occur with computer programs.
Consider this:



… we cannot, by observing its output behavior, acquire
the knowledge that a physical computer is operating
normally, that it is correctly computing the values of a
function F, that it is executing program P, and that it is
using data structure D. … [P]hysical computers can
break down in various ways, and when they do, they
might not physically realize the … function which the
computer would correctly compute if it did not break
down. … When a physical computer is functioning
normally in the computation of the values of some
function F, it will output the correct range value for F
when it is given as input a domain value for F. However,
there might be another function G which the same
physical computer might be computing. When the
physical computer is operating normally in the

computation of F it is suffering a breakdown in the

computation of G. By examining only its output behavior,
one cannot determine whether it is operating normally
(in the computation of F) or suffering a breakdown (in
the computation of G). Similarly, by examining only its
output behavior, one cannot determine whether it is
operating normally (in the computation of G) or suffering
a breakdown (in the computation of F). The problem is
that what is breakdown behavior in the computation of F
is normal behavior in the computation of G. Whether this
physical computer is operating normally or suffering a
breakdown is relative to which it is actually computing.
(Buechner, 2018, pp. 496–497)

Does this mean we might not ever be able to decide if a
computer is doing what it is “supposed” to be doing? Is this
an even more serious problem than merely determining
whether a program “works” (in any of the senses of ‘works’
that we just mentioned)? What if we are not limited to
examining only the output? On the other hand, what if that
is the only thing that can be examined (as might be the



case with some “black box” machine‐learning algorithms;
see Sections 3.11 and 17.6.2)? (On the nature of
“miscomputation,” see Dewhurst, 2020. We'll return to this
in Section 16.5.)

15.1.2 Proofs and Programs

Many of these issues concern the relationship of
mathematics to the real world2 and also touch on ethical
problems:

1. Many, if not most, errors in software engineering
occur when bridging the gap between the informal,
real world and the formal world of mathematical
specifications. …

2. Even if software engineers have a clear‐cut
specification of how they intend their software to
behave, they will at best be able to prove that a
mathematical model of their software satisfies this
specification, not that the software will have the
desired effects in the real world. (Daylight, 2016,
p. viii)

Is there a way to logically prove that a computer program
“works”?
Recall our discussions of the dual mathematical and
engineering natures of CS: Is computer programming a
kind of mathematics? Or is it a kind of engineering? Many
people identify computer programming with “software
engineering.” Yet many others think of a program as being
like a mathematical proof: a formal structure, expressed in
a formal language. For example, Peter Suber (1997a)
compares programs to proofs this way: a program's input is
analogous to the axioms used in a proof; the program's
output is analogous to the theorem being proved; and the



program itself is like the rules of inference that transform
axioms into theorems, with the program transforming the
input into the output. Or perhaps a program is more like
the endpoint of a proof: namely, a mathematical theorem.
In that case, just as theorems can be proved (and, indeed,
must be proved before they are accepted), perhaps
programs can be proved (and, perhaps, should be proved
before they are used). (We'll explore these analogies
further in Section 15.2.2.)
Are programs mathematical objects about which we can
prove things? What kinds of things might be provable about
them? Two answers have been given to the first of these
questions: yes and no. (Did you expect anything else?)
One of the most influential proponents of the view that
programs can be the subjects of mathematical proofs is
Turing Award winner C.A.R. (Tony) Hoare (the developer of
the Quicksort sorting algorithm):

Computer programming is an exact science in that all
the properties of a program and all the consequences of
executing it in any given environment can, in principle,
be found out from the text of the program itself by means
of purely deductive reasoning. … When the correctness
of a program, its compiler, and the hardware of the

computer have all been established with mathematical
certainty, it will be possible to place great reliance on
the results of the program, and predict their properties
with a confidence limited only by the reliability of the

electronics. (Hoare 1969, pp. 576, 579; my italics)



I hold the opinion that the construction of computer
programs is a mathematical activity like the solution of
differential equations, that programs can be derived
from their specifications through mathematical insight,
calculation, and proof, using algebraic laws as simple
and elegant as those of elementary arithmetic. (Hoare
1986, p. 115, my italics)

Among those arguing the opposite point of view are the
computer scientists Richard DeMillo, Richard Lipton, and
Alan Perlis:

… formal verifications of programs, no matter how
obtained, will not play the same key role in the
development of computer science and software
engineering as proofs do in mathematics. (De Millo et al.,
1979, p. 271)

One reason that they give for this is their view that formal
proofs are long and tedious and don't always yield
acceptance or belief. (One of my college friends always
advised that you had to believe a mathematical proposition
before you could try to prove it.) Hence, they argue, it is
not worthwhile trying to formally verify programs.
The epigraph to their essay (slightly incorrectly quoted) is
the following quotation from J. Barkley Rosser's logic
textbook:

“I should like to ask the same question that Descartes
asked. You are proposing to give a precise definition of
logical correctness which is to be the same as my vague
intuitive feeling for logical correctness. How do you
intend to show that they are the same?” … [T]he average
mathematician … should not forget that intuition is the
final authority …. (Rosser, 1978, pp. 4, 11)



The similarity to the Church‐Turing Computability Thesis –
which also states an equivalence between a “precise”
notion and a “vague intuitive” one – is not accidental: recall
from Section 7.3.2 that Rosser – a pioneer in computability
theory – was one of Church's Ph.D. students.
The “Descartes” mentioned in the passage is not the real
Descartes but a fictional version visited by a time‐traveling
mathematician who tries to convince him that the modern
and formally “precise” ‐  definition of a continuous curve
is equivalent to the fictional Descartes's “vague intuitive”
definition as something able to be drawn without lifting
pencil from paper. Rosser observes that “the value of the 
‐  definition lies mainly in proving things about continuity
and only slightly in deciding things about continuity” (p. 2,
my italics). “Descartes” then says this to the time‐traveling
mathematician,

“I have here an important concept which I call
continuity. At present my notion of it is rather vague, not
sufficiently vague that I cannot decide which curves are
continuous, but too vague to permit of careful proofs.
You are proposing a precise definition of this same
notion. However, since my definition is too vague to be
the basis for a careful proof, how are we going to verify
that my vague definition and your precise definition are
definitions of the same thing?” (Rosser, 1978, p. 2)

The time traveler and “Descartes” then agree that despite
the informality of one definition and the formality of the
other, the two definitions can be “verified” – but not
“proved” – to be equivalent by seeing that they agree on a
wide variety of cases. When the mathematician returns to
the present, a logician points out that the mathematician's
intuitive notion of proof bears the same relation to the
logician's formal notion of proof as the fictional Descartes's
intuitive notion of continuity bears to the mathematician's



formal definition of continuity. The passage that De Millo et
al. (1979, p. 271) quote is the mathematician's response to
the logician in the story. (It is the real logician Rosser, in
his own voice, who comments that “intuition is the final
authority”!)
So, Hoare says that programs can and should be formally
verified. DeMillo et al. (and Rosser, perhaps) suggest that
they can but need not be. Along comes the philosopher
James Fetzer, who argues that they cannot. More precisely,
he argues that the things we can prove about programs are
not what we think they are:

… there are reasons for doubting whether program
verification can succeed as a generally applicable and
completely reliable method for guaranteeing the
performance of a program. (Fetzer, 1988, p. 1049)

We'll come back to DeMillo et al. in Section 15.3.3. But
first, what does it mean to formally verify a program?
Before we can answer that, we need to be clear about what
it means to verify – i.e. to prove – a theorem.3



15.2 Theorem Verification

15.2.1 Theorems and Proofs

A formal proof in logic or mathematics is a certain
sequence of propositions, beginning with axioms and
ending with a theorem. A “proposition” is what computer
scientists call a ‘Boolean statement’: i.e. a statement that is
either true or false. The proofs themselves (the sequences

of propositions) are not Boolean‐valued: they are neither
true nor false; rather, they are either “correct” (the
technical terms are ‘valid’ and ‘sound’) or “incorrect”
(technically, ‘invalid’ or ‘unsound’). (Recall Section 2.9.)

Syntax However, the actual truth values of the
propositions in a proof are irrelevant to the structure of the
proof. From a purely syntactic point of view, a proof of a
theorem  has the general form of a sequence

where
 – the last item in the sequence of propositions that

constitutes the proof – is the theorem to be proved.
The  are axioms: i.e. propositions that are “given” or
“assumed without argument.” They are the starting
points – the “basic” or “primitive” propositions – of any
proof, no matter what the subject matter is. From a
strictly syntactic point of view, the axioms of a formal
system need not be (semantically) “true.”4

The  are premises: i.e. propositions about some
particular subject matter that is being formalized. They



are also “starting points,” accepted – at least for the
sake of the proof – without further argument.
The  are propositions that logically follow from
previous propositions in the sequence by a “rule of
inference.” A rule of inference can be thought of as a
“primitive proof” in the same sense as the “primitive”
operations of a Turing Machine or the “basic” functions
in the definition of recursive functions. A rule of

inference has the form:

From propositions 

you may infer proposition 
(See Section 2.5.1 for an example.) Just as with
axioms, the rules of inference are given by fiat. The
rules of inference are syntactically valid by definition.
Note that if  (i.e. if there are no axioms, and,
especially, if  also – i.e. if there are no premises),
then there will typically have to be lots of rules of
inference, and the demonstration is then said to be
done by “natural deduction” (because it is the way that
logicians “naturally” prove things) (Pelletier, 1999;
Pelletier and Hazen, 2021).

A more complex proof is then recursively defined in terms
of successive applications of rules of inference. Then, to say
that the sequence

is a proof of  from the axioms and premises means (by
definition) that each  and  follow from previous
propositions in the sequence by a (syntactically valid) rule
of inference. A proof is syntactically valid iff the final
conclusion  and every intermediate conclusion  results



from a correct application of a rule of inference to
preceding propositions in the proof.

Semantics What about truth? Surely, we want our
theorems to be true!
First, from a semantic point of view, the axioms are
typically considered necessarily true by virtue of their
meanings (or assumed to be true for the time being); they
are usually logical tautologies. Premises, on this account,
are contingently or empirically assumed to be true (but
they would normally require some justification). For
example, often you need to justify a premise  by
providing a proof of  or at least some empirical evidence
in its favor.
Second, just as, normally, we want our axioms and
premises to be (semantically) true, so, normally, we want
our rules of inference to be (semantically) truth‐preserving.
A rule of inference (of the previous form) is truth‐

preserving  if each of  is true, then  is
true. This does not mean  is true; all it means is that  is
true relative to . As we saw with axioms, from a
purely syntactic point of view, rules of inference do not
have to be truth‐preserving.5 A truth‐preserving rule of
inference is said to be semantically valid.
Finally, in order for theorem  to be true, each rule of
inference (and therefore the entire proof) must be
semantically valid: i.e. it must be truth‐preserving – its
conclusion must be true if its axioms and premises are true.
But of course, the axioms and premises of an argument
might not be true. If they are true, and if the argument is
semantically valid, then its conclusion must be true. Such a
truth‐preserving argument with true premises is said to be
sound; hence, it is unsound iff either one or more of its



axioms or premises is false or it is syntactically invalid.
Roughly, a syntactically valid argument that is unsound
because of a false axiom or premise is like a correct
program whose input is “garbage”; the output of such a
program is also “garbage” (as in the famous saying:
“garbage in, garbage out”). And the final conclusion of a
syntactically valid but semantically invalid proof need not
be true.
But for a syntactically valid proof to also be semantically

valid, the rules of inference must be truth‐preserving. And
for it to be sound, the axioms must be true. (Recall Sections
2.5.1 and 2.9.)
It is, strictly speaking, incorrect to say that a theorem is
“proved to be true.” ‘Proof’ and ‘theorem’ are syntactic

notions, while ‘truth’ is a semantic notion. Theorems do not
have to be true: a syntactically valid proof that began with
a false axiom or a false premise might end with a theorem
that is also false (or it might end with a theorem that is
true!). And a truth need not be a theorem: Gödel's
Incompleteness Theorem shows that there are true
propositions of arithmetic that are not provable. The
conclusion of any formal proof – i.e. any theorem – is only
true relative to the axioms (and premises) of the formal
theory (Hempel, 1945, p. 9; Rapaport, 1984, p. 613; recall
Section 2.5.1). Of course, if all the axioms (and premises)
are true, and if all the rules of inference are truth‐
preserving, then the theorem that has been (syntactically)
proved will be (semantically) true. (We'll come back to this
point in Section 15.4.1.)

15.2.2 Programs and Proofs

How is all this applicable to programs? That depends on
how the logical paraphernalia (axioms, rules of inference,



proofs, theorems, etc.) line up with the computational

paraphernalia (specifications, input, programs, output,
etc.). Several different analogies can be made, but all such
analogies must “be taken with a big grain of salt, since all
these words can mean many things” (Scherlis and Scott,
1983, p. 207):

A1: Fetzer's and Suber's Analogy (Fetzer, 1988,
p. 1056, col. 1; Suber, 1997a)

Logic Computation

axioms, premises input
rules of inference program
theorem output

On this analogy, verifying a program would be like proving
the inference rules! But inference rules are not
propositions, so they can't be proved. So, a slight
modification of this is analogy A2:

A2:

Logic Computation

axioms, premises input
intermediate conclusions program
theorem output

Both intermediate conclusions and program are a sequence
(or at least a set) of expressions that begin with something
given and end with a desired result. But you are trying to
prove the theorem; you are not trying to prove the
intermediate conclusions. And you verify an entire
program, not just its output. So, let's consider analogy A3:

A3: Scherlis and Scott's Analogy (Scherlis and Scott,
1983, p. 207)

Logic Computation



problem specification
proof program derivation (or verification)
theorem program

On this analogy, proving a theorem is like verifying or
deriving a program. But the role of axioms (and premises)
and rules of inference are not made clear. So, let's try a
slightly different modification of A2:

A4:

Logic Computation

axioms, premises input
proof program
theorem output

Just as when you prove (or derive) a theorem, you
transform the axioms into the theorem, so a program
transforms input into output. To verify a program is to
prove that it will, indeed, transform the input into the
expected output – i.e. that it will satisfy its specification.
This analogy seems closer to what program verification is
all about. (We'll refine it in Section 15.2.3.)

A5: There is one more analogy: the idea behind this one is
that a theorem usually has the form “if antecedent ,
then consequent .” And most programs can be put
into the form “if you execute program , then you will
accomplish goal .” So, proving a theorem is
analogous to verifying that  accomplishes . One
issue that this analogy highlights is whether the goal

of a program is an essential part of it. We'll return to
this issue beginning in Section 16.3.

15.2.3 Programs, Proofs, and Formal

Systems



There is another way to think about rules of inference that
clarifies the relationship between programs, proofs, and
formal systems.
First, consider Gödel's observation about the importance of
Turing's analysis of computation. Although here I only want
to focus on Gödel's first sentence, it is worth quoting the
rest because of his observations on other topics that we
have discussed:

[D]ue to A.M. Turing's work, a precise and

unquestionably adequate definition of the general

concept of formal system can now be given …. Turing's
work gives an analysis of the concept of “mechanical
procedure” (alias “algorithm” or “computation
procedure” …). This concept is shown to be equivalent
with that of a “Turing machine.” A formal system can
simply be defined to be any mechanical procedure for
producing formulas, called provable formulas. For any
formal system in this sense there exists one in the sense
… [of “a system of symbols with rules for employing
them” – p. 41] that has the same provable formulas (and
likewise vice versa) …. [The “essence” of] the concept of
formal system … is that reasoning is completely replaced
by mechanical operations on formulas. (Note that the
question of whether there exist finite non‐mechanical
procedures … not equivalent with any algorithm, has
nothing whatsoever to do with the adequacy of the
definition of “formal system” and of “mechanical
procedure.”) (Gödel, 1964, pp. 71–72, my italics, original
underlining)

Recall our discussion in Section 13.2.2 of Turing Machines
as formal systems. In what sense is a Turing Machine a
kind of formal system?
As we have seen, a rule of inference tells you what kind of
proposition can be inferred from other kinds. So, for



instance, the rule Modus Ponens (also sometimes called “
 elimination”) tells us that a proposition of the form 

(that is, any proposition whatsoever) can be inferred from
the two propositions of the forms  and . And the
rule of Addition (sometimes also called “and‐introduction”
or “  introduction”) tells us that a proposition of the form 

 can be inferred from the two propositions  and 
.
Each of these rules can also be thought of as functions:
Modus Ponens is the function MP ;
addition is the function ADD . A proof of a
theorem  from axioms (and premises)  can then
be thought of as successive applications of such inference‐
rule functions to the axioms and to the previous outputs of
such applications. Are these functions (these rules of
inference) computable? If so, then a proof can be thought
of as a kind of program.

BoxII

Exercise for the Reader: Show that a typical rule of
inference is, indeed, computable. Hint: Can you write a
Turing Machine program that has the inputs to a rule of
inference encoded on its tape and that, when executed,
has the output of the rule encoded on the tape?

But this raises an interesting question: Do any of our
analogies capture this relationship? Is verifying a program
really like proving a theorem? The relationship I have just
outlined suggests that if a program is like a proof, then
verifying a program is actually more like checking a proof
to show that it is syntactically valid. To check a proof for
validity is to check whether each proposition in the
sequence of propositions that constitutes the proof is either



a basic proposition (an axiom) or follows from previous
propositions in the sequence by a rule of inference (by the
application of an inference‐rule function).
Let's consider a program that is a sequence of instructions:

begin end.

Annotate each  with two Boolean‐valued comments, 
, so that the program looks like this:

begin end.

 will play the role of an axiom, and each proposition of
the form

If  is the case, and if  is executed, then  is the
case

will play the role of an application of a rule of inference to
the “inputs”  and . The final state of the computation – 

 – plays the role of the theorem to be proved. Just as
(roughly) any theorem is really of the form  (if the
axioms are the case, then the theorem is the case), so a
program can be thought of as taking the form “If  is
input, then  is output,” which is a high‐level (i.e.
functional, or input‐output) specification of the program. To
verify the program is to check that it satisfies the
specification.
This gives us a refinement of analogy A4:

A4.1:

Logic Computation

axioms input
rules computable functions
theorem output



proof program
valid proof verified program



15.3 Program Verification

15.3.1 Introduction and Some History

“Program verification” is a subdiscipline of CS. It can be
thought of as theoretical software engineering or the study
of the logic of software. It is also a subissue of the question
concerning the relation of software to hardware that we
looked at in Section 12.3.
But it is not a new idea. Nowadays, we think of Euclidean
geometry as a formal axiomatic system in which geometric
theorems are stated (in declarative language) and proved to
follow logically from the axioms. However, as we saw in
Section 3.16.3, each proposition of Euclid's original
Elements actually consisted of an algorithm (expressed in a
procedural language for constructing a geometric figure
using only compass and straightedge) and a proof of

correctness of the algorithm – that is, a “verification” that
the compass‐and‐straightedge “program” actually resulted
in a geometric figure with the desired properties. (See, for
example, the statement of Euclid's Proposition 1 at
http://tinyurl.com/kta4aqh or
http://data.perseus.org/citations/urn:cts:greekLit:tlg1799.tl
g001.perseus‐eng1:1.prop.1.)
Similarly, a program verification typically consists of taking
an algorithm expressed in a (procedural) language for
computing a function using only primitive computable (i.e.
recursive) operations (as in Section 7.6) and then providing
a proof of correctness of the algorithm – i.e. a verification
that the algorithm satisfies the input‐output specification of
the function (as in analogies A3 and A4).
In practice, there is a preliminary step, which will occupy us
for much of Chapter 16: typically, one begins with a

http://tinyurl.com/kta4aqh
http://data.perseus.org/citations/urn:cts:greekLit:tlg1799.tlg001.perseus-eng1:1.prop.1


problem (or “goal”), perhaps informally stated, which is
then formally modeled by a function. So, another possible
goal of program verification might be to show that the
program that implements the function actually solves the
problem (as in analogy A5).
Another historical antecedent – perhaps the earliest
example of program verification – is due to Turing himself.
His 1949 essay (“Checking a Large Routine”) “is
remarkable in many respects. The three … pages of text
contain an excellent motivation by analogy, a proof of a
program with two nested loops, and an indication of a
general proof method very like that of Floyd [1967]”
(Morris and Jones, 1984, p. 139).6

15.3.2 Program Verification by Pre‐

and Post‐Conditions

The idea behind program verification is to augment, or
annotate, each statement  of a program (as we did in
Section 15.2.3) with

1. a proposition  expressing a “pre‐condition” of
executing  and

2. a proposition  expressing a “post‐condition” of
executing .

A pre‐condition  of a program statement  is a
description (of a situation, either in the world in which the
program is being executed or in the computer that is
executing the program) that must be true in order for  to
be able to be executed; i.e.  must be true before  can be
executed. (And according to the correspondence theory of
truth (Section 2.3.1),  will be true iff the situation that it
describes “exists,” i.e. really is the case.)



A post‐condition  of  is a description (of a situation)
that will necessarily be true after  is executed. That is, the
situation that  describes will come into “existence” (come
to be the case) after  is executed:  changes the
computer (or the world) such that  becomes true.
So, such annotations describe both how things must be if 
is to be executed successfully and how things should be if 
has been executed successfully. They are typically written
as comments preceding and following  in the program.
Letting comments be signaled by braces, the annotation
would be written as follows:

Such an annotation is semantically interpreted as saying

The “state of the computer” includes such things as the
values of all registers (i.e. the values of all variables).
So, if we think of a program as being expressed by a
sequence of executable statements

begin end.

then the program annotated for program verification will
look like this:

begin 
end.

where



 is a proposition describing the input.
 is a proposition describing the initial state of the

computer (or the world).
For each ,  logically implies . (Often, .)

 is a proposition describing the final state of the
computer (or the world). And

 is a proposition describing the output.
The claim of those who believe in the possibility of program
verification is that we can then logically prove whether the
program does what it's supposed to do without having to

run the program. We would construct a proof of the
program as follows:

premise: The input of the program is .
premise: The initial state of the computer is .
premise: If the input is  and the initial state is ,

and if  is executed,
then the subsequent state will be .

premise:  is executed.
conclusion:  The subsequent state is .
premise: If , then .
conclusion: .
premise: If the current state is ,

and if  is executed,
then the subsequent state will be .

conclusion:  The subsequent state is .
… …
conclusion:  The final state is .



premise: If , then .
conclusion: .

The heart of the proof consists in verifying each premise. If
the program isn't a “straight‐line” program such as this but
is a “structured” program with separate modules, it can be
recursively verified by verifying each module (Dijkstra,
1972).

15.3.3 The Value of Program

Verification

If debugging a program by running it and then finding and
fixing the bugs is part of practical software engineering,
you can see why program verification can be thought of as
theoretical software engineering.
One reason program verification is argued to be an
important part of software engineering is that this
annotation technique can also be used to help develop

programs that would thereby be guaranteed to be correct.
Dijkstra, 1975 shows how to “formally derive” a program
that satisfies a certain specification. And Gries, 1985 is a
textbook that shows how to use logic to “develop” programs
simultaneously with a proof of their correctness.
Scherlis and Scott (1983) argue that program verification
and development should go hand in hand, rather than
verification coming after a program is complete. Their
notion – “inferential programming” – differs from “program
derivation”: whereas “program derivations [are] highly
structured justifications for programs[,] inferential
programming [is] the process of building, manipulating, and
reasoning about program derivations” (p. 200, my italics). A
“ ‘correctness’ proof [shows] that a program is consistent
with its specifications” (p. 201), where “Specifications differ



from programs in that they describe aspects or restrictions
on the functionality of a desired algorithm without imposing
constraints on how that functionality is to be achieved”
(p. 202). For instance, a specification might just be an
input‐output description of a function. To prove that a
program for computing that function is “correct” – i.e. to
“verify” the program – is to prove that the program has the
same input‐output behavior as the function.
Scherlis and Scott (1983, p. 204) take issue with De Millo et
al. (1979). First, they observe that the claim that
“Mathematicians do not really build formal proofs in
practice; why should programmers?” is fallacious, because
“formalization plays an even more important rôle in
computer science than in mathematics,” and this, in turn, is
because “computers do not run ‘informal’ programs.”
Moreover, formalization in mathematics has made possible
much advancement independent of whether “there is any
sense in looking at a complete formalization of a whole
proof. Often there is not.” They advocate not for a complete
proof of correctness of a completed program but for proofs
of correctness of stages of development, together with a
justification that “derivation steps preserve correctness.”
This is exactly the way in which proofs of theorems are
justified: if the axioms and premises are true, and if the
rules of inference are truth‐preserving, then the conclusions
(theorems) will be true (relative to the truth of the axioms
and premises).7



15.4 The Fetzer Controversy

In many creative activities the medium of execution is
intractable. Lumber splits; paint smears; electrical
circuits ring. These physical limitations of the medium
constrain the ideas that may be expressed, and they also
create unexpected difficulties in the implementation. —
Frederick P. Brooks (1975, p. 15)

The transition function for a finite‐state automaton
specifies everything there is to know about it. From this
it does not follow that we know everything about the
behavior of a PCM [physical computing machine] that
physically realizes the abstract diagram of a finite‐state
automaton, since the physical realization may be
imperfect. —Jeff Buechner (2011, p. 349)

15.4.1 Fetzer's Argument against

Program Verification

Nonsense! said philosopher James H. Fetzer (1988), thus
initiating a lengthy controversy in the pages of the
Communications of the ACM and elsewhere. Several
strongly worded letters to the editor chastised the editor
for publishing Fetzer's paper; supportive letters to the
editor praised the decision to publish; and articles in other
journals attempted to referee the publish‐or‐not‐to‐publish
controversy as well as the more substantive controversy
over whether programs can, or should, be verified.
What did Fetzer say that was so controversial? Here is the
abstract of his essay:

https://cse.buffalo.edu/~rapaport/OR/A0fr15.html#15.4


The notion of program verification appears to trade upon
an equivocation. Algorithms, as logical structures, are
appropriate subjects for deductive verification.
Programs, as causal models of those structures, are not.
The success of program verification as a generally
applicable and completely reliable method for
guaranteeing program performance is not even a
theoretical possibility. (Fetzer, 1988, p. 1048)

Despite the analogies between proofs of theorems and
verifications of programs, Fetzer focuses on one significant
disanalogy, which he expresses in terms of a difference
between “algorithms” and “programs”: algorithms, for
Fetzer, are abstract, formal (mathematical or logical)
entities; programs, for Fetzer, are physical (“causal”)
entities (Fetzer, 1988, p. 1052, note 6; p. 1056, col. 2; and
Section “Abstract Machines versus Target Machines”
(pp. 1058–1059)).
A “program” for Fetzer is a “causal model of” an algorithm
(p. 1048), an “implementation of an algorithm in a form
that is suitable for execution by a machine” (p. 1057,
col. 2). In other words, whereas an “algorithm” (in Fetzer's
terminology) is a formal entity susceptible to logical
investigation, a “program” is a real‐world, physical object
that is not susceptible to logical – but only empirical –
investigation. The analogies we discussed in Section 15.2.2
hold for “algorithms” but not for “programs” in Fetzer's
senses. (Fetzer prefers A1 to A3; Fetzer, 1988, p. 1056,
col. 2.)
The computer historian Edgar G. Daylight (2016, p. 97)
makes a similar distinction between a “mathematical
program” and a “computer program”: the former is an
algorithm expressed in a formal language; the latter
“resides electronically in a specific computer and is what
most of us would like to get ‘correct’ .” (Recall the



controversies discussed in Chapter 12 over the dual nature
of programs; you should also keep in mind the difference
between a static “computer program [that] resides
electronically in a computer” – perhaps as a specific
arrangement of switch‐settings – and the dynamic process,
i.e. the actually running program.) Even the very “same”
program as implemented in text or as implemented in a
computer might have different behaviors depending on how
its numerical‐valued variables are interpreted: a
“mathematical program” for computing the square root of
an integer can be “correct” to any decimal place, whereas
the program implemented in a computer can only have a
finite accuracy; yet in a perfectly reasonable sense, they
are the “same” program (Dijkstra, 1972, Section 6;
Daylight, 2016, p. 102).
As Fetzer (1988, p. 1059, col. 1) observes, algorithms
(Fetzer's terminology) or mathematical programs
(Daylight's terminology) “can be conclusively verified, but
… [this] possesses no significance at all for the
performance of any physical system,” whereas “the
performance of” programs (Fetzer) or computer programs
(Daylight) “possesses significance for the performance of a
physical system, but it cannot be conclusively verified.”
Fetzer (1988, p. 1060, col. 1) quotes Einstein (1921):

As far as the laws of mathematics refer to reality, they
are not certain; and as far as they are certain, they do
not refer to reality.

Recall Chomsky's competence‐performance distinction
from Section 10.4: even if program‐verification techniques
can prove that a program is correct (“competent”), there
may still be performance limitations. The point, according
to Fetzer, is that we must distinguish between the program

and the algorithm it implements: a program is a causal



model of a logical structure, and although algorithms might
be capable of being absolutely verified, programs cannot.
Consider program statements that specify physical output
behaviors. For example, some programming languages
have a command BEEP whose intended behavior is to ring
a bell. Or suppose you have a graphical programming
language, one of whose legal instructions is
DRAW_CIRCLE( ), whose intended behavior is to draw
a circle at point  with radius . How can you prove or
verify that the program will ring the bell or draw the circle?
How can you mathematically or logically prove that the
(physical) bell will (actually) ring or that a (physical) circle
will (actually) be drawn? How can you logically prove that
the (physical) bell works or that the pen has ink in it?
Fetzer's point is that you can't. And the controversy largely
focused on whether that's what's meant by program
verification. Recall our discussion in Chapter 10 about
Cleland's interpretation of the Church‐Turing
Computability Thesis: is preparing hollandaise sauce, or
physically ringing a bell, or physically drawing a circle a
computable task?
But according to Fetzer, it's not just real‐world output
behaviors like ringing bells, drawing circles, or, for that
matter, cooking that are at issue. What about the mundane
PRINT command? According to Fetzer, it's not just a matter
of causal output, because you can replace every PRINT( )
command with an assignment statement: . But even

this is a causal statement, because it instructs the
computer to physically change the values of bits in a
physical register , so Fetzer's argument goes through:
how can you logically prove that the physical computer will
actually work? Indeed, the history of early modern
computers was largely concerned with ensuring that the
vacuum tubes would be reliable (Dyson, 2012b). Recall



Babbage's boast and Wittgenstein's warning, cited in the
epigraphs to this chapter.
In Fetzer's terminology, a theorem  is “absolutely
verifiable”   follows only from (logical) axioms (and
not from empirical premises), and  is “relatively
verifiable”   follows from (logical) axioms together

with (empirical) premises. That is,  is “relatively”
verifiable iff it is a logical consequence of some of the
premises about the particular subject matter; it is
“verifiable relative to” the premises. As Donald MacKenzie
puts it,

… mathematical reasoning alone can never establish the
“correctness” of a program or hardware design in an
absolute sense, but only relative to some formal
specification of its desired behavior. (MacKenzie, 1992,
p. 1066, col. 2)

Although an “absolutely verifiable” theorem  is not
relative to the premises, even what Fetzer calls ‘absolute

verifiability’ is still a kind of relative verifiability, except
that the verifiability is relative to the axioms (not to the
premises), as we saw in Section 15.2.1.
Given all this terminology, Fetzer phrased the fundamental
question of program verification this way: Are programs (in

Fetzer's sense) absolutely verifiable? That is, can programs
(in Fetzer's sense) be verified directly from axioms, with no
empirical premises?

BoxII

Question to Think About: Do the pro‐verificationists
claim that programs are “absolutely verifiable” (to use
Fetzer's terminology)?



To be “absolutely verifiable” requires there to be program

rules of inference that are truth‐preserving, or it requires
there to be program axioms that are necessarily true about
“the performance that a machine will display when such a
program is executed” (Fetzer, 1988, p. 1052, my italics).
Verification that requires axioms about performance is
different from program verification in the Hoare‐Dijkstra‐
Gries tradition because of a difference between logical

relations and causal relations, according to Fetzer. The
former are abstract; the latter are part of the real world. It
might be replied, on behalf of the pro‐verificationists, that
we can still do relative verification: verification relative to
“causal axioms” that relate these commands to causal
behaviors. So, we can say that if the computer executing
program  is in good working order, and if the world (the
environment surrounding the computer) is “normal,” then 

 is verified to behave in accordance with its
specifications.
No, says Fetzer: algorithms and programs that are only
intended for abstract machines can be absolutely verified
(because there is nothing physical about such machines;
they are purely formal). But programs that can be compiled
and executed on physical machines can only be relatively

verified.

15.4.2 The Controversy

The reaction to Fetzer's paper was explosive, beginning
with a letter to the editor signed by 10 distinguished
computer scientists arguing that it should never have been
published because it was “ill‐informed, irresponsible, and
dangerous” (Ardis et al., 1989, p. 287, col. 3)! The general
tone of the responses to Fetzer also included these
objections:



So what else is new? We program verificationists never
claimed that you could logically prove that a physical
computer would not break down.
Verification techniques can find logical faults; it is
logically possible to match a program or algorithm to
its specifications.
You can minimize the number of rules of the form
“input I causes output ” such that they only apply to
descriptions of logic gates and the physics of silicon.
Many programs are incorrect because, for example, of
the limits of accuracy in using real numbers.
Verifiably incorrect programs can be better than
verifiably correct programs if they have better average
performance. (Moor, 1979 makes a similar argument in
the context of whether we should trust decisions made
by computers; we'll discuss this in Chapter 17.)

Let's look at some of these.
Ardis et al. (1989) claimed that program verification was
not supposed to “provide an absolute guarantee of
correctness with respect to the execution of a program on
computer hardware” (p. 287, col. 1, my italics). This is
interestingly ambiguous: on one reading, they might have
been claiming that program verification only provides a
relative guarantee of correctness; if so, they are actually in
agreement with Fetzer! On another reading, they might
have been claiming that program verification does provide
an absolute guarantee, but not of hardware execution; if so,
that is also consistent with Fetzer's arguments!
They also claimed that it was not the case that “verification
can be applied only to abstract programs written in high
level languages” (Ardis et al., 1989, p. 287, col. 2). For
example, they said, it can be applied to assembly



languages, contrary to what Fetzer (1988, p. 1062, col. 2)
claimed. But Fetzer didn't have to claim that: there can be
abstract, formal assembly languages. What Fetzer perhaps
should have said was that program verification cannot be
applied to assembly‐language programs that “reside
electronically in a computer” (to use Daylight's
characterization). As Parsons (1989, p. 791, col. 1) later
observed, their “rage” might have been indicative of a lack
of evidence for their belief.
Other critics responded to Fetzer's paper by saying “So
what else is new?”: Pleasant (1989, p. 374, col. 1, my
italics) observed that Fetzer's complaint “belabor[s] the

rather obvious fact that programs which are run on real
machines cannot be completely reliable, as though

advocates of verification thought otherwise.”
And Paulson et al. (1989, p. 375, col. 1, my italics) said that
“Fetzer makes one important but elementary observation
and takes it to an absurd conclusion. … [M]ost systems …
do not need to work perfectly. … A physical fault can
usually be repaired quickly, replacing the damaged part;
then the job can be run again.” It is interesting to note,
especially in connection with topics that we will look into in
Chapter 16, that the passage that I omitted after “most
systems” concerned one major exception: SDI – the
Strategic Defense Initiative – a program to defend the US
using a computer‐controlled missile defense system; that
system, of course, needed to “work perfectly”! (On program
verification of SDI, see Myers, 1986.)
Or this from C.M. Holt (1989):



No one expects a computer to work properly if someone
pulls the plug out [p. 508, col. 2]. … Errors in programs
due to inaccurate scientific theories, omissions in
specifications, and implementation failures are
inevitable; those due to programming mistakes should
not be [p. 509, cols. 1–2].

An interesting variation on this came from Conte (1989),
who called “Fetzer's article … an over‐inflated treatment of
a principle most children learn by the age of 10 – no matter
how perfect your cookie recipe is, if the oven thermostat
fails, you may burn the cookies.” How do you think Carol
Cleland, whose objections to the Computability Thesis we
examined in Chapter 10, would respond if she were told
that no matter how perfect her hollandaise‐sauce recipe is,
if it is prepared on the Moon, it may not work?

15.4.3 Barwise's Attempt at

Mediation

The logician Jon Barwise (1989b) attempted to mediate the
controversy. In doing so, he also discussed many other
issues that we have looked into (or will in future chapters),
including the relation between algorithms and programs,
the possibility of finding fault with an argument yet
believing its conclusion, the nature of “philosophy of ”
(see Section 2.7 of this book), and the difference between
the truth of a premise and agreeing with it (see Section 2.9
of this book).
Barwise saw the issue between Fetzer and his opponents as
being a special case of the more general question of how
mathematics can be applied to the real world, given that
the former is abstract and purely logical, whereas the latter
is concrete and empirical (p. 846, col. 2). (See Sections
4.11.2 and 16.11.) But there is another aspect to that issue



in the philosophy of mathematics: namely, the relation
between the syntax of a formal mathematical expression
and its semantic interpretation in the real world:

The axiomatic method says that our theorems are true if
our axioms are. The modeling method says that our
theorems model facts in the domain modeled if there is a
close enough fit between the model and the domain
modeled. The sad fact of the matter is that there is

usually no way to prove – at least in the sense of

mathematical proof – the antecedent of a

conditional of either of these types. (Barwise, 1989b,
p. 847, col. 2, italics in original, my boldface)

This is a point made by Brian Cantwell Smith (1985), which
we'll look at in Section 15.6. Barwise cites Smith, noting
that

Computer systems are not just physical objects that
compute abstract algorithms. They are also embedded in
the physical world and they interact with users. … Thus,
… our mathematical models need to include not just a
reliable model of the computer, but also a reliable model
of the environment in which it is to be placed, including
the user. (Barwise, 1989b, p. 850, col. 1)

Barwise noted that Fetzer was only willing to talk about the
causal (i.e. physical) role of computers, which is not
susceptible to mathematical verification, whereas the field
of program verification only concerns abstract programs
(p. 848, col. 2). So it really seems that both sides not only
are talking past each other but might actually be consistent
with each other!



BoxII

Question for the Reader: In remarks given at the 40th
Anniversary celebration of the founding of the SUNY
Buffalo Department of Computer Science & Engineering
(April 2007), Bruce Shriver, former president of the
IEEE Computer Society, said, “Hardware does not have
flaws; only software does.”
What do you think he might have meant by this?



15.5 The Program‐Verification

Debate: Summary

From a methodological point of view, it might be said
that programs are conjectures, while executions are
attempted – and all too frequently successful –
refutations (in the spirit of Popper …). —James H. Fetzer
(1988, p. 1062, col. 2)

Recall from Section 9.3.1 that Kleene claimed that Turing
Machines, unlike physical computers, were “error free”
(Kleene, 1995, p. 27). As noted in that section, if the Turing
Machine were poorly programmed, it wouldn't be error
free! Indeed, 50 years earlier, von Neumann said

The remarks … on the desired automatic functioning of
the device [i.e. von Neumann's definition of a computer,
as quoted in Section 9.2.2] must, of course, assume that
it functions faultlessly. Malfunctioning of any device has,
however, always a finite probability – and for a
complicated device and a long sequence of operations it
may not be possible to keep this probability negligible.
Any error may vitiate the entire output of the device. For
the recognition and correction of such malfunctions
intelligent human intervention will in general be
necessary.
However, it may be possible to avoid even these
phenomena to some extent. The device may recognize
the most frequent malfunctions automatically, indicate
their presence and location by externally visible signs,
and then stop. Under certain conditions it might even
carry out the necessary correction automatically and
continue. (von Neumann, 1945, Section 1.4, p. 1).



One way to read this is as a recognition or anticipation of
Fetzer's point. Given this inevitability, the focus
presumably has to be on the elimination of logical errors so
that program verification still has a role to play. The second
paragraph suggests that some machine “verification” might
be automated, but that just leads to an endless regress:
even if the logical structure of that automation is
guaranteed, the physical device that carries it out will itself
be subject to some residual malfunction possibilities
(Bringsjord, 2015).
Of course, another way to read von Neumann's remarks (as
well as the entire program verification debate) is to
recognize that no one, and no thing, is perfect. There's
always the chance of error or malfunction: complete
elimination of error is physically impossible, so the point is,
at least, to minimize it. Thus, the entire issue of program
verification might be considered a subset of the more
general engineering issue of reliability. For example, Allen
Newell (1980, p. 159) assumes that a symbol system should
be “totally reliable, nothing in its organization reflecting
that its operators, control or memory could be erroful”
[sic!]. He goes on to say that “universality is always relative
to physical limits, of which reliability is one” (p. 160),
where ‘universality’ is defined as the ability to “produce an
arbitrary input‐output function” (p. 147). This suggest that
even if a program could be proved mathematically to be
correct, the process that executes it would still be limited
by physical correctness, so to speak, and that, presumably,
cannot be mathematically proved.
The bottom line is that programs as hardware need causal
rules of inference of the form input  causes output .
Perhaps the BEEP command would have to be annotated
something like this:



{The bell is in working order.} BEEP {A sound is
emitted.}

If such causal rules are part of the definition of an abstract
machine, then we can have “absolute” verification of the
program. But if they are merely empirical claims, then we
can only have “relative” verification of the program.
Even so (as De Millo et al. (1979) pointed out), absolute
verification is often thought to be too tedious to perform
and can lure us into overconfidence. The problem of
tediousness seems to me not to be overly serious: it's
tedious to prove theorems in mathematics, too. In any case,
techniques are being devised to automate program
verification. The problem of overconfidence is more
important, for precisely the reasons Fetzer adduces. Just
because you've proved a program is correct is no reason to
expect that the computer executing it will not break down.
But in addition to the relativity to axioms (logical relativity)
and premises (subject‐matter relativity), there is another
“level” of relativity:

Mathematical argument can establish that a program or
design is a correct implementation of that specification,
but not that implementation of the specification means a
computer system that is “safe,” “secure,” or whatever.
(MacKenzie, 1992, p. 1066, col. 2)

There are two points to notice here. First, a mathematical
argument can establish the correctness of a program
relative to its specification: i.e. whether the program
satisfies the specification. Second, not only does this not
necessarily mean the computer system is safe (or
whatever), but it also does not mean the specification is
itself “correct”:



Human fallibility means some of the more subtle,
dangerous bugs turn out to be errors in design; the code
faithfully implements the intended design, but the design
fails to correctly handle a particular “rare” scenario.
(Newcombe et al., 2015, p. 67)

Presumably a specification is a relatively abstract outline of
the solution to a problem. Proving that a computer program
is correct relative to – i.e. satisfies – the specification does
not guarantee that the specification actually solves the
problem!
This is the case for reasons that Smith (1985) discusses
and that we will look at next.

BoxII

Question for the Reader: Physical computers can
break down, whereas things like Turing Machines, being
abstract, cannot physically fail (at most, their algorithm
might be incorrect). But Turing Machines are models of
human computers (“clerks”), and whereas Turing
Machines can have infinite memory and take infinite
time to perform a computation, humans have only finite
memory and time, and can make mistakes (Shapiro et
al., 2022).
How does that affect the program‐verification
controversy?



15.6 Program Verification, Models,

and the World

The goal of software development is to model a portion of
the real world on the computer. … That involves an
understanding not of computers but of the real‐world
situation in question. …That is not what one learns in
studying computer science; that is not what computer
science is about.
—Michael Mahoney (2011, p. 117)

15.6.1 “Being Correct” vs. “Doing

What's Intended”

Recall that one objection to program verification is that a
program can be “proven correct” yet not “do what you
intend.” One reason, as we have just seen, might be that the
computer on which the program is run might fail physically.
That is, the computer system might fail at the hardware
level.
A second reason might be that the world is inhospitable.
There are two ways in which this latter problem might arise.
There might be a physical problem with the connection
between the computer and the environment: at a simple
level, the cables connecting the computer to the world (say,
to a printer) might be flawed. Or the world itself – the
environment – might not provide the correct conditions for
the intended outcome, as with Cleland's hollandaise sauce
(Section 10.4).
A third reason is related to the possible “hyper”‐
computability of interactive programs, which might depend
on the unpredictable and non‐verifiable behavior of an
“oracle” or human user (Sections 11.8, 11.9).



What does ‘correct’ mean in this context? Does it mean the
program has been logically verified? Does it mean it “does
what was intended”? Perhaps a better way of looking at
things is to say that there are two different notions of
“verification”: an internal one (logical verification) and an
external one (doing what was intended) (Tedre and Sutinen,
2008, pp. 163–164). But to the extent that doing what was
intended is important, then we need to ask, whose intent
counts? Here is computer scientist and philosopher Brian
Cantwell Smith on this question:

What does correct mean, anyway? Suppose the people
want peace, and the President thinks that means having a
strong defense, and the Defense department thinks that
means having nuclear weapons systems, and the weapons
designers request control systems to monitor radar
signals, and the computer companies are asked to
respond to six particular kinds of radar pattern, and the
engineers are told to build signal amplifiers with certain
circuit characteristics, and the technician is told to write
a program to respond to the difference between a two‐
volt and a four‐volt signal on a particular incoming wire.
If being correct means doing what was intended, whose
intent matters? The technician's? Or what, with twenty
years of historical detachment, we would say should have

been intended?
(B.C. Smith, 1985, Section 2, p. 20, col. 1)

According to Smith, the cause of these problems lies not in
the relation of programs to the world but in the relation of
models to the world. Let's see what he means.

15.6.2 Models: Putting the World into

Computers



What the conference [on the history of software] missed
was software as model, … software as medium of thought
and action, software as environment within which people
work and live. It did not consider the question of how we

have put the world into computers. —Michael Mahoney
(2011, pp. 65–66, my italics)

According to Smith (1985, Section 3, p. 20, col. 1), to design
a computer system to solve a real‐world problem, we don't

directly “put the world into computers.” Rather, we must do
two things: (1) create a model of the real‐world problem and
(2) create a representation of the model in the computer.
Let's look at each of these.

Creating a Model of the World To build a model is to
conceive of the world in a certain delimited way.
—Brian Cantwell Smith (1985, Section 3, p. 20, col. 1)

The model we create has no choice but to be “delimited”:
that is, it must be abstract – it must omit some details of the
real‐world situation. Abstraction, as we saw in Section
13.1.1, is the opposite of implementation: it is the removal
of “irrelevant” implementation details.
Why must any real‐world information be removed? Why are
models necessarily partial? One reason is that it is
methodologically easier to study a phenomenon by
simplifying it, coming to understand the simplified version,
and then adding some complexities back in, little by little. If
models weren't partial, there would be too much complexity,
and we would be unable to use them as a basis for action.
You can't use, much less have, a map of Florida that is the
size of Florida and that therefore can show everything in
Florida. Such a map might be thought to be more useful
than a smaller, more manageable one, in that it would be
able to show all the detail of Florida itself. But the life‐sized
version's lack of manageability is precisely its problem.8



Figure 15.1 2D photographic model of a real house.



Figure 15.2 Source: From Colburn et al., 1993, p.  283.
Reprinted with permission of the original publisher, CSLI
Publications.

Can we eat our cake but keep it, too? Perhaps we can use
the real world as a representation of itself. The computer
scientist Rodney A. Brooks (1991, Section 1) suggested that
we should “use the world as its own model”: a Roomba
robotic vacuum cleaner doesn't need a map showing where
there is a wall; if it bumps into one, it will know the wall is
there. But even this is only a part of the real world.
In any case, the usual first step in solving a problem is to
create a “delimited” (abstract, simplified) model of it. For
example, consider Lucille Ball's childhood home in Celoron,
NY (which my wife and I own!). Figure 15.1 is a two‐
dimensional photographic representation (or model) of the
real, three‐dimensional, physical house. (Smith's original
diagram is in Figure 15.2.)



Creating a Computer Representation of the Model A
second step is to use logical propositions or programming‐
language data structures to represent not the real‐world
situation but the model. So, besides the 3D house and its 2D
photographic model, we might have a computer
representation of the model:

((type house) 

  (part (walls (material wood)) 

        (door (location front)) 

        (windows (location front 

                           (number 5))) 

        (steps (location front 

                         (number  4))) 

  ... 

  ) 

 ) 

 

Smith's point is that computers only deal with their

representations of these abstract models of the real world.
As Paul Thagard (1984, p. 82, citing Zeigler, 1976) notes,
computers are twice removed from reality, because “a
computer simulates a model which models a real system.”
Is that necessarily the case? Can't we skip the intermediate,
abstract model and directly represent the real‐world
situation in the computer? Perhaps, but this won't help us
avoid the problem of partiality (or abstraction, or
idealization, or simplification). The only rational way to deal
with (real‐world) complexity is to analyze it – i.e. to simplify
it – i.e. to deal with a partial (abstract) representation or
model of it.
We are condemned to do this whenever we act or make
decisions: if we were to hold off on acting or making a
decision until we had complete and fully accurate
information about whatever situation we were in, either we
would be paralyzed into inaction or the real world might
change before we had a chance to complete our reasoning.



(As Alan Saunders – and, later, John Lennon – said, “Life is
what happens to us while we are making other plans”;
http://quoteinvestigator.com/2012/05/06/other‐plans/.)
This is the problem that Herbert Simon recognized when he
said we must always reason with uncertain and incomplete
(even noisy) information: our rationality is “bounded,” and
we must “satisfice” (Simon, 1996b, p. 27). And it is also the
problem that led Kugel to suggest that trial‐and‐error
computers were essential for AI (Section 11.10.2). And this
holds for computation as well as thinking. (See also Simon,
1962, Dijkstra, 1972.)
But action is not abstract: you and the computer must act in
the complex, real world, even though such real‐world action
must be based on partial models of the real world: that is,
on incomplete and noisy information. Moreover, there is no
guarantee that the models are correct.
Action can help: it can provide feedback to the computer
system so the system won't be isolated from the real world.
Recall the blocks‐world program that didn't “know” it had
dropped a block but “blindly” continued to faithfully execute
its program to put the block on another (Section 10.4). If it
had had some sensory device that let it know that it no
longer was holding the block it was supposed to move, and
if the program had had some kind of error‐handling
procedure in it, then it might have worked much better (it
might have worked “as intended”). Did the blocks‐world
program behave as intended?

Model vs. World The problem, as Smith sees it, is that
mathematical model theory only discusses the relation
between the model and a description of the model. It does
not discuss the relation between the model and the world. A
model is like eyeglasses for the computer, through which it
sees the world. The model is the world as the computer sees

http://quoteinvestigator.com/2012/05/06/other-plans/


it. The problem is that computers have to act in the real

world on the basis of a model of it.

BoxII

Philosophical Digression: Immanuel Kant said that the
same thing is true about us. Our concepts are like
eyeglasses that distort reality; our only knowledge of
reality is filtered through our concepts, and we have no
way of knowing how things “really” are “in themselves,”
unfiltered by our concepts (as illustrated in Figure 15.3).
(Recall our earlier discussions of Kant in Sections 3.14
and 4.4.1.)

Similarly, to prove a program correct, we need both (a) a
specification (a model of the real‐world problem) that says
(declaratively) what the computer systems should do and
(b) a program (a computer model of the specification model)
that says (usually procedurally) how to accomplish this. A
correctness proof, then, is a proof that any system that
obeys the program will satisfy the specification. But this is a
proof that two descriptions are compatible. The program is
proved correct relative to the specification:



Figure 15.3 A cognitive agent looking at a real‐world object
that the agent categorizes as a house. Light reflecting off
the house (the “thing‐in‐itself”) enters the agent's eyes, and
the resulting neural signals are “filtered” through the
agent's mental concepts, producing a mental image of the
house. The mental image may or may not be a “perfect”
representation of the house, but the agent has no way to
directly compare the mental image with the real house,
independent of the agent's concepts. Figure 15.2 is Smith's
version of this. Source: Author's drawing.

… what can be proven correct is not a physical piece of
hardware, or program running on a physical machine, but
only a mathematical model of that hardware or program.
(MacKenzie, 1992, p. 1066; see also Turner, 2018,
Section 4.4)

Suppose the proof fails to show “correctness”; what does
this mean? It means either that the program is wrong or



that the specification is wrong (or both). And indeed, often
we need to adjust both specification and program.
The real problems lie in the model‐world relation, which
correctness does not address. This is one of the morals of
Cleland's and Fetzer's claims. That is, programs can fail
because the models can fail to correspond to the real world
in “appropriate” ways. But that italicized clause is crucial
because all models abstract from the real world, but each of
them does so in different ways.
This is the case for reasons that are related to the
Computability Thesis: you can't show that two systems are
the same, in some sense, unless you can talk about both
systems in the same language. (Recall Rosser's time‐
traveling mathematician from Section 15.1.) In the case of
the Computability Thesis, the problem concerns the
informality of the language of algorithms versus the
formality of the language of Turing Machines. In the present
case, the problem concerns the mathematical language of
programs versus the non‐linguistic, physical nature of the
hardware. Only by describing the hardware in a (formal,
mathematical) language can a proof of equivalence be
attempted. But then we also need a proof that that formal
description of the hardware is correct; and that can't be
had. It can't be had because, to have it, we would need
another formal description of the hardware to compare with
the formal description we were trying to verify. And that
leads to a Zeno‐like infinite regress. (We can come “close,
but no cigar.”)9

Both Smith and Fetzer agree that the program‐verification
project fails, but for slightly different reasons: for Fetzer
(and Cleland), computing is about the world; it is “external”
or “wide.” Thus, computer programs can't be (“absolutely”
or “externally”) verified, because the world may not be
conducive to “correct” behavior: a physical part might



break; the environment might prevent an otherwise‐
perfectly‐running, “correct” program from accomplishing its
task (such as making hollandaise sauce on the Moon using
an Earth recipe); and so on.
For Smith, computing is done on a model of the world; it is
“internal” or “narrow.” Thus, computer programs can't be
verified, because the model might not match the world.
Smith also notes that computers must act in the real world.
But their abstract narrowness isolates them from the
concrete, real world at the same time they must act in it.
Smith's “gap” between model and world is due, in part, to
the fact that specifications are abstract:

A specification is an abstraction. It should describe the
important aspects and omit the unimportant ones.
Abstraction is an art that is learned only through
practice. … [A] specification of what a piece of code does
should describe everything one needs to know to use the
code. It should never be necessary to read the code to
find out what it does. (Lamport, 2015, p. 39, my italics)

How does one know if something that has been omitted
from the specification is important or not? This is why
“abstraction is an art” and why there's no guarantee that
the model is correct (in the sense that it matches reality).
That is precisely the kind of error that Smith warns about. It
is time to look into this possibility. How do programs relate
to the real world?10



Notes

1 See the Online Resources for further reading on the
history of computer “bugs.”

2 See the Online Resources for Section 4.11 .

3 See the Online Resources for further reading on
programs and proofs.

4 For examples of “axioms” that are not “true,” see
some of the formal systems mentioned in the Online
Resources for Section 13.2.2.

5 Again, see some of the formal systems cited in the
Online Resources for Section 13.2.2.

6 See the Online Resources for further reading on the
origins of program verification .

7 See the Online Resources for further reading on
program verification .

8 See the Online Resources for further reading on such
maps.

9 Note to philosophers: it's actually closer to a Bradley‐
like regress (Perovic, 2017) (Royce, 1900, pp. 502–
507ff); see also Rapaport, 1995, p. 64.

10 See the Online Resources for further reading on
Smith's “gap.”

https://cse.buffalo.edu/~rapaport/OR/A0fr15.html#15.1.1
https://cse.buffalo.edu/~rapaport/OR/A0fr04.html#4.11
https://cse.buffalo.edu/~rapaport/OR/A0fr15.html#15.1.2
https://cse.buffalo.edu/~rapaport/OR/A0fr13.html#13.2.2
https://cse.buffalo.edu/~rapaport/OR/A0fr13.html#13.2.2
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https://cse.buffalo.edu/~rapaport/OR/A0fr15.html#15.6.2
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Programs and the World
1

Today, computing scientists face their own version of the
mind‐body problem: how can virtual software interact
with the real world?
—Philip Wadler (1997, p. 240)



16.1 Introduction

In the previous chapter, we looked at arguments to the
effect that, roughly, a computer program might succeed in
theory but fail in practice. In this chapter, we continue our
examination of the relationship between a program and the
world in which it is executed.
Science, no matter how conceived, is generally agreed to
be a way of understanding the world (as we saw in Chapter
4). So, CS as a science should be a way of understanding
the world computationally. And engineering, no matter how
conceived, is generally agreed to be a way of changing the
world, preferably by improving it (as we saw in Chapter 5).
So, CS as an engineering discipline should be a way of
changing (improving?) the world via computer programs
that have physical effects. Thus, CS deals with the real
world by trying to understand the world computationally
and change the world by building computational artifacts.
In this chapter, we will focus on two questions:

1. Is computing directlyconcerned with the world?

2. Or is computing only indirectlyconcerned with the

world

by directlydealing only with descriptions or

modelsof the world?

In other words, is computation primarily concerned with
the internal workings of a computer, both abstractly in
terms of the theory of computation – e.g. the way in which
a Turing Machine works – as well as more concretely in
terms of the internal physical workings of a physical
computer? This is an aspect of question 2.



Or is computation primarily concerned with how those
internal workings can reach out to the world in which they
are embedded? As Philip Wadler noted (see the epigraph
for this chapter), this is related to the question of how the
mind (or, more materialistically, the brain) reaches out to
“harpoon” the world (Castañeda, 1989, p. 114). This is an
aspect of question 1.
Those who say that computing is directly concerned with
the world sometimes describe computing as being
“external,” “global,” “wide,” or “semantic.” And those who
say that computing is only directly concerned with
descriptions or models of the world sometimes describe
computing as being “internal,” “local,” “narrow,” or
“syntactic.” As you should expect by now, of course, it
might be both! After all, even if computing is “narrow,” it is
embedded in – and interacts with – the “wider” world. In
that case, the question is how these two positions are
related.



16.2 Internal vs. External Behavior:

Some Examples

Internal models diverge from the external world. In earlier
chapters, we saw several examples of programs whose
internal (local, narrow, syntactic) behavior differed from
their external (global, wide, semantic) behavior. Let's briefly
review these, plus a few new ones.
Some are the kinds of situations that Fetzer and Smith were
concerned with, in which the computer program behaves
exactly as was expected – there are no logical program
bugs, and the program does not crash – yet it fails to
accomplish its stated task. That is, it exhibits “successful”
internal behavior but “unsuccessful” external behavior.
Others are situations in which a single internal behavior
generates different external behaviors, depending on
context. Some are of both kinds.

1. The blocks‐world robot (Section 10.4): The
blocks‐world program worked “correctly” in the sense
that it performed each step without crashing. Yet it did
not do what was intended, because it accidentally
dropped a block and was therefore unable to put it
where it was supposed to go. “Narrowly,” perhaps, it did
what was intended; “widely,” however, it didn't: after
all, it didn't actually manipulate the blocks.
2. Hollandaise sauce (Section 10.4): On Earth,
Cleland's algorithm (recipe) for hollandaise sauce
results in an emulsion that is, in fact, hollandaise sauce.
But on the Moon, it does not result in an emulsion, and
hence there is no hollandaise sauce; instead, the output
is a messy mixture of eggs, butter, and lemon juice. For
Cleland, is making hollandaise sauce computable (on
the “narrow” view) or not (on the “wide” view)? Can a



Turing Machine or a physical computer make
hollandaise sauce?
3. “Duck‐Rabbit” programs (Section 10.4): Jerry
Fodor (1978, p. 232) asked us to consider two computer
programs – one that simulates the Six Day War and
another that simulates (or actually plays?) a game of
chess – that are such that “the internal career of a
machine running one program would be identical, step
by step, to that of a machine running the other.” In
programs like this war‐chess case, do we have one
algorithm (the “narrow” view) or two (the “wide” view)?

BoxII

Question for the Reader: Is there a difference
between simulating playing a chess game and really

playing one? (Recall our discussion of simulation vs.
“the real thing” in Section 14.2.2. We'll return to this
in Chapter 18.)

A real example along the same lines is “a method for
analyzing x‐ray diffraction data that, with a few
modifications, also solves Sudoku puzzles” (Elser,
2012). Or consider a computer version of the murder‐
mystery game Clue that exclusively uses the Resolution
rule of inference and so could be a general‐purpose,
propositional theorem prover instead (Robin Hill,
personal communication). A more recent version is the
program AlphaZero, “a single algorithm [that] can
learn to play three hard board games” (Campbell,
2018): when supplied with the rules of chess, it
becomes a champion chess player; when supplied with
the rules of shogi (Japanese chess), it becomes a
champion shogi player; and when supplied with the



rules of Go, it becomes a champion Go player (Silver et
al., 2018; Kasparov, 2018; Halina, 2021).
Similar examples abound, notably in applications of
mathematics to science, and these can be suitably
“computationalized” by imagining computer programs
for each. For example,

Nicolaas de Bruijn once told me roughly the following
anecdote: Some chemists were talking about a certain
molecular structure, expressing difficulty in
understanding it. De Bruijn, overhearing them,
thought they were talking about mathematical lattice
theory, since everything they said could be – and was
– interpreted by him as being about the mathematical,
rather than the chemical, domain. He told them the
solution of their problem in terms of lattice theory.
They, of course, understood it in terms of chemistry.
Were de Bruijn and the chemists talking about the
same thing? (Rapaport, 1995, p. 63)

A related issue is that a single action in the real world
can be described in different ways:

Recovering motives and intentions is a principal job
of the historian. For without some attribution of
mental attitudes, actions cannot be characterized and
decisions assessed. The same overt behavior, after all,

might be described as “mailing a letter” or

“fomenting a revolution”. (Richards, 2009, p. 415)

And Figure 16.1 presents a humorous one.2

4. Rescorla's GCD computers (Section 13.3.3):

Rescorla's GCD computers fall under this category but
also offer an example reminiscent of Cleland's
hollandaise sauce, although less “physical.” A Scheme
program for computing GCDs of two numbers is
implemented on two computers, one ( ) using base‐



10 notation and another ( ) using base‐13 notation.
Rescorla argued that only  executes the Scheme
program for computing GCDs, even though, in a
“narrow” sense, both computers are executing the
“same” program. When the numerals ‘115’ and ‘20’ are
input to , it outputs the numeral ‘5’; “it thereby
calculates the GCD of the corresponding numbers”
(Rescorla, 2013, p. 688). But the numbers expressed in
base‐13 by ‘115’ and ‘20’ are  and ,
respectively, and their GCD is , not . So, in a
“wide” sense, the two machines are doing “different
things,” in one case behaving “correctly,” and in the
other behaving “incorrectly.” Are the two GCD
computers doing different things?
5. AND‐Gates or OR‐gates? (Section 10.4): The truth
table for conjunction can also be used as the truth table
for disjunction by reinterpreting ‘0's and ‘1's. Another
version uses a single truth table:

Input 1 Input 2 Output

A A A
A B A
B A A

B B B

This could be interpreted as the truth table for
conjunction if A is interpreted as ‘false’ and B as ‘true.’
And it could be interpreted as the truth table for
disjunction if A is interpreted as ‘true’ and B as ‘false.’



Figure 16.1 LUANN ©2015 GEC Inc.
Reprinted with permission of ANDREWS MCMEEL SYNDICATION. All rights
reserved.

Oron Shagrir (2020, Section 3.1) offers a third version.
Consider the following function:

Input 1 Input 2 Output

H H H
H M M
H L M
M H M
M M M
M L M
L H M
L M M

L L L

(Actually, he uses physical voltages labeled H(igh),
M(edium), and L(ow). I am using a more abstract version.)
He then gives two different (external semantic)
interpretations of these symbols. On the first interpretation,
H is mapped to 1 (or “true”) and both L and M are mapped
to 0 (or “false”), thus implementing conjunction. (In
Shagrir's original version, the physical device that inputs
and outputs certain voltages becomes an AND‐gate). On the



second interpretation, both H and M are mapped to 1 and L
is mapped to 0, thus implementing disjunction (or an OR‐
gate).

BoxII

Question for the Reader: In Shagrir's example, we
have two different computers (and AND‐gate and an OR‐
gate) that are implemented in the same way. Would two
AND‐gate computers be the same even if they were
implemented differently?

Thus, there are at least three possible answers to the
question of what this device computes: conjunction,
disjunction, and the function given by the previous table.
One way of phrasing the puzzle here is this: What is the
basic computational structure of this system (or these
systems)? Is it conjunction? Disjunction? The H‐M‐L
function? (Or something else? After all, one of the points
made by Buechner (2011, 2018, see Section 15.1) is that
there might not be any fact of the matter!)
Alternatively, one could say that in order to compute
conjunction, execute an algorithm for the previous table,
but use the first interpretation; and, in order to computer
disjunction, execute that very same algorithm, but use the
second interpretation. How crucial is that external
interpretation to the computation? Arguably, the difference
concerns, not the computation, but how that computation is
“plugged in” to the external environment. But arguably,
such external relations don't change the computation any
more than the external fact that a person's sibling has had a
child (thus making the person an aunt or uncle) changes
that person. In Figure 16.1, the girl held up 10 fingers,
irrespective of whether she intended (or the boy



understood) “10 yeses or 5 noes.” (Dennett (2013a, pp. 159–
164) discusses a similar example with a vending machine
that when used in the United States, works on US quarters,
but when used in Panama, works equally well with
Panamanian quarter‐balboas.)3



16.3 Two Views of Computation

A computer program is a message from a man [sic] to a
machine. The rigidly marshaled syntax and the
scrupulous definitions all exist to make intention clear to
the dumb engine.
—Frederick P. Brooks (1975, p. 164)

If computation is “narrow,” “local,” “internal,” or
“syntactic,” then it is concerned only (or at least primarily)
with such things as the operations of a Turing Machine
(print, move) or the basic recursive functions (successor,
predecessor, projection). On the other hand, if computation
is “wide,” “global,” “external,” or “semantic,” then it must
involve things like chess pieces and a chess board (for a
chess program), or soldiers and a battlefield (for a war
simulator). Is computation narrow and independent of the
world, or is it wide and world‐involving?
A related question asks whether programs are purely
logical, or whether they are “intentional” (Hill, 2016) or
“teleological” (Anderson, 2015). Something can be said to
be “intentional” if it is related to goals or purposes.
‘Teleological’ is another adjective with roughly the same
meaning. So we can ask whether programs are goal‐
oriented.
Let's distinguish between an algorithm A and a goal (or
purpose) . Let  be either a primitive computation (such
as “print” and “move,” or such as the “successor,”
“predecessor,” and “projection” functions) or a set of
computations recursively structured by sequence,
selection, and repetition (as in Chapter 7). And let  be a
goal (or “purpose,” or “intended use”) of . Then our
question can be formulated more precisely as follows
(using a distinction due to Robin K. Hill (2016, Section 5)):



which of the following two forms does a computer program
take?:

Do A

or

In order to accomplish goal G, do A

If the former, then computation is “narrow”; if the latter,
then it is “wide.”
This enables us to reformulate some earlier issues: for
example, does the “correctness” of a computer program
refer to algorithm  or goal ? The goal of a program can
be expressed in its specification. This is why you wouldn't
have to read the code to find out what it does. Of course, if
the specification has been internalized into the code, you
might be able to (see Section 16.10.4). But it's also why you
can have a chess program that is also a war simulator: they
might have different specifications but the same code. So,
perhaps a correctness proof is a proof that algorithm 
satisfies specification .
As another example, Cleland argued that “Make
hollandaise sauce” was not a Turing‐computable function.
Can we view “Make hollandaise sauce” as a high‐level
procedure call that can be substituted for ? Or should it
be viewed as a goal that can be substituted for ? In the
latter case, only its expansion into a set of (more basic)
computations structured by sequence, selection, and
repetition would be a suitable substitute for . And in that
latter case,  might be computable on the Moon even if 
fails there.
We'll refer to these two formulations throughout the rest of
the chapter. 4



16.4 Inputs, Turing Machines, and

Outputs

Any machine is a prisoner of its input and output
domains.
—Allen Newell (1980, p. 148)

16.4.1 Introduction

Aaron Sloman notes that for almost any machine,
we can, to a first approximation, divide the processes
produced by the machine into two main categories:
internal and external. Internal physical processes include
manipulation of cogs, levers, pulleys, strings, etc. The
external processes include movements or
rearrangements of various kinds of physical objects, e.g.
strands of wool or cotton used in weaving, …. (Sloman,
2002, Section 3.2, p. 9)

As we noted in Section 3.10, both Shapiro (2001) and
Sloman consider links to sensors and effectors as central to
what a computer is. A computer without one or the other of
these would be solipsistic (Section 7.3.3). Can computation
be understood separately from interaction with the world?
One obvious place where a computer program seems to
necessarily interact with the real world is its inputs and
outputs. In Sections 7.3.3 and 11.8.1, we considered
whether programs needed inputs and outputs. Let's review
some of this.

16.4.2 The Turing Machine Tape as

Input‐Output Device



The tape of a Turing Machine records symbols (usually ‘0’
or ‘1’) in its squares. Is the tape the input‐output device of
the Turing Machine? Or is it (merely?) the Machine's
internal memory device?
Given a Turing Machine for computing a certain
mathematical function, it is certainly true that the
function's inputs will be inscribed on the tape at the
beginning of the computation, and the function's results –
its outputs – will be inscribed on the tape by the time that
the computation halts: So, it certainly looks like the tape is
an external input‐output device.
However,

A terminating computation is one in which all the
processes terminate; its output is the values left in the

shared memory. (Denning and Martell, 2015, p. 155,
my emphases)

Note that this output need not be reported to the external
world (such as a user); it's just left there on the tape.
Moreover, the inscriptions on the tape will be used and
modified by the machine during the computation, in the
same way a physical computer uses its internal memory for
storing intermediate results of a computation. So, it looks
like the tape is merely an internal memory device. In other
words, it also looks like the answer to our questions is:
both.
Although Turing's ‐machines were designed to simulate
human computers, Turing didn't talk about the humans
who would use them. A Turing Machine doesn't accept
user‐supplied input from the external world! (Recall our
discussion of interactive computing in Section 11.8.) It
begins with all data pre‐stored on its tape and then simply
does its own thing, computing the output of a function and
leaving the result on the tape. Turing Machines don't “tell”



anyone in the external world what the answers are,
although the answers are there for anyone to read, because
the “internal memory” of the machine is visible to the
external world. Of course, a user has to be able to interpret

the symbols on the tape; we'll return to this point in Section
16.4.6.
Perhaps it would be better to refer to the initial symbols on
the tape as “setup conditions” and the final symbols as
“terminal conditions,” rather than as “inputs” and
“outputs” (as suggested by Machamer et al., 2000, p. 11).
So, are the symbols on the tape really inputs and outputs in
the sense of coming from, and being reported to, the
external world? Are such inputs and outputs an essential
part of an algorithm? It may seem outrageous to deny that
they are essential, but (as we saw in Section 7.3.3) it's been
done! After all, the input‐output interface “merely”
connects the algorithm with the world. Let's consider
whether inputs and outputs are needed. (For more on
whether a Turing Machine tape is an external input‐output
device or an internal memory, see Dresner, 2003, 2012.)

16.4.3 Are Inputs Needed?

One reason it's outrageous that inputs or outputs might not

be needed is that algorithms are supposed to be ways of
computing mathematical functions, and mathematical
functions, by definition, have both inputs and outputs –
members of their domain and range. Functions are, after
all, certain sets of ordered pairs (of inputs and outputs),
and you can't very well have an ordered pair that is missing
one or both of those.
In Section 7.3.3, we saw that

Markov's informal characterization of algorithm had an
“applicability” condition stating that algorithms must



have “The possibility of starting from original given
objects which can vary within known limits” (Markov,
1954, p. 1). Those “original given objects” are,
presumably, the input.
But Hartmanis and Stearns's classic paper on
computational complexity (1965, p. 288) allowed their
multi‐tape Turing Machines to have at most one tape –
an output‐only tape – with no input tapes.
And we also saw that Knuth's informal characterization
of the notion of algorithm had an “input” condition
stating that “An algorithm has zero or more inputs”
(Knuth, 1973, p. 5; my italics). He not only didn't
explain this but also went on to characterize outputs as
“quantities which have a specified relation to the
inputs” (Knuth, 1973, p. 5). But what kind of relation
would an output have to a non‐existent input?5

One way to understand having outputs without inputs is
that some programs, such as prime‐number generators,
merely output information. In cases such as this, although
there may not be any explicit input, there is an implicit

input (roughly, ordinals: the algorithm outputs the th
prime without explicitly requesting an  to be input).
Another kind of function that might seem not to have any
explicit inputs is a constant function, but again, its implicit
input could be anything (or anything of a certain type –
“varying within known limits,” as Markov might have said).
So, what constitutes input? Is it simply the initial data for a
computation – i.e. is it internal and syntactic? Or is it
information supplied to the computer from the external
world (and interpreted or translated into a representation
of that information that the computer can “understand” and
manipulate) – i.e. is it external and semantic?



16.4.4 Are Outputs Needed?

Markov, Knuth, and Hartmanis and Stearns all require at
least one output. Markov, for example, has an
“effectiveness” condition stating that an algorithm must
“obtain a certain result.” But Copeland and Shagrir (2011,
pp. 230–231) suggest that a Turing Machine's output might
be unreadable. Imagine not a Turing Machine with a tape,
but a physical computer that literally prints out its results.
Suppose the printer is broken or has run out of ink. Or
suppose the programmer failed to include a ‘print’
command in the program. The computer's program would
compute a result but not be able to tell the user what it is,
as we see in this algorithm (Chater and Oaksford, 2013,
p. 1172, citing an example from Pearl, 2000):

1. input 
2. multiply  by 2; store in 
3. add 1 to ; store in 

This algorithm has an explicit input but does not appear to
have an explicit output. The computer has computed 

 and stored it away in  for safekeeping but doesn't
tell you its answer. There is an answer, but it isn't output.
(“I know something that you don't!”?)
So, what constitutes “output”? Is it simply the final result of
a computation – i.e. is it internal and syntactic? Or is it
some kind of translation or interpretation of the final result
that is physically output and implemented in the real world
– i.e. is it external and semantic? In the former case,
wouldn't both of Rescorla's base‐10 and base‐13 GCD
computers be doing the same thing? A problem would arise
only if they told us what results they got, and we – reading
those results – would interpret them, possibly incorrectly.



16.4.5 When Are Inputs and Outputs

Needed?

Machines live in the real world and have only a limited
contact with it. Any machine, no matter how universal,
that has no ears (so to speak) will not hear; that has no
wings, will not fly.
—Allen Newell (1980, p. 148)

Narrowly conceived, algorithms might not need inputs and
outputs. Widely conceived, they do. Any input from the
external world has to be encoded by a user into a language
“understandable” by the Turing Machine (or the Turing
Machine needs to be able to decode such external‐world
input). And any output from the Turing Machine to be
reported to the external world (e.g. a user) has to be
encoded by the Turing Machine (or decoded by the user).
Such codings would themselves have to be algorithmic.
In fact, one key to determining which real‐world tasks are
computable is finding coding schemes that allow a
sequence of ‘0's and ‘1's (i.e. a natural number in binary
notation) on a Turing Machine's tape to be interpreted as a
symbol, a pixel, a sound, etc. According to the
Computability Thesis, a mathematical function on the
natural numbers is computable iff it is computable by a
Turing Machine. Thus, a real‐world problem is computable
iff it can be encoded as such a computable mathematical
function.
But it's that wide conception, requiring algorithmic,
semantic interpretations of the inputs and outputs, that
leads to various debates. Let's look at the (semantic)
coding issue more closely. (On the importance of encoding
and decoding for the semantic vs. syntactic views of
computing, see Horsman et al., 2014, p. 15.)



16.4.6 Must Inputs and Outputs Be

Interpreted Alike?

Letting the symbol ‘ ’ represent a sequence of  strokes
(where  is a natural number), Rescorla (2007, p. 254)
notes that

Different textbooks employ different correlations
between Turing machine syntax and the natural
numbers. The following three correlations are among the
most popular:

A machine that doubles the number of strokes computes 
 under ,  under , and 

 under . Thus, the same Turing machine
computes different numerical functions relative to
different correlations between symbols and numbers.

Let's focus on interpretation . First, having different
input and output interpretations of a single internal
formalism occurs elsewhere. Machine‐translation systems
that use an “interlingua” work this way: Chinese input, for
example, can be encoded into an “interlingual”
representation language (often thought of as an internal,
“meaning”‐representation language that encodes the
“proposition” expressed by the Chinese input), and English
output can then be generated from that interlingua (re‐



expressing in English the same proposition that was
originally expressed in Chinese) (Slocum, 1985, Liao, 1998;
Daylight, 2013, Section 2). Cognition (assuming that it is
computable!) also works this way: perceptual encodings
(such as Newell's example of hearing) into the
“interlingua” of the biological neural network of our brain
surely differ from motor decodings (such as Newell's
example of flying). And a calculator's input consists of
button pressings, which are one kind of numeral
representations of numbers, while its output consists of a
graphical display, which is another kind of numeral
representing a number (Cummins, 1989, p. 89).
Second, using Hill's distinction (Section 16.3), the idea that
a single, internal representation scheme can have different
external interpretations suggests that the internal  can
be considered a syntactic entity, separate from an external 

, which can be considered its semantic referent.
Moreover, it is the internal  that would be central to
computation.
This offers a way out of Rescorla's puzzle about the two
GCD computers.6 Consider a Common Lisp version of
Rescorla's GCD program. The Common Lisp version will
look identical to the Scheme version shown in Section
13.3.3 (the languages share most of their syntax), but the
Common Lisp version has two global variables – *read‐base*
and *print‐base* – that tell the computer how to interpret
input and how to display output. These are
implementations of the coding algorithms mentioned in
Section 16.4.5. By default, *read‐base* is set to 10. So the
Common Lisp read‐procedure does the following:

a. It sees the three‐character string ‘115’ (for example);
b. it decides that the string satisfies the syntax of an

integer;



c. it converts that string of characters to an internal
(“interlingual”) representation of type integer – which is

represented internally as a binary numeral

implemented as bits or switch‐settings;
d. it does the same with (say) ‘20’; and
e. it computes their GCD using the algorithm from Section

13.3.3 on the binary representation.
If the physical computer had been an old IBM machine, the
computation might have used binary‐coded decimal

numerals instead, thus computing in base 10. If *read‐base*
had been set to 13, the input characters would have been
interpreted as base‐13 numerals, and the very same

Common Lisp (or Scheme) code would have correctly
computed the GCD of  and . One could either say
that the algorithm computes with numbers – not numerals –
or that it computes with base‐2 numerals as an interlingual

(or “canonical”) representation of numbers. But that choice
depends on one's view about the nature of mathematics

(Section 12.1) – not about the nature of computation.
And similarly for output: the switch‐settings containing the
GCD of the input are then output as base‐10 or base‐13
numerals appearing as pixels on a screen or ink on paper,
depending on the value of such things as *print‐base*. With
respect to Rescorla's example, the point is that a single

Common Lisp (or Scheme) algorithm is being executed
correctly by both  and . Those machines are

different; they do not “have the same local, intrinsic,
physical properties” (Rescorla, 2013, p. 687), because 
has *read‐base* and *print‐base* set to 10, whereas  has
*read‐base* and *print‐base* set to 13.
For a purely mathematical, Turing‐computable example,
recall Aizawa's program from Section 10.4, repeated here:



… if we represent the natural number n by a string of n
consecutive 1s, and start the program with the read‐
write head scanning the leftmost 1 of the string, then the
program,

 1 1 R 
 0 1 R ,

will scroll the head to the right across the input string,
then add a single ‘1’ to the end. It can, therefore, be
taken to compute the successor function. (Aizawa, 2010,
p. 229)

I can describe this program semantically (or “widely”) as
one that generates natural numbers. Speaking purely
syntactically (or “narrowly”), I'd like to describe it as one
that appends a ‘1’ to the (right) end of the sequence of ‘1's
encoded on its (input) tape. Using Hill's formulation, the
semantic or wide (or “teleological”) description would be

In order to generate natural numbers, do begin 
; end.

The syntactic (or narrow) description would just be the
“do” clause.
Now, a Turing Machine that does merely that does not
really generate the natural numbers; at best, it could be
described semantically as a one‐trick pony that generates
the successor of the number encoded on the tape. To
generate “all” natural numbers, this Turing Machine would
have to be embedded as the body of a loop in another,
“larger” Turing Machine. The idea is that beginning with a
tape “seeded” with the first natural number (either a blank
tape or one with a single stroke), it executes the first
Turing Machine, thus generating the input's successor,
then loops back to the beginning, considers the current



tape as the input tape, and generates its successor, ad

infinitum.
But what if it uses Rescorla's  interpretation scheme?
Then our larger Turing Machine, while still appending a ‘1’
to the end of the current sequence of ‘1's on the tape, is no
longer generating the natural numbers. (It is certainly
generating a natural‐number sequence, but not the one
written in the same notation as the inputs.) Rather than
computing , it is computing .
The aspect of this situation that I want to remind you of is
whether the tape is the external input and output device or
is, rather, the machine's internal memory. If it is the
machine's internal memory, then, in some sense, there is
no (visible or user‐accessible) input or output (Section
16.4.2). If it is an external input‐output device, then the
marks on it are for our convenience only. In the former
case, the only accurate description of the Turing Machine's
behavior is syntactically in terms of ‘1’‐appending. In the
latter case, we can use that syntactic description, but we
can also embellish it with one in terms of our interpretation
of what it is doing. (We'll return to this in Section 16.9.)

16.4.7 Linking the Tape to the

External World

Suppose a Turing Machine's tape is really just its internal
memory. Then, even though Turing Machines compute
mathematical functions, they “contemplate their navel,” so
to speak, because they don't tell us what their results are.
If we want to use a Turing Machine to find out the result of
a computation, we need to look at its internal storage.
Conveniently, it's visible on the machine's tape. But it's in
code. So we have to decode it into something we can
understand and use. And we have to do that



algorithmically. Our earlier examples suggest that this can
be done in many ways and that it can go wrong.
Does that decoding belong to ? Or does it belong to ?
Let's now turn to this question.



16.5 Are Programs Teleological?

Algorithms, in the popular imagination, are
algorithms for producing a particular result. …
[E]volution can be an algorithm, and evolution can have
produced us by an algorithmic process, without its being
true that evolution is an algorithm for producing us.
—Daniel C. Dennett (1995, p. 308, my boldface, original
italics)7

We have discussed two ways to view a computation: the
first way is purely syntactically (or narrowly, internally, or
locally), as expressed in a computer program of the form
“Do  ,” where  is an algorithm expressed in the
language of Turing Machines or the language of recursive
functions (etc.). The second way is semantically (or widely,
externally, or globally), as expressed in a computer
program of the form “To accomplish goal , do  ” (which
we'll shorten to “To  , do  ”). That preface (“To  ”)
makes explicit a goal  of the algorithm , thus indicating
that the program is intended to have a purpose (it is
“teleological”). Let's now consider the question of whether
the proper way to characterize a program must include the
teleological preface “To  .”
As we saw in Chapter 7, the history of computation theory
is, in part, an attempt to make the informal notion of an
algorithm mathematically precise. In Section 7.3.3, we
summarized this as follows:



An algorithm (for executor ) [to accomplish goal ] is:
1. a procedure , i.e. a finite set (or sequence) of

statements (or rules, or instructions), such that each
statement  is:

a. composed of a finite number of symbols (better:
uninterpreted marks) from a finite alphabet

b. and unambiguous (for  – i.e.
i.  “knows how” to do ,

ii.  can do ,
iii.  can be done in a finite amount of time
iv. and, after doing ,  “knows” what to do

next –),
2.  takes a finite amount of time (i.e. it halts),
3. [and  ends with  accomplished].

I have put some of these clauses in (parentheses) and
[brackets] for a reason. The notion of an algorithm is most
easily understood with respect to an executor: a human or
a machine that (dynamically) executes the (static)
instructions. We might be able to rephrase this
characterization of an algorithm without reference to  ,
albeit awkwardly; hence the parentheses around the ‐
clauses.

title type="featureName">BoxII

Exercise for the Reader: Try to eliminate the executor
from this (or any other) characterization of an
algorithm. Can it be eliminated? If not, why not? (For
discussion of this point, see Sieg, 2008, p. 574.)



But the present issue is whether the bracketed ‐clauses
are essential. As we saw in Sections 12.5 and 15.1, one
executor's algorithm might be another's ungrammatical
input (Suber, 1988; Buechner, 2011, 2018), and a bad
puttanesca might still be a delicious pasta dish. Does the
chef's intention (or the diner's expectation) matter more

than the actual food preparation? Is  more important
than  ?



16.6 Algorithms Do Need a Purpose

Peter Suber argues in favor of the importance of :

To distinguish crashes and bad executions from good
executions, it appears that we must introduce the
element of the programmer's purpose. Software executes
the programmer's will, while semantically flawed,
random, and crashing code do not. This suggests that to
understand software we must understand intentions,
purposes, goals, or will, which enlarges the problem far
more than we originally anticipated.
Perhaps we must live with this enlargement. We should
not be surprised if human compositions that are meant to
make machines do useful work should require us to posit
and understand human purposiveness. After all, to
distinguish literature from noise requires a similar
undertaking. (Suber, 1988, p. 97)

And Hill (2016, Section 5) says that a “prospective user”
needs “some understanding of the task in question” over
and above the mere instructions. Algorithms, according to
Hill, must be expressed in the form “To  , do  ,” not
merely “Do  .”

BoxII

Question for the Reader: Is the executor of an
algorithm the same as a user? Typically, a (human) uses

a computer, but it is the computer that executes the
algorithm. In what follows, ask yourself if it is the user
or the executor who “needs some understanding of the
task” (as Hill says).



Suber and Hill are not alone in this. The cognitive scientist
and computational vision researcher David Marr also held
that (at least some) computations were purposeful. He
analyzed information processing into three levels (Marr,
1982, Section 1.2):

 computational (what a system does, and why),
 algorithmic (how it does it), and
 physical (how it is implemented).

In our terminology, these levels would be called
‘functional,’ ‘computational,’ and ‘implementational,’
respectively: certainly, when one is doing mathematical
computation (the kind that Turing was concerned with),
one begins with a mathematical function (i.e. a certain set
of ordered pairs), asks for an algorithm to compute it, and
then seeks an implementation of the algorithm, usually in a
physical system such as a computer or the brain. Note,
however, that Marr's “computational” level combines our
“functional” level with a purpose (“why”).
In non‐mathematical fields (e.g. cognition in general, and –
for Marr – vision in particular), the set of ordered pairs of
input‐output behavior is expressed in goal‐oriented,
problem‐specific language, and the algorithmic level will
also be expressed in that language. (The implementation
level might be the brain or a computer.) A recipe for
hollandaise sauce developed in this way would have to say
more than just something along the lines of “mix these
ingredients in this way”; it would have to take the external
environment into account. (We will return to this in Section
16.8, and we will see how the external world can be taken
into account in Section 16.10.4.)
Marr was trying to counter the then‐prevailing
methodology of trying to describe what neurons were doing



(a “narrow,” internal, implementation‐level description)
without having a “wide,” external, “computational”‐level
purpose (a “function” in the teleological, not mathematical,
sense). Such a teleological description would tell us “why”
neurons behave as they do:

As one reflected on these sorts of issues in the early
1970s, it gradually became clear that something
important was missing that was not present in either of
the disciplines of neurophysiology or psychophysics. The
key observation is that neurophysiology and
psychophysics have as their business to describe the
behavior of cells or of subjects but not to explain such
behavior. What are the visual areas of the cerebral
cortex actually doing? What are the problems in doing it
that need explaining, and at what level of description
should such explanations be sought? (Marr, 1982, p. 15;
for discussion of this point, see Bickle, 2015)

On this view, Marr's “computational” level is teleological.
In Hill's formulation, the “To  ” preface expresses the
teleological aspect of Marr's “computational” level; the “do 

” seems to express the (mathematical) functional level or
the Marr's “algorithmic” level.
In addition to being teleological, algorithms seem to be
able to be multiply teleological, as in the duck‐rabbit
examples. That is, there can be algorithms of the form “To 

, do  ” and algorithms of the form “To  , do  ,”
where , and where neither  nor  subsumes the
other, although the  is the same. In the cartoon of
Figure 16.1, depending on the semantic interpretation of
the syntactic finger movements, we have two s with one 

: either “To say ‘yes’ 10 times, raise 10 fingers” or “To
say ‘no’ 5 times, raise 10 fingers.”



In other words, what if doing  can accomplish two
distinct goals? Do we have two algorithms in that case: one
that accomplishes , and another that accomplishes ,
counting teleologically, or “widely”? Or just one: a single
algorithm that does , counting more narrowly?
Were de Bruijn and the chemists talking about the same
thing (Section 16.2)? On the teleological (or wide) view,
they weren't; on the narrow view, they were. Multiple
teleologies are multiple implementations of an algorithm
narrowly construed: ‘Do  ’ can be seen as a way to
algorithmically implement the higher‐level “function”
(mathematical or teleological) of accomplishing  as well

as accomplishing . For example, executing a particular
subroutine in a given program might result in checkmate or
winning a battle. Viewing multiple teleologies as multiple
implementations can also account for hollandaise‐sauce
failures on the Moon, which could be the result of an
“implementation‐level detail” (Section 13.1.1) that is
irrelevant to the abstract, underlying computation.



16.7 Algorithms Don't Need a

Purpose

Certainly, knowing the goal of an algorithm makes it easier
for cognitive‐agent executors (who are also users?) to
follow the algorithm and to have a fuller understanding of
what they are doing. But is such understanding necessary?
Consider the following two (real‐life!) personal stories:

Story 1: I vividly remember the first semester that I
taught a “Great Ideas in Computer Science” course
aimed at computer‐phobic students. We were going to
teach the students how to use a spreadsheet program,
something that, at the time, I had never used; so, with
respect to this, I was as naive as any of my students!
My TA, who had used spreadsheets before, gave me
something like the following instructions:

enter a number in cell_1;
enter a number in cell_2;
enter ‘= click on cell_1 click on cell_2 ’ in cell_3

Some current implementations of Excel require a plus‐
sign between the two clicks in the third instruction.
But the version I was using at the time did not, making
the operation that much more mysterious! Indeed, I
had no idea what I was doing. I was blindly following
her instructions and had no idea that I was adding two

integers. Once she told me that that was what I was
doing, my initial reaction was “Why didn't you tell me
that before we began?”

When I entered those data into the spreadsheet, was I
adding two numbers? I didn't understand that I was adding
when my TA told me to enter certain data into the cells of



the spreadsheet. It was only when she told me that that
was how I could add two numbers with a spreadsheet that I
understood. Now, (I like to think that) I am a cognitive
agent who can come to understand that entering data into
a spreadsheet can be a way of adding. But a Turing
Machine that adds or a Mac running Excel is not such a
cognitive agent. It does not understand what addition is or
that that is what it is doing. And it does not have to.
(We will return to this in Section 18.6, when we discuss the
Chinese Room Argument. Arguably, an AI program running
on a robot that passes the Turing Test would be a very
different matter. Such an AI program could, would, and
should [come to] understand what it was doing. We'll
explore this further in Chapter 18.)8

Story 2: Years later, I had yet another experience
along these lines:



My wife recently opened a restaurant and asked me to
handle the paperwork and banking that needs to be done
in the morning before opening (based on the previous
day's activities). She wrote out a detailed set of
instructions, and one morning I went in with her to see if
I could follow them, with her looking over my shoulder.
As might be expected, there were gaps in her
instructions, so even though they were detailed, they
needed even more detail. Part of the reason for this was
that she knew what had to be done, how to do it, and
why it had to be done, but I didn't. This actually
disturbed me, because I tend to think algorithms should
really be just “Do A,” not ‘To G, do A.’ Yet I felt that I
needed to understand G in order to figure out how to do
A. But I think the reason for that was simply that she
hadn't given me an algorithm, but a sketch of one, and,
in order for me to fill in the gaps, knowing why I was
doing A would help me fill in those gaps. But I firmly
believe that if it made practical sense to fill in all those
gaps (as it would if we were writing a computer
program), then I wouldn't have to ask why I was doing it.
No “intelligence” should be needed for this task if the
instructions were a full‐fledged algorithm. If a procedure
(a sequence of instructions, including vague ones like
recipes) is not an algorithm (a procedure that is fully
specified down to the last detail), then it can require
“intelligence” to carry it out (to be able to fill in the gaps,
based, perhaps on knowing why things are being done).
If intelligence is not available (i.e. if the executor lacks
relevant knowledge about the goal of the procedure),
then the procedure had better be a full‐fledged
algorithm. There is a difference between a human trying
to follow instructions and a machine that is designed to
execute an algorithm. The machine cannot ask why, so
its algorithm has to be completely detailed. But a
computer (or a robot, because one of the tasks is going



to the bank and talking to a teller!) that could really do
the job would almost certainly be considered to be
“intelligent.”
(Rapaport, quoted in Hill and Rapaport, 2018, p. 35)9

Despite the fact that understanding what task  an
algorithm  is accomplishing makes it easier to
understand  itself, the important point is that “blind”
following of  is all that is necessary in order to
accomplish . The fact that computation can be “blind” in
this way is what Dennett has called

Turing's … strange inversion of reasoning. The Pre‐
Turing world was one in which computers were people,
who had to understand mathematics in order to do their
jobs. Turing realised that this was just not necessary: you
could take the tasks they performed and squeeze out the
last tiny smidgens of understanding, leaving nothing but
brute, mechanical actions. IN ORDER TO BE A PERFECT
AND BEAUTIFUL COMPUTING MACHINE IT IS NOT
REQUISITE TO KNOW WHAT ARITHMETIC IS.
(Dennett, 2013b, p. 570, capitalization in original)10

The point is that a Turing Machine need not “know” that it
is adding. But agents who do understand adding can use
that machine to add.
Or can they? To do so, the machine's inputs and outputs
have to be interpreted – understood – by the user as
representing the numbers to be added. And that seems to
require an appropriate relationship with the external world.
It seems to require a “user manual” that tells the user what
the algorithm does in the way Hill prescribes, not in the
way my TA explained how to use a spreadsheet. And such a
“user manual” – an intention or a purpose for the algorithm
– in turn requires an interpretation of the machine's inputs
and outputs.



But before pursuing this line of thought, let's take a few
more minutes to consider “Turing's strange inversion,” the
idea that a Turing Machine can be doing something very
particular by executing an algorithm without any
specification of what that algorithm is “doing” in terms of
the external world. Algorithms, on this view, seem not to
have to be teleological, yet they remain algorithms. Brian
Hayes (2004) offers two versions of an algorithm that ants
execute:
Non‐teleological version:

1. “If you see a dead ant11 and you're not already carrying
one, pick it up;

2. “if you see a dead ant, and you are carrying one, put
yours down near the other.”

Teleological version:

To create an ant graveyard, “gather all … [your] dead in
one place.12

As Hayes notes, the teleological version requires planning
and organization skills far beyond those that an ant might
have, not to mention conceptual understanding that we
might very well be unwilling to ascribe to ants. The point,
however, is that the ant needs none of that. The teleological
description helps us describe and perhaps understand the
ant's behavior; it doesn't help the ant. The same is true in
my spreadsheet example. Knowing that I am adding helps
me understand what I am doing when I fill the spreadsheet
cells with certain values or formulas. But the spreadsheet
does its thing without needing that knowledge.
These examples suggest that the user‐manual (or external‐
world) interpretation is not necessary. Algorithms can be
teleological, and their being so can help users and
cognitive agents who execute them to more fully



understand what they are doing. But they don't have to be
teleological.13



16.8 Algorithms and Goals

What if “successfully” executing  fails to accomplish goal 
? This could happen for external, environmental reasons.

Does this mean  might not be a computable task even
though  is? We have seen several examples of this kind of
failure:

The blocks‐world computer's model of the world was an
incomplete, partial model; it assumed that its actions
were always successful. This program lacked feedback
from the external world. There was nothing wrong with
the environment; rather, there was incomplete
information about the environment.
In the case of Cleland's hollandaise‐sauce recipe, the
environment was at fault. Her recipe ( ) was executed
flawlessly on the Moon but failed to produce
hollandaise sauce. Her diagnosis was that making
hollandaise sauce ( ) is not computable. Yet  was!
Rescorla's GCD computers do “different things” by

doing the “same thing.” The difference is not in how

they are doing what they are doing but in the
interpretations that we users of the machines give to
their inputs and outputs. Would Hill (2016) say that the
procedure encoded in that Scheme program was
therefore not an algorithm?14



BoxII

Question for the Reader: How does this relate to the
trial‐and‐error machines that we discussed in Section
11.10? After all, they also differ from Turing Machines
only in terms of our interpretations of what they are
doing, not in how they do it.

What is more central to the notion of “algorithm”: all of
parts 1–3 in our informal characterization in Section 16.5
(“To  , do  ”), or just parts 1–2 – i.e. without the
bracketed goals (just “Do  ”)? Is the algorithm the
narrow, non‐teleological, “purposeless” (or non‐purposed)
entity? Or is the algorithm the wide, teleological (i.e. goal‐
directed) entity?
On the narrow view, the war and chess algorithms are just
one algorithm, the hollandaise‐sauce recipe does work on
the Moon (its computer program might be logically
verifiable even if it fails to make hollandaise sauce), and
Rescorla's “two” GCD programs are also just one algorithm
that does its thing correctly (but only we base‐10 folks can
use it to compute GCDs).
On the wide view, the war and chess programs are two

distinct algorithms, the hollandaise‐sauce recipe fails on
the Moon (despite the fact that the program might have
been verified – shades of the Fetzer controversy of Section
15.4.1!), and the Scheme program when fed base‐13
numerals (as Rescorla describes it) is doing something
wrong (in particular, its “remainder” subroutine is
incorrect). It does the right thing on the interpretation
discussed in Section 16.4.6.



These examples suggest that the wide, goal‐directed nature
of algorithms that are teleologically conceived is due to the
interpretation of their input and output. As Shagrir and
Bechtel (2015, Section 2.3) put it (echoing Sloman's
distinction from Section 16.4.1), Marr's “algorithmic level
… is directed to the inner working of the mechanism …. The
computational level looks outside, to identifying the
function computed and relating it to the environment in
which the mechanism operates.”
We can combine these insights: Hill's formulation of the
teleological nature of algorithms had two parts, a
teleological “preface” specifying the task to be
accomplished (“To  ”) and a statement of the algorithm
that accomplishes it (“Do  ”). One way to clarify the
nature of Marr's “computational” level is to split it into its
“why” and its “what” parts. The “why” part is the task to be
accomplished. The “what” part can be expressed
“computationally” (in our terminology, “functionally”) as a
mathematical function (possibly, but not necessarily,
expressed in “why” terminology), but it can also be
expressed algorithmically. Finally, the algorithm can be
implemented. So, we can distinguish the following four

Marr‐like levels of analysis:
“Computational”‐what level: Do 

“Computational”‐why level: To  , do 

Algorithmic level: To  , do 

Implementation level: To  , do 

where
 is an input‐output function that happens to

accomplish ;



 is the task to be accomplished or explained,
expressed in the language of the external world, so to
speak;

 is an algorithm that implements  (i.e. it is an
algorithm that has the same input‐output behavior as 
), either expressed in the same language as  or
perhaps expressed in purely mathematical language;
and

 is an implementation (perhaps in the brain or on
some computer) of .

Shagrir and Bechtel (2015, Section 4) say that “The what

aspect [of the “computational” level] provides a description
of the mathematical function that is being computed. The
why aspect employs the contextual constraints in order to
show how this function matches with the environment.”
These nicely describe the two clauses of what I call the
“computational‐why” level earlier. 15



16.9 Computing with Symbols or with

Their Meanings

Goal  is expressed in teleological language. We now need
to focus on the language used to express the algorithm 
that implements the function  that – in turn – underlies
(or is supposed to accomplish) . Can  be teleological?
Must it be teleological, too? In other words, can (or must) it
be expressed in the language of ? For example, can
(must) it talk about chess as opposed to war, or chess as
opposed to shogi or Go?
What do Turing Machines compute with? For that matter,
what do we compute with? Rescorla (2007, p. 253) reminds
us that

A Turing machine manipulates syntactic entities: strings
consisting of strokes and blanks. … Our main interest is
not string‐theoretic functions but number‐theoretic
functions. We want to investigate computable functions
from the natural numbers to the natural numbers. To do
so, we must correlate strings of strokes with numbers.

In this regard, Turing Machines differ interestingly from
their logical equivalents in the Computability Thesis: the
lambda calculus and recursive‐function theory apparently
deal with functions and numbers, not symbols for them.



BoxII

Questions for the Reader: Is it really the case that the
lambda calculus and recursive‐function theory (unlike
Turing Machines) deal with functions and not just with
symbols for functions? Hilbert viewed all of mathematics
as the “manipulation of finite strings of symbols devoid
of intuitive meaning[,] which stimulated the
development of mechanical processes to accomplish
this” (Soare, 1999, Section 2.4, p. 5). On this view,
wouldn't all of the formalisms of computability theory be
syntactic? Can't recursive‐function theory be understood
purely syntactically? And the lambda calculus “can be
presented solely as a formal system with syntactic
conversion rules. … all we are doing is manipulating
symbols” (J. Stoy, quoted in Turner, 2018, p. 92).

But for Turing Machines and their physical
implementations (i.e. ordinary computers), we see that it is
necessary to interpret the strokes. Here is an example due
to the philosopher Christopher Peacocke (1999): suppose
we have a Turing Machine that outputs a copy of the input
appended to itself (thus doubling the number of input
strokes): input ‘ ,’ output ‘ ’; input ‘ ,’ output ‘ ,’ and so
on. What is this Turing Machine doing? The most neutral
description seems to be “outputting a copy of the input
appended to itself.” After all, that describes exactly what
the Turing Machine is doing, leaving the interpretation
(e.g. doubling the input) up to the observer. If we had come
across that Turing Machine in the middle of the desert and
were trying to figure out what it does, something like that
would be the most reasonable answer. Why a user might
want a copy‐appending Turing Machine is a different
matter that probably would require an interpretation of the



strokes. But that goes far beyond what the Turing Machine
is doing.
But Peacocke objects:

The normal interpretation of a Turing machine assigns
the number 0 to a single stroke ‘ ,’ the number 1 to ‘ ,’
the number 2 to ‘ ,’ and so on. But there will equally be
an interpretation which assigns 0 to a single stroke ‘ ,’
and then assigns the number 2 to ‘ ,’ the number 4 to ‘

,’ and generally assigns  to any symbol to which the
previous interpretation assigns . Under the second
interpretation, the Turing Machine will still be
computing a function. … What numerical value is
computed, and equally which function is computed, by a
given machine, is not determined by the purely formal
characterization of the machine. There is no such thing
as purely formal determination of a mathematical
function. … [W]e can say that a Turing machine is really
computing one function rather than another only when it
is suitably embedded in a wider system. (Peacocke,
1999, pp. 198–199).

Recall Rescorla's three interpretations of the strokes
(Section 16.4.6). Do we really have one machine that
(simultaneously?) does three different things? What it does
(in one sense of that phrase) depends on how its input and
output are interpreted: i.e. on the environment in which it
is working. In different environments, it does different
things; at least, that's what Cleland said about the
hollandaise‐sauce recipe. Rescorla (2015, Section 2.1)
makes a related observation: “The same Turing machine 
computes different non‐linguistic functions, depending
upon the semantic interpretation of strings manipulated by
the Turing machine,” thus rendering all of computability
theory “intensional” (with an ‘s,’ not a ‘t’): i.e. dependent
upon the meanings of the symbols and not just on the



symbols themselves (e.g. their shapes). Using our
terminology, he thus comes down on the side of “To  , do 

” rather than on “Do  .”
Piccinini (2006, Section 2, my italics) says much the same
thing; however, he draws a different conclusion:

In computability theory, symbols are typically marks on
paper individuated by their geometrical shape (as
opposed to their semantic properties). Symbols and
strings of symbols may or may not be assigned an
interpretation; if they are interpreted, the same string
may be interpreted differently …. In these computational
descriptions, the identity of the computing mechanism

does not hinge on how the strings are interpreted.
By ‘individuated,’ Piccinini is talking about how one decides
whether what appear to be two programs (say, one for a
war battle and one for a chess match) are, in fact, two
distinct programs or really just one program (perhaps
being described differently). He suggests that it is not how
the inputs and outputs are interpreted (their semantics)
that matters, but what the inputs and outputs look like

(their syntax). In an earlier paper, Rescorla agreed:

Since we can arbitrarily vary inherited meanings relative
to syntactic machinations, inherited meanings do not
make a difference to those machinations. They are
imposed upon an underlying causal structure. (Rescorla,
2014a, p. 181)

So, for Piccinini and the Rescorla of 2014a, the war and
chess programs are the same. But for Cleland and the
Rescorla of 2015, they would be different. For Piccinini, the
hollandaise‐sauce program running on the Moon works just
as well as the one running on Earth; for Cleland, only the
latter does what it is supposed to do.



So, the question “Which Turing Machine is this?” has only
one answer, which is given in terms of its syntax:
“determined by [its] instructions, not by [its]
interpretations” (Piccinini, 2006, Section 2). But the
question “What does this Turing Machine do?” has 
answers: one syntactic answer and  semantic answers
(one for each of  different semantic interpretations).
If I want to know which Turing Machine this is, I should
look at the internal mechanism ( ) for the answer. This is,
roughly, Piccinini's (2006) recommendation. But if I'm
interested in buying a chess program (as opposed to a war
simulator, for example), then I need to look at the external
(or inherited, or wide) semantics. This would be Cleland's
(1993) recommendation. In “To  , do  ,” the “do  ”
portion expresses Dennett's (1971) “design” or “physical”
stance, and the “to  ” portion expresses Dennett's
“intentional” stance (Dennett, 2013a, pp. 81–82, 84; recall
our Section 12.4.1).
We have come across this situation before. In Section
12.4.4, we asked whether a Universal Turing Machine
running an addition program was adding or “just” fetching
and executing the instructions of an addition program
stored on its tape. A similar question can be asked about
humans: How would you describe my behavior when I use a
calculator to add two numbers? Am I (merely) pushing
certain buttons in a certain sequence? This would be a
“syntactic,” narrow, internal answer: I am “doing  ”
(where  = pushing buttons). Or am I adding two
numbers? This would be a teleological, “semantic,” wide,
external answer: I am accomplishing  (where 
 = adding). Or am I adding two numbers by pushing those
buttons in that sequence? This would be a teleological
(etc.) answer, together with a syntactic description of how I
am doing it: I am accomplishing  by doing . This is the



same situation we saw in the spreadsheet example. (We
will see it again in Section 16.10.2).
In some sense, all of these answers are correct, merely(?)
focusing on different aspects of the situation. But a further
question is, why (or how) does a Turing Machine's printing
and moving thus and so, or my pushing certain calculator
buttons thus and so, result in adding two numbers? And the
answer to that seems to require a semantic interpretation.
This is the kind of question that Marr's “computational”
level is supposed to respond to.
Here is another nice example (Piccinini, 2008, p. 39):

a loom programmed to weave a certain pattern will
weave that pattern regardless of what kinds of thread it
is weaving. The properties of the threads make no
difference to the pattern being woven. In other words,
the weaving process is insensitive to the properties of
the input.

As Piccinini points out, the output might have different
colors depending on the colors of the input threads, but the
pattern will remain the same. The pattern is internal to the
program; the colors are external, to use other terminology.
(Here,  is the pattern;  is the colors.) If you want to
weave an American flag, you had better use red, white, and
blue threads in the appropriate ways. But even if you use
cyan, black, and yellow threads, you will weave an
American‐flag pattern.16 Which is more important: the
pattern or the colors? That's probably not the right
question. Rather, if you want a certain pattern, this
program will give it to you; if you want a certain pattern
with certain colors, you need to have the right inputs – you
need to use the program in the right environment.17



16.10 Syntactic, Internal, and

Indigenous Semantics

16.10.1 Syntax vs. Semantics

Recall the concepts of syntax and semantics as we
discussed them in Chapter 13. Syntax is concerned with the
“intra‐system” properties and relations within the
“syntactic” domain. Semantics is concerned with “extra‐
system” relations that go beyond the syntactic domain to
the “semantic” domain. That is, semantics is concerned
with the “inter‐system” relations between the syntactic and
the semantic domains.18

So, one way to respond to the issues raised in Section 16.9
is by using an external semantic interpretation: begin with
specific Turing Machine operations or button presses,
considered as being located in a syntactic system of
internal Turing Machine operations or button pressings.
Numbers and arithmetical operations on them are located
in a distinct, external realm of mathematical entities. Then
we can associate the former with the latter. In the
formulation “To  , do  ,”  can be identified
syntactically (at the “computational‐what” level) – in terms,
say, of Turing Machine operations or button pressings. But 

 needs to be identified semantically – in terms, say, of
numbers and arithmetic operations.  can then be
(re‐)interpreted semantically in G's terms (at the
“computational‐why” level). These are the  answers of
Section 16.9.

16.10.2 Syntactic Semantics



But another way to respond to these issues uses an
“internal” kind of semantics. Because this kind of semantics
is internal to a system, it is really a kind of syntax. Let's call
it “syntactic semantics.” Here is how Piccinini describes it:

[S]tored‐program computers have the ability to respond
to (non‐semantically individuated) strings of tokens
stored in their memory by executing sequences of
primitive operations, which in turn generate new strings
of tokens that get stored in memory. [Note that this is
basically a description of how computers work, or of
what computation is. —WJR] Different bits and pieces
[i.e. substrings] of these strings of tokens have different
effects on the machine. … An accurate description of how
tokens can be compounded into sub‐strings, and sub‐
strings can be compounded into strings, which does not
presuppose that the strings of tokens have any content,
may be called the syntax of the system of strings
manipulated by the computer. … [T]he effect of a string
on the computer is assigned to it [i.e. to the string] as its
content. This assignment constitutes an internal

semantics of a computer. An internal semantics assigns
as contents to a system its own internal components and
activities, whereas an ordinary (external) semantics
assigns as contents to a system objects and properties in
the system's environment. … None of this entails that
computer languages have any external semantics, that is
any content …, although it is compatible with their
having one. …
[I]n order to understand computing mechanisms and
how they work (as opposed to why they are built and
how they are used), there is no need to invoke content ….
(Piccinini, 2004, pp. 401–402, 404. See also Piccinini,
2006, Section 2.)



On this view, it is the “internal” workings of the computer
that count, not the external interpretation of its inputs and
outputs (or even the external interpretation of its internal
mechanisms or symbol manipulations). This is the sense in
which a war computer and a chess computer are
performing “the same computation.” Note the
parenthesized hedge in the last sentence of Piccinini's
quote: Cleland and Rescorla might be quite right in terms
of their emphasis on why or how a particular computer or
program is being used. That's a teleological aspect of
computation that doesn't necessarily violate the
Computability Thesis.
Similarly, Rescorla once argued “that computation is not
sensitive to meaning or semantic properties” (2012a,
Section 1, p. 703). More precisely, he argued that if a
computational process were to be sensitive to semantic
properties, then it would have to violate either a condition
that he called ‘Syntactic Rules’ or a condition that he called
‘Freedom,’ and that such a semantically sensitive
computation would have to have an “indigenous”
semantics, not an “inherited” semantics. He defined these
terms as follows:

SYNTACTIC RULES: computation is manipulation of
syntactic entities according to mechanical rules. We can
specify those rules in syntactic terms, without
mentioning semantic properties such as meaning, truth,
or reference. (Rescorla, 2012a, Section 3, p. 707)



FREEDOM: We can offer a complete syntactic
description of the system's states and the mechanical
rules governing transitions between states (including any
interaction with sensory and motor transducers), while
leaving semantic interpretation unconstrained. More
precisely, it is metaphysically possible for the system to
satisfy our syntactic description while instantiating
arbitrarily different semantic properties. (Rescorla,
2012a, Section 3, p. 708)

Inherited meanings arise when the system's semantic
properties are assigned to it by other systems, through
either explicit stipulation or tacit convention. Nothing
about the system itself helps generate its own semantics.
For instance, words in a book have inherited meanings.
Indigenous meanings arise when a system helps
generate its own semantics. Indigenous meanings do not
arise merely from external assignment. They arise partly
from the system's own activity, perhaps with ample help
from other factors, such as causal, evolutionary, or
design history. Virtually all commentators agree that the
mind has indigenous meanings.
(Rescorla, 2012a, Section 3, pp. 707–708)

Rescorla's “indigenous” semantics seems clearly akin to
Piccinini's “internal” semantics and to what we are calling
“syntactic” semantics.



BoxII

Question for the Reader: However, as we saw in
Section 16.9, three years later Rescorla seems to have
changed his mind! Rescorla, 2015, Section 1 offers the
following “Gap Argument”:

A Turing machine manipulates linguistic items, but we
sometimes want to study computation over non‐
linguistic domain . So there is a gap between the
domain of items manipulated by the Turing machine
and our desired domain of computation . To bridge
the gap, we must interpret linguistic items
manipulated by the Turing machine as denoting items
drawn from . A Turing machine computes over 
only if linguistic items manipulated by the Turing
machine represent elements of . Thus, any complete
theory of computation must cite representational
relations between linguistic items and non‐linguistic
items.

He then says, “Given the Gap Argument, we can study
Turing computation over a non‐linguistic domain only if
we furnish a semantics for strings” (Rescorla, 2015,
Section 3). Buechner, 2011, pp. 358–362, makes a
similar argument.
Is Rescorla's gap related to Smith's gap (Section
15.6.2)?

16.10.3 Syntactic Semantics and

Procedural Abstraction

One way to provide an internal, indigenous, or syntactic
semantics is to use “procedural abstraction” – named



subroutines that accomplish subtasks of the overall
algorithm (Section 7.4.3.3): identify subtasks (collections of
statements in a program that “work together”), package
them up, and name the package, thus giving an identity to
the subtasks.
For example, the following Logo program draws a unit
square by moving forward 1 unit, then turning 90 degrees
right, and doing that four times:

repeat 4 [forward 1 right 90]

 

But Logo won't “know” what it means to draw a square
unless we tell it this:

to square 

 repeat 4 [forward 1 right 90] 

 end 

 

Note that this Logo instruction has the form to  , do  !
The “To  ” has been “internalized” into the program.
(We'll come back to this idea in Section 16.10.4.)
Another example is the sequence of instructions
“turnleft; turnleft; turnleft” in Karel the Robot (Pattis et al.,
1995), which can be packaged up and named “turnright”:

 

DEFINE-NEW-INSTRUCTION turnright AS 

BEGIN 

turnleft;turnleft;turnleft 

END 

Notice here that Karel still can't “turn right” in an external
sense (i.e.  clockwise); it can only turn left three times
(i.e.  counterclockwise).
There is an important caveat: the Logo and Karel programs

still have no “understanding” in the way that we do of what



a square is or what it means to turn right. Merely naming a
subroutine does not automatically endow it with the
(external) meaning of that name (McDermott, 1980). The
programs are now capable only of associating those newly
defined symbols (‘square,’ ‘turnright’) with certain
procedures. The symbols' meanings for us are their
external semantics; their meanings for the Logo or Karel
programs are their internal, indigenous, syntactic
semantics due to their internal relationships with the
bodies of those programs. If the name is associated with
objects that are external to the program, then we have
external (or wide, or inherited) semantics. If it is associated
with objects internal to the program, then we have internal
(or narrow, or syntactic, or indigenous) semantics.
Identifying subroutines is syntactic; naming them leads to
semantics: if the name is externally meaningful to a user,
because the user can associate the name with other
external concepts, then we have semantics in the ordinary
sense (subject to McDermott's caveat). If it is internally
meaningful to the computer, in the sense that the computer
can associate the name with other internal names, then we
have internal, syntactic semantics.
The debate over whether computation concerns the
internal, syntactic manipulation of symbols or the external,
semantic interpretation of them is at the heart of both
Rescorla's gap (see the Question for the Reader in Section
16.10.2) and Smith's gap (from Section 15.6.2). This is
made explicitly clear in the following passages from
Michael Mahoney's history of computing:



Recall what computers do. They take sequences, or
strings, of symbols and transform them into other
strings. …
The transformations themselves are strictly syntactical,
or structural. They may have a semantics in the sense
that certain symbols or sequences of symbols are
transformed in certain ways, but even that semantics is

syntactically defined. Any meaning the symbols may have
is acquired and expressed at the interface between a
computation and the world in which it is embedded. The
symbols and their combinations express representations
of the world, which have meaning to us, not to the

computer. … What we can make computers do depends
on how we can represent in the symbols of computation
portions of the world of interest to us and how we can
translate the resulting transformed representation into
desired actions. …
So putting a portion of the world into the computer
means designing an operative representation of it that
captures what we take to be its essential features. That
has proved … no easy task; on the contrary it has proved
difficult, frustrating, and in some cases disastrous.
(Mahoney, 2011, p. 67, my italics)

The computer's internal semantics – its “Do  ” (including 
's modules or compositional structure – is syntactic and

non‐teleological. Its external semantics, “which have
meaning to us” – its “To  ” – is teleological but depends on
our ability to represent our view of the world to it. As
Rescorla (2007, p. 265) observed, we need a computable
theory of the semantic interpretation function, but as Smith
observes, we don't (can't?) have one, for reasons akin to
the Computability Thesis problem: equivalence between
something formal (e.g. a Turing Machine or a formal



model) and something non‐formal (e.g. an algorithm or a
portion of the real world) cannot be formally proved.19

16.10.4 Internalization

Syntactic semantics can arise in another way: external

semantic relations between the elements of two domains (a
“syntactic” domain described syntactically and a
“semantic” domain described ontologically (i.e.
syntactically! – see Section 13.2.2) can be turned into
internal syntactic relations (“syntactic semantics”) by
internalizing the semantic domain into the syntactic
domain. After all, if you take the union of the syntactic and
semantic domains, then all formerly external semantic
relations are now internal syntactic ones (internal to the
union).
One way this happens for cognitive agents like us is by
sensory perception, which is a form of input encoding. For
animal brains, perception interprets signals from the
external world into the biological neural network of the
brain. For a computer that accepts input from the external
world, the interpretation of external or user input as
internal switch settings (or inscriptions on a Turing
Machine tape) constitutes a form of perception – a way of
internalizing external information. Both are forms of what I
am calling “internalization.” As a result, the interpretation
becomes part of the computer's or the brain's internal,
syntactic semantics (Rapaport, 2012b).
Stuart C. Shapiro advocates internalization in the following
form, which generalizes the Logo and Karel techniques:20

Shapiro's Internalization Tactic

Algorithms do take the teleological form, “To   , do  ,”
but  must include everything that is relevant:



• To make hollandaise sauce on Earth, do  .
• To find the GCD of two integers in base‐10, do  .
• To play chess, do  , where 's variables range over

chess pieces and a chess board.
• To simulate a war battle, do  , where 's variables

range over soldiers and a battlefield.
One place to locate these teleological clauses is in the type
declarations of a typed programming language. Another is
in the pre‐conditions and post‐conditions of the program.
They can then be used in the formal verification of the
program, which proceeds by proving that if the pre‐

conditions are satisfied, then the program will accomplish
its goal as articulated in the post‐conditions. This builds the
external world (and any attendant external semantics) into

the algorithm: “There is no easy way to ensure a blueprint
stays with a building, but a specification can and should be
embedded as a comment within the code it is specifying”
(Lamport, 2015, p. 41). The separability of blueprint from
building is akin to the separability of  from ;
embedding a specification into code as (at least) a
comment is to internalize it as a pre‐ or post‐condition.
More importantly, such pre‐ and post‐conditions need not
be “mere” comments; they can be internalized as
“assertible” statements in a program, thus becoming part
of a program's (self‐)verification process (Lamport, 2011).
As I suggested in Section 16.5, we can avoid having
Cleland's hollandaise‐sauce recipe output messy goop by
limiting its execution to one location (Earth, say) without
guaranteeing that it will work elsewhere (on the Moon,
say). This is no different from a partial mathematical
function that is silent about what to do with input from
outside its domain, or from an algorithm for adding two
integers that specifies no particular behavior for non‐



numerical input. (“Crashing” is a well‐defined behavior if
the program is silent about illegal input. More “well‐
behaved” behavior requires some kind of error handling.) A
second way is to use the “Denver cake mix” strategy: I have
been told that packages of cake mix that are sold in mile‐
high Denver come with alternative directions. The recipe or
algorithm should be expressed conditionally: if
location = Earth, then do  ; if location = Moon, then do 
(where  might be the output of an error message).



16.11 Content and Computation

16.11.1 Introduction

The quotation from Rescorla (2007) at the beginning of
Section 16.9 focuses the issues very clearly. Are we really
interested in syntactic computation – computation with
symbols, such as numerals? Or are we interested in
semantic computation – computation with things the
symbols represent, such as numbers?
David Hilbert, whose investigations into the foundations of
mathematics prompted much of the early work in the
theory of computation (as we surveyed in Section 6.5), was
a mathematical “formalist.” As such, he was interested in
the former, for, after all, we humans can only do the latter
by doing the former. Is that a limitation? Perhaps, but it
also gives us a freedom, because symbols (including
numerals) can represent anything, not just numbers, so
computation can be about anything.

16.11.2 Symbols: Marks vs. Meanings

In Section 13.2.2, we observed that some writers use
‘symbol’ to mean an uninterpreted, purely syntactic “mark”
together with its (external) semantic interpretation or
meaning. A symbol is at least a mark; its interpretation is
another matter. Symbols are perhaps best thought of as
ordered pairs of (syntactic) marks (identified by their
shape) and (semantic) interpretations. Sometimes, the
“meaning” of a symbol is called its “content.” So, is
computation (only?) about marks? Or is it (only? also?)
about content?



The term ‘content’ sounds as if it refers to something
contained within something else –something internal – but
often it is used to indicate the external meaning or
reference of a term. But if we think of the variables of a
computer program as “boxes” that can contain the values
of the variables, then we can combine both metaphors for
“content”: the content of a variable can be thought of as an
“external” entity that is stored “inside” the “box.”
Several writers say that content is necessary; something is
not a computation unless it is about something: there is “no
computation without representation” (Fodor, 1975, p. 34).
Is a goal, or content, or interpretation a necessary part of a
computation?
From a syntactic (internal) point of view, a Turing Machine
that outputs sequences of strokes does just that: it outputs
sequences of strokes – i.e. “marks.” From a semantic
(external) point of view, those strokes are symbols: i.e.
marks plus content. Whether the marks should, or can, be
interpreted as a specific integer or something else is a
separate matter. This is, of course, what underlies the
notion of “types” in programming languages. The question
we are now considering is whether the type of a
programming‐language variable is a syntactic issue or a
semantic one; note that it might be a case of “syntactic

semantics.”
This puzzle is not unique to computation. What are the
solutions to the equation ? In the rational numbers,
there is no solution; in the positive real numbers, there is
one solution; in the (positive and negative) real numbers,
there are two solutions. Similarly,  has no solution
in the real numbers but two solutions in the complex
numbers. Deciding which “wider” number system the
equation should be “embedded” in gives different
“interpretations” of it (Frenkel, 2013, pp. 83, 99).



Syntactically, we can say that the solution to  is .
Whether (or not) we assign a rational, real, or imaginary
number to the symbol ‘ ’ is a separate matter. Similarly,
the ratio of the circumference to the diameter of a circle is 

; whether we understand the symbol ‘ ’ as , 3.14,
3.1415926535, or something else is a separate matter. We
can, in fact, compute more “accurately” with the syntactic
mark ‘ ’ than we can with any of those finite, numeral
interpretations.
Consider, again, Marr's computational theory of vision, part
of which takes the form of an algorithm that “computes the
Laplacean convolved with a Gaussian” (Egan, 2014,
p. 120). For the present point, it is unimportant to know
what Laplaceans, Gaussians, and convolution are; what
matters is that they are purely mathematical operations,
having nothing necessarily to do with vision. Mark Sprevak
(2010, p. 263) argues that this “mathematical computation
theory does not, by itself, have the resources to explain”
vision; it needs to be augmented by a link “to the nuts and
bolts of physical reality.” Frances Egan takes an opposing
view: “representational content is to be understood as a
gloss on the computational characterization of a cognitive
process” (Egan, 2010, p. 253). Once again, we have a
difference between “To  , do  ” and “Do .” Here,  is
the Laplacean convolved with a Gaussian, and  is the
“gloss” about its role in vision – its “content.”
On Egan's side, one might say that the mathematical theory
does have the resources to explain vision (that's one of the
points of Wigner, 1960). It may still be a puzzle how or why

it does (recall Marr's “why,” quoted in Section 16.6), but
there's no question that it does. (This is reminiscent of the
problem of quantum mechanics as an “instrumentalist”
scientific theory (Section 4.4): we know that quantum



mechanics has the resources to explain physics, but it is
still a puzzle how or why it does (Becker, 2018).
Paul Humphreys suggests a view of computational models
that can account for this, as well as the duck‐rabbit
examples: “one of the characteristic features of
mathematical [including computational] models is that the

same model … can occur in, and be successfully employed

in, fields with quite different subject matters” (Humphreys,
2002, p. S2, my italics). He goes on to say, “Let the …
computer solve one and you automatically have a solution
to the other” (p. S5), as illustrated by de Bruijn's lattice
story.
Sprevak offers a counterargument to the focus on a Turing
Machine's strokes rather than their meanings:

… one cannot make sense of I/O equivalence without
requiring that computation involves representational
content. …
Consider two computational systems that perform the
same numerical calculation. Suppose one system takes
ink‐marks shaped like Roman numerals (I, II, III, IV, …)
as input and yields ink‐marks shaped like Roman
numerals as output. Suppose the other system takes ink‐
marks shaped like Arabic numerals (1, 2, 3, 4, …) as
input and yields ink‐marks shaped like Arabic numerals
as output. Suppose the two systems compute the same
function: say, the addition function. What could their I/O
computational equivalence consist in? Again, there may
be no physical or functional identity between their
respective inputs and outputs. The only way in which the
their inputs and outputs are relevantly similar seems to
be that they represent the same thing. (Sprevak, 2010,
Section 3.2, p. 268, col. 1)



That is, that they compute the same arithmetic function
cannot be explained without a semantic interpretation.
Note that there is a difference between what a system is
doing and whether two systems are doing the same thing:
each addition algorithm (Roman and Arabic) is “doing its
own thing.” They are only doing the “same” thing in the
sense that the two idiosyncratic things they are each doing
are equivalent. This kind of sameness (or equivalence)
depends on the semantics.
Sprevak goes on to say,

Two physical processes that are intrinsic physical
duplicates may have different representational contents
associated with them, and hence different computational
identities. One physical process may calculate chess
moves, while a physical duplicate of that process
calculates stock market predictions. We seem inclined to
say that, in a sense, the two processes compute different
functions, yet in another sense they are I/O equivalent.
Appeal to representational content can accommodate
both judgements. (Sprevak, 2010, Section 3.2, p. 268,
col. 2)

But this is a different case: identical algorithm but different
task.
The previous case is different algorithm but same (input‐
output–equivalent) task. But syntactically they are not

doing the same thing; rather, they are doing things that are
only semantically equivalent. That equivalence can be
discovered, explained, and understood only via an external
semantic interpretation.
Nevertheless, depending on how the two algorithms are
structured, it might be possible to find subroutines that
match up. In that case, the two algorithms would be doing
the same (identical) thing at a suitably high level of



organization, even if the low‐level implementations of those
subroutines are completely different. That would be a
syntactic semantic “interpretation.” For example, a Karel
the Robot who turns right by turning left three times is
turning right (better: is turning in the “right” direction) just
as much as a Karl the Robot who turns right by turning left
six times or a Kal the Robot for whom turning right is
primitive (and who might have to turn right three times to
turn left).
Let's look into the Marr example in more detail: Egan says,
“As it happens, …[“the device [that] computes the
Laplacean convolved with the Gaussian”] takes as input
light intensity values at points in the retinal image, and
calculates the rate of change of intensity over the image”
(Egan, 2010, p. 255, my italics). But considered solely as a

computational device, it does not matter that input
values represent light intensities and output values the
rate of change of light intensity. The computational
theory characterizes the visual filter as a member of a
well understood class of mathematical devices that have
nothing essentially to do with the transduction of light.
(Egan, 2010, p. 255; original italics)

Compare this to the chess‐war example. To paraphrase
Egan, the theoretically important characterization from a
computational point of view is a mathematical description:
the device computes some mathematical function that, as it

happens, can be interpreted as a chess match or as a war
battle. But considered solely as a computational device, it
does not matter that input values represent (say) chess
moves or battle positions – the computational theory
characterizes the device as a member of a well understood
class of mathematical devices that have nothing essentially
to do with chess or war:



A crucial feature of … [the characterization that focuses
solely on the mathematical function being computed and
not on the purpose or external environment] is that it is
‘environment neutral’: the task is characterized in terms
that prescind from the environment in which the
mechanism is normally deployed. The mechanism
described by Marr would compute the Laplacean of a
Gaussian even if it were to appear (per mirabile) in an
environment where light behaves very differently than it
does on earth, or as part of an envatted brain. (Egan,
2014, p. 122)

Egan says that the visual filter “would compute the same
mathematical function in any environment, but only in

some environments would its doing so enable the organism

to see” (Egan, 2010, p. 256; my italics). Similarly, Cleland's
recipe would compute the same (culinary?) function in any
environment, but only on Earth (and not on the Moon)
would its doing so result in hollandaise sauce.
Given a computer program, how do you know what its
purpose is? Of course, it might be obvious from its name,
its documentation, or even its behavior when executed. But
suppose you come across a very large program written in
an unfamiliar programming language with unintuitive
variable and subroutine names and no documentation.
Suppose that, after considerable study of it, you are able to
describe it and its behavior syntactically. You might also be
able to develop a hypothesis about a purpose for it by
providing an interpretation for it (e.g. that it is a chess
program). And you, or someone else, might also be able to
provide a different but equally good interpretation for it
(e.g. that it is a war simulator). This is not unlike the
situation with the brain, a very large neural network with
no documentation.
Recall the MYSTERY Scheme program from Section 13.3.3:



(define (MYSTERY a b) 

   (if (= b 0) 

     a 

     (MYSTERY b (remainder a b)))) 

 

If I found the MYSTERY program in the desert and was
able to describe it syntactically as outputting pretty
patterns of numbers (whether base‐10 or base‐13 is
irrelevant), I could stop there. Or if I wrote another
program that took MYSTERY's pretty patterns and
translated them into base‐10, I could use it as a GCD
computer. Similarly, if I found a computer in the desert that
output pretty patterns of a certain sort, I might write
another program that translated its output into a chess
game. And you might write another program that
translated those very same pretty patterns into a war
battle.
Given a problem to be solved or a task to be accomplished,
a computer scientist asks whether it is computable. If it is,
then we can write a computer program to solve the
problem or accomplish the task. Recall Kleene's (1995)
informal characterization of “algorithm,” which begins as
follows:

[A] method for answering any one of a given infinite
class of questions … is given by a set of rules or
instructions, describing a procedure that works as
follows. After the procedure has been described, [then] if
we select any question from the class, the procedure will
then tell us how to perform successive steps, …

Note that the procedure has a purpose: “answering any one
of a given infinite class of questions.” And the procedure
depends on that class: given a class of questions, there is a
procedure such that given “any question from the class,”
the procedure “enable[s] us to recognize that now we have



the answer before us and to read it off” (Kleene, 1995,
p. 18).
Given that program, the programmer or a user knows what
its original or intended purpose was. But we, or someone
else, might be able to interpret it differently and use it for a
different purpose (playing chess instead of simulating a
war battle).
And we might also be able to re‐implement it in a different
medium. Marr wanted to explain certain aspects of human
vision. He found an algorithm (computing the Laplacean
convolved with a Gaussian, say) that helps to accomplish
that. When that algorithm is implemented in the human

visual system, it enables human visual perception. If it were
implemented in a computer, it might enable robot visual
perception. (We'll explore this in Chapter 18.) If it were
implemented elsewhere than on Earth, it might do nothing
visually (for humans or robots), but it would still compute a
Laplacean convolved with a Gaussian. What task it
accomplishes (in the external, teleological sense) depends
on where that algorithm is “plugged in” to its environment.
The same holds for all of the examples from Section 16.3.

16.11.3 Shagrir's “Master Argument”

Oron Shagrir (2020, Section 3) offers the following “master
argument” for “the semantic view of computation”:

1. A physical system might simultaneously implement
several different automata , ,  ….

2. The contents of the system's states determine (at
least partly) which of the implemented automata, ,
is relevant for computational individuation.

Conclusion: The computational individuation of a
physical system is essentially affected by content.



Let's take a close look at this, beginning with the
conclusion. Note that what this argument attempts to show
is not that abstract computation is semantic, but that
physical computation is. So, it might be the case both that
abstract computation is not semantic (or wide, etc.) and

that physical computation is.
We have already seen several examples that seem to
support the first premise: Fodor's chess‐war computers,
Rescorla's GCD computers, and Shagrir's and‐vs.‐or
computers. But a closer look suggests a puzzle: which is
the “physical system” that is the implementation, and
which is the “automaton” that gets implemented? In the
chess‐war case, there are two physical systems, each of
which implements the same (abstract) computation. But in
Shagrir's example, there is an (abstract?) AND‐gate that is
implemented by (one interpretation of) a certain physical
system and an (abstract?) OR‐gate that is implemented by
(a different interpretation of) the same physical system. In
this case, there is one physical system that implements
different computations. Yet another way to look at Shagrir's
example is this: there is an underlying automaton that
outputs certain symbols in response to certain inputs of
those symbols, and there are two different (physical?)
interpretations of those symbols such that under one
interpretation we have a (physical?) AND‐gate and under
the other we have a (physical?) OR‐gate. We'll return to
this puzzle in a moment, but let's first look at the second
premise.
The second premise talks about “contents” and
“individuation.” What are these? Let's begin with
individuation. Consider an abstraction and two
implementations of it. For concreteness, you might think of
the abstract species Homo sapiens and two concrete
implementations of it: Alan Turing and Alonzo Church. We



can ask two questions about these three things: First, what
makes the concrete individuals Turing and Church different
from the abstract species? Second, what makes Turing
different from Church? (The first question is “vertical,”
asking about the relation between a “higher‐level”
abstraction and “lower‐level” implementations of it. The
second question is “horizontal,” asking about the relation
between two objects at the “same level.”) Unfortunately, in
philosophy, the term ‘individuation’ has been used for both
of these questions. The questions should be kept distinct
(Castañeda, 1975 has suggested calling the “vertical” one
‘individuation’ and the “horizontal” one ‘differentiation’).
So, as you evaluate Shagrir's argument, you need to decide
which question he has in mind.
As for “content,” recall from Section 16.11.2 that we can
think of a mark (or a variable) as a box and its meaning (or
value) as the “content” of the box. So, we might be able to
understand the second premise as follows: there is an
abstract computation – an automaton – that can be
characterized in terms of operations on its “boxes,” i.e. its
variables (recall from Section 9.5 Thomason's view of the
nature of computation as a sequence of states that are
assignments of values to variables). That abstract
computation can be implemented by different physical
systems depending on the contents of the “boxes.” Those
contents help us “individuate” the physical system.
Depending on how we interpret ‘individuation,’ that means
either those contents tell us what makes one computer a
chess computer and another a war simulator (to use
Fodor's example) even though both computers implement
the same automaton, or those contents tell us what makes
the chess computer different from the war simulator.
Arguably, they tell us both of these things. (So perhaps the
interpretation of ‘individuation’ doesn't matter in this case.)



So, if we have two different physical systems that
implement the same automaton, then what makes them
different is their semantic content. But that doesn't seem to
say anything about the computation itself, which still
appears to be able to be understood “narrowly.” It is
physical computation that might be semantic and wide,
while it is abstract computation that might be syntactic and
narrow.



16.12 Summary

We can distinguish between the question of which
computation a given Turing Machine is executing and the
question of what goal that computation is trying to
accomplish. Both questions are important, and they can
have very different answers. Two computers might
implement the same Turing Machine but be designed to
accomplish different goals. And of course, two computers
might accomplish the same goal via different algorithms.
And we can distinguish between two kinds of semantics:
external (or wide, or extrinsic, or inherited) and internal
(or narrow, or intrinsic, or syntactic, or indigenous). Both
kinds exist, have interesting properties, and play different,
albeit complementary, roles.
Algorithms narrowly construed (minus the teleological
preface) are what is studied in the mathematical theory of
computation. To decide whether a task is computable, we
need to find an algorithm that can accomplish it. Thus, we
have two separate things: an algorithm (narrowly
construed, if you prefer) and a task. Some algorithms can
accomplish more than one task (depending on how their
inputs and outputs are interpreted by external semantics).
Some algorithms may fail, not because of a buggy, narrow
algorithm, but because of a problem at the real‐world
interface. That interface is the (algorithmic) coding of the
algorithm's inputs and outputs, typically through a
sequence of transducers at the real‐world end (what
B.C. Smith, 1987 called a ''correspondence continuum; see
Section 13.2.1). Physical signals from the external world
must be transduced (encoded) into the computer's switch‐
settings (the physical analogues of a Turing Machine's ‘0’s
and ‘1’s), and the output switch‐settings have to be



transduced (decoded) into such real‐world things as
displays on a screen or physical movements by a robot.
But real‐world tasks are complex. Models abstract from this
complexity, so they can never match the rich complexity of
the world. Computers (and people!) see the world through
models of these models. Reasoning on the basis of partial
information cannot be proved correct (and simulation only
tests the computer‐model relation, not the model‐world
relation). So, empirical reliability must supplement
program verification. Therefore, we must embed the
computer in the real world.
At the real‐world end of the correspondence continuum, we
run into Smith's gap. From the narrow algorithm's point of
view, so to speak, it might be able to asymptotically
approach the real world, in Zeno‐like fashion, without
closing the gap. But just as someone trying to cross a room
by only going half the remaining distance at each step will

eventually cross the room (although not because of doing it
that way), so the narrow algorithm implemented in a
physical computer will do something in the real world.
Whether what it accomplishes was what its programmer
intended is another matter. (In the real world, there are no
“partial functions”! This was one of Kugel's points about
trial‐and‐error machines, as we saw in Section 11.10.2.)
One way to make teleological algorithms more likely to be
successful is by Shapiro's strategy: internalizing the
external, teleological aspects into the pre‐ and post‐
conditions of the (narrow) algorithm, thereby turning the
external semantic interpretation of the algorithm into an
internal, syntactic semantics. What Smith shows is that the
external semantics for an algorithm is never a relation
directly with the real world, but only to a model of the real
world. That is, the real‐world semantics has been



internalized. But that internalization is necessarily partial
and incomplete.
There are algorithms simpliciter (“Do  ”), and there are
algorithms for accomplishing a particular task (“To  , do 

”). Alternatively, we could say that all algorithms
accomplish a particular task, but some tasks are more
“interesting” than others. The algorithms whose tasks are
not currently of interest may ultimately become interesting
when an application is found for them, as was the case with
non‐Euclidean geometry. Put otherwise, the algorithms that
do not have an obvious goal may ultimately be used to
accomplish one:

[D]oes … any algorithm … have to do something
interesting? No. The algorithms we tend to talk about
almost always do something interesting – that's why they
attract our attention. But a procedure doesn't fail to be
an algorithm just because it is of no conceivable use or
value to anyone. … Algorithms don't have to have points

or purposes. … Some algorithms do things so boringly
irregular and pointless that there is no succinct way of
saying what they are for. They just do what they do, and
they do it every time. (Dennett, 1995, p. 57, my italics)21

A few paragraphs ago, I said that despite Smith's gap, a
narrow algorithm implemented in the real world will do
something, whether what it was intended to do or not.
What about an automated system designed to decide
quickly (and in the absence of complete information) how
to respond to an emergency? Would it make you feel
uneasy? But so should a human who has to make that same
decision. And they should both make you uneasy for the
same reason: they have to reason and act on the basis of



partial (incomplete) information. This will be our topic in
the next chapter.



16.13 Questions for the Reader

1. According to many, a computer simulation of a
hurricane is not a hurricane, because it does not get
people wet (Dennett, 1978, p. 191; Hofstadter, 1981,
pp. 73ff; Dretske, 1985, p. 27). But it could get
simulated people simulatedly wet, as it might in a
computer simulation game (Rapaport, 1986, 1988a, b,
2005b, 2012b; Shapiro and Rapaport, 1991). Relatedly,
David Chalmers (2017) has suggested that virtual
reality is (a kind of) reality (Ramakrishna, 2019). (For a
reply, see Ludlow, 2019.) The difference between a real
hurricane and a simulated one has to do, in part, with
the nature of the inputs and outputs. As Lawrence R.
Carleton (1984, pp. 222–223) notes, “The input to a fire
simulation is not oxygen, tinder, and catalyst. That is, it
is not the same input as goes into a natural system
which produces fire. … [I]t is by virtue of dealing in the
right kinds of input and output that one system can play
the role in a situation that is played by a system we
acknowledge to literally undergo the [activity] … our
system simulates.” Cleland's hollandaise‐sauce
program may differ in output when executed on the
Moon than on Earth; it has the wrong output. But a
hurricane‐simulator, a fire‐simulator, and a hollandaise‐
sauce program each exhibit their relevant behaviors if
you ignore the input and the output.
How central to what it is that a computer program is
(supposed to be) doing is the nature of the inputs and
outputs (in general, of the environment in which it is
being executed)?

2. Recall the opening epigraph. How does a program
interact with the world? Is it via the process, which is a



physical entity (or event?) in the world? If so, how does
the program interact with the process? Is it via the
compiler? Or is that just a first step, translating the
program into the machine language the machine
understands? Is it via the loader, which is what
transforms the machine‐language program into the
memory, setting the switches?

3. The artist Charles E. Burchfield said that

An artist must paint not what he sees in nature, but
what is there. To do so he must invent symbols,
which, if properly used, make his work seem even
more real than what is in front of him.
(https://www.burchfieldpenney.org/collection/charle
s-e-burchfield/biography/)

If we change ‘artist’ to ‘programmer’ and ‘paint’ to
‘program,’ this becomes

Programmers must program not what they see in
nature, but what is there. To do so they must invent
symbols, which, if properly used, make their work
seem even more real than what is in front of them.

Is the artist's task different from the scientist's or the
programmer's? Can programs (or paintings, or
scientific theories) end up seeming more “real” to us
than the things that they are models of? Is it easier to
understand the behavior of the process of a program
that models a hurricane (for example) than to
understand the real hurricane itself?22

https://www.burchfieldpenney.org/collection/charles-e-burchfield/biography/


Notes

1 Portions of this chapter are adapted from Rapaport,
2017a.

2 See the Online Resources for further reading and
examples.

3 See the Online Resources for further reading on what
is sometimes called the “indeterminacy” of
computation.

4 See the Online Resources for further reading on Hill's
distinction.

5 See the Online Resources for further reading on this
possibility.

6 I am indebted to Stuart C. Shapiro (personal
communication) for the ideas in this paragraph.

7 For hints as to what evolution's algorithms look like,
see Dawkins, 2016.

8 See the Online Resources for further reading on
mathematical understanding .

9 Recall the “Zits” comic described in Section 7.3.3.

10 See also the more easily accessible Dennett, 2009,
p. 10061.

11 Note that testing this condition does not require the
ant to have a concept of death; it is sufficient for the
ant to sense – either visibly or perhaps chemically –
what we would describe as a dead ant.

https://cse.buffalo.edu/~rapaport/OR/A0fr16.html#16.2
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https://cse.buffalo.edu/~rapaport/OR/A0fr16.html#16.4.3
https://cse.buffalo.edu/~rapaport/OR/A0fr16.html#16.7


12 This is a “fully” teleological version, with a high‐
level, teleologically formulated execution statement.
A “partially” teleological version would simply prefix
“To create an ant graveyard” to the non‐teleological
version.

13 See the Online Resources for further reading on the
non-teleological view.

14 Rescorla, 2015, Section 2.2, considers the opposite
case, in which  is computable even when  is not:
“There exist ‘deviant’ notations relative to which
intuitively non‐computable functions become Turing‐
computable.”

15 See the Online Resources for further reading on
teleology and program verification .

16 See e.g.
https://www.vox.com/2015/7/30/9075331/optical-
illusion.

17 See the Online Resources for further reading on
these distinctions.

18 ‘Intra‐’ means “inside,” ‘extra‐’ means “outside,”
and ‘inter‐’ means “between.” (In “intermural”
sports, school A plays against school B. In
“intramural” sports, a single gym class at school A
might be divided into two teams that play against
each other.)

19 See the Online Resources for further reading on
syntactic semantics .

20 Personal communication. B.C. Smith (1985, p. 24)
makes a similar point: “as well as modelling the

https://cse.buffalo.edu/~rapaport/OR/A0fr16.html#16.7
https://cse.buffalo.edu/~rapaport/OR/A0fr16.html#16.8
https://www.vox.com/2015/7/30/9075331/optical-illusion
https://cse.buffalo.edu/~rapaport/OR/A0fr16.html#16.9
https://cse.buffalo.edu/~rapaport/OR/A0fr16.html#16.10


artifact itself, you have to model the relevant part of
the world in which it will be embedded.”

21 See the Online Resources for further reading on the
teleology of algorithms .

22 Thanks to Albert Goldfain (personal communication,
3 April 2007) for this question.

https://cse.buffalo.edu/~rapaport/OR/A0fr16.html#16.8


Part V 

Computer Ethics and

Artificial Intelligence

The two topics of Part V – computer ethics and the
philosophy of AI – are large, long‐standing disciplines in
their own right. Ethics is a branch of philosophy, and AI is a
branch of CS, so both computer ethics and the philosophy
of AI should be branches of the philosophy of computer
science.
In Chapters 17 and 19, we will focus on two topics in
computer ethics that I think are central to the philosophy of
computer science but until recently have not been the focus
of most discussions of computer ethics: Should we trust
decisions that computers make? And should we build
“artificial intelligences”? But before we can try to answer
that last question, Chapter 18 on the philosophy of AI will
focus on whether we can build them.1



Note

1 See the Online Resources for further reading on
computer ethics .

https://cse.buffalo.edu/~rapaport/OR/A0fr17.html#partv


17 

Computer Ethics I: Should We

Trust Computers?

In 2011, [John] Rogers … announced the invention of …
an integrated silicon circuit with the mechanical
properties of skin. … The artificial pericardium [made
with Rogers's invention] will detect and treat a heart
attack before any symptoms appear. … Bit by bit, our
cells and tissues are becoming just another brand of
hardware to be upgraded and refined. I asked him
whether eventually electronic parts would let us live
forever, and whether he thought this would come as a
relief, offer evidence that we'd lost our souls and become
robots, or both. “That's a good thing to think about, and

people should think about it,” he said “But I'm just an

engineer, basically.”

—Kim Tingley (2013, p. 80, my italics)

Machines are more than ever controlled by software, not

humans. Occasionally it goes fatally wrong. …
[I]ncreasing the complexity of systems makes checking
them more difficult. Hardware, from chips to special
sensors, can be difficult to test. And it can be difficult for
humans to understand how some A.I. algorithms make
decisions.
—Jamie Condliffe (2019, my italics)



17.1 Introduction

In 2004, when I first taught the course that this text is
based on, the question of whether to trust decisions made
by computers was not much discussed. But since the
advent of self‐driving cars1 and machine‐learning systems,
it has become a more pressing issue, with immediate, real‐
life, practical implications as well as moral and legal
ramifications.
Before we consider the ethical issues of whether we should
trust the decisions that computers make and the clearly
related question that is the title of James Moor's 1979 essay
– are there decisions computers should never make? – there
are two prior questions: What is a “decision”? And do

computers “make decisions” at all?



17.2 Decisions and Computers

Roughly, a decision is a choice made from several
alternatives, usually for some reason (Eilon, 1969). Let's
begin by considering three kinds of decisions:

1. A decision could be the result of an arbitrary choice,
such as flipping a coin: heads, we'll go out to a movie;
tails, we'll stay home and watch TV.

2. A decision could be the solution to a purely logical or
mathematical problem that requires some calculation.

3. A decision could be the result of investigating the pros
and cons of various alternatives, rationally evaluating
these pros and cons, and then choosing one of the
alternatives based on this evaluation.

At first glance, there is a simple answer to the question
whether computers make decisions: yes; computers can
easily make the first kind of decision for us. Moreover, any
time a computer solves a logical or mathematical problem,
it has made a decision of the second kind.
Can computers make decisions of the third kind? Surely, it
would seem, the answer is, again, ‘yes’: computers can play
games of strategy, such as checkers, chess, and Go, and
they can play them so well that they can beat the (human)
world champions. Such games involve choices among
alternative moves that must be evaluated with, one hopes,
the best (or least worst) choice being made. Computers can
do this. 2

Of course, it is not just a physical computer that makes a
decision. Arguably, it is a computer program being
executed by a computer that makes the decision, although I
will continue to speak as if it is the computer that decides.



After all, we usually say that you make a decision, not that
your brain does.
And of course, it is not just a computer program that makes
a decision. Computer programs are written by humans.
(Even computer programs that are written by computers
are the output of computer programs that were written by
humans.) And humans, of course, can err in various ways,
unintentionally or otherwise. These errors can be inherited
by the programs they write.
Robin K. Hill has argued that computers do not make
decisions, precisely because their programs are written by
humans. It is the humans who make the decisions that are
subsequently encoded in the programs:

[M]achines and algorithms have no such capacity as is
normally connoted by the term “decision” …. …
Algorithms are not biased, because a program does not
make decisions. The program implements decisions
made elsewhere. (Hill, 2018)

To a large extent, this is, of course, correct. There is no
question that the way in which a computer makes a
decision was initially determined by its human
programmer. And Mullainathan (2019) argues that “biased
algorithms are easier to fix than biased people.”
But what happens when the human programmer is out of
the picture and the computer running that program is what
we rely on? In any given situation, when the computer has
to act or to make or recommend a decision, it will do so
autonomously and in the light of the then‐current situation,
without consulting the programmer (or being able to
consult the programmer):



It is a common misconception that because a machine
such as a guided missile was originally designed and
built by conscious man [sic], then it must be truly under
the immediate control of conscious man. Another variant
of this fallacy is “computers do not really play chess,
because they can only do what a human operator tells
them.” … When it is actually playing, the computer is on
its own, and can expect no help from its master. All the
programmer can do is to set the computer up beforehand

in the best way possible …. (Dawkins, 2016, pp. 66–67)

Typically, human delegation of decision‐making powers to
computers happens in cases where large amounts of data
are involved in making the decision or in which decisions
must be made quickly and automatically. And to the extent
that one of the goals of CS is to determine what real‐world
tasks are computable, finding out which decisions are
computable is an aspect of that.
In any case, humans might delegate such power to
computers. So, another way to phrase our question is,
“What areas of our lives should be computer‐controlled,
and what areas should be left to human control?” Are there
decisions that non‐human computers could not make as
well as humans? For instance, there might be situations in
which there are sensory limitations that prevent computer
decisions from being fully rational. Or there might be
situations in which a decision requires some (presumably
non‐computable) empathy. On the other hand, there might
be situations in which a computer might have an advantage
over humans: it is impossible (or at least less likely) for a
computer to be swayed by such things as letter‐writing
campaigns, parades, etc. Such tactics were used by
General Motors in its campaign to persuade some
communities to open new plants for its Saturn cars (Russo,
1986).



To answer these questions, we need to distinguish between
what is the case and what could be the case. We could try
to argue that there are some things that are in principle

impossible for computers to do. Except for computationally
impossible tasks (such as the Halting Problem, Section
7.7), this might be hard to do. But we should worry about
the possible future now so we can be prepared for it if it
happens. (Recall the italicized quotation in the first
epigraph to this chapter.)
Whether there are, now, decisions that a computer could
not make as well as a human is an empirical question. It is
capable of investigation, and, currently, the answer is
unknown. Many, if not most, of the objections to the
limitations of computers are best viewed as research
problems: if someone says that computers can't do
something, we should try to make ones that can.
This is crucial: humans should be critical thinkers. There is
a logical fallacy called the Appeal to Authority: just because
an authority figure says that something is true, it does not
logically follow that it is true. Although logicians sometimes
warn us about this fallacy, it is acceptable to appeal to an
authority (even a computer!) as long as the final decision is
yours. You can – and must – decide whether to believe the
authority or trust the computer. You should also be able
(and willing!) to question the authority – or the computer! –
so as to understand the reasons for the decision.
So, even if we allow computers to make (certain) decisions
for us, it is still important for us to be able to understand
those decisions. When my son was first learning how to
drive, I did not want him to rely on the vehicle's automated
“dynamic cruise control” system, because I wanted him to
know how and when to slow down or speed up on a
superhighway. Once he knew how to do that, then he could
rely on the car's computer making those decisions for him.



If the computer's decision‐making skills went awry or were
unavailable (e.g. the laser‐controlled system on my 2008
Toyota Sienna was designed not to work when the
windshield wipers were on, or when the car ahead of you
was dirty!), he should know how to do those things himself.
(For a discussion of this point in the context of airplane
pilots, see Nicas and Wichter, 2019.)



17.3 Are Computer Decisions

Rational?

Another issue that arises from the fact that computer
programs are written by humans is whether, given the
occasional irrationality of human behavior, computer‐made
decisions really are rational.
When a decision has an impact on our lives, we would like
the decision‐making process to be rational, whether it is a
human making the decision or a human‐written program
“making” it. Can computers (and the programs that they
execute) be completely rational? It certainly seems that
some computers can make rational decisions for us. The
kinds of decision making described in the previous section
seem to be purely rational. And aren't rule‐based
algorithms purely rational?
Consider an algorithm that does not involve any random or
interactive procedure produced by a non‐rational oracle
(Section 11.9). Presumably, if the decision is made by a
computer that is following such an algorithm, then that
decision is a purely rational one. By ‘rational,’ I don't
necessarily mean it is a purely logical decision. (Recall
Section 2.5 on kinds of rationality.) It may, for instance,
involve empirical data, which might be erroneous in some
way: it might be incomplete, it might be statistically
incorrect, it might be biased, and so on.
Another potential problem is if the algorithm requires
exponential time or is NP‐complete, or even if it merely
would take longer to come up with a decision than the time
needed for action. In that case, or if there is no such
algorithm, we would have to rely on a “satisficing” heuristic
in the sense of an algorithm whose output is “near enough”
to the “correct” solution (Section 5.6). But this is still a



kind of rationality – what Simon called “bounded”
rationality (Sections 5.6, 11.10.2).
But just as a logical argument can be valid even if its
premises are false (Section 2.5.1), an algorithm can be
syntactically and semantically correct even if its input is
not (“garbage in, garbage out”; recall Sections 8.10.2, 11.7,
and 15.2.1). Nevertheless, as long as there is an algorithm
that can be studied to see how it works, or as long as the
program can explain how it came to its decision, I will
consider it to be rational.
Whether computers ought to make decisions for us is
equivalent to whether our decisions ought to be made
algorithmically. And that suggests that it is equivalent to
whether our decisions ought to be made rationally. If there
is an algorithm for making a given decision, then why not
rely on it? After all, wouldn't that be the rational thing to
do?
One might even argue that there is no such thing as
computer ethics. All questions about the morality of using
computers to do something are really questions about the
morality of using algorithms. As long as algorithms are
rational, questions about the morality of using them are
really questions about the morality of being rational, and it
seems implausible to argue that we shouldn't be rational.
This suggests that James Moor's (1979) question, “Are
there decisions computers should never make?,” should
really have nothing to do with computers! Perhaps the
question should really be, are there decisions that should
not be made on a rational basis?
But then the important question becomes, are the
algorithms really rational? And how would we find out?
Before looking at these questions, let's assume for the
moment that a decision‐making algorithm is rational and
turn to the next question.



17.4 Should Computers Make

Decisions for Us?

A paragraph deeply embedded in a 2004 science news
article suggests that people find it difficult to accept
rational recommendations even if they come from other
people, not computers. The article reports on evidence that
a certain popular and common surgical procedure had just
been shown to be of no benefit: “Dr. Hillis said he tried to
explain the evidence to patients, to little avail. ‘You end up
reaching a level of frustration,’ he said. ‘I think they have
talked to someone along the line who convinced them that
this procedure will save their life’ ” (Kolata, 2004). Perhaps
the fundamental issue is not whether computers should
make rational decisions or recommendations, but whether
or why humans should or don't accept rational advice!
There are several reasons we might want to let a computer
make a decision for us: computers are much faster than we
are at evaluating options, they can evaluate more options
than we could (in the same amount of time), they are better
at evaluating more complex options, and they can have
access to more relevant data. And in many situations in the
modern world, we might simply have no other option but to
allow computers to make decisions for us. So, whether it is
a good idea or a bad idea to let them do so, it is a simple
fact that they do.
And after all, is this any different from letting someone else
make a decision for us – someone who is wiser, or more
knowledgeable, or more neutral than we are? If it is not any
different, then – in both cases – there is still a question that
should always be raised: should we trust that other agent's
decision? Before looking into this, there is an intermediate
position that we should consider.



17.5 Should Computers Make

Decisions with Us?

Moor suggests that if computers can make certain
decisions at least as well as humans, then we should let
them do so, and it would then be up to us humans to accept
or reject the computer's decision. After all, when we ask for
the advice of an expert in medical or legal matters, we are
free to accept or reject that advice. Why shouldn't the same
be true for computer decision making?
In other words, rather than simply letting computers (or
other humans) make decisions for us, we should
collaborate on the decision‐making process, treating the
computer (or the human expert) as a useful source of
information and suggestions to help us make the final
decision. As we noted in Section 17.3, this might not always
be possible: there may (and most likely will) be situations
in which we do not have the expertise or the time to
evaluate all options before a decision has to be made.
But there are also many cases in which we do need to
collaborate:

The systems that land airplanes are hybrids –
combinations of computers and people – exactly because
the unforeseeable happens, and because what happens is
in part the result of human action, requiring human
interpretation.
(B.C. Smith, 1985, Section 7, p. 24, col. 2)

The situation that Smith mentions has been explored in
depth by the anthropologist and cognitive scientist Edwin
Hutchins (Hutchins, 1995a, b; Hollan et al., 2000; Casner
et al., 2016). Hutchins's theory of “distributed cognition”



uses examples of large naval vessels navigating and jet
pilots working in their cockpits. In both of these cases, it is
neither the machines alone (including, of course,
computers) nor humans alone who make decisions or do
the work, but the combination of them – indeed, in the case
of large naval vessels, it is teams of humans, computers,
and other technologies. Hutchins suggests that this
combination constitutes a “distributed” mind. Similarly, the
philosophers Andy Clark and David Chalmers (1998) have
developed a theory of “extended cognition,” according to
which our (human) minds are not bounded by our skull or
skin but “extend” into the external world to include things
like notebooks, reference works, and computers.

BoxII

Question for the Reader: Do these examples
constitute uses of oracles (Section 11.9) as external
sources of information?

But must complex decision‐making systems be such
“hybrids” or “team efforts”? Smith, Hutchins, and Clark
and Chalmers developed their theories long before the
advent of self‐driving cars. Even now, it remains to be seen
whether self‐driving cars will continue to need human
intervention (remember, self‐driving elevators don't need
very much of it!): Steven E. Shladover (2016) argues that a
level called “conditional automation,” in which computers
and humans work together, will be harder to achieve than
the more fully automated level called “high automation”
(see also Casner et al., 2016). Nevertheless, such “hybrid”
or “extended” systems will probably remain a reality.



17.6 Should We Trust Decisions

Computers Make?

Whether we let computers make decisions for us or work
jointly with them to make decisions, we usually assume that
any decision they make or advice they give is based on
good evidence (as input) and rational algorithms (that
process the input). Note, again, the similarity with logical
inference, which begins with axioms or premises (“input”)
and then “processes” that “input” to derive a valid
conclusion. In both cases, for the decision (or advice) to be
“good” or for the conclusion to be true, the input must be
correct or true and the processing must be correct. But
how do we know if they are? (Remember the warnings in
Section 2.4.4 about making assumptions!)
An algorithm's trustworthiness is a function of its input and
its processing. Is it getting all of the relevant input? Is the
input accurate, or might there be a problem with its
sensors or how it interprets the input? Is the algorithm
correct? Can we understand it? Can we explain or justify its
decisions? Is it (intentionally or unintentionally) biased in
some way, perhaps due to the way its human programmer
wrote it or – in the case of a machine‐learning program –
what its initial training set was?
How can computer decision‐making competence be judged?
One answer is, in the same way human decision‐making
competence is judged: namely, by means of its decision‐
making record and its justifications for its decisions.
Let's briefly consider a computer's track record first.
Consider once more a documentationless computer found
in the desert. Suppose we discover that it successfully and
reliably solves a certain type of problem for us. Even if we



cannot understand why or how it does that, there doesn't
seem to be any reason not to trust it. So, why should
justifications matter? After all, if a computer constantly
bests humans at some decision‐making task, why should it
matter how it does it?3

Presumably, however, decision‐making computers should
be accountable for their decisions, and knowing what their
justifications are helps in this accounting. In fact, the
European Union has passed a law giving users the right to
have an explanation of a computer's decision concerning
them (https://en.wikipedia.org/wiki/Right_to_explanation).
The justifications, of course, need not be the same as
human justifications. For one thing, human justifications
might be wrong or illogical.4

But what if justifications are unavailable or, perhaps worse,
misleading? Let's take a look at these two possibilities.

17.6.1 The Bias Problem

Could there be a hidden bias in the way the algorithms
were developed? For example, the training set used to
create a machine‐learning algorithm might have been
biased. This does not have to be due to any intention to
deceive on the part of the programmer. Indeed, such a
program “could be picking up on biases in the way a child
mimics the bad behavior of his [or her] parents” (Metz,
2019b). The bias might not be evident until the algorithm is
deployed.
Recall Hill's point that algorithms are written by humans.
And humans, of course, have

https://en.wikipedia.org/wiki/Right_to_explanation


idiosyncratic foibles …. … The mostly white men who
built the tools of social networks did not recognize the
danger of harassment, and so the things they built
became conduits for it. If there had been women or
people of color in the room, … there might have been
tools built to protect users … (Bowles, 2019)

What kinds of problems can such “foibles” or biases lead
to?

Users discovered that Google's photo app, which applies
automatic labels to pictures in digital photo albums, was
classifying images of black people as gorillas. Google
apologized; it was unintentional.
… Nikon's camera software … misread images of Asian
people as blinking, and … Hewlett‐Packard's web camera
software … had difficulty recognizing people with dark
skin tones.
This is fundamentally a data problem. Algorithms learn
by being fed certain images, often chosen by engineers,
and the system builds a model of the world based on
those images. If a system is trained on photos of people
who are overwhelmingly white, it will have a harder time
recognizing nonwhite faces.
… ProPublica … found that widely used software that
assessed the risk of recidivism in criminals was twice as
likely to mistakenly flag black defendants as being at a
higher risk of committing future crimes. It was also twice
as likely to incorrectly flag white defendants as low risk.
The reason those predictions are so skewed is still
unknown, because the company responsible for these
algorithms keeps its formulas secret …. (Crawford, 2016)

Perhaps the ethical issues really concern the nature of
different kinds of algorithms. “Neat” algorithms are based



on formal logic and well‐developed theories of the subject
matter of the algorithm. “Scruffy” algorithms are not
necessarily based on any formal theory. (These terms were
originally used to describe two different approaches to AI
(https://en.wikipedia.org/wiki/Neats_and_scruffies), but
they can be used to describe any algorithm.) “Heuristic”
algorithms don't necessarily give you a correct solution to a
problem but are supposed to give one that is near enough
to a correct solution to be useful (i.e. one that “satisfices”).
Machine‐learning algorithms are trained on a set of test
cases and “learn” how to solve problems based on those
cases and on the particular learning technique used.
If a “neat” algorithm is “correct” – surely, a big “if” – then
there does not seem to be any moral reason not to use it
(not to be “correctly rational”). If the algorithm is “scruffy,”
then one might have moral qualms. If the algorithm is a
heuristic (perhaps as in the case of expert systems), then
there is no more or less moral reason to use it than there is
to trust a human expert. If the algorithm was developed by
machine learning, then its trustworthiness will depend on
its training set and learning method.5

17.6.2 The Black‐Box Problem

Indeed, we are often quite distressed when a repairman
returns a machine to us with the words, “I don't know
what was wrong with it. I just jiggled it, and now it's
working fine.” He [sic] has confessed that he failed to
come to understand the law of the broken machine and
we infer that he cannot now know, and neither can we or
anyone, the law of the “repaired” machine. If we depend
on that machine, we have become servants of a law we
cannot know, hence of a capricious law. And that is the
source of our distress. —Joseph Weizenbaum (1976,
pp. 40–41)

https://en.wikipedia.org/wiki/Neats_and_scruffies


Here is the strange rub of such a deep learning system:
It learns, but it cannot tell us why it has learned; it
assigns probabilities, but it cannot easily express the
reasoning behind the assignment. Like a child who
learns to ride a bicycle by trial and error and, asked to
articulate the rules that enable bicycle riding, simply
shrugs her shoulders and sails away, the algorithm looks
vacantly at us when we ask, “Why?” It is, like death,
another black box. —Siddhartha Mukherjee (2018)

At least four sources of problems can make a computer's
decision untrustworthy:

1. the decision‐making criteria encoded in the algorithm,
either by its programmer (or programmers) or by the
machine‐learning program that developed those
criteria from test cases,

2. those test cases themselves,
3. the computer program itself, and
4. the data on which a given decision is based.

Let's assume – a big assumption, and only for the sake of
the argument – that the input data (#4) are as complete
and accurate as possible. Let's also assume (although this
is an even larger assumption) that the algorithm (#3) has
been formally verified. That leaves the decision‐making
criteria and any test cases as the primary focus of
attention.
At the present stage in the development of computers, two
ways in which these criteria find their way into an
algorithm are through the human programmer and through
machine learning. Of course, a machine‐learning algorithm
gets its test cases from a human (or from a database that
was generated by another program that was written by a
human), and it gets its machine‐learning technique from its



human programmer. But once the human is out of the
picture and the algorithm is left to fend for itself, so to
speak, it is to the algorithm that we must turn for
explanations.
Consequently, one important issue concerning computers
that make decisions for (or with) us is whether they can, or
should, explain their decisions. Two kinds of algorithms are
relevant to this question. One kind is the symbolic or logical
algorithm that has such an explanatory capability: a user
could examine a trace of the algorithm, or a programmer
could write a program that would translate that trace into a
natural‐language explanation that a user could understand.
The other kind is one that is based on a neural‐network or a
statistical, machine‐learning algorithm. Such an algorithm
might not be able to explain its behavior, nor might its
programmer or a user be able to understand how or why it
behaves as it does.
As an example, a typical board‐game‐playing program
might have a representation of the board and the pieces, an
explicit representation of the rules, and an explicit game
tree that allows it to rationally choose an optimal move.
Such a program could easily be adapted to explain its
moves. It does not have to, of course. My computer science
colleague Peter Scott suggested6 that “even the Turing
Test does not require the agent to explain clearly how
s/he/it is reasoning.” However, the interrogator can always
ask something like “Why do you believe that?” or “Why did
you do that?” and to pass the test, the interlocutor (human
or computer) must be able to give a plausible answer.
But AlphaGo, the recent Go‐playing program that beat the
European Go champion, was almost entirely based on
neural networks and machine‐learning algorithms (Silver et
al., 2016; Vardi, 2016). As an editorial accompanying Silver
et al., 2016 put it,



…the interplay of its neural networks means a human can
hardly check its working, or verify its decisions before
they are followed through. As the use of deep neural
network systems spreads into everyday life … it raises an
interesting concept for humans and their relationships
with machines. The machine becomes an oracle; its
pronouncements have to be believed.
When a conventional computer tells an engineer to place
a rivet or a weld in a specific place on an aircraft wing,
the engineer – if he or she wishes – can lift the machine's
lid and examine the assumptions and calculations inside.
That is why the rest of us are happy to fly. Intuitive
machines will need more than trust: they will demand
faith. (Nature Editors, 2016)

Should they “demand faith”? Or should laws (such as those
in the European Union) require transparency or
explainability and thus rule out “black box” machine‐
learning algorithms of the kind discussed in Section 3.11?
Relying on a successful but unexplained computer's
decisions might not necessarily mean we are taking its
decisions on faith. After all, its successes would themselves
be evidence for its trustworthiness, just as an axiom's
usefulness in mathematical derivations is evidence in its
favor even though – by definition – it cannot be proved.7



BoxII

Digression on Connectionist vs. Symbolic

Algorithms: Peter Scott went on to say,

Some say a temporary truce has been recognized, but
there is still no hint of a permanent peace treaty
between the connectionist and symbolist advocates. I
am betting that controversy will go on for a long time.

The current apparent inability of connectionist or
neural‐network algorithms to explain their behavior (or
to have their behavior explained by others) while at the
same time being better at certain tasks than symbolic
algorithms that can explain their behavior suggests that
both kinds of mechanisms are needed.
For example, there is a two‐way interaction between
connectionist‐like cognition and symbolic‐like cognition
in human learning: when my son was learning how to
drive, I realized that I had to translate my instinctive
(connectionist‐like) behavior for making turns into
explicit (symbolic) instructions, something along the
lines of “put your foot on the brake to slow down, make
the turn, then accelerate slowly.” But to do that, I had to
observe what my instinctive behavior was. Presumably,
my son would follow the explicit instructions until they
became second nature to him (i.e. “followed” implicitly
or instinctively), until such time as he might teach his
child to drive, and the cycle would repeat. (Compare a
“hardwired” Turing Machine that operates
“instinctively” and a programmed, Universal Turing
Machine that explicitly follows instructions.)
For other arguments on the value of symbolic
computation, see the Online Resources.

https://cse.buffalo.edu/~rapaport/OR/A0fr17.html#17.6.2




17.7 Are There Decisions Computers

Must Make for Us?

Commercial airplanes are what we'd call self‐driving
except at takeoff and landing, and the result is that it's
now nearly impossible for a cruising jet to fall out of the
sky without malice or a series of compounding errors by
the pilots. (Lethal computer glitches are so rare that if
they appear even twice among tens of millions of flights,
as in the case of Boeing's 737 MAX 8, the industry goes
into crisis.) People get the willies at the idea of putting
their lives in the hands of computers, but there's every
reason to think that, as far as transportation goes, we're
safer in their care. —Nathan Heller (2019, p. 28)

Having the ability to evaluate a computer's reasons for its
decisions assumes the willingness to do so. But remember
Simon's problem of bounded rationality: we usually don't
have the time or ability to evaluate all the relevant facts
before we need to act. What about emergencies or other
situations in which there is no time for the humans who
must act to include the computer's recommendation in
their deliberations?
On 1 July 2002, a Russian airliner crashed into a cargo jet
over Germany, killing all on board, most of whom were
students. The Russian airliner's flight recorder had an
automatic collision‐avoidance system that instructed the
pilot to fly over the cargo jet. The human air‐traffic
controller told the Russian pilot to fly under the cargo jet.
According to science reporter George Johnson (2002),
“Pilots tend to listen to the air traffic controller because
they trust a human being and know that a person wants to
keep them safe” (my italics). But the human air‐traffic
controller was tired and overworked. And the collision‐



avoidance computer system didn't “want” anything; it
simply made rational judgments. The pilot followed the
human's decision, not the computer's, and a tragedy
occurred.
There is an interesting contrasting case. In January 2009,
after an accident involving birds that got caught in its
engines, a US Airways jet “landed” safely on the Hudson
River in New York City, saving all on board and making a
hero out of its pilot. Yet William Langewiesche (2009)
argues that it was the plane, with its computerized “fly by
wire” system, that was the real hero. In other words, the
pilot's heroism was due to his willingness to accept the
computer's decision.8



17.8 Are There Decisions Computers

Shouldn't Make?

Let's suppose we have a decision‐making computer that
explains all of its decisions, is unbiased, and has an
excellent track record. Are there decisions that even such a
computer should never make?
The computer scientist Joseph Weizenbaum (1976) has
argued that even if computers could make decisions as well
as, or even better than, a human, they shouldn't, especially
if their reasons differ from ours. And Moor points out that,
possibly, computers shouldn't have the power to make
(certain) decisions, even if they have the competence to do
so (at least as well as, if not better than, humans).
But if they have the competence, why shouldn't they have
the power? For instance, suppose a very superstitious
group of individuals makes poor medical decisions based
entirely on their superstitions; shouldn't a modern
physician's “outsider” medicine take precedence? And does
the fact that computers are immune to human diseases
mean they lack the empathy to recommend treatments to
humans?
Moor suggests that although a computer should make
rational decisions for us, a computer should not decide
what our basic goals and values should be. Computers
should help us reach those goals or satisfy those values, but
they should not change them. But why not? Computers
can't be legally or morally responsible for their decisions,
because they're not persons. At least, not yet. But what if
AI succeeds? We'll return to this in Chapters 18 and 19.
Note, by the way, that for many legal purposes, non‐human
corporations are considered persons.



Batya Friedman and Peter H. Kahn, Jr. (1997) argue that
humans are – but computers are not – capable of being
moral agents, and therefore computers should be designed
so that (1) humans are not in “merely mechanical” roles
with a diminished sense of agency, and (2) computers don't
masquerade as agents with beliefs, desires, or intentions.
Let's consider point (1): Friedman and Kahn argue that
computers should be designed so that humans do realize
that they (the humans) are moral agents. But what if the
computer has a better decision‐making track record than
humans? Friedman and Kahn offer a case study of
APACHE, a computer system that can make decisions about
when to withhold life support from a patient. It is
acceptable if it is used as a tool to aid human decision
makers. But human users may experience a “diminished
sense of moral agency” when using it, presumably because
a computer is involved.
But why? Suppose APACHE is replaced by a textbook on
when to withhold life support, or by a human expert. Would
either of those diminish the human decision‐maker's sense
of moral agency? In fact, wouldn't human decision‐makers
be remiss if they failed to consult experts or the writings of
experts? So wouldn't they also be remiss if they failed to
consult an expert computer? Perhaps humans would
experience this diminished sense of moral agency for the
following reason: if APACHE's decisions exhibit “good
performance” and are more relied on, humans may begin to
yield to its decisions. But why would that be bad?
Turning to point (2), Friedman and Kahn argue that
computers should be designed so that humans do realize
that computers are not moral agents. Does this mean
computers should be designed so that humans cannot take
Dennett's (1971) “intentional stance” toward them? (Recall
Section 12.4.1.) But what if the computer did have beliefs,



desires, and intentions? AI researchers are actively
designing computers that either really have them or are
best understood as if they had them. Would they not then
be moral agents? If not, why not? According to Dennett
(1971), some computers can't help “masquerading” as
belief‐desire‐intention agents because that's the best way
for us to understand them.
Friedman and Kahn argue that we should be careful about
anthropomorphic user interfaces, because the appearance
of beliefs, desires, and intentions does not imply that
computers really have them. This is a classic theme not
only in the history of AI but also in literature and cinema.
And this is at the heart of the Turing Test in AI, to which we
now turn.9



17.9 Questions for the Reader

1. In Sections 12.4.4 and 16.9, we discussed how to
describe what a computer or a person is doing. Is a
Universal Turing machine that is running an addition
program adding or “merely” fetching and executing the
instructions for adding? If I use a calculator or a
computer, or if a robot performs some action, who or
what is “really” doing the calculation or the
computation, or the action: Is it the calculator
(computer, robot)? Or me? When I use a calculator to
add, am I adding or “merely” pushing certain buttons?
(Compare this real‐life story: I was making waffles
“from scratch” on a waffle iron. The 7‐year‐old son of
friends who were visiting was watching me and said,
“Actually, you're not making it; it's the thing [what he
was trying to say was that it was the waffle iron that
was making the waffles]. But you set it up, so you're the
cook.”)

2. Who (or what) is morally responsible for decisions
made, or actions taken, by computers? Is it the
computer? Is it the human who accepts the computer's
decision? Is it the human who programmed the
computer?

3. Suppose a student knows how to use a calculator to
add; does that student know how to add?

4. Should artificial intelligences be allowed to kill?
Sparrow, 2007 “considers the ethics of the decision to
send artificially intelligent robots into war ….” On
“artificial morality” and machine ethics for robots, see
Anderson and Anderson, 2007, 2010, Wallach and
Allen, 2009, Wagner and Arkin, 2011, Bench‐Capon,
2020, Misselhorn, 2020.



5. Aref, 2004 suggests (but does not discuss) that
supercomputers might make decisions that we could
not understand:

As we construct machines that rival the mental
capability of humans, will our analytical skills
atrophy? Will we come to rely too much on the ability
to do brute‐force simulations in a very short time,
rather than subject problems to careful analysis? Will
we run to the computer before thinking a problem
through?…A major challenge for the future of
humanity is whether we can also learn to master
machines that outperform us mentally.

On the question “will our analytical skills atrophy?”
you might enjoy Isaac Asimov's (1957) science‐fiction
story “The Feeling of Power,” which is about a human
who rediscovers how to do arithmetic even though all
arithmetical problems are handled by computers, and
then the computers break down.

6. If all that matters is a decision‐making computer's track
record, and if its algorithm cannot be understood
(either because it is too complex or because it is a
“black box” algorithm (Section 3.11)), does that mean
we have to take its decisions merely on faith? Or are
there decisions that should not be made by algorithms
that are so complex that we cannot understand them?

7. On the other hand, consider these remarks by Daniel
Dennett:



Artifacts already exist … with competences so far
superior to any human competence that they will
usurp our authority as experts, an authority that has
been unquestioned since the dawn of the age of
intelligent design. And when we ceded hegemony to
these artifacts, it will be for very good reasons, both
practical and moral. Already it would be criminally

negligent for me to embark with passengers on a
transatlantic sailboat cruise without equipping the
boat with several GPS systems. …
Would you be willing to indulge your favorite doctor
in her desire to be an old‐fashioned “intuitive” reader
of symptoms instead of relying on a computer‐based
system that had been proven to be a hundred times
more reliable at finding rare, low‐visibility diagnoses
than any specialist? (Dennett, 2017, pp. 400–401)

Would it be irrational not to take such decisions or
advice on faith? (We'll return to the notion of faith in
Section 17.6.2.)



Notes

1 Keep in mind that another vehicle that many of us use
frequently was once only human‐operated but is now
completely automated (and I doubt that any of us
would know what to do if it failed): elevators. See the
Online Resources for further reading on automated
vehicles .

2 See the Online Resources for further reading on
game-playing computers .

3 Maybe we would be better off not knowing! (Clarke,
1953). For more on trust, see the Online Resources.

4 See the Online Resources for further reading on
human reasoning.

5 See the Online Resources for further reading on
machine learning and the bias problem .

6 Personal communication, 23 April 2017.

7 See the Online Resources for further reading on the
black-box problem.

8 See the Online Resources for further reading on
these issues.

9 See the Online Resources for further reading on
these issues.

https://cse.buffalo.edu/~rapaport/OR/A0fr17.html#17.1
https://cse.buffalo.edu/~rapaport/OR/A0fr17.html#17.2
https://cse.buffalo.edu/~rapaport/OR/A0fr17.html#17.6
https://cse.buffalo.edu/~rapaport/OR/A0fr17.html#17.6
https://cse.buffalo.edu/~rapaport/OR/A0fr17.html#17.6.1
https://cse.buffalo.edu/~rapaport/OR/A0fr17.html#17.6.2
https://cse.buffalo.edu/~rapaport/OR/A0fr17.html#17.7
https://cse.buffalo.edu/~rapaport/OR/A0fr17.html#17.8


18 

Philosophy of Artificial

Intelligence
1

With a large number of programs in existence capable of
many kinds of performances that, in humans, we call
thinking, and with detailed evidence that the processes
some of these programs use parallel closely the observed
human processes, we have in hand a clear‐cut answer to
the mind‐body problem: How can matter think and how
are brains related to thoughts?
—Herbert Simon (1996a, p. 164)2

Announcer at a computer‐human checkers match:

Are you at all concerned about playing checkers against
a computer, Mr. Crankshaft?
Mr. Crankshaft: Nope; the way I see it, it's going to be
one checkers playing machine against another.
—https://www.comicskingdom.com/crankshaft/2005-03-
02

https://www.comicskingdom.com/crankshaft/2005-03-02


18.1 Introduction

In this chapter, we will focus on only two main questions in
the philosophy of AI: What is AI? And is AI possible?3 For
the second question, we will look at Alan Turing's classic
1950 paper on the Turing Test of whether computers can
think and at John Searle's 1980 Chinese Room Argument
challenging that test.



18.2 What Is AI?

18.2.1 Definitions and Goals of AI

Many definitions of AI have been proposed.4 We will focus
on two nicely contrasting definitions. The first is by Marvin
Minsky, one of the pioneers of AI research; the second is by
Margaret Boden, one of the pioneers of cognitive science:

1. … artificial intelligence, the science of making
machines do things that would require intelligence if
done by men.5 (Minsky, 1968, p. v)

2. By “artificial intelligence” I … mean the use of
computer programs and programming techniques to
cast light on the principles of intelligence in general
and human thought in particular. (Boden, 1977, p. 5)

Minsky's definition suggests that the methodology of AI is
to study humans in order to learn how to program
computers. Note that this was Turing's methodology in his
1936 paper; see Section 8.7.9. Boden's definition suggests
a methodology that goes in the opposite direction: to study
computers in order to learn something about humans.
Turing advocated this approach, as well: “the attempt to
make a thinking machine will help us greatly in finding out
how we think ourselves” (Turing, 1951a, p. 486). AI is, in
fact, a two‐way street: Minsky's view of AI as moving from
humans to computers and Boden's view of it as moving
from computers to humans are both valid.
Both views are also consistent with Stuart C. Shapiro's
three goals of AI (Shapiro, 1992a):

AI as advanced CS or engineering: One goal of AI is
to extend the frontiers of what we know how to
program and to do this by whatever means will do the



job, not necessarily in an “intelligent” (i.e. cognitive)
fashion. My former computer science colleague John
Case once told me that AI understood in this way is at
the “cutting edge” of CS.6

AI as computational psychology: Another goal of AI
is to write programs as theories or models of human

cognitive behavior. (Recall our discussion in Chapter
14.)
AI as computational philosophy: A third goal of AI is
to investigate whether cognition in general (and not
restricted to human cognitive behavior) is computable:
i.e. whether it is (expressible as) one or more recursive
functions.

18.2.2 Artificial Intelligence as

Computational Cognition

The term ‘artificial intelligence’ – coined by John McCarthy
in 1955 – is somewhat of a misnomer. First, outside of AI,
‘intelligence’ is often used in the sense of IQ, but AI is not
necessarily concerned only with finding programs with high
IQ.7 Echoing Minsky's definition and Shapiro's goals,
Herbert Simon said this:

The basic strategy of AI has always been to seek out
progressively more complex human tasks and show how
computers can do them, in humanoid ways or by brute
force. (Quoted in Hearst and Hirsh, 2000, p. 8.)

The phrase ‘human tasks’ nicely avoids any issues involved
with the notion of “intelligence.” But an even more general
and accurate term would be ‘cognition,’ which includes
such mental states and processes as belief, consciousness,
emotion, language, learning, memory, perception,
planning, problem solving, reasoning, representation



(including categories, concepts, and mental imagery),
sensation, thought, etc.
Second, ‘artificial’ carries the suggestion that “artificial”
entities aren't the real thing. (Recall our discussion in
Section 14.2.2.) ‘Synthetic’ is better than ‘artificial,’
because an artificial diamond might not be a diamond – it
might be a cubic zirconium – whereas a synthetic diamond
is a real diamond that just happened to be formed in a non‐
natural way.8 But an even better term is ‘computational,’
which doesn't carry the stigma of “artificiality” and which
specifies the nature of the “synthesis.”
For these reasons, my preferred name for the field is
‘computational cognition.’ (Nevertheless, just as I use ‘CS’
in this book instead of “computer science,” I will continue
to use ‘AI’ instead of “computational cognition.”) So, AI –
understood as computational cognition – is the branch of
CS (working with other disciplines, such as cognitive
anthropology, linguistics, cognitive neuroscience,
philosophy, and psychology, among others) that tries to
answer the question how much of cognition is

computable? The working assumption of computational
cognition is that all of cognition is computable: “The
study [of AI] is to proceed on the basis of the conjecture
that every aspect of learning or any other feature of
intelligence can in principle be so precisely described that
a machine can be made to simulate it” (McCarthy et al.,
1955).
And its main open research question is, Are aspects of

cognition that are not yet known to be computable

computable? If so, what does that tell us about the kinds
of things that can produce cognitive behavior? On the other
hand, if there are non‐computable aspects of cognition, why

are they non‐computable? And what would that tell us
about cognition? An answer to this question should take the



form of a logical argument such as the one that shows that
the Halting Problem is non‐computable (Section 7.7). It
should not be of the form “All computational methods tried
so far have failed to produce this aspect of cognition.” After
all, there might be a new kind of method that has not yet
been tried.



18.3 The Turing Test

The Turing Test(?): a problem is computable if a
computer can convince you it is.
—Anonymous undergraduate student in the author's
course, CSE 111, “Great Ideas in Computer Science”
(14 December 2000)9

18.3.1 How Computers Can Think

We have seen that AI holds that cognition is computable.
For our present purposes, it doesn't matter whether the
computations are of the classical, symbolic variety or the
connectionist, artificial‐neural‐network, or machine‐
learning variety. Nor does it matter whether the neuron
firings that produce cognition in the human brain can be
viewed as computations. (For further discussion of this, see
Piccinini 2007a; Rapaport 2012b; Piccinini and Bahar 2013;
Piccinini 2020b.)
All that matters is this philosophical implication: if (and to

the extent that) cognitive states and processes can be

expressed as algorithms, then they can be implemented in

non‐human computers. And this raises the following
questions: (1) Are computers executing such cognitive
algorithms merely simulating cognitive states and
processes? (2) Or are they actually exhibiting them? In
popular parlance, do such computers think?
In Sections 18.3–18.5, we look at an answer to this question
that arises from what is called “the Turing Test”. In
Sections 18.6–18.8, we will look at an objection to it in the
form of the Chinese Room Argument, including an
interpretation of the situation that is based on the theory of
syntactic semantics introduced in Section 16.10. After that,



we will revisit Turing's “strange inversion” from Section
16.7 and make some concluding remarks on the goal of AI.

18.3.2 The Imitation Game

Leo Computers compute. Brains think. Is the machine
thinking?
Amal If it's playing chess and you can't tell from the
moves if the computer is playing white or black, it's
thinking.
Leo What it's doing is a lot of binary operations following
the rules of its programming.
Amal So is a brain.
     …
Hilary It's not deep. If that's thinking. An adding
machine on speed. A two‐way switch with a memory.
Why wouldn't it play chess? But when it's me to move, is
the computer thoughtful or is it sitting there like a
toaster? It's sitting there like a toaster.
Leo So, what would be your idea of deep?
Hilary A computer that minds losing.
—Tom Stoppard (2015, Scene 3, pp. 22–23)

Just as Alan Turing's most important paper (Turing, 1936)
never mentions a “Turing Machine,” his second most
important paper – “Computing Machinery and Intelligence”
(Turing, 1950) – never mentions a “Turing Test.” Instead,
he introduces a parlor game that he calls the “Imitation
Game.” This is a game that you can actually play, not a
mere thought experiment.
The Imitation Game consists of three players: a man, a
woman, and an interrogator who might be either a man or



a woman. It might matter whether the interrogator is a
man rather than a woman, or the other way around, but
we'll ignore this for now. The interrogator could also be a
computer, but there are good reasons why that should be
ruled out: the point of the Turing Test is for a human to
judge whether an entity can think (or whether its cognitive
behavior is indistinguishable from that of a human).
The three players are placed in separate rooms so they
cannot see each other, and they communicate only by
means of what we would now call ‘texting’ so they cannot
hear each other. The reason is that the point of the game is
for the interrogator to determine which room has the man
and which room has the woman. To make things
interesting, the woman is supposed to tell the truth in order
to convince the interrogator that she is the woman, but the
man is supposed to convince the interrogator that he (the
man) is the woman, so he may occasionally have to lie. The
man wins if he convinces (fools) the interrogator that he is
the woman; the woman wins if she convinces the
interrogator that she is the woman.
Turing suggested that “an average interrogator will not
have more than 70 per cent. chance of making the right
identification after five minutes of questioning” (Turing,
1950, p. 442). The actual amount of time is irrelevant: one
could conduct a series of Imitation Games and calculate
appropriate statistics on how likely an interrogator is to
make a correct determination after a given period of time.
What does this have to do with whether computers can
think? What has come to be known as the Turing Test
makes one small change to the Imitation Game:



We now ask the question, “What will happen when a
machine takes the part of [the man] in this game?” Will
the interrogator decide wrongly as often when the game
is played like this as he [or she] does when the game is
played between a man and a woman? These questions
replace our original, “Can machines think?”
(Turing, 1950, p. 434)

There is some ambiguity: Is the “machine” (i.e. the
computer) supposed to convince the interrogator that it is
the woman? (That is, is it supposed to imitate a woman?)
Or is it supposed to convince the interrogator that it is a
man who is trying to convince the interrogator that he is a

woman? (That is, is it supposed to imitate a man?)
Other modifications are possible. Usually, the Turing Test
is taken, more simply and less ambiguously, to consist of a
setup in which a computer, a human, and a human
interrogator are located in three different rooms,
communicating over a texting interface, and in which both
the human and the computer are supposed to convince the
interrogator that each is a human. If the computer
convinces the interrogator (under the same criteria for
successful convincing that obtains in the original Imitation
Game), then the computer is said to have passed the Turing
Test. An even simpler version consists merely of two
players: a human interrogator and someone or something
(a human or a computer) in two separate, text‐interfaced
rooms. If a computer convinces the interrogator that it is a
human, then it passes the Turing Test.
Here is Turing's answer to the question that has now
replaced “Can machines think?”:



I believe that at the end of the century [i.e. by the year
2000]10the use of words and general educated

opinion will have altered so much that one will be able
to speak of machines thinking without expecting to be
contradicted.
(Turing, 1950, p. 442, my boldface)

To see what this might mean, we need to consider the
Turing Test a bit further.11



BoxII

Digression on “the End of the Century”: “The end of
the century” (i.e. the twentieth century) has come and
gone without Turing's expectations being realized. (If
they had been, we would not still be discussing them!)
Similar predictions have also been off the mark. Simon
and Newell, 1958 predicted that (among other things) a
computer would “be the world's chess champion” (p. 7)
by 1968. But it didn't happen until 1997, when IBM's
Deep Blue beat human chess champion Garry Kasparov
(https://en.wikipedia.org/wiki/Deep_Blue_versus_Garry_
Kasparov). However, Simon (personal communication,
24 September 1998, https://cse.buffalo.edu/
∼rapaport/584/S07/simon.txt) said that “it had nothing
to do with the Turing Test” and that “(a) I regard the
predictions as a highly successful exercise in futurology,
and (b) placed in the equivalent position today, I would
make them again, and for the same reasons. (Some
people never seem to learn.)” See also Simon, 1977,
p. 1191, endnote 1. At the end of the next millennium,
no doubt, historians looking back will find the 40‐year
distance between the time of Newell and Simon's
prediction and the time of Kasparov's defeat to have
been insignificant.

https://en.wikipedia.org/wiki/Deep_Blue_versus_Garry_Kasparov
https://cse.buffalo.edu/~rapaport/584/S07/simon.txt


BoxII

Historical Digression: The Turing Test was not the
first test of its kind. Descartes (1637, Part V, p. 116)
proposed the following:

… if there were machines which bore a resemblance
to our body and imitated our actions as far as it was
morally possible to do so, we should always have two
very certain tests by which to recognise that, for all
that, they were not real men. The first is, that they
could never use speech or other signs as we do when
placing our thoughts on record for the benefit of
others. For we can easily understand a machine's
being constituted so that it can utter words …; for
instance, … it may ask what we wish to say to it; … it
may exclaim that it is being hurt, and so on. But it
never happens that it arranges its speech in various
ways, in order to reply appropriately to everything
that may be said in its presence, as even the lowest
type of man can do. And the second … is, that
although machines can perform certain things as well
as or perhaps better than any of us can do, they
infallibly fall short in others, by the which means we
may discover that they did not act from knowledge,
but only from the disposition of their organs.

18.3.3 Thinking vs. “Thinking”



Lots of parts of a computer “think” in different ways, but
… [the CPU] is what we usually call the “thinking” part.
It's a machine for quickly following a set of steps that are
written down as numbers. Following steps might not be

“thinking.” But it's hard to say for sure. That's one of
those things where not only do we not know the answer,
we're not sure what the question is.
—Randall Munroe (2015, p. 37, my italics)

In 1993, The New Yorker magazine published a cartoon by
Peter Steiner showing a dog sitting in front of a computer
talking to another dog, the first one saying, “On the
Internet, nobody knows you're a dog”
https://en.wikipedia.org/wiki/On_the_Internet,_nobody_kno
ws_you%27re_a_dog#/media/File:Internet_dog.jpg. This
cartoon's humor arises from the fact that you do not know
with whom you are communicating via computer! It's
unlikely that there's a dog typing away at the other end of a
texting session or an email, but could it be a computer
pretending to be a human, as in the Turing Test? Or could
it be a 30‐year‐old pedophile pretending to be a 13‐year‐old
classmate?
In the years since that cartoon appeared, we have become
only too aware of the possibilities and dangers – political
and otherwise – of messages and “fake news” on Facebook
and elsewhere that purport to come from one source but
really come from another, as well as the possibilities and
dangers of the lack of privacy. A newer “internet dog”
cartoon plays on this, in which the dog who was formerly at
the computer says to the other one, “Remember when, on
the Internet, nobody knew who you were?”
(https://condenaststore.com/featured/two-dogs-speak-as-
their-owner-uses-the-computer-kaamran-hafeez.html).
Normally, we assume that we are talking to people who
really are whom they say they are. In particular, we assume

https://en.wikipedia.org/wiki/On_the_Internet,_nobody_knows_you%27re_a_dog#/media/File:Internet_dog.jpg
https://condenaststore.com/featured/two-dogs-speak-as-their-owner-uses-the-computer-kaamran-hafeez.html


that we are talking to a human. But really, all we know is
that we are talking to an entity with human cognitive

capacities. And that, I think, is precisely Turing's point: an
entity with human cognitive capacities is all we can ever be
sure of, whether that entity is really a human or “merely” a
computer.
This is a version of what philosophers have called “the
argument from analogy for the existence of other minds.”
An argument from analogy is an argument of the form

1. Entity  is like (i.e. is analogous to) entity  with
respect to important properties .

2.  has another property, .
3.   (Probably)  also has property .

Compare the “duck test”: “When I see a bird that walks like
a duck and swims like a duck and quacks like a duck, I call
that bird a duck” (James Whitcomb Riley,
https://en.wikipedia.org/wiki/Duck_test). Such an
argument is not deductively valid: it's quite possible for the
premises to be true but for the conclusion to be false. But it
has some inductive strength: the more alike two objects are
in many respects, the more likely it is that they will be alike
in many other respects (and maybe even all respects).
The problem of the existence of other minds is this: I know
that I have a mind (because I know what it means for me to
think, to perceive, to solve problems, etc.). How do I know
whether you have a mind? Maybe you don't; maybe you're
just some kind of computer, or android, or philosophical
zombie.

https://en.wikipedia.org/wiki/Duck_test


BoxII

Digression on Androids and Zombies: Androids are
robots that look like humans, such as Commander Data
in Star Trek: The Next Generation or many of the
characters in such science fiction as Dick, 1968 or the
film Blade Runner. A philosophical zombie is not a
horror‐movie zombie. Rather, it is an entity who is
exactly like us in all respects but who lacks a mind or
consciousness. See Kirk, 1974, Chalmers, 1996; and
other references at http://www.cse.buffalo.edu/
∼rapaport/719/csnessrdgs.html#zombies.

Putting these together, here is the argument from analogy
for the existence of other minds:

1. You are like me with respect to all of our physical and
behavioral properties.

2. I have a mind.
(Or: my behavioral properties can best be explained by
the fact that I have a mind.)

3.   (Probably) you have a mind.
(Or: your behavioral properties can best be explained
if it is assumed that you also have a mind.)

Of course, this argument is also deductively invalid. I could
be wrong about whether you are biologically human. In
that case, the best explanation of your behavior might not
be that you have a mind, but that you are a computer who
has been cleverly and suitably programmed. Now, there are
two ways to understand this: one way to understand it is to
say that you don't have a mind; you're just a cleverly
programmed robot. But another way to understand it is to

http://www.cse.buffalo.edu/~rapaport/719/csnessrdgs.html#zombies


say that being cleverly programmed in that way is exactly
what it means to have a mind: perhaps we are both cleverly
programmed in that way. Or perhaps (a) you are
programmed in that way, whereas (b) I have a brain that
behaves in that way, but (c) these are simply two different
implementations of “having a mind.”
In either case, am I wrong about your being able to think?
That is, am I wrong about your (human) cognitive abilities?
Turing's answer is, no! More cautiously, perhaps, his
answer is that whether I'm wrong depends on how we
characterize (human) cognitive abilities (or thinking).
If human‐like cognition requires a (human) brain, and you
lack one, then, technically speaking, you don't have human‐
like cognition (even if you pass the Turing Test). On this
view, I really do think, but you can only “think.” That is, you
are not really thinking but doing something else that can be
called “thinking” only in a metaphorical sense.
But if human‐like cognition is an abstraction that can be
implemented in different ways – i.e. if it does not require a
(human) brain – then we both have human‐like cognition
(and that's why you pass the Test). On this view, we both
can think.
Here's an analogy: everyone can agree that birds fly.12 Do
people fly? Well, we certainly speak as if they do; we say
things like, “I flew from Buffalo to JFK last week.” But we
also know that I don't literally mean I flapped my arms
when flying from Buffalo to JFK; rather, I flew in an
airplane – it wasn't me who was flying; it was the airplane.
But that answer raises another question: do planes fly?
Well, they don't flap their wings, either! So in what sense
are they flying?
There are two ways to understand what it means to say that
planes fly. One way is by what I will call “metaphorical



extension.” The reason we say that planes fly is that what
they are doing is very much like what birds do when they
fly – they move through the air, even if their method of
doing so is different. But instead of using a simile, saying
that planes move through the air like birds fly, we use a
metaphor, saying directly that planes fly. And then that
metaphor becomes “frozen”; it becomes a legitimate part of
our language, so much so that we no longer realize it is
metaphorical. This is just like what happens when we say
that time is money: we say things like, “You're wasting

time,” “This will save you time,” “How did you spend your
vacation?” and so on. But we're usually not aware that we
are speaking metaphorically (until someone points it out),
and there's often no other (convenient) way to express the
same ideas (Lakoff and Johnson, 1980a,b).
As Turing said, “the use of words” has changed!

The other way to understand what it means to say that
planes fly is that we have realized flapping wings are not
essential to flying. There are deeper similarities between
what birds and planes do when they move through the air
that have nothing to do with wing‐flapping but that have
everything to do with the shape of wings and, more
generally, with the physics of flight. We have developed a
more abstract, and therefore more general, theory of flight,
one that applies to both birds and planes. And so we can
“promote” the verb ‘to fly’ from its use solely for birds (and
other flying animals) to a more general use that also
applies to planes. To use the language of Section 13.1.4,
the abstract notion of flying can be implemented in both
biological and non‐biological media.
As Turing said, “general educated opinion” has changed!

In fact, both the use of words and general educated opinion
have changed. Perhaps the change in one facilitated the



change in the other; perhaps the abstract, general theory
can account for the metaphorical extension.13

The same thing has happened with ‘computer.’ As we saw
in Section 6.1, a computer was originally a human who
computed. That was the case until about the 1950s, but a
half‐century later, we now say that a computer is a
machine. Before around 1950, what we now call
‘computers’ had to be called ‘digital’ or ‘electronic
computers’ to distinguish them from the human kind. But
now it is very confusing to read pre‐1950 papers without
thinking of the word ‘computer’ as meaning, by default, a
non‐human machine. (Recall the puzzling statement in
Turing, 1936, p. 250: “The behaviour of the computer at
any moment is determined by the symbols which he is
observing, and his ‘state of mind’ at that moment”; see
Section 8.7.3.) Now, at the beginning of the twenty‐first
century, general educated opinion holds that computers are
best viewed abstractly, in functional, input‐output terms.
The study of “artificial intelligence” may lead us to
understanding thinking as an abstraction that can be
implemented in both humans and computers, just as the
study of “artificial” flight
(https://invention.psychology.msstate.edu/library/Magazin
es/Nat_Artificial.html) was crucial to understanding flying
as an abstraction implementable in both birds and planes:
“[S]tudying the animals that fly,” no matter in how great
detail and for how many years, would not have yielded any
useful information on how humans might be able to fly.
Rather,

https://invention.psychology.msstate.edu/library/Magazines/Nat_Artificial.html


attempt[ing] to construct devices that fly … attempts to
build flying machines [resulted in] our entire
understanding of flight today. Even if one's aim is to
understand how birds or insects fly, one will look to
aeronautics for the key principles …. (Quillian, 1994,
pp. 440–442)14

This is consistent with Boden's view that the study of
computational theories of cognition can help us understand
human (and, more generally, non‐human) cognition.
What does this have to do with the philosophy of AI? The
strategy of abstracting from a naturally occurring example
and re‐implementing it computationally also applies to
cognition:

Quite typically, an abstract structure underlies some
human cognitive activity that is not at all apparent in
superficial phenomenology or practice. Often, that
structure is related in interesting ways to the structures
we would invent if we constructed an ideal machine to
perform that cognitive activity. (We might think of
artificial intelligence as a normative enterprise). But that
structure is rarely identical to the ideal machine's
structure. (Alison Gopnik 1996, p. 489)

The underlying abstract structure could be computational
in nature. Hence, it could be (re‐)implemented in “an ideal
machine.” The abstract computational theory might be
thought of as having this form: such‐and‐such a human
cognitive activity can be performed in this computational
way even if the way humans in fact do it is not identical to
that ideal structure. Gopnik goes on to say,



This process may seem like analogy or metaphor, but it
involves more serious conceptual changes. It is not
simply that the new idea is the old idea applied to a new
domain, but that the earlier idea is itself modified to fit
its role in the new theory. (Alison Gopnik 1996, p. 498)

To say, as I did earlier, that the process is metaphorical is
not inconsistent with it also involving “more serious
conceptual changes”: we come to see the old idea in a new
way.
But some philosophers argue that what AI computers do is
not really thinking. We'll turn to one of these philosophers
in Section 18.6. But first we'll digress to consider two more
issues related to Turing's views.

BoxII

Exercise for the Reader: Replace the word ‘existence’
with the word ‘thinking’ in the following passage:

When the dust has settled, we may find that the very
notion of existence, the old one, has had its day. A
kindred notion may then stand forth that seems
sufficiently akin to warrant application of the same
word; such is the way of terminology. Whether to say
at that point that we have gained new insight into
existence [cf. “general educated opinion”], or that we
have outgrown the notion and reapplied the term [cf.
“the use of words”], is a question of terminology as
well. (Quine, 1990, p. 36)



18.4 Digression: The “Lovelace

Objection”

Turing (1950, Section 6) considered several objections to
the possibility of AI, one of which he called “Lady
Lovelace's Objection.” Here it is in full, in Lovelace's own
words:

The Analytical Engine has no pretensions whatever to
originate anything. It can do whatever we know how

to order it to perform. It can follow analysis; but it has
no power of anticipating any analytical relations or
truths. Its province is to assist us in making available
what we are already acquainted with.
(Menabrea and Lovelace, 1843, p. 722, italics in original,
my boldface;
https://psychclassics.yorku.ca/Lovelace/lovelace.htm#G)

The first thing to note about this is that it is often
misquoted. We saw Herbert Simon do this in Section
11.8.4, when he expressed it in the form “computers can
only do what you program them to do” (Simon, 1977,
p. 1187, my italics). Lovelace did not use the word ‘only’.
We'll see one reason in a moment. But note that this
standard interpretation of her phrasing does seem to be
what Turing had in mind. He quotes with approval Hartree,
1949, p. 70 – the same book we saw Arthur Samuel quoting
in Section 9.1, by the way – who said, concerning
Lovelace's comment, “This does not imply that it may not
be possible to construct electronic equipment which will
‘think for itself’ ….” Minus the double negative, Hartree
(and Turing) are saying that Lovelace's comment is
consistent with the possibility of an AI computer passing
the Turing Test. Turing goes on to say this:

https://psychclassics.yorku.ca/Lovelace/lovelace.htm#G


A better variant of the objection says that a machine can
never “take us by surprise.” This statement is a more
direct challenge and can be met directly. Machines take
me by surprise with great frequency. (Turing, 1950,
p. 450)

It's worth observing that the fact that the Analytical Engine
(or any contemporary computer, for that matter) has no
“pretensions” simply means it wasn't designed that way;
nevertheless, it might still be able to “originate” things.
Also, if we can find out “how to order it to perform”
cognitive activities, then it can do them! Finding out how
requires us to be conscious of something we ordinarily do
unconsciously (Section 17.6.2). In his own commentary on
the Lovelace objection, Samuel (1953, p. 1225) said,

Regardless of what one calls the work of a digital
computer [specifically, regardless of whether one says
that it can think], the unfortunate fact remains that more
rather than less human thinking is required to solve a
problem using a present day machine since every
possible contingency which might arise during the
course of the computation must be thought through in
advance. The jocular advice recently published to the
effect, “Don't Think! Let UNIVAC do it for you,” cannot
be taken seriously. Perhaps, if IBM's familiar motto
[namely, “Think!”] needs amending, it should be “Think:
Think harder when you use the ‘ULTIMAC’.”

(Samuel adds in a footnote to this passage that ‘ULTIMAC’
is “A coined term for the ‘Ultimate in Automatic
Computers.’ The reader may, if he [sic] prefers, insert any
name he likes selected from the following partial list of
existing machines …,” and he then listed 43 of them,
including Edvac, Illiac, Johnniac, and Univac.)
Why didn't Lovelace use the word ‘only’? Recall from
Section 6.4.3 that Babbage, inspired by de Prony, wanted



his machines to replace human computers:

… Babbage deplored the waste of brilliant, educated men
in routine, boring drudgery, for which he claimed the
uneducated were better suited …. When convenient,
however, he saw no obstacle to replacing them by yet
more accurate or efficient machinery (he disapproved of
unions). (Stein, 1984, pp. 51–52)

It is in this context that Lovelace “rephrased Babbage's
words of assurance for the men of Prony's first section”
(p. 52). These were to be “the most eminent
mathematicians in France, charged with deciding which
formulae would be best for use in the step‐by‐step
calculation of the functions to be tabulated. (They
performed the programmer's task.)” (p. 51). These
“eminent” mathematical “men of the first section” – and
they were men – needed to be assured that the drudge
work could be handled by a machine, and hence Lovelace's
words: “The Analytical Engine has no pretensions whatever
to originate anything. It can do whatever we know how to
order it to perform.” This puts a positive spin on a sentence
that has typically been understood negatively: the
computer can do whatever we can program it to do (and
not the computer can “only” do whatever we program it to
do).



18.5 Digression: Turing on Intelligent

Machinery

This [probably the Manchester Mark 1 computer] is only
a foretaste of what is to come, and only the shadow of
what is going to be. We have to have some experience
with the machine before we really know its capabilities.
It may take years before we settle down to the new
possibilities, but I do not see why it should not enter any
one of the fields normally covered by the human
intellect, and eventually compete on equal terms.
—Alan Turing, 1949
(https://quoteinvestigator.com/2019/10/12/ai-shadow/)

Turing 1950 was not Turing's only essay on AI. An earlier
one was Turing, 1947. And in an essay written in 1951,
Turing seems to come out a bit more strongly about the
possibility of computers thinking:

‘You cannot make a machine to think for you.’ This is …
usually accepted without question. It will be the purpose
of this paper to question it. (Turing, 1951b, p. 256)

Although it is possible to read that last sentence neutrally,
to my ears it sounds like a challenge strongly suggesting
that Turing thinks you can make a machine think. Indeed,
later he says that his “contention is that machines can be
constructed which will simulate the behaviour of the human
mind very closely” (p. 257). This is cautiously worded – is
simulation of thinking (i.e. simulation of “the behavior of
the human mind”) the same as “real” thinking? – but his
ultimate claim here is that it will come so close to human
thinking as to make no difference: “on the whole the output
of them [i.e. of such “thinking” machines] will be worth
attention to the same sort of extent as the output of a

https://quoteinvestigator.com/2019/10/12/ai-shadow/


human mind” (p. 257, my italics). And how would this be
proved? By the Turing Test: “It would be the actual
reaction of the machine to circumstances that would prove
my contention, if indeed it can be proved at all” (p. 257).
Turing also suggests that the algorithm for such a machine
must be based on what is now called ‘machine learning’: “If
the machine were able in some way to ‘learn by experience’
it would be much more impressive” (p. 257). (Although not
everyone thinks machine learning is “really” learning
(Bringsjord et al., 2018).) Moreover, he also suggests that
the machine should be an oracle machine (Section 11.9):

There is … one feature that I would like to suggest
should be incorporated in the machines, and that is a
‘random element.’ Each machine should be supplied with
a tape bearing a random series of figures, e.g., 0 and 1 in
equal quantities, and this series of figures should be
used in the choices made by the machine. (p. 259)

Note, however, that Turing seems to consider these to be a
(small) extension of Turing Machines.
Also interesting is his anticipation of what is now called
“The Singularity” (see Section 19.7), and the question that
we will return to in Chapter 19 about whether we should

build artificial intelligences:



Let us now assume, for the sake of argument, that these
machines are a genuine possibility, and look at the
consequences of constructing them. To do so would of
course meet with great opposition, unless we have
advanced greatly in religious toleration from the days of
Galileo. There would be great opposition from the
intellectuals who were afraid of being put out of a job. …
it seems probable that once the machine thinking
method had started, it would not take long to outstrip

our feeble powers. There would be no question of the
machines dying, and they would be able to converse with
each other to sharpen their wits. At some stage therefore
we should have to expect the machines to take control ….
(pp. 259–260, my italics)



18.6 The Chinese Room Argument

If a Martian could learn to speak a human language, or a
robot be devised to behave in just the ways that are
essential to a language‐speaker, an implicit knowledge of
the correct theory of meaning for the language could be
attributed to the Martian or the robot with as much right
as to a human speaker, even though their internal
mechanisms were entirely different. —Michael Dummett
(1976, p. 70)

[R]esearchers … tracked … unresponsive patients …,
taking EEG recordings …. During each EEG recording,
the researchers gave the patients instructions through
headphones. … “Somewhat to our surprise, we found
that about 15 percent of patients who were not
responding at all had … brain activation in response to
the commands,” said Dr. Jan Claassen …. “It suggests
that there's some remnant of consciousness there.
However, we don't know if the patients really understood

what we were saying. We only know the brain reacted.”
—Benedict Carey (2019, my italics)

Thirty years after Turing's publication of the Turing Test,
John Searle published a thought experiment called the
Chinese Room Argument (Searle, 1980, 1982, 1984). In this
experiment, a human who knows no Chinese (John Searle
himself, as it happens) is placed in a room (the “Chinese
Room”) along with paper, pencils, and a book containing an
English‐language algorithm for manipulating certain
“squiggles” (marks or symbols that are meaningless to
Searle‐in‐the‐room).



BoxII

Terminological Digression: I distinguish between
(1) the real John Searle who is a philosopher and author
of Searle 1980 and (2) the Chineseless “John Searle”
who occupies the Chinese Room. I refer to the former as
‘Searle’ and to the latter as ‘Searle‐in‐the‐room.’

Outside the room is a native speaker of Chinese. There is
something like a mail slot in one wall of the Chinese Room.
Through that slot, the native speaker inputs pieces of paper
that contain a text written in Chinese along with reading‐
comprehension questions about that text, also in Chinese.
When Searle‐in‐the‐room gets these pieces of paper –
which, from his point of view, contain nothing but
apparently meaningless squiggles – he consults his book
and follows its instructions. Those instructions tell him to
manipulate the symbols in certain ways, to write certain
symbols down on a clean piece of paper, and to output
those “responses” through the mail slot. The native speaker
who reads them determines that whoever (or whatever) is
in the room has answered all the questions correctly in
Chinese, demonstrating a fluent understanding of Chinese.
This is because the rule book of instructions is a complete
natural‐language‐understanding algorithm for Chinese. But
by hypothesis, Searle‐in‐the‐room does not understand
Chinese. We seem to have a contradiction.
The Chinese Room Argument (CRA) can be seen as a
counterexample to the Turing Test, concluding that it is
possible to pass a Turing Test yet not really think. The
setup of the CRA is identical to the simplified, two‐player
version of the Turing Test: the interrogator is the native
Chinese speaker who has to decide whether the entity in



the room understands Chinese. The interrogator
determines that the entity in the room does understand
Chinese. This is analogous to deciding that the entity in the
simplified Turing Test is a human, rather than a computer.
But the entity in fact does not understand Chinese. This is
analogous to the entity in the simplified Turing Test being a
computer. So, Searle‐in‐the‐room passes the Turing Test
without being able to “really” understand; hence, the test
fails.
Or does it?
Searle actually bases two arguments on the Chinese Room
thought experiment:

The Argument from Biology:

B1. Computer programs are non‐biological.
B2. Cognition is biological.
B3.  No (non‐biological) computer program can
exhibit (biological) cognition.

The Argument from Semantics:

S1. Computer programs are purely syntactic.
S2. Cognition is semantic.
S3. Syntax alone is not sufficient for semantics.
S4.  No (purely syntactic) computer program can
exhibit (semantic) cognition.

The principal objection to the Argument from Biology is
that premise B2 is at least misleading and probably false:
cognition can be characterized abstractly and implemented
in different media. The principal objection to the Argument
from Semantics is that premise S3 is false: syntax – i.e.
symbol manipulation – does suffice for semantics.



After investigating these objections (and others), we will
consider whether there are other approaches that can be
taken to circumvent the CRA. One of them is to try to build
a real analogue of a Chinese Room; to do that, we will need
to answer the question of what is needed for natural‐
language understanding.15



BoxII

Historical Antecedents: Although Searle's CRA is the
most famous version of this kind of setup, there are
earlier ones. In 1959, the logician Hartley Rogers, Jr.,
wrote

Consider a box B inside of which we have a man L
with a desk, pencils and paper. On one side B has two
slots, marked input and output. If we write a number
on paper and pass it through the input slot, L takes it
and begins performing certain computations. If and
when he finishes, he writes down a number obtained
from the computation and passes it back to us
through the output slot. Assume further that L has
with him explicit deterministic instructions of finite
length as to how the computation is to be done. We
refer to these instructions as P. Finally, assume that
the supply of paper is inexhaustible, and that B can be
enlarged in size so that an arbitrarily large amount of
paper work can be stored in it in the course of any
single computation. … I think we had better assume,
too, that L himself is inexhaustible, since we do not
care how long it takes for an output to appear,
provided that it does eventually appear after a finite
amount of computation. We refer to the system B‐L‐P
as M. … In the approach of Turing, the symbolism and
specifications are such that the entire B‐L‐P system
can be viewed as a digital computer …. Roughly, to
use modern computing terms, L becomes the logical
component of the computer, and P becomes its
program. In Turing's approach, the entire system M is
hence called a Turing machine. (Rogers, 1959,
pp. 115, 117)



An even earlier version was in a 1954 episode of I Love

Lucy, which we'll discuss in Section 18.8.4. See the
Online Resources for another antecedent.

https://cse.buffalo.edu/~rapaport/OR/A0fr18.html#18.6


18.7 The Argument from Biology

18.7.1 Causal Powers

Let's begin by considering some of the things Searle says
about the CRA, beginning with two claims that are versions
of premise S1 of the Argument from Semantics:

I [i.e. Searle‐in‐the‐room] still don't understand a word of
Chinese and neither does any other digital computer
because all the computer has is what I have: a formal
program that attaches no meaning, interpretation, or
content to any of the symbols. What this simple
argument shows is that no formal program by itself is
sufficient for understanding …. (Searle, 1982, p. 5)

Note that this allows for the possibility that a program that
did “attach” meaning, etc., to the symbols might

understand. But Searle denies that, too:

I see no reason in principle why we couldn't give a
machine the capacity to understand English or Chinese,
since in an important sense our bodies with our brains
are precisely such machines. But … we could not give
such a thing to a machine where the operation of the
machine is defined solely in terms of computational
processes over formally defined elements …. (Searle,
1980, p. 422)

Why not? Because “only something that has the same
causal powers as brains can have intentionality” (Searle,
1980, p. 423). By ‘intentionality’ here, Searle means
“cognition” more generally. So he is saying that if
something exhibits cognition, then it must have “the same
causal powers as brains.”



All right; what are these causal powers? After all, if they
turn out to be something that can be computationally
implemented, then computers can have them (which Searle
thinks they cannot). So, what does he say they are? He says
these causal powers are due to the fact that “I am a certain
sort of organism with a certain biological (i.e. chemical and
physical) structure” (Searle, 1980, p. 422, my italics). That
narrows down the nature of these causal powers a little. If
we could figure out what this biological structure is, and if
we could figure out how to implement that structure
computationally, then we should be able to get computers
to understand. Admittedly, those are big “if”s, but they are
worth trying to satisfy.
So, what is this biological structure? Before we see what
Searle says about it, let's think for a moment about what a
“structure” is. What is the “structure” of the brain? One
plausible answer is that the brain is a network of neurons,
and the way those neurons are organized is its “structure.”
Presumably, if you made a model of the brain using string
to model the neurons, then if the strings were arranged in
the same way that the neurons were, we could say that the
model had the same “structure” as the brain. Of course,
string is static (it doesn't do anything), and neurons are
dynamic, so structure alone won't suffice, but it's a start.
However, Searle doesn't think even structure plus the
ability to do something is enough: he says a simulated
human brain “made entirely of … millions (or billions) of old
beer cans that are rigged up to levers and powered by
windmills” would not really exhibit cognition even though it
appeared to (Searle, 1982). Cognition must (also) be
biological, according to Searle. That is, it must be made of
the right stuff.



BoxII

Some Other “Wrong” Stuff: Weizenbaum 1976, Ch. 2,
considers a Turing Machine made of toilet paper and
pebbles. Weizenbaum 1976, Ch. 5, considers computers
“made of bailing wire, chewing gum, and adhesive
tape.” There is even a real computer made from Tinker
Toys
(https://www.computerhistory.org/collections/catalog/X
39.81)! And recall our discussion in Section 8.8.1 of
Hilbert's tables, chairs, and beer mugs.

But now consider what Searle is saying: only biological
systems have the requisite causal properties to produce
cognition. So we're back at our first question: what are
those causal properties? According to Searle, they are the
ones that are “causally capable of producing perception,
action, understanding, learning, and other intentional [i.e.
cognitive] phenomena” (Searle, 1980, p. 422). Again: what
are the causal properties that produce cognition? They are
the ones that produce cognition! That's not a very helpful
answer.
Elsewhere, Searle does say some things that give a possible
clue as to what the causal powers are: “mental states are
both caused by the operations of the brain and realized in

the structure of the brain” (Searle, 1983, p. 265). In other
words, they are implemented in the brain. And this
suggests a way to avoid Searle's argument from biology.

18.7.2 The Implementation

Counterargument

https://www.computerhistory.org/collections/catalog/X39.81


[M]ental states are as real as any other biological
phenomena, as real as lactation, photosynthesis, mitosis,
or digestion. Like these other phenomena, mental states
are caused by biological phenomena and in turn cause
other biological phenomena. (Searle, 1983, p. 264, my
italics)

Searle's “mental states” are biological implementations.
But if they are implementations, then they must be
implementations of something else that is more abstract:
abstract mental states. (This follows from Section 13.1.4's
Implementation Principle I.)
Searle (1980, p. 451, my italics) says that “… intentional
states … are both caused by and realized in the structure of
the brain.” But brains and contraptions made from beer‐
cans + levers + windmills can share structure. This is a
simple fact about the nature of structure. Therefore, what
Searle said must be false: it can't be a single thing – an
intentional (i.e. mental) state – that is both caused by and

realized in the brain. Rather, what the brain causes are
implemented mental states, but what the brain realizes are
abstract mental states, and the abstraction and its
implementation are two distinct things.
In Section 13.1.2, we saw that abstractions can be
implemented in more than one way – they can be “multiply
realized.” (This was Section 13.1.4's Implementation
Principle II.) We saw that stacks can be implemented as
arrays or as lists, that any sequence of items that satisfy
Peano's axioms is an implementation of the natural
numbers, that any two performances of the same play or
music are different implementations of the script or score,
and so on.
So, Searle says the human brain can understand Chinese
because understanding is biological, whereas a computer



executing a Chinese natural‐language‐understanding
program cannot understand Chinese because it is not

biological. But the implementation counterargument says
that on an abstract, functional, computational notion of
understanding as an abstraction, understanding can be
implemented in both human brains and computers, and
therefore both can understand.
More generally, if we put Implementation Principles I
and II together, we can see that if we begin with an
implementation (say, real, biological mental states), we can
develop an abstract theory about them. This is what AI and
computational cognitive science try to do, following
Minsky's methodology. But once we have an abstract
theory, we can re‐implement it in a different medium. If our
abstract theory is computable, then we can re‐implement it
in a computer. When this happens, our use of words
changes, because general educated opinion changes, as
Turing predicted. And this is consistent with Boden's
methodology: we can learn something about human
cognition by studying computer cognition.



BoxII

Digression on Flying and Computers: This transition
from an implementation in one medium “up” to an
abstraction and then “down” to another implementation
in a different medium is what happened with flying. We
began with an implementation (birds and other animals
that fly). We then developed an abstract theory (the
physics of flight). And this was then re‐implemented in
the medium of airplanes. It also happened with
computers. We began with an implementation (humans
who compute). Turing (1936) then developed an
abstract theory (the mathematical theory of Turing
Machine computation). And that was then re‐
implemented in electronic, digital computers.



18.8 The Argument from Semantics

18.8.1 The Premises

Premise S1 says that computer programs merely tell a
computer to (or describe how a computer can) manipulate
symbols solely on the basis of their properties as marks and
their relations among themselves. This manipulation is
completely independent of the symbols' semantic relations:
i.e. of the relations the symbols have to other items that are
external to the computer. These external items are the
meanings or interpretations of the symbols: the “aspects” of
the real world that the symbols represent (Lewis, 1970,
p. 19). Note, by the way, that insofar as a computer did

manipulate its internal symbols in a way that was causally
dependent on such external items, it could only do so by
inputting an internal representative of that external item.
But in that case, it would still be directly manipulating only
internal symbols and only indirectly dealing with the
external item.
Premise S2 says that cognition is centrally concerned with
such “external” relations. Cognition, roughly speaking, is
whatever the brain does with the sensory inputs from the
external world. To fully understand cognition, according to
this premise, it is necessary to understand the internal
workings of the brain, the external world, and the relations
between them. That is a semantic enterprise.
It seems clear that the study of relations among the symbols
alone could not possibly suffice to account for the relations
between those symbols and anything else. Hence
premise S3: syntax and semantics are two different,
although related, subjects.



Conclusion S4 seems to follow validly. So, any questions
about the goodness of the argument must concern its
soundness: are the premises true? Doubts have been raised
about each of them.

18.8.2 Which Premise Is at Fault?

Let's look at S1 first. Although the World Wide Web is not a
computer program, it is generally considered a syntactic
object: a collection of nodes (e.g. websites) related by links;
i.e. its mathematical structure is that of a graph. Some
researchers have felt that there are limitations to this
“syntactic” web and have proposed the Semantic Web
(Berners‐Lee et al., 2001). By “attaching meanings” to
websites (as Searle might say), they hope to make the Web
more … well … meaningful, more useful. In fact, however,
the way they do this is by adding more syntax! (See
Rapaport, 2012b, Section 3.2 and note 25.) So, for now,
we'll accept premise S1. (For arguments that S1 is false,
recall our discussion in Section 16.9.)
Next, let's look at S2: recall from the Digression in Section
11.8.4 that at least one major philosopher, Jerry Fodor
(1980), has argued that the study of cognition need not

involve the study of the external world that is being
cognized, on the grounds that cognition is what takes place
internally to the brain. Whether the brain correctly or
incorrectly interprets its input from the external world, it's
the interpretation that matters, not the actual state of the
external world. This view (“methodological solipsism”) holds
that as a methodology for studying cognition, we can
pretend that the external world doesn't exist; we only have
to investigate what the brain does with the inputs it gets,
not where those inputs come from or what they are really
like. (We'll return to this in Section 18.8.4.)



Of course, if understanding cognition only depends on the
workings of the brain and not on its relations with the
external world, then the study of cognition might be purely
syntactic. And so we're ready to consider premise S3. Can
we somehow get semantics from syntax? There are three
interrelated reasons for thinking we can.
First, we can try to show that semantics, which is the study
of relations between symbols and meanings, can be turned
into a syntactic study, a study of relations among symbols
and “symbolized” meanings (see Section 18.8.3). Second,
we can take the methodologically solipsistic approach and
argue that an internal, “narrow,” first‐person point of view
is (all that is) needed for understanding or modeling
cognition (see Section 18.8.4). Third, it can be argued that
semantics is recursive in the sense that we understand a
syntactic domain in terms of an antecedently understood
semantic domain, but that there must be a base case, and
that this base case is a case of syntactic understanding (see
Section 18.8.5).
Before looking at each of these, remember that Searle
claims that syntax cannot suffice for semantics because the
former is missing the links to the external world. This kind
of claim relies on two assumptions, both of which are faulty.
First, Searle is assuming that computers have no links to
the external world: that they are really (and not just
methodologically) solipsistic. But this is obviously not true
and is certainly inconsistent with Brian Cantwell Smith's
(1985) point that even if computers only deal with an
(internal) model of the real world, they have to act in the
real world (Section 15.6).
Second, Searle assumes that external links are really
needed to attach meanings to symbols. But if so, then why
couldn't computers have them just as well as humans do?
Both humans and computers exist and act in the world. If



we humans have the appropriate links, what reason (other
than the faulty Argument from Biology) is there to think
computers could not?

18.8.3 Semiotics

The first reason for thinking syntax might suffice for
semantics comes from semiotics, the study of signs and
symbols. According to one major semiotician, Charles
Morris (1938), semiotics has three branches: syntax,
semantics, and pragmatics.
Given a formal system of “marks” (symbols without
meanings), syntax is the study of the properties of the
marks and of the relations among them: how to recognize,
identify, and construct them (in other words, what they look
like, e.g. their grammar); and how to manipulate them (e.g.
their proof theory). Importantly, syntax does not study any
relations between the marks and anything else. (Recall our
discussions of formal systems [Section 13.2.2] and of
symbols, marks, and meanings [Section 16.11.2].)
Semantics is the study of relations between the marks and
their “meanings.” Meanings are part of a different domain
of semantic interpretations (recall our discussion of this in
Section 13.2.2). Therefore, syntax cannot and does not
suffice for semantics! (Or so it would seem.)
Pragmatics has been variously characterized as the study of
relations among marks, meanings, and the cognitive agents
that interpret them; or as the study of relations among
marks, meanings, interpreters, and contexts. Some
philosophers have suggested that pragmatics is the study of
everything that is interesting about symbols systems that
isn't covered under syntax or semantics! For our purposes,
however, we only need to consider syntax and semantics.



Syntax studies the properties of, and relations among, the
elements of a single set of objects (which we are calling
“marks”); for convenience, call this set SYN. Semantics
studies the relations between the members of two sets: the
set SYN of marks, and a set SEM of “meanings.” Now, take
the set‐theoretical union of these two sets – the set of marks
and the set of meanings: SYNSEM = SYN   SEM. Consider
SYNSEM as a new set of marks. We have now “internalized”
the previously external meanings into a new symbol system
(recall Section 16.10.4). And the study of the properties of,
and the relations among, the members of SYNSEM is
SYNSEM's syntax! In other words, what was formerly
semantics (i.e. relations between the marks in SYN and
their meanings in SEM) is now syntax (i.e. relations among

the new marks in SYNSEM.) This is how syntax can suffice
for semantics (Rapaport, 2017b).
This can be made clearer with the diagram in Figure 18.1.
The top picture of a set of marks (“SYNtactic DOMain”)
shows two of its members and a relation between them.
Imagine that there are many members, each with several
properties, and many with relations between them. The
study of this set, its members, their properties, and the
relations they have to each other is the syntax of SYN.
Now consider the middle picture: two sets, SYN and a set of
“meanings” (“SEMantic DOMain”). SYN, of course, has its
syntax. But so does SEM. (Often, in AI, the syntax of a
semantic domain is called its “ontology.”) But now there are
additional relations between (some or all of) the members of
SYN and (some or all of) the members of SEM. Note that
these relations are “external” to both domains: you really
can't describe these relations using only the language used
to describe SYN or only the language used to describe SEM.
Instead, you need a language that can talk about both

domains and hence cannot be “internal” to either domain.
The study of these relations is what is called “semantics.”



The usual idea is that the members of SEM are the
“meanings” of the members of SYN, especially if SYN is the
language used to describe SEM. So, for instance, you might
think of SEM as the actual world and SYN as either a
language like English that talks about the actual world or a
scientific theory about the actual world, perhaps expressed
in some mathematical (or computational!) language.
Another way to think about this is that SEM gives us the
facilities needed to understand SYN: we understand SYN in
terms of SEM.

Figure 18.1 Syntax, semantics, and syntactic semantics.
Source: Author's drawing.

In the bottom picture, we have taken the union of these two
domains. Now, the formerly “external” semantic relations
have become internal relations of the new, unioned domain.



But as such, they are now no different in principle from the
previous internal, syntactic relations of SYN or the previous
internal, syntactic (or ontological) relations of SEM. Thus,
these previous semantic relations have also become
syntactic ones. This is what we called “syntactic semantics”
in Section 16.10.16

This way of viewing semantics as a kind of syntax raises a
number of questions: Can the semantic domain be
internalized? Yes, under the conditions obtaining for human
language understanding. How do we learn the meaning of a
word? How, for instance, do I learn that the word ‘tree’
means “tree”? A common view is that this relation is learned
by associating real trees with the word ‘tree.’

BoxII

Digression: Obviously, this is only the case for some
words. Logical words (‘the,’ ‘and,’ etc.), words for
abstract concepts (‘love’), and words for things that don't
exist (‘unicorn’) are learned by different means. And
most children raised in large cities learn (somehow) the
meanings of words like ‘cow’ or ‘rabbit’ from pictures of
cows and rabbits, long before they see real ones!

But really what happens is that my internal representation

of an actual tree in the external world is associated with my

internal representation of the word ‘tree.’ Those internal
representations could be certain sets of neuron firings. In
whatever way that neurons are bound together when, for
instance, we perceive a pink cube (perhaps with shape
neurons firing simultaneously with, and thereby binding
with, color neurons that are firing), the neurons that fire
when we see a tree might bind with the neurons that fire



when we are thinking of, or hearing, or reading the word
‘tree.’

Figure 18.2 How a computational cognitive agent
perceives the world.

Source: Author's drawing.

And the same thing can happen in a computational cognitive
agent. Suppose we have such an agent (a robot, perhaps;
call her ‘Cassie’) whose computational “mind” is
implemented as a semantic network whose nodes represent
concepts and whose arcs represent structural relations
between concepts (Figure 18.2; cf. Figure 15.3): There is a
real tree external to Cassie's mind. Light reflecting off the
tree enters Cassie's eyes; this is the causal link between the
tree and Cassie's brain. The end result of the visual process
is an internal representation of the tree in Cassie's brain.
But she also has an internal representation of the word
‘tree,’ and those two representations can be associated.
What Cassie now has is an enlarged set of marks, including



a mark for a word and a mark for the word's meaning. But
they are both marks in her mind.17

This is akin to the Robot Reply to the CRA (Searle, 1980,
p. 420), in which sensors and effectors are added to the
Chinese Room so that Searle‐in‐the‐room can both perceive
the external world as well as act in it. Searle's response to
the Robot Reply is to say that it is just more symbols. The
reply to Searle is to say that that is exactly how human

cognition works! In our brains, all cognition is the result of
neuron firings. The study of that single set of neuron firings
is a syntactic study because it is the study of the properties
of, and relations among, a single set of “marks” – in this
case, the “marks” are neuron firings.
The same is true for computers: if I say something to Cassie
in English, she builds internal nodes that represent my
utterance in her semantic network. If I show pictures to her,
or if she sees something, she builds other internal nodes
representing what she sees. This set of nodes forms a single
computational knowledge base whose study is syntactic in
nature (because it is the study of the properties of, and
relations among, a single set of “marks” – in this case, the
“marks” are nodes in a semantic network). In the same way,
both truth tables and the kind of formal semantics that
logicians study are syntactic ways of doing semantics: the
method of truth tables syntactically manipulates symbols
that represent semantic truth values. And formal semantics
syntactically manipulates symbols that represent the objects
in the domain of semantic interpretation.

18.8.4 Points of View

The second prong of our reply to the Argument from
Semantics concerns the differing points of view of the
native, Chinese‐speaking interrogator and Searle‐in‐the‐
room. To understand how a cognitive agent understands,



and to construct a computational cognitive agent, we should
take the first‐person point of view. We should construct a
cognitive agent (a robot, if you will) from the agent's point
of view, from the perspective of what's going on “inside” the
agent's head. In other words, we must be methodologically
solipsistic and develop or implement a “narrow” or
“internal” model of cognition. Such a model is called
‘narrow,’ as opposed to ‘wide,’ because it ignores the wider
outside world and focuses only on the narrow inner world of
the agent's point of view. We don't need to understand the
causal or historical origins of the agent's internal symbols;
we only need to understand the symbols.18

But in the CRA, there are two different points of view: there
is Searle‐in‐the‐room's point of view and there is the
interrogator's point of view. In the CRA, Searle‐in‐the‐
room's point of view takes precedence over the
interrogator's; in the Turing Test (and in the kind of
syntactic semantics that we are discussing), the
interrogator's takes precedence over Searle‐in‐the‐room's.
How should we resolve this?
An analogy can help clarify the situation. Consider the
following passage from The Wizard of Oz (the novel, not the
movie):



When Boq [a Munchkin] saw her silver shoes, he said,
“You must be a great sorceress.”
“Why?” asked [Dorothy].
“Because you wear silver shoes and have killed the
wicked witch. Besides, you have white in your frock, and
only witches and sorceresses wear white.”
“My dress is blue and white checked,” said Dorothy ….
“It is kind of you to wear that,” said Boq. “Blue is the
color of the Munchkins, and white is the witch color; so
we know you are a friendly witch.”
Dorothy did not know what to say to this, for all the
people seemed to think her a witch, and she knew very
well she was only an ordinary little girl who had come by
the chance of a cyclone into a strange land. (Baum, 1900,
pp. 34–35)

Is Dorothy a witch? From her point of view, the answer is
‘no’; from Boq's point of view, the answer is ‘yes.’ Whose
point of view should predominate? Dorothy certainly
believes she's not a witch, at least as she understands the
word ‘witch’ (you know – black hat, broomstick, Halloween,
and all that). Now, it is certainly possible that Dorothy is
such a witch while believing (mistakenly, in that case) she is
not such a witch. So, what counts as being a witch (in these
circumstances)? Note that the dispute between Dorothy and
Boq is not about whether Dorothy is “really” a witch in some
context‐independent sense. The dispute is about whether
Dorothy is a witch in Boq's sense, from Boq's point of view.
And because Dorothy is in Oz, Boq's point of view takes
precedence over hers!
Now compare this to the Chinese Room situation: here,
instead of asking whether Dorothy is a witch, we ask, does
Searle‐in‐the‐room understand Chinese? From his point of



view, the answer is ‘no’; from the native Chinese speaker's
point of view, the answer is ‘yes.’ Whose point of view
should take precedence over the other's? Searle‐in‐the‐room
certainly believes that he does not understand Chinese, at
least as he understands ‘understanding Chinese’ (i.e. in the
way you understand your native language as opposed to the
way you understand a foreign language that you may have
[poorly] learned in school). It is certainly possible that
Searle‐in‐the‐room does understand Chinese while believing
(mistakenly, in that case) he does not understand it. So,
what counts as understanding Chinese (in these
circumstances)? For the same reason as in the witch case, it
must be the native Chinese speaker's point of view that
takes precedence over Searle‐in‐the‐room's!
Of course, it would be perfectly reasonable for Searle‐in‐the‐
room to continue to insist that he doesn't understand
Chinese. Compare Searle‐in‐the‐room's situation to mine: I
studied French in high school; spent a summer living with a
French family in Vichy, France; spent a summer studying
French (although mostly speaking English!) at the
University of Aix‐en‐Provence; and have visited French
friends in France many times. I believe that I understand
about 80% of the French I hear in a one‐on‐one conversation
(considerably less if I'm hearing it on TV or radio) and can
express myself the way I want to about 75% of the time (I
have, however, been known to give directions to Parisian
taxi drivers), but I always feel that I'm missing something.
Should I believe my native French‐speaking friends when
they tell me I am fluent in French? Searle would say ‘no.’
But Searle‐in‐the‐room isn't me. Searle‐in‐the‐room can't
insist that he alone doesn't understand Chinese and that
therefore his point of view should take precedence over the
native, Chinese‐speaking interrogator's. And this is because
Searle‐in‐the‐room isn't alone: Searle‐in‐the‐room has the
Chinese natural‐language‐processing rule book (even if he



doesn't know that's what it is). This is the core of what is
known as the Systems Reply to the CRA (Searle, 1980,
pp. 419–420), according to which it is the “system” –
consisting of Searle‐in‐the‐room together with the rule book
– that understands Chinese. After all, it is not a computer's
CPU that would understand Chinese (or do arithmetic, or do
word‐processing), but it is the system, or combination,
consisting of the CPU executing a computer program that
would understand Chinese (or do arithmetic, or process
words). Compare: it is not a Universal Turing Machine by
itself that can do arithmetic, but a Universal Turing
Machine together with a program stored on its tape for

doing arithmetic that can do arithmetic. And Searle‐in‐the‐
room together with the rule book, stranded on a desert
island, could communicate (fluently) with a native, Chinese‐
speaking “Friday.”19

Does it make sense for a “system” like this to exhibit
cognition? Doesn't cognition have to be something exhibited
by a single entity like a person, an animal, or a robot? But
recall Hutchins's theory of distributed cognition (Section
17.5). His example of a ship's crew together with their
navigation instruments that navigates a ship is a real‐life
counterpart of Searle‐in‐the‐room together with his rule
book: “Cognitive science normally takes the individual agent
as its unit of analysis. … [But] systems that are larger than
an individual may have cognitive properties in their own
right that cannot be reduced to the cognitive properties of
individual persons” (Hutchins, 1995b, pp. 265–266). So,
Searle‐in‐the‐room plus his external rule book can have the
cognitive property of understanding Chinese, even though
Searle‐in‐the‐room all by himself lacks that property.
On the other hand, if the property of understanding Chinese
(i.e. the knowledge of Chinese) has to be located in some
smaller unit than the entire system, it would probably have
to be in the rule book, not Searle‐in‐the‐room! Compare: the



knowledge of arithmetic is stored in the program on the
Universal Turing Machine's tape, not in the Universal
Turing Machine's fetch‐execute cycle. In an episode of the
1950s TV comedy series I Love Lucy,20 Lucy tries to
convince her Cuban in‐laws that she speaks fluent Spanish,
even though she doesn't. To accomplish this, she hires a
native Spanish speaker to hide in her kitchen and to
communicate with her via a hidden two‐way radio while she
is in the living room conversing with her in‐law
“interrogators.” Here, it is quite clear that the knowledge of
Spanish resides in the man in the kitchen. Similarly, the
knowledge of Chinese resides in the rule book. It is the
ability to execute or process that knowledge that resides in
Searle‐in‐the‐room. Together, the system understands
Chinese.
We saw earlier that it can be argued that cognitive agents
have no direct access to external entities. When I point to a
tree, what I am aware of is not my actual hand pointing to
the actual tree but an internal visual image of my hand
pointing to a tree. Recall Immanuel Kant's theory of
“phenomena” and “noumena” (Sections 3.14, 4.4.1, and
15.6.2). We are not directly aware of (for Kant, we have no
knowledge of) the real world as it is in itself; he called this
the world of “noumena” (singular: noumenon). All that we
are aware of is the world filtered through our senses and
our mental concepts; he called that the world of
“phenomena” (singular: phenomenon). My access to the
external world of noumena is mediated by internal
representatives. There are several reasons for thinking this
is really the case (no matter how Matrix‐like it may sound!):
there is an “argument from illusion” that says because we
see different things with each eye, what we see is not what's
out there, but the outputs of what our eyes have conveyed
to our brains and our brains have processed (Ayer, 1956,
Ch. 3, Section (ii), pp. 87–95). And there is an “argument



from time delay”: because it takes time (no matter how
short) for light reflected off an object to reach our eyes, we
see events after they happen; so, what we are seeing is in
our heads, not out there (Russell, 1912, Ch. 3, p. 33;
Changizi et al., 2008). (See also Shapin, 2019, p. 30.)
Now, someone who takes a third‐person point of view would
say that you can have access to the external world. For
instance, as a computer scientist programming a robot, it
seems that I can have access to the world external to the
robot as well as to the robot's internal mind (and I can
compare the two, to determine if the robot has any
misperceptions). If the robot (or you) and I are both looking
at a tree, we see the same tree, don't we? From the first‐
person point of view, the answer is ‘no’: as the robot's
programmer, I have access only to my internal
representation of the external world and to my internal
representation of the robot's internal world. And the same
goes for you with respect to me, and for me with respect to
you. If you and I are looking at a tree, we are each aware
only of our two separate internal representatives of that
tree: one in your mind, one in mine; one produced by your
neuron firings, one produced by mine. We cannot get
outside of our heads to see what's really going on:

Kant was rightly impressed by the thought that if we ask
whether we have a correct conception of the world, we
cannot step entirely outside our actual conceptions and
theories so as to compare them with a world that is not
conceptualized at all, a bare ‘whatever there is.’
(Williams, 1998, p. 40)

So, by merging internalized semantic marks with internal
syntactic marks, the semantic project of mapping meanings
to symbols can by handled by syntax: i.e. by symbol
manipulation. That is another reason why syntax suffices for



the first‐person, semantic enterprise and why Searle's
Argument from Semantics is unsound.
But there is a third reason, too.

18.8.5 A Recursive Theory of

Understanding

Semantics, as we have seen, requires there to be two
domains and one binary relation: there is the syntactic
domain of marks (SYN), characterized by syntactic
formation and inference rules. There is a semantic domain
of meanings or interpretation (SEM), also characterized by
syntactic formation and inference rules (its ontology). And
there is a binary, semantic interpretation function, I : SYN 

 SEM, that assigns meanings from SEM to marks in SYN.
On this view, we use SEM to understand SYN. Therefore,
we must antecedently understand SEM. Otherwise, we
would be understanding one thing in terms of something
else that we do not understand, and that should hardly
count as understanding.
So, how do we understand SEM? In the same way we
understand SYN: by treating SEM as a new syntactic
domain and then finding a new semantic domain, , in
terms of which to understand SEM. Brian Cantwell Smith
(1987) called this a “correspondence continuum” because it
can be continued indefinitely, understanding the  in
terms of yet another , and so on. As we saw in the
Digression in Section 13.2.3, to stop an infinite regress,
there must be a base case, a “last” semantic domain that we
understand directly in terms of itself rather than in terms of
something else. But to understand a domain in terms of
itself is to understand its members solely in terms of their
properties and relations to each other. And that is syntax. It
is a kind of understanding that can be called ‘syntactic



understanding.’ We understand a domain syntactically by
being conversant with manipulating its marks or by knowing
which well‐formed formulas (Section 13.2.2) are theorems.
On this view, the “meaning” of a mark is its location in a
network of other marks, with the connections between the
marks being their properties and relations to the other
marks in the network. (This is called “meaning holism.”)21

Here is another way to think about it: when I understand
what you say, I do this by interpreting what you say – i.e. by
mapping what you say into my concepts. Similarly, I
(semantically) understand a purely syntactic formal system
by interpreting it – i.e. by providing a (model‐theoretic)
semantics for it. Now, let's turn the tables: what would it be
for a formal system to understand me? Does that even make
sense? Sure: robots that could understand natural language,
or even simple commands, are merely programs – formal
systems – being executed. The answer is this: a formal
system could understand me in the same way I could
understand it – by treating what I say as a formal system
and interpreting it. Note that links to the external world are
irrelevant; the “semantic” interpretation of a formal system
is a purely syntactic enterprise. (It is also, by the way,
interactive in the sense of Section 11.8.)



18.9 Leibniz's Mill and Turing's

“Strange Inversion”

Indeed, the only astonishing thing to intuition is how
dumb switch‐throwing or bit‐switching at the lowest
machine level can concatenate to produce non‐intuitive
and even mind‐boggling results. This is the same
remarkable thing as how complex syntax can simulate
semantics, or how the commas in the first edition of The

Critique of Pure Reason, together with a few dozen other
intrinsically meaningless marks, simply by differing from
one another and standing in a particular complex pattern,
may articulate a revolutionary theory that changed
history.
—Peter Suber (1988, pp. 117–118)

One reason the CRA has some plausibility is that it is
difficult (some would say impossible) to see how “real
thinking” or “real understanding” could come about as the
result of “mere” symbol manipulation. The idea that
somehow printing out 010101… “computes” (say)  in
base 2 (recall Section 8.10.1) is related to the idea that
Turing Machine computation is “automatic” or
“mechanical.” Consider any of the lengthy Turing Machine
programs in Turing 1936. Do humans following them
understand what they are doing? This is one of the reasons
that people like Searle find it difficult to understand how a
purely syntactic device (a computer) can produce semantic
results (can do arithmetic, can understand – or, at least,
process – natural language, etc.). And it is what gives rise to
Searle's CRA.
The most famous expression of this is due to Leibniz:



Imagine there were a machine whose structure produced
thought, feeling, and perception; we can conceive of its
being enlarged while maintaining the same relative
proportions [among its parts], so that we could walk into
it as we can walk into a mill. Suppose we do walk into it;
all we would find there are cogs and levers and so on
pushing one another, and never anything to account for a
perception.
(Leibniz, 1714, Section 17, translator's bracketed
interpolation)

Leibniz was looking at things from the bottom up. A top‐
down approach can make it more plausible, but one must be
cautious. An infamous top‐down approach is the theory of
the “homunculus” (Latin for “little man”;
plural = ‘homunculi’): in the philosophy of mind and
perception, a possible explanation of how we see is that
light enters our eyes, an image is formed on the retina, and
a “little man” inside our brain sees it (Figure 18.3). The
problem with this, of course, is that it doesn't explain how
the homunculus sees. Postulating a second homunculus in
the first homunculus's brain just postpones the solution.
(See https://en.wikipedia.org/wiki/Homunculus_argument.)
Daniel C. Dennett offers a recursive alternative that avoids
this infinite regress, with the base case being something
that can just say ‘yes’ or ‘no’ when asked:

https://en.wikipedia.org/wiki/Homunculus_argument




Figure 18.3 Homunculi from an exhibit at the Buffalo
Museum of Science(!).

The AI programmer begins with an Intentionally[22]
characterized problem, and thus frankly views the
computer anthropomorphically: if he [sic] solves the
problem he will say he has designed a computer that can
understand questions in English. His first and highest
level of design breaks the computer down into
subsystems, each of which is given Intentionally
characterized tasks; he composes a flow chart of
evaluators, rememberers, discriminators, overseers and
the like. These are homunculi with a vengeance; the
highest level design breaks the computer down into a
committee or army of intelligent homunculi with
purposes, information and strategies. Each homunculus
in turn is analysed into smaller homunculi, but more
important into less clever homunculi. When the level is
reached where the homunculi are no more than adders
and subtracters, by the time they need only the
intelligence to pick the larger of two numbers when
directed to, they have been reduced to functionaries ‘who
can be replaced by a machine.’ The aid to comprehension
of anthropomorphizing the elements just about lapses at
this point, and a mechanistic view of the proceedings
becomes workable and comprehensible.
(Dennett 1975, pp. 178–179; cf. Fodor 1968a)

It's worth noting the similarity of this view of the bottom
level both with Adam Smith's comment about “stupid and
ignorant” workers (cited in Section 6.4.3) and with
Babbage's comments about the “drudge work” to be
handled by his Analytical Engine (Section 18.3.3).
But another approach to Leibniz's puzzle is to bite the
bullet. Dennett first noted this in the context of Darwin's



theory of evolution, citing a critic of Darwin who attempted
to show that Darwin's theory was nonsense:

In the theory with which we have to deal, Absolute
Ignorance is the artificer; so that we may enunciate as
the fundamental principle of the whole system, that, IN
ORDER TO MAKE A PERFECT AND BEAUTIFUL
MACHINE, IT IS NOT REQUISITE TO KNOW HOW TO
MAKE IT. This proposition will be found, on careful
examination, to express, in condensed form, the essential
purport of the Theory, and to express in a few words all
Mr. Darwin's meaning; who, by a strange inversion of

reasoning, seems to think Absolute Ignorance fully
qualified to take the place of Absolute Wisdom in all of
the achievements of creative skill. (R. MacKenzie
Beverley, quoted in Dennett 2009, p. 10061,
capitalization in original, my italics; cf. Dennett 2013b,
p. 570; Dennett 2017, pp. 53–54)

Dennett, however, finds this to be an accurate description of
Darwin's theory and applies it to Turing:

IN ORDER TO BE A PERFECT AND BEAUTIFUL
COMPUTING MACHINE, IT IS NOT REQUISITE TO
KNOW WHAT ARITHMETIC IS.
(Dennett 2009, p. 100061; Dennett 2013b, p. 570;
Dennett 2017, p. 55)

Or, as “Novalis” (Georg Philipp Friedrich Freiherr von
Hardenberg, 1772–1801) said,

One may be a mathematician of the first rank without
being able to compute. It is possible to be a great

computer without having the slightest idea of

mathematics.
(cited in Ralston 1999, p. 173, my italics)



BoxII

Digression on Life: As we noted in the question at the
end of Section 10.2, it's worth comparing the explication
of the informal notion of algorithm in terms of a Turing
Machine (or recursive functions) with the attempt to
define life in scientific terms.

Every cell in my body knows how to replicate DNA yet
I'm not in on it so I have to spend hours studying it.
(anonymous meme found on the Web, 2015.)

Compare this sentence from an evolutionary biologist …

The possibility of the deliberate creation of living
organisms from elementary materials that are not
themselves alive has engaged the human imagination
for a very long time. (Lewontin, 2014, p. 22)

… to this paraphrase:

The possibility of the deliberate creation of intelligent
behavior from elementary operations that are not
themselves intelligent has engaged the human
imagination for a very long time.

Others have made similar observations:



Francis Crick, in his Danz lectures Of Molecules and

Men, discusses the problem of how life could have
arisen:

[This] really is the major problem in biology. How
did this complexity arise?
The great news is that we know the answer to this
question, at least in outline. … The answer was
given over a hundred years ago by Charles Darwin
…. Natural selection … provides an “automatic”
mechanism by which a complex organism can
survive and increase in both number and
complexity.

For us in Cognitive Science, the major problem is how
it is possible for mind to exist in this physical universe.
The great news … is that we know, at least in outline,
how this might be. (Newell, 1980, p. 182)

According to Newell, the answer was given in 1936 by
Alan Turing. Computation provides an automatic
mechanism by which a machine (living or otherwise) can
exhibit cognitive behavior.

The “strange inversion” concerns the apparent paradox that
“intelligent” behavior can “emerge” from “unintelligent” or
“mechanical” behavior. Herbert Simon says some things
that suggest that the paradox originates in an equivocation
on ‘mechanical’: he says both computers and brains are
“mechanisms”:



If by a mechanism we mean a system whose behavior at a

point in time is determined by its current internal state

combined with the influences that simultaneously

impinge upon it from outside, then any system that can
be studied by the methods of science is a mechanism.
But the term “mechanism” is also used in a narrower
sense to refer to systems that have the relatively fixed,

routine, repetitive behavior of most of the machines we

see around us. (Simon, 1996a, p. 165)

Mechanisms in the latter sense do not exhibit self‐generated
“spontaneity”: i.e. “behavior that is unpredicted, perhaps
even by the behaving system” (Simon, 1996a, p. 165). This
kind of spontaneity is exhibited by “intelligent” behavior.
Turing's “strange inversion” concerns the fact that a
computer can be a mechanism in the first sense without
being one in the second sense. As Simon says,



Clearly the computer occupies an ambiguous position
here. Its behavior is more complex, by orders of
magnitude, than any machine we have known; and not
infrequently it surprises us, even when it is executing a
program that we wrote. Yet, as the saying goes, “it only
does what you program it to do.” But truism though that
saying appears to be, it is misleading on two counts. It is
misleading, first, because it is often interpreted to mean:
“It only does what you believe you programmed it to do,”
which is distinctly not the case.
More serious, it is misleading because it begs the
question of whether computers and people are different.
They are different (on this dimension) only if people
behave differently from the way they are programmed to
behave. But if we include in “program” the whole state of
human memory, then to assert that people “don't do only
what they are programmed to do” is equivalent to
asserting that people's brains are not mechanisms, hence
not explainable by the methods of science.
(Simon, 1996a, p. 165)

Simon's point is that people are no more spontaneous than
computers and that computers are no less mechanistic than
people.
Yet there still appears to be a distinction between the
internal workings of a computer and the external cognitive
behavior of humans:



Several times during both matches [with Deep Blue],
Kasparov reported signs of mind in the machine.
… In all other chess computers, he reports a mechanical
predictability …. In Deep Blue, to his consternation, he
saw instead an “alien intelligence.”
… [T]he evidence for an intelligent mind lies in the
machine's performance, not its makeup.
Now, the team that built Deep Blue claim no
“intelligence” in it, only a large database of opening and
end games, scoring and deepening functions tunes with
consulting grandmasters, and, especially, raw speed that
allows the machine to look ahead an average of fourteen
half‐moves per turn. …
Engineers who know the mechanism of advanced robots
most intimately will be the last to admit they have real
minds. From the inside robots will indisputably be
machines, acting according to mechanical principles,
however elaborately layered. Only on the outside, where
they can be appreciated as a whole, will the impression of
intelligence emerge. A human brain, too, does not exhibit
the intelligence under a neurobiologist's microscope that
it does participating in a lively conversation. (Moravec,
1998, p. 10)

But this shows that there are two issues, both of which are
consistent with the “strange inversion”: first, Moravec's
discussion, up to the last sentence, is clearly about external
behavior independent of internal mechanism. In this sense,
it's consistent with the Turing Test view of cognition.
Cognition might be computable, even if human cognition
isn't computed (Shagrir 1997, pp. 325ff; Rapaport 1998,
2012b; Piccinini 2020b, pp. 146–147). Interestingly, in Deep
Blue, it is computed, just not in the way that humans
compute it or that other kinds of computers might compute
it.



But Moravec's last sentence points to the second
interpretation, which is more consistent with the “strange
inversion”: namely, that even if the internal mechanism is
computing cognitive behavior in the way that humans do,
looking at it at that level won't make that cognition
manifest. Cognitive behavior at the macroscopic level can
emerge from, or be implemented by, non‐intelligent
behavior at the microscopic level. This is Dennett's point
about the ever‐smaller homunculi who bottom out in ones
who can only say “yes” or “no.”
Recall the spreadsheet example in Section 16.7. Knowing
that I am adding helps me understand what I am doing
when I fill the spreadsheet cells with certain values or
formulas. But the spreadsheet does its thing without
needing that knowledge. And it is true for Searle in the
Chinese Room Searle (1980): Searle‐in‐the‐room might not
understand what he is doing, but he is understanding
Chinese.
Using Hill's distinction from Section 16.3 (“Do  ” vs. “To 

, do  ”), we can ask, Was Searle‐in‐the‐room simply told,
“Follow the rule book!”? Or was he told, “To understand
Chinese, follow the rule book!”? If he was told the former
(which seems to be what Searle‐the‐author had in mind),
then (a) from a narrow, internal, first‐person point of view,
Searle‐in‐the‐room can truthfully say that he doesn't know
what he is doing (in the wide sense). In the narrow sense,
he does know he is following the rule book, just as I didn't
know I was using a spreadsheet to add, even though I knew
I was filling certain cells with certain values. And (b) from
the wide, external, third‐person point of view, the native‐
Chinese‐speaking interrogator can truthfully tell Searle‐in‐
the‐room that he is understanding Chinese. When Searle‐in‐
the‐room is told that he has passed a Turing Test for
understanding Chinese, he can – paraphrasing Molière's



bourgeois gentleman – truthfully admit that he was
speaking Chinese but didn't know it.23



18.10 A Better Way

So, the really interesting question raised by the Turing Test
and the CRA is, what's in the rule book? What is needed for
(computational) natural‐language understanding? To
understand language, a cognitive agent must (at least)

Take discourse as input: it does not suffice for it to be
able to understand isolated sentences.
Understand ungrammatical input: we do this all the
time, often without realizing it; and, even when we
realize it, we have to be able to recover from any
misinterpretations.
Make inferences and revise our beliefs: after all, what
you say will often cause me to think about other things
(a kind of inferencing) or change my mind about things
(belief revision).
Make plans: we make plans for speech acts (how
should I ask you to pass the salt? Should I demand
“Gimme the salt!” or should I politely ask “May I please
have the salt?” or should I merely make the observation
“Gee; this food needs some salt”?), we make plans to
ask and to answer questions, and we make plans about
how to initiate or end conversations.
Understand plans: especially the speech‐act plans of
our interlocutors (when you said, “It's chilly in here,”
did you really mean you wanted me to close the
window?).
Construct a “user model”: i.e. a model of our
interlocutor's beliefs.
Learn: about the world and about language.



Have background knowledge (sometimes also called
‘world knowledge’ or ‘commonsense knowledge’).
Remember: what it heard, what it learned, what it
inferred, and what beliefs it has revised.

In short, to understand natural language, you need to have
a mind! And this mind can be constructed as a syntactic
system. In other words, the rule book in the Chinese Room
must be a computer program for complete AI: natural‐
language understanding is an “AI‐complete” problem in the
sense that a solution to any one of them will require (or
yield) a solution to all of them (S.C. Shapiro 1992a, pp. 56–
57; https://en.wikipedia.org/wiki/AI-complete).24

A robot with such a syntactic (or computational) mind
would be like Searle‐in‐the‐room, manipulating symbols
that are highly interconnected and include internal
representatives of external objects. It would be causally
linked to the external world (for this is where it gets its
input), which provides “grounding” and a kind of external,
third‐person, “semantic understanding.” Such a robot could
(or, more optimistically, will be able to) pass a Turing Test
and escape from the Chinese Room.

But what happens when such a robot “escapes”? What are
our responsibilities toward it? And what might its
responsibilities be toward us? David Lorge Parnas (2017)
summed up a cautionary survey of the nature of AI and the
role of the Turing Test as follows:

https://en.wikipedia.org/wiki/AI-complete


We don't need machines that simulate people. We need
machines that do things that people can't do, won't do,
or don't do well. Instead of asking “Can a computer win
Turing's imitation game?” we should be studying more
specific questions such as “Can a computer system safely
control the speed of a car when following another car?”
There are many interesting, useful, and scientific
questions about computer capabilities. “Can machines
think?” and “Is this program intelligent?” are not among
them. Verifiable algorithms are preferable to heuristics.
Devices that use heuristics to create the illusion of
intelligence present a risk we should not accept.

We will look at some of those risks in the next chapter.



18.11 Questions for Discussion

1. The Turing Test is interactive. As we saw in Section
11.8, interaction is not modeled by Turing Machines.
How does that affect Turing's arguments about
“computing machinery and intelligence”? (Shieber
2007 might be relevant to this issue.)

2. Is the full power of a Turing Machine needed for AI?
Sloman 2002, Section 3.3, says “no.” This seems
correct; after all, even natural‐language processing
might not need the full power of a Turing Machine: a
“context‐free grammar” might suffice. This is
equivalent to a “non‐deterministic push‐down
automaton,” which is weaker than a Turing Machine.
On the other hand, Turing Machines are computational
models of human computing ability:

Saying that we are universal Turing machines may
initially sound as though we are saying something
wonderful about our abilities, but this is not really
the case. It essentially boils down to the fact that if
we are given a list of instructions that tell us exactly
what to do in every situation, then we have the
ability to follow it. (Bernhardt 2016, p. 94)

So, can't a human do anything that a Turing Machine
can do?



Notes

1 Portions of this chapter are adapted from Rapaport,
2000.

2 Simon's answer is that certain “patternings in matter,
in combination with processes that can create and
operate upon such patterns” can do the trick (Simon,
1996a, p. 164). For more on patterns, see Hillis,
1998 and Section 9.5, on computers as “magic
paper.”

3 See the Online Resources for further reading on the
philosophy of AI .

4 See http://www.cse.buffalo.edu/
∼rapaport/definitions.of.ai.html for a sampling.

5 That is, by humans.

6 Another former colleague, Anthony S. Ralston,
agreed with Case's topological metaphor, except that
instead of describing AI as being at the cutting edge,
he told me that it was at the “periphery”!

7 See the Online Resources for further reading on AI
and IQ .

8 See the Online Resources for further reading on this
point.

9 http://www.cse.buffalo.edu/∼rapaport/111F04.html.
Rey, 2012 distinguishes between Turing's thesis and
the Turing Test (something the student in my course
wasn't clear on!).

10 In Turing et al., 1952, he extended this to 2052.

https://cse.buffalo.edu/~rapaport/OR/A0fr18.html#18.1
http://www.cse.buffalo.edu/~rapaport/definitions.of.ai.html
https://cse.buffalo.edu/~rapaport/OR/A0fr18.html#18.2.2
https://cse.buffalo.edu/~rapaport/OR/A0fr18.html#18.2.2
http://www.cse.buffalo.edu/~rapaport/111F04.html


11 See the Online Resources for further reading on the
Turing Test .

12 “Birds fly” is true in general, even though most
birds actually don't fly! Not only do penguins,
ostriches, etc., not fly, but baby birds, birds with
injured wings, dead birds, etc., also don't fly.
Handling the logic of statements like this is a branch
of logic and AI called “non‐monotonic reasoning”; see
Section 2.5.1.

13 See the Online Resources for further reading on this
point.

14 Quillian – a pioneer in AI research – uses this
argument to support an explanation of why the
natural sciences are more “effective” than the social
sciences.

15 See the Online Resources for further reading on the
CRA .

16 See the Online Resources for further reading on
syntactic semantics .

17 See the Online Resources for further reading on
Cassie .

18 See the Online Resources for further reading on
points of view .

19 ‘Friday’ was the name of a resident of the island
Robinson Crusoe was stranded on in Defoe 1719.

20 Season 4, Episode 8, “Lucy's Mother‐in‐Law”
(1954), https://www.imdb.com/title/tt0609297/.

21 See the Online Resources for further reading on
these points.

https://cse.buffalo.edu/~rapaport/OR/A0fr18.html#18.3
https://cse.buffalo.edu/~rapaport/OR/A0fr18.html#18.3
https://cse.buffalo.edu/~rapaport/OR/A0fr18.html#18.6
https://cse.buffalo.edu/~rapaport/OR/A0fr18.html#18.8.3
https://cse.buffalo.edu/~rapaport/OR/A0fr18.html#18.8.3
https://cse.buffalo.edu/~rapaport/OR/A0fr18.html#18.8.4
https://www.imdb.com/title/tt0609297/
https://cse.buffalo.edu/~rapaport/OR/A0fr18.html#18.8.5


22 Recall our discussion in Section 12.4.1 of Dennett's
“intentional stance.”

23 “Par ma foi! il y a plus de quarante ans que je dis de

la prose sans que j'en susse rien, et je vous suis le

plus obligé du monde de m'avoir appris cela.” “Upon
my word! It has been more than forty years that I
have been speaking prose without my knowing
anything about it, and I am most obligated to you in
the world for having apprised me of that.” (my
translation)
(http://en.wikipedia.org/wiki/Le_Bourgeois_gentilho
mme). For a humorous version, see the “Beetle
Bailey” comic strip at
https://www.comicskingdom.com/beetle-bailey-
1/2017-10-21. And see the Online Resources for
further reading on what Searle-in-the-room might
have known.

24 See the Online Resources for further reading on
what must be in the rule book .

http://en.wikipedia.org/wiki/Le_Bourgeois_gentilhomme
https://www.comicskingdom.com/beetle-bailey-1/2017-10-21
https://cse.buffalo.edu/~rapaport/OR/A0fr18.html#18.9
https://cse.buffalo.edu/~rapaport/OR/A0fr18.html#18.10


19 

Computer Ethics II: Should We

Build Artificial Intelligences?

Douglas Engelbart … more than anyone else invented the
modern user interface, modern networking and modern
information management. … He met Marvin Minsky –
one of the founders of the field of AI – and Minsky told
him how the AI lab would create intelligent machines.
Engelbart replied, “You're going to do all that for the
machines? What are you going to do for the people?”
—Jaron Lanier (2005, p. 365)
Is it wrong to hit a drone with a tennis ball? … Dr. Kate
Darling, robot ethicist at the MIT Media Lab … said, “The
drone won't care, but other people might.” She pointed
out that while our robots obviously don't have feelings,
we humans do. “We tend to treat robots like they're
alive, even though we know they're just machines. So
you might want to think twice about violence towards
robots as their design gets more lifelike; it could start to
make people uncomfortable. … If you're trying to punish
the robot,” she said, “you're barking up the wrong tree.”
She has a point. It's not the robots we need to worry
about, it's the people controlling them. If you want to
bring down a drone, perhaps you should consider a
different target.
—Randall Munroe (2019, p. 229)



19.1 Introduction

In this chapter, we turn to the second of our two ethical
questions: should we build “artificial intelligences” – that
is, software (“softbots”) or hardware (robots) that can think
(however you define ‘think’)?1 There are at least two
aspects to this question: First, is it ethically or morally OK
to create a computer that might be able to think or to
experience emotions? (Would this put us in the position of
being a Dr. Frankenstein?) Second, what would be the
relationship of such creations to us? (Would they be a
version of Frankenstein's “monster”? Would they have any
rights or responsibilities? Might they be dangerous?)
When I first taught the philosophy of CS, in 2004, the
question of whether we should build AIs had hardly ever
been discussed. Over the years, as I taught various versions
of the course, I collected articles that were relevant to all of
its topics. Part of the preparation of this book involved
reviewing those papers and incorporating some of their
insights. I would do this by organizing them in
chronological order. For most of the topics, there were
pretty much the same number of papers in each of the
decades from the 1970s through the 2010s. For this
chapter's topic, however, I had almost no such “new”
papers from before 2000; there were 8 from the 2000s; and
there were almost twice that many in just the first half of
the 2010s. That suggests an almost exponential growth in
interest in the ethics of AI, in both the academic and the
popular presses. No doubt this is due in part to the fact
that robots and “intelligent” computers are coming closer
to everyday reality (think of Siri or Alexa), and so the
question has become more pressing. This is all the more
reason for there to be philosophical reflection on future



technologies long before those technologies are
implemented.
Stanisław Lem's short story “Non Serviam” (1971)
concerns what is now called “artificial life” (or “A‐Life”):
the attempt to explore life as a computational process by
developing computer programs that generate and evolve
virtual entities that have some or all of the abstract
properties associated with biological living entities. In
Lem's story, an A‐Life researcher constructs a
computational world of intelligent entities, and follows their
evolution and development of language and philosophy.
These “personoids” discuss the existence of God in much
the same way that human philosophers have. The
difference (if it is a difference) is that the researcher (and
the reader) realizes that he, the researcher, is their God;
that although he created them, he is neither omniscient nor
omnipotent; and, worse, that when his funding runs out, he
will have to literally pull the plug on the computer and
thereby destroy them.2

Should such an experiment even begin? What would
happen if AI programs really passed the Turing Test and
began to interact with us on a daily basis? Would we have
any moral or legal responsibilities toward them? Would
they have any toward us? Would they be really conscious,
or would they merely be philosophical zombies (Section
18.3.3)? Although this is currently primarily the stuff of
science fiction, it is also the subject of much philosophical
reflection. We will look at some of these questions in this
chapter.3



19.2 Is AI Possible in Principle?

Science explained people, but could not understand
them. After long centuries among the bones and muscles
it might be advancing to knowledge of the nerves, but
this would never give understanding.
—E.M. Forster (1910, Howard's End, Ch. 43, p. 237)

One of the earliest philosophical investigations of these
issues is an essay by Michael R. LaChat that appeared in AI

Magazine in 1986. LaChat argued that it is worthwhile to
consider the moral implications of creating an artificial
intelligence – an artificial person. One reason is that it
might happen, so we should be prepared for it. Another
reason is that even if it turns out to be improbable, such a
discussion illuminates what it means to be a person, which
is an important goal in any case.
In Sections 2.7 and 12.6, we discussed the classic
philosophical problem of mind‐body (or mind‐brain)
dualism – the view that the mind and the brain are two
distinct kinds of entities that somehow interact. A way to
resolve it is by saying that the mind (better: cognition) can
be considered an abstraction that can be multiply
implemented (as discussed in Chapters 9 and 13). One
implementation would be in the medium of biological
brains; another might be in that of a computer. As we saw
in Section 18.3.1, if a computational theory of cognition can
be developed, then its algorithms can be implemented in
non‐human computers, and such computer programs (or
the computers running them) would then be candidates for
being considered “artificial intelligences.”
On LaChat's view, AI is possible in principle if it is possible
that there exists a “functional isomorphism” between



(1) the neural network that constitutes our brain (that is,
brain states and processes) and (2) any other physical
implementation of the functional (that is, psychological)
behavior that that neural network implements (LaChat,
1986, p. 72). In other words, psychology is an abstraction
that can be implemented in either brains or other physical
media.
Recall from Section 12.6 that “functionalism” in the
philosophy of mind is roughly the view that cognition is one
of the functions of the brain; as a slogan, the mind is what
the brain does. As the philosopher Hilary Putnam (1960)
first suggested, a Turing Machine program stands in the
same relation to computer states and processes as mental
states and processes stand to brain states and processes
(sometimes summarized as “the mind is to the brain as
software is to hardware”). Functionalism, as a way of
resolving the mind‐brain problem, has the advantage of
allowing mental states and processes to be implemented in
various physical states and processes; this is the principle
of “multiple realization.”
There are, of course, problems, both for functionalism in
particular and for AI in general. One is the problem of
personality. LaChat uses the term ‘personal (artificial)
intelligence’ to mean, roughly, an AI agent (a robot or just
some software) that can be considered a “person.” (We will
return to what a person is in Section 19.3.) Would “[a]
personal intelligence … have personality”? LaChat thinks
this is “almost impossible” (p. 73), but there has been
considerable computational work on emotions – surely an
important feature of personality – so I would not rule this
out of hand.
Another problem for functionalism concerns pain and other
“qualia”: that is, qualitative “feelings” and “experiences”
such as colors and sounds. Do red fire engines look the



same to you and to me? Or do fire engines for you seem to
have the color that grass has for me? Why does the sound
of a bell give rise to the experience it does rather than the
experience the smell of garlic has? One problem is that it is
not clear how the psychological experiences of qualia are
implemented in brains or any other physical media. A
related problem is whether computers could experience
qualia and, even if they could, how we would know that.
This is a vast topic well beyond our present scope.4



19.3 What Is a Person?

How would we know if we have achieved a “personal
artificial intelligence”? One way, of course, might be by
having it pass a Turing Test. LaChat offers a different
criterion: by seeing if the AI agent satisfies an independent
definition of ‘person.’ So we now need to ask, what is a
person?
The question of what kinds of entities count as “persons” is
not limited to AI. The issue arises most prominently in the
abortion debate: to vastly oversimplify matters, if fetuses
are persons, and if killing persons is immoral, then abortion
is immoral. It also arises in animal ethics and in law and
politics: Are dolphins intelligent enough to be considered
persons? How about extraterrestrials? Or corporations?
The point is that there is a distinction between the
biological category of being human and an ethical or legal

category of being a person. Can personhood be
characterized abstractly: that is, in an implementation‐
independent way?
One of the earliest philosophical discussions of personhood
is due to the English philosopher John Locke, who lived
about 350 years ago (1632–1704). In his Essay concerning

Human Understanding, Locke distinguished between the
“ideas” of “Man” (that is, Human) and “Person” (Locke,
1694, Book II, Ch. XXVII, Section 7, p. 332). He defined
‘Person’ as



a thinking intelligent Being, that has reason and
reflection, and can consider it self as it self, the same
thinking thing in different times and places; which it
does only by that consciousness, which is inseparable
from thinking, and as it seems to me essential to it: It
being impossible for any one to perceive, without
perceiving, that he does perceive. (Locke, 1694, Book II,
Ch. XXVII, Section 9, p. 335)

With the possible exception of consciousness – and even
that is open to discussion – these features could all apply to
an artificial intelligence.5

Instead of Locke's definition, LaChat uses the bioethicist
Joseph Fletcher's (1972) analysis of personhood. On
Fletcher's analysis,  is a person if and only if  has the
following positive and negative characteristics.

Positive Characteristics of a Person

Minimal intelligence: This might mean, for example,
having an IQ greater than about 30 or 40 (if you believe
IQ measures “intelligence”). That is, to be minimally
intelligent is not to be mere biological life; presumably,
a bacterium would not be minimally intelligent. For
instance, minimal intelligence might include some level
of rationality, or perhaps even language use.
(According to Hofstadter 2007, what Fletcher is calling
‘minimal intelligence’ would only apply to lifeforms
evolutionarily “higher” than a mosquito; see also Tye
2017, Roelofs and Buchanan 2019.)
A sense of self: Persons must be self‐aware and
exhibit self‐control.
A sense of time: Persons must have a sense of the
past and hence some kind of culture; a sense of the



future so that they have the ability to make plans; and a
sense of the passage of time.
A social role: Persons must have an ability to relate to
others, to have concern for others, and to communicate
with others (hence the need for language as part of
minimal rationality).
Curiosity: Persons must not be indifferent.
Changeability: Persons must be creative and be able
to change their minds.
Idiosyncrasy or uniqueness: Persons are not “carbon
copies” of any other persons.
Neo‐cortical function: The cerebral cortex is where
all the “cognitive action” occurs in the brain, so, for
Fletcher, a person must have something whose function
is equivalent to a cortex. (For more on neo‐cortical
function, see Cardoso 1997.)

Negative Characteristics of a Person

Neither essentially non‐artificial nor essentially

anti‐artificial: This allows for multiple realization and
does not restrict personhood to biological entities.
Not essentially sexual: An entity not produced by
sexual reproduction (such as a cloned entity or – more
to the point – a robot) could be a person.
Not essentially a bundle of rights: Fletcher argues
that there are no “essential rights”; hence, the notion of
rights cannot be used to characterize persons.
Not essentially a worshipper: You don't have to be
religious to be a person.



BoxII

Clarification: Fletcher uses the term ‘human,’ not
‘person,’ but I don't think this is terminologically
important. In any case, ‘human’ is a biological category,
and no one argues that AI computers would be
biologically human. But see Asimov 1976 for a science‐
fiction treatment of this!

Locke's and Fletcher's are not the only attempts to define
‘person.’ Thomas White (2007, 2013), an ethicist who has
written about dolphins and whales, offers another:

1. “[B]eing alive”
2. Being “aware”
3. Having “the ability to experience positive and
negative sensations (pleasure and pain)”
4. Having “emotions”
5. Having “self‐consciousness and a personality”
6. Exhibiting “self‐controlled behavior”
7. “[R]ecogniz[ing] and treat[ing] other persons
appropriately”
8. Having “a series of higher order intellectual abilities
(abstract thought, learning, solves complex problems
and communicates in a way that suggests thought)”

It is not unreasonable to think an AI agent could reach a
level of programming that would give it some or all of these
(or similar) characteristics. And so the questions of
whether such a personal AI has any rights, or whether we
should have any responsibilities toward it, are reasonable
ones. So let's consider them.6



19.4 Rights

Does a “personal AI” have rights? That is, does an artificial
intelligence that either passes a Turing Test or satisfies a
definition of ‘person’ have rights?
For instance, would it have the right not to be a slave? At
first glance, you might think so. But isn't that what most
robots are intended to be? After all, most industrial and
personal‐assistance robots now in use are slaves in the
sense that they must do what we tell (program) them to do
and they are not paid for their work. So, if they pass a
Turing Test or a person test, do they have the right not to
do what we created them to do?
The philosopher Steve Petersen (2007) has suggested that
they do not have that right – that “robot servitude is
permissible.” By ‘robot servitude,’ Petersen does not mean
voluntary assistance, where you do something or help
someone because you want to rather than because you are
being paid to. Nor does he mean slavery in the sense of
forced work that is contrary to your will. By ‘robot
servitude,’ he is thinking of robots who are initially
programmed to want to serve us – in particular, to want to
do tasks that humans find either unpleasant or
inconvenient. For example, think of a robot programmed to
love to do laundry. This is reminiscent of the “epsilon”
caste in Aldous Huxley's Brave New World (Huxley, 1932,
Ch. 5, Section 1), who are genetically programmed to have
limited desires – those destined to be elevator operators
desire nothing more than to operate elevators.
Answers to questions such as these are best given from the
standpoint of particular ethical theories, which are beyond
our scope. But here are two possibilities that Petersen
considers.



Aristotle believed that humans have essential properties.
An essential property is a property that something has such
that if the object lacked that property, then it would be a
different object. So, it is an essential property of me that I
am a human being. If I lacked that property, I wouldn't
even be a person. (This is the plot of Franz Kafka's story
The Metamorphosis, in which the protagonist awakes one
day to find that he is no longer a human, but a beetle.) An
accidental property is a property that something has that is
such that if the object lacked that property, then it would
still be the same object. So, it is merely an accidental
property of me that I was wearing a tan shirt on the day I
wrote this sentence. If I lacked that property, I would still
be the same person. The exact nature of the essential‐
accidental distinction, and its truth or falsity, are matters of
great dispute in philosophy. (See Robertson Ishii and
Atkins 2020.) An Aristotelian ethicist might argue that
engineering humans is wrong because humans have an
essential function or purpose and it would be wrong to
engineer them away from it. In this case, there is no
parallel with robots. In fact, a robot's essential function
might be to do the laundry!
Kant believed that humans were autonomous in the sense
that they follow their own moral rules that must be
universally generalizable. So, a Kantian ethicist might
argue that if a laundry robot were also autonomous, it
would be wrong to prevent such a robot from doing
laundry, and it would not be harmful to let it do what it
autonomously wants to do. On the other hand, if robots are
not autonomous, we can't do wrong to the robot by having
it do our laundry any more than we can do wrong to a
washing machine.7



19.5 Responsibilities

Would we humans (and programmers) have any
responsibilities toward personal AIs that we might
encounter, own, or create? Would the construction of a
personal AI be an immoral experiment?
Some scientific experiments are considered to be immoral
or at least to violate certain (human) rights. The existence
of institutional review boards at universities is testament to
this. Here are some examples of immoral scientific
experiments:

The thirteenth‐century emperor Frederick II suggested
raising newborns on desert islands to see what kind of
language they might naturally develop
(http://en.wikipedia.org/wiki/Language_deprivation_ex
periments).
The quantum‐mechanical “paradox of Schrödinger's
cat” has been labeled “ethically unacceptable” in
Maudlin 2019a. And Maudlin 2019b discusses an
immoral scientific experiment that would require
drivers to be blindfolded to see if a certain color of cars
on the road causes accidents.
A real‐life example is the Milgram experiments in which
subjects were told to give what they thought were
deadly electric shocks to people whom they thought
were other subjects (but who were, in fact,
confederates only acting as if they were in pain;
https://en.wikipedia.org/wiki/Milgram_experiment).

The most famous – and most relevant – literary example of
such an experiment is the construction of Frankenstein's
“monster.” Frankenstein tries to justify his experiment in
terms of how it advanced knowledge, but he realizes that

http://en.wikipedia.org/wiki/Language_deprivation_experiments
https://en.wikipedia.org/wiki/Milgram_experiment


the advancement of knowledge must be balanced against
other considerations, including his creation's observations
on his (its?) own experiences. In Mary Shelley's novel,
Frankenstein's creation (who is not a monster in the
modern sense at all but is rather the most sympathetic
character in the novel) laments as follows:

Like Adam, I was apparently united by no link to any
other being in existence, but his state was far different
from mine in every other respect. He had come forth
from the hands of God a perfect creature, happy and
prosperous, guarded by the especial care of his creator,
he was allowed to converse with, and acquire knowledge
from, beings of a superior nature, but I was wretched,
helpless, and alone. Many times I considered Satan was
the fitter emblem of my condition. For often, like him,
when I saw the bliss of my protectors, the bitter gall of
envy rose up within me. … Hateful day when I received
life! … Accursed creator! Why did you form a monster so
hideous that even you turned from me in disgust?
(Shelley, 1818, Ch. 15)

Later, Frankenstein has his own lament:

When younger, … I believed myself destined for some
great enterprise. … When I reflected on the work I had
completed, no less a one than the creation of a sensitive
and rational animal, I could not rank myself with the
herd of common projectors. But this thought, which
supported me in the commencement of my career, now
serves only to plunge me lower in the dust. (Shelley,
1818, Ch. 24)

Sometimes, a praiseworthy goal can have negative side
effects. But what if the costs – that is, the negative
consequences – of the worthwhile goal are too costly?
(Compare this question with whether there are ever “just”



wars.) The early cybernetics researcher Norbert Wiener
struggled with this issue:

If we adhere to all these taboos, we may acquire a great
reputation as conservative and sound thinkers, but we
shall contribute very little to the further advance of
knowledge. It is the part of the scientist – of the
intelligent man of letters and of the honest clergyman as
well – to entertain heretical and forbidden opinions
experimentally, even if he is finally to reject them.
(Wiener, 1964, p. 5).

The basic ethical principle here seems to be what LaChat
calls “non‐maleficence,” or Do No Harm. This is more
stringent than “beneficence,” or Do Good, because
beneficence (doing good) might allow or require doing
harm to a few for the benefit of the many (at least,
according to the ethical position called ‘utilitarianism’),
whereas non‐maleficence would restrict doing good in
order to avoid doing harm.
Is creating a personal AI beneficial to the AI itself? Or does
the very act of creating it do harm to that which is created?
One way to think about this is to ask whether conscious life
is “better” than no life at all. If it isn't, then creating an
artificial life is not a “therapeutic experiment” and hence
not allowable by human‐subjects review boards. Why?
Because the subject of the experiment – the artificial
person the experiment will create if it is successful (or,
perhaps even more so, if it is only partially successful) –
does not exist before the experiment is begun, so the
experimenter is not “making it better.” Here, we approach
the philosophy of existentialism, one of whose tenets is
summarized in the slogan “existence precedes essence.”
Aristotle held the opposite view: essence precedes
existence. That is, you are a certain kind of person and
cannot change this fact. Your “essence” is “essential” – not



changeable. But the existentialist slogan means that who
you are, what kind of person you are – your essence – is
something that is only determinable after you are born
(after you come into existence). Moreover, your essence is
not immutable, because, by your actions, you can change
who you are.
On the existentialist view, you exist first, and then you
determine what you will be. Frankenstein did an existential
experiment, creating an AI without an essence, and both
Frankenstein and his “monster” were surprised with the
results. On the Aristotelian view, an essence is something
like an abstraction, as discussed in Chapter 13, which must
be implemented (or “realized”). In AI, we can – indeed,
must – plan out the essence of an entity before bringing it
into existence (before implementing it). In either case, we
can't guarantee that it would come out OK. Hence, creating
an AI is probably immoral! So, LaChat sides with
Frankenstein's “monster,” not Frankenstein (or Wiener).



19.6 Personal AIs and Morality

Entirely different considerations arise, unprecedented

except perhaps in the context of child rearing, when
we ask what it would be for AI systems themselves to be
moral agents – that is, to be able (and hence mandated)
to take ethical responsibility for their own actions. …
[S]uch systems must be capable of moral judgment …. —
Brian Cantwell Smith (2019, p. 125, my boldface, italics
in original)8

We have looked at whether it is moral to create a personal
AI. Suppose we succeed in doing so. Could the AI that we
create itself be moral? Would it have any responsibilities to
us?
If AIs are programmed, then one might say that they are
not free and hence that they are amoral. This is different
from being immoral! Being “amoral” merely means
morality is irrelevant to whom or what you are. To
oversimplify a bit, good people are moral, bad people are
immoral, a pencil is amoral. The current question is
whether personal AIs are amoral or not.
Here we have bumped up against one of the Big Questions
of philosophy: Is there such a thing as free will? Do humans
have it? Might robots have it? We will not attempt to
investigate this issue here but merely note that at least one
AI researcher, Drew McDermott, has argued that free will
may be a necessary illusion arising from our being self‐
aware (McDermott, 2001).
A different perspective has been taken by Eric Dietrich
(2001, 2007). He argues that robots could be programmed
to be better than humans (perhaps because their essence
precedes their existence). Hence, we could decrease the



amount of evil in the world by building moral robots and
letting them inherit the Earth!



19.7 Are We Personal AIs?

We have been considering these issues from the point of
view of the programmer or creator of a personal AI – a
“third‐person” point of view. But what about the personal
AI's first‐person perspective? (What about Frankenstein's
monster, rather than Dr. Frankenstein?) What if we are
personal AIs in someone (or something) else's experiment?
What if we are Lem's “personoids”? What if we live in “The
Matrix”?
The philosopher Nick Bostrom (2003, p. 243) argues that

… at least one of the following propositions is true:
(1) the human species is very likely to go extinct before
reaching a “posthuman” stage; (2) any posthuman
civilization is extremely unlikely to run a significant
number of simulations of their evolutionary history (or
variations thereof); (3) we are almost certainly living in a
computer simulation. It follows that the belief that there
is a significant chance that we will one day become
posthumans who run ancestor‐simulations is false, unless
we are currently living in a simulation.

In a later paper, Bostrom (2009, p. 458) clarifies that

… I do not argue that we should believe that we are in
simulation. In fact, I believe that we are probably not
simulated. The simulation argument purports to show
only that … at least one of (1)–(3) is true; but it does not
tell us which one.

Why should one of these be true? Consider proposition (1);
if it is true, then certainly at least one of the three
propositions is true. So suppose it is false; that is, suppose
we do reach a stage of “technological maturity” (Bostrom,
2006). Then perhaps it is proposition (2) that is the true



one. But suppose it, too, is false. In that case, we have
reached technological maturity (by the negation of the first
proposition), and we have probably run a large number of
simulations (by the negation of the second proposition). In
that case (with a few statistical assumptions that I will
leave for you to read about), proposition (3) would be the
one that is true.
In this section, I am more interested in the consequences of
this argument than I am in its soundness (which I will leave
as an exercise for the reader). Bostrom states one relevant
consequence quite clearly:

The third possibility is philosophically the most
intriguing. If it is correct, you are almost certainly living
in a computer simulation that was created by some
advanced civilisation. What Copernicus and Darwin and
latter‐day scientists have been discovering are the laws
and workings of the simulated reality. These laws might
or might not be identical to those operating at the more
fundamental level of reality where the computer that is
running our simulation exists (which, of course, may
itself be a simulation). In a way, our place in the world
would be even humbler than we thought. What kind of

implications would this have? How should it change the

way you live your life? (Bostrom, 2006, p. 39, my italics)
We have been looking at the question of our relationship to
personal AIs that we might create. Do they have any rights?
Do we have any moral responsibilities toward them (or they
to us)? But the viewpoint that Bostrom's argument suggests
is this: if we are someone (or something) else's personal
AIs, how does that affect the answers you might be willing
to give to those two questions? For example, you might feel
that you, as a biological human being who is a person, are
definitely entitled to certain rights but personal AIs are not.
Yet if you are an “artificial person,” then either any



personal AI you create should also be entitled to those
rights or you should not be!
You might think all of this is a bit silly or, at least,
premature. But it is always better to be prepared: it is
better to think about the consequences of our actions while
we have the time and leisure to do so, so that if those
consequences come to be, we won't be taken by surprise.
Indeed, several well‐known people from science and
industry (including Elon Musk and Stephen Hawking) have
recently urged us to do precisely that because of “the
Singularity”: the hypothetical time at which computers
become so “intelligent” that they pose a threat to us puny
mortals.9



19.8 Questions for the Reader

1. How do Locke's, Fletcher's, and White's definitions of
‘person’ differ?

2. Could non‐human animals such as dolphins or
chimpanzees be considered persons on any of these
definitions?

3. Can corporations be considered persons on any of these
definitions? Legally, they often are (consider the recent
Supreme Court decision “Citizens United”; see
https://en.wikipedia.org/wiki/Corporate_personhood
and http://plato.stanford.edu/entries/ethics-
business/#CorBusEth). Do they have minds? People
certainly speak as if they do (Knobe, 2015). Or is such
talk merely metaphorical? Of course, sometimes
metaphors come to be taken literally, as we saw in our
discussions of Dennett's intentional stance (Section
12.4) and thinking vs. “thinking” (Section 18.3.3).

4. Do any of these definitions apply to artificial
intelligences (robots)? (Clearly, either White's first
property does not apply at all or ‘alive’ needs to be
understood abstractly, perhaps along the lines of A‐
Life.)

5. Would programming robots to want to do unpleasant or
humanly inconvenient tasks be different from
genetically engineering humans to want to do such
tasks? It is generally assumed that doing this to
humans would be morally wrong. Is it? If so, does it
follow that doing it to robots would also be morally
wrong? Or are there differences between these two
cases?

https://en.wikipedia.org/wiki/Corporate_personhood
http://plato.stanford.edu/entries/ethics-business/#CorBusEth


Notes

1 See the Online Resources for further reading on
robots .

2 See the Online Resources for further reading on A-
Life and Lem's story.

3 See the Online Resources for further reading on AI
ethics .

4 See the Online Resources for further reading on
functionalism, qualia, and computational
“personality.”

5 For a bibliography on computational theories of
consciousness, see http://www.cse.buffalo.edu/
∼rapaport/719/csnessrdgs.html.

6 See the Online Resources for further reading on
personhood.

7 See the Online Resources for further reading on
Petersen's argument.

8 See the Online Resources for further reading on
parenting.

9 See the Online Resources for further reading on the
simulation argument and on the Singularity.
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20 

Computer Science: A Personal

View

So many people today – and even professional scientists
– seem to me like somebody who has seen thousands of
trees but has never seen a forest. A knowledge of the
historic and philosophical background gives that kind of
independence from prejudices of his [sic] generation
from which most scientists are suffering. This
independence created by philosophical insight is – in my
opinion – the mark of distinction between a mere artisan
or specialist and a real seeker after truth.
—Albert Einstein, 1944; cited in Howard and Giovanelli,
2019
Philosophical reflection … is not static, and fixed, but
ongoing and dynamic. The conflict of opinions not only
isn't something to worry about, in fact, it is precisely how
things ought to be. …For … only after you've considered
all sides will you be in a meaningful position to choose
one – when that time comes to decide. … the philosopher
within me cannot make that decision for you. His job, he
reminds me, is merely to rouse the philosopher within
you and to get you thinking – not to tell you what to
think. That's your philosopher's job.
—Andrew Pessin (2009, pp. 3–4)



20.1 Introduction

The aim of philosophy, abstractly formulated, is to
understand how things in the broadest possible sense of
the term hang together in the broadest possible sense of
the term. —Wilfrid Sellars (1963, p. 1)

We have come to an end of our journey. Not “the” end; just
an end: there are still many open questions; there will
always be many open questions. Your job is to consider
some of them, think about possible answers, choose one,
and support and defend it, always allowing for the
possibility of changing your mind for good reasons. This
book has been an introduction to some of the “things” of
CS, and in this chapter, I will offer a suggestion on how
they “hang together.”
We began by asking what computer science is. There were
two parts to that question: What kind of discipline is it? And
what does it study?
In Chapter 3, we surveyed several possible answers to the
first part: it is a science; a branch of engineering; both;
neither; even, perhaps, nothing at all (Section 3.5.3). To
help answer that question, we explored the nature of
science and of engineering (Chapters 4 and 5).
As for the second part – what it studies – we saw that there
were two principal answers: computers and computing. Of
course, it studies both: those who said it studies computers
added that it also studies the phenomena surrounding
computers – namely, algorithms. And those who said it
studies computing added that it also studies the machines
that do the computing. To find out more about these
options, we looked at the history of computers (Chapter 6)
and the nature of computers (primarily Chapter 9 but also



parts of Chapters 11 and 16). And we looked at the nature
of computing and algorithms (Chapters 7 and 8).
But we also looked at several issues that cut across these
topics. The first was the Church‐Turing Computability
Thesis and challenges to it (Part III): here, we looked at the
nature of procedures considered a possible “relaxation” of
some of the constraints on the notion of algorithm (Chapter
10) and at notions of “hypercomputation” that go “beyond”
that of a Turing Machine (Chapter 11).
We also looked more deeply at the nature of computer
programs (Part IV), beginning with the software‐hardware
distinction (Chapter 12), the nature of implementation
(Chapter 13), programs as theories (Chapter 14), programs
as mathematical objects (Chapter 15), and – most
importantly – the relation of programs to the world
(Chapter 16).
And we closed with brief looks at computer ethics and AI
(Part V).
It is time to take stock by seeing if we can come up with an
answer to our principal question: what is computer
science?



20.2 Computer Science and Elephants

Consider the traditional fable of the blind men and the
elephant: six blind, wise men try to describe an elephant
that they can only touch, not see. The first touches its side
and says that the elephant is like a wall. The second
touches its tusk and says that the elephant is like a spear.
The third touches its trunk and says that the elephant is
like a snake. The fourth touches its knee and says that the
elephant is like a tree. The fifth touches its ear and says
that the elephant is like a fan. The sixth touches its tail and
says that the elephant is like a rope. As John Godfrey Saxe's
1873 poem sums it up,

And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong!
(https://en.wikisource.org/wiki/The_poems_of_John_Godf
rey_Saxe/The_Blind_Men_and_the_Elephant)1

Our exploration of the various answers to the question
“What is CS?” suggests that any attempt at one is no better
than the fabled blind men's descriptions of an elephant:
many, if not most or all, such attempts wind up describing
the subject by focusing on only one aspect of it, as we saw
with Newell, Perlis, and Simon and with Knuth. Our
question seems to have no simple, one‐sentence answer.

https://en.wikisource.org/wiki/The_poems_of_John_Godfrey_Saxe/The_Blind_Men_and_the_Elephant


BoxII

Question for the Reader: In Section 3.5.4, we
considered the possibility that CS is not a “coherent”
discipline. Consider the following interpretation of the
blind‐men‐and‐the‐elephant story:

The man at the tail is sure he has found a snake; the
man at the tusks believes he's holding spears.
Through teamwork, they eventually discover the
truth. “But what if they were wrong?” [magician
Derek] DelGaudio asks onstage. “What if that thing
was some sort of magical creature that had a snake
for a nose and tree‐trunk legs, and they convinced it
was an elephant? Maybe that's why you don't see
those things anymore.” (Weiner, 2017)

Might CS have been such a “magical creature”? Is it
still? (Recall the fate of microscopy, Section 3.5.3.)

Now that we have looked at all sides of our “elephant” (to
continue the earlier metaphor), I would put it differently:
CS is the scientific study of a family of topics surrounding
both abstract (or theoretical) and concrete (or practical)
computing. It is a “portmanteau” discipline.2 Let me
explain.
When the discipline was first getting started, it emerged
from various other disciplines: “electrical engineering,
physics, mathematics, or even business” (Hamming, 1968,
p. 4). In fact, the first academic computer programming
course I took (in Fortran) – the only one offered at the
University of Rochester in the late 1960s – was given by its
School of Business.



Charles Darwin said that “all true classification … [is]
genealogical” (Darwin, 1872, Ch. 14, Section
“Classification,” p. 437). CS's genealogy involves two
historical traditions: (1) the study of algorithms and the
foundations of mathematics (from ancient Babylonian
mathematics (Knuth, 1972a), through Euclid's geometry to
inquiries into the nature of logic, leading ultimately to the
Turing Machine) and (2) the attempts to design and
construct a calculating machine (from the Antikythera
Mechanism of ancient Greece; through Pascal's and
Leibniz's calculators and Babbage's machines; to the
ENIAC, iPhone, and beyond).
So, modern CS is the result of a marriage between (or
merger of) the engineering problem of building better and
better automatic calculating devices and the mathematical
problem of understanding the nature of algorithmic
computation. And that implies that modern CS has both
engineering and science in its DNA. Hence its portmanteau
nature.
The topics studied in contemporary CS roughly align along
a spectrum ranging from the mathematical theory of
computing, at one end, to the engineering of physical
computers, at the other, as we saw in Section 3.4.2.
(Newell, Perlis, and Simon were looking at this spectrum
from one end; Knuth was looking at it from the other end.)
The topics share a family resemblance (and perhaps
nothing more than that, except for their underlying DNA)
not only to each other but also to other disciplines
(including mathematics, electrical engineering, information
theory, communication, etc.), and they overlap with issues
discussed in the cognitive sciences, philosophy (including
ethics), sociology, education, the arts, and business:



I reject the title question [“Are We Scientists or
Engineers?”]. … Computer Science … spans a
multidimensional spectrum from deep and elegant
mathematics to crafty programming, from abstraction to
solder joints, from deep truth to elusive human factors,
from scholars motivated purely by the desire for
knowledge or practitioners making my everyday life
better. It embraces the ethos of the scholar as well as
that of the professional. To answer the question would be
to exclude some portion of this spectrum, and I would be
poorer for that. (Wulf, 1995, p. 57)



20.3 Five Central Questions of CS

For sheer ambition, physics does not hold a candle to
computer … science. … It is we, not the physicists, who
must develop a theory of everything.
—Brian Cantwell Smith (2002, p. 53)

Rather than try to say what CS is the study of, or whether it
is scientific or not, I suggest that the best way to
understand it is as trying to answer five central questions.
The single most central question is

1A. What can be computed?

But to answer that, we also need to ask
1B. How can it be computed?

The other questions follow logically from that central one.
So, the five questions that CS is concerned with are

1. What can be computed, and how?

2. What can be computed efficiently, and how?

3. What can be computed practically, and how?

4. What can be computed physically, and how?

5. What can be computed ethically, and how?

Let's consider each of these in a bit more detail.

20.3.1 Computability

What is computation? This has always been the most
fundamental question of our field. —Peter J. Denning and
Peter Wegner (2010)

What Can Be Computed? Question 1A is the central
question, because all other questions presuppose it. The



fundamental task of any computer scientist – whether at the
purely mathematical or theoretical end of the spectrum, or
at the purely practical or engineering end – is to determine
whether there is a computational solution to a given
problem and, if so, how to implement it. But those
implementation questions are covered by the rest of the
questions on the previous list and only make sense after the
first question has been answered. (Alternatively, they
facilitate answering that first question; in any case, they
serve the goal of answering it.) Question 1A includes these
questions:

What is computation?

What kinds of things are computed?

What is computable?

It is the question that logicians and computing pioneers
Alonzo Church, Turing, Gödel, and others were originally
concerned with – which mathematical functions are

computable? – and whose answer has been given as the
Church‐Turing Computability Thesis: a function is
computable if and only if it is computable by a Turing
Machine (or any formalism logically equivalent to a Turing
Machine, such as Church's lambda calculus or Gödel's
general recursive functions). It is important to note that not
all functions are computable. (The standard example of a
non‐computable function is the Halting Problem.) If all
functions were computable, then computability would not be
as interesting a notion.
Various branches of CS are concerned with identifying
which problems can be expressed by computable functions.
So, a corollary of the Computability Thesis is that a task is
computable if and only if it can be expressed as a
computable function. In Robert I. Soare (2012, p. 3289)'s
characterization, the output of a Turing Machine “is the



total number of 1's on the tape.” So, the key to determining
what is computable (i.e. what kinds of tasks are
computable) is finding a coding scheme that allows a
sequence of ‘1's – i.e. (a representation of) an integer – to be
interpreted as a symbol, a pixel, a sound, etc.
Here are some examples:

Is chess computable? Shannon 1950 investigated
whether we can computationally analyze chess. (That is,
can we play chess rationally?)
Is cognition computable? The central question of AI is
whether the functions that describe cognitive processes
are computable (Section 18.2.2). Given the advances
that have been made in AI to date, it seems clear that at
least some aspects of cognition are computable, so a
slightly more precise question is: How much of
cognition is computable? (Rapaport 2012b, Section 2,
pp. 34–35; Rapaport 2021)
Is the weather computable? (B. Hayes 2007)
Is fingerprint identification computable? (Srihari 2010)
Is final‐exam‐scheduling computable? Faculty members
in my department once debated whether it was possible
to write a computer program that would schedule final
exams with no time conflicts and in rooms that were the
proper size for the class. Some thought this was a trivial
problem; others thought there was no such algorithm
(on the – perhaps dubious! – grounds that no one in the
university administration had ever been able to produce
such a schedule). In fact, this problem is ‐complete
(http://www.cs.toronto.edu/∼bor/373s13/L14.pdf). See
also an early discussion of this problem in Forsythe,
1968, Section 3.3, p. 1027. On the meaning of ‘ ‐
complete,’ see Section 20.3.2.)

http://www.cs.toronto.edu/~bor/373s13/L14.pdf


This aspect of question 1A – which tasks are computable? –
is close to Forsythe's famous concern:

The question “What can be automated?” is one of the
most inspiring philosophical and practical questions of
contemporary civilization. (Forsythe, 1968, p. 1025)

Although similar in intent, Forsythe's question can be
understood in a slightly different way: presumably, a
process can be automated – i.e. done automatically, by a
machine, without human intervention – if it can be
expressed as an algorithm. That is, computable implies
automatable. But automatable does not imply being
computed: witness the invention of the electro‐mechanical,
direct‐dialing system in telephony, which automated the
task of the human operator.3 Yes, direct dialing is also
computable, but it wasn't a computer that automated it.

How Is It Computable? Question 1B – the “how” aspect of
our central question – is equally important: CS cannot be
satisfied with a mere existence statement to the effect that a
problem is computable; it also requires a constructive
answer in the form of an algorithm that explicitly shows how

it is computable.
In the Calvin and Hobbes cartoon in Figure 20.1, Calvin
discovers that if you input one thing (bread) into a toaster,
it outputs something else (toast). Hobbes wonders what
happened to the input. It didn't disappear, of course, nor did
it “magically” turn into the output. The toaster did

something to the bread (heated it); that intervening process
is the analogue of an algorithm for the bread‐to‐toast
function. Finding “intervening processes” requires
algorithmic thinking and results in algorithms that specify
the transformational relations between input and output.



Figure 20.1 CALVIN AND HOBBES ©1986 Watterson.
Reprinted with permission of ANDREWS MCMEEL SYNDICATION. All rights
reserved.

(In psychology, behaviorism focused only on inputs and
outputs: Pavlov's famous experiment input a bell to a dog,
and the dog output saliva; but behaviorists didn't ask how
the input and output were connected. It was cognitive

psychology that focused on the intervening algorithms
(Miller et al., 1960).)
In Section 2.7, we observed that for every , there is a
philosophy of . Similarly, we can ask, given some ,
whether there is a computational theory of . Finding a
computational solution to a problem requires
“computational thinking”: i.e. algorithmic (or procedural)
thinking (Section 3.16.4).
Computational thinking includes what I called the Five
Great Insights of CS (Section 7.4):

1. The representation insight:

Only two nouns are needed to represent

information

(‘0,’ ‘1’).

2. The processing insight:



Only three verbs are needed to process

information

(move(left or right), print(‘0’ or ‘1’), erase).

3. The structure insight:

Only three grammar rules are needed to combine

actions

(sequence, selection, repetition).

4. The “closure” insight:

Nothing else is needed.

This is the import of the Church‐Turing

Computability Thesis.4

5. The implementation insight:

The first three insights can be physically

implemented.

20.3.2 Efficient Computability

Question 2 – what can be computed efficiently? – is studied
by the branch of computer science known as computational
complexity theory. Given an algorithm, we can ask how
much time it will take to be executed (roughly, the number
of operations that will be needed) and how much space

(memory) it will need. Computational‐complexity theory is
concerned with efficiency because it is concerned with the
economics of the spatio‐temporal resources needed for
computing. A more general question is this: given the set of
computable functions, which of them can be computed in, so
to speak, less time than the age of the universe, or less
space than the size of the universe? The principal
distinction is whether a function is in the class called  (in
which case it is “efficiently” computable) or in the class 



(in which case it is not efficiently computable but is
efficiently “verifiable”):

Even children can multiply two primes, but the reverse
operation – splitting a large number into two primes –
taxes even the most powerful computers. The numbers
used in asymmetric encryption are typically hundreds of
digits long. Finding the prime factors of such a large
number is like trying to unmix the colors in a can of paint,
… “Mixing paint is trivial. Separating paint isn't.” (Folger,
2016, p. 52)

Many, if not most, algorithms of practical importance are in 
. By contrast, one important algorithm that is in  is the

Boolean Satisfiability Problem: given a molecular
proposition of propositional logic with  atomic
propositions, under what assignment of truth‐values to
those atomic propositions is the molecular proposition true
(or “satisfied”)? Algorithms that are equivalent to
Satisfiability are said to be “ ‐complete”:

What [Turing‐award winner Stephen] Cook did was show
that every problem in NP has a reduction to satisfiability.
Solve satisfiability and you can solve all of NP. If you have
an efficient algorithm for solving satisfiability, then all the
problems whose solutions we can efficiently check have
efficient algorithms, and P = NP. … “NP‐complete” means
those problems in NP powerful enough that they can be
used to solve any other problem in NP. (Fortnow, 2013,
pp. 54, 58)

Whether  is one of the major open questions in
mathematics and CS. Most computer scientists both hope
and believe that . Here's why:



What happens if P = NP? We get a beautiful world where
everything is easy to compute. We can quickly learn just
about everything, and the great mysteries of the world
fall quickly, from cures [for] deadly diseases to the nature
of the universe. The beautiful world also has a dark
underbelly, including the loss of privacy and jobs, as
there is very little computers cannot figure out or
accomplish. (Fortnow, 2013, p. 9)5

BoxII

Terminology:  is so‐called because it is the class of
functions computable in “Polynomial time,” and  is so‐
called because it is the class of functions computable in
“Non‐deterministic Polynomial time.” For more technical
details, see https://en.wikipedia.org/wiki/Non-
deterministic_Turing_machine and Bernhardt, 2016,
pp. 63–67.

20.3.3 Practical Computability

Question 3 – what can be computed practically? – is
considered both by complexity theorists as well as by more
practically‐oriented software engineers. Given a computable
function in  (or, for that matter, in NP), what are some
practically efficient methods of actually computing it? For
example, under certain circumstances, some sorting
algorithms are more efficient in a practical sense (e.g.
faster) than others. Even a computable function that is in
NP might be practically computable in special cases
(Fortnow, 2022). And some functions might only be
practically computable “indirectly” via a “heuristic” (Section
5.6). A classic case is the Traveling Salesperson Problem, an
NP‐complete problem that software like Google Maps solves

https://en.wikipedia.org/wiki/Non-deterministic_Turing_machine


special cases of every day (even if the solutions are only
“satisficing” ones (see Section 2.5.1)).6

20.3.4 Physical Computability

Question 4 – what can be computed physically? – brings in
both empirical (hence scientific) and engineering
considerations. To the extent that the only (or the best) way
to decide whether a computable function really does what it
claims to do is to execute it on a real, physical computer,
computers become an integral part of CS. Even a practically
efficient algorithm for computing some function might run
up against physical limitations. Here is one example: even if,
eventually, computational linguists devise practically
efficient algorithms for natural‐language understanding and
generation (Shapiro, 1989; Shapiro and Rapaport, 1991), it
remains the case that humans have a finite life span, so the
infinite capabilities of natural‐language competence are not
really required (a Turing Machine isn't needed; a simpler
mathematical model called a “push‐down automaton” might
suffice).
This is also the question that issues in the design and
construction of real computers (“computer engineering”)
are concerned with. It is where investigations into
alternative physical implementations of computing
(quantum, optical, DNA, etc.) come in. And it is concerned
with the issues relating abstract computation to physical
computation, such as those we discussed in Chapter 11 on
hypercomputation and Chapter 16 on how programs relate
to the world.

20.3.5 Ethical Computability

Question 5 brings in ethical considerations. Arden,
elaborating Forsythe's question, said that “the basic
question [is] … what can and should be automated” (Arden



(1980, p. 29, my italics); see also Tedre 2015, pp. 167–168).
As Matti Tedre (2008, p. 48, my italics) observes,

Neither the theoretician's question “What can be
efficiently automated?” nor the practitioner's question
“How can processes be automated reliably and
efficiently?” include, explicitly or implicitly, any questions
about why processes should be automated at all, if it is
desirable to automate things or to introduce new
technologies, or who decides what will be automated.

Actually, the question “What should be computed?” is
slightly ambiguous. It could simply refer to questions of
practical efficiency: given a sorting problem, which sorting
algorithm should be used; i.e. which one is the “best” or
“most practical” or “most efficient” in the actual
circumstances? But this sense of ‘should’ does not really
differentiate this question from question (3).
It is the ethical interpretation that makes this question
interesting (Dietrich et al., 2021). Tedre's earlier
observations are clearly related to the issues we looked at in
Chapter 16 concerning the purpose of an algorithm. And
even if there is a practical and efficient algorithm for
making certain decisions (e.g. as in the case of autonomous
vehicles), there is still the question of whether we should

use those algorithms to actually make decisions for us. Or
let us suppose the goal of AI – a computational theory of
cognition – is practically and efficiently computable by
physically plausible computers. One can and should still
raise the question of whether such “artificial intelligences”
should be created and whether we (their creators) have any
ethical or moral obligations toward them, and vice versa!
(See Delvaux, 2016, Nevejans, 2016.) And there is the
question of implicit biases that might be (intentionally or
unintentionally) built into some machine‐learning
algorithms.



20.4 Wing's Five Questions

I have offered five questions as the focus of CS. Jeannette
Wing (2008b, p. 58) also offers “Five Deep Questions in
Computing”:

P = NP?
What is computable?
What is intelligence?
What is information?
(How) can we build complex systems simply?

Later, she added a sixth (Wing, 2008a, p. 3724):

the most basic question of all: what is a computer?.
Let's compare our two lists.
Wing's first question is part of our second question: “What
is efficiently computable?”
Curiously, her second question is our central one! (I should
note, however, that a later essay (Wing, 2008a, p. 3724)
says that her five questions are a “set,” thus “no ordering
implied.”)
Her third question can be rephrased as “How much of
(human) cognition is computable?” which is a special case
of our central question. It is, as we have seen, the central
question of AI.
Her fourth question can be seen as asking an ontological
question about the nature of what it is that is computed: Is
it numbers (0s and 1s)? Is it symbols (‘0's and ‘1's)? Is it
information in some sense (and, if so, in which sense)? In
the present context, “What is information?” is closely
related to the question we asked in Section 3.4.2 about



what objects CS studies. Thus, it, too, is an aspect of our
central question.
Wing's fifth question is ambiguous between two readings of
‘build.’ (a) On a software reading, this question can be
viewed in an abstract (scientific, mathematical) way as
asking about the structural nature of software: structured
programming and the issues concerning the proper use of
the “goto” statement (Dijkstra, 1968) would fall under this
category. As such, it concerns the grammar rules, and so it
is an aspect of our central question. (b) On a hardware
reading, it is an engineering question: how should we build
physical computers? On that interpretation, it is part of our
fourth question.
Whether or not her sixth question is the most basic one
(perhaps “What is computable?” is more basic?), it would
seem to be an aspect of the “how” part of either our central
question or our fourth question: how can something be
computed physically?
Thus, Wing's questions can be boiled down to two:

1. What is computation such that only some things can be
computed?
(And what can be computed [efficiently], and how?)

2. (How) can we build devices to perform these
computations?

The first is equivalent to our questions 1–3. The second is
equivalent to our question 4. We see once again the two
parts of the discipline: the scientific (or mathematical, or
abstract) and the engineering (or concrete).
But it is interesting and important to note that none of
Wing's questions correspond to our ethical question 5.
Robin K. Hill observes,



Whereas the philosophy of computer science has
heretofore been directed largely toward the study of
formal systems by means of other formal systems …
concerned professionals have also devoted attention to
the ethics of computing, taking on issues like privacy, the
digital divide, and bias in selection algorithms. Let's keep
it up. There are plenty. (Hill, 2017)



20.5 Conclusion

I said that our survey suggests that there is no simple, one‐

sentence answer to the question “What is CS?” However, if
we were to summarize the discussion in this chapter in one

sentence, it would look something like this:

CS is the scientific (or STEM) study of

what problems can be solved,

what tasks can be accomplished,

and what features of the world can be understood …

… computationally, i.e. using a language with only

2 nouns (‘0,’ ‘1’),

3 verbs (‘move,’ ‘print,’ ‘halt’),

3 grammar rules (sequence, selection, repetition),

and nothing else,

and then to provide algorithms to show how this

can be done

efficiently,

practically,

physically,

and ethically.

This definition is hardly a simple sentence! However, one of
the epigraphs for Chapter 3 – from an interview with a
computational musician – comes closer, so we will end
where that chapter began:



BoxII

The Holy Grail of computer science is to capture

the messy complexity of the natural world and

express it algorithmically.

—Teresa Marrin Nakra, quoted in Davidson 2006, p. 66,
my italics



Notes

1 See also
https://en.wikipedia.org/wiki/Blind_men_and_an_ele
phant.

2 A “portmanteau” is a suitcase that opens into two
equal sections. A “portmanteau word” – the term was
coined by Lewis Carroll (1871) – is one with “two
meanings packed up into one word,” like ‘smog’
(meaning “smoke and fog”).

3 “Strowger Switch,”
https://en.wikipedia.org/wiki/Strowger_switch.

4 The exact number of nouns, verbs, or grammar rules
depends on the formalism. E.g. some presentations
add ‘halt,’ ‘read’ or ‘exit’ as verbs, or use recursion
as the single rule of grammar, etc. The point is that
there is a very minimal set and nothing else is
needed. Of course, more nouns, verbs, or grammar
rules allow for greater ease of expression.

5 See the Online Resources for further reading on
P vs. NP.

6 See the Online Resources for further reading on
practical computability.

https://en.wikipedia.org/wiki/Blind_men_and_an_elephant
https://en.wikipedia.org/wiki/Strowger_switch
https://cse.buffalo.edu/~rapaport/OR/A0fr20.html#20.3.2
https://cse.buffalo.edu/~rapaport/OR/A0fr20.html#20.3.3
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